Science.gov

Sample records for lycopersicon pennellii glucose

  1. Branched chain amino acid metabolism in the biosynthesis of Lycopersicon pennellii glucose esters

    SciTech Connect

    Walters, D.S.; Steffens, J.C. )

    1990-08-01

    Lycopersicon pennellii Corr. (D'Arcy) an insect-resistant, wild tomato possesses high densities of glandular trichomes which exude a mixture of 2,3,4-tri-O-acylated glucose esters that function as a physical impediment and feeding deterrent to small arthropod pests. The acyl moieties are branched C{sub 4} and C{sub 5} acids, and branched and straight chain C{sub 10}, C{sub 11}, and C{sub 12} acids. The structure of the branched acyl constituents suggests that the branched chain amino acid biosynthetic pathway participates in their biosynthesis. ({sup 14}C)Valine and deuterated branched chain amino acids (and their oxo-acid derivatives) were incorporated into branched C{sub 4} and C{sub 5} acid groups of glucose esters by a process of transamination, oxidative decarboxylation and subsequent acylation. C{sub 4} and C{sub 5} branched acids were elongated by two carbon units to produce the branched C{sub 10}-C{sub 12} groups. Norvaline, norleucine, allylglycine, and methionine also were processed into acyl moieties and secreted from the trichomes as glucose esters. Changes in the acyl composition of the glucose esters following sulfonylurea herbicide administration support the participation of acetohydroxyacid synthetase and the other enzymes of branched amino acid biosynthesis in the production of glucose esters.

  2. Stomatal Response to Light of Solanum pennellii, Lycopersicon esculentum, and a Graft-induced Chimera 1

    PubMed Central

    Heichel, Gary H.; Anagnostakis, Sandra L.

    1978-01-01

    To learn how species differences in stomatal behavior are regulated, the response of epidermal and leaf diffusive resistance to light was investigated in Lycopersicon esculentum Mill., Solanum pennellii Corr., and a periclinal chimera having an S. pennellii epidermis and an L. esculentum mesophyll that was produced from a graft of the two species. S. pennellii has about 23% fewer stomata per square millimeter than does L. esculentum, and the two species have contrasting stomatal sensitivities to light. The abaxial stomata of L. esculentum open in dimmer light and to a greater extent than the adaxial stomata. The abaxial and adaxial stomata of S. pennellii respond similarly to light incident on the adaxial epidermis and are less open at all quantum flux densities than comparable stomata of L. esculentum. The patterns of response to light of the abaxial and adaxial stomata of the chimera were practically identical to those of L. esculentum, and quite unlike those of S. pennellii. Thus, the pattern of stomatal light response in the chimera was regulated by the L. esculentum mesophyll. The reduction in stomatal frequency of the chimera, which was regulated by the epidermis of S. pennellii, contributed to the 40% difference in leaf diffusive resistance between the plants in moderate light. PMID:16660523

  3. Advanced backcross QTL analysis of a Lycopersicon esculentum x L. pennellii cross and identification of possible orthologs in the Solanaceae.

    PubMed

    Frary, A; Fulton, T M; Zamir, D; Tanksley, S D

    2004-02-01

    In this study, the advanced backcross QTL (AB-QTL) mapping strategy was used to identify loci for yield, processing and fruit quality traits in a population derived from the interspecific cross Lycopersicon esculentum E6203 x Lycopersicon pennellii accession LA1657. A total of 175 BC(2) plants were genotyped with 150 molecular markers and BC(2)F(1) plots were grown and phenotyped for 25 traits in three locations in Israel and California, U.S.A. A total of 84 different QTLs were identified, 45% of which have been possibly identified in other wild-species-derived populations of tomato. Moreover, three fruit-weight/size and shape QTLs ( fsz2b.1, fw3.1/ fsz3.1 and fs8.1) appear to have putative orthologs in the related solanaceous species, pepper and eggplant. For the 23 traits for which allelic effects could be deemed as favorable or unfavorable, 26% of the identified loci had L. pennellii alleles that enhanced the performance of the elite parent. Alleles that could be targeted for further introgression into cultivated tomato were also identified.

  4. Stable Carbon Isotope Composition (δ13C), Water Use Efficiency, and Biomass Productivity of Lycopersicon esculentum, Lycopersicon pennellii, and the F1 Hybrid

    PubMed Central

    Martin, Bjorn; Thorstenson, Yvonne R.

    1988-01-01

    Three tomatoes, Lycopersicon esculentum Mill. cv UC82B, a droughttolerant wild related species, Lycopersicon pennellii (Cor.) D'Arcy, and their F1 hybrid, were grown in containers maintained at three levels of soil moisture. Season-long water use was obtained by summing over the season daily weight losses of each container corrected for soil evaporation. Plant biomass was determined by harvesting and weighing entire dried plants. Season-long water use efficiency (gram dry weight/kilogram H2O) was calculated by dividing the dry biomass by the season-long water use. The season-long water use efficiency was greatest in the wild parent, poorest in the domestic parent, and intermediate (but closer to the wild parent) in the F1 hybrid. Instantaneous water-use efficiency (micromole CO2/millimole H2O) determined by gas exchange measurements on individual leaves was poorly correlated with season-long water use efficiency. However, the relative abundance of stable carbon isotopes of leaf tissue samples was strongly correlated with the season-long water use efficiency. Also, the isotopic composition and the season-long water use efficiency of each genotype alone were strongly negatively correlated with plant dry weight when the dry weight varied as a function of soil moisture. PMID:16666269

  5. Three Drought-Responsive Members of the Nonspecific Lipid-Transfer Protein Gene Family in Lycopersicon pennellii Show Different Developmental Patterns of Expression1

    PubMed Central

    Treviño, Marcela B.; Connell, Mary A. O'

    1998-01-01

    Genomic clones of two nonspecific lipid-transfer protein genes from a drought-tolerant wild species of tomato (Lycopersicon pennellii Corr.) were isolated using as a probe a drought- and abscisic acid (ABA)-induced cDNA clone (pLE16) from cultivated tomato (Lycopersicon esculentum Mill.). Both genes (LpLtp1 and LpLtp2) were sequenced and their corresponding mRNAs were characterized; they are both interrupted by a single intron at identical positions and predict basic proteins of 114 amino acid residues. Genomic Southern data indicated that these genes are members of a small gene family in Lycopersicon spp. The 3′-untranslated regions from LpLtp1 and LpLtp2, as well as a polymerase chain reaction-amplified 3′-untranslated region from pLE16 (cross-hybridizing to a third gene in L. pennellii, namely LpLtp3), were used as gene-specific probes to describe expression in L. pennellii through northern-blot analyses. All LpLtp genes were exclusively expressed in the aerial tissues of the plant and all were drought and ABA inducible. Each gene had a different pattern of expression in fruit, and LpLtp1 and LpLtp2, unlike LpLtp3, were both primarily developmentally regulated in leaf tissue. Putative ABA-responsive elements were found in the proximal promoter regions of LpLtp1 and LpLtp2. PMID:9536064

  6. Water-use efficiency and drought tolerance in Lycopersicon esculentum and L. pennellii and their F sub 2 crosses

    SciTech Connect

    de Soyza, A.G.; Kay, L.E.; Gutschick, V.P.; Maxwell, C. )

    1991-05-01

    In growth chamber experiments the authors compared the water-use efficiency (WUE) and drought tolerance (DT - retention of dry mass vegetative yield when droughted) of the drought intolerant common tomato, L. esculentum and the ostensibly drought tolerant tomato, L. pennellii. Drought treatment was imposed as two severe episodes of drought, each episode lasting until all leaves on the plant were silted, with a period of recovery between treatments. They measured up to 20 performance attributes to WUE and DT, including: root:shoot ratio, leaf internal CO2/ambient CO2, {delta}{sup 13}C, leaf photosynthetic rate, specific leaf mass, leaf water potential, leaf osmotic potential, and stomatal density. Water-use efficiency is negatively correlated with drought tolerance; drought tolerance is positively correlated with plants' ability to increase WUE under stress. Few other attributes are correlated with drought tolerance, and some are conspicuous by their absence. They find evidence for substantial genetic linkage among attributes that confer drought tolerance; and interplant rankings in drought tolerance depend strongly upon the type of drought stress experienced (episodic vs. continuous).

  7. Mechanisms and genetic control of interspecific crossing barriers in Lycopersicon

    SciTech Connect

    Mutschler, M.A. ); McCormick, S. . Plant Gene Expression Center)

    1993-03-27

    This study employs Lycopersicon esculentum and L. pennellii as model systems to study the interspecific reproductive barriers unilateral incongruity (UI), hybrid breakdown and interspecific aberrant ratio syndrome (IARS).

  8. Mechanisms and genetic control of interspecific crossing barriers in Lycopersicon. Second yearly progress report

    SciTech Connect

    Mutschler, M.A.; McCormick, S.

    1993-03-27

    This study employs Lycopersicon esculentum and L. pennellii as model systems to study the interspecific reproductive barriers unilateral incongruity (UI), hybrid breakdown and interspecific aberrant ratio syndrome (IARS).

  9. Identification of an allele attributable to formation of cucumber-like flavor in wild tomato species (Solanum pennellii) that was inactivated during domestication.

    PubMed

    Matsui, Kenji; Ishii, Miho; Sasaki, Masahiro; Rabinowitch, Haim D; Ben-Oliel, Gadi

    2007-05-16

    Carbon 6 (C6)-aldehydes formed by fatty acid 13-hydroperoxide lyase (13HPL) specific to fatty acid 13-hydroperoxides (13-HPO) are important flavor constituents in fresh tomato fruits. C9-aldehydes are usually formed by 9/13HPL showing dual specificity to 9- and 13-HPOs and are scarcely found in tomato fruits. Mature red fruits of one of the introgression lines, IL1-4, generated by hybridization of a cultivated tomato (Solanum lycopersicon) to its wild relative Solanum pennellii, form high amounts of C9-aldehydes upon homogenization. The IL1-4 fruits showed high 9/13HPL activity. One of the genes isolated from IL1-4 showed a high similarity to plant 9/13HPLs. Recombinant proteins expressed in Escherichia coli showed 9/13HPL activity. Cleaved amplified polymorphic sequence analyses indicated that the gene was specific to IL1-4 and S. pennellii. S. lycopersicon had a gene having high similarity to the S. pennellii gene. It was absent in IL1-4. Among the differences of amino acid residues found between the two genes, a Cys to Ser exchange may be responsible for the inactivation of resultant protein product of S. lycopersicon gene because the Cys is an essential amino acid residue for HPL activity. From these observations, it could be assumed that a tomato gene corresponding to S. pennellii 9/13HPL gene had been inactivated through domestication of tomatoes.

  10. Mitochondrial DNA Sequence Divergence among Lycopersicon and Related Solanum Species

    PubMed Central

    McClean, Phillip E.; Hanson, Maureen R.

    1986-01-01

    Sequence divergence among the mitochondrial (mt) DNA of nine Lycopersicon and two closely related Solanum species was estimated using the shared fragment method. A portion of each mt genome was highlighted by probing total DNA with a series of plasmid clones containing mt-specific DNA fragments from Lycopersicon pennellii. A total of 660 fragments were compared. As calculated by the shared fragment method, sequence divergence among the mtDNAs ranged from 0.4% for the L. esculentum-L. esculentum var. cerasiforme pair to 2.7% for the Solanum rickii-L. pimpinellifolium and L. cheesmanii-L. chilense pairs. The mtDNA divergence is higher than that reported for Lycopersicon chloroplast (cp) DNA, which indicates that the DNAs of the two plant organelles are evolving at different rates. The percentages of shared fragments were used to construct a phenogram that illustrates the present-day relationships of the mtDNAs. The mtDNA-derived phenogram places L. hirsutum closer to L. esculentum than taxonomic and cpDNA comparisons. Further, the recent assignment of L. pennellii to the genus Lycopersicon is supported by the mtDNA analysis. PMID:17246320

  11. Glucose Polyester Biosynthesis. Purification and Characterization of a Glucose Acyltransferase1

    PubMed Central

    Li, Alice X.; Eannetta, Nancy; Ghangas, Gurdev S.; Steffens, John C.

    1999-01-01

    Glandular trichomes of the wild tomato species Lycopersicon pennellii secrete 2,3,4-O-tri-acyl-glucose (-Glc), which contributes to insect resistance. A Glc acyltransferase catalyzes the formation of diacyl-Glc by disproportionating two equivalents of 1-O-acyl-β-Glc, a high-energy molecule formed by a UDP-Glc dependent reaction. The acyltransferase was purified 4,900-fold from L. pennellii leaves by polyethylene glycol fractionation, diethylaminoethyl chromatography, concanavalin A affinity chromatography, and chromatofocusing. The acyltransferase possesses an isoelectric point of 4.8, a relative molecular mass around 110 kD, and is composed of 34- and 24-kD polypeptides as a heterotetramer. The 34- and 24-kD proteins were partially sequenced. The purified enzyme catalyzes both the disproportionation of 1-O-acyl-β-Glcs to generate 1,2-di-O-acyl-β-Glc and anomeric acyl exchange between 1-O-acyl-β-Glc and Glc. PMID:10517836

  12. Chloroplast DNA evolution and phylogenetic relationships in Lycopersicon.

    PubMed

    Palmer, J D; Zamir, D

    1982-08-01

    Chloroplast DNA was purified from 12 accessions that represent most of the species diversity in the genus Lycopersicon (family Solanaceae) and from 3 closely related species in the genus Solanum. Fragment patterns produced by digestion of these DNAs with 25 different restriction endonucleases were analyzed by agarose gel electrophoresis. In all 15 DNAs, a total of only 39 restriction site mutations were detected among 484 restriction sites surveyed, representing 2,800 base pairs of sequence information. This low rate of base sequence change is paralleled by an extremely low rate of convergent change in restriction sites; only 1 of the 39 mutations appears to have occurred independently in two different lineages. Parsimony analysis of shared mutations has allowed the construction of a maternal phylogeny for the 15 accessions. This phylogeny is generally consistent with relationships based on morphology and crossability but provides more detailed resolution at several places. All accessions within Lycopersicon form a coherent group, with two of the three species of Solanum as outside reference points. Chloroplast DNA analysis places S. pennellii firmly within Lycopersicon, confirming recent studies that have removed it from Solanum. Red-orange fruit color is shown to be a monophyletic trait in three species of Lycopersicon, including the cultivated tomato, L. esculentum. Analysis of six accessions within L. peruvianum reveals a limited amount of intraspecific polymorphism which, however, encompasses all the variation observed in L. chilense and L. chmielewskii. It is suggested that these latter two accessions be relegated to positions within the L. peruvianum complex.

  13. Mechanisms and genetic control of interspecific crossing barriers in Lycopersicon. Final report

    SciTech Connect

    Mutschler, M.A.

    1997-04-30

    Deficiency of Lycopersicon esculentum allele (E) was observed from the RFLP and isozyme data of the F{sub 2} populations derived from the cross L. esculentum x L. pennellii. The genome composition of the F{sub 2} populations containing L. pennellii cytoplasm (F{sub 2}{sup Lp4}) has a lower proportion of the homozygous L. pennellii (PP) genotypes and a higher proportion of heterozygote (EP) genotypes than that of the F{sub 2} populations containing L. esculentum cytoplasm (F{sub 2}{sup Le}). A lower proportion of the L. pennellii alleles (P) was also observed in F{sub 2}{sup Lp4} as compared to F{sub 2}{sup Le} when each marker locus was tested individually. To study the effects of gametic and zygotic selection on segregation distortion, the expected patterns of segregation at a marker locus were derived for ten selection models with gametic or zygotic selection at a hidden linked locus. Segregation distortion caused by four of the selection models studied can be uniquely identified by the patterns of significance expected for the likelihood ratio tests at the marker loci. Comparison of the chromosomal regions associated with specific selection models across populations (of this experiment and previous publications) indicated that the segregation distortion observed in chromosome 10 is associated with zygotic selection affecting both arms of the chromosome, and cytoplasm substitution has the effect of decreasing the segregation distortion on the long arm of the chromosome.

  14. Salt tolerance in Solanum pennellii: antioxidant response and related QTL

    PubMed Central

    2010-01-01

    Background Excessive soil salinity is an important problem for agriculture, however, salt tolerance is a complex trait that is not easily bred into plants. Exposure of cultivated tomato to salt stress has been reported to result in increased antioxidant content and activity. Salt tolerance of the related wild species, Solanum pennellii, has also been associated with similar changes in antioxidants. In this work, S. lycopersicum M82, S. pennellii LA716 and a S. pennellii introgression line (IL) population were evaluated for growth and their levels of antioxidant activity (total water-soluble antioxidant activity), major antioxidant compounds (phenolic and flavonoid contents) and antioxidant enzyme activities (superoxide dismutase, catalase, ascorbate peroxidase and peroxidase) under both control and salt stress (150 mM NaCl) conditions. These data were then used to identify quantitative trait loci (QTL) responsible for controlling the antioxidant parameters under both stress and nonstress conditions. Results Under control conditions, cultivated tomato had higher levels of all antioxidants (except superoxide dismutase) than S. pennellii. However, under salt stress, the wild species showed greater induction of all antioxidants except peroxidase. The ILs showed diverse responses to salinity and proved very useful for the identification of QTL. Thus, 125 loci for antioxidant content under control and salt conditions were detected. Eleven of the total antioxidant activity and phenolic content QTL matched loci identified in an independent study using the same population, thereby reinforcing the validity of the loci. In addition, the growth responses of the ILs were evaluated to identify lines with favorable growth and antioxidant profiles. Conclusions Plants have a complex antioxidant response when placed under salt stress. Some loci control antioxidant content under all conditions while others are responsible for antioxidant content only under saline or nonsaline

  15. Expression and diversification analysis reveals transposable elements play important roles in the origin of Lycopersicon-specific lncRNAs in tomato.

    PubMed

    Wang, Xin; Ai, Guo; Zhang, Chunli; Cui, Long; Wang, Jiafa; Li, Hanxia; Zhang, Junhong; Ye, Zhibiao

    2016-03-01

    Long noncoding RNAs (lncRNAs) regulate gene expression and biological processes. With the development of high-throughput RNA sequencing technology, lncRNAs have been extensively studied in recent years. Nevertheless, the expression and evolution of lncRNAs in plants remain poorly understood. Here, we identified 413 and 709 multi-exon noncoding transcripts from 353 and 595 loci of the cultivar tomato Heinz1706 and its wild relative LA1589, respectively. Systematic comparison of the sequence and expression of lncRNAs showed that they are poorly conserved in Solanaceae, with only < 0.4% lncRNAs present in all sequenced genomes of tomato and potato. Sequence analysis of Lycopersicon-specific lncRNA loci in Solanum lycopersicum and S. pennellii showed that the origins of these molecules are associated with transposable elements (TEs). LncRNA-314, a fruit-specific lncRNA expressed in S. lycopersicum and S. pimpinellifolium, but not in S. pennellii, originated through two evolutionary events: speciation of S. pennellii resulted in insertion of a long terminal repeat (LTR) retrotransposon into chromosome 10 and contributed to most of the transcribed region of lncRNA-314; and a large deletion in Lycopersicon generated the promoter region and part of the transcribed region of lncRNA-314. These results provide novel insights into the evolution of lncRNAs in plants.

  16. Identification of a solanum pennellii chromosome 4 fruit flavor and nutritional quality-associated metabolite QTL

    USDA-ARS?s Scientific Manuscript database

    A major resource for tomato quality improvement and gene discovery is the collection of introgression lines (ILs) of cultivated Solanum lycopersicum that contain different, defined chromosomal segments derived from the wild tomato relative, S. pennellii. Among these lines, IL4-4, in which the bottom...

  17. Enzyme Activity Profiles during Fruit Development in Tomato Cultivars and Solanum pennellii1[W][OA

    PubMed Central

    Steinhauser, Marie-Caroline; Steinhauser, Dirk; Koehl, Karin; Carrari, Fernando; Gibon, Yves; Fernie, Alisdair R.; Stitt, Mark

    2010-01-01

    Enzymes interact to generate metabolic networks. The activities of more than 22 enzymes from central metabolism were profiled during the development of fruit of the modern tomato cultivar Solanum lycopersicum ‘M82’ and its wild relative Solanum pennellii (LA0716). In S. pennellii, the mature fruit remains green and contains lower sugar and higher organic acid levels. These genotypes are the parents of a widely used near introgression line population. Enzymes were also profiled in a second cultivar, S. lycopersicum ‘Moneymaker’, for which data sets for the developmental changes of metabolites and transcripts are available. Whereas most enzyme activities declined during fruit development in the modern S. lycopersicum cultivars, they remained high or even increased in S. pennellii, especially enzymes required for organic acid synthesis. The enzyme profiles were sufficiently characteristic to allow stages of development and cultivars and the wild species to be distinguished by principal component analysis and clustering. Many enzymes showed coordinated changes during fruit development of a given genotype. Comparison of the correlation matrices revealed a large overlap between the two modern cultivars and considerable overlap with S. pennellii, indicating that despite the very different development responses, some basic modules are retained. Comparison of enzyme activity, metabolite profiles, and transcript profiles in S. lycopersicum ‘Moneymaker’ revealed remarkably little connectivity between the developmental changes of transcripts and enzymes and even less between enzymes and metabolites. We discuss the concept that the metabolite profile is an emergent property that is generated by complex network interactions. PMID:20335402

  18. A dispersed family of repetitive DNA sequences exhibits characteristics of a transposable element in the genus Lycopersicon.

    PubMed

    Young, R J; Francis, D M; St Clair, D A; Taylor, B H

    1994-06-01

    A segment of DNA 5' to the transcribed region of an auxin-regulated gene, ARPI, from Lycopersicon esculentum Mill. cv. VFN8 contains a sequence with the structural characteristics of a transposable element. The putative element (Lyt1) is 1340 bp long, has terminal inverted repeats of approximately 235 bp and is flanked by 9-bp direct repeats. Lyt1 has a structure similar to the Robertson's Mutator (Mu) family from maize. The terminal inverted repeats are 80% AT-rich, are 96.6% identical, and define a larger family of repetitive elements. Southern analysis and genomic dot-blot reconstructions detected at least 41 copies of Lyt1-hybridizing sequences in red-fruited Lycopersicon spp. (L. esculentum, L. pimpinellifolium and L. cheesmanii), and 2-8 copies in the green-fruited species (L. hirsutum, L. pennellii, L. peruvianum, L. chilense and L. chmielewskii). There were two to four copies in the Solanum spp. closely allied with the genus Lycopersicon (S. lycopersicoides, S. ochranthum and S. juglandifolium), while the more distantly related Solanum spp. showed little (one to two copies in S. tuberosum) to no (S. quitoense) detectable hybridization under stringent conditions. Linkage analysis in the F2 progeny of a cross between L. esculentum and L. cheesmanii indicated that at least six loci that hybridize to the Lyt1 sequence are dispersed in the genome. Polymerase chain reaction and Southern analyses revealed that some red-fruited accessions and L. chmielewskii lacked Lyt1 5' to the transcribed region of ARPI. Subsequent sequence analysis indicated that only one copy of the 9-bp direct repeat (target site) was present, suggesting that transposition of the element into the ARPI gene occurred after the divergence of the red-fruited and green-fruited Lycopersicon species.

  19. A molecular linkage map of tomato displaying chromosomal locations of resistance gene analogs based on a Lycopersicon esculentum x Lycopersicon hirsutum cross.

    PubMed

    Zhang, L P; Khan, A; Niño-Liu, D; Foolad, M R

    2002-02-01

    other molecular linkage maps of tomato, including the high density L. esculentum x Lycopersicon pennellii map, indicated that the lengths of the maps and linear order of RFLP markers were in good agreement, though certain chromosomal regions were less consistent than others in terms of the frequency of recombination. The present map provides a basis for identification and mapping of genes and QTLs for disease resistance and other desirable traits in PI126445 and other L. hirsutum accessions, and will be useful for marker-assisted selection and map-based gene cloning in tomato.

  20. Quantitative resistance against Bemisia tabaci in Solanum pennellii: Genetics and metabolomics.

    PubMed

    van den Oever-van den Elsen, Floor; Lucatti, Alejandro F; van Heusden, Sjaak; Broekgaarden, Colette; Mumm, Roland; Dicke, Marcel; Vosman, Ben

    2016-04-01

    The whitefly Bemisia tabaci is a serious threat in tomato cultivation worldwide as all varieties grown today are highly susceptible to this devastating herbivorous insect. Many accessions of the tomato wild relative Solanum pennellii show a high resistance towards B. tabaci. A mapping approach was used to elucidate the genetic background of whitefly-resistance related traits and associated biochemical traits in this species. Minor quantitative trait loci (QTLs) for whitefly adult survival (AS) and oviposition rate (OR) were identified and some were confirmed in an F2 BC1 population, where they showed increased percentages of explained variance (more than 30%). Bulked segregant analyses on pools of whitefly-resistant and -susceptible F2 plants enabled the identification of metabolites that correlate either with resistance or susceptibility. Genetic mapping of these metabolites showed that a large number of them co-localize with whitefly-resistance QTLs. Some of these whitefly-resistance QTLs are hotspots for metabolite QTLs. Although a large number of metabolite QTLs correlated to whitefly resistance or susceptibility, most of them are yet unknown compounds and further studies are needed to identify the metabolic pathways and genes involved. The results indicate a direct genetic correlation between biochemical-based resistance characteristics and reduced whitefly incidence in S. pennellii.

  1. Identification of a Solanum pennellii Chromosome 4 Fruit Flavor and Nutritional Quality-Associated Metabolite QTL

    PubMed Central

    Liu, Zhongyuan; Alseekh, Saleh; Brotman, Yariv; Zheng, Yi; Fei, Zhangjun; Tieman, Denise M.; Giovannoni, James J.; Fernie, Alisdair R.; Klee, Harry J.

    2016-01-01

    A major resource for tomato quality improvement and gene discovery is the collection of introgression lines (ILs) of cultivated Solanum lycopersicum that contain different, defined chromosomal segments derived from the wild tomato relative, S. pennellii. Among these lines, IL4-4, in which the bottom of S. lycopersicum (cv. M82) chromosome 4 is replaced by the corresponding S. pennellii segment, is altered in many primary and secondary metabolites, including many related to fruit flavor and nutritional quality. Here, we provide a comprehensive profile of IL4-4 ripe fruit metabolites, the transcriptome and fine mapping of sub-ILs. Remarkably, out of 327 quantified metabolites, 185 were significantly changed in IL4-4 fruit, compared to the control. These altered metabolites include volatile organic compounds, primary and secondary metabolites. Partial least squares enhanced discriminant analysis of the metabolite levels among sub-ILs indicated that a genome region encompassing 20 putative open reading frames is responsible for most of the metabolic changes in IL4-4 fruit. This work provides comprehensive insights into IL4-4 fruit biochemistry, identifying a small region of the genome that has major effects on a large and diverse set of metabolites. PMID:27881988

  2. Developmental onset of reproductive barriers and associated proteome changes in stigma/styles of Solanum pennellii

    PubMed Central

    Chalivendra, Subbaiah C.; Lopez-Casado, Gloria; Bedinger, Patricia A.

    2013-01-01

    Although self-incompatibility (SI) in plants has been studied extensively, far less is known about interspecific reproductive barriers. One interspecific barrier, known as unilateral incongruity or incompatibility (UI), occurs when species display unidirectional compatibility in interspecific crosses. In the wild tomato species Solanum pennellii, both SI and self-compatible (SC) populations express UI when crossed with domesticated tomato, offering a useful model system to dissect the molecular mechanisms involved in reproductive barriers. In this study, the timing of reproductive barrier establishment during pistil development was determined in SI and SC accessions of S. pennellii using a semi-in vivo system to track pollen-tube growth in developing styles. Both SI and UI barriers were absent in styles 5 days prior to flower opening, but were established by 2 days before flower opening, with partial barriers detected during a transition period 3–4 days before flower opening. The developmental expression dynamics of known SI factors, S-RNases and HT proteins, was also examined. The accumulation of HT-A protein coincided temporally and spatially with UI barriers in developing pistils. Proteomic analysis of stigma/styles from key developmental stages showed a switch in protein profiles from cell-division-associated proteins in immature stigma/styles to a set of proteins in mature stigma/styles that included S-RNases, HT-A protein and proteins associated with cell-wall loosening and defense responses, which could be involved in pollen–pistil interactions. Other prominent proteins in mature stigma/styles were those involved in lipid metabolism, consistent with the accumulation of lipid-rich material during pistil maturation. PMID:23166371

  3. Exploring tomato Solanum pennellii introgression lines for residual biomass and enzymatic digestibility traits.

    PubMed

    Caruso, G; Gomez, L D; Ferriello, F; Andolfi, A; Borgonuovo, C; Evidente, A; Simister, R; McQueen-Mason, S J; Carputo, D; Frusciante, L; Ercolano, M R

    2016-04-05

    Residual biomass production for fuel conversion represents a unique opportunity to avoid concerns about compromising food supply by using dedicated feedstock crops. Developing tomato varieties suitable for both food consumption and fuel conversion requires the establishment of new selection methods. A tomato Solanum pennellii introgression population was assessed for fruit yield, biomass phenotypic diversity, and for saccharification potential. Introgression lines 2-5, 2-6, 6-3, 7-2, 10-2 and 12-4 showed the best combination of fruit and residual biomass production. Lignin, cellulose, hemicellulose content and saccharification rate showed a wide variation in the tested lines. Within hemicellulose, xylose value was high in IL 6-3, IL 7-2 and IL 6-2, whereas arabinose showed a low content in IL 10-2, IL 6-3 and IL 2-6. The latter line showed also the highest ethanol potential production. Alkali pre-treatment resulted in the highest values of saccharification in most of lines tested, suggesting that chemical pretreatment is an important factor for improving biomass processability. Interestingly, extreme genotypes for more than one single trait were found, allowing the identification of better genotypes. Cell wall related genes mapping in genomic regions involved into tomato biomass production and digestibility variation highlighted potential candidate genes. Molecular expression profile of few of them provided useful information about challenged pathways. The screening of S. pennellii introgression population resulted very useful for delving into complex traits such as biomass production and digestibility. The extreme genotypes identified could be fruitfully employed for both genetic studies and breeding.

  4. Genetic Architecture and Molecular Networks Underlying Leaf Thickness in Desert-Adapted Tomato Solanum pennellii.

    PubMed

    Coneva, Viktoriya; Frank, Margaret H; Balaguer, Maria A de Luis; Li, Mao; Sozzani, Rosangela; Chitwood, Daniel H

    2017-09-01

    Thicker leaves allow plants to grow in water-limited conditions. However, our understanding of the genetic underpinnings of this highly functional leaf shape trait is poor. We used a custom-built confocal profilometer to directly measure leaf thickness in a set of introgression lines (ILs) derived from the desert tomato Solanum pennellii and identified quantitative trait loci. We report evidence of a complex genetic architecture of this trait and roles for both genetic and environmental factors. Several ILs with thick leaves have dramatically elongated palisade mesophyll cells and, in some cases, increased leaf ploidy. We characterized the thick IL2-5 and IL4-3 in detail and found increased mesophyll cell size and leaf ploidy levels, suggesting that endoreduplication underpins leaf thickness in tomato. Next, we queried the transcriptomes and inferred dynamic Bayesian networks of gene expression across early leaf ontogeny in these lines to compare the molecular networks that pattern leaf thickness. We show that thick ILs share S. pennellii-like expression profiles for putative regulators of cell shape and meristem determinacy as well as a general signature of cell cycle-related gene expression. However, our network data suggest that leaf thickness in these two lines is patterned at least partially by distinct mechanisms. Consistent with this hypothesis, double homozygote lines combining introgression segments from these two ILs show additive phenotypes, including thick leaves, higher ploidy levels, and larger palisade mesophyll cells. Collectively, these data establish a framework of genetic, anatomical, and molecular mechanisms that pattern leaf thickness in desert-adapted tomato. © 2017 American Society of Plant Biologists. All Rights Reserved.

  5. Divergence in the enzymatic activities of a tomato and Solanum pennellii alcohol acyltransferase impacts fruit volatile ester composition.

    PubMed

    Goulet, Charles; Kamiyoshihara, Yusuke; Lam, Nghi B; Richard, Théo; Taylor, Mark G; Tieman, Denise M; Klee, Harry J

    2015-01-01

    Tomato fruits accumulate a diverse set of volatiles including multiple esters. The content of ester volatiles is relatively low in tomato fruits (Solanum lycopersicum) and far more abundant in the closely related species Solanum pennellii. There are also qualitative variations in ester content between the two species. We have previously shown that high expression of a non-specific esterase is critical for the low overall ester content of S. lycopersicum fruit relative to S. pennellii fruit. Here, we show that qualitative differences in ester composition are the consequence of divergence in enzymatic activity of a ripening-related alcohol acyltransferase (AAT1). The S. pennellii AAT1 is more efficient than the tomato AAT1 for all the alcohols tested. The two enzymes have differences in their substrate preferences that explain the variations observed in the volatiles. The results illustrate how two related species have evolved to precisely adjust their volatile content by modulating the balance of the synthesis and degradation of esters. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  6. Solanum pennellii backcross inbred lines (BILs) link small genomic bins with tomato traits.

    PubMed

    Ofner, Itai; Lashbrooke, Justin; Pleban, Tzili; Aharoni, Asaph; Zamir, Dani

    2016-07-01

    We present a resource for fine mapping of traits derived from the wild tomato species Solanum pennellii (LA0716). The population of backcross inbred lines (BILs) is composed of 446 lines derived after a few generations of backcrosses of the wild species with cultivated tomato (cultivar M82; LA3475), followed by more than seven generations of self-pollination. The BILs were genotyped using the 10K SOL-CAP single nucleotide polymorphism (SNP) -Chip, and 3700 polymorphic markers were used to map recombination break points relative to the physical map of Solanum lycopersicum. The BILs carry, on average, 2.7 introgressions per line, with a mean introgression length of 11.7 Mbp. Whereas the classic 76 introgression lines (ILs) partitioned the genome into 106 mapping bins, the BILs generated 633 bins, thereby enhancing the mapping resolution of traits derived from the wild species. We demonstrate the power of the BILs for rapid fine mapping of simple and complex traits derived from the wild tomato species. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  7. [Process of meiosis in interspecific hybrid F1 Lycopersicon esculentum Mill. x Lycopersicon chilense Dun].

    PubMed

    Montvid, P Iu; Samovol, O P; Miroshnychenko, V P

    2011-01-01

    The investigation concerns meiosis behaviour in embryo-culture-obtained Lycopersicon esculentum Mill. (mutant seedline Mo 638) x L. chilense Dun. F1 hybrid and its parental forms. It was determined that chiasma frequency decreased while univalent and meiotic disorder frequencies increased in F1 plants in comparison with parents forms. Univalent number and the percent of main disorders lowered with bud tier increasing. The conclusion was made about meiosis regularity connection with the influence of environment factors and heterozygous genotype of F1 plants Lycopersicon esculentum x L. chilense.

  8. Genealogy and fine mapping of obscuravenosa, a gene affecting the distribution of chloroplasts in leaf veins, and evidence of selection during breeding of tomatoes (Lycopersicon esculentum; Solanaceae).

    PubMed

    Jones, Carl M; Rick, Charles M; Adams, Dawn; Jernstedt, Judy; Chetelat, Roger T

    2007-06-01

    In the processes of plant domestication and variety development, some traits are under direct selection, while others may be introduced by indirect selection or linkage. In the cultivated tomato (Lycopersicon esculentum = Solanum lycopersicum), and all other Solanaceae examined, chloroplasts are normally absent from subepidermal and mesophyll cells surrounding the leaf veins, and thus, veins appear clear upon subillumination. The tomato mutant obscuravenosa (obv), in contrast, contains chloroplasts in cells around the vein, and thus, veins appear as dark as the surrounding leaf tissue. Among tomato cultivars, the obv allele is common in processing varieties bred for mechanical harvest, but is otherwise rare. We traced the source of obv in processing tomatoes to the cultivar Earliana, released in the 1920s. The obv locus was mapped to chromosome 5, bin 5G, using introgression lines containing single chromosome segments from the wild species L. pennellii. This region also contains a quantitative trait locus (QTL) for plant height, pht5.4, which cosegregated with SP5G, a paralog of self-pruning (sp), the gene that controls the switch between determinate and indeterminate growth in tomato. The pht5.4 QTL was partially dominant and associated with a reduced percentage of red fruit at harvest. Our data suggest that the prevalence of obv in nearly all processing varieties may have resulted from its tight linkage to a QTL conferring a more compact, and horticulturally desirable, plant habit.

  9. Genetic Architecture and Molecular Networks Underlying Leaf Thickness in Desert-Adapted Tomato Solanum pennellii1[OPEN

    PubMed Central

    Frank, Margaret H.; Balaguer, Maria A. de Luis; Li, Mao

    2017-01-01

    Thicker leaves allow plants to grow in water-limited conditions. However, our understanding of the genetic underpinnings of this highly functional leaf shape trait is poor. We used a custom-built confocal profilometer to directly measure leaf thickness in a set of introgression lines (ILs) derived from the desert tomato Solanum pennellii and identified quantitative trait loci. We report evidence of a complex genetic architecture of this trait and roles for both genetic and environmental factors. Several ILs with thick leaves have dramatically elongated palisade mesophyll cells and, in some cases, increased leaf ploidy. We characterized the thick IL2-5 and IL4-3 in detail and found increased mesophyll cell size and leaf ploidy levels, suggesting that endoreduplication underpins leaf thickness in tomato. Next, we queried the transcriptomes and inferred dynamic Bayesian networks of gene expression across early leaf ontogeny in these lines to compare the molecular networks that pattern leaf thickness. We show that thick ILs share S. pennellii-like expression profiles for putative regulators of cell shape and meristem determinacy as well as a general signature of cell cycle-related gene expression. However, our network data suggest that leaf thickness in these two lines is patterned at least partially by distinct mechanisms. Consistent with this hypothesis, double homozygote lines combining introgression segments from these two ILs show additive phenotypes, including thick leaves, higher ploidy levels, and larger palisade mesophyll cells. Collectively, these data establish a framework of genetic, anatomical, and molecular mechanisms that pattern leaf thickness in desert-adapted tomato. PMID:28794258

  10. Bin mapping of tomato diversity array (DArT) markers to genomic regions of Solanum lycopersicum × Solanum pennellii introgression lines.

    PubMed

    Van Schalkwyk, Antoinette; Wenzl, Peter; Smit, Sandra; Lopez-Cobollo, Rosa; Kilian, Andrzej; Bishop, Gerard; Hefer, Charles; Berger, Dave K

    2012-03-01

    Marker-trait association studies in tomato have progressed rapidly due to the availability of several populations developed between wild species and domesticated tomato. However, in the absence of whole genome sequences for each wild species, molecular marker methods for whole genome comparisons and fine mapping are required. We describe the development and validation of a diversity arrays technology (DArT) platform for tomato using an introgression line (IL) population consisting of wild Solanum pennellii introgressed into Solanum lycopersicum (cv. M82). A tomato diversity array consisting of 6,912 clones from domesticated tomato and twelve wild tomato/Solanaceous species was constructed. We successfully bin-mapped 990 polymorphic DArT markers together with 108 RFLP markers across the IL population, increasing the number of markers available for each S. pennellii introgression by tenfold on average. A subset of DArT markers from ILs previously associated with increased levels of lycopene and carotene were sequenced, and 44% matched protein coding genes. The bin-map position and order of sequenced DArT markers correlated well with their physical position on scaffolds of the draft tomato genome sequence (SL2.40). The utility of sequenced DArT markers was illustrated by converting several markers in both the S. pennellii and S. lycopersicum phases to cleaved amplified polymorphic sequence (CAPS) markers. Genotype scores from the CAPS markers confirmed the genotype scores from the DArT hybridizations used to construct the bin map. The tomato diversity array provides additional "sequence-characterized" markers for fine mapping of QTLs in S. pennellii ILs and wild tomato species.

  11. A major QTL introgressed from wild Lycopersicon hirsutum confers chilling tolerance to cultivated tomato (Lycopersicon esculentum).

    PubMed

    John Goodstal, F; Kohler, Glenn R; Randall, Leslie B; Bloom, Arnold J; St Clair, Dina A

    2005-09-01

    Many plants of tropical or subtropical origin, such as tomato, suffer damage under chilling temperatures (under 10 degrees C but above 0 degrees C). An earlier study identified several quantitative trait loci (QTLs) for shoot turgor maintenance (stm) under root chilling in an interspecific backcross population derived from crossing chilling-susceptible cultivated tomato (Lycopersicon esculentum) and chilling-tolerant wild L. hirsutum. The QTL with the greatest phenotypic effect on stm was located in a 28 cM region on chromosome 9 (designated stm 9), and enhanced chilling-tolerance was conferred by the presence of the Lycopersicon hirsutum allele at this QTL. Here, near-isogenic lines (NILs) were used to verify the effect of stm 9, and recombinant sub-NILs were used to fine map its position. Replicated experiments were performed with NILs and sub-NILs in a refrigerated hydroponic tank in the greenhouse. Sub-NIL data was analyzed using least square means separations, marker-genotype mean t-tests, and composite interval mapping. A dominant QTL controlling shoot turgor maintenance under root chilling was confirmed on chromosome 9 using both NILs and sub-NILs. Furthermore, sub-NILs permitted localization of stm 9 to a 2.7 cM interval within the original 28 cM QTL region. If the presence of the L. hirsutum allele at stm 9 also confers chilling-tolerance in L. esculentum plants grown under field conditions, it has the potential to expand the geographic areas in which cultivated tomato can be grown for commercial production.

  12. Expressed sequence tags from the laboratory-grown miniature tomato (Lycopersicon esculentum) cultivar Micro-Tom and mining for single nucleotide polymorphisms and insertions/deletions in tomato cultivars.

    PubMed

    Yamamoto, Naoki; Tsugane, Taneaki; Watanabe, Manabu; Yano, Kentaro; Maeda, Fumi; Kuwata, Chikara; Torki, Moez; Ban, Yusuke; Nishimura, Shigeo; Shibata, Daisuke

    2005-08-15

    Laboratory-grown miniature tomato (Lycopersicon esculentum) cultivar Micro-Tom has attracted attention as a host for functional genomics research. In this study, we generated 35,824 expressed sequence tags (ESTs) from leaves and fruits of Micro-Tom. The ESTs comprised 10,287 unigenes (5007 contigs and 5280 singletons), including 1858 novel tomato unigenes. Of the 18 unigenes that shared strong homology with tobacco chloroplast genome sequences, one unigene was likely derived from polyadenylated transcripts of the atpH gene. Interestingly, ESTs for vacuolar invertase, pectate lyase and alcohol acyl transferase were underrepresented in the Micro-Tom data set. From all of the ESTs, we mined 2039 candidate single nucleotide polymorphisms (SNPs) and 121 candidate insertions and deletions (indels) based on homology with four tomato inbred lines, E6203, R11-13, Rio Grande PtoR and R11-12, and a wild relative, L. pennellii TA56, for which sequence data was publicly available with more than 5000 entries. Direct genome sequencing of several SNP or indel sites in Micro-Tom and L. esculentum E6203 suggested that more than 69% of the candidate sites were truly polymorphic, making them useful for the preparation of DNA markers.

  13. Definition of nonvolatile markers for flavor of tomato (Lycopersicon esculentum mill.) as tools in selection and breeding.

    PubMed

    Bucheli, P; Voirol, E; de la Torre, R; López, J; Rytz, A; Tanksley, S D; Pétiard, V

    1999-02-01

    A methodology for flavor and composition assessment of processed tomato juice samples was developed using a wide range of commercial processing tomato varieties (Lycopersicon esculentum) grown in Spain and the United States. Fruitiness intensity was found by a trained panel to best describe overall tomato flavor. For two consecutive years, fruitiness intensity was significantly dependent on growing location and variety, and it was consistently linked to increased levels of glucose and reducing sugars and decreased glutamic acid content. Using the same procedure on a population of 176 breeding lines derived from the wild species of Lycopersicon pimpinellifolium, it was shown that tomato fruitiness intensity was significantly correlated to reducing sugars/glutamic acid ratio and glucose and glutamic acid contents. The definition of markers for tomato flavor of processed juice can provide the tomato breeder and processor with reliable analytical tools that can be applied in a straightforward way for the identification of raw materials that can be processed into juice with predictably high or low fruitiness.

  14. Metabolic and Molecular Changes of the Phenylpropanoid Pathway in Tomato (Solanum lycopersicum) Lines Carrying Different Solanum pennellii Wild Chromosomal Regions

    PubMed Central

    Rigano, Maria Manuela; Raiola, Assunta; Docimo, Teresa; Ruggieri, Valentino; Calafiore, Roberta; Vitaglione, Paola; Ferracane, Rosalia; Frusciante, Luigi; Barone, Amalia

    2016-01-01

    Solanum lycopersicum represents an important dietary source of bioactive compounds including the antioxidants flavonoids and phenolic acids. We previously identified two genotypes (IL7-3 and IL12-4) carrying loci from the wild species Solanum pennellii, which increased antioxidants in the fruit. Successively, these lines were crossed and two genotypes carrying both introgressions at the homozygous condition (DHO88 and DHO88-SL) were selected. The amount of total antioxidant compounds was increased in DHOs compared to both ILs and the control genotype M82. In order to understand the genetic mechanisms underlying the positive interaction between the two wild regions pyramided in DHO genotypes, detailed analyses of the metabolites accumulated in the fruit were carried out by colorimetric methods and LC/MS/MS. These analyses evidenced a lower content of flavonoids in DHOs and in ILs, compared to M82. By contrast, in the DHOs the relative content of phenolic acids increased, particularly the fraction of hexoses, thus evidencing a redirection of the phenylpropanoid flux toward the biosynthesis of phenolic acid glycosides in these genotypes. In addition, the line DHO88 exhibited a lower content of free phenolic acids compared to M82. Interestingly, the two DHOs analyzed differ in the size of the wild region on chromosome 12. Genes mapping in the introgression regions were further investigated. Several genes of the phenylpropanoid biosynthetic pathway were identified, such as one 4-coumarate:CoA ligase and two UDP-glycosyltransferases in the region 12-4 and one chalcone isomerase and one UDP-glycosyltransferase in the region 7-3. Transcriptomic analyses demonstrated a different expression of the detected genes in the ILs and in the DHOs compared to M82. These analyses, combined with biochemical analyses, suggested a central role of the 4-coumarate:CoA ligase in redirecting the phenylpropanoid pathways toward the biosynthesis of phenolic acids in the pyramided lines

  15. Comparative Investigations on the Metabolism of 2-(2,4-Dichlorophenoxy)Isobutyric Acid in Plants and Cell Suspension Cultures of Lycopersicon esculentum

    PubMed Central

    Schneider, Bernd; Schütte, Horst Robert; Tewes, Annegret

    1984-01-01

    The metabolism of [14CH3]2-(2,4-dichlorophenoxy)isobutyric acid (DIB) was studied in plants and cell suspension cultures of Lycopersicon esculentum Mill. sp. `Lukullus'. Both plants and cells in suspension culture showed a rapid uptake of DIB from nutrient media. The metabolites, isolated by extraction with methanol and separated by chromatographic methods, were identified by enzymic, chemical, and spectrometric methods. Two conjugates of the carboxyl with 2 and 3 moles glucose per mole DIB and, to a smaller extent, its β-d-glucopyranosyl ester, were formed in both intact plants and cell suspension cultures, but there were quantitative differences. PMID:16663986

  16. Characterization of the Stimulation of Ethylene Production by Galactose in Tomato (Lycopersicon esculentum Mill.) Fruit 1

    PubMed Central

    Kim, Jongkee; Gross, Kenneth C.; Solomos, Theophanes

    1987-01-01

    We have characterized the stimulation of ethylene production by galactose in tomatoes (Lycopersicon esculentum Mill.). The effect of concentration was studied by infiltrating 0, 4, 40, 100, 200, 400, or 800 micrograms galactose for each gram of fresh fruit weight into mature green `Rutgers' fruit. Both 400 and 800 micrograms per gram fresh weight consistently stimulated a transient increase in ethylene approximately 25 hours after infiltration; the lower concentrations did not. Carbon dioxide evolution of fruit infiltrated with 400 to 800 micrograms per gram fresh weight was greater than that of lower concentrations. The ripening mutants, rin and nor, also showed the transient increase in ethylene and elevated CO2 evolution by 400 micrograms per gram fresh weight galactose. 1-Aminocyclopropane-1-carboxylic acid (ACC) content and ACC-synthase activity increased concurrently with ethylene production. However, galactose did not stimulate ACC-synthase activity in vitro. The infiltrated galactose in pericarp tissue was rapidly metabolized, decreasing to endogenous levels within 50 hours. Infiltrated galacturonic acid, dulcitol, and mannose stimulated transient increases in ethylene production similar to that of galactose. The following sugars produced no response: sucrose, fructose, glucose, rhamnose, arabinose, xylose, raffinose, lactose, and sorbitol. PMID:16665781

  17. Genetics of Hybrid Incompatibility Between Lycopersicon esculentum and L. hirsutum

    PubMed Central

    Moyle, Leonie C.; Graham, Elaine B.

    2005-01-01

    We examined the genetics of hybrid incompatibility between two closely related diploid hermaphroditic plant species. Using a set of near-isogenic lines (NILs) representing 85% of the genome of the wild species Lycopersicon hirsutum (Solanum habrochaites) in the genetic background of the cultivated tomato L. esculentum (S. lycopersicum), we found that hybrid pollen and seed infertility are each based on 5–11 QTL that individually reduce hybrid fitness by 36–90%. Seed infertility QTL act additively or recessively, consistent with findings in other systems where incompatibility loci have largely been recessive. Genetic lengths of introgressed chromosomal segments explain little of the variation for hybrid incompatibility among NILs, arguing against an infinitesimal model of hybrid incompatibility and reinforcing our inference of a limited number of discrete incompatibility factors between these species. In addition, male (pollen) and other (seed) incompatibility factors are roughly comparable in number. The latter two findings contrast strongly with data from Drosophila where hybrid incompatibility can be highly polygenic and complex, and male sterility evolves substantially faster than female sterility or hybrid inviability. The observed differences between Lycopersicon and Drosophila might be due to differences in sex determination system, reproductive and mating biology, and/or the prevalence of sexual interactions such as sexual selection. PMID:15466436

  18. Genetics of hybrid incompatibility between Lycopersicon esculentum and L. hirsutum.

    PubMed

    Moyle, Leonie C; Graham, Elaine B

    2005-01-01

    We examined the genetics of hybrid incompatibility between two closely related diploid hermaphroditic plant species. Using a set of near-isogenic lines (NILs) representing 85% of the genome of the wild species Lycopersicon hirsutum (Solanum habrochaites) in the genetic background of the cultivated tomato L. esculentum (S. lycopersicum), we found that hybrid pollen and seed infertility are each based on 5-11 QTL that individually reduce hybrid fitness by 36-90%. Seed infertility QTL act additively or recessively, consistent with findings in other systems where incompatibility loci have largely been recessive. Genetic lengths of introgressed chromosomal segments explain little of the variation for hybrid incompatibility among NILs, arguing against an infinitesimal model of hybrid incompatibility and reinforcing our inference of a limited number of discrete incompatibility factors between these species. In addition, male (pollen) and other (seed) incompatibility factors are roughly comparable in number. The latter two findings contrast strongly with data from Drosophila where hybrid incompatibility can be highly polygenic and complex, and male sterility evolves substantially faster than female sterility or hybrid inviability. The observed differences between Lycopersicon and Drosophila might be due to differences in sex determination system, reproductive and mating biology, and/or the prevalence of sexual interactions such as sexual selection.

  19. Resistance in Lycopersicon esculentum Intraspecific Crosses to Race T1 Strains of Xanthomonas campestris pv. vesicatoria Causing Bacterial Spot of Tomato.

    PubMed

    Yang, Wencai; Sacks, Erik J; Lewis Ivey, Melanie L; Miller, Sally A; Francis, David M

    2005-05-01

    ABSTRACT We used molecular markers to identify quantitative trait loci (QTL) that confer resistance in the field to Xanthomonas campestris pv. vesicatoria race T1, a causal agent of bacterial spot of tomato. An F(2) population derived from a cross between Hawaii 7998 (H 7998) and an elite breeding line, Ohio 88119, was used for the initial identification of an association between molecular markers and resistance as measured by bacterial populations in individual plants in the greenhouse. Polymorphism in this cross between a Lycopersicon esculentum donor of resistance and an elite L. esculentum parent was limited. The targeted use of a core set of 148 polymerase chain reaction-based markers that were identified as polymorphic in L. esculentum x L. esculentum crosses resulted in the identification of 37 markers that were polymorphic for the cross of interest. Previous studies using an H 7998 x L. pennellii wide cross implicated three loci, Rx1, Rx2, and Rx3, in the hypersensitive response to T1 strains. Markers that we identified were linked to the Rx1 and Rx3 loci, but no markers were identified in the region of chromosome 1 where Rx2 is located. Single marker-trait analysis suggested that chromosome 5, near the Rx3 locus, contributed to reduced bacterial populations in lines carrying the locus from H 7998. The locus on chromosome 5 explained 25% of the phenotypic variation in bacterial populations developing in infected plants. An advanced backcross population and subsequent inbred backcross lines developed using Ohio 88119 as a recurrent parent were used to confirm QTL associations detected in the F(2) population. Markers on chromosome 5 explained 41% of the phenotypic variation for resistance in replicated field trials. In contrast, the Rx1 locus on chromosome 1 did not play a role in resistance to X. campestris pv. vesicatoria race T1 strains as measured by bacterial populations in the greenhouse or symptoms in the field. A locus from H 7998 on chromosome 4 was

  20. Effects of foliar applied nickel on tomato plants. [Lycopersicon esculentum

    SciTech Connect

    Cash, R.C.; Leone, I.A.

    1987-01-01

    Shoot-applied nickel (Ni) treatments produced symptomatology, foliar Ni accumulation, and cytological changes in tomato (Lycopersicon esculentum Mill.) similar to those caused by treatments with root-applied nickel (Ni). Leaf damage resulting from 100 ..mu..g/ml foliar Ni-treatments consisted of interveinal chlorosis and spotting necrosis which appeared histologically as tissue collapse, cell clumping, and chloroplast disintegration. Shoot-treated plants accumulated more Ni in leaves than in roots; whereas the reverse was true in root-treated plants. Interference with root-to-shoot manganese translocation was attributed to attenuated vascular tissue and phloem blockage. Evidence of reduced nutrient transport and inhibited meristem activity due to Ni toxicity presents a potential for crop damage from excessive Ni in the atmosphere as well as in the soil environment.

  1. Tomato ( Lycopersicon esculentum ) seeds: new flavonols and cytotoxic effect.

    PubMed

    Ferreres, Federico; Taveira, Marcos; Pereira, David M; Valentão, Patrícia; Andrade, Paula B

    2010-03-10

    In this study, seeds of Lycopersicon esculentum Mill. were analyzed by HPLC/UV-PAD/MS(n)-ESI. Fourteen flavonoids were identified, including quercetin, kaempferol, and isorhamnetin derivatives, with 13 of them being reported for the first time in tomato seeds. The major identified compounds were quercetin-3-O-sophoroside, kaempferol-3-O-sophoroside, and isorhamnetin-3-O-sophoroside. A significant cell proliferation inhibition (>80%), against rat basophile leukemia (RBL-2H3) cell line, was observed with this extract (IC(50) = 5980 microg/mL). For acetylcholinesterase inhibitory activity, a concentration-dependent effect was verified (IC(20) = 2400 microg/mL). The same behavior was noted regarding antioxidant capacity, evaluated against DPPH (IC(10) = 284 microg/mL), nitric oxide (IC(25) = 396 microg/L), and superoxide radicals (IC(25) = 3 microg/mL).

  2. Tomato bushy stunt virus (TBSV) infecting Lycopersicon esculentum.

    PubMed

    Hafez, El Sayed E; Saber, Ghada A; Fattouh, Faiza A

    2010-01-01

    Tomato bushy stunt virus (TBSV) was detected in tomato crop (Lycopersicon esculentum) in Egypt with characteristic mosaic leaf deformation, stunting, and bushy growth symptoms. TBSV infection was confirmed serologically by ELISA and calculated incidence was 25.5%. Basic physicochemical properties of a purified TBSV Egh isolate were identical to known properties of tombusviruses of isometric 30-nm diameter particles, 41-kDa coat protein and the genome of approximately 4800 nt. This is the first TBSV isolate reported in Egypt. Cloning and partial sequencing of the isolate showed that it is more closely related to TBSV-P and TBSV-Ch than TBSV-Nf and TBSV-S strains of the virus. However, it is distinct from the above strains and could be a new strain of the virus which further confirms the genetic diversity of tombusviruses.

  3. Fast determination of bioactive compounds from Lycopersicon esculentum Mill. leaves.

    PubMed

    Taveira, Marcos; Ferreres, Federico; Gil-Izquierdo, Angel; Oliveira, Luísa; Valentão, Patrícia; Andrade, Paula B

    2012-11-15

    Lycopersicon esculentum leaves, usually considered as a by-product of tomato production, present several bioactive compounds of interest for industries like food, pharmaceutical and cosmetics. Nevertheless, before industrial application, suitable methods to identify and quantify those metabolites should be developed. In this study agitation with aqueous methanol was used for phenolic compounds extraction. Solid-phase extraction (SPE) was performed as the purification step before alkaloids analysis. Among the SPE sorbents tested, sulphonic acid bonded silica with H(+) counterion (SCX) proved to be the most efficient one for removing interfering components. Fifteen phenolics and four steroidic alkaloids were identified in 35 and 20 min analysis, respectively. The optimised methods were validated, revealing to be accurate, fast, simple and sensitive. Thus, these methods represent an easy and fast analytical approach, using equipment available in almost laboratory, which render them to be appropriate for routine analysis.

  4. Cuticular hydrocarbons and sucrose esters as chemotaxonomic markers of wild and cultivated tomato species (Solanum section Lycopersicon).

    PubMed

    Haliński, Łukasz P; Stepnowski, Piotr

    2016-12-01

    The tomato (Solanum lycopersicum L.) is one of the most important vegetables worldwide. Due to the limited genetic variability, wild related species are considered as potential gene pool for breeding cultivated plants with enriched genetic basis. Taxonomic relations between tomato species at the level of single groups and taxa still remain, however, not fully resolved. Hence, in addition to already reported classification based on the morphology of the plants and molecular markers, we proposed chemotaxonomic approach to unveil some aspects of tomato taxonomy. Cuticular hydrocarbons and surface sucrose esters (SEs) were used as chemotaxonomic markers. Classification based on the cuticular hydrocarbon profile was in good agreement with other taxonomic studies as long as between-species differences were taken into account. Clear separation of the common tomato and closely related species from the majority of S. pennellii accessions was obtained. In the same time, however, S. pennellii revealed broad variation: based on the results, three highly distinct types of these plants were proposed, among them one type was very similar to cultivated tomato and its relatives. Addition of SEs profiles to the dataset did not impair the classification, but clarified the position of S. pennellii. The results suggest possible hybrid origin of some of S. pennellii and wild S. lycopersicum accessions, and the approach proposed has a potential to identify such hybrid plant lines. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Sucrose Synthase in Wild Tomato, Lycopersicon chmielewskii, and Tomato Fruit Sink Strength.

    PubMed

    Sun, J; Loboda, T; Sung, S J; Black, C C

    1992-03-01

    Here it is reported that sucrose synthase can be readily measured in growing wild tomato fruits (Lycopersicon chmielewskii) when suitable methods are adopted during fruit extraction. The enzyme also was present in fruit pericarp tissues, in seeds, and in flowers. To check for novel characteristics, the wild tomato fruit sucrose synthase was purified, by (NH(4))(2)SO(4) fraction and chromatography with DE-32, Sephadex G-200, and PBA-60, to one major band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The following characteristics were obtained: native protein relative molecular weight 380,000; subunit relative molecular weight 89,000; K(m) values with: sucrose 53 millimolar, UDP 18.9 micromolar, UDP-glucose 88 micromolar, fructose 8.4 millimolar; pH optima between 6.2 to 7.3 for sucrose breakdown and 7 to 9 for synthesis; and temperature optima near 50 degrees C. The enzyme exhibited a high affinity and a preference for uridylates. The enzyme showed more sensitivity to divalent cations in the synthesis of sucrose than in its breakdown. Sink strength in tomato fruits also was investigated in regard to sucrose breakdown enzyme activities versus fruit weight gain. Sucrose synthase activity was consistently related to increases in fruit weight (sink strength) in both wild and commercial tomatoes. Acid and neutral invertases were not, because the published invertase activity values were too variable for quantitative analyses regarding the roles of invertases in tomato fruit development. In rapidly growing fruits of both wild and commercially developed tomato plants, the activity of sucrose synthase per growing fruit, i.e. sucrose synthase peak activity X fruit size, was linearly related to final fruit size; and the activity exceeded fruit growth and carbon import rates by at least 10-fold. In mature, nongrowing fruits, sucrose synthase activities approached nil values. Therefore, sucrose synthase can serve as an indicator of sink strength in growing tomato

  6. Sequence-Based SSR Marker Development and Their Application in Defining the Introgressions of LA0716 (Solanum pennellii) in the Background of cv. M82 (Solanum lycopersicum)

    PubMed Central

    Long, Wenbo; Li, Ye; Zhou, Wenjuan; Ling, Hong-Qing; Zheng, Shusong

    2013-01-01

    The introgression lines (ILs) from cv. M82 (Solanum lycopersicum) × LA0716 (S. pennellii) have been proven to be exceptionally useful for genetic analysis and gene cloning. The introgressions were originally defined by RFLP markers at their development. The objectives of this study are to develop polymorphic SSR markers, and to re-define the DNA introgression from LA0716 in the ILs. Tomato sequence data was scanned by software to generate SSR markers. In total, 829 SSRs, which could be robustly amplified by PCR, were developed. Among them, 658 SSRs were dinucleotide repeats, 162 were trinucleotide repeats, and nine were tetranucleotide repeats. The 829 SSRs together with 96 published RFLPs were integrated into the physical linkage map of S. lycopersicum. Introgressions of DNA fragments from LA0716 were re-defined among the 75 ILs using the newly developed SSRs. A specific introgression of DNA fragment from LA0716 was identified in 72 ILs as described previously by RFLP, whereas the specific DNA introgression described previously were not detected in the ILs LA4035, LA4059 and LA4091. The physical location of each investigated DNA introgression was finely determined by SSR mapping. Among the 72 ILs, eight ILs showed a shorter and three ILs (IL3-2, IL12-3 and IL12-3-1) revealed a longer DNA introgression than that framed by RFLPs. Furthermore, 54 previously undefined segments were found in 21 ILs, ranging from 1 to 11 DNA introgressions per IL. Generally, the newly developed SSRs provide additional markers for genetic studies of tomatoes, and the fine definition of DNA introgressions from LA0716 would facilitate the use of the ILs for genetic analysis and gene cloning. PMID:24339899

  7. Sequence-based SSR marker development and their application in defining the Introgressions of LA0716 (Solanum pennellii) in the background of cv. M82 (Solanum lycopersicum).

    PubMed

    Long, Wenbo; Li, Ye; Zhou, Wenjuan; Ling, Hong-Qing; Zheng, Shusong

    2013-01-01

    The introgression lines (ILs) from cv. M82 (Solanum lycopersicum) × LA0716 (S. pennellii) have been proven to be exceptionally useful for genetic analysis and gene cloning. The introgressions were originally defined by RFLP markers at their development. The objectives of this study are to develop polymorphic SSR markers, and to re-define the DNA introgression from LA0716 in the ILs. Tomato sequence data was scanned by software to generate SSR markers. In total, 829 SSRs, which could be robustly amplified by PCR, were developed. Among them, 658 SSRs were dinucleotide repeats, 162 were trinucleotide repeats, and nine were tetranucleotide repeats. The 829 SSRs together with 96 published RFLPs were integrated into the physical linkage map of S. lycopersicum. Introgressions of DNA fragments from LA0716 were re-defined among the 75 ILs using the newly developed SSRs. A specific introgression of DNA fragment from LA0716 was identified in 72 ILs as described previously by RFLP, whereas the specific DNA introgression described previously were not detected in the ILs LA4035, LA4059 and LA4091. The physical location of each investigated DNA introgression was finely determined by SSR mapping. Among the 72 ILs, eight ILs showed a shorter and three ILs (IL3-2, IL12-3 and IL12-3-1) revealed a longer DNA introgression than that framed by RFLPs. Furthermore, 54 previously undefined segments were found in 21 ILs, ranging from 1 to 11 DNA introgressions per IL. Generally, the newly developed SSRs provide additional markers for genetic studies of tomatoes, and the fine definition of DNA introgressions from LA0716 would facilitate the use of the ILs for genetic analysis and gene cloning.

  8. Effect of textile waste water on tomato plant, Lycopersicon esculentum.

    PubMed

    Marwari, Richa; Khan, T I

    2012-09-01

    In this study Sanganer town, Jaipur was selected as study area. The plants of Lycopersicon esculentum var. K 21(Tomato) treated with 20 and 30% textile wastewater were analyzed for metal accumulation, growth and biochemical parameters at per, peak and post flowering stages. Findings of the study revealed that chlorophyll content was most severely affected with the increase in metal concentration. Total chlorophyll content showed a reduction of 72.44% while carbohydrate, protein and nitrogen content showed a reduction of 46.83, 71.65 and 71.65% respectively. With the increase in waste water treatment the root and shoot length, root and shoot dry weight and total dry weight were reduced to 50.55, 52.06, 69.93, 72.42, 72.10% respectively. After crop harvesting, the fruit samples of the plants treated with highest concentration of textile waste water contained 2.570 mg g(-1)d.wt. of Zn, 0.800 mg g(-1) d.wt. Cu, 1.520 mg g(-1) d.wt. Cr and 2.010 mg g(-1) d.wt. Pb.

  9. Phosphate Starvation Inducible Metabolism in Lycopersicon esculentum1

    PubMed Central

    Goldstein, Alan H.; Baertlein, Dawn A.; McDaniel, Robert G.

    1988-01-01

    Both tomato (Lycopersicon esculentum cv VF 36) plants and suspension cultured cells show phosphate starvation inducible (psi) excretion of acid phosphatase (Apase). Apase excretion in vitro was proportional to the level of exogenous orthophosphate (Pi). Intracellular Apase activity remained the same in both Pi-starved and sufficient cells, while Apase excreted by the starved cells increased by as much as six times over unstressed control cells on a dry weight basis. At peak induction, 50% of total Apase was excreted. Ten day old tomato seedlings grown without Pi showed slight growth reduction versus unstressed control plants. The Pi-depleted roots showed psi enhancement of Apase activity. Severely starved seedlings (17 days) reached only one-third of the biomass of unstressed control plants but, because of a combination of psi Apase excretion by roots and a shift in biomass to this organ, they excreted 5.5 times the Apase activity of the unstressed control. Observed psi Apase excretion may be part of a phosphate starvation rescue system in plants. The utility of the visible indicator dye 5-bromo-4-chloro-3-indolyl-phosphate-p-toluidine as a phenotypic marker for plant Apase excretion is demonstrated. Images Fig. 5 PMID:16666212

  10. Tomato (Lycopersicon esculentum) prevents lead-induced testicular toxicity

    PubMed Central

    Salawu, Emmanuel O; Adeeyo, Olusola A; Falokun, Olutunde P; Yusuf, Uthman A; Oyerinde, Abiodun; Adeleke, Anthony A

    2009-01-01

    BACKGROUND: Lead, an example of heavy metals, has, for decades, being known for its adverse effects on various body organs and systems such that their functions are compromised. AIM: In the present study, the ability of lead to adversely affect the male reproductive system was investigated and tomato (Lycopersicon esculentum: Source of antioxidants) paste (TP) was administered orally to prevent the adverse effects of Pb. MATERIALS AND METHODS: Fifteen Sprague Dawley rats, randomised into three groups (n = 5), were used for this study. Animals in Group A served as the control and were drinking distilled water. Animals in Groups B and C were drinking 1% Pb (II) acetate (LA). Group C animals were, in addition to drinking LA, treated with 1.5 ml of TP/day. All treatments were for 8 weeks. STATISTICAL ANALYSIS USED: A Mann–Whitney U-test was used to analyse the results obtained. RESULTS: The obtained results showed that Pb caused a significant reduction in the testicular weight, sperm count, life–death ratio, sperm motility, normal sperm morphology, and plasma and tissue superoxide dismutase and catalase activity, but a significant increase in plasma and tissue malondialdehyde concentration. But, Pb did not cause any significant change in the serum testosterone level. TP, however, significantly reduced these adverse effects of Pb. CONCLUSION: These findings lead to the conclusion that TP significantly lowered the adverse effects of Pb exposure on the kidney as well as Pb-induced oxidative stress. PMID:19562072

  11. Glucose Tests

    MedlinePlus

    ... AACC products and services. Advertising & Sponsorship: Policy | Opportunities Glucose Tests Share this page: Was this page helpful? ... the meaning of other test results. Fasting Blood Glucose Glucose Level Indication From 70 to 99 mg/ ...

  12. Mechanisms and genetic control of interspecific crossing barriers in lycopersicon. Progress report, First year, August 1, 1992

    SciTech Connect

    Mutschler, M.A.; McCormick, S.

    1992-12-31

    The goal of this program is to use Lycopersica esculentum and L. pennellii as a model system to study the interspecific reproductive barriers unilateral incongruity (UI), hybrid breakdown and interspecific aberrant ratio syndrome (IARS). Specifically we seek to determine the functional basis of UI including the timing of the failure of incongruous crosses, the developmental step(s) interrupted by UI, the tissue and genomes involved in UI.

  13. Attenuated Lead Induced Apoptosis in Rat Hepatocytes in the Presence of Lycopersicon Esculentum.

    PubMed

    Ahmadi Ashtiani, Hamidreza; Khaki, Arash; Ejtemaei Mehr, Shahram; Anjarani, Soghra; Dadgarnejad, Manochehr; Alebouyeh, Mahmoud; Rastegar, Hossein

    2016-04-01

    Lead (Pb), has, for decades, being known for its adverse effects on various body organs and systems. In the present study, the damage of Pb on the Liver tissue apoptosis was investigated, and Lycopersicon esculentum as an antioxidants source was administered orally to prevent the adverse effects of Pb. Eighteen Wistar rats, randomized into three groups (n=6), were used for this study. Animals in Group A served as the control and were drinking distilled water. Animals in Groups B and C were drinking 1%Lead acetate (LA). Group C animals were, in addition to drinking LA, treated with 1.5 ml/day of Lycopersicon esculentum. Treatments were for three months. The obtained results showed that lead acetate caused significant reductions in the liver weight, plasma and tissue superoxide dismutase and catalase activity, but a significant increase in plasma and tissue malondialdehyde concentration but Lycopersicon esculentum have an inhibitory effect on LA liver adverse effect. So, it can be concluded that Lycopersicon esculentum have a significant protective effect on liver lead acetate adverse effects as well as, lead acetate-induced oxidative stress.

  14. Sucrose synthase in wild tomato Lycopersicon chmielewskii and tomato fruit sink strength

    Treesearch

    Shi-Jean S. Sung; T. Loboda; S.S. Sung; C.C. Black

    1992-01-01

    Here it is reported that sucrose synthase can be readily measured in growing wild tomato fruits (Lycopersicon chmielewskii) when suitable methods are adopted during fruit extraction. The enzyme also was present in fruit pericarp tissues, in seeds, and in flowers.In mature, nongrowing fruits, sucrose synthase activities approached nil values.Therefore, sucrose synthase...

  15. [Bioaccumulation of cadmium and zinc in tomato (Lycopersicon esculentum L.)].

    PubMed

    Sbartai, Hana; Djebar, Med Reda; Sbartai, Ibtissem; Berrabbah, Houria

    2012-09-01

    This work aims at evaluating the accumulation of cadmium (Cd) and zinc (Zn) (trace elements) in the organs of young tomato plants (Lycopersicon esculentum L. var. Rio Grande) and their effects on the rate of chlorophyll and enzyme activities involved in the antioxidant system: catalase (CAT), glutathion-S-transferase (GST) and peroxysase ascorbate (APX). Plants previously grown on a basic nutrient solution were undergoing treatment for 7 days, either by increasing concentrations of CdCl(2) or ZnSO(4) (0, 50, 100, 250, 500 μM) or by the combined concentrations of Cd and Zn (100/50, 100/100, 100/250, 100/500 μM). The results concerning the determination of metals in the various compartments of tomato plants as a function of increasing concentrations of Cd or Zn, suggest a greater accumulation of Cd and Zn in the roots compared to leaves. The combined treatment (Cd/Zn) interferes with the absorption of the two elements according to their concentrations in the culture medium. The presence of Zn at low concentrations (50 μM of Zn/100 μM Cd) has little influence on the accumulation of Cd in the roots and leaves, while the absorption of these two elements in the leaves increases and decreases in roots when their concentrations are equivalent (100/100 μM) compared to treatment alone. When the concentration of Zn is higher than that of Cd (500 μM of Zn/100 μM Cd) absorption of the latter is inhibited in the roots while increasing their translocation to the leaves. Meanwhile, the dosage of chlorophylls shows that they tend to decrease in a dose-dependent for both treatments (Cd or Cd/Zn), however, treatment with low concentrations of Zn (50 and 100 μM) stimulates chlorophyll synthesis. However, treatment with different concentrations of Cd seems to induce the activity of the enzymes studied (CAT, APX, GST). It is the same for treatment with different concentrations of Zn and this particularly for the highest concentrations. Finally, the combined treatment (Zn

  16. Glucose Variability

    PubMed Central

    Le Floch, Jean-Pierre; Kessler, Laurence

    2016-01-01

    Background: Glucose variability has been suspected to be a major factor of diabetic complications. Several indices have been proposed for measuring glucose variability, but their interest remains discussed. Our aim was to compare different indices. Methods: Glucose variability was studied in 150 insulin-treated diabetic patients (46% men, 42% type 1 diabetes, age 52 ± 11 years) using a continuous glucose monitoring system (668 ± 564 glucose values; mean glucose value 173 ± 38 mg/dL). Results from the mean, the median, different indices (SD, MAGE, MAG, glucose fluctuation index (GFI), and percentages of low [<60 mg/dL] and high [>180 mg/dL] glucose values), and ratios (CV = SD/m, MAGE/m, MAG/m, and GCF = GFI/m) were compared using Pearson linear correlations and a multivariate principal component analysis (PCA). Results: CV, MAGE/m (ns), GCF and GFI (P < .05), MAG and MAG/m (P < .01) were not strongly correlated with the mean. The percentage of high glucose values was mainly correlated with indices. The percentage of low glucose values was mainly correlated with ratios. PCA showed 3 main axes; the first was associated with descriptive data (mean, SD, CV, MAGE, MAGE/m, and percentage of high glucose values); the second with ratios MAG/m and GCF and with the percentage of low glucose values; and the third with MAG, GFI, and the percentage of high glucose values. Conclusions: Indices and ratios provide complementary pieces of information associated with high and low glucose values, respectively. The pairs MAG+MAG/m and GFI+GCF appear to be the most reliable markers of glucose variability in diabetic patients. PMID:26880391

  17. Effect of polymers in solution culture on growth and mineral composition of tomatoes. [Lycopersicon esculentum

    SciTech Connect

    Wallace, A.

    1986-05-01

    Tomato (Lycopersicon esculentum Mill. cv. Tropic) plants were grown for 26 days from transplanting in full nutrient solution with and without polymers in nutrient solution at two different pH values. An aninoic polyacrylamide and a polysaccharide (from guar bean) each at 100 mg L/sup -1/ in solution slightly improved yields at both pH values. A cationic polymer at the same concentration decreased yields. There were no apparent nutritional reasons for the effects. 1 table.

  18. Determination of L-ascorbic acid in Lycopersicon fruits by capillary zone electrophoresis.

    PubMed

    Galiana-Balaguer, L; Roselló, S; Herrero-Martínez, J M; Maquieira, A; Nuez, F

    2001-09-15

    This study shows an improved method for the determination of L-ascorbic acid (l-AA) in fruits of Lycopersicon by capillary zone electrophoresis (CZE). Two backgrounds electrolytes (BGEs) have been tested: (i) 400 mM borate at pH 8.0 and 1 x 10(-2)% hexadimethrine bromide, for the separation of Eulycopersicon subgenus species; and (ii) as in BGE(i) but supplemented with 20% (v/v) acetonitrile, for the separation of species of the Eriopersicon subgenus. The present procedures were compared with two routine methods-enzymatic assay and potentiometric titration with 2,6-dichlorophenol-indophenol. While these routine methods presented some difficulties in quantifying l-AA in several Lycopersicon fruits, CZE was successfully applied in all the analyzed samples. The proposed CZE protocols give lower detection limits (<0.4 microg ml(-1)); are cheaper, quicker, and highly reproducible; and can be applied to analyze large series of samples (ca. 50 samples per day) which is utmost importance, not only in screening trials for internal quality and tomato breeding programs, but also in systematic and routine characterization of Lycopersicon fruits.

  19. [Determination of esculeoside A in Lycopersicon esculentum MILL by high performance liquid chromatography with evaporative light scattering detection].

    PubMed

    Lu, Fenglai; Liu, Jinlei; Chen, Yueyuan; Wu, Jianzhang; Li, Dianpeng

    2010-09-01

    A method for the determination of esculeoside A in Lycopersicon esculentum MILL by high performance liquid chromatography (HPLC) with evaporative light scattering detection (ELSD) was established. The results showed that esculeoside A had good linearity in the range of 0.61-3.05 mg with the correlation coefficient of 0. 999 5. The average recoveries were 97.9%-104.8% with the relative standard deviations (RSD) < or = 4.14% (n=5). The method is simple, sensitive and suitable for the analysis of esculeoside A and quality control for the raw material and extract of Lycopersicon esculentum MILL.

  20. Herpetomonas spp. isolated from tomato fruits (Lycopersicon esculentum) in southern Spain.

    PubMed

    Marín, Clotilde; Fabre, Sandrine; Sánchez-Moreno, Manuel; Dollet, Michel

    2007-05-01

    A flagellate of the family Trypanosomatidae was isolated from fruits of Lycopersicon esculentum (tomato) in southeastern Spain. The isolate was successfully adapted to in vitro culture in monophasic media. The morphology showed the kinetoplast to be positioned towards the middle of the body, and the typical opistomastigote form characteristic of members of the genus Herpetomonas. Amplification of the mini-exon gene was negative, whilst for the 5S ribosomal rRNA gene the result was positive. The DNA sequence was obtained and its alignment with other trypasomatids, obtained using the BLAST algorithm, suggested it was closely related to Herpetomonas samuelpessoai.

