Science.gov

Sample records for lymphatic collecting vessels

  1. Lymph flow regulates collecting lymphatic vessel maturation in vivo

    PubMed Central

    Sweet, Daniel T.; Jiménez, Juan M.; Chang, Jeremy; Hess, Paul R.; Mericko-Ishizuka, Patricia; Fu, Jianxin; Xia, Lijun; Davies, Peter F.; Kahn, Mark L.

    2015-01-01

    Fluid shear forces have established roles in blood vascular development and function, but whether such forces similarly influence the low-flow lymphatic system is unknown. It has been difficult to test the contribution of fluid forces in vivo because mechanical or genetic perturbations that alter flow often have direct effects on vessel growth. Here, we investigated the functional role of flow in lymphatic vessel development using mice deficient for the platelet-specific receptor C-type lectin–like receptor 2 (CLEC2) as blood backfills the lymphatic network and blocks lymph flow in these animals. CLEC2-deficient animals exhibited normal growth of the primary mesenteric lymphatic plexus but failed to form valves in these vessels or remodel them into a structured, hierarchical network. Smooth muscle cell coverage (SMC coverage) of CLEC2-deficient lymphatic vessels was both premature and excessive, a phenotype identical to that observed with loss of the lymphatic endothelial transcription factor FOXC2. In vitro evaluation of lymphatic endothelial cells (LECs) revealed that low, reversing shear stress is sufficient to induce expression of genes required for lymphatic valve development and identified GATA2 as an upstream transcriptional regulator of FOXC2 and the lymphatic valve genetic program. These studies reveal that lymph flow initiates and regulates many of the key steps in collecting lymphatic vessel maturation and development. PMID:26214523

  2. The passive biomechanics of human pelvic collecting lymphatic vessels

    PubMed Central

    Athanasiou, Dimitrios; Jafarnejad, Mohammad; Nixon, Katherine; Duarte, Delfim; Hawkins, Edwin D.; Jamalian, Samira; Cunnea, Paula; Lo Celso, Cristina; Kobayashi, Shunichi; Fotopoulou, Christina; Moore, James E.

    2017-01-01

    The lymphatic system has a major significance in the metastatic pathways in women’s cancers. Lymphatic pumping depends on both extrinsic and intrinsic mechanisms, and the mechanical behavior of lymphatic vessels regulates the function of the system. However, data on the mechanical properties and function of human lymphatics are lacking. Our aim is to characterize, for the first time, the passive biomechanical behavior of human collecting lymphatic vessels removed at pelvic lymph node dissection during primary debulking surgeries for epithelial ovarian cancer. Isolated vessels were cannulated and then pressurized at varying levels of applied axial stretch in a calcium-free Krebs buffer. Pressurized vessels were then imaged using multi-photon microscopy for collagen-elastin structural composition and fiber orientation. Both pressure-diameter and force-elongation responses were highly nonlinear, and axial stretching of the vessel served to decrease diameter at constant pressure. Pressure-diameter behavior for the human vessels is very similar to data from rat mesenteric vessels, though the human vessels were approximately 10× larger than those from rats. Multiphoton microscopy revealed the vessels to be composed of an inner layer of elastin with an outer layer of aligned collagen fibers. This is the first study that successfully described the passive biomechanical response and composition of human lymphatic vessels in patients with ovarian cancer. Future work should expand on this knowledge base with investigations of vessels from other anatomical locations, contractile behavior, and the implications on metastatic cell transport. PMID:28827843

  3. The passive biomechanics of human pelvic collecting lymphatic vessels.

    PubMed

    Athanasiou, Dimitrios; Edgar, Lowell T; Jafarnejad, Mohammad; Nixon, Katherine; Duarte, Delfim; Hawkins, Edwin D; Jamalian, Samira; Cunnea, Paula; Lo Celso, Cristina; Kobayashi, Shunichi; Fotopoulou, Christina; Moore, James E

    2017-01-01

    The lymphatic system has a major significance in the metastatic pathways in women's cancers. Lymphatic pumping depends on both extrinsic and intrinsic mechanisms, and the mechanical behavior of lymphatic vessels regulates the function of the system. However, data on the mechanical properties and function of human lymphatics are lacking. Our aim is to characterize, for the first time, the passive biomechanical behavior of human collecting lymphatic vessels removed at pelvic lymph node dissection during primary debulking surgeries for epithelial ovarian cancer. Isolated vessels were cannulated and then pressurized at varying levels of applied axial stretch in a calcium-free Krebs buffer. Pressurized vessels were then imaged using multi-photon microscopy for collagen-elastin structural composition and fiber orientation. Both pressure-diameter and force-elongation responses were highly nonlinear, and axial stretching of the vessel served to decrease diameter at constant pressure. Pressure-diameter behavior for the human vessels is very similar to data from rat mesenteric vessels, though the human vessels were approximately 10× larger than those from rats. Multiphoton microscopy revealed the vessels to be composed of an inner layer of elastin with an outer layer of aligned collagen fibers. This is the first study that successfully described the passive biomechanical response and composition of human lymphatic vessels in patients with ovarian cancer. Future work should expand on this knowledge base with investigations of vessels from other anatomical locations, contractile behavior, and the implications on metastatic cell transport.

  4. In vivo determination of collecting lymphatic vessel permeability to albumin: a role for lymphatics in exchange

    PubMed Central

    Scallan, Joshua P; Huxley, Virginia H

    2010-01-01

    While it is well established that the lymphatic vasculature is central to fluid and solute homeostasis, how it accomplishes this task is not well defined. To clarify the basic mechanisms underlying basal fluid and solute homeostasis, we assessed permeability to rat serum albumin () in mesenteric collecting lymphatic vessels and venules of juvenile male rats. Using the quantitative microfluorometric technique originally developed for blood capillaries, we tested the hypothesis that as a consequence of venules and collecting lymphatics sharing a common embryological origin, their would not differ significantly. Supporting our hypothesis, the median collecting lymphatic (3.5 ± 1.0 × 10−7 cm s−1, N= 22) did not differ significantly from the median venular (4.0 ± 1.0 × 10−7 cm s−1, N= 8, P= 0.61). For collecting lymphatics the diffusive permeability (Pd= 2.5 × 10−7 cm s−1) was obtained from the relationship of apparent and pressure. While the measured , Pd and estimated hydraulic conductivity of collecting lymphatics and venules were similar, the contribution of convective coupling differs as a result of the higher hydrostatic pressure experienced by venules relative to collecting lymphatics in vivo. In summary, the data demonstrate the capacity for collecting lymphatics to act as exchange vessels, able to extravasate solute and filter fluid. As a consequence these data provide experimental support for the theory that prenodal lymphatic vessels concentrate intraluminal protein. PMID:19917564

  5. Chronic High-Fat Diet Impairs Collecting Lymphatic Vessel Function in Mice

    PubMed Central

    Proulx, Steven T.; Ochsenbein, Alexandra M.; Luciani, Paola; Leroux, Jean-Christophe; Wolfrum, Christian; Detmar, Michael

    2014-01-01

    Lymphatic vessels play an essential role in intestinal lipid uptake, and impairment of lymphatic vessel function leads to enhanced adipose tissue accumulation in patients with lymphedema and in genetic mouse models of lymphatic dysfunction. However, the effects of obesity on lymphatic function have been poorly studied. We investigated if and how adipose tissue accumulation influences lymphatic function. Using a lymphatic specific tracer, we performed in vivo near-infrared (NIR) imaging to assess the function of collecting lymphatic vessels in mice fed normal chow or high-fat diet (HFD). Histological and whole mount analyses were performed to investigate the morphological changes in initial and the collecting lymphatic vessels. HFD was associated with impaired collecting lymphatic vessel function, as evidenced by reduced frequency of contractions and diminished response to mechanostimulation. Moreover, we found a significant negative correlation between collecting lymphatic vessel function and body weight. Whole mount analyses showed an enlargement of contractile collecting lymphatic vessels of the hind limb. In K14-VEGF-C mice, HFD resulted in a reduced spreading of the tracer within dermal lymphatic vessels. These findings indicate that adipose tissue expansion due to HFD leads to a functional impairment of the lymphatic vasculature, predominantly in collecting lymphatic vessels. PMID:24714646

  6. Tie1 is required for lymphatic valve and collecting vessel development

    PubMed Central

    Qu, Xianghu; Zhou, Bin; Baldwin, H. Scott

    2015-01-01

    Tie1 is a receptor tyrosine kinase with broad expression in embryonic endothelium. Reduction of Tie1 levels in mouse embryos with a hypomorphic Tie1 allele resulted in abnormal lymphatic patterning and architecture, decreased lymphatic draining efficiency, and ultimately, embryonic demise. Here we report that Tie1 is present uniformly throughout the lymphatics and from late embryonic/early postnatal stages, becomes more restricted to lymphatic valve regions. To investigate later events of lymphatic development, we employed Cre-loxP recombination utilizing a floxed Tie1 allele and an Nfatc1Cre line, to provide loxP excision predominantly in lymphatic endothelium and developing valves. Interestingly, unlike the early prenatal defects previously described by ubiquitous endothelial deletion, excision of Tie1 with Nfatc1Cre resulted in abnormal lymphatic defects in postnatal mice and was characterized by agenesis of lymphatic valves and a deficiency of collecting lymphatic vessels. Attenuation of Tie1 signaling in lymphatic endothelium prevented initiation of lymphatic valve specification by Prox1 high expression lymphatic endothelial cells that is associated with the onset of turbulent flow in the lymphatic circulation. Our findings reveal a fundamental role for Tie signaling during lymphatic vessel remodeling and valve morphogenesis and implicate it as a candidate gene involved in primary lymphedema. PMID:25576926

  7. Pathological Steps of Cancer-Related Lymphedema: Histological Changes in the Collecting Lymphatic Vessels after Lymphadenectomy

    PubMed Central

    Hayashi, Yohei; Narushima, Mitsunaga; Yamamoto, Takumi; Todokoro, Takeshi; Iida, Takuya; Sawamoto, Naoya; Araki, Jun; Kikuchi, Kazuki; Murai, Noriyuki; Okitsu, Taro; Kisu, Iori; Koshima, Isao

    2012-01-01

    Introduction To date, an electron microscopy study of the collecting lymphatic vessels has not been conducted to examine the early stages of lymphedema. However, such histological studies could be useful for elucidating the mechanism of lymphedema onset. The aim of this study was to clarify the changes occurring in collecting lymphatic vessels after lymphadenectomy. Methods The study was conducted on 114 specimens from 37 patients who developed lymphedema of the lower limbs after receiving surgical treatment for gynecologic cancers and who consulted the University of Tokyo Hospital and affiliated hospitals from April 2009 to March 2011. Lymphatic vessels that were not needed for lymphatico venous anastomosis surgery were trimmed and subsequently examined using electron microscopy and light microscopy. Results Based on macroscopic findings, the histochemical changes in the collecting lymphatic vessels were defined as follows: normal, ectasis, contraction, and sclerosis type (NECST). In the ectasis type, an increase in endolymphatic pressure was accompanied by a flattening of the lymphatic vessel endothelial cells. In the contraction type, smooth muscle cells were transformed into synthetic cells and promoted the growth of collagen fibers. In the sclerosis type, fibrous elements accounted for the majority of the components, the lymphatic vessels lost their transport and concentrating abilities, and the lumen was either narrowed or completely obstructed. Conclusions The increase in pressure inside the collecting lymphatic vessels after lymphadenectomy was accompanied by histological changes that began before the onset of lymphedema. PMID:22911751

  8. Pathological steps of cancer-related lymphedema: histological changes in the collecting lymphatic vessels after lymphadenectomy.

    PubMed

    Mihara, Makoto; Hara, Hisako; Hayashi, Yohei; Narushima, Mitsunaga; Yamamoto, Takumi; Todokoro, Takeshi; Iida, Takuya; Sawamoto, Naoya; Araki, Jun; Kikuchi, Kazuki; Murai, Noriyuki; Okitsu, Taro; Kisu, Iori; Koshima, Isao

    2012-01-01

    To date, an electron microscopy study of the collecting lymphatic vessels has not been conducted to examine the early stages of lymphedema. However, such histological studies could be useful for elucidating the mechanism of lymphedema onset. The aim of this study was to clarify the changes occurring in collecting lymphatic vessels after lymphadenectomy. The study was conducted on 114 specimens from 37 patients who developed lymphedema of the lower limbs after receiving surgical treatment for gynecologic cancers and who consulted the University of Tokyo Hospital and affiliated hospitals from April 2009 to March 2011. Lymphatic vessels that were not needed for lymphatico venous anastomosis surgery were trimmed and subsequently examined using electron microscopy and light microscopy. Based on macroscopic findings, the histochemical changes in the collecting lymphatic vessels were defined as follows: normal, ectasis, contraction, and sclerosis type (NECST). In the ectasis type, an increase in endolymphatic pressure was accompanied by a flattening of the lymphatic vessel endothelial cells. In the contraction type, smooth muscle cells were transformed into synthetic cells and promoted the growth of collagen fibers. In the sclerosis type, fibrous elements accounted for the majority of the components, the lymphatic vessels lost their transport and concentrating abilities, and the lumen was either narrowed or completely obstructed. The increase in pressure inside the collecting lymphatic vessels after lymphadenectomy was accompanied by histological changes that began before the onset of lymphedema.

  9. CCR7 and IRF4-dependent dendritic cells regulate lymphatic collecting vessel permeability

    PubMed Central

    Ivanov, Stoyan; Scallan, Joshua P.; Kim, Ki-Wook; Werth, Kathrin; Johnson, Michael W.; Saunders, Brian T.; Wang, Peter L.; Kuan, Emma L.; Straub, Adam C.; Ouhachi, Melissa; Weinstein, Erica G.; Williams, Jesse W.; Briseño, Carlos; Colonna, Marco; Isakson, Brant E.; Gautier, Emmanuel L.; Förster, Reinhold; Davis, Michael J.; Zinselmeyer, Bernd H.

    2016-01-01

    Lymphatic collecting vessels direct lymph into and from lymph nodes (LNs) and can become hyperpermeable as the result of a previous infection. Enhanced permeability has been implicated in compromised immunity due to reduced flow of lymph and immune cells to LNs, which are the primary site of antigen presentation to T cells. Presently, very little is known about the molecular signals that affect lymphatic collecting vessel permeability. Here, we have shown that lymphatic collecting vessel permeability is controlled by CCR7 and that the chronic hyperpermeability of collecting vessels observed in Ccr7–/– mice is followed by vessel fibrosis. Reexpression of CCR7 in DCs, however, was sufficient to reverse the development of such fibrosis. IFN regulatory factor 4–positive (IRF4+) DCs constitutively interacted with collecting lymphatics, and selective ablation of this DC subset in Cd11c-Cre Irf4fl/fl mice also rendered lymphatic collecting vessels hyperpermeable and fibrotic. Together, our data reveal that CCR7 plays multifaceted roles in regulating collecting vessel permeability and fibrosis, with one of the key players being IRF4-dependent DCs. PMID:26999610

  10. CCR7 and IRF4-dependent dendritic cells regulate lymphatic collecting vessel permeability.

    PubMed

    Ivanov, Stoyan; Scallan, Joshua P; Kim, Ki-Wook; Werth, Kathrin; Johnson, Michael W; Saunders, Brian T; Wang, Peter L; Kuan, Emma L; Straub, Adam C; Ouhachi, Melissa; Weinstein, Erica G; Williams, Jesse W; Briseño, Carlos; Colonna, Marco; Isakson, Brant E; Gautier, Emmanuel L; Förster, Reinhold; Davis, Michael J; Zinselmeyer, Bernd H; Randolph, Gwendalyn J

    2016-04-01

    Lymphatic collecting vessels direct lymph into and from lymph nodes (LNs) and can become hyperpermeable as the result of a previous infection. Enhanced permeability has been implicated in compromised immunity due to reduced flow of lymph and immune cells to LNs, which are the primary site of antigen presentation to T cells. Presently, very little is known about the molecular signals that affect lymphatic collecting vessel permeability. Here, we have shown that lymphatic collecting vessel permeability is controlled by CCR7 and that the chronic hyperpermeability of collecting vessels observed in Ccr7-/- mice is followed by vessel fibrosis. Reexpression of CCR7 in DCs, however, was sufficient to reverse the development of such fibrosis. IFN regulatory factor 4-positive (IRF4+) DCs constitutively interacted with collecting lymphatics, and selective ablation of this DC subset in Cd11c-Cre Irf4fl/fl mice also rendered lymphatic collecting vessels hyperpermeable and fibrotic. Together, our data reveal that CCR7 plays multifaceted roles in regulating collecting vessel permeability and fibrosis, with one of the key players being IRF4-dependent DCs.

  11. FOXC2 controls formation and maturation of lymphatic collecting vessels through cooperation with NFATc1

    PubMed Central

    Norrmén, Camilla; Ivanov, Konstantin I.; Cheng, Jianpin; Zangger, Nadine; Delorenzi, Mauro; Jaquet, Muriel; Miura, Naoyuki; Puolakkainen, Pauli; Horsley, Valerie; Hu, Junhao; Augustin, Hellmut G.; Ylä-Herttuala, Seppo; Alitalo, Kari

    2009-01-01

    The mechanisms of blood vessel maturation into distinct parts of the blood vasculature such as arteries, veins, and capillaries have been the subject of intense investigation over recent years. In contrast, our knowledge of lymphatic vessel maturation is still fragmentary. In this study, we provide a molecular and morphological characterization of the major steps in the maturation of the primary lymphatic capillary plexus into collecting lymphatic vessels during development and show that forkhead transcription factor Foxc2 controls this process. We further identify transcription factor NFATc1 as a novel regulator of lymphatic development and describe a previously unsuspected link between NFATc1 and Foxc2 in the regulation of lymphatic maturation. We also provide a genome-wide map of FOXC2-binding sites in lymphatic endothelial cells, identify a novel consensus FOXC2 sequence, and show that NFATc1 physically interacts with FOXC2-binding enhancers. As damage to collecting vessels is a major cause of lymphatic dysfunction in humans, our results suggest that FOXC2 and NFATc1 are potential targets for therapeutic intervention. PMID:19398761

  12. Lymphoid Aggregates Remodel Lymphatic Collecting Vessels that Serve Mesenteric Lymph Nodes in Crohn Disease.

    PubMed

    Randolph, Gwendalyn J; Bala, Shashi; Rahier, Jean-François; Johnson, Michael W; Wang, Peter L; Nalbantoglu, ILKe; Dubuquoy, Laurent; Chau, Amélie; Pariente, Benjamin; Kartheuser, Alex; Zinselmeyer, Bernd H; Colombel, Jean-Frederic

    2016-12-01

    Early pathological descriptions of Crohn disease (CD) argued for a potential defect in lymph transport; however, this concept has not been thoroughly investigated. In mice, poor healing in response to infection-induced tissue damage can cause hyperpermeable lymphatic collecting vessels in mesenteric adipose tissue that impair antigen and immune cell access to mesenteric lymph nodes (LNs), which normally sustain appropriate immunity. To investigate whether analogous changes might occur in human intestinal disease, we established a three-dimensional imaging approach to characterize the lymphatic vasculature in mesenteric tissue from controls or patients with CD. In CD specimens, B-cell-rich aggregates resembling tertiary lymphoid organs (TLOs) impinged on lymphatic collecting vessels that enter and exit LNs. In areas of creeping fat, which characterizes inflammation-affected areas of the bowel in CD, we observed B cells and apparent innate lymphoid cells that had invaded the lymphatic vessel wall, suggesting these cells may be mediators of lymphatic remodeling. Although TLOs have been described in many chronic inflammatory states, their anatomical relationship to preestablished LNs has never been revealed. Our data indicate that, at least in the CD-affected mesentery, TLOs are positioned along collecting lymphatic vessels in a manner expected to affect delivery of lymph to LNs. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  13. Constriction of isolated collecting lymphatic vessels in response to acute increases in downstream pressure

    PubMed Central

    Scallan, Joshua P; Wolpers, John H; Davis, Michael J

    2013-01-01

    Collecting lymphatic vessels generate pressure to transport lymph downstream to the subclavian vein against a significant pressure head. To investigate their response to elevated downstream pressure, collecting lymphatic vessels containing one valve (incomplete lymphangion) or two valves (complete lymphangion) were isolated from the rat mesentery and tied to glass cannulae capable of independent pressure control. Downstream pressure was selectively raised to various levels, either stepwise or ramp-wise, while keeping upstream pressure constant. Diameter and valve positions were tracked under video microscopy, while intralymphangion pressure was measured concurrently with a servo-null micropipette. Surprisingly, a potent lymphatic constriction occurred in response to the downstream pressure gradient due to (1) a pressure-dependent myogenic constriction and (2) a frequency-dependent decrease in diastolic diameter. The myogenic index of the lymphatic constriction (−3.3 ± 0.6, in mmHg) was greater than that of arterioles or collecting lymphatic vessels exposed to uniform increases in pressure (i.e. upstream and downstream pressures raised together). Additionally, the constriction was transmitted to the upstream lymphatic vessel segment even though it was protected from changes in pressure by a closed intraluminal valve; the conducted constriction was blocked by loading only the pressurized half of the vessel with either ML-7 (0.5 mm) to block contraction, or cromakalim (3 μm) to hyperpolarize the downstream muscle layer. Finally, we provide evidence that the lymphatic constriction is important to maintain normal intraluminal valve closure during each contraction cycle in the face of an adverse pressure gradient, which probably protects the lymphatic capillaries from lymph backflow. PMID:23045335

  14. Constriction of isolated collecting lymphatic vessels in response to acute increases in downstream pressure.

    PubMed

    Scallan, Joshua P; Wolpers, John H; Davis, Michael J

    2013-01-15

    Collecting lymphatic vessels generate pressure to transport lymph downstream to the subclavian vein against a significant pressure head. To investigate their response to elevated downstream pressure, collecting lymphatic vessels containing one valve (incomplete lymphangion) or two valves (complete lymphangion) were isolated from the rat mesentery and tied to glass cannulae capable of independent pressure control. Downstream pressure was selectively raised to various levels, either stepwise or ramp-wise, while keeping upstream pressure constant. Diameter and valve positions were tracked under video microscopy, while intralymphangion pressure was measured concurrently with a servo-null micropipette. Surprisingly, a potent lymphatic constriction occurred in response to the downstream pressure gradient due to (1) a pressure-dependent myogenic constriction and (2) a frequency-dependent decrease in diastolic diameter. The myogenic index of the lymphatic constriction (-3.3 ± 0.6, in mmHg) was greater than that of arterioles or collecting lymphatic vessels exposed to uniform increases in pressure (i.e. upstream and downstream pressures raised together). Additionally, the constriction was transmitted to the upstream lymphatic vessel segment even though it was protected from changes in pressure by a closed intraluminal valve; the conducted constriction was blocked by loading only the pressurized half of the vessel with either ML-7 (0.5 mm) to block contraction, or cromakalim (3 μm) to hyperpolarize the downstream muscle layer. Finally, we provide evidence that the lymphatic constriction is important to maintain normal intraluminal valve closure during each contraction cycle in the face of an adverse pressure gradient, which probably protects the lymphatic capillaries from lymph backflow.

  15. Effects of dynamic shear and transmural pressure on wall shear stress sensitivity in collecting lymphatic vessels.

    PubMed

    Kornuta, Jeffrey A; Nepiyushchikh, Zhanna; Gasheva, Olga Y; Mukherjee, Anish; Zawieja, David C; Dixon, J Brandon

    2015-11-01

    Given the known mechanosensitivity of the lymphatic vasculature, we sought to investigate the effects of dynamic wall shear stress (WSS) on collecting lymphatic vessels while controlling for transmural pressure. Using a previously developed ex vivo lymphatic perfusion system (ELPS) capable of independently controlling both transaxial pressure gradient and average transmural pressure on an isolated lymphatic vessel, we imposed a multitude of flow conditions on rat thoracic ducts, while controlling for transmural pressure and measuring diameter changes. By gradually increasing the imposed flow through a vessel, we determined the WSS at which the vessel first shows sign of contraction inhibition, defining this point as the shear stress sensitivity of the vessel. The shear stress threshold that triggered a contractile response was significantly greater at a transmural pressure of 5 cmH2O (0.97 dyne/cm(2)) than at 3 cmH2O (0.64 dyne/cm(2)). While contraction frequency was reduced when a steady WSS was applied, this inhibition was reversed when the applied WSS oscillated, even though the mean wall shear stresses between the conditions were not significantly different. When the applied oscillatory WSS was large enough, flow itself synchronized the lymphatic contractions to the exact frequency of the applied waveform. Both transmural pressure and the rate of change of WSS have significant impacts on the contractile response of lymphatic vessels to flow. Specifically, time-varying shear stress can alter the inhibition of phasic contraction frequency and even coordinate contractions, providing evidence that dynamic shear could play an important role in the contractile function of collecting lymphatic vessels. Copyright © 2015 the American Physiological Society.

  16. Effects of dynamic shear and transmural pressure on wall shear stress sensitivity in collecting lymphatic vessels

    PubMed Central

    Kornuta, Jeffrey A.; Nepiyushchikh, Zhanna; Gasheva, Olga Y.; Mukherjee, Anish; Zawieja, David C.

    2015-01-01

    Given the known mechanosensitivity of the lymphatic vasculature, we sought to investigate the effects of dynamic wall shear stress (WSS) on collecting lymphatic vessels while controlling for transmural pressure. Using a previously developed ex vivo lymphatic perfusion system (ELPS) capable of independently controlling both transaxial pressure gradient and average transmural pressure on an isolated lymphatic vessel, we imposed a multitude of flow conditions on rat thoracic ducts, while controlling for transmural pressure and measuring diameter changes. By gradually increasing the imposed flow through a vessel, we determined the WSS at which the vessel first shows sign of contraction inhibition, defining this point as the shear stress sensitivity of the vessel. The shear stress threshold that triggered a contractile response was significantly greater at a transmural pressure of 5 cmH2O (0.97 dyne/cm2) than at 3 cmH2O (0.64 dyne/cm2). While contraction frequency was reduced when a steady WSS was applied, this inhibition was reversed when the applied WSS oscillated, even though the mean wall shear stresses between the conditions were not significantly different. When the applied oscillatory WSS was large enough, flow itself synchronized the lymphatic contractions to the exact frequency of the applied waveform. Both transmural pressure and the rate of change of WSS have significant impacts on the contractile response of lymphatic vessels to flow. Specifically, time-varying shear stress can alter the inhibition of phasic contraction frequency and even coordinate contractions, providing evidence that dynamic shear could play an important role in the contractile function of collecting lymphatic vessels. PMID:26333787

  17. Mechanosensing in developing lymphatic vessels.

    PubMed

    Planas-Paz, Lara; Lammert, Eckhard

    2014-01-01

    The lymphatic vasculature is responsible for fluid homeostasis, transport of immune cells, inflammatory molecules, and dietary lipids. It is composed of a network of lymphatic capillaries that drain into collecting lymphatic vessels and ultimately bring fluid back to the blood circulation. Lymphatic endothelial cells (LECs) that line lymphatic capillaries present loose overlapping intercellular junctions and anchoring filaments that support fluid drainage. When interstitial fluid accumulates within tissues, the extracellular matrix (ECM) swells and pulls the anchoring filaments. This results in opening of the LEC junctions and permits interstitial fluid uptake. The absorbed fluid is then transported within collecting lymphatic vessels, which exhibit intraluminal valves that prevent lymph backflow and smooth muscle cells that sequentially contract to propel lymph.Mechanotransduction involves translation of mechanical stimuli into biological responses. LECs have been shown to sense and respond to changes in ECM stiffness, fluid pressure-induced cell stretch, and fluid flow-induced shear stress. How these signals influence LEC function and lymphatic vessel growth can be investigated by using different mechanotransduction assays in vitro and to some extent in vivo.In this chapter, we will focus on the mechanical forces that regulate lymphatic vessel expansion during embryonic development and possibly secondary lymphedema. In mouse embryos, it has been recently shown that the amount of interstitial fluid determines the extent of lymphatic vessel expansion via a mechanosensory complex formed by β1 integrin and vascular endothelial growth factor receptor-3 (VEGFR3). This model might as well apply to secondary lymphedema.

  18. Genetic removal of basal nitric oxide enhances contractile activity in isolated murine collecting lymphatic vessels.

    PubMed

    Scallan, Joshua P; Davis, Michael J

    2013-04-15

    The role of nitric oxide (NO) in regulating lymphatic contractile function and, consequently, lymph flow has been the subject of intense study. Despite this, the precise effects of NO on lymphatic contractile activity remain unclear. Recent hypotheses posit that basal levels of endogenous NO increase lymphatic contraction strength as a consequence of lowering frequency (i.e. positive lusitropy), whereas higher agonist-evoked concentrations of NO exert purely inhibitory effects on contractile function. We tested both hypotheses directly by isolating and cannulating collecting lymphatic vessels from genetically modified mice for ex vivo study. The effects of basal NO and agonist-evoked NO were evaluated, respectively, by exposing wild-type (WT), endothelial NO synthase (eNOS)(-/-) and inducible NO synthase (iNOS)(-/-) lymphatic vessels to controlled pressure steps followed by ACh doses. To compare with pharmacological inhibition of eNOS, we repeated both tests in the presence of l-NAME. Surprisingly, genetic removal of basal NO enhanced contraction amplitude significantly without increasing contraction frequency. Higher levels of NO production stimulated by ACh evoked dilation, decreased tone, slowed contraction frequency and reduced fractional pump flow. We conclude that basal NO specifically depresses contraction amplitude, and that greater NO production then inhibits all other aspects of contractile function. Further, this work demonstrates definitively that mouse collecting lymphatic vessels exhibit autonomous, large-amplitude contractions that respond to pressure similarly to collecting lymphatics of other mammalian species. At least in the peripheral lymphatic vasculature, NO production depresses contractile function, which influences lymph flow needed for fluid regulation, humoral immunity and cancer metastasis.

  19. Permeability and contractile responses of collecting lymphatic vessels elicited by atrial and brain natriuretic peptides.

    PubMed

    Scallan, Joshua P; Davis, Michael J; Huxley, Virginia H

    2013-10-15

    Atrial and brain natriuretic peptides (ANP and BNP, respectively) are cardiac hormones released into the bloodstream in response to hypervolaemia or fluid shifts to the central circulation. The actions of both peptides include natriuresis and diuresis, a decrease in systemic blood pressure, and inhibition of the renin-angiotensin-aldosterone system. Further, ANP and BNP elicit increases in blood microvessel permeability sufficient to cause protein and fluid extravasation into the interstitium to reduce the vascular volume. Given the importance of the lymphatic vasculature in maintaining fluid balance, we tested the hypothesis that ANP or BNP (100 nM) would likewise elevate lymphatic permeability (Ps) to serum albumin. Using a microfluorometric technique adapted to in vivo lymphatic vessels, we determined that rat mesenteric collecting lymphatic Ps to rat serum albumin increased by 2.0 ± 0.4-fold (P = 0.01, n = 7) and 2.7 ± 0.8-fold (P = 0.07, n = 7) with ANP and BNP, respectively. In addition to measuring Ps responses, we observed changes in spontaneous contraction amplitude and frequency from the albumin flux tracings in vivo. Notably, ANP abolished spontaneous contraction amplitude (P = 0.005) and frequency (P = 0.006), while BNP augmented both parameters by ∼2-fold (P < 0.01 each). These effects of ANP and BNP on contractile function were examined further by using an in vitro assay. In aggregate, these data support the theory that an increase in collecting lymphatic permeability opposes the absorptive function of the lymphatic capillaries, and aids in the retention of protein and fluid in the interstitial space to counteract volume expansion.

  20. Permeability and contractile responses of collecting lymphatic vessels elicited by atrial and brain natriuretic peptides

    PubMed Central

    Scallan, Joshua P; Davis, Michael J; Huxley, Virginia H

    2013-01-01

    Atrial and brain natriuretic peptides (ANP and BNP, respectively) are cardiac hormones released into the bloodstream in response to hypervolaemia or fluid shifts to the central circulation. The actions of both peptides include natriuresis and diuresis, a decrease in systemic blood pressure, and inhibition of the renin–angiotensin–aldosterone system. Further, ANP and BNP elicit increases in blood microvessel permeability sufficient to cause protein and fluid extravasation into the interstitium to reduce the vascular volume. Given the importance of the lymphatic vasculature in maintaining fluid balance, we tested the hypothesis that ANP or BNP (100 nm) would likewise elevate lymphatic permeability (Ps) to serum albumin. Using a microfluorometric technique adapted to in vivo lymphatic vessels, we determined that rat mesenteric collecting lymphatic Ps to rat serum albumin increased by 2.0 ± 0.4-fold (P= 0.01, n= 7) and 2.7 ± 0.8-fold (P= 0.07, n= 7) with ANP and BNP, respectively. In addition to measuring Ps responses, we observed changes in spontaneous contraction amplitude and frequency from the albumin flux tracings in vivo. Notably, ANP abolished spontaneous contraction amplitude (P= 0.005) and frequency (P= 0.006), while BNP augmented both parameters by ∼2-fold (P < 0.01 each). These effects of ANP and BNP on contractile function were examined further by using an in vitro assay. In aggregate, these data support the theory that an increase in collecting lymphatic permeability opposes the absorptive function of the lymphatic capillaries, and aids in the retention of protein and fluid in the interstitial space to counteract volume expansion. PMID:23897233

  1. Determinants of valve gating in collecting lymphatic vessels from rat mesentery.

    PubMed

    Davis, Michael J; Rahbar, Elaheh; Gashev, Anatoliy A; Zawieja, David C; Moore, James E

    2011-07-01

    Secondary lymphatic valves are essential for minimizing backflow of lymph and are presumed to gate passively according to the instantaneous trans-valve pressure gradient. We hypothesized that valve gating is also modulated by vessel distention, which could alter leaflet stiffness and coaptation. To test this hypothesis, we devised protocols to measure the small pressure gradients required to open or close lymphatic valves and determine if the gradients varied as a function of vessel diameter. Lymphatic vessels were isolated from rat mesentery, cannulated, and pressurized using a servo-control system. Detection of valve leaflet position simultaneously with diameter and intraluminal pressure changes in two-valve segments revealed the detailed temporal relationships between these parameters during the lymphatic contraction cycle. The timing of valve movements was similar to that of cardiac valves, but only when lymphatic vessel afterload was elevated. The pressure gradients required to open or close a valve were determined in one-valve segments during slow, ramp-wise pressure elevation, either from the input or output side of the valve. Tests were conducted over a wide range of baseline pressures (and thus diameters) in passive vessels as well as in vessels with two levels of imposed tone. Surprisingly, the pressure gradient required for valve closure varied >20-fold (0.1-2.2 cmH(2)O) as a passive vessel progressively distended. Similarly, the pressure gradient required for valve opening varied sixfold with vessel distention. Finally, our functional evidence supports the concept that lymphatic muscle tone exerts an indirect effect on valve gating.

  2. Determinants of valve gating in collecting lymphatic vessels from rat mesentery

    PubMed Central

    Rahbar, Elaheh; Gashev, Anatoliy A.; Zawieja, David C.; Moore, James E.

    2011-01-01

    Secondary lymphatic valves are essential for minimizing backflow of lymph and are presumed to gate passively according to the instantaneous trans-valve pressure gradient. We hypothesized that valve gating is also modulated by vessel distention, which could alter leaflet stiffness and coaptation. To test this hypothesis, we devised protocols to measure the small pressure gradients required to open or close lymphatic valves and determine if the gradients varied as a function of vessel diameter. Lymphatic vessels were isolated from rat mesentery, cannulated, and pressurized using a servo-control system. Detection of valve leaflet position simultaneously with diameter and intraluminal pressure changes in two-valve segments revealed the detailed temporal relationships between these parameters during the lymphatic contraction cycle. The timing of valve movements was similar to that of cardiac valves, but only when lymphatic vessel afterload was elevated. The pressure gradients required to open or close a valve were determined in one-valve segments during slow, ramp-wise pressure elevation, either from the input or output side of the valve. Tests were conducted over a wide range of baseline pressures (and thus diameters) in passive vessels as well as in vessels with two levels of imposed tone. Surprisingly, the pressure gradient required for valve closure varied >20-fold (0.1–2.2 cmH2O) as a passive vessel progressively distended. Similarly, the pressure gradient required for valve opening varied sixfold with vessel distention. Finally, our functional evidence supports the concept that lymphatic muscle tone exerts an indirect effect on valve gating. PMID:21460194

  3. Characterization of internodal collecting lymphatic vessel function after surgical removal of an axillary lymph node in mice

    PubMed Central

    Kwon, Sunkuk; Price, Roger E.

    2016-01-01

    Secondary lymphedema is an acquired lymphatic disorder, which occurs because of damage to the lymphatic system from surgery and/or radiation therapy for cancer treatment. However, it remains unknown how post-nodal collecting lymphatic vessels (CLVs) draining to the surgical wound area change in response to lymphadenectomy. We investigated functional and architectural changes of inguinal-to-axillary internodal CLVs (ICLVs) in mice after a single axillary LN (ALN) dissection using near-infrared fluorescence imaging. Our data showed no lymph flow in the ICLVs draining from the inguinal LN (ILN) at 2 days post-surgery. External compression enabled visualization of a small segment of contractile fluorescent ICLVs, but not all the way to the axillary region. At day 6, abnormal lymphatic drainage patterns, including lateral and retrograde lymph flow via vessels branching off the ICLVs were observed, which started to disappear beginning 9 days after surgery. The administration of vascular endothelial growth factor (VEGF)-C into the wound increased resolution of altered lymphatic drainage. Lymphatic drainage from the base of the tail to the ILN did not significantly change over time. These results demonstrate that lymph flow in the CLVs is dramatically affected by a LN dissection and long-term interruption of lymph flow might cause CLV dysfunction and thus contribute to chronic lymphatic disorders. PMID:27446639

  4. Heterogeneity in immunohistochemical, genomic, and biological properties of human lymphatic endothelial cells between initial and collecting lymph vessels.

    PubMed

    Kawai, Yoshiko; Hosaka, Kayoko; Kaidoh, Maki; Minami, Takashi; Kodama, Tatsuhiko; Ohhashi, Toshio

    2008-01-01

    The immunohistochemical properties of selective lymph vessel markers, and NO synthase (NOS) and cyclo-oxygenase (COX) activities, were examined in two kinds of human lymphatic endothelial cells isolated from collecting (macro-) and initial (micro-) lymph vessels. The constitutively expressed genes in the two kinds of lymphatic endothelial cells were also evaluated by using oligonucleotide microarray analysis and RT-PCR. We also investigated the effects of oxygen concentration in culture conditions or growth factors such as basic fibroblast growth factor (bFGF), VEGF-A, and VEGF-C on proliferation activities of the two kinds of human lymphatic endothelial cells. Immunoreactivity to LYVE-1 and the RT-PCR expression level of LYVE-1 mRNA in endothelial cells of micro-lymph vessels were stronger than those of macro-lymph vessels. Immunoreactivity to VEGF R1 was also observed as significantly stronger in the micro-lymph vessels. In contrast, the immunoreactivity to Prox-1 and the RT-PCR expression level of Prox-1 mRNA in endothelial cells of macro-lymph vessels were stronger than those of micro-lymph vessels. Similarly, immunoreactivity to ecNOS, iNOS, COX1, and COX2 was also found as significantly higher than in macro-lymph vessels. In contrast, the increase of O(2) concentration ranging from 5% to 21% caused a significant reduction of the proliferation activity of endothelial cells in macro-lymph vessels. In conclusion, these findings suggest marked heterogeneity in the immunohistochemical, genomic, and proliferation activity of human lymphatic endothelial cells between micro-(initial) and macro-(collecting) lymph vessels.

  5. Blood and Lymphatic Vessel Formation

    PubMed Central

    Bautch, Victoria L.; Caron, Kathleen M.

    2015-01-01

    Blood and lymphatic vessels deliver oxygen and nutrients, remove waste and CO2, and regulate interstitial pressure in tissues and organs. These vessels begin life early in embryogenesis using transcription factors and signaling pathways that regulate differentiation, morphogenesis, and proliferation. Here we describe how these vessels develop in the mouse embryo, and the signals that are important to their development. PMID:25731762

  6. [Morphogenesis, structure and properties of lymphatic vessels].

    PubMed

    Ratajska, Anna; Jankowska-Steifer, Ewa; Czarnowska, Elżbieta; Flaht, Aleksandra; Radomska-Leśniewska, Dorota

    2012-11-19

    In this paper, we present literature results related to structure and various manners of lymphatic vessel formation during embryonic development and in pathological events, such as tumorigenesis, wound healing, and other diseases. The functions of the lymphatic system include the collection of fluids that enter tissues from the circulation, absorption of lipids and lipid-soluble vitamins from the intestine and their subsequent transport, participation in antigen, dendritic cell, and lymphocyte migration. The lymphatic system is also a route for tumor cell and inflammatory cell transport. Native lymphatic capillaries differ from blood capillaries by having an irregular lumen, a discontinuous basement membrane, absence of pericytes, and a strong anchorage of their endothelial cells to the extracellular matrix via microfibrils built of emilin and fibrillin. Lymphatic endothelial cells express surface antigens such as Lyve-1, podoplanin, VEGFR3 (Flk4) and transcription factor Prox-1, as well as molecules which are common for blood endothelial cells and lymphatic endothelial cells (CD31, CD34, Flk-1, Tie-1, Tie-2, neuropilin 2). Lymphatic vessel formation during embryonic development starts with the occurrence of lymphatic sacs sprouting from systemic jugular veins and/or by co-option of lymphangioblasts or hematopoietic-derived cells. It can also proceed by dedifferentiation of venous endothelial cells after their detachment from the venous system, migration to the target places within the body and assembly in the lymphatic lumen. Mechanisms of lymphatic vessel formation during embryonic development and in pathological conditions, such as tumorigenesis, wound healing, and metastasis, is regulated by a plethora of growth factors and molecules, among which the most important are VEGF-C, VEGF-D, HGF, FGF, retinoic acid, IL-3, and IL-7. Macrophages and cells bearing CD45 phenotype seem to take part in the formation of lymphatics. Macrophages might act as a source of growth

  7. Collecting lymphatic vessel permeability facilitates adipose tissue inflammation and distribution of antigen to lymph node-homing adipose tissue DCs

    PubMed Central

    Kuan, Emma L.; Ivanov, Stoyan; Bridenbaugh, Eric A.; Victora, Gabriel; Wang, Wei; Childs, Ed W.; Platt, Andrew M.; Jakubzick, Claudia V.; Mason, Robert J.; Gashev, Anatoliy A.; Nussenzweig, Michel; Swartz, Melody A.; Dustin, Michael L.; Zawieja, David C.; Randolph, Gwendalyn J.

    2015-01-01

    Collecting lymphatic vessels (CLVs), surrounded by fat and endowed with contractile muscle and valves, transport lymph from tissues after it is absorbed into lymphatic capillaries. CLVs are not known to participate in immune responses. Here, we observed that the inherent permeability of CLVs allowed broad distribution of lymph components within surrounding fat for uptake by adjacent macrophages and dendritic cells (DCs) that actively interacted with CLVs. Endocytosis of lymph-derived antigens by these cells supported recall T cell responses in the fat and also generated antigen-bearing DCs for emigration into adjacent lymph nodes. Enhanced recruitment of DCs to inflammation-reactive lymph nodes significantly relied on adipose tissue DCs to maintain sufficient numbers of antigen-bearing DCs as the lymph node expanded. Thus, CLVs coordinate inflammation and immunity within adipose depots and foster the generation of an unexpected pool of APCs for antigen transport into the adjacent lymph node. PMID:25917096

  8. LYMPHATIC VESSELS IN HEALTH AND DISEASE

    PubMed Central

    Kesler, Cristina T.; Liao, Shan; Munn, Lance L.; Padera, Timothy P.

    2012-01-01

    The lymphatic vasculature plays vital roles in tissue fluid balance, immune defense, metabolism and cancer metastasis. In adults, lymphatic vessel formation and remodeling occurs primarily during inflammation, development of the corpus luteum, wound healing, and tumor growth. Unlike the blood circulation, where unidirectional flow is sustained by the pumping actions of the heart, pumping actions intrinsic to the lymphatic vessels themselves are important drivers of lymphatic flow. This review summarizes critical components that control lymphatic physiology. PMID:23209022

  9. lyve1 expression reveals novel lymphatic vessels and new mechanisms for lymphatic vessel development in zebrafish.

    PubMed

    Okuda, Kazuhide S; Astin, Jonathan W; Misa, June P; Flores, Maria V; Crosier, Kathryn E; Crosier, Philip S

    2012-07-01

    We have generated novel transgenic lines that brightly mark the lymphatic system of zebrafish using the lyve1 promoter. Facilitated by these new transgenic lines, we generated a map of zebrafish lymphatic development up to 15 days post-fertilisation and discovered three previously uncharacterised lymphatic vessel networks: the facial lymphatics, the lateral lymphatics and the intestinal lymphatics. We show that a facial lymphatic vessel, termed the lateral facial lymphatic, develops through a novel developmental mechanism, which initially involves vessel growth through a single vascular sprout followed by the recruitment of lymphangioblasts to the vascular tip. Unlike the lymphangioblasts that form the thoracic duct, the lymphangioblasts that contribute to the lateral facial lymphatic vessel originate from a number of different blood vessels. Our work highlights the additional complexity of lymphatic vessel development in the zebrafish that may increase its versatility as a model of lymphangiogenesis.

  10. Aged Lymphatic Vessels and Mast Cells in Perilymphatic Tissues.

    PubMed

    Pal, Sarit; Meininger, Cynthia J; Gashev, Anatoliy A

    2017-05-03

    This review provides a comprehensive summary of research on aging-associated alterations in lymphatic vessels and mast cells in perilymphatic tissues. Aging alters structure (by increasing the size of zones with low muscle cell investiture), ultrastructure (through loss of the glycocalyx), and proteome composition with a concomitant increase in permeability of aged lymphatic vessels. The contractile function of aged lymphatic vessels is depleted with the abolished role of nitric oxide and an increased role of lymphatic-born histamine in flow-dependent regulation of lymphatic phasic contractions and tone. In addition, aging induces oxidative stress in lymphatic vessels and facilitates the spread of pathogens from these vessels into perilymphatic tissues. Aging causes the basal activation of perilymphatic mast cells, which, in turn, restricts recruitment/activation of immune cells in perilymphatic tissues. This aging-associated basal activation of mast cells limits proper functioning of the mast cell/histamine/NF-κB axis that is essential for the regulation of lymphatic vessel transport and barrier functions as well as for both the interaction and trafficking of immune cells near and within lymphatic collecting vessels. Cumulatively, these changes play important roles in the pathogenesis of alterations in inflammation and immunity associated with aging.

  11. Lymphatic vessels in osteoarthritic human knees.

    PubMed

    Walsh, D A; Verghese, P; Cook, G J; McWilliams, D F; Mapp, P I; Ashraf, S; Wilson, D

    2012-05-01

    The distribution and function of lymphatic vessels in normal and diseased human knees are understood incompletely. This study aimed to investigate whether lymphatic density is associated with clinical, histological or radiographic parameters in osteoarthritis (OA). Sections of synovium from 60 knees from patients with OA were compared with 60 post mortem control knees (from 37 individuals). Lymphatic vessels were identified using immunohistochemistry for podoplanin, and quantified as lymphatic vessel density (LVD) and lymphatic endothelial cell (LEC) fractional area. Effusion status was determined by clinical examination, radiographs were scored for OA changes, and inflammation grading used haematoxylin and eosin stained sections of synovium. Lymphatic vessels were present in synovia from both disease groups, but were not identified in subchondral bone. Synovial lymphatic densities were independent of radiological severity and age. Synovia from patients with OA displayed lower LVD (z=-3.4, P=0.001) and lower LEC fractional areas (z=-4.5, P<0.0005) than non-arthritic controls. In patients with OA, low LVD was associated with clinically detectable effusion (z=-2.2, P=0.027), but not with histological evidence of synovitis. The negative associations between lymphatics and OA/effusion appeared to be independent of other measured confounders. Lymphatic vessels are present in lower densities in OA synovia. Abnormalities of synovial fluid drainage may confound the value of effusion as a clinical sign of synovitis in OA. Copyright © 2012 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  12. Smooth muscle cell recruitment to lymphatic vessels requires PDGFB and impacts vessel size but not identity.

    PubMed

    Wang, Yixin; Jin, Yi; Mäe, Maarja Andaloussi; Zhang, Yang; Ortsäter, Henrik; Betsholtz, Christer; Mäkinen, Taija; Jakobsson, Lars

    2017-08-29

    Tissue-fluid drains through blind-ended lymphatic capillaries, via smooth muscle cell (SMC)-covered collecting vessels into venous circulation. Both defective SMC recruitment to collecting vessels and ectopic recruitment to lymphatic capillaries are thought to contribute to vessel failure, leading to lymphedema. However, mechanisms controlling lymphatic SMC recruitment and their role in vessel maturation are unknown. Here we demonstrate that platelet-derived growth factor B (PDGFB) regulates lymphatic SMC recruitment in multiple vascular beds. PDGFB is selectively expressed by lymphatic endothelial cells (LECs) of collecting vessels. LEC-specific deletion of Pdgfb prevented SMC recruitment causing dilation and failure of pulsatile contraction of collecting vessels. However, vessel remodelling and identity were unaffected. Unexpectedly, PDGFB overexpression in LECs did not induce SMC recruitment to capillaries. This was explained by the demonstrated requirement of PDGFB extracellular matrix (ECM) retention for lymphatic SMC recruitment, and low presence of PDGFB-binding ECM components around lymphatic capillaries. These results demonstrate a requirement of LEC-autonomous PDGFB expression and retention for SMC recruitment to lymphatic vessels and suggest an ECM-controlled checkpoint preventing SMC investment of capillaries, which is a common feature in lymphedematous skin. © 2017. Published by The Company of Biologists Ltd.

  13. Blood flow reprograms lymphatic vessels to blood vessels

    PubMed Central

    Chen, Chiu-Yu; Bertozzi, Cara; Zou, Zhiying; Yuan, Lijun; Lee, John S.; Lu, MinMin; Stachelek, Stan J.; Srinivasan, Sathish; Guo, Lili; Vincente, Andres; Mericko, Patricia; Levy, Robert J.; Makinen, Taija; Oliver, Guillermo; Kahn, Mark L.

    2012-01-01

    Human vascular malformations cause disease as a result of changes in blood flow and vascular hemodynamic forces. Although the genetic mutations that underlie the formation of many human vascular malformations are known, the extent to which abnormal blood flow can subsequently influence the vascular genetic program and natural history is not. Loss of the SH2 domain–containing leukocyte protein of 76 kDa (SLP76) resulted in a vascular malformation that directed blood flow through mesenteric lymphatic vessels after birth in mice. Mesenteric vessels in the position of the congenital lymphatic in mature Slp76-null mice lacked lymphatic identity and expressed a marker of blood vessel identity. Genetic lineage tracing demonstrated that this change in vessel identity was the result of lymphatic endothelial cell reprogramming rather than replacement by blood endothelial cells. Exposure of lymphatic vessels to blood in the absence of significant flow did not alter vessel identity in vivo, but lymphatic endothelial cells exposed to similar levels of shear stress ex vivo rapidly lost expression of PROX1, a lymphatic fate–specifying transcription factor. These findings reveal that blood flow can convert lymphatic vessels to blood vessels, demonstrating that hemodynamic forces may reprogram endothelial and vessel identity in cardiovascular diseases associated with abnormal flow. PMID:22622036

  14. Blood flow reprograms lymphatic vessels to blood vessels.

    PubMed

    Chen, Chiu-Yu; Bertozzi, Cara; Zou, Zhiying; Yuan, Lijun; Lee, John S; Lu, MinMin; Stachelek, Stan J; Srinivasan, Sathish; Guo, Lili; Vicente, Andres; Vincente, Andres; Mericko, Patricia; Levy, Robert J; Makinen, Taija; Oliver, Guillermo; Kahn, Mark L

    2012-06-01

    Human vascular malformations cause disease as a result of changes in blood flow and vascular hemodynamic forces. Although the genetic mutations that underlie the formation of many human vascular malformations are known, the extent to which abnormal blood flow can subsequently influence the vascular genetic program and natural history is not. Loss of the SH2 domain-containing leukocyte protein of 76 kDa (SLP76) resulted in a vascular malformation that directed blood flow through mesenteric lymphatic vessels after birth in mice. Mesenteric vessels in the position of the congenital lymphatic in mature Slp76-null mice lacked lymphatic identity and expressed a marker of blood vessel identity. Genetic lineage tracing demonstrated that this change in vessel identity was the result of lymphatic endothelial cell reprogramming rather than replacement by blood endothelial cells. Exposure of lymphatic vessels to blood in the absence of significant flow did not alter vessel identity in vivo, but lymphatic endothelial cells exposed to similar levels of shear stress ex vivo rapidly lost expression of PROX1, a lymphatic fate-specifying transcription factor. These findings reveal that blood flow can convert lymphatic vessels to blood vessels, demonstrating that hemodynamic forces may reprogram endothelial and vessel identity in cardiovascular diseases associated with abnormal flow.

  15. Lymphatic vessels in inflamed human dental pulp.

    PubMed

    Marchetti, C; Piacentini, C; Menghini, P

    1990-01-01

    Investigation has been performed on both the light and electron microscopic characteristics of the lymphatic vessels present in the dental pulp of human teeth which have been affected by serious carious lesions. These conditions provoke a severe inflammatory response resulting in structural and functional modifications of the tissue; increase of the tissue pressure is followed by the need for a more intensive lymphatic drainage. In the inflamed pulps, dilated lymphatic vessels with distended walls and "open junctions" between endothelial cells are detectable. On the other hand they lack certain endothelial structures which characterize the morphology of these vessels under normal conditions. In the pulpal regions affected by fibrotic proliferation shrunken vessels with irregular profiles are present. From these observations it is possible to obtain other information on the mechanisms regulating the lymphatic drainage in different structural and functional conditions of the interstitium.

  16. Organization and developmental aspects of lymphatic vessels.

    PubMed

    Ohtani, Osamu; Ohtani, Yuko

    2008-05-01

    The lymphatic system plays important roles in maintaining tissue fluid homeostasis, immune surveillance of the body, and the taking up dietary fat and fat-soluble vitamins A, D, E and K. The lymphatic system is involved in many pathological conditions, including lymphedema, inflammatory diseases, and tumor dissemination. A clear understanding of the organization of the lymphatic vessels in normal conditions would be critically important to develop new treatments for diseases involving the lymphatic vascular system. Therefore, the present paper reviews the organization of the lymphatic vascular system of a variety of organs, including the thyroid gland, lung and pleura, small intestine, cecum and colon in the rat, the diaphragm in the rat, monkey, and human, Peyer's patches and the appendix in the rabbit, and human tonsils. Methods employed include scanning electron microscopy of lymphatic corrosion casts and tissues with or without treatment of alkali maceration technique, transmission electron microscopy of intact tissues, confocal microscopy in conjunction with immunohistochemistry to some lymphatic-specific markers (i.e., LYVE-1 and VEGFR-3), and light microscopy in conjunction with enzyme-histochemistry to 5'-nucleotidase. Some developmental aspects of the lymphatic vessels and lymphedema are also discussed.

  17. T Cell Trafficking through Lymphatic Vessels

    PubMed Central

    Hunter, Morgan C.; Teijeira, Alvaro; Halin, Cornelia

    2016-01-01

    T cell migration within and between peripheral tissues and secondary lymphoid organs is essential for proper functioning of adaptive immunity. While active T cell migration within a tissue is fairly slow, blood vessels and lymphatic vessels (LVs) serve as speedy highways that enable T cells to travel rapidly over long distances. The molecular and cellular mechanisms of T cell migration out of blood vessels have been intensively studied over the past 30 years. By contrast, less is known about T cell trafficking through the lymphatic vasculature. This migratory process occurs in one manner within lymph nodes (LNs), where recirculating T cells continuously exit into efferent lymphatics to return to the blood circulation. In another manner, T cell trafficking through lymphatics also occurs in peripheral tissues, where T cells exit the tissue by means of afferent lymphatics, to migrate to draining LNs and back into blood. In this review, we highlight how the anatomy of the lymphatic vasculature supports T cell trafficking and review current knowledge regarding the molecular and cellular requirements of T cell migration through LVs. Finally, we summarize and discuss recent insights regarding the presumed relevance of T cell trafficking through afferent lymphatics. PMID:28066423

  18. Lymphatic vessel density in radical prostatectomy specimens.

    PubMed

    Cheng, Liang; Bishop, Elena; Zhou, Honghong; Maclennan, Gregory T; Lopez-Beltran, Antonio; Zhang, Shaobo; Badve, Sunil; Baldridge, Lee Ann; Montironi, Rodolfo

    2008-04-01

    Formation of new lymphatic channels, or lymphangiogenesis, has been associated with poor prognosis in a number of human cancers. Its prognostic significance in prostate cancer is uncertain. We analyzed 122 radical prostatectomy specimens. Immunohistochemistry for lymphatic vessels was performed using a mouse monoclonal antibody reactive with an O-linked sialoglycoprotein found on lymphatic endothelium (clone D2-40, Signet Laboratories, Dedham, Mass). The mean lymphatic vessel densities (LVDs) of the 3 prostate compartments were compared. Lymphatic vessel densities were correlated with other clinical and pathologic characteristics. Mean values for intratumoral, peritumoral, and normal prostate LVD were 3.0, 5.2, and 4.8 lymphatic vessels per 200x field, respectively. The intratumoral LVD was significantly lower than the peritumoral or normal LVD (P < .001), and the LVD of the latter 2 compartments was not significantly different (P = .29). The prostate LVD did not correlate with other clinical and pathologic parameters. In conclusion, LVD is reduced in the intratumoral compartment compared with the peritumoral and normal prostate compartments, whereas the latter 2 have similar LVD. In contrast to other malignancies, quantitation of lymphangiogenesis in prostatic adenocarcinoma does not appear to offer useful prognostic information.

  19. Cholinergic innervation of human mesenteric lymphatic vessels.

    PubMed

    D'Andrea, V; Bianchi, E; Taurone, S; Mignini, F; Cavallotti, C; Artico, M

    2013-11-01

    The cholinergic neurotransmission within the human mesenteric lymphatic vessels has been poorly studied. Therefore, our aim is to analyse the cholinergic nerve fibres of lymphatic vessels using the traditional enzymatic techniques of staining, plus the biochemical modifications of acetylcholinesterase (AChE) activity. Specimens obtained from human mesenteric lymphatic vessels were subjected to the following experimental procedures: 1) drawing, cutting and staining of tissues; 2) staining of total nerve fibres; 3) enzymatic staining of cholinergic nerve fibres; 4) homogenisation of tissues; 5) biochemical amount of proteins; 6) biochemical amount of AChE activity; 6) quantitative analysis of images; 7) statistical analysis of data. The mesenteric lymphatic vessels show many AChE positive nerve fibres around their wall with an almost plexiform distribution. The incubation time was performed at 1 h (partial activity) and 6 h (total activity). Moreover, biochemical dosage of the same enzymatic activity confirms the results obtained with morphological methods. The homogenates of the studied tissues contain strong AChE activity. In our study, the lymphatic vessels appeared to contain few cholinergic nerve fibres. Therefore, it is expected that perivascular nerve stimulation stimulates cholinergic nerves innervating the mesenteric arteries to release the neurotransmitter AChE, which activates muscarinic or nicotinic receptors to modulate adrenergic neurotransmission. These results strongly suggest, that perivascular cholinergic nerves have little or no effect on the adrenergic nerve function in mesenteric arteries. The cholinergic nerves innervating mesenteric arteries do not mediate direct vascular responses.

  20. Lymphatic vessels clean up your arteries.

    PubMed

    Fernández-Hernando, Carlos

    2013-04-01

    Reverse cholesterol transport (RCT) is the pathway by which cholesterol accumulated in peripheral tissues, including the artery wall, is transported to the liver for excretion. There is strong evidence suggesting that interventions that increase macrophage cholesterol efflux and RCT would be antiatherogenic. In this issue of the JCI, Martel et al. investigate the contribution of lymphatic vasculature to RCT. Their results support the concept that the lymphatic vessel route is critical for RCT from atherosclerotic plaques. Therefore, strategies to improve lymphatic transport might be useful for treating atherosclerotic vascular disease.

  1. Imaging blood vessels and lymphatic vessels in the zebrafish.

    PubMed

    Jung, H M; Isogai, S; Kamei, M; Castranova, D; Gore, A V; Weinstein, B M

    2016-01-01

    Blood vessels supply tissues and organs with oxygen, nutrients, cellular, and humoral factors, while lymphatic vessels regulate tissue fluid homeostasis, immune trafficking, and dietary fat absorption. Understanding the mechanisms of vascular morphogenesis has become a subject of intense clinical interest because of the close association of both types of vessels with pathogenesis of a broad spectrum of human diseases. The zebrafish provides a powerful animal model to study vascular morphogenesis because of their small, accessible, and transparent embryos. These unique features of zebrafish embryos permit sophisticated high-resolution live imaging of even deeply localized vessels during embryonic development and even in adult tissues. In this chapter, we summarize various methods for blood and lymphatic vessel imaging in zebrafish, including nonvital resin injection-based or dye injection-based vessel visualization, and alkaline phosphatase staining. We also provide protocols for vital imaging of vessels using microangiography or transgenic fluorescent reporter zebrafish lines. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Blocking of the Lymphatic Vessel in Lymphedema

    PubMed Central

    Mihara, Makoto

    2017-01-01

    Objective: In this case report, we present a case wherein we observed a blocking of lymphatic vessels in indocyanine green lymphography and found a shrunken lymphatic vessel intraoperatively. Methods: We performed indocyanine green lymphography and lymphaticovenous anastomosis on a 77-year-old woman. She had previously undergone right mastectomy and axillary lymph node dissection accompanied by radiotherapy and chemotherapy for right breast cancer. She noticed swelling in the right upper limb 22 years after the surgery and consulted our hospital. Although she started wearing elastic sleeve, there was still stiffness in the right upper limb, and we decided to perform lymphaticovenous anastomosis 5 months after the first consultation. Results: In the preoperative indocyanine green lymphography, we observed a linear pattern in the medial side of the right forearm, which suddenly blocked in the middle of the forearm. At that point, we observed dilated lymphatic vessels that were suddenly shrunken at the proximal side intraoperatively. We performed lymphaticovenous anastomosis with the dilated part of this lymphatic vessel. We also performed 4 additional lymphaticovenous anastomoses. The operation time was 2 hours 10 minutes, and the amount of bleeding was minimal. The right upper limb of the patient got softer, and she was satisfied with the result 3 months after the operation. The average circumference change at the 5 points in the right upper limb was −1.26 cm (range, −2.3 to −0.3 cm). Conclusions: There was a possibility that the blocking of the lymphatic vessels was a cause of lymphedema in the upper extremity. PMID:28405261

  3. Smooth muscle–endothelial cell communication activates Reelin signaling and regulates lymphatic vessel formation

    PubMed Central

    Lutter, Sophie; Xie, Sherry; Tatin, Florence

    2012-01-01

    Active lymph transport relies on smooth muscle cell (SMC) contractions around collecting lymphatic vessels, yet regulation of lymphatic vessel wall assembly and lymphatic pumping are poorly understood. Here, we identify Reelin, an extracellular matrix glycoprotein previously implicated in central nervous system development, as an important regulator of lymphatic vascular development. Reelin-deficient mice showed abnormal collecting lymphatic vessels, characterized by a reduced number of SMCs, abnormal expression of lymphatic capillary marker lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1), and impaired function. Furthermore, we show that SMC recruitment to lymphatic vessels stimulated release and proteolytic processing of endothelium-derived Reelin. Lymphatic endothelial cells in turn responded to Reelin by up-regulating monocyte chemotactic protein 1 (MCP1) expression, which suggests an autocrine mechanism for Reelin-mediated control of endothelial factor expression upstream of SMC recruitment. These results uncover a mechanism by which Reelin signaling is activated by communication between the two cell types of the collecting lymphatic vessels—smooth muscle and endothelial cells—and highlight a hitherto unrecognized and important function for SMCs in lymphatic vessel morphogenesis and function. PMID:22665518

  4. Lymphatic Vessels: The Next Frontier in Lung Transplant.

    PubMed

    Cui, Ye; Liu, Kaifeng; Lamattina, Anthony Mark; Visner, Gary; El-Chemaly, Souheil

    2017-09-01

    Lymphatic vessels are essential for the uptake of fluid, immune cells, macromolecules, and lipids from the interstitial space. During lung transplant surgery, the pulmonary lymphatic vessel continuum is completely disrupted, and, as a result, lymphatic drainage function is severely compromised. After transplantation, the regeneration of an effective lymphatic drainage system plays a crucial role in maintaining interstitial fluid balance in the lung allograft. In the meantime, these newly formed lymphatic vessels are commonly held responsible for the development of immune responses leading to graft rejection, because they are potentially capable of transporting antigen-presenting cells loaded with allogeneic antigens to the draining lymph nodes. However, despite remarkable progress in the understanding of lymphatic biology, there is still a paucity of consistent evidence that demonstrates the exact impacts of lymphatic vessels on lung graft function. In this review, we examine the current literature related to roles of lymphatic vessels in the pathogenesis of lung transplant rejection.

  5. Interactions of immune cells and lymphatic vessels.

    PubMed

    Kataru, Raghu P; Lee, Yulia G; Koh, Gou Young

    2014-01-01

    In addition to fluid and lipid absorption, immune cell trafficking has now become recognized as one of the major functions of the lymphatic system. Recently, several critical roles of the lymphatic vessels (LVs) in modulating immune reactions during both physiological and pathological conditions have been emerging. As LVs serve as conduits for immune cells, they come to closely interact with macrophages/monocytes, dendritic cells, and T and B lymphocytes. Accumulating evidences indicate that reciprocal interactions between the LVs and immune cells exist which cause considerable influence over the process of immune cell migration, LV growth, and ultimately certain immune reactions. This chapter discusses on the interactions of macrophages/monocytes and dendritic cells with peripheral LVs and on those of sinusoidal macrophages and T and B lymphocytes with lymph node LVs.

  6. Endothelial Cell Responses to Biomechanical Forces in Lymphatic Vessels.

    PubMed

    Sabine, Amélie; Saygili Demir, Cansaran; Petrova, Tatiana V

    2016-09-01

    Lymphatic vessels are important components of the cardiovascular and immune systems. They contribute both to the maintenance of normal homeostasis and to many pathological conditions, such as cancer and inflammation. The lymphatic vasculature is subjected to a variety of biomechanical forces, including fluid shear stress and vessel circumferential stretch. This review will discuss recent advances in our understanding of biomechanical forces in lymphatic vessels and their role in mammalian lymphatic vascular development and function. We will highlight the importance of fluid shear stress generated by lymph flow in organizing the lymphatic vascular network. We will also describe how mutations in mechanosensitive genes lead to lymphatic vascular dysfunction. Better understanding of how biomechanical and biochemical stimuli are perceived and interpreted by lymphatic endothelial cells is important for targeting regulation of lymphatic function in health and disease. Important remaining critical issues and future directions in the field will be discussed in this review. Antioxid. Redox Signal. 25, 451-465.

  7. Ultrasound visualization of the lymphatic vessels in the lower leg.

    PubMed

    Hayashi, Akitatsu; Yamamoto, Takumi; Yoshimatsu, Hidehiko; Hayashi, Nobuko; Furuya, Megumi; Harima, Mitsunobu; Narushima, Mitsunaga; Koshima, Isao

    2015-04-08

    Identification of lymphatic vessels for lymphaticovenular anastomosis (LVA), which is an effective surgical treatment for obstructive lymphedema, is important. Indocyanine green (ICG) lymphography is useful for that purpose, but is not common in many institutions. Although ultrasound is a very common modality, no research has yet underlined the feasibility of the device to detect the lymphatic vessels. First, identification of lymphatic vessels in the lower legs using ultrasound was performed in non-edematous limbs with linear-pattern on ICG lymphography (n = 12). The imaging findings and characteristic of the lymphatic vessels in ultrasonography were investigated on transverse scans. Second, to assess the ultrasound detection technique, ICG was injected to healthy volunteers after identification and marking of the lymphatic vessels using ultrasound (n = 14). Sensitivity and specificity of the examination were calculated. In the first part, the lymphatic vessels were detected by ultrasound in all cases. Characteristic ultrasonography findings of lymphatic vessels included homogeneous, hypoechoic and spicular misshapen images in all cases. In the second part, the overall sensitivity and specificity were 95.5 and 92.9%, respectively. Ultrasonography can identify lymphatic vessels of the lower leg with precision and may aid lymphatic microsurgery for lymphedema. © 2015 Wiley Periodicals, Inc. Microsurgery, 2015. © 2015 Wiley Periodicals, Inc.

  8. Comparison of approaches for microscopic imaging of skin lymphatic vessels.

    PubMed

    Wu, Xiufeng; Yu, Zheyuan; Liu, Ningfei

    2012-01-01

    Assessment of skin lymphatic vessels is of great significance in understanding their roles in many pathological conditions. Our aim was to identify the optimal approach for investigation of cutaneous lymphatic system. We performed comparative studies on skin lymphatic vessels using immunohistochemistry of tissue sections, computer graphic reconstruction method together with immunohistochemically stained serial sections and whole mount fluorescence in human lower limb. Lymphatic vessels were identified with podoplanin antibody. The relative merits and drawbacks of each method in evaluation of structure, spatial organization, and distribution of cutaneous lymphatic vessels were described. Immunohistology of tissue sections enabled the investigation of the structure and distribution of the whole cutaneous lymphatic system in two-dimensional slices, whereas three-dimensional morphology of only the most superficial lymph capillary network immediately under the epidermis could be evaluated with the whole mount technique. Meanwhile, only little segmentation of skin lymphatic vessel from five immunohistochemically stained serial sections was reconstructed and evaluated due to expense and special skills required using computer graphic three-dimensional reconstruction. Furthermore, a great number of artifacts and special skills required in its processes leaded to less accurate structure of skin lymphatic vessels. Our findings demonstrated that the use of either of the proposed techniques alone could not allow a comprehensive analysis of the skin lymphatic system due to their relative drawbacks. Combination of immunohistology of tissue sections and three-dimensional whole-mount preparations appears to be the best candidate for comprehensive evaluation of skin lymphatic system. © Wiley Periodicals, Inc.

  9. The optimum marker for the detection of lymphatic vessels.

    PubMed

    Kong, Ling-Ling; Yang, Nian-Zhao; Shi, Liang-Hui; Zhao, Guo-Hai; Zhou, Wenbin; Ding, Qiang; Wang, Ming-Hai; Zhang, Yi-Sheng

    2017-10-01

    Podoplanin, lymphatic vessel endothelial hyaluronic acid receptor-1, prospero-related homeobox-1 and vascular endothelial growth factor receptor 3 have been demonstrated to have crucial roles in the development of the lymphatic system and lymphangiogenesis process by combining with their corresponding receptors. Thus, the four markers have been widely used in labelling lymphatic vessels for the detection of lymphangiogenesis and lymphatic vessel invasion. Numerous authors have aimed to identify the roles of these four markers in the lymphatic system and the mechanisms have been partly clarified at the molecular level. The aim of the present review was to comprehensively clarify the characteristics and latent action modes of the four markers in order to determine which is the best one for the detection of lymphangiogenesis and lymphatic vessel invasion.

  10. Lymphatic vessels in the healthy human dental pulp.

    PubMed

    Marchetti, C; Poggi, P; Calligaro, A; Casasco, A

    1991-01-01

    The lymphatic vessels of the dental pulp have been studied in non-carious teeth of young people. A network of lymphatic vessels drains the pulpal tissue. The lymphatic capillaries are characterized by a thin wall with an irregular profile. Cellular projections rise from the endothelial cells. Micropinocytotic vesicles and intercellular adjoining structures are the main mechanisms for the lymph formation. Multivesicular structures, Weibel-Palade bodies and paracrystalline inclusions have been observed.

  11. Endogenous TNFα orchestrates the trafficking of neutrophils into and within lymphatic vessels during acute inflammation

    PubMed Central

    Arokiasamy, Samantha; Zakian, Christian; Dilliway, Jessica; Wang, Wen; Nourshargh, Sussan; Voisin, Mathieu-Benoit

    2017-01-01

    Neutrophils are recognised to play a pivotal role at the interface between innate and acquired immunities following their recruitment to inflamed tissues and lymphoid organs. While neutrophil trafficking through blood vessels has been extensively studied, the molecular mechanisms regulating their migration into the lymphatic system are still poorly understood. Here, we have analysed neutrophil-lymphatic vessel interactions in real time and in vivo using intravital confocal microscopy applied to inflamed cremaster muscles. We show that antigen sensitisation of the tissues induces a rapid but transient entry of tissue-infiltrated neutrophils into lymphatic vessels and subsequent crawling along the luminal side of the lymphatic endothelium. Interestingly, using mice deficient in both TNF receptors p55 and p75, chimeric animals and anti-TNFα antibody blockade we demonstrate that tissue-release of TNFα governs both neutrophil migration through the lymphatic endothelium and luminal crawling. Mechanistically, we show that TNFα primes directly the neutrophils to enter the lymphatic vessels in a strictly CCR7-dependent manner; and induces ICAM-1 up-regulation on lymphatic vessels, allowing neutrophils to crawl along the lumen of the lymphatic endothelium in an ICAM-1/MAC-1-dependent manner. Collectively, our findings demonstrate a new role for TNFα as a key regulator of neutrophil trafficking into and within lymphatic system in vivo. PMID:28287124

  12. Endogenous TNFα orchestrates the trafficking of neutrophils into and within lymphatic vessels during acute inflammation.

