Science.gov

Sample records for lymphoblastic cell line

  1. [Effects of Sam68 gene silence on proliferation of acute T lymphoblastic leukemia cell line Jurkat].

    PubMed

    Wang, Chi-Juan; Xu, Hua; Zhang, Hai-Rui; Wang, Jian; Lin, Ya-Ni; Pang, Tian-Xiang; Li, Qing-Hua

    2014-08-01

    This study was purpose to investigate the effect of Sam68 gene silence on proliferation of human acute T lymphoblastic leukemia cell line Jurkat. The sequence of shRNA targeting the site 531-552 of Sam68 mRNA was designed and chemically synthesized, then a single-vector lentiviral, Tet-inducible shRNA-Sam68 system (pLKO-Tet-On) was constructed; next the Jurkat cells were infected with lentivirus to create stable cell clones with regulatable Sam68 gene expression. The inhibitory efficiency of Sam68 gene was assayed by Real-time PCR and Western blot; the cell activity of Jurkat cells was detected with MTT assay; the change of colony forming potential of Jurkat cells was analyzed by colony forming test; the cell cycle distribution was tested by flow cytometry. The results indicated that the expression of Sam68 in experimental cells was statistically decreased as compared with that of the control cells; the cells activity and colony forming capacity of the Jurkat cells with Sam68 gene silence were significantly inhibited; with Sam68 gene silencing, the percentage of S phase cells was significantly increased, while the percentage of G2 phase cells was significantly decreased. It is concluded that the silencing Sam68 gene using shRNA interference can effectively inhibit the proliferation of human acute T lymphoblastic leukemia cell line Jurkat.

  2. P53 mutation in acute T cell lymphoblastic leukemia is of somatic origin and is stable during establishment of T cell acute lymphoblastic leukemia cell lines.

    PubMed Central

    Yeargin, J; Cheng, J; Yu, A L; Gjerset, R; Bogart, M; Haas, M

    1993-01-01

    Samples donated by patients with T cell acute lymphoblastic leukemia (T-ALL) were screened for mutations of the p53 tumor suppressor gene. Peripheral blood cells of T-ALL relapse patient H.A. were found to possess a heterozygous point mutation at codon 175 of the p53 gene. To determine whether this was an inherited mutation, a B cell line (HABL) was established. Leukemic T cell lines (HATL) were concurrently established by growing peripheral blood leukemic T cells at low oxygen tension in medium supplemented with IGF-I. Previously we had shown that > 60% of leukemic T cell lines possessed mutations in the p53 gene (Cheng, J., and M. Hass. 1990. Mol. Cell. Biol. 10:5502), mutations that might have originated with the donor's leukemic cells, or might have been induced during establishment of the cell lines. To answer whether establishment of the HATL lines was associated with the induction of p53 mutations, cDNAs of the HATL and HABL lines were sequenced. The HATL lines retained the same heterozygous p53 mutation that was present in the patient's leukemic cells. The HABL line lacked p53 mutations. Immunoprecipitation with specific anti-p53 antibodies showed that HATL cells produced p53 proteins of mutant and wild type immunophenotype, while the HABL line synthesized only wild-type p53 protein. The HATL cells had an abnormal karyotype, while the HABL cells possessed a normal diploid karyotype. These experiments suggest that (a) p53 mutation occurred in the leukemic cells of relapse T-ALL patient HA; (b) the mutation was of somatic rather than hereditary origin; (c) the mutation was leukemia associated; and (d) establishment of human leukemia cell lines needs not be associated with in vitro induction of p53 mutations. It may be significant that patient HA belonged to a category of relapse T-ALL patients in whom a second remission could not be induced. Images PMID:8486778

  3. [Genetic characteristics of human acute lymphoblastic leukemia cell line Molt-4].

    PubMed

    Ma, Xiao-Cai; Liu, Cong-Yan; Sun, Xue-Jing; He, Jing-Juan; Wan, Sui-Gui; Sun, Wan-Ling

    2014-04-01

    This study was aimed to investigate the genetic characteristics of human acute lymphoblastic leukemia cell line Molt-4, and evaluate its application in measuring telomere length by Flow-FISH. Molt-4 cell line was cultured in suspension and subcultured regularly. Eight different passages of Molt-4 cells in exponential stage were selected.The growth curves were drawn by cell counting method, meanwhile calculating the population doubling times of cells,DNA ploidies were determined by flow cytometry,karyotypes were analyzed by G-banding and telomere lengths were measured by Southern blot. The results showed that the population doubling time of Molt-4 cell line was (1.315 ± 0.062) d, DNA ploidy index was (2.085 ± 0.0093) , and the telomere length was (32.05 ± 5.27) kb. There were no significant difference among different passages (P = 0.931,0.888 and 0.935 separately). The karyotypes showed that the chromosome numbers of Molt-4 cell line were from 91 to 99 in different metaphases, and the majority of them were hypertetraploid, and stable and recurrent structural abnormalities of chromosomes could be kept. It is concluded that the stable genetic characteristics and the longer telomere length of Molt-4 cell line makes it be a feasible control cells in measurement of telomere length by Flow-FISH.

  4. Solubilization and characterization of the VIP receptor on a human lymphoblastic cell line

    SciTech Connect

    O'Dorisio, M.S.; Compolito, L.B.; Vassalo, L.M.

    1986-03-01

    The neuropeptide, vasoactive intestinal peptide (VIP), has been shown to modulate several immune functions including lymphocyte trafficking, lymphoblastic transformation and natural killer cell activity. These actions of VIP appear to be mediated via specific, VIP preferring, receptors. Functional VIP receptors have been demonstrated on human T lymphocytes, pre B cell (CALLA+) leukemia cells and a Molt 4b lymphoblastic cell line. In this study, plasma membranes were prepared from Molt 4b lymphoblasts. The membrane fraction contained a function VIP receptor as determined by activation of adenylate cyclase which was potentiated by both guanine nucleotide and forskolin. /sup 125/I-VIP was covalently crosslinked to its receptor in membranes using the bifunctional reagent disuccinimidyl suberate. A 50,000 M/sub r/ protein comprising or associated with the VIP receptor was identified. Treatment of crosslinked membranes with endo-..beta..-N-acetylglucosaminidase F did not alter the mobility of the putative VIP receptor indicating no significant high mannose or complex glycosyl residues on the receptor molecule. Similarly, treatment of crosslinked membranes with neuroaminidase resulted in no change in mobility suggesting the absence of sialic acid residues on the putative receptor molecule. The VIP receptor was solubilized by treatment of membranes with 50 mM (3-((3-Cholamidopropyl)dimethylammonio)-1-propane sulfonate) CHAPS followed by centrifugation at 48,000 g. The crosslinked solubilized receptor again migrated at M/sur r/ = 50,000 indicating a 47K (50,000 - MW of VIP) protein. Further characterization of this receptor will allow for development of therapeutic modalities to modulate lymphocyte proliferation and function in vivo.

  5. Investigation of deregulated genes of Notch signaling pathway in human T cell acute lymphoblastic leukemia cell lines and clinical samples.

    PubMed

    Paryan, Mahdi; Mohammadi-Yeganeh, Samira; Samiee, Siamak Mirab; Soleimani, Masoud; Arefian, Ehsan; Azadmanesh, Keyhan; Poopak, Behzad; Mostafavi, Ehsan; Karimipoor, Morteza; Mahdian, Reza

    2013-10-01

    In diagnostic research challenges, quantitative real-time PCR (QPCR) has been widely utilized in gene expression analysis because of its sensitivity, accuracy, reproducibility, and most importantly, quantitativeness. Real-time PCR base kits are wildly applicable in cancer signaling pathways, especially in cancer investigations. T-cell acute lymphoblastic leukemia (T-ALL) is a type of leukemia that is more common in older children and teenagers. Deregulation of the Notch signaling pathway promotes proliferation and inhibits apoptosis of the lymphoblastic T cells. The aim of this study was to investigate the effect of Notch signaling activation on the expression of target genes using real-time QPCR and further use this method in clinical examination after validation. Two T-ALL cell lines, Jurkat and Molt-4, were used as models for activation of the Notch signaling via over-expression of the Notch1 intracellular domain. Expression analysis was performed for six downstream target genes (NCSTN, APH1, PSEN1, ADAM17, NOTCH1 and C-MYC) which play critical roles in the Notch signaling pathway. The results showed significant difference in the expression of target genes in the deregulated Notch signaling pathway. These results were also verified in 12 clinical samples bearing over-expression of the Notch signaling pathway. Identification of such downstream Notch target genes, which have not been studied inclusively, provides insights into the mechanisms of the Notch function in T cell leukemia, and may help identify novel diagnoses and therapeutic targets in acute lymphoblastic leukemia.

  6. A novel 2,6-diisopropylphenyl-docosahexaenoamide conjugate induces apoptosis in T cell acute lymphoblastic leukemia cell lines

    SciTech Connect

    Altenburg, Jeffrey D.; Harvey, Kevin A.; McCray, Sharon; Xu, Zhidong; Siddiqui, Rafat A.

    2011-07-29

    Highlights: {yields} 2,6-Diisopropylphenyl-docosahexaenoamide conjugates (DIP-DHA) inhibits the proliferation of T-cell leukemic cell lines. {yields} DIP-DHA resulted in increased activation of caspase-3, and caspase-7. {yields} DIP-DHA significantly downregulated CXCR4 surface expression. -- Abstract: We have previously characterized the effects of 2,6-diisopropylphenyl-docosahexaenoamide (DIP-DHA) conjugates and their analogs on the proliferation and progression of breast cancer cell lines. For this study, we investigated the effects of the DIP-DHA conjugate on 2 representative T cell acute lymphoblastic leukemia (T-ALL) cell lines: CEM and Jurkat. Treatment of both cell lines with DIP-DHA resulted in significantly greater inhibition of proliferation and induction of apoptosis than that of parent compounds, 2,6-diisopropylphenol (DIP) or docosahexaenoate (DHA). Treatment of the cells with DIP-DHA resulted in increased activation of caspase-3, and caspase-7. Furthermore, induction of apoptosis in both cell lines was reversed in the presence of a caspase family inhibitor. Treatment with DIP-DHA reduced mitochondrial membrane potential. These observations suggest that the effects are driven by intrinsic apoptotic pathways. DIP-DHA treatment also downregulated surface CXCR4 expression, an important chemokine receptor involved in cancer metastasis that is highly expressed in both CEM and Jurkat cells. In conclusion, our data suggest that the DIP-DHA conjugate exhibits significantly more potent effects on CEM and Jurkat cells than that of DIP or DHA alone. These conjugates have potential use for treatment of patients with T cell acute lymphoblastic leukemia.

  7. Structural and numerical chromosomal aberrations in a metabolically competent human lymphoblast cell line (MCL-5).

    PubMed

    Doepker, C L; Livingston, G K; Schumann, B L; Srivastava, A K

    1998-05-01

    MCL-5 cells are Epstein Barr virus-transformed human lymphoblasts which have been genetically engineered for use in mutagenicity testing. We have examined the modal chromosome number, karyotype and spontaneous micronucleus (MN) and sister chromatid exchange (SCE) frequencies of the cell line. Replicate experiments were conducted on two different shipments purchased from Gentest Corp. Although the modal chromosome number was 48 (range 40-54, n = 400 metaphases) for both cell shipments, the second stock showed greater variation in chromosome number than the first. A total of 60 G-banded metaphase cells was analyzed and seven karyotypes were prepared. Consistent structural abnormalities (translocations, deletions and isochromosomes) were found involving the X chromosome and seven autosomes (1-3, 5, 6, 9 and 11). The karyotype typical of this cell line was: 48,der(X)t(X;?)(p22.3;?)Y,t(1;2)(q23;p23),del(3)(q12q21), + i(3q),t(5;6) (q31;p23),+i(9p),der(11)t(11;13)(q23;q12). The mean MN frequency was 41.8 MN/1000 binucleate cells (n = 5000). When compared with our historical controls for primary lymphocyte cultures this number (41.8) is significantly (8.4-fold) higher. The mean SCE frequency was 7.3 per metaphase (n = 100). We observed a hyperdiploid chromosome number of 48 in the majority of metaphase spreads, indicating a significant deviation from the normal diploid number characteristic of the parent cells (RPMI 1788) established in 1969. The variation in chromosome number distribution observed between shipments suggests the potential for further changes. The elevated MN frequency suggests that evaluating mutagenicity using this cytogenetic end-point may require excessive dosing to produce a significant response over background. We conclude that careful interpretation of cytogenetic end-points is necessary when using MCL-5 cells in the light of the possibility of clonal evolution presented here.

  8. Gallic Acid Inhibits Proliferation and Induces Apoptosis in Lymphoblastic Leukemia Cell Line (C121)

    PubMed Central

    Sourani, Zahra; Pourgheysari, Batoul; Beshkar, Pezhman; Shirzad, Hedayatollah; Shirzad, Moein

    2016-01-01

    Leukemia is known as the world’s fifth most prevalent cancer. New cytotoxic drugs have created considerable progress in the treatment, but side effects are still the important cause of mortality. Plant derivatives have been recently considered as important sources for the treatment of various diseases, including cancer. Gallic acid (GA) is a polyhydroxyphenolic compound with a wide range of biological functions. The aim of the present study was to evaluate the effect of GA on proliferation inhibition and apoptosis induction of a lymphoblastic leukemia cell line. Jurkat cell (C121) line was cultured in RPMI 1640 supplemented with 10% heat-inactivated fetal bovine serum (FBS) with different concentrations of GA (10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 μM) for 24, 48 and 72 hours. The effect of GA on cell viability was measured using MTS assay. Induction of apoptosis was evaluated with Annexin V-FITC/PI kit and flow cytometry. Data were analyzed by SPSS version 20 using Kruskal-Wallis and Dunn’s multiple comparison tests. Decline of cell viability to less than 50% was observed at 60.3±1.6, 50.9±1.5, and 30.9±2.8 μM concentration after 24, 48, and 72 hours incubation, respectively. All concentrations of GA (10, 30, 50 and 80 μM) enhanced apoptosis compared to the control (P<0.05). The results demonstrate that the polyphenolic compound, GA, is effective in inhibition of proliferation and induction of apoptosis in Jurkat cell line. It is recommended to study the mechanism of apoptosis induction in future investigations. PMID:27853333

  9. Sensitivity and resistance towards isoliquiritigenin, doxorubicin and methotrexate in T cell acute lymphoblastic leukaemia cell lines by pharmacogenomics.

    PubMed

    Youns, Mahmoud; Fu, Yu-Jie; Zu, Yuan-Gang; Kramer, Anne; Konkimalla, V Badireenath; Radlwimmer, Bernhard; Sültmann, Holger; Efferth, Thomas

    2010-09-01

    The development of drug resistance in cancer cells necessitates the identification of novel agents with improved activity towards cancer cells. In the present investigation, we compared the cytotoxicity of the chalcone flavonoide, isoliquiritigenin (ISL), with that of doxorubicin (DOX) and methotrexate (MTX) in five T cell acute lymphoblastic leukaemia (T-ALL) cell lines (Jurkat, J-Jhan, J16, HUT78 and Karpas 45). To gain insight into the molecular mechanisms which determine the response of T-ALL cells towards ISL, DOX and MTX, we applied array-based matrix comparative genomic hybridisation and microarray-based mRNA expression profiling and compared the genomic and transcriptomic profiles of the cell lines with their 50% inhibition (IC(50)) values for these three drugs. The IC(50) values for ISL did not correlate with those for DOX or MTX, indicating that ISL was still active in DOX- or MTX-unresponsive cell lines. Likewise, the genomic imbalances of chromosomal clones and mRNA expression profile significantly correlating with IC(50) values for ISL were different from thoses correlating with IC(50) values for DOX and MTX. In conclusion, ISL represents a cytotoxic natural product with activity towards T-ALL cell lines. There was no cross-resistance between ISL and DOX or MTX, and the genomic and transcriptomic profiles pointed to different molecular modes of action of ISL as compared to DOX and MTX, indicating that ISL may be a valuable adjunct for cancer therapy to treat otherwise drug-resistant tumours.

  10. Chromium VI-induced apoptosis in a human bronchial epithelial cell line (BEAS-2B) and a lymphoblastic leukemia cell line (MOLT-4).

    PubMed

    Gambelunghe, Angela; Piccinini, Renza; Abbritti, Giuseppe; Ambrogi, Maura; Ugolini, Barbara; Marchetti, Cristina; Migliorati, Graziella; Balducci, Chiara; Muzi, Giacomo

    2006-03-01

    Hexavalent chromium compounds are well-documented human carcinogens. In vitro experiments show Cr (VI) induces cell death by apoptosis by activating p53 protein. The aim of this study was to evaluate Cr (VI)-induced apoptosis in a human bronchial epithelial cell line (BEAS-2B) and in a lymphoblastic leukemia cell line (MOLT-4). Cr (VI) caused a dose- and time-dependent increase in the apoptosis rate in both cell lines. Western blotting showed increased p53 protein expression in MOLT-4 cells, but not in BEAS-2B cells, after exposure to 0.5 and 3 muM hexavalent chromium for 12 hours and 4 hours, respectively. Apoptotic cell death induced by Cr (VI) was not decreased by pretreatment with caspase-3, -8, and -9 inhibitors. These preliminary results provide evidence of Cr (VI)-induced apoptosis, which deserves further investigation in occupationally exposed workers.

  11. Preservation of high glycolytic phenotype by establishing new acute lymphoblastic leukemia cell lines at physiologic oxygen concentration

    SciTech Connect

    Sheard, Michael A.; Ghent, Matthew V.; Cabral, Daniel J.; Lee, Joanne C.; Khankaldyyan, Vazgen; Ji, Lingyun; Wu, Samuel Q.; Kang, Min H.; and others

    2015-05-15

    Cancer cells typically exhibit increased glycolysis and decreased mitochondrial oxidative phosphorylation, and they continue to exhibit some elevation in glycolysis even under aerobic conditions. However, it is unclear whether cancer cell lines employ a high level of glycolysis comparable to that of the original cancers from which they were derived, even if their culture conditions are changed to physiologically relevant oxygen concentrations. From three childhood acute lymphoblastic leukemia (ALL) patients we established three new pairs of cell lines in both atmospheric (20%) and physiologic (bone marrow level, 5%) oxygen concentrations. Cell lines established in 20% oxygen exhibited lower proliferation, survival, expression of glycolysis genes, glucose consumption, and lactate production. Interestingly, the effects of oxygen concentration used during cell line initiation were only partially reversible when established cell cultures were switched from one oxygen concentration to another for eight weeks. These observations indicate that ALL cell lines established at atmospheric oxygen concentration can exhibit relatively low levels of glycolysis and these levels are semi-permanent, suggesting that physiologic oxygen concentrations may be needed from the time of cell line initiation to preserve the high level of glycolysis commonly exhibited by leukemias in vivo. - Highlights: • Establishing new ALL cell lines in 5% oxygen resulted in higher glycolytic expression and function. • Establishing new ALL cell lines in 5% oxygen resulted in higher proliferation and lower cell death. • The divergent metabolic phenotypes selected in 5% and 20% oxygen are semi-permanent.

  12. Transcriptional profiling of lymphoblast lines from subjects with panic disorder.

    PubMed

    Philibert, Robert A; Crowe, Raymond; Ryu, Gi-Yung; Yoon, Jae-Geun; Secrest, Dianna; Sandhu, Harinder; Madan, Anup

    2007-07-05

    In attempts to isolate genetic vulnerability factors for panic disorder (PD), a number of investigators have used genome-wide linkage or association analyses. But these attempts have been only modestly successful which suggests that alternative approaches may be needed to define the biology of PD. Therefore, using recently developed genome-wide gene expression profiling, we explored whether transcriptional signatures associated with PD are present in lymphoblast cell line. The expression of 2,469 transcripts in lymphoblast cell lines from 16 subjects was arithmetically increased in every line and significantly increased overall and 354 transcripts was arithmetically decreased in every cell line and significantly decreased overall as compared to those lymphoblast lines from 17 subjects without a history of behavioral illness. Further sex specific analyses showed that in those 10 lines derived from female probands, the expression of a further 67 transcripts was arithmetically increased in every line and significantly increased overall and a further 332 transcripts was arithmetically decreased in every cell line and significantly decreased. Conversely, in cell lines from the six male probands, the expression of an additional 212 was arithmetically increased in every line and significantly increased overall and a further 332 transcripts was arithmetically decreased in every cell line. We conclude that lymphoblast cell lines derived from subjects with PD have significant, partially sex dependent changes in gene transcription. Further studies are necessary to correlate these changes in these hemopoetically derived cells with those changes postulated to occur in the CNS in association with PD.

  13. Characteristics of chromosome instability in the human lymphoblast cell line WTK1

    NASA Technical Reports Server (NTRS)

    Schwartz, J. L.; Jordan, R.; Evans, H. H.

    2001-01-01

    The characteristics of spontaneous and radiation-induced chromosome instability were determined in each of 50 individual clones isolated from control populations of human lymphoblasts (WTK1), as well as from populations of these cells previously exposed to two different types of ionizing radiation, Fe-56 and Cs-137. The types of chromosome instability did not appear to change in clones surviving radiation exposure. Aneuploidy, polyploidy, chromosome dicentrics and translocations, and chromatid breaks and gaps were found in both control and irradiated clones. The primary effect of radiation exposure was to increase the number of cells within any one clone that had chromosome alterations. Chromosome instability was associated with telomere shortening and elevated levels of apoptosis. The results suggest that the proximal cause of chromosome instability is telomere shortening.

  14. Characteristics of chromosome instability in the human lymphoblast cell line WTK1

    NASA Technical Reports Server (NTRS)

    Schwartz, J. L.; Jordan, R.; Evans, H. H.

    2001-01-01

    The characteristics of spontaneous and radiation-induced chromosome instability were determined in each of 50 individual clones isolated from control populations of human lymphoblasts (WTK1), as well as from populations of these cells previously exposed to two different types of ionizing radiation, Fe-56 and Cs-137. The types of chromosome instability did not appear to change in clones surviving radiation exposure. Aneuploidy, polyploidy, chromosome dicentrics and translocations, and chromatid breaks and gaps were found in both control and irradiated clones. The primary effect of radiation exposure was to increase the number of cells within any one clone that had chromosome alterations. Chromosome instability was associated with telomere shortening and elevated levels of apoptosis. The results suggest that the proximal cause of chromosome instability is telomere shortening.

  15. Piperlongumine inhibits the proliferation and survival of B-cell acute lymphoblastic leukemia cell lines irrespective of glucocorticoid resistance

    SciTech Connect

    Han, Seong-Su; Han, Sangwoo; Kamberos, Natalie L.

    2014-09-26

    Highlights: • PL inhibits the proliferation of B-ALL cell lines irrespective of GC-resistance. • PL selectively kills B-ALL cells by increasing ROS, but not normal counterpart. • PL does not sensitize majority of B-ALL cells to DEX. • PL represses the network of constitutively activated TFs and modulates their target genes. • PL may serve as a new therapeutic molecule for GC-resistant B-ALL. - Abstract: Piperlongumine (PL), a pepper plant alkaloid from Piper longum, has anti-inflammatory and anti-cancer properties. PL selectively kills both solid and hematologic cancer cells, but not normal counterparts. Here we evaluated the effect of PL on the proliferation and survival of B-cell acute lymphoblastic leukemia (B-ALL), including glucocorticoid (GC)-resistant B-ALL. Regardless of GC-resistance, PL inhibited the proliferation of all B-ALL cell lines, but not normal B cells, in a dose- and time-dependent manner and induced apoptosis via elevation of ROS. Interestingly, PL did not sensitize most of B-ALL cell lines to dexamethasone (DEX). Only UoC-B1 exhibited a weak synergistic effect between PL and DEX. All B-ALL cell lines tested exhibited constitutive activation of multiple transcription factors (TFs), including AP-1, MYC, NF-κB, SP1, STAT1, STAT3, STAT6 and YY1. Treatment of the B-ALL cells with PL significantly downregulated these TFs and modulated their target genes. While activation of AURKB, BIRC5, E2F1, and MYB mRNA levels were significantly downregulated by PL, but SOX4 and XBP levels were increased by PL. Intriguingly, PL also increased the expression of p21 in B-ALL cells through a p53-independent mechanism. Given that these TFs and their target genes play critical roles in a variety of hematological malignancies, our findings provide a strong preclinical rationale for considering PL as a new therapeutic agent for the treatment of B-cell malignancies, including B-ALL and GC-resistant B-ALL.

  16. The study of resistant mechanisms and reversal in an imatinib resistant Ph+ acute lymphoblastic leukemia cell line.

    PubMed

    Xing, Hongyun; Yang, Xi; Liu, Ting; Lin, Juan; Chen, Xiaoyi; Gong, Yuping

    2012-04-01

    In this study, we established an imatinib resistant Ph+ acute lymphoblastic leukemia (ALL) cell line SUP-B15/RI in vitro and studied the mechanism of imatinib resistance. Our results showed that the BCR-ABL1 fusion gene and the mdr1 gene were 6.1 times and 1.7 times, respectively, as high as that of parental SUP-B15 cell line. We found no mutation in the Abl kinase domain of SUP-B15/RI. Furthermore, the detection of cell signaling pathway of PI3K/AKT/mTOR, RAS/RAF, NF-κB, JNK and STAT showed the up-regulation of phosphorylation of AKT, mTOR, P70S6K, and RAF, ERK, and MEK, down-regulation of PTEN and 4EBP-1, and no change in other cell signaling pathways in SUP-B15/RI. However, dasatinib and nilotinib showed partial resistance. Interestingly, bortezomib had no resistance. Imatinib combination with rapamycin had synergistic effect on overcoming the resistance. Altogether, over-expression of BCR-ABL1 and mdr1 gene were involved in the resistance mechanisms, and up-regulation of the cell signaling pathways of PI3K/AKT/mTOR, RAS/RAF in SUP-B15/RI cell line may be correlated with them. The SUP-B15/RI cell line was also resistant to the second generation tyrosine kinase, dasatinib, and nilotinib, not bortezomib. The combination of imatinib with rapamycin can partially overcome the resistance and blockade of the ubiquitin-proteasome can be also a promising pathway to overcome imatinib resistance. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Chemo-sensitivity in a panel of B-cell precursor acute lymphoblastic leukemia cell lines, YCUB series, derived from children.

    PubMed

    Goto, Hiroaki; Naruto, Takuya; Tanoshima, Reo; Kato, Hiromi; Yokosuka, Tomoko; Yanagimachi, Masakatsu; Fujii, Hisaki; Yokota, Shumpei; Komine, Hiromi

    2009-10-01

    Sensitivity to 10 anticancer drugs was evaluated in 6 childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL) cell lines. Authenticity of newly established cell lines was confirmed by genomic fingerprinting. The line YCUB-5R established at relapse was more resistant to 4-hydroperoxy-cyclophosphamide, cytarabine, L-asparaginase, topotecan, fludarabine, and etoposide than YCUB-5 from the same patient at diagnosis. Of the drugs tested, etoposide and SN-38 (irinotecan) showed highest efficacy in the panel, with 50% growth inhibition at 0.22-1.8 microg/ml and 0.57-3.6 ng/ml, respectively. This cell line panel offers an in vitro model for the development of new therapies for childhood BCP-ALL.

  18. Distinct Signaling Pathways After Higher or Lower Doses of Radiation in Three Closely Related Human Lymphoblast Cell Lines

    SciTech Connect

    Lu, T.-P.; Lai, L.-C.; Lin, B.-I.; Chen, L.-H.; Hsiao, T.-H.; Liber, Howard L.; Cook, John A.; Mitchell, James B.; Tsai, M.-H.; Chuang, Eric Y.

    2010-01-15

    Purpose: The tumor suppressor p53 plays an essential role in cellular responses to DNA damage caused by ionizing radiation; therefore, this study aims to further explore the role that p53 plays at different doses of radiation. Materials and Methods: The global cellular responses to higher-dose (10 Gy) and lower dose (iso-survival dose, i.e., the respective D0 levels) radiation were analyzed using microarrays in three human lymphoblast cell lines with different p53 status: TK6 (wild-type p53), NH32 (p53-null), and WTK1 (mutant p53). Total RNAs were extracted from cells harvested at 0, 1, 3, 6, 9, and 24 h after higher and lower dose radiation exposures. Template-based clustering, hierarchical clustering, and principle component analysis were applied to examine the transcriptional profiles. Results: Differential expression profiles between 10 Gy and iso-survival radiation in cells with different p53 status were observed. Moreover, distinct gene expression patterns were exhibited among these three cells after 10 Gy radiation treatment, but similar transcriptional responses were observed in TK6 and NH32 cells treated with iso-survival radiation. Conclusions: After 10 Gy radiation exposure, the p53 signaling pathway played an important role in TK6, whereas the NFkB signaling pathway appeared to replace the role of p53 in WTK1. In contrast, after iso-survival radiation treatment, E2F4 seemed to play a dominant role independent of p53 status. This study dissected the impacts of p53, NFkB and E2F4 in response to higher or lower doses of gamma-irradiation.

  19. Zerumbone-loaded nanostructured lipid carrier induces G2/M cell cycle arrest and apoptosis via mitochondrial pathway in a human lymphoblastic leukemia cell line

    PubMed Central

    Rahman, Heshu Sulaiman; Rasedee, Abdullah; Abdul, Ahmad Bustamam; Zeenathul, Nazariah Allaudin; Othman, Hemn Hassan; Yeap, Swee Keong; How, Chee Wun; Hafiza, Wan Abd Ghani Wan Nor

    2014-01-01

    This investigation evaluated the antileukemia properties of a zerumbone (ZER)-loaded nanostructured lipid carrier (NLC) prepared by hot high-pressure homogenization techniques in an acute human lymphoblastic leukemia (Jurkat) cell line in vitro. The apoptogenic effect of the ZER-NLC on Jurkat cells was determined by fluorescent and electron microscopy, Annexin V-fluorescein isothiocyanate, Tdt-mediated dUTP nick-end labeling assay, cell cycle analysis, and caspase activity. An MTT (3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide) assay showed that ZER-NLC did not have adverse effects on normal human peripheral blood mononuclear cells. ZER-NLC arrested the Jurkat cells at G2/M phase with inactivation of cyclin B1 protein. The study also showed that the antiproliferative effect of ZER-NLC on Jurkat cells is through the intrinsic apoptotic pathway via activation of caspase-3 and caspase-9, release of cytochrome c from the mitochondria into the cytosol, and subsequent cleavage of poly (adenosine diphosphate-ribose) polymerase (PARP). These findings show that the ZER-NLC is a potentially useful treatment for acute lymphoblastic leukemia in humans. PMID:24549090

  20. Increased free radical production in hypertension due to increased expression of the NADPH oxidase subunit p22(phox) in lymphoblast cell lines.

    PubMed

    Pettit, Andrew I; Wong, Richard K M; Lee, Virginia; Jennings, Sonja; Quinn, Pauline A; Ng, Leong L

    2002-04-01

    To confirm increased production of reactive oxygen species (ROS) in hypertension, to demonstrate the source of ROS and to analyse NADPH oxidase subcomponent expression in hypertension. A lymphoblast model was used, as this has previously been used in the study of hypertension and of NADPH oxidase. Chemiluminescence (CL) was chosen to assay ROS production, as it is simple and sensitive. Lymphocytes from 12 hypertensive patients (HT), and 12 age- and sex-matched normotensive (NT) subjects, were immortalized. Luminol, isoluminol and Cypridina luciferin analogue (CLA) CL were used to assay ROS production. NADPH oxidase subunits were measured by Western blot analysis. Stimulation with 50 micromol/l arachidonic acid (AA) resulted in increased ROS production in HT cell lines with luminol, CLA and isoluminol CL. Stimulation with 500 nmol/l 12-O-tetradecanoylphorbol-13-acetate (TPA) produced a detectable increase in HT ROS production with luminol and with CLA, whereas there was no significant difference with isoluminol. The ROS production was abolished by diphenyleneiodonium chloride (DPI) but not by rotenone, indicating that a non-mitochondrial flavoprotein such as NADPH oxidase is the source of ROS. Analysis of NADPH oxidase subcomponents revealed an increase in p22(phox) in HT subjects. We have shown there is increased ROS production in lymphoblasts derived from hypertensive subjects, probably originating from NADPH oxidase. As the ROS production persists in transformed cells, this suggests a genetic predisposition to increased ROS production. Increased expression of p22(phox) in HT lymphoblasts may account for some of the increased ROS.

  1. Evaluation of the miRNA profiling and effectiveness of the propolis on B-cell acute lymphoblastic leukemia cell line.

    PubMed

    Yilmaz, Ugur Cem; Bagca, Bakiye Goker; Karaca, Emin; Durmaz, Asude; Durmaz, Burak; Aykut, Ayca; Kayalar, Husniye; Avci, Cigir Biray; Susluer, Sunde Yilmaz; Gunduz, Cumhur; Cogulu, Ozgur

    2016-12-01

    Acute lymphoblastic leukemia (ALL) is one of the most frequent causes of death from cancer. Since the discovery of chemotherapeutic agents, ALL has become a model for improvement of survival. In parallel to this, serious side effects were observed and new natural therapeutic options has been discussed. One of these substances is called propolis which is a resinous substance gathered by honeybees. In the molecular era, miRNAs have been shown to play crucial roles in the development of many clinical conditions. The aim of this study is to evaluate the effect of Aydın propolis on 81 human miRNA activity in CCRF-SB leukemia cell line. Apoptotic effects of propolis on cell lines were also evaluated and apoptosis were found to be induced 1.5 fold in B-cell leukemia cells. The expression of 63 miRNAs (46 miRNAs were downregulated, 19 miRNAs were upregulated) in propolis treated leukemia cells have changed significantly (p<0.05). In conclusion propolis has changed expression of miRNAs which have epigenetic effects on leukemic cells. It is thought that it can be a promising agent for ALL treatment for future studies. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. C22:0- and C24:0-dihydroceramides Confer Mixed Cytotoxicity in T-Cell Acute Lymphoblastic Leukemia Cell Lines

    PubMed Central

    Holliday Jr., Michael W.; Cox, Stephen B.; Kang, Min H.; Maurer, Barry J.

    2013-01-01

    We previously reported that fenretinide (4-HPR) was cytotoxic to acute lymphoblastic leukemia (ALL) cell lines in vitro in association with increased levels of de novo synthesized dihydroceramides, the immediate precursors of ceramides. However, the cytotoxic potentials of native dihydroceramides have not been defined. Therefore, we determined the cytotoxic effects of increasing dihydroceramide levels via de novo synthesis in T-cell ALL cell lines and whether such cytotoxicity was dependent on an absolute increase in total dihydroceramide mass versus an increase of certain specific dihydroceramides. A novel method employing supplementation of individual fatty acids, sphinganine, and the dihydroceramide desaturase-1 (DES) inhibitor, GT-11, was used to increase de novo dihydroceramide synthesis and absolute levels of specific dihydroceramides and ceramides. Sphingolipidomic analyses of four T-cell ALL cell lines revealed strong positive correlations between cytotoxicity and levels of C22:0-dihydroceramide (ρ = 0.74–0.81, P ≤ 0.04) and C24:0-dihydroceramide (ρ = 0.84–0.90, P ≤ 0.004), but not between total or other individual dihydroceramides, ceramides, or sphingoid bases or phosphorylated derivatives. Selective increase of C22:0- and C24:0-dihydroceramide increased level and flux of autophagy marker, LC3B-II, and increased DNA fragmentation (TUNEL assay) in the absence of an increase of reactive oxygen species; pan-caspase inhibition blocked DNA fragmentation but not cell death. C22:0-fatty acid supplemented to 4-HPR treated cells further increased C22:0-dihydroceramide levels (P ≤ 0.001) and cytotoxicity (P ≤ 0.001). These data demonstrate that increases of specific dihydroceramides are cytotoxic to T-cell ALL cells by a caspase-independent, mixed cell death mechanism associated with increased autophagy and suggest that dihydroceramides may contribute to 4-HPR-induced cytotoxicity. The targeted increase of specific acyl chain dihydroceramides may

  3. Design and synthesis of phosphoryl-substituted diphenylpyrimidines (Pho-DPPYs) as potent Bruton's tyrosine kinase (BTK) inhibitors: Targeted treatment of B lymphoblastic leukemia cell lines.

    PubMed

    Ge, Yang; Yang, Haijun; Wang, Changyuan; Meng, Qiang; Li, Lei; Sun, Huijun; Zhen, Yuhong; Liu, Kexin; Li, Yanxia; Ma, Xiaodong

    2017-01-15

    A family of phosphoryl-substituted diphenylpyrimidine derivatives (Pho-DPPYs) were synthesized and biologically evaluated as potent BTK inhibitors in this study. Compound 7b was found to markedly inhibit BTK activity at concentrations of 0.82nmol/L, as well as to suppress the proliferations of B-cell leukemia cell lines (Ramos and Raji) expressing high levels of BTK at concentrations of 3.17μM and 6.69μM. Moreover, flow cytometry analysis results further indicated that 7b promoted cell apoptosis to a substantial degree. In a word, compound 7b is a promising BTK inhibitor for the treatment of B-cell lymphoblastic leukemia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Combination Chemotherapy in Treating Young Patients With Newly Diagnosed T-Cell Acute Lymphoblastic Leukemia or T-cell Lymphoblastic Lymphoma

    ClinicalTrials.gov

    2017-09-12

    Acute Lymphoblastic Leukemia; Adult T Acute Lymphoblastic Leukemia; Childhood T Acute Lymphoblastic Leukemia; Stage II Adult T-Cell Leukemia/Lymphoma; Stage II Childhood Lymphoblastic Lymphoma; Stage II Contiguous Adult Lymphoblastic Lymphoma; Stage II Non-Contiguous Adult Lymphoblastic Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-Cell Leukemia/Lymphoma; Stage III Childhood Lymphoblastic Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-Cell Leukemia/Lymphoma; Stage IV Childhood Lymphoblastic Lymphoma; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  5. Potentiating effect of the flavonolignan (-)-hydnocarpin in combination with vincristine in a sensitive and P-gp-expressing acute lymphoblastic leukemia cell line.

    PubMed

    Bueno Pérez, Lynette; Pan, Li; Sass, Ellen; Gupta, Sneha V; Lehman, Amy; Kinghorn, A Douglas; Lucas, David M

    2013-11-01

    The potentiating action of the flavonolignan, (-)-hydnocarpin, in combination with vincristine was evaluated in the 697 acute lymphoblastic leukemia cell line and a P-gp-expressing variant, 697-R. Vincristine at 3 nM caused nearly complete growth inhibition in 697 cells versus a 17% growth inhibition in 697-R cells. When combined with (-)-hydnocarpin at concentrations of 10 and 5 μM, vincristine-mediated growth inhibition in the 697-R cells increased significantly over the sum of the individual agents to 72% (p ≤ 0.0001) and 41% (p = 0.0256), respectively. Vincristine at 1.5 nM (66% growth inhibition) and 0.75 nM (39% growth inhibition) combined with (-)-hydnocarpin at 10 μM (42% growth inhibition) in the 697 cells caused a significant increase in growth inhibition to 83% (p = 0.03) and to 61% (p < 0.0001), respectively, when compared to vincristine treatment as a single agent. To investigate the mechanism for the vincristine re-sensitization caused by (-)-hydnocarpin, the P-gp inhibitory effect of (-)-hydnocarpin was evaluated.

  6. Potential Prophylactic Properties of Apple and Characterization of Potent Bioactive from cv. "Granny Smith" Displaying Strong Antimutagenicity in Models Including Human Lymphoblast TK6(+/-) Cell Line.

    PubMed

    Saxena, Sudhanshu; Verma, Jyoti; Gautam, Satyendra

    2016-02-01

    Potential prophylactic attributes in terms of antimutagenicity, antioxidant, and radioprotective properties were evaluated for 8 common apple cultivars namely "Fuji," "Golden Delicious," "Granny Smith," "Ambri Kashmiri," "Kinnaur," "Red Delicious," "Royal Gala," and "Shimla," where cultivar based significant variation was observed. Cv. "Granny Smith" displayed significantly higher and broad spectrum antimutagenicity in Escherichia coli rpoB based rifampicin resistance (Rif(R) ) assay, whereas, "Ambri Kashmiri," "Royal Gala," and "Shimla" showed lower antimutagenicity. Cultivars "Ambri Kashmiri," "Kinnaur," and "Red Delicious" exhibited strong antioxidant activity than cv. "Granny Smith" as assayed by radical scavenging, reducing potential and radioprotective property assays. The antioxidant and radioprotective properties were found to be better correlated than antimutagenicity. Suppression of error-prone DNA repair pathway (such as E. coli SOS response) was found to be one of the possible mechanisms contributing to its antimutagenicity. Phenolic extract of "Granny Smithˮ showing higher antimutagenicity was HPLC purified and the bioactive fraction (tR 35.4 min) contributing maximally (∼80%) to the observed antimutagenicity was identified as procyanidin dimer (PD) by ESI-MS/MS. The above observed antimutagenicity in bacterial assay system was well reproduced in Thymidine Kinase Mutation (TKM) assay performed using human lymphoblast cell line (TK6(+/-) ) cell line making the findings more prophylactically relevant. © 2016 Institute of Food Technologists®

  7. Effects of arsenic exposure on DNA methylation in cord blood samples from newborn babies and in a human lymphoblast cell line

    PubMed Central

    2012-01-01

    Background Accumulating evidence indicates that in utero exposure to arsenic is associated with congenital defects and long-term disease consequences including cancers. Recent studies suggest that arsenic carcinogenesis results from epigenetic changes, particularly in DNA methylation. This study aimed to investigate DNA methylation changes as a result of arsenic exposure in utero and in vitro. Methods For the exposure in utero study, a total of seventy-one newborns (fifty-five arsenic-exposed and sixteen unexposed newborns) were recruited. Arsenic concentrations in the drinking water were measured, and exposure in newborns was assessed by measurement of arsenic concentrations in cord blood, nails and hair by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). In the in vitro study, human lymphoblasts were treated with arsenite at 0-100 μM for two, four and eight hours (short-term) and at 0, 0.5 and 1.0 μM for eight-weeks period (long-term). DNA methylation was analyzed in cord blood lymphocytes and lymphoblasts treated with arsenite in vitro. Global DNA methylation was determined as LINE-1 methylation using combined bisulfite restriction analysis (COBRA) and total 5-methyldeoxycytidine (5MedC) content which was determined by HPLC-MS/MS. Methylation of p53 was determined at the promoter region using methylation-specific restriction endonuclease digestion with MspI and HpaII. Results Results showed that arsenic-exposed newborns had significantly higher levels of arsenic in cord blood, fingernails, toenails and hair than those of the unexposed subjects and a slight increase in promoter methylation of p53 in cord blood lymphocytes which significantly correlated with arsenic accumulation in nails (p < 0.05) was observed, while LINE-1 methylation was unchanged. Short-term in vitro arsenite treatment in lymphoblastoid cells clearly demonstrated a significant global hypomethylation, determined as reduction in LINE-1 methylation and total 5-MedC content, and p53

  8. Establishment and cytogenetic characterization of a human acute lymphoblastic leukemia cell line (ALL-VG) with ETV6/ABL1 rearrangement.

    PubMed

    Baeumler, Joerg; Szuhai, Karoly; Falkenburg, J H Frederik; van Schie, Marianke L J; Ottmann, Oliver G; Nijmeijer, Bart A

    2008-08-01

    Fusion kinases (FK) like BCR/ABL1 mediate leukemic transformation and represent therapeutic targets. Fusion of ETV6 (ETS translocation variant 6, previously known as TEL) to ABL1 due to t(9;12) has been observed in various hematological malignancies. ETV6/ABL1 and BCR/ABL1 FK display similar activity but they may not be identical in function. Here we present the generation of an ETV6/ABL1 positive human acute lymphoblastic leukemia (ALL) cell line, ALL-VG. The cell line expressed ETV6/ABL1 fusion transcripts and displayed sensitivity to imatinib with an IC(50) of 0.1 microM. Karyotyping did not reveal overt t(9;12), suggesting a cryptic translocation. Fluorescent in situ hybridization and array-based comparative genomic hybridization were performed to characterize the rearrangement. ETV6/ABL1 fusion was demonstrated to result from insertion of a duplicated 300 to 1300 kb region of 9q34 that contained the distal portion of the ABL1 gene, into the ETV6 locus on 12p13. With this insertion, an 1150 to 1750 kb region of 12p13 that contained the distal portion of the ETV6 gene as well the cyclin dependent kinase inhibitor (CDKN) 1B gene was lost. Furthermore, the cells displayed a del(9)(p21.1 approximately p23), typically associated with loss of CDKN2A and CDKN2B. The ALL-VG cell line may serve as a tool for the study of ETV6/ABL1.

  9. Repairing effects of interleukin 11 (IL-11) towards high dose methotrexate-induced rat small intestinal mucositis and its impacts on T-lymphoblastic leukemia cell line

    PubMed Central

    Han, Yueqin; Zhu, Yanping; Wang, Jinshen; Han, Yanqin; Qin, Daogang; Yang, Qiaozhi; Sun, Xiaojing; Chen, Lijun

    2016-01-01

    Objective(s): To investigate the efficacy of interleukin 11 (IL-11) towards the high dose methotrexate (HDMTX)-concurrent rat small intestinal mucositis and its impacts on the proliferation of the human T-lymphoblastic leukemia (CEM) cell line. Materials and Methods: 95 Wistar rats were randomly divided into five groups, the normal control group (A), the methotrexate (MTX) control group (B), the IL-11-pre-treated high-dose group (C), the post-IL-11-treatment high-dose group (D) and the post-IL-11-treatment low-dose group (E). After the intraperitoneal injection of MTX in the groups B-E, the rats were sacrificed at 1, 3, 5 and 7 days. The mortality, morphological and ultrastructural changes of small intestine of each group were observed. The cells were then cultured in vitro, and the MTT method was used to investigate the effects of different concentration of IL-11 on CEM proliferation and also on HDMTX-induced mucositis. Results: IL-11 could reduce the intestinal histopathological score, increase the height of small intestinal villi, promote the proliferation of intestinal lacunar cells and reduce the mortality rate of rats. The IL-11 pre-treatment group exhibited the best efficacies, demonstrating significant difference with the control group (P<0.01). In addition, the proliferation of CEM was not promoted, indicating that IL-11 could not inhibit HDMTX. Conclusion: IL-11 could reduce the severity of HDMTX-induced intestinal mucositis, and improve the survival rate of experimental rats, and could be safely used as the adjuvant treatment of HDMTX in childhood leukemia. PMID:27746864

  10. Repairing effects of interleukin 11 (IL-11) towards high dose methotrexate-induced rat small intestinal mucositis and its impacts on T-lymphoblastic leukemia cell line

    PubMed Central

    Han, Yueqin; Zhu, Yanping; Wang, Jinshen; Han, Yanqin; Qin, Daogang; Yang, Qiaozhi; Sun, Xiaojing; Chen, Lijun

    2016-01-01

    Objective(s): To investigate the efficacy of interleukin 11 (IL-11) towards the high dose methotrexate (HDMTX)-concurrent rat small intestinal mucositis and its impacts on the proliferation of the human T-lymphoblastic leukemia (CEM) cell line. Materials and Methods: 95 Wistar rats were randomly divided into five groups, the normal control group (A), the methotrexate (MTX) control group (B), the IL-11-pre-treated high-dose group (C), the post-IL-11-treatment high-dose group (D) and the post-IL-11-treatment low-dose group (E). After the intraperitoneal injection of MTX in the groups B-E, the rats were sacrificed at 1, 3, 5 and 7 days. The mortality, morphological and ultrastructural changes of small intestine of each group were observed. The cells were then cultured in vitro, and the MTT method was used to investigate the effects of different concentration of IL-11 on CEM proliferation and also on HDMTX-induced mucositis. Results: IL-11 could reduce the intestinal histopathological score, increase the height of small intestinal villi, promote the proliferation of intestinal lacunar cells and reduce the mortality rate of rats. The IL-11 pre-treatment group exhibited the best efficacies, demonstrating significant difference with the control group (P<0.01). In addition, the proliferation of CEM was not promoted, indicating that IL-11 could not inhibit HDMTX. Conclusion: IL-11 could reduce the severity of HDMTX-induced intestinal mucositis, and improve the survival rate of experimental rats, and could be safely used as the adjuvant treatment of HDMTX in childhood leukemia[PARANDCO1]. PMID:27635197

  11. Modulation of P-glycoprotein activity by novel synthetic curcumin derivatives in sensitive and multidrug-resistant T-cell acute lymphoblastic leukemia cell lines.

    PubMed

    Ooko, Edna; Alsalim, Tahseen; Saeed, Bahjat; Saeed, Mohamed E M; Kadioglu, Onat; Abbo, Hanna S; Titinchi, Salam J J; Efferth, Thomas

    2016-08-15

    Multidrug resistance (MDR) and drug transporter P-glycoprotein (P-gp) represent major obstacles in cancer chemotherapy. We investigated 19 synthetic curcumin derivatives in drug-sensitive acute lymphoblastic CCRF-CEM leukemia cells and their multidrug-resistant P-gp-overexpressing subline, CEM/ADR5000. Cytotoxicity was tested by resazurin assays. Doxorubicin uptake was assessed by flow cytometry. Binding modes of compounds to P-gp were analyzed by molecular docking. Chemical features responsible for bioactivity were studied by quantitative structure activity relationship (QSAR) analyses. A 7-descriptor QSAR model was correlated with doxorubicin uptake values, IC50 values and binding energies. The compounds displayed IC50 values between 0.7±0.03 and 20.2±0.25μM. CEM/ADR5000 cells exhibited cross-resistance to 10 compounds, collateral sensitivity to three compounds and regular sensitivity to the remaining six curcumins. Molecular docking studies at the intra-channel transmembrane domain of human P-gp resulted in lowest binding energies ranging from -9.00±0.10 to -6.20±0.02kcal/mol and pKi values from 0.24±0.04 to 29.17±0.88μM. At the ATP-binding site of P-gp, lowest binding energies ranged from -9.78±0.17 to -6.79±0.01kcal/mol and pKi values from 0.07±0.02 to 0.03±0.03μM. CEM/ADR5000 cells accumulated approximately 4-fold less doxorubicin than CCRF-CEM cells. The control P-gp inhibitor, verapamil, partially increased doxorubicin uptake in CEM/ADR5000 cells. Six curcumins increased doxorubicin uptake in resistant cells or even exceeded uptake levels compared to sensitive one. QSAR yielded good activity prediction (R=0.797 and R=0.794 for training and test sets). Selected derivatives may serve to guide future design of novel P-gp inhibitors and collateral sensitive drugs to combat MDR. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Chimeric, divalent and tetravalent anti-CD19 monoclonal antibodies with potent in vitro and in vivo antitumor activity against human B-cell lymphoma and pre-B acute lymphoblastic leukemia cell lines.