  1. A comparison of tomato (Lycopersicon esculentum) lectin with its deglycosylated derivative.

    PubMed

    Kilpatrick, D C; Graham, C; Urbaniak, S J; Jeffree, C E; Allen, A K

    1984-06-15

    A deglycosylated derivative of tomato (Lycopersicon esculentum) lectin was prepared with the use of trifluoromethanesulphonic acid. Its properties were generally similar to those of the native lectin, but differences were evident in terms of relative agglutinating activity towards sheep, (untreated) human and trypsin-treated human erythrocytes. The two forms of tomato lectin were used in conjunction with a battery of specific antisera to investigate structural relatedness among solanaceous lectins. Immunological cross-reactivity between tomato, potato and Datura lectins depends on the integrity of the glycosylated region of those lectins; that between Datura lectin and other seed lectins, however, has a separate structural basis.

  2. Mannosyl- and Xylosyl-Containing Glycans Promote Tomato (Lycopersicon esculentum Mill.) Fruit Ripening.

    PubMed

    Priem, B; Gross, K C

    1992-01-01

    The oligosaccharide glycans mannosylalpha1-6(mannosylalpha1-3)mannosylalpha1-6(mannosylalpha1-3) mannosylbeta1-4-N-acetylglucosamine and mannosylalpha1-6(mannosylalpha1-3)(xylosylbeta1-2) mannosylbeta1-4-N-acetylglucosaminyl(fucosylalpha1-3) N-acetylglucosamine were infiltrated into mature green tomato fruit (Lycopersicon esculentum Mill., cv Rutgers). Coinfiltration of 1 nanogram per gram fresh weight of the glycans with 40 micrograms per gram fresh weight galactose, a level of galactose insufficient to promote ripening, stimulated ripening as measured by red coloration and ethylene production.

  3. Chemical analysis of a polysaccharide of unripe (green) tomato (Lycopersicon esculentum).

    PubMed

    Chandra, Krishnendu; Ghosh, Kaushik; Ojha, Arnab K; Islam, Syed S

    2009-11-02

    A polysaccharide (PS-I) isolated from the aqueous extract of the unripe (green) tomatoes (Lycopersicon esculentum) consists of D-galactose, D-methyl galacturonate, D-arabinose, L-arabinose, and L-rhamnose. Structural investigation of the polysaccharide was carried out using total acid hydrolysis, methylation analysis, periodate oxidation study, and NMR studies ((1)H, (13)C, DQF-COSY, TOCSY, NOESY, ROESY, HMQC, and HMBC). On the basis of above-mentioned experiments the structure of the repeating unit of the polysaccharide (PS-I) was established as: [structure: see text].

  4. Investigation of the effects of cadmium by micro analytical methods on Lycopersicon esculentum Mill. roots.

    PubMed

    Colak, G; Baykul, M C; Gürler, R; Catak, E; Caner, N

    2014-09-01

    The interactions between cadmium stress and plant nutritional elements have been investigated on complete plant or at the level of organs. This study was undertaken to contribute to the exploration of the physiological basis of cadmium phytotoxicity. We examined the changes in the nutritional element compositions of the root epidermal cells of the seedlings of Lycopersicon esculentum Mill. at the initial growth stages that is known as the most sensitive stage to the stress. Effects of cadmium stress on the seedlings of Lycopersicon esculentum Mill. were examined by EDX (Energy Dispersive X-Ray Microanalysis) assay performed with using low vacuum (∼ 24 Pascal) Scanning Electron Microscopy. In the analysis performed at the level of root epidermal cells, some of the macro- and micronutrient contents of the cells (carbon, oxygen, nitrogen, phosphorus, potassium, calcium, magnesium, sulfur, iron, copper, and zinc levels) were found to change when the applying toxic concentrations of cadmium. There was no change in the manganese and sodium content of the epidermal cells. It was concluded that the changes in nutritional element composition of the cells can be considered as an effective parameter in explaining the physiological mechanisms of cadmium-induced growth inhibition.

  5. The introduction of the stilbene synthase gene enhances the natural antiradical activity of Lycopersicon esculentum mill.

    PubMed

    Morelli, R; Das, S; Bertelli, A; Bollini, R; Lo Scalzo, R; Das, D K; Falchi, M

    2006-01-01

    Tomato (Lycopersicon esculentum) is a vegetable rich in antioxidants, such as lycopene, lutein, and zeaxanthin. Their presence is responsible for the characteristic ability of this product to inhibit the formation of reactive oxygen species, including singlet oxygen. The grapes and wines derived from grapes also contain powerful antioxidants. The antioxidant effect is derived from the polyphenols such as resveratrol and proanthocyanidin. Resveratrol is phytoalexin that is synthesized via the activation of the gene, stilbene synthase (STS). We decided to determine if the introduction of this gene into Lycopersicon esculentum Mill could modify its antioxidant activity. Using Electronic Paramagnetic Resonance (EPR) spectroscopy, which permits the detection of antiradical activity, especially *OH (hydroxyl radical), we showed that the antioxidant activity of the products, into which the gene STS had been introduced, was almost double than that of natural products and that their activity was especially pronounced due to ripening. Moreover, resveratrol concentrations in modified tomatoes were much higher than that found in the individual fruit. In the isolated hearts subjected to ischemia/reperfusion, the rats fed with modified tomato exhibited better cardiac performance, reduced myocardial infarct size and decreased number of apoptotic cardiomyocytes, and reduced oxidative stress compared to unmodified tomato or resveratrol alone indicating superior cardioprotective abilities of modified tomatoes.

  6. Nitrogen Requirements for Growth and Early Fruit Development of Drip-Irrigated Processing Tomato (Lycopersicon esculentum Mill.) in Portugal

    USDA-ARS?s Scientific Manuscript database

    The effect of continuous application of small quantities of nitrogen (N) in irrigation water and N applied as starter on growth and development of processing tomato (Lycopersicon esculentum Mill.), from transplanting to beginning of fruit set, was studied in two experiments: a pot experiment and a f...

  7. Tomato (Solanum section Lycopersicon spp.) phylogenetic study: aligned genomic sequences for 47 markers used to analyze introgression in domesticated tomato

    USDA-ARS?s Scientific Manuscript database

    Tomato (Solanum section Lycopersicon) is composed of 12 wild Solanum spp. and one domesticated (S. lycopersicum) taxon. Crop improvement for development of new cultivars and their spread to all regions of the globe has greatly relied on interspecific hybrid crosses with wild species taxa beginning i...

  8. Ozone sensitivity of currant tomato (Lycopersicon pimpinellifolium), a potential bioindicator species.

    PubMed

    Iriti, Marcello; Belli, Lucia; Nali, Cristina; Lorenzini, Giacomo; Gerosa, Giacomo; Faoro, Franco

    2006-05-01

    The wild tomato species Lycopersicon pimpinellifolium (currant tomato) was exposed to different O3 concentration, both in controlled environment fumigation facilities and in open-top chambers, to assess its sensitivity and to verify its potential as a bioindicator plant. Plants appeared particularly sensitive to O3 at an early stage of growth, responding with typical chlorotic spots within 24 h after exposure to a single pulse of 50 ppb for 3 h, and differentiating peculiar symptoms, such as reddish necrotic stipples, bronzing and extensive necrosis, depending on O3 concentration. Histo-cytochemical investigations with 3,3'-diaminobenzidine, to localize H2O2, and Evans blue, to detect dead cells, suggested that currant tomato sensitivity to O3 could be due to a deficiency in the anti-oxidant pools. The combination of these stainings proved to be useful, either to predict visible symptoms, early before their appearance, and to validate leaf ozone injury.

  9. Sequencing of cDNA Clones from the Genetic Map of Tomato (Lycopersicon esculentum)

    PubMed Central

    Ganal, Martin W.; Czihal, Rosemarie; Hannappel, Ulrich; Kloos, Dorothee-U.; Polley, Andreas; Ling, Hong-Qing

    1998-01-01

    The dense RFLP linkage map of tomato (Lycopersicon esculentum) contains >300 anonymous cDNA clones. Of those clones, 272 were partially or completely sequenced. The sequences were compared at the DNA and protein level to known genes in databases. For 57% of the clones, a significant match to previously described genes was found. The information will permit the conversion of those markers to STS markers and allow their use in PCR-based mapping experiments. Furthermore, it will facilitate the comparative mapping of genes across distantly related plant species by direct comparison of DNA sequences and map positions. [cDNA sequence data reported in this paper have been submitted to the EMBL database under accession nos. AA824695–AA825005 and the dbEST_Id database under accession nos. 1546519–1546862.] PMID:9724330

  10. Effect of glutathione on phytochelatin synthesis in tomato cells. [Lycopersicon esculentum

    SciTech Connect

    Mendum, M.L.; Gupta, S.C.; Goldsbrough, P.B. )

    1990-06-01

    Growth of cell suspension cultures of tomato, Lycopersicon esculentum Mill. cv VFNT-Cherry, in the presence of cadmium is inhibited by buthionine sulfoximine, an inhibitor of glutathione synthesis. Cell growth and phytochelatin synthesis are restored to cells treated with buthionine sulfoximine by the addition of glutathione to the medium. Glutathione stimulates the accumulation of phytochelatins in cadmium treated cells, indicating that availability of glutathione can limit synthesis of these peptides. Exogenous glutathione causes a disproportionate increase in the level of smaller phytochelatins, notably ({gamma}-Glu-Cys){sub 2}-Gly. In the presence of buthionine sulfoximine and glutathione, phytochelatins that are produced upon exposure to cadmium incorporate little ({sup 35}S)cysteine, indicating that these peptides are probably not synthesized by sequential addition of cysteine and glutamate to glutathione.

  11. Infection of Cultured Thin Cell Layer Roots of Lycopersicon esculentum by Meloidogyne incognita

    PubMed Central

    Radin, D. N.; Eisenback, J. D.

    1991-01-01

    A new aseptic culture system for studying interactions between tomato (Lycopersicon esculentum) and Meloidogyne incognita is described. Epidermal thin cell layer explants from peduncles of tomato produced up to 20 adventitious roots per culture in 4-9 days on Murashige &Scoog medium plus kinetin and indole acetic acid. Rooted cultures were transferred to Gamborg's B-5 medium and inoculated with infective second-stage juveniles. Gall formation was apparent 5 days after inoculation and egg production by mature females occurred within 25 days at 25 C in the susceptible genotypes Rutgers and Red Alert. Resistant genotypes LA655, LA656, and LA1022 exhibited a characteristic hypersensitive response. This system provides large numbers of cultured root tips for studies on the molecular basis of the host-parasite relationship. PMID:19283152

  12. Bioactive exopolysaccharides from the cultured cells of tomato, Lycopersicon esculentum var. San Marzano.

    PubMed

    Poli, Annarita; Manca, Maria Cristina; De Giulio, Alfonso; Strazzullo, Giuseppe; De Rosa, Salvatore; Nicolaus, Barbara

    2006-04-01

    Three exopolysaccharides, EPS(1), EPS(2), and EPS(3), were isolated from suspension-cultured cells of tomato (Lycopersicon esculentum, var. San Marzano). The partial primary structures were determined on the basis of spectroscopic analyses. EPS(2) was a heteropolysaccharide with a tetrasaccharide repeating unit constituted by sugars having one residue in alpha-manno, one residue in beta-manno, and two different residues in beta-gluco/galacto configurations. EPS(3) was a heteropolysaccharide with a pentasaccharide repeating unit with sugars having three residues in alpha-manno, one residue in alpha-gluco/galacto, and one residue in beta-gluco/galacto configurations. The anticytotoxic activities of exopolysaccharides were tested in a brine shrimp bioassay.

  13. Amino acid sequences of heterotrophic and photosynthetic ferredoxins from the tomato plant (Lycopersicon esculentum Mill.).

    PubMed

    Kamide, K; Sakai, H; Aoki, K; Sanada, Y; Wada, K; Green, L S; Yee, B C; Buchanan, B B

    1995-11-01

    Several forms (isoproteins) of ferredoxin in roots, leaves, and green and red pericarps in tomato plants (Lycopersicon esculentum Mill.) were earlier identified on the basis of N-terminal amino acid sequence and chromatographic behavior (Green et al. 1991). In the present study, a large scale preparation made possible determination of the full length amino acid sequence of the two ferredoxins from leaves. The ferredoxins characteristic of fruit and root were sequenced from the amino terminus to the 30th residue or beyond. The leaf ferredoxins were confirmed to be expressed in pericarp of both green and red fruit. The ferredoxins characteristic of fruit and root appeared to be restricted to those tissue. The results extend earlier findings in demonstrating that ferredoxin occurs in the major organs of the tomato plant where it appears to function irrespective of photosynthetic competence.

  14. Cloning and expression of an alternative oxidase gene from Lycopersicon esculentum.

    PubMed

    Song, Cong-Feng; Borth, Wayne; Wang, Jin-Sheng; Hu, John-Sheng

    2004-10-01

    A full-length cDNA gene (LeAox1au) was isolated from a cDNA library made from ripening fruit of tomato "UC-82B" (Lycopersicon esculentum), after probing with alternative oxidase (AOX) gene fragments, obtained by degenerate primer PCR. Sequence analysis showed that LeAox1au was 1418 bp long and contained a 1077-bp open reading frame encoding a about 40 kD precursor protein which is processed to a mature protein of 32 kD. Southern blot analysis suggested LeAox1au is present as a single copy in the genome of tomato. RT-PCR analysis indicated LeAox1au was expressed in roots, stems, leaves and cotyledons of tomato plants. A recombinant construct containing the open reading frame sequence of the LeAox1au was transformed into Escherichia coli to express the alternative oxidase precursor protein.

  15. Effect of water treatment sludge on growth and elemental composition of tomato (Lycopersicon esculentum) shoots

    SciTech Connect

    Elliott, H.A.; Singer, L.M. )

    1988-01-01

    The impact of a water treatment sludge on the fertility of a silt loam soil was assessed by monitoring the yield and elemental composition of tomato (Lycopersicon esculentum) shoots in a greenhouse study. Application of sludge at rates from 2-10% (air dry weight basis) raised the soil pH from 5.3 to 8.0 which enhanced plant growth. A substantial reduction in metal (Cd, Zn, Cu, Ni) uptake was observed with sludge amendments, even at the highest rates. The alkaline nature of this sludge (pH=9.3, calcium carbonate equivalence=53%) suggest its potential use as a liming material for agricultural soils. Overly alkaline conditions should be avoided however, as high application rates combined with ammonia fertilization had an antagonistic effect on plant growth, possibly from P deficiency induced by struvite (MgNH{sub 4}PO{sub 4}) formation.

  16. Acetylcholine causes rooting in leaf explants of in vitro raised tomato (Lycopersicon esculentum Miller) seedlings.

    PubMed

    Bamel, Kiran; Gupta, Shrish Chandra; Gupta, Rajendra

    2007-05-30

    The animal neurotransmitter acetylcholine (ACh) induces rooting and promotes secondary root formation in leaf explants of tomato (Lycopersicon esculentum Miller var. Pusa Ruby), cultured in vitro on Murashige and Skoog's medium. The roots originate from the midrib of leaf explants and resemble taproot. ACh at 10(-5) M was found to be the optimum over a wide range of effective concentrations between 10(-7) and 10(-3) M. The breakdown products, choline and acetate were ineffective even at 10(-3) M concentration. ACh appears to have a natural role in tomato rhizogenesis because exogenous application of neostigmine, an inhibitor of ACh hydrolysis, could mimic the effect of ACh. Neostigmine, if applied in combination with ACh, potentiated the ACh effect.

  17. Infection of Cultured Thin Cell Layer Roots of Lycopersicon esculentum by Meloidogyne incognita.

    PubMed

    Radin, D N; Eisenback, J D

    1991-10-01

    A new aseptic culture system for studying interactions between tomato (Lycopersicon esculentum) and Meloidogyne incognita is described. Epidermal thin cell layer explants from peduncles of tomato produced up to 20 adventitious roots per culture in 4-9 days on Murashige &Scoog medium plus kinetin and indole acetic acid. Rooted cultures were transferred to Gamborg's B-5 medium and inoculated with infective second-stage juveniles. Gall formation was apparent 5 days after inoculation and egg production by mature females occurred within 25 days at 25 C in the susceptible genotypes Rutgers and Red Alert. Resistant genotypes LA655, LA656, and LA1022 exhibited a characteristic hypersensitive response. This system provides large numbers of cultured root tips for studies on the molecular basis of the host-parasite relationship.

  18. Mannosyl- and Xylosyl-Containing Glycans Promote Tomato (Lycopersicon esculentum Mill.) Fruit Ripening

    PubMed Central

    Priem, Bernard; Gross, Kenneth C.

    1992-01-01

    The oligosaccharide glycans mannosylα1-6(mannosylα1-3)mannosylα1-6(mannosylα1-3) mannosylβ1-4-N-acetylglucosamine and mannosylα1-6(mannosylα1-3)(xylosylβ1-2) mannosylβ1-4-N-acetylglucosaminyl(fucosylα1-3) N-acetylglucosamine were infiltrated into mature green tomato fruit (Lycopersicon esculentum Mill., cv Rutgers). Coinfiltration of 1 nanogram per gram fresh weight of the glycans with 40 micrograms per gram fresh weight galactose, a level of galactose insufficient to promote ripening, stimulated ripening as measured by red coloration and ethylene production. PMID:16668644

  19. Determination of the melatonin content of different varieties of tomatoes (Lycopersicon esculentum) and strawberries (Fragariaananassa).

    PubMed

    Stürtz, Melanie; Cerezo, Ana B; Cantos-Villar, E; Garcia-Parrilla, M C

    2011-08-01

    Melatonin has recently been detected in various plants and foods. However, data regarding the food composition of melatonin are too scarce to evaluate dietary intake. This paper aims to identify melatonin unequivocally using LC-MS in a wide set of varieties of tomatoes (Lycopersicon esculentum) and strawberry (Fragariaananassa). Furthermore, a validated LC fluorescence was developed. This is the first time melatonin has been identified in Bond, Borsalina, Catalina, Gordal, Lucinda, Marbone, Myriade, Pitenza, Santonio, Perlino, Platero, and RAF varieties of tomatoes, as well as in strawberry (Fragaria ananassa): Camarosa, Candonga, Festival, and Primoris. Melatonin concentration was shown to vary greatly depending on the tomato varieties and harvests (2009, 2010), ranging from 4.11ng/g to 114.52ng/g fresh weight. However, the four varieties of strawberries collected during the two harvests showed greater similarity in melatonin (1.38-11.26ng/g fresh weight). Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Occurrence and distribution of organochlorine pesticides (OCPs) in tomato (Lycopersicon esculentum) crops from organic production.

    PubMed

    Gonzalez, Mariana; Miglioranza, Karina S B; Aizpún de Moreno, Julia E; Moreno, Víctor J

    2003-02-26

    Organochlorine pesticides (OCPs) were quantified by GC-ECD in tomato (Lycopersicon esculentum) during a vegetation period. Plants were harvested at 15, 60, and 151 days after seed germination. Leaves, stem, roots, and fruit (peel and flesh) were analyzed separately. The results showed that tomato plants were able to accumulate OCPs from soils, and a trend to reach the equilibrium among tissues at mature stages was also observed. Endosulfans comprised the main OCP group, probably due to its spray during summer months in the surrounding areas. Banned pesticides such as DDTs, heptachlor, and dieldrin were found. OCPs levels in the fruit were below the maximum residues limits (MRL) considered by the Codex Alimentarius. DDE/DDT and alpha-/gamma-HCH ratios of <1 would indicate recent inputs of DDT and lindane in the environment. The occurrence of OCPs in the study farm, where agrochemicals have never been used, is a result of atmospheric deposition of those pesticides.

  1. Characterization and expression profiling of selected microRNAs in tomato (Solanum lycopersicon) 'Jiangshu14'.

    PubMed

    Korir, Nicholas Kibet; Li, Xiaoying; Xin, Sun; Wang, Chen; Changnian, Song; Kayesh, Emrul; Fang, Jinggui

    2013-05-01

    Presence of selected tomato (Solanum lycopersicon) microRNAs (sly-miRNAs) was validated and their expression profiles established in roots, stems, leaves, flowers and fruits of tomato variety Jiangshu14 by quantitative RT-PCR (qRT-PCR). In addition conservation characteristics these sly-miRNAs were analyzed and target genes predicted bioinformatically. Results indicate that some of these miRNAs are specific to tomato while most are conserved in other plant species. Predicted sly-miRNA targets genes were shown to be targeted by either by a single or more miRNAs and are involved in diverse processes in tomato plant growth and development. All the 36 miRNAs were present in the cDNA of mixed tissues and qRT-PCR revealed that some of these sly-miRNAs are ubiquitous in tomato while others have tissue-specific expression. The experimental validation and expression profiling as well target gene prediction of these miRNAs in tomato as done in this study can add to the knowledge on the important roles played by these sly-miRNAs in the growth and development, environmental stress tolerance as well as pest and disease resistance in tomatoes and related species. In addition these findings broaden the knowledge of small RNA-mediated regulation in S. lycopersicon. It is recommended that experimental validation of the target genes be done so as to give a much more comprehensive information package on these miRNAs in tomato and specifically in the selected variety.

  2. Natural Variation in the Pto Pathogen Resistance Gene Within Species of Wild Tomato (Lycopersicon). I. Functional Analysis of Pto Alleles

    PubMed Central

    Rose, Laura E.; Langley, Charles H.; Bernal, Adriana J.; Michelmore, Richard W.

    2005-01-01

    Disease resistance to the bacterial pathogen Pseudomonas syringae pv. tomato (Pst) in the cultivated tomato, Lycopersicon esculentum, and the closely related L. pimpinellifolium is triggered by the physical interaction between plant disease resistance protein, Pto, and the pathogen avirulence protein, AvrPto. To investigate the extent to which variation in the Pto gene is responsible for naturally occurring variation in resistance to Pst, we determined the resistance phenotype of 51 accessions from seven species of Lycopersicon to isogenic strains of Pst differing in the presence of avrPto. One-third of the plants displayed resistance specifically when the pathogen expressed AvrPto, consistent with a gene-for-gene interaction. To test whether this resistance in these species was conferred specifically by the Pto gene, alleles of Pto were amplified and sequenced from 49 individuals and a subset (16) of these alleles was tested in planta using Agrobacterium-mediated transient assays. Eleven alleles conferred a hypersensitive resistance response (HR) in the presence of AvrPto, while 5 did not. Ten amino acid substitutions associated with the absence of AvrPto recognition and HR were identified, none of which had been identified in previous structure-function studies. Additionally, 3 alleles encoding putative pseudogenes of Pto were isolated from two species of Lycopersicon. Therefore, a large proportion, but not all, of the natural variation in the reaction to strains of Pst expressing AvrPto can be attributed to sequence variation in the Pto gene. PMID:15944360

  3. Natural Variation in the Pto Disease Resistance Gene Within Species of Wild Tomato (Lycopersicon). II. Population Genetics of Pto

    PubMed Central

    Rose, Laura E.; Michelmore, Richard W.; Langley, Charles H.

    2007-01-01

    Disease resistance to the bacterial pathogen Pseudomonas syringae pv. tomato (Pst) in the host species Lycopersicon esculentum, the cultivated tomato, and the closely related L. pimpinellifolium is triggered by the physical interaction between the protein products of the host resistance (R) gene Pto and the pathogen avirulence genes AvrPto and AvrPtoB. Sequence variation at the Pto locus was surveyed in natural populations of seven species of Lycopersicon to test hypotheses of host–parasite coevolution and functional adaptation of the Pto gene. Pto shows significantly higher nonsynonymous polymorphism than 14 other non-R-gene loci in the same samples of Lycopersicon species, while showing no difference in synonymous polymorphism, suggesting that the maintenance of amino acid polymorphism at this locus is mediated by pathogen selection. Also, a larger proportion of ancestral variation is maintained at Pto as compared to these non-R-gene loci. The frequency spectrum of amino acid polymorphisms known to negatively affect Pto function is skewed toward low frequency compared to amino acid polymorphisms that do not affect function or silent polymorphisms. Therefore, the evolution of Pto appears to be influenced by a mixture of both purifying and balancing selection. PMID:17179076

  4. Natural variation in the Pto disease resistance gene within species of wild tomato (Lycopersicon). II. Population genetics of Pto.

    PubMed

    Rose, Laura E; Michelmore, Richard W; Langley, Charles H

    2007-03-01

    Disease resistance to the bacterial pathogen Pseudomonas syringae pv. tomato (Pst) in the host species Lycopersicon esculentum, the cultivated tomato, and the closely related L. pimpinellifolium is triggered by the physical interaction between the protein products of the host resistance (R) gene Pto and the pathogen avirulence genes AvrPto and AvrPtoB. Sequence variation at the Pto locus was surveyed in natural populations of seven species of Lycopersicon to test hypotheses of host-parasite coevolution and functional adaptation of the Pto gene. Pto shows significantly higher nonsynonymous polymorphism than 14 other non-R-gene loci in the same samples of Lycopersicon species, while showing no difference in synonymous polymorphism, suggesting that the maintenance of amino acid polymorphism at this locus is mediated by pathogen selection. Also, a larger proportion of ancestral variation is maintained at Pto as compared to these non-R-gene loci. The frequency spectrum of amino acid polymorphisms known to negatively affect Pto function is skewed toward low frequency compared to amino acid polymorphisms that do not affect function or silent polymorphisms. Therefore, the evolution of Pto appears to be influenced by a mixture of both purifying and balancing selection.

  5. Natural variation in the Pto pathogen resistance gene within species of wild tomato (Lycopersicon). I. Functional analysis of Pto alleles.

    PubMed

    Rose, Laura E; Langley, Charles H; Bernal, Adriana J; Michelmore, Richard W

    2005-09-01

    Disease resistance to the bacterial pathogen Pseudomonas syringae pv. tomato (Pst) in the cultivated tomato, Lycopersicon esculentum, and the closely related L. pimpinellifolium is triggered by the physical interaction between plant disease resistance protein, Pto, and the pathogen avirulence protein, AvrPto. To investigate the extent to which variation in the Pto gene is responsible for naturally occurring variation in resistance to Pst, we determined the resistance phenotype of 51 accessions from seven species of Lycopersicon to isogenic strains of Pst differing in the presence of avrPto. One-third of the plants displayed resistance specifically when the pathogen expressed AvrPto, consistent with a gene-for-gene interaction. To test whether this resistance in these species was conferred specifically by the Pto gene, alleles of Pto were amplified and sequenced from 49 individuals and a subset (16) of these alleles was tested in planta using Agrobacterium-mediated transient assays. Eleven alleles conferred a hypersensitive resistance response (HR) in the presence of AvrPto, while 5 did not. Ten amino acid substitutions associated with the absence of AvrPto recognition and HR were identified, none of which had been identified in previous structure-function studies. Additionally, 3 alleles encoding putative pseudogenes of Pto were isolated from two species of Lycopersicon. Therefore, a large proportion, but not all, of the natural variation in the reaction to strains of Pst expressing AvrPto can be attributed to sequence variation in the Pto gene.

  6. Moderate increase of mean daily temperature adversely affects fruit set of Lycopersicon esculentum by disrupting specific physiological processes in male reproductive development.

    PubMed

    Sato, S; Kamiyama, M; Iwata, T; Makita, N; Furukawa, H; Ikeda, H

    2006-05-01

    Global warming is gaining significance as a threat to natural and managed ecosystems since temperature is one of the major environmental factors affecting plant productivity. Hence, the effects of moderate temperature increase on the growth and development of the tomato plant (Lycopersicon esculentum) were investigated. Plants were grown at 32/26 degrees C as a moderately elevated temperature stress (METS) treatment or at 28/22 degrees C (day/night temperatures) as a control with natural light conditions. Vegetative growth and reproductive development as well as sugar content and metabolism, proline content and translocation in the androecium were investigated. METS did not cause a significant change in biomass, the number of flowers, or the number of pollen grains produced, but there was a significant decrease in the number of fruit set, pollen viability and the number of pollen grains released. Glucose and fructose contents in the androecium (i.e. all stamens from one flower) were generally higher in the control than METS, but sucrose was higher in METS. Coincidently, the mRNA transcript abundance of acid invertase in the androecium was decreased by METS. Proline contents in the androecium were almost the same in the control and METS, while the mRNA transcript level of proline transporter 1, which expresses specifically at the surface of microspores, was significantly decreased by METS. The research indicated that failure of tomato fruit set under a moderately increased temperature above optimal is due to the disruption of sugar metabolism and proline translocation during the narrow window of male reproductive development.

  7. Moderate Increase of Mean Daily Temperature Adversely Affects Fruit Set of Lycopersicon esculentum by Disrupting Specific Physiological Processes in Male Reproductive Development

    PubMed Central

    SATO, S.; KAMIYAMA, M.; IWATA, T.; MAKITA, N.; FURUKAWA, H.; IKEDA, H.

    2006-01-01

    • Background and Aims Global warming is gaining significance as a threat to natural and managed ecosystems since temperature is one of the major environmental factors affecting plant productivity. Hence, the effects of moderate temperature increase on the growth and development of the tomato plant (Lycopersicon esculentum) were investigated. • Methods Plants were grown at 32/26 °C as a moderately elevated temperature stress (METS) treatment or at 28/22 °C (day/night temperatures) as a control with natural light conditions. Vegetative growth and reproductive development as well as sugar content and metabolism, proline content and translocation in the androecium were investigated. • Key Results METS did not cause a significant change in biomass, the number of flowers, or the number of pollen grains produced, but there was a significant decrease in the number of fruit set, pollen viability and the number of pollen grains released. Glucose and fructose contents in the androecium (i.e. all stamens from one flower) were generally higher in the control than METS, but sucrose was higher in METS. Coincidently, the mRNA transcript abundance of acid invertase in the androecium was decreased by METS. Proline contents in the androecium were almost the same in the control and METS, while the mRNA transcript level of proline transporter 1, which expresses specifically at the surface of microspores, was significantly decreased by METS. • Conclusions The research indicated that failure of tomato fruit set under a moderately increased temperature above optimal is due to the disruption of sugar metabolism and proline translocation during the narrow window of male reproductive development. PMID:16497700

  8. Neuroscience of glucose homeostasis.

    PubMed

    La Fleur, S E; Fliers, E; Kalsbeek, A

    2014-01-01

    Plasma glucose concentrations are homeostatically regulated and maintained within strict boundaries. Several mechanisms are in place to increase glucose output when glucose levels in the circulation drop as a result of glucose utilization, or to decrease glucose output and increase tissue glucose uptake to prevent hyperglycemia. Although the term homeostasis mostly refers to stable levels, the blood glucose concentrations fluctuate over the day/night cycle, with the highest concentrations occurring just prior to the activity period in anticipation of increased caloric need. In this chapter we describe how the brain, particularly the hypothalamus, is involved in both the daily rhythm of plasma glucose concentrations and acute glucose challenges.

  9. Identification of resistance to Meloidogyne javanica in the Lycopersicon peruvianum complex.

    PubMed

    Veremis, J C; Roberts, P A

    1996-10-01

    Clones of Lycopersicon peruvianum PI 2704352R2, PI 270435-3MH and PI 126443-1MH expressed novel resistance to three Mi-avirulent M. javanica isolates in greenhouse experiments. Clones from PI 126443-1MH were resistant to the three M. javanica isolates at 25°C. The three isolates were able to reproduce on one embryorescue hybrid of PI 126443-1MH, but not on three L. peruvianum-L. esculentum bridge-line hybrids of PI 1264431MH when screened at 25°C (Mi-expressed temperature). Clones of PI 270435-2R2 and all its hybrids with susceptible genotypes were resistant to the three M. javanica isolates at 25°C. The bridge-line hybrid EPP-2xPI 2704352R2 was susceptible to M. javanica isolate 811 at 32°C, whereas PI 270435-2R2 and all other hybrids of PI 27043 5-2R2 crossed with susceptible genotypes were resistant at 32°C. At 32°C, one F2 progeny of PI 126443-IMHxEPP-1, and three test-cross progenies of PI 1264409MHx[PI 270435-3MHxPI 126443-1MH], and reciprocal test-cross progenies of [PI 270435-3MHxPI 2704352R2]xPI 126440-9MH, each segregated into resistant: susceptible (R∶S) ratios close to 3∶1. The results from the F2 progeny indicated that heat-stable resistance to Mi-avirulent M. javanica in PI 126443 -1MH is conferred by a single dominant gene. The results from the test-crosses indicated that this gene in PI 126443-1MH is different from the resistance gene in PI 270435-3MH. The resistance gene in PI 270435-3MH was also shown to differ from the resistance factor in PI 270435-2R2. The expression of differential susceptibility and resistance to M. javanica and M. incognita in individual plants of the bridge-line hybrid, embryo-rescue hybrid, F2, and test-crosses indicated that at least some genes governing resistance to M. javanica differ from the genes conferring resistance to M. incognita. A new source of heat-stable resistance to M. javanica was identified in Lycopersicon chilense.

  10. Low Blood Glucose (Hypoglycemia)

    MedlinePlus

    ... Dental Problems Diabetes & Sexual & Urologic Problems Low Blood Glucose (Hypoglycemia) What is hypoglycemia? Hypoglycemia, also called low ... actions can also help prevent hypoglycemia: Check blood glucose levels Knowing your blood glucose level can help ...

  11. Identification and Characterization of a Biodegradative Form of Threonine Dehydratase in Senescing Tomato (Lycopersicon esculentum) Leaf.

    PubMed Central

    Szamosi, I.; Shaner, D. L.; Singh, B. K.

    1993-01-01

    Threonine dehydratase (TD; EC.4.2.1.16) is a key enzyme involved in the biosynthesis of isoleucine. Inhibition of TD by isoleucine regulates the flow of carbon to isoleucine. We have identified two different forms of TD in tomato (Lycopersicon esculentum) leaves. One form, present predominantly in younger leaves, is inhibited by isoleucine. The other form of TD, present primarily in older leaves, is insensitive to inhibition by isoleucine. Expression of the latter enzyme increases as the leaf ages and the highest enzyme activity is present in the old, chlorotic leaves. The specific activity of the enzyme present in older leaves is much higher than the one present in younger leaves. Both forms can use threonine and serine as substrates. Whereas TD from the older leaves had the same Km (0.25 mM) for both substrates, the enzyme from the young leaves preferred threonine (Km = 0.25 mM) over serine (Km = 1.7 mM). The molecular masses of TD from the young and the old leaves were 370,000 and 200,000 D, respectively. High levels of the isoleucine-insensitive form of threonine dehydratase in the older leaves suggests an important role of threonine dehydratase in nitrogen remobilization in senescing leaves. PMID:12231753

  12. Transcriptional activation by heat and cold of a thiol protease gene in tomato. [Lycopersicon esculentum

    SciTech Connect

    Schaffer, M.A.; Fischer, R.L. )

    1990-08-01

    We previously determined that low temperature induces the accumulation in tomato (Lycopersicon esculentum) fruit of a cloned mRNA, designated C14, encoding a polypeptide related to thiol proteases. We now demonstrate that C14 mRNA accumulation is a response common to both high (40{degree}C) and low (4{degree}C) temperature stresses. Exposure of tomato fruit to 40{degree}C results in the accumulation of C14 mRNA, by 8 hours. This response is more rapid than that to 4{degree}C, but slower than the induction of many heat shock messages by 40{degree}C, and therefore unique. We have also studied the mechanism by which heat and cold exposure activate C14 gene expression. Both high and low temperature regulate protease gene expression through transcriptional induction of a single C14 gene. A hypothesis for the function of C14 thiol protease gene expression in response to heat and cold is discussed.

  13. Uptake, localization, and speciation of cobalt in Triticum aestivum L. (wheat) and Lycopersicon esculentum M. (tomato).

    PubMed

    Collins, Richard N; Bakkaus, Estelle; Carrière, Marie; Khodja, Hicham; Proux, Olivier; Morel, Jean-Louis; Gouget, Barbara

    2010-04-15

    The root-to-shoot transfer, localization, and chemical speciation of Co were investigated in a monocotyledon (Triticum aestivum L., wheat) and a dicotyledon (Lycopersicon esculentum M., tomato) plant species grown in nutrient solution at low (5 muM) and high (20 muM) Co(II) concentrations. Cobalt was measured in the roots and shoots by inductively coupled plasma-mass spectrometry. X-ray absorption spectroscopy measurements were used to identify the chemical structure of Co within the plants and Co distribution in the leaves was determined by micro-PIXE (particle induced X-ray emission). Although the root-to-shoot transport was higher for tomato plants exposed to excess Co, both plants appeared as excluders. The oxidation state of Co(II) was not transformed by either plant in the roots or shoots and Co appeared to be present as Co(II) in a complex with carboxylate containing organic acids. Cobalt was also essentially located in the vascular system of both plant species indicating that neither responded to Co toxicity via sequestration in epidermal or trichome tissues as has been observed for other metals in metal hyperaccumulating plants.

  14. [Physiological and structural modifications induced by cadmium-calcium interaction in tomato (Lycopersicon esculentum)].

    PubMed

    Boulila Zoghlami, Latifa; Djebali, Wahbi; Chaïbi, Wided; Ghorbel, Mohamed Habib

    2006-09-01

    Tomato seedlings (Lycopersicon esculentum), initially cultivated in a basic nutrient solution during 12 days, were treated with increasing CdCl(2) concentrations for 10 days. The results showed that cadmium inhibited the weight growth depending on the metal concentration and the plant organ. In the presence of 20 microM CdCl(2), the addition of calcium, 0.1 to 10 mM of CaCl(2) in the culture medium, improved especially the biomass production and the mineral composition of the plants in concomitance with an increase in the contents of photosynthetic pigments. Histological study at the hypocotyle level revealed that cadmium (20 microM) induced a restriction of the tissue territories as well as meristem formations differentiating in a root structure. At this concentration, the addition of CaCl(2) (5 microM) was characterized by an opposite effect with absence of meristem structures. The overall results suggest that the alteration of some plant growth process after exposure to cadmium can be attenuated by an adequate calcium contribution in culture medium.

  15. Effect of salinity on tomato (Lycopersicon esculentum Mill.) during seed germination stage.

    PubMed

    Singh, Jogendra; Sastry, E V Divakar; Singh, Vijayata

    2012-01-01

    A study was conducted using ten genetically diverse genotypes along with their 45F1 (generated by diallel mating) under normal and salt stress conditions. Although, tomato (Lycopersicon esculentum Mill.) is moderately sensitive to salinity but more attention to salinity is yet to be required in the production of tomato. In present study, germination rate, speed of germination, dry weight ratio and Na(+)/K(+) ratio in root and shoot, were the parameters assayed on three salinity levels; control, 1.0 % NaCl and 3.0 % NaCl with Hoagland's solution. Increasing salt stress negatively affected growth and development of tomato. When salt concentration increased, germination of tomato seed was reduced and the time needed to complete germination lengthened, root/shoot dry weight ratio was higher and Na(+) content increased but K(+) content decreased. Among the varieties, Sel-7 followed by Arka Vikas and crosses involving them as a parent were found to be the more tolerant genotypes in the present study on the basis of studied parameters.

  16. Development of Multi-Component Transplant Mixes for Suppression of Meloidogyne incognita on Tomato (Lycopersicon esculentum)

    PubMed Central

    Kokalis-Burelle, N.; Martinez-Ochoa, N.; Rodríguez-Kábana, R.; Kloepper, J. W.

    2002-01-01

    The effects of combinations of organic amendments, phytochemicals, and plant-growth promoting rhizobacteria on tomato (Lycopersicon esculentum) germination, transplant growth, and infectivity of Meloidogyne incognita were evaluated. Two phytochemicals (citral and benzaldehyde), three organic amendments (pine bark, chitin, and hemicellulose), and three bacteria (Serratia marcescens, Brevibacterium iodinum, and Pseudomonas fluorescens) were assessed. Increasing rates of benzaldehyde and citral reduced nematode egg viability in vitro. Benzaldehyde was 100% efficacious as a nematicide against juveniles, whereas citral reduced juvenile viability to less than 20% at all rates tested. Benzaldehyde increased tomato seed germination and root weight, whereas citral decreased both. High rates of pine bark or chitin reduced plant growth but not seed germination, whereas low rates of chitin increased shoot length, shoot weight, and root weight; improved root condition; and reduced galling. The combination of chitin and benzaldehyde significantly improved tomato transplant growth and reduced galling. While each of the bacterial isolates contributed to increased plant growth in combination treatments, only Brevibacterium iodinum applied alone significantly improved plant growth. PMID:19265957

  17. Environmental controls over methanol production, emission, and δ13C values from Lycopersicon esculentum

    NASA Astrophysics Data System (ADS)

    Oikawa, P.; Giebel, B. M.; Mak, J. E.; Riemer, D. D.; Swart, P. K.; Lerdau, M.

    2009-12-01

    Phytogenic methanol is the dominant source of methanol to the atmosphere, where it is the second most abundant organic compound. Beyond methanol’s role in atmospheric chemistry, it is an indicator of plant function and is linked to plant wound response. Methanol emissions are considered to be a by-product of cell wall expansion and, more specifically, the demethylation of pectin by pectin methylesterase (PME) in cell walls. Production of methanol was investigated in mature and immature tomato Lycopersicon esculentum via measurement of methanol flux, foliar PME activity, and methanol extraction from leaf, root, and stem tissues. δ13C values for mature and immature methanol emissions were also measured using a GC-IRMS system. Environmental control over methanol production and emission was studied by changing temperature and light while holding stomatal conductance constant. As seen previously, mature leaf methanol emissions were significantly less than immature emissions. Surprisingly, preliminary results suggest mature leaf methanol production to be similar to immature leaves, indicating an enhanced metabolic sink for methanol in mature leaves. These data enhance our understanding of methanol production, a term which is not well constrained in current methanol flux models.

  18. Hygienic quality of traditional processing and stability of tomato (Lycopersicon esculentum) puree in Togo.

    PubMed

    Ameyapoh, Yaovi; de Souza, Comlan; Traore, Alfred S

    2008-09-01

    Microbiological and physicochemical qualities of a tomato (Lycopersicon esculentum) puree production line (ripe tomato, washing, cutting, pounding, bleaching, straining, bottling and pasteurization) and its preservation in Togo, West Africa, were studied using the HACCP method. Samples generated during the steps described previously were analyzed by determining sensory, chemical and microbiological characteristics. Samples were analyzed using MPN for coliform populations and plate count methodology for other bacteria. The microorganisms involved in spoilage of the opened products were moulds of genera Penicillium, Aspergillus, Fusarium, Geotrichum, Mucor and gram-positive Bacillus bacteria. The preserved tomato puree exhibited a pH value of 4.3, 90% water content, 0.98 water activity (aw) and an average ascorbic acid level of 27.3mg/100g. Results showed that the critical control point (CCP) of this tomato puree processing line is the pasteurization stage. The analysis of selected microbiological and physicochemical parameters during the preservation of bottled tomato puree indicated that this product was stable over 22 months at 29 degrees C. But the stability of the opened product stored at 29 degrees C did not exceed two months.

  19. Ripening Physiology of Fruit from Transgenic Tomato (Lycopersicon esculentum) Plants with Reduced Ethylene Synthesis.

    PubMed Central

    Klee, H. J.

    1993-01-01

    The physiological effects of reduced ethylene synthesis in a transgenic tomato (Lycopersicon esculentum) line expressing 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase enzyme have been examined. Fruit from the transgenic line 5673 ripen significantly slower than control fruit when removed from the vine early in ripening. In contrast, fruit that remain attached to the plants ripen much more rapidly, exhibiting little delay relative to the control. Ethylene determinations on attached fruit revealed that there was significantly more internal ethylene in attached than detached fruit. The higher ethylene content can fully account for the observed faster on-the-vine ripening. All of the data are consistent with a catalytic role for ethylene in promoting many, although not all, aspects of fruit ripening. Biochemical analyses of transgenic fruit indicated no significant differences from controls in the levels of ACC oxidase or polygalacturonase. Because transgenic fruit are significantly firmer than controls, this last result indicates that other enzymes may have a significant role in fruit softening. PMID:12231876

  20. Ripening Physiology of Fruit from Transgenic Tomato (Lycopersicon esculentum) Plants with Reduced Ethylene Synthesis.

    PubMed

    Klee, H. J.

    1993-07-01

    The physiological effects of reduced ethylene synthesis in a transgenic tomato (Lycopersicon esculentum) line expressing 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase enzyme have been examined. Fruit from the transgenic line 5673 ripen significantly slower than control fruit when removed from the vine early in ripening. In contrast, fruit that remain attached to the plants ripen much more rapidly, exhibiting little delay relative to the control. Ethylene determinations on attached fruit revealed that there was significantly more internal ethylene in attached than detached fruit. The higher ethylene content can fully account for the observed faster on-the-vine ripening. All of the data are consistent with a catalytic role for ethylene in promoting many, although not all, aspects of fruit ripening. Biochemical analyses of transgenic fruit indicated no significant differences from controls in the levels of ACC oxidase or polygalacturonase. Because transgenic fruit are significantly firmer than controls, this last result indicates that other enzymes may have a significant role in fruit softening.

  1. Comparison of polyphenol oxidase expression in glandular trichomes of solanum and lycopersicon species.

    PubMed

    Yu, H; Kowalski, S P; Steffens, J C

    1992-12-01

    Tetralobulate glandular trichomes are present on the foliage of many solanaceous species. Resistance of many of these species to insects is conditioned by the ability of trichomes to rupture upon contact and to rapidly polymerize their contents, resulting in entrapment of insects in hardened trichome exudate. In the wild potato, Solanum berthaultii, polymerization of trichome exudate is initiated by a soluble M(r) 59,000 polyphenol oxidase (PPO), which is a dominant protein constituent of the organ. PPOs, although ubiquitous in angiosperms, typically display great heterogeneity in molecular weight and are found at low levels in plant cells. Because of the unusually high accumulation and tissue-specific expression of the M(r) 59,000 PPO in S. berthaultii glandular trichomes, we analyzed trichome proteins of a number of Lycopersicon and Solanum species to assess the extent to which possession of the M(r) 59,000 PPO is conserved. Trichomes were collected manually and examined for PPO activity, immuno-cross-reactivity with S. berthaultiiM(r) 59,000 PPO, and protein content. In addition, N-terminal amino acid sequences were obtained for five trichome PPOs. All species analyzed possessed trichome PPOs similar in structure and level of expression to that of S. berthaultii. The relationship between sequences and structures of these conserved PPOs and the variable PPOs of leaf is discussed.

  2. Cadmium-sulfide crystallites in Cd-. gamma. -glutamyl peptide complexes from Lycopersicon and Daucus

    SciTech Connect

    Reese, R.N. ); Winge, D.R. )

    1989-04-01

    Hydroponically-grown tomato plants (Lycopersicon esculentum P. Mill. cv stone) and suspension-cultured carrot cells (Daucus carota L.) exposed to 100 {mu}M cadmium salts produced metal-{gamma}-glutamyl peptide complexes containing acid labile sulfur. The properties of the complexes resemble the Cd-{gamma}-glutamyl complexes from Schizosaccharomyces pombe and Candida glabrata, known to contain a CdS crystallite core. The crystallite core is stabilized by a coating of peptides of the general structure ({gamma}-Glu-Cys){sub n}-Gly. The Cd-peptide complexes contain predominantly peptides of n{sub 2}, n{sub 3}, n{sub 4} and n{sub 3}desGly. Zn-peptide complexes were also isolated from carrot cultures grown in MS medium supplemented with 2 mM Zn and cysteine. Results of preliminary characterization of these complexes are consistent with the presence of a colloidal particle similar to that of the Cd-complexes.

  3. Phosphate-Regulated Induction of Intracellular Ribonucleases in Cultured Tomato (Lycopersicon esculentum) Cells 1

    PubMed Central

    Löffler, Andreas; Abel, Steffen; Jost, Wolfgang; Beintema, Jaap J.; Glund, Konrad

    1992-01-01

    Four intracellular RNases were found to be induced in cultured tomato (Lycopersicon esculentum) cells upon phosphate starvation. Localization studies revealed three (RNases LV 1-3) in the vacuoles and one (RNase LX) outside these organelles. All of these RNases were purified to homogeneity and were shown to be type I RNases on the basis of type of splitting, substrate, and base specificity at the cleavage site, molecular weight, isoelectric point, and pH optimum. Moreover, RNase LV 3 was shown by fingerprinting of tryptic digests on reversed-phase high-performance liquid chromatography and sequencing the N terminus and two tryptic peptides to be structurally very similar to a recently characterized extracellular RNase LE which is also phosphate regulated (Nürnberger et al. [1990] Plant Physiol 92: 970-976; Jost et al. [1991] Eur J Biochem 198: 1-6). Expression of the four intracellular RNases is induced by depleting the cells of phosphate and repressed by adding phosphate. Our studies indicate that higher plants, in addition to secreting enzymes for scavanging phosphate under starvation conditions, also induce intracellularly emergency rescue systems. ImagesFigure 1Figure 2Figure 3Figure 4 PMID:16668816

  4. Comparison of Polyphenol Oxidase Expression in Glandular Trichomes of Solanum and Lycopersicon Species 1

    PubMed Central

    Yu, Haifeng; Kowalski, Stanley P.; Steffens, John C.

    1992-01-01

    Tetralobulate glandular trichomes are present on the foliage of many solanaceous species. Resistance of many of these species to insects is conditioned by the ability of trichomes to rupture upon contact and to rapidly polymerize their contents, resulting in entrapment of insects in hardened trichome exudate. In the wild potato, Solanum berthaultii, polymerization of trichome exudate is initiated by a soluble Mr 59,000 polyphenol oxidase (PPO), which is a dominant protein constituent of the organ. PPOs, although ubiquitous in angiosperms, typically display great heterogeneity in molecular weight and are found at low levels in plant cells. Because of the unusually high accumulation and tissue-specific expression of the Mr 59,000 PPO in S. berthaultii glandular trichomes, we analyzed trichome proteins of a number of Lycopersicon and Solanum species to assess the extent to which possession of the Mr 59,000 PPO is conserved. Trichomes were collected manually and examined for PPO activity, immuno-cross-reactivity with S. berthaultiiMr 59,000 PPO, and protein content. In addition, N-terminal amino acid sequences were obtained for five trichome PPOs. All species analyzed possessed trichome PPOs similar in structure and level of expression to that of S. berthaultii. The relationship between sequences and structures of these conserved PPOs and the variable PPOs of leaf is discussed. Images Figure 1 Figure 2 Figure 3 PMID:16653213

  5. Lycopersicon esculentum Extract Enhances Cognitive Function and Hippocampal Neurogenesis in Aged Mice

    PubMed Central

    Bae, Jung-Soo; Han, Mira; Shin, Hee Soon; Shon, Dong-Hwa; Lee, Soon-Tae; Shin, Chang-Yup; Lee, Yuri; Lee, Dong Hun; Chung, Jin Ho

    2016-01-01

    A decrease in adult neurogenesis is associated with the aging process, and this decrease is closely related to memory impairment. Tomato (Lycopersicon esculentum) is a fruit with diverse bioactive nutrients that is consumed worldwide. In this study, we investigated the cognition-enhancing effect of tomato ethanolic extracts (TEE) in aged mice. Six weeks of oral TEE administration in 12-month-old aged mice significantly increased their exploration time of novel objects when compared to vehicle-treated mice. The TEE supplement increased doublecortin (DCX)-positive cells and postsynaptic density-95 (PSD95) expression in mice hippocampus. Moreover, we found an increased expression of brain-derived neurotrophic factor (BDNF) and subsequently-activated extracellular-signal-regulated kinase (ERK)/cAMP response element binding (CREB) signaling pathway in the TEE-supplemented mice hippocampus. In conclusion, the oral administration of TEE exhibits a cognition-enhancing effect, and the putative underlying mechanism is the induction of BDNF signaling-mediated proliferation and synapse formation in the hippocampus. These findings indicate that TEE could be a candidate for treatment of age-related memory impairment and neurodegenerative disorders. PMID:27792185

  6. Ozone-induced changes in host-plant suitability: interactions of Keiferia lycopersicella and Lycopersicon esculentum

    SciTech Connect

    Trumble, J.T.; Hare, J.D.; Musselman, R.C.; McCool, P.M.

    1987-01-01

    Tomato pinworms, Keiferia lycopersicella (Walsingham), survived better and developed faster on tomato plants, Lycopersicon esculentum Mill., damaged by ozone than on plants not subjected to ozone fumigation. Other measures of fitness, including survival during pupation, sex ratio of adults, female longevity, and fecundity, were not affected. Analyses of ozonated foliage at zero, two and seven days following fumigation demonstrated a transient but significant increase (18-24%) in soluble protein concentration. Although the concentration of the total free amino acids in ozonated foliage did not increase significantly, significant changes were observed in at least 10 specific amino acids, some of which are critical for either insect development or the production of plant defensive chemicals. A reduction in total nitrogen in ozonated foliage at seven days postfumigation indicated that nitrogen was being translocated to other portions of the plant. The implications of increases in assimilable forms of nitrogen in ozonated foliage, which lead to improved host-plant suitability for insect herbivores, are discussed both in relation to some current ecological theories and in regard to pest-management strategies. 59 references, 1 figure, 4 tables.

  7. NMR characterization of endogenously O-acetylated oligosaccharides isolated from tomato (Lycopersicon esculentum) xyloglucan.

    PubMed

    Jia, Zhonghua; Cash, Michael; Darvill, Alan G; York, William S

    2005-08-15

    Eight oligosaccharide subunits, generated by endoglucanase treatment of the plant polysaccharide xyloglucan isolated from the culture filtrate of suspension-cultured tomato (Lycopersicon esculentum) cells, were structurally characterized by NMR spectroscopy. These oligosaccharides, which contain up to three endogenous O-acetyl substituents, consist of a cellotetraose core with alpha-D-Xylp residues at O-6 of the two beta-D-Glcp residues at the non-reducing end of the core. Some of the alpha-D-Xylp residues themselves bear either an alpha-L-Arap or a beta-D-Galp residue at O-2. O-Acetyl substituents are located at O-6 of the unbranched (internal) beta-D-Glcp residue, O-6 of the terminal beta-D-Galp residue, and/or at O-5 of the terminal alpha-L-Arap residue. Structural assignments were facilitated by long-range scalar coupling interactions observed in the high-resolution gCOSY spectra of the oligosaccharides. The presence of five-bond scalar coupling constants in the gCOSY spectra provides a direct method of assigning O-acetylation sites, which may prove generally useful in the analysis of O-acylated glycans. Spectral assignment of these endogenously O-acetylated oligosaccharides makes it possible to deduce correlations between their structural features and the chemical shifts of diagnostic resonances in their NMR spectra.

  8. Allergenicity assessment of genetically modified cucumber mosaic virus (CMV) resistant tomato (Solanum lycopersicon).

    PubMed

    Lin, Chih-Hui; Sheu, Fuu; Lin, Hsin-Tang; Pan, Tzu-Ming

    2010-02-24

    Cucumber mosaic virus (CMV) has been identified as the causal agent of several disease epidemics in most countries of the world. Insect-mediated virus diseases, such as those caused by CMV, caused remarkable loss of tomato (Solanum lycopersicon) production in Taiwan. With expression of the CMV coat protein gene (Cmvcp) in a local popular tomato cultivar L4783, transgenic tomato line R8 has showed consistent CMV resistance through T(0) to T(8). In this report, the allergenicity of the CMV coat protein (CMV cp) expressed in transgenic tomato R8 was assessed by investigation of the expression of the transgene source of protein, sequence similarity with known allergens, and resistance to pepsin hydrolysis. There is no known account for either the CMV or its coat protein being an allergen. The result of a bioinformatic search also showed no significant homology between CMV cp and any known allergen. The pepsin-susceptible property of recombinant CMV cp was revealed by a simulated gastric fluid (SGF) assay. Following the most recent FAO/WHO decision tree, all results have indicated that CMV cp was a protein with low possibility to be an allergen and the transgenic tomato R8 should be considered as safe as its host.

  9. Methylammonium as a Transport Analog for Ammonium in Tomato (Lycopersicon esculentum L.).

    PubMed Central

    Kosola, K. R.; Bloom, A. J.

    1994-01-01

    Methylammonium (CH3NH3+) has been widely used as an analog of ammonium (NH4+) for examining transport in bacteria and fungi. We compared the kinetics of root CH3NH3+ and NH4+ uptake from solution culture in intact tomato (Lycopersicon esculentum cv T5) plants. Efflux of NH4+ and CH3NH3+ was negligible. The apparent maximum rate of absorption (apparent Vmax) was similar for NH4+ and CH3NH3+, but the apparent affinity (apparent Km) was about 10-fold greater for NH4+ than for CH3NH3+. In characterizing the interaction between NH4+ and CH3NH3+ transport, we used [15N]NH4+ and [14C]CH3NH3+ as well as improved methods for analysis of nonisotopic CH3NH3+ and NH4+. CH3NH3+ acted as an inhibitor of NH4+ influx. Relatively low concentrations of NH4+ strongly inhibited CH3NH3+ influx. Treatments with 1 mM methionine sulfoximine that blocked NH4+ assimilation had little influence on NH4+ inhibition of CH3NH3+ influx. These results suggest that the two ions share a common transport system in tomato, but because this transport system has a much greater affinity for NH4+, CH3NH3+ may be used as a transport analog only when ambient concentrations of NH4+ are very low. PMID:12232213

  10. Chromosome number variation in somatic hybrids between transgenic tomato (Lycopersicon esculentum) and Solanum lycopersicoides.

    PubMed

    Kulawiec, Mariola; Tagashira, Norikazu; Plader, Wojciech; Bartoszewski, Grzegorz; Kuć, Dominik; Sniezko, Renata; Malepszy, Stefan

    2003-01-01

    Leaf mesophyll protoplasts of Lycopersicon esculentum were fused with suspension-culture-derived protoplasts of Solanum lycopersicoides by a PEG treatment. Both species have the same chromosome number (2n = 2x = 24). The hybrid calli were selected using the full selection method - kanamycin resistance and culture conditions critical for L. esculentum protoplast divisions. The genomic in situ hybridization analyses indicated a hypo- and hypertetraploid character of the hybrid plant with a majority of S. lycopersicoides chromosomes and a variation in chromosome number from 46 to 53. The hybrids contained a transgene derived from L. esculentum, as shown by Southern blot hybridization and PCR analyses. Their mitochondria were derived from the wild species, S. lycopersicoides. More than 60 regenerated plants were transferred into the greenhouse. They grew very slowly and were not able to flower for almost one year. The main morphological characters of the hybrids included a single shoot and small, dark-green leaves with strongly wrinkled blades. The reasons for nuclear genome asymmetry between hybrids and the possibilities of using them in a genetic and breeding programme are discussed in this paper.

  11. Plant Respiratory Burst Oxidase Homologs Impinge on Wound Responsiveness and Development in Lycopersicon esculentumW⃞

    PubMed Central

    Sagi, Moshe; Davydov, Olga; Orazova, Saltanat; Yesbergenova, Zhazira; Ophir, Ron; Stratmann, Johannes W.; Fluhr, Robert

    2004-01-01

    Plant respiratory burst oxidase homologs (Rboh) are homologs of the human neutrophil pathogen-related gp91phox. Antisense technology was employed to ascertain the biological function of Lycopersicon esculentum (tomato) Rboh. Lines with diminished Rboh activity showed a reduced level of reactive oxygen species (ROS) in the leaf, implying a role for Rboh in establishing the cellular redox milieu. Surprisingly, the antisense plants acquired a highly branched phenotype, switched from indeterminate to determinate growth habit, and had fasciated reproductive organs. Wound-induced systemic expression of proteinase inhibitor II was compromised in the antisense lines, indicating that ROS intermediates supplied by Rboh are required for this wound response. Extending these observations by transcriptome analysis revealed ectopic leaf expression of homeotic MADS box genes that are normally expressed only in reproductive organs. In addition, both Rboh-dependent and -independent wound-induced gene induction was detected as well as transcript changes related to redox maintenance. The results provide novel insights into how the steady state cellular level of ROS is controlled and portrays the role of Rboh as a signal transducer of stress and developmental responses. PMID:14973161

  12. Expression of human coagulation Factor IX in transgenic tomato (Lycopersicon esculentum).

    PubMed

    Zhang, Hui; Zhao, Lingxia; Chen, Yuhui; Cui, Lijie; Ren, Weiwei; Tang, Kexuan

    2007-10-01

    In the present study, a plant binary expression vector PG-pRD12-hFIX (where PG is polygalacturonase) harbouring the hFIX (human coagulation Factor IX) gene was constructed and introduced into tomato (Lycopersicon esculentum) via Agrobacterium tumefaciens-mediated transformation. After kanamycin selection, 32 putative independent transgenic tomato plants were regenerated. PCR and Southern-blot analyses confirmed the transgenic status of some plants. RT (reverse transcription)-PCR analysis for the expression of the introduced gene (hFIX) demonstrated that the hFIX gene was expressed specifically in fruits of the tomato. Western-blot analysis confirmed the presence of a 56 kDa band specific to hFIX in the transformed tomatoes. ELISA results showed that the expression of hFIX protein reached a maximum of 15.84 ng/g fresh weight in mature fruit. A blood-clotting assay demonstrated the clotting activity of the expressed hFIX protein in transgenic tomato fruits. This is the first report on the expression of hFIX in plants, and our research provides potentially valuable knowledge for further development of the plant-derived therapeutic proteins.

  13. Development of Multi-Component Transplant Mixes for Suppression of Meloidogyne incognita on Tomato (Lycopersicon esculentum).

    PubMed

    Kokalis-Burelle, N; Martinez-Ochoa, N; Rodríguez-Kábana, R; Kloepper, J W

    2002-12-01

    The effects of combinations of organic amendments, phytochemicals, and plant-growth promoting rhizobacteria on tomato (Lycopersicon esculentum) germination, transplant growth, and infectivity of Meloidogyne incognita were evaluated. Two phytochemicals (citral and benzaldehyde), three organic amendments (pine bark, chitin, and hemicellulose), and three bacteria (Serratia marcescens, Brevibacterium iodinum, and Pseudomonas fluorescens) were assessed. Increasing rates of benzaldehyde and citral reduced nematode egg viability in vitro. Benzaldehyde was 100% efficacious as a nematicide against juveniles, whereas citral reduced juvenile viability to less than 20% at all rates tested. Benzaldehyde increased tomato seed germination and root weight, whereas citral decreased both. High rates of pine bark or chitin reduced plant growth but not seed germination, whereas low rates of chitin increased shoot length, shoot weight, and root weight; improved root condition; and reduced galling. The combination of chitin and benzaldehyde significantly improved tomato transplant growth and reduced galling. While each of the bacterial isolates contributed to increased plant growth in combination treatments, only Brevibacterium iodinum applied alone significantly improved plant growth.

  14. Disposition of selected flavonoids in fruit tissues of various tomato (lycopersicon esculentum mill.) Genotypes.

    PubMed

    Torres, Carolina A; Davies, Neal M; Yañez, Jaime A; Andrews, Preston K

    2005-11-30

    Flavonoids have been studied extensively because they offer great potential health benefits. In this study, enzymatic hydrolysis of glycosylated quercetin, kaempferol, and naringin was used to obtain their sugar-free aglycones. The investigation also employed a validated HPLC method to obtain the chiral disposition of the aglycone naringenin enantiomers. These analyses were conducted on exocarp, mesocarp, and seed cavity tissues of field-grown tomato (Lycopersicon esculentum Mill.) mutants (anthocyanin absent, atroviolacea, and high pigment-1) and their nearly isogenic parent (cv. Ailsa Craig) at immature green, "breaker", and red ripe maturity stages. Concentrations of all flavonoids using enzymatic hydrolysis were significantly higher than previously reported concentrations using acid hydrolysis. Presumably, this occurred due to a more specific and rapid hydrolysis of the glycoside moiety by the beta-glucosidase enzyme. The glycoside S-naringin was the predominant enantiomer in all fruit tissues, although the aglycones free R- and S-naringenin were detected in both exocarp and mesocarp. Whereas there was significantly more quercetin than kaempferol in exocarp tissue, they were present in about equal concentrations in the mesocarp. Quercetin concentrations were higher in the exocarp and mesocarp of immature green and breaker fruit of the high pigment-1 mutant than in the other genotypes, supporting the observed photoprotection and potential health benefits of the high pigment-1 tomato genotype.

  15. Simultaneous ozone fumigation and fluoranthene sprayed as mists negatively affected cherry tomato (Lycopersicon esculentum Mill).

    PubMed

    Oguntimehin, Ilemobayo; Eissa, Fawzy; Sakugawa, Hiroshi

    2010-07-01

    Ozone (O(3)) fumigated at 120 microg L(-1) for 12 hd(-1) was combined with 10 microM fluoranthene, and other treatments, including Mannitol solution to investigate the interaction of the two pollutants on tomato plant (Lycopersicon esculentum Mill). Using ten treatments including Mannitol solution and a control, exposure experiment was conducted for 34 d inside six growth chambers used for monitoring the resulted ecophysiological changes. Visible foliar injury, chlorophyll a fluorescence, leaf pigment contents, CO(2) uptake and water vapor exchange were monitored in tomato. Ozone or fluoranthene independently affected some ecophysiological traits of the tomato. In addition, simultaneous treatments with the duo had increased (additive) negative effects on the photosynthesis rate (A(max)), stomatal conductance (g(s)), chlorophyll pigment contents (Chl a, Chl b and Chl((a+b))) and visible foliar symptoms. Contrarily, alleviation of the negative effects of O(3) on the leaf chlorophyll a fluorescence variables by fluoranthene occurred. Mannitol solution, which functioned as a reactive oxygen species scavenger was able to mitigate some negative effects of the two pollutants on the tomato plants. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  16. Phytotoxic effects of a natural bloom extract containing microcystins on Lycopersicon esculentum.

    PubMed

    El Khalloufi, Fatima; El Ghazali, Issam; Saqrane, Sana; Oufdou, Khalid; Vasconcelos, Vitor; Oudra, Brahim

    2012-05-01

    The cyanobacterial toxins microcystins (MC) are known to affect many processes in plants. Their presence in the water used for irrigation may have considerable impact on the survivorship, growth and development of plants. In this study, a crude extract of a toxic cyanobacterial bloom from "Lalla Takerkoust" reservoir (Morocco) was used to study the effects of extract containing MC on tomato plants (Lycopersicon esculentum). Five MC variants: MC-LR, MC-FR, MC-LY, MC-(H4)-YR and DMC-LR were identified by HPLC in the cyanobacterial extract. Exposure of the seeds to the crude extract (containing 22.24 μg MC mL(-1)) caused a reduction of germination up to 85%. Experiments showed that 30 days exposure of plant to the cyanobacterial extract containing MC caused inhibition of L. esculentum growth and productivity, as well as harmful effects on photosystem II activity, measured by Fv/Fm fluorescence. An accumulation of nutrients Na(+), K(+) and Ca(2+) was also registered. The activity of peroxidase and phenolic content indicated that the extract caused an oxidative stress. The tissue necrosis of leaves was also a consequence of MC exposure indicating a disorder in the exposed plant metabolism. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Morphological and transcriptional responses of Lycopersicon esculentum to hexavalent chromium in agricultural soil.

    PubMed

    Li, Shi-Guo; Hou, Jing; Liu, Xin-Hui; Cui, Bao-Shan; Bai, Jun-Hong

    2016-07-01

    The carcinogenic, teratogenic, and mutagenic effects of hexavalent chromium (Cr[VI]) on living organisms through the food chain raise the immediate need to assess the potential toxicological impacts of Cr(VI) on human health. Therefore, the concentration-dependent responses of 12 Cr(VI)-responsive genes selected from a high-throughput Lycopersicon esculentum complementary DNA microarray were examined at different Cr concentrations. The results indicated that most of the genes were differentially expressed from 0.1 mg Cr/kg soil, whereas the lowest-observable-adverse-effect concentrations of Cr(VI) were 1.6 mg Cr/kg soil, 6.4 mg Cr/kg soil, 3.2 mg Cr/kg soil, and 0.4 mg Cr/kg soil for seed germination, root elongation, root biomass, and root morphology, respectively, implying that the transcriptional method was more sensitive than the traditional method in detecting Cr(VI) toxicity. Dose-dependent responses were observed for the relative expression of expansin (p = 0.778), probable chalcone-flavonone isomerase 3 (p = -0.496), and 12S seed storage protein CRD (p = -0.614); therefore, the authors propose the 3 genes as putative biomarkers in Cr(VI)-contaminated soil. Environ Toxicol Chem 2016;35:1751-1758. © 2015 SETAC. © 2015 SETAC.

  18. Effects of Lycopersicon esculentum extract on hair growth and alopecia prevention.

    PubMed

    Choi, Jae-Suk; Jung, Sung Kyu; Jeon, Min-Hee; Moon, Jin-Nam; Moon, Woi-Sook; Ji, Yi-Hwa; Choi, In Soon; Wook Son, Sang

    2013-01-01

    To evaluate the potential hair growth-promoting activity and the expression of cell growth factors of Lycopersicon esculentum extracts, each 3% (w/w) of ethyl acetate extract (EAE), and supercritical CO2 extract (SCE) of L. esculentum and isolated lycopene Tween 80 solution (LTS) and test hair tonic (THT) containing LTS were applied on the dorsal skin of C57BL/6 mice, once a day for 4 weeks. At week 4, LTS and THT exhibited hair growth-promoting potential similar to that of 3% minoxidil as a positive control (PC). Further, in the LTS group, a significant increase of mRNA expression of vascular endothelial growth factor (VEGF), keratinocyte growth factor, and insulin-like growth factor-1 (IGF-1) was observed than PC, as well as the negative control (NC). In the THT group, increases in IGF-1 and decrease in VEGF and transforming growth factor-β expression were significant over the NC. In a histological examination in the THT group, the induction of anagen stage of hair follicles was faster than that of NC. In the Draize skin irritation study for THT, no observable edema or erythema was observed on all four sectors in the back skin after exposure for 24 or 72 h for any rabbit. Therefore, this study provides reasonable evidence that L. esculentum extracts promote hair growth and suggests that applications could be found in hair loss treatments without skin irritation at moderate doses.

  19. Lycopersicon esculentum Extract Enhances Cognitive Function and Hippocampal Neurogenesis in Aged Mice.

    PubMed

    Bae, Jung-Soo; Han, Mira; Shin, Hee Soon; Shon, Dong-Hwa; Lee, Soon-Tae; Shin, Chang-Yup; Lee, Yuri; Lee, Dong Hun; Chung, Jin Ho

    2016-10-26

    A decrease in adult neurogenesis is associated with the aging process, and this decrease is closely related to memory impairment. Tomato (Lycopersicon esculentum) is a fruit with diverse bioactive nutrients that is consumed worldwide. In this study, we investigated the cognition-enhancing effect of tomato ethanolic extracts (TEE) in aged mice. Six weeks of oral TEE administration in 12-month-old aged mice significantly increased their exploration time of novel objects when compared to vehicle-treated mice. The TEE supplement increased doublecortin (DCX)-positive cells and postsynaptic density-95 (PSD95) expression in mice hippocampus. Moreover, we found an increased expression of brain-derived neurotrophic factor (BDNF) and subsequently-activated extracellular-signal-regulated kinase (ERK)/cAMP response element binding (CREB) signaling pathway in the TEE-supplemented mice hippocampus. In conclusion, the oral administration of TEE exhibits a cognition-enhancing effect, and the putative underlying mechanism is the induction of BDNF signaling-mediated proliferation and synapse formation in the hippocampus. These findings indicate that TEE could be a candidate for treatment of age-related memory impairment and neurodegenerative disorders.

  20. Allelochemical stress causes inhibition of growth and oxidative damage in Lycopersicon esculentum Mill.

    PubMed

    Lara-Nuñez, Aurora; Romero-Romero, Teresa; Ventura, José Luis; Blancas, Vania; Anaya, Ana Luisa; Cruz-Ortega, Rocio

    2006-11-01

    The aim of this study was to analyse the effect of allelochemical stress on Lycopersicon esculentum growth. Our results showed that allelochemical stress caused by Sicyos deppei aqueous leachate inhibited root growth but not germination, and produced an imbalance in the oxidative status of cells in both ungerminated seeds and in primary roots. We observed changes in activity of catalase (CAT), ascorbate peroxidase (APX), superoxide dismutase (SOD), glutathione reductase (GR) and the plasma membrane NADPH oxidase, as well as in the levels of H(2)O(2) and O(2) (*-) in seeds at 12 and 24 h, and in primary roots at 48 and 72 h of treatment, which could account for the oxidative imbalance. There were changes in levels of expression of the mentioned enzymes, but without a correlation with their respective activities. Higher levels of membrane lipid peroxidation were observed in primary roots at 48 and 72 h of treatment. No effect on the expression of metacaspase and the PR1 was observed as indicators of cell death or induction of plant defence. This paper contributes to the understanding of plant-plant interactions through the phytotoxic allelochemicals released in an aqueous leachate of the weed S. deppei, which cause a negative effect on other plants.

  1. Influence of cadmium on antioxidant capacity and four microelement concentrations in tomato seedlings (Lycopersicon esculentum).

    PubMed

    Dong, Jing; Wu, Feibo; Zhang, Guoping

    2006-09-01

    Tomato (Lycopersicon esculentum) seedlings were grown in four cadmium (Cd) levels of 0-10 microM in a hydroponic system to analyze the antioxidative enzymes, Cd concentration in the plants, and the interaction between Cd and four microelements. The results showed that there was a significant increase in malondialdehyde (MDA) concentration, and superoxide dismutase (SOD) and peroxidase (POD) activities in the plants subjected to 1-10 microM Cd. This indicates that Cd stress induces an oxidative stress response in tomato plants, characterized by an accumulation of MDA and increase in activities of SOD and POD. Root, stem and leaf Cd concentrations increased with its exposure Cd level, and the highest Cd concentration occurred in roots, followed by leaves and stems. A concentration- and tissue-dependent response was found in the four microelement concentrations to Cd stress in the tomato leaves, stems and roots. Regression analysis showed that there was a significantly negative correlation between Cd and Mn, implying the antagonistic effect of Cd on Mn absorption and translocation. The correlation between Cd and Zn, Cu and Fe were inconsistent among leaves, stems and roots.

  2. Biomarker discovery and gene expression responses in Lycopersicon esculentum root exposed to lead.

    PubMed

    Hou, Jing; Bai, Lili; Xie, Yujia; Liu, Xinhui; Cui, Baoshan

    2015-12-15

    Gene expression analysis has shown particular promise for the identification of molecular biomarkers that can be used for further evaluation of potential toxicity of chemicals present in agricultural soil. In the study, we focused on the development of molecular markers to detect Pb toxicity in agricultural soil. Using the results obtained from microarray analysis, twelve Pb-responsive genes were selected and tested in different Pb concentrations to examine their concentration-response characteristics using real-time quantitative polymerase chain reaction (RT-qPCR). All the Pb treatments set in our study could generally induce the differential expression of the 12 genes, while the lowest observable adverse effect concentration (LOAEC) of Pb for seed germination, root elongation, biomass and structural modification derived from 1,297, 177, 177, and 1,297 mg Pb/kg soil, respectively, suggesting that the transcriptional approach was more sensitive than the traditional end points of death, growth, and morphology for the evaluation of Pb toxicity. The relative expression of glycoalkaloid metabolism 1 (P=-0.790), ethylene-responsive transcription factor ERF017 (P=-0.686) and CASP-like protein 4C2 (P=-0.652) demonstrates a dose-dependent response with Pb content in roots, implying that the three genes can be used as sensitive bioindicators of Pb stress in Lycopersicon esculentum. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Lycopersicon esculentum (Tomato) Prevents Adverse Effects of Lead on Blood Constituents

    PubMed Central

    SALAWU, Emmanuel O

    2010-01-01

    Background: Lead is known for its adverse effects on various organs and systems. In this study, the ability of lead to adversely affect blood parameters was investigated, and Lycopersicon esculentum, or commonly known as tomato (a source of antioxidants), was administered orally in the form of tomato paste (TP) to reduce the adverse effects of lead. Methods: The study involved 56 Wistar rats divided equally into 4 groups of 14 rats each: Control, LAG, TPG, and LA+TPG. Control and TPG rats were given distilled water ad libitum, while LAG and LA+TPG rats were given 1% lead (II) acetate (LA) per day. TPG and LA+TPG rats were additionally treated with 1.5 ml of TP per day. All treatments lasted for 10 weeks, after which the rats were weighed and sacrificed, and haematological and biochemical parameters were measured. The independent samples t test was used to analyse the results. Results: Lead caused significant reductions in the following parameters: weight; packed cell volume; red blood cell and white blood cell counts; the percentages of lymphocytes and monocytes; total serum protein, albumin, and globulin levels; and plasma superoxide dismutase and catalase activities. In contrast, lead caused a significant increase in the percentage of neutrophils and the plasma malondialdehyde concentration. TP, however, significantly prevented the adverse effects of LA. Conclusion: The oral administration of TP prevents the adverse effects of lead on blood constituents. PMID:22135544

  4. Season-controlled changes in biochemical constituents and oxidase enzyme activities in tomato (Lycopersicon esculentum Mill.).

    PubMed

    Sen, Supatra; Mukherji, S

    2009-07-01

    Season-controlled changes in biochemical constituents viz. carotenoids (carotene and xanthophyll) and pectic substances along with IAA-oxidase and polyphenol oxidase (PPO) enzyme activities were estimated/assayed in leaves of Lycopersicon esculentum Mill. (tomato) in two developmental stages--pre-flowering (35 days after sowing) and post-flowering (75 days after sowing) in three different seasons--summer rainy and winter Carotenoid content along with pectic substances were highest in winter and declined significantly in summer followed by rainy i.e. winter > summer > rainy. Carotenoid content was significantly higher in the pre-flowering as compared to post-flowering in all three seasons while pectic substances increased in the post-flowering as compared to pre-flowering throughout the annual cycle. IAA oxidase and PPO enzyme activities were enhanced in rainy and decreased sharply in summer and winter i.e. rainy > summer > winter. Both the enzymes exhibited higher activity in the post-flowering stage as compared to pre-flowering in all three seasons. These results indicate winter to be the most favourable season for tomato plants while rainy season environmental conditions prove to be unfavourable (stressful) with diminished content of carotenoid and pectic substances and low activities of IAA oxidase and PPO, ultimately leading to poor growth and productivity.