    PubMed

    Arokiasamy, Samantha; Zakian, Christian; Dilliway, Jessica; Wang, Wen; Nourshargh, Sussan; Voisin, Mathieu-Benoit

    2017-03-13

    Neutrophils are recognised to play a pivotal role at the interface between innate and acquired immunities following their recruitment to inflamed tissues and lymphoid organs. While neutrophil trafficking through blood vessels has been extensively studied, the molecular mechanisms regulating their migration into the lymphatic system are still poorly understood. Here, we have analysed neutrophil-lymphatic vessel interactions in real time and in vivo using intravital confocal microscopy applied to inflamed cremaster muscles. We show that antigen sensitisation of the tissues induces a rapid but transient entry of tissue-infiltrated neutrophils into lymphatic vessels and subsequent crawling along the luminal side of the lymphatic endothelium. Interestingly, using mice deficient in both TNF receptors p55 and p75, chimeric animals and anti-TNFα antibody blockade we demonstrate that tissue-release of TNFα governs both neutrophil migration through the lymphatic endothelium and luminal crawling. Mechanistically, we show that TNFα primes directly the neutrophils to enter the lymphatic vessels in a strictly CCR7-dependent manner; and induces ICAM-1 up-regulation on lymphatic vessels, allowing neutrophils to crawl along the lumen of the lymphatic endothelium in an ICAM-1/MAC-1-dependent manner. Collectively, our findings demonstrate a new role for TNFα as a key regulator of neutrophil trafficking into and within lymphatic system in vivo.

  13. Visualization of lymphatic vessel development, growth, and function.

    PubMed

    Pollmann, Cathrin; Hägerling, René; Kiefer, Friedemann

    2014-01-01

    Despite their important physiological and pathophysiological functions, lymphatic endothelial cells and lymphatic vessels remain less well studied compared to the blood vascular system. Lymphatic endothelium differentiates from venous blood vascular endothelium after initial arteriovenous differentiation. Only recently by the use of light sheet microscopy, the precise mechanism of separation of the first lymphatic endothelial progenitors from the cardinal vein has been described as delamination followed by mesenchymal cell migration of lymphatic endothelial cells. Dorsolaterally of the embryonic cardinal vein, lymphatic endothelial cells reaggregate to form the first lumenized lymphatic vessels, the dorsal peripheral longitudinal vessel and the more ventrally positioned primordial thoracic duct. Despite this progress in our understanding of the first lymph vessel formation, intravital observation of lymphatic vessel behavior in the intact organism, during development and in the adult, is prerequisite to a precise understanding of this tissue. Transgenic models and two-photon microscopy, in combination with optical windows, have made live intravital imaging possible: however, new imaging modalities and novel approaches promise gentler, more physiological, and longer intravital imaging of lymphatic vessels.

  14. Lymphatic vessels: new targets for the treatment of inflammatory diseases.

    PubMed

    Dieterich, Lothar C; Seidel, Catharina D; Detmar, Michael

    2014-04-01

    The lymphatic system plays an important role in the physiological control of the tissue fluid balance and in the initiation of immune responses. Recent studies have shown that lymphangiogenesis, the growth of new lymphatic vessels and/or the expansion of existing lymphatic vessels, is a characteristic feature of acute inflammatory reactions and of chronic inflammatory diseases. In these conditions, lymphatic vessel expansion occurs at the tissue level but also within the draining lymph nodes. Surprisingly, activation of lymphatic vessel function by delivery of vascular endothelial growth factor-C exerts anti-inflammatory effects in several models of cutaneous and joint inflammation. These effects are likely mediated by enhanced drainage of extravasated fluid and inflammatory cells, but also by lymphatic vessel-mediated modulation of immune responses. Although some of the underlying mechanisms are just beginning to be identified, lymphatic vessels have emerged as important targets for the development of new therapeutic strategies to treat inflammatory conditions. In this context, it is of great interest that some of the currently used anti-inflammatory drugs also potently activate lymphatic vessels.

  15. Apolipoprotein A-I Modulates Atherosclerosis Through Lymphatic Vessel-Dependent Mechanisms in Mice.

    PubMed

    Milasan, Andreea; Jean, Gabriel; Dallaire, François; Tardif, Jean-Claude; Merhi, Yahye; Sorci-Thomas, Mary; Martel, Catherine

    2017-09-22

    Subcutaneously injected lipid-free apoA-I (apolipoprotein A-I) reduces accumulation of lipid and immune cells within the aortic root of hypercholesterolemic mice without increasing high-density lipoprotein-cholesterol concentrations. Lymphatic vessels are now recognized as prerequisite players in the modulation of cholesterol removal from the artery wall in experimental conditions of plaque regression, and particular attention has been brought to the role of the collecting lymphatic vessels in early atherosclerosis-related lymphatic dysfunction. In the present study, we address whether and how preservation of collecting lymphatic function contributes to the protective effect of apoA-I. Atherosclerotic Ldlr(-/-) mice treated with low-dose lipid-free apoA-I showed enhanced lymphatic transport and abrogated collecting lymphatic vessel permeability in atherosclerotic Ldlr(-/-) mice when compared with albumin-control mice. Treatment of human lymphatic endothelial cells with apoA-I increased the adhesion of human platelets on lymphatic endothelial cells, in a bridge-like manner, a mechanism that could strengthen endothelial cell-cell junctions and limit atherosclerosis-associated collecting lymphatic vessel dysfunction. Experiments performed with blood platelets isolated from apoA-I-treated Ldlr(-/-) mice revealed that apoA-I decreased ex vivo platelet aggregation. This suggests that in vivo apoA-I treatment limits platelet thrombotic potential in blood while maintaining the platelet activity needed to sustain adequate lymphatic function. Altogether, we bring forward a new pleiotropic role for apoA-I in lymphatic function and unveil new potential therapeutic targets for the prevention and treatment of atherosclerosis. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  16. Synchronization and Random Triggering of Lymphatic Vessel Contractions

    PubMed Central

    Baish, James W.; Kunert, Christian; Padera, Timothy P.; Munn, Lance L.

    2016-01-01

    The lymphatic system is responsible for transporting interstitial fluid back to the bloodstream, but unlike the cardiovascular system, lacks a centralized pump-the heart–to drive flow. Instead, each collecting lymphatic vessel can individually contract and dilate producing unidirectional flow enforced by intraluminal check valves. Due to the large number and spatial distribution of such pumps, high-level coordination would be unwieldy. This leads to the question of how each segment of lymphatic vessel responds to local signals that can contribute to the coordination of pumping on a network basis. Beginning with elementary fluid mechanics and known cellular behaviors, we show that two complementary oscillators emerge from i) mechanical stretch with calcium ion transport and ii) fluid shear stress induced nitric oxide production (NO). Using numerical simulation and linear stability analysis we show that the newly identified shear-NO oscillator shares similarities with the well-known Van der Pol oscillator, but has unique characteristics. Depending on the operating conditions, the shear-NO process may i) be inherently stable, ii) oscillate spontaneously in response to random disturbances or iii) synchronize with weak periodic stimuli. When the complementary shear-driven and stretch-driven oscillators interact, either may dominate, producing a rich family of behaviors similar to those observed in vivo. PMID:27935958

  17. Synchronization and Random Triggering of Lymphatic Vessel Contractions.

    PubMed

    Baish, James W; Kunert, Christian; Padera, Timothy P; Munn, Lance L

    2016-12-01

    The lymphatic system is responsible for transporting interstitial fluid back to the bloodstream, but unlike the cardiovascular system, lacks a centralized pump-the heart-to drive flow. Instead, each collecting lymphatic vessel can individually contract and dilate producing unidirectional flow enforced by intraluminal check valves. Due to the large number and spatial distribution of such pumps, high-level coordination would be unwieldy. This leads to the question of how each segment of lymphatic vessel responds to local signals that can contribute to the coordination of pumping on a network basis. Beginning with elementary fluid mechanics and known cellular behaviors, we show that two complementary oscillators emerge from i) mechanical stretch with calcium ion transport and ii) fluid shear stress induced nitric oxide production (NO). Using numerical simulation and linear stability analysis we show that the newly identified shear-NO oscillator shares similarities with the well-known Van der Pol oscillator, but has unique characteristics. Depending on the operating conditions, the shear-NO process may i) be inherently stable, ii) oscillate spontaneously in response to random disturbances or iii) synchronize with weak periodic stimuli. When the complementary shear-driven and stretch-driven oscillators interact, either may dominate, producing a rich family of behaviors similar to those observed in vivo.

  18. An overview of lymphatic vessels and their emerging role in cardiovascular disease.

    PubMed

    Jones, Dennis; Min, Wang

    2011-07-01

    Over the past decade, molecular details of lymphatic vessels (lymphatics) have been rapidly acquired due to the identification of lymphatic endothelial-specific markers. Separate from the cardiovascular system, the lymphatic system is also an elaborate network of vessels that are important in normal physiology. Lymphatic vessels have the unique task to regulate fluid homeostasis, assist in immune surveillance, and transport dietary lipids. However, dysfunctional lymphatic vessels can cause pathology, while normal lymphatics can exacerbate pathology. This review summarizes the development and growth of lymphatic vessels in addition to highlighting their critical roles in physiology and pathology. Also, we discuss recent work that suggests a connection between lymphatic dysfunction and cardiovascular disease.

  19. Tumors induce coordinate growth of artery, vein, and lymphatic vessel triads

    PubMed Central

    2014-01-01

    Background Tumors drive blood vessel growth to obtain oxygen and nutrients to support tumor expansion, and they also can induce lymphatic vessel growth to facilitate fluid drainage and metastasis. These processes have generally been studied separately, so that it is not known how peritumoral blood and lymphatic vessels grow relative to each other. Methods The murine B16-F10 melanoma and chemically-induced squamous cell carcinoma models were employed to analyze large red-colored vessels growing between flank tumors and draining lymph nodes. Immunostaining and microscopy in combination with dye injection studies were used to characterize these vessels. Results Each peritumoral red-colored vessel was found to consist of a triad of collecting lymphatic vessel, vein, and artery, that were all enlarged. Peritumoral veins and arteries were both functional, as detected by intravenous dye injection. The enlarged lymphatic vessels were functional in most mice by subcutaneous dye injection assay, however tumor growth sometimes blocked lymph drainage to regional lymph nodes. Large red-colored vessels also grew between benign papillomas or invasive squamous cell carcinomas and regional lymph nodes in chemical carcinogen-treated mice. Immunostaining of the red-colored vessels again identified the clustered growth of enlarged collecting lymphatics, veins, and arteries in the vicinity of these spontaneously arising tumors. Conclusions Implanted and spontaneously arising tumors induce coordinate growth of blood and lymphatic vessel triads. Many of these vessel triads are enlarged over several cm distance between the tumor and regional lymph nodes. Lymphatic drainage was sometimes blocked in mice before lymph node metastasis was detected, suggesting that an unknown mechanism alters lymph drainage patterns before tumors reach draining lymph nodes. PMID:24886322

  20. Lymphatic Vessels, Inflammation, and Immunity in Skin Cancer

    PubMed Central

    Lund, Amanda W.; Medler, Terry R.; Leachman, Sancy A.; Coussens, Lisa M.

    2015-01-01

    Skin is a highly ordered immune organ that coordinates rapid responses to external insult while maintaining self-tolerance. In healthy tissue, lymphatic vessels drain fluid and coordinate local immune responses; however, environmental factors induce lymphatic vessel dysfunction, leading to lymph stasis and perturbed regional immunity. These same environmental factors drive the formation of local malignancies, which are also influenced by local inflammation. Herein, we discuss clinical and experimental evidence supporting the tenet that lymphatic vessels participate in regulation of cutaneous inflammation and immunity, are important contributors to malignancy and potential biomarkers and targets for immunotherapy. PMID:26552413

  1. Localization and proliferation of lymphatic vessels in the tympanic membrane in normal state and regeneration.

    PubMed

    Miyashita, Takenori; Burford, James L; Hong, Young-Kwon; Gevorgyan, Haykanush; Lam, Lisa; Mori, Nozomu; Peti-Peterdi, Janos

    2013-10-25

    We clarified the localization of lymphatic vessels in the tympanic membrane and proliferation of lymphatic vessels during regeneration after perforation of the tympanic membrane by using whole-mount imaging of the tympanic membrane of Prox1 GFP mice. In the pars tensa, lymphatic vessel loops surrounded the malleus handle and annulus tympanicus. Apart from these locations, lymphatic vessel loops were not observed in the pars tensa in the normal tympanic membrane. Lymphatic vessel loops surrounding the malleus handle were connected to the lymphatic vessel loops in the pars flaccida and around the tensor tympani muscle. Many lymphatic vessel loops were detected in the pars flaccida. After perforation of the tympanic membrane, abundant lymphatic regeneration was observed in the pars tensa, and these regenerated lymphatic vessels extended from the lymphatic vessels surrounding the malleus at day 7. These results suggest that site-specific lymphatic vessels play an important role in the tympanic membrane. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Exploiting lymphatic vessels for immunomodulation: Rationale, opportunities, and challenges.

    PubMed

    Maisel, Katharina; Sasso, Maria Stella; Potin, Lambert; Swartz, Melody A

    2017-05-15

    Lymphatic vessels are the primary route of communication from peripheral tissues to the immune system; as such, they represent an important component of local immunity. In addition to their transport functions, new immunomodulatory roles for lymphatic vessels and lymphatic endothelial cells have come to light in recent years, demonstrating that lymphatic vessels help shape immune responses in a variety of ways: promoting tolerance to self-antigens, archiving antigen for later presentation, dampening effector immune responses, and resolving inflammation, among others. In addition to these new biological insights, the growing field of immunoengineering has begun to explore therapeutic approaches to utilize or exploit the lymphatic system for immunotherapy. Copyright © 2017. Published by Elsevier B.V.

  3. Lymphatic vessel development: fluid flow and valve-forming cells.

    PubMed

    Kume, Tsutomu

    2015-08-03

    Hemodynamic forces regulate many aspects of blood vessel disease and development, including susceptibility to atherosclerosis and remodeling of primary blood vessels into a mature vascular network. Vessels of the lymphatic circulatory system are also subjected to fluid flow-associated forces, but the molecular and cellular mechanisms by which these forces regulate the formation and maintenance of lymphatic vessels remain largely uncharacterized. This issue of the JCI includes two articles that begin to address how fluid flow influences lymphatic vessel development and function. Sweet et al. demonstrate that lymph flow is essential for the remodeling of primary lymphatic vessels, for ensuring the proper distribution of smooth muscle cells (SMCs), and for the development and maturation of lymphatic valves. Kazenwadel et al. show that flow-induced lymphatic valve development is initiated by the upregulation of GATA2, which has been linked to lymphedema in patients with Emberger syndrome. Together, these observations and future studies inspired by these results have potential to lead to the development of strategies for the treatment of lymphatic disorders.

  4. Lymphangion coordination minimally affects mean flow in lymphatic vessels.

    PubMed

    Venugopal, Arun M; Stewart, Randolph H; Laine, Glen A; Dongaonkar, Ranjeet M; Quick, Christopher M

    2007-08-01

    The lymphatic system returns interstitial fluid to the central venous circulation, in part, by the cyclical contraction of a series of "lymphangion pumps" in a lymphatic vessel. The dynamics of individual lymphangions have been well characterized in vitro; their frequencies and strengths of contraction are sensitive to both preload and afterload. However, lymphangion interaction within a lymphatic vessel has been poorly characterized because it is difficult to experimentally alter properties of individual lymphangions and because the afterload of one lymphangion is coupled to the preload of another. To determine the effects of lymphangion interaction on lymph flow, we adapted an existing mathematical model of a lymphangion (characterizing lymphangion contractility, lymph viscosity, and inertia) to create a new lymphatic vessel model consisting of several lymphangions in series. The lymphatic vessel model was validated with focused experiments on bovine mesenteric lymphatic vessels in vitro. The model was then used to predict changes in lymph flow with different time delays between onset of contraction of adjacent lymphangions (coordinated case) and with different relative lymphangion contraction frequencies (noncoordinated case). Coordination of contraction had little impact on mean flow. Furthermore, orthograde and retrograde propagations of contractile waves had similar effects on flow. Model results explain why neither retrograde propagation of contractile waves nor the lack of electrical continuity between lymphangions adversely impacts flow. Because lymphangion coordination minimally affects mean flow in lymphatic vessels, lymphangions have flexibility to independently adapt to local conditions.

  5. Distribution of the lymphatic vessels in the prostatic fascia.

    PubMed

    Soga, Hideo; Takenaka, Atsushi; Murakami, Gen; Haraguchi, Takahiro; Miyake, Hideaki; Tanaka, Kazushi; Fujisawa, Masato

    2011-09-01

    The prostatic fascia-preserving procedure is effective for the early recovery of erectile function after radical prostatectomy; however, the long-term influence of on cancer control was unknown. This study clarified the distribution of lymphatic vessels in the prostatic fascia. The lymphatic vessels were analyzed in 10 prostates obtained from fixed Japanese cadavers (aged, 71-90 years old). Specimens were taken from the apex, the middle part, and the base of the right-hand side of the prostate. Lymphatic vessels were detected by immunohistochemical stain using an antibody specific for the lymphatic endothelial cells (clone D2-40). The lymphatic vessels were counted in the prostate capsule and the prostatic fascia of each section by light microscopy at low power (100×). The median number of lymphatic vessels in the prostatic capsule per prostatic half was 21.0, 14.0, and 21.0 in the apex, middle, and base part of the prostate, respectively. In the prostatic facia the median number of lymphatic vessels per prostatic half was 8.0, 3.0, and 13.0 in the apex, middle, and the base part of the prostate, respectively. In the apex and the middle part the lymphatic vessels in the prostatic fascia were fewer than those in the prostatic capsule. However, in the base part the number of lymphatic vessels in the prostatic fascia was similar to that in the prostatic capsule. The present study suggested the surgeon to pay more attention for the dissection of the fascia at the base of the prostate. Copyright © 2011 Wiley-Liss, Inc.

  6. Long-distance transportation of live isolated lymphatic vessels.

    PubMed

    Gashev, Anatoliy A; Davis, Michael J

    2010-12-01

    We performed experiments to test whether isolated lymphatic vessels would remain viable after overnight long-distance shipment. Freshly isolated segments of rat mesenteric lymphatic vessels were placed into tubes filled by chilled D-MEM/F12 supplemented with antibiotics and shipped via overnight by express mail from College Station, TX to Columbia, MO. Standard physiological and pharmacological tests were performed to investigate the influence of the long-distance transport procedure on the spontaneous contractility of isolated, cannulated, and pressurized rat mesenteric lymphatic vessels. The results demonstrate that normal contractile function of isolated lymphatic vessels can be preserved with long-distance shipping and subsequent overnight recovery if the proper precautions are taken. The method of lymphatic vessel transportation described in this report opens up the opportunity to perform in vitro functional tests on lymphatic tissues harvested and initially processed in a remote location. In addition, the described procedures may expand the options for potential sources of fresh human tissue, harvested during surgery or autopsy and allowed to be available to lymphatic researchers in remote locations.

  7. Macrophages define dermal lymphatic vessel calibre during development by regulating lymphatic endothelial cell proliferation.

    PubMed

    Gordon, Emma J; Rao, Sujata; Pollard, Jeffrey W; Nutt, Stephen L; Lang, Richard A; Harvey, Natasha L

    2010-11-01

    Macrophages have been suggested to stimulate neo-lymphangiogenesis in settings of inflammation via two potential mechanisms: (1) acting as a source of lymphatic endothelial progenitor cells via the ability to transdifferentiate into lymphatic endothelial cells and be incorporated into growing lymphatic vessels; and (2) providing a crucial source of pro-lymphangiogenic growth factors and proteases. We set out to establish whether cells of the myeloid lineage are important for development of the lymphatic vasculature through either of these mechanisms. Here, we provide lineage tracing evidence to demonstrate that lymphatic endothelial cells arise independently of the myeloid lineage during both embryogenesis and tumour-stimulated lymphangiogenesis in the mouse, thus excluding macrophages as a source of lymphatic endothelial progenitor cells in these settings. In addition, we demonstrate that the dermal lymphatic vasculature of PU.1(-/-) and Csf1r(-/-) macrophage-deficient mouse embryos is hyperplastic owing to elevated lymphatic endothelial cell proliferation, suggesting that cells of the myeloid lineage provide signals that act to restrain lymphatic vessel calibre in the skin during development. In contrast to what has been demonstrated in settings of inflammation, macrophages do not comprise the principal source of pro-lymphangiogenic growth factors, including VEGFC and VEGFD, in the embryonic dermal microenvironment, illustrating that the sources of patterning and proliferative signals driving embryonic and disease-stimulated lymphangiogenesis are likely to be distinct.

  8. Polydom Is an Extracellular Matrix Protein Involved in Lymphatic Vessel Remodeling.

    PubMed

    Morooka, Nanami; Futaki, Sugiko; Sato-Nishiuchi, Ryoko; Nishino, Masafumi; Totani, Yuta; Shimono, Chisei; Nakano, Itsuko; Nakajima, Hiroyuki; Mochizuki, Naoki; Sekiguchi, Kiyotoshi

    2017-04-14

    Lymphatic vasculature constitutes a second vascular system essential for immune surveillance and tissue fluid homeostasis. Maturation of the hierarchical vascular structure, with a highly branched network of capillaries and ducts, is crucial for its function. Environmental cues mediate the remodeling process, but the mechanism that underlies this process is largely unknown. Polydom (also called Svep1) is an extracellular matrix protein identified as a high-affinity ligand for integrin α9β1. However, its physiological function is unclear. Here, we investigated the role of Polydom in lymphatic development. We generated Polydom-deficient mice. Polydom(-/-) mice showed severe edema and died immediately after birth because of respiratory failure. We found that although a primitive lymphatic plexus was formed, it failed to undergo remodeling in Polydom(-/-) embryos, including sprouting of new capillaries and formation of collecting lymphatic vessels. Impaired lymphatic development was also observed after knockdown/knockout of polydom in zebrafish. Polydom was deposited around lymphatic vessels, but secreted from surrounding mesenchymal cells. Expression of Foxc2 (forkhead box protein c2), a transcription factor involved in lymphatic remodeling, was decreased in Polydom(-/-) mice. Polydom bound to the lymphangiogenic factor Ang-2 (angiopoietin-2), which was found to upregulate Foxc2 expression in cultured lymphatic endothelial cells. Expressions of Tie1/Tie2 receptors for angiopoietins were also decreased in Polydom(-/-) mice. Polydom affects remodeling of lymphatic vessels in both mouse and zebrafish. Polydom deposited around lymphatic vessels seems to ensure Foxc2 upregulation in lymphatic endothelial cells, possibly via the Ang-2 and Tie1/Tie2 receptor system. © 2017 American Heart Association, Inc.

  9. Rapid Lymphatic Dissemination of Encapsulated Group A Streptococci via Lymphatic Vessel Endothelial Receptor-1 Interaction.

    PubMed

    Lynskey, Nicola N; Banerji, Suneale; Johnson, Louise A; Holder, Kayla A; Reglinski, Mark; Wing, Peter A C; Rigby, David; Jackson, David G; Sriskandan, Shiranee

    2015-09-01

    The host lymphatic network represents an important conduit for pathogen dissemination. Indeed, the lethal human pathogen group A streptococcus has a predilection to induce pathology in the lymphatic system and draining lymph nodes, however the underlying basis and subsequent consequences for disease outcome are currently unknown. Here we report that the hyaluronan capsule of group A streptococci is a crucial virulence determinant for lymphatic tropism in vivo, and further, we identify the lymphatic vessel endothelial receptor-1 as the critical host receptor for capsular hyaluronan in the lymphatic system. Interference with this interaction in vivo impeded bacterial dissemination to local draining lymph nodes and, in the case of a hyper-encapsulated M18 strain, redirected streptococcal entry into the blood circulation, suggesting a pivotal role in the manifestation of streptococcal infections. Our results reveal a novel function for bacterial capsular polysaccharide in directing lymphatic tropism, with potential implications for disease pathology.

  10. Rapid Lymphatic Dissemination of Encapsulated Group A Streptococci via Lymphatic Vessel Endothelial Receptor-1 Interaction

    PubMed Central

    Johnson, Louise A.; Holder, Kayla A.; Reglinski, Mark; Wing, Peter A. C.; Rigby, David; Jackson, David G.; Sriskandan, Shiranee

    2015-01-01

    The host lymphatic network represents an important conduit for pathogen dissemination. Indeed, the lethal human pathogen group A streptococcus has a predilection to induce pathology in the lymphatic system and draining lymph nodes, however the underlying basis and subsequent consequences for disease outcome are currently unknown. Here we report that the hyaluronan capsule of group A streptococci is a crucial virulence determinant for lymphatic tropism in vivo, and further, we identify the lymphatic vessel endothelial receptor-1 as the critical host receptor for capsular hyaluronan in the lymphatic system. Interference with this interaction in vivo impeded bacterial dissemination to local draining lymph nodes and, in the case of a hyper-encapsulated M18 strain, redirected streptococcal entry into the blood circulation, suggesting a pivotal role in the manifestation of streptococcal infections. Our results reveal a novel function for bacterial capsular polysaccharide in directing lymphatic tropism, with potential implications for disease pathology. PMID:26352587

  11. Lymphatic Vessels in Regenerative Medicine and Tissue Engineering.

    PubMed

    Schaupper, Mira; Jeltsch, Michael; Rohringer, Sabrina; Redl, Heinz; Holnthoner, Wolfgang

    2016-10-01

    The lymphatic system is involved in maintaining interstitial fluid homeostasis, fat absorption, and immune surveillance. Dysfunction of lymphatic fluid uptake can lead to lymphedema. Worldwide up to 250 million people are estimated to suffer from this disfiguring and disabling disease, which places a strain on the healthcare system as well as on the affected patients. The severity of lymphatic diseases calls for the establishment of new treatment methods. One approach is to replace dysfunctional lymphatic vessels with bioengineered ones. In this study, we mainly focus on hydrogels, scaffolds with cellular constructs, interstitial flow, and extracorporeal shockwave therapy. This review provides an overview on the current status of lymphatic biology and approaches of reconstruction and regeneration of lymphatic vascular tissues.

  12. Lymphatic vessels arise from specialized angioblasts within a venous niche.

    PubMed

    Nicenboim, J; Malkinson, G; Lupo, T; Asaf, L; Sela, Y; Mayseless, O; Gibbs-Bar, L; Senderovich, N; Hashimshony, T; Shin, M; Jerafi-Vider, A; Avraham-Davidi, I; Krupalnik, V; Hofi, R; Almog, G; Astin, J W; Golani, O; Ben-Dor, S; Crosier, P S; Herzog, W; Lawson, N D; Hanna, J H; Yanai, I; Yaniv, K

    2015-06-04

    How cells acquire their fate is a fundamental question in developmental and regenerative biology. Multipotent progenitors undergo cell-fate restriction in response to cues from the microenvironment, the nature of which is poorly understood. In the case of the lymphatic system, venous cells from the cardinal vein are thought to generate lymphatic vessels through trans-differentiation. Here we show that in zebrafish, lymphatic progenitors arise from a previously uncharacterized niche of specialized angioblasts within the cardinal vein, which also generates arterial and venous fates. We further identify Wnt5b as a novel lymphatic inductive signal and show that it also promotes the ‘angioblast-to-lymphatic’ transition in human embryonic stem cells, suggesting that this process is evolutionarily conserved. Our results uncover a novel mechanism of lymphatic specification, and provide the first characterization of the lymphatic inductive niche. More broadly, our findings highlight the cardinal vein as a heterogeneous structure, analogous to the haematopoietic niche in the aortic floor.

  13. Lymphatic vessels regulate immune microenvironments in human and murine melanoma.

    PubMed

    Lund, Amanda W; Wagner, Marek; Fankhauser, Manuel; Steinskog, Eli S; Broggi, Maria A; Spranger, Stefani; Gajewski, Thomas F; Alitalo, Kari; Eikesdal, Hans P; Wiig, Helge; Swartz, Melody A

    2016-09-01

    Lymphatic remodeling in tumor microenvironments correlates with progression and metastasis, and local lymphatic vessels play complex and poorly understood roles in tumor immunity. Tumor lymphangiogenesis is associated with increased immune suppression, yet lymphatic vessels are required for fluid drainage and immune cell trafficking to lymph nodes, where adaptive immune responses are mounted. Here, we examined the contribution of lymphatic drainage to tumor inflammation and immunity using a mouse model that lacks dermal lymphatic vessels (K14-VEGFR3-Ig mice). Melanomas implanted in these mice grew robustly, but exhibited drastically reduced cytokine expression and leukocyte infiltration compared with those implanted in control animals. In the absence of local immune suppression, transferred cytotoxic T cells more effectively controlled tumors in K14-VEGFR3-Ig mice than in control mice. Furthermore, gene expression analysis of human melanoma samples revealed that patient immune parameters are markedly stratified by levels of lymphatic markers. This work suggests that the establishment of tumor-associated inflammation and immunity critically depends on lymphatic vessel remodeling and drainage. Moreover, these results have implications for immunotherapies, the efficacies of which are regulated by the tumor immune microenvironment.

  14. Lymphatic vessels regulate immune microenvironments in human and murine melanoma

    PubMed Central

    Lund, Amanda W.; Wagner, Marek; Fankhauser, Manuel; Steinskog, Eli S.; Broggi, Maria A.; Spranger, Stefani; Gajewski, Thomas F.; Alitalo, Kari; Eikesdal, Hans P.

    2016-01-01

    Lymphatic remodeling in tumor microenvironments correlates with progression and metastasis, and local lymphatic vessels play complex and poorly understood roles in tumor immunity. Tumor lymphangiogenesis is associated with increased immune suppression, yet lymphatic vessels are required for fluid drainage and immune cell trafficking to lymph nodes, where adaptive immune responses are mounted. Here, we examined the contribution of lymphatic drainage to tumor inflammation and immunity using a mouse model that lacks dermal lymphatic vessels (K14-VEGFR3-Ig mice). Melanomas implanted in these mice grew robustly, but exhibited drastically reduced cytokine expression and leukocyte infiltration compared with those implanted in control animals. In the absence of local immune suppression, transferred cytotoxic T cells more effectively controlled tumors in K14-VEGFR3-Ig mice than in control mice. Furthermore, gene expression analysis of human melanoma samples revealed that patient immune parameters are markedly stratified by levels of lymphatic markers. This work suggests that the establishment of tumor-associated inflammation and immunity critically depends on lymphatic vessel remodeling and drainage. Moreover, these results have implications for immunotherapies, the efficacies of which are regulated by the tumor immune microenvironment. PMID:27525437

  15. [The macrophage contribution for maintaining lymphatic vessel in cornea].

    PubMed

    Maruyama, Kazuichi

    2014-11-01

    The presence of antigen-presenting cells and hem- and lymphangiogenesis in the cornea are risk factors for the rejection of corneal transplants. We previously reported that antigen-presenting cells such as macrophages (MPs) play an important role in the induction of lymphatic endothelial cells during inflammation. This prompted us to inquire whether the existence of lymphatic vessels in the cornea is associated with the activation of MPs during inflammation. To investigate this question, we performed suture placement on the cornea to induce inflammation. We found that a large number of MPs were recruited and that lymphatic vessels were formed in response. Next, as C57BL/6 mice have a higher rejection rate after corneal transplantation than BALB/c mice, we compared the corneas of C57BL/6 and BALB/c mice under normal and inflamed conditions. We found that the number of spontaneously formed lymphatic vessels in the C57BL/6 corneas was significantly greater than in the BALB/c corneas, and that there were more activated MPs in the C57BL/6 corneas than in the BALB/c corneas. Additionally, to confirm that activated MPs induced and maintained lymphatic vessels in the cornea, we depleted the number of MPs in C57BL/6 mice via clodronate liposomes. We found that MP depletion reduced the spontaneous formation of lymphatic vessels and reduced inflammation-induced lymphangiogenesis relative to control mice. Finally, we found that mice deficient in MP markers had fewer spontaneously formed lymphatic vessels and less lymphangiogenesis than control C57BL/6 mice. The evidence gathered in this study leads us to conclude that activated MPs appear to play an important role in the formation of new lymphatic vessels and in their maintenance.

  16. Immunolocalization of lymphatic vessels in human fetal knee joint tissues.

    PubMed

    Melrose, James; Little, Christopher B

    2010-08-01

    We immunolocalized lymphatic and vascular blood vessels in 12- and 14-week-old human fetal knee joint tissues using a polyclonal antibody to a lymphatic vascular endothelium specific hyaluronan receptor (LYVE-1) and a monoclonal antibody to podoplanin (mAb D2-40). A number of lymphatic vessels were identified in the stratified connective tissues surrounding the cartilaginous knee joint femoral and tibial rudiments. These tissues also contained small vascular vessels with entrapped red blood cells which were imaged using Nomarsky DIC microscopy. Neither vascular nor lymphatic vessels were present in the knee joint cartilaginous rudiments. The menisci in 12-week-old fetal knees were incompletely demarcated from the adjacent tibial and femoral cartilaginous rudiments which was consistent with the ongoing joint cavitation process at the femoral-tibial junction. At 14 weeks of age the menisci were independent structural entities; they contained a major central blood vessel containing red blood cells and numerous communicating vessels at the base of the menisci but no lymphatic vessels. In contrast to the 12-week-old menisci, the 14-week meniscal rudiments contained abundant CD-31 and CD-34 positive but no lymphatic vessels. Isolated 14-week-old meniscal cells also were stained with the CD-31 and CD 34 antibodies; CD-68 +ve cells, also abundant in the 14-week-old menisci, were detectable to a far lesser degree in the 12-week menisci and were totally absent from the femoral and tibial rudiments. The distribution of lymphatic vessels and tissue macrophages in the fetal joint tissues was consistent with their roles in the clearance of metabolic waste and extracellular matrix breakdown products arising from the rapidly remodelling knee joint tissues.

  17. The association of adult Onchocerca volvulus with lymphatic vessels.

    PubMed

    Mackenzie, C D; Huntington, M K; Wanji, S; Lovato, R V; Eversole, R R; Geary, T G

    2010-02-01

    Immunocytochemical examination of onchocercal nodule tissues containing adult Onchocerca volvulus using immuno-markers for blood and lymphatic vessels (vWF, D2-40, podoplanin, Prox-1, and Lyve1) shows a distinct pattern of distribution of these vessels within nodules. Blood vessels were commonly seen associated with organized lymphoid cellular aggregates in the both the outer and inner areas of the nodules. In contrast, the majority of the lymphatic vessel positivity was seen in the central zone in close apposition to the adult parasites, and the remainder usually associated with microfilariae in the outer areas of the nodule. These findings suggest an intimate relationship between adult O. volvulus and lymphatic vessels, including the likely proliferation of lymphatic endothelial cells (lymphangectasia) akin to that seen with other filariae. These findings indicate that adult O. volvulus may migrate via the lymphatic system, and that clinical manifestations of this disease that involve tissue edema may be the result of the location of these worms in the lymphatic system.

  18. Lymphatic Vessels, Inflammation, and Immunity in Skin Cancer.

    PubMed

    Lund, Amanda W; Medler, Terry R; Leachman, Sancy A; Coussens, Lisa M

    2016-01-01

    Skin is a highly ordered immune organ that coordinates rapid responses to external insult while maintaining self-tolerance. In healthy tissue, lymphatic vessels drain fluid and coordinate local immune responses; however, environmental factors induce lymphatic vessel dysfunction, leading to lymph stasis and perturbed regional immunity. These same environmental factors drive the formation of local malignancies, which are also influenced by local inflammation. Herein, we discuss clinical and experimental evidence supporting the tenet that lymphatic vessels participate in regulation of cutaneous inflammation and immunity, and are important contributors to malignancy and potential biomarkers and targets for immunotherapy. The tumor microenvironment and tumor-associated inflammation are now appreciated not only for their role in cancer progression but also for their response to therapy. The lymphatic vasculature is a less-appreciated component of this microenvironment that coordinates local inflammation and immunity and thereby critically shapes local responses. A mechanistic understanding of the complexities of lymphatic vessel function in the unique context of skin provides a model to understand how regional immune dysfunction drives cutaneous malignancies, and as such lymphatic vessels represent a biomarker of cutaneous immunity that may provide insight into cancer prognosis and effective therapy. ©2015 American Association for Cancer Research.

  19. Lymphatic vessels: an emerging actor in atherosclerotic plaque development.

    PubMed

    Kutkut, Issa; Meens, Merlijn J; McKee, Thomas A; Bochaton-Piallat, Marie-Luce; Kwak, Brenda R

    2015-01-01

    Atherosclerosis is a chronic inflammatory disease of large- to medium-sized arteries and is the main underlying cause of death worldwide. The lymphatic vasculature is critical for processes that are intimately linked to atherogenesis such as the immune response and cholesterol metabolism. However, whether lymphatic vessels truly contribute to the pathogenesis of atherosclerosis is less clear despite increasing research efforts in this field. PubMed and Ovid MEDLINE databases were searched. In addition, key review articles were screened for relevant original publications. Current knowledge about lymphatic vessels in the arterial wall came from studies that examined the presence and location of such vessels in human atherosclerotic plaque specimens, as well as in a variety of arteries in animal models for atherosclerosis (e.g. rabbits, dogs, rats and mice). Generally, three experimental approaches have been used to investigate the functional role of plaque-associated lymphatic vessels; experimental lymphostasis was used to investigate lymphatic drainage of the arterial wall, and more recently, studies with genetic interventions and/or surgical transplantation have been performed. Lymphatic vessels seem to be mostly present in the adventitial layer of the arterial walls of animals and humans. They are involved in reverse cholesterol transport from atherosclerotic lesions, and arteries with a dense lymphatic network seem naturally protected against atherosclerosis. Lymphangiogenesis is a process that is an important part of the inflammatory loop in atherosclerosis. However, how augmenting or impeding the distribution of lymphatic vessels impacts disease progression remains to be investigated in future studies. © 2014 Stichting European Society for Clinical Investigation Journal Foundation.

  20. Morphogenesis of the lymphatic vasculature: A focus on new progenitors and cellular mechanisms important for constructing lymphatic vessels.

    PubMed

    Kazenwadel, Jan; Harvey, Natasha L

    2016-03-01

    Lymphatic vessels serve crucial roles in the regulation of tissue fluid homeostasis, dietary lipid absorption and immune cell trafficking. Defects in lymphatic vessel morphogenesis and function have been associated with lymphedema, obesity, hypertension and tumour metastasis. Morphogenetic events important for construction of the lymphatic vasculature during development include the specification and emergence of lymphatic endothelial progenitor cells, their differentiation and assembly into interconnected vessels and vascular remodeling, ultimately giving rise to a functional vascular network. Despite the embryonic origins of lymphatic endothelial progenitor cells being long debated, work performed over the last decade had overwhelmingly supported at least a great majority of progenitor cells arising from the venous vasculature. Here, we review the most recent advances in the field of lymphatic vessel morphogenesis, with a focus on studies that have identified novel sources of embryonic lymphatic endothelial progenitor cells, together with the cellular mechanisms by which lymphatic vessels are initially assembled. © 2015 Wiley Periodicals, Inc.

  1. Interaction of tumor cells and lymphatic vessels in cancer progression.

    PubMed

    Alitalo, A; Detmar, M

    2012-10-18

    Metastatic spread of cancer through the lymphatic system affects hundreds of thousands of patients yearly. Growth of new lymphatic vessels, lymphangiogenesis, is activated in cancer and inflammation, but is largely inactive in normal physiology, and therefore offers therapeutic potential. Key mediators of lymphangiogenesis have been identified in developmental studies. During embryonic development, lymphatic endothelial cells derive from the blood vascular endothelium and differentiate under the guidance of lymphatic-specific regulators, such as the prospero homeobox 1 transcription factor. Vascular endothelial growth factor-C (VEGF-C) and VEGF receptor 3 signaling are essential for the further development of lymphatic vessels and therefore they provide a promising target for inhibition of tumor lymphangiogenesis. Lymphangiogenesis is important for the progression of solid tumors as shown for melanoma and breast cancer. Tumor cells may use chemokine gradients as guidance cues and enter lymphatic vessels through intercellular openings between endothelial cell junctions or, possibly, by inducing larger discontinuities in the endothelial cell layer. Tumor-draining sentinel lymph nodes show enhanced lymphangiogenesis even before cancer metastasis and they may function as a permissive 'lymphovascular niche' for the survival of metastatic cells. Although our current knowledge indicates that the development of anti-lymphangiogenic therapies may be beneficial for the treatment of cancer patients, several open questions remain with regard to the frequency, mechanisms and biological importance of lymphatic metastases.

  2. Electrophysiological Properties of Rat Mesenteric Lymphatic Vessels and their Regulation by Stretch

    PubMed Central

    Lee, Stewart; Imtiaz, Mohammad S.; Zawieja, David C.; Davis, Michael J.

    2014-01-01

    Abstract Background: In mammals, lymph is propelled centrally primarily via the phasic contractions of collecting lymphatic vessels, known as lymphatic pumping. Electrophysiological studies conducted in guinea pig and sheep mesenteric lymphatic vessels indicate that contractions are initiated in the lymphatic muscle by nifedipine-sensitive action potentials (APs). Lymphatic pumping is highly sensitive to luminal fluid loading and the mechanical properties of this stretch-induced pumping have been consistently studied, in particular in rat mesenteric lymphatic vessels. However, membrane potential (Vm) and the electrophysiological events underlying stretch-induced lymphatic pumping have not been investigated in the rat. The aim of this study was thus to examine the properties of rat mesenteric lymphatic muscle Vm under resting conditions and to assess changes in Vm caused by distension. Methods and Results: Lymphatic muscle Vm was measured with sharp intracellular microelectrodes either in unstretched conditions or under isometric tension provided by a wire-myograph. In unstretched vessels, Vm was −48±2 mV (n=30). APs (amplitude ∼25 mV) were observed at a frequency of ∼8/min and were abolished by nifedipine. Under isometric tension, Vm was less polarized (-36±1 mV, n=23), even at minimum tension. Increase in tension led to increase in contraction strength and contraction/AP frequency, while Vm was slightly hyperpolarized and AP amplitude not markedly altered. Conclusions: In our experimental conditions, rat lymphatic muscle has electrophysiological characteristics similar to that in other species. It responds to an increase in isometric tension with an increase in AP frequency, but resting Vm is not significantly affected. PMID:24865781

  3. Electrophysiological properties of rat mesenteric lymphatic vessels and their regulation by stretch.

    PubMed

    von der Weid, Pierre-Yves; Lee, Stewart; Imtiaz, Mohammad S; Zawieja, David C; Davis, Michael J

    2014-06-01

    In mammals, lymph is propelled centrally primarily via the phasic contractions of collecting lymphatic vessels, known as lymphatic pumping. Electrophysiological studies conducted in guinea pig and sheep mesenteric lymphatic vessels indicate that contractions are initiated in the lymphatic muscle by nifedipine-sensitive action potentials (APs). Lymphatic pumping is highly sensitive to luminal fluid loading and the mechanical properties of this stretch-induced pumping have been consistently studied, in particular in rat mesenteric lymphatic vessels. However, membrane potential (Vm) and the electrophysiological events underlying stretch-induced lymphatic pumping have not been investigated in the rat. The aim of this study was thus to examine the properties of rat mesenteric lymphatic muscle Vm under resting conditions and to assess changes in Vm caused by distension. Lymphatic muscle Vm was measured with sharp intracellular microelectrodes either in unstretched conditions or under isometric tension provided by a wire-myograph. In unstretched vessels, Vm was -48 ± 2 mV (n=30). APs (amplitude ∼25 mV) were observed at a frequency of ∼8/min and were abolished by nifedipine. Under isometric tension, Vm was less polarized (-36 ± 1 mV, n=23), even at minimum tension. Increase in tension led to increase in contraction strength and contraction/AP frequency, while Vm was slightly hyperpolarized and AP amplitude not markedly altered. In our experimental conditions, rat lymphatic muscle has electrophysiological characteristics similar to that in other species. It responds to an increase in isometric tension with an increase in AP frequency, but resting Vm is not significantly affected.

  4. Neither normal nor diseased placentas contain lymphatic vessels.

    PubMed

    Castro, E; Tony Parks, W; Galambos, C

    2011-04-01

    Scant data on placental lymphatic vessels have pointed to the absence of lymphatic circulation. A recent study on mesenchymal dysplasia (MD), however, has identified pathologic lymphangiogenesis using the D2-40 lymphatic marker. These conflicting data have prompted us to investigate whether lymphatic vessels are present in normal developing placentas and in placental disorders characterized by cistern formation. Seventeen human placentas without significant pathological abnormality ranging from 12 to 39 weeks of gestational age were studied. Cisternal placental disorders were represented by mesenchymal dysplasia (n = 1), partial hydatitiform mole (n = 2), spontaneous abortion (n = 3) and complete hydatiform mole (n = 2). To identify lymphatic vessels, we used lymphatic endothelial markers Prox-1 and D2-40. The pan-endothelial marker CD31 was used to highlight overall placental vasculature and to determine if the lining cells of cisterns were of endothelial origin. Lymphatic marker positivity was assessed in maternal (decidual) as well as in fetal (chorionic villous) vasculature. No staining with Prox-1 or D2-40 was identified in fetal vessels in developing or term placentas, or in selected cisternal placental disorders, although both markers highlighted a number of thin-walled decidual vessels. Cistern lining cells were negative for Prox-1, D2-40 and CD31. D2-40 consistently marked stromal cells in chorionic villi and highlighted perivascular/pericellular extracellular matrix. We established that no lymphatic vasculature is present in the chorionic villi during development, at term or in selected edematous placental disorders. The cisternal lining cells are not endothelial cells; most likely they are of stromal cell origin. Lymphangiogenesis is a part of decidual vascular remodeling during gestation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Lymphatic vessels of the human dental pulp in different conditions.

    PubMed

    Marchetti, C; Poggi, P; Calligaro, A; Casasco, A

    1992-09-01

    The characteristics of the lymphatic vessel endothelial wall have been investigated in human normal and inflamed dental pulps. In normal pulps the endothelial wall is characterized by the presence of micropinocytotic vesicles and intraparietal channels. In the inflamed pulpal tissue, where an increase in interstitial fluid pressure occurs, the distended endothelial wall presents open junctions between endothelial cells and the openings of the intraparietal channels. Moreover the micropinocytotic vesicles disappear. The cytoplasm of the endothelial cells is characterized by the presence of numerous Weibel-Palade bodies, which increase in number in the dilated vessels. In the fibrillar apparatus surrounding the lymphatic vessel wall collagen fibrils are the prevalent component, while elastic fibers are not present. The different morphological properties of the lymphatic vessels are compared and discussed with regard to the variation of the functional conditions of the tissue.

  6. How Do Meningeal Lymphatic Vessels Drain the CNS?

    PubMed

    Raper, Daniel; Louveau, Antoine; Kipnis, Jonathan

    2016-09-01

    The many interactions between the nervous and the immune systems, which are active in both physiological and pathological states, have recently become more clearly delineated with the discovery of a meningeal lymphatic system capable of carrying fluid, immune cells, and macromolecules from the central nervous system (CNS) to the draining deep cervical lymph nodes. However, the exact localization of the meningeal lymphatic vasculature and the path of drainage from the cerebrospinal fluid (CSF) to the lymphatics remain poorly understood. Here, we discuss the potential differences between peripheral and CNS lymphatic vessels and examine the purported mechanisms of CNS lymphatic drainage, along with how these may fit into established patterns of CSF flow. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Lymphatic Muscle Cells in Rat Mesenteric Lymphatic Vessels of Various Ages

    PubMed Central

    Bridenbaugh, Eric A.; Nizamutdinova, Irina Tsoy; Jupiter, Daniel; Nagai, Takashi; Thangaswamy, Sangeetha; Chatterjee, Victor

    2013-01-01

    Abstract Background Recent studies on aging-associated changes in mesenteric lymph flow in situ demonstrated predominance of the severe negative chronotropic effect of aging on the contractility of aged mesenteric lymphatic vessels (MLV). At the same time, contraction amplitude of the aged vessels was only slightly diminished by aging and can be rapidly stimulated within 5–15 minutes. However, the detailed quantitative evaluation of potential aging-associated changes in muscle cells investiture in MLV has never been performed. Methods and Results In this study we, for the first time, performed detailed evaluation of muscle cells investiture in MLV in reference to the position of lymphatic valve in different zones of lymphangion within various age groups (3-mo, 9-mo and 24-mo Fischer-344 rats). Using visual and quantitative analyses of the images of MLV immunohistochemically labeled for actin, we confirmed that the zones located close upstream (pre-valve zones) and above lymphatic valves (valve zones) possess the lowest investiture of lymphatic muscle cells. Most of the high muscle cells investiture zones exist downstream to the lymphatic valve (post-valve zones). The muscle cells investiture of these zones is not affected by aging, while pre-valve and valve zones demonstrate significant aging-associated decrease in muscle cells investiture. Conclusions The low muscle cells investiture zones in lymphatic vessels consist of predominantly longitudinally oriented muscle cells which are positioned in pre-valve and valve zones and connect adjacent lymphangions. These cells may provide important functional impact on the biomechanics of the lymphatic valve gating and electrical coupling between lymphangions, while their aging-associated changes may delimit adaptive reserves of aged lymphatic vessels. PMID:23531183

  8. Lymphatic muscle cells in rat mesenteric lymphatic vessels of various ages.

    PubMed

    Bridenbaugh, Eric A; Nizamutdinova, Irina Tsoy; Jupiter, Daniel; Nagai, Takashi; Thangaswamy, Sangeetha; Chatterjee, Victor; Gashev, Anatoliy A

    2013-03-01

    Recent studies on aging-associated changes in mesenteric lymph flow in situ demonstrated predominance of the severe negative chronotropic effect of aging on the contractility of aged mesenteric lymphatic vessels (MLV). At the same time, contraction amplitude of the aged vessels was only slightly diminished by aging and can be rapidly stimulated within 5-15 minutes. However, the detailed quantitative evaluation of potential aging-associated changes in muscle cells investiture in MLV has never been performed. In this study we, for the first time, performed detailed evaluation of muscle cells investiture in MLV in reference to the position of lymphatic valve in different zones of lymphangion within various age groups (3-mo, 9-mo and 24-mo Fischer-344 rats). Using visual and quantitative analyses of the images of MLV immunohistochemically labeled for actin, we confirmed that the zones located close upstream (pre-valve zones) and above lymphatic valves (valve zones) possess the lowest investiture of lymphatic muscle cells. Most of the high muscle cells investiture zones exist downstream to the lymphatic valve (post-valve zones). The muscle cells investiture of these zones is not affected by aging, while pre-valve and valve zones demonstrate significant aging-associated decrease in muscle cells investiture. The low muscle cells investiture zones in lymphatic vessels consist of predominantly longitudinally oriented muscle cells which are positioned in pre-valve and valve zones and connect adjacent lymphangions. These cells may provide important functional impact on the biomechanics of the lymphatic valve gating and electrical coupling between lymphangions, while their aging-associated changes may delimit adaptive reserves of aged lymphatic vessels.

  9. [Sonographic imaging of lymphatic vessels compared to other methods].

    PubMed

    Matter, D; Grosshans, E; Muller, J; Furderer, C; Mathelin, C; Warter, S; Bellocq, J P; Maillot, C

    2002-05-01

    This paper reviews for the first time the normal and abnormal appearances of lymphatic channels of the skin using ultrasound. After a review of anatomy and histology, the authors present the current imaging modalities available for lymph vessel imaging. The ultrasound examination is presented with a description of the author's technique as well as the technical requirements of the ultrasound unit (12 MHz linear probe with a resolution of 400 microns). They present the ultrasound appearance of normal lymphatic channels and their relationships to the dermis, hypodermis and lymph nodes, and at last the ultrasound appearance of abnormal lymphatic pathways

  10. Lymphatic vessel density and function in experimental bladder cancer

    PubMed Central

    Saban, Marcia R; Towner, Rheal; Smith, Nataliya; Abbott, Andrew; Neeman, Michal; Davis, Carole A; Simpson, Cindy; Maier, Julie; Mémet, Sylvie; Wu, Xue-Ru; Saban, Ricardo

    2007-01-01

    Background The lymphatics form a second circulatory system that drains the extracellular fluid and proteins from the tumor microenvironment, and provides an exclusive environment in which immune cells interact and respond to foreign antigen. Both cancer and inflammation are known to induce lymphangiogenesis. However, little is known about bladder lymphatic vessels and their involvement in cancer formation and progression. Methods A double transgenic mouse model was generated by crossing a bladder cancer-induced transgenic, in which SV40 large T antigen was under the control of uroplakin II promoter, with another transgenic mouse harboring a lacZ reporter gene under the control of an NF-κB-responsive promoter (κB-lacZ) exhibiting constitutive activity of β-galactosidase in lymphatic endothelial cells. In this new mouse model (SV40-lacZ), we examined the lymphatic vessel density (LVD) and function (LVF) during bladder cancer progression. LVD was performed in bladder whole mounts and cross-sections by fluorescent immunohistochemistry (IHC) using LYVE-1 antibody. LVF was assessed by real-time in vivo imaging techniques using a contrast agent (biotin-BSA-Gd-DTPA-Cy5.5; Gd-Cy5.5) suitable for both magnetic resonance imaging (MRI) and near infrared fluorescence (NIRF). In addition, IHC of Cy5.5 was used for time-course analysis of co-localization of Gd-Cy5.5 with LYVE-1-positive lymphatics and CD31-positive blood vessels. Results SV40-lacZ mice develop bladder cancer and permitted visualization of lymphatics. A significant increase in LVD was found concomitantly with bladder cancer progression. Double labeling of the bladder cross-sections with LYVE-1 and Ki-67 antibodies indicated cancer-induced lymphangiogenesis. MRI detected mouse bladder cancer, as early as 4 months, and permitted to follow tumor sizes during cancer progression. Using Gd-Cy5.5 as a contrast agent for MRI-guided lymphangiography, we determined a possible reduction of lymphatic flow within the

  11. Lymphatic vessels are essential for the removal of cholesterol from peripheral tissues by SR-BI-mediated transport of HDL.

    PubMed

    Lim, Hwee Ying; Thiam, Chung Hwee; Yeo, Kim Pin; Bisoendial, Radjesh; Hii, Chung Shii; McGrath, Kristine C Y; Tan, Kar Wai; Heather, Alison; Alexander, J Steven Jonathan; Angeli, Veronique

    2013-05-07

    Removal of cholesterol from peripheral tissues to the bloodstream via reverse cholesterol transport (RCT) is a process of major biological importance. Here we demonstrate that lymphatic drainage is required for RCT. We have previously shown that hypercholesterolemia in mice is associated with impaired lymphatic drainage and increased lipid accumulation in peripheral tissues. We now show that restoration of lymphatic drainage in these mice significantly improves cholesterol clearance. Conversely, obstruction of lymphatic vessels in wild-type mice significantly impairs RCT. Finally, we demonstrate using silencing RNA interference, neutralizing antibody, and transgenic mice that removal of cholesterol by lymphatic vessels is dependent on the uptake and transcytosis of HDL by scavenger receptor class B type I expressed on lymphatic endothelium. Collectively, this study challenges the current view that lymphatic endothelium is a passive exchange barrier for cholesterol transport and provides further evidence for its interplay with lipid biology in health and disease. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. The distribution and morphology of lymphatic vessels on the peritoneal surface of the adult human diaphragm, as revealed by an ink-absorption method.

    PubMed

    Shinohara, Harumichi; Kominami, Rieko; Taniguchi, Yutaka; Yasutaka, Satoru

    2003-03-01

    Application of india ink to the peritoneal and pleural surfaces of the adult human diaphragm allowed visualization of the distribution and morphology of the lymphatic vessels by light microscopy and scanning electron microscopy. The diaphragms examined had been fixed and stored in 10% formalin. Numerous lymphatic vessels were stained black with india ink, presenting reticular, radial-meshwork, ladder-like and lacy patterns. They were distributed throughout the entire sternocostal part. Analysis by light and scanning electron microscopy of the areas indicated by india ink revealed the presence of primary lymphatic vessels that formed lymphatic lacunae and stomatal openings to the peritoneal cavity. A layer of secondary collecting lymphatic vessels was located cranially with respect to the layer of primary lymphatic vessels. Thus, the peritoneum had at least two layers of lymphatic vessels. These lymphatic vessels were not tubular vessels but resembled flat cisternae, as has been suggested in the case of the mouse diaphragm. The pleura lacked lymphatic stomata and had no such double-layered lymphatic organization. This is the first report that showed distribution and morphology of the lymphatic vessels in the diaphragmatic peritoneum of the formalin-fixed, adult human diaphragm. The method and results in the present study may contribute to morphological analysis of the lymphatic system in the wall of the human body cavity.

  13. Immunocytochemical localization of lymphatic and venous vessels in colonic polyps and adenomas.

    PubMed

    Tomita, Tatsuo

    2008-07-01

    Histopathological localization of lymphatic vessels has been hindered because of a lack of suitable immunocytochemical markers for lymphatic vessels. Using lymphatic vessels endothelial hyaluronan receptor-1 (LYVE-1) immunocytochemical staining, hyperplastic polyps, tubular adenomas to villous adenomas, were investigated for lymphatic vessels compared with immunostained blood vessels using factor-8. Four cases each of hyperplastic polyps, tubular adenomas to villous adenomas, were routinely fixed in formalin and embedded in paraffin and were immunostained using goat anti-LYVE-1 for lymphatic vessels and rabbit anti-factor-8 for blood vessels. In normal colon and hyperplastic polyps, slender lymphatic vessels were noted in muscularis mucosa, which spread into the base of colonic crypt, whereas round venous vessels, they extend into lamina propria. In tubular adenomas, small lymphatic and venous vessels were noted in broad fibrous stalks. In villous adenomas, smaller lymphatic and venous vessels were noted in fine intervillous stroma. In normal colon and hyperplastic polyps, slender, irregularly shaped lymphatic vessels were present in muscularis mucosa, spreading into the base of the colonic crypt. In tubular adenomas, small lymphatic and venous vessels were noted in fibrous stalks. In villous adenomas, smaller lymphatic and venous vessels were noted in intervillous stroma. There are no increased lymphatic and venous vessels in intermucosal stroma and stalks of adenomas compared with normal colon.

  14. Absence of lymphatic vessels in the developing human sclera.

    PubMed

    Schlereth, Simona L; Neuser, Barbara; Herwig, Martina C; Müller, Annette M; Koch, Konrad R; Reitsamer, Herbert A; Schrödl, Falk; Cursiefen, Claus; Heindl, Ludwig M

    2014-08-01

    The adult sclera is free of lymphatic vessels, but contains a net of blood vessels. Whether and when this selectively lymphangiogenic privilege is achieved during embryologic development is not known yet. Therefore, we investigated the developing human sclera for blood- and lymphatic vessels in 34 abortions/stillborns (12-38 weeks of gestation). The probes were subdivided into three groups (group 1: 12-18 weeks of gestation, n = 10; group 2: 19-23 weeks of gestation, n = 13; group 3: 24-38 weeks of gestation, n = 11), and prepared for paraffin sections followed by immunohistochemistry against CD31 to detect blood vessels, and against lymphatic vessel endothelial hyaluronan receptor-1 (LYVE1)/podoplanin to detect lymphatic vessels. We could show, that in the human episclera distinct CD31 + blood vessels are present as early as week of gestation 13. Their amount increased during pregnancy, whereas stromal CD31 + blood vessels were elevated in early pregnancy and regressed with ongoing pregnancy. In the lamina fusca CD31 + blood vessels were absent at any time point investigated. Single LYVE1 + cells were identified primarily in the episclera; their amount decreased significantly with increasing gestational ages (group 1 compared to group 3: p < 0.01). However, LYVE1+/podoplanin + lymphatic vessels were not detectable in the sclera at any gestational ages analyzed. In contrast to the conjunctiva where LYVE1+/podoplanin + lymphatic vessels were detectable as early as week 17, the amount of LYVE1 + cells in the sclera was highest in early pregnancy (group 1), with a significant decrease during continuing pregnancy (p < 0.001). These findings are the first evidence for a fetal lymphangiogenic privilege of the sclera and show, that the fetal human sclera contains CD31 + blood vessels, but is primarily alymphatic. Our findings suggest a strong expression of selectively antilymphangiogenic factors, making the developing sclera a potential model to

  15. Roles of transcriptional network during the formation of lymphatic vessels.

    PubMed

    Watabe, Tetsuro

    2012-09-01

    The lymphatic vascular system, also known as the second vascular system in vertebrates, plays crucial roles in various physiological and pathological processes. It participates in the maintenance of normal tissue fluid balance, trafficking of the immune cells and absorption of fatty acids in the gut. Furthermore, lymphatic system is associated with the pathogenesis of a number of diseases, including lymphedema, inflammatory diseases and tumour metastasis. Lymphatic vessels are comprised of lymphatic endothelial cells (LECs), which are differentiated from blood vascular endothelial cells. This review highlights recent advances in our understanding of the transcriptional control of LEC fate determination and reflects on efforts to understand the roles of transcriptional networks during this discrete developmental process.

  16. Utility of a microwave surgical instrument in sealing lymphatic vessels.

    PubMed

    Takebayashi, Katsushi; Shiomi, Hisanori; Naka, Shigeyuki; Murayama, Hiroyuki; Murakami, Koichiro; Akabori, Hiroya; Yamaguchi, Tsuyoshi; Shimizu, Tomoharu; Murata, Satoshi; Yamamoto, Hiroshi; Kurumi, Yoshimasa; Tani, Tohru

    2013-08-01

    This study assessed the ability of a novel microwave coagulation surgical instrument (MWCX) to seal lymphatic vessels when compared with LigaSure (Valleylab, Boulder, CO), the Harmonic Scalpel (HS; Ethicon Endo-Surgery, Cincinnati, OH), and electric cautery. The burst pressure of pig inguinal lymphatic vessels was assessed after the sealing of vessels with each surgical instrument. The rate of lymphorrhea from pig mesenteric lymphatic vessels was also investigated using indocyanine green and visualized with the Photodynamic Eye system (Hamamatsu Hotoniks, Hamamatsu, Japan). Burst pressures were higher with MWCX (average, 300 mm Hg), LigaSure (average, 290 mm Hg), and HS (average, 253 mm Hg) when compared with electric cautery (average, 152.3 mm Hg; vs MWCX: P = .002, vs LigaSure: P = .002, vs HS: P = .004). The rate of lymphorrhea was significantly lower with LigaSure (13.3%), HS (18.8%), and MWCX (13.3%) when compared with electric cautery (77.3%; vs LigaSure: P < .001, vs HS: P < .001, vs MWCX: P < .001). MWCX was equivalent to LigaSure and HS in terms of the ability to seal lymphatic vessels. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Immunomodulatory roles of lymphatic vessels in cancer progression.

    PubMed

    Swartz, Melody A

    2014-08-01

    Lymphatic vessels in the tumor microenvironment are known to foster tumor metastasis in many cancers, and they can undergo activation, hyperplasia, and lymphangiogenesis in the tumor microenvironment and in the tumor-draining lymph node. The mechanism underlying this correlation was originally considered as lymphatic vessels providing a physical route for tumor cell dissemination, but recent studies have highlighted new roles of the lymphatic endothelium in regulating host immunity. These include indirectly suppressing T-cell function by secreting immunosuppressive factors and inhibiting dendritic cell (DC) maturation, as well as directly driving T-cell tolerance by antigen presentation in the presence of inhibitory ligands. Furthermore, lymphatic endothelium scavenges and regulates transendothelial transport actively, controlling the sustained delivery of lymph-borne antigens from chronically inflamed tissues to draining lymph nodes where immature DCs, in the absence of danger signals, along with lymph node stromal cells present these antigens to T cells for maintenance of peripheral tolerance to self-antigens, a mechanism that may be hijacked by some tumors. This Masters of Immunology primer aims to present an overview of research in this area and highlight emerging evidence that suggests lymphatic vessels, and lymphangiogenesis, play important immunomodulatory roles in the tumor microenvironment. ©2014 American Association for Cancer Research.

  18. High relative density of lymphatic vessels predicts poor survival in tongue squamous cell carcinoma.

    PubMed

    Seppälä, Miia; Pohjola, Konsta; Laranne, Jussi; Rautiainen, Markus; Huhtala, Heini; Renkonen, Risto; Lemström, Karl; Paavonen, Timo; Toppila-Salmi, Sanna

    2016-12-01

    Tongue cancer has a poor prognosis due to its early metastasis via lymphatic vessels. The present study aimed at evaluating lymphatic vessel density, relative density of lymphatic vessel, and diameter of lymphatic vessels and its predictive role in tongue cancer. Paraffin-embedded tongue and lymph node specimens (n = 113) were stained immunohistochemically with a polyclonal antibody von Willebrand factor, recognizing blood and lymphatic endothelium and with a monoclonal antibody podoplanin, recognizing lymphatic endothelium. The relative density of lymphatic vessels was counted by dividing the mean number of lymphatic vessels per microscopic field (podoplanin) by the mean number of all vessels (vWf) per microscopic field. The high relative density of lymphatic vessels (≥80 %) was associated with poor prognosis in tongue cancer. The relative density of lymphatic vessels predicted poor prognosis in the group of primary tumor size T1-T2 and in the group of non-metastatic cancer. The lymphatic vessel density and diameter of lymphatic vessels were not associated with tongue cancer survival. The relative density of lymphatic vessels might have clinically relevant prognostic impact. Further studies with increased number of patients are needed.

  19. Short time effects of radiotherapy on lymphatic vessels and restorative lymphatic pathways: experimental approaches ina mouse model.

    PubMed

    Pastouret, F; Lievens, P; Leduc, O; Bourgeois, P; Tournel, K; Lamote, J; Zirak, C; Leduc, A

    2014-06-01

    Radiotherapy (RT) is an important component in the therapeutic approach to oncologic conditions. This study presents the investigative results on the impact of RT on lymphatic vessels and on the regenerative response of the lymphatic system in a mouse model. We first irradiated 3 groups of ten mice using brachytherapy in a single treatment of 20 Gy. We then performed morphological examination of the irradiated lymphatic vessels using an in vivo microscopic transillumination technique at 2, 4, and 6 weeks. Next we evaluated lymphatic flow using lymphoscintigraphy and in vivo microscopy at 6 to 11 weeks in: 10 additional mice following irradiation as above (IR), in 10 mice following incision of a lymphatic vessel (I), and in a non-treated control group of 10 mice (N). Intact lymphatic vessels were observed in all mice at 2, 4, and 8 weeks following the single dose of radiotherapy in the first group of mice and normal lymphatic flow was fully restored in the irradiated (IR) and incised (I) mice indicating that the reparative substitution lymphatic pathways are functioning normally. We found that following irradiation with one dose of 20 Gy, lymphatic vessels were not visibly damaged and also that lymphatic flow was consistently restored and substitutive lymphatic pathways formed.

  20. Reconstitution of myocardial lymphatic vessels after acute infarction of rat heart.

    PubMed

    Sun, Q N; Wang, Y F; Guo, Z K

    2012-06-01

    We investigated the regeneration of cardiac lymphatic vessels and capillaries in the infarcted myocardiac zones after acute myocardial infarction in rats. The anterior descending artery of the heart was ligated for infarction and both immunohistochemistry and immunofluorescence were used to detect pathological changes of lymphatic vessels in infarcted zone (IZ), infarcted margin zone (MZ) and remote margin zone (RMZ) on days 7, 14, 21, and 28 after surgery. Dynamic variation of lymphatic vessels existed in IZ, MZ and RMZ at different stages after surgery. At day 7, lymphatic vessels and capillaries were not seen in the IZ, very thin lymphatic capillaries were obviously increased in the inner layer of the margin zone, and enlarged and increased lymphatic capillaries were found in the outer layer of margin zone. At 14 days, a few sparsely arranged lymphatic capillaries were observed in the IZ without marked changes in the MZ. At 21 days, constricted regenerating lymphatic capillaries in MZ were decreased, and lymphatic vessels exhibited sprouting towards the IZ. At 28 days, more lymphatic capillaries emerged in the IZ, and the morphology and number of lymphatic vessels and capillaries had returned to normal. There were no marked changes of lymphatic vessels and capillaries in RMZ compared to control myocardium at the 4 time points. This study demonstrates varied remodeling of lymphatic vessels and capillaries in the IZ and MZ after acute myocardial infarction, and these changes in lymphatic vessels likely play an important role for recovery of infarcted myocardiac function.

  1. Lymphatic endothelium forms integrin-engaging 3D structures during DC transit across inflamed lymphatic vessels.

    PubMed

    Teijeira, Alvaro; Garasa, Saray; Peláez, Rafael; Azpilikueta, Arantza; Ochoa, Carmen; Marré, Diego; Rodrigues, Magda; Alfaro, Carlos; Aubá, Cristina; Valitutti, Salvatore; Melero, Ignacio; Rouzaut, Ana

    2013-09-01

    Dendritic cell (DC) transmigration across the lymphatic endothelium is critical for the initiation and sustenance of immune responses. Under noninflammatory conditions, DC transit across the lymphatic endothelial cell (LEC) has been shown to be integrin independent. In contrast, there is increasing evidence for the participation of integrins and their ligands in DC transit across lymphatic endothelium under inflammation. In this sense, we describe the formation of ICAM-1 (CD54)-enriched three-dimensional structures on LEC/DC contacts, as these DCs adhere to inflamed skin lymphatic vessels and transmigrate into them. In vitro imaging revealed that under inflammation ICAM-1 accumulated on microvilli projections surrounding 60% of adhered DCs. In contrast, these structures were scarcely formed in noninflammatory conditions. Furthermore, ICAM-1-enriched microvilli were important in promoting DC transendothelial migration and DC crawling over the LEC surface. Microvilli formation was dependent on the presence of β-integrins on the DC side and on integrin conformational affinity to ligand. Finally, we observed that LEC microvilli structures appeared in close vicinity of CCL21 depots and that their assembly was partially inhibited by CCL21-neutralizing antibodies. Therefore, under inflammatory conditions, integrin ligands form three-dimensional membrane projections around DCs. These structures offer docking sites for DC transit from the tissue toward the lymphatic vessel lumen.

  2. Structural and functional features of central nervous system lymphatic vessels.

    PubMed

    Louveau, Antoine; Smirnov, Igor; Keyes, Timothy J; Eccles, Jacob D; Rouhani, Sherin J; Peske, J David; Derecki, Noel C; Castle, David; Mandell, James W; Lee, Kevin S; Harris, Tajie H; Kipnis, Jonathan

    2015-07-16

    One of the characteristics of the central nervous system is the lack of a classical lymphatic drainage system. Although it is now accepted that the central nervous system undergoes constant immune surveillance that takes place within the meningeal compartment, the mechanisms governing the entrance and exit of immune cells from the central nervous system remain poorly understood. In searching for T-cell gateways into and out of the meninges, we discovered functional lymphatic vessels lining the dural sinuses. These structures express all of the molecular hallmarks of lymphatic endothelial cells, are able to carry both fluid and immune cells from the cerebrospinal fluid, and are connected to the deep cervical lymph nodes. The unique location of these vessels may have impeded their discovery to date, thereby contributing to the long-held concept of the absence of lymphatic vasculature in the central nervous system. The discovery of the central nervous system lymphatic system may call for a reassessment of basic assumptions in neuroimmunology and sheds new light on the aetiology of neuroinflammatory and neurodegenerative diseases associated with immune system dysfunction.

  3. Weibel-Palade bodies and lymphatic endothelium: observations in the lymphatic vessels of normal and inflamed human dental pulps.

    PubMed

    Marchetti, C

    1996-01-01

    The Weibel-Palade bodies, cytoplasmic organelles characterizing endothelial cells, are abundant in lymphatic capillary endothelium of human dental pulp. Their number almost double in the lymphatic vessels of inflamed dental pulps. The data were discussed and compared with others concerning the demonstration of the presence of von Willebrand factor and P-selectin in the Weibel-Palade bodies of lymphatic vessels in mesentery. It is suggested that the increase in the number of Weibel-Palade bodies observed in dental pulp may be connected along with those in the lymphatic vessels to the function that these adhesive molecules play during inflammatory states.

  4. Visualisation and stereological assessment of blood and lymphatic vessels.

    PubMed

    Lokmic, Zerina; Mitchell, Geraldine M

    2011-06-01

    The physiological processes involved in tissue development and regeneration also include the parallel formation of blood and lymphatic vessel circulations which involves their growth, maturation and remodelling. Both vascular systems are also frequently involved in the development and progression of pathological conditions in tissues and organs. The blood vascular system circulates oxygenated blood and nutrients at appropriate physiological levels for tissue survival, and efficiently removes all waste products including carbon dioxide. This continuous network consists of the heart, aorta, arteries, arterioles, capillaries, post-capillary venules, venules, veins and vena cava. This system exists in an interstitial environment together with the lymphatic vascular system, including lymph nodes, which aids maintenance of body fluid balance and immune surveillance. To understand the process of vascular development, vascular network stability, remodelling and/or regression in any research model under any experimental conditions, it is necessary to clearly and unequivocally identify and quantify all elements of the vascular network. By utilising stereological methods in combination with cellular markers for different vascular cell components, it is possible to estimate parameters such as surface density and surface area of blood vessels, length density and length of blood vessels as well as absolute vascular volume. This review examines the current strategies used to visualise blood vessels and lymphatic vessels in two- and three-dimensions and the basic principles of vascular stereology used to quantify vascular network parameters.