    PubMed

    Liu, Xiao-Yun; Pop, Laurentiu M; Tsai, Lydia; Pop, Iliodora V; Vitetta, Ellen S

    2011-07-15

    CD19 is an attractive therapeutic target for treating human B-cell tumors. In our study, chimeric (c) divalent (cHD37) and tetravalent (cHD37-DcVV) anti-CD19 monoclonal antibodies (MAbs) were constructed, expressed and evaluated for their binding to human 19-positive (CD19(+)) tumor cell lines. They were also tested for proapoptotic activity and the ability to mediate effector functions. The antitumor activity of these MAbs was further tested in mice xenografted with the CD19(+) Burkitt's lymphoma cell line, Daudi or the pre-B acute lymphoblastic leukemia (ALL) cell line, NALM-6. The cHD37 and cHD37-DcVV MAbs exhibited specific binding and comparable proapoptotic activity on CD19(+) tumor cell lines in vitro. In addition, the cHD37 and cHD37-DcVV MAbs were similar in their ability to mediate antibody-dependent cell-mediated phagocytosis (ADCP). However, the tetravalent cHD37-DcVV MAb bound more avidly, had a slower dissociation rate, and did not internalize as well. It also had enhanced antibody-dependent cellular cytotoxicity (ADCC) with human but not murine effector cells. The cHD37 and cHD37-DcVV MAbs exhibited comparable affinity for the human neonatal Fc receptor (FcRn) and similar pharmacokinetics (PKs) in mice. Moreover, all the HD37 constructs were similar in extending the survival of mice xenografted with Daudi or NALM-6 tumor cells. Therefore, the cHD37 and cHD37-DcVV MAbs have potent antitumor activity and should be further developed for use in humans. Although not evident in mice, due to its increased ability to mediate ADCC with human but not mouse effector cells, the cHD37-DcVV MAb should have superior therapeutic efficacy in humans.

  13. Bryostatin-1, Fenretinide and 1α,25 (OH)2D3 Induce Growth Inhibition, Apoptosis and Differentiation in T and B Cell-Derived Acute Lymphoblastic Leukemia Cell Lines (CCRF-CEM and Nalm-6)

    PubMed Central

    Ardekani, Ali M.; Fard, Shahrzad Soleymani; Jeddi-Tehrani, Mahmood; Ghahremanzade, Ramin

    2011-01-01

    In many acute leukemias, normal differentiation does not occur. However, in many cell lines derived from hematologic malignancies, differentiation or apoptosis can be induced by variety of agents. Despite advances in the treatment of Acute Lymphoblastic Leukemia (ALL), in most patients long-term survival rates remain unsatisfactory, especially in T-cell derived ALL. Thus we studied the anti-cancer effects of fenretinide, 1α,25(OH)2D3, and bryostatin-1 in CCRF-CEM (T-cell derived) and Nalm-6 (B-cell derived) ALL cell lines. Using MTT assays, both cell lines were shown to exhibit increased inhibition of proliferation at micro (fenretinide) and nanomolar (1α,25(OH)2D3, bryostatin-1) concentrations. These anti-cancer agents were shown to induce apoptosis and activate caspase-3 pathway in both ALL cell lines. Furthermore, for the first time we are reporting consistent anti-proliferative and apoptotic effects of Bryostatin-1 in ALL T-cell derived cell line with the lowest ED50 (ranging 4.6-7.4 nM). To evaluate the differentiation induction by fenretinide, 1α,25(OH)2D3, and bryostatin-1 in ALL cell lines, we assayed for the expressions of CD19, CD38 markers on Nalm-6 and CD7 marker on CCRF-CEM cell line. The flow cytometric analysis showed a significant increase in expression of CD markers in response to anti-cancer drug treatments. To assay the effects of anti-cancer drugs on cell cycle distribution, cell cycle analysis using flow cytometry was employed. These anti-cancer drugs appear to affect the CCRF-CEM and Nalm-6 cell cycles differently (G0/G1 and G2/M arrest, respectively). Overall results demonstrate that the anti-cancer agents used in this study are strong inhibitors of ALL cell proliferation and inducers of apoptosis and differentiation in vitro. These findings may be quite helpful if these drugs are to be used for differentiation therapy of ALL patients in clinics in the future. Further studies are warranted to establish the in vivo effect of these drugs

  14. Bryostatin-1, Fenretinide and 1α,25 (OH)(2)D(3) Induce Growth Inhibition, Apoptosis and Differentiation in T and B Cell-Derived Acute Lymphoblastic Leukemia Cell Lines (CCRF-CEM and Nalm-6).

    PubMed

    Ardekani, Ali M; Fard, Shahrzad Soleymani; Jeddi-Tehrani, Mahmood; Ghahremanzade, Ramin

    2011-10-01

    In many acute leukemias, normal differentiation does not occur. However, in many cell lines derived from hematologic malignancies, differentiation or apoptosis can be induced by variety of agents. Despite advances in the treatment of Acute Lymphoblastic Leukemia (ALL), in most patients long-term survival rates remain unsatisfactory, especially in T-cell derived ALL. Thus we studied the anti-cancer effects of fenretinide, 1α,25(OH)(2)D(3), and bryostatin-1 in CCRF-CEM (T-cell derived) and Nalm-6 (B-cell derived) ALL cell lines. Using MTT assays, both cell lines were shown to exhibit increased inhibition of proliferation at micro (fenretinide) and nanomolar (1α,25(OH)(2)D(3), bryostatin-1) concentrations. These anti-cancer agents were shown to induce apoptosis and activate caspase-3 pathway in both ALL cell lines. Furthermore, for the first time we are reporting consistent anti-proliferative and apoptotic effects of Bryostatin-1 in ALL T-cell derived cell line with the lowest ED(50) (ranging 4.6-7.4 nM). To evaluate the differentiation induction by fenretinide, 1α,25(OH)(2)D(3), and bryostatin-1 in ALL cell lines, we assayed for the expressions of CD19, CD38 markers on Nalm-6 and CD7 marker on CCRF-CEM cell line. The flow cytometric analysis showed a significant increase in expression of CD markers in response to anti-cancer drug treatments. To assay the effects of anti-cancer drugs on cell cycle distribution, cell cycle analysis using flow cytometry was employed. These anti-cancer drugs appear to affect the CCRF-CEM and Nalm-6 cell cycles differently (G0/G1 and G2/M arrest, respectively). Overall results demonstrate that the anti-cancer agents used in this study are strong inhibitors of ALL cell proliferation and inducers of apoptosis and differentiation in vitro. These findings may be quite helpful if these drugs are to be used for differentiation therapy of ALL patients in clinics in the future. Further studies are warranted to establish the in vivo effect of

  15. A Comparison of the Anti-Tumor Effects of a Chimeric versus Murine Anti-CD19 Immunotoxins on Human B Cell Lymphoma and Pre-B Acute Lymphoblastic Leukemia Cell Lines

    PubMed Central

    Tsai, Lydia K.; Pop, Laurentiu M.; Liu, Xiaoyun; Vitetta, Ellen S.

    2011-01-01

    Precursor B cell acute lymphoblastic leukemia (pre-B ALL) affects five to six thousand adults and almost three thousand children every year. Approximately 25% of the children and 60% of the adults die from their disease, highlighting the need for new therapies that complement rather than overlap chemotherapy and bone marrow transplantation. Immunotherapy is a class of therapies where toxicities and mechanisms of action do not overlap with those of chemotherapy. Because CD19 is a B cell- restricted membrane antigen that is expressed on the majority of pre-B tumor cells, a CD19-based immunotherapy is being developed for ALL. In this study, the anti-tumor activities of immunotoxins (ITs) constructed by conjugating a murine monoclonal antibody (MAb), HD37, or its chimeric (c) construct to recombinant ricin toxin A chain (rRTA) were compared both in vitro using human pre-B ALL and Burkitt’s lymphoma cell lines and in vivo using a disseminated human pre-B ALL tumor cell xenograft model. The murine and chimeric HD37 IT constructs were equally cytotoxic to pre-B ALL and Burkitt’s lymphoma cells in vitro and their use in vivo resulted in equivalent increases in survival of SCID mice with human pre-B ALL tumors when compared with control mice. PMID:22069716

  16. The A Allele of the Single-Nucleotide Polymorphism rs630923 Creates a Binding Site for MEF2C Resulting in Reduced CXCR5 Promoter Activity in B-Cell Lymphoblastic Cell Lines

    PubMed Central

    Mitkin, Nikita A.; Muratova, Alisa M.; Schwartz, Anton M.; Kuprash, Dmitry V.

    2016-01-01

    Chemokine receptor CXCR5 is highly expressed in B-cells and under normal conditions is involved in their migration to specific areas of secondary lymphoid organs. B-cells are known to play an important role in various autoimmune diseases including multiple sclerosis (MS) where areas of demyelinating lesions attract B-cells by overexpressing CXCL13, the CXCR5 ligand. In this study, we aimed to determine the functional significance of single-nucleotide polymorphism rs630923 (A/C), which is located in cxcr5 gene promoter, and its common allele is associated with increased risk of MS. Using bioinformatics and pull-down assay in B-lymphoblastic cell lines, we showed that protective minor rs630923 “A” allele created functional binding site for MEF2C transcription factor. Elevated MEF2C expression in B-cells correlated with reduced activity of cxcr5 promoter containing rs630923 “A” allele. This effect that was fully neutralized by MEF2C-directed siRNA may mechanistically explain the protective role of the rs630923 minor allele in MS. Using site-directed mutagenesis of the cxcr5 gene promoter, we were unable to find any experimental evidence for the previously proposed role of NFκB transcription factors in rs630923-mediated CXCR5 promoter regulation. Thus, our results identify MEF2C as a possible mediator of protective function of the rs630923 “A” allele in MS. PMID:27909439

  17. The A Allele of the Single-Nucleotide Polymorphism rs630923 Creates a Binding Site for MEF2C Resulting in Reduced CXCR5 Promoter Activity in B-Cell Lymphoblastic Cell Lines.

    PubMed

    Mitkin, Nikita A; Muratova, Alisa M; Schwartz, Anton M; Kuprash, Dmitry V

    2016-01-01

    Chemokine receptor CXCR5 is highly expressed in B-cells and under normal conditions is involved in their migration to specific areas of secondary lymphoid organs. B-cells are known to play an important role in various autoimmune diseases including multiple sclerosis (MS) where areas of demyelinating lesions attract B-cells by overexpressing CXCL13, the CXCR5 ligand. In this study, we aimed to determine the functional significance of single-nucleotide polymorphism rs630923 (A/C), which is located in cxcr5 gene promoter, and its common allele is associated with increased risk of MS. Using bioinformatics and pull-down assay in B-lymphoblastic cell lines, we showed that protective minor rs630923 "A" allele created functional binding site for MEF2C transcription factor. Elevated MEF2C expression in B-cells correlated with reduced activity of cxcr5 promoter containing rs630923 "A" allele. This effect that was fully neutralized by MEF2C-directed siRNA may mechanistically explain the protective role of the rs630923 minor allele in MS. Using site-directed mutagenesis of the cxcr5 gene promoter, we were unable to find any experimental evidence for the previously proposed role of NFκB transcription factors in rs630923-mediated CXCR5 promoter regulation. Thus, our results identify MEF2C as a possible mediator of protective function of the rs630923 "A" allele in MS.

  18. Stem cell transplantation outcomes in lymphoblastic lymphoma.

    PubMed

    Brammer, Jonathan E; Khouri, Issa; Marin, David; Ledesma, Celina; Rondon, Gabriela; Ciurea, Stefan O; Nieto, Yago; Champlin, Richard E; Hosing, Chitra; Kebriaei, Partow

    2017-02-01

    Lymphoblastic lymphoma (LBL) is an aggressive lymphoma pathologically similar to lymphoblastic leukemia, but primarily presents with nodal or extra-medullary involvement. The aim of this study is to describe outcomes of patients undergoing stem cell transplantation (SCT) for LBL compared to historical data. Thirty-nine patients, of which 54% lacked complete remission (CR), received SCT for LBL between 1990 and 2015; 31 allogeneic and eight autologous. Overall survival (OS) and progression free survival (PFS) at three years for the entire cohort was 41%, the cumulative incidence (CI) of non-relapse mortality (NRM) was 18% at one year, and CI relapse mortality was 28% at one-year and 36% at three years; results similar to historical reports. On multivariate analysis, the use of total-body irradiation (TBI) based conditioning and transplantation in CR were independently predictive of OS and PFS. For patients requiring SCT for LBL, CR and TBI-based conditioning prior to allogeneic SCT may provide improved disease control.

  19. The Notch driven long non-coding RNA repertoire in T-cell acute lymphoblastic leukemia.

    PubMed

    Durinck, Kaat; Wallaert, Annelynn; Van de Walle, Inge; Van Loocke, Wouter; Volders, Pieter-Jan; Vanhauwaert, Suzanne; Geerdens, Ellen; Benoit, Yves; Van Roy, Nadine; Poppe, Bruce; Soulier, Jean; Cools, Jan; Mestdagh, Pieter; Vandesompele, Jo; Rondou, Pieter; Van Vlierberghe, Pieter; Taghon, Tom; Speleman, Frank

    2014-12-01

    Genetic studies in T-cell acute lymphoblastic leukemia have uncovered a remarkable complexity of oncogenic and loss-of-function mutations. Amongst this plethora of genetic changes, NOTCH1 activating mutations stand out as the most frequently occurring genetic defect, identified in more than 50% of T-cell acute lymphoblastic leukemias, supporting a role as an essential driver for this gene in T-cell acute lymphoblastic leukemia oncogenesis. In this study, we aimed to establish a comprehensive compendium of the long non-coding RNA transcriptome under control of Notch signaling. For this purpose, we measured the transcriptional response of all protein coding genes and long non-coding RNAs upon pharmacological Notch inhibition in the human T-cell acute lymphoblastic leukemia cell line CUTLL1 using RNA-sequencing. Similar Notch dependent profiles were established for normal human CD34(+) thymic T-cell progenitors exposed to Notch signaling activity in vivo. In addition, we generated long non-coding RNA expression profiles (array data) from ex vivo isolated Notch active CD34(+) and Notch inactive CD4(+)CD8(+) thymocytes and from a primary cohort of 15 T-cell acute lymphoblastic leukemia patients with known NOTCH1 mutation status. Integration of these expression datasets with publicly available Notch1 ChIP-sequencing data resulted in the identification of long non-coding RNAs directly regulated by Notch activity in normal and malignant T cells. Given the central role of Notch in T-cell acute lymphoblastic leukemia oncogenesis, these data pave the way for the development of novel therapeutic strategies that target hyperactive Notch signaling in human T-cell acute lymphoblastic leukemia.

  20. PI3K pan-inhibition impairs more efficiently proliferation and survival of T-cell acute lymphoblastic leukemia cell lines when compared to isoform-selective PI3K inhibitors

    PubMed Central

    Spartà, Antonino Maria; Chiarini, Francesca; Buontempo, Francesca; Evangelisti, Camilla; Evangelisti, Cecilia; Orsini, Ester; McCubrey, James A.; Martelli, Alberto Maria

    2015-01-01

    Class I phosphatidylinositol 3-kinases (PI3Ks) are frequently activated in T-cell acute lymphoblastic leukemia (T-ALL), mainly due to the loss of PTEN function. Therefore, targeting PI3Ks is a promising innovative approach for T-ALL treatment, however at present no definitive evidence indicated which is the better therapeutic strategy between pan or selective isoform inhibition, as all the four catalytic subunits might participate in leukemogenesis. Here, we demonstrated that in both PTEN deleted and PTEN non deleted T-ALL cell lines, PI3K pan-inhibition exerted the highest cytotoxic effects when compared to both selective isoform inhibition or dual p110γ/δ inhibition. Intriguingly, the dual p110γ/δ inhibitor IPI-145 was effective in Loucy cells, which are representative of early T-precursor (ETP)-ALL, a T-ALL subtype associated with a poor outcome. PTEN gene deletion did not confer a peculiar reliance of T-ALL cells on PI3K activity for their proliferation/survival, as PTEN was inactivated in PTEN non deleted cells, due to posttranslational mechanisms. PI3K pan-inhibition suppressed Akt activation and induced caspase-independent apoptosis. We further demonstrated that in some T-ALL cell lines, autophagy could exert a protective role against PI3K inhibition. Our findings strongly support clinical application of class I PI3K pan-inhibitors in T-ALL treatment, with the possible exception of ETP-ALL cases. PMID:25871383

  1. The t(11;14)(p15;q11) in a T-cell acute lymphoblastic leukemia cell line activates multiple transcripts, including Ttg-1, a gene encoding a potential zinc finger protein.

    PubMed Central

    McGuire, E A; Hockett, R D; Pollock, K M; Bartholdi, M F; O'Brien, S J; Korsmeyer, S J

    1989-01-01

    Interchromosomal translocations within lymphoid neoplasms frequently involve the antigen receptor genes. We cloned the breakpoints of the t(11;14)(p15;q11) in a CD3-negative T-cell acute lymphoblastic leukemia cell line (RPMI 8402) in order to identify new genes potentially involved in T-cell neoplasia. An extensive comparison of both breakpoints and their germ line counterparts indicated that an inadvertant recombinase-mediated break at chromosome segment 11p15 recombined with the delta T-cell receptor at 14q11. The derivative 11 breakpoint resembles a coding joint in which 11p15 rather than a variable region was introduced 5' to a D delta 1 D delta 2 J delta 1 intermediate rearrangement. Conversely, the derivative 14 breakpoint corresponds to a signal joint between the 5' heptamer-spacer-nonamer recombinational signal of D delta 1 and an isolated heptamer at 11p15. Multiple, apparently distinct transcripts were found flanking both breakpoints of 8402. RNAs of 3.5, 4.4, 1.4, and 8.0 kilobases originating from either side of the derivative 14 breakpoint were highly expressed in 8402 compared with other cells. This suggests that this translocation deregulated multiple genes and provides the opportunity to assess any multifactorial contribution they may have to malignancy. We cloned and sequenced several cDNAs representing the 1.4-kilobase transcript (termed Ttg-1 [T-cell translocation gene 1]) from an 8402 library. The predicted protein of 156 amino acids contained two internal repeats which could potentially form zinc fingers. Images PMID:2501659

  2. IMC-EB10, an anti-FLT3 monoclonal antibody, prolongs survival and reduces nonobese diabetic/severe combined immunodeficient engraftment of some acute lymphoblastic leukemia cell lines and primary leukemic samples.

    PubMed

    Piloto, Obdulio; Nguyen, Bao; Huso, David; Kim, Kyu-Tae; Li, Yiwen; Witte, Larry; Hicklin, Daniel J; Brown, Patrick; Small, Donald

    2006-05-01

    The class III receptor tyrosine kinase FLT3 is expressed on the blasts of >90% of patients with B-lineage acute lymphoblastic leukemias (ALL). In addition, it is expressed at extremely high levels in ALL patients with mixed lineage leukemia rearrangements or hyperdiploidy and is sometimes mutated in these same patients. In this report, we investigate the effects of treating ALL cell lines and primary samples with human anti-FLT3 monoclonal antibodies (mAb) capable of preventing binding of FLT3 ligand. In vitro studies, examining the ability of two anti-FLT3 mAbs (IMC-EB10 and IMC-NC7) to affect FLT3 activation and downstream signaling in ALL cell lines and primary blasts, yielded variable results. FLT3 phosphorylation was consistently inhibited by IMC-NC7 treatment, but in some cell lines, IMC-EB10 actually stimulated FLT3 activation, possibly as a result of antibody-mediated receptor dimerization. Through antibody-dependent, cell-mediated cytotoxicity, such an antibody could still prove efficacious against leukemia cells in vivo. In fact, IMC-EB10 treatment significantly prolonged survival and/or reduced engraftment of several ALL cell lines and primary ALL samples in nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice. This occurred even when IMC-EB10 treatment resulted in FLT3 activation in vitro. Moreover, fluorescence-activated cell sorting and PCR analysis of IMC-EB10-treated NOD/SCID mice surviving 150 days post-leukemic cell injection revealed that FLT3 immunotherapy reduced leukemic engraftment below the level of detection in these assays (<0.001%). Furthermore, in vivo IMC-EB10 treatment did not select for resistant cells, because cells surviving IMC-EB10 treatment remain sensitive to IMC-EB10 cytotoxicity upon retransplantation. In vivo studies involving either partial depletion or activation of natural killer (NK) cells show that most of the cytotoxic effect of IMC-EB10 is mediated through NK cells. Therefore, such an antibody, either

  3. MicroRNA-128-3p is a novel oncomiR targeting PHF6 in T-cell acute lymphoblastic leukemia.

    PubMed

    Mets, Evelien; Van Peer, Gert; Van der Meulen, Joni; Boice, Michael; Taghon, Tom; Goossens, Steven; Mestdagh, Pieter; Benoit, Yves; De Moerloose, Barbara; Van Roy, Nadine; Poppe, Bruce; Vandesompele, Jo; Wendel, Hans-Guido; Van Vlierberghe, Pieter; Speleman, Frank; Rondou, Pieter

    2014-08-01

    T-cell acute lymphoblastic leukemia arises from the leukemic transformation of developing thymocytes and results from cooperative genetic lesions. Inactivation of the PHF6 gene is frequently observed in T-cell acute lymphoblastic leukemia, suggesting an important tumor suppressive role for PHF6 in the pathobiology of this leukemia. Although the precise function of PHF6 is still unknown, this gene is most likely involved in chromatin regulation, a strongly emerging theme in T-cell acute lymphoblastic leukemia. In this context, our previous description of a cooperative microRNA regulatory network controlling several well-known T-cell acute lymphoblastic leukemia tumor suppressor genes, including PHF6, is of great importance. Given the high frequency of PHF6 lesions in T-cell acute lymphoblastic leukemia and the integration of PHF6 in this microRNA regulatory network, we aimed to identify novel oncogenic microRNAs in T-cell acute lymphoblastic leukemia which suppress PHF6. To this end, we performed an unbiased PHF6 3'UTR-microRNA library screen and combined the results with microRNA profiling data of samples from patients with T-cell acute lymphoblastic leukemia and normal thymocyte subsets. We selected miR-128-3p as a candidate PHF6-targeting, oncogenic microRNA and demonstrated regulation of PHF6 expression upon modulation of this microRNA in T-cell acute lymphoblastic leukemia cell lines. In vivo evidence of an oncogenic role of this microRNA in T-cell acute lymphoblastic leukemia was obtained through accelerated leukemia onset in a NOTCH1-induced T-cell acute lymphoblastic leukemia mouse model upon miR-128-3p over-expression. We conclude that miR-128-3p is a strong novel candidate oncogenic microRNA in T-cell acute lymphoblastic leukemia which targets the PHF6 tumor suppressor gene.

  4. Bortezomib and Combination Chemotherapy in Treating Young Patients With Relapsed Acute Lymphoblastic Leukemia or Lymphoblastic Lymphoma

    ClinicalTrials.gov

    2016-11-30

    B-cell Adult Acute Lymphoblastic Leukemia; B-cell Childhood Acute Lymphoblastic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Lymphoblastic Lymphoma; T-cell Adult Acute Lymphoblastic Leukemia; T-cell Childhood Acute Lymphoblastic Leukemia

  5. The effect of first-line imatinib interim therapy on the outcome of allogeneic stem cell transplantation in adults with newly diagnosed Philadelphia chromosome-positive acute lymphoblastic leukemia.

    PubMed

    Lee, Seok; Kim, Yoo-Jin; Min, Chang-Ki; Kim, Hee-Je; Eom, Ki-Sung; Kim, Dong-Wook; Lee, Jong-Wook; Min, Woo-Sung; Kim, Chun-Choo

    2005-05-01

    Previously, we suggested that imatinib incorporation into conventional chemotherapy as an alternative (imatinib interim therapy) might be a useful strategy for bridging the time to allogeneic stem cell transplantation (SCT) for newly diagnosed Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph(+) ALL). Here, we provide an updated report on this strategy in 29 patients. At the time of enrollment, 23 patients (79.3%) achieved complete remission (CR). After the first imatinib cycle, the median breakpoint cluster region-Abelson oncogene locus (BCR-ABL)/ABL ratios decreased by 0.77 log in 25 (86.2%) responders, and their BCR-ABL/ABL ratios decreased further by 0.34 log after the second imatinib cycle, which included 7 molecular CR. One patient (4.3%) relapsed during the imatinib therapy. The remaining 3 patients were primarily refractory to both imatinib and chemotherapy. Twenty-five (86.2%) of the 29 patients received transplants in first CR. With a median follow-up duration of 25 months after SCT, the 3-year estimated probabilities of relapse, nonrelapse mortality, disease-free survival, and overall survival were 3.8%, 18.7%, 78.1%, and 78.1%, respectively. In comparison to our historical control data, first-line imatinib interim therapy appears to provide a good quality of CR and a survival advantage for patients with Ph(+) ALL. Further long-term follow-up is needed to validate the results of this study.

  6. Acute B lymphoblastic leukaemia-propagating cells are present at high frequency in diverse lymphoblast populations

    PubMed Central

    Rehe, Klaus; Wilson, Kerrie; Bomken, Simon; Williamson, Daniel; Irving, Julie; den Boer, Monique L; Stanulla, Martin; Schrappe, Martin; Hall, Andrew G; Heidenreich, Olaf; Vormoor, Josef

    2013-01-01

    Leukaemia-propagating cells are more frequent in high-risk acute B lymphoblastic leukaemia than in many malignancies that follow a hierarchical cancer stem cell model. It is unclear whether this characteristic can be more universally applied to patients from non-‘high-risk’ sub-groups and across a broad range of cellular immunophenotypes. Here, we demonstrate in a wide range of primary patient samples and patient samples previously passaged through mice that leukaemia-propagating cells are found in all populations defined by high or low expression of the lymphoid differentiation markers CD10, CD20 or CD34. The frequency of leukaemia-propagating cells and their engraftment kinetics do not differ between these populations. Transcriptomic analysis of CD34high and CD34low blasts establishes their difference and their similarity to comparable normal progenitors at different stages of B-cell development. However, consistent with the functional similarity of these populations, expression signatures characteristic of leukaemia propagating cells in acute myeloid leukaemia fail to distinguish between the different populations. Together, these findings suggest that there is no stem cell hierarchy in acute B lymphoblastic leukaemia. PMID:23229821

  7. Acute B lymphoblastic leukaemia-propagating cells are present at high frequency in diverse lymphoblast populations.

    PubMed

    Rehe, Klaus; Wilson, Kerrie; Bomken, Simon; Williamson, Daniel; Irving, Julie; den Boer, Monique L; Stanulla, Martin; Schrappe, Martin; Hall, Andrew G; Heidenreich, Olaf; Vormoor, Josef

    2013-01-01

    Leukaemia-propagating cells are more frequent in high-risk acute B lymphoblastic leukaemia than in many malignancies that follow a hierarchical cancer stem cell model. It is unclear whether this characteristic can be more universally applied to patients from non-'high-risk' sub-groups and across a broad range of cellular immunophenotypes. Here, we demonstrate in a wide range of primary patient samples and patient samples previously passaged through mice that leukaemia-propagating cells are found in all populations defined by high or low expression of the lymphoid differentiation markers CD10, CD20 or CD34. The frequency of leukaemia-propagating cells and their engraftment kinetics do not differ between these populations. Transcriptomic analysis of CD34(high) and CD34(low) blasts establishes their difference and their similarity to comparable normal progenitors at different stages of B-cell development. However, consistent with the functional similarity of these populations, expression signatures characteristic of leukaemia propagating cells in acute myeloid leukaemia fail to distinguish between the different populations. Together, these findings suggest that there is no stem cell hierarchy in acute B lymphoblastic leukaemia.

  8. Stereospecific chemoattraction of lymphoblastic cells by gradients of lysophosphatidylcholine.

    PubMed Central

    Hoffman, R D; Kligerman, M; Sundt, T M; Anderson, N D; Shin, H S

    1982-01-01

    Human plasma contains chemoattractant activity for cultured cells from the mouse thymic lymphoma 6C3HED and also for lymphoblasts from concanavalin A-stimulated mouse spleen cells. A major portion of the attractant activity for both cell types could be attributed to plasma lysophosphatidylcholine. Studies on synthetic lysophosphatides showed that polar head group structure, acyl chain length, and stereochemical configuration are important determinants for attractant activity. Images PMID:6954479

  9. Epigenetic inactivation of TWIST2 in acute lymphoblastic leukemia modulates proliferation, cell survival and chemosensitivity

    PubMed Central

    Thathia, Shabnam H.; Ferguson, Stuart; Gautrey, Hannah E.; van Otterdijk, Sanne D.; Hili, Michela; Rand, Vikki; Moorman, Anthony V.; Meyer, Stefan; Brown, Robert; Strathdee, Gordon

    2012-01-01

    Background Altered regulation of many transcription factors has been shown to be important in the development of leukemia. TWIST2 modulates the activity of a number of important transcription factors and is known to be a regulator of hematopoietic differentiation. Here, we investigated the significance of epigenetic regulation of TWIST2 in the control of cell growth and survival and in response to cytotoxic agents in acute lymphoblastic leukemia. Design and Methods TWIST2 promoter methylation status was assessed quantitatively, by combined bisulfite and restriction analysis (COBRA) and pyrosequencing assays, in multiple types of leukemia and TWIST2 expression was determined by quantitative reverse transcriptase polymerase chain reaction analysis. The functional role of TWIST2 in cell proliferation, survival and response to chemotherapy was assessed in transient and stable expression systems. Results We found that TWIST2 was inactivated in more than 50% of cases of childhood and adult acute lymphoblastic leukemia through promoter hypermethylation and that this epigenetic regulation was especially prevalent in RUNX1-ETV6-driven cases. Re-expression of TWIST2 in cell lines resulted in a dramatic reduction in cell growth and induction of apoptosis in the Reh cell line. Furthermore, re-expression of TWIST2 resulted in increased sensitivity to the chemotherapeutic agents etoposide, daunorubicin and dexamethasone and TWIST2 hypermethylation was almost invariably found in relapsed adult acute lymphoblastic leukemia (91% of samples hypermethylated). Conclusions This study suggests a dual role for epigenetic inactivation of TWIST2 in acute lymphoblastic leukemia, initially through altering cell growth and survival properties and subsequently by increasing resistance to chemotherapy. PMID:22058208

  10. Increased regulatory T cells in acute lymphoblastic leukaemia patients.

    PubMed

    Idris, Siti-Zuleha; Hassan, Norfarazieda; Lee, Le-Jie; Md Noor, Sabariah; Osman, Raudhawati; Abdul-Jalil, Marsitah; Nordin, Abdul-Jalil; Abdullah, Maha

    2016-05-01

    Regulation in adaptive immune response balances a fine line that prevents instigation of self-damage or fall into unresponsiveness permitting abnormal cell growth. Mechanisms that keep this balance in check include regulatory T cells (Tregs). Tregs consist of a small but heterogeneous population, which may be identified by the phenotype, CD3+CD4+CD25+CD127-. The role of Tregs in pathogenesis of cancers is thus far supported by evidence of increased Tregs in various cancers and may contribute to poorer prognosis. Tregs may also be important in acute leukaemias. A review of the literature on Tregs in acute leukaemias was conducted and Tregs were determined in B-cell acute lymphoblastic leukaemias (ALLs). Studies on Tregs in B-cell ALL are few and controversial. We observed a significantly increased percentage of Tregs (mean±SD, 9.72 ± 3.79% vs. 7.05 ± 1.74%; P = 0.047) in the bone marrow/peripheral blood of ALL (n = 17) compared to peripheral blood of normal controls (n = 35). A positive trend between Tregs and age (R = 0.474, P = 0.055, n = 17) implicates this factor of poor prognosis in B-cell ALL. Tregs in cancer are particularly significant in immunotherapy. The manipulation of the immune system to treat cancer has for a long time ignored regulatory mechanisms inducible or in place. In lymphoma studies, tumour-specific mechanisms that are unlike conventional methods in the induction of Tregs have been hypothesized. In addition, tumour-infiltrating Tregs may present different profiles from peripheral blood pictures. Tregs will continue to be dissected to reveal its mysteries and their impact on clinical significance.

  11. Ex Vivo Expanded Adaptive NK Cells Effectively Kill Primary Acute Lymphoblastic Leukemia Cells.

    PubMed

    Liu, Lisa L; Béziat, Vivien; Oei, Vincent Y S; Pfefferle, Aline; Schaffer, Marie; Lehmann, Sören; Hellström-Lindberg, Eva; Söderhäll, Stefan; Heyman, Mats; Grandér, Dan; Malmberg, Karl-Johan

    2017-08-01

    Manipulation of human natural killer (NK) cell repertoires promises more effective strategies for NK cell-based cancer immunotherapy. A subset of highly differentiated NK cells, termed adaptive NK cells, expands naturally in vivo in response to human cytomegalovirus (HCMV) infection, carries unique repertoires of inhibitory killer cell immunoglobulin-like receptors (KIR), and displays strong cytotoxicity against tumor cells. Here, we established a robust and scalable protocol for ex vivo generation and expansion of adaptive NK cells for cell therapy against pediatric acute lymphoblastic leukemia (ALL). Culture of polyclonal NK cells together with feeder cells expressing HLA-E, the ligand for the activating NKG2C receptor, led to selective expansion of adaptive NK cells with enhanced alloreactivity against HLA-mismatched targets. The ex vivo expanded adaptive NK cells gradually obtained a more differentiated phenotype and were specific and highly efficient killers of allogeneic pediatric T- and precursor B-cell acute lymphoblastic leukemia (ALL) blasts, previously shown to be refractory to killing by autologous NK cells and the NK-cell line NK92 currently in clinical testing. Selective expansion of NK cells that express one single inhibitory KIR for self-HLA class I would allow exploitation of the full potential of NK-cell alloreactivity in cancer immunotherapy. In summary, our data suggest that adaptive NK cells may hold utility for therapy of refractory ALL, either as a bridge to transplant or for patients that lack stem cell donors. Cancer Immunol Res; 5(8); 654-65. ©2017 AACR. ©2017 American Association for Cancer Research.

  12. Beating the Clock in T-cell Acute Lymphoblastic Leukemia.

    PubMed

    Carroll, William L; Aifantis, Iannis; Raetz, Elizabeth

    2017-02-15

    CDK4/6 inhibition was synergistic with dexamethasone and everolimus but antagonistic with conventional chemotherapy in T-cell acute lymphoblastic leukemia (T-ALL) preclinical models. Cyclin-dependent kinase inhibition in combination with glucocorticoids and mTOR inhibition offers a unique therapeutic opportunity in T-ALL. Clin Cancer Res; 23(4); 873-5. ©2016 AACRSee related article by Pikman et al., p. 1012.

  13. Acute lymphoblastic leukemia relapsing after first-line pediatric-inspired therapy: a retrospective GRAALL study

    PubMed Central

    Desjonquères, A; Chevallier, P; Thomas, X; Huguet, F; Leguay, T; Bernard, M; Bay, J-O; Tavernier, E; Charbonnier, A; Isnard, F; Hunault, M; Turlure, P; Renaud, M; Bastié, J-N; Himberlin, C; Lepretre, S; Lioure, B; Lhéritier, V; Asnafi, V; Beldjord, K; Lafage-Pochitaloff, M; Béné, M C; Ifrah, N; Dombret, H

    2016-01-01

    The outcome of adult patients with Philadelphia chromosome-negative acute lymphoblastic leukemia (Ph− ALL) relapsing after pediatric-inspired front-line therapy is ill known. Here 229 relapsing Ph− ALL younger adults (18–63 years) treated within the Group for Research on Adult Acute Lymphoblastic Leukemia (GRAALL)-2003/-2005 trials were considered. Salvage regimens consisted of potentially curative therapies in 194 cases, low-intensity therapies in 21, allogeneic stem cell transplant (allo-SCT) in 6 and best supportive care in 8. Overall, 77 patients received allo-SCT after relapse. The median follow-up was 3.1 years. A second complete remission (CR2) was achieved in 121 patients (53%). In multivariate analysis, only younger age <45 years (P=0.008) and CR1 duration ⩾18 months (P=0.009) predicted CR2. Overall survival (OS) at 2 and 5 years was 19.3% (14–24%) and 13.3% (8–18%), respectively. In CR2 patients, disease-free survival (DFS) at 2 and 5 years was 29.0% (21–38%) and 25% (17–33%). In multivariate analysis, CR1 duration ⩾18 months and allo-SCT after relapse were associated with longer DFS (P<0.009 and P=0.004, respectively) and longer OS (P=0.004 and P<0.0001, respectively). In conclusion, although younger adults relapsing after pediatric-inspired ALL therapies retain a poor outcome, some of them may be cured if CR1 duration ⩾18 months and if allo-SCT can be performed in CR2. New therapies are definitely needed for these patients. PMID:27935576

  14. First-line treatment of Philadelphia chromosome-positive acute lymphoblastic leukaemia in adults.

    PubMed

    Ottmann, Oliver G; Pfeifer, Heike

    2009-06-01

    The tyrosine kinase inhibitor (TKI) imatinib has become an integral part of front-line therapy for Philadelphia chromosome-positive acute lymphoblastic leukaemia, with remission rates exceeding 90% irrespective of whether imatinib is given alone or combined with chemotherapy. Treatment outcome with imatinib-based regimens has improved compared with historic controls, but most patients who do not undergo allogeneic stem cell transplantation (SCT) eventually relapse. Second-generation TKI, e.g. dasatinib and nilotinib, show activity against most of the bcr-abl tyrosine kinase domain mutations involved in acquired imatinib resistance, but clinical benefit is generally short lived. Accordingly, SCT in first complete response is considered to be the best curative option. Strategies to improve outcome in patients ineligible for transplantation as well as after SCT include front-line treatment with more effective TKI to increase molecular response rates. Following SCT, the pre-emptive use of imatinib appears to reduce the relapse rate. Novel immunotherapeutic interventions and combinations of TKI are also being explored.

  15. Stem cell programs are retained in human leukemic lymphoblasts.

    PubMed

    Fan, D; Zhou, X; Li, Z; Li, Z-Q; Duan, C; Liu, T; Zhang, F; Huang, Y; Zhang, Y; Gao, F; Guo, Y; Gupta, R; Chen, G; Enver, T; Tang, J; Hong, D

    2015-04-16

    Leukemic lymphoblasts within different immunophenotypic populations possess stem cell properties. However, whether or not the self-renewal program is retained from stem cells or conferred on progenitors by leukemogenic molecules remains unknown. We have addressed the issue in the context of TEL-AML1-associated acute lymphoblastic leukemia (ALL) by profiling a refined program edited from genes essential for self-renewal of hematopoietic stem cells and B-cell development. Bioinformatic analysis shows that ALL populations are loosely clustered and close to the normal population that contains stem and primitive progenitor cells. This finding indicates that immunophenotypes do not reflect maturation stages in ALL and that the self-renewal program may be retained from stem cells. Results of assessing 'first hit' function of TEL-AML1 in different populations of normal cells demonstrate the molecular model. Therefore, the current study shows a leukemogenic scenario of human ALL in which programs of stem cells are sustained in distinct fractions by leukemogenic mutations.

  16. [Effect of Ikaros in B Cell Acute Lymphoblastic Leukemia].

    PubMed

    Zhang, Hai-Ying; Bai, Hai

    2015-08-01

    The Ikaros - a DNA-binding zinc finger protein, acting as a regulator of chromatin remodeling and gene transcription, is crucial for regulating the development and function of the immune system and acting as a master regulator of hematopoietic differentiation. Function-loss mutations of IKZF1, gene encoding Ikaros are frequent in B cell acute lymphoblastic leukemia (B-ALL) and are associated with a poor prognosis. This review briefly summarizes the available data regarding the structure and function of Ikaros, the role of Ikaros as a tumor suppressor in B-ALL, and its regulation mechanism.

  17. Inhibiting Polo-like kinase 1 causes growth reduction and apoptosis in pediatric acute lymphoblastic leukemia cells.

    PubMed

    Hartsink-Segers, Stefanie A; Exalto, Carla; Allen, Matthew; Williamson, Daniel; Clifford, Steven C; Horstmann, Martin; Caron, Huib N; Pieters, Rob; Den Boer, Monique L

    2013-10-01

    This study investigated Polo-like kinase 1, a mitotic regulator often over-expressed in solid tumors and adult hematopoietic malignancies, as a potential new target in the treatment of pediatric acute lymphoblastic leukemia. Polo-like kinase 1 protein and Thr210 phosphorylation levels were higher in pediatric acute lymphoblastic leukemia (n=172) than in normal bone marrow mononuclear cells (n=10) (P<0.0001). High Polo-like kinase 1 protein phosphorylation, but not expression, was associated with a lower probability of event-free survival (P=0.042) and was a borderline significant prognostic factor (P=0.065) in a multivariate analysis including age and initial white blood cell count. Polo-like kinase 1 was necessary for leukemic cell survival, since short hairpin-mediated Polo-like kinase 1 knockdown in acute lymphoblastic leukemia cell lines inhibited cell proliferation by G2/M cell cycle arrest and induced apoptosis through caspase-3 and poly (ADP-ribose) polymerase cleavage. Primary patient cells with a high Polo-like kinase 1 protein expression were sensitive to the Polo-like kinase 1-specific inhibitor NMS-P937 in vitro, whereas cells with a low expression and normal bone marrow cells were resistant. This sensitivity was likely not caused by Polo-like kinase 1 mutations, since only one new mutation (Ser335Arg) was found by 454-sequencing of 38 pediatric acute lymphoblastic leukemia cases. This mutation did not affect Polo-like kinase 1 expression or NMS-P937 sensitivity. Together, these results indicate a pivotal role for Polo-like kinase 1 in pediatric acute lymphoblastic leukemia and show potential for Polo-like kinase 1-inhibiting drugs as an addition to current treatment strategies for cases expressing high Polo-like kinase 1 levels.

  18. Sensitization of acute lymphoblastic leukemia cells for LCL161-induced cell death by targeting redox homeostasis.

    PubMed

    Haß, Christina; Belz, Katharina; Schoeneberger, Hannah; Fulda, Simone

    2016-04-01

    Disturbed redox homeostasis with both elevated reactive oxygen species (ROS) levels and antioxidant defense mechanisms has been reported in acute lymphoblastic leukemia (ALL). We therefore hypothesized that inhibition of pathways responsible for ROS detoxification renders ALL cells more susceptible for cell death. Here, we report that pharmacological inhibitors of key pathways for the elimination of ROS, i.e. Erastin, buthionine sulfoximine (BSO) and Auranofin, sensitize ALL cells for cell death upon treatment with the Smac mimetic LCL161 that antagonizes Inhibitor of Apoptosis (IAP) proteins. Erastin, BSO or Auranofin significantly increase LCL161-induced cell death and also act in concert with LCL161 to profoundly suppress long-term clonogenic survival in several ALL cell lines. Erastin or BSO cooperates with LCL161 to stimulate ROS production and lipid peroxidation prior to cell death. ROS production and lipid peroxidation are required for this cotreatment-induced cell death, since ROS scavengers or pharmacological inhibition of lipid peroxidation provides significant protection against cell death. These results emphasize that inhibition of antioxidant defense mechanisms can serve as a potent approach to prime ALL cells for LCL161-induced cell death.

  19. Aberrant Signaling Pathways in T-Cell Acute Lymphoblastic Leukemia

    PubMed Central

    Bongiovanni, Deborah; Saccomani, Valentina

    2017-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive disease caused by the malignant transformation of immature progenitors primed towards T-cell development. Clinically, T-ALL patients present with diffuse infiltration of the bone marrow by immature T-cell blasts high blood cell counts, mediastinal involvement, and diffusion to the central nervous system. In the past decade, the genomic landscape of T-ALL has been the target of intense research. The identification of specific genomic alterations has contributed to identify strong oncogenic drivers and signaling pathways regulating leukemia growth. Notwithstanding, T-ALL patients are still treated with high-dose multiagent chemotherapy, potentially exposing these patients to considerable acute and long-term side effects. This review summarizes recent advances in our understanding of the signaling pathways relevant for the pathogenesis of T-ALL and the opportunities offered for targeted therapy. PMID:28872614

  20. The novel arylindolylmaleimide PDA-66 displays pronounced antiproliferative effects in acute lymphoblastic leukemia cells

    PubMed Central

    2014-01-01

    Background Prognosis of adult patients suffering from acute lymphoblastic leukemia (ALL) is still unsatisfactory. Targeted therapy via inhibition of deregulated signaling pathways appears to be a promising therapeutic option for the treatment of ALL. Herein, we evaluated the influence of a novel arylindolylmaleimide (PDA-66), a potential GSK3β inhibitor, on several ALL cell lines. Methods ALL cell lines (SEM, RS4;11, Jurkat and MOLT4) were exposed to different concentrations of PDA-66. Subsequently, proliferation, metabolic activity, apoptosis and necrosis, cell cycle distribution and protein expression of Wnt and PI3K/Akt signaling pathways were analyzed at different time points. Results PDA-66 inhibited the proliferation of ALL cells significantly by reduction of metabolic activity. The 72 h IC50 values ranged between 0.41 to 1.28 μM PDA-66. Additionally, caspase activated induction of apoptosis could be detected in the analyzed cell lines. PDA-66 influenced the cell cycle distribution of ALL cell lines differently. While RS4;11 and MOLT4 cells were found to be arrested in G2 phase, SEM cells showed an increased cell cycle in G0/1 phase. Conclusion PDA-66 displays significant antileukemic activity in ALL cells and classifies as candidate for further evaluation as a potential drug in targeted therapy of ALL. PMID:24502201

  1. Senescent stromal cell-induced divergence and therapeutic resistance in T cell acute lymphoblastic leukemia/lymphoma

    PubMed Central

    Habiel, David M.; Krepostman, Nicolas; Lilly, Michael; Cavassani, Karen; Coelho, Ana Lucia; Shibata, Takehiko; Elenitoba-Johnson, Kojo; Hogaboam, Cory M.

    2016-01-01

    T cell Acute Lymphoblastic Leukemia/Lymphoma (T-ALL/LBL) is a precursor T cell leukemia/lymphoma that represents approximately 15% of all childhood and 25% of adult acute lymphoblastic leukemia. Although a high cure rate is observed in children, therapy resistance is often observed in adults and mechanisms leading to this resistance remain elusive. Utilizing public gene expression datasets, a fibrotic signature was detected in T-LBL but not T-ALL biopsies. Further, using a T-ALL cell line, CCRF-CEM (CEM) cells, we show that CEM cells induce pulmonary remodeling in immunocompromised mice, suggesting potential interaction between these cells and lung fibroblasts. Co-culture studies suggested that fibroblasts-induced phenotypic and genotypic divergence in co-cultured CEM cells leading to diminished therapeutic responses in vitro. Senescent rather than proliferating stromal cells induced these effects in CEM cells, due, in part, to the enhanced production of oxidative radicals and exosomes containing miRNAs targeting BRCA1 and components of the Mismatch Repair pathway (MMR). Collectively, our studies demonstrate that there may be bidirectional interaction between leukemic cells and stroma, where leukemic cells induce stromal development in vivo and senescent stromal cells generates genomic alterations in the leukemic cells rendering them therapeutic resistant. Thus, targeting senescent stroma might prove beneficial in T-ALL/LBL patients. PMID:27835864

  2. Bone Marrow Cells in Acute Lymphoblastic Leukemia Create a Proinflammatory Microenvironment Influencing Normal Hematopoietic Differentiation Fates

    PubMed Central

    Vilchis-Ordoñez, Armando; Contreras-Quiroz, Adriana; Dorantes-Acosta, Elisa; Reyes-López, Alfonso; Quintela-Nuñez del Prado, Henry Martin; Venegas-Vázquez, Jorge; Mayani, Hector; Ortiz-Navarrete, Vianney; López-Martínez, Briceida; Pelayo, Rosana

    2015-01-01

    B-cell acute lymphoblastic leukemia (B-ALL) is a serious public health problem in the pediatric population worldwide, contributing to 85% of deaths from childhood cancers. Understanding the biology of the disease is crucial for its clinical management and the development of therapeutic strategies. In line with that observed in other malignancies, chronic inflammation may contribute to a tumor microenvironment resulting in the damage of normal processes, concomitant to development and maintenance of neoplastic cells. We report here that hematopoietic cells from bone marrow B-ALL have the ability to produce proinflammatory and growth factors, including TNFα, IL-1β, IL-12, and GM-CSF that stimulate proliferation and differentiation of normal stem and progenitor cells. Our findings suggest an apparently distinct CD13+CD33+ population of leukemic cells contributing to a proinflammatory microenvironment that may be detrimental to long-term normal hematopoiesis within B-ALL bone marrow. PMID:26090405

  3. Leydig cell damage after testicular irradiation for lymphoblastic leukemia

    SciTech Connect

    Shalet, S.M.; Horner, A.; Ahmed, S.R.; Morris-Jones, P.H.

    1985-01-01

    The effect of testicular irradiation on Leydig cell function has been studied in a group of boys irradiated between 1 and 5 years earlier for a testicular relapse of acute lymphoblastic leukemia. Six of the seven boys irradiated during prepubertal life had an absent testosterone response to HCG stimulation. Two of the four boys irradiated during puberty had an appropriate basal testosterone level, but the testosterone response to HCG stimulation was subnormal in three of the four. Abnormalities in gonadotropin secretion consistent with testicular damage were noted in nine of the 11 boys. Evidence of severe Leydig cell damage was present irrespective of whether the boys were studied within 1 year or between 3 and 5 years after irradiation, suggesting that recovery is unlikely. Androgen replacement therapy has been started in four boys and will be required by the majority of the remainder to undergo normal pubertal development.

  4. Role of DNA methylation in the adaptive responses induced in a human B lymphoblast cell line by long-term low-dose exposures to γ-rays and cadmium.

    PubMed

    Ye, Shuang; Yuan, Dexiao; Xie, Yuexia; Pan, Yan; Shao, Chunlin

    2014-10-01

    The possible involvement of epigenetic factors in health risks due to exposures to environmental toxicants and ionizing radiation is poorly understood. We have tested the hypothesis that DNA methylation contributes to the adaptive response (AR) to ionizing radiation or Cd. Human B lymphoblast cells HMy2.CIR were irradiated (0.032 Gy γ-rays) three times per week for 4 weeks or exposed to CdCl2 (0.005, 0.01, or 0.1 μM) for 3 months, and then challenged with a high dose of Cd (50 or 100 μM) or γ-rays (2 Gy). Long-term low-dose radiation (LDR) or long-term low-dose Cd exposure induced AR against challenging doses of Cd and irradiation, respectively. When the primed cells were treated with 5-aza-2'-deoxycytidine (5-aza-dC), a DNA methyltransferase inhibitor, the ARs were eliminated. These results indicate that DNA methylation is involved in the induction of AR in HMy2.CIR cells.

  5. Hypothalamic obesity syndrome: rare presentation of CNS+ B-cell lymphoblastic lymphoma.

    PubMed

    Quigg, Troy C; Haddad, Nadine G; Buchsbaum, Jeffrey C; Shih, Chie-Schin

    2012-11-01

    Hypothalamic obesity syndrome can affect brain tumor patients following surgical intervention and irradiation. This syndrome is rare at diagnosis in childhood cancer, but has been reported with relapse of acute lymphoblastic leukemia. Here we present a case of hypothalamic obesity syndrome as the primary presentation of a toddler found to have CNS+ B-cell lymphoblastic lymphoma. Cytogenetic studies on diagnostic cerebrospinal fluid revealed MLL gene rearrangement (11q23). Hyperphagia and obesity dramatically improved following induction and consolidation chemotherapy. We describe a novel presentation of hypothalamic obesity syndrome in CNS B-cell lymphoblastic lymphoma, responsive to chemotherapy. Copyright © 2011 Wiley Periodicals, Inc.