  5. Enzymic cross-linkage of monomeric extensin precursors in vitro. [Lycopersicon esculentum

    SciTech Connect

    Everdeen, D.S.; Kiefer, S.; Willard, J.J.; Muldoon, E.P.; Dey, P.M.; Li, Xiongbiao; Lamport, D.T.A. )

    1988-07-01

    Rapidly growing tomato (Lycopersicon esculentum) cell suspension cultures contain transiently high levels of cell surface, salt-elutable, monomeric precursors to the covalently cross-linked extensin network of the primary cell wall. Thus, the authors purified a highly soluble monomeric extensin substrate from rapidly growing cells, and devised a soluble in vitro cross-linking assay based on Superose-6 fast protein liquid chromatography separation, which resolved extensin monomers from the newly formed oligomers within 25 minutes. Salt elution of slowly growing (early stationary phase) cells yielded little or no extensin monomers but did give a highly active enzymic preparation that specifically cross-linked extensin monomers in the presence of hydrogen peroxide, judging from: (a) a decrease in the extensin monomer peak on fast protein liquid chromatography gel filtration, (b) appearance of oligomeric peaks, and (c) direct electron microscopical observation of the cross-linked oligomers. The cross-linking reaction had a broad pH optimum between 5.5 and 6.5. An approach to substrate saturation of the enzyme required extensin monomer concentrations of 20 to 40 milligrams per milliliter. Preincubation with catalase completely inhibited the cross-linking reaction, which was highly dependent on hydrogen peroxide and optimal at 15 to 50 micromolar. They therefore identified the cross-linking activity as extensin peroxidase.

  6. Blood Test: Glucose

    MedlinePlus

    ... Your 1- to 2-Year-Old Blood Test: Glucose KidsHealth > For Parents > Blood Test: Glucose A A A What's in this article? What ... de sangre: glucosa What It Is A blood glucose test measures the amount of glucose (the main ...

  7. Blood Test: Glucose

    MedlinePlus

    ... TV, Video Games, and the Internet Blood Test: Glucose KidsHealth > For Parents > Blood Test: Glucose Print A A A What's in this article? ... de sangre: glucosa What It Is A blood glucose test measures the amount of glucose (the main ...

  8. CSF glucose test

    MedlinePlus

    Glucose test - CSF; Cerebrospinal fluid glucose test ... The glucose level in the CSF should be 50 to 80 mg/100 mL (or greater than 2/3 ... Abnormal results include higher and lower glucose levels. Abnormal ... or fungus) Inflammation of the central nervous system Tumor

  9. Adaptive evolution of the water stress-induced gene Asr2 in Lycopersicon species dwelling in arid habitats.

    PubMed

    Frankel, Nicolas; Hasson, Esteban; Iusem, Norberto D; Rossi, Maria Susana

    2003-12-01

    The Asr2 gene encodes a putative transcription factor that is up-regulated in leaves and roots of tomato plants exposed to water-deficit stress. This gene was first cloned and characterized in a cultivar of commercial tomato (Lycopersicon esculentum cv. Ailsa Craig). In this work, we report the complete coding sequences of the orthologous Asr2 genes in six wild tomato lineages: L. hirsutum, L. cheesmanii, L. esculentum v. cerasiforme, L. chilense, L. peruvianum v. humifusum and L. peruvianum f. glandulosum. Estimates of the Ka/Ks ratio (omega) in pairwise comparisons within the genus Lycopersicon were equal or greater than 1 (a signature of adaptive evolution) when involving L. chilense and L. peruvianum v. humifusum. Interestingly, these two species are distinct from the others in their adaptation to dry habitats. We also mapped the detected substitutions onto a phylogenetic tree of the genus Lycopersicon. Remarkably, there are two and three amino acid substitutions, which contrast with the absence of synonymous substitutions along the terminal branches leading to L. chilense and L. peruvianum v. humifusum, respectively. Likelihood ratio tests confirmed that omega values in the branches leading to these species are significantly different from the remaining branches of the tree. Moreover, inferred changes in the branches leading to these species that inhabit dry areas are nonconservative and may be associated with dramatic alterations in ASR2 protein conformation. In this work, we demonstrate accelerated rates of amino acid substitutions in the Asr2 gene of tomato lineages living in dry habitats, thus giving support to the hypothesis of adaptive Darwinian evolution.

  10. Exploring genetic variation in the tomato (Solanum section Lycopersicon) clade by whole-genome sequencing.

    PubMed

    Aflitos, Saulo; Schijlen, Elio; de Jong, Hans; de Ridder, Dick; Smit, Sandra; Finkers, Richard; Wang, Jun; Zhang, Gengyun; Li, Ning; Mao, Likai; Bakker, Freek; Dirks, Rob; Breit, Timo; Gravendeel, Barbara; Huits, Henk; Struss, Darush; Swanson-Wagner, Ruth; van Leeuwen, Hans; van Ham, Roeland C H J; Fito, Laia; Guignier, Laëtitia; Sevilla, Myrna; Ellul, Philippe; Ganko, Eric; Kapur, Arvind; Reclus, Emannuel; de Geus, Bernard; van de Geest, Henri; Te Lintel Hekkert, Bas; van Haarst, Jan; Smits, Lars; Koops, Andries; Sanchez-Perez, Gabino; van Heusden, Adriaan W; Visser, Richard; Quan, Zhiwu; Min, Jiumeng; Liao, Li; Wang, Xiaoli; Wang, Guangbiao; Yue, Zhen; Yang, Xinhua; Xu, Na; Schranz, Eric; Smets, Erik; Vos, Rutger; Rauwerda, Johan; Ursem, Remco; Schuit, Cees; Kerns, Mike; van den Berg, Jan; Vriezen, Wim; Janssen, Antoine; Datema, Erwin; Jahrman, Torben; Moquet, Frederic; Bonnet, Julien; Peters, Sander

    2014-10-01

    We explored genetic variation by sequencing a selection of 84 tomato accessions and related wild species representative of the Lycopersicon, Arcanum, Eriopersicon and Neolycopersicon groups, which has yielded a huge amount of precious data on sequence diversity in the tomato clade. Three new reference genomes were reconstructed to support our comparative genome analyses. Comparative sequence alignment revealed group-, species- and accession-specific polymorphisms, explaining characteristic fruit traits and growth habits in the various cultivars. Using gene models from the annotated Heinz 1706 reference genome, we observed differences in the ratio between non-synonymous and synonymous SNPs (dN/dS) in fruit diversification and plant growth genes compared to a random set of genes, indicating positive selection and differences in selection pressure between crop accessions and wild species. In wild species, the number of single-nucleotide polymorphisms (SNPs) exceeds 10 million, i.e. 20-fold higher than found in most of the crop accessions, indicating dramatic genetic erosion of crop and heirloom tomatoes. In addition, the highest levels of heterozygosity were found for allogamous self-incompatible wild species, while facultative and autogamous self-compatible species display a lower heterozygosity level. Using whole-genome SNP information for maximum-likelihood analysis, we achieved complete tree resolution, whereas maximum-likelihood trees based on SNPs from ten fruit and growth genes show incomplete resolution for the crop accessions, partly due to the effect of heterozygous SNPs. Finally, results suggest that phylogenetic relationships are correlated with habitat, indicating the occurrence of geographical races within these groups, which is of practical importance for Solanum genome evolution studies.

  11. Salt tolerance in Lycopersicon species. IV. Efficiency of marker-assisted selection for salt tolerance improvement.

    PubMed

    Monforte, A J; Asíns, M J; Carbonell, E A

    1996-10-01

    The usefulness of marker-assisted selection (MAS) to develop salt-tolerant breeding lines from a F2 derived from L. esculentum x L. pimpinellifolium has been studied. Interval mapping methodology of quantitative trait locus (QTL) analysis was used to locate more precisely previously detected salt tolerance QTLs. A new QTL for total fruit weight under salinity (TW) near TG24 was detected. Most of the detected QTLs [3 for TW, 5 for fruit number, (FN) and 4 for fruit weight (FW)] had low R (2) values, except the FW QTL in the TG180-TG48 interval, which explains 36.6% of the total variance. Dominant and overdominant effects were detected at the QTLs for TW, whereas gene effects at the QTLs for FJV and FW ranged from additive to partial dominance. Phenotypic selection of F2 familes and marker-assisted selection of F3 families were carried out. Yield under salinity decreased in the F2 generation. F3 means were similar to those of the F1 as a consequence of phentoypic selection. The most important selection response for every trait was obtained from the F3 to F4 where MAS was applied. While F3 variation was mainly due to the within-family component, in the F4 the FN and FW between-family component was larger than the within-family one, indicating an efficient compartmentalization and fixation of QTLs into the F4 families. Comparison of the yield of these families under control versus saline conditions showed that fruit weight is a key trait to success in tomato salt-tolerance improvement using wild Lycopersicon germplasm. The QTLs we have detected under salinity seem to be also working under control conditions, although the interaction family x treatment was significant for TW, thereby explaining the fact that the selected families responded differently to salinity.

  12. Novel Technique for Measuring Tissue Firmness within Tomato (Lycopersicon esculentum Mill.) Fruit 1

    PubMed Central

    Kojima, Kiyohide; Sakurai, Naoki; Kuraishi, Susumu; Yamamoto, Ryoichi; Nevins, Donald J.

    1991-01-01

    Developmental changes of tomato (Lycopersicon esculentum) fruit tissues during maturation were analyzed by a physically defined method (stress-relaxation analysis). The tip of a conical probe connected to a load sensor was positioned on the cut surface of a sliced tomato fruit, and the decay of the imposed stress was monitored. Stress-relaxation data thus obtained were used for the calculation of three stress-relaxation parameters. Different zones within tomato fruit harvested at six different ripening stages were analyzed. One of the stress-relaxation parameters, minimum stress-relaxation time (T0), decreased as the fruits matured. The decrease in T0 was first found in the core of the carpel junction within the endopericarp at the blossom end during the breaker stage. The decrease in T0 progressed from the blossom end, through the equatorial region and finally throughout the shoulder, as the fruit matured. In mature green fruit, T0 values within the placenta and the proximal carpel junction were lower than those by other parts of the fruit. For all measurements the maximum stress-relaxation time was not substantially changed during maturation, nor were their changes observed in different regions of the fruit. The observed relaxation rate was therefore correlated with softening. The results indicate that fruit softening may be physically associated with the stress-relaxation parameter, T0, and the extent of softening is a function of position within the fruit. Decreases in T0 value appear to be correlated with the reported regional variation in the appearance of polygalacturonase. PMID:16668220

  13. Two Loci from Lycopersicon hirsutum LA407 Confer Resistance to Strains of Clavibacter michiganensis subsp. michiganensis.

    PubMed

    Kabelka, E; Franchino, B; Francis, D M

    2002-05-01

    ABSTRACT We used molecular markers to identify quantitative trait loci (QTL) that contribute to resistance to bacterial canker of tomato caused by Clavibacter michiganensis subsp. michiganensis. Resistance was first identified as a marker-trait association in an inbred backcross (IBC) population derived from crossing Lycopersicon hirsutum accession (LA407) with L. esculentum. Single-marker QTL analysis suggested that at least two loci originating from L. hirsutum LA407, Rcm 2.0 on chromosome 2 and Rcm 5.1 on chromosome 5, contribute to resistance in replicated trials. Two segregating F(2) populations were developed by crossing resistant inbred backcross lines (IBLs) to elite L. esculentum lines and used to confirm QTL associations detected in the IBC population. In these populations, realized heritability estimates were higher for selection based on maximal disease than for selection based on disease progression. Realized heritability in the population carrying Rcm 2.0 was 0.63 and 0.14, respectively, for each selection criteria. Realized heritability estimates were 0.85 for selection based on maximal disease and 0.37 for selection based on disease progression in a population carrying Rcm 5.1. The disease response of F(3) families selected for resistance suggested that both Rcm 2.0 and Rcm 5.1 confer resistance to bacterial strains in the repetitive sequence-based polymerase chain reaction DNA fingerprint classes A and C. Markers linked to Rcm 2.0 explained up to 56% of the total phenotypic variation for resistance in one population, and markers linked to Rcm 5.1 explained up to 73% of the total phenotypic variation for resistance in a separate population.

  14. Mapping, genetic effects, and epistatic interaction of two bacterial canker resistance QTLs from Lycopersicon hirsutum.

    PubMed

    Coaker, G L; Francis, D M

    2004-04-01

    Two quantitative trait loci (QTL) from Lycopersicon hirsutum, Rcm 2.0 and Rcm 5.1, control resistance to Clavibacter michiganensis subsp. michiganensis ( Cmm). To precisely map both loci, we applied interval mapping techniques to 1,056 individuals in three populations exhibiting F(2) segregation. Based on a 1-LOD confidence interval, Rcm 2.0 mapped to a 14.9-cM interval on chromosome 2 and accounted for 25.7-34.0% of the phenotypic variation in disease severity. Rcm 5.1 mapped to a 4.3-cM interval on chromosome 5 and accounted for 25.8-27.9% of the phenotypic variation. Progeny testing of recombinant plants narrowed the QTL location for Rcm 2.0 to a 4.4-cM interval between TG537-TG091 and to a 2.2-cM interval between CT202-TG358 for Rcm 5.1. A population of 750 individuals exhibiting F(2) segregation was used to detect epistasis between both loci using ANOVA and orthogonal contrasts ( P=0.027), suggesting that resistance was determined by additive gene action and an additive-by-additive epistatic interaction. A partial diallel mating design was used to confirm epistasis, advance superior genotypes, randomize genetic backgrounds, and create recombination opportunities. This crossing scheme created a more balanced population ( n=112) containing the nine F(2) genotypic classes. Parents in the diallel were selected from the previous population based on resistance, genotype at the Rcm 2.0 and Rcm 5.1 loci, and horticultural traits. A replicated trial using the diallel population confirmed additive-by-additive epistasis ( P<0.0001). These results validate the gene action, intra -locus interaction, and map position of two loci controlling resistance to Cmm.

  15. Retention of Photoinduction of Cytosolic Enzymes in aurea Mutant of Tomato (Lycopersicon esculentum).

    PubMed

    Goud, K. V.; Sharma, R.

    1994-06-01

    The tomato (Lycopersicon esculentum Mill.) aurea (au) mutant has been characterized as a phytochrome-deficient mutant lacking spectrally detectable phytochrome A in etiolated seedlings. Seedlings of au grown under red light (RL) lack phytochrome regulation of nuclear genes encoding plastidic proteins, possess ill-developed chloroplasts, and are slow to de-etiolate. In the present study, the effect of phytochrome deficiency on photoinduction of enzymes in etiolated au seedlings was investigated. The photoinduction of the cytosolic enzymes amylase and nitrate reductase (NR) and of the plastidic enzyme nitrite reductase (NiR) in au was compared with that in the isogenic wild-type (WT) tomato and the high-pigment (hp) mutant with exaggerated phytochrome response. In WT and hp, both brief RL pulses and continuous RL induced amylase, NR, and NiR activities, whereas in au no photoinduction of enzymes was observed with brief RL pulses, and continuous RL induced only amylase and NR activities. The time courses of photoinduction of NR and amylase in au under continuous RL followed patterns qualitatively similar to hp and WT. A blue-light pretreatment prior to continuous RL exposure was ineffective in inducing NiR activity in au. Only continuous white light could elicit a photoinduction of NiR in au seedlings. The norflurazon-triggered loss of photoinduction of NiR in WT and hp indicated that NiR photoinduction depended on chloroplast biogenesis. The results indicate that observed photoinduction of NR and amylase in au may be mediated by a residual phytochrome pool.

  16. Fe3+-Chelate Reductase Activity of Plasma Membranes Isolated from Tomato (Lycopersicon esculentum Mill.) Roots 1

    PubMed Central

    Holden, Marcia J.; Luster, Douglas G.; Chaney, Rufus L.; Buckhout, Thomas J.; Robinson, Curtis

    1991-01-01

    Reduction of Fe3+ to Fe2+ is a prerequisite for Fe uptake by tomato roots. Ferric chelate reductase activity in plasma membranes (PM) isolated from roots of both iron-sufficient (+Fe) and iron-deficient (−Fe) tomatoes (Lycopersicon esculentum Mill.) was measured as NADH-dependent ferric citrate reductase and exhibited simple Michaelis-Menten kinetics for the substrates, NADH and Fe3+(citrate3−)2. NADH and Fe3+(citrate3−)2 Km values for reductase in PM from +Fe and −Fe tomato roots were similar, whereas Vmax values were two- to threefold higher for reductase from −Fe tomatoes. The pH optimum for Fe-chelate reductase was 6.5. Fe-chelate reductases from −Fe and +Fe tomato roots were equally sensitive to several triazine dyes. Reductase was solubilized with n-octyl β-d-glucopyranoside and electrophoresed in nondenaturing isoelectric focusing gels. Three bands, with isoelectric points of 5.5 to 6.2, were resolved by enzyme activity staining of electrofocused PM proteins isolated from +Fe and −Fe tomato roots. Activity staining was particularly enhanced in the isoelectric point 5.5 and 6.2 bands solubilized from −Fe PM. We conclude that PM from roots of +Fe and −Fe plants contain Fe-chelate reductases with similar characteristics. The response to iron deficiency stress likely involves increased expression of constitutive Fe-chelate reductase isoforms in expanding epidermal root PM. ImagesFigure 6 PMID:16668432

  17. In vitro and in vivo inoculation of four endophytic bacteria on Lycopersicon esculentum.

    PubMed

    Botta, Anna Lucia; Santacecilia, Alessandra; Ercole, Claudia; Cacchio, Paola; Del Gallo, Maddalena

    2013-09-25

    Four bacteria selected on the basis of their capability of fixing atmospheric nitrogen, stimulating plant-growth, and protecting the host plant from pathogens - Azospirillum brasilense, Gluconacetobacter diazotrophicus, Herbaspirillum seropedicae, Burkholderia ambifaria - were inoculated on tomato seeds either singularly, in couple and in a four bacteria mixer. Aim of this research was to evaluate: (1) effect of single and mixed cultures on the inoculated plant - plant growth, dry weight, root length and surface, number of leaves, among others; (2) colonization and interactions of the bacteria inside the host plant; (3) localization inside the host of single bacterial strains marked with the gusA reporter gene. The results obtained indicate that all selected microbial strains have colonized Lycopersicon esculentum but in a different way, depending on the single species. A. brasilense, G. diazotrophicus inoculated in vitro singularly and together were the best plant colonizers. In vivo essays, instead, B. ambifaria and the four-bacteria mixer gave the best results. It was possible to localize both A. brasilense and H. seropedicae inside the plant by the gusA reporter gene. The bacterial strains occur along the root axis from the apical zone until to the basal stem, on the shoot from the base up to the leaves. The four bacteria actively colonize tomato seeds and establish an endophytic community inside the plant. This review gives new information about colonization processes, in particular how bacteria interact with plants and whether they are likely to establish themselves in the plant environment after field application as biofertilizers or biocontrol agents. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Lycopersicon esculentum under low temperature stress: an approach toward enhanced antioxidants and yield.

    PubMed

    Khan, Tanveer Alam; Fariduddin, Qazi; Yusuf, Mohammad

    2015-09-01

    Brassinosteroids (BRs) have been implicated to overcome various abiotic stresses, and low temperature stress poses a serious threat to productivity of various horticultural crops like tomato. Therefore, a study was conducted to unravel the possible role of BRs in conferring alleviation to low temperature stress in Lycopersicon esculentum. Twenty-day-old seedlings of tomato var. S-22 (chilling tolerant) and PKM-1 (chilling sensitive) were sown in earthen pots, and at 40 days stage of growth, plants were exposed to varied levels of low temperatures (10/3, 12/7, 20/14, or 25/18 °C) for 24 h in a growth chamber. At 50 days stage of growth, the foliage of plants were sprayed with 0 or 10(-8) M of BRs (28-homobrassinolide or 24-epibrassinolide), and 60-day-old plants were harvested to assess various physiological and biochemical parameters. Low temperatures induced a significant reduction in growth traits, chlorophyll content, and rate of photosynthesis in both the varieties differentially. Activities of antioxidant enzymes (catalase, peroxidase, and superoxide dismutase) and leaf proline content also increased substantially in both the varieties with decreasing temperature. On the other hand, treatment of BRs under stress and stress-free conditions significantly increased the aforesaid growth traits and biochemical parameters. Moreover, BRs further accelerated the antioxidative enzymes and proline content, which were already enhanced by the low temperature stress. Out of the two analogues of BRs tested, 24-epibrassinolide (EBL) was found more effective for both the varieties of tomato. EBL was found more potent stress alleviator against low temperature in both varieties of tomato.

  19. Phytochemical and nutrient/antinutrient interactions in cherry tomato (Lycopersicon esculentum) fruits.

    PubMed

    Oyetayo, Folake Lucy; Ibitoye, Muyiwa Femi

    2012-07-01

    The fruit of the cherry tomato (Lycopersicon esculentum (Solanaceae)) was analysed for mineral and antinutrient composition. Phosphorus (33.04 ± 0.21 mg/100g) was the most abundant mineral in the fruit, followed by calcium (32.04 ± 0.06 mg/100 g), and potassium (11.9 ± 0.1 mg/100 g) and manganese (9.55 ± 0.28 mg/100 g) were also present in appreciable quantities. Antinutrients, including phytate, glycoside, saponin and tannin, were screened and quantified. Phytate (112.82 ± 0.1 mg/100 g), glycoside (2.33 ± 0.00 mg/100 g), saponin (1.31 ± 0.00 mg/100g) and tannin (0.21 ± 0.00 mg/100 g) were present in the fruit but phlobatanin and glycosides with steroidal rings were not found. The calculated calcium:phytate ratio of the fruits was below the critical value and the calculated [calcium] [phytate]:[zinc] molar ratio was less than the critical value. The calcium:phosphorus ratio (0.97 mg/100 g) shows the fruit to be a good source of food nutrients, while the sodium:potassium value was less than 1. Ca/P ratio below 0.5 indicates deficiency of these minerals while Na/K ratio above 1 is detrimental because of excessive sodium levels. The results of the study generally revealed the fruit to be rich in minerals but containing insufficient quantities of antinutrients to result in poor mineral bioavailability.

  20. Arthrobotrys oligospora-mediated biological control of diseases of tomato (Lycopersicon esculentum Mill.) caused by Meloidogyne incognita and Rhizoctonia solani.

    PubMed

    Singh, U B; Sahu, A; Sahu, N; Singh, R K; Renu, S; Singh, D P; Manna, M C; Sarma, B K; Singh, H B; Singh, K P

    2013-01-01

    To study the biocontrol potential of nematode-trapping fungus Arthrobotrys oligospora in protecting tomato (Lycopersicon esculentum Mill.) against Meloidogyne incognita and Rhizoctonia solani under greenhouse and field conditions. Five isolates of the nematode-trapping fungus Arthrobotrys oligospora isolated from different parts of India were tested against Meloidogyne incognita and Rhizoctonia solani in tomato (Lycopersicon esculentum Mill.) plants grown under greenhouse and field conditions. Arthrobotrys oligospora-treated plants showed enhanced growth in terms of shoot and root length and biomass, chlorophyll and total phenolic content and high phenylalanine ammonia lyase activity in comparison with M. incognita- and R. solani-inoculated plants. Biochemical profiling when correlated with disease severity and intensity in A. oligospora-treated and untreated plants indicate that A. oligospora VNS-1 offered significant disease reduction in terms of number of root galls, seedling mortality, lesion length, disease index, better plant growth and fruit yield as compared to M. incognita- and R. solani-challenged plants. The result established that A. oligospora VNS-1 has the potential to provide bioprotection agents against M. incognita and R. solani. Arthrobotrys oligospora can be a better environment friendly option and can be incorporated in the integrated disease management module of crop protection. Application of A. oligospora not only helps in the control of nematodes but also increases plant growth and enhances nutritional value of tomato fruits. Thus, it proves to be an excellent biocontrol as well as plant growth promoting agent. © 2012 The Society for Applied Microbiology.

  1. Inhibition of Cholinesterases and Some Pro-Oxidant induced Oxidative Stress in Rats Brain by Two Tomato (Lycopersicon Esculentum) Varieties

    PubMed Central

    Oboh, G.; Bakare, O.O.; Ademosun, A.O.; Akinyemi, A.J.; Olasehinde, T.A.

    2015-01-01

    This study sought to investigate the effects of two tomato varieties [Lycopersicon esculentum Mill. var. esculentum (ESC) and Lycopersicon esculentum Mill. var. cerasiforme (CER)] on acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities in vitro. Phenolics content, carotenoids characterisation, inhibition of Fe2+ and quinolinic acid-induced malondialdehyde (MDA) production in rats brain homogenate and NO* scavenging abilities were also assesed in addition to the AChE and BChE inhibition assays. There was no significant difference in the AChE inhibitory ability of the samples, while CER had significantly higher BChE inhibitory activity. Furthermore, the tomatoes inhibited Fe2+ and quinolinic acid-induced MDA production and further exhibited antioxidant activities through their NO* scavenging abilities. There was no significant difference in the phenolic content of the samples, while significantly high amounts of lycopene were detected in the tomatoes. The cholinesterase-inhibition and antioxidant properties of the “tomatoes” could make them good dietary means for the management of neurodegenerative disorders.

  2. QTLs for tomato powdery mildew resistance (Oidium lycopersici) in Lycopersicon parviflorum G1.1601 co-localize with two qualitative powdery mildew resistance genes.

    PubMed

    Bai, Yuling; Huang, Cai-Cheng; van der Hulst, Ron; Meijer-Dekens, Fien; Bonnema, Guusje; Lindhout, Pim

    2003-02-01

    Tomato (Lycopersicon esculentum) is susceptible to the powdery mildew Oidium lycopersici, but several wild relatives such as Lycopersicon parviflorum G1.1601 are completely resistant. An F2 population from a cross of Lycopersicon esculentum cv. Moneymaker x Lycopersicon parviflorum G1.1601 was used to map the O. lycopersici resistance by using amplified fragment length polymorphism markers. The resistance was controlled by three quantitative trait loci (QTLs). Ol-qtl1 is on chromosome 6 in the same region as the Ol-1 locus, which is involved in a hypersensitive resistance response to O. lycopersici. Ol-qtl2 and Ol-qtl3 are located on chromosome 12, separated by 25 cM, in the vicinity of the Lv locus conferring resistance to another powdery mildew species, Leveillula taurica. The three QTLs, jointly explaining 68% of the phenotypic variation, were confirmed by testing F3 progenies. A set of polymerase chain reaction-based cleaved amplified polymorphic sequence and sequence characterized amplified region markers was generated for efficient monitoring of the target QTL genomic regions in marker assisted selection. The possible relationship between genes underlying major and partial resistance for tomato powdery mildew is discussed.

  3. Your Glucose Meter

    MedlinePlus

    ... Audience For Women Women's Health Topics Your Glucose Meter Share Tweet Linkedin Pin it More sharing options ... Testing Your Blood Sugar and Caring for Your Meter Glucose meters test and record how much sugar ( ...

  4. Glucose test (image)

    MedlinePlus

    ... person with diabetes constantly manages their blood's sugar (glucose) levels. After a blood sample is taken and tested, it is determined whether the glucose levels are low or high. Following your health ...

  5. Glucose-6-phosphate dehydrogenase

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003671.htm Glucose-6-phosphate dehydrogenase test To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) is a protein that ...

  6. All about Blood Glucose

    MedlinePlus

    Toolkit No. 15 All About Blood Glucose Keeping your blood glucose (sugar)in your target range can prevent or delay the health problems ... Diabetes Association, Inc. 1/15 Toolkit No.15: All About Blood Glucose continued team about when and ...

  7. Relationships between fruit exocarp antioxidants in the tomato (Lycopersicon esculentum) high pigment-1 mutant during development.

    PubMed

    Andrews, Preston K.; Fahy, Deirdre A.; Foyer, Christine H.

    2004-04-01

    Development-dependent changes in fruit antioxidants were examined in the exocarp (epidermal and hypodermal tissues) of the monogenic recessive tomato (Lycopersicon esculentum L.) mutant high pigment (hp-1) and its wild-type parent 'Rutgers' grown under non-stress conditions in a greenhouse. The hp-1 mutant was chosen for this study because the reportedly higher lycopene and ascorbic acid (AsA) contents of the fruit may alter its tolerance to photooxidative stress. Throughout most of fruit development, reduced AsA concentrations in the exocarp of hp-1 were 1.5 to 2.0 times higher than in 'Rutgers', but total glutathione concentrations were similar in both genotypes. Only in ripe red fruit were reduced AsA and total glutathione concentrations lower in hp-1 than in 'Rutgers'. The redox ratios (reduced : reduced + oxidized) of AsA in hp-1 and 'Rutgers' exocarps were similar and usually > 0.9, however, the redox ratio of glutathione was lower in hp-1 than in 'Rutgers' throughout development. Lycopene concentrations in ripe red fruit were about 5 times higher in hp-1 than in 'Rutgers'. Large increases in the specific enzyme activities of superoxide dismutase (EC 1.15.1.1), ascorbate peroxidase (EC 1.11.1.11), and monodehydroascorbate reductase (MDHAR; EC 1.6.5.4) occurred during fruit development in both genotypes, with an inverse relationship between the activities of these enzymes and chlorophyll content. Glutathione reductase (EC 1.6.4.2) and MDHAR-specific activities were higher in hp-1 than 'Rutgers' only at the later stages of fruit development. Dehydroascorbate reductase (EC 1.8.5.1) activities, however, were usually higher in 'Rugters' than in hp-1. Catalase (CAT, EC 1.11.1.6) activities increased with fruit development until the fruit were orange/light red, when CAT was higher in 'Rutgers' than in hp-1, but then declined in the ripe red fruit of both genotypes. These results suggest that elevated AsA in the exocarp of hp-1 fruit early in fruit development may

  8. Ambulatory glucose profile: Flash glucose monitoring.

    PubMed

    Kalra, Sanjay; Gupta, Yashdeep

    2015-12-01

    Ambulatory glucose profile (AGP) is a novel way of assessing glycaemic levels on a 24 hour basis, through a minimally invasive method, known as flash glucose monitoring. This review describes the unique features of AGP, differentiates it from existing methods of glucose monitoring, and explains how it helps pursue the glycaemic pentad. The review suggests pragmatic usage of this technology, including pre-test, intra-test, and post-test counselling, and lists specific clinical scenarios where the investigation seems to be of immense benefit.

  9. Lycopersicon esculentum lectin: an effective and versatile endothelial marker of normal and tumoral blood vessels in the central nervous system.

    PubMed

    Mazzetti, S; Frigerio, S; Gelati, M; Salmaggi, A; Vitellaro-Zuccarello, L

    2004-01-01

    The binding of Lycopersicon esculentum lectin (LEA) to the vascular endothelium was studied in the central nervous system of rat, mouse and guinea pig at different developmental ages, and in a gliosarcoma model. Our observations showed that LEA consistently stained the entire vascular tree in the spinal cord and in the brain of all animal species at all developmental ages investigated. In the tumor model, the staining of the vascular network was very reproducible, enabled an easy identification of vascular profiles and displayed a higher efficiency when compared to two other commonly used vascular marker (EHS laminin and PECAM-1). Moreover, our results showed that LEA staining was comparable in both vibratome and paraffin sections and could be easily combined with other markers in double labeling experiments. These observations indicate that LEA staining may represent an effective and versatile endothelial marker for the study of the vasculature of the central nervous system in different animal species and experimental conditions.

  10. Cadmium-sulfide crystallites in Cd-(. gamma. EC) sub n G peptide complexes from tomato. [Lycopersicon esculentum

    SciTech Connect

    Reese, R.N.; White, C.A.; Winge, D.R. Univ. of Utah, Salt Lake City )

    1992-01-01

    Hydroponically grown tomato plants (Lycopersicon esculentum P. Mill cv Golden Boy) exposed to 100 micromolar cadmium sulfate produced metal-({gamma}EC){sub n}G peptide complexes containing acid-labile sulfur. The properties of the complexes resemble those of the cadmium-({gamma}EC){sub n}G peptide complexes from Schizo-saccharomyces pombe and Candida glabrata known to contain a cadmium sulfide crystallite core. The crystallite is stabilized by a sheath of peptides of general structure ({gamma}Glu-Cys){sub n}-Gly. The cadmium-peptide complexes of tomato contained predominantly peptides of n{sub 3}, n{sub 4}, and n{sub 5}. Spectroscopic analyses indicated that the tomato cadmium-sulfide-peptide complex contained CdS crystallite core particles smaller than 2.0 nanometers in diameter.

  11. Physiological and biochemical responses resulting from nitrite accumulation in tomato (Lycopersicon esculentum Mill. cv. Ibiza F1).

    PubMed

    Ezzine, Monia; Ghorbel, Mohamed Habib

    2006-10-01

    The sensitivity of hydroponically cultivated tomato (Lycopersicon esculentum Mill. cv. Ibiza F1) submitted to nitrite treatments (0.25-10mM KNO(2)) for 7d was studied. Increasing nitrite levels in the culture medium led to several disruptions of tomato plants, reflected by reductions of both dry matter per plant, chlorophyll concentrations and the appearance of chlorosis symptoms at the leaf surface. This behaviour was accompanied by stimulation of nitrite, nitrate and ammonia ion accumulation, mainly in roots and old leaves. Higher proteolytic and gaiacol peroxidase (GPX, EC. 1.11.1.7) activities and malonyldialdehyde content were also noted. Protein content of the different plant organs was decreased by nitrite treatment. These physiological and biochemical parameters were chosen as they are stress indicators. Taken together, our data partly explain the harmful effects of nitrite ions, when excessive in the culture medium.

  12. Nicotine promotes rooting in leaf explants of in vitro raised seedlings of tomato, Lycopersicon esculentum Miller var. Pusa Ruby.

    PubMed

    Bamel, Kiran; Gupta, Rajendra; Gupta, Shrish C

    2015-11-01

    Nicotine promotes rooting in leaf explants of tomato (Lycopersicon esculentum Miller var. Pusa Ruby). Nicotine at 10(-9) to 10(-3) M concentrations was added to the MS basal medium. The optimum response (three-fold increase in rooting) was obtained at 10(-7) M nicotine-enriched MS medium. At the same level i.e. 10(-7) M Nicotine induced dramatic increase (11-fold) in the number of secondary roots per root. We have shown earlier that exogenous acetylcholine induces a similar response in tomato leaves. Since nicotine is an agonist of one of the two acetylcholine receptors in animals, its ability to simulate ACh action in a plant system suggests the presence of the same molecular mechanism operative in both, animal and plant cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Polyamines and Flower Development in the Male Sterile Stamenless-2 Mutant of Tomato (Lycopersicon esculentum Mill.) 1

    PubMed Central

    Rastogi, Rajeev; Sawhney, Vipen K.

    1990-01-01

    The levels of free putrescine, spermidine, and spermine, and the activities of ornithine decarboxylase and s-adenosylmethionine decarboxylase were determined in the floral organs of the normal and a male sterile stamenless-2 (sl-2/sl-2) mutant of tomato (Lycopersicon esculentum Mill.). Under the intermediate temperature regime, all mutant floral organs possessed significantly higher levels of polyamines and enzyme activities than their normal counterparts. In the low temperature-reverted mutant stamens, the polyamine levels and the activity of PA biosynthetic enzymes were not significantly different from the normal. It is suggested that the abnormal stamen development in the sl-2/sl-2 mutant is, in part, related to elevated levels of endogenous PAs. PMID:16667485

  14. Modification of fatty acid composition in tomato (Lycopersicon esculentum) by expression of a borage delta6-desaturase.

    PubMed

    Cook, David; Grierson, Don; Jones, Craigh; Wallace, Andrew; West, Gill; Tucker, Greg

    2002-06-01

    The improvement of nutritional quality is one potential application for the genetic modification of plants. One possible target for such manipulation is the modification of fatty acid metabolism. In this work, expression of a borage delta6-desaturase cDNA in tomato (Lycopersicon esculentum L.) has been shown to produce gamma-linolenic acid (GLA; 18:83 delta6,9,12) and octadecatetraenoic acid (OTA; 18:4 delta6,9,12,15) in transgenic leaf and fruit tissue. This genetic modification has also, unexpectedly, resulted in a reduction in the percentage of linoleic acid (LA 18:2 delta9,12) and a concomitant increase in the percentage of alpha-linolenic acid (ALA; 18:3 delta9,12,15) in fruit tissue. These changes in fatty acid composition are thought to be beneficial for human health.

  15. Phytochrome-mediated induction of phenylalanine ammonia-lyase in the cotyledons of tomato (Lycopersicon esculentum Mill.) plants.

    PubMed

    Lercari, B; Sodi, F; Fastami, C

    1982-01-01

    Phenylalanine ammonia-lyase (PAL; EC 4.3.1.5.) induction in cotyledons from 96-h dark-grown Lycopersicon esculentum Mill. was studied in response to continuous light and hourly light pulses (blue, red, far red). The increases of PAL promoted by blue and red pulses are reversed completely by immediately following 758 nm irradiations. The response to continuous red light could be substituted for by hourly 6-min red light pulses. The effect of continuous red treatments is mainly due to a multiple induction effect of phytochrome. In contrast to red light, hourly light pulses with far red and blue, light can only partially substitute for continuous irradiation. The continuous blue response could be due to a combination of a multiple induction response and of a high irradiance response of phytochrome. The continuous far red response, could represent a high irradiance response of phytochrome. Dichromatic irradiations indicate that phytochrome is the photoreceptor controlling the light response (PAL) in tomato seedlings.

  16. Gametophytic self-incompatibility is controlled by a single major locus on chromosome 1 in Lycopersicon peruvianum

    PubMed Central

    Tanksley, Steven D.; Loaiza-Figueroa, Fernando

    1985-01-01

    By using a number of previously mapped enzyme-coding genes as genetic markers, it has been possible to scan the genome of Lycopersicon peruvianum for gene(s) controlling the gametophytic self-incompatibility reaction. Regardless of genetic background or level of inbreeding, only a single locus (S), mapping to chromosome 1, was found to control the self-incompatibility reaction. Despite the widespread occurrence of this form of self-incompatibility in higher plants, to the best of our knowledge, the locus underlying the response has not been confirmed previously through genetic mapping, and the results cast doubts on hypotheses requiring multifactoral or dynamic control of gametophytic self-incompatibility. PMID:16593587

  17. Crystallization and preliminary X-ray crystallographic analysis of the extracellular domain of LePRK2 from Lycopersicon esculentum.

    PubMed

    Xu, Anbi; Huang, Laiqiang

    2014-02-01

    The tomato (Lycopersicon esculentum) pollen-specific receptor kinase 2 (LePRK2) is a member of the large receptor-like kinase (RLK) family and is expressed specifically in mature pollen and pollen tubes in L. esculentum. Like other RLKs, LePRK2 contains a characteristic N-terminal leucine-rich repeat (LRR) extracellular domain, the primary function of which is in protein-protein interactions. The LePRK2 LRR is likely to bind candidate ligands from the external environment, leading to a signal transduction cascade required for successful pollination. LePRK2-LRR was purified using an insect-cell secretion expression system and was crystallized using the vapour-diffusion method. The crystals diffracted to a resolution of 2.50 Å and belonged to space group I4(1)22, with unit-cell parameters a = b = 93.94, c = 134.44 Å and one molecule per asymmetric unit.

  18. Effect of Lycopersicon esculentum extract on apoptosis in the rat cerebellum, following prenatal and postnatal exposure to an electromagnetic field.

    PubMed

    Köktürk, Sibel; Yardimoglu, Melda; Celikozlu, Saadet D; Dolanbay, Elif Gelenli; Cimbiz, Ali

    2013-07-01

    The expansion of mobile phone technology has raised concerns regarding the effect of 900-MHz electromagnetic field (EMF) exposure on the central nervous system. At present, the developing human brain is regularly exposed to mobile telephones, pre- and postnatally. Several studies have demonstrated the acute effects of EMF exposure during pre- or postnatal periods; however, the chronic effects of EMF exposure are less understood. Thus, the aim of the present study was to determine the chronic effects of EMF on the pre- and postnatal rat cerebellum. The control group was maintained in the same conditions as the experimental groups, without the exposure to EMF. In the EMF1 group, the rats were exposed to EMF during pre- and postnatal periods (until postnatal day 80). In the EMF2 group, the rats were also exposed to EMF pre- and postnatally; in addition, however, they were provided with a daily oral supplementation of Lycopersicon esculentum extract (∼2 g/kg). The number of caspase-3-labeled Purkinje neurons and granule cells present in the rats in the control and experimental groups were then counted. The neurodegenerative changes were studied using cresyl violet staining, and these changes were evaluated. In comparison with the control animals, the EMF1 group demonstrated a significant increase in the number of caspase-3-labeled Purkinje neurons and granule cells present in the cerebellum (P<0.001). However, in comparison with the EMF1 group, the EMF2 group exhibited significantly fewer caspase-3-labeled Purkinje neurons and granule cells in the cerebellum. In the EMF1 group, the Purkinje neurons were revealed to have undergone dark neuron degenerative changes. However, the presence of dark Purkinje neurons was reduced in the EMF2 group, compared with the EMF1 group. The results indicated that apoptosis and neurodegeneration in rats exposed to EMF during pre- and postnatal periods may be reduced with Lycopersicon esculentum extract therapy.

  19. Microarray-based analysis of gene expression in lycopersicon esculentum seedling roots in response to cadmium, chromium, mercury, and lead.

    PubMed

    Hou, Jing; Liu, Xinhui; Wang, Juan; Zhao, Shengnan; Cui, Baoshan

    2015-02-03

    The effects of heavy metals in agricultural soils have received special attention due to their potential for accumulation in crops, which can affect species at all trophic levels. Therefore, there is a critical need for reliable bioassays for assessing risk levels due to heavy metals in agricultural soil. In the present study, we used microarrays to investigate changes in gene expression of Lycopersicon esculentum in response to Cd-, Cr-, Hg-, or Pb-spiked soil. Exposure to (1)/10 median lethal concentrations (LC50) of Cd, Cr, Hg, or Pb for 7 days resulted in expression changes in 29 Cd-specific, 58 Cr-specific, 192 Hg-specific and 864 Pb-specific genes as determined by microarray analysis, whereas conventional morphological and physiological bioassays did not reveal any toxicant stresses. Hierarchical clustering analysis showed that the characteristic gene expression profiles induced by Cd, Cr, Hg, and Pb were distinct from not only the control but also one another. Furthermore, a total of three genes related to "ion transport" for Cd, 14 genes related to "external encapsulating structure organization", "reproductive developmental process", "lipid metabolic process" and "response to stimulus" for Cr, 11 genes related to "cellular metabolic process" and "cellular response to stimulus" for Hg, 78 genes related to 20 biological processes (e.g., DNA metabolic process, monosaccharide catabolic process, cell division) for Pb were identified and selected as their potential biomarkers. These findings demonstrated that microarray-based analysis of Lycopersicon esculentum was a sensitive tool for the early detection of potential toxicity of heavy metals in agricultural soil, as well as an effective tool for identifying the heavy metal-specific genes, which should be useful for assessing risk levels due to heavy metals in agricultural soil.

  20. Effect of Lycopersicon esculentum extract on apoptosis in the rat cerebellum, following prenatal and postnatal exposure to an electromagnetic field

    PubMed Central

    KÖKTÜRK, SIBEL; YARDIMOGLU, MELDA; CELIKOZLU, SAADET D.; DOLANBAY, ELIF GELENLI; CIMBIZ, ALI

    2013-01-01

    The expansion of mobile phone technology has raised concerns regarding the effect of 900-MHz electromagnetic field (EMF) exposure on the central nervous system. At present, the developing human brain is regularly exposed to mobile telephones, pre- and postnatally. Several studies have demonstrated the acute effects of EMF exposure during pre- or postnatal periods; however, the chronic effects of EMF exposure are less understood. Thus, the aim of the present study was to determine the chronic effects of EMF on the pre- and postnatal rat cerebellum. The control group was maintained in the same conditions as the experimental groups, without the exposure to EMF. In the EMF1 group, the rats were exposed to EMF during pre- and postnatal periods (until postnatal day 80). In the EMF2 group, the rats were also exposed to EMF pre- and postnatally; in addition, however, they were provided with a daily oral supplementation of Lycopersicon esculentum extract (∼2 g/kg). The number of caspase-3-labeled Purkinje neurons and granule cells present in the rats in the control and experimental groups were then counted. The neurodegenerative changes were studied using cresyl violet staining, and these changes were evaluated. In comparison with the control animals, the EMF1 group demonstrated a significant increase in the number of caspase-3-labeled Purkinje neurons and granule cells present in the cerebellum (P<0.001). However, in comparison with the EMF1 group, the EMF2 group exhibited significantly fewer caspase-3-labeled Purkinje neurons and granule cells in the cerebellum. In the EMF1 group, the Purkinje neurons were revealed to have undergone dark neuron degenerative changes. However, the presence of dark Purkinje neurons was reduced in the EMF2 group, compared with the EMF1 group. The results indicated that apoptosis and neurodegeneration in rats exposed to EMF during pre- and postnatal periods may be reduced with Lycopersicon esculentum extract therapy. PMID:23935717

  1. Multiple forms of ADP-glucose pyrophosphorylase from tomato fruit

    NASA Technical Reports Server (NTRS)

    Chen, B. Y.; Janes, H. W.

    1997-01-01

    ADP-glucose pyrophosphorylase (AGP) was purified from tomato (Lycopersicon esculentum Mill.) fruit to apparent homogeneity. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis the enzyme migrated as two close bands with molecular weights of 50,000 and 51,000. Two-dimensional polyacrylamide gel electrophoresis analysis of the purified enzyme, however, revealed at least five major protein spots that could be distinguished by their slight differences in net charge and molecular weight. Whereas all of the spots were recognized by the antiserum raised against tomato fruit AGP holoenzyme, only three of them reacted strongly with antiserum raised against the potato tuber AGP large subunit, and the other two spots (with lower molecular weights) reacted specifically with antisera raised against spinach leaf AGP holoenzyme and the potato tuber AGP small subunit. The results suggest the existence of at least three isoforms of the AGP large subunit and two isoforms of the small subunit in tomato fruit in vivo. The native molecular mass of the enzyme determined by gel filtration was 220 +/- 10 kD, indicating a tetrameric structure for AGP from tomato fruit. The purified enzyme is very sensitive to 3-phosphoglycerate/inorganic phosphate regulation.

  2. Multiple forms of ADP-glucose pyrophosphorylase from tomato fruit

    NASA Technical Reports Server (NTRS)

    Chen, B. Y.; Janes, H. W.

    1997-01-01

    ADP-glucose pyrophosphorylase (AGP) was purified from tomato (Lycopersicon esculentum Mill.) fruit to apparent homogeneity. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis the enzyme migrated as two close bands with molecular weights of 50,000 and 51,000. Two-dimensional polyacrylamide gel electrophoresis analysis of the purified enzyme, however, revealed at least five major protein spots that could be distinguished by their slight differences in net charge and molecular weight. Whereas all of the spots were recognized by the antiserum raised against tomato fruit AGP holoenzyme, only three of them reacted strongly with antiserum raised against the potato tuber AGP large subunit, and the other two spots (with lower molecular weights) reacted specifically with antisera raised against spinach leaf AGP holoenzyme and the potato tuber AGP small subunit. The results suggest the existence of at least three isoforms of the AGP large subunit and two isoforms of the small subunit in tomato fruit in vivo. The native molecular mass of the enzyme determined by gel filtration was 220 +/- 10 kD, indicating a tetrameric structure for AGP from tomato fruit. The purified enzyme is very sensitive to 3-phosphoglycerate/inorganic phosphate regulation.

  3. GLUT2, glucose sensing and glucose homeostasis.

    PubMed

    Thorens, Bernard

    2015-02-01

    The glucose transporter isoform GLUT2 is expressed in liver, intestine, kidney and pancreatic islet beta cells, as well as in the central nervous system, in neurons, astrocytes and tanycytes. Physiological studies of genetically modified mice have revealed a role for GLUT2 in several regulatory mechanisms. In pancreatic beta cells, GLUT2 is required for glucose-stimulated insulin secretion. In hepatocytes, suppression of GLUT2 expression revealed the existence of an unsuspected glucose output pathway that may depend on a membrane traffic-dependent mechanism. GLUT2 expression is nevertheless required for the physiological control of glucose-sensitive genes, and its inactivation in the liver leads to impaired glucose-stimulated insulin secretion, revealing a liver-beta cell axis, which is likely to be dependent on bile acids controlling beta cell secretion capacity. In the nervous system, GLUT2-dependent glucose sensing controls feeding, thermoregulation and pancreatic islet cell mass and function, as well as sympathetic and parasympathetic activities. Electrophysiological and optogenetic techniques established that Glut2 (also known as Slc2a2)-expressing neurons of the nucleus tractus solitarius can be activated by hypoglycaemia to stimulate glucagon secretion. In humans, inactivating mutations in GLUT2 cause Fanconi-Bickel syndrome, which is characterised by hepatomegaly and kidney disease; defects in insulin secretion are rare in adult patients, but GLUT2 mutations cause transient neonatal diabetes. Genome-wide association studies have reported that GLUT2 variants increase the risks of fasting hyperglycaemia, transition to type 2 diabetes, hypercholesterolaemia and cardiovascular diseases. Individuals with a missense mutation in GLUT2 show preference for sugar-containing foods. We will discuss how studies in mice help interpret the role of GLUT2 in human physiology.

  4. Pre-meal tomato (Lycopersicon esculentum) intake can have anti-obesity effects in young women?

    PubMed

    Vinha, Ana F; Barreira, Sérgio V P; Costa, Anabela S G; Alves, Rita C; Oliveira, M Beatriz P P

    2014-12-01

    The effect of pre-meal tomato intake in the anthropometric indices and blood levels of triglycerides, cholesterol, glucose, and uric acid of a young women population (n = 35, 19.6 ± 1.3 years) was evaluated. During 4 weeks, daily, participants ingested a raw ripe tomato (∼90 g) before lunch. Their anthropometric and biochemical parameters were measured repeatedly during the follow-up time. At the end of the 4 weeks, significant reductions were observed on body weight (-1.09 ± 0.12 kg on average), % fat (-1.54 ± 0.52%), fasting blood glucose (-5.29 ± 0.80 mg/dl), triglycerides (-8.31 ± 1.34 mg/dl), cholesterol (-10.17 ± 1.21 mg/dl), and uric acid (-0.16 ± 0.04 mg/dl) of the participants. The tomato pre-meal ingestion seemed to interfere positively in body weight, fat percentage, and blood levels of glucose, triglycerides, cholesterol, and uric acid of the young adult women that participated in this study.

  5. The glucose oxidase-peroxidase assay for glucose

    USDA-ARS?s Scientific Manuscript database

    The glucose oxidase-peroxidase assay for glucose has served as a very specific, sensitive, and repeatable assay for detection of glucose in biological samples. It has been used successfully for analysis of glucose in samples from blood and urine, to analysis of glucose released from starch or glycog...

  6. Glucose: detection and analysis

    USDA-ARS?s Scientific Manuscript database

    Glucose is an aldosic monosaccharide that is centrally entrenched in the processes of photosynthesis and respiration, serving as an energy reserve and metabolic fuel in most organisms. As both a monomer and as part of more complex structures such as polysaccharides and glucosides, glucose also pla...

  7. Capillary blood glucose monitoring.

    PubMed

    Wallymahmed, M

    This article, the first in a series of articles relating to clinical skills in nursing, outlines the procedure of capillary blood glucose monitoring. This is a convenient way of monitoring blood glucose patterns and can be a useful aid in guiding treatment changes in patients with type 1 and type 2 diabetes, especially during periods of illness or frequent hypoglycaemia.

  8. A physiological and genetic approach to the improvement of tomato (Lycopersicon esculentum Mill. ) fruit soluble solids

    SciTech Connect

    Damon, S.E.

    1989-01-01

    Physiological processes and the genetic basis determining soluble solids content (SSC) of processing tomato fruit were addressed. Analysis of ({sup 3}H)-(fructosyl)-sucrose translocation in tomato indicates that phloem unloading in the fruit occurs, at least in part, to the apoplast. Apoplastic sucrose, glucose and fructose concentrations were estimated as 1 to 7, 12 to 49 and 8 to 63 millimolar, respectively in tomato fruit pericarp. Short-term uptake of ({sup 14}C)sucrose, -glucose and -fructose in tomato pericarp discs showes first order kinetics over the physiologically relevant concentration range. The uptake of ({sup 14}C)-(glycosyl)-1{prime}fluorosucrose was identical to the rate of ({sup 14}C) sucrose uptake suggesting sucrose may be taken up directly without prior extracellular hydrolysis. Short-term uptake of all three sugars was insensitive to 10 micromolar carbonyl cyanide m-chlorophenylhydrazone and to 10 micromolar p-chloromercuribenzene sulfonic acid. However, long-term accumulation of glucose was sensitive to carbonyl cyanide m-chlorophenylhydrazone. Sugar uptake across the plasmamembrane does not appear to be energy dependent, suggesting that sugar accumulation in the tomato is driven by subsequent intracellular metabolism and/or active uptake at the tonoplast. Fourteen genomic DNA probes and ten restriction endonucleases were used to identify restriction fragment length polymorphisms (RFLPs) useful in the linkage analysis of quantitative trait loci controlling the expression of SSC in a segregating F{sub 2} population from a cross between L. esculentum (UC204B) and L. cheesmanii f. minor, a wild species with high fruit soluble solids. RFLPs were detected between the DNAs of the two tomato species with all 14 probes.

  9. Glucose screening tests during pregnancy

    MedlinePlus

    Oral glucose tolerance test - pregnancy; OGTT - pregnancy; Glucose challenge test - pregnancy; Gestational diabetes - glucose screening ... screening test between 24 and 28 weeks of pregnancy. The test may be done earlier if you ...

  10. Differentiation of Meloidogyne incognita and M. arenaria novel resistance phenotypes in Lycopersicon peruvianum and derived bridge-lines.

    PubMed

    Veremis, J C; Roberts, P A

    1996-10-01

    Lycopersicon peruvianum PI 270435 clone 2R2 and PI 126443 clone 1MH were crossed reciprocally with three L. esculentum-L. peruvianum bridge-lines. The incongruity barrier between the two plant species was overcome; F1 progeny were obtained from crosses between four parental combinations without embryo-rescue culture. Hybridity was confirmed by leaf and flower morphology and by the production of nematode-resistant F1 progeny on homozygous susceptible parents. Clones of the five F1 bridgeline hybrids were highly resistant to Mi-avirulent root-knot nematode (Meloidogyne incognita) at both 25°C and 30°C soil temperatures. However, only clones from PI 270435-3MH and PI 126443-1MH, and hybrids from PI 126443-1MH, were resistant to Mi-virulent M. incognita isolates at high soil temperature. Clones and hybrids from PI 270435-2R2 were not resistant to two Mi-virulent M. incognita isolates at high soil temperature. A source of heat-stable resistance was identified in bridge-line EPP-2, and was found to be derived from L. peruvianum LA 1708. Accessions of the L. peruvianum 'Maranon races', LA 1708 and LA 2172, and bridge-line EPP-2, segregated for heat-stable resistance to Mi-avirulent M. incognita, but were susceptible to Mi-virulent M. incognita isolates. Clone LA 1708-I conferred heat-stable resistance to M. arenaria isolate W, which is virulent to heat-stable resistance genes in L. peruvianum PI 270435-2R2, PI 270435-3MH, and PI 126443-1MH. Clone LA 1708-I has a distinct heat-stable factor for resistance to Mi-avirulent M. arenaria isolate W, for which the gene symbol Mi-4 is proposed. A Mi-virulent M. arenaria isolate Le Grau du Roi was virulent on all Lycopersicon spp. accessions tested, including those with novel resistance genes.

  11. ADP-glucose pyrophosphorylase is localized to both the cytoplasm and plastids in developing pericarp of tomato fruit

    NASA Technical Reports Server (NTRS)

    Chen, B. Y.; Wang, Y.; Janes, H. W.

    1998-01-01

    The intracellular location of ADP-glucose pyrophosphorylase (AGP) in developing pericarp of tomato (Lycopersicon esculentum Mill) has been investigated by immunolocalization. With the use of a highly specific anti-tomato fruit AGP antibody, the enzyme was localized in cytoplasm as well as plastids at both the light and electron microscope levels. The immunogold particles in plastids were localized in the stroma and at the surface of the starch granule, whereas those in the cytoplasm occurred in cluster-like patterns. Contrary to the fruit, the labeling in tomato leaf cells occurred exclusively in the chloroplasts. These data demonstrate that AGP is localized to both the cytoplasm and plastids in developing pericarp cells of tomato.

  12. ADP-glucose pyrophosphorylase is localized to both the cytoplasm and plastids in developing pericarp of tomato fruit

    NASA Technical Reports Server (NTRS)

    Chen, B. Y.; Wang, Y.; Janes, H. W.

    1998-01-01

    The intracellular location of ADP-glucose pyrophosphorylase (AGP) in developing pericarp of tomato (Lycopersicon esculentum Mill) has been investigated by immunolocalization. With the use of a highly specific anti-tomato fruit AGP antibody, the enzyme was localized in cytoplasm as well as plastids at both the light and electron microscope levels. The immunogold particles in plastids were localized in the stroma and at the surface of the starch granule, whereas those in the cytoplasm occurred in cluster-like patterns. Contrary to the fruit, the labeling in tomato leaf cells occurred exclusively in the chloroplasts. These data demonstrate that AGP is localized to both the cytoplasm and plastids in developing pericarp cells of tomato.

  13. Monitor blood glucose - slideshow

    MedlinePlus

    ... Series—Monitoring blood glucose: Using a self-test meter To use the sharing features on this page, ... 5 out of 5 Overview Set up the meter according to the specific directions that come with ...

  14. Hyperglycemia (High Blood Glucose)

    MedlinePlus

    ... Doctors, Nurses & More Oral Health & Hygiene Women A1C Insulin Pregnancy 8 Tips for Caregivers Health Insurance Health ... glucose happens when the body has too little insulin or when the body can't use insulin ...

  15. Glucose urine test

    MedlinePlus

    Urine sugar test; Urine glucose test; Glucosuria test; Glycosuria test ... After you provide a urine sample, it is tested right away. The health care provider uses a dipstick made with a color-sensitive pad. The ...

  16. Continuous Glucose Monitoring

    MedlinePlus

    ... to download data from the devices to a computer for tracking and analysis of patterns and trends, ... use CGM systems can download data to a computer to see patterns and trends in their glucose ...

  17. Glucose: Detection and analysis.

    PubMed

    Galant, A L; Kaufman, R C; Wilson, J D

    2015-12-01

    Glucose is an aldosic monosaccharide that is centrally entrenched in the processes of photosynthesis and respiration, serving as an energy reserve and metabolic fuel in most organisms. As both a monomer and as part of more complex structures such as polysaccharides and glucosides, glucose also plays a major role in modern food products, particularly where flavor and or structure are concerned. Over the years, many diverse methods for detecting and quantifying glucose have been developed; this review presents an overview of the most widely employed and historically significant, including copper iodometry, HPLC, GC, CZE, and enzyme based systems such as glucose meters. The relative strengths and limitations of each method are evaluated, and examples of their recent application in the realm of food chemistry are discussed.

  18. Vascular Glucose Sensor Symposium

    PubMed Central

    Joseph, Jeffrey I; Torjman, Marc C.; Strasma, Paul J.

    2015-01-01

    Hyperglycemia, hypoglycemia, and glycemic variability have been associated with increased morbidity, mortality, length of stay, and cost in a variety of critical care and non–critical care patient populations in the hospital. The results from prospective randomized clinical trials designed to determine the risks and benefits of intensive insulin therapy and tight glycemic control have been confusing; and at times conflicting. The limitations of point-of-care blood glucose (BG) monitoring in the hospital highlight the great clinical need for an automated real-time continuous glucose monitoring system (CGMS) that can accurately measure the concentration of glucose every few minutes. Automation and standardization of the glucose measurement process have the potential to significantly improve BG control, clinical outcome, safety and cost. PMID:26078254

  19. Recombinant glucose uptake system

    DOEpatents

    Ingrahm, Lonnie O.; Snoep, Jacob L.; Arfman, Nico

    1997-01-01

    Recombinant organisms are disclosed that contain a pathway for glucose uptake other than the pathway normally utilized by the host cell. In particular, the host cell is one in which glucose transport into the cell normally is coupled to PEP production. This host cell is transformed so that it uses an alternative pathway for glucose transport that is not coupled to PEP production. In a preferred embodiment, the host cell is a bacterium other than Z. mobilis that has been transformed to contain the glf and glk genes of Z. mobilis. By uncoupling glucose transport into the cell from PEP utilization, more PEP is produced for synthesis of products of commercial importance from a given quantity of biomass supplied to the host cells.

  20. Glucose metabolism and hyperglycemia.

    PubMed

    Giugliano, Dario; Ceriello, Antonio; Esposito, Katherine

    2008-01-01

    Islet dysfunction and peripheral insulin resistance are both present in type 2 diabetes and are both necessary for the development of hyperglycemia. In both type 1 and type 2 diabetes, large, prospective clinical studies have shown a strong relation between time-averaged mean values of glycemia, measured as glycated hemoglobin (HbA1c), and vascular diabetic complications. These studies are the basis for the American Diabetes Association's current recommended treatment goal that HbA1c should be <7%. The measurement of the HbA1c concentration is considered the gold standard for assessing long-term glycemia; however, it does not reveal any information on the extent or frequency of blood glucose excursions, but provides an overall mean value only. Postprandial hyperglycemia occurs frequently in patients with diabetes receiving active treatment and can occur even when metabolic control is apparently good. Interventional studies indicate that reducing postmeal glucose excursions is as important as controlling fasting plasma glucose in persons with diabetes and impaired glucose tolerance. Evidence exists for a causal relation between postmeal glucose increases and microvascular and macrovascular outcomes; therefore, it is not surprising that treatment with different compounds that have specific effects on postprandial glucose regulation is accompanied by a significant improvement of many pathways supposed to be involved in diabetic complications, including oxidative stress, endothelial dysfunction, inflammation, and nuclear factor-kappaB activation. The goal of therapy should be to achieve glycemic status as near to normal as safely possible in all 3 components of glycemic control: HbA1c, fasting glucose, and postmeal glucose peak.

  1. An acoustic glucose sensor.

    PubMed

    Hu, Ruifen; Stevenson, Adrian C; Lowe, Christopher R

    2012-05-15

    In vivo glucose monitoring is required for tighter glycaemic control. This report describes a new approach to construct a miniature implantable device based on a magnetic acoustic resonance sensor (MARS). A ≈ 600-800 nm thick glucose-responsive poly(acrylamide-co-3-acrylamidophenylboronic acid) (poly(acrylamide-co-3-APB)) film was polymerised on the quartz disc (12 mm in diameter and 0.25 mm thick) of the MARS. The swelling/shrinking of the polymer film induced by the glucose binding to the phenylboronate caused changes in the resonance amplitude of the quartz disc in the MARS. A linear relationship between the response of the MARS and the glucose concentration in the range ≈ 0-15 mM was observed, with the optimum response of the MARS sensor being obtained when the polymer films contained ≈ 20 mol% 3-APB. The MARS glucose sensor also functioned under flow conditions (9 μl/min) with a response almost identical to the sensor under static or non-flow conditions. The results suggest that the MARS could offer a promising strategy for developing a small subcutaneously implanted continuous glucose monitor.

  2. Genetic analysis of traits distinguishing outcrossing and self-pollinating forms of currant tomato, Lycopersicon pimpinellifolium (Jusl.) Mill.

    PubMed

    Georgiady, Michael S; Whitkus, Richard W; Lord, Elizabeth M

    2002-05-01

    The evolution of inbreeding is common throughout the angiosperms, although little is known about the developmental and genetic processes involved. Lycopersicon pimpinellifolium (currant tomato) is a self-compatible species with variation in outcrossing rate correlated with floral morphology. Mature flowers from inbreeding and outcrossing populations differ greatly in characters affecting mating behavior (petal, anther, and style lengths); other flower parts (sepals, ovaries) show minimal differences. Analysis of genetic behavior, including quantitative trait locus (QTL) mapping, was performed on representative selfing and outcrossing plants derived from two contrasting natural populations. Six morphological traits were analyzed: flowers per inflorescence; petal, anther, and style lengths; and lengths of the fertile and sterile portions of anthers. All traits were smaller in the selfing parent and had continuous patterns of segregation in the F(2). Phenotypic correlations among traits were all positive, but varied in strength. Quantitative trait locus mapping was done using 48 RFLP markers. Five QTL total were found involving four of the six traits: total anther length, anther sterile length, style length, and flowers per inflorescence. Each of these four traits had a QTL of major (>25%) effect on phenotypic variance.

  3. Negative effects of fluoranthene on the ecophysiology of tomato plants (Lycopersicon esculentum Mill) Fluoranthene mists negatively affected tomato plants.

    PubMed

    Oguntimehin, Ilemobayo; Eissa, Fawzy; Sakugawa, Hiroshi

    2010-02-01

    Cherry tomato plants (Lycopersicon esculentum Mill) were sprayed with fluoranthene and mixture of fluoranthene and mannitol solutions for 30d. The exposure was carried out in growth chambers in field conditions, and the air was filtered through charcoal filters to remove atmospheric contaminants. Plants were sprayed with 10microM fluoranthene as mist until they reached the fruiting stage, and the eco-physiological parameters were measured to determine the effects of the treatments. We measured CO(2) uptake and water vapour exchange, chlorophyll fluorescence, leaf pigment contents, visual symptoms and biomass allocation. Fluoranthene which was deposited as mist onto leaves negatively affected both growth and the quality of tomato plants, while other treatments did not. The photosynthetic rate measured at saturated irradiance was approximately 37% lower in fluoranthene-treated plants compared with the control group. Other variables, such as stomata conductance, the photochemical efficiency of PSII in the dark, Chl a, Chl b, and the total chlorophyll contents of the tomato leaves were significantly reduced in the fluoranthene-treated plants. Tomato plants treated with fluoranthene showed severe visible injury symptoms on the foliage during the exposure period. Mannitol (a reactive oxygen scavenger) mitigated effects of fluoranthene; thus, reactive oxygen species generated through fluoranthene may be responsible for the damaged tomato plants. It is possible for fluoranthene to decrease the aesthetic and hence the economic value of this valuable crop plant. 2009 Elsevier Ltd. All rights reserved.

  4. NaCl stress effects on enzymes involved in nitrogen assimilation pathway in tomato "Lycopersicon esculentum" seedlings.

    PubMed

    Debouba, Mohamed; Gouia, Houda; Suzuki, Akira; Ghorbel, Mohamed Habib

    2006-12-01

    Tomato plants (Lycopersicon esculentum Mill, cv. Chibli F1) grown for 10 days on control medium were exposed to differing concentrations of NaCl (0, 25, 50, and 100mM). Increasing salinity led to a decrease of dry weight (DW) production and protein contents in the leaves and roots. Conversely, the root to shoot (R/S) DW ratio was increased by salinity. Na(+) and Cl(-) accumulation were correlated with a decline of K(+) and NO(3)(-) in the leaves and roots. Under salinity, the activities of nitrate reductase (NR, EC 1.6.6.1) and glutamine synthetase (GS, EC 6.3.1.2) were repressed in the leaves, while they were enhanced in the roots. Nitrite reductase (NiR, EC 1.7.7.1) activity was decreased in both the leaves and roots. Deaminating activity of glutamate dehydrogenase (GDH, EC 1.4.1.2) was inhibited, whereas the aminating function was significantly stimulated by salinity in the leaves and roots. At a high salt concentration, the nicotinamide adenine dinucleotide reduced (NADH)-GDH activity was stimulated concomitantly with the increasing NH(4)(+) contents and proteolysis activity in the leaves and roots. With respect to salt stress, the distinct sensitivity of the enzymes involved in nitrogen assimilation is discussed.

  5. Growth and development of tomato plants Lycopersicon Esculentum Mill. under different saline conditions by fertirrigation with pretreated cheese whey wastewater.

    PubMed

    Prazeres, Ana R; Carvalho, Fátima; Rivas, Javier; Patanita, Manuel; Dôres, Jóse

    2013-01-01

    Pretreated cheese whey wastewater (CWW) has been used at different salinity levels: 1.75, 2.22, 3.22, 5.02 and 10.02 dS m(-1) and compared with fresh water (1.44 dS m(-1)). Two cultivars (cv.) of the tomato plant Lycopersicon Esculentum Mill. (Roma and Rio Grande) were exposed to saline conditions for 72 days. Salinity level (treatment) had no significant effects on the fresh weight and dry matter of the leaves, stems and roots. Similar results were found when specific leaf area, leaflet area, ramifications number of 1st order/plant, stem diameter and length, nodes number/stem and primary root length were considered. Conversely, the salinity level significantly influenced the Soil Plant Analysis Development (SPAD) index and the distance between nodes in the plant stem. In the first case, an increase of 21% was obtained in the salinity levels of 5.02 and 10.02 dS m(-1) for cv. Rio Grande, compared with the control run. The results showed that the pretreated CWW can be a source of nutrients for tomato plants, with reduced effects on growth and development.

  6. Genetic analysis of traits distinguishing outcrossing and self-pollinating forms of currant tomato, Lycopersicon pimpinellifolium (Jusl.) Mill.

    PubMed Central

    Georgiady, Michael S; Whitkus, Richard W; Lord, Elizabeth M

    2002-01-01

    The evolution of inbreeding is common throughout the angiosperms, although little is known about the developmental and genetic processes involved. Lycopersicon pimpinellifolium (currant tomato) is a self-compatible species with variation in outcrossing rate correlated with floral morphology. Mature flowers from inbreeding and outcrossing populations differ greatly in characters affecting mating behavior (petal, anther, and style lengths); other flower parts (sepals, ovaries) show minimal differences. Analysis of genetic behavior, including quantitative trait locus (QTL) mapping, was performed on representative selfing and outcrossing plants derived from two contrasting natural populations. Six morphological traits were analyzed: flowers per inflorescence; petal, anther, and style lengths; and lengths of the fertile and sterile portions of anthers. All traits were smaller in the selfing parent and had continuous patterns of segregation in the F(2). Phenotypic correlations among traits were all positive, but varied in strength. Quantitative trait locus mapping was done using 48 RFLP markers. Five QTL total were found involving four of the six traits: total anther length, anther sterile length, style length, and flowers per inflorescence. Each of these four traits had a QTL of major (>25%) effect on phenotypic variance. PMID:12019247

  7. Polyamine metabolism in ripening tomato fruit. I. Identification of metabolites of putrescine and spermidine. [Lycopersicon esculentum Mill

    SciTech Connect

    Rastogi, R.; Davies, P.J. )

    1990-11-01

    The metabolism of (1,4-{sup 14}C)putrescine and (terminal methylene-{sup 3}H)spermidine was studied in the fruit pericarp (breaker stage) discs of tomato (Lycopersicon esculentum Mill.) cv Rutgers, and the metabolites identified by high performance liquid chromatography and gas chromatography-mass spectrometry. The metabolism of both putrescine and spermidine was relatively slow; in 24 hours about 15% of each amine was metabolized. The {sup 14}C label from putrescine was incorporated into spermidine, {gamma}-aminobutyric acid (GABA), glutamic acid, and a polar fraction eluting with sugars and organic acids. In the presence of gabaculine, a specific inhibitor of GABA:pyruvate transminase, the label going into glutamic acid, sugars and organic acids decreased by 80% while that in GABA increased about twofold, indicating that the transamination reaction is probably a major fate of GABA produced from putrescine in vivo. ({sup 3}H)Spermidine was catabolized into putrescine and {beta}-alanine. The conversion of putrescine into GABA, and that of spermidine into putrescine, suggests the presence of polyamine oxidizing enzymes in tomato pericarp tissues. The possible pathways of putrescine and spermidine metabolism are discussed.

  8. Products Released from Enzymically Active Cell Wall Stimulate Ethylene Production and Ripening in Preclimacteric Tomato (Lycopersicon esculentum Mill.) Fruit 1

    PubMed Central

    Brecht, Jeffrey K.; Huber, Donald J.

    1988-01-01

    Enzymically active cell wall from ripe tomato (Lycopersicon esculentum Mill.) fruit pericarp release uronic acids through the action of wall-bound polygalacturonase. The potential involvement of products of wall hydrolysis in the induction of ethylene synthesis during tomato ripening was investigated by vacuum infiltrating preclimacteric (green) fruit with solutions containing pectin fragments enzymically released from cell wall from ripe fruit. Ripening initiation was accelerated in pectin-infiltrated fruit compared to control (buffer-infiltrated) fruit as measured by initiation of climacteric CO2 and ethylene production and appearance of red color. The response to infiltration was maximum at a concentration of 25 micrograms pectin per fruit; higher concentrations (up to 125 micrograms per fruit) had no additional effect. When products released from isolated cell wall from ripe pericarp were separated on Bio-Gel P-2 and specific size classes infiltrated into preclimacteric fruit, ripening-promotive activity was found only in the larger (degree of polymerization >8) fragments. Products released from pectin derived from preclimacteric pericarp upon treatment with polygalacturonase from ripe pericarp did not stimulate ripening when infiltrated into preclimacteric fruit. PMID:16666417

  9. Physiological and biochemical responses of fruit exocarp of tomato (Lycopersicon esculentum Mill.) mutants to natural photo-oxidative conditions.

    PubMed

    Torres, Carolina A; Andrews, Preston K; Davies, Neal M

    2006-01-01

    Photo-oxidative stress was imposed under natural solar radiation on exposed and shaded sections of detached fruit of immature green tomato (Lycopersicon esculentum Miller = Solanum lycopersicum L.) mutants (anthocyanin absent, beta-carotene, Delta, and high pigment-1) and their nearly isogenic parents ('Ailsa Craig' and 'Rutgers'). After 5 h exposure to high solar irradiance, either with or without ultraviolet (UV) radiation, surface colour changes, pigment composition, photosynthetic efficiency, antioxidant metabolites and enzyme activities, and selected flavonoids and antioxidant proteins in exocarp tissue were evaluated. The imposed photo-oxidative stress reproduced the symptoms observed on attached fruit. Both high temperature and solar irradiance caused fruit surface discoloration with faster degradation of chlorophyll (Chl) than carotenoids (Car), leading to an increase in the Car/Chl ratio. Surface bleaching was mostly caused by visible light, whereas elevated temperatures were mostly responsible for the inactivation of photosynthesis, measured as decreased F(v)/F(m). Ascorbate, glutathione, and total soluble protein concentrations decreased in the exocarp as the duration of exposure increased. Specific activities of superoxide dismutase, ascorbate peroxidase, dehydroascorbate reductase, monodehydroascorbate reductase (MDHAR), glutathione reductase (GR), and catalase increased with exposure, suggesting that these proteins were conserved during the imposed stress. GR protein expression remained stable during the imposed stress, whereas, MDHAR protein expression increased. Quercetin and kaempferol concentrations increased rapidly upon exposure, but not to UV radiation, suggesting rapid photo-protection in response to visible light; however, naringenin synthesis was not induced. The apparent increased tolerance of hp-1 fruit is discussed.

  10. Cell Wall Metabolism in Ripening Fruit (VII. Biologically Active Pectin Oligomers in Ripening Tomato (Lycopersicon esculentum Mill.) Fruits).

    PubMed Central

    Melotto, E.; Greve, L. C.; Labavitch, J. M.

    1994-01-01

    A water-soluble, ethanol-insoluble extract of autolytically inactive tomato (Lycopersicon esculentum Mill.) pericarp tissue contains a series of galacturonic acid-containing (pectic) oligosaccharides that will elicit a transient increase in ethylene biosynthesis when applied to pericarp discs cut from mature green fruit. The concentration of these oligosaccharides in extracts (2.2 [mu]g/g fresh weight) is in excess of that required to promote ethylene synthesis. Oligomers in extracts of ripening fruits were partially purified by preparative high-performance liquid chromatography, and their compositions are described. Pectins were extracted from cell walls prepared from mature green fruit using chelator and Na2CO3 solutions. These pectins are not active in eliciting ethylene synthesis. However, treatment of the Na2CO3-soluble, but not the chelator-soluble, pectin with pure tomato polygalacturonase 1 generates oligomers that are similar to those extracted from ripening fruit (according to high-performance liquid chromatography analysis) and are active as elicitors. The possibility that pectin-derived oligomers are endogenous regulators of ripening is discussed. PMID:12232350

  11. Quantitative genetic analysis indicates natural selection on leaf phenotypes across wild tomato species (Solanum sect. Lycopersicon; Solanaceae).

    PubMed

    Muir, Christopher D; Pease, James B; Moyle, Leonie C

    2014-12-01

    Adaptive evolution requires both raw genetic material and an accessible path of high fitness from one fitness peak to another. In this study, we used an introgression line (IL) population to map quantitative trait loci (QTL) for leaf traits thought to be associated with adaptation to precipitation in wild tomatoes (Solanum sect. Lycopersicon; Solanaceae). A QTL sign test showed that several traits likely evolved under directional natural selection. Leaf traits correlated across species do not share a common genetic basis, consistent with a scenario in which selection maintains trait covariation unconstrained by pleiotropy or linkage disequilibrium. Two large effect QTL for stomatal distribution colocalized with key genes in the stomatal development pathway, suggesting promising candidates for the molecular bases of adaptation in these species. Furthermore, macroevolutionary transitions between vastly different stomatal distributions may not be constrained when such large-effect mutations are available. Finally, genetic correlations between stomatal traits measured in this study and data on carbon isotope discrimination from the same ILs support a functional hypothesis that the distribution of stomata affects the resistance to CO2 diffusion inside the leaf, a trait implicated in climatic adaptation in wild tomatoes. Along with evidence from previous comparative and experimental studies, this analysis indicates that leaf traits are an important component of climatic niche adaptation in wild tomatoes and demonstrates that some trait transitions between species could have involved few, large-effect genetic changes, allowing rapid responses to new environmental conditions.

  12. Polyamines and Flower Development in the Male Sterile Stamenless-2 Mutant of Tomato (Lycopersicon esculentum Mill.) 1

    PubMed Central

    Rastogi, Rajeev; Sawhney, Vipen K.