  5. Itching for answers: how histamine relaxes lymphatic vessels.

    PubMed

    Scallan, Joshua P; Davis, Michael J

    2014-10-01

    In the current issue of Microcirculation, studies by Kurtz et al. and Nizamutdinova et al. together provide new evidence supporting a role for histamine as an endothelial-derived molecule that inhibits lymphatic muscle contraction. In particular, Nizamutdinova et al. show that the effects of flow-induced shear stress on lymphatic endothelium are mediated by both nitric oxide and histamine, since only blockade of both prevents contraction strength and frequency from being altered by flow. Separately, Kurtz et al. used confocal microscopy to determine a preferential expression of histamine receptors on the lymphatic endothelium and demonstrated that histamine applied to spontaneously contracting collecting lymphatics inhibits contractions. Previous studies disagreed on whether histamine stimulates or inhibits lymphatic contractions, but also used differing concentrations, species, and preparations. Together these new reports shed light on how histamine acts within the lymphatic vasculature, but also raise important questions about the cell type on which histamine exerts its effects and the signaling pathways involved. This editorial briefly discusses the contribution of each study and its relevance to lymphatic biology. © 2014 John Wiley & Sons Ltd.

  6. Aberrant mural cell recruitment to lymphatic vessels and impaired lymphatic drainage in a murine model of pulmonary fibrosis.

    PubMed

    Meinecke, Anna-Katharina; Nagy, Nadine; Lago, Gabriela D'Amico; Kirmse, Santina; Klose, Ralph; Schrödter, Katrin; Zimmermann, Annika; Helfrich, Iris; Rundqvist, Helene; Theegarten, Dirk; Anhenn, Olaf; Orian-Rousseau, Véronique; Johnson, Randall S; Alitalo, Kari; Fischer, Jens W; Fandrey, Joachim; Stockmann, Christian

    2012-06-14

    Pulmonary fibrosis is a progressive disease with unknown etiology that is characterized by extensive remodeling of the lung parenchyma, ultimately resulting in respiratory failure. Lymphatic vessels have been implicated with the development of pulmonary fibrosis, but the role of the lymphatic vasculature in the pathogenesis of pulmonary fibrosis remains enigmatic. Here we show in a murine model of pulmonary fibrosis that lymphatic vessels exhibit ectopic mural coverage and that this occurs early during the disease. The abnormal lymphatic vascular patterning in fibrotic lungs was driven by expression of platelet-derived growth factor B (PDGF-B) in lymphatic endothelial cells and signaling through platelet-derived growth factor receptor (PDGFR)-β in associated mural cells. Because of impaired lymphatic drainage, aberrant mural cell coverage fostered the accumulation of fibrogenic molecules and the attraction of fibroblasts to the perilymphatic space. Pharmacologic inhibition of the PDGF-B/PDGFR-β signaling axis disrupted the association of mural cells and lymphatic vessels, improved lymphatic drainage of the lung, and prevented the attraction of fibroblasts to the perilymphatic space. Our results implicate aberrant mural cell recruitment to lymphatic vessels in the pathogenesis of pulmonary fibrosis and that the drainage capacity of pulmonary lymphatics is a critical mediator of fibroproliferative changes.

  7. Relationship between high density of peritumoral lymphatic vessels and biological behavior of cervical cancer.

    PubMed

    En-Lin, Song; Wei-Wei, Yu; Xiao-Liang, Xiong; Juan, Xu

    2012-10-01

    To investigate the relationship between lymphangiogenesis and lymphatic metastasis in cervical squamous carcinoma. Eighty cases of invasive cervical squamous cancer were selected as objects of our study. Double immunohistochemical staining with antibodies against lymphatic vessel endothelial hyaluronan receptor 1 and Ki-67 was used to label the lymphatic vessels and mark the proliferative lymphatic vessels in cervical squamous cancer. The peritumoral lymphatic vessel density and intratumoral lymphatic vessel density was assessed. The lymphatic vessels proliferation index was evaluated by calculating Ki-67 proliferation index (PI) to reflect the lymphangiogenesis of cervical squamous cancer. Then the correlation between lymphangiogenesis and clinicopathologic features of cervical squamous cancer was analyzed. The LVD of cervical cancer (15.23 ± 3.6) was clearly higher than that of the adjacent normal cervical subepithelial tissues (9.9 ± 2.5, P < 0.001). The peritumoral lymphatic vessel density of cervical cancer (18.75 ± 4.3) was significantly higher than the intratumoral lymphatic vessel density of cervical cancer (11.71 ± 4.9, P < 0.001). Lymphatic PI (LPI) of cervical cancer (0.258 ± 0.07) was higher than that of the adjacent normal cervical subepithelial tissues (0.068 ± 0.08, P < 0.001). The peritumoral lymphatic vessel PI of cervical cancer (0.324 ± 0.06) was notably higher than the intratumoral lymphatic vessel PI of cervical cancer (0.232 ± 0.06, P < 0.001). Peritumoral lymphatic vessel density and peritumoral lymphatic vessel were clearly associated with the lymph node metastasis (P = 0.001 and P = 0.002, respectively) and lymphovascular space invasion (P = 0.024 and P = 0.01, respectively). The high density of peritumoral lymphatic vessels is a potential predictor of more aggressive phenotype of cervical squamous cancer.

  8. Lymphatic vessels in the development of tissue and organ rejection.

    PubMed

    Hos, Deniz; Cursiefen, Claus

    2014-01-01

    The lymphatic vascular system-amongst other tasks-is critically involved in the regulation of adaptive immune responses as it provides an important route for APC trafficking to secondary lymphatic organs. In this context, the cornea, which is the transparent and physiologically avascular "windscreen" of the eye, has served as an excellent in vivo model to study the role of the blood and lymphatic vasculature in mediating allogenic immune responses after transplantation. Especially the mouse model of high-risk corneal transplantation, where corneal avascularity is abolished by a severe inflammatory stimulus prior to keratoplasty, allows for comparison to other transplantations performed in primarily vascularized tissues and solid organs. Using this model, we recently demonstrated that especially lymphatic vessels, but not blood vessels, define the high-risk status of vascularized corneas and that anti(lymph)angiogenic treatment significantly promotes corneal allograft survival. Since evidence for lymphangiogenesis and its potential association with graft rejection is nowadays also present in solid organ transplantation, studies are currently addressing the potential benefits of anti(lymph)angiogenic treatment as a novel therapeutic concept also in solid organ grafting with promising initial results.

  9. The position- and lymphatic lumen-controlled tissue chambers to study live lymphatic vessels and surrounding tissues ex vivo.

    PubMed

    Maejima, Daisuke; Nagai, Takashi; Bridenbaugh, Eric A; Cromer, Walter E; Gashev, Anatoliy A

    2014-09-01

    Until now, there has been no tool available to provide lymphatic researchers the ability to perform experiments in tissue explants containing lymphatic vessels under tissue position- and lymphatic lumen-controlled conditions. In this article we provide technical details and description of the method of using the newly developed and implemented the position- and lymphatic lumen-controlled tissue chambers to study live lymphatic vessels and surrounding tissues ex vivo. In this study, we, for the first time, performed detailed comparative analysis of the contractile and pumping activity of rat mesenteric lymphatic vessels (MLVs) situated within tissue explants mounted in new tissue chambers and isolated, cannulated, and pressurized rat MLVs maintained in isolated vessel setups. We found no significant differences of the effects of both transmural pressure- and wall shear stress sensitivities of MLVs in tissue chambers and isolated MLVs. We conclude that this new experimental tool, a position- and lymphatic lumen-controlled tissue chamber, allows precise investigation of lymphatic function of MLVs interacting with elements of the tissue microenvironment. This method provides an important new set of experimental tools to investigate lymphatic function.

  10. Increased lymphatic vessels in patients with encapsulating peritoneal sclerosis.

    PubMed

    Yaginuma, Tatsuhiro; Yamamoto, Izumi; Yamamoto, Hiroyasu; Mitome, Jun; Tanno, Yudo; Yokoyama, Keitaro; Hayashi, Takenori; Kobayashi, Tetsuya; Watanabe, Michiaki; Yamaguchi, Yutaka; Hosoya, Tatsuo

    2012-01-01

    The angiogenic response is partly involved in the progression of encapsulating peritoneal sclerosis (EPS). However, the details of the angiogenic response, especially for lymphatic vessels in patients with EPS, remain unclear. In addition, because of technical limitations, morphology studies reported to date have examined only the parietal peritoneum. The morphologies of parietal and visceral lymphatic vessels in patients with EPS both need to be analyzed. We examined peritoneal samples from 18 patients with EPS who underwent enterolysis of the visceral peritoneum and compared them with samples from 17 autopsy cases (controls). To examine the angiogenic response, we performed immunohistochemistry for the endothelial markers CD34 (blood vessels) and podoplanin (lymphatic vessels) and for the cell proliferation marker Ki-67. Immunogold electron microscopy analysis for podoplanin was also performed. In 7 of 18 cases, we compared differences in the angiogenic response of the parietal and visceral peritoneal membranes. Angiogenic responses were more frequent in the compact zone than in regenerated layers. The number of capillaries positive for anti-CD34 and anti-podoplanin monoclonal antibodies per unit area of visceral peritoneal tissue was, respectively, 41.1 ± 29.3/mm(2) in EPS patients and 2.7 ± 4.4/mm(2) in controls (p ≤ 0.01) and 48.1 ± 43.9/mm(2) in EPS patients and 4.1 ± 5.4/mm(2) in controls (p ≤ 0.01). The percentage of capillaries positive for anti-Ki-67, CD34, and podoplanin was 4.6% in EPS patients (p ≤ 0.01) and 0.8% in controls (p = 0.09). The immunogold electron microscopy analysis revealed that podoplanin was localized to endothelial cells with anchoring filaments, a specific feature of lymphatic vessels. Furthermore, compared with parietal peritoneal membrane, visceral peritoneal membrane had a more prominent podoplanin-positive capillary profile, but not a prominent CD34-positive capillary profile. In addition, fibroblast-like cells double

  11. Supermicrosurgical deep lymphatic vessel-to-venous anastomosis for a breast cancer-related arm lymphedema with severe sclerosis of superficial lymphatic vessels.

    PubMed

    Yamamoto, Takumi; Yamamoto, Nana; Hayashi, Akitatsu; Koshima, Isao

    2017-02-01

    Lymphatic supermicrosurgery or supermicrosurgical lymphaticovenular anastomosis (LVA) is becoming popular for the treatment of compression-refractory upper extremity lymphedema (UEL) with its effectiveness and minimally invasiveness. In conventional LVA, superficial lymphatic vessels are used for anastomosis, but its treatment efficacy would be minimum when superficial lymphatic vessels are severely sclerotic. Theoretically, deep lymphatic vessels can be used for LVA, but no clinical case has been reported regarding deep lymphatic vessel-to-venous anastomosis (D-LVA). We report a breast cancer-related UEL case treated with D-LVA, in which a less-sclerotic deep lymphatic vessel was useful for anastomosis but superficial lymphatic vessels were not due to severe sclerosis. A 62-year-old female suffered from an 18-year history of compression-refractory right UEL after right breast cancer treatments, and underwent LVA under local infiltration anesthesia. Because superficial lymphatic vessels found in surgical fields were all severely sclerotic, a deep lymphatic vessel was dissected at the cubital fossa. A 0.50-mm deep lymphatic vessel running along the brachial artery was supermicrosurgically anastomosed to a nearby 0.40-mm vein. At postoperative 12 months, her right UEL index decreased from 134 to 118, and she could reduce compression frequency from every day to 1-2 days per week to maintain the reduced lymphedematous volume. D-LVA may be a useful option for the treatment of compression-refractory UEL, when superficial lymphatic vessels are severely sclerotic. © 2015 Wiley Periodicals, Inc. Microsurgery 37:156-159, 2017. © 2015 Wiley Periodicals, Inc.

  12. Progression of Inflammatory Bowel Disease to Cancer: Is the Patient Better Off without Lymphatic Vessels or Nodes (or Angiopoietin 2)?

    DTIC Science & Technology

    2012-10-01

    number of functioning lymphatic vessels and impaired lymph drainage (lymphatic vascular insufficiency) in the colon actually protects against...have remained elusive. We proposed that having a reduced number of functioning lymphatic vessels and impaired lymph drainage (lymphatic vascular...Lymphatics, Lymph and the Lymphomyeloid Complex. Academic Press, London, 942 p, 1970. Appendices None Supporting Data None

  13. Use of Magnetic Nanoparticles to Visualize Threadlike Structures Inside Lymphatic Vessels of Rats

    PubMed Central

    Johng, Hyeon-Min; Yoo, Jung Sun; Yoon, Tae-Jong; Shin, Hak-Soo; Lee, Byung-Cheon; Lee, Changhoon; Lee, Jin-Kyu

    2007-01-01

    A novel application of fluorescent magnetic nanoparticles was made to visualize a new tissue which had not been detectable by using simple stereomicroscopes. This unfamiliar threadlike structure inside the lymphatic vessels of rats was demonstrated in vivo by injecting nanoparticles into lymph nodes and applying magnetic fields on the collecting lymph vessels so that the nanoparticles were taken up by the threadlike structures. Confocal laser scanning microscope images of cryosectioned specimens exhibited that the nanoparticles were absorbed more strongly by the threadlike structure than by the lymphatic vessels. Further examination using a transmission electron microscope revealed that the nanoparticles had been captured between the reticular fibers in the extracellular matrix of the threadlike structures. The emerging technology of nanoparticles not only allows the extremely elusive threadlike structures to be visualized but also is expected to provide a magnetically controllable means to investigate their physiological functions. PMID:17342244

  14. Could MRI visualize the invisible? An Italian single center study comparing magnetic resonance lymphography (MRL), super microsurgery and histology in the identification of lymphatic vessels.

    PubMed

    Gennaro, P; Borghini, A; Chisci, G; Mazzei, F G; Weber, E; Tedone Clemente, E; Guerrini, S; Gentili, F; Gabriele, G; Ungari, C; Mazzei, M A

    2017-02-01

    Aim of this study is to evaluate the possibility of limb magnetic resonance lymphography (MRL) to differentiate lymphatic vessels from pathological veins, collect a specimen of the identified lymphatic vessel during operations of super microsurgical lymphatic-venular anastomosis (s-LVA) and perform immunohistochemical stainings to confirm the nature of the collected vessels. Twenty patients presenting lymphedema were enrolled in this study. Five patients reported lower limb lymphedema and 15 patients reported upper limb lymphedema. All patients had the indication for s-LVA and underwent preoperative MRL imaging of the affected limb. A total of 57 lymphatic vessels were identified by MRL and used to guide s-LVA: all these vessels have also been used to perform an intraoperative biopsy for immunohistochemical evaluation. A total of 53/57 vascular structures resulted compatible with lymphatic vessels at the immunohistochemical study performed with D2-40 antibody; 3/57 specimen showed the absence of the D2-40 antibody. A significant association was found between preoperative MRL and immunohistochemical marker D2-40 on collected specimen. Most of the articles in the international literature report the concomitant presence of both lymphatic and venous vessels at MRL. However, no one in literature describes the possibility to differentiate venous vessels from lymphatic vessels, and this is a crucial issue for the correct evaluation of the lymphatic system in patients with limb lymphedema undergoing a future surgical correction. In the present study, MRL allowed to identify active lymphatic vessels. MRL was predictive to determine preoperatory lymphatic vessels and to perform successful s-LVA in lymphedema patients. This is the first study to prove the nature of the vessels identified at the preoperative MRL with immunohistochemical stainings.

  15. Photodynamic ablation of lymphatic vessels and intralymphatic cancer cells prevents metastasis.

    PubMed

    Tammela, Tuomas; Saaristo, Anne; Holopainen, Tanja; Ylä-Herttuala, Seppo; Andersson, Leif C; Virolainen, Susanna; Immonen, Ilkka; Alitalo, Kari

    2011-02-09

    The dissemination of tumor cells to sites far from the primary tumor (metastasis) is the principal cause of death in cancer patients. Tumor-associated lymphatic vessels are a key conduit for metastatic tumor cells, which typically first colonize the lymph nodes. Although the primary tumor and affected lymph nodes can be removed during surgery, tumor cells inside lymphatic vessels are left behind. Here, we show that in-transit tumor cells inside lymphatic vessels in mice bearing mouse melanomas or human lung tumors give rise to metastases. Using photodynamic therapy with the benzoporphyrin derivative verteporfin, we selectively destroyed lymphatic vessels in mice and pigs. Destruction of tumor-associated lymphatic vessels also eradicated intralymphatic tumor cells and prevented metastasis of mouse melanoma cells and subsequent relapse. Photodynamic therapy, when combined with anti-lymphangiogenic therapy, prevented further tumor invasion of lymphatic vessels. These findings highlight the potential of targeting in-transit tumor cells in patients.

  16. Progressive loss of lymphatic vessels in skin of patients with systemic sclerosis.

    PubMed

    Manetti, Mirko; Milia, Anna Franca; Guiducci, Serena; Romano, Eloisa; Matucci-Cerinic, Marco; Ibba-Manneschi, Lidia

    2011-02-01

    Systemic sclerosis (SSc) is a connective tissue disorder characterized by microvascular and fibrotic changes in the skin and internal organs. The role of blood vessel dysfunction in the pathogenesis of SSc has been extensively investigated, but few studies have addressed the involvement of the lymphatic vascular system. Our aim was to evaluate dermal lymphatic vessels in patients with SSc according to different phases of skin involvement. Skin biopsies were obtained from the forearm of 25 SSc patients (10 early/15 late-stage disease) and 13 healthy controls. Skin sections were immunostained for podoplanin (D2-40), which is selectively expressed in lymphatic endothelial cells, and examined by confocal laser scanning microscopy. Lymphatic vessels were counted in the papillary and reticular dermis. Data were analyzed using Student's t test. The number of lymphatic vessels was significantly reduced in the papillary and reticular dermis of SSc patients compared with controls. In early SSc, lymphatic vessel counts were not different from controls in the papillary dermis, and showed a trend toward a reduction in the reticular dermis. In late SSc, a significant reduction in lymphatic vessels compared with controls was found in both the papillary and reticular dermis. The number of lymphatic vessels in the papillary dermis of late SSc was significantly lower than in early SSc. In SSc, lymphatic microangiopathy is linked to the progression of skin involvement. The progressive disappearance of lymphatic vessels may have a critical pathogenetic role in the progression of SSc from an early edematous phase to overt fibrosis.

  17. A Three-Dimensional Lymphatic Endothelial Cell Tube Formation Assay to Identify Novel Kinases Involved in Lymphatic Vessel Remodeling.

    PubMed

    Gambino, T Jessica; Williams, Steven P; Caesar, Carol; Resnick, Daniel; Nowell, Cameron J; Farnsworth, Rae H; Achen, Marc G; Stacker, Steven A; Karnezis, Tara

    2017-01-01

    The lymphatic system is a series of vessels that transport cells and excess fluid from tissues to the blood vascular system. Normally quiescent, the lymphatics can grow or remodel in response to developmental, immunological, or cells pathological stimuli. Lymphatic vessels comprise lymphatic endothelial cells (LECs) that can respond to external growth factors by undergoing proliferation, migration, adhesion, and tube and lumen formation into new vessel structures, a process known as lymphangiogenesis. To understand the key gene and signaling pathways necessary for lymphangiogenesis and lymphatic vessel remodeling, we have developed a three-dimensional LEC tube formation assay to explore the role of kinase signaling in these processes. The collagen-overlay-based assay was used with primary human adult dermal LECs to investigate a library of 60 tyrosine kinase (TK) and TK-like genes by siRNA knockdown. Nine candidate genes were identified and characterized for their ability to modify key parameters of lymphatic tube formation, including tube length, area, thickness, branching, and number of blind-ended sacs. Four genes-ZAP70, IRAK4, RIPK1, and RIPK2-were identified as high-confidence hits after tertiary deconvolution screens and demonstrate the utility of the assay to define LEC genes critical for the formation of tube structures. This assay facilitates the identification of potential molecular targets for novel drugs designed to modulate the remodeling of lymphatics that is important for the metastatic spread of cancer and other pathologies.

  18. Higher blood vessel density in comparison to the lymphatic vessels in oral squamous cell carcinoma

    PubMed Central

    Maturana-Ramírez, Andrea; Espinoza, Iris; Reyes, Montserrat; Aitken, Juan Pablo; Aguayo, Francisco; Hartel, Steffen; Rojas-Alcayaga, Gonzalo

    2015-01-01

    Introduction: Oral squamous cell carcinoma (OSCC) is characterized by local invasion and the development of cervical metastasis. In the tongue, an association between the invasion of the lymphatic vessels and the development of metastasis in the regional lymph nodes has been demonstrated. Moreover, invasion of the blood vessels is associated with greater recurrence and poorer prognoses. Therefore, the presence and density of lymphatic and blood vessels in intra- and peritumoral tissues should play an important role in the progression, dissemination and metastasis of carcinomas. However, the evidence regarding OSCC is inconclusive. The aim of this study was to determine the comparison and association between the lymphatic (D2-40) and blood vessel (CD34) densities in intratumoral OSCC tissue. Materials and Methods: Thirty-seven cases diagnosed as OSCC between the years 2000 and 2008 were obtained from the Anatomic Pathology Service of the School of Dentistry, University of Chile. The immunohistochemical markers D2-40 and CD34 were used, and the densities (mm2) of lymphatic vessels (LVD) and blood vessels (BVD) in the intratumoral region were determined. The relationship between LVD and BVD values was evaluated. Results: There were significant association between the CD34 and D2-40 expression (rho=0.4, P<0.05) and between the LVD and the location in the tongue (P=0.019). The BVD was greater (128.0 vessels/mm2) than the LVD (42.9 vessels/mm2), and there was a positive correlation between the LVD and BVD. Conclusions: In OSCC, the BVD is greater than the LVD, and there is a moderate correlation between the two quantities. PMID:26722595

  19. Higher blood vessel density in comparison to the lymphatic vessels in oral squamous cell carcinoma.

    PubMed

    Maturana-Ramírez, Andrea; Espinoza, Iris; Reyes, Montserrat; Aitken, Juan Pablo; Aguayo, Francisco; Hartel, Steffen; Rojas-Alcayaga, Gonzalo

    2015-01-01

    Oral squamous cell carcinoma (OSCC) is characterized by local invasion and the development of cervical metastasis. In the tongue, an association between the invasion of the lymphatic vessels and the development of metastasis in the regional lymph nodes has been demonstrated. Moreover, invasion of the blood vessels is associated with greater recurrence and poorer prognoses. Therefore, the presence and density of lymphatic and blood vessels in intra- and peritumoral tissues should play an important role in the progression, dissemination and metastasis of carcinomas. However, the evidence regarding OSCC is inconclusive. The aim of this study was to determine the comparison and association between the lymphatic (D2-40) and blood vessel (CD34) densities in intratumoral OSCC tissue. Thirty-seven cases diagnosed as OSCC between the years 2000 and 2008 were obtained from the Anatomic Pathology Service of the School of Dentistry, University of Chile. The immunohistochemical markers D2-40 and CD34 were used, and the densities (mm(2)) of lymphatic vessels (LVD) and blood vessels (BVD) in the intratumoral region were determined. The relationship between LVD and BVD values was evaluated. There were significant association between the CD34 and D2-40 expression (rho=0.4, P<0.05) and between the LVD and the location in the tongue (P=0.019). The BVD was greater (128.0 vessels/mm(2)) than the LVD (42.9 vessels/mm(2)), and there was a positive correlation between the LVD and BVD. In OSCC, the BVD is greater than the LVD, and there is a moderate correlation between the two quantities.

  20. Significantly high lymphatic vessel density in cutaneous metastasizing melanoma

    PubMed Central

    Špirić, Z; Erić, M; Eri, Ž; Skrobić, M

    2015-01-01

    Background Cutaneous melanoma has the propensity to early metastatic spread via the lymphatic vessels. Recent studies have found a positive correlation between an increased number of tumor-associated lymphatics and lymph node metastasis. The aim of this study was to determine whether there was a difference in the lymphatic vessel density (LVD) when cutaneous metastasizing melanomas were compared with nonmetastasizing melanomas and nevi. Methods Ninety-five melanoma specimens (45 with lymph node metastasis, 50 nonmetastasizing) and 22 nevi specimens (7 compound, 5 intradermal, 4 blue, and 6 dysplastic) were investigated by immunostaining for the lymphatic endothelial marker D2-40. The quantification of lymphatics was conducted by computer-assisted morphometric analysis. Metastasizing and nonmetastasizing melanoma specimens were matched according to their thickness into three classes ≤2.0 mm, 2.01 – 4.0 mm, >4.0 mm. Results Metastasizing melanomas thick 2.01–4.0 mm and thicker than 4.0 mm, showed a significantly higher intratumoral and peritumoral LVD compared with nonmetastasizing melanomas (2.01–4.0 mm, p =0.006 and p =0.032, respectively; >4.0 mm, p =0.045 and p =0.026, respectively). No significant difference in intratumoral and peritumoral LVD was found between metastasizing and nonmetastasizing melanomas of thickness ≤2.0 mm. Metastasizing melanomas showed a significantly higher intratumoral LVD compared with compound, intradermal, blue and dysplastic nevi p <0.001, p =0.002, p =0.002 and p <0.001, respectively), and significantly higher peritumoral LVD compared with compound nevi (p=0.039). Total average LVD was significantly higher in metastasizing melanomas than in nonmetastasizing melanomas (p <0.001), compound, intradermal, blue and dysplastic nevi (p <0.001, p <0.001, p =0.001 and p <0.001, respectively). Conclusions This study shows higher LVD in metastasizing melanomas compared with nonmetastasizing melanomas and nevi. In melanomas with

  1. Decline of lymphatic vessel density and function in murine skin during aging.

    PubMed

    Karaman, Sinem; Buschle, Dorina; Luciani, Paola; Leroux, Jean-Christophe; Detmar, Michael; Proulx, Steven T

    2015-10-01

    Lymphatic vessels play important roles in the pathogenesis of many conditions that have an increased prevalence in the elderly population. However, the effects of the aging process on the lymphatic system are still relatively unknown. We have applied non-invasive imaging and whole-mount staining techniques to assess the lymphatic vessel function and morphology in three different age groups of mice: 2 months (young), 7 months (middle-aged), and 18 months (aged). We first developed and validated a new method to quantify lymphatic clearance from mouse ear skin, using a lymphatic-specific near-infrared tracer. Using this method, we found that there is a prominent decrease in lymphatic vessel function during aging since the lymphatic clearance was significantly delayed in aged mice. This loss of function correlated with a decreased lymphatic vessel density and a reduced lymphatic network complexity in the skin of aged mice as compared to younger controls. The blood vascular leakage in the skin was slightly increased in the aged mice, indicating that the decreased lymphatic function was not caused by a reduced capillary filtration in aged skin. The decreased function of lymphatic vessels with aging might have implications for the pathogenesis of a number of aging-related diseases.

  2. Distinct roles of L- and T-type voltage-dependent Ca2+ channels in regulation of lymphatic vessel contractile activity

    PubMed Central

    Lee, Stewart; Roizes, Simon; von der Weid, Pierre-Yves

    2014-01-01

    Lymph drainage maintains tissue fluid homeostasis and facilitates immune response. It is promoted by phasic contractions of collecting lymphatic vessels through which lymph is propelled back into the blood circulation. This rhythmic contractile activity (i.e. lymphatic pumping) increases in rate with increase in luminal pressure and relies on activation of nifedipine-sensitive voltage-dependent Ca2+ channels (VDCCs). Despite their importance, these channels have not been characterized in lymphatic vessels. We used pressure- and wire-myography as well as intracellular microelectrode electrophysiology to characterize the pharmacological and electrophysiological properties of L-type and T-type VDCCs in rat mesenteric lymphatic vessels and evaluated their particular role in the regulation of lymphatic pumping by stretch. We complemented our study with PCR and confocal immunofluorescence imaging to investigate the expression and localization of these channels in lymphatic vessels. Our data suggest a delineating role of VDCCs in stretch-induced lymphatic vessel contractions, as the stretch-induced increase in force of lymphatic vessel contractions was significantly attenuated in the presence of L-type VDCC blockers nifedipine and diltiazem, while the stretch-induced increase in contraction frequency was significantly decreased by the T-type VDCC blockers mibefradil and nickel. The latter effect was correlated with a hyperpolarization. We propose that activation of T-type VDCCs depolarizes membrane potential, regulating the frequency of lymphatic contractions via opening of L-type VDCCs, which drive the strength of contractions. PMID:25326448

  3. Supermicrosurgical anastomosis of superficial lymphatic vessel to deep lymphatic vessel for a patient with cellulitis-induced chronic localized leg lymphedema.

    PubMed

    Yamamoto, Takumi; Koshima, Isao

    2015-01-01

    Supermicrosurgical lymphaticovenular anastomosis (LVA) has been reported to be useful for the treatment of obstructive lymphedema. However, LVA has a potential risk of anastomosis site thrombosis. It is more physiological to use a lymphatic vessel as a recipient vessel of lymphatic bypass surgery, because there is no chance for blood to contact the anastomosis site. We report a chronic localized lower leg lymphedema case treated with supermicrosurgical superficial-to-deep lymphaticolymphatic anastomosis (LLA). A 66-year-old male with a 60-year history of cellulitis-induced left lower leg lymphedema suffered from very frequent episodes of cellulitis and underwent LLA under local infiltration anesthesia. LLA was performed at the dorsum of the left foot. A dilated superficial lymphatic vessel was found in the fat layer, and a nondilated intact deep lymphatic vessel was found along the dorsalis pedis artery below the deep fascia. The superficial lymphatic vessel was supermicrosurgically anastomosed to the deep lymphatic vessel in a side-to-end fashion. After the surgery, the patient had no episodes of cellulitis, and the left lower leg lymphedematous volume decreased. Superficial-to-deep LLA may be a useful option for the treatment of secondary lymphedema due to obstruction of only the superficial lymphatic system.

  4. Thymus cell antigen 1 (Thy1, CD90) is expressed by lymphatic vessels and mediates cell adhesion to lymphatic endothelium.

    PubMed

    Jurisic, Giorgia; Iolyeva, Maria; Proulx, Steven T; Halin, Cornelia; Detmar, Michael

    2010-10-15

    The lymphatic vascular system plays an important role in inflammation and cancer progression, although the molecular mechanisms involved are poorly understood. As determined by comparative transcriptional profiling studies of ex vivo isolated mouse intestinal lymphatic endothelial cells versus blood vascular endothelial cells, thymus cell antigen 1 (Thy1, CD90) was expressed at much higher levels in lymphatic endothelial cells than in blood vascular endothelial cells. These findings were confirmed by quantitative PCR, and at the protein level by FACS and immunofluorescence analyses. Thy1 was also strongly expressed by tumor-associated lymphatic vessels, as evaluated in a B16 melanoma footpad model in mice. Blockade of Thy1 inhibited tumor cell adhesion to cultured mouse lymphatic endothelial cells. Importantly, treatment of human dermal microvascular endothelial cells with tumor necrosis factor or phorbol 12-myristate 13-acetate resulted in Thy1 upregulation in podoplanin-expressing lymphatic endothelial cells, but not in podoplanin-negative blood vascular endothelial cells. Moreover, adhesion of human polymorphonuclear and mononuclear leukocytes to human lymphatic endothelial cells was Thy1-dependent. Together, these results identify Thy1 as a novel lymphatic vessel expressed gene and suggest its potential role in the cell adhesion processes required for tumor progression and inflammation. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Intralymphatic CCL21 Promotes Tissue Egress of Dendritic Cells through Afferent Lymphatic Vessels.

    PubMed

    Russo, Erica; Teijeira, Alvaro; Vaahtomeri, Kari; Willrodt, Ann-Helen; Bloch, Joël S; Nitschké, Maximilian; Santambrogio, Laura; Kerjaschki, Dontscho; Sixt, Michael; Halin, Cornelia

    2016-02-23

    To induce adaptive immunity, dendritic cells (DCs) migrate through afferent lymphatic vessels (LVs) to draining lymph nodes (dLNs). This process occurs in several consecutive steps. Upon entry into lymphatic capillaries, DCs first actively crawl into downstream collecting vessels. From there, they are next passively and rapidly transported to the dLN by lymph flow. Here, we describe a role for the chemokine CCL21 in intralymphatic DC crawling. Performing time-lapse imaging in murine skin, we found that blockade of CCL21-but not the absence of lymph flow-completely abolished DC migration from capillaries toward collecting vessels and reduced the ability of intralymphatic DCs to emigrate from skin. Moreover, we found that in vitro low laminar flow established a CCL21 gradient along lymphatic endothelial monolayers, thereby inducing downstream-directed DC migration. These findings reveal a role for intralymphatic CCL21 in promoting DC trafficking to dLNs, through the formation of a flow-induced gradient. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Rho Kinase Enhances Contractions of Rat Mesenteric Collecting Lymphatics

    PubMed Central

    Kurtz, Kristine H.; Souza-Smith, Flavia M.; Moor, Andrea N.; Breslin, Jerome W.

    2014-01-01

    The mechanisms that control phasic and tonic contractions of lymphatic vessels are poorly understood. We hypothesized that rho kinase ROCK, previously shown to increase calcium (Ca2+) sensitivity in vascular smooth muscle, enhances lymphatic contractile activity in a similar fashion. Contractions of isolated rat mesenteric lymphatic vessels were observed at a luminal pressure of 2 cm H2O in a 37°C bath. The expression of ROCK in isolated rat mesenteric lymphatic vessels was assessed by Western blotting and confocal microscopy. The role of ROCK in contractile function was tested using two specific yet structurally distinct inhibitors: H1152 (0.1–10 μM) and Y-27632 (0.5–50 μM). In addition, lymphatics were transfected with constitutively active (ca)-ROCK protein (2 μg/ml) to assess gain of contractile function. Vessel diameter and the concentration of intracellular free Ca2+ ([Ca2+]i) were simultaneously measured in a subset of isolated lymphatics loaded with the Ca2+-sensing dye fura-2. The results show expression of both the ROCK1 and ROCK2 isoforms in lymphatic vessels. Inhibition of ROCK increased lymphatic end diastolic diameter and end systolic diameter in a concentration-dependent manner. Significant reductions in lymphatic tone and contraction amplitude were observed after treatment 1–10 μM H1152 or 25–50 μM Y-27632. H1152 (10 μM) also significantly reduced contraction frequency. Transient increases in [Ca2+]i preceded each phasic contraction, however this pattern was disrupted by either 10 μM H1152 or 50 μM Y-27632 in the majority of lymphatics studied. The significant decrease in tone caused by H1152 or Y-27632 was not associated with a significant change in the basal [Ca2+]i between transients. Transfection with ca-ROCK protein enhanced lymphatic tone, but was not associated with a significant change in basal [Ca2+]i. Our data suggest that ROCK mediates normal tonic constriction and influences phasic contractions in lymphatics. We propose

  7. Mesenteric lymphatic vessels adapt to mesenteric venous hypertension by becoming weaker pumps

    PubMed Central

    Dongaonkar, R. M.; Nguyen, T. L.; Heaps, C. L.; Hardy, J.; Laine, G. A.; Wilson, E.; Stewart, R. H.

    2014-01-01

    Lymphangions, the segments of lymphatic vessels between two adjacent lymphatic valves, actively pump lymph. Acute changes in transmural pressure and lymph flow have profound effects on lymphatic pump function in vitro. Chronic changes in pressure and flow in vivo have also been reported to lead to significant changes in lymphangion function. Because changes in pressure and flow are both cause and effect of adaptive processes, characterizing adaptation requires a more fundamental analysis of lymphatic muscle properties. Therefore, the purpose of the present work was to use an intact lymphangion isovolumetric preparation to evaluate changes in mesenteric lymphatic muscle mechanical properties and the intracellular Ca2+ in response to sustained mesenteric venous hypertension. Bovine mesenteric veins were surgically occluded to create mesenteric venous hypertension. Postnodal mesenteric lymphatic vessels from mesenteric venous hypertension (MVH; n = 6) and sham surgery (Sham; n = 6) animals were isolated and evaluated 3 days after the surgery. Spontaneously contracting MVH vessels generated end-systolic active tension and end-diastolic active tension lower than the Sham vessels. Furthermore, steady-state active tension and intracellular Ca2+ concentration levels in response to KCl stimulation were also significantly lower in MVH vessels compared with those of the Sham vessels. There was no significant difference in passive tension in lymphatic vessels from the two groups. Taken together, these results suggest that following 3 days of mesenteric venous hypertension, postnodal mesenteric lymphatic vessels adapt to become weaker pumps with decreased cytosolic Ca2+ concentration. PMID:25519727

  8. Mesenteric lymphatic vessels adapt to mesenteric venous hypertension by becoming weaker pumps.

    PubMed

    Dongaonkar, R M; Nguyen, T L; Quick, C M; Heaps, C L; Hardy, J; Laine, G A; Wilson, E; Stewart, R H

    2015-03-01

    Lymphangions, the segments of lymphatic vessels between two adjacent lymphatic valves, actively pump lymph. Acute changes in transmural pressure and lymph flow have profound effects on lymphatic pump function in vitro. Chronic changes in pressure and flow in vivo have also been reported to lead to significant changes in lymphangion function. Because changes in pressure and flow are both cause and effect of adaptive processes, characterizing adaptation requires a more fundamental analysis of lymphatic muscle properties. Therefore, the purpose of the present work was to use an intact lymphangion isovolumetric preparation to evaluate changes in mesenteric lymphatic muscle mechanical properties and the intracellular Ca(2+) in response to sustained mesenteric venous hypertension. Bovine mesenteric veins were surgically occluded to create mesenteric venous hypertension. Postnodal mesenteric lymphatic vessels from mesenteric venous hypertension (MVH; n = 6) and sham surgery (Sham; n = 6) animals were isolated and evaluated 3 days after the surgery. Spontaneously contracting MVH vessels generated end-systolic active tension and end-diastolic active tension lower than the Sham vessels. Furthermore, steady-state active tension and intracellular Ca(2+) concentration levels in response to KCl stimulation were also significantly lower in MVH vessels compared with those of the Sham vessels. There was no significant difference in passive tension in lymphatic vessels from the two groups. Taken together, these results suggest that following 3 days of mesenteric venous hypertension, postnodal mesenteric lymphatic vessels adapt to become weaker pumps with decreased cytosolic Ca(2+) concentration. Copyright © 2015 the American Physiological Society.

  9. Lipopolysaccharide modulates neutrophil recruitment and macrophage polarization on lymphatic vessels and impairs lymphatic function in rat mesentery

    PubMed Central

    Chakraborty, Sanjukta; Zawieja, Scott D.; Wang, Wei; Lee, Yang; Wang, Yuan J.; von der Weid, Pierre-Yves; Zawieja, David C.

    2015-01-01

    Impairment of the lymphatic system is apparent in multiple inflammatory pathologies connected to elevated endotoxins such as LPS. However, the direct mechanisms by which LPS influences the lymphatic contractility are not well understood. We hypothesized that a dynamic modulation of innate immune cell populations in mesentery under inflammatory conditions perturbs tissue cytokine/chemokine homeostasis and subsequently influences lymphatic function. We used rats that were intraperitoneally injected with LPS (10 mg/kg) to determine the changes in the profiles of innate immune cells in the mesentery and in the stretch-mediated contractile responses of isolated lymphatic preparations. Results demonstrated a reduction in the phasic contractile activity of mesenteric lymphatic vessels from LPS-injected rats and a severe impairment of lymphatic pump function and flow. There was a significant reduction in the number of neutrophils and an increase in monocytes/macrophages present on the lymphatic vessels and in the clear mesentery of the LPS group. This population of monocytes and macrophages established a robust M2 phenotype, with the majority showing high expression of CD163 and CD206. Several cytokines and chemoattractants for neutrophils and macrophages were significantly changed in the mesentery of LPS-injected rats. Treatment of lymphatic muscle cells (LMCs) with LPS showed significant changes in the expression of adhesion molecules, VCAM1, ICAM1, CXCR2, and galectin-9. LPS-TLR4-mediated regulation of pAKT, pERK pI-κB, and pMLC20 in LMCs promoted both contractile and inflammatory pathways. Thus, our data provide the first evidence connecting the dynamic changes in innate immune cells on or near the lymphatics and complex cytokine milieu during inflammation with lymphatic dysfunction. PMID:26453331

  10. Lipopolysaccharide modulates neutrophil recruitment and macrophage polarization on lymphatic vessels and impairs lymphatic function in rat mesentery.

    PubMed

    Chakraborty, Sanjukta; Zawieja, Scott D; Wang, Wei; Lee, Yang; Wang, Yuan J; von der Weid, Pierre-Yves; Zawieja, David C; Muthuchamy, Mariappan

    2015-12-15

    Impairment of the lymphatic system is apparent in multiple inflammatory pathologies connected to elevated endotoxins such as LPS. However, the direct mechanisms by which LPS influences the lymphatic contractility are not well understood. We hypothesized that a dynamic modulation of innate immune cell populations in mesentery under inflammatory conditions perturbs tissue cytokine/chemokine homeostasis and subsequently influences lymphatic function. We used rats that were intraperitoneally injected with LPS (10 mg/kg) to determine the changes in the profiles of innate immune cells in the mesentery and in the stretch-mediated contractile responses of isolated lymphatic preparations. Results demonstrated a reduction in the phasic contractile activity of mesenteric lymphatic vessels from LPS-injected rats and a severe impairment of lymphatic pump function and flow. There was a significant reduction in the number of neutrophils and an increase in monocytes/macrophages present on the lymphatic vessels and in the clear mesentery of the LPS group. This population of monocytes and macrophages established a robust M2 phenotype, with the majority showing high expression of CD163 and CD206. Several cytokines and chemoattractants for neutrophils and macrophages were significantly changed in the mesentery of LPS-injected rats. Treatment of lymphatic muscle cells (LMCs) with LPS showed significant changes in the expression of adhesion molecules, VCAM1, ICAM1, CXCR2, and galectin-9. LPS-TLR4-mediated regulation of pAKT, pERK pI-κB, and pMLC20 in LMCs promoted both contractile and inflammatory pathways. Thus, our data provide the first evidence connecting the dynamic changes in innate immune cells on or near the lymphatics and complex cytokine milieu during inflammation with lymphatic dysfunction. Copyright © 2015 the American Physiological Society.

  11. Surgical anatomy of the retroperitoneal spaces, Part III: Retroperitoneal blood vessels and lymphatics.

    PubMed

    Mirilas, Petros; Skandalakis, John E

    2010-02-01

    In this article, we discuss the surgical anatomy of the blood vessels and the lymphatic vessels and lymph nodes found in the retroperitoneum. Retroperitoneal blood vessels include the aorta and all its branches--parietal and visceral--from the diaphragm to the pelvis, and the inferior vena cava and its tributaries. The retroperitoneal lymphatics form a very rich and extensive chain. As a general rule, lymphatics follow the arteries and named lymph nodes are found at the root of the arteries. Retroperitoneal nodes of the abdomen comprise the inferior diaphragmatic nodes and the lumbar nodes. The latter are classified as left lumbar (aortic), intermediate (interaorticovenous), and right lumbar (caval). These nodes surround the aorta and the inferior vena cava. Around the aorta lie the paraortic nodes, preaortic nodes (include celiac, superior mesenteric, inferior mesenteric nodes collecting lymph from the splanchna supplied by the homonymous arteries), and retroaortic nodes. Similarly, around the vena cava lie the paracaval, precaval, and retrocaval nodes. Pelvic nodes include the common iliac, external and internal iliac, obturator, and sacral nodes.

  12. Distribution and alteration of lymphatic vessels in knee joints of normal and osteoarthritic mice.

    PubMed

    Shi, Jixiang; Liang, Qianqian; Zuscik, Michael; Shen, Jie; Chen, Di; Xu, Hao; Wang, Yong-Jun; Chen, Yan; Wood, Ronald W; Li, Jia; Boyce, Brendan F; Xing, Lianping

    2014-03-01

    To investigate the distribution and alteration of lymphatic vessels and draining function in knee joints of normal and osteoarthritic mice. For the mouse models of osteoarthritis (OA), we used mice with meniscal-ligamentous injury or mice with conditional knockout of the gene for cartilage transforming growth factor β (TGFβ) type II receptor. The severity of cartilage loss and joint destruction was assessed histologically. Capillary and mature lymphatic vessels were identified and analyzed using double immunofluorescence staining and a whole-slide digital imaging system. Lymphatic drainage of knee joints was examined using near-infrared lymphatic imaging. Patient joint specimens obtained during total knee or hip arthroplasty were evaluated to verify the content validity of the mouse findings. Lymphatic vessels were distributed in soft tissues (mainly around the joint capsule, ligaments, fat pads, and muscles of normal knees). The number of lymphatic vessels, particularly the number of capillaries, was significantly increased in joints of mice with mild OA, while the number of mature lymphatic vessels was markedly decreased in joints of mice with severe OA. OA knees exhibited significantly decreased lymph clearance. The number of both capillary and mature lymphatic vessels was significantly decreased in the joints of patients with OA. The whole-slide digital imaging system is a powerful tool, enabling the identification and assessment of lymphatic microvasculature in the entire mouse knee. Lymphatic capillaries and mature vessels are present in various soft tissues around articular spaces. Abnormalities of lymphatic vessels and draining function, including significantly reduced numbers of mature vessels and impaired clearance, are present in OA joints. Copyright © 2014 by the American College of Rheumatology.

  13. Distribution and Alteration of Lymphatic Vessels in Knee Joints of Normal and Osteoarthritic Mice

    PubMed Central

    Shi, Jixiang; Liang, Qianqian; Zuscik, Michael; Shen, Jie; Chen, Di; Xu, Hao; Wang, Yong-Jun; Chen, Yan; Wood, Ronald W.; Li, Jia; Boyce, Brendan F.; Xing, Lianping

    2014-01-01

    Objective To investigate the distribution and alteration of lymphatic vessels and draining function in knee joints of normal and osteoarthritic mice. Methods For the mouse models of osteoarthritis (OA), we used mice with meniscal-ligamentous injury or mice with conditional knockout of the gene for cartilage transforming growth factor β (TGF β) type II receptor. The severity of cartilage loss and joint destruction was assessed histologically. Capillary and mature lymphatic vessels were identified and analyzed using double immunofluorescence staining and a whole-slide digital imaging system. Lymphatic drainage of knee joints was examined using near-infrared lymphatic imaging. Patient joint specimens obtained during total knee or hip arthroplasty were evaluated to verify the content validity of the mouse findings. Results Lymphatic vessels were distributed in soft tissues (mainly around the joint capsule, ligaments, fat pads, and muscles of normal knees). The number of lymphatic vessels, particularly the number of capillaries, was significantly increased in joints of mice with mild OA, while the number of mature lymphatic vessels was markedly decreased in joints of mice with severe OA. OA knees exhibited significantly decreased lymph clearance. The number of both capillary and mature lymphatic vessels was significantly decreased in the joints of patients with OA. Conclusion The whole-slide digital imaging system is a powerful tool, enabling the identification and assessment of lymphatic microvasculature in the entire mouse knee. Lymphatic capillaries and mature vessels are present in various soft tissues around articular spaces. Abnormalities of lymphatic vessels and draining function, including significantly reduced numbers of mature vessels and impaired clearance, are present in OA joints. PMID:24574226

  14. By Different Cellular Mechanisms, Lymphatic Vessels Sprout by Endothelial Cell Recruitment Whereas Blood Vessels Grow by Vascular Expansion

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, Patricia; McKay, Terri L.; Leontiev, Dmitry; Condrich, Terence K.; DiCorleto, Paul E.

    2005-01-01

    The development of effective vascular therapies requires the understanding of all modes of vessel formation contributing to vasculogenesis, angiogenesis (here termed hemangiogenesis) and lymphangiogenesis. We show that lymphangiogenesis proceeds by blind-ended vessel sprouting via recruitment of isolated endothelial progenitor cells to the tips of growing vessels, whereas hemangiogenesis occurs by non-sprouting vessel expansion from the capillary network, during middevelopment in the quail chorioallantoic membrane (CAM). Blood vessels expanded out of capillaries that displayed transient expression of alpha smooth muscle actin (alphaSMA), accompanied by mural recruitment of migratory progenitor cells expressing SMA. Lymphatics and blood vessels were identified by confocal/fluorescence microscopy of vascular endothelial growth factor (VEGF) receptors VEGFR-1 and VEGFR-2, alphaSMA (expressed on CAM blood vessels but not on lymphatics), homeobox transcription factor Prox-1 (specific to CAM lymphatic endothelium), and the quail hematopoetic/vascular marker, QH-1. Expression of VEGFR-1 was highly restricted to blood vessels (primarily capillaries). VEGFR-2 was expressed intensely in isolated hematopoietic cells, lymphatic vessels and moderately in blood vessels. Prox-1 was absent from endothelial progenitor cells prior to lymphatic recruitment. Although vascular endothelial growth factor-165 (VEGF(sub 165)) is a key regulator of numerous cellular processes in hemangiogenesis and vasculogenesis, the role of VEGF(sub 165) in lymphangiogenesis is less clear. Exogenous VEGF(sub 165) increased blood vessel density without changing endogenous modes of vascular/lymphatic vessel formation or marker expression patterns. However, VEGF(sub 165) did increase the frequency of blood vascular anastomoses and strongly induced the antimaturational dissociation of lymphatics from blood vessels, with frequent formation of homogeneous lymphatic networks.

  15. Identification of lymphatic vessels and prognostic value of lymphatic microvessel density in lesions of the uterine cervix.

    PubMed

    Saptefraţi, L; Cîmpean, Anca Maria; Ciornîi, A; Ceauşu, Raluca; Eşanu, N; Raica, M

    2009-01-01

    Incomplete characterization of the uterine cervix cancer from molecular point of view represents the main problem for the use of a proper therapy in this disease. Few data are available about D2-40 expression in lymphatic endothelial cells and also in tumor cells from uterine cervix cancer. The aim of the present work was to study the involvement of lymphatics in prognosis and tumor progression of the uterine cervix lesions. We used D2-40 immunostaining to highlight lymphatic vessels from squamous cell metaplasia (n=17), cervical intraepithelial neoplasia (n=11), carcinoma in situ (n=3), microinvasive carcinoma (n=4) and invasive carcinoma (n=19) using Avidin-Biotin technique (LSAB+). Type and distribution of lymphatics in different lesions of the cervix were analyzed. We found significant correlation between lymphatic microvessel density and tumor grade and particular distribution of the lymphatics linked to histopathologic type of the lesions. Also, differences was found in lymphovascular invasion interpretation between routine Hematoxylin and Eosin staining specimens and immunohistochemical ones. Our results showed differences in the distribution and D2-40 expression in lymphatic vessels and tumor cells from the cervix lesions linked to histopathology and tumor grade.

  16. Basement membrane protein distribution in LYVE-1-immunoreactive lymphatic vessels of normal tissues and ovarian carcinomas.

    PubMed

    Vainionpää, Noora; Bützow, Ralf; Hukkanen, Mika; Jackson, David G; Pihlajaniemi, Taina; Sakai, Lynn Y; Virtanen, Ismo

    2007-05-01

    The endothelial cells of blood vessels assemble basement membranes that play a role in vessel formation, maintenance and function, and in the migration of inflammatory cells. However, little is known about the distribution of basement membrane constituents in lymphatic vessels. We studied the distribution of basement membrane proteins in lymphatic vessels of normal human skin, digestive tract, ovary and, as an example of tumours with abundant lymphatics, ovarian carcinomas. Basement membrane proteins were localized by immunohistochemistry with monoclonal antibodies, whereas lymphatic capillaries were detected with antibodies to the lymphatic vessel endothelial hyaluronan receptor-1, LYVE-1. In skin and ovary, fibrillar immunoreactivity for the laminin alpha4, beta1, beta2 and gamma1 chains, type IV and XVIII collagens and nidogen-1 was found in the basement membrane region of the lymphatic endothelium, whereas also heterogeneous reactivity for the laminin alpha5 chain was detected in the digestive tract. Among ovarian carcinomas, intratumoural lymphatic vessels were found especially in endometrioid carcinomas. In addition to the laminin alpha4, beta1, beta2 and gamma1 chains, type IV and XVIII collagens and nidogen-1, carcinoma lymphatics showed immunoreactivity for the laminin alpha5 chain and Lutheran glycoprotein, a receptor for the laminin alpha5 chain. In normal lymphatic capillaries, the presence of primarily alpha4 chain laminins may therefore compromise the formation of endothelial basement membrane, as these truncated laminins lack one of the three arms required for efficient network assembly. The localization of basement membrane proteins adjacent to lymphatic endothelia suggests a role for these proteins in lymphatic vessels. The distribution of the laminin alpha5 chain and Lutheran glycoprotein proposes a difference between normal and carcinoma lymphatic capillaries.

  17. Blockade of FLT4 suppresses metastasis of melanoma cells by impaired lymphatic vessels.

    PubMed

    Lee, Ji Yoon; Hong, Seok-Ho; Shin, Minsang; Heo, Hye-Ryeon; Jang, In Ho

    2016-09-16

    The metastatic spread of tumor cells via lymphatic vessels affects the relapse of tumor patients. New lymphatic vessel formation, including lymphangiogenesis, is promoted in the tumor environment. The lymphangiogenic factor VEGF-C can mediate lymphatic vessel formation and induce tumor metastasis by binding with FLT4. In melanoma, metastasis via lymphatics such as lymph nodes is one of the main predictors of poor outcome. Thus, we investigated whether blockade of FLT4 can reduce metastasis via the suppression of lymphatic capillaries. Proliferative lymphatic capillaries in melanoma were estimated by immunohistochemistry using FLT4 antibody after the injection of the FLT4 antagonist MAZ51. The numbers of tumor modules in metastasised lungs were calculated by gross examination and lymphatic related factors were examined by qRT-PCR. MAZ51 injection resulted in the suppression of tumor size and module number and the inhibition of proliferative lymphatic vessels in the intratumoral region in the lung and proliferating melanoma cells in the lung compared to those of untreated groups. Additionally, high FLT4 and TNF-alpha were detected in melanoma-induced tissue, while lymphatic markers such as VEGF-C, FLT4 and Prox-1 were significantly decreased in MAZ51 treated groups, implying that anti-lymphangiogenesis by MAZ51 may provide a potential strategy to prevent tumor metastasis in melanoma and high number of lymphatic capillaries could be used diagnosis for severe metastasis. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Immunohistochemical study of the lymphatic vessels in major salivary glands of the rat.

    PubMed

    Aiyama, Shigeo; Kikuchi, Kenichiro; Takada, Kiyomi; Ikeda, Rie; Sato, Sumie; Kuroki, Jyunya

    2011-02-01

    This study was designed to examine whether lymphatic vessels are present in the lobules of major salivary glands in the rat. Immunostaining with an antibody against podoplanin, a lymphatic endothelial cell marker, was performed on sections of the submandibular, sublingual and parotid glands. Light microscopy demonstrated podoplanin-positive lymphatic vessels around the interlobular ducts and the interlobular arteries and veins in the interlobular connective tissue in all of the major salivary glands. No podoplanin-positive lymphatic vessels were found in the lobules. Electron microscopy also demonstrated lymphatic endothelial cells showing podoplanin expression only in the interlobular connective tissue. These findings suggest that the lymphatic system of the rat major salivary glands originates in the interlobular connective tissue, and not in the lobules.

  19. Human and nonhuman primate meninges harbor lymphatic vessels that can be visualized noninvasively by MRI.

    PubMed

    Absinta, Martina; Ha, Seung-Kwon; Nair, Govind; Sati, Pascal; Luciano, Nicholas J; Palisoc, Maryknoll; Louveau, Antoine; Zaghloul, Kareem A; Pittaluga, Stefania; Kipnis, Jonathan; Reich, Daniel S

    2017-10-03

    Here, we report the existence of meningeal lymphatic vessels in human and nonhuman primates (common marmoset monkeys) and the feasibility of noninvasively imaging and mapping them in vivo with high-resolution, clinical MRI. On T2-FLAIR and T1-weighted black-blood imaging, lymphatic vessels enhance with gadobutrol, a gadolinium-based contrast agent with high propensity to extravasate across a permeable capillary endothelial barrier, but not with gadofosveset, a blood-pool contrast agent. The topography of these vessels, running alongside dural venous sinuses, recapitulates the meningeal lymphatic system of rodents. In primates, meningeal lymphatics display a typical panel of lymphatic endothelial markers by immunohistochemistry. This discovery holds promise for better understanding the normal physiology of lymphatic drainage from the central nervous system and potential aberrations in neurological diseases.

  20. Quantitative study of the topographic distribution of conjunctival lymphatic vessels in the monkey.

    PubMed

    Guo, Wenyi; Zhu, Yuanfang; Yu, Paula K; Yu, Xiaobo; Sun, Xinghuai; Cringle, Stephen J; Su, Er-Ning; Yu, Dao-Yi

    2012-01-01

    The purpose of this study was to quantify the topographic distribution of bulbar conjunctival microlymphatic vessels in the monkey. Sixteen eyes from 8 rhesus monkeys were used. Full thickness pieces of globe wall were excised from each quadrant. Cryosections were stained for 5'-nucleotidase, an enzyme histochemical staining for lymphatic vessels, or vascular endothelial growth factor receptor-3, an immunohistochemical marker for the identification of lymphatic endothelial cells, and then counterstained by hematoxylin. The remaining bulbar conjunctiva was dissected and flat mounted. The tissue was then processed with 5'-nucleotidase and alkaline phosphatase, an enzyme histochemical stain with higher activity in blood vessels. Microscope images were further analysed by image processing. The density of lymphatics, diameter of lymphatic vessels, and the size of the drainage zone of each blind end of the initial lymphatics were studied. Conjunctival lymphatics consisted of initial lymphatics and pre-collectors. The initial lymphatics with blind ends were predominately distributed just under the epithelium. The density of these lymphatics (∼50%) and the drainage zone area (∼0.81 mm(2)) was similar in each quadrant, with no difference in the limbus and fornix regions. The average diameter of lymphatic vessels in each quadrant ranged from 82 to 111 μm, and was greater in the superior and nasal regions. Larger calibre pre-collectors with valve-like structures were mostly located sub Tenon's membrane and predominantly located in the region mid-way between the limbus and fornix. There was a marked depth difference in initial lymphatic distribution, with the initial lymphatics mostly confined to the region between Tenon's membrane and the conjunctival epithelium. Detailed knowledge of the topographic distribution of conjunctival lymphatics have significant relevance to a better understanding of immunology, drug delivery, glaucoma filtration surgery, and tumour

  1. The maintenance of lymphatic vessels in the cornea is dependent on the presence of macrophages.

    PubMed

    Maruyama, Kazuichi; Nakazawa, Toru; Cursiefen, Claus; Maruyama, Yuko; Van Rooijen, Nico; D'Amore, Patricia A; Kinoshita, Shigeru

    2012-05-31

    It has been shown previously that the presence in the cornea of antigen-presenting cells (APC), such as macrophages (MPS) and lymphangiogenesis, is a risk for corneal transplantation. We sought to determine whether the existence of lymphatic vessels in the non-inflamed cornea is associated with the presence of MPS. Flat mounts were prepared from corneas of untreated C57BL/6, CD11b(-/-), F4/80(-/-), and BALB/c mice, and after suture placement or corneal transplantation, observed by immunofluorescence for the presence of lymphatic vessels using LYVE-1 as a marker of lymphatic endothelium. Innate immune cells were detected in normal mouse corneas using CD11b, F4/80, CD40, as well as MHC-class II. Digital images of the flat mounts were taken using a spot image analysis system, and the area covered by lymphatic vessels was measured using NIH Image software. The number of spontaneous lymphatic vessels in C57BL/6 corneas was significantly greater than in BALB/c corneas (P = 0.03). There were more CD11b(+) (P < 0.01) and CD40(+), MHC-class II (+) cells in the C57BL/6 corneas than in BALB/c mouse corneas. MPS depletion via clodronate liposome in C57BL/6 mice led to fewer spontaneous lymphatic vessels and reduced inflammation-induced lymphangiogenesis relative to control mice. Mice deficient in CD11b or F4/80 had fewer spontaneous lymphatic vessels and less lymphangiogenesis than control C57BL/6 mice. C57BL/6 mouse corneas have more endogenous CD11b(+) cells and lymphatic vessels. The endogenous lymphatic vessels, along with pro-inflammatory MPS, account for the high risk of corneal graft rejection in C57BL/6 mice. CD11b(+) and F4/80(+) MPS appear to have an important role in of the formation of new lymphatic vessels.

  2. Effects of Bothrops asper Snake Venom on Lymphatic Vessels: Insights into a Hidden Aspect of Envenomation

    PubMed Central

    Mora, Javier; Mora, Rodrigo; Lomonte, Bruno; Gutiérrez, José María

    2008-01-01

    Background Envenomations by the snake Bothrops asper represent a serious medical problem in Central America and parts of South America. These envenomations concur with drastic local tissue pathology, including a prominent edema. Since lymph flow plays a role in the maintenance of tissue fluid balance, the effect of B. asper venom on collecting lymphatic vessels was studied. Methodology/Principal Findings B. asper venom was applied to mouse mesentery, and the effects were studied using an intravital microscopy methodology coupled with an image analysis program. B. asper venom induced a dose-dependent contraction of collecting lymphatic vessels, resulting in a reduction of their lumen and in a halting of lymph flow. The effect was reproduced by a myotoxic phospholipase A2 (PLA2) homologue isolated from this venom, but not by a hemorrhagic metalloproteinase or a coagulant thrombin-like serine proteinase. In agreement with this, treatment of the venom with fucoidan, a myotoxin inhibitor, abrogated the effect, whereas no inhibition was observed after incubation with the peptidomimetic metalloproteinase inhibitor Batimastat. Moreover, fucoidan significantly reduced venom-induced footpad edema. The myotoxic PLA2 homologue, known to induce skeletal muscle necrosis, was able to induce cytotoxicity in smooth muscle cells in culture and to promote an increment in the permeability to propidium iodide in these cells. Conclusions/Significance Our observations indicate that B. asper venom affects collecting lymphatic vessels through the action of myotoxic PLA2s on the smooth muscle of these vessels, inducing cell contraction and irreversible cell damage. This activity may play an important role in the pathogenesis of the pronounced local edema characteristic of viperid snakebite envenomation, as well as in the systemic biodistribution of the venom, thus representing a potential therapeutical target in these envenomations. PMID:18923712

  3. Regression of mature lymphatic vessels in the cornea by photodynamic therapy.

    PubMed

    Bucher, F; Bi, Y; Gehlsen, U; Hos, D; Cursiefen, C; Bock, F

    2014-03-01

    Corneal (lymph) angiogenesis is a predominant risk-factor for immune rejection after transplantation. Techniques to regress pre-existing pathological corneal lymphatic vessels prior to transplantation are missing so far. Therefore we analysed the possibility to regress corneal lymphatic vessels by photodynamic therapy (PDT), after intrastromal verteporfin injection. Combined hemangiogenesis and lymphangiogenesis was induced in female BALB/c mice using the murine model of suture-induced inflammatory neovascularisation. Thereafter, the treatment group received an intrastromal injection of verteporfin (controls: phosphate buffered saline (PBS)) followed by PDT. Corneas were excised at different time points (1 day, 5 days and 10 days) after PDT and corneal whole mounts were stained with CD31 and LYVE-1 to quantify hemangiogenesis and lymphangiogenesis. Whereas blood vessels showed no significant reduction after PDT, lymphatic vessels could significantly be reduced with PDT after intrastromal verteporfin injection: 1 day after PDT, lymphatic vessels were reduced by 62% (p=0.20). After 5 days and 10 days, lymphatic vessels were reduced by 51% and 48% (p<0.001), respectively. This study for the first time shows that PDT after corneal intrastromal verteporfin injection can selectively regress lymphatic vessels. This may become a new 'preconditioning strategy' to reduce pre-existing corneal lymphatic vessels prior to transplantation and thereby reduce allograft rejection in high-risk patients.

  4. Dynamic imaging of lymphatic vessels and lymph nodes using a bimodal nanoparticulate contrast agent.

    PubMed

    Mounzer, Rawad; Shkarin, Pavel; Papademetris, Xenophon; Constable, Todd; Ruddle, Nancy H; Fahmy, Tarek M

    2007-01-01

    Evaluation of lymphedema and lymph node metastasis in humans has relied primarily on invasive or radioactive modalities. While noninvasive technologies such as magnetic resonance imaging (MRI) offer the potential for true three-dimensional imaging of lymphatic structures, invasive modalities, such as optical fluorescence microscopy, provide higher resolution and clearer delineation of both lymph nodes and lymphatic vessels. Thus, contrast agents that image lymphatic vessels and lymph nodes by both fluorescence and MRI may further enhance our understanding of the structure and function of the lymphatic system. Recent applications of bimodal (fluorescence and MR) contrast agents in mice have not achieved clear visualization of lymphatic vessels and nodes. Here the authors describe the development of a nanoparticulate contrast agent that is taken up by lymphatic vessels to draining lymph nodes and detected by both modalities. A unique nanoparticulate contrast agent composed of a polyamidoamine dendrimer core conjugated to paramagnetic contrast agents and fluorescent probes was synthesized. Anesthetized mice were injected with the nanoparticulates in the hind footpads and imaged by MR and fluorescence microscopy. High resolution MR and fluorescence images were obtained and compared to traditional techniques for lymphatic visualization using Evans blue dye. Lymph nodes and lymphatic vessels were clearly observed by both MRI and fluorescence microscopy using the bimodal nanoparticulate contrast agent. Characteristic tail-lymphatics were also visualized by both modalities. Contrast imaging yielded a higher resolution than the traditional method employing Evans blue dye. MR data correlated with fluorescence and Evans blue dye imaging. A bimodal nanoparticulate contrast agent facilitates the visualization of lymphatic vessels and lymph nodes by both fluorescence microscopy and MRI with strong correlation between the two modalities. This agent may translate to applications

  5. Increased number and altered phenotype of lymphatic vessels in peripheral lung compartments of patients with COPD

    PubMed Central

    2013-01-01

    Background De novo lymphatic vessel formation has recently been observed in lungs of patients with moderate chronic obstructive pulmonary disease (COPD). However, the distribution of lymphatic vessel changes among the anatomical compartments of diseased lungs is unknown. Furthermore, information regarding the nature of lymphatic vessel alterations across different stages of COPD is missing. This study performs a detailed morphometric characterization of lymphatic vessels in major peripheral lung compartments of patients with different severities of COPD and investigates the lymphatic expression of molecules involved in immune cell trafficking. Methods Peripheral lung resection samples obtained from patients with mild (GOLD stage I), moderate-severe (GOLD stage II-III), and very severe (GOLD stage IV) COPD were investigated for podoplanin-immunopositive lymphatic vessels in distinct peripheral lung compartments: bronchioles, pulmonary blood vessels and alveolar walls. Control subjects with normal lung function were divided into never smokers and smokers. Lymphatics were analysed by multiple morphological parameters, as well as for their expression of CCL21 and the chemokine scavenger receptor D6. Results The number of lymphatics increased by 133% in the alveolar parenchyma in patients with advanced COPD compared with never-smoking controls (p < 0.05). In patchy fibrotic lesions the number of alveolar lymphatics increased 20-fold from non-fibrotic parenchyma in the same COPD patients. The absolute number of lymphatics per bronchiole and artery was increased in advanced COPD, but numbers were not different after normalization to tissue area. Increased numbers of CCL21- and D6-positive lymphatics were observed in the alveolar parenchyma in advanced COPD compared with controls (p < 0.01). Lymphatic vessels also displayed increased mean levels of immunoreactivity for CCL21 in the wall of bronchioles (p < 0.01) and bronchiole-associated arteries (p < 0

  6. Increased number and altered phenotype of lymphatic vessels in peripheral lung compartments of patients with COPD.

    PubMed

    Mori, Michiko; Andersson, Cecilia K; Graham, Gerard J; Löfdahl, Claes-Göran; Erjefält, Jonas S

    2013-06-11

    De novo lymphatic vessel formation has recently been observed in lungs of patients with moderate chronic obstructive pulmonary disease (COPD). However, the distribution of lymphatic vessel changes among the anatomical compartments of diseased lungs is unknown. Furthermore, information regarding the nature of lymphatic vessel alterations across different stages of COPD is missing. This study performs a detailed morphometric characterization of lymphatic vessels in major peripheral lung compartments of patients with different severities of COPD and investigates the lymphatic expression of molecules involved in immune cell trafficking. Peripheral lung resection samples obtained from patients with mild (GOLD stage I), moderate-severe (GOLD stage II-III), and very severe (GOLD stage IV) COPD were investigated for podoplanin-immunopositive lymphatic vessels in distinct peripheral lung compartments: bronchioles, pulmonary blood vessels and alveolar walls. Control subjects with normal lung function were divided into never smokers and smokers. Lymphatics were analysed by multiple morphological parameters, as well as for their expression of CCL21 and the chemokine scavenger receptor D6. The number of lymphatics increased by 133% in the alveolar parenchyma in patients with advanced COPD compared with never-smoking controls (p < 0.05). In patchy fibrotic lesions the number of alveolar lymphatics increased 20-fold from non-fibrotic parenchyma in the same COPD patients. The absolute number of lymphatics per bronchiole and artery was increased in advanced COPD, but numbers were not different after normalization to tissue area. Increased numbers of CCL21- and D6-positive lymphatics were observed in the alveolar parenchyma in advanced COPD compared with controls (p < 0.01). Lymphatic vessels also displayed increased mean levels of immunoreactivity for CCL21 in the wall of bronchioles (p < 0.01) and bronchiole-associated arteries (p < 0.05), as well as the alveolar

  7. Development and validation of a custom made indocyanine green fluorescence lymphatic vessel imager

    NASA Astrophysics Data System (ADS)

    Pallotta, Olivia J.; van Zanten, Malou; McEwen, Mark; Burrow, Lynne; Beesley, Jack; Piller, Neil

    2015-06-01

    Lymphoedema is a chronic progressive condition often producing significant morbidity. An in-depth understanding of an individual's lymphatic architecture is valuable both in the understanding of underlying pathology and for targeting and tailoring treatment. Severe lower limb injuries resulting in extensive loss of soft tissue require transposition of a flap consisting of muscle and/or soft tissue to close the defect. These patients are at risk of lymphoedema and little is known about lymphatic regeneration within the flap. Indocyanine green (ICG), a water-soluble dye, has proven useful for the imaging of lymphatic vessels. When injected into superficial tissues it binds to plasma proteins in lymph. By exposing the dye to specific wavelengths of light, ICG fluoresces with near-infrared light. Skin is relatively transparent to ICG fluorescence, enabling the visualization and characterization of superficial lymphatic vessels. An ICG fluorescence lymphatic vessel imager was manufactured to excite ICG and visualize real-time fluorescence as it travels through the lymphatic vessels. Animal studies showed successful ICG excitation and detection using this imager. Clinically, the imager has assisted researchers to visualize otherwise hidden superficial lymphatic pathways in patients postflap surgery. Preliminary results suggest superficial lymphatic vessels do not redevelop in muscle flaps.

  8. Development and validation of a custom made indocyanine green fluorescence lymphatic vessel imager.

    PubMed

    Pallotta, Olivia J; van Zanten, Malou; McEwen, Mark; Burrow, Lynne; Beesley, Jack; Piller, Neil

    2015-06-01

    Lymphoedema is a chronic progressive condition often producing significant morbidity. An in-depth understanding of an individual's lymphatic architecture is valuable both in the understanding of underlying pathology and for targeting and tailoring treatment. Severe lower limb injuries resulting in extensive loss of soft tissue require transposition of a flap consisting of muscle and/or soft tissue to close the defect. These patients are at risk of lymphoedema and little is known about lymphatic regeneration within the flap. Indocyanine green (ICG), a water-soluble dye, has proven useful for the imaging of lymphatic vessels. When injected into superficial tissues it binds to plasma proteins in lymph. By exposing the dye to specific wavelengths of light, ICG fluoresces with near-infrared light. Skin is relatively transparent to ICG fluorescence, enabling the visualization and characterization of superficial lymphatic vessels. An ICG fluorescence lymphatic vessel imager was manufactured to excite ICG and visualize real-time fluorescence as it travels through the lymphatic vessels. Animal studies showed successful ICG excitation and detection using this imager. Clinically, the imager has assisted researchers to visualize otherwise hidden superficial lymphatic pathways in patients postflap surgery. Preliminary results suggest superficial lymphatic vessels do not redevelop in muscle flaps.

  9. MR lymphography of lymphatic vessels in lower extremity with gynecologic oncology-related lymphedema.

    PubMed

    Lu, Qing; Delproposto, Zachary; Hu, Alice; Tran, Christine; Liu, Ningfei; Li, Yulai; Xu, Jianrong; Bui, Duy; Hu, Jiani

    2012-01-01

    To characterize lymphatic vessel morphology in lower extremity lymphedema using MR lymphography at 3T. Forty females with lower extremity lymphedema secondary to gynecologic carcinoma treatment underwent MR lymphography (MRL) at 3T. Lymphatic vessel morphology in normal and affected limbs was compared. The median diameter of the lymphatic vessels in swollen calf and thigh were significantly larger than that in the contralateral calf and thigh, respectively (p<0.05). The median number of lymphatic vessels visualized in normal calf was less than that in the lymphedematous calf (p<0.01), while no significant difference was found between the normal thigh and swollen thigh. Lymphatic vessel number in the affected calf was significantly greater than that in affected thigh and the mean diameter of affected calf was also significantly wider than that of affected thigh (p<0.01). Mean diameter of lymphatic vessels in the affected calf was significantly different between stage I and stage III (p<0.05), but not significantly different between stages I and II, and between stages II and III (p>0.05). The median number of lymphatic vessels for affected calf showed significant difference between stage I and stage III, and between stage II and stage III (p<0.05), but no significant difference between stage I and stage II (p>0.05). There was no significant difference in mean diameter or median number of lymphatic vessels in the affected thigh found between different stages (p>0.05). There are significant differences in the number or diameter of lymphatic vessels between normal and affected limbs and there are significant differences for affected calf between early and late stages of lymphedema; therefore, MR lymphography can be helpful in diagnosis or clinical staging for lower extremity with gynecologic oncology-related lymphedema.