  6. PHF6 mutations in T-cell acute lymphoblastic leukemia.

    PubMed

    Van Vlierberghe, Pieter; Palomero, Teresa; Khiabanian, Hossein; Van der Meulen, Joni; Castillo, Mireia; Van Roy, Nadine; De Moerloose, Barbara; Philippé, Jan; González-García, Sara; Toribio, María L; Taghon, Tom; Zuurbier, Linda; Cauwelier, Barbara; Harrison, Christine J; Schwab, Claire; Pisecker, Markus; Strehl, Sabine; Langerak, Anton W; Gecz, Jozef; Sonneveld, Edwin; Pieters, Rob; Paietta, Elisabeth; Rowe, Jacob M; Wiernik, Peter H; Benoit, Yves; Soulier, Jean; Poppe, Bruce; Yao, Xiaopan; Cordon-Cardo, Carlos; Meijerink, Jules; Rabadan, Raul; Speleman, Frank; Ferrando, Adolfo

    2010-04-01

    Tumor suppressor genes on the X chromosome may skew the gender distribution of specific types of cancer. T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy with an increased incidence in males. In this study, we report the identification of inactivating mutations and deletions in the X-linked plant homeodomain finger 6 (PHF6) gene in 16% of pediatric and 38% of adult primary T-ALL samples. Notably, PHF6 mutations are almost exclusively found in T-ALL samples from male subjects. Mutational loss of PHF6 is importantly associated with leukemias driven by aberrant expression of the homeobox transcription factor oncogenes TLX1 and TLX3. Overall, these results identify PHF6 as a new X-linked tumor suppressor in T-ALL and point to a strong genetic interaction between PHF6 loss and aberrant expression of TLX transcription factors in the pathogenesis of this disease.

  7. Epigenetics in T-cell acute lymphoblastic leukemia.

    PubMed

    Peirs, Sofie; Van der Meulen, Joni; Van de Walle, Inge; Taghon, Tom; Speleman, Frank; Poppe, Bruce; Van Vlierberghe, Pieter

    2015-01-01

    Normal T-cell development is a strictly regulated process in which hematopoietic progenitor cells migrate from the bone marrow to the thymus and differentiate from early T-cell progenitors toward mature and functional T cells. During this maturation process, cooperation between a variety of oncogenes and tumor suppressors can drive immature thymocytes into uncontrolled clonal expansion and cause T-cell acute lymphoblastic leukemia (T-ALL). Despite improved insights in T-ALL disease biology and comprehensive characterization of its genetic landscape, clinical care remained largely similar over the past decades and still consists of high-dose multi-agent chemotherapy potentially followed by hematopoietic stem cell transplantation. Even with such aggressive treatment regimens, which are often associated with considerable side effects, clinical outcome is still extremely poor in a significant subset of T-ALL patients as a result of therapy resistance or hematological relapses. Recent genetic studies have identified recurrent somatic alterations in genes involved in DNA methylation and post-translational histone modifications in T-ALL, suggesting that epigenetic homeostasis is critically required in restraining tumor development in the T-cell lineage. In this review, we provide an overview of the epigenetic regulators that could be implicated in T-ALL disease biology and speculate how the epigenetic landscape of T-ALL could trigger the development of epigenetic-based therapies to further improve the treatment of human T-ALL.

  8. Resveratrol-induced apoptosis in human T-cell acute lymphoblastic leukaemia MOLT-4 cells.

    PubMed

    Cecchinato, Valentina; Chiaramonte, Raffaella; Nizzardo, Monica; Cristofaro, Brunella; Basile, Andrea; Sherbet, Gajanan V; Comi, Paola

    2007-12-03

    Resveratrol (RES) is a natural occurring phytoalexin that has been shown to have chemopreventive activity. Resveratrol acts both by suppressing cell proliferation and inducing apoptosis in a variety of cancer cell lines. In this study, we show that RES induces apoptosis in MOLT-4 acute lymphoblastic leukaemia cells by modulating three different pathways that regulate cells survival and cell death. We show for the first time that RES inhibits the survival signalling pathways Notch and their down stream effector and modulates the operation of interacting signalling systems. It induces an increase in the levels of the pro-apoptotic proteins p53, its effector p21waf and Bax. We also show that RES inhibits the PI3K/Akt pathway and activates Gsk-3beta. The data presented here demonstrate unequivocally that RES induces apoptosis by inhibiting the Notch pathway and markedly influencing the operation of the interacting apoptosis pathways mediated by p53 and PI3K/Akt. These data support findings from other laboratories that have suggested the use of RES as a chemopreventive agent. Here, we have identified potential signalling pathways influenced by RES and this could lead to the identification of the targets of RES-induced apoptosis and growth control.

  9. Plumbagin exerts an immunosuppressive effect on human T-cell acute lymphoblastic leukemia MOLT-4 cells.

    PubMed

    Bae, Kyoung Jun; Lee, Yura; Kim, Soon Ae; Kim, Jiyeon

    2016-04-22

    Of the hematological disorders typified by poor prognoses and survival rates, T-cell acute lymphoblastic leukemia (T-ALL) is one of the most commonly diagnosed. Despite the development of new therapeutic agents, the treatment options for this cancer remain limited. In this manuscript, we investigated the anti-proliferative effects of plumbagin, mediated by the activation of mitogen-activated protein kinase (MAPK) pathways, and inhibition of NF-κB signaling; the human T-ALL MOLT-4 cell line was used as our experimental system. Plumbagin is a natural, plant derived compound, which exerts an anti-proliferative activity against many types of human cancer. Our experiments confirm that plumbagin induces a caspase-dependent apoptosis of MOLT-4 cells, with no significant cytotoxicity seen for normal peripheral blood mononuclear cells (PBMCs). Plumbagin also inhibited LPS-induced phosphorylation of p65, and the transcription of NF-κB target genes. Our results now show that plumbagin is a potent inhibitor of the NF-κB signaling pathway, and suppressor of T-ALL cell proliferation.

  10. Gene Signature of High White Blood Cell Count in B-Precursor Acute Lymphoblastic Leukemia.

    PubMed

    Edwards, Holly; Rubenstein, Mara; Dombkowski, Alan A; Caldwell, J Timothy; Chu, Roland; Xavier, Ana C; Thummel, Ryan; Neely, Melody; Matherly, Larry H; Ge, Yubin; Taub, Jeffrey W

    2016-01-01

    In this study we sought to identify genetic factors associated with the presenting white blood cell (WBC) count in B-precursor acute lymphoblastic leukemia (BP-ALL). Using ETV6-RUNX1-positive BP-ALL patient samples, a homogeneous subtype, we identified 16 differentially expressed genes based on the presenting WBC count (< 50,000/cumm vs > 50,000). We further confirmed that IL1R1, BCAR3, KCNH2, PIR, and ZDHHC23 were differentially expressed in a larger cohort of ETV6-RUNX1-negative BP-ALL patient samples. Statistical analysis demonstrated that expression levels of these genes could accurately categorize high and low WBC count subjects using two independent patient sets, representing positive and negative ETV6-RUNX1 cases. Further studies in leukemia cell line models will better delineate the role of these genes in regulating the white blood cell count and potentially identify new therapeutic targets.

  11. L5178Y S/S murine leukemic lymphoblast: a radiosensitive, malignant cell of stable karyotype

    SciTech Connect

    Rutledge, M.H.; Lett, J.T.

    1980-02-01

    We have found that the S/S variant of the murine leukemic lymphoblast, L5178Y, has a stable chromosomal complement with a modal chromosome number of 40(2n = 40). The only variation from the G-banded wild-type karyotype of the mouse is a Y-chromosome deletion. Since the malignant cell line has been established for 16 years and is sensitive to X rays, the stability of the karyotype provides the essential property needed for utilizing the cell in investigations of the genetic control of cellular (DNA) repair. One unique response of the cell to X rays is a single peak of radioresistance at, or very near, the S-G/sub 2/ border. Through (/sup 3/H)TdR autoradiography, we have found that chromosomes 14 and 15 replicate significantly more than other chromosomes at that time, while they label little during early S.

  12. Acute lymphoblastic leukaemia cells produce large extracellular vesicles containing organelles and an active cytoskeleton

    PubMed Central

    Johnson, Suzanne M.; Dempsey, Clare; Parker, Catriona; Mironov, Aleksandr; Bradley, Helen; Saha, Vaskar

    2017-01-01

    ABSTRACT Extracellular vesicles have been described in non-paracrine cellular interactions in cancer. We report a similar phenomenon in B-cell precursor (BCP) acute lymphoblastic leukaemia (ALL). Using advanced microscopy and high throughput screening, we further characterise a subset of large vesicles (LEVs) identified in cell lines, murine models of human BCP-ALL and clinical samples. Primary ALL blasts and cell lines released heterogeneous anucleate vesicles <6 micron into extracellular fluids. Larger LEVs were enclosed in continuous membranes, contained intact organelles and demonstrated an organised cytoskeleton. An excess of circulating CD19-positive LEVs were observed in diagnostic samples and isolated from mice engrafted with BCP-ALL primary cells. LEVs exhibited dynamic shape change in vitro and were internalised by other leukaemic cell lines leading to phenotypic transformation analogous to the cell of origin. In patient-derived xenografts, LEVs were released by primary ALL cells into extracellular spaces and internalised by murine mesenchymal cells in vivo. Collectively these data highlight the heterogeneity but accessibility of LEVs in clinical samples and their potential to provide a unique insight into the biology of the cell of origin and to their development as novel biomarkers to aid diagnosis and improve therapeutic outcomes. PMID:28386390

  13. Combination Chemotherapy With or Without Donor Stem Cell Transplant in Treating Patients With Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2016-09-09

    Adult Acute Lymphoblastic Leukemia in Remission; Adult B Acute Lymphoblastic Leukemia; Adult B Acute Lymphoblastic Leukemia With t(9;22)(q34;q11.2); BCR-ABL1; Adult L1 Acute Lymphoblastic Leukemia; Adult L2 Acute Lymphoblastic Leukemia; Adult T Acute Lymphoblastic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia

  14. Stem Cell Hierarchy and Clonal Evolution in Acute Lymphoblastic Leukemia

    PubMed Central

    Lang, Fabian; Wojcik, Bartosch; Rieger, Michael A.

    2015-01-01

    Cancer is characterized by a remarkable intertumoral, intratumoral, and cellular heterogeneity that might be explained by the cancer stem cell (CSC) and/or the clonal evolution models. CSCs have the ability to generate all different cells of a tumor and to reinitiate the disease after remission. In the clonal evolution model, a consecutive accumulation of mutations starting in a single cell results in competitive growth of subclones with divergent fitness in either a linear or a branching succession. Acute lymphoblastic leukemia (ALL) is a highly malignant cancer of the lymphoid system in the bone marrow with a dismal prognosis after relapse. However, stabile phenotypes and functional data of CSCs in ALL, the so-called leukemia-initiating cells (LICs), are highly controversial and the question remains whether there is evidence for their existence. This review discusses the concepts of CSCs and clonal evolution in respect to LICs mainly in B-ALL and sheds light onto the technical controversies in LIC isolation and evaluation. These aspects are important for the development of strategies to eradicate cells with LIC capacity. Common properties of LICs within different subclones need to be defined for future ALL diagnostics, treatment, and disease monitoring to improve the patients' outcome in ALL. PMID:26236346

  15. Unusual presentation of primary T-cell lymphoblastic lymphoma: description of two cases.

    PubMed

    Ambrosio, Maria R; Onorati, Monica; Rocca, Bruno J; Ginori, Alessandro; Lobello, Giuseppe; Petracco, Guido; Videtta, Alessandro Davide; Di Nuovo, Franca; Santopietro, Rosa; Lazzi, Stefano

    2014-06-20

    T-cell lymphoblastic lymphoma comprises approximately 85-90% of all lymphoblastic lymphomas. It often arises as a mediastinal mass, and with bone marrow involvement. Presentation at other sites without nodal or mediastinal localization is uncommon. We describe clinical, histologic, immunohistochemical, and molecular features of two cases of primary T-cell lymphoblastic lymphoma arising respectively in uterine corpus and testis. The tumors were composed by medium to large cells, exhibiting a diffuse pattern of growth but sometimes forming indian files or pseudo-rosettes. The neoplastic cells strongly expressed TdT and T-cell markers in both uterine corpus and testis. However, the testis case also showed aberrant expression of B-cell markers, thus molecular biology was necessary to achieve a final diagnosis. T-cell receptor gene rearrangement analysis identified a T-cell origin. To the best of our knowledge, only one doubtful previous case of primary uterine T-cell lymphoblastic lymphoma and no previous cases of primary testicular T-cell lymphoblastic lymphoma have been reported. Due to the morphology of neoplastic cells, a challenging differential diagnosis with all the tumors belonging to the so-called small round blue cell tumor category is mandatory. In ambiguous lineage cases, molecular biology may represent an adequate tool to confirm diagnosis. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1559880973128230.

  16. Resveratrol given intraperitoneally does not inhibit growth of high-risk t(4;11) acute lymphoblastic leukemia cells in NOD/SCID mouse model

    USDA-ARS?s Scientific Manuscript database

    The efficacy of the phytochemical resveratrol as a preventive agent against the growth of t(4;11) acute lymphoblastic leukemia (ALL) was evaluated in NOD.CB17-Prkdcscid/J mice engrafted with the human t(4;11) ALL line SEM. SEM cells were injected into the tail vein and engraftment was monitored by ...

  17. Early T-cell precursor acute lymphoblastic leukaemia.

    PubMed

    Haydu, J Erika; Ferrando, Adolfo A

    2013-07-01

    Early T-cell precursor (ETP) leukaemias have been recently recognized as a form of T-cell acute lymphoblastic leukaemia (T-ALL) with a poor prognosis. The purpose of this review is to outline the most recent advances in the biology, genetics and prognostic significance of this aggressive disease. Detailed immunophenotypic analyses have defined ETP T-ALLs as a distinct group of T-ALL with a poor prognosis. Transcriptionally, ETP T-ALLs and early immature T-ALLs, a broader group of tumours characterized by very early arrest in T-cell differentiation, are most related to haematopoietic stem cells and myeloid progenitors. Consistently, these leukaemias show lower frequencies of prototypical T-ALL lesions such as CDKN2A/B deletions and activating mutations in NOTCH1 and show a higher prevalence of mutations typically associated with the pathogenesis of acute myeloid leukaemias (AMLs). ETP and early immature T-ALLs are characterized by a very early differentiation arrest and show unique genetic and transcriptional features that overlap both with T-ALL and with AML. Given the unique biology and poor prognosis associated with the ETP T-ALL group, there is an urgent need of new tailored therapeutic strategies for the treatment of this disease.

  18. Activity of resveratrol triesters against primary acute lymphoblastic leukemia cells.

    PubMed

    Urbaniak, Alicja; Delgado, Magdalena; Kacprzak, Karol; Chambers, Timothy C

    2017-06-15

    Resveratrol is a common polyphenol of plant origin known for its cancer prevention and other properties. Its wider application is limited due to poor water solubility, low stability, and weak bioavailability. To overcome these limitations, a series of 13 novel resveratrol triesters were synthesized previously. In this paper, we describe the synthesis of 3 additional derivatives and the activity of all 16 against primary acute lymphoblastic leukemia cells. Of these, 3 compounds were more potent than resveratrol (IC50=10.5µM) namely: resveratryl triacetate (IC50=3.4µM), resveratryl triisobutyrate (IC50=5.1µM), and resveratryl triisovalerate (IC50=4.9µM); all other derivatives had IC50 values of >10µM. Further studies indicated that the active compounds caused G1 phase arrest, increased expression of p53, and induced characteristics of apoptotic cell death. Moreover, the compounds were only effective in cycling cells, with cells arrested in G1 phase being refractory. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. TRESK potassium channel in human T lymphoblasts

    SciTech Connect

    Sánchez-Miguel, Dénison Selene; García-Dolores, Fernando; Rosa Flores-Márquez, María; Delgado-Enciso, Iván; Pottosin, Igor; Dobrovinskaya, Oxana

    2013-05-03

    Highlights: • TRESK (KCNK18) mRNA is present in different T lymphoblastic cell lines. • KCNK18 mRNA was not found in resting peripheral blood lymphocytes. • Clinical samples of T lymphoblastic leukemias and lymphomas were positive for TRESK. • TRESK in T lymphoblasts has dual localization, in plasma membrane and intracellular. -- Abstract: TRESK (TWIK-related spinal cord K{sup +}) channel, encoded by KCNK18 gene, belongs to the double-pore domain K{sup +} channel family and in normal conditions is expressed predominantly in the central nervous system. In our previous patch-clamp study on Jurkat T lymphoblasts we have characterized highly selective K{sup +} channel with pharmacological profile identical to TRESK. In the present work, the presence of KCNK18 mRNA was confirmed in T lymphoblastic cell lines (Jurkat, JCaM, H9) but not in resting peripheral blood lymphocytes of healthy donors. Positive immunostaining for TRESK was demonstrated in lymphoblastic cell lines, in germinal centers of non-tumoral lymph nodes, and in clinical samples of T acute lymphoblastic leukemias/lymphomas. Besides detection in the plasma membrane, intracellular TRESK localization was also revealed. Possible involvement of TRESK channel in lymphocyte proliferation and tumorigenesis is discussed.

  20. huJCAR014 CAR-T Cells in Treating Adult Patients With Relapsed or Refractory B-Cell Non-Hodgkin Lymphoma or Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2017-09-07

    Adult B Acute Lymphoblastic Leukemia; CD19 Positive; Diffuse Large B-Cell Lymphoma, Not Otherwise Specified; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent B-Cell Non-Hodgkin Lymphoma; Recurrent Diffuse Large B-Cell Lymphoma; Recurrent Mediastinal (Thymic) Large B-Cell Cell Lymphoma; Refractory Adult Acute Lymphoblastic Leukemia; Refractory B-Cell Non-Hodgkin Lymphoma; Refractory Diffuse Large B-Cell Lymphoma; Refractory Mediastinal (Thymic) Large B-Cell Cell Lymphoma; Transformed Recurrent Non-Hodgkin Lymphoma

  1. Interaction of the hemolytic lectin, CEL-III, with cultured human leukemic cell lines.

    PubMed

    Sallay, I; Moriwaki, S; Nakamura, O; Yasuda, S; Kimura, M; Yamasaki, N; Itoh, K; Ohba, H

    2000-12-01

    We studied interaction of CEL-III with cultured human leukemic cell lines and lymphocytes from normal adults by evaluating the extent of cytotoxicity and cytoagglutination. Among acute T lymphoblastic leukemia (T-ALL) cell lines, CEL-III displayed increased toxicity against different acute lymphoblastic leukemia (ALL) cell lines as a function of increasing differentiation stage. In the case of acute B lymphoblastic leukemia (B-ALL) cell lines, CEL-III showed strong cytotoxicity against relatively immature cell lines. We found that CEL-III was more toxic for ALL cell lines than leukocytes obtained from peripheral blood of healthy adults. Strong influence of the additional amount of calcium ion on the extent of cytotoxicity was observed. In addition, we describe a new way to evaluate the extent of cytoagglutination in "% of agglutinated cells". These findings make CEL-III a promising candidate in research for lectins which bind to and destroy only the targeted leukemic cells.

  2. Potential use of the Macrobrachium rosenbergii lectin for diagnosis of T-cell acute lymphoblastic leukemia.

    PubMed

    Pérez-Campos-Mayoral, Laura; Ruiz-Argüelles, Alejandro; Pérez-Romano, Beatriz; Zenteno, Edgar; Hernández-Cruz, Pedro; Martínez-Cruz, Ruth; Martínez-Cruz, Margarito; Pina-Canseco, Socorro; Pérez-Campos, Eduardo

    2008-01-01

    T-cell acute lymphoblastic leukemia is the most common form of cancer in children. Lectins are proteins or glycoproteins from plants or animals that recognize oligossacharides on the cell surface and have been used to characterize the structural changes of oligosaccharides in leukemias. In this study, we used the lectin from the freshwater prawn Macrobrachium (M. rosenbergii), specific for acetyl groups in sialylated glycans, because increased sialylation of glycoproteins and glycolipids has been identified in lymphoblastic leukemias. We compared the specificity of the M. rosenbergii lectin for lymphoblastic leukemias with the specificities of the lectins from Triticum vulgaris, Solanum tuberosum, Arachis hipogaea, and Phytolacca americana. By morphologic and phenotype characterization with a panel of monoclonal antibodies, we identified four types of leukemias from 106 leukemia patients: 11 cases of T-cell acute lymphoblastic leukemia, 61 cases of B-cell acute lymphoblastic leukemia, 24 cases of acute myeloblastic leukemia, and 10 cases of acute biphenotypic leukemia. As determined by cytofluorometric assays, nine of the eleven cases with T-cell acute lymphoblastic leukemia (8 +/- 3 years old) were specifically identified with the lectin from M. rosenbergii. In contrast, only six cases of B-cell leukemia, one case of myeloblastic leukemia, and 2 cases of biphenotypic leukemia were identified with this M. rosenbergii lectin. The other lectins tested showed no capacity to differentiate, in a significant manner, any of the four types of leukemias tested. Thus, the lectin from M. rosenbergii could be considered a useful tool for the diagnosis and study of T-cell acute lymphoblastic leukemia.

  3. Combination Chemotherapy With or Without Bortezomib in Treating Younger Patients With Newly Diagnosed T-Cell Acute Lymphoblastic Leukemia or Stage II-IV T-Cell Lymphoblastic Lymphoma

    ClinicalTrials.gov

    2017-04-14

    Adult T Acute Lymphoblastic Leukemia; Childhood T Acute Lymphoblastic Leukemia; Stage II Childhood Lymphoblastic Lymphoma; Stage II Contiguous Adult Lymphoblastic Lymphoma; Stage II Non-Contiguous Adult Lymphoblastic Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Childhood Lymphoblastic Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Childhood Lymphoblastic Lymphoma; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  4. 3,3'-Diindolylmethane induces G1 arrest and apoptosis in human acute T-cell lymphoblastic leukemia cells.

    PubMed

    Shorey, Lyndsey E; Hagman, Amanda M; Williams, David E; Ho, Emily; Dashwood, Roderick H; Benninghoff, Abby D

    2012-01-01

    Certain bioactive food components, including indole-3-carbinol (I3C) and 3,3'-diindolylmethane (DIM) from cruciferous vegetables, have been shown to target cellular pathways regulating carcinogenesis. Previously, our laboratory showed that dietary I3C is an effective transplacental chemopreventive agent in a dibenzo[def,p]chrysene (DBC)-dependent model of murine T-cell lymphoblastic lymphoma. The primary objective of the present study was to extend our chemoprevention studies in mice to an analogous human neoplasm in cell culture. Therefore, we tested the hypothesis that I3C or DIM may be chemotherapeutic in human T-cell acute lymphoblastic leukemia (T-ALL) cells. Treatment of the T-ALL cell lines CCRF-CEM, CCRF-HSB2, SUP-T1 and Jurkat with DIM in vitro significantly reduced cell proliferation and viability at concentrations 8- to 25-fold lower than the parent compound I3C. DIM (7.5 µM) arrested CEM and HSB2 cells at the G(1) phase of the cell cycle and 15 µM DIM significantly increased the percentage of apoptotic cells in all T-ALL lines. In CEM cells, DIM reduced protein expression of cyclin dependent kinases 4 and 6 (CDK4, CDK6) and D-type cyclin 3 (CCND3); DIM also significantly altered expression of eight transcripts related to human apoptosis (BCL2L10, CD40LG, HRK, TNF, TNFRSF1A, TNFRSF25, TNFSF8, TRAF4). Similar anticancer effects of DIM were observed in vivo. Dietary exposure to 100 ppm DIM significantly decreased the rate of growth of human CEM xenografts in immunodeficient SCID mice, reduced final tumor size by 44% and increased the apoptotic index compared to control-fed mice. Taken together, our results demonstrate a potential for therapeutic application of DIM in T-ALL.

  5. Expression of HER2/Neu in B-Cell Acute Lymphoblastic Leukemia.

    PubMed

    Rodriguez-Rodriguez, Sergio; Pomerantz, Alan; Demichelis-Gomez, Roberta; Barrera-Lumbreras, Georgina; Barrales-Benitez, Olga; Aguayo-Gonzalez, Alvaro

    2016-01-01

    The expression of HER2/neu in B-cell acute lymphoblastic leukemia has been reported in previous studies. The objective of this research was to study the expression of HER2/neu on the blasts of patients with acute leukemia from the Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran. From June 2015 to February 2016, a HER2/neu monoclonal antibody was added to the panel of antibodies that we routinely use in patients with acute leukemia. An expression of ≥ 30% was considered positive. We studied 33 patients: 19 had de novo leukemia (57.6%), three (9.1%) were in relapse, and in 11 (33.3%) their status could not be specified. Seventeen patients (51.5%) were classified as B-cell acute lymphoblastic leukemia with a median expression of HER2/neu of 0.3% (range 0-90.2). Three patients with B-cell acute lymphoblastic leukemia were positive for HER2/neu: 89.4%, 90.9%, and 62.4%. The first and third patient had de novo B-cell acute lymphoblastic leukemia. The second patient was in second relapse after allogeneic stem cell transplant. All three patients were categorized as high-risk at the time of diagnosis. In the studied Mexican population, we found a positive expression of HER2/neu in 17% of the B-cell acute lymphoblastic leukemia patients, similar to previous studies in which the expression was found in 15-50%.

  6. Recognition of adult and pediatric acute lymphoblastic leukemia blasts by natural killer cells.

    PubMed

    Torelli, Giovanni F; Peragine, Nadia; Raponi, Sara; Pagliara, Daria; De Propris, Maria S; Vitale, Antonella; Bertaina, Alice; Barberi, Walter; Moretta, Lorenzo; Basso, Giuseppe; Santoni, Angela; Guarini, Anna; Locatelli, Franco; Foà, Robin

    2014-07-01

    In this study, we aimed to investigate the pathways of recognition of acute lymphoblastic leukemia blasts by natural killer cells and to verify whether differences in natural killer cell activating receptor ligand expression among groups defined by age of patients, or presence of cytogenetic/molecular aberrations correlate with the susceptibility to recognition and killing. We analyzed 103 newly diagnosed acute lymphoblastic leukemia patients: 46 adults and 57 children. Pediatric blasts showed a significantly higher expression of Nec-2 (P=0.03), ULBP-1 (P=0.01) and ULBP-3 (P=0.04) compared to adult cells. The differential expression of these ligands between adults and children was confined to B-lineage acute lymphoblastic leukemia with no known molecular alterations. Within molecularly defined subgroups of patients, a high surface expression of NKG2D and DNAM1 ligands was found on BCR-ABL(+) blasts, regardless of patient age. Accordingly, BCR-ABL(+) blasts proved to be significantly more susceptible to natural killer-dependent lysis than B-lineage blasts without molecular aberrations (P=0.03). Cytotoxic tests performed in the presence of neutralizing antibodies indicated a pathway of acute lymphoblastic leukemia cell recognition in the setting of the Nec-2/DNAM-1 interaction. These data provide a biological explanation of the different roles played by alloreactive natural killer cells in pediatric versus adult acute lymphoblastic leukemia and suggest that new natural killer-based strategies targeting specific subgroups of patients, particularly those BCR-ABL(+), are worth pursuing further.

  7. Phenothiazines induce PP2A-mediated apoptosis in T cell acute lymphoblastic leukemia

    PubMed Central

    Gutierrez, Alejandro; Pan, Li; Groen, Richard W.J.; Baleydier, Frederic; Kentsis, Alex; Marineau, Jason; Grebliunaite, Ruta; Kozakewich, Elena; Reed, Casie; Pflumio, Francoise; Poglio, Sandrine; Uzan, Benjamin; Clemons, Paul; VerPlank, Lynn; An, Frank; Burbank, Jason; Norton, Stephanie; Tolliday, Nicola; Steen, Hanno; Weng, Andrew P.; Yuan, Huipin; Bradner, James E.; Mitsiades, Constantine; Look, A. Thomas; Aster, Jon C.

    2014-01-01

    T cell acute lymphoblastic leukemia (T-ALL) is an aggressive cancer that is frequently associated with activating mutations in NOTCH1 and dysregulation of MYC. Here, we performed 2 complementary screens to identify FDA-approved drugs and drug-like small molecules with activity against T-ALL. We developed a zebrafish system to screen small molecules for toxic activity toward MYC-overexpressing thymocytes and used a human T-ALL cell line to screen for small molecules that synergize with Notch inhibitors. We identified the antipsychotic drug perphenazine in both screens due to its ability to induce apoptosis in fish, mouse, and human T-ALL cells. Using ligand-affinity chromatography coupled with mass spectrometry, we identified protein phosphatase 2A (PP2A) as a perphenazine target. T-ALL cell lines treated with perphenazine exhibited rapid dephosphorylation of multiple PP2A substrates and subsequent apoptosis. Moreover, shRNA knockdown of specific PP2A subunits attenuated perphenazine activity, indicating that PP2A mediates the drug’s antileukemic activity. Finally, human T-ALLs treated with perphenazine exhibited suppressed cell growth and dephosphorylation of PP2A targets in vitro and in vivo. Our findings provide a mechanistic explanation for the recurring identification of phenothiazines as a class of drugs with anticancer effects. Furthermore, these data suggest that pharmacologic PP2A activation in T-ALL and other cancers driven by hyperphosphorylated PP2A substrates has therapeutic potential. PMID:24401270

  8. Physcion blocks cell cycle and induces apoptosis in human B cell precursor acute lymphoblastic leukemia cells by downregulating HOXA5.

    PubMed

    Gao, Fei; Liu, Wenjun; Guo, Qulian; Bai, Yongqi; Yang, Hong; Chen, Hongying

    2017-10-01

    Acute lymphoblastic leukemia (ALL) presents the most common type of malignancy in children and ranks the third most common cancer in adults. This study is aimed to investigate the anti-leukemia activity of physcion in ALL. Our results have showed that physcion could significantly suppress cell growth, induce apoptosis and blocked cell cycle progression in vitro. Mechanistically, we found that physcion downregulated the expression of HOXA5, which is responsible for the anti-leukemia activity of physcion. To verify this finding, siRNA targeting HOXA5 and overexpressing plasmid were used to repress HOXA5 expression and introduce ectopic overexpression of HOXA5 in ALL cell lines, respectively. Our results showed that overexpression of HOXA5 significantly abrogated the inducing effect of physcion on apoptosis and cell cycle blockasde. In contrast, knockdown of HOXA5 by siRNA enhanced the anti-tumor effect of physcion on ALL cell lines. Our results provided experimental base for the use of physcion in the treatment of ALL. Copyright © 2017. Published by Elsevier Masson SAS.

  9. Role of CXCR4-mediated bone marrow colonization in CNS infiltration by T cell acute lymphoblastic leukemia.

    PubMed

    Jost, Tanja Rezzonico; Borga, Chiara; Radaelli, Enrico; Romagnani, Andrea; Perruzza, Lisa; Omodho, Lorna; Cazzaniga, Giovanni; Biondi, Andrea; Indraccolo, Stefano; Thelen, Marcus; Te Kronnie, Geertruy; Grassi, Fabio

    2016-06-01

    Infiltration of the central nervous system is a severe trait of T cell acute lymphoblastic leukemia. Inhibition of CXC chemokine receptor 4 significantly ameliorates T cell acute lymphoblastic leukemia in murine models of the disease; however, signaling by CXC chemokine receptor 4 is important in limiting the divagation of peripheral blood mononuclear cells out of the perivascular space into the central nervous system parenchyma. Therefore, Inhibition of CXC chemokine receptor 4 potentially may untangle T cell acute lymphoblastic leukemia cells from retention outside the brain. Here, we show that leukemic lymphoblasts massively infiltrate cranial bone marrow, with diffusion to the meninges without invasion of the brain parenchyma, in mice that underwent xenotransplantation with human T cell acute lymphoblastic leukemia cells or that developed leukemia from transformed hematopoietic progenitors. We tested the hypothesis that T cell acute lymphoblastic leukemia neuropathology results from meningeal infiltration through CXC chemokine receptor 4-mediated bone marrow colonization. Inhibition of leukemia engraftment in the bone marrow by pharmacologic CXC chemokine receptor 4 antagonism significantly ameliorated neuropathologic aspects of the disease. Genetic deletion of CXCR4 in murine hematopoietic progenitors abrogated leukemogenesis induced by constitutively active Notch1, whereas lack of CCR6 and CCR7, which have been shown to be involved in T cell and leukemia extravasation into the central nervous system, respectively, did not influence T cell acute lymphoblastic leukemia development. We hypothesize that lymphoblastic meningeal infiltration as a result of bone marrow colonization is responsible for the degenerative alterations of the neuroparenchyma as well as the alteration of cerebrospinal fluid drainage in T cell acute lymphoblastic leukemia xenografts. Therefore, CXC chemokine receptor 4 may constitute a pharmacologic target for T cell acute lymphoblastic

  10. Acute hepatitis A induction of precursor B-cell acute lymphoblastic leukemia: a causal relationship?

    PubMed

    Senadhi, V; Emuron, D; Gupta, R

    2010-09-01

    Precursor B-cell acute lymphoblastic leukemia accounts for 2% of all lymphoid neoplasms in the United States and occurs most frequently in childhood, but can also occur in adults with a median age of 39 years. It is more commonly seen in males and in Caucasians. We present a case of a 51-year-old Caucasian female with the development of precursor B-cell acute lymphoblastic leukemia after suffering acute hepatitis A 4 weeks prior to her diagnosis. She presented with malaise for a month without spontaneous bruising/bleeding, infections, or B-symptoms, such as fevers, night sweats, or unintentional weight loss. Nonspecific viral transformation of bone marrow has been discussed in the literature, but we specifically describe hepatitis A-induced adult-onset precursor B-cell acute lymphoblastic leukemia, which is the first reported case in the literature.

  11. Up-regulated A20 promotes proliferation, regulates cell cycle progression and induces chemotherapy resistance of acute lymphoblastic leukemia cells.

    PubMed

    Chen, Shuying; Xing, Haiyan; Li, Shouyun; Yu, Jing; Li, Huan; Liu, Shuang; Tian, Zheng; Tang, Kejing; Rao, Qing; Wang, Min; Wang, Jianxiang

    2015-09-01

    A20, also known as tumor necrosis factor-α (TNFα)-induced protein 3 (TNFAIP3), has been identified as a key regulator of cell survival in many solid tumors. However, little is known about the protein expression level and function of A20 in acute lymphoblastic leukemia (ALL). In this study, we found that A20 is up-regulated in ALL patients and several cell lines. Knockdown of A20 in Jurkat, Nalm-6, and Reh cells resulted in reduced cell proliferation, which was associated with cell cycle arrest. Phospho-ERK (p-ERK) was also down-regulated, while p53 and p21 were up-regulated in A20 knockdown cells. In addition, A20 knockdown induced apoptosis in Jurkat and Reh cells and enhanced the sensitivity of these cell lines to chemotherapeutic drugs. These results indicate that A20 may stimulate cell proliferation by regulating cell cycle progression. A20 inhibited apoptosis in some types of ALL cells, thereby enhancing their resistance to chemotherapy. This effect was abolished through A20 silencing. These findings suggest that A20 may contribute to the pathogenesis of ALL and that it may be used as a new therapeutic target for ALL treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. SB225002 Induces Cell Death and Cell Cycle Arrest in Acute Lymphoblastic Leukemia Cells through the Activation of GLIPR1

    PubMed Central

    Leal, Paulo C.; Bhasin, Manoj K.; Zenatti, Priscila Pini; Nunes, Ricardo J.; Yunes, Rosendo A.; Nowill, Alexandre E.; Libermann, Towia A.; Zerbini, Luiz Fernando; Yunes, José Andrés

    2015-01-01

    Acute Lymphoblastic Leukemia (ALL) is the most frequent childhood malignancy. In the effort to find new anti-leukemic agents, we evaluated the small drug SB225002 (N-(2-hydroxy-4-nitrophenyl)-N’-(2-bromophenyl)urea). Although initially described as a selective antagonist of CXCR2, later studies have identified other cellular targets for SB225002, with potential medicinal use in cancer. We found that SB225002 has a significant pro-apoptotic effect against both B- and T-ALL cell lines. Cell cycle analysis demonstrated that treatment with SB225002 induces G2-M cell cycle arrest. Transcriptional profiling revealed that SB225002-mediated apoptosis triggered a transcriptional program typical of tubulin binding agents. Network analysis revealed the activation of genes linked to the JUN and p53 pathways and inhibition of genes linked to the TNF pathway. Early cellular effects activated by SB225002 included the up-regulation of GLIPR1, a p53-target gene shown to have pro-apoptotic activities in prostate and bladder cancer. Silencing of GLIPR1 in B- and T-ALL cell lines resulted in increased resistance to SB225002. Although SB225002 promoted ROS increase in ALL cells, antioxidant N-Acetyl Cysteine pre-treatment only modestly attenuated cell death, implying that the pro-apoptotic effects of SB225002 are not exclusively mediated by ROS. Moreover, GLIPR1 silencing resulted in increased ROS levels both in untreated and SB225002-treated cells. In conclusion, SB225002 induces cell cycle arrest and apoptosis in different B- and T-ALL cell lines. Inhibition of tubulin function with concurrent activation of the p53 pathway, in particular, its downstream target GLIPR1, seems to underlie the anti-leukemic effect of SB225002. PMID:26302043

  13. Critical roles of NOTCH1 in acute T-cell lymphoblastic leukemia.

    PubMed

    Liu, Hudan; Chiang, Mark Y; Pear, Warren S

    2011-08-01

    NOTCH1 plays a central role in T-cell development and, when aberrantly activated, in acute T-cell lymphoblastic leukemia (T-ALL). As a transmembrane receptor that is ultimately converted into a transcription factor, NOTCH1 directly activates a spectrum of target genes, which function to mediate NOTCH1 signaling in normal or transformed T cells. During physiologic T-cell development, NOTCH1 has important functions in cell fate determination, proliferation, survival and metabolism. Activating NOTCH1 mutations occur in more than half of human patients with T-ALL, suggesting an important role for aberrant NOTCH1 signaling in the pathogenesis of this disease. Inhibiting NOTCH1 signaling in patient-derived cell lines and murine T-ALLs leads to growth arrest and/or apoptosis suggesting that NOTCH1 inhibitors can improve T-ALL treatment. However, there are challenges to translate NOTCH1 inhibitors to the clinic because of toxicity and resistance. This review focuses on molecular mechanisms of oncogenic NOTCH1 signaling, molecular and functional analysis of NOTCH1 transcriptional targets in T-ALL, and recent advances in therapeutic targeting of NOTCH1.

  14. Alemtuzumab and Combination Chemotherapy in Treating Patients With Untreated Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2014-03-20

    Acute Undifferentiated Leukemia; B-cell Adult Acute Lymphoblastic Leukemia; B-cell Childhood Acute Lymphoblastic Leukemia; L1 Adult Acute Lymphoblastic Leukemia; L1 Childhood Acute Lymphoblastic Leukemia; L2 Adult Acute Lymphoblastic Leukemia; L2 Childhood Acute Lymphoblastic Leukemia; Philadelphia Chromosome Negative Adult Precursor Acute Lymphoblastic Leukemia; Philadelphia Chromosome Positive Adult Precursor Acute Lymphoblastic Leukemia; Philadelphia Chromosome Positive Childhood Precursor Acute Lymphoblastic Leukemia; T-cell Adult Acute Lymphoblastic Leukemia; T-cell Childhood Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  15. Contribution of JAK2 mutations to T-cell lymphoblastic lymphoma development.

    PubMed

    Roncero, A M; López-Nieva, P; Cobos-Fernández, M A; Villa-Morales, M; González-Sánchez, L; López-Lorenzo, J L; Llamas, P; Ayuso, C; Rodríguez-Pinilla, S M; Arriba, M C; Piris, M A; Fernández-Navarro, P; Fernández, A F; Fraga, M F; Santos, J; Fernández-Piqueras, J

    2016-01-01

    The JAK-STAT pathway has a substantial role in lymphoid precursor cell proliferation, survival and differentiation. Nonetheless, the contribution of JAK2 to T-cell lymphoblastic lymphoma (T-LBL) development remains poorly understood. We have identified one activating TEL-JAK2 translocation and four missense mutations accumulated in 2 out of 16 T-LBL samples. Two of them are novel JAK2 mutations and the other two are reported for the first time in T-LBL. Notably, R683G and I682T might have arisen owing to RNA editing. Mutated samples showed different mutated transcripts suggesting sub-clonal heterogeneity. Functional approaches revealed that two JAK2 mutations (H574R and R683G) constitutively activate JAK-STAT signaling in γ2A cells and can drive the proliferation of BaF3-EpoR cytokine-dependent cell line. In addition, aberrant hypermethylation of SOCS3 might contribute to enhance the activation of JAK-STAT signaling. Of utmost interest is that primary T-LBL samples harboring JAK2 mutations exhibited increased expression of LMO2, suggesting a mechanistic link between JAK2 mutations and the expression of LMO2, which was confirmed for the four missense mutations in transfected γ2A cells. We therefore propose that active JAK2 contribute to T-LBL development by two different mechanisms, and that the use of pan-JAK inhibitors in combination with epigenetic drugs should be considered in future treatments.

  16. Role of low density lipoprotein-bound cholesterol esters in acute lymphoblastic leukemia cells

    SciTech Connect

    Cutts, J.L.; Madden, E.A.; Melnykovych, G.

    1986-05-01

    The glucocorticoid sensitive CEM-C7 T-cell line was derived from human acute lymphoblastic leukemia cells by Norman and Thompson. Madden et al. have demonstrated that this growth inhibitory effect is due in part to a glucocorticoid-mediated inhibition of cholesterol synthesis and can be partially reversed by cholesterol dispersions. To further delineate the role of cholesterol in this growth inhibition, they have examined the ability of low density lipoprotein (LDL)-bound (/sup 3/H)cholesterol linoleate to reverse the growth inhibitory effect of 1 ..mu..M dexamethasone (Dex) on the CEM-C7 cells. LDL-bound cholesterol linoleate was unable to reverse the Dex-mediated growth inhibition, although incorporation of (/sup 14/C) acetate into free cholesterol was inhibited by 29%, following the Brown and Goldstein model. The presence of Dex further inhibited acetate incorporation into free cholesterol in the LDL-treated cells. Under all conditions, more than 99% of the acetate incorporated into cholesterol was present as free cholesterol, while over 87% of the LDL-bound cholesterol linoleate taken up remained in the ester compartment. These results indicate that CEM-C7 cells are unable to utilize LDL-bound cholesterol esters as a source of free cholesterol and rely on endogenous synthesis for their free cholesterol requirements.

  17. In vitro toxicity assay of cisplatin on mouse acute lymphoblastic leukaemia and spermatogonial stem cells.

    PubMed

    Shabani, R; Ashtari, K; Behnam, B; Izadyar, F; Asgari, H; Asghari Jafarabadi, M; Ashjari, M; Asadi, E; Koruji, M

    2016-06-01

    Testicular cancer is the most common cancer affecting men in reproductive age, and cisplatin is one of the major helpful chemotherapeutic agents for treatment of this cancer. In addition, exposure of testes cancer cells to cisplatin could potentially eliminate tumour cells from germ cells in patients. The aim of this study was to evaluate the effect of cisplatin on viability of mouse acute lymphoblastic leukaemia cell line (EL-4) and neonatal mouse spermatogonial cells in vitro. In this study, the isolated spermatogonial stem cells (SSC) and EL-4 were divided into six groups including control (received medium), sham (received DMSO in medium) and experimental groups which received different doses of cisplatin (0.5, 5, 10 and 15 μg ml(-1) ). Cells viability was evaluated with MTT assay. The identity of the cultured cells was confirmed by the expression of specific markers. Our finding showed that viability of both SSC and EL-4 cells was reduced with the dose of 15 μg/ml when compared to the control group (P ≤ 0.05). Also, the differences between the IC50 in doses 10 and 15 μg/ml at different time were significant (P ≤ 0.05). The number of TUNEL-positive cells was increased, and the BAX and caspase-3 expressions were upregulated in EL4 cells for group that received an effective dose of cisplatin). In conclusion, despite the dramatic effects of cisplatin on both cells, spermatogonial stem cells could form colony in culture.

  18. Regulation of cancer stem cell properties by CD9 in human B-acute lymphoblastic leukemia

    SciTech Connect

    Yamazaki, Hiroto; Wilson Xu, C.; Naito, Motohiko; Nishida, Hiroko; Okamoto, Toshihiro; Ghani, Farhana Ishrat; Iwata, Satoshi; Inukai, Takeshi; Sugita, Kanji; Morimoto, Chikao

    2011-05-27

    Highlights: {yields} We performed more detailed analysis of CD9 function for CSC properties in B-ALL. {yields} Leukemogenic fusion/Src family proteins were markedly regulated in the CD9{sup +} cells. {yields} Proliferation of B-ALL cells was inhibited by anti-CD9 monoclonal antibody. {yields} Knockdown of CD9 by RNAi remarkably reduced the leukemogenic potential. {yields} CD9-knockdown affected the expression and phosphorylation of Src family and USP22. -- Abstract: Although the prognosis of acute lymphoblastic leukemia (ALL) has improved considerably in recent years, some of the cases still exhibit therapy-resistant. We have previously reported that CD9 was expressed heterogeneously in B-ALL cell lines and CD9{sup +} cells exhibited an asymmetric cell division with greater tumorigenic potential than CD9{sup -} cells. CD9{sup +} cells were also serially transplantable in immunodeficient mice, indicating that CD9{sup +} cell possess self-renewal capacity. In the current study, we performed more detailed analysis of CD9 function for the cancer stem cell (CSC) properties. In patient sample, CD9 was expressed in the most cases of B-ALL cells with significant correlation of CD34-expression. Gene expression analysis revealed that leukemogenic fusion proteins and Src family proteins were significantly regulated in the CD9{sup +} population. Moreover, CD9{sup +} cells exhibited drug-resistance, but proliferation of bulk cells was inhibited by anti-CD9 monoclonal antibody. Knockdown of CD9 remarkably reduced the leukemogenic potential. Furthermore, gene ablation of CD9 affected the expression and tyrosine-phosphorylation of Src family proteins and reduced the expression of histone-deubiquitinase USP22. Taken together, our results suggest that CD9 links to several signaling pathways and epigenetic modification for regulating the CSC properties of B-ALL.

  19. CD90 and CD110 correlate with cancer stem cell potentials in human T-acute lymphoblastic leukemia cells

    SciTech Connect

    Yamazaki, Hiroto; Nishida, Hiroko; Iwata, Satoshi; Dang, Nam H.; Morimoto, Chikao

    2009-05-29

    Although cancer stem cells (CSCs) have been recently identified in myeloid leukemia, published data on lymphoid malignancy have been sparse. T-acute lymphoblastic leukemia (T-ALL) is characterized by the abnormal proliferation of T-cell precursors and is generally aggressive. As CD34 is the only positive-selection marker for CSCs in T-ALL, we performed extensive analysis of CD markers in T-ALL cell lines. We found that some of the tested lines consisted of heterogeneous populations of cells with various levels of surface marker expression. In particular, a small subpopulation of CD90 (Thy-1) and CD110 (c-Mpl) were shown to correlate with stem cell properties both in vitro and in transplantation experiments. As these markers are expressed on hematopoietic stem cells, our results suggest that stem cell-like population are enriched in CD90+/CD110+ fraction and they are useful positive-selection markers for the isolation of CSCs in some cases of T-ALL.

  20. Repression of BIM mediates survival signaling by MYC and AKT in high-risk T-cell acute lymphoblastic leukemia.

    PubMed

    Reynolds, C; Roderick, J E; LaBelle, J L; Bird, G; Mathieu, R; Bodaar, K; Colon, D; Pyati, U; Stevenson, K E; Qi, J; Harris, M; Silverman, L B; Sallan, S E; Bradner, J E; Neuberg, D S; Look, A T; Walensky, L D; Kelliher, M A; Gutierrez, A

    2014-09-01

    Treatment resistance in T-cell acute lymphoblastic leukemia (T-ALL) is associated with phosphatase and tensin homolog (PTEN) deletions and resultant phosphatidylinositol 3'-kinase (PI3K)-AKT pathway activation, as well as MYC overexpression, and these pathways repress mitochondrial apoptosis in established T-lymphoblasts through poorly defined mechanisms. Normal T-cell progenitors are hypersensitive to mitochondrial apoptosis, a phenotype that is dependent on the expression of proapoptotic BIM. In a conditional zebrafish model, MYC downregulation induced BIM expression in T-lymphoblasts, an effect that was blunted by expression of constitutively active AKT. In human T-ALL cell lines and treatment-resistant patient samples, treatment with MYC or PI3K-AKT pathway inhibitors each induced BIM upregulation and apoptosis, indicating that BIM is repressed downstream of MYC and PI3K-AKT in high-risk T-ALL. Restoring BIM function in human T-ALL cells using a stapled peptide mimetic of the BIM BH3 domain had therapeutic activity, indicating that BIM repression is required for T-ALL viability. In the zebrafish model, where MYC downregulation induces T-ALL regression via mitochondrial apoptosis, T-ALL persisted despite MYC downregulation in 10% of bim wild-type zebrafish, 18% of bim heterozygotes and in 33% of bim homozygous mutants (P=0.017). We conclude that downregulation of BIM represents a key survival signal downstream of oncogenic MYC and PI3K-AKT signaling in treatment-resistant T-ALL.

  1. Heterogeneity in mechanisms of emergent resistance in pediatric T-cell acute lymphoblastic leukemia

    PubMed Central

    Sutton, Rosemary; Venn, Nicola C.; Bendak, Katerina; Anderson, Denise; Marshall, Glenn M.; Cole, Catherine H.

    2016-01-01

    Relapse in pediatric T-cell acute lymphoblastic leukemia (T-ALL) remains a significant clinical problem and is thought to be associated with clonal selection during treatment. In this study we used an established pre-clinical model of induction therapy to increase our understanding of the effect of engraftment and chemotherapy on clonal selection and acquisition of drug resistance in vivo. Immune-deficient mice were engrafted with patient diagnostic specimens and exposed to a repeated combination therapy consisting of vincristine, dexamethasone, L-asparaginase and daunorubicin. Any re-emergence of disease following therapy was shown to be associated with resistance to dexamethasone, no resistance was observed to the other three drugs. Immunoglobulin/T-cell receptor gene rearrangements closely matched those in respective diagnosis and relapse patient specimens, highlighting that these clonal markers do not fully reflect the biological changes associated with drug resistance. Gene expression profiling revealed the significant underlying heterogeneity of dexamethasone-resistant xenografts. Alterations were observed in a large number of biological pathways, yet no dominant signature was common to all lines. These findings indicate that the biological changes associated with T-ALL relapse and resistance are stochastic and highly individual, and underline the importance of using sophisticated molecular techniques or single cell analyses in developing personalized approaches to therapy. PMID:27623214

  2. Characterization of the anti-CD22 targeted therapy, moxetumomab pasudotox, for B-cell precursor acute lymphoblastic leukemia.