    1990-01-01

    The floral organs of the male sterile stamenless-2 (sl-2/sl-2) mutant of tomato (Lycopersicon esculentum Mill.) contain significantly higher level of polyamines than those of the normal (R Rastogi, VK Sawhney [1990] Plant Physiol 93: 439-445). The effects of putrescine, spermidine and spermine, and three different inhibitors of polyamine biosynthesis on the in vitro development of floral buds of the normal and sl-2/sl-2 mutant were studied. The polyamines were inhibitory to the in vitro growth and development of both the normal and mutant floral buds and they induced abnormal stamen development in normal flowers. The inhibitors of polyamine biosynthesis also inhibited the growth and development of floral organs of the two genotypes, but the normal flowers showed greater sensitivity than the mutant. The inhibitors also promoted the formation of normal-looking pollen in stamens of some mutant flowers. The effect of the inhibitors on polyamine levels was not determined. The polyamine-induced abnormal stamen development in the normal, and the inhibitor-induced production of normal-looking pollen in mutant flowers support the suggestion that the elevated polyamine levels contribute to abnormal stamen development in the sl-2/sl-2 mutant of tomato. Images Figure 3 Figure 5 PMID:16667486

  13. A Lipoxygenase from Leaves of Tomato (Lycopersicon esculentum Mill.) Is Induced in Response to Plant Pathogenic Pseudomonads 1

    PubMed Central

    Koch, Eckhard; Meier, Brigitt M.; Eiben, Hans-Georg; Slusarenko, Alan

    1992-01-01

    Lipoxygenase (LOX) mRNA, enzyme protein, and enzyme activity were found to be induced in leaves of tomato (Lycopersicon esculentum Mill. cv Moneymaker) on inoculation with plant pathogenic bacteria. The rate of enzyme activity with linoleic or linolenic acid as substrate was approximately 10 times greater than that with arachidonic acid. Optimum activity was at pH 7.0. In the incompatible interaction, which was associated with a hypersensitive reaction (HR), a single band with relative molecular weight approximately 100,000 was revealed by probing western blots of enzyme extracts with antiserum raised against a pea lipoxygenase. Changes in the intensity of this band reflected the changes observed in LOX enzyme activity after bacterial inoculations. In the hypersensitive reaction, i.e. after inoculation with Pseudomonas syringae pv syringae, LOX mRNA was induced by 3 hours and enzyme activity began to increase between 6 and 12 hours and had reached maximum levels by 24 to 48 hours. In tomato leaves inoculated with P. syringae pv tomato (compatible interaction), LOX mRNA was induced later and enzyme activity changed only marginally in the first 24 hours, then increased steadily up to 72 hours, reaching the levels seen in the HR. ImagesFigure 4Figure 5 PMID:16668924

  14. Residue behavior and dietary intake risk assessment of three fungicides in tomatoes (Lycopersicon esculentum Mill.) under greenhouse conditions.

    PubMed

    Zhu, Xiaodan; Jia, Chunhong; Duan, Lifang; Zhang, Wei; Yu, Pingzhong; He, Min; Chen, Li; Zhao, Ercheng

    2016-11-01

    The residue behavior and dietary intake risk of three fungicides (pyrimethanil, iprodione, kresoxim-methyl) in tomatoes (Lycopersicon esculentum Mill.) grown in greenhouse were investigated. A simple, rapid analytical method for the quantification of fungicide residues in tomatoes was developed using gas chromatography coupled with mass spectrum detection (GC-MSD). The fortified recoveries were ranged from 87% to 103% with relative standard deviations (RSDs) varied from 4.7% to 12.1%. The results indicated that the dissipation rate of the studied fungicides in tomatoes followed first order kinetics with half lives in the range of 8.6-11.5 days. The final residues of all the fungicides in tomatoes were varied from 0.241 to 0.944 mg/kg. The results of dietary intake assessment indicated that the dietary intake of the three fungicides from tomatoes consumption for Chinese consumers were acceptable. This study would provide more understanding of residue behavior and dietary intake risk by these fungicides used under greenhouse conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Kinetic and mutagenic evidence for the role of histidine residues in the Lycopersicon esculentum 1-aminocyclopropane-1-carboxylic acid oxidase.

    PubMed

    Tayeh, M A; Howe, D L; Salleh, H M; Sheflyan, G Y; Son, J K; Woodard, R W

    1999-01-01

    The ACCO gene from Lycopersicon esculentum (tomato) has been cloned into the expression vector PT7-7. The highly expressed protein was recovered in the form of inclusion bodies. ACCO is inactivated by diethyl pyrocarbonate (DEPC) with a second-order rate constant of 170 M(-1) min(-1). The pH-inactivation rate data imply the involvement of an amino acid residue with a pK value of 6.05. The difference UV spectrum of the the DEPC-inactivated versus native ACCO showed a single peak at 242 nm indicating the modification of histidine residues. The inactivation was reversed by the addition of hydroxylamine to the DEPC-inactivated ACCO. Substrate/cofactor protection studies indicate that both iron and ACC bind near the active site, which contains histidine residues. Four histidines of ACCO were individually mutated to alanine and glycine. H39A is catalytically active, while H177A, H177G, H211A, H211G, H234A, and H234G are basically inactive. The results indicate that histidine residues 177, 211, and 234 may serve as ligands for the active-site iron of ACCO and/or may play some important structural or catalytic role.

  16. A 160-kD systemin receptor on the surface of lycopersicon peruvianum suspension-cultured cells

    PubMed Central

    Scheer, JM; Ryan, CA

    1999-01-01

    Systemin, an 18-amino acid polypeptide wound signal, activates defense genes in leaves of young tomato plants and induces rapid alkalinization of media containing suspension-cultured Lycopersicon peruvianum cells. A monoiodinated form of a systemin analog synthesized with Tyr-2 and Ala-15 (Tyr-2,Ala-15-systemin) likewise exhibits similar biological activities. (125)I-Tyr-2,Ala-15-systemin rapidly, reversibly, and saturably bound to suspension-cultured L. peruvianum cells with a K(d) of 0.17 nM and a Hill coefficient of 0. 92. The specificity of binding was assessed with alanine-substituted systemin analogs and was found to correlate with their respective biological activities. Treatment of suspension-cultured cells with methyl jasmonate increased the total binding of (125)I-Tyr-2, Ala-15-systemin more than threefold, suggesting that methyl jasmonate was activating transcription of the gene encoding the binding protein. Treatment of cells with cycloheximide markedly decreased binding of iodinated systemin to the cells, indicating that the binding protein was constantly being synthesized and degraded. A photoaffinity systemin analog, N-(4-[p-azidosalicylamido]butyl)-3'(2'-Cys-3, Ala-15-systemindithiol)propionamide, specifically labeled a 160-kD cell surface protein, and the labeling was completely inhibited by a 20-fold excess of unlabeled systemin. These data indicate that a 160-kD protein may be the physiological receptor for systemin in suspension-cultured cells. PMID:10449585

  17. Effects of mycorrhizal infection and soil phosphorus availability on in vitro and in vivo pollen performance in Lycopersicon esculentum (Solanaceae).

    PubMed

    Poulton, J L; Koide, R T; Stephenson, A G

    2001-10-01

    The effects of mycorrhizal infection and soil P availability on in vitro and in vivo pollen performance were studied in two cultivars of tomato (Lycopersicon esculentum). In the first study, plants were grown in a greenhouse under three treatment combinations: nonmycorrhizal, low P (NMPO); nonmycorrhizal, high P (NMP3); and mycorrhizal, low P (MPO). Mycorrhizal infection and high soil P conditions significantly increased in vitro pollen tube growth rates but not percentage of germination. In addition, pollen from NMP3 and MPO plants sired significantly more seeds than pollen from NMPO plants in pollen mixture studies. In the second study, plants were grown initially in a greenhouse under two treatment combinations: NMPO and MPO. After all plants began to flower, they were placed in experimental arrays in the field. Under open pollination, pollen from MPO plants sired significantly more seeds than pollen from NMPO plants. This result was primarily attributed to increased flower production (and thus pollen production) in MPO plants. Thus, mycorrhizal infection and high soil P conditions can increase pollen quality (in vitro and in vivo pollen performance) as well as pollen quantity, thereby enhancing fitness through the male function. Anthocyanin production (used to determine paternity) also affected pollen performance.

  18. Involvement of ethylene in stress-induced expression of the TLC1.1 retrotransposon from Lycopersicon chilense Dun.

    PubMed

    Tapia, Gerardo; Verdugo, Isabel; Yañez, Mónica; Ahumada, Iván; Theoduloz, Cristina; Cordero, Cecilia; Poblete, Fernando; González, Enrique; Ruiz-Lara, Simón

    2005-08-01

    The TLC1 family is one of the four families of long terminal repeat (LTR) retrotransposons identified in the genome of Lycopersicon chilense. Here, we show that this family of retroelements is transcriptionally active and its expression is induced in response to diverse stress conditions such as wounding, protoplast preparation, and high salt concentrations. Several stress-associated signaling molecules, including ethylene, methyl jasmonate, salicylic acid, and 2,4-dichlorophenoxyacetic acid, are capable of inducing TLC1 family expression in vivo. A representative of this family, named TLC1.1, was isolated from a genomic library from L. chilense. Transient expression assays in leaf protoplasts and stably transformed tobacco (Nicotiana tabacum) plants demonstrate that the U3 domain of the 5'-LTR region of this element can drive stress-induced transcriptional activation of the beta-glucuronidase reporter gene. Two 57-bp tandem repeated sequences are found in this region, including an 8-bp motif, ATTTCAAA, previously identified as an ethylene-responsive element box in the promoter region of ethylene-induced genes. Expression analysis of wild-type LTR and single and double ethylene-responsive element box mutants fused to the beta-glucuronidase gene shows that these elements are required for ethylene-responsive gene expression in protoplasts and transgenic plants. We suggest that ethylene-dependent signaling is the main signaling pathway involved in the regulation of the expression of the TLC1.1 element from L. chilense.

  19. Quantitative Genetic Analysis Indicates Natural Selection on Leaf Phenotypes Across Wild Tomato Species (Solanum sect. Lycopersicon; Solanaceae)

    PubMed Central

    Muir, Christopher D.; Pease, James B.; Moyle, Leonie C.

    2014-01-01

    Adaptive evolution requires both raw genetic material and an accessible path of high fitness from one fitness peak to another. In this study, we used an introgression line (IL) population to map quantitative trait loci (QTL) for leaf traits thought to be associated with adaptation to precipitation in wild tomatoes (Solanum sect. Lycopersicon; Solanaceae). A QTL sign test showed that several traits likely evolved under directional natural selection. Leaf traits correlated across species do not share a common genetic basis, consistent with a scenario in which selection maintains trait covariation unconstrained by pleiotropy or linkage disequilibrium. Two large effect QTL for stomatal distribution colocalized with key genes in the stomatal development pathway, suggesting promising candidates for the molecular bases of adaptation in these species. Furthermore, macroevolutionary transitions between vastly different stomatal distributions may not be constrained when such large-effect mutations are available. Finally, genetic correlations between stomatal traits measured in this study and data on carbon isotope discrimination from the same ILs support a functional hypothesis that the distribution of stomata affects the resistance to CO2 diffusion inside the leaf, a trait implicated in climatic adaptation in wild tomatoes. Along with evidence from previous comparative and experimental studies, this analysis indicates that leaf traits are an important component of climatic niche adaptation in wild tomatoes and demonstrates that some trait transitions between species could have involved few, large-effect genetic changes, allowing rapid responses to new environmental conditions. PMID:25298519

  20. The growth of tomato (Lycopersicon esculentum Mill.) hypocotyls in the light and in darkness differentially involves auxin.

    PubMed

    Kraepiel, Y; Agnes, C; Thiery, L; Maldiney, R; Miginiac, E; Delarue, M

    2001-11-01

    Light and auxin antagonistically regulate hypocotyl elongation. We have investigated the physiological interactions of light and auxin in the control of tomato (Lycopersicon esculentum Mill.) hypocotyl elongation by studying the auxin-insensitive mutant diageotropica (dgt). The length of the hypocotyls of the dgt mutant is significantly reduced when compared to the wild type line Ailsa Craig (AC) in the dark and under red light, but not under the other light conditions tested, indicating that auxin sensitivity is involved in the elongation of hypocotyls only in these conditions. Similarly, the auxin transport inhibitor naphthylphthalamic [correction of naphtylphtalamic] acid (NPA) differentially affects elongation of dark- or light-grown hypocotyls of the MoneyMaker (MM) tomato wild type. Using different photomorphogenic mutants, we demonstrate that at least phytochrome A, phytochrome B1 and, to a much lesser extent [correction of extend], cryptochrome 1, are necessary for a switch from an auxin transport-dependent elongation of hypocotyls in the dark to an auxin transport-independent elongation in the light. Interestingly, the dgt mutant and NPA-treated seedlings exhibit a looped phenotype only under red light, indicating that the negative gravitropism of hypocotyls also differentially involves auxin in the various light conditions.

  1. Evaluation of AFLPs for germplasm fingerprinting and assessment of genetic diversity in cultivars of tomato (Lycopersicon esculentum L.).

    PubMed

    Park, Young Hoon; West, Marilyn A L; St Clair, Dina A

    2004-06-01

    Cultivated tomato (L. esculentum L.) germplasm exhibits limited genetic variation compared with wild Lycopersicon species. Amplified fragment length polymorphism (AFLP) markers were used to evaluate genetic variation among 74 cultivars, primarily from California, and to fingerprint germplasm to determine if cultivar-specific patterns could be obtained. All 74 cultivars were genotyped using 26 AFLP primer combinations; of the 1092 bands scored, 102 AFLP bands (9.3%) were polymorphic. Pair-wise genetic similarity coefficients (Jaccard and Nei-Li) were calculated. Jaccard coefficients varied from 0.16 to 0.98 among cultivar pairs, and 72% of pair-wise comparisons exceeded 0.5. UPGMA (unweighted pair-group method with arithmetic averaging) clustering and principle component analysis revealed four main clusters, I-IV; most modern hybrid cultivars grouped in II, whereas most vintage cultivars grouped in I. Clusters III and IV contained three and two cultivars, respectively. Some groups of cultivars closely related by pedigree exhibited high bootstrap values, but lower values (<50%) were obtained for cluster II and its four subgroups. Unique fingerprints for all 74 cultivars were obtained by a minimum of seven AFLP primer pairs, despite inclusion of some closely related cultivars. This study demonstrated that AFLP markers are effective for obtaining unique fingerprints of, and assessing genetic diversity among, tomato cultivars.

  2. Identification of the pI 4.6 extensin peroxidase from Lycopersicon esculentum using proteomics and reverse-genomics

    PubMed Central

    Dong, Wen; Kieliszewski, Marcia; Held, Michael A.

    2014-01-01

    The regulation of plant cell growth and early defense response involves the insolubilization of hydroxyproline-rich glycoproteins (HRGPs), such as extensin, in the primary cell wall. In tomato (Lycopersicon esculentum), insolublization occurs by the formation of tyrosyl-crosslinks catalyzed specifically by the pI 4.6 extensin peroxidase (EP). To date, neither the gene encoding EP nor the protein itself has been identified. Here, we’ve identified tomato EP candidates using both proteomic and bioinformatic approaches. Bioinformatic screening of the tomato genome yielded eight EP candidates, which contained a putative signal sequence and a predicted pI near 4.6. Biochemical fractionation of tomato culture media followed by proteomic detection further refined our list of EP candidates to three, with the lead candidate designated (CG5). To test for EP crosslinking activity, we cloned into a bacterial expression vector the CG5 open-reading frame from tomato cDNA. The CG5 was expressed in E. coli, fractionated from inclusion bodies, and folded in vitro. The peroxidase activity of CG5 was assayed and quantified by ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)) assay. Subsequent extensin crosslinking assays showed that CG5 can covalently crosslink authentic tomato P1 extensin and P3-type extensin analogs in vitro supporting our hypothesis that CG5 encodes a tomato EP. PMID:25446231

  3. Induction of systemic resistance in Lycopersicon esculentum cv. PKM1 (tomato) against Cucumber mosaic virus by using ozone.

    PubMed

    Sudhakar, N; Nagendra-Prasad, D; Mohan, N; Murugesan, K

    2007-01-01

    Studies were undertaken to evaluate ozone (O(3)) for induction of resistance against Cucumber mosaic virus in Lycopersicon esculentum cv. PKM1 (tomato) plants. Callus induced from tomato leaf explants on Murashige & Skoog's (MS) medium supplemented with benzyladenine (8.82 microM) were treated with different concentrations of ozone T(1), T(2), T(3) and for control (C), filtered air was supplied. Regeneration of shoots was obtained by culturing ozone treated calli on MS medium containing 17.3 microM benzyladenine. The frequency of regeneration of tomato plants from the callus were T(1)=79%, T(2)=61%, T(3)=42%, but for control 90% regeneration was obtained. Regenerated plants were rooted in half strength MS medium supplemented with 10 microM indole-butyric acid and successfully acclimatized. The plants regenerated from ozone treated callus are referred to as T(1), T(2) and T(3) plants, which hold remarkably increased soluble phenolic content compared to the control plants. All the plants were challenged by mechanical inoculation with Cucumber mosaic virus, shows disease incidence ranged from T(1)=32%, T(2)=56%, T(3)=78% and C=94%. Remarkable increase in activities of salicylic acid (SA), phenylalanine ammonia-lyase (PAL) and peroxidase (POX) were detected after Cucumber mosaic virus inoculation, in foliar extracts of T(1) plants than T(2) and T(3), compared to the control plants.

  4. Velvetbean (Mucuna pruriens) extracts: impact on Meloidogyne incognita survival and on Lycopersicon esculentum and Lactuca sativa germination and growth.

    PubMed

    Zasada, Inga A; Klassen, Waldemar; Meyer, Susan L F; Codallo, Maharanie; Abdul-Baki, Aref A

    2006-11-01

    Velvetbean (Mucuna spp.) is a summer annual that has been used as a cover crop to reduce erosion, fix nitrogen and suppress weeds and plant-parasitic nematodes. Crude aqueous extracts (1:15 dry weight plant/volume water) were made from velvetbean plant parts, and various concentrations of the extracts were evaluated in vitro for toxicities to different stages of Meloidogyne incognita (Kofoid and White) Chitwood and for suppression of hypocotyl and root growth and inhibition of germination of tomato (Lycopersicon esculentum L.) and lettuce (Lactuca sativa L.). Germination was only affected by the full-strength extract from leaf blades. Lettuce root growth was the most sensitive indicator of allelopathic activity of the plant part extracts. Lettuce and tomato root growth was more sensitive to the extract from main roots than to extracts of other plant parts, with lethal concentration (LC50) values of 1.2 and 1.1% respectively. Meloidogyne incognita egg hatch was less sensitive to extracts from velvetbean than the juvenile (J2) stage. There was no difference among LC50 values of the extracts from different plant parts against the egg stage. Based on LC50 values, the extract from fine roots was the least toxic to J2 (LC50 39.9%), and the extract from vines the most toxic (LC50 7.8%). The effects of the extracts were nematicidal because LC50 values did not change when the extracts were removed and replaced with water. Copyright (c) 2006 Society of Chemical Industry.

  5. Products Released from Enzymically Active Cell Wall Stimulate Ethylene Production and Ripening in Preclimacteric Tomato (Lycopersicon esculentum Mill.) Fruit.

    PubMed

    Brecht, J K; Huber, D J

    1988-12-01

    Enzymically active cell wall from ripe tomato (Lycopersicon esculentum Mill.) fruit pericarp release uronic acids through the action of wall-bound polygalacturonase. The potential involvement of products of wall hydrolysis in the induction of ethylene synthesis during tomato ripening was investigated by vacuum infiltrating preclimacteric (green) fruit with solutions containing pectin fragments enzymically released from cell wall from ripe fruit. Ripening initiation was accelerated in pectin-infiltrated fruit compared to control (buffer-infiltrated) fruit as measured by initiation of climacteric CO(2) and ethylene production and appearance of red color. The response to infiltration was maximum at a concentration of 25 micrograms pectin per fruit; higher concentrations (up to 125 micrograms per fruit) had no additional effect. When products released from isolated cell wall from ripe pericarp were separated on Bio-Gel P-2 and specific size classes infiltrated into preclimacteric fruit, ripening-promotive activity was found only in the larger (degree of polymerization >8) fragments. Products released from pectin derived from preclimacteric pericarp upon treatment with polygalacturonase from ripe pericarp did not stimulate ripening when infiltrated into preclimacteric fruit.

  6. Characterization and quantification of phenolic compounds in four tomato (Lycopersicon esculentum L.) farmers' varieties in northeastern Portugal homegardens.

    PubMed

    Barros, Lillian; Dueñas, Montserrat; Pinela, José; Carvalho, Ana Maria; Buelga, Celestino Santos; Ferreira, Isabel C F R

    2012-09-01

    Tomato (Lycopersicon esculentum L.) is one of the most widely consumed fresh and processed vegetables in the world, and contains bioactive key components. Phenolic compounds are one of those components and, according to the present study, farmers' varieties of tomato cultivated in homegardens from the northeastern Portuguese region are a source of phenolic compounds, mainly phenolic acid derivatives. Using HPLC-DAD-ESI/MS, it was concluded that a cis p-coumaric acid derivative was the most abundant compound in yellow (Amarelo) and round (Batateiro) tomato varieties, while 4-O-caffeolyquinic acid was the most abundant in long (Comprido) and heart (Coração) varieties. The most abundant flavonoid was quercetin pentosylrutinoside in the four tomato varieties. Yellow tomato presented the highest levels of phenolic compounds (54.23 μg/g fw), including phenolic acids (43.30 μg/g fw) and flavonoids (10.93 μg/g fw). The phenolic compounds profile obtained for the studied varieties is different from other tomato varieties available in different countries, which is certainly related to genetic features, cultivation conditions, and handling and storage methods associated to each sample.

  7. Characterization of endophytic Bacillus strains from tomato plants (Lycopersicon esculentum) displaying antifungal activity against Botrytis cinerea Pers.

    PubMed

    Kefi, Asma; Ben Slimene, Imen; Karkouch, Ines; Rihouey, Christophe; Azaeiz, Sana; Bejaoui, Marwa; Belaid, Rania; Cosette, Pascal; Jouenne, Thierry; Limam, Ferid

    2015-12-01

    Eighty endophytic bacteria were isolated from healthy tissues of roots, stems, leaves and fruits of tomato plants (Lycopersicon esculentum). Four strains, named BL1, BT5, BR8 and BF11 were selected for their antagonism against Botrytis cinerea, a phytopathogenic fungus responsible of gray mold in several important crops, with growth inhibitory activity ranging from 27 to 53%. Morphological, biochemical, and molecular parameters as 16S rDNA sequencing demonstrated that the selected bacterial strains were related to Bacillus species which are known to produce and secrete a lot of lipopeptides with strong inhibitory effect against pathogen mycelial growth. Electrospray mass spectrometry analysis showed that these strains produced heterogeneous mixture of antibiotics belonging to fengycin and surfactin for BL1 and BT5, to iturin and surfactin for BR8, to bacillomycin D, fengycin and surfactin for BF11. Furthermore, these bacteria exhibited biocontrol potential by reducing the disease severity when tested on detached leaflets. Based on their antifungal activity against Botrytis cinerea, these strains could be used for biological control of plant diseases.

  8. Immunolocalization of dually phosphorylated MAPKs in dividing root meristem cells of Vicia faba, Pisum sativum, Lupinus luteus and Lycopersicon esculentum.

    PubMed

    Winnicki, Konrad; Żabka, Aneta; Bernasińska, Joanna; Matczak, Karolina; Maszewski, Janusz

    2015-06-01

    In plants, phosphorylated MAPKs display constitutive nuclear localization; however, not all studied plant species show co-localization of activated MAPKs to mitotic microtubules. The mitogen-activated protein kinase (MAPK) signaling pathway is involved not only in the cellular response to biotic and abiotic stress but also in the regulation of cell cycle and plant development. The role of MAPKs in the formation of a mitotic spindle has been widely studied and the MAPK signaling pathway was found to be indispensable for the unperturbed course of cell division. Here we show cellular localization of activated MAPKs (dually phosphorylated at their TXY motifs) in both interphase and mitotic root meristem cells of Lupinus luteus, Pisum sativum, Vicia faba (Fabaceae) and Lycopersicon esculentum (Solanaceae). Nuclear localization of activated MAPKs has been found in all species. Co-localization of these kinases to mitotic microtubules was most evident in L. esculentum, while only about 50% of mitotic cells in the root meristems of P. sativum and V. faba displayed activated MAPKs localized to microtubules during mitosis. Unexpectedly, no evident immunofluorescence signals at spindle microtubules and phragmoplast were noted in L. luteus. Considering immunocytochemical analyses and studies on the impact of FR180204 (an inhibitor of animal ERK1/2) on mitotic cells, we hypothesize that MAPKs may not play prominent role in the regulation of microtubule dynamics in all plant species.

  9. Crystallization and preliminary X-ray crystallographic analysis of the extracellular domain of LePRK2 from Lycopersicon esculentum

    PubMed Central

    Xu, Anbi; Huang, Laiqiang

    2014-01-01

    The tomato (Lycopersicon esculentum) pollen-specific receptor kinase 2 (LePRK2) is a member of the large receptor-like kinase (RLK) family and is expressed specifically in mature pollen and pollen tubes in L. esculentum. Like other RLKs, LePRK2 contains a characteristic N-terminal leucine-rich repeat (LRR) extracellular domain, the primary function of which is in protein–protein interactions. The LePRK2 LRR is likely to bind candidate ligands from the external environment, leading to a signal transduction cascade required for successful pollination. LePRK2-LRR was purified using an insect-cell secretion expression system and was crystallized using the vapour-diffusion method. The crystals diffracted to a resolution of 2.50 Å and belonged to space group I4122, with unit-cell parameters a = b = 93.94, c = 134.44 Å and one molecule per asymmetric unit. PMID:24637765

  10. 24-Epibrassinoslide enhances plant tolerance to stress from low temperatures and poor light intensities in tomato (Lycopersicon esculentum Mill.).

    PubMed

    Cui, Lirong; Zou, Zhirong; Zhang, Jing; Zhao, Yanyan; Yan, Fei

    2016-01-01

    Brassinosteroids (Brs) are a newly recognized group of active steroidal hormones that occur at low concentrations in all plant parts and one of the active and stable forms is 24-epibrassinolide (EBR). We investigated the effect of EBR on tomato (Lycopersicon esculentum Mill.) and its mechanism when seedlings were exposed to low temperature and poor light stress conditions. Leaves of stress-tolerant 'Zhongza9' and stress-sensitive 'Zhongshu4' cultivars were pre-treated with spray solutions containing either 0.1 μM EBR or no EBR (control). The plants were then transferred to chambers where they were exposed to low temperatures of 12 °C/6 °C (day/night) under a low light (LL) level of 80 μmol · m(-2) · s(-1). Exogenous application of EBR significantly increased the antioxidant activity of superoxide dismutase, catalase and peroxidase, and decreased the rate of O2 · (-) formation and H2O2 and malondialdehyde contents. Additionally, the ATP synthase β subunit content was increased by exogenous hormone application. Based on these results, we conclude that exogenous EBR can elicit synergism between the antioxidant enzyme systems and the ATP synthase β subunit so that scavenging of reactive oxygen species becomes more efficient. These activities enable plants to cope better under combined low temperature and poor light stresses.

  11. Pectin Methylesterase Isoforms in Tomato (Lycopersicon esculentum) Tissues (Effects of Expression of a Pectin Methylesterase Antisense Gene).

    PubMed Central

    Gaffe, J.; Tieman, D. M.; Handa, A. K.

    1994-01-01

    We have identified two major groups of pectin methylesterase (PME, EC 3.1.1.11) isoforms in various tissues of tomatoes (Lycopersicon esculentum). These two groups exhibited differential immuno-cross-reactivity with polyclonal antibodies raised against tomato fruit PME or flax callus PME and differences in their accumulation patterns in tissues of wild-type and transgenic tomato plants expressing a PME antisense gene. The group I isoforms with isoelectric points (pls) of 8.2, 8.4, and 8.5 are specific to fruit tissue, where they are the major forms of PME activity. The group II PME isoforms, with pl values of 9 and above, are observed in both vegetative and fruit tissues. The group I isoforms cross-react with polyclonal antibodies raised to a PME isoform purified from fruit, whereas the group II isoforms cross-react with antibodies to a PME purified from flax callus. Expression of a fruit-specific PME anti-sense gene impairs accumulation of the group I PME isoforms, with no apparent effect on the accumulation of the group II PME isoforms. The absence of any noticeable effects on growth and development of transgenic plants suggests that the group I PME isoforms are not involved in plant growth and development and may play a role under special circumstances such as cell separation during fruit ripening. PMID:12232199

  12. Olive mill wastewater triggered changes in physiology and nutritional quality of tomato (Lycopersicon esculentum mill) depending on growth substrate.

    PubMed

    Ouzounidou, G; Asfi, M; Sotirakis, N; Papadopoulou, P; Gaitis, F

    2008-10-30

    We have studied the changes in the physiology and nutritional quality of Lycopersicon esculentum exposed to olive mill wastewater (OMW) with regard to cultivation in sand and soil. Tomato plant performance decreased with increasing concentration of OMW to both substrates. Root was more sensitive to OMW than the upper parts of the plants, grown either in sand or in soil for 10 days and 3 months, respectively, probably due to the direct OMW toxicity on roots as compared to other parts. Significant restriction on uptake and translocation of nutrients (K, Na, Fe, Ca and Mg) under OMW application was found. The decrease in the photochemical efficiency of PSII photochemistry in the light adapted state and the big decrease in photochemical quenching, indicate that OMW resulted in diminished reoxidation of Q(A)(-) and started to inactivate the reaction centers of PSII. The OMW supply on soil and sand, resulted in leaf water stress and lesser water use efficiency. Plants treated with high OMW concentration, produced fewer but bigger tomatoes as compared to plants treated with lower OMW concentration. Generally, fruit yield and nutritional value was inhibited under OMW application.

  13. Identification of the pI 4.6 extensin peroxidase from Lycopersicon esculentum using proteomics and reverse-genomics.

    PubMed

    Dong, Wen; Kieliszewski, Marcia; Held, Michael A

    2015-04-01

    The regulation of plant cell growth and early defense response involves the insolubilization of hydroxyproline-rich glycoproteins (HRGPs), such as extensin, in the primary cell wall. In tomato (Lycopersicon esculentum), insolubilization occurs by the formation of tyrosyl-crosslinks catalyzed specifically by the pI 4.6 extensin peroxidase (EP). To date, neither the gene encoding EP nor the protein itself has been identified. Here, we have identified tomato EP candidates using both proteomic and bioinformatic approaches. Bioinformatic screening of the tomato genome yielded eight EP candidates, which contained a putative signal sequence and a predicted pI near 4.6. Biochemical fractionation of tomato culture media followed by proteomic detection further refined our list of EP candidates to three, with the lead candidate designated (CG5). To test for EP crosslinking activity, we cloned into a bacterial expression vector the CG5 open-reading frame from tomato cDNA. The CG5 was expressed in Escherichia coli, fractionated from inclusion bodies, and folded in vitro. The peroxidase activity of CG5 was assayed and quantified by ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)) assay. Subsequent extensin crosslinking assays showed that CG5 can covalently crosslink authentic tomato P1 extensin and P3-type extensin analogs in vitro supporting our hypothesis that CG5 encodes a tomato EP. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. A glucose sensor protein for continuous glucose monitoring.

    PubMed

    Veetil, Jithesh V; Jin, Sha; Ye, Kaiming

    2010-12-15

    In vivo continuous glucose monitoring has posed a significant challenge to glucose sensor development due to the lack of reliable techniques that are non- or at least minimally-invasive. In this proof-of-concept study, we demonstrated the development of a new glucose sensor protein, AcGFP1-GBPcys-mCherry, and an optical sensor assembly, capable of generating quantifiable FRET (fluorescence resonance energy transfer) signals for glucose monitoring. Our experimental data showed that the engineered glucose sensor protein can generate measurable FRET signals in response to glucose concentrations varying from 25 to 800 μM. The sensor developed based on this protein had a shelf-life of up to 3 weeks. The sensor response was devoid of interference from compounds like galactose, fructose, lactose, mannose, and mannitol when tested at physiologically significant concentrations of these compounds. This new glucose sensor protein can potentially be used to develop implantable glucose sensors for continuous glucose monitoring.

  15. Sodium-glucose cotransport

    PubMed Central

    Poulsen, Søren Brandt; Fenton, Robert A.; Rieg, Timo

    2017-01-01

    Purpose of review Sodium-glucose cotransporters (SGLTs) are important mediators of glucose uptake across apical cell membranes. SGLT1 mediates almost all sodium-dependent glucose uptake in the small intestine, while in the kidney SGLT2, and to a lesser extent SGLT1, account for more than 90% and nearly 3%, respectively, of glucose reabsorption from the glomerular ultrafiltrate. Although the recent availability of SGLT2 inhibitors for the treatment of diabetes mellitus has increased the number of clinical studies, this review has a focus on mechanisms contributing to the cellular regulation of SGLTs. Recent findings Studies have focused on the regulation of SGLT expression under different physiological/pathophysiological conditions, for example diet, age or diabetes mellitus. Several studies provide evidence of SGLT regulation via cyclic adenosine monophosphate/protein kinase A, protein kinase C, glucagon-like peptide 2, insulin, leptin, signal transducer and activator of transcription-3 (STAT3), phosphoinositide-3 kinase (PI3K)/Akt, mitogen-activated protein kinases (MAPKs), nuclear factor-kappaB (NF-kappaB), with-no-K[Lys] kinases/STE20/SPS1-related proline/alanine-rich kinase (Wnk/SPAK) and regulatory solute carrier protein 1 (RS1) pathways. Summary SGLT inhibitors are important drugs for glycemic control in diabetes mellitus. Although the contribution of SGLT1 for absorption of glucose from the intestine as well as SGLT2/SGLT1 for renal glucose reabsorption has been comprehensively defined, this review provides an up-to-date outline for the mechanistic regulation of SGLT1/SGLT2. PMID:26125647

  16. Continuous Glucose Monitoring

    PubMed Central

    Fritschi, Cynthia; Quinn, Laurie; Penckofer, Sue; Surdyk, Patricia M.

    2010-01-01

    Purpose The purpose of this descriptive study was to document the experience of wearing a continuous glucose monitoring (CGM) device in women with type 2 diabetes (T2DM). The availability of CGM has provided patients and clinicians with the opportunity to describe the immediate effects of diet, exercise, and medications on blood glucose levels; however, there are few data examining patients’ experiences and acceptability of using CGM. Methods Thirty-five women with T2DM wore a CGM for 3 days. Semistructured interviews were conducted to capture the self-described experience of wearing a CGM. Three open-ended questions were used to guide the participants’ self-reflection. Interviews were transcribed and analyzed. Results The women verbalized both positive and negative aspects of needing to check their blood glucose more frequently and wearing the monitor. After viewing the results, most women were surprised by the magnitude and frequency of blood glucose excursions. They immediately examined their behaviors during the time they wore the CGM. Independent problem-solving skills became apparent as they attempted to identify reasons for hyperglycemia by retracing food intake, physical activity, and stress experiences during the period of CGM. Most important, the majority of women stated they were interested in changing their diabetes-related self-care behaviors, especially eating and exercise behaviors, after reviewing their CGM results. Conclusions CGM is generally acceptable to women with T2DM and offers patients and their health care practitioners a possible alternative to routine glucose monitoring for assessing the effects of real-life events on blood glucose levels. PMID:20016057

  17. Redundancy in Glucose Sensing

    PubMed Central

    Sharifi, Amin; Varsavsky, Andrea; Ulloa, Johanna; Horsburgh, Jodie C.; McAuley, Sybil A.; Krishnamurthy, Balasubramanian; Jenkins, Alicia J.; Colman, Peter G.; Ward, Glenn M.; MacIsaac, Richard J.; Shah, Rajiv; O’Neal, David N.

    2015-01-01

    Background: Current electrochemical glucose sensors use a single electrode. Multiple electrodes (redundancy) may enhance sensor performance. We evaluated an electrochemical redundant sensor (ERS) incorporating two working electrodes (WE1 and WE2) onto a single subcutaneous insertion platform with a processing algorithm providing a single real-time continuous glucose measure. Methods: Twenty-three adults with type 1 diabetes each wore two ERSs concurrently for 168 hours. Post-insertion a frequent sampling test (FST) was performed with ERS benchmarked against a glucose meter (Bayer Contour Link). Day 4 and 7 FSTs were performed with a standard meal and venous blood collected for reference glucose measurements (YSI and meter). Between visits, ERS was worn with capillary blood glucose testing ≥8 times/day. Sensor glucose data were processed prospectively. Results: Mean absolute relative deviation (MARD) for ERS day 1-7 (3,297 paired points with glucose meter) was (mean [SD]) 10.1 [11.5]% versus 11.4 [11.9]% for WE1 and 12.0 [11.9]% for WE2; P < .0001. ERS Clarke A and A+B were 90.2% and 99.8%, respectively. ERS day 4 plus day 7 MARD (1,237 pairs with YSI) was 9.4 [9.5]% versus 9.6 [9.7]% for WE1 and 9.9 [9.7]% for WE2; P = ns. ERS day 1-7 precision absolute relative deviation (PARD) was 9.9 [3.6]% versus 11.5 [6.2]% for WE1 and 10.1 [4.4]% for WE2; P = ns. ERS sensor display time was 97.8 [6.0]% versus 91.0 [22.3]% for WE1 and 94.1 [14.3]% for WE2; P < .05. Conclusions: Electrochemical redundancy enhances glucose sensor accuracy and display time compared with each individual sensing element alone. ERS performance compares favorably with ‘best-in-class’ of non-redundant sensors. PMID:26499476

  18. Differential binding of the lectins Griffonia simplicifolia I and Lycopersicon esculentum to microvascular endothelium: organ-specific localization and partial glycoprotein characterization.

    PubMed

    Porter, G A; Palade, G E; Milici, A J

    1990-02-01

    The lectins Griffonia simplicifolia I and Lycopersicon esculentum were used to assess the presence of endothelium-specific glycoproteins in the microvasculature of the rat myocardium, diaphragm and superficial cerebral cortex. Organs fixed by intravascular perfusion were processed to obtain semithin (0.5 micron) and thin (less than 0.1 micron) frozen sections that were reacted with biotinylated lectin followed by streptavidin conjugated to Texas Red, for semithin sections, or by streptavidin conjugated to 5-nm colloidal gold particles, for thin sections. Lycopersicon esculentum lectin exclusively labeled the endothelium of all small vessels in all three microvascular beds; it did not bind to components of either the parenchyma or the extracellular matrix. Griffonia simplicifolia I lectin exclusively labeled the endothelium of the entire microvasculature in the myocardium and diaphragm, but marked primarily pericytes in the cerebral microvasculature. It did not label any parenchymal or interstitial organ component. At the electron microscope level, the lectin Griffonia simplicifolia I labeling was associated with the plasmalemma proper and especially with plasmalemmal vesicles and their introits, and Lycopersicon esculentum lectin bound primarily to the luminal plasmalemma in the microvascular beds of the myocardium and diaphragm. In the cerebral cortex, labeling of the microvasculature was clearly different: Griffonia simplicifolia I bound primarily to pericytes and vascular smooth muscle cells whereas Lycopersicon esculentum labeled only the microvascular endothelium. Lysates prepared from the myocardium, diaphragm and cerebral cortex were processed through Griffonia simplicifolia I lectin affinity separation followed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis of the fraction obtained. A number of putative endothelium-specific glycoproteins was detected and found to differ qualitatively and quantitatively from organ to organ

  19. Aftereffect conditions of prolonged space flight on physiological and biochemical processes and plant resistance Lycopersicon esculentum Mill. to pathogens

    NASA Astrophysics Data System (ADS)

    Mishchenko, Lidiya

    2016-07-01

    Tomatoes (Lycopersicon esculentum Mill.) - one of the most popular vegetables in Ukraine, they are a valuable product of therapeutic and dietetic foods because they contain a significant amount of nutrients and essential to the human body minerals and vitamins, but by the content of carotenoids - lycopene and β-carotene - is a powerful antioxidant. Therefore, tomato plants can be used successfully to astronauts on long space flights. We aftereffect was studied factors of space flight on the variety of tomato seeds Mir-1, which lasted (6 years) were on an orbital space station "Mir". Then, also after long-term storage in 2011, seeds were sown in the laboratory and received seedlings grown in field conditions Kiev region. The resulting seeds of the tomato crop in 2011 ("Space" and still) we used in our subsequent field studies in Kyiv and Poltava regions. We have previously shown that the "space" seeds had shown in 2011-2012 increased resistance to viruses PVY and PVM natural infectious background. Therefore, it is necessary continue the investigation and started to observe in future years, including 2015 and to analyze the results obtained. Because plants grown constantly in the field natural infectious background, there was a high probability of their defeat pathogens of different nature, including viruses. The works of many authors proved reduce the concentration of carotene and lycopene in tomatoes with the defeat of viruses (Raithak, 2012). In addition, the control plants were observed symptoms of such that is a viral infection, namely in 2011 - leaves curl in 2012 - except leaves curl and even mosaics. The research results were confirmed in 2013, namely on the plants of "space" seed no symptoms of, and in control - detection of potato virus Y (method RT-PCR) and symptoms of leaf curl and mosaic. During the bearing samples were taken leaves of the options and experiment conducted determination of photosynthetic pigments. It should be emphasized that in plant

  20. Responsiveness of Lycopersicon pimpinellifolium to acute UV-C exposure: histo-cytochemistry of the injury and DNA damage.

    PubMed

    Iriti, M; Guarnieri, S; Faoro, F

    2007-01-01

    The in vivo and in vitro effects of UV-C (254 nm) exposure (0.039 watt . m(-2) . s for 2 h) of currant tomato (Lycopersicon pimpinellifolium), indigenous to Peru and Ecuador, were assayed. H(2)O(2) deposits, dead cells and DNA damage were localized, 12/24 h after irradiation, mainly in periveinal parenchyma of the 1st and 2nd order veins of the leaves, and before the appearance of visible symptoms, which occurred 48 h after irradiation. Cell death index was of 43.5 +/- 12% in exposed leaf tissues, 24 h after treatment. In currant tomato protoplasts, the percentage of viable cells dropped 1 h after UV-C irradiation from 97.42 +/- 2.1% to 43.38 +/- 4.2%. Afterwards, the protoplast viability progressively decreased to 40.16 +/- 7.25% at 2 h, to 38.31 +/- 6.9% at 4 h, and to 36.46 +/- 1.84% at 6 h after the exposure. The genotoxic impact of UV-C radiation on protoplasts was assessed with single cell gel electrophoresis (SCGE, or comet assay). UV-C treatment greatly enhanced DNA migration, with 75.37 +/- 3.7% of DNA in the tail versus 7.88 +/- 5.5% in the case of untreated nuclei. Oxidative stress by H(2)O(2) used as a positive control, induced a similar damage on non-irradiated protoplasts, with 71.59 +/- 5.5% of DNA in the tail, whereas oxidative stress imposed on UV-C irradiated protoplasts slightly increased the DNA damage (85.13 +/- 4.1%). According to these results, SCGE of protoplasts could be an alternative to nuclei extraction directly from leaf tissues.

  1. Efficiency of local Indonesia honey bees (Apis cerana L.) and stingless bee (Trigona iridipennis) on tomato (Lycopersicon esculentum Mill.) pollination.

    PubMed

    Putra, Ramadhani Eka; Kinasih, Ida

    2014-01-01

    Tomato (Lycopersicon esculentum Mill.) is considered as one of major agricultural commodity of Indonesia farming. However, monthly production is unstable due to lack of pollination services. Common pollinator agent of tomatoes is bumblebees which is unsuitable for tropical climate of Indonesia and the possibility of alteration of local wild plant interaction with their pollinator. Indonesia is rich with wild bees and some of the species already domesticated for years with prospect as pollinating agent for tomatoes. This research aimed to assess the efficiency of local honey bee (Apis cerana L.) and stingless bee (Trigona iridipennis), as pollinator of tomato. During this research, total visitation rate and total numbers of pollinated flowers by honey bee and stingless bee were compared between them with bagged flowers as control. Total fruit production, average weight and size also measured in order to correlated pollination efficiency with quantity and quality of fruit produced. Result of this research showed that A. cerana has slightly higher rate of visitation (p>0.05) and significantly shorter handling time (p < 0.05) than T. iridipennis due to their larger colony demand and low reward provide by tomato flowers. However, honey bee pollinated tomato flowers more efficient pollinator than stingless bee (80.3 and 70.2% efficiency, respectively; p < 0.05) even though the average weight and size of tomatoes were similar (p>0.05). Based on the results, it is concluded that the use of Apis cerana and Trigona spp., for pollinating tomatoes in tropical climates could be an alternative to the use of non-native Apis mellifera and bumblebees (Bombus spp.). However, more researches are needed to evaluate the cost/benefit on large-scale farming and greenhouse pollination using both bees against other bee species and pollination methods.

  2. Effect of 1-methylcyclopropene post-harvest treatment on ripening process in cherry tomato fruit (Lycopersicon esculentum var. cerasiforme).

    PubMed

    Opiyo, Arnold M; Ying, Tie-Jin

    2005-02-01

    The responses of cherry tomato (Lycopersicon esculentum var. cerasiforme) fruits to post-harvest treatment with 1-MCP were investigated. The maturity stage at which 1-MCP application is most effective in delaying the ripening process was determined, and then the effects of different concentrations (0, 0.035, 0.07 and 0.11 microL/L) of 1-MCP on ethylene production, fruit softening, chlorophyll, lycopene and carotenoids contents of mature green (MG) cherry tomato fruits were assessed. 1-MCP at 0.07 and 0.11 microL/L reduced fruit C(2)H(4) production, delayed the C(2)H(4) peak at ambient temperature. Although 1-MCP at 0.035 microL/L was effective in retarding fruit ripening, it did not suppress endogenous ethylene production. Fruit softening was suppressed by 1-MCP, but its initiation was not affected by 1-MCP. The rate of chlorophyll degradation and its pattern of change with time, and the initiation of lycopene biosynthesis as well as its accumulation were all affected by 1-MCP, but only the accumulation of carotenoids was suppressed. Accumulation of lycopene and carotenoids was almost permanently hampered by 1-MCP at 0.07 microL/L or higher concentrations, and fruit color could not reach the control level even 2 weeks after 1-MCP treatment, indicating the close association of the metabolism of these pigments with ethylene perception. Since the concentration of 0.11 microL/L of 1-MCP was so high that it did not elicit additional response very much than 0.07 microL/L, these concentrations were considered to be practically effective concentrations for cherry tomato at MG stage. The effective 1-MCP concentrations might provide a useful reference to the levels of ethylene receptors as well as ethylene sensitivity in a specific fruit at given development stage.

  3. Structural and kinetic properties of a novel purple acid phosphatase from phosphate-starved tomato (Lycopersicon esculentum) cell cultures.

    PubMed Central

    Bozzo, Gale G; Raghothama, Kashchandra G; Plaxton, William C

    2004-01-01

    An intracellular acid phosphatase (IAP) from P(i)-starved (-P(i)) tomato ( Lycopersicon esculentum ) suspension cells has been purified to homogeneity. IAP is a purple acid phosphatase (PAP), as the purified protein was violet in colour (lambda(max)=546 nm) and was insensitive to L-tartrate. PAGE, periodic acid-Schiff staining and peptide mapping demonstrated that the enzyme exists as a 142 kDa heterodimer composed of an equivalent ratio of glycosylated and structurally dissimilar 63 (alpha-subunit) and 57 kDa (beta-subunit) polypeptides. However, the nine N-terminal amino acids of the alpha- and beta-subunits were identical, exhibiting similarity to the deduced N-terminal portions of several putative plant PAPs. Quantification of immunoblots probed with rabbit anti-(tomato acid phosphatase) immune serum revealed that the 4-fold increase in IAP activity due to P(i)-deprivation was correlated with similar increases in the amount of antigenic IAP alpha- and beta-subunits. IAP displayed optimal activity at pH 5.1, was activated 150% by 10 mM Mg(2+), but was potently inhibited by Zn(2+), Cu(2+), Fe(3+), molybdate, vanadate, fluoride and P(i). Although IAP demonstrated broad substrate selectivity, its specificity constant ( V (max)/ K (m)) with phosphoenolpyruvate was >250% greater than that obtained with any other substrate. IAP exhibited significant peroxidase activity, which was optimal at pH 9.0 and insensitive to Mg(2+) or molybdate. This IAP is proposed to scavenge P(i) from intracellular phosphate esters in -P(i) tomato. A possible secondary IAP role in the metabolism of reactive oxygen species is discussed. IAP properties are compared with those of two extracellular PAP isoenzymes that are secreted into the medium of -P(i) tomato cells [Bozzo, Raghothama and Plaxton (2002) Eur. J. Biochem. 269, 6278-6286]. PMID:14521509

  4. Structural and kinetic properties of a novel purple acid phosphatase from phosphate-starved tomato (Lycopersicon esculentum) cell cultures.

    PubMed

    Bozzo, Gale G; Raghothama, Kashchandra G; Plaxton, William C

    2004-01-15

    An intracellular acid phosphatase (IAP) from P(i)-starved (-P(i)) tomato ( Lycopersicon esculentum ) suspension cells has been purified to homogeneity. IAP is a purple acid phosphatase (PAP), as the purified protein was violet in colour (lambda(max)=546 nm) and was insensitive to L-tartrate. PAGE, periodic acid-Schiff staining and peptide mapping demonstrated that the enzyme exists as a 142 kDa heterodimer composed of an equivalent ratio of glycosylated and structurally dissimilar 63 (alpha-subunit) and 57 kDa (beta-subunit) polypeptides. However, the nine N-terminal amino acids of the alpha- and beta-subunits were identical, exhibiting similarity to the deduced N-terminal portions of several putative plant PAPs. Quantification of immunoblots probed with rabbit anti-(tomato acid phosphatase) immune serum revealed that the 4-fold increase in IAP activity due to P(i)-deprivation was correlated with similar increases in the amount of antigenic IAP alpha- and beta-subunits. IAP displayed optimal activity at pH 5.1, was activated 150% by 10 mM Mg(2+), but was potently inhibited by Zn(2+), Cu(2+), Fe(3+), molybdate, vanadate, fluoride and P(i). Although IAP demonstrated broad substrate selectivity, its specificity constant ( V (max)/ K (m)) with phosphoenolpyruvate was >250% greater than that obtained with any other substrate. IAP exhibited significant peroxidase activity, which was optimal at pH 9.0 and insensitive to Mg(2+) or molybdate. This IAP is proposed to scavenge P(i) from intracellular phosphate esters in -P(i) tomato. A possible secondary IAP role in the metabolism of reactive oxygen species is discussed. IAP properties are compared with those of two extracellular PAP isoenzymes that are secreted into the medium of -P(i) tomato cells [Bozzo, Raghothama and Plaxton (2002) Eur. J. Biochem. 269, 6278-6286].

  5. Effects of the Lycopersicon chmielewskii sucrose accumulator gene (sucr) on fruit yield and quality parameters following introgression into tomato.

    PubMed

    Chetelat, R T; Deverna, J W; Bennett, A B

    1995-07-01

    A gene controlling fruit sucrose accumulation, sucr, was introgressed from the wild tomato species Lycopersicon chmielewskii into the genetic background of a hexose-accumulating cultivated tomato, L. esculentum. During introgression, the size of the L. chmielewskii chromosomal segment containing sucr was reduced by selection for recombination between RFLP markers for the sucr gene and flanking loci. The effects of sucr on soluble solids content, fruit size, yield and other fruit parameters were studied in the genetic background of the processing tomato cultivar 'Huntl00'. In a segregating BC5F2 generation, the smallest introgression containing sucr-associated markers was necessary and sufficient to confer high-level sucrose accumulation, the effects of which were completely recessive. Fruit of sucr/sucr genotypes were smaller than those of +/sucr or +/+ genotypes at all stages of development. The timing of sugar accumulation and total sugar concentration were unaffected by sugar composition. No differences in total fruit biomass (fresh weight of red and green fruit) at harvest were observed between the genotypes, and sucrose accumulators produced greater numbers of fruit than hexose accumulators in one family. However, the proportion of ripe fruit at harvest, and hence yield of ripe fruit, as well as average ripe fruit weight and seed set were reduced in sucr/sucr genotypes. Sucrose accumulation was also associated with increased soluble solids content, consistency, serum viscosity, predicted paste yield and acidity, and decreased color rating. In the first backcross to L. chmielewskii, hexose accumulators (+/sucr) had larger fruit than sucrose accumulators (sucr/sucr), while no difference in soluble solids was detected.

  6. Microvascular circulation at cool, normal and warm temperatures in rat leg muscles examined by histochemistry using Lycopersicon esculentum lectin.

    PubMed

    Maeda, Hisashi; Kurose, Tomoyuki; Nosaka, Shinnosuke; Kawamata, Seiichi

    2014-07-01

    Local cooling and/or warming of the body are widely used for therapy. For safer and more effective therapy, microvascular hemodynamics needs to be clarified. To examine blood circulation in rat leg muscles at 20, 30, 37 and 40°C, fluorescein isothiocyanate (FITC)-labeled Lycopersicon esculentum lectin was injected into the cardiac ventricle. Endothelial cells of open and functioning blood vessels were labeled by this lectin for 3 min and detected by immunostaining for lectin. The percentage of open and functioning capillaries of leg muscles by the avidin-biotin method was 89.8±3.3% at 37°C, while capillaries were unclear or unstained at 20 and 30°C, probably due to a decrease of blood flow. The results using the tyramide-dinitrophenol method were 58.6±15.0% at 20°C, 68.5±12.3% at 30°C, 83.8±5.7% at 37°C and 83.3±7.8% at 40°C. The value at 20°C was significantly different from those at 37 and 40°C. The results by the tyramide-biotin method were 85.5±5.3% at 20°C, 87.3±9.7% at 30°C, 94.7±3.6% at 37°C and 92.5±2.1% at 40°C. Based on these results, it was concluded that the blood flow of each capillary considerably decreased at 20 and 30°C and probably increased at 40°C, whereas the proportion of open and functioning capillaries was essentially unchanged. Copyright © 2014. Published by Elsevier GmbH.

  7. Glucose Tolerance and Hyperkinesis.

    ERIC Educational Resources Information Center

    Langseth, Lillian; Dowd, Judith

    Examined were medical records of 265 hyperkinetic children (7-9 years old). Clinical blood chemistries, hematology, and 5-hour glucose tolerance test (GTT) results indicated that hematocrit levels were low in 27% of the Ss, eosinophil levels were abnormally high in 86% of the Ss, and GTT results were abnormal in a maority of Ss. (CL)

  8. Glucose Tolerance and Hyperkinesis.

    ERIC Educational Resources Information Center

    Langseth, Lillian; Dowd, Judith

    Examined were medical records of 265 hyperkinetic children (7-9 years old). Clinical blood chemistries, hematology, and 5-hour glucose tolerance test (GTT) results indicated that hematocrit levels were low in 27% of the Ss, eosinophil levels were abnormally high in 86% of the Ss, and GTT results were abnormal in a maority of Ss. (CL)

  9. Implantable continuous glucose sensors.

    PubMed

    Renard, Eric

    2008-08-01

    Because of the limits of wearable needle-type or microdialysis-based enzymatic sensors in clinical use, fully implantable glucose monitoring systems (IGMS) represent a promising alternative. Long-term use reducing impact of invasiveness due to implantation, less frequent calibration needs because of a more stable tissue environment around the sensor and potential easier inclusion in a closed-loop insulin delivery system are the expected benefits of IGMS. First experiences with subcutaneous and intravenous IGMS have been recently collected in pilot studies. While no severe adverse events have been reported, biointerface issues have been responsible for the failures of IGMS. Tissue reactions around implanted subcutaneous devices and damages of intravenous sensors due to shearing forces of blood flow impaired IGMS function and longevity. In functioning systems, accuracy of glucose measurement reached satisfactory levels for average durations of about 120 days with subcutaneous IGMS and 259 days with intravenous sensors. Moreover, sensor information could help to improve time spent in normal glucose range when provided to patients wearing subcutaneous IGMS and allowed safe and effective closed-loop glucose control when intravenous sensors were connected to implanted pumps using intra-peritoneal insulin delivery. These data could open a favourable perspective for IGMS after improvement of biointerface conditions and if compatible with an affordable cost.

  10. Continuous Glucose Monitoring

    MedlinePlus

    ... to reduce the burden of monitoring and managing blood glucose. An artificial pancreas based on mechanical devices requires at least ... MiniMed Paradigm REAL-Time System—is not an artificial pancreas, but it does ... pricking a fingertip to obtain a blood sample and using a glu cose meter to ...

  11. Differential and specific labeling of epithelial and vascular endothelial cells of the rat lung by Lycopersicon esculentum and Griffonia simplicifolia I lectins.

    PubMed

    Bankston, P W; Porter, G A; Milici, A J; Palade, G E

    1991-04-01

    In the rat lung, we found that the Lycopersicon esculentum (LEA) lectin specifically binds to the epithelium of bronchioles and alveoli whereas Griffonia simplicifolia I (GS-I) binds to the endothelium of alveolar capillaries. The differential binding affinity of these lectins was examined on semithin (approximately 0.5 microns) and thin (less than 0.1 (microns) frozen sections of rat lung lavaged to remove alveolar macrophages. On semithin frozen sections, LEA bound to epithelial cells lining bronchioles and the alveoli (type I, but not type II epithelial cells). On thin frozen sections, biotinylated Lycopersicon esculentum (bLEA)-streptavidin-gold conjugates were confined primarily to the luminal plasmalemma of type I cells. bGS-I-streptavidin-Texas Red was detected on the endothelial cells of alveolar capillaries and postcapillary venules but not on those of larger venules, veins or arterioles. By electron microscopy, GS-I-streptavidin-gold complexes were localized primarily to the luminal plasmalemma of thick and thin regions of the capillary endothelium. Neither lectin labeled type II alveolar cells, but both lectins labeled macrophages in the interstitia and in incompletely lavaged alveoli.

  12. Glucose and Aging

    NASA Astrophysics Data System (ADS)

    Ely, John T. A.

    2008-04-01

    When a human's enzymes attach glucose to proteins they do so at specific sites on a specific molecule for a specific purpose that also can include ascorbic acid (AA) at a high level such as 1 gram per hour during exposure. In an AA synthesizing animal the manifold increase of AA produced in response to illness is automatic. In contrast, the human non-enzymatic process adds glucose haphazardly to any number of sites along available peptide chains. As Cerami clarified decades ago, extensive crosslinking of proteins contributes to loss of elasticity in aging tissues. Ascorbic acid reduces the random non-enyzmatic glycation of proteins. Moreover, AA is a cofactor for hydroxylase enzymes that are necessary for the production and replacement of collagen and other structural proteins. We will discuss the relevance of ``aging is scurvy'' to the biochemistry of human aging.

  13. Inhibition of volatile compounds derived from fatty acid oxygenation with chilling and heating treatments and their influences on the oxylipin pathawy gene expression and enzyme activity levels in tomato (Solanum lycopersicon

    USDA-ARS?s Scientific Manuscript database

    Hexanal, Z-3-hexenal, E-2-hexenal, hexanol and Z-3-hexenol are major tomato (Solanum Lycopersicon) volatile aromas derived from oxygenation of unsaturated fatty acids. Chilling or heating treatments suppress production of these C6 volatiles. The objective of this research was to determine the respon...

  14. Liver glucose metabolism in humans

    PubMed Central

    Adeva-Andany, María M.; Pérez-Felpete, Noemi; Fernández-Fernández, Carlos; Donapetry-García, Cristóbal; Pazos-García, Cristina

    2016-01-01

    Information about normal hepatic glucose metabolism may help to understand pathogenic mechanisms underlying obesity and diabetes mellitus. In addition, liver glucose metabolism is involved in glycosylation reactions and connected with fatty acid metabolism. The liver receives dietary carbohydrates directly from the intestine via the portal vein. Glucokinase phosphorylates glucose to glucose 6-phosphate inside the hepatocyte, ensuring that an adequate flow of glucose enters the cell to be metabolized. Glucose 6-phosphate may proceed to several metabolic pathways. During the post-prandial period, most glucose 6-phosphate is used to synthesize glycogen via the formation of glucose 1-phosphate and UDP–glucose. Minor amounts of UDP–glucose are used to form UDP–glucuronate and UDP–galactose, which are donors of monosaccharide units used in glycosylation. A second pathway of glucose 6-phosphate metabolism is the formation of fructose 6-phosphate, which may either start the hexosamine pathway to produce UDP-N-acetylglucosamine or follow the glycolytic pathway to generate pyruvate and then acetyl-CoA. Acetyl-CoA may enter the tricarboxylic acid (TCA) cycle to be oxidized or may be exported to the cytosol to synthesize fatty acids, when excess glucose is present within the hepatocyte. Finally, glucose 6-phosphate may produce NADPH and ribose 5-phosphate through the pentose phosphate pathway. Glucose metabolism supplies intermediates for glycosylation, a post-translational modification of proteins and lipids that modulates their activity. Congenital deficiency of phosphoglucomutase (PGM)-1 and PGM-3 is associated with impaired glycosylation. In addition to metabolize carbohydrates, the liver produces glucose to be used by other tissues, from glycogen breakdown or from de novo synthesis using primarily lactate and alanine (gluconeogenesis). PMID:27707936

  15. Is Low Blood Glucose (Hypoglycemia) Dangerous?

    MedlinePlus

    ... Please leave this field empty Is Low Blood Glucose (Hypoglycemia) Dangerous? Low blood glucose or hypoglycemia is one of the most common ... In general, hypoglycemia is defined as a blood glucose level below 70 mg/dl. Low blood glucose ...

  16. Gliotransmission and Brain Glucose Sensing

    PubMed Central

    Lanfray, Damien; Arthaud, Sébastien; Ouellet, Johanne; Compère, Vincent; Do Rego, Jean-Luc; Leprince, Jérôme; Lefranc, Benjamin; Castel, Hélène; Bouchard, Cynthia; Monge-Roffarello, Boris; Richard, Denis; Pelletier, Georges; Vaudry, Hubert; Tonon, Marie-Christine; Morin, Fabrice

    2013-01-01

    Hypothalamic glucose sensing is involved in the control of feeding behavior and peripheral glucose homeostasis, and glial cells are suggested to play an important role in this process. Diazepam-binding inhibitor (DBI) and its processing product the octadecaneuropeptide (ODN), collectively named endozepines, are secreted by astroglia, and ODN is a potent anorexigenic factor. Therefore, we investigated the involvement of endozepines in brain glucose sensing. First, we showed that intracerebroventricular administration of glucose in rats increases DBI expression in hypothalamic glial-like tanycytes. We then demonstrated that glucose stimulates endozepine secretion from hypothalamic explants. Feeding experiments indicate that the anorexigenic effect of central administration of glucose was blunted by coinjection of an ODN antagonist. Conversely, the hyperphagic response elicited by central glucoprivation was suppressed by an ODN agonist. The anorexigenic effects of centrally injected glucose or ODN agonist were suppressed by blockade of the melanocortin-3/4 receptors, suggesting that glucose sensing involves endozepinergic control of the melanocortin pathway. Finally, we found that brain endozepines modulate blood glucose levels, suggesting their involvement in a feedback loop controlling whole-body glucose homeostasis. Collectively, these data indicate that endozepines are a critical relay in brain glucose sensing and potentially new targets in treatment of metabolic disorders. PMID:23160530

  17. Interaction of Polyamines, Abscisic Acid, Nitric Oxide, and Hydrogen Peroxide under Chilling Stress in Tomato (Lycopersicon esculentum Mill.) Seedlings

    PubMed Central

    Diao, Qiannan; Song, Yongjun; Shi, Dongmei; Qi, Hongyan

    2017-01-01

    Polyamines (PAs) play a vital role in the responses of higher plants to abiotic stresses. However, only a limited number of studies have examined the interplay between PAs and signal molecules. The aim of this study was to elucidate the cross-talk among PAs, abscisic acid (ABA), nitric oxide (NO), and hydrogen peroxide (H2O2) under chilling stress conditions using tomato seedlings [(Lycopersicon esculentum Mill.) cv. Moneymaker]. The study showed that during chilling stress (4°C; 0, 12, and 24 h), the application of spermidine (Spd) and spermine (Spm) elevated NO and H2O2 levels, enhanced nitrite reductase (NR), nitric oxide synthase (NOS)-like, and polyamine oxidase activities, and upregulated LeNR relative expression, but did not influence LeNOS1 expression. In contrast, putrescine (Put) treatment had no obvious impact. During the recovery period (25/15°C, 10 h), the above-mentioned parameters induced by the application of PAs were restored to their control levels. Seedlings pretreated with sodium nitroprusside (SNP, an NO donor) showed elevated Put and Spd levels throughout the treatment period, consistent with increased expression in leaves of genes encoding arginine decarboxylase (LeADC. LeADC1), ornithine decarboxylase (LeODC), and Spd synthase (LeSPDS) expressions in tomato leaves throughout the treatment period. Under chilling stress, the Put content increased first, followed by a rise in the Spd content. Exogenously applied SNP did not increase the expression of genes encoding S-adenosylmethionine decarboxylase (LeSAMDC) and Spm synthase (LeSPMS), consistent with the observation that Spm levels remained constant under chilling stress and during the recovery period. In contrast, exogenous Put significantly increased the ABA content and the 9-cis-epoxycarotenoid dioxygenase (LeNCED1) transcript level. Treatment with ABA could alleviate the electrolyte leakage (EL) induced by D-Arg (an inhibitor of Put). Taken together, it is concluded that, under chilling

  18. Interaction of Polyamines, Abscisic Acid, Nitric Oxide, and Hydrogen Peroxide under Chilling Stress in Tomato (Lycopersicon esculentum Mill.) Seedlings.

    PubMed

    Diao, Qiannan; Song, Yongjun; Shi, Dongmei; Qi, Hongyan

    2017-01-01

    Polyamines (PAs) play a vital role in the responses of higher plants to abiotic stresses. However, only a limited number of studies have examined the interplay between PAs and signal molecules. The aim of this study was to elucidate the cross-talk among PAs, abscisic acid (ABA), nitric oxide (NO), and hydrogen peroxide (H2O2) under chilling stress conditions using tomato seedlings [(Lycopersicon esculentum Mill.) cv. Moneymaker]. The study showed that during chilling stress (4°C; 0, 12, and 24 h), the application of spermidine (Spd) and spermine (Spm) elevated NO and H2O2 levels, enhanced nitrite reductase (NR), nitric oxide synthase (NOS)-like, and polyamine oxidase activities, and upregulated LeNR relative expression, but did not influence LeNOS1 expression. In contrast, putrescine (Put) treatment had no obvious impact. During the recovery period (25/15°C, 10 h), the above-mentioned parameters induced by the application of PAs were restored to their control levels. Seedlings pretreated with sodium nitroprusside (SNP, an NO donor) showed elevated Put and Spd levels throughout the treatment period, consistent with increased expression in leaves of genes encoding arginine decarboxylase (LeADC. LeADC1), ornithine decarboxylase (LeODC), and Spd synthase (LeSPDS) expressions in tomato leaves throughout the treatment period. Under chilling stress, the Put content increased first, followed by a rise in the Spd content. Exogenously applied SNP did not increase the expression of genes encoding S-adenosylmethionine decarboxylase (LeSAMDC) and Spm synthase (LeSPMS), consistent with the observation that Spm levels remained constant under chilling stress and during the recovery period. In contrast, exogenous Put significantly increased the ABA content and the 9-cis-epoxycarotenoid dioxygenase (LeNCED1) transcript level. Treatment with ABA could alleviate the electrolyte leakage (EL) induced by D-Arg (an inhibitor of Put). Taken together, it is concluded that, under chilling

  19. Behavior and pollination efficiency of Nannotrigona perilampoides (Hymenoptera: Meliponini) on greenhouse tomatoes (Lycopersicon esculentum) in subtropical México.

    PubMed

    Cauich, Orlando; Quezada-Euán, José Javier G; Macias-Macias, José Octavio; Reyes-Oregel, Vicente; Medina-Peralta, Salvador; Parra-Tabla, Victor

    2004-04-01

    The acclimation, foraging behavior, and pollination efficiency of stingless bees of the species Nannotrigona perilampoides Cresson were evaluated in tomato (Lycopersicon esculentum Mill.) plants cultivated in two greenhouses. The greenhouses were divided into three areas of 16 m2, and one of the following treatments was used for pollination: stingless bees (SB), mechanical vibration (MV), and no pollination (NP). Observations were conducted once a week from 0800 to 1600 hours during 2 mo. The acclimation of the bees to the greenhouses was estimated by the number of bees that did not return to the hive (lost bees) and by comparing the population of the colonies (brood and adults). The foraging activity of the bees across the day was evaluated by comparing the number of foragers per hour. The influence of environmental variables on the foraging activity was also analyzed. The pollination efficiency was compared among treatments through the percentage of fruit set, weight of individual fruit, kilograms of fruit produced per square meter, and the number of seed per fruit. The bees started foraging on the flowers approximately 7 d after the colonies were introduced to the greenhouse. There was a decline in the population of the colonies across the experiment, but colonies did not die out. Correlations of environmental variables with the foraging activity of the bees showed that none of them had a significant influence on pollen foraging. However, water collection was positively correlated with the temperature and negatively correlated with the humidity inside the greenhouse. The estimation of the pollination efficiency per treatment showed that there were significant differences in fruit set in SB (83 +/- 4.2) and MV (78.5 +/- 6.4) compared with NP (52.6 +/- 7.6). However, the average weight of the fruit was similar for the three treatments (65 g). There were significant differences for seed number in SB (200 +/- 15.3) and MV (232 +/- 21.4) compared with NP (120 +/- 16

  20. Methyl jasmonate-induced defense responses are associated with elevation of 1-aminocyclopropane-1-carboxylate oxidase in Lycopersicon esculentum fruit.

    PubMed

    Yu, Mengmeng; Shen, Lin; Zhang, Aijun; Sheng, Jiping

    2011-10-15

    It has been known that methyl jasmonate (MeJA) interacts with ethylene to elicit resistance. In green mature tomato fruits (Lycopersicon esculentum cv. Lichun), 0.02mM MeJA increased the activity of 1-aminocyclopropane-1-carboxylate oxidase (ACO), and consequently influenced the last step of ethylene biosynthesis. Fruits treated with a combination of 0.02 MeJA and 0.02 α-aminoisobutyric acid (AIB, a competitive inhibitor of ACO) exhibited a lower ethylene production comparing to that by 0.02mM MeJA alone. The increased activities of defense enzymes and subsequent control of disease incidence caused by Botrytis cinerea with 0.2mM MeJA treatment was impaired by AIB as well. A close relationship (P<0.05) was found between the activity alterations of ACO and that of chitinase (CHI) and β-1,3-glucanase (GLU). In addition, this study further detected the changes of gene expressions and enzyme kinetics of ACO to different concentrations of MeJA. LeACO1 was found the principal member from the ACO gene family to respond to MeJA. Accumulation of LeACO1/3/4 transcripts followed the concentration pattern of MeJA treatments, where the largest elevations were reached by 0.2mM. For kinetic analysis, K(m) values of ACO stepped up during the experiment and reached the maximums at 0.2mM MeJA with ascending concentrations of treatments. V(max) exhibited a gradual increase from 3h to 24h, and the largest induction appeared with 1.0mM MeJA. The results suggested that ACO is involved in MeJA-induced resistance in tomato, and the concentration influence of MeJA on ACO was attributable to the variation of gene transcripts and enzymatic properties. Copyright © 2011 Elsevier GmbH. All rights reserved.

  1. Glucose transporters in the transepithelial transport of glucose.

    PubMed

    Takata, K

    1996-08-01

    Glucose transporters are integral membrane proteins that mediate the transport of glucose and structurally-related substances across the cellular membranes. Two families of glucose transporter have been identified: the facilitated-diffusion glucose transporter family (GLUT family), and the NA(+)-dependent glucose transporter one (SGLT family). These transporters play a pivotal role in the transfer of glucose across the epithelial cell layers that separate distinct compartments in the mammalian body. In the small intestine, a Na(+)-dependent glucose transporter, SGLT1, is localized at the apical plasma membrane of the absorptive epithelial cells, whereas a facilitated-diffusion glucose transporter, GLUT2, is at the basolateral membrane of the cells. Similar localization is seen in the kidney proximal tubules in the reabsorption of glucose. For the absorption of fructose in the small intestine, fructose transporter GLUT5 is localized at the apical membrane. The expressed GLUT5 in polarized cultured cells is targeted to the apical membrane, showing that the GLUT5 molecule itself has sufficient information to determine its cellular localization. In the blood-tissue barriers, such as the blood-brain barrier, blood-ocular barrier, and placental barrier, either endothelial or epithelial cell layers constitute the barrier. GLUT1 is abundant at the plasma membrane of these barrier cells, and plays a crucial role in the specific transfer of glucose across the barrier. When the barrier is composed of a two-cell layer, gap junctions connecting them could serve as intercellular channels for glucose transfer in addition to GLUT1. Proper localization of glucose transporters and gap junctions is a prerequisite for the successful transepithelial transport of sugars.

  2. Thermoresponsive amperometric glucose biosensor.

    PubMed

    Pinyou, Piyanut; Ruff, Adrian; Pöller, Sascha; Barwe, Stefan; Nebel, Michaela; Alburquerque, Natalia Guerrero; Wischerhoff, Erik; Laschewsky, André; Schmaderer, Sebastian; Szeponik, Jan; Plumeré, Nicolas; Schuhmann, Wolfgang

    2015-03-24

    The authors report on the fabrication of a thermoresponsive biosensor for the amperometric detection of glucose. Screen printed electrodes with heatable gold working electrodes were modified by a thermoresponsive statistical copolymer [polymer I: poly(ω-ethoxytriethylenglycol methacrylate-co-3-(N,N-dimethyl-N-2-methacryloyloxyethyl ammonio) propanesulfonate-co-ω-butoxydiethylenglycol methacrylate-co-2-(4-benzoyl-phenoxy)ethyl methacrylate)] with a lower critical solution temperature of around 28 °C in aqueous solution via electrochemically induced codeposition with a pH-responsive redox-polymer [polymer II: poly(glycidyl methacrylate-co-allyl methacrylate-co-poly(ethylene glycol)methacrylate-co-butyl acrylate-co-2-(dimethylamino)ethyl methacrylate)-[Os(bpy)2(4-(((2-(2-(2-aminoethoxy)ethoxy)ethyl)amino)methyl)-N,N-dimethylpicolinamide)](2+)] and pyrroloquinoline quinone-soluble glucose dehydrogenase acting as biological recognition element. Polymer II bears covalently bound Os-complexes that act as redox mediators for shuttling electrons between the enzyme and the electrode surface. Polymer I acts as a temperature triggered immobilization matrix. Probing the catalytic current as a function of the working electrode temperature shows that the activity of the biosensor is dramatically reduced above the phase transition temperature of polymer I. Thus, the local modulation of the temperature at the interphase between the electrode and the bioactive layer allows switching the biosensor from an on- to an off-state without heating of the surrounding analyte solution.

  3. Glucose repression in Saccharomyces cerevisiae

    PubMed Central

    Kayikci, Ömur; Nielsen, Jens

    2015-01-01

    Glucose is the primary source of energy for the budding yeast Saccharomyces cerevisiae. Although yeast cells can utilize a wide range of carbon sources, presence of glucose suppresses molecular activities involved in the use of alternate carbon sources as well as it represses respiration and gluconeogenesis. This dominant effect of glucose on yeast carbon metabolism is coordinated by several signaling and metabolic interactions that mainly regulate transcriptional activity but are also effective at post-transcriptional and post-translational levels. This review describes effects of glucose repression on yeast carbon metabolism with a focus on roles of the Snf3/Rgt2 glucose-sensing pathway and Snf1 signal transduction in establishment and relief of glucose repression. PMID:26205245

  4. Glucose Catabolism of Erysipelothrix rhusiopathiae

    PubMed Central

    Robertson, D. C.; McCullough, W. G.

    1968-01-01

    The pathways of glucose catabolism in Erysipelothrix rhusiopathiae have been identified by the radiorespirometric technique. The radiorespirometric data showed that 96% of the glucose catabolism was via the Embden-Meyerhof-Parnas pathway with the remaining 4% dissimilated by the hexose monophosphate pathway. The products of the anaerobic dissimilation of glucose were determined. Lactic acid was the major product; ethyl alcohol, acetic acid, formic acid, and carbon dioxide were formed in smaller amounts. Images PMID:4877823

  5. Optoelectronic Apparatus Measures Glucose Noninvasively

    NASA Technical Reports Server (NTRS)

    Ansari, Rafat R.; Rovati, Luigi L.

    2003-01-01

    An optoelectronic apparatus has been invented as a noninvasive means of measuring the concentration of glucose in the human body. The apparatus performs polarimetric and interferometric measurements of the human eye to acquire data from which the concentration of glucose in the aqueous humor can be computed. Because of the importance of the concentration of glucose in human health, there could be a large potential market for instruments based on this apparatus.

  6. Acetylcholine suppresses shoot formation and callusing in leaf explants of in vitro raised seedlings of tomato, Lycopersicon esculentum Miller var. Pusa Ruby.

    PubMed

    Bamel, Kiran; Gupta, Rajendra; Gupta, Shirish C

    2016-06-02

    We present experimental evidence to show that acetylcholine (ACh) causes decrease in shoot formation in leaf explants of tomato (Lycopersicon esculentum Miller var Pusa Ruby) when cultured on shoot regeneration medium. The optimum response was obtained at 10(-4) M ACh-enriched medium. ACh also causes decrease in percentage of cultures forming callus and reduces the callus mass. Inhibitors of enzymatic hydrolysis of ACh, neostigmine and physostigmine, also suppresses callogenesis and caulogenesis. On the other hand, the breakdown products of Ach, choline and acetate, do not alter the morphogenic response induced on the shoot regeneration medium. Neostigmine showed optimal reduction in shoot formation at 10(-5) M. The explants cultured on neostigmine augmented medium showed decline in the activity of ACh hydrolyzing enzyme acetylcholinesterase. ACh and neostigmine added together showed marked reduction in callus mass. These results strongly support the role of ACh as a natural regulator of morphogenesis in tomato plants.

  7. Acetylcholine suppresses shoot formation and callusing in leaf explants of in vitro raised seedlings of tomato, Lycopersicon esculentum Miller var. Pusa Ruby

    PubMed Central

    Bamel, Kiran; Gupta, Rajendra; Gupta, Shirish C.

    2016-01-01

    ABSTRACT We present experimental evidence to show that acetylcholine (ACh) causes decrease in shoot formation in leaf explants of tomato (Lycopersicon esculentum Miller var Pusa Ruby) when cultured on shoot regeneration medium. The optimum response was obtained at 10−4 M ACh-enriched medium. ACh also causes decrease in percentage of cultures forming callus and reduces the callus mass. Inhibitors of enzymatic hydrolysis of ACh, neostigmine and physostigmine, also suppresses callogenesis and caulogenesis. On the other hand, the breakdown products of Ach, choline and acetate, do not alter the morphogenic response induced on the shoot regeneration medium. Neostigmine showed optimal reduction in shoot formation at 10−5 M. The explants cultured on neostigmine augmented medium showed decline in the activity of ACh hydrolyzing enzyme acetylcholinesterase. ACh and neostigmine added together showed marked reduction in callus mass. These results strongly support the role of ACh as a natural regulator of morphogenesis in tomato plants. PMID:27348536

  8. Induction of 3'-O-beta-D-ribofuranosyl adenosine during compatible, but not during incompatible, interactions of Arabidopsis thaliana or Lycopersicon esculentum with Pseudomonas syringae pathovar tomato.