  10. Ex-Vivo Lymphatic Perfusion System for Independently Controlling Pressure Gradient and Transmural Pressure in Isolated Vessels

    PubMed Central

    Kornuta, Jeffrey A.; Dixon, J. Brandon

    2015-01-01

    In addition to external forces, collecting lymphatic vessels intrinsically contract to transport lymph from the extremities to the venous circulation. As a result, the lymphatic endothelium is routinely exposed to a wide range of dynamic mechanical forces, primarily fluid shear stress and circumferential stress, which have both been shown to affect lymphatic pumping activity. Although various ex-vivo perfusion systems exist to study this innate pumping activity in response to mechanical stimuli, none are capable of independently controlling the two primary mechanical forces affecting lymphatic contractility: transaxial pressure gradient, ΔP, which governs fluid shear stress; and average transmural pressure, Pavg, which governs circumferential stress. Hence, the authors describe a novel ex-vivo lymphatic perfusion system (ELPS) capable of independently controlling these two outputs using a linear, explicit model predictive control (MPC) algorithm. The ELPS is capable of reproducing arbitrary waveforms within the frequency range observed in the lymphatics in vivo, including a time-varying ΔP with a constant Pavg, time-varying ΔP and Pavg, and a constant ΔP with a time-varying Pavg. In addition, due to its implementation of syringes to actuate the working fluid, a post-hoc method of estimating both the flow rate through the vessel and fluid wall shear stress over multiple, long (5 sec) time windows is also described. PMID:24809724

  11. The embryonic origins of lymphatic vessels: an historical review.

    PubMed

    Ribatti, Domenico; Crivellato, Enrico

    2010-06-01

    Work on the lymphatic system began in the 17th century, and by the beginning of the 19th century the anatomy of most of the lymphatic system had been described. One of the most important questions in this field has been the determination of the embryological origin of the lymphatic endothelium. Two theories were proposed. The first suggested that lymphatic endothelium derived by sprouting from venous endothelium, the so-called centrifugal theory. The second, the so-called centripetal theory, suggested that lymphatic endothelium differentiates in situ from primitive mesenchyme, and secondarily acquires connection with the vascular system. More recent evidence has provided support for both hypotheses.

  12. Label-free optical lymphangiography: development of an automatic segmentation method applied to optical coherence tomography to visualize lymphatic vessels using Hessian filters.

    PubMed

    Yousefi, Siavash; Qin, Jia; Zhi, Zhongwei; Wang, Ruikang K

    2013-08-01

    Lymphatic vessels are a part of the circulatory system that collect plasma and other substances that have leaked from the capillaries into interstitial fluid (lymph) and transport lymph back to the circulatory system. Since lymph is transparent, lymphatic vessels appear as dark hallow vessel-like regions in optical coherence tomography (OCT) cross sectional images. We propose an automatic method to segment lymphatic vessel lumen from OCT structural cross sections using eigenvalues of Hessian filters. Compared to the existing method based on intensity threshold, Hessian filters are more selective on vessel shape and less sensitive to intensity variations and noise. Using this segmentation technique along with optical micro-angiography allows label-free noninvasive simultaneous visualization of blood and lymphatic vessels in vivo. Lymphatic vessels play an important role in cancer, immune system response, inflammatory disease, wound healing and tissue regeneration. Development of imaging techniques and visualization tools for lymphatic vessels is valuable in understanding the mechanisms and studying therapeutic methods in related disease and tissue response.

  13. Label-free optical lymphangiography: development of an automatic segmentation method applied to optical coherence tomography to visualize lymphatic vessels using Hessian filters

    NASA Astrophysics Data System (ADS)

    Yousefi, Siavash; Qin, Jia; Zhi, Zhongwei; Wang, Ruikang K.

    2013-08-01

    Lymphatic vessels are a part of the circulatory system that collect plasma and other substances that have leaked from the capillaries into interstitial fluid (lymph) and transport lymph back to the circulatory system. Since lymph is transparent, lymphatic vessels appear as dark hallow vessel-like regions in optical coherence tomography (OCT) cross sectional images. We propose an automatic method to segment lymphatic vessel lumen from OCT structural cross sections using eigenvalues of Hessian filters. Compared to the existing method based on intensity threshold, Hessian filters are more selective on vessel shape and less sensitive to intensity variations and noise. Using this segmentation technique along with optical micro-angiography allows label-free noninvasive simultaneous visualization of blood and lymphatic vessels in vivo. Lymphatic vessels play an important role in cancer, immune system response, inflammatory disease, wound healing and tissue regeneration. Development of imaging techniques and visualization tools for lymphatic vessels is valuable in understanding the mechanisms and studying therapeutic methods in related disease and tissue response.

  14. Label-free optical lymphangiography: development of an automatic segmentation method applied to optical coherence tomography to visualize lymphatic vessels using Hessian filters

    PubMed Central

    Yousefi, Siavash; Qin, Jia; Zhi, Zhongwei

    2013-01-01

    Abstract. Lymphatic vessels are a part of the circulatory system that collect plasma and other substances that have leaked from the capillaries into interstitial fluid (lymph) and transport lymph back to the circulatory system. Since lymph is transparent, lymphatic vessels appear as dark hallow vessel-like regions in optical coherence tomography (OCT) cross sectional images. We propose an automatic method to segment lymphatic vessel lumen from OCT structural cross sections using eigenvalues of Hessian filters. Compared to the existing method based on intensity threshold, Hessian filters are more selective on vessel shape and less sensitive to intensity variations and noise. Using this segmentation technique along with optical micro-angiography allows label-free noninvasive simultaneous visualization of blood and lymphatic vessels in vivo. Lymphatic vessels play an important role in cancer, immune system response, inflammatory disease, wound healing and tissue regeneration. Development of imaging techniques and visualization tools for lymphatic vessels is valuable in understanding the mechanisms and studying therapeutic methods in related disease and tissue response. PMID:23922124

  15. Regulation of lymphatic-blood vessel separation by endothelial Rac1

    PubMed Central

    D'Amico, Gabriela; Jones, Dylan T.; Nye, Emma; Sapienza, Karen; Ramjuan, Antoine R.; Reynolds, Louise E.; Robinson, Stephen D.; Kostourou, Vassiliki; Martinez, Dolores; Aubyn, Deborah; Grose, Richard; Thomas, Gareth J.; Spencer-Dene, Bradley; Zicha, Daniel; Davies, Derek; Tybulewicz, Victor; Hodivala-Dilke, Kairbaan M.

    2009-01-01

    Sprouting angiogenesis and lymphatic-blood vessel segregation both involve the migration of endothelial cells, but the precise migratory molecules that govern the decision of blood vascular endothelial cells to segregate into lymphatic vasculature are unknown. Here, we deleted endothelial Rac1 in mice (Tie1-Cre+;Rac1fl/fl) and revealed, unexpectedly, that whereas blood vessel morphology appeared normal, lymphatic-blood vessel separation was impaired, with corresponding edema, haemorrhage and embryonic lethality. Importantly, normal levels of Rac1 were essential for directed endothelial cell migratory responses to lymphatic-inductive signals. Our studies identify Rac1 as a crucial part of the migratory machinery required for endothelial cells to separate and form lymphatic vasculature. PMID:19906871

  16. The chemokine receptors ACKR2 and CCR2 reciprocally regulate lymphatic vessel density

    PubMed Central

    Lee, Kit M; Danuser, Renzo; Stein, Jens V; Graham, Delyth; Nibbs, Robert JB; Graham, Gerard J

    2014-01-01

    Macrophages regulate lymphatic vasculature development; however, the molecular mechanisms regulating their recruitment to developing, and adult, lymphatic vascular sites are not known. Here, we report that resting mice deficient for the inflammatory chemokine-scavenging receptor, ACKR2, display increased lymphatic vessel density in a range of tissues under resting and regenerating conditions. This appears not to alter dendritic cell migration to draining lymph nodes but is associated with enhanced fluid drainage from peripheral tissues and thus with a hypotensive phenotype. Examination of embryonic skin revealed that this lymphatic vessel density phenotype is developmentally established. Further studies indicated that macrophages and the inflammatory CC-chemokine CCL2, which is scavenged by ACKR2, are associated with this phenotype. Accordingly, mice deficient for the CCL2 signalling receptor, CCR2, displayed a reciprocal phenotype of reduced lymphatic vessel density. Further examination revealed that proximity of pro-lymphangiogenic macrophages to developing lymphatic vessel surfaces is increased in ACKR2-deficient mice and reduced in CCR2-deficient mice. Therefore, these receptors regulate vessel density by reciprocally modulating pro-lymphangiogenic macrophage recruitment, and proximity, to developing, resting and regenerating lymphatic vessels. PMID:25271254

  17. Invasion of lymphatic vessels into the eye after open globe injuries.

    PubMed

    Wessel, Julia M; Hofmann-Rummelt, Carmen; Kruse, Friedrich E; Cursiefen, Claus; Heindl, Ludwig M

    2012-06-20

    We analyzed whether lymphatic vessels can be detected in eyes enucleated after an open globe injury. The presence of lymphatic vessels was analyzed immunohistochemically using podoplanin as a specific lymphatic endothelial marker in 21 globes that had been enucleated after open globe injury. The localization of pathologic lymphatic vessels (within the eye wall or inside the eye) was correlated with the mechanism of trauma, anatomic site of perforation or rupture, and time interval between trauma and enucleation. Pathologic lymphatic vessels were detected in 15 of 21 eyes (71%) enucleated after an open globe injury. In 5 globes (24%) they were found within the eye, located in retrocorneal membranes, underneath the sclera, and adjacent to uveal tissue (ciliary body, iris). No significant association was observed between the presence of pathologic lymphatic vessels and the mechanism of trauma (P = 0.598), anatomic site of perforation or rupture (P = 0.303), and time interval between trauma and enucleation (P = 0.145). The human eye can be invaded secondarily by lymphatic vessels if the eye wall is opened by trauma. This mechanism could be important for wound healing, immunologic defense against intruding microorganisms, and autoimmune reactions against intraocular antigens.

  18. MR lymphangiography for the assessment of the lymphatic system in patients undergoing microsurgical reconstructions of lymphatic vessels.

    PubMed

    Lohrmann, Christian; Felmerer, Gunther; Foeldi, Etelka; Bartholomä, J-P; Langer, Mathias

    2008-05-01

    To assess the morphology of the lymphatic system pre- and postoperatively in patients undergoing microsurgical reconstructions of the lymphatic vessels. 8 lower extremities in 4 consecutive patients with secondary unilateral lymphedema of the lower extremities were examined by MR lymphangiography. 18 mL of gadoteridol and 1 mL of mepivacainhydrochloride 1% were subdivided into 10 portions and injected intracutaneously into the dorsal aspect of each foot at the region of the four interdigital webs and medial to the first proximal phalanx. MR imaging was performed with a 1.5-T system equipped with high-performance gradients. For MR lymphangiography a 3D-spoiled gradient-echo sequence was used. For evaluation of the lymphedema a heavily T2-weighted 3D-TSE sequence was performed. In 2 patients the 3D-TSE sequence demonstrated a decrease of the epifascial lymphedema in the postoperative acquisitions, whereby MR lymphangiography displayed an improvement of dermal-back areas and collateral lymphatic vessels. In one patient the epifascial lymphedema of the lower extremity decreased, whereas the diameter of the lymphatic vessels showed a constant diameter of 2 mm. In one patient with a lymphocutaneous fistula at the level of the right groin, the feeding lymphatic vessels and contrast media extravasation could clearly be visualized. The 3D-TSE sequence demonstrated an epi- as well as subfascial lymphedema of the right leg. MR lymphangiography is a safe and accurate diagnostic imaging method for the pre- and postoperative evaluation of the lymphatic circulation in patients undergoing microlymphatic surgery. Due to the minimal-invasiveness and lack of radiation, diagnostic follow-up MR lymphangiography examinations can be performed routinely and with no risk for the patient.

  19. Voltage-gated sodium channels contribute to action potentials and spontaneous contractility in isolated human lymphatic vessels.

    PubMed

    Telinius, Niklas; Majgaard, Jens; Kim, Sukhan; Katballe, Niels; Pahle, Einar; Nielsen, Jørn; Hjortdal, Vibeke; Aalkjaer, Christian; Boedtkjer, Donna Briggs

    2015-07-15

    Voltage-gated sodium channels (VGSC) play a key role for initiating action potentials (AP) in excitable cells. VGSC in human lymphatic vessels have not been investigated. In the present study, we report the electrical activity and APs of small human lymphatic collecting vessels, as well as mRNA expression and function of VGSC in small and large human lymphatic vessels. The VGSC blocker TTX inhibited spontaneous contractions in six of 10 spontaneously active vessels, whereas ranolazine, which has a narrower VGSC blocking profile, had no influence on spontaneous activity. TTX did not affect noradrenaline-induced contractions. The VGSC opener veratridine induced contractions in a concentration-dependent manner (0.1-30 μm) eliciting a stable tonic contraction and membrane depolarization to -18 ± 0.6 mV. Veratridine-induced depolarizations and contractions were reversed ∼80% by TTX, and were dependent on Ca(2+) influx via L-type calcium channels and the sodium-calcium exchanger in reverse mode. Molecular analysis determined NaV 1.3 to be the predominantly expressed VGSC isoform. Electrophysiology of mesenteric lymphatics determined the resting membrane potential to be -45 ± 1.7 mV. Spontaneous APs were preceded by a slow depolarization of 5.3 ± 0.6 mV after which a spike was elicited that almost completely repolarized before immediately depolarizing again to plateau. Vessels transiently hyperpolarized prior to returning to the resting membrane potential. TTX application blocked APs. We have shown that VGSC are necessary for initiating and maintaining APs and spontaneous contractions in human lymphatic vessels and our data suggest the main contribution from comes NaV 1.3. We have also shown that activation of these channels augments the contractile activity of the vessels. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  20. An in situ optical imaging system for measuring lipid uptake, vessel contraction, and lymph flow in small animal lymphatic vessels

    NASA Astrophysics Data System (ADS)

    Kassis, Timothy; Weiler, Michael J.; Dixon, J. Brandon

    2012-03-01

    All dietary lipids are transported to venous circulation through the lymphatic system, yet the underlying mechanisms that regulate this process remain unclear. Understanding how the lymphatics functionally respond to changes in lipid load is important in the diagnosis and treatment of lipid and lymphatic related diseases such as obesity, hypercholesterolemia, and lymphedema. Therefore, we sought to develop an in situ imaging system to quantify and correlate lymphatic function as it relates to lipid transport. A custom-built optical set-up provides us with the capability of dual-channel imaging of both high-speed bright-field video and fluorescence simultaneously. This is achieved by dividing the light path into two optical bands. Utilizing high-speed and back-illuminated CCD cameras and post-acquisition image processing algorithms, we have the potential quantify correlations between vessel contraction, lymph flow and lipid concentration of mesenteric lymphatic vessels in situ. Local flow velocity is measured through lymphocyte tracking, vessel contraction through measurements of the vessel walls and lipid uptake through fluorescence intensity tracking of a fluorescent long chain fatty acid analogue, Bodipy FL C16. This system will prove to be an invaluable tool for both scientists studying lymphatic function in health and disease, and those investigating strategies for targeting the lymphatic system with orally delivered drugs.

  1. Podoplanin Immunopositive Lymphatic Vessels at the Implant Interface in a Rat Model of Osteoporotic Fractures

    PubMed Central

    Lips, Katrin Susanne; Kauschke, Vivien; Hartmann, Sonja; Thormann, Ulrich; Ray, Seemun; Kampschulte, Marian; Langheinrich, Alexander; Schumacher, Matthias; Gelinsky, Michael; Heinemann, Sascha; Hanke, Thomas; Kautz, Armin R.; Schnabelrauch, Matthias; Schnettler, Reinhard; Heiss, Christian; Alt, Volker; Kilian, Olaf

    2013-01-01

    Insertion of bone substitution materials accelerates healing of osteoporotic fractures. Biodegradable materials are preferred for application in osteoporotic patients to avoid a second surgery for implant replacement. Degraded implant fragments are often absorbed by macrophages that are removed from the fracture side via passage through veins or lymphatic vessels. We investigated if lymphatic vessels occur in osteoporotic bone defects and whether they are regulated by the use of different materials. To address this issue osteoporosis was induced in rats using the classical method of bilateral ovariectomy and additional calcium and vitamin deficient diet. In addition, wedge-shaped defects of 3, 4, or 5 mm were generated in the distal metaphyseal area of femur via osteotomy. The 4 mm defects were subsequently used for implantation studies where bone substitution materials of calcium phosphate cement, composites of collagen and silica, and iron foams with interconnecting pores were inserted. Different materials were partly additionally functionalized by strontium or bisphosphonate whose positive effects in osteoporosis treatment are well known. The lymphatic vessels were identified by immunohistochemistry using an antibody against podoplanin. Podoplanin immunopositive lymphatic vessels were detected in the granulation tissue filling the fracture gap, surrounding the implant and growing into the iron foam through its interconnected pores. Significant more lymphatic capillaries were counted at the implant interface of composite, strontium and bisphosphonate functionalized iron foam. A significant increase was also observed in the number of lymphatics situated in the pores of strontium coated iron foam. In conclusion, our results indicate the occurrence of lymphatic vessels in osteoporotic bone. Our results show that lymphatic vessels are localized at the implant interface and in the fracture gap where they might be involved in the removal of lymphocytes, macrophages

  2. Podoplanin immunopositive lymphatic vessels at the implant interface in a rat model of osteoporotic fractures.

    PubMed

    Lips, Katrin Susanne; Kauschke, Vivien; Hartmann, Sonja; Thormann, Ulrich; Ray, Seemun; Kampschulte, Marian; Langheinrich, Alexander; Schumacher, Matthias; Gelinsky, Michael; Heinemann, Sascha; Hanke, Thomas; Kautz, Armin R; Schnabelrauch, Matthias; Schnettler, Reinhard; Heiss, Christian; Alt, Volker; Kilian, Olaf

    2013-01-01

    Insertion of bone substitution materials accelerates healing of osteoporotic fractures. Biodegradable materials are preferred for application in osteoporotic patients to avoid a second surgery for implant replacement. Degraded implant fragments are often absorbed by macrophages that are removed from the fracture side via passage through veins or lymphatic vessels. We investigated if lymphatic vessels occur in osteoporotic bone defects and whether they are regulated by the use of different materials. To address this issue osteoporosis was induced in rats using the classical method of bilateral ovariectomy and additional calcium and vitamin deficient diet. In addition, wedge-shaped defects of 3, 4, or 5 mm were generated in the distal metaphyseal area of femur via osteotomy. The 4 mm defects were subsequently used for implantation studies where bone substitution materials of calcium phosphate cement, composites of collagen and silica, and iron foams with interconnecting pores were inserted. Different materials were partly additionally functionalized by strontium or bisphosphonate whose positive effects in osteoporosis treatment are well known. The lymphatic vessels were identified by immunohistochemistry using an antibody against podoplanin. Podoplanin immunopositive lymphatic vessels were detected in the granulation tissue filling the fracture gap, surrounding the implant and growing into the iron foam through its interconnected pores. Significant more lymphatic capillaries were counted at the implant interface of composite, strontium and bisphosphonate functionalized iron foam. A significant increase was also observed in the number of lymphatics situated in the pores of strontium coated iron foam. In conclusion, our results indicate the occurrence of lymphatic vessels in osteoporotic bone. Our results show that lymphatic vessels are localized at the implant interface and in the fracture gap where they might be involved in the removal of lymphocytes, macrophages

  3. Absence of lymphatic vessels in human dental pulp: a morphological study.

    PubMed

    Gerli, Renato; Secciani, Ilaria; Sozio, Francesca; Rossi, Antonella; Weber, Elisabetta; Lorenzini, Guido

    2010-04-01

    Few and controversial data are available in the literature regarding the presence of lymphatic vessels in the human dental pulp. The present study was designed to examine morphologically the existence of a lymph drainage system in human dental pulp. Human dental pulp and skin sections were immunohistochemically stained with specific antibodies for lymphatic endothelium (D2-40, LYVE-1, VEGFR-3 [vascular endothelial growth factor receptor-3], and Prox-1), with the pan-endothelial markers CD31 and von Willebrand factor (vWF), and with the blood-specific marker CD34. Several blood vessels were identified in human pulps and skin. Lymphatic vessels were found in all human skin samples but in none of the pulps examined. Western blotting performed on human dermis and on pulps treated with collagenase (to remove odontoblasts) confirmed these results. Transmission electron microscopy indicated that vessels which, by light microscopy, appeared to be initial lymphatic vessels had no anchoring filaments or discontinuous basement membrane, both of which are typical ultrastructural characteristics of lymphatic vessels. These results suggest that under normal conditions human dental pulp does not contain true lymphatic vessels. The various theories about dental pulp interstitial fluid circulation should be revised accordingly.

  4. Adaptation of mesenteric lymphatic vessels to prolonged changes in transmural pressure

    PubMed Central

    Dongaonkar, R. M.; Nguyen, T. L.; Hardy, J.; Laine, G. A.; Wilson, E.; Stewart, R. H.

    2013-01-01

    In vitro studies have revealed that acute increases in transmural pressure increase lymphatic vessel contractile function. However, adaptive responses to prolonged changes in transmural pressure in vivo have not been reported. Therefore, we developed a novel bovine mesenteric lymphatic partial constriction model to test the hypothesis that lymphatic vessels exposed to higher transmural pressures adapt functionally to become stronger pumps than vessels exposed to lower transmural pressures. Postnodal mesenteric lymphatic vessels were partially constricted for 3 days. On postoperative day 3, constricted vessels were isolated, and divided into upstream (UP) and downstream (DN) segment groups, and instrumented in an isolated bath. Although there were no differences between the passive diameters of the two groups, both diastolic diameter and systolic diameter were significantly larger in the UP group than in the DN group. The pump index of the UP group was also higher than that in the DN group. In conclusion, this is the first work to report how lymphatic vessels adapt to prolonged changes in transmural pressure in vivo. Our results suggest that vessel segments upstream of the constriction adapt to become both better fluid conduits and lymphatic pumps than downstream segments. PMID:23666672

  5. Adaptation of mesenteric lymphatic vessels to prolonged changes in transmural pressure.

    PubMed

    Dongaonkar, R M; Nguyen, T L; Quick, C M; Hardy, J; Laine, G A; Wilson, E; Stewart, R H

    2013-07-15

    In vitro studies have revealed that acute increases in transmural pressure increase lymphatic vessel contractile function. However, adaptive responses to prolonged changes in transmural pressure in vivo have not been reported. Therefore, we developed a novel bovine mesenteric lymphatic partial constriction model to test the hypothesis that lymphatic vessels exposed to higher transmural pressures adapt functionally to become stronger pumps than vessels exposed to lower transmural pressures. Postnodal mesenteric lymphatic vessels were partially constricted for 3 days. On postoperative day 3, constricted vessels were isolated, and divided into upstream (UP) and downstream (DN) segment groups, and instrumented in an isolated bath. Although there were no differences between the passive diameters of the two groups, both diastolic diameter and systolic diameter were significantly larger in the UP group than in the DN group. The pump index of the UP group was also higher than that in the DN group. In conclusion, this is the first work to report how lymphatic vessels adapt to prolonged changes in transmural pressure in vivo. Our results suggest that vessel segments upstream of the constriction adapt to become both better fluid conduits and lymphatic pumps than downstream segments.

  6. Ligand-directed targeting of lymphatic vessels uncovers mechanistic insights in melanoma metastasis.

    PubMed

    Christianson, Dawn R; Dobroff, Andrey S; Proneth, Bettina; Zurita, Amado J; Salameh, Ahmad; Dondossola, Eleonora; Makino, Jun; Bologa, Cristian G; Smith, Tracey L; Yao, Virginia J; Calderone, Tiffany L; O'Connell, David J; Oprea, Tudor I; Kataoka, Kazunori; Cahill, Dolores J; Gershenwald, Jeffrey E; Sidman, Richard L; Arap, Wadih; Pasqualini, Renata

    2015-02-24

    Metastasis is the most lethal step of cancer progression in patients with invasive melanoma. In most human cancers, including melanoma, tumor dissemination through the lymphatic vasculature provides a major route for tumor metastasis. Unfortunately, molecular mechanisms that facilitate interactions between melanoma cells and lymphatic vessels are unknown. Here, we developed an unbiased approach based on molecular mimicry to identify specific receptors that mediate lymphatic endothelial-melanoma cell interactions and metastasis. By screening combinatorial peptide libraries directly on afferent lymphatic vessels resected from melanoma patients during sentinel lymphatic mapping and lymph node biopsies, we identified a significant cohort of melanoma and lymphatic surface binding peptide sequences. The screening approach was designed so that lymphatic endothelium binding peptides mimic cell surface proteins on tumor cells. Therefore, relevant metastasis and lymphatic markers were biochemically identified, and a comprehensive molecular profile of the lymphatic endothelium during melanoma metastasis was generated. Our results identified expression of the phosphatase 2 regulatory subunit A, α-isoform (PPP2R1A) on the cell surfaces of both melanoma cells and lymphatic endothelial cells. Validation experiments showed that PPP2R1A is expressed on the cell surfaces of both melanoma and lymphatic endothelial cells in vitro as well as independent melanoma patient samples. More importantly, PPP2R1A-PPP2R1A homodimers occur at the cellular level to mediate cell-cell interactions at the lymphatic-tumor interface. Our results revealed that PPP2R1A is a new biomarker for melanoma metastasis and show, for the first time to our knowledge, an active interaction between the lymphatic vasculature and melanoma cells during tumor progression.

  7. Functional adaptation of bovine mesenteric lymphatic vessels to mesenteric venous hypertension.

    PubMed

    Quick, Christopher M; Criscione, John C; Kotiya, Akhilesh; Dongaonkar, Ranjeet M; Hardy, Joanne; Wilson, Emily; Gashev, Anatoliy A; Laine, Glen A; Stewart, Randolph H

    2014-06-15

    Lymph flow is the primary mechanism for returning interstitial fluid to the blood circulation. Currently, the adaptive response of lymphatic vessels to mesenteric venous hypertension is not known. This study sought to determine the functional responses of postnodal mesenteric lymphatic vessels. We surgically occluded bovine mesenteric veins to create mesenteric venous hypertension to elevate mesenteric lymph flow. Three days after surgery, postnodal mesenteric lymphatic vessels from mesenteric venous hypertension (MVH; n = 7) and sham surgery (Sham; n = 6) group animals were evaluated and compared. Contraction frequency (MVH: 2.98 ± 0.75 min(-1); Sham: 5.42 ± 0.81 min(-1)) and fractional pump flow (MVH: 1.14 ± 0.30 min(-1); Sham: 2.39 ± 0.32 min(-1)) were significantly lower in the venous occlusion group. These results indicate that postnodal mesenteric lymphatic vessels adapt to mesenteric venous hypertension by reducing intrinsic contractile activity. Copyright © 2014 the American Physiological Society.

  8. Pump function curve shape for a model lymphatic vessel.

    PubMed

    Bertram, C D; Macaskill, C; Moore, J E

    2016-07-01

    The transport capacity of a contractile segment of lymphatic vessel is defined by its pump function curve relating mean flow-rate and adverse pressure difference. Numerous system characteristics affect curve shape and the magnitude of the generated flow-rates and pressures. Some cannot be varied experimentally, but their separate and interacting effects can be systematically revealed numerically. This paper explores variations in the rate of change of active tension and the form of the relation between active tension and muscle length, factors not known from experiment to functional precision. Whether the pump function curve bends toward or away from the origin depends partly on the curvature of the passive pressure-diameter relation near zero transmural pressure, but rather more on the form of the relation between active tension and muscle length. A pump function curve bending away from the origin defines a well-performing pump by maximum steady output power. This behaviour is favoured by a length/active-tension relationship which sustains tension at smaller lengths. Such a relationship also favours high peak mechanical efficiency, defined as output power divided by the input power obtained from the lymphangion diameter changes and active-tension time-course. The results highlight the need to pin down experimentally the form of the length/active-tension relationship.

  9. Visualisation of blood and lymphatic vessels with increasing exposure time of the detector

    SciTech Connect

    Kalchenko, V V; Kuznetsov, Yu L; Meglinski, I V

    2013-07-31

    We describe the laser speckle contrast method for simultaneous noninvasive imaging of blood and lymphatic vessels of living organisms, based on increasing detector exposure time. In contrast to standard methods of fluorescent angiography, this technique of vascular bed imaging and lymphatic and blood vessel demarcation does not employ toxic fluorescent markers. The method is particularly promising with respect to the physiology of the cardiovascular system under in vivo conditions. (laser applications in biology and medicine)

  10. Visualisation of blood and lymphatic vessels with increasing exposure time of the detector

    NASA Astrophysics Data System (ADS)

    Kalchenko, V. V.; Kuznetsov, Yu L.; Meglinski, I. V.

    2013-07-01

    We describe the laser speckle contrast method for simultaneous noninvasive imaging of blood and lymphatic vessels of living organisms, based on increasing detector exposure time. In contrast to standard methods of fluorescent angiography, this technique of vascular bed imaging and lymphatic and blood vessel demarcation does not employ toxic fluorescent markers. The method is particularly promising with respect to the physiology of the cardiovascular system under in vivo conditions.

  11. Immunohistochemical Heterogeneity of the Endothelium of Blood and Lymphatic Vessels in the Developing Human Liver and in Adulthood.

    PubMed

    Nikolić, Ivan; Todorović, Vera; Petrović, Aleksandar; Petrović, Vladimir; Jović, Marko; Vladičić, Jelena; Puškaš, Nela

    2017-01-01

    The endothelium of liver sinusoids in relation to the endothelium of other blood vessels has specific antigen expression similar to the endothelium of lymphatic vessels. Bearing in mind that there is no consensus as to the period or intensity of the expression of certain antigens in the endothelium of blood and lymphatic vessels in the liver, the aim of our study was to immunohistochemically investigate the dynamic patterns of the expression of CD31, CD34, D2-40, and LYVE-1 antigens during liver development and in adulthood on paraffin tissue sections of human livers of 4 embryos, 38 fetuses, 6 neonates, and 6 adults. The results show that, in a histologically immature liver at the end of the embryonic period, CD34 molecules are expressed only on vein endothelium localized in developing portal areas, whereby the difference between portal venous branches and CD34-negative central veins belongs to the collecting venous system. In the fetal period, with aging, expression of CD34 and CD31 molecules on the endothelium of central veins and blood vessels of the portal areas increases. Sinusoidal endothelium shows light and sporadic CD34 immunoreactivity in the late embryonic and fetal periods, and is lost in the neonatal and adult periods, unlike CD31 immunoreactivity, which is poorly expressed in the fetal and neonatal periods but is present in adults. The endothelium of sinusoids and lymphatic vessels express LYVE-1, and the endothelium of lymphatic vessels express LYVE-1 and D2-40 but not CD34. Similarity between the sinusoidal and lymphatic endothelium includes the fact that both types are LYVE-1 positive and CD34 negative. © 2016 S. Karger AG, Basel.

  12. Role of lymphatic vessels in tumor immunity: passive conduits or active participants?

    PubMed

    Lund, Amanda W; Swartz, Melody A

    2010-09-01

    Research in lymphatic biology and cancer immunology may soon intersect as emerging evidence implicates the lymphatics in the progression of chronic inflammation and autoimmunity as well as in tumor metastasis and immune escape. Like the blood vasculature, the lymphatic system comprises a highly dynamic conduit system that regulates fluid homeostasis, antigen transport and immune cell trafficking, which all play important roles in the progression and resolution of inflammation, autoimmune diseases, and cancer. This review presents emerging evidence that lymphatic vessels are active modulators of immunity, perhaps fine-tuning the response to adjust the balance between peripheral tolerance and immunity. This suggests that the tumor-associated lymphatic vessels and draining lymph node may be important in tumor immunity which in turn governs metastasis.

  13. Label-free optical imaging of lymphatic vessels within tissue beds in vivo

    PubMed Central

    Yousefi, Siavash; Zhi, Zhongwei; Wang, Ruikang K.

    2015-01-01

    Lymphatic vessels are a part of circulatory system in vertebrates that maintain tissue fluid homeostasis and drain excess fluid and large cells that cannot easily find their way back into venous system. Due to the lack of non-invasive monitoring tools, lymphatic vessels are known as forgotten circulation. However, lymphatic system plays an important role in diseases such as cancer and inflammatory conditions. In this paper, we start to briefly review the current existing methods for imaging lymphatic vessels, mostly involving dye/targeting cell injection. We then show the capability of optical coherence tomography (OCT) for label-free non-invasive in vivo imaging of lymph vessels and nodes. One of the advantages of using OCT over other imaging modalities is its ability to assess label-free blood flow perfusion that can be simultaneously observed along with lymphatic vessels for imaging the microcirculatory system within tissue beds. Imaging the microcirculatory system including blood and lymphatic vessels can be utilized for imaging and better understanding pathologic mechanisms and treatment technique development in some critical diseases such as inflammation, malignant cancer angiogenesis and metastasis. PMID:25642129

  14. Label-free optical imaging of lymphatic vessels within tissue beds in vivo.

    PubMed

    Yousefi, Siavash; Zhi, Zhongwei; Wang, Ruikang K

    2014-01-01

    Lymphatic vessels are a part of circulatory system in vertebrates that maintain tissue fluid homeostasis and drain excess fluid and large cells that cannot easily find their way back into venous system. Due to the lack of non-invasive monitoring tools, lymphatic vessels are known as forgotten circulation. However, lymphatic system plays an important role in diseases such as cancer and inflammatory conditions. In this paper, we start to briefly review the current existing methods for imaging lymphatic vessels, mostly involving dye/targeting cell injection. We then show the capability of optical coherence tomography (OCT) for label-free non-invasive in vivo imaging of lymph vessels and nodes. One of the advantages of using OCT over other imaging modalities is its ability to assess label-free blood flow perfusion that can be simultaneously observed along with lymphatic vessels for imaging the microcirculatory system within tissue beds. Imaging the microcirculatory system including blood and lymphatic vessels can be utilized for imaging and better understanding pathologic mechanisms and treatment technique development in some critical diseases such as inflammation, malignant cancer angiogenesis and metastasis.

  15. Distribution of lymphatic vessels in normal and arthritic human synovial tissues

    PubMed Central

    Xu, H; Edwards, J; Banerji, S; Prevo, R; Jackson, D; Athanasou, N

    2003-01-01

    Methods: Synovial tissues from 5 normal controls, 14 patients with RA, and 16 patients with OA were studied. Lymphatic vessels were identified by immunohistochemistry using antibodies directed against the lymphatic endothelial hyaluronan receptor (LYVE-1) and recognised blood vessel endothelial markers (factor VIII, CD34, CD31). Results: Lymphatic vessels were found in all zones of the normal, OA, and RA synovial membrane. Few lymphatic vessels were seen in the sublining zone in normal and OA synovium which did not show villous hypertrophy. However, in both RA synovium and OA synovium showing villous hypertrophy and a chronic inflammatory cell infiltrate, numerous lymphatic vessels were seen in all zones of the synovial membrane, including the sublining zone of the superficial subintima. Conclusions: Lymphatic vessels are present in normal and arthritic synovial tissues and are more numerous and prominent where there is oedema and an increase in inflammatory cells in the subintima, particularly in RA. This may reflect increased transport of hyaluronan and leucocyte trafficking in inflamed synovial tissues. PMID:14644866

  16. Enrichment of lymphatic vessel endothelial hyaluronan receptor 1 (LYVE1)-positive macrophages around blood vessels in the normal human sclera.

    PubMed

    Schlereth, Simona L; Neuser, Barbara; Caramoy, Albert; Grajewski, Rafael S; Koch, Konrad R; Schrödl, Falk; Cursiefen, Claus; Heindl, Ludwig M

    2014-02-10

    To investigate whether the normal adult human sclera contains lymphatic vessels and to study their relation to immune cells and blood vessel anatomy. Scleral tissue probes from 35 adult human donor bulbi were analyzed by immunohistochemistry and confocal microscopy for blood vessels (CD31+), lymphatic vessels (lymphatic vessel endothelial hyaluronan receptor 1 [LYVE1]+, podoplanin+), and macrophages (CD68+) at 12 locations (anterior, equatorial, and posterior at 3, 6, 9, and 12 o'clock positions of the eye) in all three scleral layers (episclera, stroma, and lamina fusca). Approval for scientific examination was obtained. CD31+ blood vessels were detectable in the human sclera, where the percentage area covered by CD31+ blood vessels was highest in the anterior episclera, followed by equatorial and posterior episclera, and was lowest in the scleral stroma (regardless of location). LYVE1+ podoplanin+ lymphatic vessels were not detectable in any location investigated, although there was a high number of LYVE1+ CD68+ macrophages. These macrophages were concentrated around blood vessels. In contrast, in the episclera, the number of detected LYVE1+ CD68+ macrophages was comparable in all locations; within the stroma, their number increased toward the posterior part of the eye. The adult sclera contains blood vessels but lacks, as revealed by immunohistochemistry and confocal microscopy, true lymphatic vessels. LYVE1+ CD68+ macrophages are located adjacent to the longitudinal axis of blood vessels. The function of these cells needs further investigation, but could be a next step toward a better understanding of pathological disorders such as inflammation, tumor, trauma, or glaucoma.

  17. Immunohistochemical identification of lymphatic vessels in the periodontium of equine cheek teeth.

    PubMed

    Staszyk, Carsten; Duesterdieck, Katja F; Gasse, Hagen; Bienert, Astrid

    2005-12-01

    Immunohistochemical detection of lymphatic capillaries was performed in the periodontium of maxillary and mandibular cheek teeth from 6 horses (aged 3-23 years). Tissue sections of the periodontium were taken at 4 different horizontal levels along the long axis of the tooth. The specimens were processed for immunoreaction with anti-Prox1, in order to distinguish lymphatic endothelium from blood vascular endothelium. Lymphatic vessels were detected in all periodontal tissues except for the dental cementum. Lymphatic capillaries were most densely distributed in the gingiva compared to other tissues of the periodontium. Lymphatic capillaries were found most consistently in samples taken from the gingival and subgingival regions in all horses examined. Within these levels, the gingiva as well as the spongiosa of the maxillary and mandibular bone had the greatest incidence of lymphatic vessels. Considering the distinct distribution of the lymphatic capillaries in the periodontium of the maxillary and mandibular cheek teeth, two complementary lymphatic drainage pathways are proposed: (1) superficial lymph drainage via the gingiva, emptying into the mandibular lymph nodes; (2) deep lymph drainage via the mandibular and maxillary spongiosa, emptying into the mandibular and retropharyngeal lymph nodes, respectively.

  18. Confocal image-based computational modeling of nitric oxide transport in a rat mesenteric lymphatic vessel.

    PubMed

    Wilson, John T; Wang, Wei; Hellerstedt, Augustus H; Zawieja, David C; Moore, James E

    2013-05-01

    The lymphatic system plays important roles in protein and solute transport as well as in the immune system. Its functionality is vital to proper homeostasis and fluid balance. Lymph may be propelled by intrinsic (active) vessel pumping or passive compression from external tissue movement. With regard to the former, nitric oxide (NO) is known to play an important role modulating lymphatic vessel contraction and vasodilation. Lymphatic endothelial cells (LECs) are sensitive to shear, and increases in flow have been shown to cause enhanced production of NO by LECs. Additionally, high concentrations of NO have been experimentally observed in the sinus region of mesenteric lymphatic vessels. A computational flow and mass transfer model using physiologic geometries obtained from confocal images of a rat mesenteric lymphatic vessel was developed to determine the characteristics of NO transport in the lymphatic flow regime. Both steady and unsteady analyses were performed. Production of NO was shear-dependent; basal cases using constant production were also generated. Simulations revealed areas of flow stagnation adjacent to the valve leaflets, suggesting the high concentrations observed here experimentally are due to minimal convection in this region. LEC sensitivity to shear was found to alter the concentration of NO in the vessel, and the convective forces were found to profoundly affect the concentration of NO at a Péclet value greater than approximately 61. The quasisteady analysis was able to resolve wall shear stress within 0.15% of the unsteady case. However, the percent difference between unsteady and quasisteady conditions was higher for NO concentration (6.7%). We have shown high NO concentrations adjacent to the valve leaflets are most likely due to flow-mediated processes rather than differential production by shear-sensitive LECs. Additionally, this model supports experimental findings of shear-dependent production, since removing shear dependence resulted

  19. Intratumoral lymphatic vessel density in vulvar squamous cell carcinomas: a possible association with favorable prognosis.

    PubMed

    Goes, Renata Sampaio; Carvalho, Jesus P; Almeida, Bernardo G L; Bacchi, Carlos E; Goes, Joao Carlos Sampaio; Calil, Marcelo Alvarenga; Baracat, Edmund C; Carvalho, Filomena M

    2012-01-01

    Lymphatic vessels serve as major routes for regional dissemination, and therefore, lymph node status is a key indicator of prognosis. To predict lymph node metastasis, tumor lymphatic density and lymphangiogenesis-related molecules have been studied in various tumor types. To our knowledge, no previous studies have evaluated the role of intratumoral lymphatic vessel density (LVD) in the behavior of vulvar carcinomas. The aim of this study was to analyze intratumoral LVD in relation to patient survival and well-characterized prognostic factors for cancer. Thirty-five patients with vulvar squamous cell carcinoma underwent vulvectomy and dissection of regional lymph nodes. Clinical records were reviewed, in addition to histological grade, peritumoral lymphatic invasion, and depth of infiltration for each case. Tissue microarray paraffin blocks were created, and lymphatic vessels were detected using immunohistochemical staining of podoplanin (D2-40 antibody). Intratumoral LVD was quantified by counting the number of stained vessels. Higher values for intratumoral LVD were associated with low-grade and low-stage tumors, and with tumors without lymphatic invasion and reduced stromal infiltration. In a univariate analysis, high intratumoral LVD was associated with a higher rate of overall survival and a lower rate of lymph node metastasis. Our results suggest that increased intratumoral LVD is associated with favorable prognosis in vulvar squamous carcinomas.

  20. Clipless laparoscopic retroperitoneal lymph node dissection using bipolar electrocoagulation for sealing lymphatic vessels: initial series.

    PubMed

    Simforoosh, Nasser; Nasseh, Hamidreza; Masoudi, Parham; Aslzare, Mohammad; Ghahestani, Seyyed Mohammad; Eshratkhah, Ramin; Radfar, Mohammad Hadi

    2012-01-01

    To evaluate the outcome of laparoscopic retroperitoneal lymph node dissection (LRPLND) using bipolar electrocoagulation instead of clipping the lymphatic vessels. Between August 2002 and April 2008, a total of 13 patients underwent transperitoneal LPRLND for nonseminomatous germ cell tumor of the testis. In this experience, in contrast to other techniques, we did not use clips for ligation of the lymphatic vessels; instead, we used bipolar cautery for coagulation of the lymphatic vessels. We followed up the patients for lymphocele formation or lymphatic leakage using abdominal computed tomography scan. Mean age of the patients was 24.2 years (range, 19 to 39 years). Six tumors were on the left side and 7 on the right. Pathological stage was I in 12 patients and IIA in one. The mean follow-up period was 29.9 months (range, 3 to 70 months). No re-operation was required. There was no prolonged lymphatic leakage or lymphocele formation during the follow-up period. Our study demonstrates that using bipolar electrocoagulation instead of clips, for sealing of the lymphatic vessels during LRPLND, does not hamper the outcome of the procedure. This should be further evaluated in randomized clinical trials with more subjects.

  1. In vivo label-free lymphangiography of cutaneous lymphatic vessels in human burn scars using optical coherence tomography

    PubMed Central

    Gong, Peijun; Es’haghian, Shaghayegh; Harms, Karl-Anton; Murray, Alexandra; Rea, Suzanne; Wood, Fiona M.; Sampson, David D.; McLaughlin, Robert A.

    2016-01-01

    We present an automated, label-free method for lymphangiography of cutaneous lymphatic vessels in humans in vivo using optical coherence tomography (OCT). This method corrects for the variation in OCT signal due to the confocal function and sensitivity fall-off of a spectral-domain OCT system and utilizes a single-scattering model to compensate for A-scan signal attenuation to enable reliable thresholding of lymphatic vessels. A segment-joining algorithm is then incorporated into the method to mitigate partial-volume effects with small vessels. The lymphatic vessel images are augmented with images of the blood vessel network, acquired from the speckle decorrelation with additional weighting to differentiate blood vessels from the observed high decorrelation in lymphatic vessels. We demonstrate the method with longitudinal scans of human burn scar patients undergoing ablative fractional laser treatment, showing the visualization of the cutaneous lymphatic and blood vessel networks. PMID:28018713

  2. In vivo label-free lymphangiography of cutaneous lymphatic vessels in human burn scars using optical coherence tomography.

    PubMed

    Gong, Peijun; Es'haghian, Shaghayegh; Harms, Karl-Anton; Murray, Alexandra; Rea, Suzanne; Wood, Fiona M; Sampson, David D; McLaughlin, Robert A

    2016-12-01

    We present an automated, label-free method for lymphangiography of cutaneous lymphatic vessels in humans in vivo using optical coherence tomography (OCT). This method corrects for the variation in OCT signal due to the confocal function and sensitivity fall-off of a spectral-domain OCT system and utilizes a single-scattering model to compensate for A-scan signal attenuation to enable reliable thresholding of lymphatic vessels. A segment-joining algorithm is then incorporated into the method to mitigate partial-volume effects with small vessels. The lymphatic vessel images are augmented with images of the blood vessel network, acquired from the speckle decorrelation with additional weighting to differentiate blood vessels from the observed high decorrelation in lymphatic vessels. We demonstrate the method with longitudinal scans of human burn scar patients undergoing ablative fractional laser treatment, showing the visualization of the cutaneous lymphatic and blood vessel networks.

  3. Extravillous trophoblast invasion of venous as well as lymphatic vessels is altered in idiopathic, recurrent, spontaneous abortions.

    PubMed

    Windsperger, Karin; Dekan, Sabine; Pils, Sophie; Golletz, Carsten; Kunihs, Victoria; Fiala, Christian; Kristiansen, Glen; Knöfler, Martin; Pollheimer, Jürgen

    2017-06-01

    analysed. While EVTs contact and invade arteries and veins to a similar extent we found that lymphatics are significantly less affected by EVTs (P = 0.001). Moreover, ilEVTs were detected in the lumen of venous and lymphatic vessels, whereas ilEVTs were only found occasionally in the lumen of arteries. Interestingly, RSA tissue sections contained significantly more arterial (P = 0.037), venous (P = 0.002) and lymphatic vessels (P < 0.001), compared to healthy controls. However, while RSA-associated arterial remodeling was unchanged (P = 0.39) the ratios of EVT-affected versus total number of veins (P = 0.039) and lymphatics (P < 0.001) were significantly lower in RSA compared to age-matched healthy decidual sections. Finally, HLA-G+/PRG2+/CD45-EVTs can be detected in regional lymph nodes of pregnant women diagnosed with cervical cancer. N/A. In this study, first trimester decidual tissues from elective terminations of pregnancies have been examined and used as a reference for healthy pregnancy. However, this collective may also include pregnancies which would have developed placental disorders later in gestation. Due to limitations in tissue availability our staining results for EVT-specific marker expression in regional lymph nodes of pregnant women are based on four cases only. In this study, we propose migration of HLA-G+ cells into regional lymph nodes during pregnancy suggesting that the human EVT is capable of infiltrating maternal tissues via the blood stream. Moreover, the description of compromised EVT invasion into the venous and lymphatic vasculature in RSA may help to better understand the pathological characteristics of idiopathic recurrent pregnancy loss. This study was supported by the Austrian Science Fund (grant P-25187-B13 to J.P. and grant P-28417-B30 to M.K.). There are no competing interests to declare.

  4. Intravital two-photon microscopy of immune cell dynamics in corneal lymphatic vessels.

    PubMed

    Steven, Philipp; Bock, Felix; Hüttmann, Gereon; Cursiefen, Claus

    2011-01-01

    The role of lymphatic vessels in tissue and organ transplantation as well as in tumor growth and metastasis has drawn great attention in recent years. We now developed a novel method using non-invasive two-photon microscopy to simultaneously visualize and track specifically stained lymphatic vessels and autofluorescent adjacent tissues such as collagen fibrils, blood vessels and immune cells in the mouse model of corneal neovascularization in vivo. The mouse cornea serves as an ideal tissue for this technique due to its easy accessibility and its inducible and modifiable state of pathological hem- and lymphvascularization. Neovascularization was induced by suture placement in corneas of Balb/C mice. Two weeks after treatment, lymphatic vessels were stained intravital by intrastromal injection of a fluorescently labeled LYVE-1 antibody and the corneas were evaluated in vivo by two-photon microscopy (TPM). Intravital TPM was performed at 710 nm and 826 nm excitation wavelengths to detect immunofluorescence and tissue autofluorescence using a custom made animal holder. Corneas were then harvested, fixed and analyzed by histology. Time lapse imaging demonstrated the first in vivo evidence of immune cell migration into lymphatic vessels and luminal transport of individual cells. Cells immigrated within 1-5.5 min into the vessel lumen. Mean velocities of intrastromal corneal immune cells were around 9 µm/min and therefore comparable to those of T-cells and macrophages in other mucosal surfaces. To our knowledge we here demonstrate for the first time the intravital real-time transmigration of immune cells into lymphatic vessels. Overall this study demonstrates the valuable use of intravital autofluorescence two-photon microscopy in the model of suture-induced corneal vascularizations to study interactions of immune and subsequently tumor cells with lymphatic vessels under close as possible physiological conditions.

  5. High lymphatic vessel density and presence of lymphovascular invasion both predict poor prognosis in breast cancer.

    PubMed

    Zhang, Song; Zhang, Dong; Gong, Mingfu; Wen, Li; Liao, Cuiwei; Zou, Liguang

    2017-05-17

    Lymphatic vessel density and lymphovascular invasion are commonly assessed to identify the clinicopathological outcomes in breast cancer. However, the prognostic values of them on patients' survival are still uncertain. Databases of PubMed, Embase, and Web of Science were searched from inception up to 30 June 2016. The hazard ratio with its 95% confidence interval was used to determine the prognostic effects of lymphatic vessel density and lymphovascular invasion on disease-free survival and overall survival in breast cancer. Nineteen studies, involving 4215 participants, were included in this study. With the combination of the results of lymphatic vessel density, the pooled hazard ratios and 95% confidence intervals were 2.02 (1.69-2.40) for disease-free survival and 2.88 (2.07-4.01) for overall survival, respectively. For lymphovascular invasion study, the pooled hazard ratios and 95% confidence intervals were 1.81 (1.57-2.08) for disease-free survival and 1.64 (1.43-1.87) for overall survival, respectively. In addition, 29.56% (827/2798) of participants presented with lymphovascular invasion in total. Our study demonstrates that lymphatic vessel density and lymphovascular invasion can predict poor prognosis in breast cancer. Standardized assessments of lymphatic vessel density and lymphovascular invasion are needed.

  6. Histamine as an Endothelium-Derived Relaxing Factor in Aged Mesenteric Lymphatic Vessels.

    PubMed

    Nizamutdinova, Irina Tsoy; Maejima, Daisuke; Nagai, Takashi; Meininger, Cynthia J; Gashev, Anatoliy A

    2017-06-01

    Knowledge of the mechanisms by which aging affects contracting lymphatic vessels remains incomplete; therefore, the functional role of histamine in the reaction of aged lymphatic vessels to increases in flow remains unknown. We measured and analyzed parameters of lymphatic contractility in isolated and pressurized rat mesenteric lymphatic vessels (MLVs) obtained from 9- and 24-month Fischer-344 rats under control conditions and after pharmacological blockade of nitric oxide (NO) by Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME, 100 μM) or/and blockade of histamine production by α-methyl-DL-histidine dihydrochloride (α-MHD, 10 μM). We also quantitatively compared results of immunohistochemical labeling of the histamine-producing enzyme, histidine decarboxylase (HDC) in adult and aged MLVs. Our data provide the first demonstration of an increased functional role of histamine as an endothelial-derived relaxing factor in aged MLVs, which appears in parallel with the abolished role of NO in the reactions of these lymph vessels to increases in flow. In addition, we found an increased expression of HDC in endothelium of aged MLVs. Our findings provide the basis for better understanding of the processes of aging in lymphatic vessels and for setting new important directions for investigations of the aging-associated disturbances in lymph flow and the immune response.

  7. Comparison of viscoelastic properties of walls and functional characteristics of valves in lymphatic and venous vessels.

    PubMed

    Ohhashi, T

    1987-12-01

    The principal function of the lymphatic and venous system is to maintain a favorable environment for cells of the body. As a consequence mainly of hydrostatic forces, shifts of fluid usually occur between the vascular system and the extracellular space. To compensate for these shifts the veins are capable of active and passive changes in capacity that serve to modulate the filling pressure of the heart by adjusting the central blood volume. In addition to the venous function, the lymphatic function also contributes to compensate for the fluid shifts by drainage from the interstitial space. Namely, the general function of the lymphatic system is to return fluid and protein which escapes from the blood capillaries to the lymph circulation. To elucidate the mode of venous and lymph transport, therefore, it is of essential importance to obtain basic knowledge of the mechanical characteristics of the walls of the vessels and the functional characteristics of the lymphatic and venous valves dividing two adjacent compartments. In this communication, in order to answer the question, "Are Lymphatics Different From Blood Vessels?", I would like to review a comparison of viscoelastic properties of walls and functional characteristics of valves in lymph and venous vessels by use of our original data obtained with isolated canine veins and thoracic ducts and with isolated bovine mesenteric lymphatics (1-9).

  8. Conditional ablation of LYVE-1+ cells unveils defensive roles of lymphatic vessels in intestine and lymph nodes.

    PubMed

    Jang, Jeon Yeob; Koh, Young Jun; Lee, Seung-Hun; Lee, Junyeop; Kim, Kyoo Hyun; Kim, Daesoo; Koh, Gou Young; Yoo, Ook Joon

    2013-09-26

    To unveil the organotypic role and vulnerability of lymphatic vessels, we generated a lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1)-Cre/iDTR double-transgenic mouse and ablated LYVE-1-expressing lymphatic vessels in adult mice in a diphtheria toxin (DT)-inducible manner based on selective expression of LYVE-1 in most lymphatic vessels. Strikingly, lymphatic vessels in the small intestine and lymph nodes were rapidly ablated, but lymphatic vessels in the other organs were relatively intact at 24 hours after DT administration. Unexpectedly, LYVE-1-Cre/iDTR mice died of sepsis without visible edema at 24 and 60 hours after DT administration. The cause of death appeared to be related to acute failure of immune surveillance systems in the small intestine and draining lymph nodes. Of note, acute loss of lymphatic lacteals in intestinal villi appeared to trigger distortion of blood capillaries and the whole architecture of the villi, whereas acute loss of lymphatic vessels in lymph nodes caused dysfunction of lymph drainage and abnormal distribution of dendritic cells and macrophages. Thus, intact lymphatic vessels are required for structural and functional maintenance of surrounding tissues in an organotypic manner, at least in the intestine and lymph nodes.

  9. Human Lymphatic Mesenteric Vessels: Morphology and Possible Function of Aminergic and NPY-ergic Nerve Fibers.

    PubMed

    D'Andrea, Vito; Panarese, Alessandra; Taurone, Samanta; Coppola, Luigi; Cavallotti, Carlo; Artico, Marco

    2015-09-01

    The lymphatic vessels have been studied in different organs from a morphological to a clinical point of view. Nevertheless, the knowledge of the catecholaminergic control of the lymphatic circulation is still incomplete. The aim of this work is to study the presence and distribution of the catecholaminergic and NPY-ergic nerve fibers in the whole wall of the human mesenteric lymphatic vessels in order to obtain knowledge about their morphology and functional significance. The following experimental procedures were performed: 1) drawing of tissue containing lymphatic vessels; 2) cutting of tissue; 3) staining of tissue; 4) staining of nerve fibers; 5) histofluorescence microscopy for the staining of catecholaminergic nerve fibers; 6) staining of neuropeptide Y like-immune reactivity; 7) biochemical assay of proteins; 8) measurement of noradrenaline; 9) quantitative analysis of images; 10) statistical analysis of data. Numerous nerve fibers run in the wall of lymphatic vessels. Many of them are catecholaminergic in nature. Some nerve fibers are NPY-positive. The biochemical results on noradrenaline amounts are in agreement with morphological results on catecholaminergic nerve fibers. Moreover, the morphometric results, obtained by the quantitative analysis of images and the subsequent statistical analysis of data, confirm all our morphological and biochemical data. The knowledge of the physiological or pathological mechanism regulating the functions of the lymphatic system is incomplete. Nevertheless the catecholaminergic nerve fibers of the human mesenteric lymphatic vessels come from the adrenergic periarterial plexuses of the mesenterial arterial bed. NPY-ergic nerve fibers may modulate the microcirculatory mesenterial bed in different pathological conditions.

  10. Angiopoietin-4 increases permeability of blood vessels and promotes lymphatic dilation.

    PubMed

    Kesler, Cristina T; Pereira, Ethel R; Cui, Cheryl H; Nelson, Gregory M; Masuck, David J; Baish, James W; Padera, Timothy P

    2015-09-01

    The angiopoietin (Ang) ligands are potential therapeutic targets for lymphatic related diseases, which include lymphedema and cancer. Ang-1 and Ang-2 functions are established, but those of Ang-4 are poorly understood. We used intravital fluorescence microscopy to characterize Ang-4 actions on T241 murine fibrosarcoma-associated vessels in mice. The diameters of lymphatic vessels draining Ang-4- or VEGF-C (positive control)-expressing tumors increased to 123 and 135 μm, respectively, and parental, mock-transduced (negative controls) and tumors expressing Ang-1 or Ang-2 remained at baseline (∼60 μm). Ang-4 decreased human dermal lymphatic endothelial cell (LEC) monolayer permeability by 27% while increasing human dermal blood endothelial cell (BEC) monolayer permeability by 200%. In vivo, Ang-4 stimulated a 4.5-fold increase in tumor-associated blood vessel permeability compared with control when measured using intravital quantitative multiphoton microscopy. Ang-4 activated receptor signaling in both LECs and BECs, evidenced by tyrosine kinase with Ig and endothelial growth factor homology domains-2 (TIE2) receptor, protein kinase B, and Erk1,2 phosphorylation detectable by immunoblotting. These data suggest that Ang-4 actions are mediated through cell-type-specific networks and that lymphatic vessel dilation occurs secondarily to increased vascular leakage. Ang-4 also promoted survival of LECs. Thus, blocking Ang-4 may prune the draining lymphatic vasculature and decrease interstitial fluid pressure (IFP) by reducing vascular permeability. © FASEB.

  11. Lymphatic Vessels Balance Viral Dissemination and Immune Activation following Cutaneous Viral Infection.

    PubMed

    Loo, Christopher P; Nelson, Nicholas A; Lane, Ryan S; Booth, Jamie L; Loprinzi Hardin, Sofia C; Thomas, Archana; Slifka, Mark K; Nolz, Jeffrey C; Lund, Amanda W

    2017-09-26

    Lymphatic vessels lie at the interface between peripheral sites of pathogen entry, adaptive immunity, and the systemic host. Though the paradigm is that their open structure allows for passive flow of infectious particles from peripheral tissues to lymphoid organs, virus applied to skin by scarification does not spread to draining lymph nodes. Using cutaneous infection by scarification, we analyzed the effect of viral infection on lymphatic transport and evaluated its role at the host-pathogen interface. We found that, in the absence of lymphatic vessels, canonical lymph-node-dependent immune induction was impaired, resulting in exacerbated pathology and compensatory, systemic priming. Furthermore, lymphatic vessels decouple fluid and cellular transport in an interferon-dependent manner, leading to viral sequestration while maintaining dendritic cell transport for immune induction. In conclusion, we found that lymphatic vessels balance immune activation and viral dissemination and act as an "innate-like" component of tissue host viral defense. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Apelin Inhibits Diet-Induced Obesity by Enhancing Lymphatic and Blood Vessel Integrity

    PubMed Central

    Sawane, Mika; Kajiya, Kentaro; Kidoya, Hiroyasu; Takagi, Masaya; Muramatsu, Fumitaka; Takakura, Nobuyuki

    2013-01-01

    Angiogenesis is tightly associated with the outgrowth of adipose tissue, leading to obesity, which is a risk factor for type 2 diabetes and hypertension, mainly because expanding adipose tissue requires an increased nutrient supply from blood vessels. Therefore, induction of vessel abnormality by adipokines has been well-studied, whereas how altered vascular function promotes obesity is relatively unexplored. Also, surviving Prox1 heterozygous mice have shown abnormal lymphatic patterning and adult-onset obesity, indicating that accumulation of adipocytes could be closely linked with lymphatic function. Here, we propose a new antiobesity strategy based on enhancement of lymphatic and blood vessel integrity with apelin. Apelin knockout (KO) mice fed a high-fat diet (HFD) showed an obese phenotype associated with abnormal lymphatic and blood vessel enlargement. Fatty acids present in the HFD induced hyperpermeability of endothelial cells, causing adipocyte differentiation, whereas apelin promoted vascular stabilization. Moreover, treatment of apelin KO mice with a selective cyclooxygenase-2 inhibitor, celecoxib, that were fed an HFD improved vascular function and also attenuated obesity. Finally, apelin transgenic mice showed decreased subcutaneous adipose tissue attributable to inhibition of HFD-induced hyperpermeability of vessels. These results indicate that apelin inhibits HFD-induced obesity by enhancing vessel integrity. Apelin could serve as a therapeutic target for treating obesity and related diseases. PMID:23378608

  13. Observations on the prenatal development of human lymphatic vessels with focus on basic structural elements of lymph flow.

    PubMed

    Petrenko, Valerii M; Gashev, Anatoliy A

    2008-01-01

    The prenatal development of human lymphatic systems has not attracted enough attention by lymphatic researchers in the past. Yet clearly these critical, early events determine the fate and function of the human lymphatic system. The main focus of these studies was to investigate the embryonic development of human lymphangions including lymphatic valves and muscle cells, to better understand the prenatal formation of basic structural elements of lymph flow. This review in most of its parts is a short summary of the findings. It provides important information necessary for understanding the development and functioning of the human lymphatic system. The structural basis of the active lymph transport system--the lymphatic muscle cells and lymphatic valves--which is absolutely necessary for all functions of lymphatic system, is already formed during the first half of the prenatal development in humans. During the second half of this development maturation of this system is already underway. The enlargement of lymphatic muscle cells together with increases in their quantity leads to formation of the multi-layered lymphatic vessel wall, able to develop contractions strong enough to propel lymph downstream of the lymphatic channels against gravity in bipedal humans. The development of the competent valves in lymphatic vessels occurs at the same time creating the ground for effective net, unidirectional lymph flow. The data summarized here represents some of the first systematic studies of the prenatal development of lymphatic muscle cells and valves in humans.

  14. Tumor-Associated Lymphatic Vessels Upregulate PDL1 to Inhibit T-Cell Activation.

    PubMed

    Dieterich, Lothar C; Ikenberg, Kristian; Cetintas, Timur; Kapaklikaya, Kübra; Hutmacher, Cornelia; Detmar, Michael

    2017-01-01

    Tumor-associated lymphatic vessels (LVs) play multiple roles during tumor progression, including promotion of metastasis and regulation of antitumor immune responses by delivering antigen from the tumor bed to draining lymph nodes (LNs). Under steady-state conditions, LN resident lymphatic endothelial cells (LECs) have been found to maintain peripheral tolerance by directly inhibiting autoreactive T-cells. Similarly, tumor-associated lymphatic endothelium has been suggested to reduce antitumor T-cell responses, but the mechanisms that mediate this effect have not been clarified. Using two distinct experimental tumor models, we found that tumor-associated LVs gain expression of the T-cell inhibitory molecule PDL1, similar to LN resident LECs, whereas tumor-associated blood vessels downregulate PDL1. The observed lymphatic upregulation of PDL1 was likely due to IFN-g released by stromal cells in the tumor microenvironment. Furthermore, we found that blocking PDL1 results in increased T-cell stimulation by antigen-presenting LECs in vitro. Taken together, our data suggest that peripheral, tumor-associated lymphatic endothelium contributes to T-cell inhibition, by a mechanism similar to peripheral tolerance maintenance described for LN resident LECs. These findings may have clinical implications for cancer therapy, as lymphatic expression of PDL1 could represent a new biomarker to select patients for immunotherapy with PD1 or PDL1 inhibitors.

  15. Tumor-Associated Lymphatic Vessels Upregulate PDL1 to Inhibit T-Cell Activation

    PubMed Central

    Dieterich, Lothar C.; Ikenberg, Kristian; Cetintas, Timur; Kapaklikaya, Kübra; Hutmacher, Cornelia; Detmar, Michael

    2017-01-01

    Tumor-associated lymphatic vessels (LVs) play multiple roles during tumor progression, including promotion of metastasis and regulation of antitumor immune responses by delivering antigen from the tumor bed to draining lymph nodes (LNs). Under steady-state conditions, LN resident lymphatic endothelial cells (LECs) have been found to maintain peripheral tolerance by directly inhibiting autoreactive T-cells. Similarly, tumor-associated lymphatic endothelium has been suggested to reduce antitumor T-cell responses, but the mechanisms that mediate this effect have not been clarified. Using two distinct experimental tumor models, we found that tumor-associated LVs gain expression of the T-cell inhibitory molecule PDL1, similar to LN resident LECs, whereas tumor-associated blood vessels downregulate PDL1. The observed lymphatic upregulation of PDL1 was likely due to IFN-g released by stromal cells in the tumor microenvironment. Furthermore, we found that blocking PDL1 results in increased T-cell stimulation by antigen-presenting LECs in vitro. Taken together, our data suggest that peripheral, tumor-associated lymphatic endothelium contributes to T-cell inhibition, by a mechanism similar to peripheral tolerance maintenance described for LN resident LECs. These findings may have clinical implications for cancer therapy, as lymphatic expression of PDL1 could represent a new biomarker to select patients for immunotherapy with PD1 or PDL1 inhibitors. PMID:28217128

  16. Clinicopathological study of expression of lymphatic vessels in renal allograft biopsy after treatment for acute rejection.

    PubMed

    Oka, K; Namba, Y; Ichimaru, N; Moriyama, T; Kyo, M; Kokado, Y; Imai, E; Takahara, S

    2009-12-01

    Lymph vessel expression is related to inflammatory cell infiltration, around renal tubules in acute rejection episodes (ARE) of transplanted kidneys. However, there is little information on the lymph vessels after treatment of an ARE, particularly in relation to renal function and histological findings. We investigated 13 cases of ARE diagnosed by kidney transplant biopsy performed from 1997 to 2005 within 3 years of transplantation. Treatment of the ARE lead to an improved serum creatinine level in all cases. There was neither an ABO-incompatible nor an acute humoral rejection case. Lymphatic vessels in re-biopsies were examined using immunohistochemical staining with D2-40 antibody that detected lymphatic endothelium. Re-biopsy cases in which the baseline creatinine had increased by more than 20% despite treatment were considered the severe group; the others, as the stable group. The relation between lymphatic vessel density (LVD) and renal function was examined using Banff scores. LVD was significantly higher in the severe than the stable group. The expression of lymph vessels versus the Banff score showed a direct relation: greater Banff scores showed higher expressions of lymph vessels. The expression of lymph vessels in renal allograft specimens after treatment of an ARE was related to deterioration of renal function and inflammatory cell invasion. We plan a further examination of the relationship between the expression of lymph vessels and long-term prognosis.

  17. Microneedles for the Noninvasive Structural and Functional Assessment of Dermal Lymphatic Vessels.

    PubMed

    Brambilla, Davide; Proulx, Steven T; Marschalkova, Patrizia; Detmar, Michael; Leroux, Jean-Christophe

    2016-02-24

    The medical and scientific communities' interest in the lymphatic system has been growing rapidly in recent years. It has become evident that the lymphatic system is much more than simply a homeostasis controller and that it plays key roles in several pathological conditions. This work describes the identification of the optimal combination of poly(N-vinylpyrrolidone) and a near-infrared dye (indocyanine green) for the manufacturing of soluble microneedles and their application to the imaging of the lymphatic system. Upon application to the skin, the microneedle-bearing indocyanine green is delivered in the dermal layer, where the lymphatic vessels are abundant. The draining lymphatics can then be visualized and the clearance kinetics from the administration site simply determined using a near-infrared camera. This painless functional "tattooing" procedure can be used for quantitative assessment of the dermal lymphatic function in several dermal conditions and treatment-response evaluations. The two components of these microneedles are extensively used in routine medical care, potentially leading to rapid clinical translation. Moreover, this procedure may have a significant impact on preclinical lymphatic studies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Mechanical Forces and Lymphatic Transport

    PubMed Central

    Breslin, Jerome W.

    2014-01-01

    This review examines current understanding of how the lymphatic vessel network can optimize lymph flow in response to various mechanical forces. Lymphatics are organized as a vascular tree, with blind-ended initial lymphatics, precollectors, prenodal collecting lymphatics, lymph nodes, postnodal collecting lymphatics and the larger trunks (thoracic duct and right lymph duct) that connect to the subclavian veins. The formation of lymph from interstitial fluid depends heavily on oscillating pressure gradients to drive fluid into initial lymphatics. Collecting lymphatics are segmented vessels with unidirectional valves, with each segment, called a lymphangion, possessing an intrinsic pumping mechanism. The lymphangions propel lymph forward against a hydrostatic pressure gradient. Fluid is returned to the central circulation both at lymph nodes and via the larger lymphatic trunks. Several recent developments are discussed, including: evidence for the active role of endothelial cells in lymph formation; recent developments on how inflow pressure, outflow pressure, and shear stress affect pump function of the lymphangion; lymphatic valve gating mechanisms; collecting lymphatic permeability; and current interpretations of the molecular mechanisms within lymphatic endothelial cells and smooth muscle. Improved understanding of the physiological mechanisms by lymphatic vessels sense mechanical stimuli, integrate the information, and generate the appropriate response is key for determining the pathogenesis of lymphatic insufficiency and developing treatments for lymphedema. PMID:25107458

  19. Perimuscular connective tissue contains more and larger lymphatic vessels than the shallower layers in human gallbladders.

    PubMed

    Nagahashi, Masayuki; Shirai, Yoshio; Wakai, Toshifumi; Sakata, Jun; Ajioka, Yoichi; Hatakeyama, Katsuyoshi

    2007-09-07

    To clarify whether perimuscular connective tissue contains more lymphatic vessels than the shallower layers in human gallbladders. Lymphatic vessels were stained immunohistochemically with monoclonal antibody D2-40, which is a specific marker of lymphatic endothelium, in representative sections of 12 normal human gallbladders obtained at the time of resection for colorectal carcinoma liver metastases. In individual gallbladder specimens, nine high-power (x 200) fields with the highest lymphatic vessel density (LVD), termed "hot spots", were identified for each layer (mucosa, muscle layer, and perimuscular connective tissue). In individual hot spots, the LVD and relative lymphatic vessel area (LVA) were measured microscopically using a computer-aided image analysis system. The mean LVD and LVA values for the nine hot spots in each layer were used for statistical analyses. In the mucosa, muscle layer, and perimuscular connective tissue, the LVD was 16.1 +/- 9.2, 35.4 +/- 15.7, and 65.5 +/- 12.2, respectively, and the LVA was 0.4 +/- 0.4, 2.1 +/- 1.1, and 9.4 +/- 2.6, respectively. Thus, both the LVD and LVA differed significantly (P < 0.001 and P < 0.001, respectively; Kruskal-Wallis test) among the individual layers of the wall of the gallbladder, with the highest LVD and LVA values in the perimuscular connective tissue. Most (98 of 108) of the hot spots within the perimuscular connective tissue were located within 500 mum of the lower border of the muscle layer. The perimuscular connective tissue contains more and larger lymphatic vessels than the shallower layers in the human gallbladder. This observation partly explains why the incidence of lymph node metastasis is high in T2 (tumor invading the perimuscular connective tissue) or more advanced gallbladder carcinoma.

  20. Angiopoietin-4 increases permeability of blood vessels and promotes lymphatic dilation

    PubMed Central

    Kesler, Cristina T.; Pereira, Ethel R.; Cui, Cheryl H.; Nelson, Gregory M.; Masuck, David J.; Baish, James W.; Padera, Timothy P.