    PubMed

    Kinjyo, Ichiko; Matlawska-Wasowska, Ksenia; Chen, Xiaoru; Monks, Noel R; Burke, Patricia; Winter, Stuart S; Wilson, Bridget S

    2017-11-01

    Moxetumomab pasudotox is a second-generation recombinant immunotoxin against CD22 on B-cell lineages. Antileukemic activity has been demonstrated in children with chemotherapy-refractory B-cell precursor acute lymphoblastic leukemia (BCP-ALL), with variable responses. Here, we report in vitro and in vivo evaluation of moxetumomab pasudotox treatment of human cell lines and patient-derived cells as a preliminary study to understand characteristics of sensitivity to treatment. Binding, internalization, and apoptosis were evaluated using fluorescently tagged moxetumomab pasudotox. Studies in NOD-scid IL2Rg(null) mice showed a modest survival benefit in mice engrafted with 697 cells but not in NALM6 or the two patient-derived xenograft models. © 2017 Wiley Periodicals, Inc.

  3. Microfluidic Separation of Lymphoblasts for the Isolation of Acute Lymphoblastic Leukemia Using the Human Transferrin Receptor as a Capture Target.

    PubMed

    Li, Wenjie; Zhang, Ye; Reynolds, C Patrick; Pappas, Dimitri

    2017-07-18

    Acute lymphocytic leukemia (ALL) is the most prevalent pediatric cancer, and the peripheral blood lymphoblast percentage is an important index for ALL diagnosis and prognosis. We describe a microfluidic device that isolates and enumerates peripheral blood lymphoblasts using affinity separations. The innovative use of a nonspecific ligand allows a widespread "net" for cancer cells, without a priori knowledge of the cancer type. Using lymphoblasts spiked into blood, we simulated leukemia cases with lymphoblast concentrations ranging from 1 to 30% of total leukocytes. Lymphoblasts were isolated using monoclonal antibodies for the Human Transferring Receptor (CD71). Anti-CD71 antibodies were found to be more effective for capturing lymphoblasts than commonly used, ALL-specific antibodies for CD7 and CD10. CCRF-CEM lymphoblasts were isolated in the chip with 82-97% purity, with lower concentrations tested (7%) still showing >80% purity for cell capture. Patient-derived ALL cell lines COG-LL-332 and COG-LL-317 were isolated in the chip with 80%-97% and 57% -92% of purity, respectively, with the initial spike concentrations as low as 1%. The ability to capture ALL lymphoblasts present in blood at low concentrations provides a novel approach for characterization of ALL cells, including patients with low leukemic burdens during and after therapy.

  4. Clinical use of blinatumomab for B-cell acute lymphoblastic leukemia in adults

    PubMed Central

    Lee, Kum Ja; Chow, Vivian; Weissman, Ashley; Tulpule, Sunil; Aldoss, Ibrahim; Akhtari, Mojtaba

    2016-01-01

    Adults with relapsed or refractory B-cell acute lymphoblastic leukemia have a dismal prognosis with a short median overall survival that can be measured in months. Because most patients will have chemotherapy-resistant disease, allogeneic hematopoietic stem cell transplantation remains the only potentially curative treatment. Despite advances in current management, patients continue to have poor outcomes and lack of durable responses. Thus, new therapies with alternative modes of actions are currently being investigated. Blinatumomab is a novel bispecific T-cell engager that simultaneously binds CD3-positive cytotoxic T-cells and CD19-positive B-cells, resulting in selective lysis of tumor cells. It has shown promising results in patients with relapsed or refractory acute lymphoblastic leukemia or those achieving hematologic response with persistent minimum residual disease. Future clinical trials will answer questions regarding its optimal place in the treatment paradigm. Dose-limiting toxicities include immunological toxicities and cytokine release syndrome. However, most patients tolerate the therapy relatively well. This review will focus on the pharmacology, clinical efficacy, and safety of blinatumomab in the treatment of adult B-cell acute lymphoblastic leukemia while highlighting its unique drug warnings and toxicity management. PMID:27601914

  5. Molecular effects of the phosphatidylinositol-3-kinase inhibitor NVP-BKM120 on T and B-cell acute lymphoblastic leukaemia.

    PubMed

    Pereira, João Kleber Novais; Machado-Neto, João Agostinho; Lopes, Matheus Rodrigues; Morini, Beatriz Corey; Traina, Fabiola; Costa, Fernando Ferreira; Saad, Sara Teresinha Olalla; Favaro, Patricia

    2015-09-01

    Constitutive activation of the PI3K pathway in T cell acute lymphoblastic leukaemia (T-ALL) has been reported and in a mouse model, PI3K activation, together with MYC, cooperates in Burkitt lymphoma (BL) pathogenesis. We investigated the effects of NVP-BKM120, a potent pan-class I PI3K inhibitor, in lymphoblastic leukaemia cell lines. Effects of NVP-BKM120 on cell viability, clonogenicity, apoptosis, cell cycle, cell signalling and autophagy were assessed in vitro on T-ALL (Jurkat and MOLT-4) and BL (Daudi and NAMALWA) cell lines. NVP-BKM120 treatment decreased cell viability and clonogenic growth in all tested cells. Moreover, the drug arrested cell cycling in association with a decrease in Cyclin B1 protein levels, and increased apoptosis. Immunoblotting analysis of cells treated with the drug revealed decreased phosphorylation, in a dose-dependent manner, of AKT, mTOR, P70S6K and 4EBP1, with stable total protein levels. Additionally, we observed a dose-dependent decrease in BAD phosphorylation, in association with augmented BAX:BCL2 ratio. Quantification of autophagy showed a dose-dependent increase in acidic vesicular organelles in all cells tested. In summary, our present study establishes that NVP-BKM120 presents an effective antitumour activity against T-ALL and BL cell lines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Crucial role of the Rap G protein signal in Notch activation and leukemogenicity of T-cell acute lymphoblastic leukemia.

    PubMed

    Doi, Keiko; Imai, Takahiko; Kressler, Christopher; Yagita, Hideo; Agata, Yasutoshi; Vooijs, Marc; Hamazaki, Yoko; Inoue, Joe; Minato, Nagahiro

    2015-01-23

    The Rap G protein signal regulates Notch activation in early thymic progenitor cells, and deregulated Rap activation (Rap(high)) results in the development of Notch-dependent T-cell acute lymphoblastic leukemia (T-ALL). We demonstrate that the Rap signal is required for the proliferation and leukemogenesis of established Notch-dependent T-ALL cell lines. Attenuation of the Rap signal by the expression of a dominant-negative Rap1A17 or Rap1GAP, Sipa1, in a T-ALL cell line resulted in the reduced Notch processing at site 2 due to impaired maturation of Adam10. Inhibition of the Rap1 prenylation with a geranylgeranyl transferase inhibitor abrogated its membrane-anchoring to Golgi-network and caused reduced proprotein convertase activity required for Adam10 maturation. Exogenous expression of a mature form of Adam10 overcame the Sipa1-induced inhibition of T-ALL cell proliferation. T-ALL cell lines expressed Notch ligands in a Notch-signal dependent manner, which contributed to the cell-autonomous Notch activation. Although the initial thymic blast cells barely expressed Notch ligands during the T-ALL development from Rap(high) hematopoietic progenitors in vivo, the ligands were clearly expressed in the T-ALL cells invading extrathymic vital organs. These results reveal a crucial role of the Rap signal in the Notch-dependent T-ALL development and the progression.

  7. Plumbagin exerts an immunosuppressive effect on human T-cell acute lymphoblastic leukemia MOLT-4 cells

    SciTech Connect

    Bae, Kyoung Jun; Lee, Yura; Kim, Soon Ae; Kim, Jiyeon

    2016-04-22

    Of the hematological disorders typified by poor prognoses and survival rates, T-cell acute lymphoblastic leukemia (T-ALL) is one of the most commonly diagnosed. Despite the development of new therapeutic agents, the treatment options for this cancer remain limited. In this manuscript, we investigated the anti-proliferative effects of plumbagin, mediated by the activation of mitogen-activated protein kinase (MAPK) pathways, and inhibition of NF-κB signaling; the human T-ALL MOLT-4 cell line was used as our experimental system. Plumbagin is a natural, plant derived compound, which exerts an anti-proliferative activity against many types of human cancer. Our experiments confirm that plumbagin induces a caspase-dependent apoptosis of MOLT-4 cells, with no significant cytotoxicity seen for normal peripheral blood mononuclear cells (PBMCs). Plumbagin also inhibited LPS-induced phosphorylation of p65, and the transcription of NF-κB target genes. Our results now show that plumbagin is a potent inhibitor of the NF-κB signaling pathway, and suppressor of T-ALL cell proliferation. - Highlights: • Plumbagin induces caspase-dependent apoptosis in T-ALL MOLT-4 cells. • Plumbagin activates phosphorylation of stress-activated protein kinase (SAPK) JNK and p38. • Plumbagin inhibits LPS-mediated NF-κB signaling cascade. • Plumbagin inhibits LPS-mediated transcriptional activity of pro-inflammatory cytokines.

  8. BIM mediates synergistic killing of B-cell acute lymphoblastic leukemia cells by BCL-2 and MEK inhibitors.

    PubMed

    Korfi, K; Smith, M; Swan, J; Somervaille, T C P; Dhomen, N; Marais, R

    2016-04-07

    B-cell acute lymphoblastic leukemia (B-ALL) is an aggressive hematological disease that kills ~50% of adult patients. With the exception of some BCR-ABL1(+) patients who benefit from tyrosine kinase inhibitors, there are no effective targeted therapies for adult B-ALL patients and chemotherapy remains first-line therapy despite adverse side effects and poor efficacy. We show that, although the MEK/ERK pathway is activated in B-ALL cells driven by different oncogenes, MEK inhibition does not suppress B-ALL cell growth. However, MEK inhibition synergized with BCL-2/BCL-XL family inhibitors to suppress proliferation and induce apoptosis in B-ALL cells. We show that this synergism is mediated by the pro-apoptotic factor BIM, which is dephosphorylated as a result of MEK inhibition, allowing it to bind to and neutralize MCL-1, thereby enhancing BCL-2/BCL-XL inhibitor-induced cell death. This cooperative effect is observed in B-ALL cells driven by a range of genetic abnormalities and therefore has significant therapeutic potential.

  9. TFDP3 confers chemoresistance in minimal residual disease within childhood T-cell acute lymphoblastic leukemia

    PubMed Central

    Chu, Ming; Yin, Kailin; Dong, Yujun; Wang, Pingzhang; Xue, Yun; Zhou, Peng; Wang, Yuqi; Wang, Yuedan

    2017-01-01

    Acquired drug resistance in childhood T-cell acute lymphoblastic leukemia (T-ALL) remains a significant clinical problem. In this study, a novel gene therapy target for childhood T-ALL to overcome chemoresistance was discovered: TFDP3 increased in the minimal residual disease (MRD) positive childhood T-ALL patients. Then, we established a preclinical model of resistance to induction therapy to examine the functional relevance of TFDP3 to chemoresistance in MRD derived from Jurkat/E6-1. Jurkat xenografts in NOD/SCID mice were exposed to a four drug combination (VXLD) of vincristine (VCR), dexamethasone (DEX), L-asparaginase (L-asp) and daunorubicin (DNR). During the 4-week VXLD treatment, the level of TFDP3 increased 4-fold. High expression of TFDP3 was identified in the re-emerging lines (Jurkat/MRD) with increased chemoresistance, which is correlated with partially promoter demethylation of TFDP3. Downregulation of TFDP3 by RNA interference reversed chemoresistance in Jurkat/MRD accompanied by reinstated E2F1 activity that coincided with increased levels of p53, p73, and associated proapoptotic target genes. Importantly, TFDP3 silencing in vivo induced apparent benefit to overcome chemoresistance in combination with VXLD treatment. Collectively, TFDP3 confers chemoresistance in MRD within childhood T-ALL, indicating that TFDP3 is a potential gene therapy target for residual cancer. PMID:27902457

  10. Acute kidney injury and bilateral symmetrical enlargement of the kidneys as first presentation of B-cell lymphoblastic lymphoma.

    PubMed

    Shi, Su-fang; Zhou, Fu-de; Zou, Wan-zhong; Wang, Hai-yan

    2012-12-01

    Lymphoblastic lymphoma is an uncommon subtype of lymphoid neoplasm in adults. Acute kidney injury at initial presentation due to lymphoblastic lymphoma infiltration of the kidneys has rarely been described. We report a 19-year-old woman who presented with acute kidney injury due to massive lymphomatous infiltration of the kidneys. The diagnosis of B-cell lymphoblastic lymphoma was established by immunohistochemical study of the biopsied kidney. The patient had an excellent response to the VDCLP protocol (vincristine, daunomycin, cyclophosphamide, asparaginase, and dexamethasone) with sustained remission. We recommend that lymphomatous infiltration be considered in patients presenting with unexplained acute kidney injury and enlarged kidneys.

  11. Antibody-based therapies in B-cell lineage acute lymphoblastic leukaemia.

    PubMed

    Le Jeune, Caroline; Thomas, Xavier

    2015-02-01

    Targeted therapies represent a major breakthrough in the treatment of adult acute lymphoblastic leukaemia (ALL). Because lymphoblastic leukaemia cells express a variety of specific antigens, those ones can serve as targets for monoclonal antibodies (MoAbs). Anti-CD20 (rituximab), anti-CD19 (blinatumomab, SAR3419), anti-CD22 (epratuzumab, inotuzumab ozogamicin) and anti-CD52 (alemtuzumab) have therefore been developed. Possible strategies even include recruitment of CD3 cytotoxic T cells (blinatumomab) or adoptive T-cell therapy by gene transfer of CD19-chimeric antigen receptors (CD19-CARs). Recent data show that antibody-based therapy is a highly promising treatment approach. However, optimal treatment approach still needs to be defined.

  12. Phosphatidylinositol 3-kinase inhibition potentiates glucocorticoid response in B-cell acute lymphoblastic leukemia.

    PubMed

    Evangelisti, Cecilia; Cappellini, Alessandra; Oliveira, Mariana; Fragoso, Rita; Barata, João T; Bertaina, Alice; Locatelli, Franco; Simioni, Carolina; Neri, Luca M; Chiarini, Francesca; Lonetti, Annalisa; Buontempo, Francesca; Orsini, Ester; Pession, Andrea; Manzoli, Lucia; Martelli, Alberto Maria; Evangelisti, Camilla

    2017-08-04

    Despite remarkable progress in polychemotherapy protocols, pediatric B-cell acute lymphoblastic leukemia (B-ALL) remains fatal in around 20% of cases. Hence, novel targeted therapies are needed for patients with poor prognosis. Glucocorticoids (GCs) are drugs commonly administrated for B-ALL treatment. Activation of the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin signaling pathway is frequently observed in B-ALL and contributes to GC-resistance. Here, we analyzed for the first time to our knowledge, the therapeutic potential of pan and isoform-selective PI3K p110 inhibitors, alone or combined with dexamethasone (DEX), in B-ALL leukemia cell lines and patient samples. We found that a pan PI3K p110 inhibitor displayed the most powerful cytotoxic effects in B-ALL cells, by inducing cell cycle arrest and apoptosis. Both a pan PI3K p110 inhibitor and a dual γ/δ PI3K p110 inhibitor sensitized B-ALL cells to DEX by restoring nuclear translocation of the GC receptor and counteracted stroma-induced DEX-resistance. Finally, gene expression analysis documented that, on one hand the combination consisting of a pan PI3K p110 inhibitor and DEX strengthened the DEX-induced up- or down-regulation of several genes involved in apoptosis, while on the other, it rescued the effects of genes that might be involved in GC-resistance. Overall, our findings strongly suggest that PI3K p110 inhibition could be a promising strategy for treating B-ALL patients by improving GC therapeutic effects and/or overcoming GC-resistance. © 2017 Wiley Periodicals, Inc.

  13. Contribution of JAK2 mutations to T-cell lymphoblastic lymphoma development

    PubMed Central

    Roncero, A M; López-Nieva, P; Cobos-Fernández, M A; Villa-Morales, M; González-Sánchez, L; López-Lorenzo, J L; Llamas, P; Ayuso, C; Rodríguez-Pinilla, S M; Arriba, M C; Piris, M A; Fernández-Navarro, P; Fernández, A F; Fraga, M F; Santos, J; Fernández-Piqueras, J

    2016-01-01

    The JAK-STAT pathway has a substantial role in lymphoid precursor cell proliferation, survival and differentiation. Nonetheless, the contribution of JAK2 to T-cell lymphoblastic lymphoma (T-LBL) development remains poorly understood. We have identified one activating TEL-JAK2 translocation and four missense mutations accumulated in 2 out of 16 T-LBL samples. Two of them are novel JAK2 mutations and the other two are reported for the first time in T-LBL. Notably, R683G and I682T might have arisen owing to RNA editing. Mutated samples showed different mutated transcripts suggesting sub-clonal heterogeneity. Functional approaches revealed that two JAK2 mutations (H574R and R683G) constitutively activate JAK-STAT signaling in γ2A cells and can drive the proliferation of BaF3-EpoR cytokine-dependent cell line. In addition, aberrant hypermethylation of SOCS3 might contribute to enhance the activation of JAK-STAT signaling. Of utmost interest is that primary T-LBL samples harboring JAK2 mutations exhibited increased expression of LMO2, suggesting a mechanistic link between JAK2 mutations and the expression of LMO2, which was confirmed for the four missense mutations in transfected γ2A cells. We therefore propose that active JAK2 contribute to T-LBL development by two different mechanisms, and that the use of pan-JAK inhibitors in combination with epigenetic drugs should be considered in future treatments. PMID:26216197

  14. Targeting of the deubiquitinase USP9X attenuates B-cell acute lymphoblastic leukemia cell survival and overcomes glucocorticoid resistance.

    PubMed

    Zhou, Mi; Wang, Ting; Lai, Huiling; Zhao, Xuejiao; Yu, Qin; Zhou, Jianfeng; Yang, Yang

    2015-04-03

    Although previous studies attributed a pro-survival role to USP9X in human cancer, how USP9X affects B-cell acute lymphoblastic leukemia (B-ALL) remains unclear. Here, we found that USP9X is overexpressed in B-ALL cell lines and human patients. We investigated the role of USP9X in B-ALL and found that USP9X knockdown significantly reduced leukemic cell growth and increased spontaneous apoptosis, thereby improving survival in immunodeficient mice. These effects are partially mediated by the intrinsic apoptotic pathway, as we found that USP9X-knockdown leukemic cells displayed MCL1 down-regulation, with decreased BCL-2/BCL-XL levels and increased BAX levels. In addition, we demonstrated that USP9X inhibition negatively regulates mTORC1 activity toward its substrate S6K1. Clinically, USP9X inhibition sensitized glucocorticoid-resistant ALL cells to prednisolone; this observation reveals a potential avenue for improving the treatment of drug-resistant relapses. Collectively, our findings suggest that the combination of USP9X targeting and glucocorticoids treatment has attractive utility in B-ALL. This approach represents a potential strategy for promising combination therapies for lymphoid malignancies.

  15. Philadelphia chromosome-positive leukemia stem cells in acute lymphoblastic leukemia and tyrosine kinase inhibitor therapy.

    PubMed

    Thomas, Xavier

    2012-06-26

    Leukemia stem cells (LSCs), which constitute a minority of the tumor bulk, are functionally defined on the basis of their ability to transfer leukemia into an immunodeficient recipient animal. The presence of LSCs has been demonstrated in acute lymphoblastic leukemia (ALL), of which ALL with Philadelphia chromosome-positive (Ph(+)). The use of imatinib, a tyrosine kinase inhibitor (TKI), as part of front-line treatment and in combination with cytotoxic agents, has greatly improved the proportions of complete response and molecular remission and the overall outcome in adults with newly diagnosed Ph(+) ALL. New challenges have emerged with respect to induction of resistance to imatinib via Abelson tyrosine kinase mutations. An important recent addition to the arsenal against Ph(+) leukemias in general was the development of novel TKIs, such as nilotinib and dasatinib. However, in vitro experiments have suggested that TKIs have an antiproliferative but not an antiapoptotic or cytotoxic effect on the most primitive ALL stem cells. None of the TKIs in clinical use target the LSC. Second generation TKI dasatinib has been shown to have a more profound effect on the stem cell compartment but the drug was still unable to kill the most primitive LSCs. Allogeneic stem cell transplantation (SCT) remains the only curative treatment available for these patients. Several mechanisms were proposed to explain the resistance of LSCs to TKIs in addition to mutations. Hence, TKIs may be used as a bridge to SCT rather than monotherapy or combination with standard chemotherapy. Better understanding the biology of Ph(+) ALL will open new avenues for effective management. In this review, we highlight recent findings relating to the question of LSCs in Ph(+) ALL.

  16. [Ocular manifestations of acute T-cell lymphoblastic leukemia in hematological remission--a case report].

    PubMed

    Siedlińska, Maria; Karska-Basta, Izabella; Pagacz, Dominika; Sobociński, Marcin; Romanowska-Dixon, Bożena

    2014-01-01

    The paper presents a case of a 60 year-old female referred to the Department of Ophthalmology and Ocular Oncology, Medical College, Jagiellonian University in Krakow with the sudden severe vision deterioration in both eyes. The patient was treated for T-cell acute lymphoblastic leukemia at the local Department of Hematology, at that time she was considered to be in hematological remission. Based on findings of clinical examination and additional tests, the patient was diagnosed with leukemic infiltration of the retina and optic nerve with secondary retinal detachment. Systemic and intrathecal chemotherapy as well as local radiotherapy to both eyes were administered. Ocular manifestations of T-cell acute lymphoblastic leukemia may develop in patients in hematological remission. Standard management of leukemic infiltrates involving the retina, choroid and optic nerve includes the intrathecal chemotherapy and lo- cal radiotherapy. Such therapy caused regression and cicatrization of the ocular infiltrates, but did not improve visual acuity in the described patient.

  17. A case of B-cell lymphoblastic lymphoma involving the uterus.

    PubMed

    Koliopoulos, G; Parkin, D; Paraskevaidis, E

    2002-01-01

    A 59-year-old postmenopausal woman presented with vaginal bleeding, lower abdominal pain, severe anaemia, leucocytosis, and an ultrasonographic finding of a large mass arising within the pelvis, most likely ovarian in origin. The patient was taken to the operating theatre with the possible diagnosis of acute haemorrhage into an ovarian cyst. At laparotomy there was a large mass at the posterior uterine wall extending retroperitoneally into the left pelvic side-wall. There was also significant paraaortic lymphadenopathy. The tumor was not resectable and biopsies were taken for pathological examination which showed a precursor B cell lymphoblastic lymphoma. Although the existence of lymphomas involving the uterus is well documented, the presentation of the lymphoma in this case was very unusual and this is the first reported case of a confirmed precursor B-cell lymphoblastic lymphoma involving the uterus.

  18. Oral or parenteral administration of curcumin does not prevent the growth of high-risk t(4;11) acute lymphoblastic leukemia cells engrafted into a NOD/SCID mouse model

    USDA-ARS?s Scientific Manuscript database

    The efficacy of orally and parenterally administered curcumin was evaluated in NOD.CB17-Prkdcscid/J mice engrafted with the human t(4;11) acute lymphoblastic leukemia line SEM. SEM cells were injected into the tail vein and engraftment was monitored by flow cytometry. Once engraftment was observed...

  19. Adipose tissue attracts and protects acute lymphoblastic leukemia cells from chemotherapy

    PubMed Central

    Pramanik, Rocky; Sheng, Xia; Ichihara, Brian; Heisterkamp, Nora; Mittelman, Steven D.

    2013-01-01

    Obesity is associated with an increased risk of acute lymphoblastic leukemia (ALL) relapse. Using mouse and cell co-culture models, we investigated whether adipose tissue attracts ALL to a protective microenvironment. Syngeneically implanted ALL cells migrated into adipose tissue within ten days. In vitro, murine ALL cells migrated towards adipose tissue explants and 3T3-L1 adipocytes. Human and mouse ALL cells migrated toward adipocyte conditioned media, which was mediated by SDF-1α. In addition, adipose tissue explants protected ALL cells against daunorubicin and vincristine. Our findings suggest that ALL migration into adipose tissue could contribute to drug resistance and potentially relapse. PMID:23332453

  20. Activity of the novel dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235 against T-cell acute lymphoblastic leukemia.

    PubMed

    Chiarini, Francesca; Grimaldi, Cecilia; Ricci, Francesca; Tazzari, Pier Luigi; Evangelisti, Camilla; Ognibene, Andrea; Battistelli, Michela; Falcieri, Elisabetta; Melchionda, Fraia; Pession, Andrea; Pagliaro, Pasqualepaolo; McCubrey, James A; Martelli, Alberto M

    2010-10-15

    Recent findings have highlighted that constitutively active phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling is a common feature of T-cell acute lymphoblastic leukemia (T-ALL), where it upregulates cell proliferation, survival, and drug resistance. These observations lend compelling weight to the application of PI3K/Akt/mTOR inhibitors in the therapy of T-ALL. Here, we have analyzed the therapeutic potential of the novel dual PI3K/mTOR inhibitor NVP-BEZ235, an orally bioavailable imidazoquinoline derivative, which has entered clinical trials for solid tumors, on both T-ALL cell lines and patient samples. NVP-BEZ235 was cytotoxic to a panel of T-ALL cell lines as determined by MTT assays. NVP-BEZ235 treatment resulted in cell cycle arrest and apoptosis. Western blots showed a dose- and time-dependent dephosphorylation of Akt and mTORC1 downstream targets in response to NVP-BEZ235. Remarkably, NVP-BEZ235 targeted the side population of both T-ALL cell lines and patient lymphoblasts, which might correspond to leukemia-initiating cells, and synergized with chemotherapeutic agents (cyclophosphamide, cytarabine, dexamethasone) currently used for treating T-ALL patients. NVP-BEZ235 reduced chemoresistance to vincristine induced in Jurkat cells by coculturing with MS-5 stromal cells, which mimic the bone marrow microenvironment. NVP-BEZ235 was cytotoxic to T-ALL patient lymphoblasts displaying pathway activation, where the drug dephosphorylated eukaryotic initiation factor 4E-binding protein 1, at variance with rapamycin. Taken together, our findings indicate that longitudinal inhibition at two nodes of the PI3K/Akt/mTOR network with NVP-BEZ235, either alone or in combination with chemotherapeutic drugs, may be an efficient treatment of those T-ALLs that have aberrant upregulation of this signaling pathway for their proliferation and survival. ©2010 AACR.

  1. Bafilomycin A1 targets both autophagy and apoptosis pathways in pediatric B-cell acute lymphoblastic leukemia

    PubMed Central

    Yuan, Na; Song, Lin; Zhang, Suping; Lin, Weiwei; Cao, Yan; Xu, Fei; Fang, Yixuan; Wang, Zhen; Zhang, Han; Li, Xin; Wang, Zhijian; Cai, Jinyang; Wang, Jian; Zhang, Yi; Mao, Xinliang; Zhao, Wenli; Hu, Shaoyan; Chen, Suning; Wang, Jianrong

    2015-01-01

    B-cell acute lymphoblastic leukemia is the most common type of pediatric leukemia. Despite improved remission rates, current treatment regimens for pediatric B-cell acute lymphoblastic leukemia are often associated with adverse effects and central nervous system relapse, necessitating more effective and safer agents. Bafilomycin A1 is an inhibitor of vacuolar H+-ATPase that is frequently used at high concentration to block late-phase autophagy. Here, we show that bafilomycin A1 at a low concentration (1 nM) effectively and specifically inhibited and killed pediatric B-cell acute lymphoblastic leukemia cells. It targeted both early and late stages of the autophagy pathway by activating mammalian target of rapamycin signaling and by disassociating the Beclin 1-Vps34 complex, as well as by inhibiting the formation of autolysosomes, all of which attenuated functional autophagy. Bafilomycin A1 also targeted mitochondria and induced caspase-independent apoptosis by inducing the translocation of apoptosis-inducing factor from mitochondria to the nucleus. Moreover, bafilomycin A1 induced the binding of Beclin 1 to Bcl-2, which further inhibited autophagy and promoted apoptotic cell death. In primary cells from pediatric patients with B-cell acute lymphoblastic leukemia and a xenograft model, bafilomycin A1 specifically targeted leukemia cells while sparing normal cells. An in vivo mouse toxicity assay confirmed that bafilomycin A1 is safe. Our data thus suggest that bafilomycin A1 is a promising candidate drug for the treatment of pediatric B-cell acute lymphoblastic leukemia. PMID:25512644

  2. Biological Therapy in Treating Patients With Advanced Myelodysplastic Syndrome, Acute or Chronic Myeloid Leukemia, or Acute Lymphoblastic Leukemia Who Are Undergoing Stem Cell Transplantation

    ClinicalTrials.gov

    2017-03-27

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); B-cell Adult Acute Lymphoblastic Leukemia; B-cell Childhood Acute Lymphoblastic Leukemia; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Chronic Myelomonocytic Leukemia; Essential Thrombocythemia; Polycythemia Vera; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; T-cell Adult Acute Lymphoblastic Leukemia; T-cell Childhood Acute Lymphoblastic Leukemia

  3. Lipoxygenase inhibitors protect acute lymphoblastic leukemia cells from ferroptotic cell death.

    PubMed

    Probst, Lukas; Dächert, Jasmin; Schenk, Barbara; Fulda, Simone

    2017-09-15

    Ferroptosis has recently been identified as a mode of programmed cell death. However, little is yet known about the signaling mechanism. Here, we report that lipoxygenases (LOX) contribute to the regulation of RSL3-induced ferroptosis in acute lymphoblastic leukemia (ALL) cells. We show that the glutathione (GSH) peroxidase 4 (GPX4) inhibitor RSL3 triggers lipid peroxidation, production of reactive oxygen species (ROS) and cell death in ALL cells. All these events are impeded in the presence of Ferrostatin-1 (Fer-1), a small-molecule inhibitor of lipid peroxidation. Also, lipid peroxidation and ROS production precede the induction of cell death, underscoring their contribution to cell death upon exposure to RSL3. Importantly, LOX inhibitors, including the selective 12/15-LOX inhibitor Baicalein and the pan-LOX inhibitor nordihydroguaiaretic acid (NDGA), protect ALL cells from RSL3-stimulated lipid peroxidation, ROS generation and cell death, indicating that LOX contribute to ferroptosis. RSL3 triggers lipid peroxidation and cell death also in FAS-associated Death Domain (FADD)-deficient cells which are resistant to death receptor-induced apoptosis indicating that the induction of ferroptosis may bypass apoptosis resistance. By providing new insights into the molecular regulation of ferroptosis, our study contributes to the development of novel treatment strategies to reactivate programmed cell death in ALL. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Cytotoxicity of CD56-positive lymphocytes against autologous B-cell precursor acute lymphoblastic leukemia cells.

    PubMed

    Fei, F; Lim, M; George, A A; Kirzner, J; Lee, D; Seeger, R; Groffen, J; Abdel-Azim, H; Heisterkamp, N

    2015-04-01

    Precursor B-lineage acute lymphoblastic leukemia (pre-B ALL) affects hematopoietic development and therefore is associated with immune deficiencies that can be further exacerbated by chemotherapy. It is unclear if and when monoclonal antibodies (mAbs) that stimulate antibody-mediated cellular cytotoxicity (ADCC) can be used for treatment because this depends on the presence of functional effector cells. Here, we used flow cytometry to determine that patient samples at diagnosis, post-induction and relapse contain detectable numbers of CD56+ cells. We were able to selectively expand CD56+ immune effector cells from bone marrow and peripheral blood samples at diagnosis and at various stages of treatment by co-culture with artificial antigen-presenting K562 clone 9.mbIL-21 cells. Amplified CD56+CD3- cells had spontaneous and anti-B cell-activating factor receptor mAb-stimulated ADCC activity against allogeneic ALL cells, which could be further enhanced by IL-15. Importantly, matched CD56+ effector cells also killed autologous ALL cells grown out from leukemia samples of the same patient, through both spontaneous as well as antibody-dependent cellular cytotoxicity. Since autologous cell therapy will not be complicated by graft-versus-host disease, our results show that expanded CD56+ cells could be applied for treatment of pre-B ALL without transplantation, or for purging of bone marrow in the setting of autologous bone marrow transplants.

  5. Cytotoxicity of CD56-positive lymphocytes against autologous B-cell precursor acute lymphoblastic leukemia cells

    PubMed Central

    Fei, Fei; Lim, Min; George, Aswathi A.; Kirzner, Jonathan; Lee, Dean; Seeger, Robert; Groffen, John; Abdel-Azim, Hisham; Heisterkamp, Nora

    2014-01-01

    Precursor B-lineage acute lymphoblastic leukemia (pre-B ALL) affects hematopoietic development and therefore is associated with immune deficiencies that can be further exacerbated by chemotherapy. It is unclear if and when monoclonal antibodies (mAbs) that stimulate antibody-mediated cellular cytotoxicity (ADCC) can be used for treatment because this depends on the presence of functional effector cells. Here, we used flow cytometry to determine that patient samples at diagnosis, post-induction and relapse contain detectable numbers of CD56+ cells. We were able to selectively expand CD56+ immune effector cells from bone marrow and peripheral blood samples at diagnosis and at various stages of treatment by co-culture with artificial antigen-presenting K562 clone 9.mbIL-21 cells. Amplified CD56+CD3- cells had spontaneous and anti-BAFF-R mAb-stimulated ADCC activity against autologous ALL cells, which could be further enhanced by IL15. Importantly, matched CD56+ effector cells also killed autologous ALL cells grown out from leukemia samples of the same patient, through both spontaneous as well as antibody-dependent cellular cytotoxicity. Since autologous cell therapy will not be complicated by graft-versus-host disease, our results show that expanded CD56+ cells could be applied for treatment of pre-B-ALL without transplantation, or for purging of bone marrow in the setting of autologous bone marrow transplants. PMID:25134458

  6. Prexasertib, a Chk1/Chk2 inhibitor, increases the effectiveness of conventional therapy in B-/T- cell progenitor acute lymphoblastic leukemia

    PubMed Central

    Rorà, Andrea Ghelli Luserna Di; Iacobucci, Ilaria; Imbrogno, Enrica; Papayannidis, Cristina; Derenzini, Enrico; Ferrari, Anna; Guadagnuolo, Viviana; Robustelli, Valentina; Parisi, Sarah; Sartor, Chiara; Abbenante, Maria Chiara; Paolini, Stefania; Martinelli, Giovanni

    2016-01-01

    During the last few years many Checkpoint kinase 1/2 (Chk1/Chk2) inhibitors have been developed for the treatment of different type of cancers. In this study we evaluated the efficacy of the Chk 1/2 inhibitor prexasertib mesylate monohydrate in B-/T- cell progenitor acute lymphoblastic leukemia (ALL) as single agent and in combination with other drugs. The prexasertib reduced the cell viability in a dose and time dependent manner in all the treated cell lines. The cytotoxic activity was confirmed by the increment of apoptotic cells (Annexin V/Propidium Iodide staining), by the increase of γH2A.X protein expression and by the activation of different apoptotic markers (Parp-1 and pro-Caspase3 cleavage). Furthermore, the inhibition of Chk1 changed the cell cycle profile. In order to evaluate the chemo-sensitizer activity of the compound, different cell lines were treated for 24 and 48 hours with prexasertib in combination with other drugs (imatinib, dasatinib and clofarabine). The results from cell line models were strengthened in primary leukemic blasts isolated from peripheral blood of adult acute lymphoblastic leukemia patients. In this study we highlighted the mechanism of action and the effectiveness of prexasertib as single agent or in combination with other conventional drugs like imatinib, dasatinib and clofarabine in the treatment of B-/T-ALL. PMID:27438145

  7. miRNA-149* promotes cell proliferation and suppresses apoptosis by mediating JunB in T-cell acute lymphoblastic leukemia.

    PubMed

    Fan, Sheng-Jin; Li, Hui-Bo; Cui, Gang; Kong, Xiao-Lin; Sun, Li-Li; Zhao, Yan-Qiu; Li, Ying-Hua; Zhou, Jin

    2016-02-01

    MicroRNA-149* (miRNA-149*) functions as an oncogenic regulator in human melanoma. However, the effect of miRNA-149* on T-cell acute lymphoblastic leukemia (T-ALL) is unclear. Here we aimed to analyze the effects of miRNA-149* on in vitro T-ALL cells and to uncover the target for miRNA-149* in these cells. The miRNA-149* level was determined in multiple cell lines and bone marrow cells derived from patients with T-ALL, B acute lymphoblastic leukemia (B-ALL), acute myelocytic leukemia (AML), and healthy donors. We found that miRNA-149* was highly expressed in T-ALL cell lines and T-ALL patients' bone marrow samples. JunB was identified as a direct target of miR-149*. miRNA-149* mimics downregulated JunB levels in Molt-4 and Jurkat cells, while miRNA-149* inhibitors dramatically upregulated JunB expression in these cells. miRNA-149* mimics promoted proliferation, decreased the proportion of cells in G1 phase, and reduced cell apoptosis in T-ALL cells, while miRNA-149* inhibitors prevented these effects. miRNA-149* mimics downregulated p21 and upregulated cyclinD1, 4EBP1, and p70s6k in Molt-4 and Jurkat cells. Again, inhibitors prevented these effects. Our findings demonstrate that miRNA-149* may serve as an oncogenic regulator in T-ALL by negatively regulating JunB.

  8. EP300-ZNF384 fusion gene product up-regulates GATA3 gene expression and induces hematopoietic stem cell gene expression signature in B-cell precursor acute lymphoblastic leukemia cells.

    PubMed

    Yaguchi, Akinori; Ishibashi, Takeshi; Terada, Kazuki; Ueno-Yokohata, Hitomi; Saito, Yuya; Fujimura, Junya; Shimizu, Toshiaki; Ohki, Kentaro; Manabe, Atsushi; Kiyokawa, Nobutaka

    2017-04-04

    ZNF384-related fusion genes are associated with a distinct subgroup of B-cell precursor acute lymphoblastic leukemias in childhood, with a frequency of approximately 3-4%. We previously identified a novel EP300-ZNF384 fusion gene. Patients with the ZNF384-related fusion gene exhibit a hematopoietic stem cell (HSC) gene expression signature and characteristic immunophenotype with negative or low expression of CD10 and aberrant expression of myeloid antigens, such as CD33 and CD13. However, the molecular basis of this pathogenesis remains completely unknown. In the present study, we examined the biological effects of EP300-ZNF384 expression induced by retrovirus-mediated gene transduction in an REH B-cell precursor acute lymphoblastic leukemia cell line, and observed the acquisition of the HSC gene expression signature and an up-regulation of GATA3 gene expression, as assessed by microarray analysis. In contrast, the gene expression profile induced by wild-type ZNF384 in REH cells was significantly different from that by EP300-ZNF384 expression. Together with the results of reporter assays, which revealed the enhancement of GATA3-promoter activity by EP300-ZNF384 expression, these findings suggest that EP300-ZNF384 mediates GATA3 gene expression and may be involved in the acquisition of the HSC gene expression signature and characteristic immunophenotype in B-cell precursor acute lymphoblastic leukemia cells.

  9. ORP4L is essential for T-cell acute lymphoblastic leukemia cell survival

    PubMed Central

    Zhong, Wenbin; Yi, Qing; Xu, Bing; Li, Shiqian; Wang, Tong; Liu, Fupei; Zhu, Biying; Hoffmann, Peter R.; Ji, Guangju; Lei, Pingsheng; Li, Guoping; Li, Jiwei; Li, Jian; Olkkonen, Vesa M.; Yan, Daoguang

    2016-01-01

    Metabolic pathways are reprogrammed in cancer to support cell survival. Here, we report that T-cell acute lymphoblastic leukemia (T-ALL) cells are characterized by increased oxidative phosphorylation and robust ATP production. We demonstrate that ORP4L is expressed in T-ALL but not normal T-cells and its abundance is proportional to cellular ATP. ORP4L acts as an adaptor/scaffold assembling CD3ɛ, Gαq/11 and PLCβ3 into a complex that activates PLCβ3. PLCβ3 catalyzes IP3 production in T-ALL as opposed to PLCγ1 in normal T-cells. Up-regulation of ORP4L thus results in a switch in the enzyme responsible for IP3-induced endoplasmic reticulum Ca2+ release and oxidative phosphorylation. ORP4L knockdown results in suboptimal bioenergetics, cell death and abrogation of T-ALL engraftment in vivo. In summary, we uncovered a signalling pathway operating specifically in T-ALL cells in which ORP4L mediates G protein-coupled ligand-induced PLCβ3 activation, resulting in an increase of mitochondrial respiration for cell survival. Targeting ORP4L might represent a promising approach for T-ALL treatment. PMID:27581363

  10. Segmentation of White Blood Cell from Acute Lymphoblastic Leukemia Images Using Dual-Threshold Method

    PubMed Central

    Cao, Yihui; Yao, Di

    2016-01-01

    We propose a dual-threshold method based on a strategic combination of RGB and HSV color space for white blood cell (WBC) segmentation. The proposed method consists of three main parts: preprocessing, threshold segmentation, and postprocessing. In the preprocessing part, we get two images for further processing: one contrast-stretched gray image and one H component image from transformed HSV color space. In the threshold segmentation part, a dual-threshold method is proposed for improving the conventional single-threshold approaches and a golden section search method is used for determining the optimal thresholds. For the postprocessing part, mathematical morphology and median filtering are utilized to denoise and remove incomplete WBCs. The proposed method was tested in segmenting the lymphoblasts on a public Acute Lymphoblastic Leukemia (ALL) image dataset. The results show that the performance of the proposed method is better than single-threshold approach independently performed in RGB and HSV color space and the overall single WBC segmentation accuracy reaches 97.85%, showing a good prospect in subsequent lymphoblast classification and ALL diagnosis. PMID:27313659

  11. The biogenesis of the MHC class II compartment in human I-cell disease B lymphoblasts

    PubMed Central

    1996-01-01

    The localization and intracellular transport of major histocompatibility complex (MHC) class II molecules nd lysosomal hydrolases were studied in I-Cell Disease (ICD) B lymphoblasts, which possess a mannose 6-phosphate (Man-6-P)-independent targeting pathway for lysosomal enzymes. In the trans-Golgi network (TGN), MHC class II- invariant chain complexes colocalized with the lysosomal hydrolase cathepsin D in buds and vesicles that lacked markers of clathrin-coated vesicle-mediated transport. These vesicles fused with the endocytic pathway leading to the formation of "early" MHC class II-rich compartments (MIICs). Similar structures were observed in the TGN of normal beta lymphoblasts although they were less abundant. Metabolic labeling and subcellular fractionation experiments indicated that newly synthesized cathepsin D and MHC class II-invariant chain complexes enter a non-clathrin-coated vesicular structure after their passage through the TGN and segregation from the secretory pathway. These vesicles were also devoid of the cation-dependent mannose 6-phosphate (Man-6-P) receptor, a marker of early and late endosomes. These findings suggest that in ICD B lymphoblasts the majority of MHC class II molecules are transported directly from the TGN to "early" MIICs and that acid hydrolases cam be incorporated into MIICs simultaneously by a Man-6-P-independant process. PMID:8603911

  12. Establishment of the DU.528 human lymphohemopoietic stem cell line

    PubMed Central

    1985-01-01

    We have established the DU.528 cell line from the pretreatment leukemia cells of a patient who underwent a T lymphoblastic-to-promyelocytic phenotype conversion during treatment with the adenosine deaminase inhibitor, deoxycoformycin. The cell line and clones obtained from it by limiting dilution have the same karyotype previously found in the patient's pretreatment T lymphoblasts and post-deoxycoformycin treatment promyelocytes. DU.528 cells in continuous culture for greater than 2 yr display a predominant undifferentiated T lymphoblastoid phenotype. These cells spontaneously generate progeny of at least three lineages, T lymphoid, granulocytic/monocytic, and erythroid. The surface marker most consistently expressed by DU.528 cells in the undifferentiated state is the 3A1 antigen, which has been found on prothymocytes in the embryonic thymus. Some undifferentiated DU.528 cells also expressed the IL-2 receptor, but no other T cell differentiation antigens. Exposure of DU.528 cells to a variety of agents induced myeloid maturation; adenosine and deoxyadenosine, in the presence of deoxycoformycin, induced expression of myeloid differentiation antigens. Our results suggest that DU.528 is a lymphohematopoietic stem cell line and support the hypothesis that differentiation of pluripotent stem cells may be altered by genetic deficiency of adenosine deaminase. DU.528 cells may provide a useful model for examining factors that regulate stem cell proliferation and differentiation. PMID:4056659

  13. Abnormal Cell Properties and Down-Regulated FAK-Src Complex Signaling in B Lymphoblasts of Autistic Subjects

    PubMed Central

    Wei, Hongen; Malik, Mazhar; Sheikh, Ashfaq M.; Merz, George; Ted Brown, W.; Li, Xiaohong

    2011-01-01

    Recent studies suggest that one of the major pathways to the pathogenesis of autism is reduced cell migration. Focal adhesion kinase (FAK) has an important role in neural migration, dendritic morphological characteristics, axonal branching, and synapse formation. The FAK-Src complex, activated by upstream reelin and integrin β1, can initiate a cascade of phosphorylation events to trigger multiple intracellular pathways, including mitogen-activated protein kinase–extracellular signal–regulated kinase and phosphatidylinositol 3-kinase–Akt signaling. In this study, by using B lymphoblasts as a model, we tested whether integrin β1 and FAK-Src signaling are abnormally regulated in autism and whether abnormal FAK-Src signaling leads to defects in B-lymphoblast adhesion, migration, proliferation, and IgG production. To our knowledge, for the first time, we show that protein expression levels of both integrin β1 and FAK are significantly decreased in autistic lymphoblasts and that Src protein expression and the phosphorylation of an active site (Y416) are also significantly decreased. We also found that lymphoblasts from autistic subjects exhibit significantly decreased migration, increased adhesion properties, and an impaired capacity for IgG production. The overexpression of FAK in autistic lymphoblasts countered the adhesion and migration defects. In addition, we demonstrate that FAK mediates its effect through the activation of Src, phosphatidylinositol 3-kinase–Akt, and mitogen-activated protein kinase signaling cascades and that paxillin is also likely involved in the regulation of adhesion and migration in autistic lymphoblasts. PMID:21703394

  14. The poison oligonucleotide F10 is highly effective against acute lymphoblastic leukemia while sparing normal hematopoietic cells.

    PubMed

    Pardee, Timothy S; Stadelman, Kristin; Jennings-Gee, Jamie; Caudell, David L; Gmeiner, William H

    2014-06-30

    F10 is an oligonucleotide based on the thymidylate synthase (TS) inhibitory 5-fluorouracil (5-FU) metabolite, 5-fluoro-2'-deoxyuridine-5'-O-monophosphate. We sought to determine the activity of F10 against preclinical models of acute lymphoblastic leukemia (ALL). F10 treatment resulted in robust induction of apoptosis that could not be equaled by 100 fold more 5-FU. F10 was more potent than Ara-C and doxorubicin against a panel of murine and human ALL cells with an average IC50 value of 1.48 nM (range 0.07 to 5.4 nM). F10 was more than 1000 times more potent than 5-FU. In vivo, F10 treatment significantly increased survival in 2 separate syngeneic ALL mouse models and 3 separate xenograft models. F10 also protected mice from leukemia-induced weight loss. In ALL cells made resistant to Ara-C, F10 remained highly active in vitro and in vivo. Using labeled F10, uptake by the ALL cell lines DG75 and SUP-B15 was rapid and profoundly temperature-dependent. Both cell lines demonstrated increased uptake compared to normal murine lineage- depleted marrow cells. Consistent with this decreased uptake, F10 treatment did not alter the ability of human hematopoietic stem cells to engraft in immunodeficient mice.

  15. The poison oligonucleotide F10 is highly effective against acute lymphoblastic leukemia while sparing normal hematopoietic cells

    PubMed Central

    Pardee, Timothy S.; Stadelman, Kristin; Jennings-Gee, Jamie; Caudell, David L.; Gmeiner, William H.

    2014-01-01

    F10 is an oligonucleotide based on the thymidylate synthase (TS) inhibitory 5-fluorouracil (5-FU) metabolite, 5-fluoro-2'-deoxyuridine-5'-O-monophosphate. We sought to determine the activity of F10 against preclinical models of acute lymphoblastic leukemia (ALL). F10 treatment resulted in robust induction of apoptosis that could not be equaled by 100 fold more 5-FU. F10 was more potent than Ara-C and doxorubicin against a panel of murine and human ALL cells with an average IC50 value of 1.48 nM (range 0.07 to 5.4 nM). F10 was more than 1000 times more potent than 5-FU. In vivo, F10 treatment significantly increased survival in 2 separate syngeneic ALL mouse models and 3 separate xenograft models. F10 also protected mice from leukemia-induced weight loss. In ALL cells made resistant to Ara-C, F10 remained highly active in vitro and in vivo. Using labeled F10, uptake by the ALL cell lines DG75 and SUP-B15 was rapid and profoundly temperature-dependent. Both cell lines demonstrated increased uptake compared to normal murine lineage- depleted marrow cells. Consistent with this decreased uptake, F10 treatment did not alter the ability of human hematopoietic stem cells to engraft in immunodeficient mice. PMID:24961587

  16. Anti-leukaemic activity of the TYK2 selective inhibitor NDI-031301 in T-cell acute lymphoblastic leukaemia.

    PubMed

    Akahane, Koshi; Li, Zhaodong; Etchin, Julia; Berezovskaya, Alla; Gjini, Evisa; Masse, Craig E; Miao, Wenyan; Rocnik, Jennifer; Kapeller, Rosana; Greenwood, Jeremy R; Tiv, Hong; Sanda, Takaomi; Weinstock, David M; Look, A Thomas

    2017-04-01

    Activation of tyrosine kinase 2 (TYK2) contributes to the aberrant survival of T-cell acute lymphoblastic leukaemia (T-ALL) cells. Here we demonstrate the anti-leukaemic activity of a novel TYK2 inhibitor, NDI-031301. NDI-031301 is a potent and selective inhibitor of TYK2 that induced robust growth inhibition of human T-ALL cell lines. NDI-031301 treatment of human T-ALL cell lines resulted in induction of apoptosis that was not observed with the JAK inhibitors tofacitinib and baricitinib. Further investigation revealed that NDI-031301 treatment uniquely leads to activation of three mitogen-activated protein kinases (MAPKs), resulting in phosphorylation of ERK, SAPK/JNK and p38 MAPK coincident with PARP cleavage. Activation of p38 MAPK occurred within 1 h of NDI-031301 treatment and was responsible for NDI-031301-induced T-ALL cell death, as pharmacological inhibition of p38 MAPK partially rescued apoptosis induced by TYK2 inhibitor. Finally, daily oral administration of NDI-031301 at 100 mg/kg bid to immunodeficient mice engrafted with KOPT-K1 T-ALL cells was well tolerated, and led to decreased tumour burden and a significant survival benefit. These results support selective inhibition of TYK2 as a promising potential therapeutic strategy for T-ALL.