    PubMed

    Bednarek, Paweł; Winter, Jens; Hamberger, Björn; Oldham, Neil J; Schneider, Bernd; Tan, Jianwen; Hahlbrock, Klaus

    2004-02-01

    All hitherto identified aromatic compounds accumulating in leaves of Arabidopsis thaliana (L.) Heynh. upon infection with virulent or avirulent strains of Pseudomonas syringae pathovar tomato ( Pst) were indolic metabolites. We now report the strong accumulation of a novel type of natural product, 3'-O-beta-D-ribofuranosyl adenosine (3'RA), exclusively during compatible interactions. In contrast to the various indolic metabolites, 3'RA was undetectable in incompatible interactions of A. thaliana leaves with an avirulent Pst strain, as well as in uninfected control leaves. A similar, strong induction of 3'RA was observed in compatible but, again, not in incompatible interactions of Pst with its natural host, Lycopersicon esculentum. The strength of the effect and its confinement to compatible interactions suggests that it may be applicable as a diagnostic tool.

  9. Evaluation of volatile metabolites as markers in Lycopersicon esculentum L. cultivars discrimination by multivariate analysis of headspace solid phase microextraction and mass spectrometry data.

    PubMed

    Figueira, José; Câmara, Hugo; Pereira, Jorge; Câmara, José S

    2014-02-15

    To gain insights on the effects of cultivar on the volatile metabolomic expression of different tomato (Lycopersicon esculentum L.) cultivars--Plum, Campari, Grape, Cherry and Regional, cultivated under similar edafoclimatic conditions, and to identify the most discriminate volatile marker metabolites related to the cultivar, the chromatographic profiles resulting from headspace solid phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC-qMS) analysis, combined with multivariate analysis were investigated. The data set composed by the 77 volatile metabolites identified in the target tomato cultivars, 5 of which (2,2,6-trimethylcyclohexanone, 2-methyl-6-methyleneoctan-2-ol, 4-octadecyl-morpholine, (Z)-methyl-3-hexenoate and 3-octanone) are reported for the first time in tomato volatile metabolomic composition, was evaluated by chemometrics. Firstly, principal component analysis was carried out in order to visualise data trends and clusters, and then, linear discriminant analysis in order to detect the set of volatile metabolites able to differentiate groups according to tomato cultivars. The results obtained revealed a perfect discrimination between the different Lycopersicon esculentum L. cultivars considered. The assignment success rate was 100% in classification and 80% in prediction ability by using "leave-one-out" cross-validation procedure. The volatile profile was able to differentiate all five cultivars and revealed complex interactions between them including the participation in the same biosynthetic pathway. The volatile metabolomic platform for tomato samples obtained by HS-SPME/GC-qMS here described, and the interrelationship detected among the volatile metabolites can be used as a roadmap for biotechnological applications, namely to improve tomato aroma and their acceptance in the final consumer, and for traceability studies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Response of superoxide dismutase isoenzymes in tomato plants (Lycopersicon esculentum) during thermo-acclimation of the photosynthetic apparatus.

    PubMed

    Camejo, Daymi; Martí, María del C; Nicolás, Emilio; Alarcón, Juan J; Jiménez, Ana; Sevilla, Francisca

    2007-11-01

    Seedlings of Lycopersicon esculentum Mill. var. Amalia were grown in a growth chamber under a photoperiod of 16 h light at 25 degrees C and 8 h dark at 20 degrees C. Five different treatments were applied to 30-day-old plants: Control treatment (plants maintained in the normal growth conditions throughout the experimental time), heat acclimation (plants exposed to 35 degrees C for 4 h in dark for 3 days), dark treatment (plants exposed to 25 degrees C for 4 h in dark for 3 days), heat acclimation plus heat shock (plants that previously received the heat acclimation treatment were exposed to 45 degrees C air temperature for 3 h in the light) and dark treatment plus heat shock (plants that previously received the dark treatment were exposed to 45 degrees C air temperature for 3 h in the light). Only the heat acclimation treatment increased the thermotolerance of the photosynthesis apparatus when the heat shock (45 degrees C) was imposed. In these plants, the CO(2) assimilation rate was not affected by heat shock and there was a slight and non-significant reduction in maximum carboxylation velocity of Rubisco (V(cmax)) and maximum electron transport rate contributing to Rubisco regeneration (J(max)). However, the plants exposed to dark treatment plus heat shock showed a significant reduction in the CO(2) assimilation rate and also in the values of V(cmax) and J(max). Chlorophyll fluorescence measurements showed increased thermotolerance in heat-acclimated plants. The values of maximum chlorophyll fluorescence (F(m)) were not modified by heat shock in these plants, while in the dark-treated plants that received the heat shock, the F(m) values were reduced, which provoked a significant reduction in the efficiency of photosystem II. A slight rise in the total superoxide dismutase (SOD) activity was found in the plants that had been subjected to both heat acclimation and heat shock, and this SOD activity was significantly higher than that found in the plants subjected to

  11. Evaluation of the Effect of Ecologic on Root Knot Nematode, Meloidogyne incognita, and Tomato Plant, Lycopersicon esculenum

    PubMed Central

    Ladner, Debora C.; Tchounwou, Paul B.; Lawrence, Gary W.

    2008-01-01

    Nonchemical methods and strategies for nematode management including cultural methods and engineered measures have been recommended as an alternative to methyl bromide (a major soil fumigant), due to its role in the depletion of the ozone layer. Hence, an international agreement has recently been reached calling for its reduced consumption and complete phasing out. This present research evaluates the potential of Ecologic, a biological, marine shell meal chitin material, as a soil amendment management agent for root knot nematode, Meloidogyne incognita, control, and its effect on the growth of Floradel tomato plant, Lycopersicon esculentum. To accomplish this goal, studies were conducted during which, experimental pots were set up in greenhouse environments using sterilized soil inoculated with 5,000 root-knot eggs per 1500 g soil. There were 4 treatments and 5 replications. Treatments were: No chitin; 50 g chitin; 100 g chitin; and 200 g chitin. A two-week wait period following Ecologic amendment preceded Floradel tomato planting to allow breakdown of the chitin material into the soil. Fresh and dry weights of shoot and root materials were taken as growth end-points. A statistically significant difference (p ≤ 0.05) was obtained with regard to the growth rate of L. esculentum at 100 g chitin treatment compared to the control with no chitin. Mean fresh weights of Floradel tomato were 78.0 ± 22.3g, 81.0 ± 20.3g, 109.0 ± 25.4g and 102.0 ± 33.3g at 0, 50, 100 and 200g chitin, respectively. The analysis of root knot nematode concentrations indicated a substantial effect on reproduction rate associated with chitin amendment. Study results showed a significant decrease in both root knot nematode eggs and juveniles (J2) at 100g and 200g Ecologic chitin levels, however, an increase in nematode concentrations was recorded at the 50g Ecologic chitin level (p ≤ 0.05). The mean amounts of J2 population, as expressed per 1500cm3 soil, were 49,933 ± 38,819, 86,050

  12. Random plasma glucose in serendipitous screening for glucose intolerance: screening for impaired glucose tolerance study 2.

    PubMed

    Ziemer, David C; Kolm, Paul; Foster, Jovonne K; Weintraub, William S; Vaccarino, Viola; Rhee, Mary K; Varughese, Rincy M; Tsui, Circe W; Koch, David D; Twombly, Jennifer G; Narayan, K M Venkat; Phillips, Lawrence S

    2008-05-01

    With positive results from diabetes prevention studies, there is interest in convenient ways to incorporate screening for glucose intolerance into routine care and to limit the need for fasting diagnostic tests. The aim of this study is to determine whether random plasma glucose (RPG) could be used to screen for glucose intolerance. This is a cross-sectional study. The participants of this study include a voluntary sample of 990 adults not known to have diabetes. RPG was measured, and each subject had a 75-g oral glucose tolerance test several weeks later. Glucose intolerance targets included diabetes, impaired glucose tolerance (IGT), and impaired fasting glucose(110) (IFG(110); fasting glucose, 110-125 mg/dl, and 2 h glucose < 140 mg/dl). Screening performance was measured by area under receiver operating characteristic curves (AROC). Mean age was 48 years, and body mass index (BMI) was 30.4 kg/m(2); 66% were women, and 52% were black; 5.1% had previously unrecognized diabetes, and 24.0% had any "high-risk" glucose intolerance (diabetes or IGT or IFG(110)). The AROC was 0.80 (95% CI 0.74-0.86) for RPG to identify diabetes and 0.72 (0.68-0.75) to identify any glucose intolerance, both highly significant (p < 0.001). Screening performance was generally consistent at different times of the day, regardless of meal status, and across a range of risk factors such as age, BMI, high density lipoprotein cholesterol, triglycerides, and blood pressure. RPG values should be considered by health care providers to be an opportunistic initial screening test and used to prompt further evaluation of patients at risk of glucose intolerance. Such "serendipitous screening" could help to identify unrecognized diabetes and prediabetes.

  13. [Glucose homeostasis in children. I. Regulation of blood glucose].

    PubMed

    Otto Buczkowska, E; Szirer, G; Jarosz-Chobot, P

    2001-01-01

    The amount of glucose in the circulation depends on its absorption from the intestine, uptake by and release from the liver and uptake by peripheral tissues. Insulin and glucagon together control the metabolities required by peripheral tissues and both are involved in maintaining glucose homeostasis. Insulin is considered to be an anabolic hormone in that it promotes the synthesis of protein, lipid and glycogen. The key target tissues for insulin are liver, muscles and adipose tissue. Glucagon acts largely to increase catabolic processes. Between meals or during fast, the most tightly regulated process is the release of glucose from the liver. During fasting glucose is produced from glycogen and is formed by enzymes on the gluconeogenic pathway. Fetal metabolism is directed to ensure anabolism with formation of glycogen, fat and protein. Glucogen is stored in the liver and serves as the immediate source of new glucose during first few hours after birth. Glucose is the most important substrate for brain metabolism. Due to the large size of neonatal brain in relation to body weight cerebral glucose consumption is particularly high. Postnatal hormonal changes have a central role in regulating glucose mobilization through glycogenolysis and gluconeogenesis. The initial glucagon surge is the key adaptive change which triggers the switch to glucose production. The control of insulin and glucagon secretion is of fundamental importance during first hours after birth. Children have a decreased tolerance to starvation when compared with adults, they are more prone to develop hypoglycaemia after short fasting. The faster rate in the fall of blood glucose and gluconeogenic substrates and rapid rate of ketogenesis are characteristic features of fasting adaptation in children.

  14. Alginate cryogel based glucose biosensor

    NASA Astrophysics Data System (ADS)

    Fatoni, Amin; Windy Dwiasi, Dian; Hermawan, Dadan

    2016-02-01

    Cryogel is macroporous structure provides a large surface area for biomolecule immobilization. In this work, an alginate cryogel based biosensor was developed to detect glucose. The cryogel was prepared using alginate cross-linked by calcium chloride under sub-zero temperature. This porous structure was growth in a 100 μL micropipette tip with a glucose oxidase enzyme entrapped inside the cryogel. The glucose detection was based on the colour change of redox indicator, potassium permanganate, by the hydrogen peroxide resulted from the conversion of glucose. The result showed a porous structure of alginate cryogel with pores diameter of 20-50 μm. The developed glucose biosensor was showed a linear response in the glucose detection from 1.0 to 5.0 mM with a regression of y = 0.01x+0.02 and R2 of 0.994. Furthermore, the glucose biosensor was showed a high operational stability up to 10 times of uninterrupted glucose detections.

  15. Antihypertensive drugs and glucose metabolism

    PubMed Central

    Rizos, Christos V; Elisaf, Moses S

    2014-01-01

    Hypertension plays a major role in the development and progression of micro- and macrovascular disease. Moreover, increased blood pressure often coexists with additional cardiovascular risk factors such as insulin resistance. As a result the need for a comprehensive management of hypertensive patients is critical. However, the various antihypertensive drug categories have different effects on glucose metabolism. Indeed, angiotensin receptor blockers as well as angiotensin converting enzyme inhibitors have been associated with beneficial effects on glucose homeostasis. Calcium channel blockers (CCBs) have an overall neutral effect on glucose metabolism. However, some members of the CCBs class such as azelnidipine and manidipine have been shown to have advantageous effects on glucose homeostasis. On the other hand, diuretics and β-blockers have an overall disadvantageous effect on glucose metabolism. Of note, carvedilol as well as nebivolol seem to differentiate themselves from the rest of the β-blockers class, being more attractive options regarding their effect on glucose homeostasis. The adverse effects of some blood pressure lowering drugs on glucose metabolism may, to an extent, compromise their cardiovascular protective role. As a result the effects on glucose homeostasis of the various blood pressure lowering drugs should be taken into account when selecting an antihypertensive treatment, especially in patients which are at high risk for developing diabetes. PMID:25068013

  16. Random Plasma Glucose in Serendipitous Screening for Glucose Intolerance: Screening for Impaired Glucose Tolerance Study 2

    PubMed Central

    Ziemer, David C.; Kolm, Paul; Foster, Jovonne K.; Weintraub, William S.; Vaccarino, Viola; Rhee, Mary K.; Varughese, Rincy M.; Tsui, Circe W.; Koch, David D.; Twombly, Jennifer G.; Venkat Narayan, K. M.

    2008-01-01

    Background With positive results from diabetes prevention studies, there is interest in convenient ways to incorporate screening for glucose intolerance into routine care and to limit the need for fasting diagnostic tests. Objective The aim of this study is to determine whether random plasma glucose (RPG) could be used to screen for glucose intolerance. Design This is a cross-sectional study. Participants The participants of this study include a voluntary sample of 990 adults not known to have diabetes. Measurements RPG was measured, and each subject had a 75-g oral glucose tolerance test several weeks later. Glucose intolerance targets included diabetes, impaired glucose tolerance (IGT), and impaired fasting glucose110 (IFG110; fasting glucose, 110–125 mg/dl, and 2 h glucose < 140 mg/dl). Screening performance was measured by area under receiver operating characteristic curves (AROC). Results Mean age was 48 years, and body mass index (BMI) was 30.4 kg/m2; 66% were women, and 52% were black; 5.1% had previously unrecognized diabetes, and 24.0% had any “high-risk” glucose intolerance (diabetes or IGT or IFG110). The AROC was 0.80 (95% CI 0.74–0.86) for RPG to identify diabetes and 0.72 (0.68–0.75) to identify any glucose intolerance, both highly significant (p < 0.001). Screening performance was generally consistent at different times of the day, regardless of meal status, and across a range of risk factors such as age, BMI, high density lipoprotein cholesterol, triglycerides, and blood pressure. Conclusions RPG values should be considered by health care providers to be an opportunistic initial screening test and used to prompt further evaluation of patients at risk of glucose intolerance. Such “serendipitous screening” could help to identify unrecognized diabetes and prediabetes. PMID:18335280

  17. Glucose tolerance test - non-pregnant

    MedlinePlus

    ... gov/ency/article/003466.htm Glucose tolerance test - non-pregnant To use the sharing features on this ... is broken) Alternative Names Oral glucose tolerance test - non-pregnant; OGTT - non-pregnant; Diabetes - glucose tolerance test; ...

  18. Genetics Home Reference: glucose-galactose malabsorption

    MedlinePlus

    ... Facebook Twitter Home Health Conditions glucose-galactose malabsorption glucose-galactose malabsorption Printable PDF Open All Close All ... Javascript to view the expand/collapse boxes. Description Glucose-galactose malabsorption is a condition in which the ...

  19. Glucose Suppression of Glucagon Secretion

    PubMed Central

    Le Marchand, Sylvain J.; Piston, David W.

    2010-01-01

    Glucagon is released from α-cells present in intact pancreatic islets at glucose concentrations below 4 mm, whereas higher glucose levels inhibit its secretion. The mechanisms underlying the suppression of α-cell secretory activity are poorly understood, but two general types of models have been proposed as follows: direct inhibition by glucose or paracrine inhibition from non-α-cells within the islet of Langerhans. To identify α-cells for analysis, we utilized transgenic mice expressing fluorescent proteins targeted specifically to these cells. Measurements of glucagon secretion from pure populations of flow-sorted α-cells show that contrary to its effect on intact islets, glucose does stimulate glucagon secretion from isolated α-cells. This observation argues against a direct inhibition of glucagon secretion by glucose and supports the paracrine inhibition model. Imaging of cellular metabolism by two-photon excitation of NAD(P)H autofluorescence indicates that glucose is metabolized in α-cells and that glucokinase is the likely rate-limiting step in this process. Imaging calcium dynamics of α-cells in intact islets reveals that inhibiting concentrations of glucose increase the intracellular calcium concentration and the frequency of α-cell calcium oscillations. Application of candidate paracrine inhibitors leads to reduced glucagon secretion but did not decrease the α-cell calcium activity. Taken together, the data suggest that suppression occurs downstream from α-cell calcium signaling, presumably at the level of vesicle trafficking or exocytotic machinery. PMID:20231269

  20. The glucose-6-phosphatase system.

    PubMed Central

    van Schaftingen, Emile; Gerin, Isabelle

    2002-01-01

    Glucose-6-phosphatase (G6Pase), an enzyme found mainly in the liver and the kidneys, plays the important role of providing glucose during starvation. Unlike most phosphatases acting on water-soluble compounds, it is a membrane-bound enzyme, being associated with the endoplasmic reticulum. In 1975, W. Arion and co-workers proposed a model according to which G6Pase was thought to be a rather unspecific phosphatase, with its catalytic site oriented towards the lumen of the endoplasmic reticulum [Arion, Wallin, Lange and Ballas (1975) Mol. Cell. Biochem. 6, 75--83]. Substrate would be provided to this enzyme by a translocase that is specific for glucose 6-phosphate, thereby accounting for the specificity of the phosphatase for glucose 6-phosphate in intact microsomes. Distinct transporters would allow inorganic phosphate and glucose to leave the vesicles. At variance with this substrate-transport model, other models propose that conformational changes play an important role in the properties of G6Pase. The last 10 years have witnessed important progress in our knowledge of the glucose 6-phosphate hydrolysis system. The genes encoding G6Pase and the glucose 6-phosphate translocase have been cloned and shown to be mutated in glycogen storage disease type Ia and type Ib respectively. The gene encoding a G6Pase-related protein, expressed specifically in pancreatic islets, has also been cloned. Specific potent inhibitors of G6Pase and of the glucose 6-phosphate translocase have been synthesized or isolated from micro-organisms. These as well as other findings support the model initially proposed by Arion. Much progress has also been made with regard to the regulation of the expression of G6Pase by insulin, glucocorticoids, cAMP and glucose. PMID:11879177

  1. Effect of temperature on the occurrence of O/sub 2/ and CO/sub 2/ insensitive photosynthesis in field grown plants. [Phaseolus vulgaris; Capsicum annum; Lycopersicon esculentum, Scrophularia desertorum; Cardaria draba, Populus fremontii

    SciTech Connect

    Sage, R.F.; Sharkey, T.D.

    1987-07-01

    The sensitivity of photosynthesis to O/sub 2/ and CO/sub 2/ was measured in leaves from field grown plants of six species (Phaseolus vulgaris, Capsicum annuum, Lycopersicon esculentum, Scrophularia desertorum, Cardaria draba, and Populus fremontii) from 5/sup 0/C to 35/sup 0/C using gas-exchange techniques. In all species but Phaseolus, photosynthesis was insensitive to O/sub 2/ in normal air below a species dependent temperature. CO/sub 2/ insensitivity occurred under the same conditions that resulted in O/sub 2/ insensitivity. A complete loss of O/sub 2/ sensitivity occurred up to 22/sup 0/C in Lycopersicon but only up to 6/sup 0/C in Scrophularia. In Lycopersicon and Populus, O/sub 2/ and CO/sub 2/ insensitivity occurred under conditions regularly encountered during the cooler portions of the day. Because O/sub 2/ insensitivity is an indicator of feedback limited photosynthesis, these results indicate that feedback limitations can play a role in determining the diurnal carbon gain in the field. At higher partial pressures of CO/sub 2/ the temperature at which O/sub 2/ insensitivity occurred was higher, indicating that feedback limitations in the field will become more important as the CO/sub 2/ concentration in the atmosphere increases.

  2. Effect of temperature on the occurrence of O/sub 2/ and CO/sub 2/ insensitive photosynthesis in field grown plants. [Phaselous vulgaris; capsicum annum; lycopersicon esculentum; scrophularia desertorum; cardaria

    SciTech Connect

    Sage, R.F.; Sharkey, T.D.

    1987-04-01

    The sensitivity of photosynthesis to O/sub 2/ and CO/sub 2/ was measured in field grown plants of six species (Phaseolus vulgaris, Capsicum annum, Lycopersicon esculentum, Scrophularia desertorum, Cardaria draba and Populus Fremontii) from 5/sup 0/C to 35/sup 0/C. Photosynthesis was insensitive to O/sub 2/ in normal air below a species dependent temperature. CO/sub 2/ insensitivity occurred under the same conditions that resulted in O/sub 2/ insensitivity. A complete loss of O/sub 2/ sensitivity was observed up to 22/sup 0/C (in Lycopersicon) but only up to 6/sup 0/C (in Scrophularia). In Lycopersicon and Populus, O/sub 2/ and CO/sub 2/ insensitivity occurred under conditions regularly encountered during the cooler portions of the day. The authors believe that O/sub 2/ insensitivity is an indicator of feedback limited photosynthesis, and that these results indicate that feedback limitations can play a role in determining plant carbon gain in the field. At higher partial pressures of CO/sub 2/ the temperature at which O/sub 2/ insensitivity occurred was higher, indicating that feedback limitations in the field will become more important as the CO/sub 2/ concentration in the atmosphere increases.

  3. Conversion of glucose to sorbose

    DOEpatents

    Davis, Mark E.; Gounder, Rajamani

    2016-02-09

    The present invention is directed to methods for preparing sorbose from glucose, said method comprising: (a) contacting the glucose with a silica-containing structure comprising a zeolite having a topology of a 12 membered-ring or larger, an ordered mesoporous silica material, or an amorphous silica, said structure containing Lewis acidic Ti.sup.4+ or Zr.sup.4+ or both Ti.sup.4+ and Zr.sup.4+ framework centers, said contacting conducted under reaction conditions sufficient to isomerize the glucose to sorbose. The sorbose may be (b) separated or isolated; or (c) converted to ascorbic acid.

  4. Glucose-responsive hydrogel electrode for biocompatible glucose transistor

    PubMed Central

    Kajisa, Taira; Sakata, Toshiya

    2017-01-01

    Abstract In this paper, we propose a highly sensitive and biocompatible glucose sensor using a semiconductor-based field effect transistor (FET) with a functionalized hydrogel. The principle of the FET device contributes to the easy detection of ionic charges with high sensitivity, and the hydrogel coated on the electrode enables the specific detection of glucose with biocompatibility. The copolymerized hydrogel on the Au gate electrode of the FET device is optimized by controlling the mixture ratio of biocompatible 2-hydroxyethylmethacrylate (HEMA) as the main monomer and vinylphenylboronic acid (VPBA) as a glucose-responsive monomer. The gate surface potential of the hydrogel FETs shifts in the negative direction with increasing glucose concentration from 10 μM to 40 mM, which results from the increase in the negative charges on the basis of the diol-binding of PBA derivatives with glucose molecules in the hydrogel. Moreover, the hydrogel coated on the gate suppresses the signal noise caused by the nonspecific adsorption of proteins such as albumin. The hydrogel FET can serve as a highly sensitive and biocompatible glucose sensor in in vivo or ex vivo applications such as eye contact lenses and sheets adhering to the skin. PMID:28179956

  5. Glucose-responsive hydrogel electrode for biocompatible glucose transistor.

    PubMed

    Kajisa, Taira; Sakata, Toshiya

    2017-01-01

    In this paper, we propose a highly sensitive and biocompatible glucose sensor using a semiconductor-based field effect transistor (FET) with a functionalized hydrogel. The principle of the FET device contributes to the easy detection of ionic charges with high sensitivity, and the hydrogel coated on the electrode enables the specific detection of glucose with biocompatibility. The copolymerized hydrogel on the Au gate electrode of the FET device is optimized by controlling the mixture ratio of biocompatible 2-hydroxyethylmethacrylate (HEMA) as the main monomer and vinylphenylboronic acid (VPBA) as a glucose-responsive monomer. The gate surface potential of the hydrogel FETs shifts in the negative direction with increasing glucose concentration from 10 μM to 40 mM, which results from the increase in the negative charges on the basis of the diol-binding of PBA derivatives with glucose molecules in the hydrogel. Moreover, the hydrogel coated on the gate suppresses the signal noise caused by the nonspecific adsorption of proteins such as albumin. The hydrogel FET can serve as a highly sensitive and biocompatible glucose sensor in in vivo or ex vivo applications such as eye contact lenses and sheets adhering to the skin.

  6. [Contribution of the kidney to glucose homeostasis].

    PubMed

    Segura, Julián; Ruilope, Luis Miguel

    2013-09-01

    The kidney is involved in glucose homeostasis through three major mechanisms: renal gluconeogenesis, renal glucose consumption, and glucose reabsorption in the proximal tubule. Glucose reabsorption is one of the most important physiological functions of the kidney, allowing full recovery of filtered glucose, elimination of glucose from the urine, and prevention of calorie loss. Approximately 90% of the glucose is reabsorbed in the S1 segment of the proximal tubule, where glucose transporter-2 (GLUT2) and sodium-glucose transporter-2 (SGLT2) are located, while the remaining 10% is reabsorbed in the S3 segment by SGLT1 and GLUT1 transporters. In patients with hyperglycemia, the kidney continues to reabsorb glucose, thus maintaining hyperglycemia. Most of the renal glucose reabsorption is mediated by SGLT2. Several experimental and clinical studies suggest that pharmacological blockade of this transporter might be beneficial in the management of hyperglycemia in patients with type 2 diabetes.

  7. Orienteering performance and ingestion of glucose and glucose polymers.

    PubMed

    Kujala, U M; Heinonen, O J; Kvist, M; Kärkkäinen, O P; Marniemi, J; Niittymäki, K; Havas, E

    1989-06-01

    The benefit of glucose polymer ingestion in addition to 2.5 per cent glucose before and during a prolonged orienteering competition was studied. The final time in the competition in the group ingesting 2.5 per cent glucose (group G, n = 10) was 113 min 37 s +/- 8 min 11 s, and in the group which had additionally ingested glucose polymer (group G + GP, n = 8) 107 min 18s +/- 4 min 41 s (NS). One fifth (21 per cent) of the time difference between the two groups was due to difference in orienteering errors. Group G + GP orienteered the last third of the competition faster than group G (p less than 0.05). The time ratio between the last third of the competition and the first third of the competition was lower in group G + GP than in group G (p less than 0.05). After the competition, there was statistically insignificant tendency to higher serum glucose and lower serum free fatty acid concentrations in group G + GP, and serum insulin concentration was higher in group G + GP than in group G (p less than 0.05). Three subjects reported that they exhausted during the competition. These same three subjects had the lowest serum glucose concentrations after the competition (2.9 mmol.1(-1), 2.9 mmol.1(-1), 3.5 mmol.1(-1] and all of them were from group G. It is concluded that glucose polymer syrup ingestion is beneficial for prolonged psychophysical performance.

  8. Continuous glucose monitoring, oral glucose tolerance, and insulin - glucose parameters in adolescents with simple obesity.

    PubMed

    El Awwa, A; Soliman, A; Al-Ali, M; Yassin, M; De Sanctis, V

    2012-09-01

    In obese adolescents pancreatic beta-cells may not be able to cope with insulin resistance leading to hyperglycemia and type2 diabetes (T2DM To assess oral glucose tolerance, 72-h continuous blood glucose concentrations (CGM) and calculate homeostatic model assessment (HOMA), and the quantitative insulin sensitivity check index (QUICKI) in 13 adolescents with simple obesity (BMI SDS=4 ± 1.06). OGTT performed in 13 obese adolescents (13.47 ± 3 years) revealed 3 cases (23%) with impaired fasting glucose (IFG: fasting glucose >5.6 mmol/L), 4 cases (30%) with impaired glucose tolerance (IGT: 2h blood glucose >7.8 <11.1 mmol/L), and none with diabetes. Using the continuous glucose monitoring system ( CGMS), IFG was detected in 4 cases, the maximum serum blood glucose (BG : 2h or more after meal) was >7.8 and <11.1 mmol/L (IGT) in 9 children (69%) and >11.1 mmol/L (diabetes) in one case (7.6%). Five cases had a minimum BG recorded of <2.7 mmol/L (hypoglycemia). No glycemic abnormality was detected using HbA1C (5.7 ± 0.3%). 11/13 patients had HOMA values >2.6 and QUICKI values <0.35 denoting insulin resistance. Beta cell mass percent (B %) = 200 ± 94.8% and insulin sensitivity values (IS)=50.4 ± 45.5% denoted insulin resistance with hyper-insulinaemia and preserved beta cell mass. In obese adolescents, CGMS is superior to OGTT and HbA1C in detecting glycemic abnormalities, which appears to be secondary to insulin resistance.

  9. Meal related glucose monitoring is a method of diagnosing glucose intolerance in pregnancies with high probability of gestational diabetes but normal glucose tolerance by oral glucose tolerance test.

    PubMed

    John, Mathew; Gopinath, Deepa

    2013-06-01

    Gestational diabetes mellitus diagnosed by classical oral glucose tolerance test can result in fetal complications like macrosomia and polyhydramnios. Guidelines exist on management of patients diagnose by abnormal oral glucose tolerance test with diet modification followed by insulin. Even patients with abnormal oral glucose tolerance test maintaining apparently normal blood sugars with diet are advised insulin if there is accelerated fetal growth. But patients with normal oral glucose tolerance test can present with macrosomia and polyhydramnios. These patients are labelled as not having gestational diabetes mellitus and are followed up with repeat oral glucose tolerance test. We hypothesise that these patients may have an altered placental threshold to glucose or abnormal sensitivity of fetal tissues to glucose. Meal related glucose monitoring in these patients can identify minor abnormalities in glucose disturbance and should be treated to targets similar to physiological levels of glucose in non pregnant adults.

  10. Comparative Studies on the Fungi and Bio-Chemical Characteristics of Snake Gourd (Trichosanthes curcumerina Linn) and Tomato (Lycopersicon esculentus Mill) in Rivers State, Nigeria

    NASA Astrophysics Data System (ADS)

    Chuku, E. C.; Ogbonna, D. N.; Onuegbu, B. A.; Adeleke, M. T. V.

    Comparative studies on the fungi and biochemical characteristics of Tomatoes (Lycopersicon esculentus Mill) and the Snake gourd (Trichosanthes curcumerina Linn) products were investigated in Rivers State using various analytical procedures. Results of the proximate analysis of fresh snake gourd and tomatoes show that the essential minerals such as protein, ash, fibre, lipid, phosphorus and niacin contents were higher in snake gourd but low in carbohydrate, calcium, iron, vitamins A and C when compared to the mineral fractions of tomatoes which has high values of calcium, iron, vitamins A and C. The mycoflora predominantly associated with the fruit rot of tomato were Fusarium oxysporium, Fusarium moniliforme, Rhizopus stolonifer and Aspergillus niger, while other fungi isolates from Snake gourd include Rhizopus stolonifer, Aspergillus niger, Aspergillus tamari, Penicillium ita/icum and Neurospora crassa. Rhizopus stolonifer and Aspergillus niger were common spoilage fungi to both the Tomato and Snake gourd. All the fungal isolates were found to be pathogenic. The duration for storage of the fruits at room temperature (28±1°C) showed that Tomato could store for 5 days while Snake gourd stored for as much as 7 days. Sensory evaluation shows that Snake gourd is preferred to Tomatoes because of its culinary and medicinal importance.

  11. Involvement of Ethylene in Stress-Induced Expression of the TLC1.1 Retrotransposon from Lycopersicon chilense Dun.1[w

    PubMed Central

    Tapia, Gerardo; Verdugo, Isabel; Yañez, Mónica; Ahumada, Iván; Theoduloz, Cristina; Cordero, Cecilia; Poblete, Fernando; González, Enrique; Ruiz-Lara, Simón

    2005-01-01

    The TLC1 family is one of the four families of long terminal repeat (LTR) retrotransposons identified in the genome of Lycopersicon chilense. Here, we show that this family of retroelements is transcriptionally active and its expression is induced in response to diverse stress conditions such as wounding, protoplast preparation, and high salt concentrations. Several stress-associated signaling molecules, including ethylene, methyl jasmonate, salicylic acid, and 2,4-dichlorophenoxyacetic acid, are capable of inducing TLC1 family expression in vivo. A representative of this family, named TLC1.1, was isolated from a genomic library from L. chilense. Transient expression assays in leaf protoplasts and stably transformed tobacco (Nicotiana tabacum) plants demonstrate that the U3 domain of the 5′-LTR region of this element can drive stress-induced transcriptional activation of the β-glucuronidase reporter gene. Two 57-bp tandem repeated sequences are found in this region, including an 8-bp motif, ATTTCAAA, previously identified as an ethylene-responsive element box in the promoter region of ethylene-induced genes. Expression analysis of wild-type LTR and single and double ethylene-responsive element box mutants fused to the β-glucuronidase gene shows that these elements are required for ethylene-responsive gene expression in protoplasts and transgenic plants. We suggest that ethylene-dependent signaling is the main signaling pathway involved in the regulation of the expression of the TLC1.1 element from L. chilense. PMID:16040666

  12. Surface-enhanced Raman spectroscopy of genomic DNA from in vitro grown tomato (Lycopersicon esculentum Mill.) cultivars before and after plant cryopreservation

    NASA Astrophysics Data System (ADS)

    Muntean, Cristina M.; Leopold, Nicolae; Tripon, Carmen; Coste, Ana; Halmagyi, Adela

    2015-06-01

    In this work the surface-enhanced Raman scattering (SERS) spectra of five genomic DNAs from non-cryopreserved control tomato plants (Lycopersicon esculentum Mill. cultivars Siriana, Darsirius, Kristin, Pontica and Capriciu) respectively, have been analyzed in the wavenumber range 400-1800 cm-1. Structural changes induced in genomic DNAs upon cryopreservation were discussed in detail for four of the above mentioned tomato cultivars. The surface-enhanced Raman vibrational modes for each of these cases, spectroscopic band assignments and structural interpretations of genomic DNAs are reported. We have found, that DNA isolated from Siriana cultivar leaf tissues suffers the weakest structural changes upon cryogenic storage of tomato shoot apices. On the contrary, genomic DNA extracted from Pontica cultivar is the most responsive system to cryopreservation process. Particularly, both C2‧-endo-anti and C3'-endo-anti conformations have been detected. As a general observation, the wavenumber range 1511-1652 cm-1, being due to dA, dG and dT residues seems to be influenced by cryopreservation process. These changes could reflect unstacking of DNA bases. However, not significant structural changes of genomic DNAs from Siriana, Darsirius and Kristin have been found upon cryopreservation process of tomato cultivars. Based on this work, specific plant DNA-ligand interactions or accurate local structure of DNA in the proximity of a metallic surface, might be further investigated using surface-enhanced Raman spectroscopy.

  13. Effect of ethephon on protein degradation and the accumulation of pathogensis-related (PR) proteins in tomato leaf discs. [Lycopersicon esculentum

    SciTech Connect

    Vera, P.; Conejero, V. )

    1990-01-01

    The effect of ethephon (2-chloroetylphosphonic acid) on the degradation of proteins and on the induction of Lycopersicon esculentum pathogenesis-related (PR) proteins was studied in tomato leaf discs. The rate of ribulose, -1,5-bisphosphate carboxylase/oxygenase (Rubisco) degradation was maximal in discs after 48 hours of incubation with 1 millimolar ethephon, leading to complete disappearance of Rubisco after 96 hours. This effect was correlated with an increase in PR protein synthesis and the induction of the previously reported alkaline proteolytic enzyme PR-P69. In vivo pulse-chase experiments demonstrated that ethephon not only affected Rubisco content but that of many other {sup 35}S-labeled proteins as well, indicating that ethylene activates a general and nonspecific mechanism of protein degradation. This effect was partially inhibited in vivo by the action of pCMB, a selective inhibitor of cysteine-proteinases such as P69. These data reinforce the hypothesis that P69 and perhaps other PR proteins are involved in the mechanism of accelerated protein degradation activated by ethylene.

  14. Developmental changes in antioxidant metabolites, enzymes, and pigments in fruit exocarp of four tomato (Lycopersicon esculentum Mill.) genotypes: beta-carotene, high pigment-1, ripening inhibitor, and 'Rutgers'.

    PubMed

    Torres, C A; Andrews, P K

    2006-01-01

    In surface cell layers of fleshy fruit, antioxidants must limit photooxidative reactions that generate reactive oxygen species (ROS) in high light. Our objective was to measure changes in the concentrations of antioxidant metabolites and pigments, and the activities of enzymes of the Mehler-peroxidase, ascorbate-glutathione cycle in fruit exocarp tissue under non-stress conditions of the following fruit-specific tomato (Lycopersicon esculentum Mill.=Solanum lycopersicum) mutants and their parent: (1) beta-carotene (B), (2) high pigment (hp-1), (3) ripening inhibitor (rin), and (4) the nearly isogenic wild-type 'Rutgers'. Developmental variables included days after anthesis (DAA) and fruit surface color. The highest total ascorbic acid (AsA) concentration was in the exocarp of immature green fruit of hp-1, being 32% higher than 'Rutgers'. The hp-1 mutant also had the highest chlorophyll and total carotenoid concentrations, comprised mostly of lycopene in red ripe fruit; whereas, beta-carotene comprised 90% of the carotenoids in B. Although enzyme activities varied within genotype, they generally increased with development, then decreased as fruit maturity was reached, being coupled with AsA and glutathione (GSH) concentrations. In all mutants, dark-green (DG) exocarp had more chlorophyll and protein, higher concentrations of reduced AsA and GSH, and usually lower enzyme activities than light-green (LG) exocarp taken from the same fruit.

  15. An Interspecific Backcross of Lycopersicon Esculentum X L. Hirsutum: Linkage Analysis and a Qtl Study of Sexual Compatibility Factors and Floral Traits

    PubMed Central

    Bernacchi, D.; Tanksley, S. D.

    1997-01-01

    A BC(1) population of the self-compatible tomato Lycopersicon esculentum and its wild self-incompatible relative L. hirsutum f. typicum was used for restriction fragment length polymorphism linkage analysis and quantitative trait loci (QTL) mapping of reproductive behavior and floral traits. The self-incompatibility locus, S, on chromosome 1 harbored the only QTL for self-incompatibility indicating that the transition to self-compatibility in the lineage leading to the cultivated tomato was primarily the result of mutations at the S locus. Moreover, the major QTL controlling unilateral incongruity also mapped to the S locus, supporting the hypothesis that self-incompatibility and unilateral incongruity are not independent mechanisms. The mating behavior of near-isogenic lines carrying the L. hirsutum allele for the S locus on chromosome 1 in an otherwise L. esculentum background support these conclusions. The S locus region of chromosome 1 also harbors most major QTL for several floral traits important to pollination biology (e.g., number and size of flowers), suggesting a gene complex controlling both genetic and morphological mechanisms of reproduction control. Similar associations in other flowering plants suggest that such complex may have been conserved since early periods of plant evolution or else reflect a convergent evolutionary process. PMID:9335620

  16. Tissue and Cellular Localization of Proteinase Inhibitors I and II in the Fruit of the Wild Tomato, Lycopersicon peruvianum (L.) Mill 1

    PubMed Central

    Wingate, Vincent P. M.; Franceschi, Vincent R.; Ryan, Clarence A.

    1991-01-01

    The cellular and subcellular localization of proteinase inhibitor I and inhibitor II proteins in the fruit of the wild tomato species Lycopersicon peruvianum (L.) Mill., LA 107 was determined by immunoanalysis of tissue blots and protein-A gold immunocytochemistry. Tissue blot analysis showed that the proteinase inhibitor I proteins were located throughout the fruit tissue, with the exception of the seeds. Light microscopy, using immunocytochemical labeling, indicated that all the parenchyma cells of the pericarp contained inhibitor I and II proteins in dense vacuolar protein aggregates that were not membrane bound. The size, number, and morphology of the aggregates within individual cells varied greatly. The funiculus, ovule, and early embryonic tissues were devoid of inhibitor I and II. Immunocytochemical analysis using transmission electron microscopy confirmed that the proteinase inhibitor I proteins were principally located and stored in protein aggregates within the vacuole of the fruit parenchyma cells. Some cytoplasmic protein-A gold immunolabeling of inhibitor I proteins was evident, which may be related to the synthesis and intermediate transport steps preceding storage of the inhibitor I proteins in the vacuoles. ImagesFigure 7-9Figure 3-6Figure 1Figure 2 PMID:16668425

  17. Loss of a histidine residue at the active site of S-locus ribonuclease is associated with self-compatibility in Lycopersicon peruvianum.

    PubMed Central

    Royo, J; Kunz, C; Kowyama, Y; Anderson, M; Clarke, A E; Newbigin, E

    1994-01-01

    Gametophytic self-incompatibility in the Solanaceae is controlled by a single, multiallelic locus, the S locus. We have recently described an allele of the S locus of Lycopersicon peruvianum that caused this normally self-incompatible plant to become self-compatible. We have now characterized two glycoproteins present in the styles of self-compatible and self-incompatible accessions of L. peruvianum: one is a ribonuclease that cosegregates with a functional self-incompatibility allele (S6 allele); the other cosegregates with the self-compatible allele (Sc allele) but has no ribonuclease activity. The derived amino acid sequences of the cDNAs encoding the S6 and Sc glycoproteins resemble sequences of other ribonucleases encoded by the S locus. The derived sequence for the Sc glycoprotein differs from the others by lacking one of the histidine residues found in all other S-locus ribonucleases. These findings demonstrate the essential role of ribonuclease activity in self-incompatibility and lend further weight to evidence that this histidine residue is involved in the catalytic site of the enzyme. Images PMID:8022814

  18. The second step of the biphasic endosperm cap weakening that mediates tomato (Lycopersicon esculentum) seed germination is under control of ABA.

    PubMed

    Toorop, P E; van Aelst, A C; Hilhorst, H W

    2000-08-01

    The role of abscisic acid (ABA) in the weakening of the endosperm cap prior to radicle protrusion in tomato (Lycopersicon esculentum Mill. cv. Moneymaker) seeds was studied. The endosperm cap weakened substantially in both water and ABA during the first 38 h of imbibition. After 38 h the force required for endosperm cap puncturing was arrested at 0.35 N in ABA, whereas in water a further decrease occurred until the radicle protruded. During the first 2 d of imbibition endo-beta-mannanase activity was correlated with the decrease in required puncture force and with the appearance of ice-crystal-induced porosity in the cell walls as observed by scanning electron microscopy. Prolonged incubation in ABA resulted in the loss of endo-beta-mannanase activity and the loss of ice-crystal-induced porosity, but not in a reversion of the required puncture force. ABA also had a distinct but minor effect on the growth potential of the embryo. However, endosperm cap resistance played the limiting role in the completion of germination. It was concluded that (a) endosperm cap weakening is a biphasic process and (b) inhibition of germination by ABA is through the second step in the endosperm cap weakening process.

  19. Use of an interspecific hybrid in identifying a new allelic specificity generated at the self-incompatibility locus after inbreeding in Lycopersicon peruvianum.

    PubMed

    Maheswaran, G; Perryman, T; Williams, E G

    1986-12-01

    An interspecific hybrid between Lycopersicon esculentum (♀) and L. peruvianum has been raised by embryo rescue in vitro and used to confirm the presence of a new S-allelic specificity in its inbred L. peruvianum parent, a plant derived by enforced bud self-pollination of a self-incompatible clone with the genotype S 1 S 2. The inbred plant showed breeding behavior characteristic of both S 2 and a second specificity which was not S 1, S 2, S 3 or S f. Two-dimensional gel electrophoresis of stylar proteins, however, showed only a single typical S-associated component with the Mr and pI characteristic of S2. The alteration in specificity, therefore, was not associated with a detectable change in an S-associated protein. The F1 interspecific hybrid showed intermediacy of vegetative and reproductive characters, relatively high fertility and full self-incompatibility. Backcrossing to L. esculentum produced only abortive seeds requiring embryo culture. Backcrosses to L. peruvianum produced a very low proportion of filled germinable seeds. Pollen of the hybrid showed superior viability and tube growth rate compared with pollen of the two parent plants.

  20. A genetic map of tomato based on BC(1) Lycopersicon esculentum x Solanum lycopersicoides reveals overall synteny but suppressed recombination between these homeologous genomes.

    PubMed

    Chetelat, R T; Meglic, V; Cisneros, P

    2000-02-01

    F(1) hybrids between the cultivated tomato (Lycopersicon esculentum) and the wild nightshade Solanum lycopersicoides are male sterile and unilaterally incompatible, breeding barriers that impede further crosses to tomato. Meiosis is disrupted in 2x hybrids, with reduced chiasma formation and frequent univalents, but is normal in allotetraploid hybrids, indicating the genomes are homeologous. In this study, a partially male-fertile F(1) was backcrossed to tomato, producing the first BC(1) population suitable for genetic mapping from this cross. BC(1) plants were genotyped at marker loci to study the transmission of wild alleles and to measure rates of homeologous recombination. The pattern of segregation distortion, in favor of homozygotes on chromosomes 2 and 5 and heterozygotes on chromosomes 6 and 9, suggested linkage to a small number of loci under selection on each chromosome. Genome ratios nonetheless fit Mendelian expectations. Resulting genetic maps were essentially colinear with existing tomato maps but showed an overall reduction in recombination of approximately 27%. Recombination suppression was observed for all chromosomes except 9 and 12, affected both proximal and distal regions, and was most severe on chromosome 10 (70% reduction). Recombination between markers on the long arm of this chromosome was completely eliminated, suggesting a lack of colinearity between S. lycopersicoides and L. esculentum homeologues in this region. Results are discussed with respect to phylogenetic relationships between the species and their potential use for studies of homeologous pairing and recombination in a diploid plant genome.

  1. Effects of crop development on the emission of volatiles in leaves of Lycopersicon esculentum and its inhibitory activity to Botrytis cinerea and Fusarium oxysporum.

    PubMed

    Zhang, Peng-Ying; Chen, Kao-Shan; He, Pei-Qing; Liu, Sheng-Hao; Jiang, Wan-Feng

    2008-01-01

    Volatiles emitted from the leaves of Lycopersicon esculentum at the two-, ten-leaf and anthesis periods were collected by a gas absorbing method and analyzed by gas chromatography (GC)-mass spectrometry. In total, 33 compounds of volatiles emitted from three developmental stage plants were separated and identified, and quantitatively analyzed by the internal standard addition method. All of the samples of volatile were found to be rich in monoterpenes and sesquiterpenes. beta-phellandrene and caryophyllene predominated in the volatiles of the leaves of plants at the two- and ten-leaf stages. Furthermore, (E)-2-hexenal were the dominant components in the volatiles emitted from anthesis plants. The results of volatiles analyzed show that the compositions varied depending on the developmental stages. The volatiles emitted from crushed tomato leaves of plants at the anthesis stage had the most strongly inhibitory activity against the spore germination and hyphal growth of Botrytis cinerea and Fusarium oxysporum, followed by ten- and two-leaf plants. However, the activity of volatiles, emitted from the leaves of plants at the two-leaf stage, in inhibiting F. oxysporum was greater than B. cinerea.

  2. Humic substances can modulate the allelopathic potential of caffeic, ferulic, and salicylic acids for seedlings of lettuce (Lactuca sativa L.) and tomato (Lycopersicon esculentum Mill.).

    PubMed

    Loffredo, Elisabetta; Monaci, Linda; Senesi, Nicola

    2005-11-30

    The capacity of a leonardite humic acid (LHA), a soil humic acid (SHA), and a soil fulvic acid (SFA) in modulating the allelopathic potential of caffeic acid (CA), ferulic acid (FA), and salicylic acid (SA) on seedlings of lettuce (Lactuca sativa L.) and tomato (Lycopersicon esculentum Mill.) was investigated. Lettuce showed a sensitivity greater than that of tomato to CA, FA, and SA phytotoxicity, which was significantly reduced or even suppressed in the presence of SHA or SFA, especially at the highest dose, but not LHA. In general, SFA was slightly more active than SHA, and the efficiency of the action depended on their concentration, the plant species and the organ examined, and the allelochemical. The daily measured residual concentration of CA and FA decreased drastically and that of SA slightly in the presence of germinating seeds of lettuce, which were thus able to absorb and/or enhance the degradation of CA and FA. The adsorption capacity of SHA for the three allelochemicals was small and decreased in the order FA > CA > SA, thus suggesting that adsorption could be a relevant mechanism, but not the only one, involved in the "antiallelopathic" action.

  3. Suppression of S-adenosylmethionine decarboxylase activity is a major cause for high-temperature inhibition of pollen germination and tube growth in tomato (Lycopersicon esculentum Mill.).

    PubMed

    Song, Jianjun; Nada, Kazuyoshi; Tachibana, Shoji

    2002-06-01

    Possible involvement of impaired polyamine biosynthesis in the poor performance of tomato pollen (Lycopersicon esculentum Mill.) at high temperatures was investigated. Incubation of pollen at 38 degrees C suppressed the increase of S-adenosylmethionine decarboxylase (SAMDC) activity in germinating pollen with little influence on arginine decarboxylase activity. Consequently, spermidine and spermine content in the pollen did not increase at 38 degrees C, while putrescine content increased at both 25 degrees C and 38 degrees C. High-temperature inhibition of pollen germination was alleviated by the addition of spermidine or spermine but not of putrescine to the germination medium. Cycloheximide inhibited SAMDC activity in parallel with pollen germination at 25 degrees C, whereas actinomycin D had no effect on either of them, indicating that enhanced SAMDC activity is associated with de novo protein synthesis. Incubation of crude enzyme extracts at 40 degrees C for 1 h did not affect SAMDC. In addition, high temperatures did not enhance protease activity in germinating pollen. These results indicate that low activity of SAMDC, probably due to impaired protein synthesis or functional enzyme formation, is a major cause for the poor performance of tomato pollen at high temperatures.

  4. Characterization of plant growth promoting traits of bacterial isolates from the rhizosphere of barley (Hordeum vulgare L.) and tomato (Solanum lycopersicon L.) grown under Fe sufficiency and deficiency.

    PubMed

    Scagliola, M; Pii, Y; Mimmo, T; Cesco, S; Ricciuti, P; Crecchio, C

    2016-10-01

    Plant Growth Promoting Bacteria (PGPB) are considered a promising approach to replace the conventional agricultural practices, since they have been shown to affect plant nutrient-acquisition processes by influencing nutrient availability in the rhizosphere and/or those biochemical processes determining the uptake at root level of nitrogen (N), phosphorus (P), and iron (Fe), that represent the major constraints for crop productivity worldwide. We have isolated novel bacterial strains from the rhizosphere of barley (Hordeum vulgare L.) and tomato (Solanum lycopersicon L.) plants, previously grown in hydroponic solution (either Fe deficient or Fe sufficient) and subsequently transferred onto an agricultural calcareous soil. PGPB have been identified by molecular tools and characterized for their capacity to produce siderophores and indole-3-acetic acid (IAA), and to solubilize phosphate. Selected bacterial isolates, showing contemporarily high levels of the three activities investigated, were finally tested for their capacity to induce Fe reduction in cucumber roots two isolates, from barley and tomato plants under Fe deficiency, significantly increased the root Fe-chelate reductase activity; interestingly, another isolate enhanced the reduction of Fe-chelate reductase activity in cucumber plant roots, although grown under Fe sufficiency.

  5. Lectin conjugates as biospecific contrast agents for MRI. Coupling of Lycopersicon esculentum agglutinin to linear water-soluble DTPA-loaded oligomers.

    PubMed

    Pashkunova-Martic, Irena; Kremser, Christian; Galanski, Markus; Schluga, Petra; Arion, Vladimir; Debbage, Paul; Jaschke, Werner; Keppler, Bernhard

    2011-06-01

    Magnetic resonance imaging (MRI) requires synthesis of contrast media bearing targeting groups and numerous gadolinium chelating groups generating high relaxivity. This paper explores the results of linking the gadolinium chelates to the targeting group, a protein molecule, via various types of linkers. Polycondensates of diethylenetriaminepentaacetic acid (DTPA) with either diols or diamines were synthesised and coupled to the targeting group, a lectin (Lycopersicon esculentum agglutinin, tomato lectin) which binds with high affinity to specific oligosaccharide configurations in the endothelial glycocalyx. The polycondensates bear up to four carboxylic groups per constitutive unit. Gd-chelate bonds are created through dative interactions with the unshared pair of electrons on each oxygen and nitrogen atom on DTPA. This is mandatory for complexation of Gd(III) and avoidance of the severe toxicity of free gadolinium ions. The polymer-DTPA compounds were characterised by (1)H NMR and mass spectrometry. The final lectin-DTPA-polycondensate conjugates were purified by fast protein liquid chromatography (FPLC). The capacity for specific binding was assessed, and the MRI properties were examined in order to evaluate the use of these oligomers as components of selective perfusional contrast agents.

  6. Bioefficacy, residue dynamics and safety assessment of the combination fungicide trifloxystrobin 25% + tebuconazole 50%-75 WG in managing early blight of tomato (Lycopersicon esculentum Mill.).

    PubMed

    Saha, Sujoy; Purath, Ahammed Shabeer Thekkum; Jadhav, Manjusha R; Loganathan, M; Banerjee, Kaushik; Rai, A B

    2014-01-01

    This paper reports the in vitro and in vivo bioefficacy of a combination fungicide trifloxystrobin (25%) + tebuconazole (50%) against early blight disease of tomato (Lycopersicon esculentum Mill.) caused by Alternaria solani and their corresponding pre-harvest intervals (PHI) with reference to the maximum residue limits (European Union). Bioefficacy of the test fungicide combination revealed that in vitro conditions manifested the best control (75.1%) at 350 mg kg(-1) against 76.2% control under field conditions. A sample preparation method based on ethyl acetate extraction and estimation by LC-MS multiple reaction monitoring (MRM) was validated in tomato fruits at 0.01 mg/kg and dissipation studies were conducted in field at single and double doses. The residues of both the compounds on all the sampling days were below the European Union maximum residue limits (EU-MRLs) and the maximum permissible intakes (MPIs) were calculated on the basis of prescribed acceptable daily intake (ADI). The combined bioefficacy and residue dynamics information will support label-claim of this fungicide combination for the management of early blight in tomato.

  7. Phenyl derivative of pyranocoumarin precludes Fusarium oxysporum f.sp. Lycopersici infection in Lycopersicon esculentum via induction of enzymes of the phenylpropanoid pathway.

    PubMed

    Sangeetha, S; Sarada, D V L

    2015-01-01

    Binding of phenyl derivative of pyranocoumarin (PDP) modulated activity of fungal endopolygalacturonase in silico. Induced fit docking study of PDP with endopolygalacturonase (1HG8) showed a bifurcated hydrogen bond interaction with the protein at Lys 244 with a docking score of -3.6 and glide energy of -37.30 kcal/mol. Docking with endopolygalacturonase II (1CZF) resulted hydrogen bond formation with Lys 258 with a docking score of -2.3 and glide energy of -30.42 kcal/mol. It was hypothesized that this modulation favors accumulation of cell wall fragments (oligogalacturonides) which act as elicitors of plant defense responses. In order to prove the same, in vivo studies were carried out using a formulation developed from PDP (PDP 5EC) on greenhouse grown Lycopersicon esculentum L. The formulation was effective at different concentrations in reduction of seed infection, improvement of vigor and control of Fusarium oxysporum f.sp. lycopersici infection in L. esculentum. At a concentration of 2 %, PDP 5EC significant reduction in seed infection (95.83 %), improvement in seed vigor (64.31 %) and control of F. oxysporum f.sp. lycopersici infection (96.15 %) were observed. Further application of PDP 5EC to L. esculentum challenged with F. oxysporum f.sp. lycopersici significantly increased the activity of enzymes of the phenylpropanoid pathway, namely, peroxidase (PO), polyphenol oxidase (PPO), phenylalanine ammonia lyase (PAL), and enhanced the total phenolic content when compared to the control.

  8. Antioxidant-enzyme reaction to the oxidative stress due to alpha-cypermethrin, chlorpyriphos, and pirimicarb in tomato (Lycopersicon esculentum Mill.).

    PubMed

    Chahid, Karim; Laglaoui, Amin; Zantar, Said; Ennabili, Abdeslam

    2015-11-01

    Tomato (Lycopersicon esculentum Mill.) becomes one of the world's foremost vegetables, and its world production and consumption have increased fairly quickly. The capacity to induce oxidative stress in tomato plant, exposed to three xenobiotics such as alpha-cypermethrin, chlorpyriphos, and pirimicarb, was investigated by the evaluation of lipid peroxidation by measuring malondialdehyde (MDA) rate; also, we studied the response of tomato to this stress by assessing the response of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), glutathione-s-transferase (GST), and glutathione reductase (GR). The effect of the insecticides was observed using four concentrations (25, 50, 75, and 100%) for germinating seeds and only the recommended concentration in agriculture (100%) for growing plants. Our results show an important accumulation of MDA, demonstrating the increase of lipid peroxidation in consequence of the excessive reactive oxygen species (ROS) production due to insecticide treatment. In response to this oxidative stress in tomato seedlings and plants, the activities of antioxidant-enzyme system were generally enhanced. The electrophoretic analysis showed also the apparition of new isoenzymes as the case for CAT and POD.

  9. The impact of enhanced atmospheric carbon dioxide on yield, proximate composition, elemental concentration, fatty acid and vitamin C contents of tomato (Lycopersicon esculentum).

    PubMed

    Khan, Ikhtiar; Azam, Andaleeb; Mahmood, Abid

    2013-01-01

    The global average temperature has witnessed a steady increase during the second half of the twentieth century and the trend is continuing. Carbon dioxide, a major green house gas is piling up in the atmosphere and besides causing global warming, is expected to alter the physico-chemical composition of plants. The objective of this work was to evaluate the hypothesis that increased CO(2) in the air is causing undesirable changes in the nutritional composition of tomato fruits. Two varieties of tomato (Lycopersicon esculentum) were grown in ambient (400 μmol mol(-1)) and elevated (1,000 μmol mol(-1)) concentration of CO(2) under controlled conditions. The fruits were harvested at premature and fully matured stages and analyzed for yield, proximate composition, elemental concentration, fatty acid, and vitamin C contents. The amount of carbohydrates increased significantly under the enhanced CO(2) conditions. The amount of crude protein and vitamin C, two important nutritional parameters, decreased substantially. Fatty acid content showed a mild decrease with a slight increase in crude fiber. Understandably, the effect of enhanced atmospheric CO(2) was more pronounced at the fully matured stage. Mineral contents of the fruit samples changed in an irregular fashion. Tomato fruit has been traditionally a source of vitamin C, under the experimental conditions, a negative impact of enhanced CO(2) on this source of vitamin C was observed. The nutritional quality of both varieties of tomato has altered under the CO(2) enriched atmosphere.

  10. Surface-enhanced Raman spectroscopy of genomic DNA from in vitro grown tomato (Lycopersicon esculentum Mill.) cultivars before and after plant cryopreservation.

    PubMed

    Muntean, Cristina M; Leopold, Nicolae; Tripon, Carmen; Coste, Ana; Halmagyi, Adela

    2015-06-05

    In this work the surface-enhanced Raman scattering (SERS) spectra of five genomic DNAs from non-cryopreserved control tomato plants (Lycopersicon esculentum Mill. cultivars Siriana, Darsirius, Kristin, Pontica and Capriciu) respectively, have been analyzed in the wavenumber range 400-1800 cm(-1). Structural changes induced in genomic DNAs upon cryopreservation were discussed in detail for four of the above mentioned tomato cultivars. The surface-enhanced Raman vibrational modes for each of these cases, spectroscopic band assignments and structural interpretations of genomic DNAs are reported. We have found, that DNA isolated from Siriana cultivar leaf tissues suffers the weakest structural changes upon cryogenic storage of tomato shoot apices. On the contrary, genomic DNA extracted from Pontica cultivar is the most responsive system to cryopreservation process. Particularly, both C2'-endo-anti and C3'-endo-anti conformations have been detected. As a general observation, the wavenumber range 1511-1652 cm(-1), being due to dA, dG and dT residues seems to be influenced by cryopreservation process. These changes could reflect unstacking of DNA bases. However, not significant structural changes of genomic DNAs from Siriana, Darsirius and Kristin have been found upon cryopreservation process of tomato cultivars. Based on this work, specific plant DNA-ligand interactions or accurate local structure of DNA in the proximity of a metallic surface, might be further investigated using surface-enhanced Raman spectroscopy. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. A genetic map of tomato based on BC(1) Lycopersicon esculentum x Solanum lycopersicoides reveals overall synteny but suppressed recombination between these homeologous genomes.

    PubMed Central

    Chetelat, R T; Meglic, V; Cisneros, P

    2000-01-01

    F(1) hybrids between the cultivated tomato (Lycopersicon esculentum) and the wild nightshade Solanum lycopersicoides are male sterile and unilaterally incompatible, breeding barriers that impede further crosses to tomato. Meiosis is disrupted in 2x hybrids, with reduced chiasma formation and frequent univalents, but is normal in allotetraploid hybrids, indicating the genomes are homeologous. In this study, a partially male-fertile F(1) was backcrossed to tomato, producing the first BC(1) population suitable for genetic mapping from this cross. BC(1) plants were genotyped at marker loci to study the transmission of wild alleles and to measure rates of homeologous recombination. The pattern of segregation distortion, in favor of homozygotes on chromosomes 2 and 5 and heterozygotes on chromosomes 6 and 9, suggested linkage to a small number of loci under selection on each chromosome. Genome ratios nonetheless fit Mendelian expectations. Resulting genetic maps were essentially colinear with existing tomato maps but showed an overall reduction in recombination of approximately 27%. Recombination suppression was observed for all chromosomes except 9 and 12, affected both proximal and distal regions, and was most severe on chromosome 10 (70% reduction). Recombination between markers on the long arm of this chromosome was completely eliminated, suggesting a lack of colinearity between S. lycopersicoides and L. esculentum homeologues in this region. Results are discussed with respect to phylogenetic relationships between the species and their potential use for studies of homeologous pairing and recombination in a diploid plant genome. PMID:10655236

  12. Biosynthesis of 14C-phytoene from tomato cell suspension cultures (Lycopersicon esculentum) for utilization in prostate cancer cell culture studies.

    PubMed

    Campbell, Jessica K; Rogers, Randy B; Lila, Mary Ann; Erdman, John W

    2006-02-08

    This work describes the development and utilization of a plant cell culture production approach to biosynthesize and radiolabel phytoene and phytofluene for prostate cancer cell culture studies. The herbicide norflurazon was added to established cell suspension cultures of tomato (Lycopersicon esculentum cv. VFNT cherry), to induce the biosynthesis and accumulation of the lycopene precursors, phytoene and phytofluene, in their natural isomeric forms (15-cis-phytoene and two cis-phytofluene isomers). Norflurazon concentrations, solvent carrier type and concentration, and duration of culture exposure to norflurazon were screened to optimize phytoene and phytofluene synthesis. Maximum yields of both phytoene and phytofluene were achieved after 7 days of treatment with 0.03 mg norflurazon/40 mL fresh medium, provided in 0.07% solvent carrier. Introduction of 14C-sucrose to the tomato cell culture medium enabled the production of 14C-labeled phytoene for subsequent prostate tumor cell uptake studies. In DU 145 prostate tumor cells, it was determined that 15-cis-phytoene and an oxidized product of phytoene were taken up and partially metabolized by the cells. The ability to biosynthesize, radiolabel, and isolate these carotenoids from tomato cell cultures is a novel, valuable methodology for further in vitro and in vivo investigations into the roles of phytoene and phytofluene in cancer chemoprevention.

  13. Leaf and root pectin methylesterase activity and 13C/12C stable isotopic ratio measurements of methanol emissions give insight into methanol production in Lycopersicon esculentum.

    PubMed

    Oikawa, Patricia Yoshino; Giebel, Brian M; Sternberg, Leonel da Silveira Lobo O'Reilly; Li, Lei; Timko, Michael P; Swart, Peter K; Riemer, Daniel D; Mak, John E; Lerdau, Manuel T

    2011-09-01

    Plant production of methanol (MeOH) is a poorly understood aspect of metabolism, and understanding MeOH production in plants is crucial for modeling MeOH emissions. Here, we have examined the source of MeOH emissions from mature and immature leaves and whether pectin methylesterase (PME) activity is a good predictor of MeOH emission. We also investigated the significance of below-ground MeOH production for mature leaf emissions. We present measurements of MeOH emission, PME activity, and MeOH concentration in mature and immature tissues of tomato (Lycopersicon esculentum). We also present stable carbon isotopic signatures of MeOH emission and the pectin methoxyl pool. Our results suggest that below-ground MeOH production was not the dominant contributor to daytime MeOH emissions from mature and immature leaves. Stable carbon isotopic signatures of mature and immature leaf MeOH were similar, suggesting that they were derived from the same pathway. Foliar PME activity was related to MeOH flux, but unexplained variance suggested PME activity could not predict emissions. The data show that MeOH production and emission are complex and cannot be predicted using PME activity alone. We hypothesize that substrate limitation of MeOH synthesis and MeOH catabolism may be important regulators of MeOH emission.

  14. Glucose metabolism and cardiac hypertrophy

    PubMed Central

    Kolwicz, Stephen C.; Tian, Rong

    2011-01-01

    The most notable change in the metabolic profile of hypertrophied hearts is an increased reliance on glucose with an overall reduced oxidative metabolism, i.e. a reappearance of the foetal metabolic pattern. In animal models, this change is attributed to the down-regulation of the transcriptional cascades promoting gene expression for fatty acid oxidation and mitochondrial oxidative phosphorylation in adult hearts. Impaired myocardial energetics in cardiac hypertrophy also triggers AMP-activated protein kinase (AMPK), leading to increased glucose uptake and glycolysis. Aside from increased reliance on glucose as an energy source, changes in other glucose metabolism pathways, e.g. the pentose phosphate pathway, the glucosamine biosynthesis pathway, and anaplerosis, are also noted in the hypertrophied hearts. Studies using transgenic mouse models and pharmacological compounds to mimic or counter the switch of substrate preference in cardiac hypertrophy have demonstrated that increased glucose metabolism in adult heart is not harmful and can be beneficial when it provides sufficient fuel for oxidative metabolism. However, improvement in the oxidative capacity and efficiency rather than the selection of the substrate is likely the ultimate goal for metabolic therapies. PMID:21502371

  15. Ketones suppress brain glucose consumption.

    PubMed

    LaManna, Joseph C; Salem, Nicolas; Puchowicz, Michelle; Erokwu, Bernadette; Koppaka, Smruta; Flask, Chris; Lee, Zhenghong

    2009-01-01

    The brain is dependent on glucose as a primary energy substrate, but is capable of utilizing ketones such as beta-hydroxybutyrate (beta HB) and acetoacetate (AcAc), as occurs with fasting, prolonged starvation or chronic feeding of a high fat/low carbohydrate diet (ketogenic diet). In this study, the local cerebral metabolic rate of glucose consumption (CMRglu; microM/min/100g) was calculated in the cortex and cerebellum of control and ketotic rats using Patlak analysis. Rats were imaged on a rodent PET scanner and MRI was performed on a 7-Tesla Bruker scanner for registration with the PET images. Plasma glucose and beta HB concentrations were measured and 90-minute dynamic PET scans were started simultaneously with bolus injection of 2-Deoxy-2[18F]Fluoro-D-Glucose (FDG). The blood radioactivity concentration was automatically sampled from the tail vein for 3 min following injection and manual periodic blood samples were taken. The calculated local CMRGlu decreased with increasing plasma BHB concentration in the cerebellum (CMRGlu = -4.07*[BHB] + 61.4, r2 = 0.3) and in the frontal cortex (CMRGlu = -3.93*[BHB] + 42.7, r2 = 0.5). These data indicate that, under conditions of ketosis, glucose consumption is decreased in the cortex and cerebellum by about 10% per each mM of plasma ketone bodies.

  16. Abnormal oral glucose tolerance and glucose malabsorption after vagotomy and pyloroplasty. A tracer method for measuring glucose absorption rates

    SciTech Connect

    Radziuk, J.; Bondy, D.C.

    1982-11-01

    The mechanisms underlying the abnormal glucose tolerance in patients who had undergone vagotomy and pyloroplasty were investigated by measuring the rates of absorption of ingested glucose and the clearance rate of glucose using tracer methods. These methods are based on labeling a 100-g oral glucose load with (1-/sup 14/C)glucose and measuring glucose clearance using plasma levels of infused (3-/sup 3/H)glucose. The rate of appearance of both ingested and total glucose is then calculated continuously using a two-compartment model of glucose kinetics. It was found that about 30% of the ingested glucose (100 g) failed to appear in the systemic circulation. That this was due to malabsorption was confirmed using breath-hydrogen analysis. The absorption period is short (101 +/- 11 min) compared with normal values but the clearance of glucose is identical to that in control subjects, and it peaks 132 +/- 7 min after glucose loading. The peak plasma insulin values were more than four times higher in patients than in normal subjects, and this may afford an explanation of rates of glucose clearance that are inappropriate for the short absorption period. The combination of glucose malabsorption and this clearance pattern could yield the hypoglycemia that may be observed in patients after gastric surgery.

  17. Glucose, glycolysis and lymphocyte responses.

    PubMed

    Donnelly, Raymond P; Finlay, David K

    2015-12-01

    Activated lymphocytes engage in robust growth and rapid proliferation. To achieve this, they tend to adopt a form of glucose metabolism termed aerobic glycolysis. This type of metabolism allows for the use of large amounts of glucose to generate energy, but also to support biosynthetic processes. This review article will discuss how aerobic glycolysis supports the biosynthetic demands of activated T cells, B cells and Natural Killer cells, and the emerging concept that glycolysis is integrally linked to the differentiation and function of these lymphocyte populations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Glucose oxidation positively regulates glucose uptake and improves cardiac function recovery after myocardial reperfusion.

    PubMed

    Li, Tingting; Xu, Jie; Qin, Xinghua; Hou, Zuoxu; Guo, Yongzheng; Liu, Zhenhua; Wu, Jianjiang; Zheng, Hong; Zhang, Xing; Gao, Feng

    2017-03-21

    Myocardial reperfusion decreases glucose oxidation and uncouples glucose oxidation from glycolysis. Therapies that increase glucose oxidation lessen myocardial ischemia/reperfusion injury. However, the regulation of glucose uptake during reperfusion remains poorly understood. Here we found that glucose uptake was remarkably diminished in myocardium following reperfusion in Sprague-Dawley rats as detected by 18F-labeled and fluorescent-labeled glucose analogs, even though GLUT1 was upregulated by 3 folds and GLUT4 translocation remained unchanged compared with those of sham rats. The decreased glucose uptake was accompanied by suppressed glucose oxidation. Interestingly, stimulating glucose oxidation by inhibition of pyruvate dehydrogenase kinase 4 (PDK4), a rate-limiting enzyme for glucose oxidation, increased glucose uptake and alleviated ischemia/reperfusion injury. In vitro data in neonatal myocytes showed that PDK4 overexpression decreased glucose uptake, while its knockdown increased glucose uptake, suggesting a role of PDK4 in regulating glucose uptake. Moreover, inhibition of PDK4 increased myocardial glucose uptake with concomitant enhancement of cardiac insulin sensitivity following myocardial ischemia/reperfusion. These results showed that the suppressed glucose oxidation mediated by PDK4 contributes to the reduced glucose uptake in myocardium following reperfusion, and enhancement of glucose uptake exerts cardioprotection. The findings suggest that stimulating glucose oxidation via PDK4 could be an efficient approach to improve recovery from myocardial ischemia/reperfusion injury.

  19. Glycolysis Controls Plasma Membrane Glucose Sensors To Promote Glucose Signaling in Yeasts

    PubMed Central

    Cairey-Remonnay, Amélie; Deffaud, Julien; Wésolowski-Louvel, Micheline; Lemaire, Marc

    2014-01-01

    Sensing of extracellular glucose is necessary for cells to adapt to glucose variation in their environment. In the respiratory yeast Kluyveromyces lactis, extracellular glucose controls the expression of major glucose permease gene RAG1 through a cascade similar to the Saccharomyces cerevisiae Snf3/Rgt2/Rgt1 glucose signaling pathway. This regulation depends also on intracellular glucose metabolism since we previously showed that glucose induction of the RAG1 gene is abolished in glycolytic mutants. Here we show that glycolysis regulates RAG1 expression through the K. lactis Rgt1 (KlRgt1) glucose signaling pathway by targeting the localization and probably the stability of Rag4, the single Snf3/Rgt2-type glucose sensor of K. lactis. Additionally, the control exerted by glycolysis on glucose signaling seems to be conserved in S. cerevisiae. This retrocontrol might prevent yeasts from unnecessary glucose transport and intracellular glucose accumulation. PMID:25512610

  20. Glucose Sensing Neurons in the Ventromedial Hypothalamus

    PubMed Central

    Routh, Vanessa H.

    2010-01-01

    Neurons whose activity is regulated by glucose are found in a number of brain regions. Glucose-excited (GE) neurons increase while glucose-inhibited (GI) neurons decrease their action potential frequency as interstitial brain glucose levels increase. We hypothesize that these neurons evolved to sense and respond to severe energy deficit (e.g., fasting) that threatens the brains glucose supply. During modern times, they are also important for the restoration of blood glucose levels following insulin-induced hypoglycemia. Our data suggest that impaired glucose sensing by hypothalamic glucose sensing neurons may contribute to the syndrome known as hypoglycemia-associated autonomic failure in which the mechanisms which restore euglycemia following hypoglycemia become impaired. On the other hand, increased responses of glucose sensing neurons to glucose deficit may play a role in the development of Type 2 Diabetes Mellitus and obesity. This review will discuss the mechanisms by which glucose sensing neurons sense changes in interstitial glucose and explore the roles of these specialized glucose sensors in glucose and energy homeostasis. PMID:22022208

  1. Nutritional composition and antioxidant activity of four tomato (Lycopersicon esculentum L.) farmer' varieties in Northeastern Portugal homegardens.

    PubMed

    Pinela, José; Barros, Lillian; Carvalho, Ana Maria; Ferreira, Isabel C F R

    2012-03-01

    The nutritional and antioxidant composition of four tomato Portuguese farmer' varieties widely cultivated in homegardens was determined. The analysed components included macronutrients, individual profiles of sugars and fatty acids by chromatographic techniques, hydrophilic antioxidants such as vitamin C, phenolics, flavonols and anthocyanins, and lipophilic antioxidants such as tocopherols, β-carotene and lycopene. Furthermore, the antioxidant activity was evaluated through DPPH scavenging activity, reducing power, β-carotene bleaching inhibition and TBARS formation inhibition. One of the four varieties, which is locally known as round tomato or potato tomato, proved to be the most powerful in antioxidant activity (EC50 values≤1.63 mg/ml), phenolic compounds (phenolics 31.23 mg ClAE/g extract, flavonols 6.36 mg QE/g extract and anthocyanins 3.45 mg ME/g extract) and carotenoids (β-carotene 0.51 mg/100 g and lycopene 9.49 mg/100 g), while the so-called yellow tomato variety revealed interesting nutritional composition, including higher fructose (3.42 g/100 g), glucose (3.18 g/100 g), α-linolenic acid (15.53%) and total tocopherols (1.44 mg/100 g) levels. Overall, these farmer' varieties of garden tomato cultivated in the Northeastern Portuguese region could contribute as sources of important antioxidants related to the prevention of chronic diseases associated to oxidative stress, such as cancer and coronary artery disease. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Glucose-6-Phosphate Dehydrogenase Revisited

    PubMed Central

    O'Connell, Jerome T.; Henderson, Alfred R.

    1984-01-01

    Hemolytic diseases associated with drugs have been recognized since antiquity. Many of these anemias have been associated with oxidizing agents and deficiencies in the intraerythrocytic enzyme glucose-6-phosphate dehydrogenase. This paper outlines the discovery, prevalence, and variants of this enzyme. Methods of diagnosis of associated anemias are offered. PMID:6502728

  3. Glucose polymer regimens and hypernatraemia.

    PubMed Central

    Verber, I G; Bain, M

    1990-01-01

    A 3 year old boy who had glutaric aciduria diagnosed at 22 months of age was admitted with a history of lethargy, vomiting, and fever. He had been receiving glucose polymers as part of his dietary management. He was severely hypernatraemic, but after resuscitation and rehydration made a good recovery. The possible aetiology of his hypernatraemia is discussed. PMID:2378522

  4. Hepatocytes: critical for glucose homeostasis.

    PubMed

    Klover, Peter J; Mooney, Robert A

    2004-05-01

    Maintaining blood glucose levels within a narrow range is a critical physiological function requiring multiple metabolic pathways and involving several cell types, including a prominent role for hepatocytes. Under hormonal control, hepatocytes can respond to either feeding or fasting conditions by storing or producing glucose as necessary. In the fasting state, the effects of glucagon avoid hypoglycemia by stimulating glucogenesis and glycogenolysis and initiating hepatic glucose release. Postprandially, insulin prevents hyperglycemia, in part, by suppressing hepatic gluconeogenesis and glycogenolysis and facilitating hepatic glycogen synthesis. Both transcriptional regulation of rate limiting enzymes and modulation of enzyme activity through phosphorylation and allosteric regulation are involved. Type 2 diabetes mellitus is the most common serious metabolic condition in the world, and results from a subnormal response of tissues to insulin (insulin resistance) and a failure of the insulin-secreting beta cells to compensate. In type 2 diabetes, glucose is overproduced by the hepatocyte and is ineffectively metabolized by other organs. Impairments in the insulin signal transduction pathway appear to be critical lesions contributing to insulin resistance and type 2 diabetes.

  5. Near patient blood glucose monitoring.

    PubMed

    Laposata, M; Lewandrowski, K B

    1995-10-01

    This report describes the quality control and quality assurance programs for bedside glucometry at our institution. From our 3-year experience, a regular schedule of inspections is necessary for maintenance of high-quality bedside glucose testing. The most common violation of quality control/quality assurance in bedside glucometry in our institution was the failure to perform regular proficiency testing, in which one random patient's bedside capillary blood glucose value during each inspection period was compared to his or her venous plasma or serum glucose value obtained from the central laboratory. Failure to perform instrument maintenance and document operator certification were the next most common violations of quality control/quality assurance in our bedside glucometry program. Regarding the cost analysis for bedside glucometry, we conclude that bedside glucose testing is not inherently more expensive than testing performed within the clinical laboratory. The increased cost of bedside glucometry over laboratory testing can be significantly minimized by involvement of a limited number of health care workers and performance of bedside glucometry only on clinical units where testing is required more than five times per day.