    2015-01-01

    The angiopoietin (Ang) ligands are potential therapeutic targets for lymphatic related diseases, which include lymphedema and cancer. Ang-1 and Ang-2 functions are established, but those of Ang-4 are poorly understood. We used intravital fluorescence microscopy to characterize Ang-4 actions on T241 murine fibrosarcoma-associated vessels in mice. The diameters of lymphatic vessels draining Ang-4- or VEGF-C (positive control)-expressing tumors increased to 123 and 135 μm, respectively, and parental, mock-transduced (negative controls) and tumors expressing Ang-1 or Ang-2 remained at baseline (∼60 μm). Ang-4 decreased human dermal lymphatic endothelial cell (LEC) monolayer permeability by 27% while increasing human dermal blood endothelial cell (BEC) monolayer permeability by 200%. In vivo, Ang-4 stimulated a 4.5-fold increase in tumor-associated blood vessel permeability compared with control when measured using intravital quantitative multiphoton microscopy. Ang-4 activated receptor signaling in both LECs and BECs, evidenced by tyrosine kinase with Ig and endothelial growth factor homology domains-2 (TIE2) receptor, protein kinase B, and Erk1,2 phosphorylation detectable by immunoblotting. These data suggest that Ang-4 actions are mediated through cell-type-specific networks and that lymphatic vessel dilation occurs secondarily to increased vascular leakage. Ang-4 also promoted survival of LECs. Thus, blocking Ang-4 may prune the draining lymphatic vasculature and decrease interstitial fluid pressure (IFP) by reducing vascular permeability.—Kesler, C. T., Pereira, E. R., Cui, C. H., Nelson, G. M., Masuck, D. J., Baish, J. W., Padera, T. P. Angiopoietin-4 increases permeability of blood vessels and promotes lymphatic dilation. PMID:25977256

  1. Absence of lymphatic vessels in the dog dental pulp: an immunohistochemical study.

    PubMed

    Martin, Anna; Gasse, Hagen; Staszyk, Carsten

    2010-11-01

    In spite of numerous investigations it has not been precisely determined whether lymphatic vessels are present in the dental pulp of dogs. Therefore, this study attempted a specific immunohistochemical detection of lymphatic endothelium. The canine teeth of 19 healthy beagle dogs were dissected into three segments (apical, intermediate and occlusal). After decalcification, specimens were embedded in paraffin wax and histologic cross-sections were stained immunohistochemically using a reliable antibody (anti-Prox-1) against the homeobox transcription factor Prox-1, which is located within the nucleus of lymphatic endothelium. Anti-Prox-1 reacted positively with canine control tissues (lymph nodes, gingiva, nasal mucosa), but showed no staining in tissue sections of the dental pulp. The dog dental pulp contained no vascular structures lined with lymphatic endothelium. This suggests that drainage of interstitial fluid makes use of other routes, i.e. extravascular pathways. © 2010 The Authors. Journal of Anatomy © 2010 Anatomical Society of Great Britain and Ireland.

  2. CRSBP-1/LYVE-1-null Mice Exhibit Identifiable Morphological and Functional Alterations of Lymphatic Capillary Vessels

    PubMed Central

    Huang, Shuan S.; Liu, I-Hua; Smith, Tracy; Shah, Maulik R.; Johnson, Frank E.; Huang, Jung S.

    2010-01-01

    CRSBP-1, a membrane glycoprotein, can mediate cell-surface retention of secreted growth factors containing CRS motifs such as PDGF-BB. CRSBP-1 has recently been found to be identical to LYVE-1, a specific marker for lymphatic capillary endothelial cells. The in vivo role of CRSBP-1/LYVE-1 is unknown. CRSBP-1-null mice are overtly normal and fertile but exhibit identifiable morphological and functional alterations of lymphatic capillary vessels in certain tissues, marked by the constitutively increased interstitial-lymphatic flow and lack of typical irregularly-shaped lumens. The CRSBP-1 ligands PDGF-BB and HA enhance interstitial-lymphatic flow in wild-type mice but not in CRSBP-1-null animals. PMID:17070806

  3. Absence of lymphatic vessels in the dog dental pulp: an immunohistochemical study

    PubMed Central

    Martin, Anna; Gasse, Hagen; Staszyk, Carsten

    2010-01-01

    In spite of numerous investigations it has not been precisely determined whether lymphatic vessels are present in the dental pulp of dogs. Therefore, this study attempted a specific immunohistochemical detection of lymphatic endothelium. The canine teeth of 19 healthy beagle dogs were dissected into three segments (apical, intermediate and occlusal). After decalcification, specimens were embedded in paraffin wax and histologic cross-sections were stained immunohistochemically using a reliable antibody (anti-Prox-1) against the homeobox transcription factor Prox-1, which is located within the nucleus of lymphatic endothelium. Anti-Prox-1 reacted positively with canine control tissues (lymph nodes, gingiva, nasal mucosa), but showed no staining in tissue sections of the dental pulp. The dog dental pulp contained no vascular structures lined with lymphatic endothelium. This suggests that drainage of interstitial fluid makes use of other routes, i.e. extravascular pathways. PMID:20854283

  4. Monitoring the primo vascular system in lymphatic vessels by using window chambers

    PubMed Central

    Kim, Jungdae; Kim, Dong-Hyun; Jung, Sharon Jiyoon; Gil, Hyun-Ji; Yoon, Seung Zhoo; Kim, Young-Il; Soh, Kwang-Sup

    2016-01-01

    This study aims to develop a window chamber system in the skin of rats and to monitor the primo vascular system (PVS) inside the lymphatic vessels along the superficial epigastric vessels. The PVS in lymphatic vessels has been observed through many experiments under in vivo conditions, but monitoring the in vivo PVS in situ inside lymphatic vessels for a long time is difficult. To overcome the obstacles, we adapted the window chamber system for monitoring the PVS and Alcian blue (AB) staining dye solution for the contrast agent. The lymphatic vessels in the skin on the lateral side of the body, connecting the inguinal lymph nodes to the axillary lymph nodes, were the targets for setting the window system. After AB had been injected into the inguinal lymph nodes with a glass capillary, the morphological changes of the stained PVS were monitored through the window system for up to twenty hours, and the changes in the AB intensity in the PVS were quantified by using image processing. The results and histological images are presented in this study. PMID:27446651

  5. Monitoring the primo vascular system in lymphatic vessels by using window chambers.

    PubMed

    Kim, Jungdae; Kim, Dong-Hyun; Jung, Sharon Jiyoon; Gil, Hyun-Ji; Yoon, Seung Zhoo; Kim, Young-Il; Soh, Kwang-Sup

    2016-04-01

    This study aims to develop a window chamber system in the skin of rats and to monitor the primo vascular system (PVS) inside the lymphatic vessels along the superficial epigastric vessels. The PVS in lymphatic vessels has been observed through many experiments under in vivo conditions, but monitoring the in vivo PVS in situ inside lymphatic vessels for a long time is difficult. To overcome the obstacles, we adapted the window chamber system for monitoring the PVS and Alcian blue (AB) staining dye solution for the contrast agent. The lymphatic vessels in the skin on the lateral side of the body, connecting the inguinal lymph nodes to the axillary lymph nodes, were the targets for setting the window system. After AB had been injected into the inguinal lymph nodes with a glass capillary, the morphological changes of the stained PVS were monitored through the window system for up to twenty hours, and the changes in the AB intensity in the PVS were quantified by using image processing. The results and histological images are presented in this study.

  6. Differential distribution of blood and lymphatic vessels in the murine cornea.

    PubMed

    Ecoiffier, Tatiana; Yuen, Don; Chen, Lu

    2010-05-01

    Because of its unique characteristics, the cornea has been widely used for blood and lymphatic vessel research. However, whether limbal or corneal vessels are evenly distributed under normal or inflamed conditions has never been studied. The purpose of this study was to investigate this question and to examine whether and how the distribution patterns change during corneal inflammatory lymphangiogenesis (LG) and hemangiogenesis (HG). Corneal inflammatory LG and HG were induced in two most commonly used mouse strains, BALB/c and C57BL/6 (6-8 weeks of age), by a standardized two-suture placement model. Oriented flat-mount corneas together with the limbal tissues were used for immunofluorescence microscope studies. Blood and lymphatic vessels under normal and inflamed conditions were analyzed and quantified to compare their distributions. The data demonstrate, for the first time, greater distribution of both blood and lymphatic vessels in the nasal side in normal murine limbal areas. This nasal-dominant pattern was maintained during corneal inflammatory LG, whereas it was lost for HG. Blood and lymphatic vessels are not evenly distributed in normal limbal areas. Furthermore, corneal LG and HG respond differently to inflammatory stimuli. These new findings will shed some light on corneal physiology and pathogenesis and on the development of experimental models and therapeutic strategies for corneal diseases.

  7. Lymphatic Vessel Abnormalities Arising from Disorders of Ras Signal Transduction

    PubMed Central

    Sevick-Muraca, Eva M.; King, Philip D.

    2013-01-01

    A number of genetic diseases in man have been described in which abnormalities in the development and function of the lymphatic vascular (LV) system are prominent features. The genes that are mutated in these diseases are varied and include genes that encode lymphatic endothelial cell (LEC) growth factor receptors and their ligands and transcription factors that control LEC fate and function. In addition, an increasing number of genes have been identified that encode components of the Ras signal transduction pathway that conveys signals from cell surface receptors to regulate cell growth, proliferation and differentiation. Gene targeting studies performed in mice have confirmed that the LV system is particularly susceptible to perturbations in the Ras pathway. PMID:24183794

  8. VEGFR signaling during lymphatic vascular development: From progenitor cells to functional vessels.

    PubMed

    Secker, Genevieve A; Harvey, Natasha L

    2015-03-01

    Lymphatic vessels are an integral component of the cardiovascular system, serving important roles in fluid homeostasis, lipid absorption, and immune cell trafficking. Defining the mechanisms by which the lymphatic vasculature is constructed and remodeled into a functional vascular network not only provides answers to fascinating biological questions, but is fundamental to understanding how lymphatic vessel growth and development goes awry in human pathologies. While long recognized as dysfunctional in lymphedema and exploited as a route of tumor metastasis, recent work has highlighted important roles for lymphatic vessels in modulating immune responses, regulating salt-sensitive hypertension and important for lung inflation at birth. Substantial progress in our understanding of the signaling pathways important for development and morphogenesis of the lymphatic vasculature has been made in recent years. Here, we review advances in our knowledge of the best characterized of these signaling pathways, that involving the vascular endothelial growth factor (VEGF) family members VEGF-C and VEGF-D, together with their receptors VEGFR2 and VEGFR3. Recent work has defined multiple levels at which signal transduction by means of this key axis is regulated; these include control of ligand processing and bioavailability, modulation of receptor activation by interacting proteins, and regulation of receptor endocytosis and trafficking. © 2014 Wiley Periodicals, Inc.

  9. Intratumoral and peritumoral lymphatic vessel density both correlate with lymph node metastasis in breast cancer

    PubMed Central

    Zhang, Song; Yi, Shanhong; Zhang, Dong; Gong, Mingfu; Cai, Yuanqing; Zou, Liguang

    2017-01-01

    The status of lymph node involvement is an important prognostic factor for breast cancer. However, the presence of intratumoral lymphatic vessels in primary tumor lesions and the relationship between lymphatic vessel density (LVD) and lymph node metastasis (LNM) have not been firmly established. Therefore, we performed a meta-analysis study to investigate these issues. According to the pre-established inclusion and exclusion criteria, 13 studies, involving 1029 breast cancer patients, were included in this study. Using immunohistochemical staining, intratumoral lymphatic vessels were detected in 40.07% of breast cancer patients (240/599), and peritumoral lymphatics were detected in 77.09% (397/515). All studies demonstrated that peritumoral LVD was higher than intratumoral LVD, with a pooled standard mean difference and 95% confidence interval (95% CI) of 1.75 (1.28 to 2.21). Both intratumoral LVD and peritumoral LVD positively correlated with LNM, with correlation coefficients of 0.14 (95% CI 0.05 to 0.23) and 0.31 (95% CI 0.13 to 0.49), respectively. In summary, our study reports the overall detection rate of intratumoral lymphatics and demonstrates the associations between intratumoral LVD, peritumoral LVD, and LNM in breast cancer. Additionally, controlled studies with a larger number of subjects are needed to establish these relationships. PMID:28067327

  10. Posttraumatic edema of the lower extremities: evaluation of the lymphatic vessels with magnetic resonance lymphangiography.

    PubMed

    Lohrmann, Christian; Pache, Gregor; Felmerer, Gunter; Foeldi, Etelka; Schaefer, Oliver; Langer, Mathias

    2009-02-01

    To assess for the first time the morphology of the lymphatic system in patients with posttraumatic edema of the lower extremities by magnetic resonance (MR) imaging using the interstitial lymphangiography technique Six patients with posttraumatic edema in eight of their 12 lower extremities were examined by MR lymphangiography. Eighteen mL of gadoteridol and one mL of mepivacainhydrochloride 1% were subdivided into 10 portions and injected intracutaneously. MR imaging was performed with a 1.5-T system equipped with high-performance gradients. For MR lymphangiography, a 3D-spoiled gradient-echo sequence was used. In five of the eight (63%) traumatized lower extremities, enlarged lymphatic vessels were detected, with the largest diameter measuring 5 mm. Additionally, a fast lymphatic outflow was observed in seven of the eight (88%) traumatized legs with enhancement of the inguinal lymph nodes already in the first image acquisition 15 minutes after contrast material injection. In two of the eight (25%) traumatized lower extremities, an extensive network of collateral lymphatic vessels was detected at the level of the calf. In both extremities, lymphatic collateralization involved not only the epifascial but also the subfascial lymphatic system. In one patient, who sustained a trauma of the left lower leg with tibial fracture, a small aneurysmatic widening of 7 mm could be detected at the middle level of the calf. MR lymphangiography is a safe and accurate minimal-invasive imaging modality for the evaluation of the lymphatic circulation in patients with posttraumatic edema of the lower extremities. If the extent of lymphatic damage is unclear at the initial clinical examination or requires a better definition for optimal therapeutic planning, MR lymphangiography is able to identify the anatomic and physiological derangements and to establish an objective baseline.

  11. Initial Afferent Lymphatic Vessels Controlling Outbound Leukocyte Traffic from Skin to Lymph Nodes

    PubMed Central

    Teijeira, Alvaro; Rouzaut, Ana; Melero, Ignacio

    2013-01-01

    Tissue drains fluid and macromolecules through lymphatic vessels (LVs), which are lined by a specialized endothelium that expresses peculiar differentiation proteins, not found in blood vessels (i.e., LYVE-1, Podoplanin, PROX-1, and VEGFR-3). Lymphatic capillaries are characteristically devoid of a continuous basal membrane and are anchored to the ECM by elastic fibers that act as pulling ropes which open the vessel to avoid edema if tissue volume increases, as it occurs upon inflammation. LVs are also crucial for the transit of T lymphocytes and antigen presenting cells from tissue to draining lymph nodes (LN). Importantly, cell traffic control across lymphatic endothelium is differently regulated under resting and inflammatory conditions. Under steady-state non-inflammatory conditions, leukocytes enter into the lymphatic capillaries through basal membrane gaps (portals). This entrance is integrin-independent and seems to be mainly guided by CCL21 chemokine gradients acting on leukocytes expressing CCR7. In contrast, inflammatory processes in lymphatic capillaries involve a plethora of cytokines, chemokines, leukocyte integrins, and other adhesion molecules. Importantly, under inflammation a role for integrins and their ligands becomes apparent and, as a consequence, the number of leukocytes entering the lymphatic capillaries multiplies several-fold. Enhancing transmigration of dendritic cells en route to LN is conceivably useful for vaccination and cancer immunotherapy, whereas interference with such key mechanisms may ameliorate autoimmunity or excessive inflammation. Recent findings illustrate how, transient cell-to-cell interactions between lymphatic endothelial cells and leukocytes contribute to shape the subsequent behavior of leukocytes and condition the LV for subsequent trans-migratory events. PMID:24368908

  12. Study of fluid dynamics reveals direct communications between lymphatic vessels and venous blood vessels at lymph nodes of mice.

    PubMed

    Takeda, Kazu; Mori, Shiro; Kodama, Tetsuya

    2017-06-01

    Cancer cells metastasize to lymph nodes, with distant metastasis resulting in poor prognosis. The role of lymph node metastasis (LNM) in the spread of cancer to distant organs remain incompletely characterized. The visualization of flow dynamics in the lymphatic and blood vessels of MXH10/Mo-lpr/lpr mice, which develop systemic swelling of lymph nodes up to 10mm in diameter, has revealed that lymph nodes have the potential to be a direct source of systemic metastasis. However, it is not known whether these fluid dynamics characteristics are universal phenomena present in other strains of laboratory mice. Here we show that the fluid dynamics observed in MXH10/Mo-lpr/lpr mice are the same as those observed in C57BL/6J, BALB/cAJcl and NOD/ShiJic-scidJcl mice. Furthermore, when fluorescent solution was injected into a tumor-bearing lymph node, the flow dynamics observed in the efferent lymphatic vessels and thoracoepigastric vein depended on the type of tumor cell. Our results indicate that fluid dynamics in the lymphatic and blood vessels of MXH10/Mo-lpr/lpr mice are generalized phenomena seen in conventional laboratory mice. We anticipate our results can facilitate studies of the progression of lymphatic metastasis to hematogenous metastasis via lymph nodes and the early diagnosis and treatment of LNM. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Preliminary evidence of the presence of lymphatic vessels immunoreactive for D2-40 and Prox-1 in human pterygium.

    PubMed

    Cimpean, Anca Maria; Poenaru Sava, Mihai; Raica, Marius; Ribatti, Domenico

    2011-11-01

    Human pterygium is a benign fibrovascular outgrowth of the corneo-conjunctival junction, characterized by tissue remodeling, cellular proliferation, angiogenesis and inflammation. No data are available concerning the presence of lymphatic vessels in this pathological condition. The aim of this study was to evaluate by immunohistochemistry, using antibodies against D2-40, Prox-1 and Ki-67, the presence and the proliferative activity of lymphatic vessels in human pterygium. An increased lymphatic microvessel density was observed in the human pterygium compared to the normal conjunctiva. Moreover, D2-40-positive lymphatic endothelial cells were also actively proliferating, as assessed by Ki-67 immunostaining, while in normal conjunctiva proliferating lymphatic endothelial cells were not detectable. Overall, these data clearly indicate the presence of active proliferating lymphatic vessels in human pterygium, suggesting that active lymphangiogenesis occurs in this pathological condition.

  14. A critical role for dendritic cells in the formation of lymphatic vessels within tertiary lymphoid structures.

    PubMed

    Muniz, Luciana R; Pacer, Michelle E; Lira, Sergio A; Furtado, Glaucia C

    2011-07-15

    Ectopic, or tertiary, lymphoid aggregates often form in chronically inflamed areas. Lymphatic vessels, as well as high endothelial venules, form within these lymphoid aggregates, but the mechanisms underlying their development are poorly understood. Overexpression of the chemokine CCL21 in the thyroid of transgenic mice leads to formation of lymphoid aggregates containing topologically segregated T and B lymphocytes, dendritic cells (DCs), and specialized vasculature, including Lyve-1(+)/Prox-1(+) lymphatic vessels. In this article, we show that adoptive transfer of mature CD4(+) T cells into animals expressing CCL21 in a RAG-deficient background promotes the influx of host NK cells and DCs into the thyroid and the formation of new lymphatic vessels within 10 d. This process is dependent on the expression of lymphotoxin ligands by host cells, but not by the transferred CD4(+) T cells. Ablation of host DCs, but not NK cells, reduces the formation of new lymphatic vessels in the thyroid. Taken together, these data suggest a critical role for CD11c(+) DCs in the induction of lymphangiogenesis in tertiary lymphoid structures.

  15. Novel role of immature myeloid cells in formation of new lymphatic vessels associated with inflammation and tumors.

    PubMed

    Ran, Sophia; Wilber, Andrew

    2017-04-13

    Inflammation triggers an immune cell-driven program committed to restoring homeostasis to injured tissue. Central to this process is vasculature restoration, which includes both blood and lymphatic networks. Generation of new vessels or remodeling of existing vessels are also important steps in metastasis-the major cause of death for cancer patients. Although roles of the lymphatic system in regulation of inflammation and cancer metastasis are firmly established, the mechanisms underlying the formation of new lymphatic vessels remain a subject of debate. Until recently, generation of new lymphatics in adults was thought to occur exclusively through sprouting of existing vessels without help from recruited progenitors. However, emerging findings from clinical and experimental studies show that lymphoendothelial progenitors, particularly those derived from immature myeloid cells, play an important role in this process. This review summarizes current evidence for the existence and significant roles of myeloid-derived lymphatic endothelial cell progenitors (M-LECPs) in generation of new lymphatics. We describe specific markers of M-LECPs and discuss their biologic behavior in culture and in vivo, as well as currently known molecular mechanisms of myeloid-lymphatic transition (MLT). We also discuss the implications of M-LECPs for promoting adaptive immunity, as well as cancer metastasis. We conclude that improved mechanistic understanding of M-LECP differentiation and its role in adult lymphangiogenesis may lead to new therapeutic approaches for correcting lymphatic insufficiency or excessive formation of lymphatic vessels in human disorders.

  16. Use of a whole-slide imaging system to assess the presence and alteration of lymphatic vessels in joint sections of arthritic mice

    PubMed Central

    Shi, J; Liang, Q; Wang, Y; Mooney, RA; Boyce, BF; Xing, L

    2013-01-01

    We investigated the presence and alteration of lymphatic vessels in joints of arthritic mice using a whole-slide imaging system. Joints and long bone sections were cut from paraffin blocks of two mouse models of arthritis: meniscal-ligamentous injury (MLI)-induced osteoarthritis (OA) and TNF transgene (TNF-Tg)-induced rheumatoid arthritis (RA). MLI-OA mice were fed a high fat diet to accelerate OA development. TNF-Tg mice were treated with lymphatic growth factor VEGF-C virus to stimulate lymphangiogenesis. Sections were double immunofluorescence stained with anti-podoplanin and alpha-smooth muscle action. The area and number of lymphatic capillaries and mature lymphatic vessels were determined using a whole-slide imaging system and its associated software. Lymphatic vessels in joints were distributed in soft tissues mainly around the joint capsule, ligaments, fat pads and muscles. In long bones, enriched lymphatic vessels were present in the periosteal areas adjacent to the blood vessels. Occasionally, lymphatic vessels were observed in the cortical bone. Increased lymphatic capillaries, but decreased mature lymphatic vessels, were detected in both OA and RA joints. VEGF-C treatment increased lymphatic capillary and mature vessel formation in RA joints. We demonstrated decreased mature lymphatic vessels in the joints of mouse models of severe OA and RA. VEGF-C treatment increased the lymphatic vessel number and area in RA joints. Our findings suggest that the lymphatic system may play an important role in arthritis pathogenesis and treatment. PMID:23173750

  17. Cytoarchitecture of the lamina muscularis mucosae and distribution of the lymphatic vessels in the human stomach.

    PubMed

    Akashi, Yuichi; Noguchi, Tsuyoshi; Nagai, Kaoruko; Kawahara, Katsunobu; Shimada, Tatsuo

    2011-03-01

    The aim of the present study was to clarify the anatomical structure of the lamina muscularis mucosae (LMM) in the human stomach and to correlate it with the lymphatic spread of gastric cancer cells. Human stomachs taken at operation or autopsy were used. The specimens derived from these stomachs were examined by light microscopy immunohistochemistry and scanning electron microscopy (SEM). In the cardia and pyloric wall, bundles of smooth muscle cells of the LMM were relatively loose and thin and formed a reticular configuration. Small lymphatic capillaries (approximately 10-30 μm in diameter) were present directly above the LMM, and relatively large lymphatics (approximately 80-100 μm in diameter) were observed in the submucosal layer and within the LMM. In contrast, the LMM in the fundus, body, and antral wall was composed of tight, thick bundles of smooth muscle cells that ran straight. Large lymphatics were found directly beneath the LMM, but they were few in the lamina propria mucosae. In addition, lymphatics adjacent to veins were also found in the submucosa of the fundus. Structural differences in the LMM of the stomach wall might depend on physiological function. In this study, the relationship between the cytoarchitecture of the LMM or the distribution of lymphatic vessels and cancer invasion is discussed.

  18. GATA2 is required for lymphatic vessel valve development and maintenance

    PubMed Central

    Kazenwadel, Jan; Betterman, Kelly L.; Chong, Chan-Eng; Stokes, Philippa H.; Lee, Young K.; Secker, Genevieve A.; Agalarov, Yan; Demir, Cansaran Saygili; Lawrence, David M.; Sutton, Drew L.; Tabruyn, Sebastien P.; Miura, Naoyuki; Salminen, Marjo; Petrova, Tatiana V.; Matthews, Jacqueline M.; Hahn, Christopher N.; Scott, Hamish S.; Harvey, Natasha L.

    2015-01-01

    Heterozygous germline mutations in the zinc finger transcription factor GATA2 have recently been shown to underlie a range of clinical phenotypes, including Emberger syndrome, a disorder characterized by lymphedema and predisposition to myelodysplastic syndrome/acute myeloid leukemia (MDS/AML). Despite well-defined roles in hematopoiesis, the functions of GATA2 in the lymphatic vasculature and the mechanisms by which GATA2 mutations result in lymphedema have not been characterized. Here, we have provided a molecular explanation for lymphedema predisposition in a subset of patients with germline GATA2 mutations. Specifically, we demonstrated that Emberger-associated GATA2 missense mutations result in complete loss of GATA2 function, with respect to the capacity to regulate the transcription of genes that are important for lymphatic vessel valve development. We identified a putative enhancer element upstream of the key lymphatic transcriptional regulator PROX1 that is bound by GATA2, and the transcription factors FOXC2 and NFATC1. Emberger GATA2 missense mutants had a profoundly reduced capacity to bind this element. Conditional Gata2 deletion in mice revealed that GATA2 is required for both development and maintenance of lymphovenous and lymphatic vessel valves. Together, our data unveil essential roles for GATA2 in the lymphatic vasculature and explain why a select catalogue of human GATA2 mutations results in lymphedema. PMID:26214525

  19. Ex vivo and in vivo label-free imaging of lymphatic vessels using OCT lymphangiography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Gong, Peijun; Es'haghian, Shaghayegh; Karnowski, Karol; Rea, Suzanne; Wood, Fiona M.; Yu, Dao-Yi; McLaughlin, Robert A.; Sampson, David D.

    2017-02-01

    We have been developing an automated method to image lymphatic vessels both ex vivo and in vivo with optical coherence tomography (OCT), using their optical transparency. Our method compensates for the OCT signal attenuation for each A-scan in combination with the correction of the confocal function and sensitivity fall-off, enabling reliable thresholding of lymphatic vessels from the OCT scans. Morphological image processing with a segment-joining algorithm is also incorporated into the method to mitigate partial-volume artifacts, which are particularly evident with small lymphatic vessels. Our method is demonstrated for two different clinical application goals: the monitoring of conjunctival lymphatics for surgical guidance and assessment of glaucoma treatment; and the longitudinal monitoring of human burn scars undergoing laser ablation treatment. We present examples of OCT lymphangiography ex vivo on porcine conjunctivas and in vivo on human burn scars, showing the visualization of the lymphatic vessel network and their longitudinal changes due to treatment.

  20. Coxsackie- and adenovirus receptor (CAR) is expressed in lymphatic vessels in human skin and affects lymphatic endothelial cell function in vitro

    SciTech Connect

    Vigl, Benjamin; Zgraggen, Claudia; Rehman, Nadia; Banziger-Tobler, Nadia E.; Detmar, Michael; Halin, Cornelia

    2009-01-15

    Lymphatic vessels play an important role in tissue fluid homeostasis, intestinal fat absorption and immunosurveillance. Furthermore, they are involved in pathologic conditions, such as tumor cell metastasis and chronic inflammation. In comparison to blood vessels, the molecular phenotype of lymphatic vessels is less well characterized. Performing comparative gene expression analysis we have recently found that coxsackie- and adenovirus receptor (CAR) is significantly more highly expressed in cultured human, skin-derived lymphatic endothelial cells (LECs), as compared to blood vascular endothelial cells. Here, we have confirmed these results at the protein level, using Western blot and FACS analysis. Immunofluorescence performed on human skin confirmed that CAR is expressed at detectable levels in lymphatic vessels, but not in blood vessels. To address the functional significance of CAR expression, we modulated CAR expression levels in cultured LECs in vitro by siRNA- and vector-based transfection approaches. Functional assays performed with the transfected cells revealed that CAR is involved in distinct cellular processes in LECs, such as cell adhesion, migration, tube formation and the control of vascular permeability. In contrast, no effect of CAR on LEC proliferation was observed. Overall, our data suggest that CAR stabilizes LEC-LEC interactions in the skin and may contribute to lymphatic vessel integrity.

  1. Coxsackie- and adenovirus receptor (CAR) is expressed in lymphatic vessels in human skin and affects lymphatic endothelial cell function in vitro.

    PubMed

    Vigl, Benjamin; Zgraggen, Claudia; Rehman, Nadia; Banziger-Tobler, Nadia E; Detmar, Michael; Halin, Cornelia

    2009-01-15

    Lymphatic vessels play an important role in tissue fluid homeostasis, intestinal fat absorption and immunosurveillance. Furthermore, they are involved in pathologic conditions, such as tumor cell metastasis and chronic inflammation. In comparison to blood vessels, the molecular phenotype of lymphatic vessels is less well characterized. Performing comparative gene expression analysis we have recently found that coxsackie- and adenovirus receptor (CAR) is significantly more highly expressed in cultured human, skin-derived lymphatic endothelial cells (LECs), as compared to blood vascular endothelial cells. Here, we have confirmed these results at the protein level, using Western blot and FACS analysis. Immunofluorescence performed on human skin confirmed that CAR is expressed at detectable levels in lymphatic vessels, but not in blood vessels. To address the functional significance of CAR expression, we modulated CAR expression levels in cultured LECs in vitro by siRNA- and vector-based transfection approaches. Functional assays performed with the transfected cells revealed that CAR is involved in distinct cellular processes in LECs, such as cell adhesion, migration, tube formation and the control of vascular permeability. In contrast, no effect of CAR on LEC proliferation was observed. Overall, our data suggest that CAR stabilizes LEC-LEC interactions in the skin and may contribute to lymphatic vessel integrity.

  2. Radiation therapy causes loss of dermal lymphatic vessels and interferes with lymphatic function by TGF-β1-mediated tissue fibrosis

    PubMed Central

    Avraham, Tomer; Yan, Alan; Zampell, Jamie C.; Daluvoy, Sanjay V.; Haimovitz-Friedman, Adriana; Cordeiro, Andrew P.

    2010-01-01

    Although radiation therapy is a major risk factor for the development of lymphedema following lymphadenectomy, the mechanisms responsible for this effect remain unknown. The purpose of this study was therefore to determine the effects of radiation on lymphatic endothelial cells (LECs) and lymphatic function. The tails of wild-type or acid sphingomyelinase (ASM)-deficient mice were treated with 0, 15, or 30 Gy of radiation and then analyzed for LEC apoptosis and lymphatic function at various time points. To analyze the effects of radiation fibrosis on lymphatic function, we determined the effects of transforming growth factor (TGF)-β1 blockade after radiation in vivo. Finally, we determined the effects of radiation and exogenous TGF-β1 on LECs in vitro. Radiation caused mild edema that resolved after 12–24 wk. Interestingly, despite resolution of tail edema, irradiated animals displayed persistent lymphatic dysfunction. Radiation caused loss of capillary lymphatics and was associated with a dose-dependent increase in LEC apoptosis. ASM−/− mice had significantly less LEC apoptosis; however, this finding did not translate to improved lymphatic function at later time points. Short-term blockade of TGF-β1 function after radiation markedly decreased tissue fibrosis and significantly improved lymphatic function but did not alter LEC apoptosis. Radiation therapy decreases lymphatic reserve by causing depletion of lymphatic vessels and LECs as well as promoting soft tissue fibrosis. Short-term inhibition of TGF-β1 activity following radiation improves lymphatic function and is associated with decreased soft tissue fibrosis. ASM deficiency confers LEC protection from radiation-induced apoptosis but does not prevent lymphatic dysfunction. PMID:20519446

  3. The lymphatic vasculature in disease.

    PubMed

    Alitalo, Kari

    2011-11-07

    Blood vessels form a closed circulatory system, whereas lymphatic vessels form a one-way conduit for tissue fluid and leukocytes. In most vertebrates, the main function of lymphatic vessels is to collect excess protein-rich fluid that has extravasated from blood vessels and transport it back into the blood circulation. Lymphatic vessels have an important immune surveillance function, as they import various antigens and activated antigen-presenting cells into the lymph nodes and export immune effector cells and humoral response factors into the blood circulation. Defects in lymphatic function can lead to lymph accumulation in tissues, dampened immune responses, connective tissue and fat accumulation, and tissue swelling known as lymphedema. This review highlights the most recent developments in lymphatic biology and how the lymphatic system contributes to the pathogenesis of various diseases involving immune and inflammatory responses and its role in disseminating tumor cells.

  4. Microcirculation-on-a-Chip: A Microfluidic Platform for Assaying Blood- and Lymphatic-Vessel Permeability

    PubMed Central

    Sato, Miwa; Sasaki, Naoki; Ato, Manabu; Hirakawa, Satoshi; Sato, Kiichi; Sato, Kae

    2015-01-01

    We developed a microfluidic model of microcirculation containing both blood and lymphatic vessels for examining vascular permeability. The designed microfluidic device harbors upper and lower channels that are partly aligned and are separated by a porous membrane, and on this membrane, blood vascular endothelial cells (BECs) and lymphatic endothelial cells (LECs) were cocultured back-to-back. At cell-cell junctions of both BECs and LECs, claudin-5 and VE-cadherin were detected. The permeability coefficient measured here was lower than the value reported for isolated mammalian venules. Moreover, our results showed that the flow culture established in the device promoted the formation of endothelial cell-cell junctions, and that treatment with histamine, an inflammation-promoting substance, induced changes in the localization of tight and adherens junction-associated proteins and an increase in vascular permeability in the microdevice. These findings indicated that both BECs and LECs appeared to retain their functions in the microfluidic coculture platform. Using this microcirculation device, the vascular damage induced by habu snake venom was successfully assayed, and the assay time was reduced from 24 h to 30 min. This is the first report of a microcirculation model in which BECs and LECs were cocultured. Because the micromodel includes lymphatic vessels in addition to blood vessels, the model can be used to evaluate both vascular permeability and lymphatic return rate. PMID:26332321

  5. Analysis of nerve supply pattern in human lymphatic vessels of young and old men.

    PubMed

    Mignini, F; Sabbatini, M; Coppola, L; Cavallotti, C

    2012-12-01

    The present work deals with innervation patterns along collector lymphatic vessels from cervical, mesenteric, and femoral regions, and lymph capillaries in young and elderly subjects. Morphological and morphometric analysis of nerve fibers along lymph vessels was performed by immunohistochemistry for PGP 9.5, NPY, TH, ChAT, VIP, SP, and dopamine. Nerves containing NPY and TH were frequent, whereas immunoreactivity for ChAT and VIP were few. SP-positive fibers were widely distributed in the medial and endothelial layers. Dopamine neurotransmitters were observed in a few short nerve fibers. A more diffuse presence of nerve fibers in mesenteric and femoral lymph vessels, compared to cervical ones, was detected. In lymph capillary vessels, a few nerve fibers positive for neuropeptides and neurotransmitters were detected, whereas no dopamine and VIP immunoreactive fibers were detected. A wide reduction of all specific nerve fibers analyzed was detected in lymph vessels from elderly subjects. The presence on lymph vessels of sympathetic and parasympathetic nerve systems can be declared. The differences observed in lymphatic vessel innervation patterns may note the involvement in lymph flow regulation, calling attention in aging, when nerve fibers reduction may cause functional default of lymph vessels.

  6. Ex-vivo imaging of blood and lymphatic vessels in conjunctiva using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Gong, Peijun; Karnowski, Karol; Yu, Paula; An, Dong; Yu, Dao-Yi; Sampson, David D.

    2017-04-01

    Label-free imaging of the blood and lymphatic vessel networks of the conjunctiva of the eye is important in assessing the drainage pathways affected by glaucoma. We utilize the characteristically low signal in optical coherence tomography (OCT) provided by such vessels in ex vivo tissue to characterize their morphology in two and three dimensions. We demonstrate this method on conjunctiva from six porcine eyes, showing the ready visualization of both vessel networks. Such ex vivo characterization is a necessary precursor for future in vivo studies directed towards improving glaucoma surgery.

  7. Lymphatic and blood vessels in basal and triple-negative breast cancers: characteristics and prognostic significance.

    PubMed

    Mohammed, Rabab A A; Ellis, Ian O; Mahmmod, Ali M; Hawkes, E Claire; Green, Andrew R; Rakha, Emad A; Martin, Stewart G

    2011-06-01

    Basal and triple-negative breast cancer phenotypes are characterised by unfavourable biological behaviour and outcome. Although certain studies have examined their pathological and molecular profile, the vascular characteristics of lymphatic and blood vessels have not been examined. Immunohistochemical staining with podoplanin, CD34 and CD31 was used to examine lymphatic and microvessel density, as well as vascular invasion in 197 basal-like and in 99 triple-negative breast tumours and compared against 200 non-basal and 334 non-triple-negative cases. All specimens were lymph node negative. Vascular invasion was identified as blood or lymphatic vascular invasion by the differential expression of markers. All measurements were correlated with clinicopathological features and prognosis. No significant difference was detected between the basal and triple-negative groups in terms of lymphatic or microvessel density or vascular invasion. However, both the basal and the triple-negative groups showed significantly higher microvessel density than did the non-basal and non-triple-negative groups (P=0.017 and P<0.001, respectively). Unlike microvessel density, no significant difference was detected in lymphatic density between the basal or triple-negative groups compared with their respective controls. Interestingly, vascular invasion, almost entirely lymphatic invasion, was detected in 27% of the basal and in 26% of the triple-negative groups with no significant difference in comparison with control groups. In both basal and triple negatives, vascular invasion was associated with poorer survival by univariate and multivariate analyses. The 20-year overall survival rate in basal-like tumours was 55% in vascular invasion-positive cases compared with 73% in vascular invasion-negative tumours (P=0.012), and 46% in triple-negative vascular invasion-positive compared with 79% in vascular invasion-negative tumours (P=0.001). Basal-like vs non-basal-like and triple-negative vs non

  8. Involvement of histamine in endothelium-dependent relaxation of mesenteric lymphatic vessels.

    PubMed

    Nizamutdinova, Irina Tsoy; Maejima, Daisuke; Nagai, Takashi; Bridenbaugh, Eric; Thangaswamy, Sangeetha; Chatterjee, Victor; Meininger, Cynthia J; Gashev, Anatoliy A

    2014-10-01

    The knowledge of the basic principles of lymphatic function, still remains, to a large degree, rudimentary and will require significant research efforts. Recent studies of the physiology of the MLVs suggested the presence of an EDRF other than NO. In this study, we tested the hypothesis that lymphatic endothelium-derived histamine relaxes MLVs. We measured and analyzed parameters of lymphatic contractility in isolated and pressurized rat MLVs under control conditions and after pharmacological blockade of NO by L-NAME (100 μM) or/and histamine production by α-MHD (10 μM). Effectiveness of α-MHD was confirmed immunohistochemically. We also used immunohistochemical labeling and Western blot analysis of the histamine-producing enzyme, HDC. In addition, we blocked HDC protein expression in MLVs by transient transfection with vivo-morpholino oligos. We found that only combined pharmacological blockade of NO and histamine production completely eliminates flow-dependent relaxation of lymphatic vessels, thus confirming a role for histamine as an EDRF in MLVs. We also confirmed the presence of HDC and histamine inside lymphatic endothelial cells. This study supports a role for histamine as an EDRF in MLVs. © 2014 John Wiley & Sons Ltd.

  9. Human lymphatic vessel contractile activity is inhibited in vitro but not in vivo by the calcium channel blocker nifedipine

    PubMed Central

    Telinius, Niklas; Mohanakumar, Sheyanth; Majgaard, Jens; Kim, Sukhan; Pilegaard, Hans; Pahle, Einar; Nielsen, Jørn; de Leval, Marc; Aalkjaer, Christian; Hjortdal, Vibeke; Boedtkjer, Donna Briggs

    2014-01-01

    Calcium channel blockers (CCB) are widely prescribed anti-hypertensive agents. The commonest side-effect, peripheral oedema, is attributed to a larger arterial than venous dilatation causing increased fluid filtration. Whether CCB treatment is detrimental to human lymphatic vessel function and thereby exacerbates oedema formation is unknown. We observed that spontaneous lymphatic contractions in isolated human vessels (thoracic duct and mesenteric lymphatics) maintained under isometric conditions were inhibited by therapeutic concentrations (nanomolar) of the CCB nifedipine while higher than therapeutic concentrations of verapamil (micromolar) were necessary to inhibit activity. Nifedipine also inhibited spontaneous action potentials measured by sharp microelectrodes. Furthermore, noradrenaline did not elicit normal increases in lymphatic vessel tone when maximal constriction was reduced to 29.4 ± 4.9% of control in the presence of 20 nmol l−1 nifedipine. Transcripts for the L-type calcium channel gene CACNA1C were consistently detected from human thoracic duct samples examined and the CaV1.2 protein was localized by immunoreactivity to lymphatic smooth muscle cells. While human lymphatics ex vivo were highly sensitive to nifedipine, this was not apparent in vivo when nifedipine was compared to placebo in a randomized, double-blinded clinical trial: conversely, lymphatic vessel contraction frequency was increased and refill time was faster despite all subjects achieving target nifedipine plasma concentrations. We conclude that human lymphatic vessels are highly sensitive to nifedipine in vitro but that care must be taken when extrapolating in vitro observations of lymphatic vessel function to the clinical situation, as similar changes in lymphatic function were not evident in our clinical trial comparing nifedipine treatment to placebo. PMID:25172950

  10. Human lymphatic vessel contractile activity is inhibited in vitro but not in vivo by the calcium channel blocker nifedipine.

    PubMed

    Telinius, Niklas; Mohanakumar, Sheyanth; Majgaard, Jens; Kim, Sukhan; Pilegaard, Hans; Pahle, Einar; Nielsen, Jørn; de Leval, Marc; Aalkjaer, Christian; Hjortdal, Vibeke; Boedtkjer, Donna Briggs

    2014-11-01

    Calcium channel blockers (CCB) are widely prescribed anti-hypertensive agents. The commonest side-effect, peripheral oedema, is attributed to a larger arterial than venous dilatation causing increased fluid filtration. Whether CCB treatment is detrimental to human lymphatic vessel function and thereby exacerbates oedema formation is unknown. We observed that spontaneous lymphatic contractions in isolated human vessels (thoracic duct and mesenteric lymphatics) maintained under isometric conditions were inhibited by therapeutic concentrations (nanomolar) of the CCB nifedipine while higher than therapeutic concentrations of verapamil (micromolar) were necessary to inhibit activity. Nifedipine also inhibited spontaneous action potentials measured by sharp microelectrodes. Furthermore, noradrenaline did not elicit normal increases in lymphatic vessel tone when maximal constriction was reduced to 29.4 ± 4.9% of control in the presence of 20 nmol l(-1) nifedipine. Transcripts for the L-type calcium channel gene CACNA1C were consistently detected from human thoracic duct samples examined and the CaV1.2 protein was localized by immunoreactivity to lymphatic smooth muscle cells. While human lymphatics ex vivo were highly sensitive to nifedipine, this was not apparent in vivo when nifedipine was compared to placebo in a randomized, double-blinded clinical trial: conversely, lymphatic vessel contraction frequency was increased and refill time was faster despite all subjects achieving target nifedipine plasma concentrations. We conclude that human lymphatic vessels are highly sensitive to nifedipine in vitro but that care must be taken when extrapolating in vitro observations of lymphatic vessel function to the clinical situation, as similar changes in lymphatic function were not evident in our clinical trial comparing nifedipine treatment to placebo. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.

  11. Delivery of molecules to the lymph node via lymphatic vessels using ultrasound and nano/microbubbles.

    PubMed

    Kato, Shigeki; Shirai, Yuko; Kanzaki, Hiroyuki; Sakamoto, Maya; Mori, Shiro; Kodama, Tetsuya

    2015-05-01

    Lymph node (LN) dissection is the primary option for head and neck cancer when imaging modalities and biopsy confirm metastasis to the sentinel LN. However, there are no effective alternative treatments to dissection for LN metastasis. Here, we describe a novel drug delivery system combining nano/microbubbles (NMBs) with ultrasound (US) that exhibits considerable potential for the delivery of exogenous molecules into LNs through the lymphatic vessels. A solution containing fluorophores (as a model of a therapeutic molecule) and NMBs was injected into the subiliac LNs of MXH10/Mo-lpr/lpr mice, which develop systemic swelling of LNs (up to 13 mm in diameter, similar to human LNs). It was found that the NMBs were delivered to the entire area of the proper axillary LN (proper-ALN) via the lymphatic channels and that these were retained there for more than 8 min. Furthermore, exposure to US in the presence of NMBs enhanced the delivery of fluorophores into the lymphocytes near the lymphatic channels, compared with exposure to US in the absence of NMBs. It is proposed that a system using US and NMBs to deliver therapeutic drugs via lymphatic vessels can serve as a new treatment method for LN metastasis. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  12. [Role of adrenoreceptors in the effect of thyroliberin on lymphatic vessels].

    PubMed

    Lelekova, T V; Sanzhieva, L Ts

    2004-01-01

    Formerly we showed that TRH had simulative effect on mesenteric bovine and rat lymphatic vessels (LV) in very low concentration--10(-12)-10(-18) M. In present paper, participation of LV alpha- and beta-receptors in realization of TRH activity on rat mesenteric lymphatic vessels was studied in situ. Propranolol increased the stimulative effect of TRH, isoproterenol exerted an opposite effect. Phentolamine, prazosin eliminated the simulative effect of TRH, yohimbine resulted in additional gain of effect, which seems to testify 1) presynaptic action of TRH or 2) increase of the output of norepinephrine, which is potentiated by alpha 2-adrenoceptor antagonists. Also the participation of adrenergic receptors in positive chronotropic effects of mesenteric rat LV was studied using the method of selective destruction of dopamine-containing neurons after 6-OHDA infusion. As it occurred, desympathization hindered development of stimulating action of TRH. Thus, the efficiency of TRH as a stimulator of LV is connected with activation of adrenergic mechanisms.

  13. Computed tomography and radiographic indirect lymphography for visualization of mammary lymphatic vessels and the sentinel lymph node in normal cats.

    PubMed

    Patsikas, Michail N; Papadopoulou, Paraskevi L; Charitanti, Afroditi; Kazakos, George M; Soultani, Christina B; Tziris, Nikolaos E; Tzegas, Sotirios I; Jakovljevic, Samuel; Savas, Ioannis; Stamoulas, Konstantinos G

    2010-01-01

    The potential of computed tomography indirect lymphography (CT-indirect lymphography) and radiographic indirect lymphography to demonstrate the draining lymphatic vessels and sentinel lymph node of normal mammary glands was tested in 31 healthy female cats. The lymphatic drainage of each mammary gland was studied initially by CT-indirect lymphography after intramammary injection of 0.5 ml of iopamidol, followed by images acquired at 1, 5, 15, and 30 min after injection. One day after CT-indirect lymphography, the lymph drainage of the mammary gland was assessed using radiographic in direct lymphography af terintramammary injection of 0.5 ml of ethiodized oil followed by radiographs made at 1, 5, 15, 30, 45, and 60 min after injection. The time between intramammary injection and opacification of the draining mammary lymphatic vessels and the sentinel lymph node, the duration of adequate opacification of the draining mammary lymphatic vessels and of the sentinel lymph node and also the number and course of draining mammary lymphatic vessels and location of sentinel lymph node were compared for CT-indirect lymphography vs. radiographic indirect lymphography in each examined gland. This results suggest that radiographic indirect lymphography is easy to perform and can be used for accurate demonstration of the draining lymphatic pathways of mammary glands in radiographs made at 5-30 min after injection. However, CT-indirect lymphography was able to better demonstrate small lymphatic vessels and accurately define the exact topography of the sentinel lymph node in images acquired at 1 min after injection.

  14. Label-free 3D imaging of microstructure, blood, and lymphatic vessels within tissue beds in vivo.

    PubMed

    Zhi, Zhongwei; Jung, Yeongri; Wang, Ruikang K

    2012-03-01

    This Letter reports the use of an ultrahigh resolution optical microangiography (OMAG) system for simultaneous 3D imaging of microstructure and lymphatic and blood vessels without the use of an exogenous contrast agent. An automatic algorithm is developed to segment the lymphatic vessels from the microstructural images based on the fact that the lymph fluid is optically transparent. An OMAG system is developed that utilizes a broadband supercontinuum light source, providing an axial resolution of 2.3 μm and lateral resolution of 5.8 μm, capable of resolving the capillary vasculature and lymphatic vessels innervating microcirculatory tissue beds. Experimental demonstration is performed by showing detailed 3D lymphatic and blood vessel maps, coupled with morphology, within mouse ears in vivo. © 2012 Optical Society of America

  15. Progression of Inflammatory Bowel Disease to Cancer: Is the Patient Better Off without Lymphatic Vessels or Nodes (or Angiopoietin 2)?

    DTIC Science & Technology

    2013-12-01

    International Sentinel Node Society (ISNS) Meeting, Monday, May 27 – Wednesday, May 29, 2013 in San Francisco, California. Online Abstract #125 (http://www.sn...Lymphatic Vessels or Nodes (or Angiopoietin 2)? PRINCIPAL INVESTIGATOR: Marlys H. Witte, MD CONTRACTING ORGANIZATION: University of Arizona, Tucson...Better Off” without 5a. CONTRACT NUMBER Lymphatic Vessels or Nodes (or Angiopoietin 2)? 5b. GRANT NUMBER W 81XH-11-1-0727 5c. PROGRAM

  16. The influence of afferent lymphatic vessel interruption on vascular addressin expression

    PubMed Central

    1991-01-01

    Tissue-selective lymphocyte homing is directed in part by specialized vessels that define sites of lymphocyte exit from the blood. These vessels, the post capillary high endothelial venules (HEV), are found in organized lymphoid tissues, and at sites of chronic inflammation. Lymphocytes bearing specific receptors, called homing receptors, recognize and adhere to their putative ligands on high endothelial cells, the vascular addressins. After adhesion, lymphocytes enter organized lymphoid tissues by migrating through the endothelial cell wall. Cells and/or soluble factors arriving in lymph nodes by way of the afferent lymph supply have been implicated in the maintenance of HEV morphology and efficient lymphocyte homing. In the study reported here, we assessed the influence of afferent lymphatic vessel interruption on lymph node composition, organization of cellular elements; and on expression of vascular addressins. At 1 wk after occlusion of afferent lymphatic vessels, HEV became flat walled and expression of the peripheral lymph node addressin disappeared from the luminal aspect of most vessels, while being retained on the abluminal side. In addition, an HEV-specific differentiation marker, defined by mAb MECA-325, was undetectable at 7-d postocclusion. In vivo homing studies revealed that these modified vessels support minimal lymphocyte traffic from the blood. After occlusion, we observed dramatic changes in lymphocyte populations and at 7-d postsurgery, lymph nodes were populated predominantly by cells lacking the peripheral lymph node homing receptor LECAM-1. In addition, effects on nonlymphoid cells were observed: subcapsular sinus macrophages, defined by mAb MOMA-1, disappeared; and interdigitating dendritic cells, defined by mAb NLDC- 145, were dramatically reduced. These data reveal that functioning afferent lymphatics are centrally involved in maintaining normal lymph node homeostasis. PMID:1918141

  17. Topographic study on nerve-associated lymphatic vessels in the murine craniofacial region by immunohistochemistry and electron microscopy.

    PubMed

    Furukawa, Masahide; Shimoda, Hiroshi; Kajiwara, Tooru; Kato, Seiji; Yanagisawa, Shigetaka

    2008-12-01

    The distribution and fine structure of lymphatic vessels associated with nerves was studied by immunohistochemistry in the murine craniofacial region. The tissue sections and blocks were immunostained for LYVE-1, protein gene product 9.5, CD34 and aquaporin-1 to demonstrate the lymphatic vessels, nerves, blood vessels and water channel protein, respectively. Transmission electron microscopic examination was also performed to investigate the relationship between the lymphatics and nerves. In the nasal area, the lymphatics were found in dura mater on the cribriform plate and beneath the nasal mucosa, this supposedly supplying the cerebrospinal fluid drainage route along the olfactory nerves. The proximal portions of the cranial nerves were equipped with the lymphatics in the epineurium. In the distal portions of the nerves, the lymphatics were distributed in close proximity of the perineural sheath, and thus might contribute to maintenance of microenvironment suitable for the nerves by an absorptive activity of the lymphatic endothelial cells. The present findings suggest that the lymphatic system associated with the cranial nerves provides the pathway for transport of cerebrospinal fluid, tissue fluid, and free cells involved in immune response and tumor metastasis in the craniofacial region.

  18. Novel threadlike structures (Bonghan ducts) inside lymphatic vessels of rabbits visualized with a Janus Green B staining method.

    PubMed

    Lee, Byung-Cheon; Yoo, Jung Sun; Baik, Ku Youn; Kim, Ki Woo; Soh, Kwang-Sup

    2005-09-01

    A staining method has been developed for in situ and in vivo observation of a threadlike tissue afloat inside the lymphatic vessels of rabbits without adherence to the vessel wall. The existence of this novel structure was not noticed previously because it is extremely difficult to detect it by microscopic inspection of lymphatic vessels. We have found a method that utilizes Janus Green B (JGB), which stained heavily the novel structure. The tissue was studied by confocal laser scanning microscopy (CLSM), light microscopy, and cryoscanning electron microscopy (cryo-SEM). The CLSM image obtained by acridine orange staining of the novel tissue revealed its characteristic nuclei distribution: rod-shaped nuclei of 10-20 microm length aligned in a broken-line/striped fashion. Hematoxylin and eosin staining revealed the threadlike structure passing through a lymphatic valve as histologically distinct from lymphatic vessels and valves. The cryo-SEM image showed the threadlike structure inside a collapsed lymphatic vessel. There were spherical globular structures observable inside sinuses in a rapidly frozen sample, which suggests liquid flowing through the longitudinal ductules in the threadlike structure. The specific staining of the JGB suggests that these threadlike structures inside lymphatic vessels have a high density of mitochondria in their cells and/or nerve-like properties, either of which may provide important clues to their physiological function.

  19. Discontinuous expression of endothelial cell adhesion molecules along initial lymphatic vessels in mesentery: the primary valve structure.

    PubMed

    Murfee, Walter L; Rappleye, Jeff W; Ceballos, Mariana; Schmid-Schönbein, Geert W

    2007-01-01

    Understanding lymphatic fluid uptake requires investigation of the primary valve system located at endothelial cell junctions. The objective of this study was to evaluate the expression pattern of adhesion molecules at endothelial cell junctions in an adult initial lymphatic network. Mesenteric tissues from adult male Wistar rats were labeled with antibodies against PECAM-1 and VE-cadherin. Endothelial cells along initial lymphatics and blood microvascular networks expressed both junctional molecules. In contrast to continuous junctional labeling along blood vessels, PECAM and VE-cadherin labeling patterns were discontinuous with gaps along lymphatic endothelial cell junctions. Along larger draining vessels in proximal regions of the initial lymphatic network, the majority of labeling gaps along junctions were less than 1microm. In comparison to draining vessels, terminal lymphatics exhibited a decrease in PECAM staining intensity and a decrease in endothelial cell junctional length defined by positive PECAM and VE-cadherin staining. These results suggest that primary valves responsible for unidirectional interstitial fluid uptake along initial lymphatic vessels are associated with discontinuous expression of endothelial junction molecules. This feature may render the ability to separate local membrane regions between neighboring endothelial cells.

  20. Reconstructive microsurgery of lymph vessels: the personal method of lymphatic-venous-lymphatic (LVL) interpositioned grafted shunt.

    PubMed

    Campisi, C; Boccardo, F; Tacchella, M

    1995-01-01

    Our clinical observations in 64 patients affected by chronic obstructive lymphedema (either arm or leg) undergoing interposition autologous lymphatic-venous-lymphatic (LVL) anastomoses are reported. This microsurgical technique is an alternative to other lymphatic shunting methods, especially when venous dysfunction coexists in the same limb and, therefore, when direct lymphatic-venous anastomosis is accordingly inadequate. Preoperative diagnostic evaluation (including lymphatic and venous isotopic scintigraphy, Doppler venous flowmetrics, and pressure manometry) plays an essential role in assessing the conditions of both the lymphatic and venous systems and in establishing which microsurgical procedure, if any, is indicated. Our microsurgical technique consists of inserting suitably large and lengthy autologous venous grafts between lymphatic collectors above and below the site of obstruction to lymph flow. The data show that, using this technique, both limb function and edema improved, and in all patients followed up for over 5 years edema regression was permanent.

  1. Use of a whole-slide imaging system to assess the presence and alteration of lymphatic vessels in joint sections of arthritic mice.

    PubMed

    Shi, J X; Liang, Q Q; Wang, Y J; Mooney, R A; Boyce, B F; Xing, L

    2013-11-01

    We investigated the presence and alteration of lymphatic vessels in joints of arthritic mice using a whole-slide imaging system. Joints and long bone sections were cut from paraffin blocks of two mouse models of arthritis: meniscal-ligamentous injury (MLI)-induced osteoarthritis (OA) and TNF transgene (TNF-Tg)-induced rheumatoid arthritis (RA). MLI-OA mice were fed a high fat diet to accelerate OA development. TNF-Tg mice were treated with lymphatic growth factor VEGF-C virus to stimulate lymphangiogenesis. Sections were double immunofluorescence stained with anti-podoplanin and alpha-smooth muscle actin antibodies. The area and number of lymphatic capillaries and mature lymphatic vessels were determined using a whole-slide imaging system and its associated software. Lymphatic vessels in joints were distributed in soft tissues mainly around the joint capsule, ligaments, fat pads and muscles. In long bones, enriched lymphatic vessels were present in the periosteal areas adjacent to the blood vessels. Occasionally, lymphatic vessels were observed in the cortical bone. Increased lymphatic capillaries, but decreased mature lymphatic vessels, were detected in both OA and RA joints. VEGF-C treatment increased lymphatic capillary and mature vessel formation in RA joints. Our findings suggest that the lymphatic system may play an important role in arthritis pathogenesis and treatment.

  2. Curative effect of paclitaxel and cisplatin combined chemotherapy on cervical cancer and its relation with tissue micro vascular and lymphatic vessels density.

    PubMed

    Gao, Zhi-Hui; Wang, Qian-Qing

    2015-09-01

    This study was to discuss the curative effect of paclitaxel and cisplatin combined chemotherapy on cervical cancer and its relation with tissue micro vascular and lymphatic vessels density. The combined chemotherapy of paclitaxel 135 mg/m² and cisplatin 25mg/m² were taken to observe the clinical curative effect. The postoperative paraffin tissue had been collected, had performed the LYVE-1 (lymphatic endothelium specific hyaluronan receptor-1) and CD31 immunohistochemical staining. The complete remission rate of high micro lymphatic vessels density group (was or more 6.0) and high micro vascular density group were obviously higher than in low micro lymphatic vessels density group and low micro vascular density group, the difference was statistically significance (P<0.05). This study further analyzed the relation of MVD and LVD with clinical pathological parameters. The difference was statistically significant (P<0.01). The curative effect of paclitaxel and cisplatin combined therapy was promising, positive and was closely related with cervical cancer tissue LVD and MVD. The LVD and MVD could be one of the predictors of early cervical CIN and early cervical cancer development.

  3. Orbital venous pattern in relation to extraorbital venous drainage and superficial lymphatic vessels in rats.

    PubMed

    Maloveska, Marcela; Kresakova, Lenka; Vdoviakova, Katarina; Petrovova, Eva; Elias, Mario; Panagiotis, Artemiou; Andrejcakova, Zuzana; Supuka, Peter; Purzyc, Halina; Kissova, Viktoria

    2017-01-01

    The purpose of this study was to demonstrate the normal and variant anatomy of extraorbital and intraorbital venous drainage together with retroorbital communication, and determine the lymphatic drainage from the superficial orbital region with a potential outlet of lymphatic vessel into the venous bloodstream. The study of the venous system was carried out on 32 Wistar rats by using corrosion casts methods and radiography, while the lymphatic system was studied in 12 Wistar rats following ink injection. Superficially, orbital veins are connected with extraorbital veins running through angular vein of the eye and the superficial temporal vein, and via the pterygoid plexus with the maxillary vein, which provide readily accessible communication routes in the spread of infection. The extent of intraorbital and periorbital venous drainage was ensured by the dorsal and ventral external ophthalmic vein through the infraorbital vein, which together formed the principal part of the ophthalmic plexus. Venous drainage of the eyeball was carried out mainly by the vortex veins, ciliary veins and internal ophthalmic vein. The highest variability, first presented by differences in structural arrangement and formation of anastomoses, was observed within the ventral external ophthalmic vein (22 cases) and the medial vortex vein (10 cases). Four vortex veins, one vein in each quadrant of the eye, were observed in rats. The vortex vein located on the ventral side of the eyeball was occasionally found as two veins (in four cases) in the present study. The lymphatic vessel from the lower eyelid entered into the mandibular lymph centre, and from the upper eyelid entered into the superficial cervical lymph centre, but both drained into the deep cranial cervical lymph node. The direct entry of lymph entering the veins without passing through lymph nodes was not observed.

  4. Mast cells in common wolffish Anarhichas lupus L.: ontogeny, distribution and association with lymphatic vessels.

    PubMed

    Hellberg, Hege; Bjerkås, Inge; Vågnes, Øyvind B; Noga, Edward J

    2013-12-01

    The morphology, ontogeny and tissue distribution of mast cells were studied in common wolffish(Anarhichas lupus L.) at the larval, juvenile and adult life stages using light and electron-microscopy and immunohistochemistry. Fish were sampled at 1 day, 1, 2, 3, 4, 8 and 12 weeks post-hatching in addition to 6 and 9 months and 2 years and older. From 8 weeks post-hatching, mast cells in common wolffish mainly appeared as oval or rounded cells 8-15 mm in diameter with an eccentrically placed, ovoid nucleus and filled with cytoplasmic granules up to 1.2 mm in diameter. Granules were refractile and eosinophilic to slightly basophilic in H&E and stained bright red with Martius-scarlet-blue and purple with pinacyanol erythrosinate in formalin-fixed tissues. Mast cells stained positive for piscidin 4 and Fc ε RI by immunohistochemistry. From 1 day to 4 weeks post-hatching, immature mast cell containing only a few irregularly sized cytoplasmic granules were observed by light and electron-microscopy in loose connective tissue of cranial areas. From 1 day post-hatching, these cells stained positive for piscidin 4 and Fc ε RI by immunohistochemistry. From 12 weeks post-hatching, mast cells showed a primarily perivascular distribution and were particularly closely associated with lymphatic vessels and sinuses. Mast cells were mainly located at the peripheral border of the adventitia of arteries and veins, while they were in intimate contact with the endothelium of the lymphatic vessels. Numerous mast cells were observed in the intestine. A stratum compactum, as described in salmonids, was not observed in wolffish intestine,nor were mast cells confined to a separate layer, a stratum granulosum. Lymphatic vessels consisting of endothelium, intimal connective tissue and a poorly developed basal lamina were observed in the intestine. Scanning electron microscopy was used to compare the structure and localization of intestinal mast cells of common wolffish and rainbow trout

  5. Lymphatic vessel densities of lymph node-negative prostate adenocarcinoma in Korea.

    PubMed

    Kim, Hyun-Soo; Sung, Wooseok; Lee, Sun; Chang, Sung-Goo; Park, Yong-Koo

    2009-01-01

    Although lymphatic vessel density (LVD) is associated with regional lymph node (LN) metastasis in prostate adenocarcinoma, no study is available that examines whether the LVD is correlated with prognostic factors other than LN metastasis in LN-negative prostate adenocarcinoma. The aim of our study was to analyze intratumoral (IT), peritumoral (PT), and nontumoral (NT) LVDs, and to determine if there is a correlation between the LVD and the clinicopathological parameters in the Korean LN-negative prostate adenocarcinoma patients. Lymphatics were detected by immunohistochemical staining using D2-40 antibody on 39 radical prostatectomy specimens. Mean LVDs of IT, PT, and NT compartments were 5.39+/-4.22, 10.71+/-4.61, and 2.04+/-1.34 per 200 x field, respectively. The difference in LVD among the compartments was significant (P<0.001). The IT-LVD was significantly lower in patients with larger tumor volume (P=0.029) and higher preoperative prostate-specific antigen level (P=0.008). The PT-LVD showed no significant correlation with the clinicopathological parameters. Our results suggest that IT- and PT-LVDs may increase in LN-negative prostate adenocarcinoma as a result of lymphangiogenesis, but IT lymphatics may decrease due to mechanical compression and destruction caused by proliferating tumor cells. In addition, IT-LVD may be used as a prognostic factor in LN-negative prostate adenocarcinoma.

  6. Molecular and cellular mechanisms of lymphatic vascular maturation

    PubMed Central

    Chen, Hong; Griffin, Courtney; Xia, Lijun; Srinivasan, R. Sathish

    2014-01-01

    Lymphatic vasculature is necessary for maintaining fluid homeostasis in vertebrates. During embryogenesis lymphatic endothelial cells originate from the veins as a homogeneous population. These cells undergo a series of changes at the morphological and molecular levels to become mature lymphatic vasculature that consists of lymphatic capillaries, collecting lymphatic vessels and valves. In this article we summarize our current knowledge about these steps and highlight some black boxes that require further clarification. PMID:24928499

  7. Lymphatic and Blood Vessel Density in Human Conjunctiva After Glaucoma Filtration Surgery.

    PubMed

    Bouhenni, Rachida A; Al Jadaan, Ibrahim; Rassavong, Heidi; Al Shahwan, Sami; Al Katan, Hind; Dunmire, Jeffrey; Krasniqi, Mirela; Edward, Deepak P

    2016-01-01

    To investigate the lymphatic vascular microvessel density (LVD) and the blood vascular microvessel density (MVD) and their distribution in excised leaking blebs after mitomycin C trabeculectomy and normal conjunctiva specimens. LVD and MVD in normal human conjunctiva (n=8) and excised blebs in the hypocellular stroma and peribleb tissue (conjunctiva adjacent to hypocellular bleb tissue) (n=8) were evaluated by immunohistochemistry using antibodies raised against Lymphatic Vessel Endothelial Receptor 1 (D2-40, lymphatic endothelium) and CD34 (vascular endothelium). LVD and MVD counts were performed by light microscopy in 5 fields at ×20 magnification by 3 observers. Differences were determined using Mann-Whitney U test (P<0.05 was considered significant). The leaking blebs showed typical epithelial-stromal domes with areas of acellular stroma covered by attenuated epithelium and surrounded by normal conjunctival epithelium and a dense scar-like matrix replacing the substantia propria. The LVD and MVD were significantly reduced to nil in the hypocellular conjunctival stroma of the excised blebs compared with normal conjunctiva (21.42 vs. 1.16, P<0.002 and 24.28 vs. 1, P<0.008, respectively). The LVD and MVD was also reduced (2- to 2.5-fold) in the peribleb stroma when compared with normal conjunctiva specimens. In this study we show reduced LCD and MVD in the hypocellular and peribleb stroma. These results may suggest a role of these vessels in an altered immune response in leaking blebs leading to an increased risk for blebitis.

  8. Mouse model of lymph node metastasis via afferent lymphatic vessels for development of imaging modalities.

    PubMed

    Li, Li; Mori, Shiro; Sakamoto, Maya; Takahashi, Shoki; Kodama, Tetsuya

    2013-01-01

    Animal studies of lymph node metastasis are constrained by limitations in the techniques available for noninvasive monitoring of the progression of lymph node metastasis, as well as difficulties in the establishment of appropriate animal models. To overcome these challenges, this study has developed a mouse model of inter-lymph-node metastasis via afferent lymphatic vessels for use in the development of imaging modalities. We used 14- to 18-week-old MRL/MpJ-/lpr/lpr (MRL/lpr) mice exhibiting remarkable systemic lymphadenopathy, with proper axillary lymph nodes (proper-ALNs) and subiliac lymph nodes (SiLNs) that are 6 to 12 mm in diameter (similar in size to human lymph nodes). When KM-Luc/GFP malignant fibrous histiocytoma-like cells stably expressing the firefly luciferase gene were injected into the SiLN, metastasis could be detected in the proper-ALN within 3 to 9 days, using in vivo bioluminescence imaging. The metastasis route was found to be via the efferent lymphatic vessels of the SiLN, and metastasis incidence depended on the number of cells injected, the injection duration and the SiLN volume. Three-dimensional contrast-enhanced high-frequency ultrasound imaging showed that the blood vessel volume and density in the metastasized proper-ALN significantly increased at 14 days after tumor cell inoculation into the SiLN. The present metastasis model, with lymph nodes similar in size to those of humans, has potential use in the development of ultrasound imaging with high-precision and high-sensitivity as well as other imaging modalities for the detection of blood vessels in lymph nodes during the progression of metastasis.

  9. Preclinical Lymphatic Imaging

    PubMed Central

    Zhang, Fan; Niu, Gang; Lu, Guangming; Chen, Xiaoyuan

    2011-01-01

    Non-invasive in vivo imaging of lymphatic vessels and lymphatic nodes is expected to fulfill the purpose of analyzing lymphatic vessels and their function, understanding molecular mechanisms of lymphangiogenesis and lymphatic spread of tumors, and utilizing lymphatic molecular markers as a prognostic or diagnostic indicator. In this review, we provide a comprehensive summary of in vivo imaging modalities for detecting lymphatic vessels, lymphatic drainage, lymphatic nodes, which include conventional lymphatic imaging techniques such as dyes and radionuclide scintigraphy as well as novel techniques for lymphatic imaging such as optical imaging, computed tomography (CT), magnetic resonance imaging (MRI), ultrasound, positron emission tomography (PET) using lymphatic biomarkers, photoacoustic imaging and combinations of multiple modalities. The field of lymphatic imaging is ever evolving, and technological advances, combined with the development of new contrast agents, continue to improve the research of lymphatic vascular system in health and disease states as well as to improve the accuracy of diagnosis in the relevant diseases. PMID:20862613

  10. Localization of Mycobacterium leprae to Endothelial Cells of Epineurial and Perineurial Blood Vessels and Lymphatics

    PubMed Central

    Scollard, David M.; McCormick, Gregory; Allen, Joe L.

    1999-01-01

    Infection of peripheral nerve by Mycobacterium leprae, the histopathological hallmark of leprosy, is a major factor in this disease, but the route and mechanisms by which bacilli localize to peripheral nerve are unknown. Experimentally infected armadillos have recently been recognized as a model of lepromatous neuritis; the major site of early accumulation of M. leprae is epineurial. To determine the epineurial cells involved, 1-cm segments of 44 nerves from armadillos were screened for acid-fast bacilli and thin sections were examined ultrastructurally. Of 596 blocks containing nerve, 36% contained acid-fast bacilli. Overall, M. leprae were found in endothelial cells in 40% of epineurial blood vessels and 75% of lymphatics, and in 25% of vessels intraneurally. Comparison of epineurial and endoneurial findings suggested that colonization of epineurial vessels preceded endoneurial infection. Such colonization of epineurial nutrient vessels may greatly increase the risk of endoneurial M. leprae bacteremia, and also enhance the risk of ischemia following even mild increases in inflammation or mechanical stress. These findings also raise the possibility that early, specific mechanisms in the localization of M. leprae to peripheral nerve may involve adhesion events between M. leprae (or M. leprae-parasitized macrophages) and the endothelial cells of the vasa nervorum. PMID:10329613

  11. Fish scale-derived collagen patch promotes growth of blood and lymphatic vessels in vivo.

    PubMed

    Wang, Jun Kit; Yeo, Kim Pin; Chun, Yong Yao; Tan, Timothy Thatt Yang; Tan, Nguan Soon; Angeli, Véronique; Choong, Cleo

    2017-09-06

    In this study, Type I collagen was extracted from fish scales as a potential alternative source of collagen for tissue engineering applications. Since unmodified collagen typically has poor mechanical and degradation stability both in vitro and in vivo, additional methylation modification and 1,4-butanediol diglycidyl ether (BDE) crosslinking steps were used to improve the physicochemical properties of fish scale-derived collagen. Subsequently, in vivo studies using a murine model demonstrated the biocompatibility of the different fish scale-derived collagen patches. In general, favorable integration of the collagen patches to the surrounding tissues, with good infiltration of cells, blood vessels (BVs) and lymphatic vessels (LVs) were observed under growth factor-free conditions. Interestingly, significantly higher (p < 0.05) number of LVs was found to be more abundant around collagen patches with methylation modification and BDE crosslinking. Overall, we have demonstrated the potential application of fish scale-derived collagen as a promising scaffolding material for various biomedical applications. Currently the most common sources of collagen are of bovine and porcine origins, although the industrial use of collagen obtained from non-mammalian species is growing in importance, particularly since they have a lower risk of disease transmission and are not subjected to any cultural or religious constraints. However, unmodified collagen typically has poor mechanical and degradation stability both in vitro and in vivo. Hence, in this study, Type I collagen was successfully extracted from fish scales and chemically modified and crosslinked. In vitro studies showed overall improvement in the physicochemical properties of the material, whilst in vivo implantation studies showed improvements in the growth of blood and lymphatic host vessels in the vicinity of the implants. Copyright © 2017. Published by Elsevier Ltd.

  12. High density of peritumoral lymphatic vessels is a potential prognostic marker of endometrial carcinoma: a clinical immunohistochemical method study.

    PubMed

    Gao, Ying; Liu, Zi; Gao, Fei; Meng, Xiao-yu

    2010-04-08

    The lymphatic system is a major route for cancer cell dissemination and also a potential target for antitumor therapy. To investigate whether increased lymphatic vessel density (LVD) is a prognostic factor for nodal metastasis and survival, we studied peritumoral LVD (P-LVD) and intratumoral LVD (I-LVD) in samples from 102 patients with endometrial carcinoma; Endometrial carcinoma tissues were analyzed for lymphatic vessels by immunohistochemical staining with an antibody against LYVE-1. Univariate analysis was performed with Kaplan-Meier life-table curves to estimate survival, and was compared using the log rank test. Prognostic models used multivariate Cox regression analysis for multivariate analyses of survival; Our study showed that P-LVD, but not I-LVD, was significantly correlated with lymph vascular space invasion (LVSI), lymph node metastasis, tumor stage, and CD44 expression in endometrial carcinoma. Moreover, P-LVD was an independent prognostic factor for progression-free survival and overall survival of endometrial carcinoma; P-LVD may serve as a prognostic factor for endometrial carcinoma. The peritumoral lymphatics might play an important role in lymphatic vessel metastasis.