  17. Cytokine Release Syndrome After Chimeric Antigen Receptor T Cell Therapy for Acute Lymphoblastic Leukemia.

    PubMed

    Fitzgerald, Julie C; Weiss, Scott L; Maude, Shannon L; Barrett, David M; Lacey, Simon F; Melenhorst, J Joseph; Shaw, Pamela; Berg, Robert A; June, Carl H; Porter, David L; Frey, Noelle V; Grupp, Stephan A; Teachey, David T

    2017-02-01

    Initial success with chimeric antigen receptor-modified T cell therapy for relapsed/refractory acute lymphoblastic leukemia is leading to expanded use through multicenter trials. Cytokine release syndrome, the most severe toxicity, presents a novel critical illness syndrome with limited data regarding diagnosis, prognosis, and therapy. We sought to characterize the timing, severity, and intensive care management of cytokine release syndrome after chimeric antigen receptor-modified T cell therapy. Retrospective cohort study. Academic children's hospital. Thirty-nine subjects with relapsed/refractory acute lymphoblastic leukemia treated with chimeric antigen receptor-modified T cell therapy on a phase I/IIa clinical trial (ClinicalTrials.gov number NCT01626495). All subjects received chimeric antigen receptor-modified T cell therapy. Thirteen subjects with cardiovascular dysfunction were treated with the interleukin-6 receptor antibody tocilizumab. Eighteen subjects (46%) developed grade 3-4 cytokine release syndrome, with prolonged fever (median, 6.5 d), hyperferritinemia (median peak ferritin, 60,214 ng/mL), and organ dysfunction. Fourteen (36%) developed cardiovascular dysfunction treated with vasoactive infusions a median of 5 days after T cell therapy. Six (15%) developed acute respiratory failure treated with invasive mechanical ventilation a median of 6 days after T cell therapy; five met criteria for acute respiratory distress syndrome. Encephalopathy, hepatic, and renal dysfunction manifested later than cardiovascular and respiratory dysfunction. Subjects had a median of 15 organ dysfunction days (interquartile range, 8-20). Treatment with tocilizumab in 13 subjects resulted in rapid defervescence (median, 4 hr) and clinical improvement. Grade 3-4 cytokine release syndrome occurred in 46% of patients following T cell therapy for relapsed/refractory acute lymphoblastic leukemia. Clinicians should be aware of expanding use of this breakthrough therapy and

  18. Non-myeloablative conditioning with allogeneic hematopoietic cell transplantation for the treatment of high-risk acute lymphoblastic leukemia

    PubMed Central

    Ram, Ron; Storb, Rainer; Sandmaier, Brenda M.; Maloney, David G.; Woolfrey, Ann; Flowers, Mary E. D.; Maris, Michael B.; Laport, Ginna G.; Chauncey, Thomas R.; Lange, Thoralf; Langston, Amelia A.; Storer, Barry; Georges, George E.

    2011-01-01

    Background Allogeneic hematopoietic cell transplantation is a potentially curative treatment for patients with acute lymphoblastic leukemia. However, the majority of older adults with acute lymphoblastic leukemia are not candidates for myeloablative conditioning regimens. A non-myeloablative preparative regimen is a reasonable treatment option for this group. We sought to determine the outcome of non-myeloablative conditioning and allogeneic transplantation in patients with high-risk acute lymphoblastic leukemia. Design and Methods Fifty-one patients (median age 56 years) underwent allogeneic hematopoietic cell transplantation from sibling or unrelated donors after fludarabine and 2 Gray total body irradiation. Twenty-five patients had Philadelphia chromosome-positive acute lymphoblastic leukemia. Eighteen of these patients received post-grafting imatinib. Results With a median follow-up of 43 months, the 3-year overall survival was 34%. The 3-year relapse/progression and non-relapse mortality rates were 40% and 28%, respectively. The cumulative incidences of grades II and III-IV acute graft-versus-host disease were 53% and 6%, respectively. The cumulative incidence of chronic graft-versus-host disease was 44%. Hematopoietic cell transplantation in first complete remission and post-grafting imatinib were associated with improved survival (P=0.005 and P=0.03, respectively). Three-year overall survival rates for patients with Philadelphia-negative acute lymphoblastic leukemia in first remission and beyond first remission were 52% and 8%, respectively. For patients with Philadelphia chromosome-positive acute lymphoblastic leukemia in first remission who received post-grafting imatinib, the 3-year overall survival rate was 62%; for the subgroup without evidence of minimal residual disease at transplantation, the overall survival was 73%. Conclusions For patients with high-risk acute lymphoblastic leukemia in first complete remission, non-myeloablative conditioning and

  19. 3,3′-Diindolylmethane Induces G1 Arrest and Apoptosis in Human Acute T-Cell Lymphoblastic Leukemia Cells

    PubMed Central

    Shorey, Lyndsey E.; Hagman, Amanda M.; Williams, David E.; Ho, Emily; Dashwood, Roderick H.; Benninghoff, Abby D.

    2012-01-01

    Certain bioactive food components, including indole-3-carbinol (I3C) and 3,3′-diindolylmethane (DIM) from cruciferous vegetables, have been shown to target cellular pathways regulating carcinogenesis. Previously, our laboratory showed that dietary I3C is an effective transplacental chemopreventive agent in a dibenzo[def,p]chrysene (DBC)-dependent model of murine T-cell lymphoblastic lymphoma. The primary objective of the present study was to extend our chemoprevention studies in mice to an analogous human neoplasm in cell culture. Therefore, we tested the hypothesis that I3C or DIM may be chemotherapeutic in human T-cell acute lymphoblastic leukemia (T-ALL) cells. Treatment of the T-ALL cell lines CCRF-CEM, CCRF-HSB2, SUP-T1 and Jurkat with DIM in vitro significantly reduced cell proliferation and viability at concentrations 8- to 25-fold lower than the parent compound I3C. DIM (7.5 µM) arrested CEM and HSB2 cells at the G1 phase of the cell cycle and 15 µM DIM significantly increased the percentage of apoptotic cells in all T-ALL lines. In CEM cells, DIM reduced protein expression of cyclin dependent kinases 4 and 6 (CDK4, CDK6) and D-type cyclin 3 (CCND3); DIM also significantly altered expression of eight transcripts related to human apoptosis (BCL2L10, CD40LG, HRK, TNF, TNFRSF1A, TNFRSF25, TNFSF8, TRAF4). Similar anticancer effects of DIM were observed in vivo. Dietary exposure to 100 ppm DIM significantly decreased the rate of growth of human CEM xenografts in immunodeficient SCID mice, reduced final tumor size by 44% and increased the apoptotic index compared to control-fed mice. Taken together, our results demonstrate a potential for therapeutic application of DIM in T-ALL. PMID:22514694

  20. B-cell precursor acute lymphoblastic leukemia and stromal cells communicate through Galectin-3

    PubMed Central

    Fei, Fei; Joo, Eun Ji; Tarighat, Somayeh S.; Schiffer, Isabelle; Paz, Helicia; Fabbri, Muller; Abdel-Azim, Hisham; Groffen, John; Heisterkamp, Nora

    2015-01-01

    The molecular interactions between B-cell precursor acute lymphoblastic leukemia (pre-B ALL) cells and stromal cells in the bone marrow that provide microenvironmentally-mediated protection against therapeutic drugs are not well-defined. Galectin-3 (Lgals3) is a multifunctional galactose-binding lectin with reported location in the nucleus, cytoplasm and extracellular space in different cell types. We previously reported that ALL cells co-cultured with stroma contain high levels of Galectin-3. We here establish that, in contrast to more mature B-lineage cancers, Galectin-3 detected in and on the ALL cells originates from stromal cells, which express it on their surface, secrete it as soluble protein and also in exosomes. Soluble and stromal-bound Galectin-3 is internalized by ALL cells, transported to the nucleus and stimulates transcription of endogenous LGALS3 mRNA. When human and mouse ALL cells develop tolerance to different drugs while in contact with protective stromal cells, Galectin-3 protein levels are consistently increased. This correlates with induction of Galectin-3 transcription in the ALL cells. Thus Galectin-3 sourced from stroma becomes supplemented by endogenous Galectin-3 production in the pre-B ALL cells that are under continuous stress from drug treatment. Our data suggest that stromal Galectin-3 may protect ALL cells through auto-induction of Galectin-3 mRNA and tonic NFκB pathway activation. Since endogenously synthesized Galectin-3 protects pre-B ALL cells against drug treatment, we identify Galectin-3 as one possible target to counteract the protective effects of stroma. PMID:25869099

  1. Gene expression profiling of precursor T-cell lymphoblastic leukemia/lymphoma identifies oncogenic pathways that are potential therapeutic targets

    PubMed Central

    Lin, Ying-Wei; Aplan, Peter D.

    2007-01-01

    We compared the gene expression pattern of thymic tumors from precursor T-cell lymphoblastic lymphoma/leukemia (pre-T LBL) that arose in transgenic mice which over-expressed SCL, LMO1, or NUP98-HOXD13 (NHD13) with that of thymocytes from normal littermates. Only two genes, Ccl8 and Mrpl38, were consistently more than 4-fold over-expressed in pre-T LBL from all three genotypes analyzed, and a single gene, Prss16 was consistently under-expressed. However, we identified a number of genes, such as Cfl1, Tcra, Tcrb, Pbx3, Eif4a, Eif4b, and Cox8b that were over or under-expressed in pre-T LBL that arose in specific transgenic lines. Similar to the situation seen with human pre-T LBL, the SCL/LMO1 leukemias displayed an expression profile consistent with mature, late cortical thymocytes, whereas the NHD13 leukemias displayed an expression profile more consistent with immature thymocytes. We evaluated two of the most differentially regulated genes as potential therapeutic targets. Cfl1 was specifically over-expressed in SCL-LMO1 tumors; inactivation of Cfl1 using Okadaic acid resulted in suppression of leukemic cell growth. Overexpression of Ccl8 was a consistent finding in all 3 transgenic lines, and an antagonist for the Ccl8 receptor induced death of leukemic cell lines, suggesting a novel therapeutic approach. PMID:17429429

  2. Deregulated FADD expression and phosphorylation in T-cell lymphoblastic lymphoma

    PubMed Central

    Marín-Rubio, José L.; de Arriba, María C.; Cobos-Fernández, María A.; González-Sánchez, Laura; Ors, Inmaculada; Sastre, Isabel; Fernández-Piqueras, José; Villa-Morales, María

    2016-01-01

    In the present work, we show that T-cell lymphoblastic lymphoma cells exhibit a reduction of FADD availability in the cytoplasm, which may contribute to impaired apoptosis. In addition, we observe a reduction of FADD phosphorylation that inversely correlates with the proliferation capacity and tumor aggressiveness. The resultant balance between FADD-dependent apoptotic and non-apoptotic abilities may define the outcome of the tumor. Thus, we propose that FADD expression and phosphorylation can be reliable biomarkers with prognostic value for T-LBL stratification. PMID:27556297

  3. Late-developing Philadelphia chromosomes in a case of T-cell acute lymphoblastic leukemia.

    PubMed

    Coad, J E; Arthur, D C; Gajl-Peczalska, K J; Litz, C E

    1994-05-01

    A child with T-cell acute lymphoblastic leukemia (ALL) is presented who at relapse acquired two Philadelphia chromosomes (Ph). Molecular studies at relapse revealed a rearrangement of the major breakpoint cluster region (M-bcr) on chromosome 22. No rearrangements of the immunoglobulin heavy chain or T-cell beta receptor gene loci were demonstrated. This case supports the hypothesis that leukemogenesis in Ph-positive malignancies is a multi-step process, the first step of which may not necessarily involve acquisition of the Ph.

  4. Curcumin potentiates the effect of chemotherapy against acute lymphoblastic leukemia cells via downregulation of NF-κB

    PubMed Central

    Pimentel-Gutiérrez, Helia Judith; Bobadilla-Morales, Lucina; Barba-Barba, César Cenobio; Ortega-De-La-Torre, Citlalli; Sánchez-Zubieta, Fernando Antonio; Corona-Rivera, Jorge Román; González-Quezada, Betsy Annel; Armendáriz-Borunda, Juan S.; Silva-Cruz, Rocío; Corona-Rivera, Alfredo

    2016-01-01

    Acute lymphoblastic leukemia (ALL) accounts for 30% of all pediatric cancers. Currently available treatments exhibit toxicity and certain patients may develop resistance. Thus, less toxic and chemoresistance-reversal agents are required. In the present study, the potential effect of curcumin, a component of Curcuma longa, as a pharmacological co-adjuvant of several chemotherapeutic agents against ALL, including prednisone, 6-mercaptopurine, dexamethasone, cyclophosphamide, l-asparaginase, vincristine, daunorubicin, doxorubicin, methotrexate and cytarabine, was investigated in the REH ALL cell line cultures treated in combination with chemotherapeutic agents and curcumin. The results of cell viability, gene expression and activation of NF-κB and caspase 3 indicated that curcumin potentiates the anticancer effects of the aforementioned chemotherapeutic agents in the REH ALL cell line. Following treatment with the above chemotherapeutic agents, curcumin enhanced caspase-3 activation and downregulated nuclear factor-kappa B (NF-κB) activation. Curcumin also downregulated the oxidative stress induced by certain chemotherapies. Notably, curcumin did not affect the gene expression of cell survival proteins such as B-cell lymphoma (Bcl)-2, Bcl-extra large, survivin, c-Myc and cyclin D1, which are regulated by the NF-κB transcription factor. In conclusion, curcumin has the potential to improve the effect of chemotherapeutic agents against ALL. PMID:27895780

  5. c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma.

    PubMed

    Weng, Andrew P; Millholland, John M; Yashiro-Ohtani, Yumi; Arcangeli, Marie Laure; Lau, Arthur; Wai, Carol; Del Bianco, Cristina; Rodriguez, Carlos G; Sai, Hong; Tobias, John; Li, Yueming; Wolfe, Michael S; Shachaf, Cathy; Felsher, Dean; Blacklow, Stephen C; Pear, Warren S; Aster, Jon C

    2006-08-01

    Human acute T-cell lymphoblastic leukemias and lymphomas (T-ALL) are commonly associated with gain-of-function mutations in Notch1 that contribute to T-ALL induction and maintenance. Starting from an expression-profiling screen, we identified c-myc as a direct target of Notch1 in Notch-dependent T-ALL cell lines, in which Notch accounts for the majority of c-myc expression. In functional assays, inhibitors of c-myc interfere with the progrowth effects of activated Notch1, and enforced expression of c-myc rescues multiple Notch1-dependent T-ALL cell lines from Notch withdrawal. The existence of a Notch1-c-myc signaling axis was bolstered further by experiments using c-myc-dependent murine T-ALL cells, which are rescued from withdrawal of c-myc by retroviral transduction of activated Notch1. This Notch1-mediated rescue is associated with the up-regulation of endogenous murine c-myc and its downstream transcriptional targets, and the acquisition of sensitivity to Notch pathway inhibitors. Additionally, we show that primary murine thymocytes at the DN3 stage of development depend on ligand-induced Notch signaling to maintain c-myc expression. Together, these data implicate c-myc as a developmentally regulated direct downstream target of Notch1 that contributes to the growth of T-ALL cells.

  6. Cell line provenance.

    PubMed

    Freshney, R Ian

    2002-07-01

    Cultured cell lines have become an extremely valuable resource, both in academic research and in industrial biotechnology. However, their value is frequently compromised by misidentification and undetected microbial contamination. As detailed elsewhere in this volume, the technology, both simple and sophisticated, is available to remedy the problems of misidentification and contamination, given the will to apply it. Combined with proper records of the origin and history of the cell line, assays for authentication and contamination contribute to the provenance of the cell line. Detailed records should start from the initiation or receipt of the cell line, and should incorporate data on the donor as well as the tissue from which the cell line was derived, should continue with details of maintenance, and include any accidental as well as deliberate deviations from normal maintenance. Records should also contain details of authentication and regular checks for contamination. With this information, preferably stored in a database, and suitable backed up, the provenance of the cell line so created makes the cell line a much more valuable resource, fit for validation in industrial applications and more likely to provide reproducible experimental results when disseminated for research in other laboratories.

  7. Targeting BET proteins improves the therapeutic efficacy of BCL-2 inhibition in T-cell acute lymphoblastic leukemia.

    PubMed

    Peirs, S; Frismantas, V; Matthijssens, F; Van Loocke, W; Pieters, T; Vandamme, N; Lintermans, B; Dobay, M P; Berx, G; Poppe, B; Goossens, S; Bornhauser, B C; Bourquin, J-P; Van Vlierberghe, P

    2017-02-03

    Inhibition of anti-apoptotic BCL-2 (B-cell lymphoma 2) has recently emerged as a promising new therapeutic strategy for the treatment of a variety of human cancers, including leukemia. Here, we used T-cell acute lymphoblastic leukemia (T-ALL) as a model system to identify novel synergistic drug combinations with the BH3 mimetic venetoclax (ABT-199). In vitro drug screening in primary leukemia specimens that were derived from patients with high risk of relapse or relapse and cell lines revealed synergistic activity between venetoclax and the BET (bromodomain and extraterminal) bromodomain inhibitor JQ1. Notably, this drug synergism was confirmed in vivo using T-ALL cell line and patient-derived xenograft models. Moreover, the therapeutic benefit of this drug combination might, at least in part, be mediated by an acute induction of the pro-apoptotic factor BCL2L11 and concomitant reduction of BCL-2 upon BET bromodomain inhibition, ultimately resulting in an enhanced binding of BIM (encoded by BCL2L11) to BCL-2. Altogether, our work provides a rationale to develop a new type of targeted combination therapy for selected subgroups of high-risk leukemia patients.Leukemia advance online publication, 3 February 2017; doi:10.1038/leu.2017.10.

  8. Activation of the LMO2 oncogene through a somatically acquired neomorphic promoter in T-cell acute lymphoblastic leukemia.

    PubMed

    Rahman, Sunniyat; Magnussen, Michael; León, Theresa E; Farah, Nadine; Li, Zhaodong; Abraham, Brian J; Alapi, Krisztina Z; Mitchell, Rachel J; Naughton, Tom; Fielding, Adele K; Pizzey, Arnold; Bustraan, Sophia; Allen, Christopher; Popa, Teodora; Pike-Overzet, Karin; Garcia-Perez, Laura; Gale, Rosemary E; Linch, David C; Staal, Frank J T; Young, Richard A; Look, A Thomas; Mansour, Marc R

    2017-03-07

    Somatic mutations within non-coding genomic regions that aberrantly activate oncogenes have remained poorly characterized. Here we describe recurrent activating intronic mutations of LMO2, a prominent oncogene in T-cell acute lymphoblastic leukemia (T-ALL). Heterozygous mutations were identified in PF-382 and DU.528 T-ALL cell lines, in addition to 3.7% (6/160) of pediatric and 5.5% (9/163) of adult T-ALL patient samples. The majority of indels harbour putative de novo MYB, ETS1 or RUNX1 consensus binding sites. Analysis of 5'-capped RNA transcripts in mutant cell lines identified the usage of an intermediate promoter site, with consequential monoallelic LMO2 overexpression. CRISPR/Cas9-mediated disruption of the mutant allele in PF-382 cells markedly downregulated LMO2 expression, establishing clear causality between the mutation and oncogene dysregulation. Furthermore, the spectrum of CRISPR/Cas9-derived mutations provide important insights into the interconnected contributions of functional transcription factor binding. Finally, these mutations occur in the same intron as retroviral integration sites in gene therapy induced T-ALL, suggesting that such events occur at preferential sites in the non-coding genome.

  9. Repetitive genomic elements and overall DNA methylation changes in acute myeloid and childhood B-cell lymphoblastic leukemia patients.

    PubMed

    Bujko, Mateusz; Musialik, Ewa; Olbromski, Rafał; Przestrzelska, Marta; Libura, Marta; Pastwińska, Anna; Juszczyński, Przemysław; Zwierzchowski, Lech; Baranowski, Paweł; Siedlecki, Janusz Aleksander

    2014-07-01

    Aberrant epigenetic regulation is a hallmark of neoplastic cells. Increased DNA methylation of individual genes' promoter regions and decreases in overall DNA methylation level are both generally observed in cancer. In solid tumors, this global DNA hypomethylation is related to reduced methylation of repeated DNA elements (REs) and contributes to genome instability. The aim of the present study was to assess methylation level of LINE-1 and ALU REs and total 5-methylcytosine (5metC) content in adult acute myeloid leukemia (AML) (n = 58), childhood B-cell acute lymphoblastic leukemia (ALL) (n = 32), as the most frequent acute leukemias in two age categories and in normal adult bone marrow and children's blood samples. DNA pyrosequencing and ELISA assays were used, respectively. Global DNA hypomethylation was not observed in leukemia patients. Results revealed higher DNA methylation of LINE-1 in AML and ALL samples compared to corresponding normal controls. Elevated methylation of ALU and overall 5metC level were also observed in B-cell ALL patients. Differences of REs and global DNA methylation between AML cytogenetic-risk groups were observed, with the lowest methylation levels in intermediate-risk/cytogenetically normal patients. B-cell ALL is characterized by the highest DNA methylation level compared to AML and controls and overall DNA methylation is correlated with leukocyte count.

  10. Evidence for deterministic chaos in aperiodic oscillations of acute lymphoblastic leukemia cells in long-term culture

    NASA Astrophysics Data System (ADS)

    Lambrou, George I.; Chatziioannou, Aristotelis; Vlahopoulos, Spiros; Moschovi, Maria; Chrousos, George P.

    Biological systems are dynamic and possess properties that depend on two key elements: initial conditions and the response of the system over time. Conceptualizing this on tumor models will influence conclusions drawn with regard to disease initiation and progression. Alterations in initial conditions dynamically reshape the properties of proliferating tumor cells. The present work aims to test the hypothesis of Wolfrom et al., that proliferation shows evidence for deterministic chaos in a manner such that subtle differences in the initial conditions give rise to non-linear response behavior of the system. Their hypothesis, tested on adherent Fao rat hepatoma cells, provides evidence that these cells manifest aperiodic oscillations in their proliferation rate. We have tested this hypothesis with some modifications to the proposed experimental setup. We have used the acute lymphoblastic leukemia cell line CCRF-CEM, as it provides an excellent substrate for modeling proliferation dynamics. Measurements were taken at time points varying from 24h to 48h, extending the assayed populations beyond that of previous published reports that dealt with the complex dynamic behavior of animal cell populations. We conducted flow cytometry studies to examine the apoptotic and necrotic rate of the system, as well as DNA content changes of the cells over time. The cells exhibited a proliferation rate of nonlinear nature, as this rate presented oscillatory behavior. The obtained data have been fit in known models of growth, such as logistic and Gompertzian growth.

  11. Clonal analysis of childhood acute lymphoblastic leukemia with "cytogenetically independent" cell populations.

    PubMed Central

    Pui, C H; Raskind, W H; Kitchingman, G R; Raimondi, S C; Behm, F G; Murphy, S B; Crist, W M; Fialkow, P J; Williams, D L

    1989-01-01

    Acute lymphoblastic leukemia (ALL) is generally regarded as a clonal disease in which a single abnormal progenitor cell gives rise to neoplastic progeny. Five of 463 cases of childhood ALL with adequately banded leukemic cells were found to have two cytogenetically independent cell populations. In addition, two of the four cases tested had more than two rearranged immunoglobulin genes and (or) T cell receptor genes. To investigate the clonality of these unusual leukemias, we examined the neoplastic cells for X-linked markers extrinsic to the disease. Leukemic cells from each of the three patients heterozygous for an X-linked, restriction fragment length polymorphism showed a single active parental allele, suggesting that both apparently independent cell populations developed from a common progenitor. These cases provide evidence that leukemogenesis involves a multistep process of mutation and suggest that karyotypic abnormalities may be a late event of malignant transformation. Images PMID:2566623

  12. Deletions of the long arm of chromosome 5 define subgroups of T-cell acute lymphoblastic leukemia.

    PubMed

    La Starza, Roberta; Barba, Gianluca; Demeyer, Sofie; Pierini, Valentina; Di Giacomo, Danika; Gianfelici, Valentina; Schwab, Claire; Matteucci, Caterina; Vicente, Carmen; Cools, Jan; Messina, Monica; Crescenzi, Barbara; Chiaretti, Sabina; Foà, Robin; Basso, Giuseppe; Harrison, Christine J; Mecucci, Cristina

    2016-08-01

    Recurrent deletions of the long arm of chromosome 5 were detected in 23/200 cases of T-cell acute lymphoblastic leukemia. Genomic studies identified two types of deletions: interstitial and terminal. Interstitial 5q deletions, found in five cases, were present in both adults and children with a female predominance (chi-square, P=0.012). Interestingly, these cases resembled immature/early T-cell precursor acute lymphoblastic leukemia showing significant down-regulation of five out of the ten top differentially expressed genes in this leukemia group, including TCF7 which maps within the 5q31 common deleted region. Mutations of genes known to be associated with immature/early T-cell precursor acute lymphoblastic leukemia, i.e. WT1, ETV6, JAK1, JAK3, and RUNX1, were present, while CDKN2A/B deletions/mutations were never detected. All patients had relapsed/resistant disease and blasts showed an early differentiation arrest with expression of myeloid markers. Terminal 5q deletions, found in 18 of patients, were more prevalent in adults (chi-square, P=0.010) and defined a subgroup of HOXA-positive T-cell acute lymphoblastic leukemia characterized by 130 up- and 197 down-regulated genes. Down-regulated genes included TRIM41, ZFP62, MAPK9, MGAT1, and CNOT6, all mapping within the 1.4 Mb common deleted region at 5q35.3. Of interest, besides CNOT6 down-regulation, these cases also showed low BTG1 expression and a high incidence of CNOT3 mutations, suggesting that the CCR4-NOT complex plays a crucial role in the pathogenesis of HOXA-positive T-cell acute lymphoblastic leukemia with terminal 5q deletions. In conclusion, interstitial and terminal 5q deletions are recurrent genomic losses identifying distinct subtypes of T-cell acute lymphoblastic leukemia. Copyright© Ferrata Storti Foundation.

  13. Deletions of the long arm of chromosome 5 define subgroups of T-cell acute lymphoblastic leukemia

    PubMed Central

    La Starza, Roberta; Barba, Gianluca; Demeyer, Sofie; Pierini, Valentina; Di Giacomo, Danika; Gianfelici, Valentina; Schwab, Claire; Matteucci, Caterina; Vicente, Carmen; Cools, Jan; Messina, Monica; Crescenzi, Barbara; Chiaretti, Sabina; Foà, Robin; Basso, Giuseppe; Harrison, Christine J.; Mecucci, Cristina

    2016-01-01

    Recurrent deletions of the long arm of chromosome 5 were detected in 23/200 cases of T-cell acute lymphoblastic leukemia. Genomic studies identified two types of deletions: interstitial and terminal. Interstitial 5q deletions, found in five cases, were present in both adults and children with a female predominance (chi-square, P=0.012). Interestingly, these cases resembled immature/early T-cell precursor acute lymphoblastic leukemia showing significant down-regulation of five out of the ten top differentially expressed genes in this leukemia group, including TCF7 which maps within the 5q31 common deleted region. Mutations of genes known to be associated with immature/early T-cell precursor acute lymphoblastic leukemia, i.e. WT1, ETV6, JAK1, JAK3, and RUNX1, were present, while CDKN2A/B deletions/mutations were never detected. All patients had relapsed/resistant disease and blasts showed an early differentiation arrest with expression of myeloid markers. Terminal 5q deletions, found in 18 of patients, were more prevalent in adults (chi-square, P=0.010) and defined a subgroup of HOXA-positive T-cell acute lymphoblastic leukemia characterized by 130 up- and 197 down-regulated genes. Down-regulated genes included TRIM41, ZFP62, MAPK9, MGAT1, and CNOT6, all mapping within the 1.4 Mb common deleted region at 5q35.3. Of interest, besides CNOT6 down-regulation, these cases also showed low BTG1 expression and a high incidence of CNOT3 mutations, suggesting that the CCR4-NOT complex plays a crucial role in the pathogenesis of HOXA-positive T-cell acute lymphoblastic leukemia with terminal 5q deletions. In conclusion, interstitial and terminal 5q deletions are recurrent genomic losses identifying distinct subtypes of T-cell acute lymphoblastic leukemia. PMID:27151989

  14. MiR-146b negatively regulates migration and delays progression of T-cell acute lymphoblastic leukemia.

    PubMed

    Correia, Nádia C; Fragoso, Rita; Carvalho, Tânia; Enguita, Francisco J; Barata, João T

    2016-08-23

    Previous results indicated that miR-146b-5p is downregulated by TAL1, a transcription factor critical for early hematopoiesis that is frequently overexpressed in T-cell acute lymphoblastic leukemia (T-ALL) where it has an oncogenic role. Here, we confirmed that miR-146b-5p expression is lower in TAL1-positive patient samples than in other T-ALL cases. Furthermore, leukemia T-cells display decreased levels of miR-146b-5p as compared to normal T-cells, thymocytes and other hematopoietic progenitors. MiR-146b-5p silencing enhances the in vitro migration and invasion of T-ALL cells, associated with increased levels of filamentous actin and chemokinesis. In vivo, miR-146b overexpression in a TAL1-positive cell line extends mouse survival in a xenotransplant model of human T-ALL. In contrast, knockdown of miR-146b-5p results in leukemia acceleration and decreased mouse overall survival, paralleled by faster tumor infiltration of the central nervous system. Our results suggest that miR-146b-5p is a functionally relevant microRNA gene in the context of T-ALL, whose negative regulation by TAL1 and possibly other oncogenes contributes to disease progression by modulating leukemia cell motility and disease aggressiveness.

  15. MiR-146b negatively regulates migration and delays progression of T-cell acute lymphoblastic leukemia

    PubMed Central

    Correia, Nádia C.; Fragoso, Rita; Carvalho, Tânia; Enguita, Francisco J.; Barata, João T.

    2016-01-01

    Previous results indicated that miR-146b-5p is downregulated by TAL1, a transcription factor critical for early hematopoiesis that is frequently overexpressed in T-cell acute lymphoblastic leukemia (T-ALL) where it has an oncogenic role. Here, we confirmed that miR-146b-5p expression is lower in TAL1-positive patient samples than in other T-ALL cases. Furthermore, leukemia T-cells display decreased levels of miR-146b-5p as compared to normal T-cells, thymocytes and other hematopoietic progenitors. MiR-146b-5p silencing enhances the in vitro migration and invasion of T-ALL cells, associated with increased levels of filamentous actin and chemokinesis. In vivo, miR-146b overexpression in a TAL1-positive cell line extends mouse survival in a xenotransplant model of human T-ALL. In contrast, knockdown of miR-146b-5p results in leukemia acceleration and decreased mouse overall survival, paralleled by faster tumor infiltration of the central nervous system. Our results suggest that miR-146b-5p is a functionally relevant microRNA gene in the context of T-ALL, whose negative regulation by TAL1 and possibly other oncogenes contributes to disease progression by modulating leukemia cell motility and disease aggressiveness. PMID:27550837

  16. Biomarker analysis and clinical relevance of TK1 on the cell membrane of Burkitt's lymphoma and acute lymphoblastic leukemia.

    PubMed

    Weagel, Evita G; Meng, Wei; Townsend, Michelle H; Velazquez, Edwin J; Brog, Rachel A; Boyer, Michael W; Weber, K Scott; Robison, Richard A; O'Neill, Kim L

    2017-01-01

    TK1 is an enzyme involved in DNA synthesis and repair. TK1 is usually found elevated in cancer patients' serum, which makes it a useful tumor proliferation biomarker that strongly correlates with cancer stage, metastatic capabilities, and recurrence risk. In this study, we show that TK1 is upregulated and localizes on the plasma membrane of Burkitt's lymphoma, acute promyelocytic leukemia, T cell leukemia, and acute lymphoblastic leukemia (ALL). Using flow cytometry, we confirmed that TK1 localizes on the surface of Raji, HL60, and Jurkat cell lines and on ALL clinical samples. Using fluorescent microscopy, we found a strong association of TK1 with the plasma membrane in Raji, HL60, and Jurkat cell lines. These findings were also confirmed by scanning electron microscopy. Our study also shows that this phenomenon does not occur on normal resting or proliferating lymphocytes. In addition, we show that membrane TK1 is found in all oligomeric forms ranging from monomer to tetramer and exhibits enzymatic activity. These findings suggest TK1 as a possible target for immunotherapy with the potential to be utilized in the treatment of hematological cancers.

  17. A reliable Raman-spectroscopy-based approach for diagnosis, classification and follow-up of B-cell acute lymphoblastic leukemia

    NASA Astrophysics Data System (ADS)

    Managò, Stefano; Valente, Carmen; Mirabelli, Peppino; Circolo, Diego; Basile, Filomena; Corda, Daniela; de Luca, Anna Chiara

    2016-04-01

    Acute lymphoblastic leukemia type B (B-ALL) is a neoplastic disorder that shows high mortality rates due to immature lymphocyte B-cell proliferation. B-ALL diagnosis requires identification and classification of the leukemia cells. Here, we demonstrate the use of Raman spectroscopy to discriminate normal lymphocytic B-cells from three different B-leukemia transformed cell lines (i.e., RS4;11, REH, MN60 cells) based on their biochemical features. In combination with immunofluorescence and Western blotting, we show that these Raman markers reflect the relative changes in the potential biological markers from cell surface antigens, cytoplasmic proteins, and DNA content and correlate with the lymphoblastic B-cell maturation/differentiation stages. Our study demonstrates the potential of this technique for classification of B-leukemia cells into the different differentiation/maturation stages, as well as for the identification of key biochemical changes under chemotherapeutic treatments. Finally, preliminary results from clinical samples indicate high consistency of, and potential applications for, this Raman spectroscopy approach.

  18. A reliable Raman-spectroscopy-based approach for diagnosis, classification and follow-up of B-cell acute lymphoblastic leukemia

    PubMed Central

    Managò, Stefano; Valente, Carmen; Mirabelli, Peppino; Circolo, Diego; Basile, Filomena; Corda, Daniela; De Luca, Anna Chiara

    2016-01-01

    Acute lymphoblastic leukemia type B (B-ALL) is a neoplastic disorder that shows high mortality rates due to immature lymphocyte B-cell proliferation. B-ALL diagnosis requires identification and classification of the leukemia cells. Here, we demonstrate the use of Raman spectroscopy to discriminate normal lymphocytic B-cells from three different B-leukemia transformed cell lines (i.e., RS4;11, REH, MN60 cells) based on their biochemical features. In combination with immunofluorescence and Western blotting, we show that these Raman markers reflect the relative changes in the potential biological markers from cell surface antigens, cytoplasmic proteins, and DNA content and correlate with the lymphoblastic B-cell maturation/differentiation stages. Our study demonstrates the potential of this technique for classification of B-leukemia cells into the different differentiation/maturation stages, as well as for the identification of key biochemical changes under chemotherapeutic treatments. Finally, preliminary results from clinical samples indicate high consistency of, and potential applications for, this Raman spectroscopy approach. PMID:27089853

  19. Humanized CD7 nanobody-based immunotoxins exhibit promising anti-T-cell acute lymphoblastic leukemia potential

    PubMed Central

    Yu, Yuan; Li, Jialu; Zhu, Xuejun; Tang, Xiaowen; Bao, Yangyi; Sun, Xiang; Huang, Yuhui; Tian, Fang; Liu, Xiaomei; Yang, Lin

    2017-01-01

    Background Nanobodies, named as VHHs (variable domain of heavy chain of HCAb [heavy-chain antibodies]), are derived from heavy-chain-only antibodies that circulate in sera of camelids. Their exceptional physicochemical properties, possibility of humanization, and unique antigen recognition properties make them excellent candidates for targeted delivery of biologically active components, including immunotoxins. In our previous efforts, we have successfully generated the monovalent and bivalent CD7 nanobody-based immunotoxins, which can effectively trigger the apoptosis of CD7-positive malignant cells. To pursue the possibility of translating those immunotoxins into clinics, we humanized the nanobody sequences (designated as dhuVHH6) as well as further truncated the Pseudomonas exotoxin A (PE)-derived PE38 toxin to produce a more protease-resistant form, which is named as PE-LR, by deleting majority of PE domain II. Methods and results Three new types of immunotoxins, dhuVHH6-PE38, dVHH6-PE-LR, and dhuVHH6-PE-LR, were successfully constructed. These recombinant immunotoxins were expressed in Escherichia coli and showed that nanobody immunotoxins have the benefits of easy soluble expression in a prokaryotic expression system. Flow cytometry results revealed that all immunotoxins still maintained the ability to bind specifically to CD7-positive T lymphocyte strains without binding to CD7-negative control cells. Laser scanning confocal microscopy revealed that these proteins can be endocytosed into the cytoplasm after binding with CD7-positive cells and that this phenomenon was not observed in CD7-negative cells. WST-8 experiments showed that all immunotoxins retained the highly effective and specific growth inhibition activity in CD7-positive cell lines and primary T-cell acute lymphoblastic leukemia (T-ALL) cells. Further in vivo animal model experiments showed that humanized dhuVHH6-PE38 immunotoxin can tolerate higher doses and extend the survival of NOD-Prkdcem26Il

  20. 211^At-BC8-B10 Before Donor Stem Cell Transplant in Treating Patients With High-Risk Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, or Myelodysplastic Syndrome

    ClinicalTrials.gov

    2017-09-13

    Acute Lymphoblastic Leukemia in Remission; Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Acute Myeloid Leukemia in Remission; CD45-Positive Neoplastic Cells Present; Chronic Myelomonocytic Leukemia; Myelodysplastic Syndrome With Excess Blasts; Recurrent Adult Acute Myeloid Leukemia; Refractory Adult Acute Lymphoblastic Leukemia

  1. Anti-CD22-chimeric antigen receptors targeting B-cell precursor acute lymphoblastic leukemia.

    PubMed

    Haso, Waleed; Lee, Daniel W; Shah, Nirali N; Stetler-Stevenson, Maryalice; Yuan, Constance M; Pastan, Ira H; Dimitrov, Dimiter S; Morgan, Richard A; FitzGerald, David J; Barrett, David M; Wayne, Alan S; Mackall, Crystal L; Orentas, Rimas J

    2013-02-14

    Immune targeting of B-cell malignancies using chimeric antigen receptors (CARs) is a promising new approach, but critical factors impacting CAR efficacy remain unclear. To test the suitability of targeting CD22 on precursor B-cell acute lymphoblastic leukemia (BCP-ALL), lymphoblasts from 111 patients with BCP-ALL were assayed for CD22 expression and all were found to be CD22-positive, with median CD22 expression levels of 3500 sites/cell. Three distinct binding domains targeting CD22 were fused to various TCR signaling domains ± an IgG heavy chain constant domain (CH2CH3) to create a series of vector constructs suitable to delineate optimal CAR configuration. CARs derived from the m971 anti-CD22 mAb, which targets a proximal CD22 epitope demonstrated superior antileukemic activity compared with those incorporating other binding domains, and addition of a 4-1BB signaling domain to CD28.CD3 constructs diminished potency, whereas increasing affinity of the anti-CD22 binding motif, and extending the CD22 binding domain away from the membrane via CH2CH3 had no effect. We conclude that second-generation m971 mAb-derived anti-CD22 CARs are promising novel therapeutics that should be tested in BCP-ALL.

  2. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia.

    PubMed

    Zhang, Jinghui; Ding, Li; Holmfeldt, Linda; Wu, Gang; Heatley, Sue L; Payne-Turner, Debbie; Easton, John; Chen, Xiang; Wang, Jianmin; Rusch, Michael; Lu, Charles; Chen, Shann-Ching; Wei, Lei; Collins-Underwood, J Racquel; Ma, Jing; Roberts, Kathryn G; Pounds, Stanley B; Ulyanov, Anatoly; Becksfort, Jared; Gupta, Pankaj; Huether, Robert; Kriwacki, Richard W; Parker, Matthew; McGoldrick, Daniel J; Zhao, David; Alford, Daniel; Espy, Stephen; Bobba, Kiran Chand; Song, Guangchun; Pei, Deqing; Cheng, Cheng; Roberts, Stefan; Barbato, Michael I; Campana, Dario; Coustan-Smith, Elaine; Shurtleff, Sheila A; Raimondi, Susana C; Kleppe, Maria; Cools, Jan; Shimano, Kristin A; Hermiston, Michelle L; Doulatov, Sergei; Eppert, Kolja; Laurenti, Elisa; Notta, Faiyaz; Dick, John E; Basso, Giuseppe; Hunger, Stephen P; Loh, Mignon L; Devidas, Meenakshi; Wood, Brent; Winter, Stuart; Dunsmore, Kimberley P; Fulton, Robert S; Fulton, Lucinda L; Hong, Xin; Harris, Christopher C; Dooling, David J; Ochoa, Kerri; Johnson, Kimberly J; Obenauer, John C; Evans, William E; Pui, Ching-Hon; Naeve, Clayton W; Ley, Timothy J; Mardis, Elaine R; Wilson, Richard K; Downing, James R; Mullighan, Charles G

    2012-01-11

    Early T-cell precursor acute lymphoblastic leukaemia (ETP ALL) is an aggressive malignancy of unknown genetic basis. We performed whole-genome sequencing of 12 ETP ALL cases and assessed the frequency of the identified somatic mutations in 94 T-cell acute lymphoblastic leukaemia cases. ETP ALL was characterized by activating mutations in genes regulating cytokine receptor and RAS signalling (67% of cases; NRAS, KRAS, FLT3, IL7R, JAK3, JAK1, SH2B3 and BRAF), inactivating lesions disrupting haematopoietic development (58%; GATA3, ETV6, RUNX1, IKZF1 and EP300) and histone-modifying genes (48%; EZH2, EED, SUZ12, SETD2 and EP300). We also identified new targets of recurrent mutation including DNM2, ECT2L and RELN. The mutational spectrum is similar to myeloid tumours, and moreover, the global transcriptional profile of ETP ALL was similar to that of normal and myeloid leukaemia haematopoietic stem cells. These findings suggest that addition of myeloid-directed therapies might improve the poor outcome of ETP ALL.

  3. Induction of autophagy-dependent necroptosis is required for childhood acute lymphoblastic leukemia cells to overcome glucocorticoid resistance

    PubMed Central

    Bonapace, Laura; Bornhauser, Beat C.; Schmitz, Maike; Cario, Gunnar; Ziegler, Urs; Niggli, Felix K.; Schäfer, Beat W.; Schrappe, Martin; Stanulla, Martin; Bourquin, Jean-Pierre

    2010-01-01

    In vivo resistance to first-line chemotherapy, including to glucocorticoids, is a strong predictor of poor outcome in children with acute lymphoblastic leukemia (ALL). Modulation of cell death regulators represents an attractive strategy for subverting such drug resistance. Here we report complete resensitization of multidrug-resistant childhood ALL cells to glucocorticoids and other cytotoxic agents with subcytotoxic concentrations of obatoclax, a putative antagonist of BCL-2 family members. The reversal of glucocorticoid resistance occurred through rapid activation of autophagy-dependent necroptosis, which bypassed the block in mitochondrial apoptosis. This effect was associated with dissociation of the autophagy inducer beclin-1 from the antiapoptotic BCL-2 family member myeloid cell leukemia sequence 1 (MCL-1) and with a marked decrease in mammalian target of rapamycin (mTOR) activity. Consistent with a protective role for mTOR in glucocorticoid resistance in childhood ALL, combination of rapamycin with the glucocorticoid dexamethasone triggered autophagy-dependent cell death, with characteristic features of necroptosis. Execution of cell death, but not induction of autophagy, was strictly dependent on expression of receptor-interacting protein (RIP-1) kinase and cylindromatosis (turban tumor syndrome) (CYLD), two key regulators of necroptosis. Accordingly, both inhibition of RIP-1 and interference with CYLD restored glucocorticoid resistance completely. Together with evidence for a chemosensitizing activity of obatoclax in vivo, our data provide a compelling rationale for clinical translation of this pharmacological approach into treatments for patients with refractory ALL. PMID:20200450

  4. Recognition of acute lymphoblastic leukemia cells in microscopic images using k-means clustering and support vector machine classifier.

    PubMed

    Amin, Morteza Moradi; Kermani, Saeed; Talebi, Ardeshir; Oghli, Mostafa Ghelich

    2015-01-01

    Acute lymphoblastic leukemia is the most common form of pediatric cancer which is categorized into three L1, L2, and L3 and could be detected through screening of blood and bone marrow smears by pathologists. Due to being time-consuming and tediousness of the procedure, a computer-based system is acquired for convenient detection of Acute lymphoblastic leukemia. Microscopic images are acquired from blood and bone marrow smears of patients with Acute lymphoblastic leukemia and normal cases. After applying image preprocessing, cells nuclei are segmented by k-means algorithm. Then geometric and statistical features are extracted from nuclei and finally these cells are classified to cancerous and noncancerous cells by means of support vector machine classifier with 10-fold cross validation. These cells are also classified into their sub-types by multi-Support vector machine classifier. Classifier is evaluated by these parameters: Sensitivity, specificity, and accuracy which values for cancerous and noncancerous cells 98%, 95%, and 97%, respectively. These parameters are also used for evaluation of cell sub-types which values in mean 84.3%, 97.3%, and 95.6%, respectively. The results show that proposed algorithm could achieve an acceptable performance for the diagnosis of Acute lymphoblastic leukemia and its sub-types and can be used as an assistant diagnostic tool for pathologists.

  5. Hypersensitivity and reduced inhibition of DNA synthesis in ataxia telangiectasia lymphoblasts treated with low levels of neocarzinostatin.

    PubMed

    Babilon, R W; Soprano, K J; Henderson, E E

    1985-07-01

    The effects of neocarzinostatin (NCS) on lymphoblastoid cell lines (LCLs) established from ataxia telangiectasia (A-T) were determined. A-T lymphoblasts were found to be hypersensitive to low levels of NCS as measured by cell growth and cell survival. On the other hand, A-T lymphoblasts failed to postpone DNA synthesis to the same degree as normal lymphoblasts following treatment with NCS. LCLs established from Nijmegen breakage syndrome (NBS) could be distinguished from ataxia and normal cell lines by their intermediate level of survival following exposure to NCS.

  6. CAR T-Cell Therapy: Pediatric Patients With Relapsed and Refractory Acute Lymphoblastic Leukemia
.

    PubMed

    Callahan, Colleen; Baniewicz, Diane; Ely, Beth

    2017-04-01

    Immunotherapy provides a promising treatment option for children and adolescents with refractory or relapsed acute lymphoblastic leukemia (ALL). 
. This article presents a hospital's experience with providing chimeric antigen receptor (CAR) T-cell therapy, followed by a detailed discussion of the trajectory of treatment provided for pediatric patients and their families.
. Clinical experience in delivering care to pediatric patients undergoing CAR T-cell therapy is described. Care coordination, patient and family assessment and education, and post-CAR T-cell infusion monitoring are presented. 
. Of 59 patients having been treated with CAR T-cell therapy at the authors' institution, 93% had a complete response at day 28. The 12-month relapse-free survival rate is 55%. A multidisciplinary team of skilled clinicians is recommended to support patient and family needs throughout screening, treatment, and follow-up while coordinating care with the referring oncologist.

  7. Effects of valproic acid and pioglitazone on cell cycle progression and proliferation of T-cell acute lymphoblastic leukemia Jurkat cells

    PubMed Central

    Jazi, Marie Saghaeian; Mohammadi, Saeed; Yazdani, Yaghoub; Sedighi, Sima; Memarian, Ali; Aghaei, Mehrdad

    2016-01-01

    Objective(s): T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignant tumor. Administration of chemical compounds influencing apoptosis and T cell development has been discussed as promising novel therapeutic strategies. Valproic acid (VPA) as a recently emerged anti-neoplastic histone deacetylase (HDAC) inhibitor and pioglitazone (PGZ) as a high-affinity peroxisome proliferator-activated receptor-gamma (PPARγ) agonist have been shown to induce apoptosis and cell cycle arrest in different studies. Here, we aimed to investigate the underlying molecular mechanisms involved in anti-proliferative effects of these compounds on human Jurkat cells. Materials and Methods: Treated cells were evaluated for cell cycle progression and apoptosis using flowcytometry and MTT viability assay. Real-time RT-PCR was carried out to measure the alterations in key genes associated with cell death and cell cycle arrest. Results: Our findings illustrated that both VPA and PGZ can inhibit Jurkat E6.1 cells in vitro after 24 hr; however, PGZ 400 μM presents the most anti-proliferative effect. Interestingly, treated cells have been arrested in G2/M with deregulated cell division cycle 25A (Cdc25A) phosphatase and cyclin-dependent kinase inhibitor 1B (CDKN1B or p27) expression. Expression of cyclin D1 gene was inhibited when DNA synthesis entry was declined. Cell cycle deregulation in PGZ and VPA-exposed cells generated an increase in the proportion of aneuploid cell population, which has not reported before. Conclusion: These findings define that anti-proliferative effects of PGZ and VPA on Jurkat cell line are mediated by cell cycle deregulation. Thus, we suggest PGZ and VPA may relieve potential therapeutic application against apoptosis-resistant malignancies. PMID:27635203

  8. Pediatric T-cell lymphoblastic leukemia evolves into relapse by clonal selection, acquisition of mutations and promoter hypomethylation

    PubMed Central

    Kunz, Joachim B.; Rausch, Tobias; Bandapalli, Obul R.; Eilers, Juliane; Pechanska, Paulina; Schuessele, Stephanie; Assenov, Yassen; Stütz, Adrian M.; Kirschner-Schwabe, Renate; Hof, Jana; Eckert, Cornelia; von Stackelberg, Arend; Schrappe, Martin; Stanulla, Martin; Koehler, Rolf; Avigad, Smadar; Elitzur, Sarah; Handgretinger, Rupert; Benes, Vladimir; Weischenfeldt, Joachim; Korbel, Jan O.; Muckenthaler, Martina U.; Kulozik, Andreas E.

    2015-01-01

    Relapsed precursor T-cell acute lymphoblastic leukemia is characterized by resistance against chemotherapy and is frequently fatal. We aimed at understanding the molecular mechanisms resulting in relapse of T-cell acute lymphoblastic leukemia and analyzed 13 patients at first diagnosis, remission and relapse by whole exome sequencing, targeted ultra-deep sequencing, multiplex ligation dependent probe amplification and DNA methylation array. Compared to primary T-cell acute lymphoblastic leukemia, in relapse the number of single nucleotide variants and small insertions and deletions approximately doubled from 11.5 to 26. Targeted ultra-deep sequencing sensitively detected subclones that were selected for in relapse. The mutational pattern defined two types of relapses. While both are characterized by selection of subclones and acquisition of novel mutations, ‘type 1’ relapse derives from the primary leukemia whereas ‘type 2’ relapse originates from a common pre-leukemic ancestor. Relapse-specific changes included activation of the nucleotidase NT5C2 resulting in resistance to chemotherapy and mutations of epigenetic modulators, exemplified by SUZ12, WHSC1 and SMARCA4. While mutations present in primary leukemia and in relapse were enriched for known drivers of leukemia, relapse-specific changes revealed an association with general cancer-promoting mechanisms. This study thus identifies mechanisms that drive progression of pediatric T-cell acute lymphoblastic leukemia to relapse and may explain the characteristic treatment resistance of this condition. PMID:26294725

  9. Pediatric T-cell lymphoblastic leukemia evolves into relapse by clonal selection, acquisition of mutations and promoter hypomethylation.