  6. Modeling the glucose sensor error.

    PubMed

    Facchinetti, Andrea; Del Favero, Simone; Sparacino, Giovanni; Castle, Jessica R; Ward, W Kenneth; Cobelli, Claudio

    2014-03-01

    Continuous glucose monitoring (CGM) sensors are portable devices, employed in the treatment of diabetes, able to measure glucose concentration in the interstitium almost continuously for several days. However, CGM sensors are not as accurate as standard blood glucose (BG) meters. Studies comparing CGM versus BG demonstrated that CGM is affected by distortion due to diffusion processes and by time-varying systematic under/overestimations due to calibrations and sensor drifts. In addition, measurement noise is also present in CGM data. A reliable model of the different components of CGM inaccuracy with respect to BG (briefly, "sensor error") is important in several applications, e.g., design of optimal digital filters for denoising of CGM data, real-time glucose prediction, insulin dosing, and artificial pancreas control algorithms. The aim of this paper is to propose an approach to describe CGM sensor error by exploiting n multiple simultaneous CGM recordings. The model of sensor error description includes a model of blood-to-interstitial glucose diffusion process, a linear time-varying model to account for calibration and sensor drift-in-time, and an autoregressive model to describe the additive measurement noise. Model orders and parameters are identified from the n simultaneous CGM sensor recordings and BG references. While the model is applicable to any CGM sensor, here, it is used on a database of 36 datasets of type 1 diabetic adults in which n = 4 Dexcom SEVEN Plus CGM time series and frequent BG references were available simultaneously. Results demonstrates that multiple simultaneous sensor data and proper modeling allow dissecting the sensor error into its different components, distinguishing those related to physiology from those related to technology.

  7. Identification of QTLs for early blight ( Alternaria solani) resistance in tomato using backcross populations of a Lycopersicon esculentum x L. hirsutum cross.

    PubMed

    Foolad, R.; Zhang, P.; Khan, A. A.; Niño-Liu, D.; Lin, Y.

    2002-05-01

    Most commercial cultivars of tomato, Lycopersicon esculentum Mill., are susceptible to early blight (EB), a devastating fungal ( Alternaria solani Sorauer) disease of tomato in the northern and eastern parts of the U.S. and elsewhere in the world. The disease causes plant defoliation, which reduces yield and fruit quality, and contributes to significant crop loss. Sources of resistance have been identified within related wild species of tomato. The purpose of this study was to identify and validate quantitative trait loci (QTLs) for EB resistance in backcross populations of a cross between a susceptible tomato breeding line (NC84173; maternal and recurrent parent) and a resistant Lycopersicon hirsutum Humb. and Bonpl. accession (PI126445). Sixteen hundred BC(1) plants were grown to maturity in a field in 1998. Plants that were self-incompatible, indeterminant in growth habit, and/or extremely late in maturity, were discarded in order to eliminate confounding effects of these factors on disease evaluation, QTL mapping, and future breeding research. The remaining 145 plants (referred to as the BC(1) population) were genotyped for 141 restriction fragment length polymorphism (RFLP) markers and 23 resistance gene analogs (RGAs), and a genetic linkage map was constructed. BC(1) plants were evaluated for disease symptoms throughout the season, and the area under the disease progress curve (AUDPC) and the final percent defoliation (disease severity) were determined for each plant. BC(1) plants were self-pollinated and produced BC(1)S(1) seed. The BC(1)S(1) population, consisting of 145 BC(1)S(1) families, was grown and evaluated for disease symptoms in replicated field trials in two subsequent years (1999 and 2000) and AUDPC and/or final percent defoliation were determined for each family in each year. Two QTL mapping approaches, simple interval mapping (SIM) and composite interval mapping (CIM), were used to identify QTLs for EB resistance in the BC(1) and BC(1)S(1

  8. Glucose sensing by means of silicon photonics

    NASA Astrophysics Data System (ADS)

    Bockstaele, Ronny; Ryckeboer, Eva; Hattasan, Nannicha; De Koninck, Yannick; Muneeb, Muhammad; Verstuyft, Steven; Delbeke, Danaë; Bogaerts, Wim; Roelkens, Gunther; Baets, Roel

    2014-03-01

    Diabetes is a fast growing metabolic disease, where the patients suffer from disordered glucose blood levels. Monitoring the blood glucose values in combination with extra insulin injection is currently the only therapy to keep the glucose concentration in diabetic patients under control, minimizing the long-term effects of elevated glucose concentrations and improving quality of life of the diabetic patients. Implantable sensors allow continuous glucose monitoring, offering the most reliable data to control the glucose levels. Infrared absorption spectrometers offer a non-chemical measurement method to determine the small glucose concentrations in blood serum. In this work, a spectrometer platform based on silicon photonics is presented, allowing the realization of very small glucose sensors suitable for building implantable sensors. A proof-of-concept of a spectrometer with integrated evanescent sample interface is presented, and the route towards a fully implantable spectrometer is discussed.

  9. Genetics Home Reference: glucose phosphate isomerase deficiency

    MedlinePlus

    ... Me Understand Genetics Home Health Conditions GPI deficiency glucose phosphate isomerase deficiency Enable Javascript to view the ... boxes. Download PDF Open All Close All Description Glucose phosphate isomerase (GPI) deficiency is an inherited disorder ...

  10. Glucose Sensing for Diabetes Monitoring: Recent Developments

    PubMed Central

    Bruen, Danielle; Delaney, Colm; Florea, Larisa

    2017-01-01

    This review highlights recent advances towards non-invasive and continuous glucose monitoring devices, with a particular focus placed on monitoring glucose concentrations in alternative physiological fluids to blood. PMID:28805693

  11. Glucose Effect in the Acute Porphyrias

    MedlinePlus

    ... You are here Home Diet and Nutrition The glucose effect in acute porphyrias The disorders Acute Intermittent ... are treated initially with the administration of carbohydrate/glucose. This therapy has its basis in the ability ...

  12. Effect of Two Plant Species, Flax (Linum usitatissinum L.) and Tomato (Lycopersicon esculentum Mill.), on the Diversity of Soilborne Populations of Fluorescent Pseudomonads

    PubMed Central

    Lemanceau, P.; Corberand, T.; Gardan, L.; Latour, X.; Laguerre, G.; Boeufgras, J.; Alabouvette, C.

    1995-01-01

    Suppression of soilborne disease by fluorescent pseudomonads may be inconsistent. Inefficient root colonization by the introduced bacteria is often responsible for this inconsistency. To better understand the bacterial traits involved in root colonization, the effect of two plant species, flax (Linum usitatissinum L.) and tomato (Lycopersicon esculentum Mill.), on the diversity of soilborne populations was assessed. Fluorescent pseudomonads were isolated from an uncultivated soil and from rhizosphere, rhizoplane, and root tissue of flax and tomato cultivated in the same soil. Species and biovars were identified by classical biochemical and physiological tests. The ability of bacterial isolates to assimilate 147 different organic compounds and to show three different enzyme activities was assessed to determine their intraspecific phenotypic diversity. Numerical analysis of these characteristics allowed the clustering of isolates showing a high level (87.8%) of similarity. On the whole, the populations isolated from soil were different from those isolated from plants with respect to their phenotypic characteristics. The difference in bacteria isolated from uncultivated soil and from root tissue of flax was particularly marked. The intensity of plant selection was more strongly expressed with flax than with tomato plants. The selection was, at least partly, plant specific. The use of 10 different substrates allowed us to discriminate between flax and tomato isolates. Pseudomonas fluorescens biovars II, III, and V and Pseudomonas putida biovar A and intermediate type were well distributed among the isolates from soil, rhizosphere, and rhizoplane. Most isolates from root tissue of flax and tomato belonged to P. putida bv. A and to P. fluorescens bv. II, respectively. Phenotypic characterization of bacterial isolates was well correlated with genotypic characterization based on repetitive extragenic palindromic PCR fingerprinting. PMID:16534950

  13. 5alpha-Reductase activity in Lycopersicon esculentum: cloning and functional characterization of LeDET2 and evidence of the presence of two isoenzymes.

    PubMed

    Rosati, Fabiana; Bardazzi, Irene; De Blasi, Paola; Simi, Lisa; Scarpi, Dina; Guarna, Antonio; Serio, Mario; Racchi, Milvia L; Danza, Giovanna

    2005-08-01

    The full-length cDNA (LeDET2) encoding a 257 amino acid protein homolog of Arabidopsis DET2 (AtDET2) was isolated in tomato (Lycopersicon esculentum). LeDET2 has 76% similarity with AtDET2 and structural characteristics conserved among plant and mammalian steroid 5alpha-reductases (5alphaRs). LeDET2 is ubiquitously expressed in tomato tissues with higher levels in leaf than in stem, root, seed and callus. When expressed in mammalian cells (COS-7), recombinant LeDET2 was active on substrates typical of mammalian 5alphaRs (progesterone, testosterone, androstenedione), but reduced at very low levels campestenone, the substrate described for AtDET2. Similar results were obtained with the expression in COS-7 of recombinant AtDET2 that showed 5alphaR activity for progesterone and not for campestenone. Recombinant LeDET2 was inhibited by several inhibitors of the human 5alphaRs and the application of an active inhibitor to tomato seedlings induced dwarfism and morphological changes similar to BR-deficient mutants. In tomato tissues, campestenone was 5alpha-reduced in leaf, stem and root homogenates, like progesterone and testosterone, while androstenedione was converted to testosterone, evidencing for the first time a 17beta-hydroxysteroid dehydrogenase activity in plants. Moreover, two separate 5alphaR activities with different kinetic characteristic and response to inhibitors were characterized in tomato tissues. The presence of two 5alphaR isoenzymes was demonstrated also in Arabidopsis using the det2-1 mutant, in which a residual 5alphaR activity for campestenone and progesterone was evidenced and characterized. Therefore, the existence of two isoenzymes of 5alphaR is probably characteristic of the whole plant kingdom highlighting the similarities between the animal and plant steroid biosynthetic pathways.

  14. Gas chromatography-mass spectrometry with solid-phase microextraction method for determination of methyl salicylate and other volatile compounds in leaves of Lycopersicon esculentum.

    PubMed

    Deng, Chunhui; Zhang, Xiangmin; Zhu, Weimin; Qian, Ji

    2004-01-01

    Methyl salicylate (MeSA) in many plants is a important signaling compound, which plays an important role in a pathogen-induced defense response. In this paper, gas chromatography-mass spectrometry (GC-MS) with headspace solid-phase microextraction (HS-SPME) was developed for determination of MeSA and other volatile compounds in leaves of a tomato plant (Lycopersicon esculentum). Tomato leaves were ground under liquid nitrogen and sampled by HS-SPME, with a 100 microm polydimethylsiloxane fiber, and finally analyzed by GC-MS. Eighteen compounds in the leaves of tomato plant infested by tobacco mosaic virus (TMV) were separated and identified, among them MeSA, which was quantitatively analyzed by the standard addition method. MeSA concentrations higher than 2.0 microg g(-1) fresh weight accumulated in leaves of TMV-infested tomato plant as the defense response to TMV. A similar concentration of MeSA in the leaves of MeSA-treated tomato plant was also found. No MeSA in leaves of control tomato plant was detected. These findings suggest that MeSA might be a signaling compound in the tomato plant response to TMV. The present method for determination of MeSA required only simple sample preparation and no organic solvent, and provided an excellent relative standard deviation of less than 5.0% and a low detection limit of 10 ng g(-1) fresh weight for MeSA. These results show that GC-MS-HS-SPME is a simple, rapid and sensitive method for determination of MeSA and other plant-signaling compounds in plant tissues.

  15. Long-distance signals regulating stomatal conductance and leaf growth in tomato (Lycopersicon esculentum) plants subjected to partial root-zone drying.

    PubMed

    Sobeih, Wagdy Y; Dodd, Ian C; Bacon, Mark A; Grierson, Donald; Davies, William J

    2004-11-01

    Tomato (Lycopersicon esculentum Mill. cv. Ailsa Craig) plants were grown with roots split between two soil columns. After plant establishment, water was applied daily to one (partial root-zone drying-PRD) or both (well-watered control-WW) columns. Water was withheld from the other column in the PRD treatment, to expose some roots to drying soil. Soil and plant water status were monitored daily and throughout diurnal courses. Over 8 d, there were no treatment differences in leaf water potential (psileaf) even though soil moisture content of the upper 6 cm (theta) of the dry column in the PRD treatment decreased by up to 70%. Stomatal conductance (gs) of PRD plants decreased (relative to WW plants) when of the dry column decreased by 45%. Such closure coincided with increased xylem sap pH and did not require increased xylem sap abscisic acid (ABA) concentration ([X-ABA]). Detached leaflet ethylene evolution of PRD plants increased when of the dry column decreased by 55%, concurrent with decreased leaf elongation. The physiological significance of enhanced ethylene evolution of PRD plants was examined using a transgenic tomato (ACO1AS) with low stress-induced ethylene production. In response to PRD, ACO1AS and wild-type plants showed similar xylem sap pH, [X-ABA] and gs, but ACO1AS plants showed neither enhanced ethylene evolution nor significant reductions in leaf elongation. Combined use of genetic technologies to reduce ethylene production and agronomic technologies to sustain water status (such as PRD) may sustain plant growth under conditions where yield would otherwise be significantly reduced.

  16. Germacrene C synthase from Lycopersicon esculentum cv. VFNT Cherry tomato: cDNA isolation, characterization, and bacterial expression of the multiple product sesquiterpene cyclase

    PubMed Central

    Colby, Sheila M.; Crock, John; Dowdle-Rizzo, Barbara; Lemaux, Peggy G.; Croteau, Rodney

    1998-01-01

    Germacrene C was found by GC-MS and NMR analysis to be the most abundant sesquiterpene in the leaf oil of Lycopersicon esculentum cv. VFNT Cherry, with lesser amounts of germacrene A, guaia-6,9-diene, germacrene B, β-caryophyllene, α-humulene, and germacrene D. Soluble enzyme preparations from leaves catalyzed the divalent metal ion-dependent cyclization of [1-3H]farnesyl diphosphate to these same sesquiterpene olefins, as determined by radio-GC. To obtain a germacrene synthase cDNA, a set of degenerate primers was constructed based on conserved amino acid sequences of related terpenoid cyclases. With cDNA prepared from leaf epidermis-enriched mRNA, these primers amplified a 767-bp fragment that was used as a hybridization probe to screen the cDNA library. Thirty-one clones were evaluated for functional expression of terpenoid cyclase activity in Escherichia coli by using labeled geranyl, farnesyl, and geranylgeranyl diphosphates as substrates. Nine cDNA isolates expressed sesquiterpene synthase activity, and GC-MS analysis of the products identified germacrene C with smaller amounts of germacrene A, B, and D. None of the expressed proteins was active with geranylgeranyl diphosphate; however, one truncated protein converted geranyl diphosphate to the monoterpene limonene. The cDNA inserts specify a deduced polypeptide of 548 amino acids (Mr = 64,114), and sequence comparison with other plant sesquiterpene cyclases indicates that germacrene C synthase most closely resembles cotton δ-cadinene synthase (50% identity). PMID:9482865

  17. Identification and quantification of stilbenes in fruits of transgenic tomato plants (Lycopersicon esculentum Mill.) by reversed phase HPLC with photodiode array and mass spectrometry detection.

    PubMed

    Nicoletti, Isabella; De Rossi, Antonella; Giovinazzo, Giovanna; Corradini, Danilo

    2007-05-02

    Reversed-phase high-performance liquid chromatography (RP-HPLC) with photodiode array (PDA) and mass spectrometry (MS) detection was employed to study the accumulation of stilbenes and other naturally occurring polyphenol intermediates of flavonoid pathway in tomato fruits of plants genetically modified to synthesize resveratrol. The transgenic tomato fruits were obtained by overexpression of a grapevine gene encoding the enzyme stilbene synthase in tomato plants (Lycopersicon esculentum Mill.). Stilbenes and flavonoids, either glycosylated or free, were simultaneosly identified by electrospray interface (ESI)-MS in negative ionization mode and were quantified by PDA detection at the wavelength corresponding to their maximum absorbance. The two detectors were coupled online with an HPLC system utilizing a narrow-bore C18 reversed-phase column, which was eluted by a multistep gradient of increasing concentration of acetonitrile in water containing 0.5% (v/v) formic acid. The results of these analysis revealed that the genetic modification of the tomato plants originated different levels of accumulation of four stilbenes (i.e., trans- and cis-piceid and trans- and cis-resveratrol) in their fruit depending on the stages of ripening. Either at immature or at mature stages of ripening the stilbenes were preferentially accumulated in the fruit peel as the glycosylated form. The highest amount of trans-piceid and trans-resveratrol were found in the peel of fruits harvested at mature stage of ripening. The variations in the levels of rutin, naringenin, and chlorogenic acid found in the samples extracted from the fruits of transgenic tomato plants, in comparison to that determined in the control lines, seemed to be related to the genetic transformation, whose effect on the flavonoid biosynthetic pathway needs to be elucidated by additional studies.

  18. Two isoforms of the A subunit of the vacuolar H(+)-ATPase in Lycopersicon esculentum: highly similar proteins but divergent patterns of tissue localization.

    PubMed

    Bageshwar, Umesh K; Taneja-Bageshwar, Suparna; Moharram, Hisham M; Binzel, Marla L

    2005-02-01

    The plant vacuolar H(+)-translocating ATPase (V-ATPase, EC 3.6.1.34) generates a H+ electro-chemical gradient across the tonoplast membrane. We isolated two full-length cDNA clones (VHA-A1 and VHA-A2) from tomato (Lycopersicon esculentum Mill. cv. Large Cherry Red) coding for two isoforms of the V-ATPase catalytic subunit (V-ATPases A1 and A2). The cDNA clones encoding the two isoforms share 90% identity at the nucleotide level and 96% identity at the amino acid level. The 5'- and 3'-untranslated regions, however, are highly diverse. Both V-ATPase A1 and A2 isoforms encode polypeptides of 623 amino acids, with calculated molecular masses of 68,570 and 68,715, respectively. The expression of VHA-A1 and accumulation of V-ATPase A1 polypeptide were ubiquitous in all tissues examined. In response to salinity, the abundances of both transcript (VHA-A1) and protein (V-ATPase A1) of the A1 isoform in leaves were nearly doubled. In contrast to the A1 isoform, VHA-A2 transcript and V-ATPase A2 polypeptide were only detected in abundance in roots, and in minor quantities in mature fruit. In roots, accumulation of transcripts and polypeptides did not change in response to salinity for either isoform. Subcellular localization indicated that the highest levels of both V-ATPase A1 and A2 isoforms were in the tonoplast. However, significant quantities of both isoforms were detected in membranes associated with endoplasmic reticulum and/or Golgi. Immunoprecipitation of dissociated V1 domains using isoform-specific antibodies showed that V1 domains consist of either V-ATPase A1 or A2 catalytic subunit isoforms.

  19. Exposure of Lycopersicon Esculentum to Microcystin-LR: Effects in the Leaf Proteome and Toxin Translocation from Water to Leaves and Fruits

    PubMed Central

    Gutiérrez-Praena, Daniel; Campos, Alexandre; Azevedo, Joana; Neves, Joana; Freitas, Marisa; Guzmán-Guillén, Remédios; Cameán, Ana María; Renaut, Jenny; Vasconcelos, Vitor

    2014-01-01

    Natural toxins such as those produced by freshwater cyanobacteria have been regarded as an emergent environmental threat. However, the impact of these water contaminants in agriculture is not yet fully understood. The aim of this work was to investigate microcystin-LR (MC-LR) toxicity in Lycopersicon esculentum and the toxin accumulation in this horticultural crop. Adult plants (2 month-old) grown in a greenhouse environment were exposed for 2 weeks to either pure MC-LR (100 μg/L) or Microcystis aeruginosa crude extracts containing 100 μg/L MC-LR. Chlorophyll fluorescence was measured, leaf proteome investigated with two-dimensional gel electrophoresis and Matrix Assisted Laser Desorption Ionization Time-of-Flight (MALDI-TOF)/TOF, and toxin bioaccumulation assessed by liquid chromatography-mass spectrometry (LC-MS)/MS. Variations in several protein markers (ATP synthase subunits, Cytochrome b6-f complex iron-sulfur, oxygen-evolving enhancer proteins) highlight the decrease of the capacity of plants to synthesize ATP and to perform photosynthesis, whereas variations in other proteins (ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit and ribose-5-phosphate isomerase) suggest an increase of carbon fixation and decrease of carbohydrate metabolism reactions in plants exposed to pure MC-LR and cyanobacterial extracts, respectively. MC-LR was found in roots (1635.21 μg/kg fw), green tomatoes (5.15–5.41 μg/kg fw), mature tomatoes (10.52–10.83 μg/kg fw), and leaves (12,298.18 μg/kg fw). The results raise concerns relative to food safety and point to the necessity of monitoring the bioaccumulation of water toxins in agricultural systems affected by cyanotoxin contamination. PMID:24921194

  20. Exposure of Lycopersicon esculentum to microcystin-LR: effects in the leaf proteome and toxin translocation from water to leaves and fruits.

    PubMed

    Gutiérrez-Praena, Daniel; Campos, Alexandre; Azevedo, Joana; Neves, Joana; Freitas, Marisa; Guzmán-Guillén, Remédios; Cameán, Ana María; Renaut, Jenny; Vasconcelos, Vitor

    2014-06-11

    Natural toxins such as those produced by freshwater cyanobacteria have been regarded as an emergent environmental threat. However, the impact of these water contaminants in agriculture is not yet fully understood. The aim of this work was to investigate microcystin-LR (MC-LR) toxicity in Lycopersicon esculentum and the toxin accumulation in this horticultural crop. Adult plants (2 month-old) grown in a greenhouse environment were exposed for 2 weeks to either pure MC-LR (100 μg/L) or Microcystis aeruginosa crude extracts containing 100 μg/L MC-LR. Chlorophyll fluorescence was measured, leaf proteome investigated with two-dimensional gel electrophoresis and Matrix Assisted Laser Desorption Ionization Time-of-Flight (MALDI-TOF)/TOF, and toxin bioaccumulation assessed by liquid chromatography-mass spectrometry (LC-MS)/MS. Variations in several protein markers (ATP synthase subunits, Cytochrome b6-f complex iron-sulfur, oxygen-evolving enhancer proteins) highlight the decrease of the capacity of plants to synthesize ATP and to perform photosynthesis, whereas variations in other proteins (ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit and ribose-5-phosphate isomerase) suggest an increase of carbon fixation and decrease of carbohydrate metabolism reactions in plants exposed to pure MC-LR and cyanobacterial extracts, respectively. MC-LR was found in roots (1635.21 μg/kg fw), green tomatoes (5.15-5.41 μg/kg fw), mature tomatoes (10.52-10.83 μg/kg fw), and leaves (12,298.18 μg/kg fw). The results raise concerns relative to food safety and point to the necessity of monitoring the bioaccumulation of water toxins in agricultural systems affected by cyanotoxin contamination.

  1. Cadmium stimulates glucose metabolism in rat adipocytes

    SciTech Connect

    Yamamoto, A.; Wada, O.; Ono, T.; Ono, H.

    1986-07-01

    Cd/sup 2 +/ caused an increase in CO/sub 2/ formation from glucose in rat adipocytes. The apparent Km value for glucose was 2.02 mM for control condition, with Cd/sup 2 +/, and with insulin. Cd/sup 2 +/ stimulates glucose metabolism even though specific diffusion of glucose is blocked. A possible site effected by Cd/sup 2 +/ is discussed.

  2. 21 CFR 168.120 - Glucose sirup.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Glucose sirup. 168.120 Section 168.120 Food and... § 168.120 Glucose sirup. (a) Glucose sirup is the purified, concentrated, aqueous solution of nutritive... equivalent), expressed as D-glucose, is not less than 20.0 percent m/m calculated on a dry basis. (2) The...

  3. Blood Glucose Levels and Problem Behavior

    ERIC Educational Resources Information Center

    Valdovinos, Maria G.; Weyand, David

    2006-01-01

    The relationship between varying blood glucose levels and problem behavior during daily scheduled activities was examined. The effects that varying blood glucose levels had on problem behavior during daily scheduled activities were examined. Prior research has shown that differing blood glucose levels can affect behavior and mood. Results of this…

  4. Glucose Transport Machinery Reconstituted in Cell Models

    PubMed Central

    Hansen, Jesper S.; Elbing, Karin; Thompson, James R.; Malmstadt, Noah

    2015-01-01

    Here we demonstrate the production of a functioning cell model by formation of giant vesicles reconstituted with the GLUT1 glucose transporter and a glucose oxidase and hydrogen peroxidase linked fluorescent reporter internally. Hence, a simplified artificial cell is formed that is able to take up glucose and process it. PMID:25562394

  5. Glucose transport machinery reconstituted in cell models.

    PubMed

    Hansen, Jesper S; Elbing, Karin; Thompson, James R; Malmstadt, Noah; Lindkvist-Petersson, Karin

    2015-02-11

    Here we demonstrate the production of a functioning cell model by formation of giant vesicles reconstituted with the GLUT1 glucose transporter and a glucose oxidase and hydrogen peroxidase linked fluorescent reporter internally. Hence, a simplified artificial cell is formed that is able to take up glucose and process it.

  6. Blood Glucose Levels and Problem Behavior

    ERIC Educational Resources Information Center

    Valdovinos, Maria G.; Weyand, David

    2006-01-01

    The relationship between varying blood glucose levels and problem behavior during daily scheduled activities was examined. The effects that varying blood glucose levels had on problem behavior during daily scheduled activities were examined. Prior research has shown that differing blood glucose levels can affect behavior and mood. Results of this…

  7. Non-invasive glucose monitor

    NASA Technical Reports Server (NTRS)

    Lambert, James L. (Inventor); Borchert, Mark S. (Inventor)

    2001-01-01

    A non-invasive method for determining blood level of an analyte of interest, such as glucose, comprises: generating an excitation laser beam (e.g., at a wavelength of 700 to 900 nanometers); focusing the excitation laser beam into the anterior chamber of an eye of the subject so that aqueous humor in the anterior chamber is illuminated; detecting (preferably confocally detecting) a Raman spectrum from the illuminated aqueous humor; and then determining the blood glucose level (or the level of another analyte of interest) for the subject from the Raman spectrum. Preferably, the detecting step is followed by the step of subtracting a confounding fluorescence spectrum from the Raman spectrum to produce a difference spectrum; and determining the blood level of the analyte of interest for the subject from that difference spectrum, preferably using linear or nonlinear multivariate analysis such as partial least squares analysis. Apparatus for carrying out the foregoing method is also disclosed.

  8. Dexamethasone increases glucose cycling, but not glucose production, in healthy subjects

    SciTech Connect

    Wajngot, A.; Khan, A.; Giacca, A.; Vranic, M.; Efendic, S. )

    1990-11-01

    We established that measurement of glucose fluxes through glucose-6-phosphatase (G-6-Pase; hepatic total glucose output, HTGO), glucose cycling (GC), and glucose production (HGP), reveals early diabetogenic changes in liver metabolism. To elucidate the mechanism of the diabetogenic effect of glucocorticoids, we treated eight healthy subjects with oral dexamethasone (DEX; 15 mg over 48 h) and measured HTGO with (2-3H)glucose and HGP with (6-3H)glucose postabsorptively and during a 2-h glucose infusion (11.1 mumol.kg-1.min-1). (2-3H)- minus (6-3H)glucose equals GC. DEX significantly increased plasma glucose, insulin, C peptide, and HTGO, while HGP was unchanged. In controls and DEX, glucose infusion suppressed HTGO (82 vs. 78%) and HGP (87 vs. 91%). DEX increased GC postabsorptively (three-fold) P less than 0.005 and during glucose infusion (P less than 0.05) but decreased metabolic clearance and glucose uptake (Rd), which eventually normalized, however. Because DEX increased HTGO (G-6-Pase) and not HGP (glycogenolysis + gluconeogenesis), we assume that DEX increases HTGO and GC in humans by activating G-6-Pase directly, rather than by expanding the glucose 6-phosphate pool. Hyperglycemia caused by peripheral effects of DEX can also contribute to an increase in GC by activating glucokinase. Therefore, measurement of glucose fluxes through G-6-Pase and GC revealed significant early effects of DEX on hepatic glucose metabolism, which are not yet reflected in HGP.

  9. Modeling of relationship between glucose concentration in blood and glucose concentration in interstitial fluid

    NASA Astrophysics Data System (ADS)

    Shi, Ting; Li, Dachao; Ji, Yongjie; Li, Guoqing; Xu, Kexin

    2012-03-01

    In recent years, using the detection of interstitial fluid glucose concentration to realize the real-time continuous monitoring of blood glucose concentration gets more and more attention, because for one person, the relationship between blood glucose concentration and interstitial fluid glucose concentration satisfies specific rules. However, the glucose concentration in interstitial fluid is not entirely equal to the glucose concentration in blood and has a physiological lag because of the physiological difference of cells in blood and interstitial fluid. Because the clinical diagnostic criteria of diabetes are still blood glucose concentration, the evaluation model of the physiological lag parameter between the glucose concentration in blood and the glucose concentration in interstitial fluid should be established. The physiological difference in glucose molecules uptake, utilization, and elimination by cells in blood and interstitial fluid and the diffusion velocity of glucose molecule from blood to interstitial fluid will be induced to the mass transfer model to express the physiological lag parameter. Based on the continuous monitoring of glucose concentration in interstitial fluid, the project had studied the mass transfer model to establish the evaluation model of the physiological lag parameter between the glucose concentration in blood and the glucose concentration in interstitial fluid. We have preliminary achieved to evaluate the physiological lag parameter exactly and predict the glucose concentration in blood through the glucose concentration in interstitial fluid accurately.

  10. Reimbursement for Continuous Glucose Monitoring

    PubMed Central

    DeVries, J. Hans

    2016-01-01

    Abstract Continuous glucose monitoring (CGM) systems have been available for more than 15 years by now. However, market uptake is relatively low in most countries; in other words, relatively few patients with diabetes use CGM systems regularly. One major reason for the reluctance of patients to use CGM systems is the costs associated (i.e., in most countries no reimbursement is provided by the health insurance companies). In case reimbursement is in place, like in the United States, only certain patient groups get reimbursement that fulfills strict indications. This situation is somewhat surprising in view of the mounting evidence for benefits of CGM usage from clinical trials: most meta-analyses of these trials consistently show a clinically relevant improvement of glucose control associated with a reduction in hypoglycemic events. More recent trials with CGM systems with an improved CGM technology showed even more impressive benefits, especially if CGM systems are used in different combinations with an insulin pump (e.g., with automated bolus calculators and low glucose suspend features). Nevertheless, sufficient evidence is not available for all patient groups, and more data on cost–efficacy are needed. In addition, good data from real-world studies/registers documenting the benefits of CGM usage under daily life conditions would be of help to convince healthcare systems to cover the costs of CGM systems. In view of the ongoing improvements in established needle-type CGM systems, the fact that new CGM technology will come to the market soon (e.g., implantable sensors), that CGM-like systems are quite successfully at least in certain markets (like the flash glucose monitoring systems), and that the first artificial pancreas systems will come to the market in the next few years, there is a need to make sure that this major improvement in diabetes therapy becomes more widely available for patients with diabetes, for which better reimbursement is essential. PMID

  11. Oxidative metabolism: glucose versus ketones.

    PubMed

    Prince, Allison; Zhang, Yifan; Croniger, Colleen; Puchowicz, Michelle

    2013-01-01

    The coupling of upstream oxidative processes (glycolysis, beta-oxidation, CAC turnover) to mitochondrial oxidative phosphorylation (OXPHOS) under the driving conditions of energy demand by the cell results in the liberation of free energy as ATP. Perturbations in glycolytic CAC or OXPHOS can result in pathology or cell death. To better understand whole body energy expenditure during chronic ketosis, we used a diet-induced rat model of ketosis to determine if high-fat-carbohydrate-restricted "ketogenic" diet results in changes in total energy expenditure (TEE). Consistent with previous reports of increased energy expenditure in mice, we hypothesized that rats fed ketogenic diet for 3 weeks would result in increased resting energy expenditure due to alterations in metabolism associated with a "switch" in energy substrate from glucose to ketone bodies. The rationale is ketone bodies are a more efficient fuel than glucose. Indirect calorimetric analysis revealed a moderate increase in VO2 and decreased VCO2 and heat with ketosis. These results suggest ketosis induces a moderate uncoupling state and less oxidative efficiency compared to glucose oxidation.

  12. Non-Invasive Glucose Measurement

    NASA Astrophysics Data System (ADS)

    Blakley, Daniel

    2010-10-01

    There are two little words, when taken together have great implications: ``What IF'' In the US alone, there are millions who are burdened with diabetes and who must maintain their glucose levels by taking blood samples and having it analyzed. Even though this procedure has improved over time, still it is very intrusive and is a burden to many that must live with it. What if it were not necessary? Although it is current practice to measure glucose levels invasively (using blood samples), it may be possible to measure glucose non-invasively. Although several companies around the world have invested millions of dollars to address this problem, none have been successful thus far. However, there are many methods that hold a potential and many approaches that have not yet been explored. We are working on a review of what has been approached thus far and are entertaining proposals for a combined interdisciplinary approach which combines expertise from bioengineering, physics, and biology. We hope to learn from the unsuccessful attempts of others whilst employing innovative new approaches to this problem.

  13. Challenges of inpatient blood glucose monitoring: standards, methods, and devices to measure blood glucose.

    PubMed

    Hermayer, Kathie L; Loftley, Aundrea S; Reddy, Sumana; Narla, Satya Nandana; Epps, Nina A; Zhu, Yusheng

    2015-03-01

    Glucose control in the hospital setting is very important. There is a high incidence of hyperglycemia, hypoglycemia, and glycemic variability in hospitalized patients. Safe insulin delivery and glucose control is dependent on reliable glucose meters and monitoring systems in the hospital. Different glucose monitoring systems use arterial, venous, central venous, and capillary blood samples. It is important for clinicians to be aware that there are limitations of specific point-of-care (POC) glucose meters and that situations exist whereby POC glucose meters as the sole measurement device should be avoided. POC meter devices are not approved by the Food and Drug Administration for use in critical care, although POC meter devices are commonly used in critical care settings and elsewhere. This review focuses on glucose assay principles, instrument technology, influences on glucose measurement, standards for glucose measurement, and an evaluation of different methods to measure blood glucose in the hospital setting.

  14. Diet Treatment Glucose Transporter Type 1 Deficiency (G1D)

    ClinicalTrials.gov

    2017-06-06

    GLUT1DS1; Epilepsy; Glut1 Deficiency Syndrome 1, Autosomal Recessive; Glucose Metabolism Disorders; Glucose Transport Defect; Glucose Transporter Type 1 Deficiency Syndrome; Glucose Transporter Protein Type 1 Deficiency Syndrome

  15. The glucose signaling network in yeast.

    PubMed

    Kim, Jeong-Ho; Roy, Adhiraj; Jouandot, David; Cho, Kyu Hong

    2013-11-01

    Most cells possess a sophisticated mechanism for sensing glucose and responding to it appropriately. Glucose sensing and signaling in the budding yeast Saccharomyces cerevisiae represent an important paradigm for understanding how extracellular signals lead to changes in the gene expression program in eukaryotes. This review focuses on the yeast glucose sensing and signaling pathways that operate in a highly regulated and cooperative manner to bring about glucose-induction of HXT gene expression. The yeast cells possess a family of glucose transporters (HXTs), with different kinetic properties. They employ three major glucose signaling pathways-Rgt2/Snf3, AMPK, and cAMP-PKA-to express only those transporters best suited for the amounts of glucose available. We discuss the current understanding of how these pathways are integrated into a regulatory network to ensure efficient uptake and utilization of glucose. Elucidating the role of multiple glucose signals and pathways involved in glucose uptake and metabolism in yeast may reveal the molecular basis of glucose homeostasis in humans, especially under pathological conditions, such as hyperglycemia in diabetics and the elevated rate of glycolysis observed in many solid tumors. © 2013.

  16. Electrochemical non-enzymatic glucose sensors.

    PubMed

    Park, Sejin; Boo, Hankil; Chung, Taek Dong

    2006-01-18

    The electrochemical determination of glucose concentration without using enzyme is one of the dreams that many researchers have been trying to make come true. As new materials have been reported and more knowledge on detailed mechanism of glucose oxidation has been unveiled, the non-enzymatic glucose sensor keeps coming closer to practical applications. Recent reports strongly imply that this progress will be accelerated in 'nanoera'. This article reviews the history of unraveling the mechanism of direct electrochemical oxidation of glucose and making attempts to develop successful electrochemical glucose sensors. The electrochemical oxidation of glucose molecules involves complex processes of adsorption, electron transfer, and subsequent chemical rearrangement, which are combined with the surface reactions on the metal surfaces. The information about the direct oxidation of glucose on solid-state surfaces as well as new electrode materials will lead us to possible breakthroughs in designing the enzymeless glucose sensing devices that realize innovative and powerful detection. An example of those is to introduce nanoporous platinum as an electrode, on which glucose is oxidized electrochemically with remarkable sensitivity and selectivity. Better model of such glucose sensors is sought by summarizing and revisiting the previous reports on the electrochemistry of glucose itself and new electrode materials.

  17. The glucose signaling network in yeast

    PubMed Central

    Kim, Jeong-Ho; Roy, Adhiraj; Jouandot, David; Cho, Kyu Hong

    2013-01-01

    Background Most cells possess a sophisticated mechanism for sensing glucose and responsing to it appropriately. Glucose sensing and signaling in the budding yeast Saccharomyces cerevisiae represents an important paradigm for understanding how extracellular signals lead to changes in the gene expression program in eukaryotes. Scope of review This review focuses on the yeast glucose sensing and signaling pathways that operate in a highly regulated and cooperative manner to bring about glucose-induction of HXT gene expression. Major conclusions The yeast cells possess a family of glucose transporters (HXTs), with different kinetic properties. They employ three major glucose signaling pathways— Rgt2/Snf3, AMPK, and cAMP-PKA—to express only those transporters best suited for the amounts of glucose available. We discuss the current understanding of how these pathways are integrated into a regulatory network to ensure efficient uptake and utilization of glucose. General significance Elucidating the role of multiple glucose signals and pathways involved in glucose uptake and metabolism in yeast may reveal the molecular basis of glucose homeostasis in humans, especially under pathological conditions, such as hyperglycemia in diabetics and the elevated rate of glycolysis observed in many solid tumors. PMID:23911748

  18. Correspondence of continuous interstitial glucose measurement against arterialised and capillary glucose following an oral glucose tolerance test in healthy volunteers.

    PubMed

    Dye, Louise; Mansfield, Michael; Lasikiewicz, Nicola; Mahawish, Lena; Schnell, Rainer; Talbot, Duncan; Chauhan, Hitesh; Croden, Fiona; Lawton, Clare

    2010-01-01

    The aim of the present study was to validate the Glucoday continuous interstitial ambulatory glucose-monitoring device (AGD) against plasma glucose measured from arterialised venous (AV) and glucose from capillary whole blood (finger prick, FP) in non-diabetic subjects in response to an oral glucose tolerance test. Fifteen healthy overweight men (age 30-49 years, BMI 26-31 kg/m2) participated. Glucose levels were measured before, during and after consumption of an oral 75 g glucose load using twelve FP samples and forty-four 1 ml AV blood samples during 180 min. Interstitial glucose was measured via the AGD. Three venous samples for fasting insulin were taken to estimate insulin resistance. Profiles of AGD, AV and FP glucose were generated for each participant. Glucose values for each minute of the measurement period were interpolated using a locally weighted scatterplot smoother. Data were compared using Bland-Altman plots that showed good correspondence between all pairs of measurements. Concordance between the three methods was 0.8771 (Kendall's W, n 15, P < 0.001). Concordance was greater between AV and FP (W = 0.9696) than AGD and AV (W = 0.8770) or AGD and FP (W = 0.8764). Analysis of time to peak glucose indicated that AGD measures lagged approximately 15 min behind FP and AV measures. Percent body fat was significantly correlated with time to peak glucose levels for each measure, while BMI and estimated insulin resistance (homeostatic model assessment, HOMA) were not. In conclusion, AGD shows good correspondence with FP and AV glucose measures in response to a glucose load with a 15 min time lag. Taking this into account, AGD has potential application in nutrition and behaviour studies.

  19. Hepatic glucose sensing is impaired, but can be normalized, in people with impaired fasting glucose.

    PubMed

    Perreault, Leigh; Færch, Kristine; Kerege, Anna A; Bacon, Samantha D; Bergman, Bryan C

    2014-07-01

    Abnormal endogenous glucose production (EGP) is a characteristic feature in people with impaired fasting glucose (IFG). We sought to determine whether impaired hepatic glucose sensing contributes to abnormal EGP in IFG and whether it could be experimentally restored. Glucose production (rate of appearance; Ra) and flux (glucose cycling) were assessed during a hyperglycemic-euinsulinemic somatostatin clamp with an infusion of [6,6-(2)H2-]glucose and [2-(2)H]glucose before and after enhanced hepatic glucokinase activity via an infusion of low-dose fructose in people with IFG and normal glucose tolerance (NGT). During euglycemia, neither endogenous glucose production [(6,6-(2)H2)-glucose Ra; P = 0.53] or total glucose output (TGO; [2-(2)H]-glucose Ra; P = .12) was different between groups, but glucose cycling ([2-(2)H]glucose Ra to [6,6-(2)H2-]glucose Ra; a surrogate measure of hepatic glucokinase activity in the postabsorptive state) was lower in IFG than NGT (P = .04). Hyperglycemia suppressed EGP more in NGT than IFG (P < .01 for absolute or relative suppression, NGT vs IFG), whereas TGO decreased similarly in both groups (P = .77). The addition of fructose completely suppressed EGP in IFG (P < .01) and tended to do the same to TGO (P = .01; no such changes in NGT, P = .39-.55). Glucose cycling (which reflects glucose-6-phosphatase activity during glucose infusion) was similar in IFG and NGT (P = .51) during hyperglycemia and was unchanged and comparable between groups with the addition of fructose (P = .24). In summary, glucose sensing is impaired in IFG but can be experimentally restored with low-dose fructose. Glucokinase activation may prove to be a novel strategy for the prevention of diabetes in this high-risk group.

  20. Evidence of extensive plasma glucose recycling following a glucose load in seabass.

    PubMed

    Rito, João; Viegas, Ivan; Pardal, Miguel A; Jones, John G

    2017-09-01

    Seabass and other carnivorous fish are highly dependent on gluconeogenesis from dietary amino acids to maintain glycemia. Glucose recycling (glucose→C3-intermediate→glucose) may potentiate the effects of glucose administration in sparing amino acid gluconeogenesis. To date, very few measurements of glucose recycling have been reported in fish. Thus, to determine the extent of glucose recycling following a glycemic challenge, juvenile seabass were given an intraperitoneal glucose load (2gkg(-1)) enriched with [U-(13)C]glucose. (13)C NMR analysis of plasma glucose (13)C-isotopomers was used to determine the fractional contributions of glucose derived directly from the load versus that from glucose recycling at 48h after the load. Both fed and 21-day fasted fish (20 per condition) were studied. In fasted fish, 18±4% of plasma glucose was directly derived from the load while 13±2% was derived from glucose recycling. In fed fish, the load accounted for 6±1% of plasma glucose levels while glucose recycling contributed 16±4%. (13)C NMR analysis of plasma lactate revealed (13)C-isotopomers corresponding to the expected C3-intermediates of peripheral [U-(13)C]glucose catabolism indicating that circulating lactate was a key intermediate in glucose carbon recycling under these conditions. In conclusion, glucose recycling was shown to contribute a significant portion of plasma glucose levels in both fed and fasted seabass 48h after an intraperitoneal glucose challenge and circulating lactate was shown to be an intermediate of this pathway. Copyright © 2017. Published by Elsevier Inc.

  1. A MEMS differential viscometric sensor for affinity glucose detection in continuous glucose monitoring

    NASA Astrophysics Data System (ADS)

    Huang, Xian; Li, Siqi; Davis, Erin; Leduc, Charles; Ravussin, Yann; Cai, Haogang; Song, Bing; Li, Dachao; Accili, Domenico; Leibel, Rudolph; Wang, Qian; Lin, Qiao

    2013-05-01

    Micromachined viscometric affinity glucose sensors have been previously demonstrated using vibrational cantilever and diaphragm. These devices featured a single glucose detection module that determines glucose concentrations through viscosity changes of glucose-sensitive polymer solutions. However, fluctuations in temperature and other environmental parameters might potentially affect the stability and reliability of these devices, creating complexity in their applications in subcutaneously implanted continuous glucose monitoring (CGM). To address these issues, we present a MEMS differential sensor that can effectively reject environmental disturbances while allowing accurate glucose detection. The sensor consists of two magnetically driven vibrating diaphragms situated inside microchambers filled with a boronic-acid based glucose-sensing solution and a reference solution insensitive to glucose. Glucose concentrations can be accurately determined by characteristics of the diaphragm vibration through differential capacitive detection. Our in vitro and preliminary in vivo experimental data demonstrate the potential of this sensor for highly stable subcutaneous CGM applications.

  2. FRET-based glucose monitoring for bioprocessing

    NASA Astrophysics Data System (ADS)

    Bartolome, Amelita; Smalls-Mantey, Lauren; Lin, Debora; Rao, Govind; Tolosa, Leah

    2006-02-01

    The glucose-mediated conformational changes in the glucose binding protein (GBP) have been exploited in the development of fluorescence based glucose sensors. The fluorescence response is generated by a polarity sensitive dye attached to a specific site. Such fluorescent sensors respond to submicromolar glucose at diffusion-controlled rates mimicking the wild type. However, such sensors have been limited to in vitro glucose sensing because of the preliminary dye-labeling step. In the study described here, the dye-labeling step is omitted by genetically encoding the GBP with two green fluorescent mutants namely, the green fluorescent protein (GFP) and the yellow fluorescent protein (YFP) in the N- and C-terminal ends, respectively. These two GFP mutants comprise a fluorescence resonance energy transfer (FRET) donor and acceptor pair. Thus, when glucose binds with GBP, the conformational changes affect the FRET efficiency yielding a dose-dependent response. A potential application for this FRET-based glucose biosensor is online glucose sensing in bioprocessing and cell culture. This was demonstrated by the measurement of glucose consumption in yeast fermentation. Further development of this system should yield in vivo measurement of glucose in bioprocesses.

  3. Transcriptome-Wide Identification of Differentially Expressed Genes in Solanum lycopersicon L. in Response to an Alfalfa-Protein Hydrolysate Using Microarrays

    PubMed Central

    Ertani, Andrea; Schiavon, Michela; Nardi, Serenella

    2017-01-01

    An alfalfa-based protein hydrolysate (EM) has been tested in tomato (Solanum lycopersicon L.) plants at two different concentrations (0.1 and 1 mL L-1) to get insight on its efficacy as biostimulant in this species and to unravel possible metabolic targets and molecular mechanisms that may shed light on its mode of action. EM was efficient in promoting the fresh biomass and content in chlorophyll and soluble sugars of tomato plants, especially when it was applied at the concentration of 1 mL L-1. This effect on plant productivity was likely related to the EM-dependent up-regulation of genes identified via microarray and involved in primary carbon and nitrogen metabolism, photosynthesis, nutrient uptake and developmental processes. EM also up-regulated a number of genes implied in the secondary metabolism that leads to the synthesis of compounds (phenols and terpenes) functioning in plant development and interaction with the environment. Concomitantly, phenol content was enhanced in EM-treated plants. Several new genes have been identified in tomato as potential targets of EM action, like those involved in detoxification processes from reactive oxygen species and xenobiotic (particularly glutathione/ascorbate cycle-related and ABC transporters), and defense against abiotic and biotic stress. The model hypothesized is that elicitors present in the EM formulation like auxins, phenolics, and amino acids, may trigger a signal transduction pathway via modulation of the intracellular levels of the hormones ethylene, jasmonic acid and abscissic acid, which then further prompt the activation of a cascade events requiring the presence and activity of many kinases and transcription factors to activate stress-related genes. The genes identified suggest these kinases and transcription factors as players involved in a complex crosstalk between biotic and abiotic stress signaling pathways. We conclude that EM acts as a biostimulant in tomato due to its capacity to stimulate plant

  4. Germination and Dormancy of Abscisic Acid- and Gibberellin-Deficient Mutant Tomato (Lycopersicon esculentum) Seeds (Sensitivity of Germination to Abscisic Acid, Gibberellin, and Water Potential).

    PubMed Central

    Ni, B. R.; Bradford, K. J.

    1993-01-01

    Germination responses of wild-type (MM), abscisic acid (ABA)-deficient (sitw), and gibberellin (GA)-deficient (gib-1) mutant tomato (Lycopersicon esculentum Mill. cv Moneymaker) seeds to ABA, GA4+7, reduced water potential ([psi]), and their combinations were analyzed using a population-based threshold model (B.R. Ni and K.J. Bradford [1992] Plant Physiol 98: 1057-1068). Among the three genotypes, sitw seeds germinated rapidly and completely in water, MM seeds germinated more slowly and were partially dormant, and gib-1 seeds did not germinate without exogenous GA4+7. Times to germination were inversely proportional to the differences between the external osmoticum, ABA, or GA4+7 concentrations and the corresponding threshold levels that would either prevent ([psi]b, log[ABAb]) or promote (log[GAb]) germination. The sensitivity of germination to ABA, GA4+7, and [psi] varied widely among individual seeds in the population, resulting in a distribution of germination times. The rapid germination rate of sitw seeds was attributable to their low mean [psi]b (-1.17 MPa). Postharvest dormancy in MM seeds was due to a high mean [psi]b (-0.35 MPa) and a distribution of [psi]b among seeds such that some seeds were unable to germinate even on water. GA4+7 (100 [mu]M) stimulated germination of MM and gib-1 seeds by lowering the mean [psi]b to -0.75 MPa, whereas ABA inhibited germination of MM and sitw seeds by increasing the mean [psi]b. The changes in [psi]b were not due to changes in embryo osmotic potential. Rather, hormonal effects on endosperm weakening opposite the radicle tip apparently determine the threshold [psi] for germination. The analysis demonstrates that ABA- and GA-dependent changes in seed dormancy and germination rates, whether due to endogenous or exogenous growth regulators, are based primarily upon corresponding shifts in the [psi] thresholds for radicle emergence. The [psi] thresholds, in turn, determine both the rate and final extent of germination

  5. Coping with an exogenous glucose overload: glucose kinetics of rainbow trout during graded swimming.

    PubMed

    Choi, Kevin; Weber, Jean-Michel

    2016-03-15

    This study examines how chronically hyperglycemic rainbow trout modulate glucose kinetics in response to graded exercise up to critical swimming speed (Ucrit), with or without exogenous glucose supply. Our goals were 1) to quantify the rates of hepatic glucose production (Ra glucose) and disposal (Rd glucose) during graded swimming, 2) to determine how exogenous glucose affects the changes in glucose fluxes caused by exercise, and 3) to establish whether exogenous glucose modifies Ucrit or the cost of transport. Results show that graded swimming causes no change in Ra and Rd glucose at speeds below 2.5 body lengths per second (BL/s), but that glucose fluxes may be stimulated at the highest speeds. Excellent glucoregulation is also achieved at all exercise intensities. When exogenous glucose is supplied during exercise, trout suppress hepatic production from 16.4 ± 1.6 to 4.1 ± 1.7 μmol·kg(-1)·min(-1) and boost glucose disposal to 40.1 ± 13 μmol·kg(-1)·min(-1). These responses limit the effects of exogenous glucose to a 2.5-fold increase in glycemia, whereas fish showing no modulation of fluxes would reach dangerous levels of 114 mM of blood glucose. Exogenous glucose reduces metabolic rate by 16% and, therefore, causes total cost of transport to decrease accordingly. High glucose availability does not improve Ucrit because the fish are unable to take advantage of this extra fuel during maximal exercise and rely on tissue glycogen instead. In conclusion, trout have a remarkable ability to adjust glucose fluxes that allows them to cope with the cumulative stresses of a glucose overload and graded exercise.

  6. Coping with an exogenous glucose overload: glucose kinetics of rainbow trout during graded swimming

    PubMed Central

    Choi, Kevin

    2015-01-01

    This study examines how chronically hyperglycemic rainbow trout modulate glucose kinetics in response to graded exercise up to critical swimming speed (Ucrit), with or without exogenous glucose supply. Our goals were 1) to quantify the rates of hepatic glucose production (Ra glucose) and disposal (Rd glucose) during graded swimming, 2) to determine how exogenous glucose affects the changes in glucose fluxes caused by exercise, and 3) to establish whether exogenous glucose modifies Ucrit or the cost of transport. Results show that graded swimming causes no change in Ra and Rd glucose at speeds below 2.5 body lengths per second (BL/s), but that glucose fluxes may be stimulated at the highest speeds. Excellent glucoregulation is also achieved at all exercise intensities. When exogenous glucose is supplied during exercise, trout suppress hepatic production from 16.4 ± 1.6 to 4.1 ± 1.7 μmol·kg−1·min−1 and boost glucose disposal to 40.1 ± 13 μmol·kg−1·min−1. These responses limit the effects of exogenous glucose to a 2.5-fold increase in glycemia, whereas fish showing no modulation of fluxes would reach dangerous levels of 114 mM of blood glucose. Exogenous glucose reduces metabolic rate by 16% and, therefore, causes total cost of transport to decrease accordingly. High glucose availability does not improve Ucrit because the fish are unable to take advantage of this extra fuel during maximal exercise and rely on tissue glycogen instead. In conclusion, trout have a remarkable ability to adjust glucose fluxes that allows them to cope with the cumulative stresses of a glucose overload and graded exercise. PMID:26719305

  7. Pancreatic regulation of glucose homeostasis

    PubMed Central

    Röder, Pia V; Wu, Bingbing; Liu, Yixian; Han, Weiping

    2016-01-01

    In order to ensure normal body function, the human body is dependent on a tight control of its blood glucose levels. This is accomplished by a highly sophisticated network of various hormones and neuropeptides released mainly from the brain, pancreas, liver, intestine as well as adipose and muscle tissue. Within this network, the pancreas represents a key player by secreting the blood sugar-lowering hormone insulin and its opponent glucagon. However, disturbances in the interplay of the hormones and peptides involved may lead to metabolic disorders such as type 2 diabetes mellitus (T2DM) whose prevalence, comorbidities and medical costs take on a dramatic scale. Therefore, it is of utmost importance to uncover and understand the mechanisms underlying the various interactions to improve existing anti-diabetic therapies and drugs on the one hand and to develop new therapeutic approaches on the other. This review summarizes the interplay of the pancreas with various other organs and tissues that maintain glucose homeostasis. Furthermore, anti-diabetic drugs and their impact on signaling pathways underlying the network will be discussed. PMID:26964835

  8. Sex steroids and glucose metabolism.

    PubMed

    Allan, Carolyn A

    2014-01-01

    Testosterone levels are lower in men with metabolic syndrome and type 2 diabetes mellitus (T2DM) and also predict the onset of these adverse metabolic states. Body composition (body mass index, waist circumference) is an important mediator of this relationship. Sex hormone binding globulin is also inversely associated with insulin resistance and T2DM but the data regarding estrogen are inconsistent. Clinical models of androgen deficiency including Klinefelter's syndrome and androgen deprivation therapy in the treatment of advanced prostate cancer confirm the association between androgens and glucose status. Experimental manipulation of the insulin/glucose milieu and suppression of endogenous testicular function suggests the relationship between androgens and insulin sensitivity is bidirectional. Androgen therapy in men without diabetes is not able to differentiate the effect on insulin resistance from that on fat mass, in particular visceral adiposity. Similarly, several small clinical studies have examined the efficacy of exogenous testosterone in men with T2DM, however, the role of androgens, independent of body composition, in modifying insulin resistance is uncertain.

  9. Why control blood glucose levels?

    PubMed

    Rossini, A A

    1976-03-01

    The controversy as to the relationship between the degree of control of diabetes and the progression of the complications of the disease has not been solved. However, in this review, various studies suggesting a relationship between the metabolic abnormality and the diabetic complications are examined. The disadvantages of the uncontrolled diabetes mellitus can be divided into two major categories-short-term and long-term. The short-term disadvantages of controlled diabetes mellitus include the following: (1) ketoacidosis and hyperosmolar coma; (2) intracellular dehydration; (3) electrolyte imbalance; (4) decreased phagocytosis; (5) immunologic and lymphocyte activity; (6) impairment of wound healing; and (7) abnormality of lipids. The long-term disadvantages of uncontrolled diabetes melitus include the following: (1) nephropathy; (2) neuropathy; (3) retinopathy; (4) cataract formation; (5) effect on perinatal mortality; (6) complications of vascular disease; and (7) the evaluation of various clinical studies suggesting the relationship of elevated blood glucose levels and complications of diabetes mellitus. It is suggested that until the question of control can absolutely be resolved, the recommendation is that the blood glucose levels should be controlled as close to the normal as possible.

  10. Circadian control of glucose metabolism.

    PubMed

    Kalsbeek, Andries; la Fleur, Susanne; Fliers, Eric

    2014-07-01

    The incidence of obesity and type 2 diabetes mellitus (T2DM) has risen to epidemic proportions. The pathophysiology of T2DM is complex and involves insulin resistance, pancreatic β-cell dysfunction and visceral adiposity. It has been known for decades that a disruption of biological rhythms (which happens the most profoundly with shift work) increases the risk of developing obesity and T2DM. Recent evidence from basal studies has further sparked interest in the involvement of daily rhythms (and their disruption) in the development of obesity and T2DM. Most living organisms have molecular clocks in almost every tissue, which govern rhythmicity in many domains of physiology, such as rest/activity rhythms, feeding/fasting rhythms, and hormonal secretion. Here we present the latest research describing the specific role played by the molecular clock mechanism in the control of glucose metabolism and speculate on how disruption of these tissue clocks may lead to the disturbances in glucose homeostasis.

  11. Circadian control of glucose metabolism

    PubMed Central

    Kalsbeek, Andries; la Fleur, Susanne; Fliers, Eric

    2014-01-01

    The incidence of obesity and type 2 diabetes mellitus (T2DM) has risen to epidemic proportions. The pathophysiology of T2DM is complex and involves insulin resistance, pancreatic β-cell dysfunction and visceral adiposity. It has been known for decades that a disruption of biological rhythms (which happens the most profoundly with shift work) increases the risk of developing obesity and T2DM. Recent evidence from basal studies has further sparked interest in the involvement of daily rhythms (and their disruption) in the development of obesity and T2DM. Most living organisms have molecular clocks in almost every tissue, which govern rhythmicity in many domains of physiology, such as rest/activity rhythms, feeding/fasting rhythms, and hormonal secretion. Here we present the latest research describing the specific role played by the molecular clock mechanism in the control of glucose metabolism and speculate on how disruption of these tissue clocks may lead to the disturbances in glucose homeostasis. PMID:24944897

  12. Ripening Behavior of Wild Tomato Species 1

    PubMed Central

    Grumet, Rebecca; Fobes, Jon F.; Herner, Robert C.

    1981-01-01

    Nine wild tomato species were surveyed for variability in ripening characteristics. External signs of ripening, age of fruit at ripening, and ethylene production patterns were compared. Ethylene production was monitored using an ethylene-free air stream system and gas chromatography. Based on these ripening characteristics, the fruits fell into three general categories: those that change color when they ripen, green-fruited species that abscise prior to ripening, and green-fruited species that ripen on the vine. The fruits that change color, Lycopersicon esculentum var. cerasiforme, Lycopersicon pimpinellifolium and Lycopersicon cheesmanii, exhibited a peak of ethylene production similar to the cultivated tomato; there were differences, however, in the timing and magnitude of the ethylene production. Peak levels of ethylene production are correlated with age at maturity. For the two species that abscise prior to ripening, Lycopersicon chilense and Lycopersicon peruvianum, ability to produce ethylene varied with stage of maturity. The two species differed from each other in time of endogenous ethylene production relative to abscission, suggesting differences in the control mechanisms regulating their ripening. For two of the green-fruited species that ripen on the vine, Lycopersicon chmielewskii and Lycopersicon parviflorum, ethylene production was correlated to fruit softening. For Lycopersicon hirsutum and Solanum pennellii, however, ethylene production was not correlated with external ripening changes, making questionable the role of ethylene as the ripening hormone in these fruits. PMID:16662121

  13. Regulation of Blood Glucose by Hypothalamic Pyruvate Metabolism

    NASA Astrophysics Data System (ADS)

    Lam, Tony K. T.; Gutierrez-Juarez, Roger; Pocai, Alessandro; Rossetti, Luciano

    2005-08-01

    The brain keenly depends on glucose for energy, and mammalians have redundant systems to control glucose production. An increase in circulating glucose inhibits glucose production in the liver, but this negative feedback is impaired in type 2 diabetes. Here we report that a primary increase in hypothalamic glucose levels lowers blood glucose through inhibition of glucose production in rats. The effect of glucose requires its conversion to lactate followed by stimulation of pyruvate metabolism, which leads to activation of adenosine triphosphate (ATP)-sensitive potassium channels. Thus, interventions designed to enhance the hypothalamic sensing of glucose may improve glucose homeostasis in diabetes.

  14. Application of Semipermeable Membranes in Glucose Biosensing

    PubMed Central

    Kulkarni, Tanmay; Slaughter, Gymama

    2016-01-01

    Glucose biosensors have received significant attention in recent years due to the escalating mortality rate of diabetes mellitus. Although there is currently no cure for diabetes mellitus, individuals living with diabetes can lead a normal life by maintaining tight control of their blood glucose levels using glucose biosensors (e.g., glucometers). Current research in the field is focused on the optimization and improvement in the performance of glucose biosensors by employing a variety of glucose selective enzymes, mediators and semipermeable membranes to improve the electron transfer between the active center of the enzyme and the electrode substrate. Herein, we summarize the different semipermeable membranes used in the fabrication of the glucose biosensor, that result in improved biosensor sensitivity, selectivity, dynamic range, response time and stability. PMID:27983630

  15. Monitoring breath during oral glucose tolerance tests.

    PubMed

    Ghimenti, S; Tabucchi, S; Lomonaco, T; Di Francesco, F; Fuoco, R; Onor, M; Lenzi, S; Trivella, M G

    2013-03-01

    The evolution of breath composition during oral glucose tolerance tests (OGTTs) was analysed by thermal desorption/gas chromatography/mass spectrometry in 16 subjects and correlated to blood glucose levels. The glucose tolerance tests classified five of the subjects as diabetics, eight as affected by impaired glucose tolerance and three as normoglycaemic. Acetone levels were generally higher in diabetics (average concentration values: diabetics, 300 ± 40 ppbv; impaired glucose tolerance, 350 ± 30 ppbv; normoglycaemic, 230 ± 20 ppbv) but the large inter-individual variability did not allow us to identify the three groups by this parameter alone. The exhalation of 3-hydroxy-butan-2-one and butane-2,3-dione, likely due to the metabolization of glucose by bacteria in the mouth, was also observed. Future work will involve the extension of the analyses to other volatile compounds by attempting to improve the level of discrimination between the various classes of subjects.

  16. Gut-brain mechanisms controlling glucose homeostasis

    PubMed Central

    Scarlett, Jarrad M.

    2015-01-01

    Our current understanding of glucose homeostasis is centered on glucose-induced secretion of insulin from pancreatic islets and insulin action on glucose metabolism in peripheral tissues. In addition, however, recent evidence suggests that neurocircuits located within a brain-centered glucoregulatory system work cooperatively with pancreatic islets to promote glucose homeostasis. Among key observations is evidence that, in addition to insulin-dependent mechanisms, the brain has the capacity to potently lower blood glucose levels via mechanisms that are insulin-independent, some of which are activated by signals emanating from the gastrointestinal tract. This review highlights evidence supporting a key role for a “gut-brain-liver axis” in control of glucose homeostasis by the brain-centered glucoregulatory system and the implications of this regulatory system for diabetes pathogenesis and treatment. PMID:25705395

  17. Continuous Glucose Monitoring Systems: A Review

    PubMed Central

    Vashist, Sandeep Kumar

    2013-01-01

    There have been continuous advances in the field of glucose monitoring during the last four decades, which have led to the development of highly evolved blood glucose meters, non-invasive glucose monitoring (NGM) devices and continuous glucose monitoring systems (CGMS). Glucose monitoring is an integral part of diabetes management, and the maintenance of physiological blood glucose concentration is the only way for a diabetic to avoid life-threatening diabetic complications. CGMS have led to tremendous improvements in diabetic management, as shown by the significant lowering of glycated hemoglobin (HbA1c) in adults with type I diabetes. Most of the CGMS have been minimally-invasive, although the more recent ones are based on NGM techniques. This manuscript reviews the advances in CGMS for diabetes management along with the future prospects and the challenges involved. PMID:26824930

  18. Blood glucose prediction using neural network

    NASA Astrophysics Data System (ADS)

    Soh, Chit Siang; Zhang, Xiqin; Chen, Jianhong; Raveendran, P.; Soh, Phey Hong; Yeo, Joon Hock

    2008-02-01

    We used neural network for blood glucose level determination in this study. The data set used in this study was collected using a non-invasive blood glucose monitoring system with six laser diodes, each laser diode operating at distinct near infrared wavelength between 1500nm and 1800nm. The neural network is specifically used to determine blood glucose level of one individual who participated in an oral glucose tolerance test (OGTT) session. Partial least squares regression is also used for blood glucose level determination for the purpose of comparison with the neural network model. The neural network model performs better in the prediction of blood glucose level as compared with the partial least squares model.

  19. Postprandial glucose response to selected tropical fruits in normal glucose-tolerant Nigerians.

    PubMed

    Edo, A; Eregie, A; Adediran, O; Ohwovoriole, A; Ebengho, S

    2011-01-01

    The glycemic response to commonly eaten fruits in Nigeria has not been reported. Therefore, this study assessed the plasma glucose response to selected fruits in Nigeria. Ten normal glucose-tolerant subjects randomly consumed 50 g carbohydrate portions of three fruits: banana (Musa paradisiaca), pineapple (Ananus comosus), and pawpaw (Carica papaya), and a 50-g glucose load at 1-week intervals. Blood samples were collected in the fasting state and half-hourly over a 2-h period post-ingestion of the fruits or glucose. The samples were analyzed for plasma glucose concentrations. Plasma glucose responses were assessed by the peak plasma glucose concentration, maximum increase in plasma glucose, 2-h postprandial plasma glucose level, and incremental area under the glucose curve and glycemic index (GI). The results showed that the blood glucose response to these three fruits was similar in terms of their incremental areas under the glucose curve, maximum increase in plasma glucose, and glycemic indices (GIs). The 2-h postprandial plasma glucose level of banana was significantly higher than that of pineapple, P < 0.025. The mean ± SEM GI values were as follows: pawpaw; 86 ± 26.8%; banana, 75.1 ± 21.8%; pineapple, 64.5 ± 11.3%. The GI of glucose is taken as 100. The GI of pineapple was significantly lower than that of glucose (P < 0.05). Banana, pawpaw, and pineapple produced a similar postprandial glucose response. Measured portions of these fruits may be used as fruit exchanges with pineapple having the most favorable glycemic response.

  20. Bioluminescence Imaging of Glucose in Tissue Surrounding Polyurethane and Glucose Sensor Implants

    PubMed Central

    Prichard, Heather L; Schroeder, Thies; Reichert, William M; Klitzman, Bruce

    2010-01-01

    Background The bioluminescence technique was used to quantify the local glucose concentration in the tissue surrounding subcutaneously implanted polyurethane material and surrounding glucose sensors. In addition, some implants were coated with a single layer of adipose-derived stromal cells (ASCs) because these cells improve the wound-healing response around biomaterials. Methods Control and ASC-coated implants were implanted subcutaneously in rats for 1 or 8 weeks (polyurethane) or for 1 week only (glucose sensors). Tissue biopsies adjacent to the implant were immediately frozen at the time of explant. Cryosections were assayed for glucose concentration profile using the bioluminescence technique. Results For the polyurethane samples, no significant differences in glucose concentration within 100 μm of the implant surface were found between bare and ASC-coated implants at 1 or 8 weeks. A glucose concentration gradient was demonstrated around the glucose sensors. For all sensors, the minimum glucose concentration of approximately 4 mM was found at the implant surface and increased with distance from the sensor surface until the glucose concentration peaked at approximately 7 mM at 100 μm. Then the glucose concentration decreased to 5.5–6.5 mM more than 100 μmm from the surface. Conclusions The ASC attachment to polyurethane and to glucose sensors did not change the glucose profiles in the tissue surrounding the implants. Although most glucose sensors incorporate a diffusion barrier to reduce the gradient of glucose and oxygen in the tissue, it is typically assumed that there is no steep glucose gradient around the sensors. However, a glucose gradient was observed around the sensors. A more complete understanding of glucose transport and concentration gradients around sensors is critical. PMID:20920425

  1. Is fructose sweeter than glucose for rats?

    PubMed

    Ramirez, I

    1996-11-01

    Because it is generally thought that the intensity of the taste of fructose is greater than that of glucose for rats, it seemed surprising when sham-fed rats drank substantially less of a mixture of 6% fructose plus saccharin than of a mixture of 6% glucose plus saccharin. At least 3 different factors contribute to this effect. First, the taste of fructose is less attractive to rats than is the taste of glucose; sham-fed rats strongly preferred glucose over fructose (no saccharin was used in this experiment). The second factor is experience. Rats having substantial previous experience with glucose, but not with fructose, consistently preferred glucose over fructose. Conversely, rats having substantial previous experience with fructose, but not with glucose, initially showed no consistent preference but subsequently tended to prefer glucose. The third factor is an interaction between saccharin and the type of sugar. Rats given only one solution at a time drink approximately as much fructose as glucose when the solutions contain no saccharin. The addition of 0.25% saccharin to 6% glucose stimulated intake, whereas the addition of the same amount of saccharin to 6% fructose did not stimulate intake. As a result, rats ingested substantially more of a mixture of 0.25% saccharin plus 6% glucose than they did of a comparable mixture of saccharin and fructose, even though rats ingest similar amounts of fructose and glucose without saccharin in single-bottle tests. Because the differential effect of saccharin on intake appeared within 2 h in naive rats, and did not greatly change over a 3-day period, it is probably not attributable to conditioning. These results suggest that these sugars have qualitatively different tastes.

  2. A self-powered glucose biosensing system.

    PubMed

    Slaughter, Gymama; Kulkarni, Tanmay

    2016-04-15

    A self-powered glucose biosensor (SPGS) system is fabricated and in vitro characterization of the power generation and charging frequency characteristics in glucose analyte are described. The bioelectrodes consist of compressed network of three-dimensional multi-walled carbon nanotubes with redox enzymes, pyroquinoline quinone glucose dehydrogenase (PQQ-GDH) and laccase functioning as the anodic and cathodic catalyst, respectively. When operated in 45 mM glucose, the biofuel cell exhibited an open circuit voltage and power density of 681.8 mV and 67.86 µW/cm(2) at 335 mV, respectively, with a current density of 202.2 µA/cm(2). Moreover, at physiological glucose concentration (5mM), the biofuel cell exhibits open circuit voltage and power density of 302.1 mV and 15.98 µW/cm(2) at 166.3 mV, respectively, with a current density of 100 µA/cm(2). The biofuel cell assembly produced a linear dynamic range of 0.5-45 mM glucose. These findings show that glucose biofuel cells can be further investigated in the development of a self-powered glucose biosensor by using a capacitor as the transducer element. By monitoring the capacitor charging frequencies, which are influenced by the concentration of the glucose analyte, a linear dynamic range of 0.5-35 mM glucose is observed. The operational stability of SPGS is monitored over a period of 63 days and is found to be stable with 15.38% and 11.76% drop in power density under continuous discharge in 10mM and 20mM glucose, respectively. These results demonstrate that SPGSs can simultaneously generate bioelectricity to power ultra-low powered devices and sense glucose.

  3. Glucose starvation-induced turnover of the yeast glucose transporter Hxt1.

    PubMed

    Roy, Adhiraj; Kim, Yong-Bae; Cho, Kyu Hong; Kim, Jeong-Ho

    2014-09-01

    The budding yeast Saccharomyces cerevisiae possesses multiple glucose transporters with different affinities for glucose that enable it to respond to a wide range of glucose concentrations. The steady-state levels of glucose transporters are regulated in response to changes in the availability of glucose. This study investigates the glucose regulation of the low affinity, high capacity glucose transporter Hxt1. Western blotting and confocal microscopy were performed to evaluate glucose regulation of the stability of Hxt1. Our results show that glucose starvation induces endocytosis and degradation of Hxt1 and that this event requires End3, a protein required for endocytosis, and the Doa4 deubiquitination enzyme. Mutational analysis of the lysine residues in the Hxt1 N-terminal domain demonstrates that the two lysine residues, K12 and K39, serve as the putative ubiquitin-acceptor sites by the Rsp5 ubiquitin ligase. We also demonstrate that inactivation of PKA (cAMP-dependent protein kinase A) is needed for Hxt1 turnover, implicating the role of the Ras/cAMP-PKA glucose signaling pathway in the stability of Hxt1. Hxt1, most useful when glucose is abundant, is internalized and degraded when glucose becomes depleted. Of note, the stability of Hxt1 is regulated by PKA, known as a positive regulator for glucose induction of HXT1 gene expression, demonstrating a dual role of PKA in regulation of Hxt1. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Glucose sensing and signaling by two glucose receptors in the yeast Saccharomyces cerevisiae.

    PubMed

    Ozcan, S; Dover, J; Johnston, M

    1998-05-01

    How eukaryotic cells sense availability of glucose, their preferred carbon and energy source, is an important, unsolved problem. Bakers' yeast (Saccharomyces cerevisiae) uses two glucose transporter homologs, Snf3 and Rgt2, as glucose sensors that generate a signal for induction of expression of genes encoding hexose transporters (HXT genes). We present evidence that these proteins generate an intracellular glucose signal without transporting glucose. The Snf3 and Rgt2 glucose sensors contain unusually long C-terminal tails that are predicted to be in the cytoplasm. These tails appear to be the signaling domains of Snf3 and Rgt2 because they are necessary for glucose signaling by Snf3 and Rgt2, and transplantation of the C-terminal tail of Snf3 onto the Hxt1 and Hxt2 glucose transporters converts them into glucose sensors that can generate a signal for glucose-induced HXT gene expression. These results support the idea that yeast senses glucose using two modified glucose transporters that serve as glucose receptors.

  5. Elucidation of the glucose transport pathway in glucose transporter 4 via steered molecular dynamics simulations.

    PubMed

    Sheena, Aswathy; Mohan, Suma S; Haridas, Nidhina Pachakkil A; Anilkumar, Gopalakrishnapillai

    2011-01-01

    GLUT4 is a predominant insulin regulated glucose transporter expressed in major glucose disposal tissues such as adipocytes and muscles. Under the unstimulated state, GLUT4 resides within intracellular vesicles. Various stimuli such as insulin translocate this protein to the plasma membrane for glucose transport. In the absence of a crystal structure for GLUT4, very little is known about the mechanism of glucose transport by this protein. Earlier we proposed a homology model for GLUT4 and performed a conventional molecular dynamics study revealing the conformational rearrangements during glucose and ATP binding. However, this study could not explain the transport of glucose through the permeation tunnel. To elucidate the molecular mechanism of glucose transport and its energetic, a steered molecular dynamics study (SMD) was used. Glucose was pulled from the extracellular end of GLUT4 to the cytoplasm along the pathway using constant velocity pulling method. We identified several key residues within the tunnel that interact directly with either the backbone ring or the hydroxyl groups of glucose. A rotation of glucose molecule was seen near the sugar binding site facilitating the sugar recognition process at the QLS binding site. This study proposes a possible glucose transport pathway and aids the identification of several residues that make direct interactions with glucose during glucose transport. Mutational studies are required to further validate the observation made in this study.

  6. General aspects of muscle glucose uptake.

    PubMed

    Alvim, Rafael O; Cheuhen, Marcel R; Machado, Silmara R; Sousa, André Gustavo P; Santos, Paulo C J L

    2015-03-01

    Glucose uptake in peripheral tissues is dependent on the translocation of GLUT4 glucose transporters to the plasma membrane. Studies have shown the existence of two major signaling pathways that lead to the translocation of GLUT4. The first, and widely investigated, is the insulin activated signaling pathway through insulin receptor substrate-1 and phosphatidylinositol 3-kinase. The second is the insulin-independent signaling pathway, which is activated by contractions. Individuals with type 2 diabetes mellitus have reduced insulin-stimulated glucose uptake in skeletal muscle due to the phenomenon of insulin resistance. However, those individuals have normal glucose uptake during exercise. In this context, physical exercise is one of the most important interventions that stimulates glucose uptake by insulin-independent pathways, and the main molecules involved are adenosine monophosphate-activated protein kinase, nitric oxide, bradykinin, AKT, reactive oxygen species and calcium. In this review, our main aims were to highlight the different glucose uptake pathways and to report the effects of physical exercise, diet and drugs on their functioning. Lastly, with the better understanding of these pathways, it would be possible to assess, exactly and molecularly, the importance of physical exercise and diet on glucose homeostasis. Furthermore, it would be possible to assess the action of drugs that might optimize glucose uptake and consequently be an important step in controlling the blood glucose levels in diabetic patients, in addition to being important to clarify some pathways that justify the development of drugs capable of mimicking the contraction pathway.

  7. Enzyme Analysis to Determine Glucose Content

    NASA Astrophysics Data System (ADS)

    Carpenter, Charles; Ward, Robert E.

    Enzyme analysis is used for many purposes in food science and technology. Enzyme activity is used to indicate adequate processing, to assess enzyme preparations, and to measure constituents of foods that are enzyme substrates. In this experiment, the glucose content of corn syrup solids is determined using the enzymes, glucose oxidase and peroxidase. Glucose oxidase catalyzes the oxidation of glucose to form hydrogen peroxide (H2O2), which then reacts with a dye in the presence of peroxidase to give a stable colored product.

  8. Maternal glucose response to betamethasone administration.

    PubMed

    Langen, Elizabeth S; Kuperstock, Jessica L; Sung, Joyce F; Taslimi, Mark; Byrne, James; El-Sayed, Yasser Y

    2015-02-01

    This study aims to describe the pattern of maternal glucose response to betamethasone administration using a continuous glucose monitoring system. A prospective observational trial was conducted among women receiving clinically indicated betamethasone between 24 and 34 weeks gestation. At the time of initial betamethasone administration, a continuous glucose monitoring device was inserted which measured interstitial fluid glucose levels every 5 minutes. Glucose levels were monitored for 7 days, until delivery, or until hospital discharge, whichever came first. We recorded the percentage of time women spent above three glucose thresholds: 110, 144, and 180 mg/dL, respectively. A total of 17 women were enrolled at the time of betamethasone administration and data were available for 15 patients. There were 11 nondiabetic and 4 diabetic women. Both diabetic and nondiabetic women had the highest recorded blood glucose readings between 24 and 48 hours after the first injection of betamethasone. In that period, nondiabetic women spent 73, 40, and 17% of the time with blood glucose levels above the 110, 144, and 180 mg/dL thresholds, respectively. Nondiabetic women receiving betamethasone manifest significant hyperglycemia after betamethasone administration. If delivery is imminent, maternal glucose response to betamethasone may need to be monitored to prevent possible neonatal hypoglycemia. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  9. Glucose metabolism in rat retinal pigment epithelium.