  13. Absence of Lymphatic Vessels in PCNSL May Contribute to Confinement of Tumor Cells to the Central Nervous System.

    PubMed

    Deckert, Martina; Brunn, Anna; Montesinos-Rongen, Manuel; Siebert, Reiner

    2016-06-01

    Primary central nervous system (CNS) lymphoma (PCNSL) is a mature lymphoma of the diffuse large B-cell lymphoma (DLBCL) type confined to the CNS. Despite cytomorphological similarities between PCNSL and systemic DLBCL, molecular differences between both entities have been identified. The exclusively topographical restriction of PCNSL to the CNS is an unexplained mystery. To address the question of whether the unique lymphatic drainage system of the CNS, which differs from that of other organs, may play a role for this peculiar behavior, we investigated a series of 20 PCNSLs for the presence of lymphatic vessels by immunohistochemistry for Lyve-1, podoplanin, and Prox-1 expression. All PCNSLs lacked lymphatic vessels and, in this regard, were similar to 20 glioblastoma multiforme samples. In contrast to these tumors, all of which were located in the deep brain parenchyma, dural and meningeal DLBCL harbored lymphatic vessels that expressed Lyve-1 (3/8 tumors), podoplanin (5/8 tumors), and Prox-1 (5/8 tumors) in areas where the tumors had invaded the fibrous tissue of the dura. These data indicate that local topographical characteristics of the specific lymphatic drainage system may contribute to confinement of the tumor cells in PCNSL and malignant gliomas. © 2016 American Association of Neuropathologists, Inc. All rights reserved.

  14. Technique of right lymphatic duct cannulation for pulmonary lymph collection in an acute porcine model.

    PubMed

    Chuang, G J; Gao, C X; Mulder, D S; Chiu, R C

    1986-12-01

    The pig is an increasingly preferred model for biomedical research, including studies for pulmonary pathophysiology. However, in piglets, the technique for cannulating the right lymphatic duct, which is subject to more anatomical variations and technically more demanding than that in dogs, has not been described. Our technique evolved to enable this collection of porcine lung lymph in acute experiments. The lymphatic ampulla is cannulated via one of the cervical lymphatics. The right lymphatic duct is invariably dorsal to the cranial vena cava and classically leads to the lymphatic ampulla. Yet in 18% of our pigs, cannulation was difficult or not feasible because the lymphatic duct either drained directly into the cranial vena cava at a distance from the lymphatic ampulla, or into the axillary lymph node of the first rib or the caudal deep cervical lymph nodes. Gently squeezing back regurgitated blood in the lymphatic ampulla before tying the suture and frequently withdrawing lymph with a syringe when the flow is small enabled us to collect clear lymph, usually immediately after completing the cannulation. The rate of lymph flow varied widely (1.7 +/- 0.6 ml/hr) and increased when the left atrial pressure was raised. The lymph protein was 2.8 +/- 0.2 g% with lymph/plasma protein ratio at 0.55 +/- 0.04. The anatomical variations encountered in our 34 dissections, as well as the technical maneuvers found to be useful in the successful cannulation and collection of the porcine lung lymph, are described in detail.

  15. Increased migration of antigen presenting cells to newly-formed lymphatic vessels in transplanted kidneys by glycol-split heparin.

    PubMed

    Talsma, Ditmer T; Katta, Kirankumar; Boersema, Miriam; Adepu, Saritha; Naggi, Annamaria; Torri, Giangiacomo; Stegeman, Coen; Navis, Gerjan; van Goor, Harry; Hillebrands, Jan-Luuk; Yazdani, Saleh; van den Born, Jacob

    2017-01-01

    Chronic renal transplant dysfunction is characterized by loss of renal function and tissue remodeling, including chronic inflammation and lymph vessel formation. Proteoglycans are known for their chemokine presenting capacity. We hypothesize that interruption of the lymphatic chemokine-proteoglycan interaction interferes with the lymphatic outflow of leukocytes from the renal graft and might decrease the anti-graft allo-immune response. In a rat renal chronic transplant dysfunction model (female Dark-Agouti to male Wistar Furth), chemokines were profiled by qRT-PCR in microdissected tubulo-interstitial tissue. Disruption of lymphatic chemokine-proteoglycan interaction was studied by (non-anticoagulant) heparin-derived polysaccharides in vitro and in renal allografts. The renal allograft function was assessed by rise in plasma creatinine and urea. Within newly-formed lymph vessels of transplanted kidneys, numerous CD45+ leukocytes were found, mainly MHCII+, ED-1-, IDO-, HIS14-, CD103- antigen presenting cells, most likely representing a subset of dendritic cells. Treatment of transplanted rats with regular heparin and two different (non-)anticoagulant heparin derivatives revealed worsening of kidney function only in the glycol-split heparin treated group despite a two-fold reduction of tubulo-interstitial leukocytes (p<0.02). Quantitative digital image analysis however revealed increased numbers of intra-lymphatic antigen-presenting cells only in the glycol-split heparin group (p<0.01). The number of intra-lymphatic leukocytes significantly correlates with plasma creatinine and urea, and inversely with creatinine clearance. Treatment of transplanted rats with glycol-split heparin significantly increases the number of intra-lymphatic antigen presenting cells, by increased renal diffusion of lymphatic chemokines, thereby increasing the activation and recruitment of antigen presenting cells towards the lymph vessel. This effect is unwanted in the transplantation

  16. Increased migration of antigen presenting cells to newly-formed lymphatic vessels in transplanted kidneys by glycol-split heparin

    PubMed Central

    Katta, Kirankumar; Boersema, Miriam; Adepu, Saritha; Naggi, Annamaria; Torri, Giangiacomo; Stegeman, Coen; Navis, Gerjan; van Goor, Harry; Hillebrands, Jan-Luuk; Yazdani, Saleh; van den Born, Jacob

    2017-01-01

    Background Chronic renal transplant dysfunction is characterized by loss of renal function and tissue remodeling, including chronic inflammation and lymph vessel formation. Proteoglycans are known for their chemokine presenting capacity. We hypothesize that interruption of the lymphatic chemokine–proteoglycan interaction interferes with the lymphatic outflow of leukocytes from the renal graft and might decrease the anti-graft allo-immune response. Methods In a rat renal chronic transplant dysfunction model (female Dark-Agouti to male Wistar Furth), chemokines were profiled by qRT-PCR in microdissected tubulo-interstitial tissue. Disruption of lymphatic chemokine–proteoglycan interaction was studied by (non-anticoagulant) heparin-derived polysaccharides in vitro and in renal allografts. The renal allograft function was assessed by rise in plasma creatinine and urea. Results Within newly-formed lymph vessels of transplanted kidneys, numerous CD45+ leukocytes were found, mainly MHCII+, ED-1-, IDO-, HIS14-, CD103- antigen presenting cells, most likely representing a subset of dendritic cells. Treatment of transplanted rats with regular heparin and two different (non-)anticoagulant heparin derivatives revealed worsening of kidney function only in the glycol-split heparin treated group despite a two-fold reduction of tubulo-interstitial leukocytes (p<0.02). Quantitative digital image analysis however revealed increased numbers of intra-lymphatic antigen-presenting cells only in the glycol-split heparin group (p<0.01). The number of intra-lymphatic leukocytes significantly correlates with plasma creatinine and urea, and inversely with creatinine clearance. Conclusions Treatment of transplanted rats with glycol-split heparin significantly increases the number of intra-lymphatic antigen presenting cells, by increased renal diffusion of lymphatic chemokines, thereby increasing the activation and recruitment of antigen presenting cells towards the lymph vessel. This

  17. Brief Report: Treatment of Tumor Necrosis Factor-Transgenic Mice With Anti-Tumor Necrosis Factor Restores Lymphatic Contractions, Repairs Lymphatic Vessels, and May Increase Monocyte/Macrophage Egress.

    PubMed

    Bouta, Echoe M; Kuzin, Igor; de Mesy Bentley, Karen; Wood, Ronald W; Rahimi, Homaira; Ji, Rui-Cheng; Ritchlin, Christopher T; Bottaro, Andrea; Xing, Lianping; Schwarz, Edward M

    2017-06-01

    Recent studies have demonstrated that there is an inverse relationship between lymphatic egress and inflammatory arthritis in affected joints. As a model, tumor necrosis factor (TNF)-transgenic mice develop advanced arthritis following draining lymph node (LN) collapse, and loss of lymphatic contractions downstream of inflamed joints. It is unknown if these lymphatic deficits are reversible. This study was undertaken to test the hypothesis that anti-TNF therapy reduces advanced erosive inflammatory arthritis, associated with restoration of lymphatic contractions, repair of damaged lymphatic vessels, and evidence of increased monocyte egress. TNF-transgenic mice with advanced arthritis and collapsed popliteal LNs were treated with anti-TNF monoclonal antibody (10 mg/kg weekly) or placebo for 6 weeks, and effects on knee synovitis, lymphatic vessel ultrastructure and function, and popliteal LN cellularity were assessed by ultrasound, histology, transmission electron microscopy (TEM), near-infrared indocyanine green imaging, and flow cytometry. Anti-TNF therapy significantly decreased synovitis (∼5-fold; P < 0.05 versus placebo), restored lymphatic contractions, and significantly increased the number of popliteal LN monocyte/macrophages (∼2-fold; P < 0.05 versus placebo). TEM demonstrated large activated macrophages attached to damaged lymphatic endothelium in mice with early arthritis, extensively damaged lymphatic vessels in placebo-treated mice with advanced arthritis, and rolling leukocytes in repaired lymphatic vessels in mice responsive to anti-TNF therapy. These findings support the concept that anti-TNF therapy ameliorates erosive inflammatory arthritis, in part via restoration of lymphatic vessel contractions and potential enhancement of inflammatory cell egress. © 2017, American College of Rheumatology.

  18. Incorporating measured valve properties into a numerical model of a lymphatic vessel

    PubMed Central

    Macaskill, C.; Moore, J.E.

    2015-01-01

    An existing lumped-parameter model of multiple lymphangions (lymphatic vascular segments) in series is adapted for the incorporation of recent physiological measurements of lymphatic vascular properties. The new data show very marked nonlinearity of the passive pressure-diameter relation during distension, relative to comparable blood vessels, and complex valve behaviour. Since lymph is transported as a result of either the active contraction or the passive squeezing of vascular segments situated between two one-way valves, the performance of these valves is of primary importance. The valves display hysteresis (the opening and closing pressure-drop thresholds differ), a bias to staying open (both state changes occur when the trans-valve pressure drop is adverse), and pressure-drop threshold dependence on transmural pressure. These properties, in combination with the strong nonlinearity that valve operation represents, have in turn caused intriguing numerical problems in the model, and we describe numerical stratagems by which we have overcome the problems. The principal problem is also generalised into a relatively simple mathematical example, for which solution detail is provided using two different solvers. PMID:23387996

  19. TH2 cells and their cytokines regulate formation and function of lymphatic vessels.

    PubMed

    Shin, Kihyuk; Kataru, Raghu P; Park, Hyeung Ju; Kwon, Bo-In; Kim, Tae Woo; Hong, Young Kwon; Lee, Seung-Hyo

    2015-02-04

    Lymphatic vessels (LVs) are critical for immune surveillance and involved in the pathogenesis of diverse diseases. LV density is increased during inflammation; however, little is known about how the resolution of LVs is controlled in different inflammatory conditions. Here we show the negative effects of T helper type 2 (TH2) cells and their cytokines on LV formation. IL-4 and IL-13 downregulate essential transcription factors of lymphatic endothelial cells (LECs) and inhibit tube formation. Co-culture of LECs with TH2 cells also inhibits tube formation, but this effect is fully reversed by interleukin (IL)-4 and/or IL-13 neutralization. Furthermore, the in vivo blockade of IL-4 and/or IL-13 in an asthma model not only increases the density but also enhances the function of lung LVs. These results demonstrate an anti-lymphangiogenic function of TH2 cells and their cytokines, suggesting a potential usefulness of IL-4 and/or IL-13 antagonist as therapeutic agents for allergic asthma through expanding LV mediated-enhanced antigen clearance from the inflammatory sites.

  20. The VEGF-C/VEGFR3 signaling pathway contributes to resolving chronic skin inflammation by activating lymphatic vessel function.

    PubMed

    Hagura, Asami; Asai, Jun; Maruyama, Kazuichi; Takenaka, Hideya; Kinoshita, Shigeru; Katoh, Norito

    2014-02-01

    The functions of lymphatic vessels are to drain the protein-rich lymph from the extracellular space, to maintain normal tissue pressure, and to mediate the immune response, particularly in inflammatory conditions. To evaluate the function of the vascular endothelial growth factor (VEGF)-C/VEGF receptor (VEGFR)-3 signaling pathway in chronic skin inflammation. We used adenovirus-mediated VEGF-C or VEGFR3-immunoglobulin (Ig) production and investigated the effects of VEGF-C/VEGFR3 signaling on the resolution of inflammation using the experimental chronic contact hypersensitivity (CHS) reaction mouse model. VEGF-C gene transfer promoted significant reduction of ear swelling and ear weight in CHS reaction-induced skin inflammation. Although, there was no significant difference in the number of lymphatic vessels, the number of infiltrating CD11b-positive inflammatory cells was significantly reduced in the VEGF-C group, which suggested that VEGF-C upregulated the drainage of interstitial fluid and inflammatory cells via lymphatic vessels. Furthermore, blockade of VEGFR3 expression resulted in a significant delay in the recovery from CHS reaction-induced skin inflammation. Lymphatic vessel size was enlarged and a significant increase of infiltrating CD11b inflammatory cells was observed in mice with VEGFR3-Ig gene transfer compared to control mice. These results suggested that blockade of VEGFR3 inhibited the drainage function of the lymphatic system. This study provides evidence that VEGF-C/VEGFR3 signaling plays an important role in the resolution of skin inflammation; the regulation of lymphatic function may have a great therapeutic potential in inflammatory skin diseases. Copyright © 2013 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  1. Microparticle image velocimetry approach to flow measurements in isolated contracting lymphatic vessels

    NASA Astrophysics Data System (ADS)

    Margaris, Konstantinos N.; Nepiyushchikh, Zhanna; Zawieja, David C.; Moore, James; Black, Richard A.

    2016-02-01

    We describe the development of an optical flow visualization method for resolving the flow velocity vector field in lymphatic vessels in vitro. The aim is to develop an experimental protocol for accurately estimating flow parameters, such as flow rate and shear stresses, with high spatial and temporal resolution. Previous studies in situ have relied on lymphocytes as tracers, but their low density resulted in a reduced spatial resolution whereas the assumption that the flow was fully developed in order to determine the flow parameters of interest may not be valid, especially in the vicinity of the valves, where the flow is undoubtedly more complex. To overcome these issues, we have applied the time-resolved microparticle image velocimetry (μ-PIV) technique, a well-established method that can provide increased spatial and temporal resolution that this transient flow demands. To that end, we have developed a custom light source, utilizing high-power light-emitting diodes, and associated control and image processing software. This paper reports the performance of the system and the results of a series of preliminary experiments performed on vessels isolated from rat mesenteries, demonstrating, for the first time, the successful application of the μ-PIV technique in these vessels.

  2. Microparticle image velocimetry approach to flow measurements in isolated contracting lymphatic vessels.

    PubMed

    Margaris, Konstantinos N; Nepiyushchikh, Zhanna; Zawieja, David C; Moore, James; Black, Richard A

    2016-02-01

    We describe the development of an optical flow visualization method for resolving the flow velocity vector field in lymphatic vessels in vitro. The aim is to develop an experimental protocol for accurately estimating flow parameters, such as flow rate and shear stresses, with high spatial and temporal resolution. Previous studies in situ have relied on lymphocytes as tracers, but their low density resulted in a reduced spatial resolution whereas the assumption that the flow was fully developed in order to determine the flow parameters of interest may not be valid, especially in the vicinity of the valves, where the flow is undoubtedly more complex. To overcome these issues, we have applied the time-resolved microparticle image velocimetry (μ -PIV) technique, a well-established method that can provide increased spatial and temporal resolution that this transient flow demands. To that end, we have developed a custom light source, utilizing high-power light-emitting diodes, and associated control and image processing software. This paper reports the performance of the system and the results of a series of preliminary experiments performed on vessels isolated from rat mesenteries, demonstrating, for the first time, the successful application of the μ -PIV technique in these vessels.

  3. Local inhibition of elastase reduces EMILIN1 cleavage reactivating lymphatic vessel function in a mouse lymphoedema model.

    PubMed

    Pivetta, Eliana; Wassermann, Bruna; Del Bel Belluz, Lisa; Danussi, Carla; Modica, Teresa Maria Elisa; Maiorani, Orlando; Bosisio, Giulia; Boccardo, Francesco; Canzonieri, Vincenzo; Colombatti, Alfonso; Spessotto, Paola

    2016-07-01

    Lymphatic vasculature critically depends on the connections of lymphatic endothelial cells with the extracellular matrix (ECM), which are mediated by anchoring filaments (AFs). The ECM protein EMILIN1 is a component of AFs and is involved in the regulation of lymphatic vessel functions: accordingly, Emilin1(-/-) mice display lymphatic vascular morphological alterations, leading to functional defects such as mild lymphoedema, lymph leakage and compromised lymph drainage. In the present study, using a mouse post-surgical tail lymphoedema model, we show that the acute phase of acquired lymphoedema correlates with EMILIN1 degradation due to neutrophil elastase (NE) released by infiltrating neutrophils. As a consequence, the intercellular junctions of lymphatic endothelial cells are weakened and drainage to regional lymph nodes is severely affected. The local administration of sivelestat, a specific NE inhibitor, prevents EMILIN1 degradation and reduces lymphoedema, restoring a normal lymphatic functionality. The finding that, in human secondary lymphoedema samples, we also detected cleaved EMILIN1 with the typical bands of an NE-dependent pattern of fragmentation establishes a rationale for a powerful strategy that targets NE inhibition. In conclusion, the attempts to block EMILIN1 degradation locally represent the basis for a novel 'ECM' pharmacological approach to assessing new lymphoedema treatments. © 2016 The Author(s).

  4. Local inhibition of elastase reduces EMILIN1 cleavage reactivating lymphatic vessel function in a mouse lymphoedema model

    PubMed Central

    Pivetta, Eliana; Wassermann, Bruna; Belluz, Lisa Del Bel; Danussi, Carla; Modica, Teresa Maria Elisa; Maiorani, Orlando; Bosisio, Giulia; Boccardo, Francesco; Canzonieri, Vincenzo; Colombatti, Alfonso

    2016-01-01

    Lymphatic vasculature critically depends on the connections of lymphatic endothelial cells with the extracellular matrix (ECM), which are mediated by anchoring filaments (AFs). The ECM protein EMILIN1 is a component of AFs and is involved in the regulation of lymphatic vessel functions: accordingly, Emilin1−/− mice display lymphatic vascular morphological alterations, leading to functional defects such as mild lymphoedema, lymph leakage and compromised lymph drainage. In the present study, using a mouse post-surgical tail lymphoedema model, we show that the acute phase of acquired lymphoedema correlates with EMILIN1 degradation due to neutrophil elastase (NE) released by infiltrating neutrophils. As a consequence, the intercellular junctions of lymphatic endothelial cells are weakened and drainage to regional lymph nodes is severely affected. The local administration of sivelestat, a specific NE inhibitor, prevents EMILIN1 degradation and reduces lymphoedema, restoring a normal lymphatic functionality. The finding that, in human secondary lymphoedema samples, we also detected cleaved EMILIN1 with the typical bands of an NE-dependent pattern of fragmentation establishes a rationale for a powerful strategy that targets NE inhibition. In conclusion, the attempts to block EMILIN1 degradation locally represent the basis for a novel ‘ECM’ pharmacological approach to assessing new lymphoedema treatments. PMID:26920215

  5. Magnetic resonance imaging of lymphatic vessels without image subtraction: a practicable imaging method for routine clinical practice?

    PubMed

    Lohrmann, Christian; Foeldi, Etelka; Bartholomä, Jean-Paul; Langer, Mathias

    2007-01-01

    To assess the feasibility of a time-efficient, high-resolution magnetic resonance lymphangiography (HR MRL) protocol without image subtraction for the detection of lymphatic vessels in patients with primary and secondary lymphedema. Three consecutive patients with lymphedema of the lower extremities (2 primary bilateral, 1 secondary unilateral) underwent HR MRL without image subtraction. An amount of 9 mL of gadodiamide and 1 mL of mepivacaine hydrochloride 1% were subdivided into 5 portions and injected intracutaneously into the dorsal aspect of each foot outside the scanner before image acquisition. Magnetic resonance imaging was performed with a 1.5-T system equipped with high-performance gradients. For HR MRL, a 3-dimensional, spoiled gradient-echo sequence (Volumetric Interpolated Breath-hold Examination) was used. The extent and distribution of the lymphedema was evaluated using a heavily T2-weighted, 3-dimensional turbo-spin echo sequence. The HR MRL bilaterally detected the inguinal lymph nodes and the lymphatic vessels in the lower and upper leg in the 2 patients with primary lymphedema. In the patient with left-sided secondary lymphedema, the inguinal lymph nodes and the lymphatic vessels in the lower and upper leg were depicted on the right side. The diameter of the displayed lymphatic vessels varied between 1 and 5 mm. Three-dimensional, maximum-intensity projection images of different angles of view provided detailed outlining of the lymphatic vessels and differentiation from veins, which showed a lower signal intensity. The HR MRL without image subtraction is safe, technically feasible, and has the potential to become a diagnostic imaging tool in daily clinical practice because of its time efficiency.

  6. Effects of fatty acid synthase inhibitors on lymphatic vessels: an in vitro and in vivo study in a melanoma model.

    PubMed

    Bastos, Débora C; Paupert, Jenny; Maillard, Catherine; Seguin, Fabiana; Carvalho, Marco A; Agostini, Michelle; Coletta, Ricardo D; Noël, Agnès; Graner, Edgard

    2017-02-01

    Fatty acid synthase (FASN) is responsible for the endogenous production of fatty acids from acetyl-CoA and malonyl-CoA. Its overexpression is associated with poor prognosis in human cancers including melanomas. Our group has previously shown that the inhibition of FASN with orlistat reduces spontaneous lymphatic metastasis in experimental B16-F10 melanomas, which is a consequence, at least in part, of the reduction of proliferation and induction of apoptosis. Here, we sought to investigate the effects of pharmacological FASN inhibition on lymphatic vessels by using cell culture and mouse models. The effects of FASN inhibitors cerulenin and orlistat on the proliferation, apoptosis, and migration of human lymphatic endothelial cells (HDLEC) were evaluated with in vitro models. The lymphatic outgrowth was evaluated by using a murine ex vivo assay. B16-F10 melanomas and surgical wounds were produced in the ears of C57Bl/6 and Balb-C mice, respectively, and their peripheral lymphatic vessels evaluated by fluorescent microlymphangiography. The secretion of vascular endothelial growth factor C and D (VEGF-C and -D) by melanoma cells was evaluated by ELISA and conditioned media used to study in vitro lymphangiogenesis. Here, we show that cerulenin and orlistat decrease the viability, proliferation, and migration of HDLEC cells. The volume of lymph node metastases from B16-F10 experimental melanomas was reduced by 39% in orlistat-treated animals as well as the expression of VEGF-C in these tissues. In addition, lymphatic vessels from orlistat-treated mice drained more efficiently the injected FITC-dextran. Orlistat and cerulenin reduced VEGF-C secretion and, increase production of VEGF-D by B16-F10 and SK-Mel-25 melanoma cells. Finally, reduced lymphatic cell extensions, were observed following the treatment with conditioned medium from cerulenin- and orlistat-treated B16-F10 cells. Altogether, our results show that FASN inhibitors have anti-metastatic effects by acting on

  7. Type and location of tumor-infiltrating macrophages and lymphatic vessels predict survival of colorectal cancer patients.

    PubMed

    Algars, Annika; Irjala, Heikki; Vaittinen, Samuli; Huhtinen, Heikki; Sundström, Jari; Salmi, Marko; Ristamäki, Raija; Jalkanen, Sirpa

    2012-08-15

    The type of tumor-infiltrating macrophages may be decisive in tumor immunity, lymphangiogenesis and in the clinical outcome of cancer. Here, we elucidated the prognostic significance of lymphatic vessels, different types of macrophages and the balance between different macrophage types in colorectal cancer. We analyzed the impact of density, type and location of macrophages on the clinical behavior of 159 primary colorectal carcinomas using CD68 as a pan-macrophage marker and CLEVER-1/Stabilin-1 as a marker for regulatory/suppressive macrophages. Podoplanin was used as a pan-lymphatic vessel marker. A high number of CLEVER-1/Stabilin-1(+) peritumoral macrophages positively correlated with survival (p = 0.04). However, in more advanced disease (Stage IV), the patients with a high number of peritumoral or intratumoral CLEVER-1/Stabilin-1(+) macrophages had a shorter disease-specific survival (p = 0.05, and p = 0.008, respectively). Moreover, a low number of suppressive intratumoral CLEVER-1/Stabilin-1(+) macrophages among high numbers of CD68(+) macrophages correlated with a low number of distant recurrences (p = 0.01) and to fewer disease relapses exclusively in the liver as well (p = 0.006). A high number of intratumoral lymphatics correlated with poor survival (p = 0.03). The results of this work suggest that the type of macrophages, number of lymphatic vessels and their location contribute to the clinical behavior of colorectal cancer in a disease stage-specific manner. Copyright © 2011 UICC.

  8. Intraoperative Fluorescence Imaging for Detection of Sentinel Lymph Nodes and Lymphatic Vessels during Open Prostatectomy using Indocyanine Green.

    PubMed

    Yuen, Keiji; Miura, Tetsuya; Sakai, Iori; Kiyosue, Akiko; Yamashita, Masuo

    2015-08-01

    We investigated the feasibility and validity of intraoperative fluorescence imaging using indocyanine green for the detection of sentinel lymph nodes and lymphatic vessels during open prostatectomy. Indocyanine green was injected into the prostate under transrectal ultrasound guidance just before surgery. Intraoperative fluorescence imaging was performed using a near-infrared camera system in 66 consecutive patients with clinically localized prostate cancer after a 10-patient pilot test to optimize indocyanine green dosing, observation timing and injection method. Lymphatic vessels were visualized and followed to identify the sentinel lymph nodes. Confirmatory pelvic lymph node dissection including all fluorescent nodes and open radical prostatectomy were performed in all patients. Lymphatic vessels were successfully visualized in 65 patients (98%) and sentinel lymph nodes in 64 patients (97%). Sentinel lymph nodes were located in the obturator fossa, internal and external iliac regions, and rarely in the common iliac and presacral regions. A median of 4 sentinel lymph nodes per patient was detected. Three lymphatic pathways, the paravesical, internal and lateral routes, were identified. Pathological examination revealed metastases to 9 sentinel lymph nodes in 6 patients (9%). All pathologically positive lymph nodes were detected as sentinel lymph nodes using this imaging. No adverse reactions due to the use of indocyanine green were observed. Intraoperative fluorescence imaging using indocyanine green during open prostatectomy enables the detection of lymphatic vessels and sentinel lymph nodes with high sensitivity. This novel method is technically feasible, safe and easy to apply with minimal additional operative time. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  9. NOK/STYK1 promotes the genesis and remodeling of blood and lymphatic vessels during tumor progression.

    PubMed

    Liu, Yue; Li, Tianqi; Hu, Dan; Zhang, Shuping

    2016-09-09

    Previous studies have indicated that the overexpression of NOK, also named STYK1, led to tumorigenesis and metastasis. Here, we provide evidence that increased expression of NOK/STYK1 caused marked alterations in the overall and inner structures of tumors and substantially facilitates the genesis and remodeling of the blood and lymphatic vessels during tumor progression. In particular, NOK-expressed HeLa stable cells (HeLa-K) significantly enhanced tumor growth and metastasis in xenografted nude mice. Hematoxylin and eosin (HE) staining demonstrated that the tumor tissues generated by HeLa-K cells were much more ichorous and had more interspaces than those generated by control HeLa cells (HeLa-C). The fluorescent areas stained with cluster of differentiation 31 (CD31), a marker protein for blood vessels, appeared to be in different patterns. The total blood vessels, especially the ring patterns, within the tumors of the HeLa-K group were highly enriched compared with those in the HeLa-C group. NOK-HA was demonstrated to be well colocalized with CD31 in the wall of the tubular structures within tumor tissues. Interestingly, antibody staining of the lymphatic vessel endothelial hyaluronan receptor (LYVE-1) further revealed the increase in ring (oratretic strip-like) lymphatic vessels in either the peritumoral or intratumoral areas in the HeLa-K group compared with the HeLa-C group. Consistently, the analysis of human cancerous tissue also showed that NOK was highly expressed in the walls of tubular structures. Thus, our results reveal a novel tumorigenic function of NOK to mediate the genesis and remodeling of blood and lymphatic vessels during tumor progression. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. The dual role of tumor lymphatic vessels in dissemination of metastases and immune response development.

    PubMed

    Stachura, Joanna; Wachowska, Malgorzata; Kilarski, Witold W; Güç, Esra; Golab, Jakub; Muchowicz, Angelika

    2016-07-01

    Lymphatic vasculature plays a crucial role in the immune response, enabling transport of dendritic cells (DCs) and antigens (Ags) into the lymph nodes. Unfortunately, the lymphatic system has also a negative role in the progression of cancer diseases, by facilitating the metastatic spread of many carcinomas to the draining lymph nodes. The lymphatics can promote antitumor immune response as well as tumor tolerance. Here, we review the role of lymphatic endothelial cells (LECs) in tumor progression and immunity and mechanism of action in the newest anti-lymphatic therapies, including photodynamic therapy (PDT).

  11. The dual role of tumor lymphatic vessels in dissemination of metastases and immune response development

    PubMed Central

    Stachura, Joanna; Wachowska, Malgorzata; Kilarski, Witold W.; Güç, Esra; Golab, Jakub; Muchowicz, Angelika

    2016-01-01

    ABSTRACT Lymphatic vasculature plays a crucial role in the immune response, enabling transport of dendritic cells (DCs) and antigens (Ags) into the lymph nodes. Unfortunately, the lymphatic system has also a negative role in the progression of cancer diseases, by facilitating the metastatic spread of many carcinomas to the draining lymph nodes. The lymphatics can promote antitumor immune response as well as tumor tolerance. Here, we review the role of lymphatic endothelial cells (LECs) in tumor progression and immunity and mechanism of action in the newest anti-lymphatic therapies, including photodynamic therapy (PDT). PMID:27622039

  12. HSV-1 targets lymphatic vessels in the eye and draining lymph node of mice leading to edema in the absence of a functional type I interferon response.

    PubMed

    Bryant-Hudson, Katie M; Chucair-Elliott, Ana J; Conrady, Christopher D; Cohen, Alex; Zheng, Min; Carr, Daniel J J

    2013-10-01

    Herpes simplex virus type-1 (HSV-1) induces new lymphatic vessel growth (lymphangiogenesis) in the cornea via expression of vascular endothelial growth factor by virally infected epithelial cells. Here, we extend this observation to demonstrate the selective targeting of corneal lymphatics by HSV-1 in the absence of functional type I interferon (IFN) pathway. Specifically, we examined the impact of HSV-1 replication on angiogenesis using type I IFN receptor deficient (CD118(-/-)) mice. HSV-1-induced lymphatic and blood vessel growth into the cornea proper was time-dependent in immunocompetent animals. In contrast, there was an initial robust growth of lymphatic vessels into the cornea of HSV-1-infected CD118(-/-)mice, but such vessels disappeared by day 5 postinfection. The loss was selective as blood vessel integrity remained intact. Magnetic resonance imaging and confocal microscopy analysis of the draining lymph nodes of CD118(-/-) mice revealed extensive edema and loss of lymphatics compared with wild-type mice. In addition to a loss of lymphatic vessels in CD118(-/-) mice, HSV-1 infection resulted in epithelial thinning associated with geographic lesions and edema within the cornea, which is consistent with a loss of lymphatic vasculature. These results underscore the key role functional type I IFN pathway plays in the maintenance of structural integrity within the cornea in addition to the anti-viral characteristics often ascribed to the type I IFN cytokine family. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  13. The immunohistochemical analysis of the proliferative activity and the maturity degree of lymphatic vessels in oral squamous cell carcinomas.

    PubMed

    Ciurea, Raluca Niculina; Stepan, Alex Emilian; Simionescu, Cristiana Eugenia; Mărgăritescu, Claudiu; Pirici, Daniel; Tica, Oana Sorina; Ciurea, Marius Eugen; Stepan, Desdemona; Enache, Oana Andreea; Vîlcea, Alina Maria; Stoica, Loredana Elena; Pătraşcu, Virgil

    2015-01-01

    Oral cancers still represent a major health problem; regional lymph node metastases occur in 30-40% of head and neck squamous cell carcinomas and are associated with unfavorable prognosis and decreased survival. The study included 35 cases of oral squamous cell carcinomas (OSCC), which were analyzed by double reactions to determine the proliferative activity (anti-human D2-40/Ki67) and the maturity degree (anti-human D2-40/α-SMA) of lymphatic vessels, both intratumoral (IT) and in the advancing edge (AE), and in relation to clinicopathological prognostic parameters. The mean values of D2-40 lymphatic vessel density (LVD) were higher in AE then in IT level. Poorly differentiated carcinomas, T3/T4, presented the highest LVD values, both IT and in the AE. LVD was higher in advanced stages and metastasizing carcinomas. Ki67 was positive in all cases, Ki67 proliferation index (IP) indicated higher values in poorly differentiated carcinoma, T3/T4, metastasizing ones, both IT and in the AE. LVD and IP Ki67 showed a positive linear correlation. D2-40/Ki67-positive vessels were identified only at the AE or close to it. D2-40/Ki67 LVD had highest values in advanced stages carcinoma, with metastases. D2-40/α-SMA-positive vessels were identified only in the neighborhood of the tumor and LVD highest values were present in early-stage carcinomas and without metastases. A negative linear correlation between proliferation and maturity of the lymphatic vessels was found. The study indicated a strong association between lymphatic proliferative activity and lymph node metastases, suggesting the need for targeted antilymphangiogenic therapies in OSCC.

  14. Debulking surgery for elephantiasis nostras with large ectatic podoplanin-negative lymphatic vessels in patients with lipo-lymphedema.

    PubMed

    Wollina, Uwe; Heinig, Birgit; Schönlebe, Jaqueline; Nowak, Andreas

    2014-01-01

    Elephantiasis nostras is a rare complication in advanced lipo-lymphedema. While lipedema can be treated by liposuction and lymphedema by decongestive lymphatic therapy, elephantiasis nostras may need debulking surgery. We present 2 cases of advanced lipo-lymphedema complicated by elephantiasis nostras. After tumescent microcannular laser-assisted liposuction both patients underwent a debulking surgery with a modification of Auchincloss-Kim's technique. Histologic examination of the tissue specimen was performed. The surgical treatment was well tolerated and primary healing was uneventful. After primary wound healing and ambulation of the patients, a delayed ulceration with lymphorrhea developed. It was treated by surgical necrectomy and vacuum-assisted closure leading to complete healing. Mobility of the leg was much improved. Histologic examination revealed massive ectatic lymphatic vessels nonreactive for podoplanin. Debulking surgery can be an adjuvant technique for elephantiasis nostras in advanced lipo-lymphedema. Although delayed postoperative wound healing problems were observed, necrectomy and vacuum-assisted closure achieved a complete healing. Histologic data suggest that the ectatic lymphatic vessels in these patients resemble finding in podoplanin knockout mice. The findings would explain the limitations of decongestive lymphatic therapy and tumescent liposuction in such patients and their predisposition to relapsing erysipelas.

  15. Debulking Surgery for Elephantiasis Nostras With Large Ectatic Podoplanin-Negative Lymphatic Vessels in Patients With Lipo-Lymphedema

    PubMed Central

    Wollina, Uwe; Heinig, Birgit; Schönlebe, Jaqueline; Nowak, Andreas

    2014-01-01

    Objective: Elephantiasis nostras is a rare complication in advanced lipo-lymphedema. While lipedema can be treated by liposuction and lymphedema by decongestive lymphatic therapy, elephantiasis nostras may need debulking surgery. Methods: We present 2 cases of advanced lipo-lymphedema complicated by elephantiasis nostras. After tumescent microcannular laser-assisted liposuction both patients underwent a debulking surgery with a modification of Auchincloss-Kim's technique. Histologic examination of the tissue specimen was performed. Results: The surgical treatment was well tolerated and primary healing was uneventful. After primary wound healing and ambulation of the patients, a delayed ulceration with lymphorrhea developed. It was treated by surgical necrectomy and vacuum-assisted closure leading to complete healing. Mobility of the leg was much improved. Histologic examination revealed massive ectatic lymphatic vessels nonreactive for podoplanin. Conclusions: Debulking surgery can be an adjuvant technique for elephantiasis nostras in advanced lipo-lymphedema. Although delayed postoperative wound healing problems were observed, necrectomy and vacuum-assisted closure achieved a complete healing. Histologic data suggest that the ectatic lymphatic vessels in these patients resemble finding in podoplanin knockout mice. The findings would explain the limitations of decongestive lymphatic therapy and tumescent liposuction in such patients and their predisposition to relapsing erysipelas. PMID:24741382

  16. Exercise training improves obesity-related lymphatic dysfunction.

    PubMed

    Hespe, Geoffrey E; Kataru, Raghu P; Savetsky, Ira L; García Nores, Gabriela D; Torrisi, Jeremy S; Nitti, Matthew D; Gardenier, Jason C; Zhou, Jie; Yu, Jessie Z; Jones, Lee W; Mehrara, Babak J

    2016-08-01

    Obesity results in perilymphatic inflammation and lymphatic dysfunction. Lymphatic dysfunction in obesity is characterized by decreased lymphatic vessel density, decreased collecting lymphatic vessel pumping frequency, decreased lymphatic trafficking of immune cells, increased lymphatic vessel leakiness and changes in the gene expression patterns of lymphatic endothelial cells. Aerobic exercise, independent of weight loss, decreases perilymphatic inflammatory cell accumulation, improves lymphatic function and reverses pathological changes in gene expression in lymphatic endothelial cells. Although previous studies have shown that obesity markedly decreases lymphatic function, the cellular mechanisms that regulate this response remain unknown. In addition, it is unclear whether the pathological effects of obesity on the lymphatic system are reversible with behavioural modifications. The purpose of this study, therefore, was to analyse lymphatic vascular changes in obese mice and to determine whether these pathological effects are reversible with aerobic exercise. We randomized obese mice to either aerobic exercise (treadmill running for 30 min per day, 5 days a week, for 6 weeks) or a sedentary group that was not exercised and analysed lymphatic function using a variety of outcomes. We found that sedentary obese mice had markedly decreased collecting lymphatic vessel pumping capacity, decreased lymphatic vessel density, decreased lymphatic migration of immune cells, increased lymphatic vessel leakiness and decreased expression of lymphatic specific markers compared with lean mice (all P < 0.01). Aerobic exercise did not cause weight loss but markedly improved lymphatic function compared with sedentary obese mice. Exercise had a significant anti-inflammatory effect, resulting in decreased perilymphatic accumulation of inflammatory cells and inducible nitric oxide synthase expression. In addition, exercise normalized isolated lymphatic endothelial cell gene

  17. Microvascular invasion of testicular nonseminomatous germ cell tumors: implications of separate evaluation of lymphatic and blood vessels.

    PubMed

    Heinzelbecker, Julia; Gross-Weege, Matthias; Weiss, Christel; Hörner, Christian; Trunk, Marcus J; Erben, Philipp; Haecker, Axel; Bolenz, Christian

    2014-08-01

    We separately evaluated the lymphatic and blood vascular systems to assess the diagnostic accuracy of microvascular invasion and identify predictive markers for occult metastasis of testicular nonseminomatous germ cell tumors. Tissue samples of 86 patients treated for testicular nonseminomatous germ cell tumors (stage 1 in 48 and stage greater than 1 in 38) were stained using the lymphatic endothelial cell specific marker LYVE-1 and the blood vessel endothelial cell marker von Willebrand factor. We assessed lymph vessel density in LYVE-1 stained sections and blood vessel density in von Willebrand factor stained sections. Lymphovascular invasion in LYVE-1 stained sections and blood vascular invasion in von Willebrand factor stained sections were documented. Parameters were correlated with standard clinicopathological data. Blood vessel density in von Willebrand factor sections was significantly greater than lymphatic vessel density in LYVE-1 sections (p<0.001). Peritumor and nontumor lymphatic vessel density in LYVE-1 sections was associated with metastasis at diagnosis (OR 1.277/U, p=0.020 and OR 1.113/U, p=0.095). Lymphovascular invasion in LYVE-1 sections was significantly associated with metastasis (OR=4.517, p=0.002) but blood vascular invasion in von Willebrand factor sections was only slightly significant (OR 2.261, p=0.071). Only lymphovascular invasion in LYVE-1 stained sections was significantly associated with metastasis in a multiple logistic regression model. Microvascular invasion in hematoxylin and eosin stained sections was not associated with metastasis but microvascular invasion evaluated in LYVE-1 and von Willebrand factor stained sections was associated with metastasis (OR 3.506, p=0.016). Lymphovascular invasion in LYVE-1 stained sections was the most important predictive parameter for metastasis at diagnosis, suggesting greater relevance of the lymphatic system in metastatic dissemination of testicular nonseminomatous germ cell tumors. Vascular

  18. Visualization of fluid drainage pathways in lymphatic vessels and lymph nodes using a mouse model to test a lymphatic drug delivery system.

    PubMed

    Kodama, Tetsuya; Hatakeyama, Yuriko; Kato, Shigeki; Mori, Shiro

    2015-01-01

    Curing/preventing micrometastasis to lymph nodes (LNs) located outside the surgically resected area is essential for improving the morbidity and mortality associated with breast cancer and head and neck cancer. However, no lymphatic therapy system exists that can deliver drugs to LNs located outside the dissection area. Here, we demonstrate proof of concept for a drug delivery system using MXH10/Mo-lpr/lpr mice that exhibit systemic lymphadenopathy, with some peripheral LNs being as large as 10 mm in diameter. We report that a fluorescent solution injected into the subiliac LN (defined as the upstream LN within the dissection area) was delivered successfully to the proper axillary LN (defined as the downstream LN outside the dissection area) through the lymphatic vessels. Our results suggest that this approach could be used before surgical resection to deliver drugs to downstream LNs outside the dissection area. We anticipate that our methodology could be applied clinically, before surgical resection, to cure/prevent micrometastasis in LNs outside the dissection area, using techniques such as ultrasound-guided internal jugular vein catheterization.

  19. Visualization of fluid drainage pathways in lymphatic vessels and lymph nodes using a mouse model to test a lymphatic drug delivery system

    PubMed Central

    Kodama, Tetsuya; Hatakeyama, Yuriko; Kato, Shigeki; Mori, Shiro

    2014-01-01

    Curing/preventing micrometastasis to lymph nodes (LNs) located outside the surgically resected area is essential for improving the morbidity and mortality associated with breast cancer and head and neck cancer. However, no lymphatic therapy system exists that can deliver drugs to LNs located outside the dissection area. Here, we demonstrate proof of concept for a drug delivery system using MXH10/Mo-lpr/lpr mice that exhibit systemic lymphadenopathy, with some peripheral LNs being as large as 10 mm in diameter. We report that a fluorescent solution injected into the subiliac LN (defined as the upstream LN within the dissection area) was delivered successfully to the proper axillary LN (defined as the downstream LN outside the dissection area) through the lymphatic vessels. Our results suggest that this approach could be used before surgical resection to deliver drugs to downstream LNs outside the dissection area. We anticipate that our methodology could be applied clinically, before surgical resection, to cure/prevent micrometastasis in LNs outside the dissection area, using techniques such as ultrasound-guided internal jugular vein catheterization. PMID:25657881

  20. Neutrophils rapidly transit inflamed lymphatic vessel endothelium via integrin-dependent proteolysis and lipoxin-induced junctional retraction.

    PubMed

    Rigby, David A; Ferguson, David J P; Johnson, Louise A; Jackson, David G

    2015-12-01

    Neutrophils are the first leukocyte population to be recruited from the circulation following tissue injury or infection, where they play key roles in host defense. However, recent evidence indicates recruited neutrophils can also enter lymph and shape adaptive immune responses downstream in draining lymph nodes. At present, the cellular mechanisms regulating neutrophil entry to lymphatic vessels and migration to lymph nodes are largely unknown. Here, we have investigated these events in an in vivo mouse Mycobacterium bovis bacillus Calmette-Guérin vaccination model, ex vivo mouse dermal explants, and in vitro Transwell system comprising monolayers of primary human dermal lymphatic endothelial cells. We demonstrate that neutrophils are reliant on endothelial activation for adhesion, initially via E-selectin and subsequently, by integrin-mediated binding to ICAM-1 and VCAM-1, combined with CXCL8-dependent chemotaxis. Moreover, we reveal that integrin-mediated neutrophil adhesion plays a pivotal role in subsequent transmigration by focusing the action of matrix metalloproteinases and the 15-lipoxygenase-1-derived chemorepellent 12(S)-hydroxyeicosatetraenoic acid at neutrophil:endothelial contact sites to induce transient endothelial junctional retraction and rapid, selective neutrophil trafficking. These findings reveal an unexpectedly intimate collaboration between neutrophils and the lymphatic vessel endothelium, in which these phagocytic leukocytes act as pathfinders for their own transit during inflammation. © Society for Leukocyte Biology.

  1. High Endothelial Venules and Lymphatic Vessels in Tertiary Lymphoid Organs: Characteristics, Functions, and Regulation.

    PubMed

    Ruddle, Nancy H

    2016-01-01

    High endothelial venules (HEVs) and lymphatic vessels (LVs) are essential for the function of the immune system, by providing communication between the body and lymph nodes (LNs), specialized sites of antigen presentation and recognition. HEVs bring in naïve and central memory cells and LVs transport antigen, antigen-presenting cells, and lymphocytes in and out of LNs. Tertiary lymphoid organs (TLOs) are accumulations of lymphoid and stromal cells that arise and organize at ectopic sites in response to chronic inflammation in autoimmunity, microbial infection, graft rejection, and cancer. TLOs are distinguished from primary lymphoid organs - the thymus and bone marrow, and secondary lymphoid organs (SLOs) - the LNs, spleen, and Peyer's patches, in that they arise in response to inflammatory signals, rather than in ontogeny. TLOs usually do not have a capsule but are rather contained within the confines of another organ. Their structure, cellular composition, chemokine expression, and vascular and stromal support resemble SLOs and are the defining aspects of TLOs. T and B cells, antigen-presenting cells, fibroblast reticular cells, and other stromal cells and vascular elements including HEVs and LVs are all typical components of TLOs. A key question is whether the HEVs and LVs play comparable roles and are regulated similarly to those in LNs. Data are presented that support this concept, especially with regard to TLO HEVs. Emerging data suggest that the functions and regulation of TLO LVs are also similar to those in LNs. These observations support the concept that TLOs are not merely cellular accumulations but are functional entities that provide sites to generate effector cells, and that their HEVs and LVs are crucial elements in those activities.

  2. The history of sentinel node biopsy in head and neck cancer: From visualization of lymphatic vessels to sentinel nodes.

    PubMed

    de Bree, Remco; Nieweg, Omgo E

    2015-09-01

    The aim of this report is to describe the history of sentinel node biopsy in head and neck cancer. Sentinel node biopsy is a minimally invasive technique to select patients for treatment of metastatic lymph nodes in the neck. Although this procedure has only recently been accepted for early oral cancer, the first studies on visualization of the cervical lymphatic vessels were reported in the 1960s. In the 1980s mapping of lymphatic drainage from specific head and neck sites was introduced. Sentinel node biopsy was further developed in the 1990s and after validation in this century the procedure is routinely performed in early oral cancer in several head and neck centers. New techniques may improve the accuracy of sentinel node biopsy further, particularly in difficult subsites like the floor of mouth. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. The approach of retroperitoneal laparoscopic partial dissection of adipose renal capsule plus ligation of renal pedicle lymphatic vessels to the treatment of chyluria.

    PubMed

    Zhang, Y-D; Cao, R-F; Jiang, Z-J

    2016-12-01

    To compare the clinical effect of two surgical methods of treating chyluria, namely, retroperitoneal laparoscopic partial dissection of adipose renal capsule plus ligation of renal pedicle lymphatic vessels and retroperitoneal laparoscopic complete dissection of adipose renal capsule plus ligation of renal pedicle lymphatic vessels. Thirty-eight cases have been divided into A and B groups. Retroperitoneal laparoscopic partial dissection of adipose renal capsule plus ligation of renal pedicle lymphatic vessels has been performed on Group A patients and retroperitoneal laparoscopic complete dissection of adipose renal capsule plus ligation of renal pedicle lymphatic vessels has been performed on Group B cases, and then their respective clinical efficacy has been compared. All the operations for the 38 cases were successful. The average operation time for Group A was 76.35 ± 23.11 min, and that for Group B was 97.35 ± 16.20 min. The average post-operative length of stay for Group A was 5.43 ± 1.21 days, and that for Group B was 7.22 ± 1.34 days. No complications were found in both groups, and all cases were tested negative for chyluria when discharged. No recurrences were reported. Retroperitoneal laparoscopic ligation of renal pedicle lymphatic vessels is a reliable method of treating chyluria. Compared with complete dissection of adipose renal capsule plus ligation of renal lymphatic vessels, partial dissection of adipose renal capsule plus ligation of renal pedicle lymphatic vessels boasts the advantages of shorter operation time, less bleeding, shorter term of hospitalization, and no renal pedicle torsion.

  4. Lymphangiogenesis and Lymphatic Metastasis in Breast Cancer

    PubMed Central

    Ran, Sophia; Volk, Lisa; Hall, Kelly; Flister, Michael J.

    2009-01-01

    Lymphatic metastasis is the main prognostic factor for survival of patients with breast cancer and other epithelial malignancies. Mounting clinical and experimental data suggest that migration of tumor cells into the lymph nodes is greatly facilitated by lymphangiogenesis, a process that generates new lymphatic vessels from pre-existing lymphatics with the aid of circulating lymphatic endothelial progenitor cells. The key protein that induces lymphangiogenesis is vascular endothelial growth factor receptor-3 (VEGFR-3), which is activated by vascular endothelial growth factor-C and -D (VEGF-C and VEGF-D). These lymphangiogenic factors are commonly expressed in malignant, tumor-infiltrating and stromal cells, creating a favorable environment for generation of new lymphatic vessels. Clinical evidence demonstrates that increased lymphatic vessel density in and around tumors is associated with lymphatic metastasis and reduced patient survival. Recent evidence shows that breast cancers induce remodeling of the local lymphatic vessels and the regional lymphatic network in the sentinel and distal lymph nodes. These changes include an increase in number and diameter of tumor-draining lymphatic vessels. Consequently, lymph flow away from the tumor is increased, which significantly increases tumor cell metastasis to draining lymph nodes and may contribute to systemic spread. Collectively, recent advances in the biology of tumor-induced lymphangiogenesis suggest that chemical inhibitors of this process may be an attractive target for inhibiting tumor metastasis and cancer-related death. Nevertheless, this is a relatively new field of study and much remains to be established before the concept of tumor-induced lymphangiogenesis is accepted as a viable anti-metastatic target. This review summarizes the current concepts related to breast cancer lymphangiogenesis and lymphatic metastasis while highlighting controversies and unanswered questions. PMID:20036110

  5. Regulatory T cell transfer ameliorates lymphedema and promotes lymphatic vessel function

    PubMed Central

    Gousopoulos, Epameinondas; Proulx, Steven T.; Bachmann, Samia B.; Scholl, Jeannette; Dionyssiou, Dimitris; Demiri, Efterpi; Halin, Cornelia; Dieterich, Lothar C.

    2016-01-01

    Secondary lymphedema is a common postcancer treatment complication, but the underlying pathological processes are poorly understood and no curative treatment exists. To investigate lymphedema pathomechanisms, a top-down approach was applied, using genomic data and validating the role of a single target. RNA sequencing of lymphedematous mouse skin indicated upregulation of many T cell–related networks, and indeed depletion of CD4+ cells attenuated lymphedema. The significant upregulation of Foxp3, a transcription factor specifically expressed by regulatory T cells (Tregs), along with other Treg-related genes, implied a potential role of Tregs in lymphedema. Indeed, increased infiltration of Tregs was identified in mouse lymphedematous skin and in human lymphedema specimens. To investigate the role of Tregs during disease progression, loss-of-function and gain-of-function studies were performed. Depletion of Tregs in transgenic mice with Tregs expressing the primate diphtheria toxin receptor and green fluorescent protein (Foxp3-DTR-GFP) mice led to exacerbated edema, concomitant with increased infiltration of immune cells and a mixed TH1/TH2 cytokine profile. Conversely, expansion of Tregs using IL-2/anti–IL-2 mAb complexes significantly reduced lymphedema development. Therapeutic application of adoptively transferred Tregs upon lymphedema establishment reversed all of the major hallmarks of lymphedema, including edema, inflammation, and fibrosis, and also promoted lymphatic drainage function. Collectively, our results reveal that Treg application constitutes a potential new curative treatment modality for lymphedema. PMID:27734032

  6. Synergistic Actions of Blocking Angiopoietin-2 and Tumor Necrosis Factor-α in Suppressing Remodeling of Blood Vessels and Lymphatics in Airway Inflammation

    PubMed Central

    Le, Catherine T.K.; Laidlaw, Grace; Morehouse, Christopher A.; Naiman, Brian; Brohawn, Philip; Mustelin, Tomas; Connor, Jane R.; McDonald, Donald M.

    2016-01-01

    Remodeling of blood vessels and lymphatics are prominent features of sustained inflammation. Angiopoietin-2 (Ang2)/Tie2 receptor signaling and tumor necrosis factor-α (TNF)/TNF receptor signaling are known to contribute to these changes in airway inflammation after Mycoplasma pulmonis infection in mice. We determined whether Ang2 and TNF are both essential for the remodeling on blood vessels and lymphatics, and thereby influence the actions of one another. Their respective contributions to the initial stage of vascular remodeling and sprouting lymphangiogenesis were examined by comparing the effects of function-blocking antibodies to Ang2 or TNF, given individually or together during the first week after infection. As indices of efficacy, vascular enlargement, endothelial leakiness, venular marker expression, pericyte changes, and lymphatic vessel sprouting were assessed. Inhibition of Ang2 or TNF alone reduced the remodeling of blood vessels and lymphatics, but inhibition of both together completely prevented these changes. Genome-wide analysis of changes in gene expression revealed synergistic actions of the antibody combination over a broad range of genes and signaling pathways involved in inflammatory responses. These findings demonstrate that Ang2 and TNF are essential and synergistic drivers of remodeling of blood vessels and lymphatics during the initial stage of inflammation after infection. Inhibition of Ang2 and TNF together results in widespread suppression of the inflammatory response. PMID:26348576

  7. Prediction of melanoma metastasis by the Shields index based on lymphatic vessel density

    PubMed Central

    2010-01-01

    Background Melanoma usually presents as an initial skin lesion without evidence of metastasis. A significant proportion of patients develop subsequent local, regional or distant metastasis, sometimes many years after the initial lesion was removed. The current most effective staging method to identify early regional metastasis is sentinel lymph node biopsy (SLNB), which is invasive, not without morbidity and, while improving staging, may not improve overall survival. Lymphatic density, Breslow's thickness and the presence or absence of lymphatic invasion combined has been proposed to be a prognostic index of metastasis, by Shields et al in a patient group. Methods Here we undertook a retrospective analysis of 102 malignant melanomas from patients with more than five years follow-up to evaluate the Shields' index and compare with existing indicators. Results The Shields' index accurately predicted outcome in 90% of patients with metastases and 84% without metastases. For these, the Shields index was more predictive than thickness or lymphatic density. Alternate lymphatic measurement (hot spot analysis) was also effective when combined into the Shields index in a cohort of 24 patients. Conclusions These results show the Shields index, a non-invasive analysis based on immunohistochemistry of lymphatics surrounding primary lesions that can accurately predict outcome, is a simple, useful prognostic tool in malignant melanoma. PMID:20478045

  8. In vivo quantification of lymph viscosity and pressure in lymphatic vessels and draining lymph nodes of arthritic joints in mice.

    PubMed

    Bouta, Echoe M; Wood, Ronald W; Brown, Edward B; Rahimi, Homaira; Ritchlin, Christopher T; Schwarz, Edward M

    2014-03-15

    Rheumatoid arthritis (RA) is a chronic inflammatory joint disease with episodic flares. In TNF-Tg mice, a model of inflammatory-erosive arthritis, the popliteal lymph node (PLN) enlarges during the pre-arthritic 'expanding' phase, and then 'collapses' with adjacent knee flare associated with the loss of the intrinsic lymphatic pulse. As the mechanisms responsible are unknown, we developed in vivo methods to quantify lymph viscosity and pressure in mice with wild-type (WT), expanding and collapsed PLN. While no differences in viscosity were detected via multiphoton fluorescence recovery after photobleaching (MP-FRAP) of injected FITC-BSA, a 32.6% decrease in lymph speed was observed in vessels afferent to collapsed PLN (P < 0.05). Direct measurement of intra-lymph node pressure (LNP) demonstrated a decrease in expanding PLN versus WT pressure (3.41 ± 0.43 vs. 6.86 ± 0.56 cmH2O; P < 0.01), which dramatically increased to 9.92 ± 1.79 cmH2O in collapsed PLN. Lymphatic pumping pressure (LPP), measured indirectly by slowly releasing a pressurized cuff occluding indocyanine green (ICG), demonstrated an increase in vessels afferent to expanding PLN versus WT (18.76 ± 2.34 vs. 11.04 ± 1.47 cmH2O; P < 0.01), which dropped to 2.61 ± 0.72 cmH2O (P < 0.001) after PLN collapse. Herein, we document the first in vivo measurements of murine lymph viscosity and lymphatic pressure, and provide evidence to support the hypothesis that lymphangiogenesis and lymphatic transport are compensatory mechanisms to prevent synovitis via increased drainage of inflamed joints. Furthermore, the decrease in lymphatic flow and loss of LPP during PLN collapse are consistent with decreased drainage from the joint during arthritic flare, and validate these biomarkers of RA progression and possibly other chronic inflammatory conditions.

  9. Attenuated portal hypertension in germ-free mice: Function of bacterial flora on the development of mesenteric lymphatic and blood vessels.

    PubMed

    Moghadamrad, Sheida; McCoy, Kathy D; Geuking, Markus B; Sägesser, Hans; Kirundi, Jorum; Macpherson, Andrew J; De Gottardi, Andrea

    2015-05-01

    Intestinal bacterial flora may induce splanchnic hemodynamic and histological alterations that are associated with portal hypertension (PH). We hypothesized that experimental PH would be attenuated in the complete absence of intestinal bacteria. We induced prehepatic PH by partial portal vein ligation (PPVL) in germ-free (GF) or mice colonized with altered Schaedler's flora (ASF). After 2 or 7 days, we performed hemodynamic measurements, including portal pressure (PP) and portosystemic shunts (PSS), and collected tissues for histomorphology, microbiology, and gene expression studies. Mice colonized with intestinal microbiota presented significantly higher PP levels after PPVL, compared to GF, mice. Presence of bacterial flora was also associated with significantly increased PSS and spleen weight. However, there were no hemodynamic differences between sham-operated mice in the presence or absence of intestinal flora. Bacterial translocation to the spleen was demonstrated 2 days, but not 7 days, after PPVL. Intestinal lymphatic and blood vessels were more abundant in colonized and in portal hypertensive mice, as compared to GF and sham-operated mice. Expression of the intestinal antimicrobial peptide, angiogenin-4, was suppressed in GF mice, but increased significantly after PPVL, whereas other angiogenic factors remained unchanged. Moreover, colonization of GF mice with ASF 2 days after PPVL led to a significant increase in intestinal blood vessels, compared to controls. The relative increase in PP after PPVL in ASF and specific pathogen-free mice was not significantly different. In the complete absence of gut microbial flora PP is normal, but experimental PH is significantly attenuated. Intestinal mucosal lymphatic and blood vessels induced by bacterial colonization may contribute to development of PH. © 2015 by the American Association for the Study of Liver Diseases.

  10. Mechanisms of Acute Alcohol Intoxication-Induced Modulation of Cyclic Mobilization of [Ca²⁺] in Rat Mesenteric Lymphatic Vessels.

    PubMed

    Souza-Smith, Flavia M; Kerut, Edmund K; Breslin, Jerome W; Molina, Patricia E

    2015-06-01

    We have demonstrated that acute alcohol intoxication (AAI) increases the magnitude of Ca(2+) transients in pumping lymphatic vessels. We tested the contribution of extracellular Ca(2+) via L-type Ca(2+) channels and intracellular Ca(2+) release from the sarcoplasmic reticulum (SR) to the AAI-induced increase in Ca(2+) transients. AAI was produced by intragastric administration of 30% alcohol to conscious, unrestrained rats; isovolumic administration of water served as the control. Mesenteric lymphatic vessels were isolated, cannulated, and loaded with Fura-2 AM to measure changes in intracellular Ca(2+). Measurements were made at intraluminal pressures of 2, 6, and 10 cm H2O. L-type Ca(2+) channels were blocked with nifedipine; IP-3 receptors were inhibited with xestospongin C; and SR Ca(2+) release and Ca(2+) pool (Ca(2+) free APSS) were achieved using caffeine. Nifedipine reduced lymphatic Ca(2+) transient magnitude in both AAI and control groups at all pressures tested, but reduced lymphatic contraction frequency only in the control group. Xestospongin C did not significantly change any of the Ca(2+) parameters in either group; however, fractional shortening increased in the controls at low transmural pressure. RyR (ryanodine receptor) activation with caffeine resulted in a single contraction with a greater Ca(2+) transient in lymphatics from AAI than those from controls. SR Ca(2+) pool was also greater in lymphatics isolated from AAI- than from control animals. These data suggest that 1) L-type Ca(2+) channels contribute to the AAI-induced increase in lymphatic Ca(2+) transient, 2) blockage of IP-3 receptors could increase calcium sensitivity, and 3) AAI increases Ca(2+) storage in the SR in lymphatic vessels.

  11. A lateral thoracotomy approach for thoracic duct cannulation and lymphatic fluid collection in a feline model.

    PubMed

    Hardie, Robert J; Sheehan, Nora K

    2016-10-01

    This study describes a lateral thoracotomy approach for thoracic duct cannulation and lymphatic fluid collection in a feline model. The thoracic duct was cannulated via a left lateral intercostal thoracotomy in 12 cats. Lymphatic fluid was collected for up to 16 days and analyzed on days 3, 9 and 16. The volume collected and duration of cannula patency were recorded. Contrast imaging of the thoracic duct was performed if fluid ceased to flow or at the end of the 16-day study period. In two cats, the cannula became dislodged within 24 h. For the remaining 10 cats, mean daily volume collected was 43.7 mL (median 41.0, range 2.3 to 152.4 mL), and mean duration of cannula patency was 8.2 days (median 6.5, range 3 to 16 days). Contrast imaging revealed that the cannula was patent in three cats, obstructed in two cats, and the thoracic duct had ruptured or had extravasation of contrast outside the duct in five cats. Cytological examination of lymphatic fluid from the three time points revealed normal appearing small lymphocytes (97%) and few (3%) non-degenerate neutrophils, macrophages, eosinophils, and plasma cells. Based on the results of this study, lateral thoracotomy approach for thoracic duct cannulation is a feasible technique for collecting lymphatic fluid in cats. This technique may have application as a model for short-term evaluation of thoracic fluid in cats; however, cannula patency was unpredictable and should be considered when utilizing this technique.

  12. 21 CFR 868.1575 - Gas collection vessel.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Gas collection vessel. 868.1575 Section 868.1575...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1575 Gas collection vessel. (a) Identification. A gas collection vessel is a container-like device intended to collect a patient's exhaled gases...

  13. 21 CFR 868.1575 - Gas collection vessel.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Gas collection vessel. 868.1575 Section 868.1575...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1575 Gas collection vessel. (a) Identification. A gas collection vessel is a container-like device intended to collect a patient's exhaled gases...

  14. 21 CFR 868.1575 - Gas collection vessel.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Gas collection vessel. 868.1575 Section 868.1575...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1575 Gas collection vessel. (a) Identification. A gas collection vessel is a container-like device intended to collect a patient's exhaled...

  15. Mechanotransduction activates canonical Wnt/β-catenin signaling to promote lymphatic vascular patterning and the development of lymphatic and lymphovenous valves

    PubMed Central

    Cha, Boksik; Geng, Xin; Mahamud, Md. Riaj; Fu, Jianxin; Mukherjee, Anish; Kim, Yeunhee; Jho, Eek-hoon; Kim, Tae Hoon; Kahn, Mark L.; Xia, Lijun; Dixon, J. Brandon; Chen, Hong; Srinivasan, R. Sathish

    2016-01-01

    Lymphatic vasculature regulates fluid homeostasis by returning interstitial fluid to blood circulation. Lymphatic endothelial cells (LECs) are the building blocks of the entire lymphatic vasculature. LECs originate as a homogeneous population of cells predominantly from the embryonic veins and undergo stepwise morphogenesis to become the lymphatic capillaries, collecting vessels or valves. The molecular mechanisms underlying the morphogenesis of the lymphatic vasculature remain to be fully understood. Here we show that canonical Wnt/β-catenin signaling is necessary for lymphatic vascular morphogenesis. Lymphatic vascular-specific ablation of β-catenin in mice prevents the formation of lymphatic and lymphovenous valves. Additionally, lymphatic vessel patterning is defective in these mice, with abnormal recruitment of mural cells. We found that oscillatory shear stress (OSS), which promotes lymphatic vessel maturation, triggers Wnt/β-catenin signaling in LECs. In turn, Wnt/β-catenin signaling controls the expression of several molecules, including the lymphedema-associated transcription factor FOXC2. Importantly, FOXC2 completely rescues the lymphatic vessel patterning defects in mice lacking β-catenin. Thus, our work reveals that mechanical stimulation is a critical regulator of lymphatic vascular development via activation of Wnt/β-catenin signaling and, in turn, FOXC2. PMID:27313318

  16. Integrin-α5β1 is not required for mural cell functions during development of blood vessels but is required for lymphatic-blood vessel separation and lymphovenous valve formation.

    PubMed

    Turner, Christopher J; Badu-Nkansah, Kwabena; Crowley, Denise; van der Flier, Arjan; Hynes, Richard O

    2014-08-15

    Integrin α5β1 is essential for vascular development but it remains unclear precisely where and how it functions. Here, we report that deletion of the gene encoding the integrin-α5 subunit (Itga5) using the Pdgfrb-Cre transgenic mouse line, leads to oedema, haemorrhage and increased levels of embryonic lethality. Unexpectedly, these defects were not caused by loss of α5 from Pdgfrb-Cre expressing mural cells (pericytes and vascular smooth muscle cells), which wrap around the endothelium and stabilise blood vessels, nor by defects in the heart or great vessels, but were due to abnormal development of the lymphatic vasculature. Reminiscent of the pathologies seen in the human lymphatic malformation, fetal cystic hygroma, α5 mutants display defects both in the separation of their blood and lymphatic vasculature and in the formation of the lymphovenous valves. As a consequence, α5-deficient mice develop dilated, blood-filled lymphatic vessels and lymphatic capillaries that are ectopically covered with smooth muscle cells. Analysis of the expression of Pdgfrb during lymphatic development suggests that these defects probably arise from loss of α5β1 integrin in subsets of specialised Prox1(+)Pdgfrb(+) venous endothelial cells that are essential for the separation of the jugular lymph sac from the cardinal vein and formation of the lymphovenous valve leaflets. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. A three-dimensional atlas of human dermal leukocytes, lymphatics, and blood vessels.

    PubMed

    Wang, Xiao-Nong; McGovern, Naomi; Gunawan, Merry; Richardson, Connor; Windebank, Martin; Siah, Tee-Wei; Lim, Hwee-Ying; Fink, Katja; Li, Jackson L Yao; Ng, Lai G; Ginhoux, Florent; Angeli, Veronique; Collin, Matthew; Haniffa, Muzlifah

    2014-04-01

    Dendritic cells (DCs), macrophages (Mφ), and T cells are major components of the skin immune system, but their interstitial spatial organization is poorly characterized. Using four-channel whole-mount immunofluorescence staining of the human dermis, we demonstrated the three-dimensional distribution of CD31(+) blood capillaries, LYVE-1(+) lymphatics, discrete populations of CD11c(+) myeloid DCs, FXIIIa(+) Mφ, and lymphocytes. We showed phenotypic and morphological differences in situ between DCs and Mφ. DCs formed the first dermal cellular layer (0-20 μm beneath the dermoepidermal junction), Mφ were located deeper (40-60 μm), and CD3(+) lymphocytes were observed throughout (0-60 μm). Below this level, DCs, T cells, and the majority of Mφ formed stable perivascular sheaths. Whole-mount imaging revealed the true extent of dermal leukocytes previously underestimated from cross-section views. The total area of apical dermis (0-30 μm) contained approximately 10-fold more myeloid DCs than the entire blood volume of an average individual. Surprisingly, <1% of dermal DCs occupied lymphatics in freshly isolated skin. Dermal DCs rapidly accumulated within lymphatics, but Mφ remained fixed in skin explants cultured ex vivo. The leukocyte architecture observed in normal skin was distorted in inflammation and disease. These studies illustrate the micro-anatomy of dermal leukocytes and provide further insights into their functional organization.

  18. Ectodomain Shedding of Lymphatic Vessel Endothelial Hyaluronan Receptor 1 (LYVE-1) Is Induced by Vascular Endothelial Growth Factor A (VEGF-A)*

    PubMed Central

    Nishida-Fukuda, Hisayo; Araki, Ryoichi; Shudou, Masachika; Okazaki, Hidenori; Tomono, Yasuko; Nakayama, Hironao; Fukuda, Shinji; Sakaue, Tomohisa; Shirakata, Yuji; Sayama, Koji; Hashimoto, Koji; Detmar, Michael; Higashiyama, Shigeki; Hirakawa, Satoshi

    2016-01-01

    Lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1), a type I transmembrane glycoprotein, is known as one of the most specific lymphatic vessel markers in the skin. In this study, we found that the ectodomain of LYVE-1 undergoes proteolytic cleavage, and this process produces soluble LYVE-1. We further identified the cleavage site for ectodomain shedding and generated an uncleavable mutant of LYVE-1. In lymphatic endothelial cells, ectodomain shedding of LYVE-1 was induced by vascular endothelial growth factor (VEGF)-A, an important factor for angiogenesis and lymphangiogenesis under pathological conditions. VEGF-A-induced LYVE-1 ectodomain shedding was mediated via the extracellular signal-regulated kinase (ERK) and a disintegrin and metalloproteinase (ADAM) 17. Wild-type LYVE-1, but not uncleavable LYVE-1, promoted migration of lymphatic endothelial cells in response to VEGF-A. Immunostaining analyses in human psoriasis skin lesions and VEGF-A transgenic mouse skin suggested that the ectodomain shedding of LYVE-1 occurred in lymphatic vessels undergoing chronic inflammation. These results indicate that the ectodomain shedding of LYVE-1 might be involved in promoting pathological lymphangiogenesis. PMID:26966180

  19. Angiotensin II type 1 and 2 receptors and lymphatic vessels modulate lung remodeling and fibrosis in systemic sclerosis and idiopathic pulmonary fibrosis.

    PubMed

    Parra, Edwin Roger; Ruppert, Aline Domingos Pinto; Capelozzi, Vera Luiza

    2014-01-01

    To validate the importance of the angiotensin II receptor isotypes and the lymphatic vessels in systemic sclerosis and idiopathic pulmonary fibrosis. We examined angiotensin II type 1 and 2 receptors and lymphatic vessels in the pulmonary tissues obtained from open lung biopsies of 30 patients with systemic sclerosis and 28 patients with idiopathic pulmonary fibrosis. Their histologic patterns included cellular and fibrotic non-specific interstitial pneumonia for systemic sclerosis and usual interstitial pneumonia for idiopathic pulmonary fibrosis. We used immunohistochemistry and histomorphometry to evaluate the number of cells in the alveolar septae and the vessels stained by these markers. Survival curves were also used. We found a significantly increased percentage of septal and vessel cells immunostained for the angiotensin type 1 and 2 receptors in the systemic sclerosis and idiopathic pulmonary fibrosis patients compared with the controls. A similar percentage of angiotensin 2 receptor positive vessel cells was observed in fibrotic non-specific interstitial pneumonia and usual interstitial pneumonia. A significantly increased percentage of lymphatic vessels was present in the usual interstitial pneumonia group compared with the non-specific interstitial pneumonia and control groups. A Cox regression analysis showed a high risk of death for the patients with usual interstitial pneumonia and a high percentage of vessel cells immunostained for the angiotensin 2 receptor in the lymphatic vessels. We concluded that angiotensin II receptor expression in the lung parenchyma can potentially control organ remodeling and fibrosis, which suggests that strategies aimed at preventing high angiotensin 2 receptor expression may be used as potential therapeutic target in patients with pulmonary systemic sclerosis and idiopathic pulmonary fibrosis.

  20. Transient Ingrowth of Lymphatic Vessels into the Physiologically Avascular Cornea Regulates Corneal Edema and Transparency.