    PubMed

    Kunz, Joachim B; Rausch, Tobias; Bandapalli, Obul R; Eilers, Juliane; Pechanska, Paulina; Schuessele, Stephanie; Assenov, Yassen; Stütz, Adrian M; Kirschner-Schwabe, Renate; Hof, Jana; Eckert, Cornelia; von Stackelberg, Arend; Schrappe, Martin; Stanulla, Martin; Koehler, Rolf; Avigad, Smadar; Elitzur, Sarah; Handgretinger, Rupert; Benes, Vladimir; Weischenfeldt, Joachim; Korbel, Jan O; Muckenthaler, Martina U; Kulozik, Andreas E

    2015-11-01

    Relapsed precursor T-cell acute lymphoblastic leukemia is characterized by resistance against chemotherapy and is frequently fatal. We aimed at understanding the molecular mechanisms resulting in relapse of T-cell acute lymphoblastic leukemia and analyzed 13 patients at first diagnosis, remission and relapse by whole exome sequencing, targeted ultra-deep sequencing, multiplex ligation dependent probe amplification and DNA methylation array. Compared to primary T-cell acute lymphoblastic leukemia, in relapse the number of single nucleotide variants and small insertions and deletions approximately doubled from 11.5 to 26. Targeted ultra-deep sequencing sensitively detected subclones that were selected for in relapse. The mutational pattern defined two types of relapses. While both are characterized by selection of subclones and acquisition of novel mutations, 'type 1' relapse derives from the primary leukemia whereas 'type 2' relapse originates from a common pre-leukemic ancestor. Relapse-specific changes included activation of the nucleotidase NT5C2 resulting in resistance to chemotherapy and mutations of epigenetic modulators, exemplified by SUZ12, WHSC1 and SMARCA4. While mutations present in primary leukemia and in relapse were enriched for known drivers of leukemia, relapse-specific changes revealed an association with general cancer-promoting mechanisms. This study thus identifies mechanisms that drive progression of pediatric T-cell acute lymphoblastic leukemia to relapse and may explain the characteristic treatment resistance of this condition.

  10. Treatment of childhood T-cell lymphoblastic lymphoma according to the strategy for acute lymphoblastic leukaemia, without radiotherapy: long term results of the EORTC CLG 58881 trial.

    PubMed

    Uyttebroeck, Anne; Suciu, Stefan; Laureys, Geneviève; Robert, Alain; Pacquement, Hélène; Ferster, Alina; Marguerite, Geneviève; Mazingue, Françoise; Renard, Marleen; Lutz, Patrick; Rialland, Xavier; Mechinaud, Françoise; Cavé, Hélène; Baila, Liliana; Bertrand, Yves

    2008-04-01

    From June 1989 through to November 1998, 121 children with newly diagnosed T-cell lymphoblastic lymphoma (T-LBL) were included in the EORTC 58881 trial conducted by the Children's Leukaemia Group. The therapy regimen was based on a Berlin-Frankfurt-Munster protocol, for a total duration of 24 months. Cranial irradiation, prophylactic cranial and local, was omitted, even for patients with central nervous involvement at diagnosis. In total, 119 patients were evaluable. The median follow-up was 6.7 years. The overall event-free survival (EFS) rate at 6 years was 77.5% (standard error (SE)=4%). Median time of relapse was 1 year after complete remission (range 0.2-5.9 years). Only two (1.8%) patients had an isolated central nervous system relapse. For patients with complete response (n=16) to the 7-day prephase, the EFS rate at 6 years was 100% versus 14% (P<0.001) for patients with no response (n=7). Overall survival rate at 6 years was 86% (SE=3%). An intensive acute lymphoblastic leukaemia type chemotherapy regimen without irradiation leads to a high cure and survival rate in childhood T-LBL without an increased CNS recurrence. This suggests that prophylactic cranial irradiation can safely be omitted. Response to the prephase appeared to be a strong prognostic factor for EFS.

  11. Targeting signaling pathways in T-cell acute lymphoblastic leukemia initiating cells.

    PubMed

    Martelli, Alberto M; Lonetti, Annalisa; Buontempo, Francesca; Ricci, Francesca; Tazzari, Pier Luigi; Evangelisti, Camilla; Bressanin, Daniela; Cappellini, Alessandra; Orsini, Ester; Chiarini, Francesca

    2014-09-01

    Leukemia initiating cells (LICs) represent a reservoir that is believed to drive relapse and resistance to chemotherapy in blood malignant disorders. T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive neoplastic disorder of immature hematopoietic precursors committed to the T-cell lineage. T-ALL comprises about 15% of pediatric and 25% of adult ALL cases and is prone to early relapse. Although the prognosis of T-ALL has improved especially in children due to the use of new intensified treatment protocols, the outcome of relapsed T-ALL cases is still poor. Putative LICs have been identified also in T-ALL. LICs are mostly quiescent and for this reason highly resistant to chemotherapy. Therefore, they evade treatment and give rise to disease relapse. At present great interest surrounds the development of targeted therapies against signaling networks aberrantly activated in LICs and important for their survival and drug-resistance. Both the Notch1 pathway and the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) network are involved in T-ALL LIC survival and drug-resistance and could be targeted by small molecules. Thus, Notch1 and PI3K/Akt/mTOR inhibitors are currently being developed for clinical use either as single agents or in combination with conventional chemotherapy for T-ALL patient treatment. In this review, we summarize the existing knowledge of the relevance of Notch1 and PI3K/Akt/mTOR signaling in T-ALL LICs and we examine the rationale for targeting these key signal transduction networks by means of selective pharmacological inhibitors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Therapeutic targeting of Polo-like kinase-1 and Aurora kinases in T-cell acute lymphoblastic leukemia

    PubMed Central

    Spartà, Antonino Maria; Bressanin, Daniela; Chiarini, Francesca; Lonetti, Annalisa; Cappellini, Alessandra; Evangelisti, Cecilia; Evangelisti, Camilla; Melchionda, Fraia; Pession, Andrea; Bertaina, Alice; Locatelli, Franco; McCubrey, James A; Martelli, Alberto M

    2014-01-01

    Polo-like kinases (PLKs) and Aurora kinases (AKs) act as key cell cycle regulators in healthy human cells. In cancer, these protein kinases are often overexpressed and dysregulated, thus contributing to uncontrolled cell proliferation and growth. T-cell acute lymphoblastic leukemia (T-ALL) is a heterogeneous malignancy arising in the thymus from T-cell progenitors. Primary chemoresistant and relapsed T-ALL patients have yet a poor outcome, therefore novel therapies, targeting signaling pathways important for leukemic cell proliferation, are required. Here, we demonstrate the potential therapeutic effects of BI6727, MK-5108, and GSK1070916, three selective inhibitors of PLK1, AK-A, and AK-B/C, respectively, in a panel of T-ALL cell lines and primary cells from T-ALL patients. The drugs were both cytostatic and cytotoxic to T-ALL cells by inducing G2/M-phase arrest and apoptosis. The drugs retained part of their pro-apoptotic activity in the presence of MS-5 bone marrow stromal cells. Moreover, we document for the first time that BI6727 perturbed both the PI3K/Akt/mTORC2 and the MEK/ERK/mTORC1 signaling pathways, and that a combination of BI6727 with specific inhibitors of the aforementioned pathways (MK-2206, CCI-779) displayed significantly synergistic cytotoxic effects. Taken together, our findings indicate that PLK1 and AK inhibitors display the potential for being employed in innovative therapeutic strategies for improving T-ALL patient outcome. PMID:24874015

  13. Abnormal cell properties and down-regulated FAK-Src complex signaling in B lymphoblasts of autistic subjects.

    PubMed

    Wei, Hongen; Malik, Mazhar; Sheikh, Ashfaq M; Merz, George; Ted Brown, W; Li, Xiaohong

    2011-07-01

    Recent studies suggest that one of the major pathways to the pathogenesis of autism is reduced cell migration. Focal adhesion kinase (FAK) has an important role in neural migration, dendritic morphological characteristics, axonal branching, and synapse formation. The FAK-Src complex, activated by upstream reelin and integrin β1, can initiate a cascade of phosphorylation events to trigger multiple intracellular pathways, including mitogen-activated protein kinase-extracellular signal-regulated kinase and phosphatidylinositol 3-kinase-Akt signaling. In this study, by using B lymphoblasts as a model, we tested whether integrin β1 and FAK-Src signaling are abnormally regulated in autism and whether abnormal FAK-Src signaling leads to defects in B-lymphoblast adhesion, migration, proliferation, and IgG production. To our knowledge, for the first time, we show that protein expression levels of both integrin β1 and FAK are significantly decreased in autistic lymphoblasts and that Src protein expression and the phosphorylation of an active site (Y416) are also significantly decreased. We also found that lymphoblasts from autistic subjects exhibit significantly decreased migration, increased adhesion properties, and an impaired capacity for IgG production. The overexpression of FAK in autistic lymphoblasts countered the adhesion and migration defects. In addition, we demonstrate that FAK mediates its effect through the activation of Src, phosphatidylinositol 3-kinase-Akt, and mitogen-activated protein kinase signaling cascades and that paxillin is also likely involved in the regulation of adhesion and migration in autistic lymphoblasts. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  14. High frequencies of leukemia stem cells in poor-outcome childhood precursor-B acute lymphoblastic leukemias.

    PubMed

    Morisot, S; Wayne, A S; Bohana-Kashtan, O; Kaplan, I M; Gocke, C D; Hildreth, R; Stetler-Stevenson, M; Walker, R L; Davis, S; Meltzer, P S; Wheelan, S J; Brown, P; Jones, R J; Shultz, L D; Civin, C I

    2010-11-01

    In order to develop a xenograft model to determine the efficacy of new therapies against primary human precursor-B acute lymphoblastic leukemia (ALL) stem cells (LSCs), we used the highly immunodeficient non-obese diabetic (NOD).Cg-Prkdc(scid)IL2rg(tmlWjl)/SzJ (NOD-severe combined immune deficient (scid) IL2rg(-/-)) mouse strain. Intravenous transplantation of 2 of 2 ALL cell lines and 9 of 14 primary ALL cases generated leukemia-like proliferations in recipient mice by 1-7 months after transplant. Leukemias were retransplantable, and the immunophenotypes, gene rearrangements and expression profiles were identical or similar to those of the original primary samples. NOD-scid mice transplanted with the same primary samples developed similar leukemias with only a slightly longer latency than did NOD-scid-IL2Rg(-/-) mice. In this highly sensitive NOD-scid-IL2Rg(-/-)-based assay, 1-100 unsorted primary human ALL cells from five of five tested patients, four of whom eventually experienced leukemia relapse, generated leukemias in recipient mice. This very high frequency of LSCs suggests that a hierarchical LSC model is not valuable for poor-outcome ALL.

  15. High frequencies of leukemia stem cells in poor-outcome childhood precursor-B acute lymphoblastic leukemias

    PubMed Central

    Morisot, S; Wayne, A S; Bohana-Kashtan, O; Kaplan, I M; Gocke, C D; Hildreth, R; Stetler-Stevenson, M; Walker, R L; Davis, S; Meltzer, P S; Wheelan, S J; Brown, P; Jones, R J; Shultz, L D; Civin, C I

    2010-01-01

    In order to develop a xenograft model to determine the efficacy of new therapies against primary human precursor-B acute lymphoblastic leukemia (ALL) stem cells (LSCs), we used the highly immunodeficient non-obese diabetic (NOD).Cg-PrkdcscidIL2rgtmlWjl/SzJ (NOD-severe combined immune deficient (scid) IL2rg−/−) mouse strain. Intravenous transplantation of 2 of 2 ALL cell lines and 9 of 14 primary ALL cases generated leukemia-like proliferations in recipient mice by 1–7 months after transplant. Leukemias were retransplantable, and the immunophenotypes, gene rearrangements and expression profiles were identical or similar to those of the original primary samples. NOD-scid mice transplanted with the same primary samples developed similar leukemias with only a slightly longer latency than did NOD-scid-IL2Rg−/− mice. In this highly sensitive NOD-scid-IL2Rg−/−-based assay, 1–100 unsorted primary human ALL cells from five of five tested patients, four of whom eventually experienced leukemia relapse, generated leukemias in recipient mice. This very high frequency of LSCs suggests that a hierarchical LSC model is not valuable for poor-outcome ALL. PMID:20739953

  16. CD19/CD22 Chimeric Antigen Receptor T Cells and Chemotherapy in Treating Children or Young Adults With Recurrent or Refractory CD19 Positive B Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2017-08-03

    B Acute Lymphoblastic Leukemia; CD19 Positive; Minimal Residual Disease; Philadelphia Chromosome Positive; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Refractory Acute Lymphoblastic Leukemia

  17. Cryptotanshinone deregulates unfolded protein response and eukaryotic initiation factor signaling in acute lymphoblastic leukemia cells.

    PubMed

    Wu, Ching-Fen; Seo, Ean-Jeong; Klauck, Sabine M; Efferth, Thomas

    2016-02-15

    Unfolded protein responses (UPR) determine cell fate and are recognized as anticancer targets. In a previous research, we reported that cryptotanshinone (CPT) exerted cytotoxic effects toward acute lymphoblastic leukemia cells through mitochondria-mediated apoptosis. In the present study, we further investigated the role of UPR in CPT-induced cytotoxicity on acute lymphoblastic leukemia cells by applying tools of pharmacogenomics and bioinformatics. Gene expression profiling was performed by mRNA microarray hybridization. Potential transcription factor binding motifs were identified in the promoter regions of the deregulated genes by Cistrome software. Molecular docking on eIF-4A and PI3K was performed to investigate the inhibitory activity of CPT on translation initiation. CPT regulated genes related to UPR and eIF2 signaling pathways. The DNA-Damage-Inducible Transcript 3 (DDIT3) gene, which is activated as consequence of UPR malfunction during apoptosis, was induced and validated by in vitro experiments. Transcription factor binding motif analysis of the microarrary-retrieved deregulated genes in the promoter region emphasized the relevance of transcription factors, such as ATF2, ATF4 and XBP1, regulating UPR and cell apoptosis. Molecular docking suggested inhibitory effects of CPT by binding to eIF-4A and PI3K providing evidence for a role of CPT's in the disruption of protein synthesis. CPT triggered UPR and inhibited protein synthesis via eIF-mediated translation initiation, potentially supporting CPT-induced cytotoxic effects toward acute leukemia cells. Copyright © 2015 Elsevier GmbH. All rights reserved.

  18. Peripheral T-lymphocytes express WNT7A and its restoration in leukemia-derived lymphoblasts inhibits cell proliferation

    PubMed Central

    2012-01-01

    Background WNT7a, a member of the Wnt ligand family implicated in several developmental processes, has also been reported to be dysregulated in some types of tumors; however, its function and implication in oncogenesis is poorly understood. Moreover, the expression of this gene and the role that it plays in the biology of blood cells remains unclear. In addition to determining the expression of the WNT7A gene in blood cells, in leukemia-derived cell lines, and in samples of patients with leukemia, the aim of this study was to seek the effect of this gene in proliferation. Methods We analyzed peripheral blood mononuclear cells, sorted CD3 and CD19 cells, four leukemia-derived cell lines, and blood samples from 14 patients with Acute lymphoblastic leukemia (ALL), and 19 clinically healthy subjects. Reverse transcription followed by quantitative Real-time Polymerase chain reaction (qRT-PCR) analysis were performed to determine relative WNT7A expression. Restoration of WNT7a was done employing a lentiviral system and by using a recombinant human protein. Cell proliferation was measured by addition of WST-1 to cell cultures. Results WNT7a is mainly produced by CD3 T-lymphocytes, its expression decreases upon activation, and it is severely reduced in leukemia-derived cell lines, as well as in the blood samples of patients with ALL when compared with healthy controls (p ≤0.001). By restoring WNT7A expression in leukemia-derived cells, we were able to demonstrate that WNT7a inhibits cell growth. A similar effect was observed when a recombinant human WNT7a protein was used. Interestingly, restoration of WNT7A expression in Jurkat cells did not activate the canonical Wnt/β-catenin pathway. Conclusions To our knowledge, this is the first report evidencing quantitatively decreased WNT7A levels in leukemia-derived cells and that WNT7A restoration in T-lymphocytes inhibits cell proliferation. In addition, our results also support the possible function of WNT7A as a tumor

  19. A Supramolecular Substance, [2] Rotaxane, Induces Apoptosis in Human Molt-3 Acute Lymphoblastic Leukemia Cells.

    PubMed

    Kimura, M; Makio, K; Hara, K; Hiruma, W; Fujita, Y; Takata, T; Nishio, K; Ono, N

    2015-11-01

    The antitumor effects of a supramolecular substance, the [2] rotaxane (TRO-A0001), and its molecular mechanisms were investigated. TRO-A0001 suppressed the proliferation of cultured human Molt-3 acute lymphoblastic leukemia cells for 12-72 h in a dose-dependent manner. Based on flow cytometry, TRO-A0001 clearly induced apoptosis after 24 h. The mitochondrial membrane potential disappeared after treatment with 1.0 µM of TRO-A0001. Expression of the cleaved forms of capase-9 and caspase-3 was significantly increased in cells exposed to TRO-A0001, whereas the expression of XIAP, a type of inhibitor of apoptosis family, was decreased. These results suggest that [2] rotaxane TRO-A0001 may be a highly promising new antitumor medicine. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Leydig-cell function in children after direct testicular irradiation for acute lymphoblastic leukemia

    SciTech Connect

    Brauner, R.; Czernichow, P.; Cramer, P.; Schaison, G.; Rappaport, R.

    1983-07-07

    To assess the effect of testicular irradiation on testicular endocrine function, we studied 12 boys with acute lymphoblastic leukemia who had been treated with direct testicular irradiation 10 months to 8 1/2 years earlier. Insufficient Leydig-cell function, manifested by a low response of plasma testosterone to chorionic gonadotropin or an increased basal level of plasma luteinizing hormone (or both), was observed in 10 patients, 7 of whom were pubertal. Two of these patients had a compensated testicular endocrine insufficiency with only high plasma concentrations of luteinizing hormone. Testosterone secretion was severely impaired in three pubertal boys studied more than four years after testicular irradiation. A diminished testicular volume indicating tubular atrophy was found in all pubertal patients, including three who had not received cyclophosphamide or cytarabine. These data indicate that testosterone insufficiency is a frequent complication of testicular irradiation, although some patients continue to have Leydig-cell activity for several years after therapy.

  1. A Case of T-cell Acute Lymphoblastic Leukemia Relapsed As Myeloid Acute Leukemia.

    PubMed

    Paganin, Maddalena; Buldini, Barbara; Germano, Giuseppe; Seganfreddo, Elena; Meglio, Annamaria di; Magrin, Elisa; Grillo, Francesca; Pigazzi, Martina; Rizzari, Carmelo; Cazzaniga, Giovanni; Khiabanian, Hossein; Palomero, Teresa; Rabadan, Raul; Ferrando, Adolfo A; Basso, Giuseppe

    2016-09-01

    A 4-year-old male with the diagnosis of T-cell acute lymphoblastic leukemia (T-ALL) relapsed after 19 months with an acute myeloid leukemia (AML). Immunoglobulin and T-cell receptor gene rearrangements analyses reveal that both leukemias were rearranged with a clonal relationship between them. Comparative genomic hybridization (Array-CGH) and whole-exome sequencing analyses of both samples suggest that this leukemia may have originated from a common T/myeloid progenitor. The presence of homozygous deletion of p16/INK4A, p14/ARF, p15/INK4B, and heterozygous deletion of WT1 locus remained stable in the leukemia throughout phenotypic switch, revealing that this AML can be genetically associated to T-ALL.

  2. NHE1 has a notable role in metastasis and drug resistance of T-cell acute lymphoblastic leukemia.

    PubMed

    Altaf, Ehtisham; Huang, Xiaoxing; Xiong, Jie; Yang, Xiangyong; Deng, Xinzhou; Xiong, Meng; Zhou, Lu; Pan, Shan; Yuan, Wen; Li, Xinran; Hao, Ling; Tembo, Kingsley Miyanda; Xiao, Ruijing; Zhang, Qiuping

    2017-10-01

    T-cell acute lymphoblastic leukemia (T-ALL) represents a spectrum of hematological malignancies that affect human health. Metastasis and chemotherapeutic drug resistance are the primary causes of mortality in patients with T-ALL. Sodium-hydrogen antiporter 1 (NHE1) is established to serve a role in metastasis and drug resistance in numerous types of cancer; however, the function of NHE1 in T-ALL remains to be elucidated. Previously, the C-C-motif chemokine ligand 25 (CCL25) was identified to be involved in metastasis and drug resistance in the MOLT4 T-ALL cell line, as was the ezrin protein. The present study investigated the role of NHE1 in the metastasis of T-ALL using a Transwell assay and scanning electron microscopy, using MOLT4 cells as a model. The association between NHE1 and ezrin was assessed using laser scanning confocal microscopy. The effect of NHE1 on resistance to the chemotherapy drug doxorubicin (DOX) was also investigated using a cell viability and cytotoxicity assay. Expression of NHE1 increased following treatment with CCL25, accompanied by morphological changes in MOLT4 cells and the co-localization of NHE1 with ezrin. In addition, wild-type MOLT4 cells exhibited an increased polarization ability compared with NHE1- or ezrin-silenced cells. NHE1- or ezrin-silenced cells exhibited higher sensitivity to DOX compared with wild-type MOLT4 cells. In conclusion, the increased expression or activity of NHE1 may potentially be a poor prognostic indicator for human T-ALL.

  3. Allogeneic Hematopoietic Cell Transplantation for Adult T Cell Acute Lymphoblastic Leukemia.

    PubMed

    Hamilton, Betty Ky; Rybicki, Lisa; Abounader, Donna; Adekola, Kehinde; Advani, Anjali; Aldoss, Ibrahim; Bachanova, Veronika; Bashey, Asad; Brown, Stacey; DeLima, Marcos; Devine, Steven; Flowers, Christopher R; Ganguly, Siddharth; Jagasia, Madan; Kennedy, Vanessa E; Kim, Dennis Dong Hwan; McGuirk, Joseph; Pullarkat, Vinod; Romee, Rizwan; Sandhu, Karamjeet; Smith, Melody; Ueda, Masumi; Viswabandya, Auro; Vu, Khoan; Wall, Sarah; Zeichner, Simon B; Perales, Miguel-Angel; Majhail, Navneet S

    2017-07-01

    Allogeneic hematopoietic cell transplantation (HCT) is recommended for patients with T cell acute lymphoblastic leukemia (T-ALL) in second or later complete remission (CR) and high-risk patients in first CR. Given its relative rarity, data on outcomes of HCT for T-ALL are limited. We conducted a multicenter retrospective cohort study using data from 208 adult patients who underwent HCT between 2000 and 2014 to describe outcomes of allogeneic HCT for T-ALL in the contemporary era. The median age at HCT was 37 years, and the majority of patients underwent HCT in CR, using total body irradiation (TBI)-based myeloablative conditioning regimens. One-quarter of the patients underwent alternative donor HCT using a mismatched, umbilical cord blood, or haploidentical donor. With a median follow up of 38 months, overall survival at 5 years was 34%. The corresponding cumulative incidence of non-relapse mortality and relapse was 26% and 41%, respectively. In multivariable analysis, factors significantly associated with overall survival were the use of TBI (HR, 0.57; P = .021), age >35 years (HR, 1.55; P = .025), and disease status at HCT (HR, 1.98; P = .005 for relapsed/refractory disease compared with CR). Relapse was the most common cause of death (58% of patients). Allogeneic HCT remains a potentially curative option in selected patients with adult T-ALL, although relapse is a major cause of treatment failure. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  4. The significance of PTEN and AKT aberrations in pediatric T-cell acute lymphoblastic leukemia

    PubMed Central

    Zuurbier, Linda; Petricoin, Emanuel F.; Vuerhard, Maartje J.; Calvert, Valerie; Kooi, Clarissa; Buijs-Gladdines, Jessica G.C.A.M.; Smits, Willem K.; Sonneveld, Edwin; Veerman, Anjo J.P.; Kamps, Willem A.; Horstmann, Martin; Pieters, Rob; Meijerink, Jules P.P.

    2012-01-01

    Background PI3K/AKT pathway mutations are found in T-cell acute lymphoblastic leukemia, but their overall impact and associations with other genetic aberrations is unknown. PTEN mutations have been proposed as secondary mutations that follow NOTCH1-activating mutations and cause cellular resistance to γ-secretase inhibitors. Design and Methods The impact of PTEN, PI3K and AKT aberrations was studied in a genetically well-characterized pediatric T-cell leukemia patient cohort (n=146) treated on DCOG or COALL protocols. Results PTEN and AKT E17K aberrations were detected in 13% and 2% of patients, respectively. Defective PTEN-splicing was identified in incidental cases. Patients without PTEN protein but lacking exon-, splice-, promoter mutations or promoter hypermethylation were present. PTEN/AKT mutations were especially abundant in TAL- or LMO-rearranged leukemia but nearly absent in TLX3-rearranged patients (P=0.03), the opposite to that observed for NOTCH1-activating mutations. Most PTEN/AKT mutant patients either lacked NOTCH1-activating mutations (P=0.006) or had weak NOTCH1-activating mutations (P=0.011), and consequently expressed low intracellular NOTCH1, cMYC and MUSASHI levels. T-cell leukemia patients without PTEN/AKT and NOTCH1-activating mutations fared well, with a cumulative incidence of relapse of only 8% versus 35% for PTEN/AKT and/or NOTCH1-activated patients (P=0.005). Conclusions PI3K/AKT pathway aberrations are present in 18% of pediatric T-cell acute lymphoblastic leukemia patients. Absence of strong NOTCH1-activating mutations in these cases may explain cellular insensitivity to γ-secretase inhibitors. PMID:22491738

  5. RUNX1 is required for oncogenic Myb and Myc enhancer activity in T cell acute lymphoblastic leukemia.

    PubMed

    Choi, AHyun; Illendula, Anuradha; Pulikkan, John A; Roderick, Justine E; Tesell, Jessica; Yu, Jun; Hermance, Nicole; Zhu, Lihua Julie; Castilla, Lucio H; Bushweller, John H; Kelliher, Michelle A

    2017-08-08

    The gene encoding the RUNX1 transcription factor is mutated in a subset of T cell acute lymphoblastic leukemia (T-ALL) patients and RUNX1 mutations are associated with a poor prognosis. These mutations cluster in the DNA binding Runt domain, are thought to represent loss-of-function mutations, indicating that RUNX1 suppresses T cell transformation. RUNX1 has been proposed to have tumor suppressor roles in TLX1/3 transformed human T-ALL cell lines and NOTCH1 T-ALL mouse models. Yet retroviral insertional mutagenesis screens identify RUNX genes as collaborating oncogenes in MYC-driven leukemia mouse models. To elucidate RUNX1 function(s) in leukemogenesis, we generated Tal1/Lmo2/Rosa26-CreER(T2)Runx1(f/f) mice and examined leukemia progression in the presence of vehicle or tamoxifen. We found that Runx1 deletion inhibits mouse leukemic growth in vivo and that RUNX silencing in human T-ALL cells triggers apoptosis. We demonstrate that a small molecule inhibitor, designed to interfere with CBFβ binding to RUNX proteins, impairs the growth of human T-ALL cell lines and primary patient samples. We demonstrate that a RUNX1 deficiency alters the expression of a crucial subset of TAL1- and NOTCH1-regulated genes including the MYB and MYC oncogenes, respectively. These studies provide genetic and pharmacologic evidence that RUNX1 has oncogenic roles and reveal RUNX1 as a novel therapeutic target in T-ALL. Copyright © 2017 American Society of Hematology.

  6. Temsirolimus, Dexamethasone, Mitoxantrone Hydrochloride, Vincristine Sulfate, and Pegaspargase in Treating Young Patients With Relapsed Acute Lymphoblastic Leukemia or Non-Hodgkin Lymphoma

    ClinicalTrials.gov

    2015-07-09

    Childhood B Acute Lymphoblastic Leukemia; Childhood T Acute Lymphoblastic Leukemia; Mature T-Cell and NK-Cell Non-Hodgkin Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Lymphoblastic Lymphoma

  7. p21WAF1 modulates drug-induced apoptosis and cell cycle arrest in B-cell precursor acute lymphoblastic leukemia

    PubMed Central

    Davies, Carwyn; Hogarth, Linda A; Mackenzie, Karen L; Hall, Andrew G; Lock, Richard B

    2015-01-01

    p21WAF1 is a well-characterized mediator of cell cycle arrest and may also modulate chemotherapy-induced cell death. The role of p21WAF1 in drug-induced cell cycle arrest and apoptosis of acute lymphoblastic leukemia (ALL) cells was investigated using p53-functional patient-derived xenografts (PDXs), in which p21WAF1 was epigenetically silenced in T-cell ALL (T-ALL), but not in B-cell precursor (BCP)-ALL PDXs. Upon exposure to diverse cytotoxic drugs, T-ALL PDX cells exhibited markedly increased caspase-3/7 activity and phosphatidylserine (PS) externalization on the plasma membrane compared with BCP-ALL cells. Despite dramatic differences in apoptotic characteristics between T-ALL and BCP-ALL PDXs, both ALL subtypes exhibited similar cell death kinetics and were equally sensitive to p53-inducing drugs in vitro, although T-ALL PDXs were significantly more sensitive to the histone deacetylase inhibitor vorinostat. Transient siRNA suppression of p21WAF1 in the BCP-ALL 697 cell line resulted in a moderate depletion of the cell fraction in G1 phase and marked increase in PS externalization following exposure to etoposide. Furthermore, stable lentiviral p21WAF1 silencing in the BCP-ALL Nalm-6 cell line accelerated PS externalization and cell death following exposure to etoposide and vorinostat, supporting previous findings. Finally, the Sp1 inhibitor, terameprocol, inhibited p21WAF1 expression in Nalm-6 cells exposed to vorinostat and also partially augmented vorinostat-induced cell death. Taken together, these findings demonstrate that p21WAF1 regulates the early stages of drug-induced apoptosis in ALL cells and significantly modulates their sensitivity to vorinostat. PMID:26506264

  8. Alternating versus concurrent schedules of imatinib and chemotherapy as front-line therapy for Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL).

    PubMed

    Wassmann, Barbara; Pfeifer, Heike; Goekbuget, Nicola; Beelen, Dietrich W; Beck, Joachim; Stelljes, Matthias; Bornhäuser, Martin; Reichle, Albrecht; Perz, Jolanta; Haas, Rainer; Ganser, Arnold; Schmid, Mathias; Kanz, Lothar; Lenz, Georg; Kaufmann, Martin; Binckebanck, Anja; Brück, Patrick; Reutzel, Regina; Gschaidmeier, Harald; Schwartz, Stefan; Hoelzer, Dieter; Ottmann, Oliver G

    2006-09-01

    The best strategy for incorporating imatinib in front-line treatment of Ph+ acute lymphoblastic leukemia (ALL) has not been established. We enrolled 92 patients with newly diagnosed Ph+ ALL in a prospective, multicenter study to investigate sequentially 2 treatment schedules with imatinib administered concurrent to or alternating with a uniform induction and consolidation regimen. Coadministration of imatinib and induction cycle 2 (INDII) resulted in a complete remission (CR) rate of 95% and polymerase chain reaction (PCR) negativity for BCR-ABL in 52% of patients, compared with 19% in patients in the alternating treatment cohort (P = .01). Remarkably, patients with and without a CR after induction cycle 1 (INDI) had similar hematologic and molecular responses after concurrent imatinib and INDII. In the concurrent cohort, grades III and IV cytopenias and transient hepatotoxicity necessitated interruption of induction in 87% and 53% of patients, respectively; however, duration of induction was not prolonged when compared with patients receiving chemotherapy alone. No imatinib-related severe hematologic or nonhematologic toxicities were noted with the alternating schedule. In each cohort, 77% of patients underwent allogeneic stem cell transplantation (SCT) in first CR (CR1). Both schedules of imatinib have acceptable toxicity and facilitate SCT in CR1 in the majority of patients, but concurrent administration of imatinib and chemotherapy has greater antileukemic efficacy.

  9. Speed of leukemia development and genetic diversity in xenograft models of T cell acute lymphoblastic leukemia

    PubMed Central

    Poglio, Sandrine; Lewandowski, Daniel; Calvo, Julien; Caye, Aurélie; Gros, Audrey; Laharanne, Elodie; Leblanc, Thierry; Landman-Parker, Judith; Baruchel, André; Soulier, Jean; Ballerini, Paola; Clappier, Emmanuelle; Pflumio, Françoise

    2016-01-01

    T cell acute lymphoblastic leukemia (T-ALL) develops through accumulation of multiple genomic alterations within T-cell progenitors resulting in clonal heterogeneity among leukemic cells. Human T-ALL xeno-transplantation in immunodeficient mice is a gold standard approach to study leukemia biology and we recently uncovered that the leukemia development is more or less rapid depending on T-ALL sample. The resulting human leukemia may arise through genetic selection and we previously showed that human T-ALL development in immune-deficient mice is significantly enhanced upon CD7+/CD34+ leukemic cell transplantations. Here we investigated the genetic characteristics of CD7+/CD34+ and CD7+/CD34− cells from newly diagnosed human T-ALL and correlated it to the speed of leukemia development. We observed that CD7+/CD34+ or CD7+/CD34− T-ALL cells that promote leukemia within a short-time period are genetically similar, as well as xenograft-derived leukemia resulting from both cell fractions. In the case of delayed T-ALL growth CD7+/CD34+ or CD7+/CD34− cells were either genetically diverse, the resulting xenograft leukemia arising from different but branched subclones present in the original sample, or similar, indicating decreased fitness to mouse micro-environment. Altogether, our work provides new information relating the speed of leukemia development in xenografts to the genetic diversity of T-ALL cell compartments. PMID:27191650

  10. Exosome mediated growth effect on the non-growing pre-B acute lymphoblastic leukemia cells at low starting cell density

    PubMed Central

    Patel, Sapan J; Darie, Costel C; Clarkson, Bayard D

    2016-01-01

    Tumors contain heterogeneous cell populations and achieve dominance by functioning as collective systems. The mechanisms underlying the aberrant growth and interactions between cells are not very well understood. The pre-B acute lymphoblastic leukemia cells we studied were obtained directly from a patient with Ph+ ALL. A new Ph+ ALL cell line (ALL3) was established from the leukemic cells growing as ascitic cells in his pleural fluid. The patient died of his disease shortly after the cells were obtained. ALL3 cells grow well at high cell densities (HD), but not at low cell densities. ALL3 cells are very sensitive to potent tyrosine kinase inhibitors (TKIs) such as Dasatinib and PD166325, but less sensitive to AMN 107, Imatinib, and BMS 214662 (a farnesyl transferase inhibitor). Here, we show that the growth of the LD ALL3 cells can be stimulated to grow in the presence of diffusible, soluble factors secreted by ALL3 cells themselves growing at high density. We also show that exosomes, part of the secretome components, are also able to stimulate the growth of the non-growing LD ALL3 cells and modulate their proliferative behavior. Characterization of the exosome particles also showed that the HD ALL3 cells are able to secret them in large quantities and that they are capable of inducing the growth of the LD ALL3 cells without which they will not survive. Direct stimulation of non-growing LD ALL3 cells using purified exosomes shows that the ALL3 cells can also communicate with each other by means of exchange of exosomes independently of direct cell-cell contacts or diffusible soluble stimulatory factors secreted by HD ALL3 cells. PMID:27725845

  11. Successful treatment of disseminated mucormycosis in a neutropenic patient with T-cell acute lymphoblastic leukaemia

    PubMed Central

    Guymer, Chelsea; Khurana, Sanjeev; Suppiah, Ram; Hennessey, Iain; Cooper, Celia

    2013-01-01

    Mucormycosis is a rare angioinvasive fungal infection, more commonly seen in immunosuppressed patients, with reported mortality rates of 95% in disseminated disease. We present a case report of a patient with T-cell acute lymphoblastic leukaemia who developed disseminated infection with mucormycosis (involving the pancreas, left occipital lobe, right lower lobe of lung, appendix and right kidney) after having completed induction and consolidation chemotherapy. Growth of Lichtheimia corymbifera was initially isolated following a right pleural tap with fungal elements identified repeatedly on subsequent pathology specimens. Following radical surgical debridement and concurrent treatment with combination antifungal therapy, the patient survived. This case demonstrates that aggressive multisite surgical de-bulking of disseminated fungal foci, in conjunction with combination antifungal therapy and reversal of immunosuppression, can result in survival despite the grave prognosis associated with disseminated mucormycosis. PMID:23904418

  12. Hematuria and decreased kidney function as initial signs of acute B-cell lymphoblastic leukemia.

    PubMed

    Seo-Mayer, Patricia; Kenney, Barton; McNamara, Joseph; Stein, Jeffrey; Moeckel, Gilbert W

    2010-11-01

    We report the case of a 14-year-old boy who presented with hematuria and decreased kidney function as initial manifestations of acute lymphoblastic leukemia (ALL). Computed tomography of the abdomen showed extensive retroperitoneal lymphadenopathy and bilateral nephromegaly. The patient's kidney biopsy specimen showed a dense monomorphous interstitial infiltrate of small round blue cells with significant nuclear atypia. Immunohistochemical workup showed positive staining for CD20, CD10, and terminal deoxynucleotidyl transferase (TdT), consistent with ALL. The patient underwent induction chemotherapy, attained remission 4 weeks after induction, and presently is stable in the consolidation phase of chemotherapy. This is an unusual case of ALL involving both kidneys with initial presenting signs of hematuria and decreased kidney function.

  13. Metastatic Calcinosis Cutis: A Case in a Child with Acute Pre-B Cell Lymphoblastic Leukemia

    PubMed Central

    Castanedo-Cázares, Juan Pablo; Reyes-Herrera, Amalia; Hernández-Blanco, Diana; Oros-Ovalle, Cuauhtémoc; Torres-Álvarez, Bertha

    2015-01-01

    Hypercalcemia in children with malignancy is an uncommon condition. It has been described in leukemia patients with impaired renal excretion of calcium or osteolytic lesions. Metastatic calcinosis cutis (MCC) may develop if hypercalcemia persists. We report the case of a 5-year-old girl with an atypical dermatosis and unspecific gastrointestinal symptoms. Considered clinical diagnoses were xanthomas, histiocytosis, molluscum contagiosum, and nongenital warts. Cutaneous histological analysis showed amorphous basophilic deposits in the dermis suggestive of calcium deposits. Laboratory tests confirmed serum hypercalcemia. Extensive investigations such as bone marrow biopsy established the diagnosis of an acute pre-B cell lymphoblastic leukemia. Hypercalcemia in hematopoietic malignancies is unusual, especially as initial manifestation of the disease. Careful review of the literature fails to reveal previous reports of these peculiar cutaneous lesions of MCC in children with leukemia. PMID:26346120

  14. The pre-B-cell receptor checkpoint in acute lymphoblastic leukaemia.

    PubMed

    Eswaran, J; Sinclair, P; Heidenreich, O; Irving, J; Russell, L J; Hall, A; Calado, D P; Harrison, C J; Vormoor, J

    2015-08-01

    The B-cell receptor (BCR) and its immature form, the precursor-BCR (pre-BCR), have a central role in the control of B-cell development, which is dependent on a sequence of cell-fate decisions at specific antigen-independent checkpoints. Pre-BCR expression provides the first checkpoint, which controls differentiation of pre-B to immature B-cells in normal haemopoiesis. Pre-BCR signalling regulates and co-ordinates diverse processes within the pre-B cell, including clonal selection, proliferation and subsequent maturation. In B-cell precursor acute lymphoblastic leukaemia (BCP-ALL), B-cell development is arrested at this checkpoint. Moreover, malignant blasts avoid clonal extinction by hijacking pre-BCR signalling in favour of the development of BCP-ALL. Here, we discuss three mechanisms that occur in different subtypes of BCP-ALL: (i) blocking pre-BCR expression; (ii) activating pre-BCR-mediated pro-survival and pro-proliferative signalling, while inhibiting cell cycle arrest and maturation; and (iii) bypassing the pre-BCR checkpoint and activating pro-survival signalling through pre-BCR independent alternative mechanisms. A complete understanding of the BCP-ALL-specific signalling networks will highlight their application in BCP-ALL therapy.

  15. High-risk acute lymphoblastic leukemia cells with bcr-abl and INK4A/ARF mutations retain susceptibility to alloreactive T cells.

    PubMed

    Young, Faith M; Campbell, Andrew; Emo, Kris Lambert; Jansson, Johan; Wang, Pin-Yi; Jordan, Craig T; Mullen, Craig A

    2008-06-01

    INK4A/ARF mutations are acquired in bcr/abl(+) lymphoid blast phase chronic myelogenous leukemia (CML) and bcr/abl(+) acute lymphoblastic leukemia (ALL). Donor lymphocyte infusion and graft-versus-leukemia (GVL) are generally ineffective in such ALLs, whereas GVL is highly active against bcr/abl(+) CML, which does not have a lesion in the INK4A/ARF locus. The mechanisms for the ineffectiveness of GVL are not fully known, and it is possible that intrinsic resistance of acute lymphoid leukemias to immune effectors associated with allogeneic GVL may contribute to ineffectiveness. This work tested the hypothesis that INK4A/ARF mutations that are associated with transformation of bcr/abl(+) CML to an ALL phenotype, and that are associated with increased resistance to apoptosis render ALL cells insensitive to allogeneic immune responses to minor histocompatibility antigens (mHA). Murine acute pre-B ALLs were induced by transfer of the human p210 bcr/abl gene into bone marrow of INK4A/ARF null mice. These ALL lines were then studied in a murine model of MHC-matched, mHA-mismatched allogeneic BMT. In vivo growth of these ALLs was inhibited in allogeneic transplants characterized by active allogeneic immune responses compared to their behavior in syngeneic transplants. In vitro ALLs with INK4A/ARF, p210 bcr/abl, or p190 bcr/abl mutations remained sensitive to anti-mHA cytolytic T cells. In addition, the ALLs were capable of inducing primary immune responses to mHAs in vivo. Thus, ALLs with INK4A/ARF or bcr/abl mutations are not intrinsically resistant to allogeneic T cell responses, suggesting that active immunotherapies against mHA have the potential to control such acute lymphoblastic leukemias.

  16. High risk acute lymphoblastic leukemia cells with bcr-abl and INK4A/ARF mutations retain susceptibility to alloreactive T cells

    PubMed Central

    Young, Faith M.; Campbell, Andrew; Emo, Kris Lambert; Jansson, Johan; Wang, Pin-Yi; Jordan, Craig T.; Mullen, Craig A.

    2008-01-01

    INK4A/ARF mutations are acquired in bcr/abl+ lymphoid blast phase chronic myelogenous leukemia (CML) and bcr/abl+ acute lymphoblastic leukemia (ALL). Donor lymphocyte infusion and graft versus leukemia are generally ineffective in such ALL’s, while GVL is highly active against bcr/abl+ CML that does not have a lesion in the INK4A/ARF locus. The mechanisms for the ineffectiveness of GVL are not fully known and it is possible that intrinsic resistance of acute lymphoid leukemias to immune effectors associated with allogeneic GVL may contribute to ineffectiveness. This work tested the hypothesis that INK4A/ARF mutations that are associated with transformation of bcr/abl+ CML to an ALL phenotype and that are associated with increased resistance to apoptosis render ALL cells insensitive to allogeneic immune responses to minor histocompatibility antigens (mHA). Murine acute pre-B ALL’s were induced by transfer of the human p210 bcr/abl gene into bone marrow of INK4A/ARF null mice. These ALL lines were then studied in a murine model of MHC-matched, mHA-mismatched allogeneic BMT. In vivo growth of these ALL’s was inhibited in allogeneic transplants characterized by active allogeneic immune responses compared to their behavior in syngeneic transplants. In vitro ALL’s with INK4A/ARF, p210 bcr/abl, or p190 bcr/abl mutations remained sensitive to anti-mHA cytolytic T cells. In addition, the ALL’s were capable of inducing primary immune responses to mHA’s in vivo. Thus, ALL’s with INK4A/ARF or bcr/abl mutations are not intrinsically resistant to allogeneic T cell responses suggesting that active immunotherapies against mHA have potential to control such acute lymphoblastic leukemias. PMID:18489987

  17. JAK3 mutants transform hematopoietic cells through JAK1 activation, causing T-cell acute lymphoblastic leukemia in a mouse model.

    PubMed

    Degryse, Sandrine; de Bock, Charles E; Cox, Luk; Demeyer, Sofie; Gielen, Olga; Mentens, Nicole; Jacobs, Kris; Geerdens, Ellen; Gianfelici, Valentina; Hulselmans, Gert; Fiers, Mark; Aerts, Stein; Meijerink, Jules P; Tousseyn, Thomas; Cools, Jan

    2014-11-13

    JAK3 is a tyrosine kinase that associates with the common γ chain of cytokine receptors and is recurrently mutated in T-cell acute lymphoblastic leukemia (T-ALL). We tested the transforming properties of JAK3 pseudokinase and kinase domain mutants using in vitro and in vivo assays. Most, but not all, JAK3 mutants transformed cytokine-dependent Ba/F3 or MOHITO cell lines to cytokine-independent proliferation. JAK3 pseudokinase mutants were dependent on Jak1 kinase activity for cellular transformation, whereas the JAK3 kinase domain mutant could transform cells in a Jak1 kinase-independent manner. Reconstitution of the IL7 receptor signaling complex in 293T cells showed that JAK3 mutants required receptor binding to mediate downstream STAT5 phosphorylation. Mice transplanted with bone marrow progenitor cells expressing JAK3 mutants developed a long-latency transplantable T-ALL-like disease, characterized by an accumulation of immature CD8(+) T cells. In vivo treatment of leukemic mice with the JAK3 selective inhibitor tofacitinib reduced the white blood cell count and caused leukemic cell apoptosis. Our data show that JAK3 mutations are drivers of T-ALL and require the cytokine receptor complex for transformation. These results warrant further investigation of JAK1/JAK3 inhibitors for the treatment of T-ALL.

  18. Immature MEF2C-dysregulated T-cell leukemia patients have an early T-cell precursor acute lymphoblastic leukemia gene signature and typically have non-rearranged T-cell receptors

    PubMed Central

    Zuurbier, Linda; Gutierrez, Alejandro; Mullighan, Charles G.; Canté-Barrett, Kirsten; Gevaert, A. Olivier; de Rooi, Johan; Li, Yunlei; Smits, Willem K.; Buijs-Gladdines, Jessica G.C.A.M.; Sonneveld, Edwin; Look, A. Thomas; Horstmann, Martin; Pieters, Rob; Meijerink, Jules P.P.

    2014-01-01

    Three distinct immature T-cell acute lymphoblastic leukemia entities have been described including cases that express an early T-cell precursor immunophenotype or expression profile, immature MEF2C-dysregulated T-cell acute lymphoblastic leukemia cluster cases based on gene expression analysis (immature cluster) and cases that retain non-rearranged TRG@ loci. Early T-cell precursor acute lymphoblastic leukemia cases exclusively overlap with immature cluster samples based on the expression of early T-cell precursor acute lymphoblastic leukemia signature genes, indicating that both are featuring a single disease entity. Patients lacking TRG@ rearrangements represent only 40% of immature cluster cases, but no further evidence was found to suggest that cases with absence of bi-allelic TRG@ deletions reflect a distinct and even more immature disease entity. Immature cluster/early T-cell precursor acute lymphoblastic leukemia cases are strongly enriched for genes expressed in hematopoietic stem cells as well as genes expressed in normal early thymocyte progenitor or double negative-2A T-cell subsets. Identification of early T-cell precursor acute lymphoblastic leukemia cases solely by defined immunophenotypic criteria strongly underestimates the number of cases that have a corresponding gene signature. However, early T-cell precursor acute lymphoblastic leukemia samples correlate best with a CD1 negative, CD4 and CD8 double negative immunophenotype with expression of CD34 and/or myeloid markers CD13 or CD33. Unlike various other studies, immature cluster/early T-cell precursor acute lymphoblastic leukemia patients treated on the COALL-97 protocol did not have an overall inferior outcome, and demonstrated equal sensitivity levels to most conventional therapeutic drugs compared to other pediatric T-cell acute lymphoblastic leukemia patients. PMID:23975177

  19. The novel plant-derived agent silvestrol has B-cell selective activity in chronic lymphocytic leukemia and acute lymphoblastic leukemia in vitro and in vivo.

    PubMed

    Lucas, David M; Edwards, Ryan B; Lozanski, Gerard; West, Derek A; Shin, Jungook D; Vargo, Melissa A; Davis, Melanie E; Rozewski, Darlene M; Johnson, Amy J; Su, Bao-Ning; Goettl, Virginia M; Heerema, Nyla A; Lin, Thomas S; Lehman, Amy; Zhang, Xiaoli; Jarjoura, David; Newman, David J; Byrd, John C; Kinghorn, A Douglas; Grever, Michael R

    2009-05-07

    Therapeutic options for advanced B-cell acute lymphoblastic leukemia (ALL) and chronic lymphocytic leukemia (CLL) are limited. Available treatments can also deplete T lymphocytes, leaving patients at risk of life-threatening infections. In the National Cancer Institute cell line screen, the structurally unique natural product silvestrol produces an unusual pattern of cytotoxicity that suggests activity in leukemia and selectivity for B cells. We investigated silvestrol efficacy using primary human B-leukemia cells, established B-leukemia cell lines, and animal models. In CLL cells, silvestrol LC(50) (concentration lethal to 50%) is 6.9 nM at 72 hours. At this concentration, there is no difference in sensitivity of cells from patients with or without the del(17p13.1) abnormality. In isolated cells and whole blood, silvestrol is more cytotoxic toward B cells than T cells. Silvestrol causes early reduction in Mcl-1 expression due to translational inhibition with subsequent mitochondrial damage, as evidenced by reactive oxygen species generation and membrane depolarization. In vivo, silvestrol causes significant B-cell reduction in Emu-Tcl-1 transgenic mice and significantly extends survival of 697 xenograft severe combined immunodeficient (SCID) mice without discernible toxicity. These data indicate silvestrol has efficacy against B cells in vitro and in vivo and identify translational inhibition as a potential therapeutic target in B-cell leukemias.

  20. Modeling T-cell acute lymphoblastic leukemia induced by the SCL and LMO1 oncogenes.

    PubMed

    Tremblay, Mathieu; Tremblay, Cédric S; Herblot, Sabine; Aplan, Peter D; Hébert, Josée; Perreault, Claude; Hoang, Trang

    2010-06-01

    Deciphering molecular events required for full transformation of normal cells into cancer cells remains a challenge. In T-cell acute lymphoblastic leukemia (T-ALL), the genes encoding the TAL1/SCL and LMO1/2 transcription factors are recurring targets of chromosomal translocations, whereas NOTCH1 is activated in >50% of samples. Here we show that the SCL and LMO1 oncogenes collaborate to expand primitive thymocyte progenitors and inhibit later stages of differentiation. Together with pre-T-cell antigen receptor (pre-TCR) signaling, these oncogenes provide a favorable context for the acquisition of activating Notch1 mutations and the emergence of self-renewing leukemia-initiating cells in T-ALL. All tumor cells harness identical and specific Notch1 mutations and Tcrbeta clonal signature, indicative of clonal dominance and concurring with the observation that Notch1 gain of function confers a selective advantage to SCL-LMO1 transgenic thymocytes. Accordingly, a hyperactive Notch1 allele accelerates leukemia onset induced by SCL-LMO1 and bypasses the requirement for pre-TCR signaling. Finally, the time to leukemia induced by the three transgenes corresponds to the time required for clonal expansion from a single leukemic stem cell, suggesting that SCL, LMO1, and Notch1 gain of function, together with an active pre-TCR, might represent the minimum set of complementing events for the transformation of susceptible thymocytes.