    PubMed

    Coffe, Víctor; Carbajal, Raymundo C; Salceda, Rocío

    2006-01-01

    The retinal pigment epithelium (RPE) is the major transport pathway for exchange of metabolites and ions between choroidal blood supply and the neural retina. To gain insight into the mechanisms controlling glucose metabolism in RPE and its possible relationship to retinopathy, we studied the influence of different glucose concentrations on glycogen and lactate levels and CO(2) production in RPE from normal and streptozotocin-treated diabetic rats. Incubation of normal RPE in the absence of glucose caused a decrease in lactate production and glycogen content. In normal RPE, increasing glucose concentrations from 5.6 mM to 30 mM caused a four-fold increase in glucose accumulation and CO(2) yield, as well as reduction in lactate and glycogen production. In RPE from diabetic rats glucose accumulation did not increase in the presence of high glucose substrate, but it showed a four- and a seven-fold increase in CO(2) production through the mitochondrial and pentose phosphate pathways, respectively. We found high glycogen levels in RPE which can be used as an energy reserve for RPE itself and/or neural retina. Findings further show that the RPE possesses a high oxidative capacity. The large increase in glucose shunting to the pentose phosphate pathway in diabetic retina exposed to high glucose suggests a need for reducing capacity, consistent with increased oxidative stress.

  10. Glucose Transporters in Cardiac Metabolism and Hypertrophy

    PubMed Central

    Shao, Dan; Tian, Rong

    2016-01-01

    The heart is adapted to utilize all classes of substrates to meet the high-energy demand, and it tightly regulates its substrate utilization in response to environmental changes. Although fatty acids are known as the predominant fuel for the adult heart at resting stage, the heart switches its substrate preference toward glucose during stress conditions such as ischemia and pathological hypertrophy. Notably, increasing evidence suggests that the loss of metabolic flexibility associated with increased reliance on glucose utilization contribute to the development of cardiac dysfunction. The changes in glucose metabolism in hypertrophied hearts include altered glucose transport and increased glycolysis. Despite the role of glucose as an energy source, changes in other nonenergy producing pathways related to glucose metabolism, such as hexosamine biosynthetic pathway and pentose phosphate pathway, are also observed in the diseased hearts. This article summarizes the current knowledge regarding the regulation of glucose transporter expression and translocation in the heart during physiological and pathological conditions. It also discusses the signaling mechanisms governing glucose uptake in cardiomyocytes, as well as the changes of cardiac glucose metabolism under disease conditions. PMID:26756635

  11. Naked eye detection of glucose in urine using glucose oxidase immobilized gold nanoparticles.

    PubMed

    Radhakumary, Changerath; Sreenivasan, Kunnatheeri

    2011-04-01

    Colloidal gold is extensively used for molecular sensing because of the flexibilities it offers in terms of modification of the gold nanoparticle surface with a variety of functional groups using thiol chemistry. We describe a simple assay that allows the visual detection of glucose in aqueous samples and demonstrates its applicability by estimating glucose in urine. To enable the glucose detection, we functionalized the thiol capped gold nanoparticles with glucose oxidase, the enzyme specific to β-D glucose, using carbodiimide chemistry. The visible color change of the GOD-functionalized gold nanoparticles from red to blue on interaction with glucose is the principle applied here for the sensing of urine glucose level. The solution turns blue when the glucose concentration exceeds 100 μg/mL. The approach depicted here seems to be important, particularly in third world countries where high tech diagnostics aids are inaccessible to the bulk of the population.

  12. Diauxic Growth of Azotobacter vinelandii on Galactose and Glucose: Regulation of Glucose Transport by Another Hexose.

    PubMed

    Wong, T Y; Pei, H; Bancroft, K; Childers, G W

    1995-02-01

    The growth curve of Azotobacter vinelandii was biphasic when the organism was grown in a medium containing a mixture of galactose and glucose. Galactose was the primary carbon source; glucose was also consumed, but the rate at which it was consumed was lower than the rate at which galactose was consumed during the first phase of growth. Metabolic pathways for both sugars were induced. Cell cultures exhibited a second lag period as galactose was depleted. The length of this lag phase varied from 2 to 10 h depending on the pregrowth history of the cells. The second log growth phase occurred at the expense of the remaining glucose in the medium and was accompanied by induction of the high-maximum rate of metabolism glucose-induced glucose permease and increases in the levels of glucose metabolic enzymes. The second lag phase of diauxie may have been due to the time required for induction of the glucose-induced glucose permease.

  13. A tale of two compartments: interstitial versus blood glucose monitoring.

    PubMed

    Cengiz, Eda; Tamborlane, William V

    2009-06-01

    Self-monitoring of blood glucose was described as one of the most important advancements in diabetes management since the invention of insulin in 1920. Recent advances in glucose sensor technology for measuring interstitial glucose concentrations have challenged the dominance of glucose meters in diabetes management, while raising questions about the relationships between interstitial and blood glucose levels. This article will review the differences between interstitial and blood glucose and some of the challenges in measuring interstitial glucose levels accurately.

  14. Impact of Glucose Tolerance Status, Sex, and Body Size on Glucose Absorption Patterns During OGTTs

    PubMed Central

    Færch, Kristine; Pacini, Giovanni; Nolan, John J.; Hansen, Torben; Tura, Andrea; Vistisen, Dorte

    2013-01-01

    OBJECTIVE We studied whether patterns of glucose absorption during oral glucose tolerance tests (OGTTs) were abnormal in individuals with impaired glucose regulation and whether they were related to sex and body size (height and fat-free mass). We also examined how well differences in insulin sensitivity and β-cell function measured by gold-standard tests were reflected in the corresponding OGTT-derived estimates. RESEARCH DESIGN AND METHODS With validated methods, various aspects of glucose absorption were estimated from 12-point, 3-h, 75-g OGTTs in 66 individuals with normal glucose tolerance (NGT), isolated impaired fasting glucose (i-IFG), or isolated impaired glucose tolerance (i-IGT). Insulin sensitivity and β-cell function were measured with the euglycemic-hyperinsulinemic clamp and intravenous glucose tolerance tests, respectively. Surrogate markers of both conditions were calculated from OGTTs. RESULTS More rapid glucose absorption (P ≤ 0.036) and reduced late glucose absorption (P ≤ 0.039) were observed in the i-IFG group relative to NGT and i-IGT groups. Women with i-IGT had a lower early glucose absorption than did men with i-IGT (P = 0.041); however, this difference did not persist when differences in body size were taken into account (P > 0.28). Faster glucose absorption was related to higher fasting (P = 0.001) and lower 2-h (P = 0.001) glucose levels and to greater height and fat-free mass (P < 0.001). All OGTT-derived measures of insulin sensitivity, but only one of three measures of β-cell function, reflected the differences for these parameters between those with normal and impaired glucose regulation as measured by gold-standard tests. CONCLUSIONS Glucose absorption patterns during an OGTT are significantly related to plasma glucose levels and body size, which should be taken into account when estimating β-cell function from OGTTs in epidemiological studies. PMID:24062321

  15. Mechanical stress and glucose concentration modulate glucose transport in cultured rat podocytes.

    PubMed

    Lewko, Barbara; Bryl, Ewa; Witkowski, Jacek M; Latawiec, Elzbieta; Angielski, Stefan; Stepinski, Jan

    2005-02-01

    Recent studies show that mechanical stress modifies both morphology and protein expression in podocytes. Ambient glucose is another factor modulating protein synthesis in these cells. In diabetes, podocytes experience elevated glucose concentrations as well as mechanical strain generated by high intracapillary pressures. Both these factors are responsible for podocyte injury, leading to impairment of kidney glomerular function. In the present study, we examined the effects of glucose concentration and mechanical stress on glucose uptake in podocytes. Following a 24 h pre-incubation in low (2.5 mM, LG), normal (5.6 mM, NG) or high (30 mM, HG) glucose media, cultured rat podocytes were exposed to 4 h mechanical stress. We used the labelled glucose analogue, [3H]2-deoxy-D-glucose, to measure glucose uptake. The distribution of facilitative glucose transporters GLUT2 and GLUT4 was assessed by flow cytometry. In the control (static) cells, glucose uptake was similar in the three glucose groups. In mechanically stressed podocytes, glucose uptake increased 2-fold in the LG and NG groups but increased 3-fold in the HG group. In the NG cells, mechanical load increased the membrane expression of GLUT2 and reduced the membrane-bound GLUT4. In stretched HG cells, the membrane expression of both GLUT2 and GLUT4 was decreased. High glucose decreased the plasma membrane GLUT2 content in the stretched cells, whereas both static and stretched podocytes showed an elevation in GLUT4. Mechanical stress potentiated glucose uptake in podocytes and this effect was enhanced by high ambient glucose. The decreased expression of GLUT2 and GLUT4 on the surface of stretched cells suggests that the activity of other glucose transporters may be regulated by mechanical stress in podocytes.

  16. CMOS image sensor-based implantable glucose sensor using glucose-responsive fluorescent hydrogel

    PubMed Central

    Tokuda, Takashi; Takahashi, Masayuki; Uejima, Kazuhiro; Masuda, Keita; Kawamura, Toshikazu; Ohta, Yasumi; Motoyama, Mayumi; Noda, Toshihiko; Sasagawa, Kiyotaka; Okitsu, Teru; Takeuchi, Shoji; Ohta, Jun

    2014-01-01

    A CMOS image sensor-based implantable glucose sensor based on an optical-sensing scheme is proposed and experimentally verified. A glucose-responsive fluorescent hydrogel is used as the mediator in the measurement scheme. The wired implantable glucose sensor was realized by integrating a CMOS image sensor, hydrogel, UV light emitting diodes, and an optical filter on a flexible polyimide substrate. Feasibility of the glucose sensor was verified by both in vitro and in vivo experiments. PMID:25426316

  17. Glucose-6-Phosphate Dehydrogenase Deficiency.

    PubMed

    Luzzatto, Lucio; Nannelli, Caterina; Notaro, Rosario

    2016-04-01

    G6PD is a housekeeping gene expressed in all cells. Glucose-6-phosphate dehydrogenase (G6PD) is part of the pentose phosphate pathway, and its main physiologic role is to provide NADPH. G6PD deficiency, one of the commonest inherited enzyme abnormalities in humans, arises through one of many possible mutations, most of which reduce the stability of the enzyme and its level as red cells age. G6PD-deficient persons are mostly asymptomatic, but they can develop severe jaundice during the neonatal period and acute hemolytic anemia when they ingest fava beans or when they are exposed to certain infections or drugs. G6PD deficiency is a global health issue.

  18. Thermoinactivation Mechanism of Glucose Isomerase

    NASA Astrophysics Data System (ADS)

    Lim, Leng Hong; Saville, Bradley A.

    In this article, the mechanisms of thermoinactivation of glucose isomerase (GI) from Streptomyces rubiginosus (in soluble and immobilized forms) were investigated, particularly the contributions of thiol oxidation of the enzyme's cysteine residue and a "Maillard-like" reaction between the enzyme and sugars in high fructose corn syrup (HFCS). Soluble GI (SGI) was successfully immobilized on silica gel (13.5 μm particle size), with an activity yield between 20 and 40%. The immobilized GI (IGI) has high enzyme retention on the support during the glucose isomerization process. In batch reactors, SGI (half-life =145 h) was more stable than IGI (half-life=27 h) at 60°C in HFCS, whereas at 80°C, IGI (half-life=12 h) was more stable than SGI (half-life=5.2 h). IGI was subject to thiol oxidation at 60°C, which contributed to the enzyme's deactivation. IGI was subject to thiol oxidation at 80°C, but this did not contribute to the deactivation of the enzyme. SGI did not undergo thiol oxidation at 60°C, but at 80°C SGI underwent severe precipitation and thiol oxidation, which caused the enzyme to deactivate. Experimental results show that immobilization suppresses the destablizing effect of thiol oxidation on GI. A "Maillard-like" reaction between SGI and the sugars also caused SGI thermoinactivation at 60, 70, and 80°C, but had minimal effect on IGI. At 60 and 80°C, IGI had higher thermostability in continuous reactors than in batch reactors, possibily because of reduced contact with deleterious compounds in HFCS.

  19. Evidence that humans can taste glucose polymers.

    PubMed

    Lapis, Trina J; Penner, Michael H; Lim, Juyun

    2014-11-01

    The sense of taste is essential for identifying potential nutrients and poisons. Accordingly, specialized taste receptor cells are activated by food-derived chemicals. Because of its importance in the human diet, oral detection of starch, or its degradation products, would presumably be highly beneficial. Yet, it has long been assumed that simple sugars are the only class of carbohydrates that humans can taste. There is, however, considerable evidence that rodents can taste starch degradation products (i.e., glucose polymers composed of maltooligosaccharides with 3-10 glucose units and maltopolysaccharides with >10 glucose units) and that their detection is independent of the sweet taste receptor, T1R2/T1R3. The present study was designed 1) to measure individual differences in human taste perception of glucose polymers, 2) to understand individual differences in the activity of salivary α-amylase, and 3) to investigate the role that salivary α-amylase may play in the taste perception of glucose polymers. In the first experiment, subjects rated taste intensity of glucose, sucrose, NaCl, and glucose polymers of various chain lengths, while their noses were clamped. Saliva samples from the subjects were also collected and their salivary α-amylase activity was assayed. Results showed that the perceived intensities of glucose, sucrose, and NaCl were significantly correlated (r = 0.75-0.85, P < 0.001), but not with the longer chain glucose polymers, whereas intensity ratings of all glucose polymers were highly correlated with one another (r = 0.69-0.82, P < 0.001). Importantly, despite large individual differences in α-amylase activity among subjects, responsiveness to glucose polymers did not significantly differ between individuals with high and low α-amylase activity. A follow up experiment was conducted to quantify the concentrations of glucose and maltose that were inherently present in the glucose polymer stimuli and to determine whether the amounts were

  20. Hypothalamic glucose sensing: making ends meet

    PubMed Central

    Routh, Vanessa H.; Hao, Lihong; Santiago, Ammy M.; Sheng, Zhenyu; Zhou, Chunxue

    2014-01-01

    The neuroendocrine system governs essential survival and homeostatic functions. For example, growth is needed for development, thermoregulation maintains optimal core temperature in a changing environment, and reproduction ensures species survival. Stress and immune responses enable an organism to overcome external and internal threats while the circadian system regulates arousal and sleep such that vegetative and active functions do not overlap. All of these functions require a significant portion of the body's energy. As the integrator of the neuroendocrine system, the hypothalamus carefully assesses the energy status of the body in order to appropriately partition resources to provide for each system without compromising the others. While doing so the hypothalamus must ensure that adequate glucose levels are preserved for brain function since glucose is the primary fuel of the brain. To this end, the hypothalamus contains specialized glucose sensing neurons which are scattered throughout the nuclei controlling distinct neuroendocrine functions. We hypothesize that these neurons play a key role in enabling the hypothalamus to partition energy to meet these peripheral survival needs without endangering the brain's glucose supply. This review will first describe the varied mechanisms underlying glucose sensing in neurons within discrete hypothalamic nuclei. We will then evaluate the way in which peripheral energy status regulates glucose sensitivity. For example, during energy deficit such as fasting specific hypothalamic glucose sensing neurons become sensitized to decreased glucose. This increases the gain of the information relay when glucose availability is a greater concern for the brain. Finally, changes in glucose sensitivity under pathological conditions (e.g., recurrent insulin-hypoglycemia, diabetes) will be addressed. The overall goal of this review is to place glucose sensing neurons within the context of hypothalamic control of neuroendocrine function

  1. Development of a Robust Optical Glucose Sensor

    NASA Astrophysics Data System (ADS)

    Cote, Gerard Laurence

    1990-01-01

    The long term objective of this research was the development of a noninvasive, optically-based, polarimetric sensor to monitor in vivo glucose concentrations. The goal of diabetes therapy is to approximate the 24-hour blood glucose profile of a normal individual. There have been major advances in the development of reliable, versatile, and accurate pumps for the delivery of insulin to diabetic patients and in the development of control algorithms for closed-loop insulin delivery, however, there remain major obstacles to the development of clinically useful, continuous glucose sensors. The development of an accurate noninvasive glucose sensor would have significant application in the diagnosis and management of diabetes mellitis both in conjunction with, and independent of, the glucose pump controller applications. The linear polarization vector of light routes when it interacts with an optically active material such as glucose. The amount of rotation of polarization is directly proportional to the glucose concentration and to the path length. The ability to quantitate blood glucose levels for the limited available path length in our primary sensing site, namely, the anterior chamber of the eye, therefore depends on the signal-to-noise ratio of the polarization detector. Our primary research focused on the development and testing of a prototype optical polarimetry system using D + glucose solution in a test cell, as well as using an enucleated human eye to assess the sensitivity of the system to measure physiologic glucose levels for the approximate one centimeter path length present in the anterior chamber of the eye. Our research has led to the development of a true phase technique in which helium neon laser light was coupled through a rotating linear polarizer along with two stationary linear polarizers and two detectors to produce reference and signal outputs whose amplitudes varied sinusoidally and whose phase was proportional to the rotation of light caused by

  2. Pseudo-bi-enzyme glucose sensor: ZnS hollow spheres and glucose oxidase concerted catalysis glucose.

    PubMed

    Shuai, Ying; Liu, Changhua; Wang, Jia; Cui, Xiaoyan; Nie, Ling

    2013-06-07

    This work creatively uses peroxidase-like ZnS hollow spheres (ZnS HSs) to cooperate with glucose oxidase (GOx) for glucose determinations. This approach is that the ZnS HSs electrocatalytically oxidate the enzymatically generated H2O2 to O2, and then the O2 circularly participates in the previous glucose oxidation by glucose oxidase. Au nanoparticles (AuNPs) and carbon nanotubes (CNTs) are used as electron transfer and enzyme immobilization matrices, respectively. The biosensor of glucose oxidase-carbon nanotubes-Au nanoparticles-ZnS hollow spheres-gold electrode (GOx-CNT-AuNPs-ZnS HSs-GE) exhibits a rapid response, a low detection limit (10 μM), a wide linear range (20 μM to 7 mM) as well as good anti-interference, long-term longevity and reproducibility.

  3. Two glucose sensing/signaling pathways stimulate glucose-induced inactivation of maltose permease in Saccharomyces.

    PubMed Central

    Jiang, H; Medintz, I; Michels, C A

    1997-01-01

    Glucose is a global metabolic regulator in Saccharomyces. It controls the expression of many genes involved in carbohydrate utilization at the level of transcription, and it induces the inactivation of several enzymes by a posttranslational mechanism. SNF3, RGT2, GRR1 and RGT1 are known to be involved in glucose regulation of transcription. We tested the roles of these genes in glucose-induced inactivation of maltose permease. Our results suggest that at least two signaling pathways are used to monitor glucose levels. One pathway requires glucose sensor transcript and the second pathway is independent of glucose transport. Rgt2p, which along with Snf3p monitors extracellular glucose levels, appears to be the glucose sensor for the glucose-transport-independent pathway. Transmission of the Rgt2p-dependent signal requires Grr1p. RGT2 and GRR1 also play a role in regulating the expression of the HXT genes, which appear to be the upstream components of the glucose-transport-dependent pathway regulating maltose permease inactivation. RGT2-1, which was identified as a dominant mutation causing constitutive expression of several HXT genes, causes constitutive proteolysis of maltose permease, that is, in the absence of glucose. A model of these glucose sensing/signaling pathways is presented. Images PMID:9243508

  4. Glucose effectiveness is the major determinant of intravenous glucose tolerance in the rat.

    PubMed

    McArthur, M D; You, D; Klapstein, K; Finegood, D T

    1999-04-01

    To determine the importance of insulin for glucose disposal during an intravenous glucose tolerance test in rats, experiments were performed in four cohorts of conscious unrestrained rats fasted overnight. In cohorts 1-3, a bolus of tracer ([3-3H]glucose, 50 microCi) was given alone, with glucose (0.3 g/kg) to induce an endogenous insulin response (approximately 1,100 pmol/l), or with exogenous insulin to give physiological (1,700 pmol/l) or supraphysiological (12,000 pmol/l) plasma levels. Raising plasma insulin within the physiological range had no effect (P > 0.05), but supraphysiological levels induced hypoglycemia (7.3 +/- 0.2 to 3.6 +/- 0.2 mmol/l) and increased [3H]glucose disappearance rate (P < 0.001). In cohort 4, a primed, continuous tracer infusion was started 120 min before saline or glucose bolus injection. [3H]glucose levels fell 15-20%, and the disappearance rate rose 36% (P < 0.05) after glucose injection. These results indicate that in fasted rats a tracer bolus injection protocol is not sufficiently sensitive to measure the physiological effect of insulin released in response to a bolus of glucose because this effect of insulin is small. Glucose itself is the predominant mediator of glucose disposal after a bolus of glucose in the fasted rat.

  5. Feedback Regulation of Glucose Transporter Gene Transcription in Kluyveromyces lactis by Glucose Uptake

    PubMed Central

    Milkowski, C.; Krampe, S.; Weirich, J.; Hasse, V.; Boles, E.; Breunig, K. D.

    2001-01-01

    In the respirofermentative yeast Kluyveromyces lactis, only a single genetic locus encodes glucose transporters that can support fermentative growth. This locus is polymorphic in wild-type isolates carrying either KHT1 and KHT2, two tandemly arranged HXT-like genes, or RAG1, a low-affinity transporter gene that arose by recombination between KHT1 and KHT2. Here we show that KHT1 is a glucose-induced gene encoding a low-affinity transporter very similar to Rag1p. Kht2p has a lower Km (3.7 mM) and a more complex regulation. Transcription is high in the absence of glucose, further induced by low glucose concentrations, and repressed at higher glucose concentrations. The response of KHT1 and KHT2 gene regulation to high but not to low concentrations of glucose depends on glucose transport. The function of either Kht1p or Kht2p is sufficient to mediate the characteristic response to high glucose, which is impaired in a kht1 kht2 deletion mutant. Thus, the KHT genes are subject to mutual feedback regulation. Moreover, glucose repression of the endogenous β-galactosidase (LAC4) promoter and glucose induction of pyruvate decarboxylase were abolished in the kht1 kht2 mutant. These phenotypes could be partially restored by HXT gene family members from Saccharomyces cerevisiae. The results indicate that the specific responses to high but not to low glucose concentrations require a high rate of glucose uptake. PMID:11514503

  6. Nonfermentable, glucose-containing products formed from glucose under cellulose acid hydrolysis conditions

    Treesearch

    J. L. Minor

    1983-01-01

    Solutions of D-glucose in dilute sulfuric acid were allowed to react under time and temperature conditions which simulated the production of glucose from cellulose. Under these conditions, glucose undergoes a number of reactions including isomerization, dehydration, transglycosidation, polymerization, and anhydride formation. The specific interest in this report was to...

  7. Photocontrol of the expression of genes encoding chlorophyll a/b binding proteins and small subunit of ribulose-1,5-bisphosphate carboxylase in etiolated seedlings of Lycopersicon esculentum (L. ) and Nicotiana tabacum (L. )

    SciTech Connect

    Wehmeyer, B. Albert-Ludwigs-Universitaet, Freiburg ); Cashmore, A.R. ); Schaefer, E. )

    1990-07-01

    Phytochrome and the blue ultraviolet-A photoreceptor control light-induced expression of genes encoding the chlorophyll a/b binding protein of photosystem II and photosystem I and the genes for the small subunit of the ribulose-1,5-bisphosphate carboxylase in etiolated seedlings of Lycopersicon esculentum (tomato) and Nicotiana tabacum (tobacco). A high irradiance response also controls the induction of these genes. Genes encoding photosystem II- and I-associated chlorophyll a/b binding proteins both exhibit a transient rapid increase in expression in response to light pulse or to continuous irradiation. In contrast, genes encoding the small subunit exhibit a continuous increase in expression in response to light. These distinct expression characteristics are shown to reflect differences at the level of transcription.

  8. Glucose Disappearance in Biological Treatment Systems

    PubMed Central

    Jeris, John S.; Cardenas, Raul R.

    1966-01-01

    Laboratory scale anaerobic and aerobic treatment units were conditioned with a daily slug-feed of glucose. After a period of acclimation and stabilization, glucose disappearance was monitored continuously after the slug feed. A continuous sampling apparatus is described. Mathematical analysis of the data indicate zero-order reactions for both biological treatment systems. PMID:16349685

  9. Glucose-Induced Acidification in Yeast Cultures

    ERIC Educational Resources Information Center

    Myers, Alan; Bourn, Julia; Pool, Brynne

    2005-01-01

    We present an investigation (for A-level biology students and equivalent) into the mechanism of glucose-induced extracellular acidification in unbuffered yeast suspensions. The investigation is designed to enhance understanding of aspects of the A-level curriculum that relate to the phenomenon (notably glucose catabolism) and to develop key skills…

  10. Molecular pathophysiology of hepatic glucose production.

    PubMed

    Sharabi, Kfir; Tavares, Clint D J; Rines, Amy K; Puigserver, Pere

    2015-12-01

    Maintaining blood glucose concentration within a relatively narrow range through periods of fasting or excess nutrient availability is essential to the survival of the organism. This is achieved through an intricate balance between glucose uptake and endogenous glucose production to maintain constant glucose concentrations. The liver plays a major role in maintaining normal whole body glucose levels by regulating the processes of de novo glucose production (gluconeogenesis) and glycogen breakdown (glycogenolysis), thus controlling the levels of hepatic glucose release. Aberrant regulation of hepatic glucose production (HGP) can result in deleterious clinical outcomes, and excessive HGP is a major contributor to the hyperglycemia observed in Type 2 diabetes mellitus (T2DM). Indeed, adjusting glycemia as close as possible to a non-diabetic range is the foremost objective in the medical treatment of patients with T2DM and is currently achieved in the clinic primarily through suppression of HGP. Here, we review the molecular mechanisms controlling HGP in response to nutritional and hormonal signals and discuss how these signals are altered in T2DM.

  11. [Intracellular signals involved in glucose control].

    PubMed

    Cruz, M; Velasco, E; Kumate, J

    2001-01-01

    Many proteins are involved in glucose control. The first step for glucose uptake is insulin receptor-binding. Stimulation of the insulin receptor results in rapid autophosphorylation and conformational changes in the beta chain and the subsequent phosphorylation of the insulin receptor substrate. This results in the docking of several SH2 domain proteins, including PI 3-kinase and other adapters. The final event is glucose transporter (GLUT) translocation to the cell surface. GLUT is in the cytosol but after insulin stimulation, several proteins are activated either in the GLUT vesicles or in the inner membrane. The role of the cytoskeleton is not well known, but it apparently participates in membrane fusion and vesicle mobilization. After glucose uptake, several hexokines metabolize the glucose to generate energy, convert the glucose in glycogen and store it. Type 2 diabetes is characterized by high glucose levels and insulin resistance. The insulin receptor is diminished on the cell surface membrane, tyrosine phosphorylation is decreased, serine and threonine phosphorylation is augmented. Apparently, the main problem with GLUT protein is in its translocation to the cell surface. At present, we know the role of many proteins involved in glucose control. However, we do not understand the significance of insulin resistance at the molecular level with type 2 diabetes.

  12. Toward a Continuous Intravascular Glucose Monitoring System

    PubMed Central

    Beier, Brooke; Musick, Katherine; Matsumoto, Akira; Panitch, Alyssa; Nauman, Eric; Irazoqui, Pedro

    2011-01-01

    Proof-of-concept studies that display the potential of using a glucose-sensitive hydrogel as a continuous glucose sensor are presented. The swelling ratio, porosity, and diffusivity of the hydrogel increased with glucose concentration. In glucose solutions of 50, 100, 200, and 300 mg/dL, the hydrogel swelling ratios were 4.9, 12.3, 15.9, and 21.7, respectively, and the swelling was reversible. The impedance across the hydrogel depended solely on the thickness and had an average increase of 47 Ω/mm. The hydrogels exposed to a hyperglycemic solution were more porous than the hydrogels exposed to a normal glycemic solution. The diffusivity of 390 Da MW fluorescein isothiocyanate in hydrogels exposed to normal and hyperglycemic solutions was examined using fluorescence recovery after photobleaching and was found to be 9.3 × 10−14 and 41.4 × 10−14 m2/s, respectively, compared to 6.2 × 10−10 m2/s in glucose solution. There was no significant difference between the permeability of hydrogels in normal and hyperglycemic glucose solutions with averages being 5.26 × 10−17 m2 and 5.80 × 10−17 m2, respectively, which resembles 2–4% agarose gels. A prototype design is presented for continuous intravascular glucose monitoring by attaching a glucose sensor to an FDA-approved stent. PMID:22344366

  13. Glucose-Induced Acidification in Yeast Cultures

    ERIC Educational Resources Information Center

    Myers, Alan; Bourn, Julia; Pool, Brynne

    2005-01-01

    We present an investigation (for A-level biology students and equivalent) into the mechanism of glucose-induced extracellular acidification in unbuffered yeast suspensions. The investigation is designed to enhance understanding of aspects of the A-level curriculum that relate to the phenomenon (notably glucose catabolism) and to develop key skills…

  14. Molecular Pathophysiology of Hepatic Glucose Production

    PubMed Central

    Sharabi, Kfir; Tavares, Clint D. J.; Rines, Amy K.; Puigserver, Pere

    2015-01-01

    Maintaining blood glucose concentration within a relatively narrow range through periods of fasting or excess nutrient availability is essential to the survival of the organism. This is achieved through an intricate balance between glucose uptake and endogenous glucose production to maintain constant glucose concentrations. The liver plays a major role in maintaining normal whole body glucose levels by regulating the processes of de novo glucose production (gluconeogenesis) and glycogen breakdown (glycogenolysis), thus controlling the levels of hepatic glucose release. Aberrant regulation of hepatic glucose production (HGP) can result in deleterious clinical outcomes, and excessive HGP is a major contributor to the hyperglycemia observed in Type 2 diabetes mellitus (T2DM). Indeed, adjusting glycaemia as close as possible to a non-diabetic range is the foremost objective in the medical treatment of patients with T2DM and is currently achieved in the clinic primarily through suppression of HGP. Here, we review the molecular mechanisms controlling HGP in response to nutritional and hormonal signals and discuss how these signals are altered in T2DM. PMID:26549348

  15. Glucose kinetics during prolonged exercise in highly trained human subjects: effect of glucose ingestion

    PubMed Central

    Jeukendrup, Asker E; Raben, Anne; Gijsen, Annemie; Stegen, Jos H C H; Brouns, Fred; Saris, Wim H M; Wagenmakers, Anton J M

    1999-01-01

    The objectives of this study were (1) to investigate whether glucose ingestion during prolonged exercise reduces whole body muscle glycogen oxidation, (2) to determine the extent to which glucose disappearing from the plasma is oxidized during exercise with and without carbohydrate ingestion and (3) to obtain an estimate of gluconeogenesis. After an overnight fast, six well-trained cyclists exercised on three occasions for 120 min on a bicycle ergometer at 50% maximum velocity of O2 uptake and ingested either water (Fast), or a 4% glucose solution (Lo-Glu) or a 22% glucose solution (Hi-Glu) during exercise. Dual tracer infusion of [U-13C]-glucose and [6,6-2H2]-glucose was given to measure the rate of appearance (Ra) of glucose, muscle glycogen oxidation, glucose carbon recycling, metabolic clearance rate (MCR) and non-oxidative disposal of glucose. Glucose ingestion markedly increased total Ra especially with Hi-Glu. After 120 min Ra and rate of disappearance (Rd) of glucose were 51-52 μmol kg−1 min−1 during Fast, 73-74 μmol kg−1 min−1 during Lo-Glu and 117–119 μmol kg−1 min−1 during Hi-Glu. The percentage of Rd oxidized was between 96 and 100% in all trials. Glycogen oxidation during exercise was not reduced by glucose ingestion. The vast majority of glucose disappearing from the plasma is oxidized and MCR increased markedly with glucose ingestion. Glucose carbon recycling was minimal suggesting that gluconeogenesis in these conditions is negligible. PMID:10050023

  16. Effect of Portal Glucose Sensing on Systemic Glucose Levels in SD and ZDF Rats

    PubMed Central

    Pal, Atanu; Rhoads, David B.; Tavakkoli, Ali

    2016-01-01

    Background The global epidemic of Type-2-Diabetes (T2D) highlights the need for novel therapeutic targets and agents. Roux-en-Y-Gastric-Bypass (RYGB) is the most effective treatment. Studies investigating the mechanisms of RYGB suggest a role for post-operative changes in portal glucose levels. We investigate the impact of stimulating portal glucose sensors on systemic glucose levels in health and T2D, and evaluated the role of sodium-glucose-cotransporter-3 (SGLT3) as the possible sensor. Methods Systemic glucose and hormone responses to portal stimulation were measured. In Sprague-Dawley (SD) rats, post-prandial state was simulated by infusing glucose into the portal vein. The SGLT3 agonist, alpha-methyl-glucopyranoside (αMG), was then added to further stimulate the portal sensor. To elucidate the neural pathway, vagotomy or portal denervation was followed by αMG+glucose co-infusion. The therapeutic potential of portal glucose sensor stimulation was investigated by αMG-only infusion (vs. saline) in SD and Zucker-Diabetic-Fatty (ZDF) rats. Hepatic mRNA expression was also measured. Results αMG+glucose co-infusion reduced peak systemic glucose (vs. glucose alone), and lowered hepatic G6Pase expression. Portal denervation, but not vagotomy, abolished this effect. αMG-only infusion lowered systemic glucose levels. This glucose-lowering effect was more pronounced in ZDF rats, where portal αMG infusion increased insulin, C-peptide and GIP levels compared to saline infusions. Conclusions The portal vein is capable of sensing its glucose levels, and responds by altering hepatic glucose handling. The enhanced effect in T2D, mediated through increased GIP and insulin, highlights a therapeutic target that could be amenable to pharmacological modulation or minimally-invasive surgery. PMID:27806092

  17. Canagliflozin Lowers Postprandial Glucose and Insulin by Delaying Intestinal Glucose Absorption in Addition to Increasing Urinary Glucose Excretion

    PubMed Central

    Polidori, David; Sha, Sue; Mudaliar, Sunder; Ciaraldi, Theodore P.; Ghosh, Atalanta; Vaccaro, Nicole; Farrell, Kristin; Rothenberg, Paul; Henry, Robert R.

    2013-01-01

    OBJECTIVE Canagliflozin, a sodium glucose cotransporter (SGLT) 2 inhibitor, is also a low-potency SGLT1 inhibitor. This study tested the hypothesis that intestinal canagliflozin levels postdose are sufficiently high to transiently inhibit intestinal SGLT1, thereby delaying intestinal glucose absorption. RESEARCH DESIGN AND METHODS This two-period, crossover study evaluated effects of canagliflozin on intestinal glucose absorption in 20 healthy subjects using a dual-tracer method. Placebo or canagliflozin 300 mg was given 20 min before a 600-kcal mixed-meal tolerance test. Plasma glucose, 3H-glucose, 14C-glucose, and insulin were measured frequently for 6 h to calculate rates of appearance of oral glucose (RaO) in plasma, endogenous glucose production, and glucose disposal. RESULTS Compared with placebo, canagliflozin treatment reduced postprandial plasma glucose and insulin excursions (incremental 0- to 2-h area under the curve [AUC0–2h] reductions of 35% and 43%, respectively; P < 0.001 for both), increased 0- to 6-h urinary glucose excretion (UGE0–6h, 18.2 ± 5.6 vs. <0.2 g; P < 0.001), and delayed RaO. Canagliflozin reduced AUC RaO by 31% over 0 to 1 h (geometric means, 264 vs. 381 mg/kg; P < 0.001) and by 20% over 0 to 2 h (576 vs. 723 mg/kg; P = 0.002). Over 2 to 6 h, canagliflozin increased RaO such that total AUC RaO over 0 to 6 h was <6% lower versus placebo (960 vs. 1,018 mg/kg; P = 0.003). A modest (∼10%) reduction in acetaminophen absorption was observed over the first 2 h, but this difference was not sufficient to explain the reduction in RaO. Total glucose disposal over 0 to 6 h was similar across groups. CONCLUSIONS Canagliflozin reduces postprandial plasma glucose and insulin by increasing UGE (via renal SGLT2 inhibition) and delaying RaO, likely due to intestinal SGLT1 inhibition. PMID:23412078

  18. Convergence of Signaling Pathways Induced by Systemin, Oligosaccharide Elicitors, and Ultraviolet-B Radiation at the Level of Mitogen-Activated Protein Kinases in Lycopersicon peruvianum Suspension-Cultured Cells1

    PubMed Central

    Holley, Susan R.; Yalamanchili, Roopa D.; Moura, Daniel S.; Ryan, Clarence A.; Stratmann, Johannes W.

    2003-01-01

    We tested whether signaling pathways induced by systemin, oligosaccharide elicitors (OEs), and ultraviolet (UV)-B radiation share common components in Lycopersicon peruvianum suspension-cultured cells. These stress signals all induce mitogen-activated protein kinase (MAPK) activity. In desensitization assays, we found that pretreatment with systemin and OEs transiently reduced the MAPK response to a subsequent treatment with the same or a different elicitor. In contrast, MAPK activity in response to UV-B increased after pretreatment with systemin and OEs. These experiments demonstrate the presence of signaling components that are shared by systemin, OEs, and UV-B. Based on desensitization assays, it is not clear if the same or different MAPKs are activated by different stress signals. To identify specific stress-responsive MAPKs, we cloned three MAPKs from a tomato (Lycopersicon esculentum) leaf cDNA library, generated member-specific antibodies, and performed immunocomplex kinase assays with extracts from elicited L. peruvianum cells. Two highly homologous MAPKs, LeMPK1 and LeMPK2, were activated in response to systemin, four different OEs, and UV-B radiation. An additional MAPK, LeMPK3, was only activated by UV-B radiation. The common activation of LeMPK1 and LeMPK2 by many stress signals is consistent with the desensitization assays and may account for substantial overlaps among stress responses. On the other hand, MAPK activation kinetics in response to elicitors and UV-B differed substantially, and UV-B activated a different set of LeMPKs than the elicitors. These differences may account for UV-B-specific responses. PMID:12913131

  19. 21 CFR 862.1345 - Glucose test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Glucose test system. 862.1345 Section 862.1345....1345 Glucose test system. (a) Identification. A glucose test system is a device intended to measure glucose quantitatively in blood and other body fluids. Glucose measurements are used in the diagnosis and...

  20. Glucose Recognition in Vitro Using Fluorescent Spectroscopy

    SciTech Connect

    Noronha, G; Heiss, A M; Reilly, J R; Vachon, Jr, D J; Cary, D R; Zaitseva, N P; Reibold, R A; Lane, S M; Peyser, T A; Satcher, J H

    2001-04-25

    Diabetes is a disease that affects over 16 million people in the USA at a cost of 100 billion dollars annually. The ability to regulate insulin delivery in people with Type 1 diabetes is imperative as is the need to manage glucose levels in all people with this disease. Our current method for monitoring glucose is a (FDA approved) minimally invasive enzymatic sensor that can measure glucose levels in vivo for three days. We are focused on developing a noninvasive implantable glucose sensor that will be interrogated by an external device. The material must be robust, easy to process, biocompatible and resistant to biofouling. In this Presentation we will discuss the development of a new polymeric matrix that can recognize physiological levels of glucose in vitro using fluorescent spectroscopy.

  1. Diurnal Variation in Response to Intravenous Glucose*

    PubMed Central

    Whichelow, Margaret J.; Sturge, R. A.; Keen, H.; Jarrett, R. J.; Stimmler, L.; Grainger, Susan

    1974-01-01

    Intravenous glucose tolerance tests (25 g) were performed in the morning and afternoon on 13 apparently normal persons. The individual K values (rate of decline of blood sugar) were all higher in the morning tests, and the mean values were significantly higher in the morning. Fasting blood sugar levels were slightly lower in the afternoon. There was no difference between the fasting morning and afternoon plasma insulin levels, but the levels after glucose were lower in the afternoon. Growth hormone levels were low at all times in non-apprehensive subjects and unaffected by glucose. The results suggest that the impaired afternoon intravenous glucose tolerance, like oral glucose tolerance, is associated with impaired insulin release and insulin resistance. PMID:4817160

  2. Contribution of glucose kinase to glucose repression of xylose utilization in Bacillus megaterium.

    PubMed Central

    Späth, C; Kraus, A; Hillen, W

    1997-01-01

    The glk gene from Bacillus megaterium, which encodes glucose kinase, was isolated and analyzed. Disruption by a transcriptional glk-luxAB fusion indicated that glk is the only glucose kinase gene in that strain but did not affect growth of that mutant on glucose. Determination of luciferase activity under various growth conditions revealed constitutive transcription of glk. Expression of a xylA-lacZ fusion was repressed by glucose in the strain with the glk disruption about twofold less efficiently than in the wild type. The potential contribution of glk expression to glucose repression is discussed. PMID:9393732

  3. Glucose Biosensor Based on Immobilization of Glucose Oxidase in Platinum Nanoparticles/Graphene/Chitosan Nanocomposite Film

    SciTech Connect

    Wu, Hong; Wang, Jun; Kang, Xinhuang; Wang, Chong M.; Wang, Donghai; Liu, Jun; Aksay, Ilhan A.; Lin, Yuehe

    2009-09-01

    The bionanocomposite film consisting of glucose oxidase/Pt/functional graphene sheets/chitosan (GOD/Pt/FGS/chitosan) for glucose sensing was described. With the electrocatalytic synergy of FGS and Pt nanoparticles to hydrogen peroxide, a sensitive biosensor with detection limit of 0.6 µM glucose was achieved. The biosensor also had good reproducibility, long term stability and negligible interfering signals from ascorbic acid and uric acid comparing to the response to glucose. The large surface area and good conductivity of graphene suggests that graphene is a potential candidate for sensor material. The hybrid nanocomposite glucose sensor provides new opportunity for clinical diagnosis and point-of-care applications.

  4. Remote sensing and serological analysis of the resistance of tomato plants (Lycopersicon escylentum L.) to Tomato mosaic virus (ToMV)

    NASA Astrophysics Data System (ADS)

    Krezhova, Dora; Hristova, Dimitrina; Iliev, Ilko; Yanev, Tony

    Diseases caused by Tomato mosaic virus (ToMV) are among the most important factors lim-iting tomato production worldwide, as they can completely destroy the crop. ToMV occurs in most countries of the world, and causes disease epidemics in many crops. Systemic acquired resistance (SAR) is an inducible defence mechanism that plays a central role in disease re-sistance. SAR is induced by most pathogens that cause tissue necrosis. Spectral reflectance and chlorophyll fluorescence analysis were applied to establish injury of young tomato plants (Lycopersicon escylentum L.) infected with ToMV. Leaf spectral reflectance and chlorophyll fluorescence were registered by a portable Ocean Optics spectrometer USB 2000 in the visi-ble and near infrared spectral ranges (450-850 nm) at a spectral resolution of 1.5 nm. As a model system, tomato plants of cultivar Nuton resistant to ToMV were used. The plants were grown in a green house under controlled conditions. They were divided into six groups. The first group consisted of untreated (control) plants. At growth stage 4-6 expanded leaf, the second group was inoculated with ToMV. The other four groups were treated with following growth regulators: preparations Spermine, MEIA (beta-monomethyl ester of itaconic acid), (benzo(1,2,3)thiadiazole-7-carbothioic acid-S-methyl ester) and Phytoxin VS. On the next day, the tomato plants of these four groups were inoculated with ToMV. The viral concentrations in the plants were determined by the serological method Double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA). All analysis were performed on detached leaves from 20 uninfected and up to 20 leaves from infected plants on the 7th and 14th day after the inocu-lation. The differences between the reflectance spectra of virus-infected and uninfected leaves were analysed in the four most informative for green plants wavelength intervals: green (520-580 nm), red (640-680 nm), red edge (690-710 nm) and near infrared (720-760 nm

  5. A novel noninvasive blood glucose monitor.

    PubMed

    Malchoff, Carl D; Shoukri, Kamal; Landau, Julian I; Buchert, Janusz M

    2002-12-01

    To evaluate the precision and accuracy of a new advanced prototype of a noninvasive blood glucose monitor across a wide range of serum glucose concentrations. An advanced handheld noninvasive glucose monitor prototype was calibrated and tested using patients recruited by the General Research Center of the University of Connecticut Health Center. The monitor, developed by Infratec, uses principles of thermal emission spectroscopy. The noninvasive measurement of tympanic membrane glucose concentration was calibrated to the serum glucose concentration using 432 paired measurements from 20 subjects with insulin-requiring diabetes. This calibration was subsequently tested (results of power analyses) in a blind fashion with 126 paired measurements from six diabetic subjects who require insulin. In vivo measurements demonstrated the reproducibility of the methodology of the noninvasive glucose monitor. Based on the calibration model, predicted glucose concentrations for six subjects were as follows (for 126 data points): SD = 32 mg/dl, mean absolute relative error (%MARE) = 11.6, with a correlation coefficient of r = 0.87. Noninvasive glucose results were also compared with laboratory reference measurements using an error-in-variables method. Clark error grid analysis showed that 100% of the measurements fell within zones A and B (90% in zone A and 10% in zone B). The SD for all noninvasive measured concentrations was 27 mg/dl, %MARE was 8.6, and the correlation coefficient was r = 0.94. This first independent clinical study of an advanced noninvasive blood glucose prototype based on thermal emission in the mid-infrared spectral region has demonstrated glucose measurements with clinically acceptable accuracy but without the necessity of individual daily calibration.

  6. Identification of Glucose Transporters in Aspergillus nidulans

    PubMed Central

    dos Reis, Thaila Fernanda; Menino, João Filipe; Bom, Vinícius Leite Pedro; Brown, Neil Andrew; Colabardini, Ana Cristina; Savoldi, Marcela; Goldman, Maria Helena S.; Rodrigues, Fernando; Goldman, Gustavo Henrique

    2013-01-01

    To characterize the mechanisms involved in glucose transport, in the filamentous fungus Aspergillus nidulans, we have identified four glucose transporter encoding genes hxtB-E. We evaluated the ability of hxtB-E to functionally complement the Saccharomyces cerevisiae EBY.VW4000 strain that is unable to grow on glucose, fructose, mannose or galactose as single carbon source. In S. cerevisiae HxtB-E were targeted to the plasma membrane. The expression of HxtB, HxtC and HxtE was able to restore growth on glucose, fructose, mannose or galactose, indicating that these transporters accept multiple sugars as a substrate through an energy dependent process. A tenfold excess of unlabeled maltose, galactose, fructose, and mannose were able to inhibit glucose uptake to different levels (50 to 80 %) in these s. cerevisiae complemented strains. Moreover, experiments with cyanide-m-chlorophenylhydrazone (CCCP), strongly suggest that hxtB, -C, and –E mediate glucose transport via active proton symport. The A. nidulans ΔhxtB, ΔhxtC or ΔhxtE null mutants showed ~2.5-fold reduction in the affinity for glucose, while ΔhxtB and -C also showed a 2-fold reduction in the capacity for glucose uptake. The ΔhxtD mutant had a 7.8-fold reduction in affinity, but a 3-fold increase in the capacity for glucose uptake. However, only the ΔhxtB mutant strain showed a detectable decreased rate of glucose consumption at low concentrations and an increased resistance to 2-deoxyglucose. PMID:24282591

  7. Cell Based Metabolic Barriers to Glucose Diffusion: Macrophages and Continuous Glucose Monitoring

    PubMed Central

    Klueh, Ulrike; Frailey, Jackman; Qiao, Yi; Antar, Omar; Kreutzer, Donald L.

    2014-01-01

    It is assumed that MQ are central to glucose sensor bio-fouling and therefore have a major negative impact on continuous glucose monitoring (CGM) performance in vivo. However to our knowledge there is no data in the literature to directly support or refute this assumption. Since glucose and oxygen (O2) are key to glucose sensor function in vivo, understanding and controlling glucose and O2 metabolic activity of MQ is likely key to successful glucose sensor performance. We hypothesized that the accumulation of MQ at the glucose sensor-tissue interface will act as “Cell Based Metabolic Barriers” (CBMB) to glucose diffusing from the interstitial tissue compartment to the implanted glucose sensor and as such creating an artificially low sensor output, thereby compromising sensor function and CGM. Our studies demonstrated that 1) direct injections of MQ at in vivo sensor implantation sites dramatically decreased sensor output (measured in nA), 2) addition of MQ to glucose sensors in vitro resulted in a rapid and dramatic fall in sensor output and 3) lymphocytes did not affect sensor function in vitro or in vivo. These data support our hypothesis that MQ can act as metabolic barriers to glucose and O2 diffusion in vivo and in vitro. PMID:24461328

  8. Glucose-dependent insulinotropic polypeptide directly induces glucose transport in rat skeletal muscle.

    PubMed

    Snook, Laelie A; Nelson, Emery M; Dyck, David J; Wright, David C; Holloway, Graham P

    2015-08-01

    Several gastrointestinal proteins have been identified to have insulinotropic effects, including glucose-dependent insulinotropic polypeptide (GIP); however, the direct effects of incretins on skeletal muscle glucose transport remain largely unknown. Therefore, the purpose of the current study was to examine the role of GIP on skeletal muscle glucose transport and insulin signaling in rats. Relative to a glucose challenge, a mixed glucose+lipid oral challenge increased circulating GIP concentrations, skeletal muscle Akt phosphorylation, and improved glucose clearance by ∼35% (P < 0.05). These responses occurred without alterations in serum insulin concentrations. In an incubated soleus muscle preparation, GIP directly stimulated glucose transport and increased GLUT4 accumulation on the plasma membrane in the absence of insulin. Moreover, the ability of GIP to stimulate glucose transport was mitigated by the addition of the PI 3-kinase (PI3K) inhibitor wortmannin, suggesting that signaling through PI3K is required for these responses. We also provide evidence that the combined stimulatory effects of GIP and insulin on soleus muscle glucose transport are additive. However, the specific GIP receptor antagonist (Pro(3))GIP did not attenuate GIP-stimulated glucose transport, suggesting that GIP is not signaling through its classical receptor. Together, the current data provide evidence that GIP regulates skeletal muscle glucose transport; however, the exact signaling mechanism(s) remain unknown.

  9. Cell based metabolic barriers to glucose diffusion: macrophages and continuous glucose monitoring.

    PubMed

    Klueh, Ulrike; Frailey, Jackman T; Qiao, Yi; Antar, Omar; Kreutzer, Donald L

    2014-03-01

    It is assumed that MQ are central to glucose sensor bio-fouling and therefore have a major negative impact on continuous glucose monitoring (CGM) performance in vivo. However to our knowledge there is no data in the literature to directly support or refute this assumption. Since glucose and oxygen (O2) are key to glucose sensor function in vivo, understanding and controlling glucose and O2 metabolic activity of MQ is likely key to successful glucose sensor performance. We hypothesized that the accumulation of MQ at the glucose sensor-tissue interface will act as "Cell Based Metabolic Barriers" (CBMB) to glucose diffusing from the interstitial tissue compartment to the implanted glucose sensor and as such creating an artificially low sensor output, thereby compromising sensor function and CGM. Our studies demonstrated that 1) direct injections of MQ at in vivo sensor implantation sites dramatically decreased sensor output (measured in nA), 2) addition of MQ to glucose sensors in vitro resulted in a rapid and dramatic fall in sensor output and 3) lymphocytes did not affect sensor function in vitro or in vivo. These data support our hypothesis that MQ can act as metabolic barriers to glucose and O2 diffusion in vivo and in vitro.

  10. Glucose sensing mechanisms in hypothalamic cell models: glucose inhibition of AgRP synthesis and secretion.

    PubMed

    Chalmers, Jennifer A; Jang, Janet J; Belsham, Denise D

    2014-01-25

    Glucose-sensing neurons play a role in energy homeostasis, yet how orexigenic neurons sense glucose remains unclear. As models of glucose-inhibited (GI) neurons, mHypoE-29/1 and mHypoA-NPY/GFP cells express the essential orexigenic neuropeptide AgRP and glucose sensing machinery. Exposure to increasing concentrations of glucose or the glucose analog 2-deoxyglucose (2-DG) results in a decrease in AgRP mRNA levels. Taste receptor, Tas1R2 mRNA expression was reduced by glucose, whereas 2-DG reduced Tas1R3 mRNA levels. Increasing glucose concentrations elicited a rise in Akt and neuronal nitric oxide synthase (nNOS) phosphorylation, CaMKKβ levels, and a reduction of AMP-kinase alpha phosphorylation. Inhibitors of NOS and the cystic fibrosis transmembrane conductance regulator (CFTR) prevented a decrease in AgRP secretion with glucose, suggesting a pivotal role for nNOS and the CFTR in glucose-sensing. These models possess the hallmark characteristics of GI neurons, and can be used to disentangle the mechanisms by which orexigenic neurons sense glucose.

  11. Glucose biosensor based on nanocomposite films of CdTe quantum dots and glucose oxidase.

    PubMed

    Li, Xinyu; Zhou, Yunlong; Zheng, Zhaozhu; Yue, Xiuli; Dai, Zhifei; Liu, Shaoqin; Tang, Zhiyong

    2009-06-02

    A blood glucose sensor has been developed based on the multilayer films of CdTe semiconductor quantum dots (QDs) and glucose oxidase (GOD) by using the layer-by-layer assembly technique. When the composite films were contacted with glucose solution, the photoluminescence of QDs in the films was quickly quenched because the enzyme-catalyzed reaction product (H2O2) of GOD and glucose gave rise to the formation of surface defects on QDs. The quenching rate was a function of the concentration of glucose. The linear range and sensitivity for glucose determination could be adjusted by controlling the layers of QDs and GOD. The biosensor was used to successfully determine the concentration of blood glucose in real serum samples without sample pretreatment and exhibited satisfactory reproducibility and accuracy.

  12. Icodextrin:a major problem for glucose dehydrogenase-based glucose point of care testing systems.

    PubMed

    Floré, K; Delanghe, J

    2006-01-01

    Recently a number of glucose dehydrogenase-based point of care (POCT) systems for glucose monitoring were successfully introduced on the market. Icodextrin, a glucose polymer is widely used as an osmotic agent in continuous ambulatory peritoneal dialysis (CAPD). Its metabolites are substrates for glucose dehydrogenase, inducing an analytical error which is gaining importance in the determination of glucose in a hospital environment. Since icodextrin is hydrolysed by amylase in the extracellular fluids, the analytical error in vivo is aggravated by the presence of the smaller oligosaccharides which originate from amylase activity. Clinicians should be warned about the spurious high glucose results which might occur in icodextrin-treated patients. In particular in in conditions associated with increased amylase activities, analytical errors are to be expected in icodextrin-treated patients. Alternative glucose determination methods should be recommended in the latter group of patients.

  13. Severe tomato allergy (Lycopersicon esculentum).

    PubMed

    Zacharisen, Michael C; Elms, Nancy P; Kurup, Viswanath P

    2002-01-01

    Although tomatoes are a commonly consumed food, severe allergic reactions to tomatoes are unusual or rarely reported. Previously reported allergic manifestations to tomato include urticaria/angioedema, dermatitis, oral allergy syndrome, rhinitis, and abdominal pain. The aim of this study was to report two patients with significant immediate hypersensitivity reactions to tomato and characterize the responsible allergen. We reviewed the history and documentation of tomato-specific immunoglobulin E (IgE) of two patients with adverse symptoms after ingesting tomato. Fresh tomato extracts prepared from the skin, seeds, and flesh of red, ripe tomatoes were evaluated for total protein content and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was performed to characterize the tomato protein. IgE enzyme-linked immunosorbent assay (ELISA) using the patients' serum against the various tomato extracts was accomplished and IgE immunoblot was performed. Percutaneous skin tests or radioallergosorbent tests (RASTs) were positive to tomato in both patients. Both adults experienced laryngeal edema and one had anaphylaxis. Similar total protein contents were found in each of the tomato extracts and gel electrophoresis revealed similar protein profile for skin and seed extracts with protein bands discernible at molecular weights of 21, 33, and 43 kDa. One patient reacted specifically to a 43-kDa protein band on IgE immunoblot. The two cases show that severe allergic reactions to tomato occur in adults and one is associated with IgE binding to a 43-kDa protein.

  14. Glucose transporters in the human placenta.

    PubMed

    Illsley, N P

    2000-01-01

    The availability of antibodies and cDNA probes specific for the various members of the facilitated-diffusion glucose transporter (GLUT) family has enabled researchers to obtain a much clearer picture of the mechanisms for placental uptake and transplacental transport of glucose. This review examines studies of human placental glucose transport with the aim of providing a model which describes the transporter isoforms present in the placenta, their cellular localization and functional significance. The GLUT1 glucose transporter, present on both the microvillous and basal membranes of the syncytial barrier, is the primary isoform involved in the transplacental movement of glucose. Although GLUT3 mRNA is widely distributed, GLUT3 protein is localized to the arterial component of the vascular endothelium, where it may play a role in enhancing transplacental glucose transport. This data is in contrast to the situation in other mammalian species, such as the mouse, rat and sheep, where GLUT3 protein is not only present in those epithelial cells which carry out transplacental transport but becomes an increasingly prominent isoform as gestation progresses. The asymmetric distribution of GLUT1 in the human syncytiotrophoblast (microvillous>basal) means that basal GLUT1 acts as the rate limiting step in transplacental transfer. Changes in basal GLUT1 therefore have the potential to cause alterations in transplacental transport of glucose. Although there appear to be no changes in syncytial GLUT1 expression in intrauterine growth retardation, in diabetic pregnancies increases in basal GLUT1 expression and activity have been observed, with significant consequences for the maternal-fetal flux of glucose. Little is known of glucose transporter regulation in the placenta save for the effects of hyper- and hypoglycemia. GLUT1 expression and activity appear to be inversely related to extracellular glucose concentration, however within the physiological range, GLUT1 expression is

  15. Accelerated intestinal glucose absorption in morbidly obese humans: relationship to glucose transporters, incretin hormones, and glycemia.

    PubMed

    Nguyen, Nam Q; Debreceni, Tamara L; Bambrick, Jenna E; Chia, Bridgette; Wishart, Judith; Deane, Adam M; Rayner, Chris K; Horowitz, Michael; Young, Richard L

    2015-03-01

    Intestinal glucose absorption is mediated by sodium-dependent glucose transporter 1 (SGLT-1) and glucose transporter 2 (GLUT2), which are linked to sweet taste receptor (STR) signaling and incretin responses. This study aimed to examine intestinal glucose absorption in morbidly obese humans and its relationship to the expression of STR and glucose transporters, glycemia, and incretin responses. Seventeen nondiabetic, morbidly obese subjects (body mass index [BMI], 48 ± 4 kg/m(2)) and 11 lean controls (BMI, 25 ± 1 kg/m(2)) underwent endoscopic duodenal biopsies before and after a 30-minute intraduodenal glucose infusion (30 g glucose and 3 g 3-O-methylglucose [3-OMG]). Blood glucose and plasma concentrations of 3-OMG, glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide 1 (GLP-1), insulin, and glucagon were measured over 270 minutes. Expression of duodenal SGLT-1, GLUT2, and STR (T1R2) was quantified by PCR. The increase in plasma 3-OMG (P < .001) and blood glucose (P < .0001) were greater in obese than lean subjects. Plasma 3-OMG correlated directly with blood glucose (r = 0.78, P < .01). In response to intraduodenal glucose, plasma GIP (P < .001), glucagon (P < .001), and insulin (P < .001) were higher, but GLP-1 (P < .001) was less in the obese compared with lean. Expression of SGLT-1 (P = .035), but not GLUT2 or T1R2, was higher in the obese, and related to peak plasma 3-OMG (r = 0.60, P = .01), GIP (r = 0.67, P = .003), and insulin (r = 0.58, P = .02). In morbid obesity, proximal intestine glucose absorption is accelerated and related to increased SGLT-1 expression, leading to an incretin-glucagon profile promoting hyperinsulinemia and hyperglycemia. These findings are consistent with the concept that accelerated glucose absorption in the proximal gut underlies the foregut theory of obesity and type 2 diabetes.

  16. Yeast AMP-activated protein kinase monitors glucose concentration changes and absolute glucose levels.

    PubMed

    Bendrioua, Loubna; Smedh, Maria; Almquist, Joachim; Cvijovic, Marija; Jirstrand, Mats; Goksör, Mattias; Adiels, Caroline B; Hohmann, Stefan

    2014-05-02

    Analysis of the time-dependent behavior of a signaling system can provide insight into its dynamic properties. We employed the nucleocytoplasmic shuttling of the transcriptional repressor Mig1 as readout to characterize Snf1-Mig1 dynamics in single yeast cells. Mig1 binds to promoters of target genes and mediates glucose repression. Mig1 is predominantly located in the nucleus when glucose is abundant. Upon glucose depletion, Mig1 is phosphorylated by the yeast AMP-activated kinase Snf1 and exported into the cytoplasm. We used a three-channel microfluidic device to establish a high degree of control over the glucose concentration exposed to cells. Following regimes of glucose up- and downshifts, we observed a very rapid response reaching a new steady state within less than 1 min, different glucose threshold concentrations depending on glucose up- or downshifts, a graded profile with increased cell-to-cell variation at threshold glucose concentrations, and biphasic behavior with a transient translocation of Mig1 upon the shift from high to intermediate glucose concentrations. Fluorescence loss in photobleaching and fluorescence recovery after photobleaching data demonstrate that Mig1 shuttles constantly between the nucleus and cytoplasm, although with different rates, depending on the presence of glucose. Taken together, our data suggest that the Snf1-Mig1 system has the ability to monitor glucose concentration changes as well as absolute glucose levels. The sensitivity over a wide range of glucose levels and different glucose concentration-dependent response profiles are likely determined by the close integration of signaling with the metabolism and may provide for a highly flexible and fast adaptation to an altered nutritional status.

  17. A glucose oxidase-coupled DNAzyme sensor for glucose detection in tears and saliva.

    PubMed

    Liu, Chengcheng; Sheng, Yongjie; Sun, Yanhong; Feng, Junkui; Wang, Shijin; Zhang, Jin; Xu, Jiacui; Jiang, Dazhi

    2015-08-15

    Biosensors have been widely investigated and utilized in a variety of fields ranging from environmental monitoring to clinical diagnostics. Glucose biosensors have triggered great interest and have been widely exploited since glucose determination is essential for diabetes diagnosis. In here, we designed a novel dual-enzyme biosensor composed of glucose oxidase (GOx) and pistol-like DNAzyme (PLDz) to detect glucose levels in tears and saliva. First, GOx, as a molecular recognition element, catalyzes the oxidation of glucose forming H2O2; then PLDz recognizes the produced H2O2 as a secondary signal and performs a self-cleavage reaction promoted by Mn(2+), Co(2+) and Cu(2+). Thus, detection of glucose could be realized by monitoring the cleavage rate of PLDz. The slope of the cleavage rate of PLDz versus glucose concentration curve was fitted with a Double Boltzmann equation, with a range of glucose from 100 nM to 10mM and a detection limit of 5 μM. We further applied the GOx-PLDz 1.0 biosensor for glucose detection in tears and saliva, glucose levels in which are 720±81 μM and 405±56 μM respectively. Therefore, the GOx-PLDz 1.0 biosensor is able to determine glucose levels in tears and saliva as a noninvasive glucose biosensor, which is important for diabetic patients with frequent/continuous glucose monitoring requirements. In addition, induction of DNAzyme provides a new approach in the development of glucose biosensors. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Fasting enhances the response of arcuate neuropeptide Y-glucose-inhibited neurons to decreased extracellular glucose

    PubMed Central

    Murphy, Beth Ann; Fioramonti, Xavier; Jochnowitz, Nina; Fakira, Kurt; Gagen, Karen; Contie, Sylvain; Lorsignol, Anne; Penicaud, Luc; Martin, William J.; Routh, Vanessa H.

    2009-01-01

    Fasting increases neuropeptide Y (NPY) expression, peptide levels, and the excitability of NPY-expressing neurons in the hypothalamic arcuate (ARC) nucleus. A subpopulation of ARC-NPY neurons (∼40%) are glucose-inhibited (GI)-type glucose-sensing neurons. Hence, they depolarize in response to decreased glucose. Because fasting enhances NPY neurotransmission, we propose that during fasting, GI neurons depolarize in response to smaller decreases in glucose. This increased excitation in response to glucose decreases would increase NPY-GI neuronal excitability and enhance NPY neurotransmission. Using an in vitro hypothalamic explant system, we show that fasting enhances NPY release in response to decreased glucose concentration. By measuring relative changes in membrane potential using a membrane potential-sensitive dye, we demonstrate that during fasting, a smaller decrease in glucose depolarizes NPY-GI neurons. Furthermore, incubation in low (0.7 mM) glucose enhanced while leptin (10 nM) blocked depolarization of GI neurons in response to decreased glucose. Fasting, leptin, and glucose-induced changes in NPY-GI neuron glucose sensing were mediated by 5′-AMP-activated protein kinase (AMPK). We conclude that during energy sufficiency, leptin reduces the ability of NPY-GI neurons to sense decreased glucose. However, after a fast, decreased leptin and glucose activate AMPK in NPY-GI neurons. As a result, NPY-GI neurons become depolarized in response to smaller glucose fluctuations. Increased excitation of NPY-GI neurons enhances NPY release. NPY, in turn, shifts energy homeostasis toward increased food intake and decreased energy expenditure to restore energy balance. PMID:19211911

  19. Yeast AMP-activated Protein Kinase Monitors Glucose Concentration Changes and Absolute Glucose Levels*

    PubMed Central

    Bendrioua, Loubna; Smedh, Maria; Almquist, Joachim; Cvijovic, Marija; Jirstrand, Mats; Goksör, Mattias; Adiels, Caroline B.; Hohmann, Stefan

    2014-01-01

    Analysis of the time-dependent behavior of a signaling system can provide insight into its dynamic properties. We employed the nucleocytoplasmic shuttling of the transcriptional repressor Mig1 as readout to characterize Snf1-Mig1 dynamics in single yeast cells. Mig1 binds to promoters of target genes and mediates glucose repression. Mig1 is predominantly located in the nucleus when glucose is abundant. Upon glucose depletion, Mig1 is phosphorylated by the yeast AMP-activated kinase Snf1 and exported into the cytoplasm. We used a three-channel microfluidic device to establish a high degree of control over the glucose concentration exposed to cells. Following regimes of glucose up- and downshifts, we observed a very rapid response reaching a new steady state within less than 1 min, different glucose threshold concentrations depending on glucose up- or downshifts, a graded profile with increased cell-to-cell variation at threshold glucose concentrations, and biphasic behavior with a transient translocation of Mig1 upon the shift from high to intermediate glucose concentrations. Fluorescence loss in photobleaching and fluorescence recovery after photobleaching data demonstrate that Mig1 shuttles constantly between the nucleus and cytoplasm, although with different rates, depending on the presence of glucose. Taken together, our data suggest that the Snf1-Mig1 system has the ability to monitor glucose concentration changes as well as absolute glucose levels. The sensitivity over a wide range of glucose levels and different glucose concentration-dependent response profiles are likely determined by the close integration of signaling with the metabolism and may provide for a highly flexible and fast adaptation to an altered nutritional status. PMID:24627493

  20. Glucose uptake saturation explains glucose kinetics profiles measured by different tests.

    PubMed

    Bizzotto, Roberto; Natali, Andrea; Gastaldelli, Amalia; Muscelli, Elza; Krssak, Martin; Brehm, Attila; Roden, Michael; Ferrannini, Ele; Mari, Andrea

    2016-08-01

    It is known that for a given insulin level glucose clearance depends on glucose concentration. However, a quantitative representation of the concomitant effects of hyperinsulinemia and hyperglycemia on glucose clearance, necessary to describe heterogeneous tests such as euglycemic and hyperglycemic clamps and oral tests, is lacking. Data from five studies (123 subjects) using a glucose tracer and including all the above tests in normal and diabetic subjects were collected. A mathematical model was developed in which glucose utilization was represented as a Michaelis-Menten function of glucose with constant Km and insulin-controlled Vmax, consistently with the basic notions of glucose transport. Individual values for the model parameters were estimated using a population approach. Tracer data were accurately fitted in all tests. The estimated Km was 3.88 (2.83-5.32) mmol/l [median (interquartile range)]. Median model-derived glucose clearance at 600 pmol/l insulin was reduced from 246 to 158 ml·min(-1)·m(-2) when glucose was raised from 5 to 10 mmol/l. The model reproduced the characteristic lack of increase in glucose clearance when moderate hyperinsulinemia was accompanied by hyperglycemia. In all tests, insulin sensitivity was inversely correlated with BMI, as expected (R(2) = 0.234, P = 0.0001). In conclusion, glucose clearance in euglycemic and hyperglycemic clamps and oral tests can be described with a unifying model, consistent with the notions of glucose transport and able to reproduce the suppression of glucose clearance due to hyperglycemia observed in previous studies. The model may be important for the design of reliable glucose homeostasis simulators.

  1. Noninvasive glucose sensing by transcutaneous Raman spectroscopy

    PubMed Central

    Shih, Wei-Chuan; Bechtel, Kate L.; Rebec, Mihailo V.

    2015-01-01

    Abstract. We present the development of a transcutaneous Raman spectroscopy system and analysis algorithm for noninvasive glucose sensing. The instrument and algorithm were tested in a preclinical study in which a dog model was used. To achieve a robust glucose test system, the blood levels were clamped for periods of up to 45 min. Glucose clamping and rise/fall patterns have been achieved by injecting glucose and insulin into the ear veins of the dog. Venous blood samples were drawn every 5 min and a plasma glucose concentration was obtained and used to maintain the clamps, to build the calibration model, and to evaluate the performance of the system. We evaluated the utility of the simultaneously acquired Raman spectra to be used to determine the plasma glucose values during the 8-h experiment. We obtained prediction errors in the range of ∼1.5−2  mM. These were in-line with a best-case theoretical estimate considering the limitations of the signal-to-noise ratio estimates. As expected, the transition regions of the clamp study produced larger predictive errors than the stable regions. This is related to the divergence of the interstitial fluid (ISF) and plasma glucose values during those periods. Two key contributors to error beside the ISF/plasma difference were photobleaching and detector drift. The study demonstrated the potential of Raman spectroscopy in noninvasive applications and provides areas where the technology can be improved in future studies. PMID:25688542

  2. The human brain produces fructose from glucose

    PubMed Central

    Hwang, Janice J.; Jiang, Lihong; Hamza, Muhammad; Dai, Feng; Cline, Gary; Rothman, Douglas L.; Mason, Graeme; Sherwin, Robert S.

    2017-01-01

    Fructose has been implicated in the pathogenesis of obesity and type 2 diabetes. In contrast to glucose, CNS delivery of fructose in rodents promotes feeding behavior. However, because circulating plasma fructose levels are exceedingly low, it remains unclear to what extent fructose crosses the blood-brain barrier to exert CNS effects. To determine whether fructose can be endogenously generated from glucose via the polyol pathway (glucose → sorbitol → fructose) in human brain, 8 healthy subjects (4 women/4 men; age, 28.8 ± 6.2 years; BMI, 23.4 ± 2.6; HbA1C, 4.9% ± 0.2%) underwent 1H magnetic resonance spectroscopy scanning to measure intracerebral glucose and fructose levels during a 4-hour hyperglycemic clamp (plasma glucose, 220 mg/dl). Using mixed-effects regression model analysis, intracerebral glucose rose significantly over time and differed from baseline at 20 to 230 minutes. Intracerebral fructose levels also rose over time, differing from baseline at 30 to 230 minutes. The changes in intracerebral fructose were related to changes in intracerebral glucose but not to plasma fructose levels. Our findings suggest that the polyol pathway contributes to endogenous CNS production of fructose and that the effects of fructose in the CNS may extend beyond its direct dietary consumption. PMID:28239653

  3. Glucose turnover and recycling in colorectal carcinoma.

    PubMed

    Kokal, W A; McCulloch, A; Wright, P D; Johnston, I D

    1983-11-01

    Glucose metabolism is affected by various pathologic states including tumors. In this project, glucose turnover and recycling rates in 11 patients with colorectal carcinoma were measured using a double-labelled 3-3H and 1-14C glucose injection technique. Fasting blood glucose, lactate, pyruvate, alanine, glycerol, 3-hydroxybutyrate, acetoacetate, plasma cortisol, and plasma insulin concentrations were also measured. No patient in the study had a history of diabetes mellitus or endocrine disorders, nor any abnormal liver function tests. The findings demonstrated a significantly elevated glucose turnover rate in patients with Dukes C and D lesions in comparison to patients with Dukes B lesions. Cori recycling rates were not significantly different between Dukes B vs. Dukes C and D patients. There were no differences between Dukes B and Dukes C and D patients in any of the metabolites measured. Furthermore, there were no significant differences in glucose turnover or recycling rates as a function of pre-illness weight loss. These data suggest that, when colorectal carcinoma extends beyond the limits of the bowel wall, glucose metabolism is significantly altered.

  4. Taeniid tapeworm responses to in vitro glucose.

    PubMed

    Willms, Kaethe; Presas, Ana María Fernández; Jiménez, José Agustín; Landa, Abraham; Zurabián, Rimma; Ugarte, María Eugenia Juárez; Robert, Lilia

    2005-07-01

    Experimental taeniid strobilae from Taenia solium and T. crassiceps (WFU strain) were incubated for 0-72 h in 0, 5 or 20 mM glucose solutions and further exposed for 15 min to the gap junction fluorochrome Lucifer Yellow. Frozen sections were obtained from each worm and observed under an epifluorescent microscope. Worm sections from strobilae incubated with glucose, revealed intense fluorescence in the base of the tegumentary surface, suggesting that this tissue behaves as a gap junction complex. Fluorescence intensity differences between control worms not exposed to glucose and worms incubated with glucose, were highly significant. The results demonstrate that under in vitro conditions, glucose is taken up along the whole strobilar tegument in both taeniid species, suggesting, that although taeniids attached to the duodenum probably take up most of their nutrients directly from the mucosal wall, the capacity for absorbing glucose along the tegumentary surface is always active and may increase the survival capacity of these intestinal worms by promoting glucose absorption at other points in the intestinal lumen.

  5. Noninvasive glucose sensing by transcutaneous Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Shih, Wei-Chuan; Bechtel, Kate L.; Rebec, Mihailo V.

    2015-05-01

    We present the development of a transcutaneous Raman spectroscopy system and analysis algorithm for noninvasive glucose sensing. The instrument and algorithm were tested in a preclinical study in which a dog model was used. To achieve a robust glucose test system, the blood levels were clamped for periods of up to 45 min. Glucose clamping and rise/fall patterns have been achieved by injecting glucose and insulin into the ear veins of the dog. Venous blood samples were drawn every 5 min and a plasma glucose concentration was obtained and used to maintain the clamps, to build the calibration model, and to evaluate the performance of the system. We evaluated the utility of the simultaneously acquired Raman spectra to be used to determine the plasma glucose values during the 8-h experiment. We obtained prediction errors in the range of ˜1.5-2 mM. These were in-line with a best-case theoretical estimate considering the limitations of the signal-to-noise ratio estimates. As expected, the transition regions of the clamp study produced larger predictive errors than the stable regions. This is related to the divergence of the interstitial fluid (ISF) and plasma glucose values during those periods. Two key contributors to error beside the ISF/plasma difference were photobleaching and detector drift. The study demonstrated the potential of Raman spectroscopy in noninvasive applications and provides areas where the technology can be improved in future studies.

  6. [Glucose metabolism in the basal ganglia].

    PubMed

    Yamada, Katsuya

    2009-04-01

    GABAergic neurons in the substantia nigra pars reticulata (SNr) -a major output nucleus of the basal ganglia- are involved in sensing severe hypoglycemic and hypoxic conditions in the brain via the ATP-sensitive potassium (KATP) channels that are abundantly expressed in these neurons. However, these neurons are also sensitive to mild changes in extracellular glucose concentrations through KATP channel-independent, yet unknown mechanisms. Lenard et al. reported that globus pallidus (GP) -another output nucleus of the basal ganglia- also senses glucose concentrations in the brain. It is unclear why these two major output nuclei sense glucose concentrations. It has been reported that some SNr and GP neurons respond to feeding-related, jaw or hand movement. Interestingly, Nishino demonstrated that SNr neurons responded oppositely, i.e., increased or decreased in their firings, to the same sweet food depending on blood glucose levels. Thus, glucose levels might influence feeding-related information processing in the basal ganglia through SNr and GP. Other issues reviewed are regarding associations between glucose metabolism and motor diseases in the basal ganglia. These include mutation in glucose transporter (GLUT) 1 causing paroxysmal kinesigenic choreoarthetosis, abnormal glycolysis in Huntington's disease, and a study showing increased glucose metabolism in SNr and GP in Parkinson's disease using high-resolution research positron emission tomography (HRRT). Although glucose is the sole energy source for the brain, its utilization at the single-cell level remains elusive. Modern methods for investigating intercellular metabolic communication might help understanding the selective vulnerability seen in the basal ganglia of patients suffering from such neurodegenerative disorders in near future.

  7. Exploring blood glucose variation over geographical space.

    PubMed

    Doherty, Sean T

    2012-03-01

    Type 2 diabetes mellitus is known to be associated with environmental, behavioral, and lifestyle factors such as a sedentary lifestyle, overly rich nutrition, and obesity. However, the day-to-day human-environment interactions and real-life activities that cause an individual's blood glucose to fluctuate remain relatively unexplored, owing in part to data collection challenges. This article presents a novel data collection system that overcomes these challenges and allows exploration of the spatial correlates of blood glucose fluctuation. An automated monitoring system was developed combining a Global Positioning System (GPS) receiver with a continuous blood glucose monitor. The GPS was used to elicit a second-by-second accounting of an individual's daily activities alongside blood glucose measurement every 5 min. A pilot study of 40 diabetes patients was conducted over a 72-h period. Geographic Information System software was used to generate blood glucose maps, incorporating methods to deal with scale issues, overlapping data, and to protect subject identity. Individual blood glucose variation maps revealed a variety of distinct patterns. Most subjects had at least two major anchor points in their life combined with a variety of other activity locations at varying distances from home, many associated with quite distinct low or high blood glucose values. Further statistical analysis revealed location and distance from home were significantly correlated with blood glucose variation-although the strength and direction of the effect was quite mixed. Results suggests that blood glucose and space/location are highly correlated and should be considered further as a lifestyle-related risk factor for diabetes patients. In the future, patients and caregivers may benefit from individualized visualization tools that help identify problematic locations that require special attention.