    PubMed

    Hos, Deniz; Bukowiecki, Anne; Horstmann, Jens; Bock, Felix; Bucher, Franziska; Heindl, Ludwig M; Siebelmann, Sebastian; Steven, Philipp; Dana, Reza; Eming, Sabine A; Cursiefen, Claus

    2017-08-03

    Lymphangiogenesis is essential for fluid homeostasis in vascularized tissues. In the normally avascular cornea, however, pathological lymphangiogenesis mediates diseases like corneal transplant rejection, dry eye disease, and allergy. So far, a physiological role for lymphangiogenesis in a primarily avascular site such as the cornea has not been described. Using a mouse model of perforating corneal injury that causes acute and severe fluid accumulation in the cornea, we show that lymphatics transiently and selectively invade the cornea and regulate the resolution of corneal edema. Pharmacological blockade of lymphangiogenesis via VEGFR-3 inhibition results in increased corneal thickness due to delayed drainage of corneal edema and a trend towards prolonged corneal opacification. Notably, lymphatics are also detectable in the cornea of a patient with acute edema due to spontaneous Descemet´s (basement) membrane rupture in keratoconus, mimicking this animal model and highlighting the clinical relevance of lymphangiogenesis in corneal fluid homeostasis. Together, our findings provide evidence that lymphangiogenesis plays an unexpectedly beneficial role in the regulation of corneal edema and transparency. This might open new treatment options in blinding diseases associated with corneal edema and transparency loss. Furthermore, we demonstrate for the first time that physiological lymphangiogenesis also occurs in primarily avascular sites.

  1. Massive pneumatic expansion of lymphatic vessel resulting in cystic lesions in the pulmonary parenchyma: a rare case of persistent interstitial pulmonary emphysema in a non-ventilated infant.

    PubMed

    Fujishiro, Jun; Komuro, Hiroaki; Ono, Kentaro; Urita, Yasuhisa; Shinkai, Toko; Minami, Yuko; Kawabata, Yoshinori; Kishimoto, Hiroshi; Masumoto, Kouji

    2012-12-01

    We report the case of 2-week-old female infant with cystic lung disease who presented with mild tachypnea and had no history of mechanical ventilation. Chest CT demonstrated multiple air-filled cystic lesions in right upper lobe, and the patient subsequently underwent a right upper lobectomy. Histology revealed cystic lesions located in the pulmonary parenchyma and showed that the lesions were lined by lymphatic endothelium and were communicating with dilated lymphatic vessels in the interstitium. Additionally, multinucleated foreign body giant cells were attached to the lumen of the cyst. On the basis of these findings, we considered this a case of persistent interstitial pulmonary emphysema (PIPE) with massive pneumatic expansion of the lymphatic vessels, resulting in cystic lesions with lymphatic endothelium in the pulmonary parenchyma. While PIPE is extremely rare in term non-ventilated infants, our case demonstrated that this disease should be added to the differential diagnosis of cystic lung diseases with lymphatic endothelium even in infants without mechanical ventilation. When cystic lesions and symptoms persist despite conservative treatment, open or thoracoscopic resection is an appropriate option for diagnosis and treatment.

  2. Collecting baseline information for national morbidity alleviation programs: different methods to estimate lymphatic filariasis morbidity prevalence.

    PubMed

    Mathieu, Els; Amann, Josef; Eigege, Abel; Richards, Frank; Sodahlon, Yao

    2008-01-01

    The lymphatic filariasis elimination program aims not only to stop transmission, but also to alleviate morbidity. Although geographically limited morbidity projects exist, few have been implemented nationally. For advocacy and planning, the program coordinators need prevalence estimates that are currently rarely available. This article compares several approaches to estimate morbidity prevalence: (1) data routinely collected during mapping or sentinel site activities; (2) data collected during drug coverage surveys; and (3) alternative surveys. Data were collected in Plateau and Nasarawa States in Nigeria and in 6 districts in Togo. In both settings, we found that questionnaires seem to underestimate the morbidity prevalence compared with existing information collected through clinical examination. We suggest that program managers use the latter for advocacy and planning, but if not available, questionnaires to estimate morbidity prevalence can be added to existing surveys. Even though such data will most likely underestimate the real burden of disease, they can be useful in resource-limited settings.

  3. Lymph Node Metastases in Papillary and Medullary Thyroid Carcinoma Are Independent of Intratumoral Lymphatic Vessel Density.

    PubMed

    Pereira, Filipe; Pereira, Sofia S; Mesquita, Marta; Morais, Tiago; Costa, Madalena M; Quelhas, Pedro; Lopes, Carlos; Monteiro, Mariana P; Leite, Valeriano

    2017-04-01

    Blood and lymph vessel invasion are well-recognized markers of tumor aggressiveness, as these are the routes that lead to metastases. Thyroid tumors, depending on the histological variant, tend to have distinctive biological behaviors and use different vascular routes to metastasize, yet the mechanisms underlying the metastatic process are still poorly understood. The aim of this study was to assess how the lymph vessel density (LVD) in different histological types of thyroid tumors, and in their surrounding tissue, correlate with the presence of lymph node metastases (LNM) and tumor pathological features. Lymph vessels of papillary thyroid carcinomas (PTC), of the classical (CVPTC, n = 50) and follicular variants (FVPTC, n = 18), and medullary thyroid carcinomas (MTC, n = 34) were immunohistochemically stained against antigen D2-40. The stained area was quantified using a computerized morphometric analysis tool and correlated with the tumor pathological characteristics. LVD within all analyzed thyroid tumor subtypes was significantly lower than in the surrounding thyroid tissues (p < 0.001). Despite intratumoral LVD being significantly higher in CVPTC than in FVPTC, and peritumoral LVD being significantly higher in MTC than in PTC (p < 0.05), no correlations were found between LVD (either intratumoral or peritumoral) and the presence of lymph node metastasis. As no LVD differences were found amongst thyroid tumors with or without LNM, dissemination is more likely to depend on the tumor ability to invade the abundant lymph vessel network of the surrounding thyroid tissue than on the ability of the tumor to promote de novo lymphangiogenesis.

  4. Lymph Node Metastases in Papillary and Medullary Thyroid Carcinoma Are Independent of Intratumoral Lymphatic Vessel Density

    PubMed Central

    Pereira, Filipe; Pereira, Sofia S.; Mesquita, Marta; Morais, Tiago; Costa, Madalena M.; Quelhas, Pedro; Lopes, Carlos; Monteiro, Mariana P.; Leite, Valeriano

    2017-01-01

    Background Blood and lymph vessel invasion are well-recognized markers of tumor aggressiveness, as these are the routes that lead to metastases. Thyroid tumors, depending on the histological variant, tend to have distinctive biological behaviors and use different vascular routes to metastasize, yet the mechanisms underlying the metastatic process are still poorly understood. Objectives The aim of this study was to assess how the lymph vessel density (LVD) in different histological types of thyroid tumors, and in their surrounding tissue, correlate with the presence of lymph node metastases (LNM) and tumor pathological features. Methods Lymph vessels of papillary thyroid carcinomas (PTC), of the classical (CVPTC, n = 50) and follicular variants (FVPTC, n = 18), and medullary thyroid carcinomas (MTC, n = 34) were immunohistochemically stained against antigen D2-40. The stained area was quantified using a computerized morphometric analysis tool and correlated with the tumor pathological characteristics. Results LVD within all analyzed thyroid tumor subtypes was significantly lower than in the surrounding thyroid tissues (p < 0.001). Despite intratumoral LVD being significantly higher in CVPTC than in FVPTC, and peritumoral LVD being significantly higher in MTC than in PTC (p < 0.05), no correlations were found between LVD (either intratumoral or peritumoral) and the presence of lymph node metastasis. Conclusions As no LVD differences were found amongst thyroid tumors with or without LNM, dissemination is more likely to depend on the tumor ability to invade the abundant lymph vessel network of the surrounding thyroid tissue than on the ability of the tumor to promote de novo lymphangiogenesis. PMID:28589086

  5. Lymphatic pumping: mechanics, mechanisms and malfunction.

    PubMed

    Scallan, Joshua P; Zawieja, Scott D; Castorena-Gonzalez, Jorge A; Davis, Michael J

    2016-10-15

    A combination of extrinsic (passive) and intrinsic (active) forces move lymph against a hydrostatic pressure gradient in most regions of the body. The effectiveness of the lymph pump system impacts not only interstitial fluid balance but other aspects of overall homeostasis. This review focuses on the mechanisms that regulate the intrinsic, active contractions of collecting lymphatic vessels in relation to their ability to actively transport lymph. Lymph propulsion requires not only robust contractions of lymphatic muscle cells, but contraction waves that are synchronized over the length of a lymphangion as well as properly functioning intraluminal valves. Normal lymphatic pump function is determined by the intrinsic properties of lymphatic muscle and the regulation of pumping by lymphatic preload, afterload, spontaneous contraction rate, contractility and neural influences. Lymphatic contractile dysfunction, barrier dysfunction and valve defects are common themes among pathologies that directly involve the lymphatic system, such as inherited and acquired forms of lymphoedema, and pathologies that indirectly involve the lymphatic system, such as inflammation, obesity and metabolic syndrome, and inflammatory bowel disease.

  6. A tale of two models: mouse and zebrafish as complementary models for lymphatic studies.

    PubMed

    Kim, Jun-Dae; Jin, Suk-Won

    2014-07-01

    Lymphatic vessels provide essential roles in maintaining fluid homeostasis and lipid absorption. Dysfunctions of the lymphatic vessels lead to debilitating pathological conditions, collectively known as lymphedema. In addition, lymphatic vessels are a critical moderator for the onset and progression of diverse human diseases including metastatic cancer and obesity. Despite their clinical importance, there is no currently effective pharmacological therapy to regulate functions of lymphatic vessels. Recent efforts to manipulate the Vascular Endothelial Growth Factor-C (VEGFC) pathway, which is arguably the most important signaling pathway regulating lymphatic endothelial cells, to alleviate lymphedema yielded largely mixed results, necessitating identification of new targetable signaling pathways for therapeutic intervention for lymphedema. Zebrafish, a relatively new model system to investigate lymphatic biology, appears to be an ideal model to identify novel therapeutic targets for lymphatic biology. In this review, we will provide an overview of our current understanding of the lymphatic vessels in vertebrates, and discuss zebrafish as a promising in vivo model to study lymphatic vessels.

  7. A Tale of Two Models: Mouse and Zebrafish as Complementary Models for Lymphatic Studies

    PubMed Central

    Kim, Jun-Dae; Jin, Suk-Won

    2014-01-01

    Lymphatic vessels provide essential roles in maintaining fluid homeostasis and lipid absorption. Dysfunctions of the lymphatic vessels lead to debilitating pathological conditions, collectively known as lymphedema. In addition, lymphatic vessels are a critical moderator for the onset and progression of diverse human diseases including metastatic cancer and obesity. Despite their clinical importance, there is no currently effective pharmacological therapy to regulate functions of lymphatic vessels. Recent efforts to manipulate the Vascular Endothelial Growth Factor-C (VEGFC) pathway, which is arguably the most important signaling pathway regulating lymphatic endothelial cells, to alleviate lymphedema yielded largely mixed results, necessitating identification of new targetable signaling pathways for therapeutic intervention for lymphedema. Zebrafish, a relatively new model system to investigate lymphatic biology, appears to be an ideal model to identify novel therapeutic targets for lymphatic biology. In this review, we will provide an overview of our current understanding of the lymphatic vessels in vertebrates, and discuss zebrafish as a promising in vivo model to study lymphatic vessels. PMID:24854860

  8. Vascular Endothelial Growth Factor Receptor-2 Promotes the Development of the Lymphatic Vasculature

    PubMed Central

    Dellinger, Michael T.; Meadows, Stryder M.; Wynne, Katherine; Cleaver, Ondine; Brekken, Rolf A.

    2013-01-01

    Vascular endothelial growth factor receptor 2 (VEGFR2) is highly expressed by lymphatic endothelial cells and has been shown to stimulate lymphangiogenesis in adult mice. However, the role VEGFR2 serves in the development of the lymphatic vascular system has not been defined. Here we use the Cre-lox system to show that the proper development of the lymphatic vasculature requires VEGFR2 expression by lymphatic endothelium. We show that Lyve-1wt/Cre;Vegfr2flox/flox mice possess significantly fewer dermal lymphatic vessels than Vegfr2flox/flox mice. Although Lyve-1wt/Cre;Vegfr2flox/flox mice exhibit lymphatic hypoplasia, the lymphatic network is functional and contains all of the key features of a normal lymphatic network (initial lymphatic vessels and valved collecting vessels surrounded by smooth muscle cells (SMCs)). We also show that Lyve-1Cre mice display robust Cre activity in macrophages and in blood vessels in the yolk sac, liver and lung. This activity dramatically impairs the development of blood vessels in these tissues in Lyve-1wt/Cre;Vegfr2flox/flox embryos, most of which die after embryonic day14.5. Lastly, we show that inactivation of Vegfr2 in the myeloid lineage does not affect the development of the lymphatic vasculature. Therefore, the abnormal lymphatic phenotype of Lyve-1wt/Cre;Vegfr2flox/flox mice is due to the deletion of Vegfr2 in the lymphatic vasculature not macrophages. Together, this work demonstrates that VEGFR2 directly promotes the expansion of the lymphatic network and further defines the molecular mechanisms controlling the development of the lymphatic vascular system. PMID:24023956

  9. Vascular endothelial growth factor receptor-2 promotes the development of the lymphatic vasculature.

    PubMed

    Dellinger, Michael T; Meadows, Stryder M; Wynne, Katherine; Cleaver, Ondine; Brekken, Rolf A

    2013-01-01

    Vascular endothelial growth factor receptor 2 (VEGFR2) is highly expressed by lymphatic endothelial cells and has been shown to stimulate lymphangiogenesis in adult mice. However, the role VEGFR2 serves in the development of the lymphatic vascular system has not been defined. Here we use the Cre-lox system to show that the proper development of the lymphatic vasculature requires VEGFR2 expression by lymphatic endothelium. We show that Lyve-1(wt/Cre);Vegfr2(flox/flox) mice possess significantly fewer dermal lymphatic vessels than Vegfr2(flox/flox) mice. Although Lyve-1(wt/Cre);Vegfr2(flox/flox) mice exhibit lymphatic hypoplasia, the lymphatic network is functional and contains all of the key features of a normal lymphatic network (initial lymphatic vessels and valved collecting vessels surrounded by smooth muscle cells (SMCs)). We also show that Lyve-1(Cre) mice display robust Cre activity in macrophages and in blood vessels in the yolk sac, liver and lung. This activity dramatically impairs the development of blood vessels in these tissues in Lyve-1(wt/Cre);Vegfr2(flox/flox) embryos, most of which die after embryonic day14.5. Lastly, we show that inactivation of Vegfr2 in the myeloid lineage does not affect the development of the lymphatic vasculature. Therefore, the abnormal lymphatic phenotype of Lyve-1(wt/Cre);Vegfr2(flox/flox) mice is due to the deletion of Vegfr2 in the lymphatic vasculature not macrophages. Together, this work demonstrates that VEGFR2 directly promotes the expansion of the lymphatic network and further defines the molecular mechanisms controlling the development of the lymphatic vascular system.

  10. Comparative and Developmental Anatomy of Cardiac Lymphatics

    PubMed Central

    Ratajska, A.; Gula, G.; Flaht-Zabost, A.; Czarnowska, E.; Ciszek, B.; Jankowska-Steifer, E.; Niderla-Bielinska, J.; Radomska-Lesniewska, D.

    2014-01-01

    The role of the cardiac lymphatic system has been recently appreciated since lymphatic disturbances take part in various heart pathologies. This review presents the current knowledge about normal anatomy and structure of lymphatics and their prenatal development for a better understanding of the proper functioning of this system in relation to coronary circulation. Lymphatics of the heart consist of terminal capillaries of various diameters, capillary plexuses that drain continuously subendocardial, myocardial, and subepicardial areas, and draining (collecting) vessels that lead the lymph out of the heart. There are interspecies differences in the distribution of lymphatic capillaries, especially near the valves, as well as differences in the routes and number of draining vessels. In some species, subendocardial areas contain fewer lymphatic capillaries as compared to subepicardial parts of the heart. In all species there is at least one collector vessel draining lymph from the subepicardial plexuses and running along the anterior interventricular septum under the left auricle and further along the pulmonary trunk outside the heart and terminating in the right venous angle. The second collector assumes a different route in various species. In most mammalian species the collectors run along major branches of coronary arteries, have valves and a discontinuous layer of smooth muscle cells. PMID:24592145

  11. Foxc2 is expressed in developing lymphatic vessels and other tissues associated with lymphedema-distichiasis syndrome.

    PubMed

    Dagenais, Susan L; Hartsough, Rebecca L; Erickson, Robert P; Witte, Marlys H; Butler, Matthew G; Glover, Thomas W

    2004-10-01

    The molecular events involved in lymphatic development are poorly understood. Hence, the genes responsible for hereditary lymphedema are of great interest due to the potential for providing insights into the mechanisms of lymphatic development, the diagnosis, prevention and treatment of lymphedema, and lymphangiogenesis during tumor growth. Mutations in the FOXC2 transcription factor cause a major form of hereditary lymphedema, the lymphedema-distichiasis syndrome. We have conducted a study of Foxc2 expression during mouse development using immunohistochemistry, and examined its expression in lymphatics compared to its paralog Foxc1 and to Vegfr-3, Prox1 and other lymphatic and blood vascular proteins. We have found that Foxc2 is expressed in lymphatic primordia, jugular lymph sacs, lymphatic collectors and capillaries, as well as in podocytes, developing eyelids and other tissues associated with abnormalities in lymphedema-distichiasis syndrome.

  12. The anatomy of fetal peripheral lymphatic vessels in the head-and-neck region: an immunohistochemical study.

    PubMed

    Cho, Kwang Ho; Cheong, Jin Sung; Ha, Yeon Soo; Cho, Baik Hwan; Murakami, Gen; Katori, Yukio

    2012-01-01

    Using D2-40 immunohistochemistry, we assessed the distribution of peripheral lymphatic vessels (LVs) in the head-and-neck region of four midterm fetuses without nuchal edema, two of 10 weeks and two of 15 weeks' gestation. We observed abundant LVs in the subcutaneous layer, especially in and along the facial muscles. In the occipital region, only a few LVs were identified perforating the back muscles. The parotid and thyroid glands were surrounded by LVs, but the sublingual and submandibular glands were not. The numbers of submucosal LVs increased from 10 to 15 weeks' gestation in all of the nasal, oral, pharyngeal, and laryngeal cavities, but not in the palate. The laryngeal submucosa had an extremely high density of LVs. In contrast, we found few LVs along bone and cartilage except for those of the mandible as well as along the pharyngotympanic tube, middle ear, tooth germ, and the cranial nerves and ganglia. Some of these results suggested that cerebrospinal fluid outflow to the head LVs commences after 15 weeks' gestation. The subcutaneous LVs of the head appear to grow from the neck side, whereas initial submucosal LVs likely develop in situ because no communication was evident with other sites during early developmental stages. In addition, CD68-positive macrophages did not accompany the developing LVs.

  13. The anatomy of fetal peripheral lymphatic vessels in the head-and-neck region: an immunohistochemical study

    PubMed Central

    Cho, Kwang Ho; Cheong, Jin Sung; Ha, Yeon Soo; Cho, Baik Hwan; Murakami, Gen; Katori, Yukio

    2012-01-01

    Using D2-40 immunohistochemistry, we assessed the distribution of peripheral lymphatic vessels (LVs) in the head-and-neck region of four midterm fetuses without nuchal edema, two of 10 weeks and two of 15 weeks’ gestation. We observed abundant LVs in the subcutaneous layer, especially in and along the facial muscles. In the occipital region, only a few LVs were identified perforating the back muscles. The parotid and thyroid glands were surrounded by LVs, but the sublingual and submandibular glands were not. The numbers of submucosal LVs increased from 10 to 15 weeks’ gestation in all of the nasal, oral, pharyngeal, and laryngeal cavities, but not in the palate. The laryngeal submucosa had an extremely high density of LVs. In contrast, we found few LVs along bone and cartilage except for those of the mandible as well as along the pharyngotympanic tube, middle ear, tooth germ, and the cranial nerves and ganglia. Some of these results suggested that cerebrospinal fluid outflow to the head LVs commences after 15 weeks’ gestation. The subcutaneous LVs of the head appear to grow from the neck side, whereas initial submucosal LVs likely develop in situ because no communication was evident with other sites during early developmental stages. In addition, CD68-positive macrophages did not accompany the developing LVs. PMID:22034965

  14. 21 CFR 868.1575 - Gas collection vessel.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Gas collection vessel. 868.1575 Section 868.1575 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1575 Gas collection vessel....

  15. Progression of carcinogen-induced fibrosarcomas is associated with the accumulation of naïve CD4+ T cells via blood vessels and lymphatics.

    PubMed

    Ondondo, Beatrice; Jones, Emma; Hindley, James; Cutting, Scott; Smart, Kathryn; Bridgeman, Hayley; Matthews, Katherine K; Ladell, Kristin; Price, David A; Jackson, David G; Godkin, Andrew; Ager, Ann; Gallimore, Awen

    2014-05-01

    The tumor microenvironment comprises newly formed blood and lymphatic vessels which shape the influx, retention and departure of lymphocytes within the tumor mass. Thus, by influencing the intratumoral composition of lymphocytes, these vessels affect the manner in which the adaptive immune system responds to the tumor, either promoting or impairing effective antitumor immunity. In our study, we utilized a mouse model of carcinogen-induced fibrosarcoma to examine the composition of tumor-infiltrating lymphocytes during tumor progression. In particular, we sought to determine whether CD4(+) Foxp3(+) regulatory T cells (Tregs) became enriched during tumor progression thereby contributing to tumor-driven immunosuppression. This was not the case as the proportion of Tregs and effector CD4(+) T cells actually declined within the tumor owing to the unexpected accumulation of naïve T cells. However, we found no evidence for antigen-driven migration of these T cells or for their participation in an antitumor immune response. Our data support the notion that lymphocytes can enter tumors via aberrantly formed blood and lymphatic vessels. Such findings suggest that targeting both the tumor vasculature and lymphatics will alter the balance of lymphocyte subpopulations that enter the tumor mass. A consideration of this aspect of tumor immunology may be critical to the success of solid cancer immunotherapies.

  16. Binding of Hyaluronan to the Native Lymphatic Vessel Endothelial Receptor LYVE-1 Is Critically Dependent on Receptor Clustering and Hyaluronan Organization*

    PubMed Central

    Lawrance, William; Banerji, Suneale; Day, Anthony J.; Bhattacharjee, Shaumick; Jackson, David G.

    2016-01-01

    The lymphatic endothelial receptor LYVE-1 has been implicated in both uptake of hyaluronan (HA) from tissue matrix and in facilitating transit of leukocytes and tumor cells through lymphatic vessels based largely on in vitro studies with recombinant receptor in transfected fibroblasts. Curiously, however, LYVE-1 in lymphatic endothelium displays little if any binding to HA in vitro, and this has led to the conclusion that the native receptor is functionally silenced, a feature that is difficult to reconcile with its proposed in vivo functions. Nonetheless, as we reported recently, LYVE-1 can function as a receptor for HA-encapsulated Group A streptococci and mediate lymphatic dissemination in mice. Here we resolve these paradoxical findings and show that the capacity of LYVE-1 to bind HA is strictly dependent on avidity, demanding appropriate receptor self-association and/or HA multimerization. In particular, we demonstrate the prerequisite of a critical LYVE-1 threshold density and show that HA binding may be elicited in lymphatic endothelium by surface clustering with divalent LYVE-1 mAbs. In addition, we show that cross-linking of biotinylated HA in streptavidin multimers or supramolecular complexes with the inflammation-induced protein TSG-6 enables binding even in the absence of LYVE-1 cross-linking. Finally, we show that endogenous HA on the surface of macrophages can engage LYVE-1, facilitating their adhesion and transit across lymphatic endothelium. These results reveal LYVE-1 as a low affinity receptor tuned to discriminate between different HA configurations through avidity and establish a new mechanistic basis for the functions ascribed to LYVE-1 in matrix HA binding and leukocyte trafficking in vivo. PMID:26823460

  17. Binding of Hyaluronan to the Native Lymphatic Vessel Endothelial Receptor LYVE-1 Is Critically Dependent on Receptor Clustering and Hyaluronan Organization.

    PubMed

    Lawrance, William; Banerji, Suneale; Day, Anthony J; Bhattacharjee, Shaumick; Jackson, David G

    2016-04-08

    The lymphatic endothelial receptor LYVE-1 has been implicated in both uptake of hyaluronan (HA) from tissue matrix and in facilitating transit of leukocytes and tumor cells through lymphatic vessels based largely onin vitrostudies with recombinant receptor in transfected fibroblasts. Curiously, however, LYVE-1 in lymphatic endothelium displays little if any binding to HAin vitro, and this has led to the conclusion that the native receptor is functionally silenced, a feature that is difficult to reconcile with its proposedin vivofunctions. Nonetheless, as we reported recently, LYVE-1 can function as a receptor for HA-encapsulated Group A streptococci and mediate lymphatic dissemination in mice. Here we resolve these paradoxical findings and show that the capacity of LYVE-1 to bind HA is strictly dependent on avidity, demanding appropriate receptor self-association and/or HA multimerization. In particular, we demonstrate the prerequisite of a critical LYVE-1 threshold density and show that HA binding may be elicited in lymphatic endothelium by surface clustering with divalent LYVE-1 mAbs. In addition, we show that cross-linking of biotinylated HA in streptavidin multimers or supramolecular complexes with the inflammation-induced protein TSG-6 enables binding even in the absence of LYVE-1 cross-linking. Finally, we show that endogenous HA on the surface of macrophages can engage LYVE-1, facilitating their adhesion and transit across lymphatic endothelium. These results reveal LYVE-1 as a low affinity receptor tuned to discriminate between different HA configurations through avidity and establish a new mechanistic basis for the functions ascribed to LYVE-1 in matrix HA binding and leukocyte traffickingin vivo.

  18. Phenotypically heterogeneous podoplanin-expressing cell populations are associated with the lymphatic vessel growth and fibrogenic responses in the acutely and chronically infarcted myocardium

    PubMed Central

    Cimini, Maria; Cannatá, Antonio; Pasquinelli, Gianandrea; Rota, Marcello

    2017-01-01

    Cardiac lymphatic vasculature undergoes substantial expansion in response to myocardial infarction (MI). However, there is limited information on the cellular mechanisms mediating post-MI lymphangiogenesis and accompanying fibrosis in the infarcted adult heart. Using a mouse model of permanent coronary artery ligation, we examined spatiotemporal changes in the expression of lymphendothelial and mesenchymal markers in the acutely and chronically infarcted myocardium. We found that at the time of wound granulation, a three-fold increase in the frequency of podoplanin-labeled cells occurred in the infarcted hearts compared to non-operated and sham-operated counterparts. Podoplanin immunoreactivity detected LYVE-1-positive lymphatic vessels, as well as masses of LYVE-1-negative cells dispersed between myocytes, predominantly in the vicinity of the infarcted region. Podoplanin-carrying populations displayed a mesenchymal progenitor marker PDGFRα, and intermittently expressed Prox-1, a master regulator of the lymphatic endothelial fate. At the stages of scar formation and maturation, concomitantly with the enlargement of lymphatic network in the injured myocardium, the podoplanin-rich LYVE-1-negative multicellular assemblies were apparent in the fibrotic area, aligned with extracellular matrix deposits, or located in immediate proximity to activated blood vessels with high VEGFR-2 content. Of note, these podoplanin-containing cells acquired the expression of PDGFRβ or a hematoendothelial epitope CD34. Although Prox-1 labeling was abundant in the area affected by MI, the podoplanin-presenting cells were not consistently Prox-1-positive. The concordance of podoplanin with VEGFR-3 similarly varied. Thus, our data reveal previously unknown phenotypic and structural heterogeneity within the podoplanin-positive cell compartment in the infarcted heart, and suggest an alternate ability of podoplanin-presenting cardiac cells to generate lymphatic endothelium and pro

  19. Mapping superficial lymphatic territories in the rabbit.

    PubMed

    Soto-Miranda, Miguel A; Suami, Hiroo; Chang, David W

    2013-06-01

    Little is known about the anatomy of the lymphatic system in the rabbit with regard to relationships between the lymphatic vessel and lymph node. According to our previous studies in human cadavers and canines, the superficial lymphatic system could be divided into lymphatic territories. The aim of this study was to completely map the superficial lymphatic system in the rabbit. We used our microinjection technique and histological analysis for dissecting studies and recently developed indocyanine green (ICG) fluorescent lymphography for demonstrating dynamic lymph flow in living rabbits. Real-time ICG fluorescent lymphography was performed in two living New Zealand White rabbits, and direct dye microinjection of the lymphatic vessels was performed in eight dead rabbits. To assess the relationships between the vascular and lymphatic systems in rabbits, we performed radiocontrast injection into arteries in two dead rabbits prior to the lymphatic injection. The ICG fluorescent lymphography revealed eight lymphatic territories in the preauricular, submandibular, root of the lateral neck, axillary, lumbar, inguinal, root of the tail, and popliteal regions. We injected blue acrylic dye into every lymphatic vessel 0.1 mm in diameter or larger. We then dissected and chased the stained lymphatic vessels proximally until the vessels connected to the first tier lymph node. This procedure was repeated throughout the body until all the relationships between the lymphatic vessels and lymph nodes were defined. The lymphatic system of the rabbit could be defined as eight lymphatic territories, each with its own lymphatic vessels and lymph node.

  20. Mucosal lymphatic vessels of the esophagus distant from the cancer margin: morphometrical analysis using 27 surgically removed specimens of squamous cell carcinoma located in the upper or middle thoracic esophagus.

    PubMed

    Nishimori, Hidefumi; Hayashi, Shogo; Naito, Munekazu; Murakami, Gen; Fujita, Masahiro; Hosokawa, Masao

    2011-08-01

    To clarify the configuration of the esophageal mucosal lymphatics distant from cancer using D2-40 immunohistochemistry. D2-40 immunohistochemistry for human lymphatic epithelium was performed at sites about 10 cm anal from the pathologically examined margin of upper or mid- thoracic squamous cell carcinoma (27 patients). We measured the entire length of mucosal lymphatic vessels within a x10 objective field (1.2 mm along the muscularis mucosae). The present morphometrical study demonstrated significant individual differences in the amount of mucosal lymphatic vessels, within a range of more than 10-fold (8.4 mm-0.8 mm within an objective field). However, the difference in length of the mucosal lymphatic epithelium did not correlate with either N-factor, T-factor including cancer depth or prognosis. A higher density of pre-existing mucosal lymphatic vessels may not always be correlated with larger numbers of nodal metastases. Lymphatic proliferation or dilation induced by cancer seems to occur irrespective of whether pre-existing vessels are rich or sparse.

  1. Effects of acute exercise, exercise training, and diabetes on the expression of lymphangiogenic growth factors and lymphatic vessels in skeletal muscle.

    PubMed

    Kivelä, Riikka; Silvennoinen, Mika; Lehti, Maarit; Kainulainen, Heikki; Vihko, Veikko

    2007-10-01

    Blood and lymphatic vessels together form the circulatory system, allowing the passage of fluids and molecules within the body. Recently we showed that lymphatic capillaries are also found in the capillary bed of skeletal muscle. Exercise is known to induce angiogenesis in skeletal muscle, but it is not known whether exercise has effects on lymphangiogenesis or lymphangiogenic growth factors. We studied lymphatic vessel density and expression of the main lymphangiogenic growth factors VEGF-C and VEGF-D and their receptor VEGFR-3 in response to acute running exercise and endurance exercise training in the skeletal muscle of healthy and diabetic mice. VEGF-C mRNA expression increased after the acute exercise bout (P < 0.05) in healthy muscles, but there was no change in diabetic muscles. VEGF-C levels were not changed either in healthy or in diabetic muscle after the exercise training. Neither acute exercise nor exercise training had an effect on the mRNA expression of VEGF-D or VEGFR-3 in healthy or diabetic muscles. Lymphatic vessel density was similar in sedentary and trained mice and was >10-fold smaller than blood capillary density. Diabetes increased the mRNA expression of VEGF-D (P < 0.01). Increased immunohistochemical staining of VEGF-D was found in degenerative muscle fibers in the diabetic mice. In conclusion, the results suggest that acute exercise or exercise training does not significantly affect lymphangiogenesis in skeletal muscle. Diabetes increased the expression of VEGF-D in skeletal muscle, and this increase may be related to muscle fiber damage.

  2. Bimodal Expansion of the Lymphatic Vessels Is Regulated by the Sequential Expression of IL-7 and Lymphotoxin α1β2 in Newly Formed Tertiary Lymphoid Structures.

    PubMed

    Nayar, Saba; Campos, Joana; Chung, Ming May; Navarro-Núñez, Leyre; Chachlani, Menka; Steinthal, Nathalie; Gardner, David H; Rankin, Philip; Cloake, Thomas; Caamaño, Jorge H; McGettrick, Helen M; Watson, Steve P; Luther, Sanjiv; Buckley, Christopher D; Barone, Francesca

    2016-09-01

    Lymphangiogenesis associated with tertiary lymphoid structure (TLS) has been reported in numerous studies. However, the kinetics and dynamic changes occurring to the lymphatic vascular network during TLS development have not been studied. Using a viral-induced, resolving model of TLS formation in the salivary glands of adult mice we demonstrate that the expansion of the lymphatic vascular network is tightly regulated. Lymphatic vessel expansion occurs in two distinct phases. The first wave of expansion is dependent on IL-7. The second phase, responsible for leukocyte exit from the glands, is regulated by lymphotoxin (LT)βR signaling. These findings, while highlighting the tight regulation of the lymphatic response to inflammation, suggest that targeting the LTα1β2/LTβR pathway in TLS-associated pathologies might impair a natural proresolving mechanism for lymphocyte exit from the tissues and account for the failure of therapeutic strategies that target these molecules in diseases such as rheumatoid arthritis. Copyright © 2016 The Authors.

  3. Clinical significance of detecting lymphatic and blood vessel invasion in stage II colon cancer using markers D2-40 and CD34 in combination.

    PubMed

    Lai, Jin-Huo; Zhou, Yong-Jian; Bin, Du; Qiangchen; Wang, Shao-Yuan

    2014-01-01

    This research was conducted to compare differences in colon cancer lymphatic vessel invasion (LVI) with D2-40 antibody labeling and regular HE staining, blood vessel invasion (BVI) with CD34 antibody labeling and HE staining and to assess the possibility of using D2-40-LVI/CD34-BVI in combination for predicting stage II colon cancer prognosis and guiding adjuvant chemotherapy.Anti-D2-40 and anti-CD34 antibodies were applied to tissue samples of 220 cases of stage II colon cancer to label lymphatic vessels and small blood vessels, respectively. LVI and BVI were assessed and multivariate COX regression analysis was performed for associations with colon cancer prognosis. Regular HE staining proved unable to differentiate lymphatic vessels from blood vessels, while D2-40 selectively labeled lymphatic endothelial cell cytosol and CD34 was widely expressed in large and small blood vessels of tumors as well as normal tissues. Compared to regular HE staining, D2-40-labeling for LVI and CD34-labeling for BVI significantly increased positive rate (22.3% vs 10.0% for LVI, and 19.1% vs 9.1% for BVI). Multivariate analysis indicated that TNM stage, pathology tissue type, post-surgery adjuvant chemotherapy, D2-40-LVI, and CD34-BVI were independent factors affecting whole group colon cancer prognosis, while HE staining-BVI, HE staining-LVI were not significantly related. When CD34-BVI/D2-40-LVI were used in combination for detection, the risk of death for patients with two or one positive results was 5.003 times that in the LVI(-)andBVI(-) group (95% CI 2.365 - 9.679). D2-40 antibody LVI labeling and CD34 antibody BVI labeling have higher specificity and accuracy than regular HE staining and can be used as molecular biological indicators for prognosis prediction and guidance of adjuvant chemotherapy for stage II colon cancer.

  4. Primary and Secondary Lymphatic Valve Development: Molecular, Functional and Mechanical Insights

    PubMed Central

    Bazigou, Eleni; Wilson, John T.; Moore, James E.

    2015-01-01

    Fluid homeostasis in vertebrates critically relies on the lymphatic system forming a hierarchical network of lymphatic capillaries and collecting lymphatics, for the efficient drainage and transport of extravasated fluid back to the cardiovascular system. Blind–ended lymphatic capillaries employ specialized junctions and anchoring filaments to encourage a unidirectional flow of the interstitial fluid into the initial lymphatic vessels, whereas collecting lymphatics are responsible for the active propulsion of the lymph to the venous circulation via the combined action of lymphatic muscle cells and intraluminal valves. Here we describe recent findings on molecular and physical factors regulating the development and maturation of these two types of valves and examine their role in tissue-fluid homeostasis. PMID:25086182

  5. Expansion of the lymphatic vasculature in cancer and inflammation: new opportunities for in vivo imaging and drug delivery.

    PubMed

    Proulx, Steven T; Luciani, Paola; Dieterich, Lothar C; Karaman, Sinem; Leroux, Jean-Christophe; Detmar, Michael

    2013-12-10

    Over the last 15 years, discovery of key growth factors and specific molecular markers for lymphatic vessels has enabled a new era of molecular research on the lymphatic vascular system. As a result, it has been found that lymphangiogenesis, the expansion of existing lymphatic vessels, plays an important role in tumor progression and in the control of chronic inflammation. At the same time, technical advancements have been made to improve the visualization of the lymphatic system. We have recently developed liposomal and polymer-based formulations of near-infrared lymphatic-specific imaging tracers for the non-invasive quantitative in vivo imaging of lymphatic vessel function. Using these tracers, a near-infrared stereomicroscope system allows imaging of initial and collecting lymphatic vessels with high spatial and temporal resolution in mice. In addition, we have developed a new method, using antibodies to a lymphatic specific marker and positron emission tomography, to sensitively detect lymphatic expansion in lymph nodes as the earliest sign of cancer metastasis. These imaging methods have great potential to provide non-invasive measures to assess the functionality of the lymphatic system and to assess the efficiency of lymphatic drug delivery. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Podoplanin is a component of extracellular vesicles that reprograms cell-derived exosomal proteins and modulates lymphatic vessel formation

    PubMed Central

    Andrés, Germán; Gopal, Shashi K.; Martín-Villar, Ester; Renart, Jaime; Simpson, Richard J.; Quintanilla, Miguel

    2016-01-01

    Podoplanin (PDPN) is a transmembrane glycoprotein that plays crucial roles in embryonic development, the immune response, and malignant progression. Here, we report that cells ectopically or endogenously expressing PDPN release extracellular vesicles (EVs) that contain PDPN mRNA and protein. PDPN incorporates into membrane shed microvesicles (MVs) and endosomal-derived exosomes (EXOs), where it was found to colocalize with the canonical EV marker CD63 by immunoelectron microscopy. We have previously found that expression of PDPN in MDCK cells induces an epithelial-mesenchymal transition (EMT). Proteomic profiling of MDCK-PDPN cells compared to control cells shows that PDPN-induced EMT is associated with upregulation of oncogenic proteins and diminished expression of tumor suppressors. Proteomic analysis of exosomes reveals that MDCK-PDPN EXOs were enriched in protein cargos involved in cell adhesion, cytoskeletal remodeling, signal transduction and, importantly, intracellular trafficking and EV biogenesis. Indeed, expression of PDPN in MDCK cells stimulated both EXO and MV production, while knockdown of endogenous PDPN in human HN5 squamous carcinoma cells reduced EXO production and inhibited tumorigenesis. EXOs released from MDCK-PDPN and control cells both stimulated in vitro angiogenesis, but only EXOs containing PDPN were shown to promote lymphatic vessel formation. This effect was mediated by PDPN on the surface of EXOs, as demonstrated by a neutralizing specific monoclonal antibody. These results contribute to our understanding of PDPN-induced EMT in association to tumor progression, and suggest an important role for PDPN in EV biogenesis and/or release and for PDPN-EXOs in modulating lymphangiogenesis. PMID:26893367

  7. Dilated Thin-Walled Blood and Lymphatic Vessels in Human Endometrium: A Potential Role for VEGF-D in Progestin-Induced Break-Through Bleeding

    PubMed Central

    Donoghue, Jacqueline F.; McGavigan, C. Jay; Lederman, Fiona L.; Cann, Leonie M.; Fu, Lulu; Dimitriadis, Eva; Girling, Jane E.; Rogers, Peter A. W.

    2012-01-01

    Progestins provide safe, effective and cheap options for contraception as well as the treatment of a variety of gynaecological disorders. Episodes of irregular endometrial bleeding or breakthrough bleeding (BTB) are a major unwanted side effect of progestin treatment, such that BTB is the leading cause for discontinued use of an otherwise effective and popular medication. The cellular mechanisms leading to BTB are poorly understood. In this study, we make the novel finding that the large, dilated, thin walled vessels characteristic of human progestin-treated endometrium include both blood and lymphatic vessels. Increased blood and lymphatic vessel diameter are features of VEGF-D action in other tissues and we show by immunolocalisation and Western blotting that stromal cell decidualisation results in a significant increase in VEGF-D protein production, particularly of the proteolytically processed 21 kD form. Using a NOD/scid mouse model with xenografted human endometrium we were able to show that progestin treatment causes decidualisation, VEGF-D production and endometrial vessel dilation. Our results lead to a novel hypothesis to explain BTB, with stromal cell decidualisation rather than progestin treatment per se being the proposed causative event, and VEGF-D being the proposed effector agent. PMID:22383980

  8. Lymphatic fluid: exchange mechanisms and regulation

    PubMed Central

    Huxley, Virginia H; Scallan, Joshua

    2011-01-01

    Abstract Regulation of fluid and material movement between the vascular space of microvessels penetrating functioning organs and the cells therein has been studied extensively. Unanswered questions as to the regulatory mechanisms and routes remain. Significantly less is known about the lymphatic vascular system given the difficulties in seeing, no less isolating, these vessels lying deeper in these same tissues. It has become evident that the exchange microvasculature is not simply a passive biophysical barrier separating the vascular and interstitial compartments but a dynamic, multicellular structure subject to acute regulation and chronic adaptation to stimuli including inflammation, sepsis, diabetes, injury, hypoxia and exercise. Similarly lymphatic vessels range, in their simplest form, from lymphatic endothelium attached to the interstitial matrix, to endothelia and phasic lymphatic smooth muscle that act as Starling resistors. Recent work has demonstrated that among the microvascular lymphatic elements, the collecting lymphatics have barrier properties similar to venules, and thus participate in exchange. As with venules, vasoactive agents can alter both the permeability and contractile properties thereby setting up previously unanticipated gradients in the tissue space and providing potential targets for the pharmacological prevention and/or resolution of oedema. PMID:21521763

  9. In vivo label-free monitoring microvascular and lymphatic vessel changes and dynamics during wound healing in mouse ear pinna using optical microangiography

    NASA Astrophysics Data System (ADS)

    Yousefi, Siavash; Wang, Ruikang K.

    2014-02-01

    Cutaneous wound healing consists of multiple overlapping phases starting with blood coagulation following incision of blood vessels. In this paper, we briefly review wound healing phases that were observed by utilizing optical microangiography (OMAG) to monitor healing process and dynamics of microcirculation system in a mouse ear pinna wound model. Mouse ear pinna is composed of two layers of skin separated by a layer of cartilage and because its total thickness is around 500 μm, can be utilized as an ideal model for optical imaging techniques. These skin layers are identical to human skin structure except for sweat ducts and glands. Microcirculatory system responds to the wound injury by recruiting collateral vessels to supply blood flow to hypoxic area. Also, lymphatic vessels play an important role in the immune response of the tissue and clearing waste from interstitial fluid.

  10. Lymphatics and blood vessels.

    PubMed

    Millikan, Larry E

    2011-01-01

    The traditional nomenclature of vascular lesions has been enlarged and modified with the usage of newer diagnostic techniques. Digital technology has enhanced the precision of older analog tools such as Doppler flow studies. Angiograms have also more precisely delineated flow patterns to allow planned surgical intervention as an important therapeutic option. With the newer classification, it now is possible to plan and anticipate the course of lesions and medically intervene in tumors that potentially will enlarge and impinge on essential structures. Now, the routine workup will clarify if there is internal involvement (eg, liver, etc) and detect proliferative potential mandating medical or surgical intervention. Watchful waiting, the traditional approach is now changing with the newer delineation of syndromes such as PHACE (posterior fossa, hemangioma, arterial lesions, cardiac abnormalities/aortic coarctation, eye abnormalities), which mandate the fullest evaluation and, in many instances, the collaboration of multispecialty groups to treat those lesions as the data and group consensus determines.

  11. Tissue-engineered lymphatic graft for the treatment of lymphedema

    PubMed Central

    Kanapathy, Muholan; Patel, Nikhil M.; Kalaskar, Deepak M.; Mosahebi, Afshin; Mehrara, Babak J.; Seifalian, Alexander M.

    2015-01-01

    Background Lymphedema is a chronic debilitating condition and curative treatment is yet to be found. Tissue engineering approach, which combines cellular components, scaffold, and molecular signals hold great potential in the treatment of secondary lymphedema with the advent of lymphatic graft to reconstruct damaged collecting lymphatic vessel. This review highlights the ideal characteristics of lymphatic graft, the limitation and challenges faced, and the approaches in developing tissue-engineered lymphatic graft. Methods Literature on tissue engineering of lymphatic system and lymphatic tissue biology was reviewed. Results The prime challenge in the design and manufacturing of this graft is producing endothelialized conduit with intraluminal valves. Suitable scaffold material is needed to ensure stability and functionality of the construct. Endothelialization of the construct can be enhanced via biofunctionalization and nanotopography, which mimics extracellular matrix. Nanocomposite polymers with improved performance over existing biomaterials are likely to benefit the development of lymphatic graft. Conclusions With the in-depth understanding of tissue engineering, nanotechnology, and improved knowledge on the biology of lymphatic regeneration, the aspiration to develop successful lymphatic graft is well achievable. PMID:25248852

  12. Mechanobiology of lymphatic contractions.

    PubMed

    Munn, Lance L

    2015-02-01

    The lymphatic system is responsible for controlling tissue fluid pressure by facilitating flow of lymph (i.e. the plasma and cells that enter the lymphatic system). Because lymph contains cells of the immune system, its transport is not only important for fluid homeostasis, but also immune function. Lymph drainage can occur via passive flow or active pumping, and much research has identified the key biochemical and mechanical factors that affect output. Although many studies and reviews have addressed how tissue properties and fluid mechanics (i.e. pressure gradients) affect lymph transport [1-3] there is less known about lymphatic mechanobiology. As opposed to passive mechanical properties, mechanobiology describes the active coupling of mechanical signals and biochemical pathways. Lymphatic vasomotion is the result of a fascinating system affected by mechanical forces exerted by the flowing lymph, including pressure-induced vessel stretch and flow-induced shear stresses. These forces can trigger or modulate biochemical pathways important for controlling the lymphatic contractions. Here, I review the current understanding of lymphatic vessel function, focusing on vessel mechanobiology, and summarize the prospects for a comprehensive understanding that integrates the mechanical and biomechanical control mechanisms in the lymphatic system.

  13. Homodimerization of the Lymph Vessel Endothelial Receptor LYVE-1 through a Redox-labile Disulfide Is Critical for Hyaluronan Binding in Lymphatic Endothelium*

    PubMed Central

    Banerji, Suneale; Lawrance, William; Metcalfe, Clive; Briggs, David C.; Yamauchi, Akira; Dushek, Omer; van der Merwe, P. Anton

    2016-01-01

    The lymphatic vessel endothelial receptor LYVE-1 is implicated in the uptake of hyaluronan (HA) and trafficking of leukocytes to draining lymph nodes. Yet LYVE-1 has only weak affinity for hyaluronan and depends on receptor clustering and higher order ligand organization for durable binding in lymphatic endothelium. An unusual feature of LYVE-1 not found in other HA receptors is the potential to form disulfide-linked homodimers. However, their influence on function has not been investigated. Here we show LYVE-1 homodimers are the predominant configuration in lymphatic endothelium in vitro and in vivo, and formation solely requires the unpaired cysteine residue Cys-201 within the membrane-proximal domain, yielding a 15-fold higher HA binding affinity and an ∼67-fold slower off-rate than the monomer. Moreover, we show non-dimerizing LYVE-1 mutants fail to bind HA even when expressed at high densities in lymphatic endothelial cells or artificially cross-linked with antibody. Consistent with these findings, small angle X-ray scattering (SAXS) indicates the Cys-201 interchain disulfide forms a hinge that maintains the homodimer in an “open scissors” conformation, likely allowing arrangement of the two HA binding domains for mutual engagement with ligand. Finally, we demonstrate the Cys-201 interchain disulfide is highly labile, and selective reduction with TCEP-HCl disrupts LYVE-1 homodimers, ablating HA binding. These findings reveal binding is dependent not just on clustering but also on the biochemical properties of LYVE-1 homodimers. They also mark LYVE-1 as the first Link protein superfamily member requiring covalent homodimerization for function and suggest the interchain disulfide acts as a redox switch in vivo. PMID:27733683

  14. Homodimerization of the Lymph Vessel Endothelial Receptor LYVE-1 through a Redox-labile Disulfide Is Critical for Hyaluronan Binding in Lymphatic Endothelium.

    PubMed

    Banerji, Suneale; Lawrance, William; Metcalfe, Clive; Briggs, David C; Yamauchi, Akira; Dushek, Omer; van der Merwe, P Anton; Day, Anthony J; Jackson, David G

    2016-11-25

    The lymphatic vessel endothelial receptor LYVE-1 is implicated in the uptake of hyaluronan (HA) and trafficking of leukocytes to draining lymph nodes. Yet LYVE-1 has only weak affinity for hyaluronan and depends on receptor clustering and higher order ligand organization for durable binding in lymphatic endothelium. An unusual feature of LYVE-1 not found in other HA receptors is the potential to form disulfide-linked homodimers. However, their influence on function has not been investigated. Here we show LYVE-1 homodimers are the predominant configuration in lymphatic endothelium in vitro and in vivo, and formation solely requires the unpaired cysteine residue Cys-201 within the membrane-proximal domain, yielding a 15-fold higher HA binding affinity and an ∼67-fold slower off-rate than the monomer. Moreover, we show non-dimerizing LYVE-1 mutants fail to bind HA even when expressed at high densities in lymphatic endothelial cells or artificially cross-linked with antibody. Consistent with these findings, small angle X-ray scattering (SAXS) indicates the Cys-201 interchain disulfide forms a hinge that maintains the homodimer in an "open scissors" conformation, likely allowing arrangement of the two HA binding domains for mutual engagement with ligand. Finally, we demonstrate the Cys-201 interchain disulfide is highly labile, and selective reduction with TCEP-HCl disrupts LYVE-1 homodimers, ablating HA binding. These findings reveal binding is dependent not just on clustering but also on the biochemical properties of LYVE-1 homodimers. They also mark LYVE-1 as the first Link protein superfamily member requiring covalent homodimerization for function and suggest the interchain disulfide acts as a redox switch in vivo.

  15. Increased Lymphatic Vessel Length Is Associated With the Fibroblast Reticulum and Disease Severity in Usual Interstitial Pneumonia and Nonspecific Interstitial Pneumonia

    PubMed Central

    Cosgrove, Gregory P.; Janssen, William J.; Huie, Tristan J.; Burnham, Ellen L.; Heinz, David E.; Curran-Everett, Douglas; Sahin, Hakan; Schwarz, Marvin I.; Cool, Carlyne D.; Groshong, Steve D.; Geraci, Mark W.; Tuder, Rubin M.; Hyde, Dallas M.; Henson, Peter M.

    2012-01-01

    Background: Lymphangiogenesis responds to tissue injury as a key component of normal wound healing. The development of fibrosis in the idiopathic interstitial pneumonias may result from abnormal wound healing in response to injury. We hypothesize that increased lymphatic vessel (LV) length, a marker of lymphangiogenesis, is associated with parenchymal components of the fibroblast reticulum (organizing collagen, fibrotic collagen, and fibroblast foci), and its extent correlates with disease severity. Methods: We assessed stereologically the parenchymal structure of fibrotic lungs and its associated lymphatic network, which was highlighted immunohistochemically in age-matched samples of usual interstitial pneumonia (UIP), nonspecific interstitial pneumonia (NSIP) with FVC < 80%, COPD with a Global Initiative for Obstructive Lung Disease stage 0, and normal control lungs. Results: LV length density, as opposed to vessel volume density, was found to be associated with organizing and fibrotic collagen density (P < .0001). Length density of LVs and the volume density of organizing and fibrotic collagen were significantly associated with severity of both % FVC (P < .001) and diffusing capacity of the lung for carbon monoxide (P < .001). Conclusions: Severity of disease in UIP and NSIP is associated with increased LV length and is strongly associated with components of the fibroblast reticulum, namely organizing and fibrotic collagen, which supports a pathogenic role of LVs in these two diseases. Furthermore, the absence of definable differences between UIP and NSIP suggests that LVs are a unifying mechanism for the development of fibrosis in these fibrotic lung diseases. PMID:22797508

  16. The prognostic implications of microvascular density and lymphatic vessel density in esophageal squamous cell carcinoma: Comparative analysis between the traditional whole sections and the tissue microarray.

    PubMed

    Chen, Bo; Fang, Wang-Kai; Wu, Zhi-Yong; Xu, Xiu-E; Wu, Jian-Yi; Fu, Jun-Hui; Yao, Xiao-Dong; Huang, Jian-Hao; Chen, Jie-Xin; Shen, Jin-Hui; Zheng, Chun-Peng; Wang, Shao-Hong; Li, En-Min; Xu, Li-Yan

    2014-05-01

    Focal distribution of microvascular and lymphatic vessels is a critical issue in cancer, and is measured by tissue microarray (TMA) construction from paraffin-embedded surgically obtained tissues, a process that may not accurately reflect true focal distribution. The aim of this study was to assess the concordance of microvascular density (MVD) and lymphatic vessel density (LVD) in TMAs with corresponding whole sections, and to correlate the MVD or LVD with clinicopathological parameters in 124 cases of esophageal squamous cell carcinoma (ESCC). MVD, determined by CD105 immunohistochemistry of whole sections, was strongly associated with lymph node metastasis (p=0.000) and pTNM stage (p=0.001). Kaplan-Meier survival analysis showed that increasing CD105 microvessel count correlated with decreasing survival (p<0.001). The same result was acquired when MVD was calculated from tissue microarrays. Analysis of continuous data showed a highly significant correlation between whole sections and TMA data (Pearson r=0.522, p<0.001). Increasing LVD, as determined by D2-40 immunohistochemistry of whole sections, correlated with decreasing survival, but this relationship was undetectable using TMAs. In conclusion, we demonstrate that for the selected endothelial markers, TMAs can provide a realistic and reliable estimate of the extent of MVD, but not LVD in ESCC samples. Copyright © 2013 Elsevier GmbH. All rights reserved.

  17. Evidence of connections between cerebrospinal fluid and nasal lymphatic vessels in humans, non-human primates and other mammalian species.

    PubMed

    Johnston, Miles; Zakharov, Andrei; Papaiconomou, Christina; Salmasi, Giselle; Armstrong, Dianna

    2004-12-10

    BACKGROUND: The parenchyma of the brain does not contain lymphatics. Consequently, it has been assumed that arachnoid projections into the cranial venous system are responsible for cerebrospinal fluid (CSF) absorption. However, recent quantitative and qualitative evidence in sheep suggest that nasal lymphatics have the major role in CSF transport. Nonetheless, the applicability of this concept to other species, especially to humans has never been clarified. The purpose of this study was to compare the CSF and nasal lymph associations in human and non-human primates with those observed in other mammalian species. METHODS: Studies were performed in sheep, pigs, rabbits, rats, mice, monkeys and humans. Immediately after sacrifice (or up to 7 hours after death in humans), yellow Microfil was injected into the CSF compartment. The heads were cut in a sagittal plane. RESULTS: In the seven species examined, Microfil was observed primarily in the subarachnoid space around the olfactory bulbs and cribriform plate. The contrast agent followed the olfactory nerves and entered extensive lymphatic networks in the submucosa associated with the olfactory and respiratory epithelium. This is the first direct evidence of the association between the CSF and nasal lymph compartments in humans. CONCLUSIONS: The fact that the pattern of Microfil distribution was similar in all species tested, suggested that CSF absorption into nasal lymphatics is a characteristic feature of all mammals including humans. It is tempting to speculate that some disorders of the CSF system (hydrocephalus and idiopathic intracranial hypertension for example) may relate either directly or indirectly to a lymphatic CSF absorption deficit.

  18. Evidence of connections between cerebrospinal fluid and nasal lymphatic vessels in humans, non-human primates and other mammalian species

    PubMed Central

    Johnston, Miles; Zakharov, Andrei; Papaiconomou, Christina; Salmasi, Giselle; Armstrong, Dianna

    2004-01-01

    Background The parenchyma of the brain does not contain lymphatics. Consequently, it has been assumed that arachnoid projections into the cranial venous system are responsible for cerebrospinal fluid (CSF) absorption. However, recent quantitative and qualitative evidence in sheep suggest that nasal lymphatics have the major role in CSF transport. Nonetheless, the applicability of this concept to other species, especially to humans has never been clarified. The purpose of this study was to compare the CSF and nasal lymph associations in human and non-human primates with those observed in other mammalian species. Methods Studies were performed in sheep, pigs, rabbits, rats, mice, monkeys and humans. Immediately after sacrifice (or up to 7 hours after death in humans), yellow Microfil was injected into the CSF compartment. The heads were cut in a sagittal plane. Results In the seven species examined, Microfil was observed primarily in the subarachnoid space around the olfactory bulbs and cribriform plate. The contrast agent followed the olfactory nerves and entered extensive lymphatic networks in the submucosa associated with the olfactory and respiratory epithelium. This is the first direct evidence of the association between the CSF and nasal lymph compartments in humans. Conclusions The fact that the pattern of Microfil distribution was similar in all species tested, suggested that CSF absorption into nasal lymphatics is a characteristic feature of all mammals including humans. It is tempting to speculate that some disorders of the CSF system (hydrocephalus and idiopathic intracranial hypertension for example) may relate either directly or indirectly to a lymphatic CSF absorption deficit. PMID:15679948

  19. Search for lymphatic drainage of the monkey orbit

    SciTech Connect

    McGetrick, J.J.; Wilson, D.G.; Dortzbach, R.K.; Kaufman, P.L.; Lemke, B.N.

    1989-02-01

    Colloid solutions of technetium Tc-99m and india ink injected into the retrobulbar space of the cynomolgus monkey outside the extraocular muscle cone were removed from the orbit by the lymphatic vessels of the conjunctiva and eyelids and were then concentrated within the lymph nodes that drained the conjunctival and eyelid areas. Colloid solutions injected into the retrobulbar space inside the extraocular muscle cone did not reach the conjunctiva and did not collect in any lymph nodes over a 24-hour period. Within the orbit, the injected colloids spread along the planes of the connective-tissue septa. No lymphatic vessels were identified within the orbits posterior to the conjunctiva. Small amounts of india ink left the posterior orbit and ultimately entered the contralateral orbit. This posterior pathway did not lead to lymphatic vessels or lymph nodes and therefore does not appear to represent a prelymphatic pathway.

  20. Use of a PEG-conjugated bright near-infrared dye for functional imaging of rerouting of tumor lymphatic drainage after sentinel lymph node metastasis

    PubMed Central

    Proulx, Steven T.; Luciani, Paola; Christiansen, Ailsa; Karaman, Sinem; Blum, Katrin S.; Rinderknecht, Matthias; Leroux, Jean-Christophe; Detmar, Michael

    2013-01-01

    Tumor lymphangiogenesis promotes metastatic cancer spread to lymph nodes and beyond. However, the potential remodeling and functionality of tumor-draining lymphatic vessels has remained unclear. Thus, we aimed to develop non-invasive imaging methods for repeated quantitative imaging of lymphatic drainage and of contractile collecting lymphatic vessel function in mice, with colloidal near-infrared (NIR) tracers and a custom fluorescence stereomicroscope specially adapted for NIR sensitive imaging. Using these tools, we quantitatively determined pulse rates and valvular function of collecting lymphatic vessels with high resolution. Unexpectedly, we found that tumor-draining lymphatic vessels in a melanoma footpad model initially were dilated but remained functional, despite lower pulse rates. In two independent tumor models, impaired lymphatic function was detected once metastases were present in draining lymph nodes. Importantly, we found that lymphatic dysfunction, induced by metastatic tumor spread to sentinel lymph nodes, can lead to a rerouting of lymphatic flow away from the metastatic lymph node, via collateral lymphatic vessels, to alternate lymph nodes. These findings might have important clinical implications for the procedure of sentinel lymph node mapping that represents the standard of care for determining prognosis and treatment of melanoma and breast cancer patients. PMID:23566803

  1. High density of peritumoral lymphatic vessels measured by D2-40/podoplanin and LYVE-1 expression in gastric cancer patients: an excellent prognostic indicator or a false friend?

    PubMed

    Rudno-Rudzinska, Julia; Kielan, Wojciech; Grzebieniak, Zygmunt; Dziegiel, Piotr; Donizy, Piotr; Mazur, Grzegorz; Knakiewicz, Monika; Frejlich, Ewelina; Halon, Agnieszka

    2013-10-01

    One of the most important prognostic indicators in gastric cancer is the presence of metastases in lymph nodes. Even now, little is known about lymphangiogenesis in neoplastic tissue, and little is also known about the transmission of a neoplastic cell from the tumor mass into a lymphatic vessel. This study examined the relationships between the density of lymphatic vessels (LVD) stained immunohistochemically with lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1) and D2-40 (podoplanin) antibodies, the expression of vascular endothelial growth factor (VEGF)-C/D, selected clinical and pathomorphological factors, and the 5-year overall survival of gastric cancer patients. Statistical analysis showed no impact of increased intratumoral or peritumoral LVD on gastric cancer patient survival, irrespective of the protein used to stain lymphatic vessels. Analysis showed that the probability of overall survival was decreased in the cases with enhanced VEGF-D immunoreactivity (P = 0.0045). The study showed that the studied markers cannot be used to determine the required extent of the surgical procedure, as they have no statistically significant correlation with the degree of progression of the cancer, the stage of the disease assessed according to the TNM 5th classification of malignant tumors, clinicopathological features, and patient survival. VEGF-D is the only marker that can be regarded as an unfavorable prognostic indicator for patients with advanced gastric cancer.

  2. 76 FR 9550 - Proposed Information Collection; Comment Request; Northeast Region Vessel Identification Collection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-18

    ... Region Vessel Identification Collection AGENCY: National Oceanic and Atmospheric Administration (NOAA... over 25 ft (7.6 m) in registered length that have Federal permits to fish in the Northeast...

  3. Genetics of lymphatic anomalies

    PubMed Central

    Brouillard, Pascal; Boon, Laurence; Vikkula, Miikka

    2014-01-01

    Lymphatic anomalies include a variety of developmental and/or functional defects affecting the lymphatic vessels: sporadic and familial forms of primary lymphedema, secondary lymphedema, chylothorax and chylous ascites, lymphatic malformations, and overgrowth syndromes with a lymphatic component. Germline mutations have been identified in at least 20 genes that encode proteins acting around VEGFR-3 signaling but also downstream of other tyrosine kinase receptors. These mutations exert their effects via the RAS/MAPK and the PI3K/AKT pathways and explain more than a quarter of the incidence of primary lymphedema, mostly of inherited forms. More common forms may also result from multigenic effects or post-zygotic mutations. Most of the corresponding murine knockouts are homozygous lethal, while heterozygotes are healthy, which suggests differences in human and murine physiology and the influence of other factors. PMID:24590274

  4. Lymphatic obstruction

    MedlinePlus

    ... certain directions based on the structure of the lymphatic system. This helps the lymph fluid drain through the ... always appropriate or effective. Alternative Names Lymphedema Images Lymphatic system Yellow nail syndrome References Feldman JL, Jackson KA, ...

  5. Lymphatic Diseases

    MedlinePlus

    The lymphatic system is a network of tissues and organs. It is made up of Lymph - a fluid that contains ... They are part of the system, too. The lymphatic system clears away infection and keeps your body fluids ...

  6. Prognostic role of lymphatic vessel density and lymphovascular invasion in chemotherapy-naive and chemotherapy-treated patients with invasive breast cancer

    PubMed Central

    Niemiec, Joanna A; Adamczyk, Agnieszka; Ambicka, Aleksandra; Mucha-Małecka, Anna; Wysocki, Wojciech M; Biesaga, Beata; Ziobro, Marek; Cedrych, Ida; Grela-Wojewoda, Aleksandra; Domagała-Haduch, Małgorzata; Wysocka, Joanna; Ryś, Janusz; Sas-Korczyńska, Beata

    2017-01-01

    It is assumed that the spread of breast cancer cells via the lymphatic system might be influenced by inflammatory reactions and/or the application of chemotherapy or molecularly targeted therapy. Therefore, we analysed survival according to lymphatic vessel density (LVD), lymphovascular invasion (LVI) (both assessed using podoplanin as immunohistochemical marker of lymphatic endothelium) and well-established clinico-pathological features in a group of 358 patients with invasive ductal breast cancer: 139 chemotherapy-naïve (pT1-2/pN0/M0) and 219 treated with chemotherapy (pT1-4/pN1-3/M0). Univariate analysis revealed that high LVD was related to unfavourable disease-free survival (DFS) in pN0/chemotherapy/trastuzumab-naïve patients (P = 0.028). Conversely, in pN+/chemotherapy-treated individuals high LVD was related to favourable DFS (P = 0.019). LVI was a significant indicator of survival (P = 0.005) only in pN0/chemotherapy/trastuzumab-naïve patients. The following parameters were significant independent adverse prognostic factors for DFS: (i) in pN0/chemotherapy/trastuzumab-naïve patients: high LVD (LVD > 7 vessels/mm2; RR = 2.7, P = 0.039), LVI (RR = 3.3, P = 0.046) and high tumor grade (G3 vs. G1 + G2; RR = 2.6, P = 0.030); (ii) in pN+/chemotherapy/trastuzumab-treated patients: low LVD (RR = 1.8, P = 0.042), the number of involved lymph nodes (pN3 vs. pN1-2; RR = 2.3, P = 0.012) and the breast cancer subtype (expression of steroid receptors together with HER2 immunonegativity and high proliferation index vs. other breast cancer immunophenotypes; RR = 3.0, P < 0.001). High LVD may identify high progression risk in pN0/chemotherapy/trastuzumab-naïve patients, and low progression risk in pN+/chemotherapy-treated patients. This phenomenon might be explained by potential involvement of lymphangiogenesis in two processes related to cancer eradication: a chemotherapy-stimulated activity of the immune system against cancer cells, or increased tumour drainage

  7. Fluid-solid modeling of lymphatic valves

    NASA Astrophysics Data System (ADS)

    Caulk, Alexander; Ballard, Matthew; Nepiyushchikh, Zhanna; Dixon, Brandon; Alexeev, Alexander

    2015-11-01

    The lymphatic system performs important physiological functions such as the return of interstitial fluid to the bloodstream to maintain tissue fluid balance, as well as the transport of immune cells in the body. It utilizes contractile lymphatic vessels, which contain valves that open and close to allow flow in only one direction, to directionally pump lymph against a pressure gradient. We develop a fluid-solid model of geometrically representative lymphatic valves. Our model uses a hybrid lattice-Boltzmann lattice spring method to capture fluid-solid interactions with two-way coupling between a viscous fluid and lymphatic valves in a lymphatic vessel. We use this model to investigate the opening and closing of lymphatic valves, and its effect on lymphatic pumping. This helps to broaden our understanding of the fluid dynamics of the lymphatic system.

  8. Involvement of H1 and H2 receptors and soluble guanylate cyclase in histamine-induced relaxation of rat mesenteric collecting lymphatics

    PubMed Central

    Kurtz, Kristine H.; Moor, Andrea N.; Souza-Smith, Flavia M.; Breslin, Jerome W.

    2014-01-01

    Objective This study investigated the roles of the H1 and H2 histamine receptors, nitric oxide (NO) synthase, and soluble guanylate (sGC) cyclase in histamine-induced modulation of rat mesenteric collecting lymphatic pumping. Methods Isolated rat mesenteric collecting lymphatics were treated with 1–100 μM histamine. Histamine receptors were blocked with either the H1 antagonist mepyramine or the H2 antagonist cimetidine. The role of NO/sGC signaling was tested using the arginine analog L-NAME, the sGC inhibitor ODQ, and sodium nitroprusside (SNP) as a positive control. Results Histamine applied at 100 μM decreased tone and contraction frequency (CF) of isolated rat mesenteric collecting lymphatics. Pharmacologic blockade of either H1 or H2 histamine receptors significantly inhibited the response to histamine. Pretreatment with ODQ, but not L-NAME, completely inhibited the histamine-induced decrease in tone. ODQ pretreatment also significantly inhibited SNP-induced lymphatic relaxation. Conclusions H1 and H2 histamine receptors are both involved in histamine-induced relaxation of rat mesenteric collecting lymphatics. NO synthesis does not appear to contribute to the histamine-induced response. However, sGC is critical for the histamine-induced decrease in tone and contributes to the drop in CF. PMID:24702851

  9. HA-ving lymphatics improves lung transplantation

    PubMed Central

    Maltzman, Jonathan S.; Reed, Hasina Outtz; Kahn, Mark L.

    2015-01-01

    Lung allografts are prone to rejection, even though recipients undergo aggressive immunosuppressive therapy. Lymphatic vessels serve as conduits for immune cell trafficking and have been implicated in the mediation of allograft rejection. In this issue of the JCI, Cui et al. provide compelling evidence that lymphatic vessel formation improves lung allograft survival in a murine transplant model. Moreover, their data suggest a potential mechanism for the beneficial effects of lymphatics that does not involve immune cell or antigen transport. Together, the results of this study provide new insight into the role of lymphatic vessels in transplant tolerance. PMID:26524589

  10. An Apparent Deficiency of Lymphatic Capillaries in the Islets of Langerhans in the Human Pancreas.

    PubMed

    Korsgren, Erik; Korsgren, Olle

    2016-04-01

    The lymphatic system is crucial for efficient immune surveillance and for the maintenance of a physiological pressure in the interstitial space. Even so, almost no information is available concerning the lymph drainage of the islets of Langerhans in the human pancreas. Immunohistochemical staining allowed us to distinguish lymphatic capillaries from blood capillaries. Almost no lymphatic capillaries were found within the islets in pancreatic biopsy specimens from subjects without diabetes or from subjects with type 1 or type 2 diabetes. Lymphatic capillaries were, however, found at the islet-exocrine interface, frequently located along blood capillaries and other fibrotic structures within or close to the islet capsule. Lymphatic capillaries were regularly found in the exocrine pancreas, with small lymphatic vessels located close to and around acini. Larger collecting lymphatic vessels were located in fibrotic septa between the exocrine lobules and adjacent to the ductal system of the pancreas. In summary, we report a pronounced deficiency of lymphatic capillaries in human islets, a finding with implications for immune surveillance and the regulation of interstitial fluid transport in the endocrine pancreas as well as for the pathophysiology of both type 1 and type 2 diabetes. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  11. 78 FR 77430 - Proposed Information Collection; Comment Request; Foreign Fishing Vessel Permits, Vessel, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-23

    ... Fishing Vessel Permits, Vessel, and Gear Identification, and Reporting Requirements AGENCY: National... associated regulations at 50 CFR Part 600 requires applications for the permits, vessels and certain gear be... permit, mark their vessels and gear, or submit information about their fishing activities. To...

  12. [Pleural lymphatics and effusions].

    PubMed

    Mordant, P; Arame, A; Legras, A; Le Pimpec Barthes, F; Riquet, M

    2013-06-01

    The pleural lymphatic system has a great absorption capacity. Its most known function is fluid resorption. The pleura which cover the lungs (visceral pleura), the mediastinum, diaphragm and thoracic wall (parietal pleura) are formed by a mesothelial cell layer (mesothelium). This permeable layer is in direct contact with the vascular endothelium. The mesothelium is based over a connective tissue (interstitium) containing the blood and lymphatic vessels. The primary lymphatic vessels drain interstitium but are also in direct contact with pleural space by the stoma or openings, situated in the lower parts of parietal pleura, i.e: diaphragm, over lower ribs and mediastinum but not existing in the adjacent visceral pleura. In addition, a part of interstitial pulmonary fluid entered in the pleural cavity by passing the visceral pleura would be absorbed by these openings. The resorption process is active and directly related to the function of smooth muscles of lymphatic vessels. Besides resorption, we must emphasize that this "pumping" activity is permanent and the origin of negative pressure (the pleural void) in pleural cavity, a unique property. The other resorbed elements are molecules, bacterial and cellular debris, cells, red blood and cancer cells. Copyright © 2013. Published by Elsevier Masson SAS.