  1. Childhood T-cell acute lymphoblastic leukaemia expressing "Ia-like" antigen:" a case report.

    PubMed

    Kupa, A; Beckman, I G; Bradley, J; Moore, H; Thomas, M; Zola, H; Cheney, K; Rice, M; Toogood, I

    1982-01-01

    A 4-year-old girl presenting with vomiting, abdominal pain, and renal failure was found to have gross hepatosplenomegaly, a renal mass, and bilateral pleural effusions. A diagnosis of acute lymphoblastic leukaemia (ALL) was suggested by a peripheral white cell count (WCC) of 119,000 x 10(6)mm3, 57% blasts, 22% lymphocytes, and confirmed by bone marrow examination. Lymphocyte surface marker studies at diagnosis enabled classification as a T-ALL, with a significant proportion of the T cells also bearing receptors for the third component of complement (C3). Seventy-two percent of the peripheral blood mononuclear cells reacted with anti-Ia monoclonal antibody (FMC44), and a smaller proportion (25%) carried receptors for the Fc portion of IgG. The T-classification of this ALL was verified at central nervous system (CNS) relapse and at a subsequent nodal relapse. Double-marker studies on cells from the infiltrated lymph node prepared in suspension confirmed the presence of Ia-positive T cells. The Ia marker is usually a useful discriminant between T and non-T cells in normal and ALL cell populations. The case described here highlights the need for a panel of markers to be used in classification of childhood ALL and supports the suggestion that there is a distinct subtype of Ia-positive T-ALL.

  2. CLO: The cell line ontology

    PubMed Central

    2014-01-01

    Background Cell lines have been widely used in biomedical research. The community-based Cell Line Ontology (CLO) is a member of the OBO Foundry library that covers the domain of cell lines. Since its publication two years ago, significant updates have been made, including new groups joining the CLO consortium, new cell line cells, upper level alignment with the Cell Ontology (CL) and the Ontology for Biomedical Investigation, and logical extensions. Construction and content Collaboration among the CLO, CL, and OBI has established consensus definitions of cell line-specific terms such as ‘cell line’, ‘cell line cell’, ‘cell line culturing’, and ‘mortal’ vs. ‘immortal cell line cell’. A cell line is a genetically stable cultured cell population that contains individual cell line cells. The hierarchical structure of the CLO is built based on the hierarchy of the in vivo cell types defined in CL and tissue types (from which cell line cells are derived) defined in the UBERON cross-species anatomy ontology. The new hierarchical structure makes it easier to browse, query, and perform automated classification. We have recently added classes representing more than 2,000 cell line cells from the RIKEN BRC Cell Bank to CLO. Overall, the CLO now contains ~38,000 classes of specific cell line cells derived from over 200 in vivo cell types from various organisms. Utility and discussion The CLO has been applied to different biomedical research studies. Example case studies include annotation and analysis of EBI ArrayExpress data, bioassays, and host-vaccine/pathogen interaction. CLO’s utility goes beyond a catalogue of cell line types. The alignment of the CLO with related ontologies combined with the use of ontological reasoners will support sophisticated inferencing to advance translational informatics development. PMID:25852852

  3. The prognosis of CALM-AF10-positive adult T-cell acute lymphoblastic leukemias depends on the stage of maturation arrest.

    PubMed

    Ben Abdelali, Raouf; Asnafi, Vahid; Petit, Arnaud; Micol, Jean-Baptiste; Callens, Céline; Villarese, Patrick; Delabesse, Eric; Reman, Oumedaly; Lepretre, Stephane; Cahn, Jean-Yves; Guillerm, Gaelle; Berthon, Céline; Gardin, Claude; Corront, Bernadette; Leguay, Thibaut; Béné, Marie-Christine; Ifrah, Norbert; Leverger, Guy; Dombret, Hervé; Macintyre, Elizabeth

    2013-11-01

    CALM-AF10 (also known as PICALM-MLLT10) is the commonest fusion protein in T-cell acute lymphoblastic leukemia, but its prognostic impact remains unclear. Molecular screening at diagnosis identified CALM-AF10 in 30/431 (7%) patients with T-cell acute lymphoblastic leukemia aged 16 years and over and in 15/234 (6%) of those aged up to 15 years. Adult CALM-AF10-positive patients were predominantly (72%) negative for surface (s)CD3/T-cell receptor, whereas children were predominantly (67%) positive for T-cell receptor. Among 22 adult CALM-AF10-positive patients treated according to the LALA94/GRAALL03-05 protocols, the poor prognosis for event-free survival (P=0.0017) and overall survival (P=0.0014) was restricted to the 15 T-cell receptor-negative cases. Among CALM-AF10-positive, T-cell receptor-negative patients, 82% had an early T-cell precursor phenotype, reported to be of poor prognosis in pediatric T-cell acute lymphoblastic leukemia. Early T-cell precursor acute lymphoblastic leukemia corresponded to 22% of adult LALA94/GRAALL03-05 T-cell acute lymphoblastic leukemias, but had no prognostic impact per se. CALM-AF10 fusion within early T-cell precursor acute lymphoblastic leukemia (21%) did, however, identify a group with a poor prognosis with regards to event-free survival (P=0.04). CALM-AF10 therefore identifies a poor prognostic group within sCD3/T-cell receptor negative adult T-cell acute lymphoblastic leukemias and is over-represented within early T-cell precursor acute lymphoblastic leukemias, in which it identifies patients in whom treatment is likely to fail. Its prognosis and overlap with early T-cell precursor acute lymphoblastic leukemia in pediatric T-cell acute lymphoblastic leukemia merits analysis. The clinical trial GRAALL was registered at Clinical Trials.gov number NCT00327678.

  4. MicroRNA-101 regulates T-cell acute lymphoblastic leukemia progression and chemotherapeutic sensitivity by targeting Notch1.

    PubMed

    Qian, Lu; Zhang, Wanggang; Lei, Bo; He, Aili; Ye, Lianhong; Li, Xingzhou; Dong, Xin

    2016-11-01

    The present study aimed to investigate the role of microRNA (miR)-101 in acute lymphoblastic leukemia progression and chemoresistance. Furthermore, a novel target gene of miR-101 was identified. Here, we confirmed that miR-101 was significantly downregulated in the blood samples of patients with T-cell acute lymphoblastic leukemia (T-ALL) compared with the healthy controls, as determined by reverse transcription quantitative polymerase chain reaction (RTqPCR) analysis. The in vitro experiments demonstrated that miR-101 significantly repressed the proliferation and invasion, and induced potent apoptosis in Jurkat cells, as determined by CCK-8, flow cytometer and cell invasion assays. Luciferase assay confirmed that Notch1 was a target gene of miR-101, and western blotting showed that miR-101 suppressed the expression of Notch1 at the protein level. Moreover, functional restoration assays revealed that Notch1 mediates the effects of miR-101 on Jurkat cell proliferation, apoptosis and invasion. miR-101 enhanced the sensitivity of Jurkat cells to the chemotherapeutic agent adriamycin. Taken together, our results show for the first time that miR-101 acts as a tumor suppressor in T-cell acute lymphoblastic leukaemia and it could enhance chemotherapeutic sensitivity. Furthermore, Notch1 was identified to be a novel target of miR-101. This study indicates that miR-101 may represent a potential therapeutic target for T-cell acute lymphoblastic leukemia intervention.

  5. CAR T Cell Therapy in Acute Lymphoblastic Leukemia and Potential for Chronic Lymphocytic Leukemia.

    PubMed

    Singh, Nathan; Frey, Noelle V; Grupp, Stephan A; Maude, Shannon L

    2016-06-01

    Adoptive transfer of autologous T cells engineered to express a chimeric antigen receptor (CAR) represents a powerful targeted immunotherapy that has shown great promise in some of the most refractory leukemias. CAR-modified T cells directed against CD19 have led the way, setting a high standard with remission rates as high as 90 % in clinical trials for relapsed/refractory acute lymphoblastic leukemia (ALL). Yet, the first demonstration of efficacy was in another disease, chronic lymphocytic leukemia (CLL), in which CD19-targeted CAR T cells eradicated bulky, highly refractory disease. Despite early encouraging results, clinical trials in CLL have yielded lower response rates, revealing disease-specific differences in response in this form of immunotherapy. Ongoing research focused on identifying and overcoming these limitations, promises to improve response rates. Beyond the induction of remission, the transformative impact of engineered T cell therapy lies in its potential for long-term disease control. With longer follow-up and durable T cell persistence now reported, we are closer to answering the question of whether sustained remissions are possible with CAR T cell monotherapy. As might be expected with a highly effective therapy using a single mechanism of action, escape pathways have emerged. Combinatorial approaches are needed to anticipate and prevent this mode of relapse. Lastly, toxicity management is vital to ensure the safety of this exciting cancer immunotherapy.

  6. Redirecting T cells with Chimeric Antigen Receptor (CAR) for the treatment of childhood acute lymphoblastic leukemia.

    PubMed

    Biondi, Andrea; Magnani, Chiara F; Tettamanti, Sarah; Gaipa, Giuseppe; Biagi, Ettore

    2017-08-23

    Acute lymphoblastic leukemia (ALL) is the most common cancer in children. Nowadays the survival rate is around 85%. Nevertheless, an urgent clinical need is still represented by primary refractory and relapsed patients who do not significantly benefit from standard approaches, including chemo-radiotherapy and hematopoietic stem cell transplantation (HSCT). For this reason, immunotherapy has so far represented a challenging novel treatment opportunity, including, as the most validated therapeutic options, cancer vaccines, donor-lymphocyte infusions and tumor-specific immune effector cells. More recently, unexpected positive clinical results in ALL have been achieved by application of gene-engineered chimeric antigen expressing (CAR) T cells. Several CAR designs across different trials have generated similar response rates, with Complete Response (CR) of 60-90% at 1 month and an Event-Free Survival (EFS) of 70% at 6 months. Relevant challenges anyway remain to be addressed, such as amelioration of technical, cost and feasibility aspects of cell and gene manipulation and the necessity to face the occurrence of relapse mechanisms. This review describes the state of the art of ALL immunotherapies, the novelties in terms of gene manipulation approaches and the problems emerged from early clinical studies. We describe and discuss the process of clinical translation, including the design of a cell manufacturing protocol, vector production and regulatory issues. Multiple antigen targeting and combination of CAR T cells with molecular targeted drugs have also been evaluated as latest strategies to prevail over immune-evasion. Copyright © 2017. Published by Elsevier Ltd.

  7. An epigenetic mechanism of resistance to targeted therapy in T cell acute lymphoblastic leukemia.

    PubMed

    Knoechel, Birgit; Roderick, Justine E; Williamson, Kaylyn E; Zhu, Jiang; Lohr, Jens G; Cotton, Matthew J; Gillespie, Shawn M; Fernandez, Daniel; Ku, Manching; Wang, Hongfang; Piccioni, Federica; Silver, Serena J; Jain, Mohit; Pearson, Daniel; Kluk, Michael J; Ott, Christopher J; Shultz, Leonard D; Brehm, Michael A; Greiner, Dale L; Gutierrez, Alejandro; Stegmaier, Kimberly; Kung, Andrew L; Root, David E; Bradner, James E; Aster, Jon C; Kelliher, Michelle A; Bernstein, Bradley E

    2014-04-01

    The identification of activating NOTCH1 mutations in T cell acute lymphoblastic leukemia (T-ALL) led to clinical testing of γ-secretase inhibitors (GSIs) that prevent NOTCH1 activation. However, responses to these inhibitors have been transient, suggesting that resistance limits their clinical efficacy. Here we modeled T-ALL resistance, identifying GSI-tolerant 'persister' cells that expand in the absence of NOTCH1 signaling. Rare persisters are already present in naive T-ALL populations, and the reversibility of their phenotype suggests an epigenetic mechanism. Relative to GSI-sensitive cells, persister cells activate distinct signaling and transcriptional programs and exhibit chromatin compaction. A knockdown screen identified chromatin regulators essential for persister viability, including BRD4. BRD4 binds enhancers near critical T-ALL genes, including MYC and BCL2. The BRD4 inhibitor JQ1 downregulates expression of these targets and induces growth arrest and apoptosis in persister cells, at doses well tolerated by GSI-sensitive cells. Consistently, the GSI-JQ1 combination was found to be effective against primary human leukemias in vivo. Our findings establish a role for epigenetic heterogeneity in leukemia resistance that may be addressed by incorporating epigenetic modulators in combination therapy.

  8. Targeting oncogenic interleukin-7 receptor signalling with N-acetylcysteine in T cell acute lymphoblastic leukaemia.

    PubMed

    Mansour, Marc R; Reed, Casie; Eisenberg, Amy R; Tseng, Jen-Chieh; Twizere, Jean-Claude; Daakour, Sarah; Yoda, Akinori; Rodig, Scott J; Tal, Noa; Shochat, Chen; Berezovskaya, Alla; DeAngelo, Daniel J; Sallan, Stephen E; Weinstock, David M; Izraeli, Shai; Kung, Andrew L; Kentsis, Alex; Look, A Thomas

    2015-01-01

    Activating mutations of the interleukin-7 receptor (IL7R) occur in approximately 10% of patients with T cell acute lymphoblastic leukaemia (T-ALL). Most mutations generate a cysteine at the transmembrane domain leading to receptor homodimerization through disulfide bond formation and ligand-independent activation of STAT5. We hypothesized that the reducing agent N-acetylcysteine (NAC), a well-tolerated drug used widely in clinical practice to treat acetaminophen overdose, would reduce disulfide bond formation, and inhibit mutant IL7R-mediated oncogenic signalling. We found that treatment with NAC disrupted IL7R homodimerization in IL7R-mutant DND-41 cells as assessed by non-reducing Western blot, as well as in a luciferase complementation assay. NAC led to STAT5 dephosphorylation and cell apoptosis at clinically achievable concentrations in DND-41 cells, and Ba/F3 cells transformed by an IL7R-mutant construct containing a cysteine insertion. The apoptotic effects of NAC could be rescued in part by a constitutively active allele of STAT5. Despite using doses lower than those tolerated in humans, NAC treatment significantly inhibited the progression of human DND-41 cells engrafted in immunodeficient mice. Thus, targeting leukaemogenic IL7R homodimerization with NAC offers a potentially effective and feasible therapeutic strategy that warrants testing in patients with T-ALL.

  9. Mitochondrial Permeability and Toxicity of Di ethylhexyl and Mono ethylhexyl Phthalates on TK6 Human Lymphoblasts Cells

    PubMed Central

    Rosado-Berrios, Carlos A.; Vélez, Christian; Zayas, Beatriz

    2011-01-01

    Phthalates are ubiquitous compounds used in the manufacturing industry. Some are known endocrine disruptors, acting as xenoestrogens, others induce reproductive toxicity and damage to DNA among other effects. Studies on apoptosis induction and mitochondrial damage capacity of phthalates on the immune system are limited. This study aims to determine cell viability inhibition and apoptosis induction of diethylhexyl phthalate (DEHP) and monoethylhexyl phthalate (MEHP) on the human TK6 lymphoblast cell line at concentrations found in the environment. Key hallmark events, such as mitochondrial membrane permeability, generation of reactive oxygen species (ROS) and activation of caspase 3 and 7 were measured. Concentrations that inhibit viability of 50% (IC50) of the cells were determined at 24, 48 and 72 hours with doses ranging from 10μM to 500μM. Changes in mitochondrial membrane permeability, ROS generation and activation of caspases 3 and 7, were measured as part of the cell death mechanism. The IC50 at 24 hours was approximately 250 μM for both phthalates; at 48 hours were 234μM and 196μM for DEHP and MEHP, respectively and at 72 hours IC50s were 100 μM and 80 μM for DEHP and MEHP respectively. Overall the longer the time of exposure the lower the IC50's for both compounds. Both compounds affected mitochondrial membrane potential, promoted ROS generation and activated caspases 3 and 7. MEHP is more toxic, promotes higher level of ROS production and caspases activation. Our findings suggest that DEHP and MEHP have the capacity to induce apoptosis in cells of the immune system at concentrations found in the environment. PMID:21864672

  10. Early T-cell precursor acute lymphoblastic leukaemia in children treated in AIEOP centres with AIEOP-BFM protocols: a retrospective analysis.

    PubMed

    Conter, Valentino; Valsecchi, Maria Grazia; Buldini, Barbara; Parasole, Rosanna; Locatelli, Franco; Colombini, Antonella; Rizzari, Carmelo; Putti, Maria Caterina; Barisone, Elena; Lo Nigro, Luca; Santoro, Nicola; Ziino, Ottavio; Pession, Andrea; Testi, Anna Maria; Micalizzi, Concetta; Casale, Fiorina; Pierani, Paolo; Cesaro, Simone; Cellini, Monica; Silvestri, Daniela; Cazzaniga, Giovanni; Biondi, Andrea; Basso, Giuseppe

    2016-02-01

    Early T-cell precursor acute lymphoblastic leukaemia was recently recognised as a distinct leukaemia and reported as associated with poor outcomes. We aimed to assess the outcome of early T-cell precursor acute lymphoblastic leukaemia in patients from the Italian Association of Pediatric Hematology Oncology (AIEOP) centres treated with AIEOP-Berlin-Frankfurt-Münster (AIEOP-BFM) protocols. In this retrospective analysis, we included all children aged from 1 to less than 18 years with early T-cell precursor acute lymphoblastic leukaemia immunophenotype diagnosed between Jan 1, 2008, and Oct 31, 2014, from AIEOP centres. Early T-cell precursors were defined as being CD1a and CD8 negative, CD5 weak positive or negative, and positive for at least one of the following antigens: CD34, CD117, HLADR, CD13, CD33, CD11b, or CD65. Treatment was based on AIEOP-BFM acute lymphoblastic leukaemia 2000 (NCT00613457) or AIEOP-BFM acute lymphoblastic leukaemia 2009 protocols (European Clinical Trials Database 2007-004270-43). The main differences in treatment and stratification of T-cell acute lymphoblastic leukaemia between the two protocols were that in the 2009 protocol only, pegylated L-asparaginase was substituted for Escherichia coli L-asparaginase, patients with prednisone poor response received an additional dose of cyclophosphamide at day 10 of phase IA, and high minimal residual disease at day 15 assessed by flow cytometry was used as a high-risk criterion. Outcomes were assessed in terms of event-free survival, disease-free survival, and overall survival. Early T-cell precursor acute lymphoblastic leukaemia was diagnosed in 49 patients. Compared with overall T-cell acute lymphoblastic leukaemia, it was associated with absence of molecular markers for PCR detection of minimal residual disease in 25 (56%) of 45 patients; prednisone poor response in 27 (55%) of 49 patients; high minimal residual disease at day 15 after starting therapy in 25 (64%) of 39 patients (bone marrow

  11. Chimeric antigen receptor-engineered cytokine-induced killer cells overcome treatment resistance of pre-B-cell acute lymphoblastic leukemia and enhance survival.

    PubMed

    Oelsner, Sarah; Wagner, Juliane; Friede, Miriam E; Pfirrmann, Verena; Genßler, Sabrina; Rettinger, Eva; Buchholz, Christian J; Pfeifer, Heike; Schubert, Ralf; Ottmann, Oliver G; Ullrich, Evelyn; Bader, Peter; Wels, Winfried S

    2016-10-15

    Pre-emptive cancer immunotherapy by donor lymphocyte infusion (DLI) using cytokine-induced killer (CIK) cells may be beneficial to prevent relapse with a reduced risk of causing graft-versus-host-disease. CIK cells are a heterogeneous effector cell population including T cells (CD3(+) CD56(-) ), natural killer (NK) cells (CD3(-) CD56(+) ) and natural killer T (T-NK) cells (CD3(+) CD56(+) ) that exhibit non-major histocompatibility complex (MHC)-restricted cytotoxicity and are generated by ex vivo expansion of peripheral blood mononuclear cells in the presence of interferon (IFN)-γ, anti-CD3 antibody, interleukin-2 (IL-2) and interleukin-15 (IL-15). To facilitate selective target-cell recognition and enhance specific cytotoxicity against B-cell acute lymphoblastic leukemia (B-ALL), we transduced CIK cells with a lentiviral vector encoding a chimeric antigen receptor (CAR) that carries a composite CD28-CD3ζ domain for signaling and a CD19-specific scFv antibody fragment for cell binding (CAR 63.28.z). In vitro analysis revealed high and specific cell killing activity of CD19-targeted CIK/63.28.z cells against otherwise CIK-resistant cancer cell lines and primary B-ALL blasts, which was dependent on CD19 expression and CAR signaling. In a xenograft model in immunodeficient mice, treatment with CIK/63.28.z cells in contrast to therapy with unmodified CIK cells resulted in complete and durable molecular remissions of established primary pre-B-ALL. Our results demonstrate potent antileukemic activity of CAR-engineered CIK cells in vitro and in vivo, and suggest this strategy as a promising approach for adoptive immunotherapy of refractory pre-B-ALL. © 2016 UICC.

  12. DNA methylation analysis of bone marrow cells at diagnosis of acute lymphoblastic leukemia and at remission.

    PubMed

    Nordlund, Jessica; Milani, Lili; Lundmark, Anders; Lönnerholm, Gudmar; Syvänen, Ann-Christine

    2012-01-01

    To detect genes with CpG sites that display methylation patterns that are characteristic of acute lymphoblastic leukemia (ALL) cells, we compared the methylation patterns of cells taken at diagnosis from 20 patients with pediatric ALL to the methylation patterns in mononuclear cells from bone marrow of the same patients during remission and in non-leukemic control cells from bone marrow or blood. Using a custom-designed assay, we measured the methylation levels of 1,320 CpG sites in regulatory regions of 413 genes that were analyzed because they display allele-specific gene expression (ASE) in ALL cells. The rationale for our selection of CpG sites was that ASE could be the result of allele-specific methylation in the promoter regions of the genes. We found that the ALL cells had methylation profiles that allowed distinction between ALL cells and control cells. Using stringent criteria for calling differential methylation, we identified 28 CpG sites in 24 genes with recurrent differences in their methylation levels between ALL cells and control cells. Twenty of the differentially methylated genes were hypermethylated in the ALL cells, and as many as nine of them (AMICA1, CPNE7, CR1, DBC1, EYA4, LGALS8, RYR3, UQCRFS1, WDR35) have functions in cell signaling and/or apoptosis. The methylation levels of a subset of the genes were consistent with an inverse relationship with the mRNA expression levels in a large number of ALL cells from published data sets, supporting a potential biological effect of the methylation signatures and their application for diagnostic purposes.

  13. Identification of FOXM1 as a therapeutic target in B-cell lineage acute lymphoblastic leukaemia

    PubMed Central

    Buchner, Maike; Park, Eugene; Geng, Huimin; Klemm, Lars; Flach, Johanna; Passegué, Emmanuelle; Schjerven, Hilde; Melnick, Ari; Paietta, Elisabeth; Kopanja, Dragana; Raychaudhuri, Pradip; Müschen, Markus

    2015-01-01

    Despite recent advances in the cure rate of acute lymphoblastic leukaemia (ALL), the prognosis for patients with relapsed ALL remains poor. Here we identify FOXM1 as a candidate responsible for an aggressive clinical course. We show that FOXM1 levels peak at the pre-B-cell receptor checkpoint but are dispensable for normal B-cell development. Compared with normal B-cell populations, FOXM1 levels are 2- to 60-fold higher in ALL cells and are predictive of poor outcome in ALL patients. FOXM1 is negatively regulated by FOXO3A, supports cell survival, drug resistance, colony formation and proliferation in vitro, and promotes leukemogenesis in vivo. Two complementary approaches of pharmacological FOXM1 inhibition—(i) FOXM1 transcriptional inactivation using the thiazole antibiotic thiostrepton and (ii) an FOXM1 inhibiting ARF-derived peptide—recapitulate the findings of genetic FOXM1 deletion. Taken together, our data identify FOXM1 as a novel therapeutic target, and demonstrate feasibility of FOXM1 inhibition in ALL. PMID:25753524

  14. CD19-targeted chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia.

    PubMed

    Maude, Shannon L; Teachey, David T; Porter, David L; Grupp, Stephan A

    2015-06-25

    Relapsed and refractory acute lymphoblastic leukemia (ALL) remains difficult to treat, with minimal improvement in outcomes seen in more than 2 decades despite advances in upfront therapy and improved survival for de novo ALL. Adoptive transfer of T cells engineered to express a chimeric antigen receptor (CAR) has emerged as a powerful targeted immunotherapy, showing striking responses in highly refractory populations. Complete remission (CR) rates as high as 90% have been reported in children and adults with relapsed and refractory ALL treated with CAR-modified T cells targeting the B-cell-specific antigen CD19. Distinct CAR designs across several studies have produced similar promising CR rates, an encouraging finding. Even more encouraging are durable remissions observed in some patients without additional therapy. Duration of remission and CAR-modified T-cell persistence require further study and more mature follow-up, but emerging data suggest these factors may distinguish CAR designs. Supraphysiologic T-cell proliferation, a hallmark of this therapy, contributes to both efficacy and the most notable toxicity, cytokine release syndrome (CRS), posing a unique challenge for toxicity management. This review will discuss the current landscape of CD19 CAR clinical trials, CRS pathophysiology and management, and remaining challenges. © 2015 by The American Society of Hematology.

  15. Computer aided detection and classification of acute lymphoblastic leukemia cell subtypes based on microscopic image analysis.

    PubMed

    MoradiAmin, Morteza; Memari, Ahmad; Samadzadehaghdam, Nasser; Kermani, Saeed; Talebi, Ardeshir

    2016-10-01

    Acute lymphoblastic leukemia (ALL) is a cancer that starts from the early version of white blood cells called lymphocytes in the bone marrow. It can spread to different parts of the body rapidly and if not treated, would probably be deadly within a couple of months. Leukemia cells are categorized into three types of L1, L2, and L3. The cancer is detected through screening of blood and bone marrow smears by pathologists. But manual examination of blood samples is a time-consuming and boring procedure as well as limited by human error risks. So to overcome these limitations a computer-aided detection system, capable of discriminating cancer from noncancer cases and identifying the cancerous cell subtypes, seems to be necessary. In this article an automatic detection method is proposed; first cell nucleus is segmented by fuzzy c-means clustering algorithm. Then a rich set of features including geometric, first- and second-order statistical features are obtained from the nucleus. A principal component analysis is used to reduce feature matrix dimensionality. Finally, an ensemble of SVM classifiers with different kernels and parameters is applied to classify cells into four groups, that is noncancerous, L1, L2, and L3. Results show that the proposed method can be used as an assistive diagnostic tool in laboratories.

  16. Signalling thresholds and negative B-cell selection in acute lymphoblastic leukaemia.

    PubMed

    Chen, Zhengshan; Shojaee, Seyedmehdi; Buchner, Maike; Geng, Huimin; Lee, Jae Woong; Klemm, Lars; Titz, Björn; Graeber, Thomas G; Park, Eugene; Tan, Ying Xim; Satterthwaite, Anne; Paietta, Elisabeth; Hunger, Stephen P; Willman, Cheryl L; Melnick, Ari; Loh, Mignon L; Jung, Jae U; Coligan, John E; Bolland, Silvia; Mak, Tak W; Limnander, Andre; Jumaa, Hassan; Reth, Michael; Weiss, Arthur; Lowell, Clifford A; Müschen, Markus

    2015-05-21

    B cells are selected for an intermediate level of B-cell antigen receptor (BCR) signalling strength: attenuation below minimum (for example, non-functional BCR) or hyperactivation above maximum (for example, self-reactive BCR) thresholds of signalling strength causes negative selection. In ∼25% of cases, acute lymphoblastic leukaemia (ALL) cells carry the oncogenic BCR-ABL1 tyrosine kinase (Philadelphia chromosome positive), which mimics constitutively active pre-BCR signalling. Current therapeutic approaches are largely focused on the development of more potent tyrosine kinase inhibitors to suppress oncogenic signalling below a minimum threshold for survival. We tested the hypothesis that targeted hyperactivation--above a maximum threshold--will engage a deletional checkpoint for removal of self-reactive B cells and selectively kill ALL cells. Here we find, by testing various components of proximal pre-BCR signalling in mouse BCR-ABL1 cells, that an incremental increase of Syk tyrosine kinase activity was required and sufficient to induce cell death. Hyperactive Syk was functionally equivalent to acute activation of a self-reactive BCR on ALL cells. Despite oncogenic transformation, this basic mechanism of negative selection was still functional in ALL cells. Unlike normal pre-B cells, patient-derived ALL cells express the inhibitory receptors PECAM1, CD300A and LAIR1 at high levels. Genetic studies revealed that Pecam1, Cd300a and Lair1 are critical to calibrate oncogenic signalling strength through recruitment of the inhibitory phosphatases Ptpn6 (ref. 7) and Inpp5d (ref. 8). Using a novel small-molecule inhibitor of INPP5D (also known as SHIP1), we demonstrated that pharmacological hyperactivation of SYK and engagement of negative B-cell selection represents a promising new strategy to overcome drug resistance in human ALL.

  17. IKAROS Gene Deleted B-Cell Acute Lymphoblastic Leukemia in Mexican Mestizos: Observations in Seven Patients and a Short Review of the Literature.

    PubMed

    Ruiz-Delgado, Guillermo José; Cantero-Fortiz, Yahveth; León-Peña, Andrés Aurelio; León-González, Mónica; Nuñez-Cortés, Ana Karen; Ruiz-Argüelles, Guillermo José

    2016-01-01

    In B-cell acute lymphoblastic leukemia, one of the most frequent cytogenetic alterations is the presence of the Philadelphia chromosome. Recently, newly identified genetic alterations have been studied, among them the IKZF1 deletion. IKZF1 encodes IKAROS, a zinc finger protein that plays an important role in hematopoiesis involving the regulation process of adhesion, cellular migration, and as a tumor suppressor. We aimed to study the impact of IKAROS deletion in the evolution and prognosis of B-cell acute lymphoblastic leukemia. At a single center we prospectively studied patients diagnosed with B-cell acute lymphoblastic leukemia and screened for IKZF1 deletion using the multiplex ligation-dependent probe amplification method. We did a descriptive analysis of patients positive for the IKZF1 deletion to determine its impact on the evolution of the disease and survival rate. Between 2010 and 2015, 16 Mexican mestizo patients with B-cell acute lymphoblastic leukemia were prospectively screened for IKZF1 deletion; seven (43%) were positive and were included for further analysis. The age range of patients was 13-60 years; six were males and one female. All cases had type B acute lymphoblastic leukemia. Of the seven patients, two died, three were lost to follow-up, and two continue in complete remission with treatment. Results are worse than those in a group of patients with non-mutated IKAROS B-cell acute lymphoblastic leukemia previously studied in our center. Although this is a small sample, the presence of IKAROS deletion in acute lymphoblastic leukemia patients could represent a poor-prognosis marker and was probably related to therapy failure. It is also possible that this variant of leukemia may be more prevalent in Mexico. More studies are needed to define the role of IKZF1 deletion in acute lymphoblastic leukemia and the real prevalence of the disease in different populations.

  18. Burkitt-Type Acute Lymphoblastic Leukemia With Precursor B-Cell Immunophenotype and Partial Tetrasomy of 1q

    PubMed Central

    Sato, Yuya; Kurosawa, Hidemitsu; Fukushima, Keitaro; Okuya, Mayuko; Arisaka, Osamu

    2016-01-01

    Abstract Burkitt-type acute lymphoblastic leukemia (B-ALL) is thought as a variant of Burkitt lymphoma/leukemia and derived from mature B-cell lymphoblast. B-ALL was developed in a 10-year-old girl. Two characteristics were apparent in this case. First, the lymphoblastic cells were positive for CD10, CD19, CD20, and CD22, but negative for terminal deoxynucleotidyl transferase and surface immunoglobulins, indicating a B-cell immunophenotype. The detection of t(8;14)(q24;q32) with a chromosomal analysis is required for a diagnosis of B-ALL. Second, der(1)(pter → q32.1::q32.1 → q21.1::q11 → qter) was detected, in which 1q21.1 to 1q32.1 was inverted and inserted. Finally, partial tetrasomy of 1q was also present. Because B-ALL with abnormal chromosome 1 has been reported poor outcome, the usual chemotherapy for stage 4 Burkitt lymphoma with added rituximab was administered for our patient. We report B-ALL with precursor B-cell immunophenotype and interesting partial tetrasomy of 1q. PMID:26962787

  19. A novel copper(I) complex induces ER-stress-mediated apoptosis and sensitizes B-acute lymphoblastic leukemia cells to chemotherapeutic agents

    PubMed Central

    Porcù, Elena; Consolaro, Francesca; Marzano, Cristina; Pellei, Maura; Gandin, Valentina; Basso, Giuseppe

    2014-01-01

    A phosphine copper(I) complex [Cu(thp)4][PF6] (CP) was recently identified as an efficient in vitro antitumor agent. In this study, we evaluated the antiproliferative activity of CP in leukemia cell lines finding a significant efficacy, especially against SEM and RS4;11 cells. Immunoblot analysis showed the activation of caspase-12 and caspase-9 and of the two effector caspase-3 and -7, suggesting that cell death occurred in a caspase-dependent manner. Interestingly we did not observe mitochondrial involvement in the process of cell death. Measures on semipurified proteasome from RS4;11 and SEM cell extracts demonstrated that chymotrypsin-, trypsin- and caspase-like activity decreased in the presence of CP. Moreover, we found an accumulation of ubiquitinated proteins and a remarkable increase of ER stress markers: GRP78, CHOP, and the spliced form of XBP1. Accordingly, the protein synthesis inhibitor cycloheximide significantly protected cancer cells from CP-induced cell death, suggesting that protein synthesis machinery was involved. In well agreement with results obtained on stabilized cell lines, CP induced ER-stress and apoptosis also in primary cells from B-acute lymphoblastic leukemia patients. Importantly, we showed that the combination of CP with some chemotherapeutic drugs displayed a good synergy that strongly affected the survival of both RS4;11 and SEM cells. PMID:24980813

  20. SYK as a New Therapeutic Target in B-Cell Precursor Acute Lymphoblastic Leukemia

    PubMed Central

    Uckun, Fatih M.; Qazi, Sanjive

    2014-01-01

    The identification of SYK as a master regulator of apoptosis controlling the activation of the PI3-K/AKT, NFκB, and STAT3 pathways—three major anti-apoptotic signaling pathways in B-lineage leukemia/lymphoma cells—prompts the hypothesis that rationally designed inhibitors targeting SYK may overcome the resistance of malignant B-lineage lymphoid cells to apoptosis and thereby provide the foundation for more effective multi-modality treatment regimens for poor prognosis B-precursor acute lymphoblastic leukemia (BPL). In recent preclinical proof-of-concept studies, a liposomal nanoparticle (LNP) formulation of a SYK substrate-binding site inhibitor, known as C61, has been developed as a nanomedicine candidate against poor prognosis and relapsed BPL. This nanoscale formulation of C61 exhibited a uniquely favorable pharmacokinetics and safety profile in mice, induced apoptosis in radiation-resistant primary leukemic cells taken directly from BPL patients as well as in vivo clonogenic BPL xenograft cells, destroyed the leukemic stem cell fraction of BPL blasts, and exhibited potent in vivo anti-leukemic activity in xenograft models of aggressive BPL. Further development of C61-LNP may provide the foundation for new and effective treatment strategies against therapy-refractory BPL. PMID:24851191

  1. An epigenetic mechanism of resistance to targeted therapy in T-cell acute lymphoblastic leukemia

    PubMed Central

    Knoechel, Birgit; Roderick, Justine E.; Williamson, Kaylyn E.; Zhu, Jiang; Lohr, Jens G.; Cotton, Matthew J.; Gillespie, Shawn M.; Fernandez, Daniel; Ku, Manching; Wang, Hongfang; Piccioni, Federica; Silver, Serena J.; Jain, Mohit; Pearson, Daniel; Kluk, Michael J.; Ott, Christopher J.; Shultz, Leonard D.; Brehm, Michael A.; Greiner, Dale L.; Gutierrez, Alejandro; Stegmaier, Kimberly; Kung, Andrew L.; Root, David E.; Bradner, James E.; Aster, Jon C.; Kelliher, Michelle A.; Bernstein, Bradley E.

    2014-01-01

    The identification of activating NOTCH1 mutations in T-cell acute lymphoblastic leukemia (T-ALL) led to clinical testing of γ-secretase inhibitors (GSI) that prevent NOTCH1 activation1–3. However, responses have been transient4,5, suggesting that resistance limits clinical efficacy. Here we modeled T-ALL resistance, identifying GSI-tolerant ‘persister’ cells that expand in the absence of NOTCH signaling. Rare persisters are already present in naïve T-ALL populations, and the reversibility of the phenotype suggests an epigenetic mechanism. Relative to GSI-sensitive cells, persisters activate distinct signaling and transcriptional programs, and exhibit chromatin compaction. A knockdown screen identified chromatin regulators essential for persister viability, including BRD4. BRD4 binds enhancers near critical T-ALL genes, including MYC and BCL2. The BRD4 inhibitor JQ1 down-regulates these targets and induces growth arrest and apoptosis in persisters, at doses well tolerated by GSI-sensitive cells. Consistently, the GSI-JQ1 combination was found to be effective against primary human leukemias in vivo. Our findings establish a role for epigenetic heterogeneity in leukemia resistance that may be addressed by incorporating epigenetic modulators in combination therapy. PMID:24584072

  2. Altered neutrophil immunophenotypes in childhood B-cell precursor acute lymphoblastic leukemia

    PubMed Central

    Oliveira, Elen; Bacelar, Thiago S.; Ciudad, Juana; Ribeiro, Maria Cecília M.; Garcia, Daniela R.N.; Sedek, Lukasz; Maia, Simone F.; Aranha, Daniel B.; Machado, Indyara C.; Ikeda, Arissa; Baglioli, Bianca F.; Lopez-Duarte, Nathalia; Teixeira, Lisandra A. C.; Szczepanski, Tomasz; Silva, Maria Luiza M.; Land, Marcelo G.P.

    2016-01-01

    An increasing number of evidences suggest a genetic predisposition in acute lymphoblastic leukemia (ALL) that might favor the occurrence of the driver genetic alterations. Such genetic background might also translate into phenotypic alterations of residual hematopoietic cells. Whether such phenotypic alterations are present in bone marrow (BM) cells from childhood B-cell precursor (BCP)-ALL remains to be investigated. Here we analyzed the immunophenotypic profile of BM and peripheral blood (PB) maturing/matured neutrophils from 118 children with BCP-ALL and their relationship with the features of the disease. Our results showed altered neutrophil phenotypes in most (77%) BCP-ALL cases. The most frequently altered marker was CD10 (53%), followed by CD33 (34%), CD13 (15%), CD15/CD65 (10%) and CD123 (7%). Of note, patients with altered neutrophil phenotypes had younger age (p = 0.03) and lower percentages of BM maturing neutrophils (p = 0.004) together with greater BM lymphocyte (p = 0.04), and mature B-cell (p = 0.03) counts. No significant association was found between an altered neutrophil phenotype and other disease features. These findings point out the potential existence of an altered residual hematopoiesis in most childhood BCP-ALL cases. PMID:27028865

  3. CD19-targeted chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia

    PubMed Central

    Maude, Shannon L.; Teachey, David T.; Porter, David L.

    2015-01-01

    Relapsed and refractory acute lymphoblastic leukemia (ALL) remains difficult to treat, with minimal improvement in outcomes seen in more than 2 decades despite advances in upfront therapy and improved survival for de novo ALL. Adoptive transfer of T cells engineered to express a chimeric antigen receptor (CAR) has emerged as a powerful targeted immunotherapy, showing striking responses in highly refractory populations. Complete remission (CR) rates as high as 90% have been reported in children and adults with relapsed and refractory ALL treated with CAR-modified T cells targeting the B-cell–specific antigen CD19. Distinct CAR designs across several studies have produced similar promising CR rates, an encouraging finding. Even more encouraging are durable remissions observed in some patients without additional therapy. Duration of remission and CAR-modified T-cell persistence require further study and more mature follow-up, but emerging data suggest these factors may distinguish CAR designs. Supraphysiologic T-cell proliferation, a hallmark of this therapy, contributes to both efficacy and the most notable toxicity, cytokine release syndrome (CRS), posing a unique challenge for toxicity management. This review will discuss the current landscape of CD19 CAR clinical trials, CRS pathophysiology and management, and remaining challenges. PMID:25999455

  4. Genomic Profiling of Adult and Pediatric B-cell Acute Lymphoblastic Leukemia.

    PubMed

    Liu, Yuan-Fang; Wang, Bai-Yan; Zhang, Wei-Na; Huang, Jin-Yan; Li, Ben-Shang; Zhang, Ming; Jiang, Lu; Li, Jian-Feng; Wang, Ming-Jie; Dai, Yu-Jun; Zhang, Zi-Guan; Wang, Qiang; Kong, Jie; Chen, Bing; Zhu, Yong-Mei; Weng, Xiang-Qin; Shen, Zhi-Xiang; Li, Jun-Min; Wang, Jin; Yan, Xiao-Jing; Li, Yan; Liang, Ying-Min; Liu, Li; Chen, Xie-Qun; Zhang, Wang-Gang; Yan, Jin-Song; Hu, Jian-Da; Shen, Shu-Hong; Chen, Jing; Gu, Long-Jun; Pei, Deqing; Li, Yongjin; Wu, Gang; Zhou, Xin; Ren, Rui-Bao; Cheng, Cheng; Yang, Jun J; Wang, Kan-Kan; Wang, Sheng-Yue; Zhang, Jinghui; Mi, Jian-Qing; Pui, Ching-Hon; Tang, Jing-Yan; Chen, Zhu; Chen, Sai-Juan

    2016-06-01

    Genomic landscapes of 92 adult and 111 pediatric patients with B-cell acute lymphoblastic leukemia (B-ALL) were investigated using next-generation sequencing and copy number alteration analysis. Recurrent gene mutations and fusions were tested in an additional 87 adult and 93 pediatric patients. Among the 29 newly identified in-frame gene fusions, those involving MEF2D and ZNF384 were clinically relevant and were demonstrated to perturb B-cell differentiation, with EP300-ZNF384 inducing leukemia in mice. Eight gene expression subgroups associated with characteristic genetic abnormalities were identified, including leukemia with MEF2D and ZNF384 fusions in two distinct clusters. In subgroup G4 which was characterized by ERG deletion, DUX4-IGH fusion was detected in most cases. This comprehensive dataset allowed us to compare the features of molecular pathogenesis between adult and pediatric B-ALL and to identify signatures possibly related to the inferior outcome of adults to that of children. We found that, besides the known discrepancies in frequencies of prognostic markers, adult patients had more cooperative mutations and greater enrichment for alterations of epigenetic modifiers and genes linked to B-cell development, suggesting difference in the target cells of transformation between adult and pediatric patients and may explain in part the disparity in their responses to treatment.

  5. A solitary uterine relapse in T-cell Acute Lymphoblastic Leukaemia: CT features and pathologic correlation.

    PubMed

    Mazzei, M A; Bettini, G; Pozzessere, C; Guerrini, S; Defina, M; Ambrosio, M R; Aprile, L; Bocchia, M; Volterrani, L

    2016-01-01

    T-cell Acute Lymphoblastic Leukemia (T-cell ALL) is a rare haematological neoplasia, that affects children and less commonly adults. Female genital tract and particularly uterus involvement in acute ALL is rare. This report presents the CT features of a 64-year-old woman with uterine relapse of T-cell ALL, occurring 11 months after the diagnosis, as a second, unique relapse of disease. The patient was asymptomatic when a CT examination showed a homogenous thickness of the uterine wall in comparison with the previous CT examination. Histology from biopsy specimens, obtained through hysteroscopy, confirmed T-cell ALL localisation (TdT+, CD10+, CD3c+ and CD2+). The uterus could be a site of relapse in patients suffering from ALL. Even though an MRI examination could better demonstrate the disease in cases of suspected female genital tract involvement by ALL, the comparison of differences between a present and a previous CT examination is sufficient to suspect the diagnosis.

  6. miR-664 negatively regulates PLP2 and promotes cell proliferation and invasion in T-cell acute lymphoblastic leukaemia

    SciTech Connect

    Zhu, Hong; Miao, Mei-hua; Ji, Xue-qiang; Xue, Jun; Shao, Xue-jun

    2015-04-03

    MicroRNAs (miRNAs) play important roles in the pathogenesis of many types of cancers by negatively regulating gene expression at posttranscriptional level. However, the role of microRNAs in leukaemia, particularly T-cell acute lymphoblastic leukaemia (T-ALL), has remained elusive. Here, we identified miR-664 and its predicted target gene PLP2 were differentially expressed in T-ALL using bioinformatics methods. In T-ALL cell lines, CCK-8 proliferation assay indicated that the cell proliferation was promoted by miR-664, while miR-664 inhibitor could significantly inhibited the proliferation. Moreover, migration and invasion assay showed that overexpression of miR-664 could significantly promoted the migration and invasion of T-ALL cells, whereas miR-664 inhibitor could reduce cell migration and invasion. luciferase assays confirmed that miR-664 directly bound to the 3'untranslated region of PLP2, and western blotting showed that miR-664 suppressed the expression of PLP2 at the protein levels. This study indicated that miR-664 negatively regulates PLP2 and promotes proliferation and invasion of T-ALL cell lines. Thus, miR-664 may represent a potential therapeutic target for T-ALL intervention. - Highlights: • miR-664 mimics promote the proliferation and invasion of T-ALL cells. • miR-664 inhibitors inhibit the proliferation and invasion of T-ALL cells. • miR-664 targets 3′ UTR of PLP2 in T-ALL cells. • miR-664 negatively regulates PLP2 in T-ALL cells.

  7. Ras activation in normal white blood cells and childhood acute lymphoblastic leukemia.

    PubMed

    von Lintig, F C; Huvar, I; Law, P; Diccianni, M B; Yu, A L; Boss, G R

    2000-05-01

    Ras is an important cellular switch, relaying growth-promoting signals from the plasma membrane to the nucleus. In cultured cells, Ras is activated by various hematopoietic cytokines and growth factors, but the activation state of Ras in peripheral WBCs and bone marrow cells has not been studied nor has Ras activation been assessed in cells from patients with acute lymphoblastic leukemia (ALL). Using an enzyme-based method, we assessed Ras activation in peripheral WBCs, lymphocytes, and bone marrow cells from normal subjects and from children with T-cell ALL (T-ALL) and B-lineage ALL (B-ALL). In normal subjects, we found mean Ras activations of 14.3, 12.5, and 17.2% for peripheral blood WBCs, lymphocytes, and bone marrow cells, respectively. All three of these values are higher than we have found in other normal human cells, compatible with constitutive activation of Ras by cytokines and growth factors present in serum and bone marrow. In 9 of 18 children with T-ALL, Ras activation exceeded two SDs above the mean of the corresponding cells from normal subjects, whereas in none of 11 patients with B-ALL did Ras show increased activation; activating genetic mutations in ras occur in less than 10% of ALL patients. Thus, Ras is relatively activated in peripheral blood WBCs, lymphocytes, and bone marrow cells compared with other normal human cells, and Ras is activated frequently in T-ALL but not in B-ALL. Increased Ras activation in T-ALL compared with B-ALL may contribute to the more aggressive nature of the former disease.

  8. Disturbed CXCR4/CXCL12 axis in paediatric precursor B-cell acute lymphoblastic leukaemia.

    PubMed

    van den Berk, Lieke C J; van der Veer, Arian; Willemse, Marieke E; Theeuwes, Myrte J G A; Luijendijk, Mirjam W; Tong, Wing H; van der Sluis, Inge M; Pieters, Rob; den Boer, Monique L

    2014-07-01

    Malignant cells infiltrating the bone marrow (BM) interfere with normal cellular behaviour of supporting cells, thereby creating a malignant niche. We found that CXCR4-receptor expression was increased in paediatric precursor B-cell acute lymphoblastic leukaemia (BCP-ALL) cells compared with normal mononuclear haematopoietic cells (P < 0·0001). Furthermore, high CXCR4-expression correlated with an unfavourable outcome in BCP-ALL (5-year cumulative incidence of relapse ± standard error: 38·4% ± 6·9% in CXCR4-high versus 12% ± 4·6% in CXCR4-low expressing cases, P < 0·0001). Interestingly, BM levels of the CXCR4-ligand (CXCL12) were 2·7-fold lower (P = 0·005) in diagnostic BCP-ALL samples compared with non-leukaemic controls. Induction chemotherapy restored CXCL12 levels to normal. Blocking the CXCR4-receptor with Plerixafor showed that the lower CXCL12 serum levels at diagnosis could not be explained by consumption by the leukaemic cells, nor did we observe an altered CXCL12-production capacity of BM-mesenchymal stromal cells (BM-MSC) at this time-point. We rather observed that a very high density of leukaemic cells negatively affected CXCL12-production by the BM-MSC while stimulating the secretion levels of granulocyte colony-stimulating factor (G-CSF). These results suggest that highly proliferative leukaemic cells are able to down-regulate secretion of cytokines involved in homing (CXCL12), while simultaneously up-regulating those involved in haematopoietic mobilization (G-CSF). Therefore, interference with the CXCR4/CXCL12 axis may be an effective way to mobilize BCP-ALL cells.

  9. Expression of CD34 and CD7 on human T-cell acute lymphoblastic leukemia discriminates functionally heterogeneous cell populations.

    PubMed

    Gerby, B; Clappier, E; Armstrong, F; Deswarte, C; Calvo, J; Poglio, S; Soulier, J; Boissel, N; Leblanc, T; Baruchel, A; Landman-Parker, J; Roméo, P H; Ballerini, P; Pflumio, F

    2011-08-01

    Leukemia-initiating/repopulating cells (LICs), also named leukemic stem cells, are responsible for propagating human acute leukemia. Although they have been characterized in various leukemias, their role in T-cell acute lymphoblastic leukemia (T-ALL) is unclear. To identify and characterize LICs in T-ALL (T-LIC), we fractionated peripheral blood cell populations from patient samples by flow cytometry into three cell fractions by using two markers: CD34 (a marker of immature cells and LICs) and CD7 (a marker of early T-cell differentiation). We tested these populations in both in vitro culture assays and in vivo for growth and leukemia development in immune-deficient mice. We found LIC activity in CD7(+) cells only as CD34(+)CD7(-) cells contained normal human progenitors and hematopoietic stem cells that differentiated into T, B lymphoid and myeloid cells. In contrast, CD34(+)CD7(+) cells were enriched in LICs, when compared with CD34(-)CD7(+) cells. These CD34(+)CD7(+) cells also proliferated more upon NOTCH activation than CD34(-)CD7(+) cells and were sensitive to dexamethasone and NOTCH inhibitors. These data show that CD34 and CD7 expression in human T-ALL samples help in discriminating heterogeneous cell populations endowed with different LIC activity, proliferation capacity and responses to drugs.