  8. Continuous Glucose Monitoring: Impact on Hypoglycemia.

    PubMed

    van Beers, Cornelis A J; DeVries, J Hans

    2016-11-01

    The necessity of strict glycemic control is unquestionable. However, hypoglycemia remains a major limiting factor in achieving satisfactory glucose control, and evidence is mounting to show that hypoglycemia is not benign. Over the past decade, evidence has consistently shown that real-time continuous glucose monitoring improves glycemic control in terms of lowering glycated hemoglobin levels. However, real-time continuous glucose monitoring has not met the expectations of the diabetes community with regard to hypoglycemia prevention. The earlier trials did not demonstrate any effect on either mild or severe hypoglycemia and the effect of real-time continuous glucose monitoring on nocturnal hypoglycemia was often not reported. However, trials specifically designed to reduce hypoglycemia in patients with a high hypoglycemia risk have demonstrated a reduction in hypoglycemia, suggesting that real-time continuous glucose monitoring can prevent hypoglycemia when it is specifically used for that purpose. Moreover, the newest generation of diabetes technology currently available commercially, namely sensor-augmented pump therapy with a (predictive) low glucose suspend feature, has provided more convincing evidence for hypoglycemia prevention. This article provides an overview of the hypoglycemia outcomes of randomized controlled trials that investigate the effect of real-time continuous glucose monitoring alone or sensor-augmented pump therapy with a (predictive) low glucose suspend feature. Furthermore, several possible explanations are provided why trials have not shown a reduction in severe hypoglycemia. In addition, existing evidence is presented of real-time continuous glucose monitoring in patients with impaired awareness of hypoglycemia who have the highest risk of severe hypoglycemia.

  9. Glucose and fructose metabolism in Zymomonas anaerobia

    PubMed Central

    McGill, D. J.; Dawes, E. A.

    1971-01-01

    Isotopic and enzymic evidence indicates that Zymomonas anaerobia ferments glucose via the Entner–Doudoroff pathway. The molar growth yields with glucose (5.89) and fructose (5.0) are lower than those for the related organism Zymomonas mobilis and the observed linear growth suggests that energetically uncoupled growth occurs. A survey of enzymes of carbohydrate metabolism revealed the presence of weak phosphofructokinase and fructose 1,6-diphosphate aldolase activities but phosphoketolase, transketolase and transaldolase were not detected. Fermentation balances for glucose and fructose are reported; acetaldehyde accumulated in both fermentations, to a greater extent with fructose which also yielded glycerol and dihydroxyacetone as minor products. PMID:4259336

  10. Self-powered glucose-responsive micropumps.

    PubMed

    Zhang, Hua; Duan, Wentao; Lu, Mengqian; Zhao, Xi; Shklyaev, Sergey; Liu, Lei; Huang, Tony Jun; Sen, Ayusman

    2014-08-26

    A self-powered polymeric micropump based on boronate chemistry is described. The pump is triggered by the presence of glucose in ambient conditions and induces convective fluid flows, with pumping velocity proportional to the glucose concentration. The pumping is due to buoyancy convection that originates from reaction-associated heat flux, as verified from experiments and finite difference modeling. As predicted, the fluid flow increases with increasing height of the chamber. In addition, pumping velocity is enhanced on replacing glucose with mannitol because of the enhanced exothermicity associated with the reaction of the latter.

  11. Evidence for central regulation of glucose metabolism.

    PubMed

    Carey, Michelle; Kehlenbrink, Sylvia; Hawkins, Meredith

    2013-12-06

    Evidence for central regulation of glucose homeostasis is accumulating from both animal and human studies. Central nutrient and hormone sensing in the hypothalamus appears to coordinate regulation of whole body metabolism. Central signals activate ATP-sensitive potassium (KATP) channels, thereby down-regulating glucose production, likely through vagal efferent signals. Recent human studies are consistent with this hypothesis. The contributions of direct and central inputs to metabolic regulation are likely of comparable magnitude, with somewhat delayed central effects and more rapid peripheral effects. Understanding central regulation of glucose metabolism could promote the development of novel therapeutic approaches for such metabolic conditions as diabetes mellitus.

  12. Pathogenesis of glucose intolerance in uremia.

    PubMed

    DeFronzo, R A

    1978-12-01

    The pathogenesis of glucose intolerance in uremia was examined with the glucose clamp technique. Hyperglycemic clamp (n = 8): The plasma glucose concentration is acutely raised and maintained at 125 mg/dl above basal levels. Under these steady state conditions the glucose infusion rate, M, equals the amount of glucose metabolized: Predialysis M averaged 4.23 +/- 0.36 mg/kg/min and increased to 7.71 +/- 0.43 postdialysis (p less than 0.001). The plasma insulin response predialysis was 90 +/- 20 microU/ml and decreased to 80 +/- 23 microU/ml following dialysis. Consequently the M/l ratio, a measure of tissue sensitivity to insulin, increased by 80% +/- 25% (p less than 0.001) but still remained less than controls (p less than 0.01). Euglycemic insulin clamp (n = 10): The plasma insulin concentration is acutely raised by 100 microU/ml and the plasma glucose concentration is held constant at the basal level. Predialysis both M (3.37 +/- 0.36 mg/kg/min) and M/l (3.56 +/- 0.33 mg/kg/min per microU/ml X 100) were significantly less than controls (p less than 0.01). Postdialysis both M and M/l increased significantly (p less than 0.01) to a mean that was not significantly different from controls. Basal hepatic glucose production (n = 6), 2.15 +/- 0.09 mg/kg/min, was similar to controls and fell (87% +/- 4%) normally during the insulin clamp. In five uremic subjects in wom insulin binding to monocytes was measured, there was no correlation with tissue sensitivity to insulin (M/l). Significant abnormalities in both growth hormone and glucagon physiology were present in uremic individuals, but no correlation with either the presence or degree of glucose intolerance was demonstrable. In conclusion, glucose intolerance is universally present in uremic subjects and results primarily from peripheral tissue insensitivity to insulin. Insulin secretion is usually enhanced in an attempt to compensate for this insulin resistance but in occasional subjects uremia also inhibits beta

  13. Highly sensitive terahertz sensor for glucose detection

    NASA Astrophysics Data System (ADS)

    Kim, Hyo-Suk; Lee, Dong-Kyu; Lee, Seok; Chung, Youngchul; Seo, Minah

    2015-07-01

    In this report, we present a new type of non-contact detection method for glucose molecule using nano antenna array based bio sensing chip that operates at terahertz frequency range (0.5 - 2.5 THz). Localized and hugely enhanced transmitted terahertz field by nano antenna array in the sensing chip induced enhancement of absorption coefficient of glucose molecule that enables us to detect even very small volume of molecules. Nano antenna based terahertz sensing chip can be expected to offer accurate identification of glucose level as a non-invasive and painless sensing tool with high sensitivity.

  14. Chromatographic Separation of Glucose and Fructose

    NASA Astrophysics Data System (ADS)

    Kuptsevich, Yu E.; Larionov, Oleg G.; Stal'naya, I. D.; Nakhapetyan, L. A.; Pronin, A. Ya

    1987-03-01

    The structures, mutarotation, and the physicochemical properties of glucose and fructose as well as methods for their separation are examined. Their chromatographic separation on cation exchangers in the calcium-form is discussed in detail. A theory of the formation of complexes of carbohydrates with metal cations is described and the mechanism of the separation of glucose and fructose on cation exchangers in the calcium-form is discussed in detail. Factors influencing the chromatographic separation of glucose and fructose on sulphonic acid cation-exchange resins are also considered. The bibliography includes 138 references.

  15. Blood glucose in intoxicated chronic alcoholics.

    PubMed Central

    Kallas, P.; Sellers, E. M.

    1975-01-01

    Chronic alcoholics may present with hyperglycemia or hypoglycemia. Because alcohol induces glycogenolysis, chronic alcoholics usually have higher blood glucose values than do nonalcoholic subjects. In a prospective study of blood glucose concentration in 201 chronic alcoholics, blood alcohol concentration, sex, weight, type of beverage consumed and time since last eating were not generally associated with lower blood glucose values. The infrequency of hypoglycemia in ambulatory chronic alcoholics may reflect the relatively ready availability of hostels, detoxification centres and hospitals in large cities. It is, however, important to be aware of the possible occurrence of hypoglycemia in chronic alcoholics, particularly when community facilities for the chronic alcoholic are not available. PMID:1116089

  16. Fetal programming of perivenous glucose uptake reveals a regulatory mechanism governing hepatic glucose output during refeeding.

    PubMed

    Murphy, Helena C; Regan, Gemma; Bogdarina, Irina G; Clark, Adrian J L; Iles, Richard A; Cohen, Robert D; Hitman, Graham A; Berry, Colin L; Coade, Zoe; Petry, Clive J; Burns, Shamus P

    2003-06-01

    Increased hepatic gluconeogenesis maintains glycemia during fasting and has been considered responsible for elevated hepatic glucose output in type 2 diabetes. Glucose derived periportally via gluconeogenesis is partially taken up perivenously in perfused liver but not in adult rats whose mothers were protein-restricted during gestation (MLP rats)-an environmental model of fetal programming of adult glucose intolerance exhibiting diminished perivenous glucokinase (GK) activity. We now show that perivenous glucose uptake rises with increasing glucose concentration (0-8 mmol/l) in control but not MLP liver, indicating that GK is flux-generating. The data demonstrate that acute control of hepatic glucose output is principally achieved by increasing perivenous glucose uptake, with rising glucose concentration during refeeding, rather than by downregulation of gluconeogenesis, which occurs in different hepatocytes. Consistent with these observations, glycogen synthesis in vivo commenced in the perivenous cells during refeeding, MLP livers accumulating less glycogen than controls. GK gene transcription was unchanged in MLP liver, the data supporting a recently proposed posttranscriptional model of GK regulation involving nuclear-cytoplasmic transport. The results are pertinent to impaired regulation of hepatic glucose output in type 2 diabetes, which could arise from diminished GK-mediated glucose uptake rather than increased gluconeogenesis.

  17. Hepatic glucose sensing is required to preserve β cell glucose competence.

    PubMed

    Seyer, Pascal; Vallois, David; Poitry-Yamate, Carole; Schütz, Frédéric; Metref, Salima; Tarussio, David; Maechler, Pierre; Staels, Bart; Lanz, Bernard; Grueter, Rolf; Decaris, Julie; Turner, Scott; da Costa, Anabela; Preitner, Frédéric; Minehira, Kaori; Foretz, Marc; Thorens, Bernard

    2013-04-01

    Liver glucose metabolism plays a central role in glucose homeostasis and may also regulate feeding and energy expenditure. Here we assessed the impact of glucose transporter 2 (Glut2) gene inactivation in adult mouse liver (LG2KO mice). Loss of Glut2 suppressed hepatic glucose uptake but not glucose output. In the fasted state, expression of carbohydrate-responsive element-binding protein (ChREBP) and its glycolytic and lipogenic target genes was abnormally elevated. Feeding, energy expenditure, and insulin sensitivity were identical in LG2KO and control mice. Glucose tolerance was initially normal after Glut2 inactivation, but LG2KO mice exhibited progressive impairment of glucose-stimulated insulin secretion even though β cell mass and insulin content remained normal. Liver transcript profiling revealed a coordinated downregulation of cholesterol biosynthesis genes in LG2KO mice that was associated with reduced hepatic cholesterol in fasted mice and reduced bile acids (BAs) in feces, with a similar trend in plasma. We showed that chronic BAs or farnesoid X receptor (FXR) agonist treatment of primary islets increases glucose-stimulated insulin secretion, an effect not seen in islets from Fxr(-/-) mice. Collectively, our data show that glucose sensing by the liver controls β cell glucose competence and suggest BAs as a potential mechanistic link.

  18. Mathematical modeling on experimental protocol of glucose adjustment for non-invasive blood glucose sensing

    NASA Astrophysics Data System (ADS)

    Jiang, Jingying; Min, Xiaolin; Zou, Da; Xu, Kexin

    2012-03-01

    Currently, blood glucose concentration levels from OGTT(Oral Glucose Tolerance Test) results are used to build PLS model in noninvasive blood glucose sensing by Near-Infrared(NIR) Spectroscopy. However, the univocal dynamic change trend of blood glucose concentration based on OGTT results is not various enough to provide comprehensive data to make PLS model robust and accurate. In this talk, with the final purpose of improving the stability and accuracy of the PLS model, we introduced an integrated minimal model(IMM) of glucose metabolism system. First, by adjusting parameters, which represent different metabolism characteristics and individual differences, comparatively ideal mediation programs to different groups of people, even individuals were customized. Second, with different glucose input types(oral method, intravenous injection, or intravenous drip), we got various changes of blood glucose concentration. And by studying the adjustment methods of blood glucose concentration, we would thus customize corresponding experimental protocols of glucose adjustment to different people for noninvasive blood glucose concentration and supply comprehensive data for PLS model.

  19. Myo-inositol inhibits intestinal glucose absorption and promotes muscle glucose uptake: a dual approach study.

    PubMed

    Chukwuma, Chika Ifeanyi; Ibrahim, Mohammed Auwal; Islam, Md Shahidul

    2016-12-01

    The present study investigated the effects of myo-inositol on muscle glucose uptake and intestinal glucose absorption ex vivo as well as in normal and type 2 diabetes model of rats. In ex vivo study, both intestinal glucose absorption and muscle glucose uptake were studied in isolated rat jejunum and psoas muscle respectively in the presence of increasing concentrations (2.5 % to 20 %) of myo-inositol. In the in vivo study, the effect of a single bolus dose (1 g/kg bw) of oral myo-inositol on intestinal glucose absorption, blood glucose, gastric emptying and digesta transit was investigated in normal and type 2 diabetic rats after 1 h of co-administration with 2 g/kg bw glucose, when phenol red was used as a recovery marker. Myo-inositol inhibited intestinal glucose absorption (IC50 = 28.23 ± 6.01 %) and increased muscle glucose uptake, with (GU50 = 2.68 ± 0.75 %) or without (GU50 = 8.61 ± 0.55 %) insulin. Additionally, oral myo-inositol not only inhibited duodenal glucose absorption and reduced blood glucose increase, but also delayed gastric emptying and accelerated digesta transit in both normal and diabetic animals. Results of this study suggest that dietary myo-inositol inhibits intestinal glucose absorption both in ex vivo and in normal or diabetic rats and also promotes muscle glucose uptake in ex vivo condition. Hence, myo-inositol may be further investigated as a possible anti-hyperglycaemic dietary supplement for diabetic foods and food products.

  20. Heterogeneity in glucose response curves during an oral glucose tolerance test and associated cardiometabolic risk.

    PubMed

    Hulman, Adam; Simmons, Rebecca K; Vistisen, Dorte; Tabák, Adam G; Dekker, Jacqueline M; Alssema, Marjan; Rutters, Femke; Koopman, Anitra D M; Solomon, Thomas P J; Kirwan, John P; Hansen, Torben; Jonsson, Anna; Gjesing, Anette Prior; Eiberg, Hans; Astrup, Arne; Pedersen, Oluf; Sørensen, Thorkild I A; Witte, Daniel R; Færch, Kristine

    2017-02-01

    We aimed to examine heterogeneity in glucose response curves during an oral glucose tolerance test with multiple measurements and to compare cardiometabolic risk profiles between identified glucose response curve groups. We analyzed data from 1,267 individuals without diabetes from five studies in Denmark, the Netherlands and the USA. Each study included between 5 and 11 measurements at different time points during a 2-h oral glucose tolerance test, resulting in 9,602 plasma glucose measurements. Latent class trajectories with a cubic specification for time were fitted to identify different patterns of plasma glucose change during the oral glucose tolerance test. Cardiometabolic risk factor profiles were compared between the identified groups. Using latent class trajectory analysis, five glucose response curves were identified. Despite similar fasting and 2-h values, glucose peaks and peak times varied greatly between groups, ranging from 7-12 mmol/L, and 35-70 min. The group with the lowest and earliest plasma glucose peak had the lowest estimated cardiovascular risk, while the group with the most delayed plasma glucose peak and the highest 2-h value had the highest estimated risk. One group, with normal fasting and 2-h values, exhibited an unusual profile, with the highest glucose peak and the highest proportion of smokers and men. The heterogeneity in glucose response curves and the distinct cardiometabolic risk profiles may reflect different underlying physiologies. Our results warrant more detailed studies to identify the source of the heterogeneity across the different phenotypes and whether these differences play a role in the development of type 2 diabetes and cardiovascular disease.

  1. Lifestyle, glucose regulation and the cognitive effects of glucose load in middle-aged adults.

    PubMed

    Riby, Leigh M; McLaughlin, Jennifer; Riby, Deborah M; Graham, Cheryl

    2008-11-01

    Interventions aimed at improving glucose regulatory mechanisms have been suggested as a possible source of cognitive enhancement in the elderly. In particular, previous research has identified episodic memory as a target for facilitation after either moderate increases in glycaemia (after a glucose drink) or after improvements in glucose regulation. The present study aimed to extend this research by examining the joint effects of glucose ingestion and glucose regulation on cognition. In addition, risk factors associated with the development of poor glucose regulation in middle-aged adults were considered. In a repeated measures design, thirty-three middle-aged adults (aged 35-55 years) performed a battery of memory and non-memory tasks after either 25 g or 50 g glucose or a sweetness matched placebo drink. To assess the impact of individual differences in glucose regulation, blood glucose measurements were taken on four occasions during testing. A lifestyle and diet questionnaire was also administered. Consistent with previous research, episodic memory ability benefited from glucose ingestion when task demands were high. Blood glucose concentration was also found to predict performance across a number of cognitive domains. Interestingly, the risk factors associated with poor glucose regulation were linked to dietary impacts traditionally associated with poor health, e.g. the consumption of high-sugar sweets and drinks. The research replicates earlier work suggesting that task demands are critical to the glucose facilitation effect. Importantly, the data demonstrate clear associations between elevated glycaemia and relatively poor cognitive performance, which may be partly due to the effect of dietary and lifestyle factors.

  2. Exenatide Regulates Cerebral Glucose Metabolism in Brain Areas Associated With Glucose Homeostasis and Reward System.

    PubMed

    Daniele, Giuseppe; Iozzo, Patricia; Molina-Carrion, Marjorie; Lancaster, Jack; Ciociaro, Demetrio; Cersosimo, Eugenio; Tripathy, Devjit; Triplitt, Curtis; Fox, Peter; Musi, Nicolas; DeFronzo, Ralph; Gastaldelli, Amalia

    2015-10-01

    Glucagon-like peptide 1 receptors (GLP-1Rs) have been found in the brain, but whether GLP-1R agonists (GLP-1RAs) influence brain glucose metabolism is currently unknown. The study aim was to evaluate the effects of a single injection of the GLP-1RA exenatide on cerebral and peripheral glucose metabolism in response to a glucose load. In 15 male subjects with HbA1c of 5.7 ± 0.1%, fasting glucose of 114 ± 3 mg/dL, and 2-h glucose of 177 ± 11 mg/dL, exenatide (5 μg) or placebo was injected in double-blind, randomized fashion subcutaneously 30 min before an oral glucose tolerance test (OGTT). The cerebral glucose metabolic rate (CMRglu) was measured by positron emission tomography after an injection of [(18)F]2-fluoro-2-deoxy-d-glucose before the OGTT, and the rate of glucose absorption (RaO) and disposal was assessed using stable isotope tracers. Exenatide reduced RaO0-60 min (4.6 ± 1.4 vs. 13.1 ± 1.7 μmol/min ⋅ kg) and decreased the rise in mean glucose0-60 min (107 ± 6 vs. 138 ± 8 mg/dL) and insulin0-60 min (17.3 ± 3.1 vs. 24.7 ± 3.8 mU/L). Exenatide increased CMRglu in areas of the brain related to glucose homeostasis, appetite, and food reward, despite lower plasma insulin concentrations, but reduced glucose uptake in the hypothalamus. Decreased RaO0-60 min after exenatide was inversely correlated to CMRglu. In conclusion, these results demonstrate, for the first time in man, a major effect of a GLP-1RA on regulation of brain glucose metabolism in the absorptive state.

  3. An integrated glucose-insulin model to describe oral glucose tolerance test data in type 2 diabetics.

    PubMed

    Jauslin, Petra M; Silber, Hanna E; Frey, Nicolas; Gieschke, Ronald; Simonsson, Ulrika S H; Jorga, Karin; Karlsson, Mats O

    2007-10-01

    An integrated model for the glucose-insulin system describing oral glucose tolerance test data was developed, extending on a previously introduced model for intravenous glucose provocations. Model extensions comprised the description of glucose absorption by a chain of transit compartments with a mean transit time of 35 minutes, a bioavailability of 80%, and a representation of the incretin effect, expressed as a direct effect of the glucose absorption rate on insulin secretion. The ability of the model to predict the incretin effect was assessed by simulating the observed difference in insulin response following an oral glucose tolerance test compared with an isoglycemic glucose infusion mimicking an oral glucose tolerance test profile. The extension of the integrated glucose-insulin model to gain information from oral glucose tolerance test data considerably expands its range of applications because the oral glucose tolerance test is one of the most common glucose challenge experiments for assessing the efficacy of hypoglycemic agents in clinical drug development.

  4. Avian and Mammalian Facilitative Glucose Transporters.

    PubMed

    Byers, Mary Shannon; Howard, Christianna; Wang, Xiaofei

    2017-04-05

    The GLUT members belong to a family of glucose transporter proteins that facilitate glucose transport across the cell membrane. The mammalian GLUT family consists of thirteen members (GLUTs 1-12 and H⁺-myo-inositol transporter (HMIT)). Humans have a recently duplicated GLUT member, GLUT14. Avians express the majority of GLUT members. The arrangement of multiple GLUTs across all somatic tissues signifies the important role of glucose across all organisms. Defects in glucose transport have been linked to metabolic disorders, insulin resistance and diabetes. Despite the essential importance of these transporters, our knowledge regarding GLUT members in avians is fragmented. It is clear that there are no chicken orthologs of mammalian GLUT4 and GLUT7. Our examination of GLUT members in the chicken revealed that some chicken GLUT members do not have corresponding orthologs in mammals. We review the information regarding GLUT orthologs and their function and expression in mammals and birds, with emphasis on chickens and humans.

  5. [Artificial pancreas for automated glucose control].

    PubMed

    Blauw, Helga; van Bon, Arianne C; de Vries, J H Hans

    2013-01-01

    Strict glucose control is important for patients with diabetes mellitus in order to prevent complications. However, many patients find it difficult to achieve the recommended HbA1c level. The possibility of hypoglycaemia plays an important role in this. The artificial pancreas automates glucose control, improving glucose levels without increasing hypoglycaemic events. The required insulin dose is calculated and administered on the basis of continuous glucose measurements, taking over a large part of the treatment from the patient. Several research groups are working on making this technique suitable for home use. It is expected that the artificial pancreas will become available in the near future. However, effectiveness and safety will have to be investigated in long-term studies. A large number of insulin-dependent patients with diabetes could be eligible for this treatment.

  6. Glucose tolerance testing in panic disorder.

    PubMed

    Uhde, T W; Vittone, B J; Post, R M

    1984-11-01

    Seven of nine patients with panic disorder given a standard glucose tolerance test developed symptomatic hypoglycemia but not panic attacks. These findings suggest that hypoglycemia is an unlikely cause of "spontaneous" panic attacks in this population.

  7. Designing a highly active soluble PQQ-glucose dehydrogenase for efficient glucose biosensors and biofuel cells

    SciTech Connect

    Durand, Fabien; Stines-Chaumeil, Claire; Flexer, Victoria; Andre, Isabelle; Mano, Nicolas

    2010-11-26

    Research highlights: {yields} A new mutant of PQQ-GDH designed for glucose biosensors application. {yields} First mutant of PQQ-GDH with higher activity for D-glucose than the Wild type. {yields} Position N428 is a key point to increase the enzyme activity. {yields} Molecular modeling shows that the N428 C mutant displays a better interaction for PQQ than the WT. -- Abstract: We report for the first time a soluble PQQ-glucose dehydrogenase that is twice more active than the wild type for glucose oxidation and was obtained by combining site directed mutagenesis, modelling and steady-state kinetics. The observed enhancement is attributed to a better interaction between the cofactor and the enzyme leading to a better electron transfer. Electrochemical experiments also demonstrate the superiority of the new mutant for glucose oxidation and make it a promising enzyme for the development of high-performance glucose biosensors and biofuel cells.

  8. Nonlinear optical measurements of glucose concentration

    NASA Astrophysics Data System (ADS)

    Yakovlev, V. V.

    2008-02-01

    Diabetes mellitus is a metabolic disease that currently affects about 7% of the US population, or roughly about 20 million people. Effectively controlling diabetes requires regular measurements of the blood sugar levels to ensure the one time insulin injection when the concentration of glucose reaches a critical level. In this report, nonlinear Raman microspectroscopy is demonstrated to be a promising new way of continuous and noninvasive way of measuring the glucose concentration.

  9. Acid hydrolysis of cellulose to yield glucose

    DOEpatents

    Tsao, George T.; Ladisch, Michael R.; Bose, Arindam

    1979-01-01

    A process to yield glucose from cellulose through acid hydrolysis. Cellulose is recovered from cellulosic materials, preferably by pretreating the cellulosic materials by dissolving the cellulosic materials in Cadoxen or a chelating metal caustic swelling solvent and then precipitating the cellulose therefrom. Hydrolysis is accomplished using an acid, preferably dilute sulfuric acid, and the glucose is yielded substantially without side products. Lignin may be removed either before or after hydrolysis.

  10. Sensing of glucose in the gastrointestinal tract.

    PubMed

    Raybould, Helen E

    2007-04-30

    In general, nutrient sensing mechanisms in the intestine are not well understood. Potential sensors include the terminals of extrinsic afferent nerves, enteric nerves, endocrine cells and other epithelial cells including enterocytes and immune cells. This short review will concentrate on the neural pathways that are activated by the presence of glucose in the intestinal lumen and the role of a specialized endocrine cell, the enterochromaffin cell in glucose-sensing and the subsequent activation of extrinsic neural pathways.

  11. Effects of fasting on plasma glucose and prolonged tracer measurement of hepatic glucose output in NIDDM

    SciTech Connect

    Glauber, H.; Wallace, P.; Brechtel, G.

    1987-10-01

    We studied the measurement of hepatic glucose output (HGO) with prolonged (3-/sup 3/H)glucose infusion in 14 patients with non-insulin-dependent diabetes mellitus (NIDDM). Over the course of 10.5 h, plasma glucose concentration fell with fasting by one-third, from 234 +/- 21 to 152 +/- 12 mg/dl, and HGO fell from 2.35 +/- 0.18 to 1.36 +/- 0.07 mg . kg-1 . min-1 (P less than .001). In the basal state, HGO and glucose were significantly correlated (r = 0.68, P = .03), and in individual patients, HGO and glucose were closely correlated as both fell with fasting (mean r = 0.79, P less than .01). Plasma (3-/sup 3/H)glucose radioactivity approached a steady state only 5-6 h after initiation of the primed continuous infusion, and a 20% overestimate of HGO was demonstrated by not allowing sufficient time for tracer labeling of the glucose pool. Assumption of steady-state instead of non-steady-state kinetics in using Steele's equations to calculate glucose turnover resulted in a 9-24% overestimate of HGO. Stimulation of glycogenolysis by glucagon injection demonstrated no incorporation of (3-/sup 3/H)glucose in hepatic glycogen during the prolonged tracer infusion. In a separate study, plasma glucose was maintained at fasting levels (207 +/- 17 mg/dl) for 8 h with the glucose-clamp technique. Total glucose turnover rates remained constant during this prolonged tracer infusion. However, HGO fell to 30% of the basal value simply by maintaining fasting hyperglycemia in the presence of basal insulin levels.

  12. Diabetic glucose meter for the determination of glucose in microbial cultures.

    PubMed

    Flavigny, Raphael

    2014-05-01

    In wastewater, biological phosphate removal can fail because of the presence of glycogen accumulating organism (GAO), therefore measuring glycogen stored in microbial cultures provides information on the bacterial population type. Once glycogen is hydrolysed to glucose it was accurately measured using a human glucose meter. The standard curves demonstrate linearity regardless of the pre-treatment of the glucose solution at neutral pH. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Glucose determination with fiber optic spectrometers

    NASA Astrophysics Data System (ADS)

    Starke, Eva; Kemper, Ulf; Barschdorff, Dieter

    1999-05-01

    Noninvasive blood glucose monitoring is the aim of research activities concerning the detection of small glucose concentrations dissolved in water and blood plasma. One approach for these measurements is the exploitation of absorption bands in the near infrared. However, the strong absorption of water represents a major difficulty. Transmission measurements of glucose dissolved in water and in blood plasma in the spectral region around 1600 nm with one- beam spectrometers and a FT-IR spectrometer are discussed. The evaluation of the data is carried out using a two-layer Lambert-Beer model and neural networks. In order to reduce the dimensions of a potential measuring device, an integrated acousto-optic tunable filter (AOTF) with an Erbium doped fiber amplifier as a radiation source is used. The fiber optic components are examined concerning their suitability. The smallest concentrations of glucose dissolved in water that can be separated are approximately 50 mg/dl. In the range of 50 mg/dl to 1000 mg/dl a correlation coefficient of 0.98 between real and estimated glucose concentrations is achieved using neural networks. In blood plasma so far glucose concentrations of about 100 mg/dl can be distinguished with good accuracy.

  14. Hypoxia causes glucose intolerance in humans.

    PubMed

    Oltmanns, Kerstin M; Gehring, Hartmut; Rudolf, Sebastian; Schultes, Bernd; Rook, Stefanie; Schweiger, Ulrich; Born, Jan; Fehm, Horst L; Peters, Achim

    2004-06-01

    Hypoxic respiratory diseases are frequently accompanied by glucose intolerance. We examined whether hypoxia is a cause of glucose intolerance in healthy subjects. In a double-blind within-subject crossover design, hypoxic versus normoxic conditions were induced in 14 healthy men for 30 minutes by decreasing oxygen saturation to 75% (versus 96% in control subjects) under the conditions of a euglycemic clamp. The rate of dextrose infusion needed to maintain stable blood glucose levels was monitored. Neurohormonal stress response was evaluated by measuring catecholamine and cortisol concentrations as well as cardiovascular parameters, and symptoms of anxiety. To differentiate between the effects of stress hormonal response, and hypoxia itself, on glucose intolerance, we performed hypoglycemic clamps as a nonspecific control. We found a significant decrease in dextrose infusion rate over a period of 150 minutes after the start of hypoxia (p < 0.01). Hypoxia also increased plasma epinephrine concentration (p < 0.01), heart rate (p < 0.01), and symptoms of anxiety (p < 0.05), whereas the other parameters remained unaffected. Glucose intolerance was closely comparable between hypoxic and hypoglycemic conditions (p < 0.9) despite clear differences in stress hormonal responses. Hypoxia acutely causes glucose intolerance. One of the factors mediating this effect could be an elevated release of epinephrine.

  15. pH-insensitive glucose indicators.

    PubMed

    Garrett, Jared R; Wu, Xinxin; Jin, Sha; Ye, Kaiming

    2008-01-01

    There is an urgent need for developing a biosensor that can real-time and noninvasively determine glucose concentration within living cells. In our previous study, we have engineered a glucose indicator protein (GIP) that can provide continuous glucose monitoring through a conformation change-induced Förster resonance-energy transfer measurement. Because of the pH-sensitivity of the fluorescent proteins used in the GIP construction, the GIP made from these fluorescent proteins is less tolerant to a pH change, especially to the acidic environment. It has been well documented that intracellular pH does not always remain the same, and it fluctuates in metabolism and other cellular activities and also differs between cellular compartments. To address these issues, we developed a GIP that can tolerate to pH change. This GIP was constructed by flanking a glucose binding protein with a cyan fluorescent protein and a pH-insensitive yellow fluorescent protein. Our experimental results indicated that the new GIP is more tolerant to pH change. The glucose response of this new GIP kept almost unchanged from pH 7.3 to 5.3, suggesting its capability of tolerating to acidic environment. This capability is desirable for intracellular glucose measurement.

  16. The Kidney's role in glucose balance following partial hepatectomy.

    PubMed

    Jones, C E; Koshibu, K; DeCambre, M; Gerich, J E; Bessey, P Q; Krusch, D A

    1998-10-01

    It has long been believed that the liver is the major contributor to glucose balance during fasting and stressful situations. Recently, investigators have implicated the kidney as having a significant contribution to systemic glucose appearance. We studied the relative contributions of the kidney and liver to glucose homeostasis in fasted nonoperated, sham-operated, and 70% hepatectomized rats. Systemic glucose appearance, renal glucose release and uptake, and hepatic glucose release were determined by glucose balance and isotopic dilution techniques. Systemic glucose appearance remained unchanged following hepatectomy. There was a significant output of glucose by the kidney in all groups, accounting for >50% of total glucose appearance. Despite the kidney's appreciable contribution to circulating glucose in the postabsorptive state, renal glucose release was not increased in the hepatectomized rats compared to controls. Total glucose appearance was maintained following hepatectomy by an increase in hepatic glucogenesis. There was a significant increase in the rate of hepatic glucose release from resected rats when normalized to gram of remaining liver (P < 0.001). Despite the substantial amount of renal glucose output in the postabsorptive state, preservation of glucose balance following 70% hepatectomy is accomplished by adaptation in hepatic glucose output.

  17. Wireless glucose monitoring watch enabled by an implantable self-sustaining glucose sensor system

    NASA Astrophysics Data System (ADS)

    Rai, Pratyush; Varadan, Vijay K.

    2012-10-01

    Implantable glucose sensors can measure real time blood glucose as compared to conventional techniques involving drawing blood samples and in-vitro processing. An implantable sensor requires energy source for operation with wire inout provision for power and sending signals. Implants capable of generation-transmission of sensory signals, with minimal or no power requirement, can solve this problem. An implantable nanosensor design has been presented here, which can passively detect glucose concentration in blood stream and transmit data to a wearable receiver-recorder system or a watch. The glucose sensitive component is a redox pair of electrodes that generates voltage proportional to glucose concentration. The bio-electrode, made of carbon nanotubes-enzyme nanocluster, has been investigated because of the large surface area for taping electrical signals. This glucose sensor can charge a capacitor, which can be a part of a LCR resonance/inductive coupling based radio frequency (RF) sensor telemetry. Such a system can measure change in glucose concentration by the induced frequency shift in the LCR circuit. A simultaneous power transmission and signal transmission can be achieved by employing two separate LCR oscillating loops, one for each operation. The corresponding coupling LCR circuits can be housed in the wearable receiving watch unit. The data logged in this glucose monitoring watch can be instrumental in managing blood glucose as trigger for an insulin dispensing payload worn on person or implanted.

  18. Design of Cyclic Peptide Based Glucose Receptors and Their Application in Glucose Sensing.

    PubMed

    Li, Chao; Chen, Xin; Zhang, Fuyuan; He, Xingxing; Fang, Guozhen; Liu, Jifeng; Wang, Shuo

    2017-10-03

    Glucose assay is of great scientific significance in clinical diagnostics and bioprocess monitoring, and to design a new glucose receptor is necessary for the development of more sensitive, selective, and robust glucose detection techniques. Herein, a series of cyclic peptide (CP) glucose receptors were designed to mimic the binding sites of glucose binding protein (GBP), and CPs' sequence contained amino acid sites Asp, Asn, His, Asp, and Arg, which constituted the first layer interactions of GBP. The properties of these CPs used as a glucose receptor or substitute for the GBP were studied by using a quartz crystal microbalance (QCM) technique. It was found that CPs can form a self-assembled monolayer at the Au quartz electrode surface, and the monolayer's properties were characterized by using cyclic voltammetry, electrochemical impedance spectroscopy, and atomic force microscopy. The CPs' binding affinity to saccharide (i.e., galactose, fructose, lactose, sucrose, and maltose) was investigated, and the CPs' sensitivity and selectivity toward glucose were found to be dependent upon the configuration,i.e., the amino acids sequence of the CPs. The cyclic unit with a cyclo[-CNDNHCRDNDC-] sequence gave the highest selectivity and sensitivity for glucose sensing. This work suggests that a synthetic peptide bearing a particular functional sequence could be applied for developing a new generation of glucose receptors and would find huge application in biological, life science, and clinical diagnostics fields.

  19. Fetal glucose uptake and utilization as functions of maternal glucose concentration.

    PubMed

    Hay, W W; Sparks, J W; Wilkening, R B; Battaglia, F C; Meschia, G

    1984-03-01

    Seventeen studies were performed in 12 pregnant sheep to examine the relationship among simultaneously measured glucose uptake via the umbilical circulation, fetal glucose utilization (mg X min-1 X kg-1), and maternal arterial glucose (Gm, mg/dl). Fetal glucose utilization was measured by means of tracer glucose infused into the fetus or both mother and fetus. By fasting the ewe, Gm was varied in the 62-22 range. A decrease in Gm was accompanied by a significant (P less than 0.001) decrease in umbilical uptake (uptake = 0.09 Gm - 0.96, r = 0.82) and in fetal utilization, measured either by [U-14C]glucose (utilization = 0.062 Gm + 0.91, r = 0.90) or [6-3H]glucose (utilization = 0.065 Gm + 0.51, r = 0.91). At uptake greater than 3 mg X min-1 X kg-1, utilization and uptake were not significantly different. At lower uptakes, utilization did not decline as much as uptake. The results demonstrate that maternal fasting decreases both the umbilical uptake and the fetal utilization of glucose and suggest that fetal glucogenesis increases when the availability of exogenous glucose is markedly reduced.

  20. Effect of glucose supplementation on appetite and the pyloric motor response to intraduodenal glucose and lipid.

    PubMed

    Andrews, J M; Doran, S; Hebbard, G S; Rassias, G; Sun, W M; Horowitz, M

    1998-04-01

    The effects of different macronutrients on appetite and pyloric motility and the impact of short-term dietary glucose supplementation on these responses were evaluated. Ten males (aged 19-38 yr) received isocaloric (2.9 kcal/min) intraduodenal infusions of glucose and lipid while antropyloroduodenal motility and appetite were assessed by manometry and visual analog scales, respectively. Effects of each intraduodenal nutrient on appetite and motility were evaluated before and after 7 days of dietary supplementation with glucose (400 g daily). Initially, both nutrients caused a similar rise in pyloric tone, but intraduodenal lipid was a more potent stimulus of phasic pyloric motility (P = 0.05) and suppressed appetite more (P = 0.013) than intraduodenal glucose. After dietary glucose supplementation, the increase in pyloric tone during intraduodenal glucose was attenuated. Although intraduodenal lipid remained a more potent stimulant of phasic pyloric motility (P = 0.016), it no longer decreased appetite. We conclude that in healthy young males 1) intraduodenal infusion of lipid is a more potent stimulus of phasic pyloric motility and suppresses appetite more than intraduodenal glucose and 2) dietary glucose supplementation alters both the appetite suppressant effect of intraduodenal lipid and the pyloric motor response to intraduodenal glucose infusion.

  1. Designing a highly active soluble PQQ-glucose dehydrogenase for efficient glucose biosensors and biofuel cells.

    PubMed

    Durand, Fabien; Stines-Chaumeil, Claire; Flexer, Victoria; André, Isabelle; Mano, Nicolas

    2010-11-26

    We report for the first time a soluble PQQ-glucose dehydrogenase that is twice more active than the wild type for glucose oxidation and was obtained by combining site directed mutagenesis, modelling and steady-state kinetics. The observed enhancement is attributed to a better interaction between the cofactor and the enzyme leading to a better electron transfer. Electrochemical experiments also demonstrate the superiority of the new mutant for glucose oxidation and make it a promising enzyme for the development of high-performance glucose biosensors and biofuel cells. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Glucose as substrate and signal in priming: Results from experiments with non-metabolizable glucose analogues

    NASA Astrophysics Data System (ADS)

    Mason-Jones, Kyle; Kuzyakov, Yakov

    2016-04-01

    Priming of soil organic matter remains the subject of intense research, but a mechanistic explanation of the phenomenon remains to be demonstrated. This is largely due to the multiple effects of easily available carbon on the soil microbial community, and the challenge of separating these influences from one another. Several glucose analogues can be taken up by microbial glucose transporters and have similar regulatory effects on metabolism. These substances are, however, not easily catabolized by the common glycolytic pathway, limiting their energy value. Therefore, they can be used to distinguish between the action of glucose as a metabolic signal, and its influence as an energy source. We incubated an agricultural Haplic Luvisol under controlled conditions for 24 days after addition of: 1) glucose, 2) 3-O-methyl-glucose, 3) α-methylglucoside or 4) 2-deoxyglucose, at three concentration levels, along with a control treatment of water addition. CO2 efflux from soil was monitored by trapping evolved CO2 in NaOH and back-titration with HCl. On the first day after amendment, CO2 efflux from soil increased strongly for glucose and much less for the analogues, relative to the control. Only glucose caused a peak in efflux within the first two days. Peak mineralization of 2-deoxyglucose and α-methylglucoside was delayed until the third day, while CO2 from 3-O-methyl-glucose increased gradually, with a peak delayed by approximately a week. For glucose, the immediate increase in respiration was strongly dependent on the amount of glucose added, but this was not the case for the analogues, indicating that the catabolic potential for these substances was saturated. This is consistent with only a small part of the microbial community being capable of utilizing these carbon sources. In a subsequent experiment, 14C-labelled glucose or 14C-labelled 3-O-methyl-glucose were added to the same soil, enabling quantification of the priming effect. For 3-O-methyl-glucose, priming was

  3. Inhibition of hexose transport by glucose in a glucose-6-phosphate isomerase mutant of Saccharomyces cerevisiae.

    PubMed

    Alonso, A; Pascual, C; Romay, C; Herrera, L; Kotyk, A

    1989-01-01

    The rate of hexose transport was approximately 60% lower for both the high- and the low-affinity components of hexose uptake when a glucose-6-phosphate isomerase mutant of Saccharomyces cerevisiae was preincubated with glucose, as compared with preincubation with water. Similarly the Jmax value of the high-affinity system of the mutant was 25-35% of the corresponding Jmax value for normal cells incubated with glucose. Accumulation of glucose 6-phosphate or of some other metabolite, such as fructose 6-phosphate or trehalose, may be responsible for this striking inhibition.

  4. Noninvasive Continuous Monitoring of Tear Glucose Using Glucose-Sensing Contact Lenses.

    PubMed

    Ascaso, Francisco J; Huerva, Valentín

    2016-04-01

    : The incidence of diabetes mellitus is dramatically increasing in the developed countries. Tight control of blood glucose concentration is crucial to diabetic patients to prevent microvascular complications. Self-monitoring of blood glucose is widely used for controlling blood glucose levels and usually performed by an invasive test using a portable glucometer. Many technologies have been developed over the past decades with the purpose of obtaining a continuous physiological glycemic monitoring. A contact lens is the ideal vehicle for continuous tear glucose monitoring of glucose concentration in tear film. There are several research groups that are working in the development of contact lenses with embedded biosensors for continuously and noninvasively monitoring tear glucose levels. Although numerous aspects must be improved, contact lens technology is one step closer to helping diabetic subjects better manage their condition, and these contact lenses will be able to measure the level of glucose in the wearer's tears and communicate the information to a mobile phone or computer. This article reviews studies on ocular glucose and its monitoring methods as well as the attempts to continuously monitor the concentration of tear glucose by using contact lens-based sensors.

  5. Acute myocardial ischemia causes a transmural gradient in glucose extraction but not glucose uptake.

    PubMed

    Stanley, W C; Hall, J L; Stone, C K; Hacker, T A

    1992-01-01

    We assessed the relationship between myocardial glucose metabolism and blood flow during ischemia in eight open-chest swine. Coronary flow was controlled by an extracorporeal perfusion circuit. Left anterior descending coronary arterial (LAD) flow was reduced by 60%, while left circumflex flow was normally perfused. The rate of glucose uptake (Rg) was measured with a coronary infusion of 2-deoxy-D-[14C]glucose and myocardial blood flow with radiolabeled microspheres. Myocardial biopsies were taken after 50 min of ischemia. Regional arterial-venous glucose difference was calculated as Rg per myocardial blood flow. Subendocardial blood flow decreased from 1.27 +/- 0.19 to 0.25 +/- 0.11 ml.g-1.min-1 (P less than 0.0001). The subendocardial arterial-venous glucose difference was greater in the LAD bed (1.38 +/- 0.35 mumol/ml) than the left circumflex coronary arterial perfusion bed (0.10 +/- 03; P less than 0.01); however, there was no statistically significant difference in the rate of glucose uptake between the two beds. Subendocardial glycogen concentration in the LAD perfusion bed was reduced to 26% of circumflex bed values. In conclusion, acute ischemia stimulated a dramatic increase in glucose extraction; however, this did not compensate for the decrease in blood flow, and thus the rate of glucose uptake did not increase significantly. The high rate of glycolysis is primarily supported by accelerated net glycogen breakdown rather than increased glucose uptake.

  6. Degree of obesity and glucose allostasis are major effectors of glucose tolerance dynamics in obese youth.

    PubMed

    Weiss, Ram; Cali, Anna M; Dziura, James; Burgert, Tania S; Tamborlane, William V; Caprio, Sonia

    2007-07-01

    One of the signals for the beta-cell to maintain an adequate response to worsening insulin sensitivity is elevated ambient glycemia, namely the concept of "glucose allostasis." We examined whether glucose allostasis can be demonstrated using oral glucose tolerance tests (OGTTs) and the effects of the dynamics of beta-cell demand on longitudinal changes of glucose tolerance in obese youth. A cross-sectional analysis of 784 OGTTs of obese youth was used to demonstrate the concept of allostasis, and a longitudinal assessment of 181 subjects was used to examine the effects of changes in beta-cell demand and the degree of obesity on glucose tolerance. Glucose allostasis can be demonstrated using indexes derived from an OGTT. Increasing beta-cell demand and the degree of obesity at baseline were independently related to elevations in ambient glycemia over time. Baseline BMI Z score was a significant contributor to elevated glucose levels on the second OGTT, while the change in degree of obesity during follow-up was not. Increasing beta-cell demand related to worsening insulin sensitivity and the degree of obesity per se have independent roles in the development of elevated glucose levels over time. This implicates that peripheral insulin sensitization and/or beta-cell enhancement alongside a significant reduction in obesity may be needed to prevent the development of altered glucose metabolism in obese youth.

  7. Impaired glucose metabolism in hypertensive patients.

    PubMed

    Fragachan, F; Perez-Acuña, F; Monsalve, P; Sanabria, A

    1990-01-01

    We have studied glucose tolerance under carefully controlled conditions in 79 patients with arterial hypertension. The results show that, in patients with arterial hypertension but without clinical diabetes mellitus, the glucose tolerance was abnormal in 77.3% and normal in 22.3%. The corresponding figure in the control group of normotensive subjects was 0%. In each test the responses to glucose administration were analyzed by plotting the logarithm of the blood glucose concentration against time. For the points between 60 and 120 min, corresponding to the periods following glucose administration, a linear relationship was obtained and showed a decline at an exponential rate, as noted by other observers. An estimate of the volume of distribution of glucose was obtained as follows. Values observed in hypertensives with a pathological percent fall in blood glucose per minute (Kg) were 29.8 +/- 12.0 (mean +/- SD) liters and those in normal subjects with normal Kg values had a mean of 14.35 +/- 2.98, the difference being highly significant (p less than 0.0001). The results of the theoretical glucose concentration are also presented. Those obtained from subjects with normal Kg values (359.0 +/- 58.4 mg/dl) are significantly higher than in subjects with pathological Kg values (257.6 +/- 51.3 mg/dl; p less than 0.0001). All patients with either pathological or normal Kg values had normal glucose concentration levels, fasting blood sugar and no glucose in the urine specimen. The difference between pathological Kg values (107.0 +/- 25.8 mg/dl) and normal Kg values (90.6 +/- 13.0 mg/dl) was not found to be statistically different (p greater than 0.05). The distribution and means of glucose half time in controls with normal Kg values and hypertensives with pathological Kg values were: 63.5 +/- 11.5 and 137.8 +/- 48.1 min, respectively. The difference between normal and pathological Kg values being statistically significant at a confidence level above 99.5%. We also studied

  8. Simulation on how to customize glucose adjustment method for non-invasive blood glucose sensing by NIRS

    NASA Astrophysics Data System (ADS)

    Min, Xiaolin; Jiang, Jingying; Zou, Da; Liu, Rong; Xu, Kexin

    2013-02-01

    Previous studies have shown the limitations of taking OGTT (Oral Glucose Tolerance Test) as the glucose adjustment protocol for non-invasive blood glucose sensing. Previous studies built a mathematical model of glucose metabolism system-IMM (the Integrated Minimal Model) to probe other available adjustment methods. In this talk, a further study would be focused on more detailed combination options of different glucose input types for glucose adjustment projects in non-invasive blood glucose sensing. And predictive models of blood glucose concentration have been established by means of partial least squares (PLS) method, which could be used to evaluate the quality of different glucose adjustment options. Results of PLS modeling suggested that predictive models under combined glucose input types, compared with OGTT, show a great enhancement in the stability. This would finally improve the precision of non-invasive blood glucose sensing.

  9. The effect of short-term dietary supplementation with glucose on gastric emptying of glucose and fructose and oral glucose tolerance in normal subjects.

    PubMed

    Horowitz, M; Cunningham, K M; Wishart, J M; Jones, K L; Read, N W

    1996-04-01

    Recent observations indicate that gastric emptying may be influenced by patterns of previous nutrient intake. The aims of this study were to determine the effects of a high glucose diet on gastric emptying of glucose and fructose, and the impact of any changes in gastric emptying on plasma concentrations of glucose, insulin and gastric inhibitory polypeptide in response to glucose and fructose loads. Gastric emptying of glucose and fructose (both 75 g dissolved in 350 ml water) were measured in seven normal volunteers on separate days while each was on a "standard' diet and an identical diet supplemented with 440 g/day of glucose for 4-7 days. Venous blood samples for measurement of plasma glucose, insulin and gastric inhibitory polypeptide levels were taken immediately before and for 180 min after ingestion of glucose and fructose loads. Dietary glucose supplementation accelerated gastric emptying of glucose (50% emptying time 82 +/- 8 vs 106 +/- 10 min, p = 0.004) and fructose (73 +/- 9 vs 106 +/- 9 min, p = 0.001). After ingestion of glucose, plasma concentrations of insulin (p < 0.05) and gastric inhibitory polypeptide (p < 0.05) were higher during the glucose-supplemented diet. In contrast, plasma glucose concentrations at 60 min and 75 min were lower (p < 0.05) on the glucose-supplemented diet. We conclude that short-term supplementation of the diet with glucose accelerates gastric emptying of glucose and fructose, presumably as a result of reduced feedback inhibition of gastric emptying from small intestinal luminal receptors. More rapid gastric emptying of glucose has a significant impact on glucose tolerance.

  10. Effects of oral glucose on systemic glucose metabolism during hyperinsulinemic hypoglycemia in normal man.

    PubMed

    Poulsen, P L; Orskov, L; Grøfte, T; Møller, J; Holst, J J; Schmitz, O; Møller, N

    2000-12-01

    The widespread use of oral glucose in the treatment of hypoglycemia is mainly empirically based, and little is known about the time lag and subsequent magnitude of effects following its administration. To define the systemic impact and time course of effects following oral glucose during hypoglycemia, we investigated 7 healthy young men twice. On both occasions, a 6-hour hyperinsulinemic (1.5 mU/kg/min)-hypoglycemic clamp was performed to ensure similar plasma glucose profiles during a stepwise decrease toward a nadir less than 50 mg/100 mL after 3 hours. On the first occasion, subjects ingested 40 g glucose and 4 g 3-ortho-methylglucose ([3-OMG] to trace glucose absorption) dissolved in 400 mL tap water after 3.5 hours. The second examination was identical except for the omission of 40 g oral glucose, and glucose levels were clamped at hypoglycemic concentrations similar to those recorded on the first examination. Plasma glucose curves were superimposable, and all participants reached a nadir less than 50 mg/100 mL. Similar increases in growth hormone (GH) and glucagon were observed in both situations. The glucose infusion rates (GIRs) were lower after oral glucose, with the difference starting after 5 to 10 minutes, being statistically significant after 20 minutes, and reaching a maximum of 8.5 +/- 1.6 mg/kg/min after 40 minutes. Circulating 3-OMG increased after 20 minutes. In both situations, infusion of insulin resulted in insulin levels of approximately 150 microU/mL and a suppression of C-peptide levels from 2.0 to 1.1 nmol/L (P < .01). After glucose ingestion, both serum C-peptide and glucagon-like peptide-1 (GLP-1) increased (C-peptide from 1.1 +/- 0.05 to 1.4 +/- 0.05 nmol/L and GLP-1 from 3.2 +/- 0.8 to 18.1 +/- 3.3 pmol/L), in contrast to the situation without oral glucose (P < .05). Isotopically determined glucose turnover was similar. In conclusion, our data suggest that oral glucose affects systemic glucose metabolism rapidly after 5 to 10 minutes

  11. Glucose-dependent and Glucose-sensitizing Insulinotropic Effect of Nateglinide: Comparison to Sulfonylureas and Repaglinide

    PubMed Central

    Wang, Shuya; Dunning, Beth E.

    2001-01-01

    Nateglinide, a novel D-phenylalanine derivative, stimulates insulin release via closure of KATP channels in pancreatic β-cell, a primary mechanism of action it shares with sulfonylureas (SUs) and repaglinide. This study investigated (1) the influence of ambient glucose levels on the insulinotropic effects of nateglinide, glyburide and repaglinide, and (2) the influence of the antidiabetic agents on glucose-stimulated insulin secretion (GSIS) in vitro from isolated rat islets. The EC50 of nateglinide to stimulate insulin secretion was 14 μM in the presence of 3mM glucose and was reduced by 6-fold in 8mM glucose and by 16-fold in 16mM glucose, indicating a glucose-dependent insulinotropic effect. The actions of glyburide and repaglinide failed to demonstrate such a glucose concentration-dependent sensitization. When tested at fixed and equipotent concentrations (~2x EC50 in the presence of 8mM glucose) nateglinide and repaglinide shifted the EC50s for GSIS to the left by 1.7mM suggesting an enhancement of islet glucose sensitivity, while glimepiride and glyburide caused, respectively, no change and a right shift of the EC50. These data demonstrate that despite a common basic mechanism of action, the insulinotropic effects of different agents can be influenced differentially by ambient glucose and can differentially influence the islet responsiveness to glucose. Further, the present findings suggest that nateglinide may exert a more physiologic effect on insulin secretion than comparator agents and thereby have less propensity to elicit hypoglycemia in vivo. PMID:12369728

  12. Sodium salicylate restores the impaired insulin response to glucose and improves glucose tolerance in heroin addicts.

    PubMed

    Giugliano, D; Quatraro, A; Consoli, G; Stante, A; Simeone, V; Ceriello, A; Paolisso, G; Torella, R

    1987-01-01

    Plasma glucose, insulin, C-peptide, glucagon and growth hormone responses to intravenous glucose were evaluated in 10 heroin addicts in the basal state and during an infusion of sodium salicylate, an inhibitor of endogenous prostaglandin synthesis. Ten normal subjects, matched for age, sex and weight served as controls. In the basal state, the heroin addicts had markedly reduced insulin responses to intravenous glucose and low glucose disappearance rates (p less than 0.01 vs controls). The infusion of sodium salicylate caused a striking increase of the acute insulin response to intravenous glucose (from 14.5 +/- 4 microU/ml to 88 +/- 11 microU/ml, p less than 0.001) and restored to normal the reduced glucose tolerance (KG from 1.10 +/- 0.1% min-1 to 2.04 +/- 0.19% min-1). Hypoglycemic values were found in all addicts at the end of the test during salicylate infusion. Indomethacin pretreatment in five additional addicts also caused normalization of the impaired insulin responses to the intravenous glucose challenge and restored to normal the reduced glucose disappearance rate. Plasma glucagon and growth hormone levels were normally suppressed by glucose in addicts in basal conditions; sodium salicylate infusion completely overturned these hormonal responses which became positive in the first 15 min following the glucose challenge. These results demonstrate that the two prostaglandin synthesis inhibitors can restore the impaired B-cell response to glucose in heroin addicts to normal, indicating that this response is not lost but is inhibited by heroin itself or by other substances, perhaps by the endogenous prostaglandins.

  13. 21 CFR 862.1340 - Urinary glucose (nonquantitative) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Urinary glucose (nonquantitative) test system. 862... Test Systems § 862.1340 Urinary glucose (nonquantitative) test system. (a) Identification. A urinary glucose (nonquantitative) test system is a device intended to measure glucosuria (glucose in...

  14. 21 CFR 862.1340 - Urinary glucose (nonquantitative) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Urinary glucose (nonquantitative) test system. 862... Test Systems § 862.1340 Urinary glucose (nonquantitative) test system. (a) Identification. A urinary glucose (nonquantitative) test system is a device intended to measure glucosuria (glucose in...

  15. Effect of physical restraint on glucose tolerance in cynomolgus monkeys.

    PubMed

    Shirasaki, Yasufumi; Yoshioka, Naoya; Kanazawa, Kanpei; Maekawa, Tsuyoshi; Horikawa, Tadahiro; Hayashi, Toshiaki

    2013-06-01

    Physiologic stress has been demonstrated to impair glucose tolerance. Glucose tolerance tests were performed using six cynomolgus monkeys. Chair-restrained subjects elicited higher elevations of plasma glucose and cortisol compared with squeezing device-restrained subjects. The responses to a glucose challenge are altered by different restraint procedures.

  16. Microneedle electrodes toward an amperometric glucose-sensing smart patch.

    PubMed

    Invernale, Michael A; Tang, Benjamin C; York, Royce L; Le, Long; Hou, David Yupeng; Anderson, Daniel G

    2014-03-01

    Here, efforts toward the development of a microneedle-based glucose sensor or "smart patch" for intradermal glucose sensing are described. Metallic microneedle array electrodes, conducting polymers, and glucose oxidase form the sensor platform. This work represents the first steps toward the development of painless, transdermal-sensing devices for continuous glucose monitoring.

  17. 21 CFR 184.1372 - Insoluble glucose isomerase enzyme preparations.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Insoluble glucose isomerase enzyme preparations... Substances Affirmed as GRAS § 184.1372 Insoluble glucose isomerase enzyme preparations. (a) Insoluble glucose... defined in § 170.3(o)(9) of this chapter, to convert glucose to fructose. (2) The ingredient is used in...

  18. 21 CFR 862.1340 - Urinary glucose (nonquantitative) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Urinary glucose (nonquantitative) test system. 862... Test Systems § 862.1340 Urinary glucose (nonquantitative) test system. (a) Identification. A urinary glucose (nonquantitative) test system is a device intended to measure glucosuria (glucose in urine...

  19. Can intramuscular glucose levels diagnose compartment syndrome?

    PubMed

    Doro, Christopher J; Sitzman, Thomas J; O'Toole, Robert V

    2014-02-01

    Compartment syndrome is difficult to diagnose, particularly in patients who are not able to undergo adequate clinical examination. Current methods rely on pressure measurements within the compartment, have high false-positive rates, and do not reliably indicate presence of muscle ischemia. We hypothesized that measurement of intramuscular glucose and oxygen can identify compartment syndrome with high sensitivity and specificity. Compartment syndrome was created in 12 anesthetized adult mixed-sex beagles, in the craniolateral compartment of a lower leg, by infusion of lactated Ringer's solution with normal serum concentration of glucose. The contralateral leg served as a control. Hydrostatic pressure, oxygen tension, and glucose concentration were recorded with commercially available probes. Compartment syndrome was maintained for 8 hours, and the animals were recovered. Two weeks later, compartment and control legs underwent muscle biopsy. Specimens were reviewed by a blinded pathologist. Within 15 minutes of creating compartment syndrome, glucose concentration and oxygen tension in the experimental limb were significantly lower than in the control limb (glucose, p = 0.02; oxygen, p = 0.007; two-tailed t test). Intramuscular glucose concentration of less than 97 mg/dL was 100% sensitive (95% confidence interval [CI], 73-100%) and 75% specific (95% CI, 40-94%) for the presence of compartment syndrome. Partial pressure of oxygen less than 30 mm Hg was 100% sensitive (95% CI, 72-100%) and 100% specific (95% CI, 69-100%) for the presence of compartment syndrome. Pathology confirmed compartment syndrome in all experimental limbs. Our results show that intramuscular glucose concentration and partial pressure of oxygen rapidly identify muscle ischemia with high sensitivity and specificity after experimentally created compartment syndrome in this animal model.

  20. Simultaneous uptake of galactose and glucose by Azotobacter vinelandii.

    PubMed

    Wong, T Y; Murdock, C A; Concannon, S P; Lockey, T D

    1991-01-01

    Azotobacter vinelandii growing on galactosides induced two distinct permeases for glucose and galactose. The apparent Vmax and Km of the galactose permease were 16 nmol galactose/min per 10(10) cells and 0.5 mM, respectively. The apparent Vmax and Km of the glucose permease were 7.8 nmol glucose/min per 10(10) cells and 0.04 mM, respectively. Excess glucose had no effect on the galactose uptake. However, excess galactose inhibited glucose transport. The galactosides-induced glucose permease also exhibited different uptake kinetics from that induced by glucose.

  1. Interspecific variation in SO/sub 2/ flux: leaf surface versus internal flux, and components of leaf conductance. [Pisum sativum L. , Lycopersicon esculentum Mill. Flacca, Geranium carolinianum L. , Diplacus aurantiacus (Curtis) Jeps

    SciTech Connect

    Olszyk, D.M.; Tingey, D.T.

    1985-12-01

    The objective of this study was to clarify the relationships among stomatal, residual, and epidermal conductances in determining the flux of SO/sub 2/ air pollution to leaves. Variations in leaf SO/sub 2/ and H/sub 2/O vapor fluxes were determined using four plant species: Pisum sativum L. (garden pea), Lycopersicon esculentum Mill. flacca (mutant of tomato), Geranium carolinianum L. (wild geranium), and Diplacus aurantiacus (Curtis) Jeps. (a native California shrub). Fluxes were measured using the mass-balance approach during exposure to 4.56 micromoles per cubic meter (0.11 microliters per liter) SO/sub 2/ for 2 hours in a controlled environmental chamber. Flux through adaxial and abaxial leaf surfaces with closed stomata ranged from 1.9 to 9.4 nanomoles per square meter per second for SO/sub 2/, and 0.3 to 1.3 millimoles per square meter per second for H/sub 2/O vapor. Flux of SO/sub 2/ into leaves through stomata ranged from approx.0 to 8.5 (dark) and 3.8 to 16.0 (light) millimoles per square meter per second. Flux of H/sub 2/O vapor from leaves through stomata ranged from approx.0 to 0.6 (dark) to 0.4 to 0.9 (light) millimole per square meter per second. Lycopersicon had internal flux rates for both SO/sub 2/ and H/sub 2/O vapor over twice as high as for the other species. Stomatal conductance based on H/sub 2/O vapor flux averaged from 0.07 to 0.13 mole per square meter per second among the four species. Internal conductance of SO/sub 2/ as calculated from SO/sub 2/ flux was from 0.04 mole per square meter per second lower to 0.06 mole per square meter per second higher than stomatal conductance. For Pisum, Geranium, and Diplacus stomatal conductance was the same or slightly higher than internal conductance, indicating that, in general, SO/sub 2/ flux could be predicted from stomatal conductance for H/sub 2/O vapor.

  2. Multiphasic Absorption of Glucose and 3-O-Methyl Glucose by Aged Potato Slices 1

    PubMed Central

    Linask, Juri; Laties, George G.

    1973-01-01

    The isotherm for glucose absorption by aged potato (Solanum tuberosum var. Russet Burbank) discs shows four distinct phases in the concentration ranges 1.0 to 75 μm, 75 μm to 1.5 mm, 1.5 to 15 mm, and 15 to 100 mm, respectively. Each segment of the multiphasic isotherm, when plotted reciprocally by the method of Lineweaver and Burk or of Hofstee, without regard for uptake in earlier phases, indicates absorption rate to be a hyperbolic function of concentration. The observations suggest that glucose uptake is carrier-mediated, and that the transport barrier undergoes a series of all-or-none transformations at critical external concentrations, yielding successive new and higher values for the parameters Km and Vmax 3-O-Methyl glucose, a nonmetabolizable analogue of glucose, shows the same multiphasic absorption isotherm, with Km values essentially similar to those for glucose uptake, and Vmax values somewhat lower than those for glucose absorption. Whereas the first three phases of the absorption isotherm are taken to reflect passage across the plasma membrane, the fourth phase may reflect kinetics of glucose or 3-O-methyl glucose transport to the vacuole. PMID:16658317

  3. Effects of iriflophenone 3-C-β-glucoside on fasting blood glucose level and glucose uptake

    PubMed Central

    Pranakhon, Ratree; Aromdee, Chantana; Pannangpetch, Patchareewan

    2015-01-01

    Background: One of the biological activities of agar wood (Aquilaria sinensis Lour., Thymelaeaceae), is anti-hyperglycemic activity. The methanolic extract (ME) was proven to possess the fasting blood glucose activity in rat and glucose uptake transportation by rat adipocytes. Objective: To determine the decreasing fasting blood glucose level of constituents affordable for in vivo test. If the test was positive, the mechanism which is positive to the ME, glucose transportation, will be performed. Materials and Methods: The ME was separated by column chromatography and identified by spectroscopic methods. Mice was used as an animal model (in vivo), and rat adipocytes were used for the glucose transportation activity (in vitro). Result: Iriflophenone 3-C-β-glucoside (IPG) was the main constituent, 3.17%, and tested for the activities. Insulin and the ME were used as positive controls. The ME, IPG and insulin lowered blood glucose levels by 40.3, 46.4 and 41.5%, respectively, and enhanced glucose uptake by 152, 153, and 183%, respectively. Conclusion: These findings suggest that IPG is active in lowering fasting blood glucose with potency comparable to that of insulin. PMID:25709215

  4. Ceylon cinnamon does not affect postprandial plasma glucose or insulin in subjects with impaired glucose tolerance.

    PubMed

    Wickenberg, Jennie; Lindstedt, Sandra; Berntorp, Kerstin; Nilsson, Jan; Hlebowicz, Joanna

    2012-06-01

    Previous studies on healthy subjects have shown that the intake of 6 g Cinnamomum cassia reduces postprandial glucose and that the intake of 3 g C. cassia reduces insulin response, without affecting postprandial glucose concentrations. Coumarin, which may damage the liver, is present in C. cassia, but not in Cinnamomum zeylanicum. The aim of the present study was to study the effect of C. zeylanicum on postprandial concentrations of plasma glucose, insulin, glycaemic index (GI) and insulinaemic index (GII) in subjects with impaired glucose tolerance (IGT). A total of ten subjects with IGT were assessed in a crossover trial. A standard 75 g oral glucose tolerance test (OGTT) was administered together with placebo or C. zeylanicum capsules. Finger-prick capillary blood samples were taken for glucose measurements and venous blood for insulin measurements, before and at 15, 30, 45, 60, 90, 120, 150 and 180 min after the start of the OGTT. The ingestion of 6 g C. zeylanicum had no significant effect on glucose level, insulin response, GI or GII. Ingestion of C. zeylanicum does not affect postprandial plasma glucose or insulin levels in human subjects. The Federal Institute for Risk Assessment in Europe has suggested the replacement of C. cassia by C. zeylanicum or the use of aqueous extracts of C. cassia to lower coumarin exposure. However, the positive effects seen with C. cassia in subjects with poor glycaemic control would then be lost.

  5. Factors Affecting Accuracy and Time Requirements of a Glucose Oxidase-Peroxidase Assay for Determination of Glucose

    USDA-ARS?s Scientific Manuscript database

    Accurate and rapid assays for glucose are desirable for analysis of glucose and starch in food and feedstuffs. An established colorimetric glucose oxidase-peroxidase method for glucose was modified to reduce analysis time, and evaluated for factors that affected accuracy. Time required to perform t...

  6. Determination of Glucose Concentration in Yeast Culture Medium

    NASA Astrophysics Data System (ADS)

    Hara, Seiichi; Kishimoto, Tomokazu; Muraji, Masafumi; Tsujimoto, Hiroaki; Azuma, Masayuki; Ooshima, Hiroshi

    The present paper describes a sensor for measuring the glucose concentration of yeast culture medium. The sensor determines glucose concentration by measuring the yield of hydrogen peroxide produced by glucose oxidase, which is monitored as luminescence using photomultiplier. The present sensor is able to measure low glucose concentration in media in which yeast cells keep respiration state. We herein describe the system and the characteristics of the glucose sensor.

  7. Studies on Electrical behavior of Glucose using Impedance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Juansah, Jajang; Yulianti, Wina

    2016-01-01

    In this work we report the electrical characteristics of glucose at different frequencies. We show the correlation between electrical properties (impedance, reactance, resistance and conductance) of glucose and glucose concentration. Electrical property measurements on glucose solution were performed in order to formulate the correlation. The measurements were conducted for frequencies between 50 Hz and 1 MHz. From the measurements, we developed a single-pole Cole-Cole graph as a function of glucose concentration.

  8. 21 CFR 168.121 - Dried glucose sirup.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Dried glucose sirup. 168.121 Section 168.121 Food... Table Sirups § 168.121 Dried glucose sirup. (a) Dried glucose sirup is glucose sirup from which the... equivalent), expressed as D-glucose, is not less than 88.0 percent m/m, calculated on a dry basis; or (2) The...

  9. 21 CFR 168.121 - Dried glucose sirup.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Dried glucose sirup. 168.121 Section 168.121 Food... Table Sirups § 168.121 Dried glucose sirup. (a) Dried glucose sirup is glucose sirup from which the... equivalent), expressed as D-glucose, is not less than 88.0 percent m/m, calculated on a dry basis; or (2) The...

  10. 21 CFR 168.121 - Dried glucose sirup.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Dried glucose sirup. 168.121 Section 168.121 Food... Table Sirups § 168.121 Dried glucose sirup. (a) Dried glucose sirup is glucose sirup from which the... equivalent), expressed as D-glucose, is not less than 88.0 percent m/m, calculated on a dry basis; or (2) The...

  11. 21 CFR 168.121 - Dried glucose sirup.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Dried glucose sirup. 168.121 Section 168.121 Food... Table Sirups § 168.121 Dried glucose sirup. (a) Dried glucose sirup is glucose sirup from which the... equivalent), expressed as D-glucose, is not less than 88.0 percent m/m, calculated on a dry basis; or (2) The...

  12. 21 CFR 168.121 - Dried glucose sirup.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Dried glucose sirup. 168.121 Section 168.121 Food... Table Sirups § 168.121 Dried glucose sirup. (a) Dried glucose sirup is glucose sirup from which the... equivalent), expressed as D-glucose, is not less than 88.0 percent m/m, calculated on a dry basis; or (2) The...

  13. Nanomaterial-mediated Biosensors for Monitoring Glucose

    PubMed Central

    Taguchi, Masashige; Ptitsyn, Andre; McLamore, Eric S.

    2014-01-01

    Real-time monitoring of physiological glucose transport is crucial for gaining new understanding of diabetes. Many techniques and equipment currently exist for measuring glucose, but these techniques are limited by complexity of the measurement, requirement of bulky equipment, and low temporal/spatial resolution. The development of various types of biosensors (eg, electrochemical, optical sensors) for laboratory and/or clinical applications will provide new insights into the cause(s) and possible treatments of diabetes. State-of-the-art biosensors are improved by incorporating catalytic nanomaterials such as carbon nanotubes, graphene, electrospun nanofibers, and quantum dots. These nanomaterials greatly enhance biosensor performance, namely sensitivity, response time, and limit of detection. A wide range of new biosensors that incorporate nanomaterials such as lab-on-chip and nanosensor devices are currently being developed for in vivo and in vitro glucose sensing. These real-time monitoring tools represent a powerful diagnostic and monitoring tool for measuring glucose in diabetes research and point of care diagnostics. However, concerns over the possible toxicity of some nanomaterials limit the application of these devices for in vivo sensing. This review provides a general overview of the state of the art in nanomaterial-mediated biosensors for in vivo and in vitro glucose sensing, and discusses some of the challenges associated with nanomaterial toxicity. PMID:24876594

  14. Glucose control during labor and delivery.

    PubMed

    Ryan, Edmond A; Al-Agha, Rany

    2014-01-01

    Neonatal hypoglycemia is an important consequence for the infant of the mother with diabetes. We have reviewed 24 published papers of various protocols for control of glucose in pregnant diabetic women during labor and delivery including our own published work. A relationship of maternal glucose during labor and neonatal hypoglycemia was sought in 19 of these studies. A significant inverse relationship was found in 10 reports with 3 others showing a similar trend. In all but 1 of these 13 studies the participants had pregestational diabetes. Three of the 6 studies not reporting an inverse relationship involved women with GDM. From this review it appears that the maternal glucose should be maintained between 4.0 and 6.0-7.0 mmol/L during labor. Most women with gestational diabetes, especially if they require <1.0 units/kg/d of insulin, can simply be monitored without intravenous insulin. Our own results demonstrate that a target glucose of 4.0-6.0 mmol/L can be used safely and results in a low rate of neonatal hypoglycemia using an iterative glucose insulin infusion protocol for women with pregestational diabetes and when needed for women with gestational diabetes.

  15. Glucose transporter type1 (GLUT-1) deficiency.

    PubMed

    Gordon, Neil; Newton, Richard W

    2003-10-01

    Glucose transporter type1 (GLUT-1) deficiency may be rare, but it is a preventable cause of severe learning difficulties; and therefore there is an urgency in making an early diagnosis. Suspicions must be roused when intractable seizures occur in infancy. These may be associated with acquired microcephaly and developmental delay. The finding of low glucose sugar levels in the cerebrospinal fluid, but not in the blood will identify the condition. The gene encoding the GLUT-1 protein is located on the short arm of chromosome 1, and inheritance is by a dominant trait. Patients with this syndrome can have heterozygous mutations, with one allele being a normal wild type and one being mutant. An efficient transport of glucose across the blood-brain barrier is essential as it is such an important fuel for the brain, and this is provided by glucose transporter type1 in the endothelial cells of the brain capillaries. Another minor contribution to the symptomatology of GLUT-1 may be impaired transport of an oxidised form of vitamin C. Treatment with anti-epileptic drugs may be needed, and the ketogenic diet may reduce symptoms, as ketosis can provide an alternative source of fuel for the brain. It has also been suggested that antioxidant thioctic acid may be of benefit. Substances such as caffeine and phenobarbitone should be avoided as they inhibit glucose transport.

  16. Hypothalamic NUCKS regulates peripheral glucose homoeostasis.

    PubMed

    Qiu, Beiying; Shi, Xiaohe; Zhou, Qiling; Chen, Hui Shan; Lim, Joy; Han, Weiping; Tergaonkar, Vinay

    2015-08-01

    Nuclear ubiquitous casein and cyclin-dependent kinase substrate (NUCKS) is highly expressed in the brain and peripheral metabolic organs, and regulates transcription of a number of genes involved in insulin signalling. Whole-body depletion of NUCKS (NKO) in mice leads to obesity, glucose intolerance and insulin resistance. However, a tissue-specific contribution of NUCKS to the observed phenotypes remains unknown. Considering the pivotal roles of insulin signalling in the brain, especially in the hypothalamus, we examined the functions of hypothalamic NUCKS in the regulation of peripheral glucose metabolism. Insulin signalling in the hypothalamus was impaired in the NKO mice when insulin was delivered through intracerebroventricular injection. To validate the hypothalamic specificity, we crossed transgenic mice expressing Cre-recombinase under the Nkx2.1 promoter with floxed NUCKS mice to generate mice with hypothalamus-specific deletion of NUCKS (HNKO). We fed the HNKO and littermate control mice with a normal chow diet (NCD) and a high-fat diet (HFD), and assessed glucose tolerance, insulin tolerance and metabolic parameters. HNKO mice showed mild glucose intolerance under an NCD, but exacerbated obesity and insulin resistance phenotypes under an HFD. In addition, NUCKS regulated levels of insulin receptor in the brain. Unlike HNKO mice, mice with immune-cell-specific deletion of NUCKS (VNKO) did not develop obesity or insulin-resistant phenotypes under an HFD. These studies indicate that hypothalamic NUCKS plays an essential role in regulating glucose homoeostasis and insulin signalling in vivo. © 2015 Authors; published by Portland Press Limited.

  17. Diabetes and Altered Glucose Metabolism with Aging

    PubMed Central

    Kalyani, Rita Rastogi; Egan, Josephine M.

    2013-01-01

    I. Synopsis Diabetes and impaired glucose tolerance affect a substantial proportion of older adults. While the aging process can be associated with alterations in glucose metabolism, including both relative insulin resistance and islet cell dysfunction, abnormal glucose metabolism is not a necessary component of aging. Instead, older adults with diabetes and altered glucose status likely represent a vulnerable subset of the population at high-risk for complications and adverse geriatric syndromes such as accelerated muscle loss, functional disability, frailty, and early mortality. Goals for treatment of diabetes in the elderly include control of hyperglycemia, prevention and treatment of diabetic complications, avoidance of hypoglycemia and preservation of quality of life. Given the heterogeneity of the elderly population with regards to the presence of comorbidities, life expectancy, and functional status, an individualized approach to diabetes management is often appropriate. A growing area of research seeks to explore associations of dysglycemia and insulin resistance with the development of adverse outcomes in the elderly and may ultimately inform guidelines on the use of future glucose-lowering therapies in this population. PMID:23702405

  18. Hypothalamic Leucine Metabolism Regulates Liver Glucose Production

    PubMed Central

    Su, Ya; Lam, Tony K.T.; He, Wu; Pocai, Alessandro; Bryan, Joseph; Aguilar-Bryan, Lydia; Gutiérrez-Juárez, Roger

    2012-01-01

    Amino acids profoundly affect insulin action and glucose metabolism in mammals. Here, we investigated the role of the mediobasal hypothalamus (MBH), a key center involved in nutrient-dependent metabolic regulation. Specifically, we tested the novel hypothesis that the metabolism of leucine within the MBH couples the central sensing of leucine with the control of glucose production by the liver. We performed either central (MBH) or systemic infusions of leucine in Sprague-Dawley male rats during basal pancreatic insulin clamps in combination with various pharmacological and molecular interventions designed to modulate leucine metabolism in the MBH. We also examined the role of hypothalamic ATP-sensitive K+ channels (KATP channels) in the effects of leucine. Enhancing the metabolism of leucine acutely in the MBH lowered blood glucose through a biochemical network that was insensitive to rapamycin but strictly dependent on the hypothalamic metabolism of leucine to α-ketoisocaproic acid and, further, insensitive to acetyl- and malonyl-CoA. Functional KATP channels were also required. Importantly, molecular attenuation of this central sensing mechanism in rats conferred susceptibility to developing hyperglycemia. We postulate that the metabolic sensing of leucine in the MBH is a previously unrecognized mechanism for the regulation of hepatic glucose production required to maintain glucose homeostasis. P