  13. Identification of lymphatics in the ciliary body of the human eye: a novel "uveolymphatic" outflow pathway.

    PubMed

    Yücel, Yeni H; Johnston, Miles G; Ly, Tina; Patel, Manoj; Drake, Brian; Gümüş, Ersin; Fraenkl, Stephan A; Moore, Sara; Tobbia, Dalia; Armstrong, Dianna; Horvath, Eva; Gupta, Neeru

    2009-11-01

    Impaired aqueous humor flow from the eye may lead to elevated intraocular pressure and glaucoma. Drainage of aqueous fluid from the eye occurs through established routes that include conventional outflow via the trabecular meshwork, and an unconventional or uveoscleral outflow pathway involving the ciliary body. Based on the assumption that the eye lacks a lymphatic circulation, the possible role of lymphatics in the less well defined uveoscleral pathway has been largely ignored. Advances in lymphatic research have identified specific lymphatic markers such as podoplanin, a transmembrane mucin-type glycoprotein, and lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1). Lymphatic channels were identified in the human ciliary body using immunofluorescence with D2-40 antibody for podoplanin, and LYVE-1 antibody. In keeping with the criteria for lymphatic vessels in conjunctiva used as positive control, D2-40 and LYVE-1-positive lymphatic channels in the ciliary body had a distinct lumen, were negative for blood vessel endothelial cell marker CD34, and were surrounded by either discontinuous or no collagen IV-positive basement membrane. Cryo-immunogold electron microscopy confirmed the presence D2-40-immunoreactivity in lymphatic endothelium in the human ciliary body. Fluorescent nanospheres injected into the anterior chamber of the sheep eye were detected in LYVE-1-positive channels of the ciliary body 15, 30, and 45 min following injection. Four hours following intracameral injection, Iodine-125 radio-labeled human serum albumin injected into the sheep eye (n = 5) was drained preferentially into cervical, retropharyngeal, submandibular and preauricular lymph nodes in the head and neck region compared to reference popliteal lymph nodes (P < 0.05). These findings collectively indicate the presence of distinct lymphatic channels in the human ciliary body, and that fluid and solutes flow at least partially through this system. The discovery of a uveolymphatic

  14. Navigation lymphatic supermicrosurgery for the treatment of cancer-related peripheral lymphedema.

    PubMed

    Yamamoto, Takumi; Yamamoto, Nana; Numahata, Takao; Yokoyama, Ai; Tashiro, Kensuke; Yoshimatsu, Hidehiko; Narushima, Mitsunaga; Koshima, Isao

    2014-02-01

    Lymphatic supermicrosurgery is becoming the treatment of choice for refractory lymphedema. Detection and anastomosis of functional lymphatic vessels are important for lymphatic supermicrosurgery. Navigation lymphatic supermicrosurgery was performed using an operating microscope equipped with an integrated near-infrared illumination system (OPMI Pentero Infrared 800; Carl Zeiss, Oberkochen, Germany). Eight patients with extremity lymphedema who underwent navigation lymphatic supermicrosurgery were evaluated. A total of 21 lymphaticovenular anastomoses were performed on 8 limbs through 14 skin incisions. Lymphatic vessels were enhanced by intraoperative microscopic indocyanine green (ICG) lymphography in 12 of the 14 skin incisions, which resulted in early dissection of lymphatic vessels. All anastomoses showed good anastomosis patency after completion of anastomoses. Postoperative extremity lymphedema index decreased in all limbs. Navigation lymphatic supermicrosurgery, in which lymphatic vessels are visualized with intraoperative microscopic ICG lymphography, allows a lymphatic supermicrosurgeon to find and dissect lymphatic vessels earlier and facilitates successful performance of lymphaticovenular anastomosis.

  15. Cardiac mouse lymphatics: developmental and anatomical update.

    PubMed

    Flaht-Zabost, Aleksandra; Gula, Grzegorz; Ciszek, Bogdan; Czarnowska, Elżbieta; Jankowska-Steifer, Ewa; Madej, Maria; Niderla-Bielińska, Justyna; Radomska-Leśniewska, Dorota; Ratajska, Anna

    2014-06-01

    The adult mouse heart possesses an extensive lymphatic plexus draining predominantly the subepicardium and the outer layer of the myocardial wall. However, the development of this plexus has not been entirely explored, partially because of the lack of suitable methods for its visualization as well as prolonged lymphatic vessel formation that starts prenatally and proceeds during postnatal stages. Also, neither the course nor location of collecting vessels draining lymph from the mouse heart have been precisely characterized. In this article, we report that murine cardiac lymphatic plexus development that is limited prenatally only to the subepicardial area, postnatally proceeds from the subepicardium toward the myocardial wall with the base-to-apex gradient; this plexus eventually reaches the outer half of the myocardium with a predominant location around branches of coronary arteries and veins. Based on multiple marker immunostaining, the molecular marker-phenotype of cardiac lymphatic endothelial cells can be characterized as: Prox-1(+), Lyve-1(+), VEGFR3(+), Podoplanin(+), VEGFR2(+), CD144(+), Tie2(+), CD31(+), vWF(-), CD34(-), CD133(-). There are two major collecting vessels: one draining the right and left ventricles along the left conal vein and running upwards to the left side of the pulmonary trunk and further to the nearest lymph nodes (under the aortic arch and near the trachea), and the other one with its major branch running along the left cardiac vein and further on the surface of the coronary sinus and the left atrium to paratracheal lymph nodes. The extracardiac collectors gain the smooth muscle cell layer during late postnatal stages.

  16. Disappearance and reappearance of high endothelial venules and immigrating lymphocytes in lymph nodes deprived of afferent lymphatic vessels: a possible regulatory role of macrophages in lymphocyte migration.

    PubMed

    Hendriks, H R; Eestermans, I L

    1983-08-01

    Interruption of the afferent lymphatic vessels of the popliteal lymph node resulted in the disappearance of high endothelial venules (HEV) and immigrating lymphocytes within 3 weeks. HEV showed several characteristic morphological changes: the endothelial cells became flattened and less pyroninophilic, the chromatine became condensed and protein synthetizing and secretory cell organelles became scarce. At the same time the number of macrophages in the lymph node was severely reduced. Injection of sheep red blood cells into such lymph nodes, 6 weeks after operation, resulted in reappearance of HEV and immigrating lymphocytes, and development of many plasma cells and some germinal centres. Injection of lipopolysaccharide into the operated lymph nodes resulted in the appearance of many plasma cells and a few poorly developed germinal centres; HEV and immigrating lymphocytes, however, remained almost absent. The results show a relationship between the immigration of lymphocytes and the activity of the endothelial cells in the HEV. The activation of the latter may occur by mediators released by antigen-stimulated macrophages and T cells. Moreover, the morphological features of the HEV are independent of the presence of recirculating lymphocytes.

  17. Lymphatic involvement in the disappearance of steroidogenic cells from the corpus luteum during luteolysis.

    PubMed

    Abe, Hironori; Al-zi'abi, Mohamad Omar; Sekizawa, Fumio; Acosta, Tomas J; Skarzynski, Dariusz J; Okuda, Kiyoshi

    2014-01-01

    In mammals, the corpus luteum (CL) is an essential endocrine gland for the establishment and maintenance of pregnancy. If pregnancy is not established, the CL regresses and disappears rapidly from the ovary. A possible explanation for the rapid disappearance of the CL is that luteal cells are transported from the ovary via lymphatic vessels. Here, we report the presence of cells positive for 3β-hydroxysteroid dehydrogenase (3β-HSD), an enzyme involved in progesterone synthesis, in the lumen of lymphatic vessels at the regressing luteal stage and in the lymphatic fluid collected from the ovarian pedicle ipsilateral to the regressing CL. The 3β-HSD positive cells were alive and contained lipid droplets. The 3β-HSD positive cells in the lymphatic fluid were most abundant at days 22-24 after ovulation. These findings show that live steroidogenic cells are in the lymphatic vessels drained from the CL. The outflow of steroidogenic cells starts at the regressing luteal stage and continues after next ovulation. The overall findings suggest that the complete disappearance of the CL during luteolysis is involved in the outflow of luteal cells from the CL via ovarian lymphatic vessels.

  18. Lymphatic Regulation of Cellular Trafficking

    PubMed Central

    Jackson, David G.

    2016-01-01

    Lymphatic vessels play vital roles in immune surveillance and immune regulation by conveying antigen loaded dendritic cells, memory T cells, macrophages and neutrophils from the peripheral tissues to draining lymph nodes where they initiate as well as modify immune responses. Until relatively recently however, there was little understanding of how entry and migration through lymphatic vessels is organized or the specific molecular mechanisms that might be involved. Within the last decade, the situation has been transformed by an explosion of knowledge generated largely through the application of microscopic imaging, transgenic animals, specific markers and function blocking mAbs that is beginning to provide a rational conceptual framework. This article provides a critical review of the recent literature, highlighting seminal discoveries that have revealed the fascinating ultrastructure of leucocyte entry sites in lymphatic vessels, as well as generating controversies over the involvement of integrin adhesion, chemotactic and haptotactic mechanisms in DC entry under normal and inflamed conditions. It also discusses the major changes in lymphatic architecture that occur during inflammation and the different modes of leucocyte entry and trafficking within inflamed lymphatic vessels, as well as presenting a timely update on the likely role of hyaluronan and the major lymphatic endothelial hyaluronan receptor LYVE-1 in leucocyte transit. PMID:27808282

  19. Dendritic Cell Interactions with Lymphatic Endothelium

    PubMed Central

    Russo, Erica; Nitschké, Maximilian

    2013-01-01

    Abstract Afferent lymphatic vessels fulfill essential immune functions by transporting leukocytes and lymph-borne antigen to draining lymph nodes (dLNs). An important cell type migrating through lymphatic vessels are dendritic cells (DCs). DCs reside in peripheral tissues like the skin, where they take up antigen and transport it via the lymphatic vascular network to dLNs for subsequent presentation to T cells. As such, DCs play a key role in the induction of adaptive immune responses during infection and vaccination, but also for the maintenance of tolerance. Although the migratory pattern of DCs has been known for long time, interactions between DCs and lymphatic vessels are only now starting to be unraveled at the cellular level. In particular, new tools for visualizing lymphatic vessels in combination with time-lapse microscopy have recently generated valuable insights into the process of DC migration to dLNs. In this review we summarize and discuss current approaches for visualizing DCs and lymphatic vessels in tissues for imaging applications. Furthermore, we review the current state of knowledge about DC migration towards, into and within lymphatic vessels, particularly focusing on the cellular interactions that take place between DCs and the lymphatic endothelium. PMID:24044757

  20. Lymphatic endothelial lineage assemblage during corneal lymphangiogenesis

    PubMed Central

    Connor, Alicia L.; Kelley, Philip M.; Tempero, Richard M.

    2015-01-01

    Post natal inflammatory lymphangiogenesis presumably requires precise regulatory processes to properly assemble proliferating lymphatic endothelial cells (LECs). The specific mechanisms that regulate the assembly of LECs during new lymphatic vessel synthesis are unclear. Dynamic endothelial shuffling and rearrangement has been proposed as a mechanism of blood vessel growth. We developed genetic lineage tracing strategies using an inductive transgenic technology to track the fate of entire tandem dimer tomato positive (tdT) lymphatic vessels or small, in some cases clonal, populations of LECs. We coupled this platform with a suture induced mouse model of corneal lymphangiogenesis and used different analytic microscopy techniques including serial live imaging to study the spatial properties of proliferating tdT+ LEC progenies. LEC precursors and their progeny expanded from the corneal limbal lymphatic vessel and were assembled contiguously to comprise a subunit within a new lymphatic vessel. VE-cadherin blockade induced morphologic abnormalities in newly synthesized lymphatic vessels, but did not disrupt the tdT+ lymphatic endothelial lineage assembly. Analysis of this static and dynamic data based largely on direct in vivo observations supports a model of lymphatic endothelial lineage assemblage during corneal inflammatory lymphangiogenesis. PMID:26658452

  1. Role of lymphatic vasculature in regional and distant metastases.

    PubMed

    Podgrabinska, Simona; Skobe, Mihaela

    2014-09-01

    In cancer, lymphatic vasculature has been traditionally viewed only as a transportation system for metastatic cells. It has now become clear that lymphatics perform many additional functions which could influence cancer progression. Lymphangiogenesis, induced at the primary tumor site and at distant sites, potently augments metastasis. Lymphatic endothelial cells (LECs) control tumor cell entry and exit from the lymphatic vessels. LECs also control immune cell traffic and directly modulate adaptive immune responses. This review highlights advances in our understanding of the mechanisms by which lymphatic vessels, and in particular lymphatic endothelium, impact metastasis. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Lymphatic Vascular Response to Acute Inflammation

    PubMed Central

    Lachance, Pier-Anne; Hazen, Amy; Sevick-Muraca, Eva M.

    2013-01-01

    During acute inflammation, functioning lymphatics are believed to reduce edema and to provide a transiting route for immune cells, but the extent at which the dermal lymphatic remodeling impacts lymphatic transport or the factors regulating these changes remains unclear. Herein we quantify the increase in lymphatic endothelial cells (LECs) and examine the expression of pro-angiogenenic and lymphangiogenic factors during acute cutaneous hypersensitivity (CHS). We found that LECs actively proliferate during CHS but that this proliferation does not affect the lymphatic vessel density. Instead, lymphatic remodeling is accompanied by lymphatic vessel leakiness and lower ejection of lymph fluid, which is observed only in the proximal lymphatic vessel draining the inflamed area. LECs and the immune cells release growth factors and cytokines during inflammation, which impact the lymphatic microenvironment and function. We identified that FGF-2, PLGF-2, HGF, EGF, and KC/CXCL17 are differentially expressed within tissues during acute CHS, but both VEGF-C and VEGF-D levels do not significantly change. Our results indicate that VEGF-C and VEGF-D are not the only players and other factors may be responsible for the LECs proliferation and altered lymphatic function in acute CHS. PMID:24086691

  3. Colonic insult impairs lymph flow, increases cellular content of the lymph, alters local lymphatic micro-environment and leads to sustained inflammation in the rat ileum

    PubMed Central

    Cromer, Walter; Wang, Wei; Zawieja, Scott D.; von der Weid, Pierre-Yves; Newell Rogers, M. Karen; Zawieja, David C.

    2015-01-01

    Background Lymphatic dysfunction has been linked to inflammation since the 1930’s. Lymphatic function in the gut and mesentery is grossly underexplored in models of IBD despite the use of lymphatic occlusion in early models of IBD. Activation of the innate and adaptive immune system is a hallmark of TNBS-induced inflammation and is linked to disruption of the intrinsic lymph pump. Recent identification of crosstalk between lymphatic vessel resident immune cells and regulation of lymphatic vessel contractility underscore the importance of the timing of lymphatic dysfunction during tissue inflammation in response to TNBS. Methods To evaluate lymphatic function in TNBS induced inflammation, lymph was collected and flow measured from mesenteric lymphatics. Cellularity and cytokine profile of the lymph was also measured. Histopathology was performed to determine severity of injury and immunofluorescent staining of the mesentery was done to evaluate changes in the population of immune cells that reside near and on gastro-intestinal collecting lymphatics. Results Lymph transport fell 24hrs after TNBS administration and began recovering at 72hrs. Significant reduction of lymph flow preceded significant increase in histopathological score and occurred simultaneously with increased MPO activity. These changes were preceded by increased MHCII+ cells surrounding mesenteric lymphatics leading to an altered lymphatic environment that would favor dysfunction. Conclusions Alterations in environmental factors that effect lymphatic function occur before the development of gross GI inflammation. Reduced lymphatic function in TNBS-mediated inflammation is likely an early factor in the development of injury and that recovery of function is associated with resolution of inflammation. PMID:25939039

  4. Increased Detection of Lymphatic Vessel Invasion by D2-40 (Podoplanin) in Early Breast Cancer: Possible Influence on Patient Selection for Accelerated Partial Breast Irradiation

    SciTech Connect

    Debald, Manuel; Poelcher, Martin; Flucke, Uta; Walgenbach-Bruenagel, Gisela

    2010-07-15

    Purpose: Several international trials are currently investigating accelerated partial breast irradiation (APBI) for patients with early-stage breast cancer. According to existing guidelines, patients with lymphatic vessel invasion (LVI) do not qualify for APBI. D2-40 (podoplanin) significantly increases the frequency of LVI detection compared with conventional hematoxylin and eosin (HE) staining in early-stage breast cancer. Our purpose was to retrospectively assess the hypothetical change in management from APBI to whole breast radiotherapy with the application of D2-40. Patients and Methods: Immunostaining with D2-40 was performed on 254 invasive breast tumors of 247 patients. The following criteria were used to determine the eligibility for APBI: invasive ductal adenocarcinoma of {<=}3 cm, negative axillary node status (N0), and unifocal disease. Of the 247 patients, 74 with available information concerning LVI, as detected by D2-40 immunostaining and routine HE staining, formed our study population. Results: Using D2-40, our results demonstrated a significantly greater detection rate (p = .031) of LVI compared with routine HE staining. LVI was correctly identified by D2-40 (D2-40-positive LVI) in 10 (13.5%) of 74 tumors. On routine HE staining, 4 tumors (5.4%) were classified as HE-positive LVI. Doublestaining of these specimens with D2-40 unmasked false-positive LVI status in 2 (50%) of the 4 tumors. According to the current recommendations for APBI, immunostaining with D2-40 would have changed the clinical management from APBI to whole breast radiotherapy in 8 (10.8%) of 74 patients and from whole breast radiotherapy to APBI in 2 patients (2.7%). Conclusion: These data support the implementation of D2-40 immunostaining in the routine workup to determine a patient's eligibility for APBI.

  5. 76 FR 52317 - Proposed Information Collection; Comment Request; Northwest Region Vessel Identification...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-22

    ...-compliant fishermen ultimately benefit as unauthorized and illegal fishing is deterred and more burdensome regulations are avoided. II. Method of Collection Fishing vessel owners physically mark vessel with... facilitate enforcement. The ability to link fishing or other activity to the vessel owner or operator is...

  6. 75 FR 43487 - Proposed Information Collection; Comment Request; Vessel Monitoring System Requirements in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-26

    ... Monitoring System Requirements in Western Pacific Pelagic and Bottomfish Fisheries AGENCY: National Oceanic... vessel monitoring system (VMS) units on their vessels when directed to do so by NOAA enforcement... approved collections for VMS requirements, OMB Control No. 0648-0441 (Vessel Monitoring System...

  7. Postprandial lymphatic pump function after a high-fat meal: a characterization of contractility, flow, and viscosity.

    PubMed

    Kassis, Timothy; Yarlagadda, Sri Charan; Kohan, Alison B; Tso, Patrick; Breedveld, Victor; Dixon, J Brandon

    2016-05-15

    Dietary lipids are transported from the intestine through contractile lymphatics. Chronic lipid loads can adversely affect lymphatic function. However, the acute lymphatic pump response in the mesentery to a postprandial lipid meal has gone unexplored. In this study, we used the rat mesenteric collecting vessel as an in vivo model to quantify the effect of lipoproteins on vessel function. Lipid load was continuously monitored by using the intensity of a fluorescent fatty-acid analog, which we infused along with a fat emulsion through a duodenal cannula. The vessel contractility was simultaneously quantified. We demonstrated for the first time that collecting lymphatic vessels respond to an acute lipid load by reducing pump function. High lipid levels decreased contraction frequency and amplitude. We also showed a strong tonic response through a reduction in the end-diastolic and systolic diameters. We further characterized the changes in flow rate and viscosity and showed that both increase postprandially. In addition, shear-mediated Ca(2+) signaling in lymphatic endothelial cells differed when cultured with lipoproteins. Together these results show that the in vivo response could be both shear and lipid mediated and provide the first evidence that high postprandial lipid has an immediate negative effect on lymphatic function even in the acute setting. Copyright © 2016 the American Physiological Society.

  8. Minimally invasive method for determining the effective lymphatic pumping pressure in rats using near-infrared imaging

    PubMed Central

    Nelson, Tyler S.; Akin, Ryan E.; Weiler, Michael J.; Kassis, Timothy; Kornuta, Jeffrey A.

    2014-01-01

    The ability to quantify collecting vessel function in a minimally invasive fashion is crucial to the study of lymphatic physiology and the role of lymphatic pump function in disease progression. Therefore, we developed a highly sensitive, minimally invasive research platform for quantifying the pumping capacity of collecting lymphatic vessels in the rodent tail and forelimb. To achieve this, we have integrated a near-infrared lymphatic imaging system with a feedback-controlled pressure cuff to modulate lymph flow. After occluding lymphatic flow by inflating a pressure cuff on the limb or tail, we gradually deflate the cuff while imaging flow restoration proximal to the cuff. Using prescribed pressure applications and automated image processing of fluorescence intensity levels in the vessels, we were able to noninvasively quantify the effective pumping pressure (Peff, pressure at which flow is restored after occlusion) and vessel emptying rate (rate of fluorescence clearance during flow occlusion) of lymphatics in the rat. To demonstrate the sensitivity of this system to changes in lymphatic function, a nitric oxide (NO) donor cream, glyceryl trinitrate ointment (GTNO), was applied to the tails. GTNO decreased Peff of the vessels by nearly 50% and the average emptying rate by more than 60%. We also demonstrate the suitability of this approach for acquiring measurements on the rat forelimb. Thus, this novel research platform provides the first minimally invasive measurements of Peff and emptying rate in rodents. This experimental platform holds strong potential for future in vivo studies that seek to evaluate changes in lymphatic health and disease. PMID:24430884

  9. Aged lymphatic contractility: recent answers and new questions.

    PubMed

    Gashev, Anatoliy A; Chatterjee, Victor

    2013-03-01

    Abstract An overview is presented of recent findings related to biology of aging of the lymph transport system. The authors discuss recently obtained data on the aging-associated alterations of lymphatic contractility in thoracic duct and mesenteric lymphatic vessels; on comparisons of function of aged mesenteric lymphatic vessels in situ versus isolated specimens and important conclusions which arose from these studies; on aging-associated changes in functional status of mast cells located close to aged mesenteric lymphatic vessels; on evidence of presence of oxidative stress in aged lymphatic vessels and changes in arrangement of muscle cells in their walls. The authors conclude that future continuation of the research efforts in this area is necessary and will be able to provide not only novel fundamental knowledge on the biology of lymphatic aging, but also will create solid foundation for the subsequent developments of lymphatic-oriented therapeutic interventions in many diseases of the elderly.

  10. 33 CFR 187.101 - What information must be collected to identify a vessel owner?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) BOATING SAFETY VESSEL IDENTIFICATION SYSTEM Information to be Collected by Participating States § 187.101 What information must be collected to identify a vessel owner... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false What information must...

  11. 33 CFR 187.103 - What information must be collected to identify a vessel?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) BOATING SAFETY VESSEL IDENTIFICATION SYSTEM Information to be Collected by Participating States § 187.103 What information must be collected to identify a vessel? A... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false What information must...

  12. 76 FR 65206 - Agency Information Collection Activities: Small Vessel Reporting System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-20

    ... concerning the following information collection: Title: Small Vessel Reporting System. OMB Number: Will be... SECURITY U.S. Customs and Border Protection Agency Information Collection Activities: Small Vessel Reporting System AGENCY: U.S. Customs and Border Protection (CBP), Department of Homeland Security....

  13. Efficient Assessment of Developmental, Surgical and Pathological Lymphangiogenesis Using a Lymphatic Reporter Mouse and Its Embryonic Stem Cells

    PubMed Central

    Jung, Wonhyuek; Seong, Young Jin; Park, Eunkyung; Bramos, Athanasios; Kim, Kyu Eui; Lee, Sunju; Daghlian, George; Seo, Jung In; Choi, Inho; Choi, In-Seon; Koh, Chester J.; Kobielak, Agnieszka; Ying, Qi-Long; Johnson, Maxwell; Gardner, Daniel; Wong, Alex K.; Choi, Dongwon; Hong, Young-Kwon

    2016-01-01

    Several lymphatic reporter mouse lines have recently been developed to significantly improve imaging of lymphatic vessels. Nonetheless, the usage of direct visualization of lymphatic vessels has not been fully explored and documented. Here, we characterized a new Prox1-tdTomato transgenic lymphatic reporter mouse line, and demonstrated how this animal tool enables the researchers to efficiently assess developmental, surgical and pathological lymphangiogenesis by direct visualization of lymphatic vessels. Moreover, we have derived embryonic stem cells from this reporter line, and successfully differentiated them into lymphatic vessels in vivo. In conclusion, these experimental tools and techniques will help advance lymphatic research. PMID:27280889

  14. The Lymphatic System in Disease Processes and Cancer Progression

    PubMed Central

    Padera, Timothy P.; Meijer, Eelco F.J.; Munn, Lance L.

    2016-01-01

    Advances in our understanding of the structure and function of the lymphatic system have made it possible to identify its role in a variety of disease processes. Because it is involved not only in fluid homeostasis but also in immune cell trafficking, the lymphatic system can mediate and ultimately alter immune responses. Our rapidly increasing knowledge of the molecular control of the lymphatic system will inevitably lead to new and effective therapies for patients with lymphatic dysfunction. In this review, we discuss the molecular and physiological control of lymphatic vessel function and explore how the lymphatic system contributes to many disease processes, including cancer and lymphedema. PMID:26863922

  15. 33 CFR 187.105 - What information on titled vessels must be collected and what may be collected?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... SYSTEM Information to be Collected by Participating States § 187.105 What information on titled vessels... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false What information on titled... information on a vessel it has titled and make it available to VIS: (1) Information required under §...

  16. 33 CFR 187.105 - What information on titled vessels must be collected and what may be collected?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SYSTEM Information to be Collected by Participating States § 187.105 What information on titled vessels... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false What information on titled... information on a vessel it has titled and make it available to VIS: (1) Information required under §...

  17. 33 CFR 187.105 - What information on titled vessels must be collected and what may be collected?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... SYSTEM Information to be Collected by Participating States § 187.105 What information on titled vessels... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false What information on titled... information on a vessel it has titled and make it available to VIS: (1) Information required under §...

  18. 33 CFR 187.105 - What information on titled vessels must be collected and what may be collected?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... SYSTEM Information to be Collected by Participating States § 187.105 What information on titled vessels... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false What information on titled... information on a vessel it has titled and make it available to VIS: (1) Information required under §...

  19. 33 CFR 187.105 - What information on titled vessels must be collected and what may be collected?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... SYSTEM Information to be Collected by Participating States § 187.105 What information on titled vessels... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false What information on titled... information on a vessel it has titled and make it available to VIS: (1) Information required under §...

  20. Lymphatic filariasis.

    PubMed

    2008-02-01

    (1) Lymphatic filariasis is a set of parasitic diseases that are endemic in tropical and subtropical regions and can be disabling in the long term. (2) The standard antiparasitic drug for adults is oral diethylcarbamazine. Ivermectin is an alternative, especially for patients with intercurrent onchocercosis or loasis.

  1. Lymphatic Imaging: Focus on Imaging Probes

    PubMed Central

    Niu, Gang; Chen, Xiaoyuan

    2015-01-01

    In view of the importance of sentinel lymph nodes (SLNs) in tumor staging and patient management, sensitive and accurate imaging of SLNs has been intensively explored. Along with the advance of the imaging technology, various contrast agents have been developed for lymphatic imaging. In this review, the lymph node imaging agents were summarized into three groups: tumor targeting agents, lymphatic targeting agents and lymphatic mapping agents. Tumor targeting agents are used to detect metastatic tumor tissue within LNs, lymphatic targeting agents aim to visualize lymphatic vessels and lymphangionesis, while lymphatic mapping agents are mainly for SLN detection during surgery after local administration. Coupled with various signal emitters, these imaging agents work with single or multiple imaging modalities to provide a valuable way to evaluate the location and metastatic status of SLNs. PMID:25897334

  2. Gastrointestinal Lymphatics in Health and Disease

    PubMed Central

    Alexander, J.S.; Ganta, Vijay C.; Jordan, P.A.; Witte, Marlys H.

    2010-01-01

    Lymphatics perform essential transport and immune cell regulatory functions to maintain homeostasis in the gastrointestinal (GI) system. Although blood and lymphatic vessels function as parallel and integrated systems, our understanding of lymphatic structure, regulation and functioning lags far behind that of the blood vascular system. This chapter reviews lymphatic flow, differences in lymphangiogenic and hemangiogenic factors, lymphatic fate determinants and structural features, and examines how altered molecular signaling influences lymphatic function in organs of the GI system. Innate errors in lymphatic development frequently disturb GI functioning and physiology. Expansion of lymphatics, a prominent feature of GI inflammation, may also play an important role in tissue restitution following injury. Destruction or dysregulation of lymphatics, following injury, surgery or chronic inflammation also appears to exacerbate GI disease activity and morbidity. Understanding the physiological roles played by GI lymphatics is essential to elucidating their underlying contributions to forms of congenital and acquired forms of GI pathology, and will provide novel approaches for treatment of these conditions. PMID:20022228

  3. Lymphatic regulation in nonmammalian vertebrates.

    PubMed

    Hedrick, Michael S; Hillman, Stanley S; Drewes, Robert C; Withers, Philip C

    2013-08-01

    All vertebrate animals share in common the production of lymph through net capillary filtration from their closed circulatory system into their tissues. The balance of forces responsible for net capillary filtration and lymph formation is described by the Starling equation, but additional factors such as vascular and interstitial compliance, which vary markedly among vertebrates, also have a significant impact on rates of lymph formation. Why vertebrates show extreme variability in rates of lymph formation and how nonmammalian vertebrates maintain plasma volume homeostasis is unclear. This gap hampers our understanding of the evolution of the lymphatic system and its interaction with the cardiovascular system. The evolutionary origin of the vertebrate lymphatic system is not clear, but recent advances suggest common developmental factors for lymphangiogenesis in teleost fishes, amphibians, and mammals with some significant changes in the water-land transition. The lymphatic system of anuran amphibians is characterized by large lymphatic sacs and two pairs of lymph hearts that return lymph into the venous circulation but no lymph vessels per se. The lymphatic systems of reptiles and some birds have lymph hearts, and both groups have extensive lymph vessels, but their functional role in both lymph movement and plasma volume homeostasis is almost completely unknown. The purpose of this review is to present an evolutionary perspective in how different vertebrates have solved the common problem of the inevitable formation of lymph from their closed circulatory systems and to point out the many gaps in our knowledge of this evolutionary progression.

  4. Lymphatic Territories (Lymphosomes) in Swine: An Animal Model for Future Lymphatic Research.

    PubMed

    Ito, Ran; Suami, Hiroo

    2015-08-01

    The swine is a common preclinical large-animal model for medical research because of the resemblance of its tissue structures to those of humans. However, the lymphatic system in swine is poorly understood. The authors investigated the lymphatic system and defined territories (lymphosomes) in swine using the microinjection technique. Six swine (two male and four female 17.5- to 50-kg Sus domesticus) were used. Real-time indocyanine green fluorescence lymphography was performed in four live swine. After the animals were killed, the authors injected a radiocontrast mixture consisting of barium sulfate and hydrogen peroxide with red acrylic dye directly into lymphatic vessels in six swine carcasses. Courses of the lymphatic vessel were analyzed radiographically. The lymphatic vessels were dissected meticulously and chased until they connected to the first-tier (sentinel) lymph node. This procedure was repeated throughout the body until all the relationships between the lymphatic vessels and lymph nodes were defined. The authors successfully mapped the superficial lymphatic vessels and their corresponding lymph nodes. Indocyanine green fluorescence lymphography and subsequent radiography revealed that the swine lymphatic system contained seven lymphosomes: parotid, mandibular, dorsal cervical, ventral cervical, subiliac, inguinal, and popliteal territories. Of note, no lymph nodes existed in the superficial axillary region. The swine could be a useful large-animal model for lymphatic research because of the anatomical consistency of the lymphosomes among animals and the sizable lymphatic vessels. However, swine lack the superficial axillary lymph node found in humans, suggesting that swine may not be a good model for breast cancer-related lymphedema.

  5. Development of the larval lymphatic system in zebrafish.

    PubMed

    Jung, Hyun Min; Castranova, Daniel; Swift, Matthew R; Pham, Van N; Venero Galanternik, Marina; Isogai, Sumio; Butler, Matthew G; Mulligan, Timothy S; Weinstein, Brant M

    2017-06-01

    The lymphatic vascular system is a hierarchically organized complex network essential for tissue fluid homeostasis, immune trafficking and absorption of dietary fats in the human body. Despite its importance, the assembly of the lymphatic network is still not fully understood. The zebrafish is a powerful model organism that enables study of lymphatic vessel development using high-resolution imaging and sophisticated genetic and experimental manipulation. Although several studies have described early lymphatic development in the fish, lymphatic development at later stages has not been completely elucidated. In this study, we generated a new Tg(mrc1a:egfp)(y251) transgenic zebrafish that uses a mannose receptor, C type 1 (mrc1a) promoter to drive strong EGFP expression in lymphatic vessels at all stages of development and in adult zebrafish. We used this line to describe the assembly of the major vessels of the trunk lymphatic vascular network, including the later-developing collateral cardinal, spinal, superficial lateral and superficial intersegmental lymphatics. Our results show that major trunk lymphatic vessels are conserved in the zebrafish, and provide a thorough and complete description of trunk lymphatic vessel assembly. © 2017. Published by The Company of Biologists Ltd.

  6. The lymphatic vasculature: development and role in shaping immunity.

    PubMed

    Betterman, Kelly L; Harvey, Natasha L

    2016-05-01

    The lymphatic vasculature is an integral component of the immune system. Lymphatic vessels are a key highway via which immune cells are trafficked, serving not simply as a passive route of transport, but to actively shape and coordinate immune responses. Reciprocally, immune cells provide signals that impact the growth, development, and activity of the lymphatic vasculature. In addition to immune cell trafficking, lymphatic vessels are crucial for fluid homeostasis and lipid absorption. The field of lymphatic vascular research is rapidly expanding, fuelled by rapidly advancing technology that has enabled the manipulation and imaging of lymphatic vessels, together with an increasing recognition of the involvement of lymphatic vessels in a myriad of human pathologies. In this review we provide an overview of the genetic pathways and cellular processes important for development and maturation of the lymphatic vasculature, discuss recent work revealing important roles for the lymphatic vasculature in directing immune cell traffic and coordinating immune responses and highlight the involvement of lymphatic vessels in a range of pathological settings. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Superselective retrograde lymphatic duct embolization for management of postoperative lymphatic leak.

    PubMed

    Arslan, Bülent; Masrani, Abdulrahman; Tasse, Jordan Cameron; Stenson, Kerstin; Turba, Ülkü Cenk

    2017-01-01

    Lymphatic leak is a well-documented complication following neck dissection surgeries. When conservative methods fail to control the leak, thoracic duct embolization becomes an option. Transabdominal access is the standard for this procedure; however, it is not always feasible. We discuss a technique of selective lymphatic vessel embolization utilizing retrograde transvenous access.

  8. Superselective retrograde lymphatic duct embolization for management of postoperative lymphatic leak

    PubMed Central

    Arslan, Bülent; Masrani, Abdulrahman; Tasse, Jordan Cameron; Stenson, Kerstin; Turba, Ülkü Cenk

    2017-01-01

    Lymphatic leak is a well-documented complication following neck dissection surgeries. When conservative methods fail to control the leak, thoracic duct embolization becomes an option. Transabdominal access is the standard for this procedure; however, it is not always feasible. We discuss a technique of selective lymphatic vessel embolization utilizing retrograde transvenous access. PMID:28724508

  9. A model to measure lymphatic drainage from the eye.

    PubMed

    Kim, Minhui; Johnston, Miles G; Gupta, Neeru; Moore, Sara; Yücel, Yeni H

    2011-11-01

    Intraocular pressure (IOP) is the most important risk factor for glaucoma development and progression. Most anti-glaucoma treatments aim to lower IOP by enhancing aqueous humor drainage from the eye. Aqueous humor drainage occurs via well-characterized trabecular meshwork (TM) and uveoscleral (UVS) pathways, and recently described ciliary body lymphatics. The relative contribution of the lymphatic pathway to aqueous drainage is not known. We developed a sheep model to quantitatively assess lymphatic drainage along with TM and UVS outflows. This study describes that model and presents our initial findings. Following intracameral injection of (125)I-bovine serum albumin (BSA), lymph was continuously collected via cannulated cervical lymphatic vessels and the thoracic lymphatic duct over either a 3-h or 5-h time period. In the same animals, blood samples were collected from the right jugular vein every 15 min. Lymphatic and TM drainage were quantitatively assessed by measuring (125)I-BSA in lymph and plasma, respectively. Radioactive tracer levels were also measured in UVS and "other" ocular tissue, as well as periocular tissue harvested 3 and 5 h post-injection. Tracer recovered from UVS tissue was used to estimate UVS drainage. The amount of (125)I-BSA recovered from different fluid and tissue compartments was expressed as a percentage of total recovered tracer. Three hours after tracer injection, percentage of tracer recovered in lymph and plasma was 1.64% ± 0.89% and 68.86% ± 9.27%, respectively (n = 8). The percentage of tracer in UVS, other ocular and periocular tissues was 19.87% ± 5.59%, 4.30% ± 3.31% and 5.32% ± 2.46%, respectively. At 5 h (n = 2), lymphatic drainage was increased (6.40% and 4.96% vs. 1.64%). On the other hand, the percentage of tracer recovered from UVS and other ocular tissue had decreased, and the percentage from periocular tissue showed no change. Lymphatic drainage increased steadily over the 3 h post-injection period, while TM

  10. Cardiac Lymphatics - A New Avenue for Therapeutics?

    PubMed

    Vuorio, Taina; Tirronen, Annakaisa; Ylä-Herttuala, Seppo

    2017-01-10

    Recent progress in lymphatic vessel biology and in novel imaging techniques has established the importance of the lymphatic vasculature as part of the cardiovascular system. The lymphatic vessel network regulates many physiological processes important for heart function such as fluid balance, transport of extravasated proteins, and trafficking of immune cells. Therefore, lymphangiogenic therapy could be beneficial in the treatment of cardiovascular diseases, for example by improving reverse cholesterol transport (RCT) from atherosclerotic lesions or by resolving edema and fibrosis after myocardial infarction. In this review we first describe recent findings on the development and function of cardiac lymphatic vessels, and subsequently focus on the prospects of pro- and anti-lymphangiogenic therapies in cardiovascular diseases.

  11. 75 FR 62098 - Proposed Information Collection; Comment Request; Expanded Vessel Monitoring System Requirement...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-07

    ... National Oceanic and Atmospheric Administration Proposed Information Collection; Comment Request; Expanded Vessel Monitoring System Requirement in the Pacific Coast Groundfish Fishery AGENCY: National Oceanic and... Federal agencies to take this opportunity to comment on proposed and/or continuing information...

  12. 76 FR 12339 - Proposed Information Collection; Comment Request; Southwest Region Vessel Identification...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-07

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Proposed Information Collection; Comment Request; Southwest Region Vessel Identification Requirements AGENCY: National Oceanic and Atmospheric Administration...

  13. Lymphatic Education & Research Network

    MedlinePlus

    Lymphatic Education & Research Network Donate Now Become a Supporting Member X Living with LYMPHEDEMA AND Lymphatic Disease FAQs About ... 261 Madison Avenue, New York, NY 10016 | Lymphatic Education & Research Network is a 501(c)(3) under ...

  14. Lymphatic Anomalies Registry

    ClinicalTrials.gov

    2016-07-26

    Lymphatic Malformation; Generalized Lymphatic Anomaly (GLA); Central Conducting Lymphatic Anomaly; CLOVES Syndrome; Gorham-Stout Disease ("Disappearing Bone Disease"); Blue Rubber Bleb Nevus Syndrome; Kaposiform Lymphangiomatosis; Kaposiform Hemangioendothelioma/Tufted Angioma; Klippel-Trenaunay Syndrome; Lymphangiomatosis

  15. Altered lymphatics in an ovine model of congenital heart disease with increased pulmonary blood flow.

    PubMed

    Datar, Sanjeev A; Johnson, Eric G; Oishi, Peter E; Johengen, Michael; Tang, Eric; Aramburo, Angela; Barton, Jubilee; Kuo, Hsuan-Chang; Bennett, Stephen; Xoinis, Konstantine; Reel, Bhupinder; Kalkan, Gokhan; Sajti, Eniko; Osorio, Oscar; Raff, Gary W; Matthay, Michael A; Fineman, Jeffrey R

    2012-03-15

    Abnormalities of the lymphatic circulation are well recognized in patients with congenital heart defects. However, it is not known how the associated abnormal blood flow patterns, such as increased pulmonary blood flow (PBF), might affect pulmonary lymphatic function and structure. Using well-established ovine models of acute and chronic increases in PBF, we cannulated the efferent lymphatic duct of the caudal mediastinal node and collected and analyzed lymph effluent from the lungs of lambs with acutely increased PBF (n = 6), chronically increased PBF (n = 6), and age-matched normal lambs (n = 8). When normalized to PBF, we found that lymph flow was unchanged following acute increases in PBF but decreased following chronic increases in PBF. The lymph:plasma protein ratio decreased with both acute and chronic increases in PBF. Lymph bioavailable nitric oxide increased following acute increases in PBF but decreased following chronic increases in PBF. In addition, we found perturbations in the transit kinetics of contrast material through the pleural lymphatics of lambs with chronic increases in PBF. Finally, there were structural changes in the pulmonary lymphatic system in lambs with chronic increases in PBF: lymphatics from these lambs were larger and more dilated, and there were alterations in the expression of vascular endothelial growth factor-C, lymphatic vessel endothelial hyaluronan receptor-1, and Angiopoietin-2, proteins known to be important for lymphatic growth, development, and remodeling. Taken together these data suggest that chronic increases in PBF lead to both functional and structural aberrations of lung lymphatics. These findings have important therapeutic implications that warrant further study.

  16. Lymphatic response to depilation-induced inflammation in mouse ear assessed with label-free optical lymphangiography.

    PubMed

    Qin, Wan; Baran, Utku; Wang, Ruikang

    2015-10-01

    Optical microangiography (OMAG) is a noninvasive technique capable of imaging 3D microvasculature. OMAG-based optical lymphangiography has been developed for 3D visualization of lymphatic vessels without the need for exogenous contrast agents. In this study, we utilize the optical lymphangiography to investigate dynamic changes in lymphatic response within skin tissue to depilation-induced inflammation by using mouse ear as a simple tissue model. A spectral-domain optical coherence tomography (OCT) system is used in this study to acquire volumetric images of mouse ear. The system operates under the ultrahigh-sensitive OMAG scanning protocol with five repetitions for each B frame. An improved adaptive-threshold-based method is proposed to segment lymphatic vessels from OCT microstructure images. Depilation is achieved by placing hair removal lotion on mouse ear pinna for 5 minutes. Three acquisitions are made before depilation, 3-minute and 30-minute post-depilation, respectively. Right after the application of depilation lotion on the skin, we observe that the blind-ended sacs of initial lymphatics are mainly visible in a specific area of the normal tissue. At 5 minutes, more collecting lymphatic vessels start to form, evidenced by their valve structure that only exists in collecting lymphatic vessels. The lymphangiogenesis is almost completed within 8 minutes in the inflammatory tissue. Our experimental results demonstrate that the OMAG-based optical lymphangiography has great potential to improve the understanding of lymphatic system in response to various physiological conditions, thus would benefit the development of effective therapeutics. © 2015 Wiley Periodicals, Inc.

  17. Fluorescence imaging of lymphatic outflow of cerebrospinal fluid in mice.

    PubMed

    Kwon, Sunkuk; Janssen, Christopher F; Velasquez, Fred Christian; Sevick-Muraca, Eva M

    2017-10-01

    Cerebrospinal fluid (CSF) is known to be reabsorbed by the lymphatic vessels and drain into the lymph nodes (LNs) through peripheral lymphatic vessels. In the peripheral lymphatics, the contractile pumping action of lymphangions mediates lymph drainage; yet it is unknown whether lymphatic vessels draining cranial and spinal CSF show similar function. Herein, we used non-invasive near-infrared fluorescence imaging (NIRFI) to image (i) indocyanine green (ICG) distribution along the neuraxis and (ii) routes of ICG-laden CSF outflow into the lymphatics following intrathecal lumbar administration. We demonstrate lymphatic contractile function in peripheral lymphatics draining from the nasal lymphatics to the mandibular LNs. In addition, we observed afferent sciatic lymphatic vessels, which also show contractile activity and transport spinal CSF into the sciatic LNs. This drainage pattern was also visualized by NIRFI following intrathecal thoracic injection. In situ intravital imaging following intrathecal lumbar injection of blue dye shows similar distributions to that seen in vivo with ICG. NIRFI could be used as a tool to probe CSF pathology including neurological disorders by imaging CSF outflow dynamics to lymphatics. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Increased nitric oxide production in lymphatic endothelial cells causes impairment of lymphatic drainage in cirrhotic rats.

    PubMed

    Ribera, Jordi; Pauta, Montse; Melgar-Lesmes, Pedro; Tugues, Sònia; Fernández-Varo, Guillermo; Held, Kara F; Soria, Guadalupe; Tudela, Raúl; Planas, Anna M; Fernández-Hernando, Carlos; Arroyo, Vicente; Jiménez, Wladimiro; Morales-Ruiz, Manuel

    2013-01-01

    The lymphatic network plays a major role in maintaining tissue fluid homoeostasis. Therefore several pathological conditions associated with oedema formation result in deficient lymphatic function. However, the role of the lymphatic system in the pathogenesis of ascites and oedema formation in cirrhosis has not been fully clarified. The aim of this study was to investigate whether the inability of the lymphatic system to drain tissue exudate contributes to the oedema observed in cirrhosis. Cirrhosis was induced in rats by CCl(4) inhalation. Lymphatic drainage was evaluated using fluorescent lymphangiography. Expression of endothelial nitric oxide synthase (eNOS) was measured in primary lymphatic endothelial cells (LyECs). Inhibition of eNOS activity in cirrhotic rats with ascites (CH) was carried out by L-N(G)-methyl-L-arginine (L-NMMA) treatment (0.5 mg/kg/day). The (CH) rats had impaired lymphatic drainage in the splanchnic and peripheral regions compared with the control (CT) rats. LyECs isolated from the CH rats showed a significant increase in eNOS and nitric oxide (NO) production. In addition, the lymphatic vessels of the CH rats showed a significant reduction in smooth muscle cell (SMC) coverage compared with the CT rats. CH rats treated with L-NMMA for 7 days showed a significant improvement in lymphatic drainage and a significant reduction in ascites volume, which were associated with increased plasma volume. This beneficial effect of L-NMMA inhibition was also associated with a significant increase in lymphatic SMC coverage. The upregulation of eNOS in the LyECs of CH rats causes long-term lymphatic remodelling, which is characterised by a loss of SMC lymphatic coverage. The amelioration of this lymphatic abnormality by chronic eNOS inhibition results in improved lymphatic drainage and reduced ascites.

  19. 76 FR 59660 - Proposed Information Collection; Comment Request; Permitting, Vessel Identification, and Vessel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-27

    ... potential participants in the fishery, and aid in enforcement of regulations and area closures. II. Method of Collection Respondents have a choice of either electronic or paper forms. Methods of submittal include e-mail of electronic forms, and mail and facsimile transmission of paper forms. VMS data...

  20. Lymphatic Lipid Transport: Sewer or Subway?

    PubMed Central

    Dixon, J. Brandon

    2010-01-01

    The lymphatics began receiving attention in the scientific community as early as 1622, when Gasparo Aselli noted the appearance of milky white vessels in the mesentery of a well-fed dog. Since this time, the lymphatic system has been historically regarded as the sewer of the vasculature, passively draining fluid and proteins from the interstitial spaces (along with lipid from the gut) into the blood. Recent reports, however, suggest that the lymphatic role in lipid transport is an active and intricate process and when lymphatic function is compromised, there are systemic consequences to lipid metabolism and transport. This review highlights these recent findings and suggests future directions for understanding the interplay between lymphatic and lipid biology in health and disease. PMID:20541951

  1. Computerized collection, assimilation, and analysis of vessel survey data

    NASA Astrophysics Data System (ADS)

    Cartwright, David; Samways, Roger

    1995-06-01

    Effective 'hull condition assessment' relies not only on regular, intensive ultrasonic inspection but also on proper analysis of the collected data. Practical appraisal can only be achieved by computerization--a task hindered by the lack of standards. Historically, engineering terms, gauging patterns, equipment standards, definitions, and nomenclature have varied from one classification, society, shipowner, shipbuilder, and NDT Company to another. The International Association of Classification Socieities should be formalizing standards; they appear to be causing more fragmentation. Surtest Marine and Cygnus Instruments are forming systems that they feel must meet the necessary criteria for all parties in today's technologically and financialy demanding shipping industry.

  2. 76 FR 82314 - Agency Information Collection Activities: Small Vessel Reporting System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-30

    ... SECURITY U.S. Customs and Border Protection Agency Information Collection Activities: Small Vessel Reporting System AGENCY: U.S. Customs and Border Protection, Department of Homeland Security. ACTION: 30-Day notice and request for comments; Establishment of a new collection of information. SUMMARY: U.S....

  3. 78 FR 61378 - Agency Information Collection Activities: Small Vessel Reporting System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-03

    ... SECURITY U.S. Customs and Border Protection Agency Information Collection Activities: Small Vessel Reporting System AGENCY: U.S. Customs and Border Protection, Department of Homeland Security. ACTION: 60-Day notice and request for comments; extension of an existing collection of information. SUMMARY: As part...

  4. Lymphatic System: An Active Pathway for Immune Protection

    PubMed Central

    Liao, Shan; von der Weid, Pierre-Yves

    2015-01-01

    Lymphatic vessels are well known to participate in the immune response by providing the structural and functional support for the delivery of antigens and antigen presenting cells to draining lymph nodes. Recent advances have improved our understanding of how the lymphatic system works and how it participates to the development of immune responses. New findings suggest that the lymphatic system may control the ultimate immune response through a number of ways which include guiding antigen/dendritic cells (DC) entry into initial lymphatics at the periphery; promoting antigen/DC trafficking through afferent lymphatic vessels by actively facilitating lymph and cell movement; enabling antigen presentation in lymph nodes via a network of lymphatic endothelial cells and lymph node stroma cell and finally by direct lymphocytes exit from lymph nodes. The same mechanisms are likely also important to maintain peripheral tolerance. In this review we will discuss how the morphology and gene expression profile of the lymphatic endothelial cells in lymphatic vessels and lymph nodes provides a highly efficient pathway to initiate immune responses. The fundamental understanding of how lymphatic system participates in immune regulation will guide the research on lymphatic function in various diseases. PMID:25534659

  5. Lymphatic system: an active pathway for immune protection.

    PubMed

    Liao, Shan; von der Weid, P Y

    2015-02-01

    Lymphatic vessels are well known to participate in the immune response by providing the structural and functional support for the delivery of antigens and antigen presenting cells to draining lymph nodes. Recent advances have improved our understanding of how the lymphatic system works and how it participates to the development of immune responses. New findings suggest that the lymphatic system may control the ultimate immune response through a number of ways which may include guiding antigen/dendritic cells (DC) entry into initial lymphatics at the periphery; promoting antigen/DC trafficking through afferent lymphatic vessels by actively facilitating lymph and cell movement; enabling antigen presentation in lymph nodes via a network of lymphatic endothelial cells and lymph node stroma cell and finally by direct lymphocytes exit from lymph nodes. The same mechanisms are likely also important to maintain peripheral tolerance. In this review we will discuss how the morphology and gene expression profile of the lymphatic endothelial cells in lymphatic vessels and lymph nodes provides a highly efficient pathway to initiate immune responses. The fundamental understanding of how lymphatic system participates in immune regulation will guide the research on lymphatic function in various diseases. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. LYMPHATIC INJURY AND REGENERATION IN CARDIAC ALLOGRAFTS

    PubMed Central

    Soong, Thing Rinda; Pathak, Arvind; Asano, Hiroshi; Fox-Talbot, Karen; Baldwin, William M

    2009-01-01

    Background: Severed donor heart lymphatics are not anastomosed to recipient lymphatics in cardiac transplantation. We evaluated the effects of cellular infiltrates of T cells and macrophages on the morphology of lymphatics in heart grafts. Methods: Dark Agouti (DA) hearts were transplanted to Lewis or control DA rats on sub-therapeutic doses of cyclosporin. Transplants were examined by immunohistology and quantitative immunofluorescence microscopy using LYVE-1 as a lymphatic marker and CD8 and CD68 as markers for cellular infiltration at selected intervals from 1 to 8 weeks post-transplantation. Results: Allograft inner myocardial lymphatic density decreased by more than 30-fold at 1 week, and recovered to only 15% of the native level at 8 weeks post-transplantation. In contrast, allograft lymphatics in and near the epicardium showed no significant density decline, but increased in size by more than 5-fold at 2 weeks, and sustained about a 3-fold increase at 8 weeks post-transplantation. Lymphatic changes correlated temporally with the extent of T cell and macrophage infiltration in allografts, which peaked at 2-3 weeks post-transplantation. When grafts were retransplanted from allogeneic to isogeneic recipients at 3 weeks post-transplantation, inner lymphatic density returned close to native level within 2 weeks after retransplantation. Conclusions: This is the first characterization of regional and morphological effects of immunological responses on heart lymphatics after transplantation. Elimination of alloimmune responses produces rapid restoration of inner lymphatic vessels, suggesting that lymphatics injured during rejection can recover when rejection is reversed during the post-transplantation course. PMID:20118845

  7. Lymphatics in lymphangioleiomyomatosis and idiopathic pulmonary fibrosis

    PubMed Central

    Glasgow, Connie G.; El-Chemaly, Souheil; Moss, Joel

    2013-01-01

    The primary function of the lymphatic system is absorbing and transporting macromolecules and immune cells to the general circulation, thereby regulating fluid, nutrient absorption and immune cell trafficking. Lymphangiogenesis plays an important role in tissue inflammation and tumour cell dissemination. Lymphatic involvement is seen in lymphangioleiomyomatosis (LAM) and idiopathic pulmonary fibrosis (IPF). LAM, a disease primarily affecting females, involves the lung (cystic destruction), kidney (angiomyolipoma) and axial lymphatics (adenopathy and lymphangioleiomyoma). LAM occurs sporadically or in association with tuberous sclerosis complex (TSC). Cystic lung destruction results from proliferation of LAM cells, which are abnormal smooth muscle-like cells with mutations in the TSC1 or TSC2 gene. Lymphatic abnormalities arise from infiltration of LAM cells into the lymphatic wall, leading to damage or obstruction of lymphatic vessels. Benign appearing LAM cells possess metastatic properties and are found in the blood and other body fluids. IPF is a progressive lung disease resulting from fibroblast proliferation and collagen deposition. Lymphangiogenesis is associated with pulmonary destruction and disease severity. A macrophage subset isolated from IPF bronchoalveolar lavage fluid (BALF) express lymphatic endothelial cell markers in vitro, in contrast to the same macrophage subset from normal BALF. Herein, we review lymphatic involvement in LAM and IPF. PMID:22941884

  8. Heterogeneity in the lymphatic vascular system and its origin.

    PubMed

    Ulvmar, Maria H; Mäkinen, Taija

    2016-09-01

    Lymphatic vessels have historically been viewed as passive conduits for fluid and immune cells, but this perspective is increasingly being revised as new functions of lymphatic vessels are revealed. Emerging evidence shows that lymphatic endothelium takes an active part in immune regulation both by antigen presentation and expression of immunomodulatory genes. In addition, lymphatic vessels play an important role in uptake of dietary fat and clearance of cholesterol from peripheral tissues, and they have been implicated in obesity and arteriosclerosis. Lymphatic vessels within different organs and in different physiological and pathological processes show a remarkable plasticity and heterogeneity, reflecting their functional specialization. In addition, lymphatic endothelial cells (LECs) of different organs were recently shown to have alternative developmental origins, which may contribute to the development of the diverse lymphatic vessel and endothelial functions seen in the adult. Here, we discuss recent developments in the understanding of heterogeneity within the lymphatic system considering the organ-specific functional and molecular specialization of LECs and their developmental origin. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Cardiology.

  9. Heterogeneity in the lymphatic vascular system and its origin

    PubMed Central

    Ulvmar, Maria H.; Mäkinen, Taija

    2016-01-01

    Lymphatic vessels have historically been viewed as passive conduits for fluid and immune cells, but this perspective is increasingly being revised as new functions of lymphatic vessels are revealed. Emerging evidence shows that lymphatic endothelium takes an active part in immune regulation both by antigen presentation and expression of immunomodulatory genes. In addition, lymphatic vessels play an important role in uptake of dietary fat and clearance of cholesterol from peripheral tissues, and they have been implicated in obesity and arteriosclerosis. Lymphatic vessels within different organs and in different physiological and pathological processes show a remarkable plasticity and heterogeneity, reflecting their functional specialization. In addition, lymphatic endothelial cells (LECs) of different organs were recently shown to have alternative developmental origins, which may contribute to the development of the diverse lymphatic vessel and endothelial functions seen in the adult. Here, we discuss recent developments in the understanding of heterogeneity within the lymphatic system considering the organ-specific functional and molecular specialization of LECs and their developmental origin. PMID:27357637

  10. Endothelial nitric oxide synthase mediates lymphangiogenesis and lymphatic metastasis

    PubMed Central

    Lahdenranta, Johanna; Hagendoorn, Jeroen; Padera, Timothy P.; Hoshida, Tohru; Nelson, Gregory; Kashiwagi, Satoshi; Jain, Rakesh K.; Fukumura, Dai

    2009-01-01

    Lymphatic metastasis is a critical determinant of cancer prognosis. Recently, several lymphangiogenic molecules such as vafscular endothelial growth factor (VEGF)-C and -D were identified. However, the mechanistic understanding of lymphatic metastasis is still in infancy. Nitric oxide (NO) plays a crucial role in regulating blood vessel growth and function as well as lymphatic vessel function. NOS expression correlates with lymphatic metastasis. However, causal relationship between NOS and lymphatic metastasis has not been documented. To this end, we first show that both VEGF receptor-2 and -3 stimulation activate eNOS in lymphatic endothelial cells and that NO donors induce proliferation and/or survival of cultured lymphatic endothelial cells in a dose dependent manner. We find that an NOS inhibitor L-NMMA blocked regeneration of lymphatic vessels. Using intravital microscopy that allows us to visualize the steps of lymphatic metastasis, we show that genetic deletion of eNOS as well as NOS blockade attenuates peritumor lymphatic hyperplasia of VEGF-C-overexpressing T241 fibrosarcomas and decreases the delivery of metastatic tumor cells to the draining lymph nodes. Genetic deletion of eNOS in the host also leads to a decrease in T241 tumor cell dissemination to the lymph nodes and macroscopic lymph node metastasis of B16F10 melanoma. These findings indicate that eNOS mediates VEGF-C induced lymphangiogenesis and, consequently, plays a critical role in lymphatic metastasis. Our findings explain the correlation between NOS and lymphatic metastasis seen in a number of human tumors and open the door for potential therapies exploiting NO signaling to treat diseases of the lymphatic system. PMID:19318557

  11. Tissue Engineering of Dermal Blood and Lymphatic Microvascular Networks

    DTIC Science & Technology

    2014-03-06

    SECURITY CLASSIFICATION OF: This proposal focused on establishing the conditions necessary to induce lymphatic endothelial cell (EC) tube...morphogenesis in 3D collagen matrices with the long-term goal of establishing separate networks of lymphatic tubes and co-existing, but not interconnecting...networks of blood EC-lined tubes. In addition, we hoped that pericytes, which support blood EC tube networks, but not lymphatic vessel networks, would

  12. 78 FR 64523 - Agency Information Collection Activities: Vessel Entrance or Clearance Statement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-29

    ... SECURITY U.S. Customs and Border Protection Agency Information Collection Activities: Vessel Entrance or Clearance Statement AGENCY: U.S. Customs and Border Protection (CBP), Department of Homeland Security... comments to U.S. Customs and Border Protection, Attn: Tracey Denning, Regulations and Rulings, Office...

  13. 76 FR 15989 - Agency Information Collection Activities: Record of Vessel Foreign Repair or Equipment Purchase

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-22

    ... of Management and Budget. Comments should be addressed to the OMB Desk Officer for Customs and Border... SECURITY Customs and Border Protection Agency Information Collection Activities: Record of Vessel Foreign Repair or Equipment Purchase AGENCY: U.S. Customs and Border Protection, Department of Homeland...

  14. 78 FR 77139 - Agency Information Collection Activities: Small Vessel Reporting System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-20

    ... SECURITY U.S. Customs and Border Protection Agency Information Collection Activities: Small Vessel Reporting System AGENCY: U.S. Customs and Border Protection, Department of Homeland Security. ACTION: 30-Day.... Customs and Border Protection (CBP) of the Department of Homeland Security will be submitting...

  15. 75 FR 3245 - Agency Information Collection Activities: Aircraft/Vessel Report (Form I-92)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-20

    ... SECURITY U.S. Customs and Border Protection Agency Information Collection Activities: Aircraft/Vessel Report (Form I-92) AGENCY: U.S. Customs and Border Protection, Department of Homeland Security. ACTION.... SUMMARY: U.S. Customs and Border Protection (CBP) of the Department of Homeland Security has submitted...

  16. 76 FR 3151 - Agency Information Collection Activities: Record of Vessel Foreign Repair or Equipment Purchase

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-19

    ...As part of its continuing effort to reduce paperwork and respondent burden, CBP invites the general public and other Federal agencies to comment on an information collection requirement concerning the Record of Vessel Foreign Repair or Equipment Purchase (CBP Form 226). This request for comment is being made pursuant to the Paperwork Reduction Act of 1995 (Pub. L. 104-13).

  17. 76 FR 26705 - Proposed Information Collection; Comment Request; Commercial Fishing Vessel Cost and Earnings...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-09

    ... Commerce, to make informed decisions about the expected economic effects of proposed management...; Commercial Fishing Vessel Cost and Earnings Data Collection Survey in the Northeast Region AGENCY: National... legislative requirements of the Magnuson-Stevens Fishery Conservation and Management Act, the...

  18. Immunopathogenesis of lymphatic filarial disease.

    PubMed

    Babu, Subash; Nutman, Thomas B

    2012-11-01

    Although two thirds of the 120 million people infected with lymph-dwelling filarial parasites have subclinical infections, ~40 million have lymphedema and/or other pathologic manifestations including hydroceles (and other forms of urogenital disease), episodic adenolymphangitis, tropical pulmonary eosinophilia, lymphedema, and (in its most severe form) elephantiasis. Adult filarial worms reside in the lymphatics and lymph nodes and induce changes that result in dilatation of lymphatics and thickening of the lymphatic vessel walls. Progressive lymphatic damage and pathology results from the summation of the effect of tissue alterations induced by both living and nonliving adult parasites, the host inflammatory response to the parasites and their secreted antigens, the host inflammatory response to the endosymbiont Wolbachia, and those seen as a consequence of secondary bacterial or fungal infections. Inflammatory damage induced by filarial parasites appears to be multifactorial, with endogenous parasite products, Wolbachia, and host immunity all playing important roles. This review will initially examine the prototypical immune responses engendered by the parasite and delineate the regulatory mechanisms elicited to prevent immune-mediated pathology. This will be followed by a discussion of the proposed mechanisms underlying pathogenesis, with the central theme being that pathogenesis is a two-step process-the first initiated by the parasite and host innate immune system and the second propagated mainly by the host's adaptive immune system and by other factors (including secondary infections).

  19. Split-bolus MR urography: synchronous visualization of obstructing vessels and collecting system in children.

    PubMed

    Battal, Bilal; Kocaoğlu, Murat; Akgün, Veysel; İnce, Selami; Gök, Faysal; Taşar, Mustafa

    2015-01-01

    Several vascular abnormalities related with urinary system such as crossing accessory renal vessels, retroiliac ureters, retrocaval ureters, posterior nutcracker syndrome, and ovarian vein syndrome may be responsible for urinary collecting system obstruction. Split-bolus magnetic resonance urography (MRU) using contrast material as two separate bolus injections provides superior demonstration of the collecting system and obstructing vascular anomalies simultaneously and enables accurate preoperative radiologic diagnosis. In this pictorial review we aimed to outline the split-bolus MRU technique in children, list the coexisting congenital collecting system and vascular abnormalities, and exhibit the split-bolus MRU appearances of concurrent urinary collecting system and vascular abnormalities.

  20. Split-bolus MR urography: synchronous visualization of obstructing vessels and collecting system in children

    PubMed Central

    Battal, Bilal; Kocaoğlu, Murat; Akgün, Veysel; İnce, Selami; Gök, Faysal; Taşar, Mustafa

    2015-01-01

    Several vascular abnormalities related with urinary system such as crossing accessory renal vessels, retroiliac ureters, retrocaval ureters, posterior nutcracker syndrome, and ovarian vein syndrome may be responsible for urinary collecting system obstruction. Split-bolus magnetic resonance urography (MRU) using contrast material as two separate bolus injections provides superior demonstration of the collecting system and obstructing vascular anomalies simultaneously and enables accurate preoperative radiologic diagnosis. In this pictorial review we aimed to outline the split-bolus MRU technique in children, list the coexisting congenital collecting system and vascular abnormalities, and exhibit the split-bolus MRU appearances of concurrent urinary collecting system and vascular abnormalities. PMID:26359874

  1. Interaction between the extracellular matrix and lymphatics - consequences for lymphangiogenesis and lymphatic function

    PubMed Central

    Wiig, Helge; Keskin, Doruk; Kalluri, Raghu

    2014-01-01

    The lymphatic system is important for body fluid balance as well as immunological surveillance. Due to the identification of new molecular markers during the last decade, there has been a recent dramatic increase in our knowledge on the molecular mechanisms involved in lymphatic vessel growth (lymphangiogenesis) and lymphatic function. Here we review data showing that although it is often overlooked, the extracellular matrix plays an important role in the generation of new lymphatic vessels as a response to physiological and pathological stimuli. Extracellular matrix-lymphatic interactions as well as biophysical characteristics of the stroma have consequences for tumor formation, growth and metastasis. During the recent years, anti-lymphangiogenesis has emerged as an additional therapeutic modality to the clinically applied anti-angiogenesis strategy. Oppositely, enhancement of lymphangiogenesis in situations of lymph accumulation is seen as a promising strategy to a set of conditions where few therapeutic avenues are available. Knowledge on the interaction between the extracellular matrix and the lymphatics may enhance our understanding of the underlying mechanisms and may ultimately lead to better therapies for conditions where reduced or increased lymphatic function is the therapeutic target PMID:20727409

  2. A New Technique to Map the Lymphatic Distribution and Alignment of the Penis.

    PubMed

    Long, Liu Yan; Qiang, Pan Fu; Ling, Tao; Wei, Zhang Yan; Long, Zhang Yu; Shan, Meng; Rong, Li Shi; Li, Li Hong

    2015-08-01

    The present study was to examine the distribution of lymphatic vessels in the penis of normal adult males, which could provide an anatomical basis for improvement of incisions in penile lengthening surgery, and may also help to prevent postoperative refractory edema. Thirteen normal adult male volunteers were recruited for this study. Contrast agent was injected subcutaneously in the foreskin of the penis, and after two minutes magnetic resonance lymphangiography (MRL) was performed. The acquired magnetic resonance images were analyzed to determine the changes in the number and diameter of lymphatic vessels in different parts of the penis. Maximum intensity projections (MIP) and materializes interactive medical image control system (MIMICS) were applied to analyze the overall distribution of lymphatic vessels in the penis. Magnetic resonance imaging (MRI) showed that the lymphatic vessels were in conspicuous contrast with surrounding tissues and could be clearly identified. Penile lymphatic vessels were clearly visible in the root of the penis. At the junction of the penis and the abdominal wall, all lymphatic vessels were found to be concentrated in the dorsal part of the penis. MIP two-dimensional reconstruction showed that the overall distribution of relatively large lymphatic vessels in the dorsal and ventral parts of the penis could be seen clearly on bilateral 45° position, but not inside the abdominal wall because some of lymphatic vessels were overlapped by other tissues in the abdomen. MIMICS three-dimensional reconstruction was able to reveal the overall spatial distribution of lymphatic vessels in the penis from any angle. The reconstruction results showed that there were 1-2 main lymphatic vessels on the root of dorsal penis, which coursed along the cavernous to the first physiological curvature of the penis. Lymphatic vessels merged on both sides of the ventral penis. At the root of the penis, lymphatic vessels gradually coursed to the dorsal surface

  3. Spleen and Lymphatic System

    MedlinePlus

    ... A Week of Healthy Breakfasts Shyness Spleen and Lymphatic System KidsHealth > For Teens > Spleen and Lymphatic System A A A What's in this article? Why ... español El bazo y el sistema linfático The lymphatic system is an extensive drainage network that helps keep ...

  4. 78 FR 55060 - Proposed Information Collection; Comment Request; Expanded Vessel Monitoring System Requirement...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-09

    ... Vessel Monitoring System Requirement in the Pacific Coast Groundfish Fishery AGENCY: National Oceanic and... commercial fishing vessels are required to install and use a vessel monitoring system (VMS)...

  5. Anatomy and development of the cardiac lymphatic vasculature: Its role in injury and disease.

    PubMed

    Norman, Sophie; Riley, Paul R

    2016-04-01

    Lymphatic vessels are present throughout the entire body in all mammals and function to regulate tissue fluid balance, lipid transport and survey the immune system. Despite the presence of an extensive lymphatic plexus within the heart, until recently the importance of the cardiac lymphatic vasculature and its origins were unknown. Several studies have described the basic anatomy of the developing cardiac lymphatic vasculature and more recently the detailed development of the murine cardiac lymphatics has been documented, with important insight into their cellular sources during embryogenesis. In this review we initially describe the development of systemic lymphatic vasculature, to provide the background for a comparative description of the spatiotemporal development of the cardiac lymphatic vessels, including detail of both canonical, typically venous, and noncanonical (hemogenic endothelium) cellular sources. Subsequently, we address the response of the cardiac lymphatic network to myocardial infarction (heart attack) and the therapeutic potential of targeting cardiac lymphangiogenesis. © 2015 Wiley Periodicals, Inc.

  6. Near-infrared fluorescence lymphatic imaging of Klippel-Trénaunay syndrome.

    PubMed

    Rasmussen, John C; Zvavanjanja, Rodrick C; Aldrich, Melissa B; Greives, Matthew R; Sevick-Muraca, Eva M

    2017-07-01

    The relationship between lymphatic and venous malformations in Klippel-Trénaunay syndrome is difficult to assess. Herein the authors describe near-infrared fluorescence lymphatic imaging to assess the lymphatics of a subject with a large port-wine stain and right leg edema. Although lymphatic vessels in the medial, affected knee appeared dilated and perhaps tortuous, no definitive abnormal lymphatic pooling or propulsion was observed. The lymphatics in the affected limb were well defined but less numerous than in the contralateral limb, and active, contractile function was observed in all vessels. As demonstrated, near-infrared fluorescence lymphatic imaging enables the clinical assessment of lymphatics in lymphovenous malformations. Copyright © 2017 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  7. Monoclonal Antibodies in the Lymphatics: Selective Delivery to Lymph Node Metastases of a Solid Tumor

    NASA Astrophysics Data System (ADS)

    Weinstein, John N.; Steller, Michael A.; Keenan, Andrew M.; Covell, David G.; Key, Marc E.; Sieber, Susan M.; Oldham, Robert K.; Hwang, Kou M.; Parker, Robert J.

    1983-10-01

    After subcutaneous injection, monoclonal antibodies directed against a tumor can enter local lymphatic vessels, pass to the draining lymph nodes, and bind to metastases there. Lymphatic delivery of antibody to early metastases is more efficient than intravenous administration, and the lymphatic route can be used to image smaller metastatic deposits. Perhaps more important, the lymphatic route minimizes binding of antibodies to circulating tumor antigens and to cross-reactive antigens present on normal tissues. Antibodies inappropriate for intravenous use because of binding to normal tissues may therefore be useful against lymph node metastases when injected subcutaneously or directly into lymphatic vessels.

  8. Intestinal and peri-tumoral lymphatic endothelial cells are resistant to radiation-induced apoptosis

    SciTech Connect

    Sung, Hoon Ki; Morisada, Tohru; Cho, Chung-Hyun; Oike, Yuichi; Lee, Jayhun; Sung, Eon Ki; Chung, Jae Hoon; Suda, Toshio; Koh, Gou Young . E-mail: gykoh@kaist.ac.kr

    2006-06-30

    Radiation therapy is a widely used cancer treatment, but it is unable to completely block cancer metastasis. The lymphatic vasculature serves as the primary route for metastatic spread, but little is known about how lymphatic endothelial cells respond to radiation. Here, we show that lymphatic endothelial cells in the small intestine and peri-tumor areas are highly resistant to radiation injury, while blood vessel endothelial cells in the small intestine are relatively sensitive. Our results suggest the need for alternative therapeutic modalities that can block lymphatic endothelial cell survival, and thus disrupt the integrity of lymphatic vessels in peri-tumor areas.

  9. Near-infrared fluorescence imaging of lymphatics in head and neck lymphedema

    NASA Astrophysics Data System (ADS)

    Tan, I.-Chih; Maus, Erik A.; Rasmussen, John C.; Marshall, Milton V.; Fife, Caroline E.; Smith, Latisha A.; Sevick-Muraca, Eva M.

    2011-03-01

    Treatment of lymphatic disease is complicated and controversial, due in part to the limited understanding of the lymphatic system. Lymphedema (LE) is a frequent complication after surgical resection and radiation treatment in cancer survivors, and is especially debilitating in regions where treatment options are limited. Although some extremity LE can be effectively treated with manual lymphatic drainage (MLD) therapy or compression devices to direct proximal lymph transport, head and neck LE is more challenging, due to complicated geometry and complex lymphatic structure in head and neck region. Herein, we describe the compassionate use of an investigatory technique of near-infrared (NIR) fluorescence imaging to understand the lymphatic anatomy and function, and to help direct MLD in a patient with head and neck LE. Immediately after 9 intradermal injections of 25 μg indocyanine green each around the face and neck region, NIR fluorescence images were collected using a custom-built imaging system with diffused excitation light illumination. These images were then used to direct MLD therapy. In addition, 3-dimensional (3D) surface profilometry was used to monitor response to therapy. NIR fluorescence images of functioning lymphatic vessels and abnormal structures were obtained. Precise geometries of facial structures were obtained using 3D profilometry, and detection of small changes in edema between therapy sessions was achieved. NIR fluorescence imaging provides a mapping of lymphatic architecture to direct MLD therapy and thus improve treatment efficacy in the head and neck LE, while 3D profilometry allowed longitudinal assessment of edema to evaluate the efficacy of therapy.

  10. Real-time Intr