  10. Molecular pathway activation features of pediatric acute myeloid leukemia (AML) and acute lymphoblast leukemia (ALL) cells

    PubMed Central

    Petrov, Ivan; Suntsova, Maria; Mutorova, Olga; Sorokin, Maxim; Garazha, Andrew; Ilnitskaya, Elena; Spirin, Pavel; Larin, Sergey; Zhavoronkov, Alex; Kovalchuk, Olga; Prassolov, Vladimir; Roumiantsev, Alexander; Buzdin, Anton

    2016-01-01

    Acute lymphoblast leukemia (ALL) is characterized by overproduction of immature white blood cells in the bone marrow. ALL is most common in the childhood and has high (>80%) cure rate. In contrast, acute myeloid leukemia (AML) has far greater mortality rate than the ALL and is most commonly affecting older adults. However, AML is a leading cause of childhood cancer mortality. In this study, we compare gene expression and molecular pathway activation patterns in three normal blood, seven pediatric ALL and seven pediatric AML bone marrow samples. We identified 172/94 and 148/31 characteristic gene expression/pathway activation signatures, clearly distinguishing pediatric ALL and AML cells, respectively, from the normal blood. The pediatric AML and ALL cells differed by 139/34 gene expression/pathway activation biomarkers. For the adult 30 AML and 17 normal blood samples, we found 132/33 gene expression/pathway AML-specific features, of which only 7/2 were common for the adult and pediatric AML and, therefore, age-independent. At the pathway level, we found more differences than similarities between the adult and pediatric forms. These findings suggest that the adult and pediatric AMLs may require different treatment strategies. PMID:27870639

  11. Notch is oncogenic dominant in T-cell acute lymphoblastic leukemia

    PubMed Central

    Demarest, Renée M.; Dahmane, Nadia

    2011-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) is a hematologic neoplasm characterized by malignant expansion of immature T cells. Activated NOTCH (NotchIC) and c-MYC expression are increased in a large percentage of human T-ALL tumors. Furthermore, c-MYC has been shown to be a NOTCH target gene. Although activating mutations of Notch have been found in human T-ALL tumors, there is little evidence that the c-MYC locus is altered in this neoplasm. It was previously demonstrated that Notch and c-Myc–regulated genes have a broadly overlapping profile, including genes involved in cell cycle progression and metabolism. Given that Notch and c-Myc appear to function similarly in T-ALL, we sought to determine whether these two oncogenes could substitute for each other in T-ALL tumors. Here we report that NOTCHIC is able to maintain T-ALL tumors formed in the presence of exogenous NOTCHIC and c-MYC when exogenous c-MYC expression is extinguished. In contrast, c-MYC is incapable of maintaining these tumors in the absence of NOTCHIC. We propose that failure of c-MYC to maintain these tumors is the result of p53-mediated apoptosis. These results demonstrate that T-ALL maintenance is dependent on NOTCHIC, but not c-MYC, demonstrating that NOTCH is oncogenic dominant in T-ALL tumors. PMID:21217079

  12. Molecular pathway activation features of pediatric acute myeloid leukemia (AML) and acute lymphoblast leukemia (ALL) cells.

    PubMed

    Petrov, Ivan; Suntsova, Maria; Mutorova, Olga; Sorokin, Maxim; Garazha, Andrew; Ilnitskaya, Elena; Spirin, Pavel; Larin, Sergey; Kovalchuk, Olga; Prassolov, Vladimir; Zhavoronkov, Alex; Roumiantsev, Alexander; Buzdin, Anton

    2016-11-19

    Acute lymphoblast leukemia (ALL) is characterized by overproduction of immature white blood cells in the bone marrow. ALL is most common in the childhood and has high (>80%) cure rate. In contrast, acute myeloid leukemia (AML) has far greater mortality rate than the ALL and is most commonly affecting older adults. However, AML is a leading cause of childhood cancer mortality. In this study, we compare gene expression and molecular pathway activation patterns in three normal blood, seven pediatric ALL and seven pediatric AML bone marrow samples. We identified 172/94 and 148/31 characteristic gene expression/pathway activation signatures, clearly distinguishing pediatric ALL and AML cells, respectively, from the normal blood. The pediatric AML and ALL cells differed by 139/34 gene expression/pathway activation biomarkers. For the adult 30 AML and 17 normal blood samples, we found 132/33 gene expression/pathway AML-specific features, of which only 7/2 were common for the adult and pediatric AML and, therefore, age-independent. At the pathway level, we found more differences than similarities between the adult and pediatric forms. These findings suggest that the adult and pediatric AMLs may require different treatment strategies.

  13. Standardized flow cytometry for highly sensitive MRD measurements in B-cell acute lymphoblastic leukemia.

    PubMed

    Theunissen, Prisca; Mejstrikova, Ester; Sedek, Lukasz; van der Sluijs-Gelling, Alita J; Gaipa, Giuseppe; Bartels, Marius; Sobral da Costa, Elaine; Kotrová, Michaela; Novakova, Michaela; Sonneveld, Edwin; Buracchi, Chiara; Bonaccorso, Paola; Oliveira, Elen; Te Marvelde, Jeroen G; Szczepanski, Tomasz; Lhermitte, Ludovic; Hrusak, Ondrej; Lecrevisse, Quentin; Grigore, Georgiana Emilia; Froňková, Eva; Trka, Jan; Brüggemann, Monika; Orfao, Alberto; van Dongen, Jacques J M; van der Velden, Vincent H J

    2017-01-19

    A fully-standardized EuroFlow 8-color antibody panel and laboratory procedure was stepwise designed to measure minimal residual disease (MRD) in B-cell precursor (BCP) acute lymphoblastic leukemia (ALL) patients with a sensitivity of ≤10(-5), comparable to real-time quantitative polymerase chain reaction (RQ-PCR)-based MRD detection via antigen-receptor rearrangements. Leukocyte markers and the corresponding antibodies and fluorochromes were selected based on their contribution in separating BCP-ALL cells from normal/regenerating BCP cells in multidimensional principal component analyses. After 5 multicenter design-test-evaluate-redesign phases with a total of 319 BCP-ALL patients at diagnosis, two 8-color antibody tubes were selected, which allowed separation between normal and malignant BCP cells in 99% of studied patients. These 2 tubes were tested with a new erythrocyte bulk-lysis protocol allowing acquisition of high cell numbers in 377 bone marrow follow-up samples of 178 BCP-ALL patients. Comparison with RQ-PCR-based MRD data showed a clear positive relation between the percentage concordant cases and the number of cells acquired. For those samples with >4 million cells acquired, concordant results were obtained in 93% of samples. Most discordances were clarified upon high-throughput sequencing of antigen-receptor rearrangements and blind multicenter reanalysis of flow cytometric data, resulting in an unprecedented concordance of 98% (97% for samples with MRD < 0.01%). In conclusion, the fully standardized EuroFlow BCP-ALL MRD strategy is applicable in >98% of patients with sensitivities at least similar to RQ-PCR (≤10(-5)), if sufficient cells (>4 × 10(6), preferably more) are evaluated.

  14. Standardized flow cytometry for highly sensitive MRD measurements in B-cell acute lymphoblastic leukemia

    PubMed Central

    Theunissen, Prisca; Mejstrikova, Ester; Sedek, Lukasz; van der Sluijs-Gelling, Alita J.; Gaipa, Giuseppe; Bartels, Marius; Sobral da Costa, Elaine; Kotrová, Michaela; Novakova, Michaela; Sonneveld, Edwin; Buracchi, Chiara; Bonaccorso, Paola; Oliveira, Elen; te Marvelde, Jeroen G.; Szczepanski, Tomasz; Lhermitte, Ludovic; Hrusak, Ondrej; Lecrevisse, Quentin; Grigore, Georgiana Emilia; Froňková, Eva; Trka, Jan; Brüggemann, Monika; Orfao, Alberto; van der Velden, Vincent H. J.

    2017-01-01

    A fully-standardized EuroFlow 8–color antibody panel and laboratory procedure was stepwise designed to measure minimal residual disease (MRD) in B-cell precursor (BCP) acute lymphoblastic leukemia (ALL) patients with a sensitivity of ≤10−5, comparable to real-time quantitative polymerase chain reaction (RQ-PCR)–based MRD detection via antigen-receptor rearrangements. Leukocyte markers and the corresponding antibodies and fluorochromes were selected based on their contribution in separating BCP-ALL cells from normal/regenerating BCP cells in multidimensional principal component analyses. After 5 multicenter design-test-evaluate-redesign phases with a total of 319 BCP-ALL patients at diagnosis, two 8-color antibody tubes were selected, which allowed separation between normal and malignant BCP cells in 99% of studied patients. These 2 tubes were tested with a new erythrocyte bulk-lysis protocol allowing acquisition of high cell numbers in 377 bone marrow follow-up samples of 178 BCP-ALL patients. Comparison with RQ-PCR–based MRD data showed a clear positive relation between the percentage concordant cases and the number of cells acquired. For those samples with >4 million cells acquired, concordant results were obtained in 93% of samples. Most discordances were clarified upon high-throughput sequencing of antigen-receptor rearrangements and blind multicenter reanalysis of flow cytometric data, resulting in an unprecedented concordance of 98% (97% for samples with MRD < 0.01%). In conclusion, the fully standardized EuroFlow BCP-ALL MRD strategy is applicable in >98% of patients with sensitivities at least similar to RQ-PCR (≤10−5), if sufficient cells (>4 × 106, preferably more) are evaluated. PMID:27903527

  15. Increased Th22 cells as well as Th17 cells in patients with adult T-cell acute lymphoblastic leukemia.

    PubMed

    Tian, Tian; Sun, Yuanxin; Li, Meng; He, Na; Yuan, Cunzhong; Yu, Shuang; Wang, Min; Ji, Chunyan; Ma, Daoxin

    2013-11-15

    Immune regulation is important for the pathogenesis of T-cell acute lymphoblastic leukemia (T-ALL). Th22 cells are recently-identified CD4(+) T cells that implicated in the pathogenesis of many hematological diseases, such as AML. However, the role of Th22 cells in the pathophysiology of T-ALL remains unclear. We examined the Th22, Th17 and Th1 cell frequencies in peripheral blood of T-ALL patients. We studied 24 newly-diagnosed (ND), 17 morphologic complete remission (CR) T-ALL patients and 30 healthy controls. Th subsets were examined by flow cytometry. Plasma IL-22 and IL-17 concentrations were measured by ELISA. Transcription factor RORC, T-bet and AHR mRNA expressions were examined by RT-PCR. Th22, Th17 frequencies, plasma IL-22 concentration and AHR expression were significantly increased in ND or CR T-ALL patients compared with controls. Moreover, Th22 showed positive correlation with Th17 or Th1 cells in T-ALL patients. However, a significant decrease of IL-17 concentration, Th1 frequency and T-bet expression was found in ND or CR ALL patients compared with controls. Furthermore, Th17 cells showed positive correlation but Th1 cells showed negative correlation with white blood cell counts. The profile of Th subsets was distinct for T-ALL patients and showed some correlations with clinical index, which suggest that these Th subsets may be implicated in the pathogenesis of T-ALL and be reasonable targets for therapeutic intervention. © 2013. Published by Elsevier B.V. All rights reserved.

  16. Laboratory Treated T Cells in Treating Patients With Relapsed or Refractory Chronic Lymphocytic Leukemia, Non-Hodgkin Lymphoma, or Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2016-12-08

    CD19-Positive Neoplastic Cells Present; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Chronic Lymphocytic Leukemia; Recurrent Diffuse Large B-Cell Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Non-Hodgkin Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Diffuse Large B-Cell Lymphoma; Refractory Mantle Cell Lymphoma; Refractory Non-Hodgkin Lymphoma; Refractory Small Lymphocytic Lymphoma

  17. Prognostic relevance of pretreatment proliferative rapidity of marrow blast cells in childhood acute lymphoblastic leukaemia.

    PubMed Central

    Trerè, D.; Pession, A.; Basso, G.; Rondelli, R.; Masera, G.; Paolucci, G.; Derenzini, M.

    1994-01-01

    Cell proliferation rate is a well-established prognostic factor in cancer, but it has not been considered to identify the risk group of childhood acute lymphoblastic leukaemia (ALL) at presentation. We carried out a study to demonstrate the prognostic importance of the rapidity of cell proliferation in patients with ALL. To measure the rapidity of cell proliferation we used the parameter relative to the area of silver-stained nucleolar organiser regions (AgNORs) as evaluated by morphometric analysis on smeared marrow blast cells. The mean AgNOR area of leukaemic marrow cells was measured in 119 children. By using a cut-off value of 3 microns2, we identified a group of 91 children with low proliferating blast activity (mean AgNOR value 2.11 microns2) and a group of 28 children with high proliferating activity (mean AgNOR value 3.29 microns2). The group of patients with a mean AgNOR value > 3 microns2 was characterised by a higher number of deaths, more frequent relapse and shorter time interval to relapse than the group of patients with mean AgNOR value < 3 microns2 (P < 0.01). Multivariate analysis performed to include T-cell immunophenotype, FAB morphology, leucocyte count and presence of mediastinal mass showed that the mean AgNOR value was the only independent predictor of unfavourable event-free survival probability (P > 0.01). Our results indicate that the rapidity of marrow blast cell proliferation is an important prognostic parameter in childhood ALL and should be routinely introduced in the group risk definition. Images Figure 1 Figure 2 PMID:7981077

  18. Cytotoxic activity of the casein kinase 2 inhibitor CX-4945 against T-cell acute lymphoblastic leukemia: targeting the unfolded protein response signaling.

    PubMed

    Buontempo, F; Orsini, E; Martins, L R; Antunes, I; Lonetti, A; Chiarini, F; Tabellini, G; Evangelisti, C; Evangelisti, C; Melchionda, F; Pession, A; Bertaina, A; Locatelli, F; McCubrey, J A; Cappellini, A; Barata, J T; Martelli, A M

    2014-03-01

    Constitutively active casein kinase 2 (CK2) signaling is a common feature of T-cell acute lymphoblastic leukemia (T-ALL). CK2 phosphorylates PTEN (phosphatase and tensin homolog) tumor suppressor, resulting in PTEN stabilization and functional inactivation. Downregulation of PTEN activity has an impact on PI3K/Akt/mTOR signaling, which is of fundamental importance for T-ALL cell survival. These observations lend compelling weight to the application of CK2 inhibitors in the therapy of T-ALL. Here, we have analyzed the therapeutic potential of CX-4945-a novel, highly specific, orally available, ATP-competitive inhibitor of CK2α. We show that CX-4945 treatment induced apoptosis in T-ALL cell lines and patient T lymphoblasts. CX-4945 downregulated PI3K/Akt/mTOR signaling in leukemic cells. Notably, CX-4945 affected the unfolded protein response (UPR), as demonstrated by a significant decrease in the levels of the main UPR regulator GRP78/BIP, and led to apoptosis via upregulation of the ER stress/UPR cell death mediators IRE1α and CHOP. In vivo administration of CX-4945 to a subcutaneous xenotransplant model of human T-ALL significantly delayed tumor growth. Our findings indicate that modulation of the ER stress/UPR signaling through CK2 inhibition could be exploited for inducing apoptosis in T-ALL cells and that CX-4945 may be an efficient treatment for those T-ALLs displaying upregulation of CK2α/PI3K/Akt/mTOR signaling.

  19. An early thymic precursor phenotype predicts outcome exclusively in HOXA-overexpressing adult T-cell acute lymphoblastic leukemia: a Group for Research in Adult Acute Lymphoblastic Leukemia study

    PubMed Central

    Bond, Jonathan; Marchand, Tony; Touzart, Aurore; Cieslak, Agata; Trinquand, Amélie; Sutton, Laurent; Radford-Weiss, Isabelle; Lhermitte, Ludovic; Spicuglia, Salvatore; Dombret, Hervé; Macintyre, Elizabeth; Ifrah, Norbert; Hamel, Jean-François; Asnafi, Vahid

    2016-01-01

    Gene expression studies have consistently identified a HOXA-overexpressing cluster of T-cell acute lymphoblastic leukemias, but it is unclear whether these constitute a homogeneous clinical entity, and the biological consequences of HOXA overexpression have not been systematically examined. We characterized the biology and outcome of 55 HOXA-positive cases among 209 patients with adult T-cell acute lymphoblastic leukemia uniformly treated during the Group for Research on Adult Acute Lymphoblastic Leukemia (GRAALL)-2003 and -2005 studies. HOXA-positive patients had markedly higher rates of an early thymic precursor-like immunophenotype (40.8% versus 14.5%, P=0.0004), chemoresistance (59.3% versus 40.8%, P=0.026) and positivity for minimal residual disease (48.5% versus 23.5%, P=0.01) than the HOXA-negative group. These differences were due to particularly high frequencies of chemoresistant early thymic precursor-like acute lymphoblastic leukemia in HOXA-positive cases harboring fusion oncoproteins that transactivate HOXA. Strikingly, the presence of an early thymic precursor-like immunophenotype was associated with marked outcome differences within the HOXA-positive group (5-year overall survival 31.2% in HOXA-positive early thymic precursor versus 66.7% in HOXA-positive non-early thymic precursor, P=0.03), but not in HOXA-negative cases (5-year overall survival 74.2% in HOXA-negative early thymic precursor versus 57.2% in HOXA-negative non-early thymic precursor, P=0.44). Multivariate analysis further revealed that HOXA positivity independently affected event-free survival (P=0.053) and relapse risk (P=0.039) of chemoresistant T-cell acute lymphoblastic leukemia. These results show that the underlying mechanism of HOXA deregulation dictates the clinico-biological phenotype, and that the negative prognosis of early thymic precursor acute lymphoblastic leukemia is exclusive to HOXA-positive patients, suggesting that early treatment intensification is currently

  20. An early thymic precursor phenotype predicts outcome exclusively in HOXA-overexpressing adult T-cell acute lymphoblastic leukemia: a Group for Research in Adult Acute Lymphoblastic Leukemia study.

    PubMed

    Bond, Jonathan; Marchand, Tony; Touzart, Aurore; Cieslak, Agata; Trinquand, Amélie; Sutton, Laurent; Radford-Weiss, Isabelle; Lhermitte, Ludovic; Spicuglia, Salvatore; Dombret, Hervé; Macintyre, Elizabeth; Ifrah, Norbert; Hamel, Jean-François; Asnafi, Vahid

    2016-06-01

    Gene expression studies have consistently identified a HOXA-overexpressing cluster of T-cell acute lymphoblastic leukemias, but it is unclear whether these constitute a homogeneous clinical entity, and the biological consequences of HOXA overexpression have not been systematically examined. We characterized the biology and outcome of 55 HOXA-positive cases among 209 patients with adult T-cell acute lymphoblastic leukemia uniformly treated during the Group for Research on Adult Acute Lymphoblastic Leukemia (GRAALL)-2003 and -2005 studies. HOXA-positive patients had markedly higher rates of an early thymic precursor-like immunophenotype (40.8% versus 14.5%, P=0.0004), chemoresistance (59.3% versus 40.8%, P=0.026) and positivity for minimal residual disease (48.5% versus 23.5%, P=0.01) than the HOXA-negative group. These differences were due to particularly high frequencies of chemoresistant early thymic precursor-like acute lymphoblastic leukemia in HOXA-positive cases harboring fusion oncoproteins that transactivate HOXA Strikingly, the presence of an early thymic precursor-like immunophenotype was associated with marked outcome differences within the HOXA-positive group (5-year overall survival 31.2% in HOXA-positive early thymic precursor versus 66.7% in HOXA-positive non-early thymic precursor, P=0.03), but not in HOXA-negative cases (5-year overall survival 74.2% in HOXA-negative early thymic precursor versus 57.2% in HOXA-negative non-early thymic precursor, P=0.44). Multivariate analysis further revealed that HOXA positivity independently affected event-free survival (P=0.053) and relapse risk (P=0.039) of chemoresistant T-cell acute lymphoblastic leukemia. These results show that the underlying mechanism of HOXA deregulation dictates the clinico-biological phenotype, and that the negative prognosis of early thymic precursor acute lymphoblastic leukemia is exclusive to HOXA-positive patients, suggesting that early treatment intensification is currently

  1. Role of allogeneic stem cell transplantation in adult patients with Ph-negative acute lymphoblastic leukemia.

    PubMed

    Dhédin, Nathalie; Huynh, Anne; Maury, Sébastien; Tabrizi, Reza; Beldjord, Kheira; Asnafi, Vahid; Thomas, Xavier; Chevallier, Patrice; Nguyen, Stéphanie; Coiteux, Valérie; Bourhis, Jean-Henri; Hichri, Yosr; Escoffre-Barbe, Martine; Reman, Oumedaly; Graux, Carlos; Chalandon, Yves; Blaise, Didier; Schanz, Urs; Lhéritier, Véronique; Cahn, Jean-Yves; Dombret, Hervé; Ifrah, Norbert

    2015-04-16

    Because a pediatric-inspired Group for Research on Adult Acute Lymphoblastic Leukemia (GRAALL) protocol yielded a markedly improved outcome in adults with Philadelphia chromosome-negative ALL, we aimed to reassess the role of allogeneic stem cell transplantation (SCT) in patients treated in the GRAALL-2003 and GRAALL-2005 trials. In all, 522 patients age 15 to 55 years old and presenting with at least 1 conventional high-risk factor were candidates for SCT in first complete remission. Among these, 282 (54%) received a transplant in first complete remission. At 3 years, posttransplant cumulative incidences of relapse, nonrelapse mortality, and relapse-free survival (RFS) were estimated at 19.5%, 15.5%, and 64.7%, respectively. Time-dependent analysis did not reveal a significant difference in RFS between SCT and no-SCT cohorts. However, SCT was associated with longer RFS in patients with postinduction minimal residual disease (MRD) ≥10(-3) (hazard ratio, 0.40) but not in good MRD responders. In B-cell precursor ALL, SCT also benefitted patients with focal IKZF1 gene deletion (hazard ratio, 0.42). This article shows that poor early MRD response, in contrast to conventional ALL risk factors, is an excellent tool to identify patients who may benefit from allogeneic SCT in the context of intensified adult ALL therapy. Trial GRAALL-2003 was registered at www.clinicaltrials.gov as #NCT00222027; GRAALL-2005 was registered as #NCT00327678.

  2. Gene copy number alteration profile and its clinical correlation in B-cell acute lymphoblastic leukemia.

    PubMed

    Gupta, Sanjeev Kumar; Bakhshi, Sameer; Kumar, Lalit; Kamal, Vineet Kumar; Kumar, Rajive

    2017-02-01

    The genes related to B-cell development are frequently altered in B-cell acute lymphoblastic leukemia (B-ALL). One hundred sixty-two newly diagnosed B-ALL cases, median age 8.5 years (2 months-67 years), were prospectively analyzed for copy number alterations (CNAs) in CDKN2A/B, IKZF1, PAX5, RB1, ETV6, BTG1, EBF1, and pseudoautosomal region genes (CRLF2, CSF2RA, IL3RA) using multiplex ligation-dependent probe amplification. The CNAs were detected in 114 (70.4%) cases; most commonly affected genes being CDKN2A/B-55 (34%), PAX5-51 (31.5%), and IKZF1-43 (26.5%). IKZF1 and RB1 deletions correlated with higher induction failure. Patients classified as good-risk, according to the integrated CNA profile and cytogenetic criteria, had lower induction failure [5 (8.6%) vs. 20 (25.3%); p = 0.012]. Those classified as good-risk, based on CNA profile irrespective of cytogenetics, also showed lower induction failure [6 (9.4%) vs. 19 (26%); p = 0.012]. The CNA profile identified patients with better induction outcome and has a potential role in better risk stratification of B-ALL.

  3. Promoter DNA Methylation Pattern Identifies Prognostic Subgroups in Childhood T-Cell Acute Lymphoblastic Leukemia

    PubMed Central

    Borssén, Magnus; Palmqvist, Lars; Karrman, Kristina; Abrahamsson, Jonas; Behrendtz, Mikael; Heldrup, Jesper; Forestier, Erik; Roos, Göran; Degerman, Sofie

    2013-01-01

    Background Treatment of pediatric T-cell acute lymphoblastic leukemia (T-ALL) has improved, but there is a considerable fraction of patients experiencing a poor outcome. There is a need for better prognostic markers and aberrant DNA methylation is a candidate in other malignancies, but its potential prognostic significance in T-ALL is hitherto undecided. Design and Methods Genome wide promoter DNA methylation analysis was performed in pediatric T-ALL samples (n = 43) using arrays covering >27000 CpG sites. Clinical outcome was evaluated in relation to methylation status and compared with a contemporary T-ALL group not tested for methylation (n = 32). Results Based on CpG island methylator phenotype (CIMP), T-ALL samples were subgrouped as CIMP+ (high methylation) and CIMP− (low methylation). CIMP− T-ALL patients had significantly worse overall and event free survival (p = 0.02 and p = 0.001, respectively) compared to CIMP+ cases. CIMP status was an independent factor for survival in multivariate analysis including age, gender and white blood cell count. Analysis of differently methylated genes in the CIMP subgroups showed an overrepresentation of transcription factors, ligands and polycomb target genes. Conclusions We identified global promoter methylation profiling as being of relevance for subgrouping and prognostication of pediatric T-ALL. PMID:23762353

  4. Effects of Malnutrition on Neutrophil/Mononuclear Cell Apoptotic Functions in Children with Acute Lymphoblastic Leukemia.

    PubMed

    Cakir, Fatma Betul; Berrak, Su Gülsün; Aydogan, Gonul; Tulunay, Aysin; Timur, Cetin; Canpolat, Cengiz; Eksioglu Demiralp, Emel

    2017-04-01

    Recent studies claim that apoptosis may explain immune dysfunction observed in malnutrition. The objective of this study was to determine the effect of malnutrition on apoptotic functions of phagocytic cells in acute lymphoblastic leukemia (ALL). Twenty-eight ALL patients (13 with malnutrition) and thirty controls were enrolled. Neutrophil and mononuclear cell apoptosis of ALL patients and the control group were studied on admission before chemotherapy and repeated at a minimum of three months after induction of chemotherapy or when the nutritional status of leukemic children improved. The apoptotic functions of both ALL groups on admission were significantly lower than those of the control group. The apoptotic functions were lower in ALL patients with malnutrition than those in ALL patients without malnutrition, but this was not statistically significant. The repeated apoptotic functions of both ALL groups were increased to similar values with the control group. This increase was found to be statistically significant. The apoptotic functions in ALL patients were not found to be affected by malnutrition. However, after dietary intervention, increased apoptotic functions in both ALL patient groups deserve mentioning. Dietary intervention should always be recommended as malnutrition or cachexia leads to multiple complications. Enhanced apoptosis might originate also from remission state of cancer.

  5. Characterization of a set of tumor suppressor microRNAs in T cell acute lymphoblastic leukemia

    PubMed Central

    Sanghvi, Viraj R.; Mavrakis, Konstantinos J.; Van der Meulen, Joni; Boice, Michael; Wolfe, Andrew L.; Carty, Mark; Mohan, Prathibha; Rondou, Pieter; Socci, Nicholas D.; Benoit, Yves; Taghon, Tom; Van Vlierberghe, Pieter; Leslie, Christina S.; Speleman, Frank; Wendel, Hans-Guido

    2015-01-01

    The posttranscriptional control of gene expression by microRNAs (miRNAs) is highly redundant, and compensatory effects limit the consequences of the inactivation of individual miRNAs. This implies that only a few miRNAs can function as effective tumor suppressors. It is also the basis of our strategy to define functionally relevant miRNA target genes that are not under redundant control by other miRNAs. We identified a functionally interconnected group of miRNAs that exhibited a reduced abundance in leukemia cells from patients with T cell acute lymphoblastic leukemia (T-ALL). To pinpoint relevant target genes, we applied a machine learning approach to eliminate genes that were subject to redundant miRNA-mediated control and to identify those genes that were exclusively targeted by tumor-suppressive miRNAs. This strategy revealed the convergence of a small group of tumor suppressor miRNAs on the Myb oncogene, as well as their effects on HBP1, which encodes a transcription factor. The expression of both genes was increased in T-ALL patient samples, and each gene promoted the progression of T-ALL in mice. Hence, our systematic analysis of tumor suppressor miRNA action identified a widespread mechanism of oncogene activation in T-ALL. PMID:25406379

  6. Clonal selection in xenografted human T cell acute lymphoblastic leukemia recapitulates gain of malignancy at relapse

    PubMed Central

    Clappier, Emmanuelle; Gerby, Bastien; Sigaux, François; Delord, Marc; Touzri, Farah; Hernandez, Lucie; Ballerini, Paola; Baruchel, André

    2011-01-01

    Genomic studies in human acute lymphoblastic leukemia (ALL) have revealed clonal heterogeneity at diagnosis and clonal evolution at relapse. In this study, we used genome-wide profiling to compare human T cell ALL samples at the time of diagnosis and after engraftment (xenograft) into immunodeficient recipient mice. Compared with paired diagnosis samples, the xenograft leukemia often contained additional genomic lesions in established human oncogenes and/or tumor suppressor genes. Mimicking such genomic lesions by short hairpin RNA–mediated knockdown in diagnosis samples conferred a selective advantage in competitive engraftment experiments, demonstrating that additional lesions can be drivers of increased leukemia-initiating activity. In addition, the xenograft leukemias appeared to arise from minor subclones existing in the patient at diagnosis. Comparison of paired diagnosis and relapse samples showed that, with regard to genetic lesions, xenograft leukemias more frequently more closely resembled relapse samples than bulk diagnosis samples. Moreover, a cell cycle– and mitosis-associated gene expression signature was present in xenograft and relapse samples, and xenograft leukemia exhibited diminished sensitivity to drugs. Thus, the establishment of human leukemia in immunodeficient mice selects and expands a more aggressive malignancy, recapitulating the process of relapse in patients. These findings may contribute to the design of novel strategies to prevent or treat relapse. PMID:21464223

  7. Clonal selection in xenografted human T cell acute lymphoblastic leukemia recapitulates gain of malignancy at relapse.

    PubMed

    Clappier, Emmanuelle; Gerby, Bastien; Sigaux, François; Delord, Marc; Touzri, Farah; Hernandez, Lucie; Ballerini, Paola; Baruchel, André; Pflumio, Françoise; Soulier, Jean

    2011-04-11

    Genomic studies in human acute lymphoblastic leukemia (ALL) have revealed clonal heterogeneity at diagnosis and clonal evolution at relapse. In this study, we used genome-wide profiling to compare human T cell ALL samples at the time of diagnosis and after engraftment (xenograft) into immunodeficient recipient mice. Compared with paired diagnosis samples, the xenograft leukemia often contained additional genomic lesions in established human oncogenes and/or tumor suppressor genes. Mimicking such genomic lesions by short hairpin RNA-mediated knockdown in diagnosis samples conferred a selective advantage in competitive engraftment experiments, demonstrating that additional lesions can be drivers of increased leukemia-initiating activity. In addition, the xenograft leukemias appeared to arise from minor subclones existing in the patient at diagnosis. Comparison of paired diagnosis and relapse samples showed that, with regard to genetic lesions, xenograft leukemias more frequently more closely resembled relapse samples than bulk diagnosis samples. Moreover, a cell cycle- and mitosis-associated gene expression signature was present in xenograft and relapse samples, and xenograft leukemia exhibited diminished sensitivity to drugs. Thus, the establishment of human leukemia in immunodeficient mice selects and expands a more aggressive malignancy, recapitulating the process of relapse in patients. These findings may contribute to the design of novel strategies to prevent or treat relapse.

  8. Outcome of B-Cell Acute Lymphoblastic Leukemia in Brazilian Children: Immunophenotypical, Hematological, and Clinical Evaluation.

    PubMed

    Cézar, Rodrigo S; Cerqueira, Bruno A V; da Paz, Silvana de Souza; Barbosa, Cynara G; de Moura Neto, José P; Barreto, José H de S; Goncalves, Marilda de S

    2015-08-01

    The aim of this study is to investigate the clinical, hematological, and immunophenotypic characteristics of Brazilian children with B-cell acute lymphoblastic leukemia (B-ALL) to identify prognostic biomarkers of the disease. Thirty-three children newly diagnosed with B-ALL were followed between March 2004 and December 2009. Information about the demographic profile, diagnosis, immunophenotype, clinical manifestations, and disease outcome were gathered from the patients' medical records. Of the 33 patients with B-ALL, 18 were male and 15 female. Eighteen patients were classified as high risk; 13 as low risk, and 2 as true low risk. The frequencies of cluster of differentiation (CD)10, CD19, and CD20 antigens were 69.7%, 81.8%, and 18.2%, respectively. Six patients (18.2%) had aberrant expression of myeloid antigens. At diagnosis, patients immunopositive for CD20 had elevated white blood cell counts (P = 0.018) and lower platelet counts (P = 0.017). The 6-year overall survival was 67.5%± 3.47%. Our results demonstrate the distinct immunophenotypic and prognostic characteristics of patients with B-ALL, which can be related to the Brazilian racial admixture. Consequently, these results will most likely aid in the selection of additional prognostic markers and their use in monitoring the clinical manifestations and treatment response among B-ALL patients.

  9. A NOTCH1-driven MYC enhancer promotes T cell development, transformation and acute lymphoblastic leukemia.

    PubMed

    Herranz, Daniel; Ambesi-Impiombato, Alberto; Palomero, Teresa; Schnell, Stephanie A; Belver, Laura; Wendorff, Agnieszka A; Xu, Luyao; Castillo-Martin, Mireia; Llobet-Navás, David; Cordon-Cardo, Carlos; Clappier, Emmanuelle; Soulier, Jean; Ferrando, Adolfo A

    2014-10-01

    Efforts to identify and annotate cancer driver genetic lesions have been focused primarily on the analysis of protein-coding genes; however, most genetic abnormalities found in human cancer are located in intergenic regions. Here we identify a new long range-acting MYC enhancer controlled by NOTCH1 that is targeted by recurrent chromosomal duplications in human T cell acute lymphoblastic leukemia (T-ALL). This highly conserved regulatory element, hereby named N-Me for NOTCH MYC enhancer, is located within a broad super-enhancer region +1.47 Mb from the MYC transcription initiating site, interacts with the MYC proximal promoter and induces orientation-independent MYC expression in reporter assays. Moreover, analysis of N-Me knockout mice demonstrates a selective and essential role of this regulatory element during thymocyte development and in NOTCH1-induced T-ALL. Together these results identify N-Me as a long-range oncogenic enhancer implicated directly in the pathogenesis of human leukemia and highlight the importance of the NOTCH1-MYC regulatory axis in T cell transformation and as a therapeutic target in T-ALL.

  10. EPHA7, a new target gene for 6q deletion in T-cell lymphoblastic lymphomas.

    PubMed

    López-Nieva, Pilar; Vaquero, Concepción; Fernández-Navarro, Pablo; González-Sánchez, Laura; Villa-Morales, María; Santos, Javier; Esteller, Manel; Fernández-Piqueras, José

    2012-02-01

    Cryptic deletions at chromosome 6q are common cytogenetic abnormalities in T-cell lymphoblastic leukemia/lymphoma (T-LBL), but the target genes have not been formally identified. Our results build on detection of specific chromosomal losses in a mouse model of γ-radiation-induced T-LBLs and provide interesting clues for new putative susceptibility genes in a region orthologous to human 6q15-6q16.3. Among these, Epha7 emerges as a bona fide candidate tumor suppressor gene because it is inactivated in practically all the T-LBLs analyzed (100% in mouse and 95.23% in human). We provide evidence showing that Epha7 downregulation may occur, at least in part, by loss of heterozygosity (19.35% in mouse and 12.5% in human) or promoter hypermethylation (51.61% in mouse and 43.75% in human) or a combination of both mechanisms (12.90% in mouse and 6.25% in human). These results indicate that EPHA7 might be considered a new tumor suppressor gene for 6q deletions in T-LBLs. Notably, this gene is located in 6q16.1 proximal to GRIK2 and CASP8AP2, other candidate genes identified in this region. Thus, del6q seems to be a complex region where inactivation of multiple genes may cooperatively contribute to the onset of T-cell lymphomas.

  11. PTPN2 negatively regulates oncogenic JAK1 in T-cell acute lymphoblastic leukemia.

    PubMed

    Kleppe, Maria; Soulier, Jean; Asnafi, Vahid; Mentens, Nicole; Hornakova, Tekla; Knoops, Laurent; Constantinescu, Stefan; Sigaux, François; Meijerink, Jules P; Vandenberghe, Peter; Tartaglia, Marco; Foa, Robin; Macintyre, Elizabeth; Haferlach, Torsten; Cools, Jan

    2011-06-30

    We have recently reported inactivation of the tyrosine phosphatase PTPN2 (also known as TC-PTP) through deletion of the entire gene locus in ∼ 6% of T-cell acute lymphoblastic leukemia (T-ALL) cases. T-ALL is an aggressive disease of the thymocytes characterized by the stepwise accumulation of chromosomal abnormalities and gene mutations. In the present study, we confirmed the strong association of the PTPN2 deletion with TLX1 and NUP214-ABL1 expression. In addition, we found cooperation between PTPN2 deletion and activating JAK1 gene mutations. Activating mutations in JAK1 kinase occur in ∼ 10% of human T-ALL cases, and aberrant kinase activity has been shown to confer proliferation and survival advantages. Our results reveal that some JAK1 mutation-positive T-ALLs harbor deletions of the tyrosine phosphatase PTPN2, a known negative regulator of the JAK/STAT pathway. We provide evidence that down-regulation of Ptpn2 sensitizes lymphoid cells to JAK1-mediated transformation and reduces their sensitivity to JAK inhibition.

  12. Genetic Inactivation of the PRC2 Complex in T-Cell Acute Lymphoblastic Leukemia

    PubMed Central

    Ntziachristos, Panagiotis; Tsirigos, Aristotelis; Van Vlierberghe, Pieter; Nedjic, Jelena; Trimarchi, Thomas; Flaherty, Maria Sol; Ferres-Marco, Dolors; da Ros, Vanina; Tang, Zuojian; Siegle, Jasmin; Asp, Patrik; Hadler, Michael; Rigo, Isaura; De Keersmaecker, Kim; Patel, Jay; Huynh, Tien; Utro, Filippo; Poglio, Sandrine; Samon, Jeremy B.; Paietta, Elisabeth; Racevskis, Janis; Rowe, Jacob M.; Rabadan, Raul; Levine, Ross L.; Brown, Stuart; Pflumio, Francoise; Dominguez, Maria; Ferrando, Adolfo; Aifantis, Iannis

    2011-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) is an immature hematopoietic malignancy driven mainly by oncogenic activation of NOTCH1 signaling1. In this study we report the presence of loss-of-function mutations and deletions of EZH2 and SUZ12 genes, encoding critical components of the Polycomb Repressive Complex 2 (PRC2) complex2,3, in 25% of T-ALLs. To further study the role of the PRC2 complex in T-ALL, we used NOTCH1-induced animal models of the disease, as well as human T-ALL samples, and combined locus-specific and global analysis of NOTCH1-driven epigenetic changes. These studies demonstrated that activation of NOTCH1 specifically induces loss of the repressive mark lysine-27 tri-methylation of histone 3 (H3K27me3)4 by antagonizing the activity of the Polycomb Repressive Complex 2 (PRC2) complex. These studies demonstrate a tumor suppressor role for the PRC2 complex in human leukemia and suggest a hitherto unrecognized dynamic interplay between oncogenic NOTCH1 and PRC2 function for the regulation of gene expression and cell transformation. PMID:22237151

  13. Comprehensive analysis of transcriptome variation uncovers known and novel driver events in T-cell acute lymphoblastic leukemia.

    PubMed

    Atak, Zeynep Kalender; Gianfelici, Valentina; Hulselmans, Gert; De Keersmaecker, Kim; Devasia, Arun George; Geerdens, Ellen; Mentens, Nicole; Chiaretti, Sabina; Durinck, Kaat; Uyttebroeck, Anne; Vandenberghe, Peter; Wlodarska, Iwona; Cloos, Jacqueline; Foà, Robin; Speleman, Frank; Cools, Jan; Aerts, Stein

    2013-01-01

    RNA-seq is a promising technology to re-sequence protein coding genes for the identification of single nucleotide variants (SNV), while simultaneously obtaining information on structural variations and gene expression perturbations. We asked whether RNA-seq is suitable for the detection of driver mutations in T-cell acute lymphoblastic leukemia (T-ALL). These leukemias are caused by a combination of gene fusions, over-expression of transcription factors and cooperative point mutations in oncogenes and tumor suppressor genes. We analyzed 31 T-ALL patient samples and 18 T-ALL cell lines by high-coverage paired-end RNA-seq. First, we optimized the detection of SNVs in RNA-seq data by comparing the results with exome re-sequencing data. We identified known driver genes with recurrent protein altering variations, as well as several new candidates including H3F3A, PTK2B, and STAT5B. Next, we determined accurate gene expression levels from the RNA-seq data through normalizations and batch effect removal, and used these to classify patients into T-ALL subtypes. Finally, we detected gene fusions, of which several can explain the over-expression of key driver genes such as TLX1, PLAG1, LMO1, or NKX2-1; and others result in novel fusion transcripts encoding activated kinases (SSBP2-FER and TPM3-JAK2) or involving MLLT10. In conclusion, we present novel analysis pipelines for variant calling, variant filtering, and expression normalization on RNA-seq data, and successfully applied these for the detection of translocations, point mutations, INDELs, exon-skipping events, and expression perturbations in T-ALL.

  14. Anti-leukemic mechanisms of pegylated arginase I in acute lymphoblastic T-cell leukemia

    PubMed Central

    Morrow, K; Hernandez, CP; Raber, P; Valle, L Del; Wilk, AM; Majumdar, S; Wyczechowska, D; Reiss, K; Rodriguez, PC

    2013-01-01

    New treatments for adults with acute lymphoblastic T-cell leukemia (T-ALL) are urgently needed, as the current rate of overall remission in these patients is only about 40 percent. We recently showed the potential therapeutic benefit of the pegylated-human-arginase I (peg-Arg I) in T-ALL. However, the mechanisms by which peg-Arg I induces an anti-T-ALL effect remained unknown. Our results show the induction of T-ALL cell apoptosis by peg-Arg I, which associated with a global arrest in protein synthesis and with the phosphorylation of the eukaryotic-translation-initiation factor 2 alpha (eIF2α). Inhibition of eIF2α phosphorylation in T-ALL cells prevented the apoptosis induced by peg-Arg I, whereas the expression of a phosphomimetic eIF2α form increased the sensibility of T-ALL cells to peg-Arg I. Phosphorylation of eIF2α by peg-Arg I was mediated through kinases PERK and GCN2 and down-regulation of phosphatase GADD34. GCN2 and decreased GADD34 promoted T-ALL cell apoptosis after treatment with peg-Arg I, whereas PERK had an unexpected anti-apoptotic role. Additional results showed that phospho-eIF2α signaling further increased the anti-leukemic effects induced by peg-Arg I in T-ALL-bearing mice. These results suggest the central role of phospho-eIF2α in the anti-T-ALL effects induced by peg-Arg I and support its study as a therapeutic target. PMID:22926702

  15. Recombinant human CD19L-sTRAIL effectively targets B cell precursor acute lymphoblastic leukemia

    PubMed Central

    Uckun, Fatih M.; Myers, Dorothea E.; Qazi, Sanjive; Ozer, Zahide; Rose, Rebecca; D’Cruz, Osmond J.; Ma, Hong

    2015-01-01

    Patients with B cell precursor acute lymphoblastic leukemia (BPL) respond well to chemotherapy at initial diagnosis; however, therapeutic options are limited for individuals with BPL who relapse. Almost all BPL cells express CD19, and we recently cloned the gene encoding a natural ligand of the human CD19 receptor (CD19L). We hypothesized that fusion of CD19L to the soluble extracellular domain of proapoptotic TNF-related apoptosis-inducing ligand (sTRAIL) would markedly enhance the potency of sTRAIL and specifically induce BPL cell apoptosis due to membrane anchoring of sTRAIL and simultaneous activation of the CD19 and TRAIL receptor (TRAIL-R) apoptosis signaling pathways. Here, we demonstrate that recombinant human CD19L-sTRAIL was substantially more potent than sTRAIL and induced apoptosis in primary leukemia cells taken directly from BPL patients. CD19L-sTRAIL effectively targeted and eliminated in vivo clonogenic BPL xenograft cells, even at femtomolar-picomolar concentrations. In mice, CD19L-sTRAIL exhibited a more favorable pharmacokinetic (PK) profile than sTRAIL and was nontoxic at doses ranging from 32 fmol/kg to 3.2 pmol/kg. CD19L-sTRAIL showed potent in vivo antileukemic activity in NOD/SCID mouse xenograft models of relapsed and chemotherapy-resistant BPL at nontoxic fmol/kg dose levels. Together, these results suggest that recombinant human CD19L-sTRAIL has clinical potential as a biotherapeutic agent against BPL. PMID:25621496

  16. Improving nelarabine efficacy in T cell acute lymphoblastic leukemia by targeting aberrant PI3K/AKT/mTOR signaling pathway.

    PubMed

    Lonetti, Annalisa; Cappellini, Alessandra; Bertaina, Alice; Locatelli, Franco; Pession, Andrea; Buontempo, Francesca; Evangelisti, Camilla; Evangelisti, Cecilia; Orsini, Ester; Zambonin, Laura; Neri, Luca Maria; Martelli, Alberto Maria; Chiarini, Francesca

    2016-10-24

    Although in recent years, the introduction of novel chemotherapy protocols has improved the outcome of T cell acute lymphoblastic leukemia (T-ALL) patients, refractory and/or relapsing disease remains a foremost concern. In this context, a major contribution was provided by the introduction of the nucleoside analog nelarabine, approved for salvage treatment of T-ALL patients with refractory/relapsed disease. However, nelarabine could induce a life-threatening, dose-dependent neurotoxicity. To improve nelarabine efficacy, we have analyzed its molecular targets, testing selective inhibitors of such targets in combination with nelarabine. The effectiveness of nelarabine as single agent or in combination with PI3K, Bcl2, and MEK inhibitors was evaluated on human T-ALL cell lines and primary T-ALL refractory/relapsed lymphoblasts. The efficacy of signal modulators in terms of cytotoxicity, induction of apoptosis, and changes in gene and protein expression was assessed by flow cytometry, western blotting, and quantitative real-time PCR in T-ALL settings. Treatment with nelarabine as a single agent identified two groups of T-ALL cell lines, one sensitive and one resistant to the drug. Whereas sensitive T-ALL cells showed a significant increase of apoptosis and a strong down-modulation of PI3K signaling, resistant T-ALL cells showed a hyperactivation of AKT and MEK/ERK1/2 signaling pathways, not caused by differences in the expression of nelarabine transporters or metabolic activators. We then studied the combination of nelarabine with the PI3K inhibitors (both pan and dual γ/δ inhibitors), with the Bcl2 specific inhibitor ABT199, and with the MEK inhibitor trametinib on both T-ALL cell lines and patient samples at relapse, which displayed constitutive activation of PI3K signaling and resistance to nelarabine alone. The combination with the pan PI3K inhibitor ZSTK-474 was the most effective in inhibiting the growth of T-ALL cells and was synergistic in decreasing cell

  17. Philadelphia-positive T-cell acute lymphoblastic leukemia with polymyositis, migratory polyarthritis and hypercalcemia following a chronic myeloid leukemia.

    PubMed

    Lima, M; Coutinho, J; Bernardo, L; dos Anjos Teixeira, M; Casais, C; Canelhas, A; Queirós, L; Orfão, A; Justiça, B

    2002-03-01

    Transformation of chronic myeloid leukemia (CML) often results in acute myeloblastic or, less frequently, in precursor B-cell acute lymphoblastic leukemia (ALL). T-cell blast crisis is rare. Hypercalcemia has also been described as a rare complication of CML, but this usually occurs as a terminal event. Here we report a case of a 35-year-old woman who developed a CD4(+)/CD8(+) T-cell ALL 2 years after the diagnosis of a typical Ph(+) CML. Polymyositis and polyarthritis preceded by 4 months, and symptomatic hypercalcemia occurred just before blastic transformation, probably representing paraneoplastic manifestations of the disease.

  18. Butein inhibits cell proliferation and induces cell cycle arrest in acute lymphoblastic leukemia via FOXO3a/p27kip1 pathway

    PubMed Central

    Wang, Li-Na; Tian, Yun; Shi, Dingbo; Wang, Jingshu; Qin, Ge; Li, Anchuan; Liang, Yan-Ni; Zhou, Huan-Juan; Ke, Zhi-Yong; Huang, Wenlin; Deng, Wuguo; Luo, Xue-Qun

    2016-01-01

    Acute lymphoblastic leukemia (ALL) is a common hematological malignancy characterized by the uncontrolled proliferation of leukemia cells in children. Discovering and developing effective chemotherapeutic drugs are needed for ALL. In this study, we investigated the anti-leukemic activity of butein and its action mechanisms in ALL. Butein was found to significantly suppress the cellular proliferation of ALL cell lines and primary ALL blasts in a dose-dependent manner. It also induced cell cycle arrest by decreasing the expression of cyclin E and CDK2. We also found that butein promoted nuclear Forkhead Class box O3a (FOXO3a) localization, enhanced the binding of FOXO3a on the p27kip1 gene promoter and then increased the expression of p27kip1. Moreover, we showed that FOXO3a knockdown significantly decreased the proliferation inhibition by butein, whereas overexpression of FOXO3a enhanced the butein-mediated proliferation inhibition. However, overexpression of FOXO3a mutation (C-terminally truncated FOXO3a DNA-binding domain) decreased the proliferation inhibition by butein through decreasing the expression of p27kip1. Our results therefore demonstrate the therapeutic potential of butein for ALL via FOXO3a/p27kip1 pathway. PMID:26919107

  19. Defective quorum sensing of acute lymphoblastic leukemic cells: evidence of collective behavior of leukemic populations as semi-autonomous aberrant ecosystems

    PubMed Central

    Patel, Sapan J; Dao, Su; Darie, Costel C; Clarkson, Bayard D

    2016-01-01

    Quorum sensing (QS) is a generic term used to describe cell-cell communication and collective decision making by bacterial and social insects to regulate the expression of specific genes in controlling cell density and other properties of the populations in response to nutrient supply or changes in the environment. QS mechanisms also have a role in higher organisms in maintaining homeostasis, regulation of the immune system and collective behavior of cancer cell populations. In the present study, we used a p190BCR-ABL driven pre-B acute lymphoblastic leukemia (ALL3) cell line derived from the pleural fluid of a terminally ill patient with ALL to test the QS hypothesis in leukemia. ALL3 cells don’t grow at low density (LD) in liquid media but grow progressively faster at increasingly high cell densities (HD) in contrast to other established leukemic cell lines that grow well at very low starting cell densities. The ALL3 cells at LD are poised to grow but shortly die without additional stimulation. Supernates of ALL3 cells (HDSN) and some other primary cells grown at HD stimulate the growth of the LD ALL3 cells without which they won’t survive. To get further insight into the activation processes we performed microarray analysis of the LD ALL3 cells after stimulation with ALL3 HDSN at days 1, 3, and 6. This screen identified several candidate genes, and we linked them to signaling networks and their functions. We observed that genes involved in lipid, cholesterol, fatty acid metabolism, and B cell activation are most up- or down-regulated upon stimulation of the LD ALL3 cells using HDSN. We also discuss other pathways that are differentially expressed upon stimulation of the LD ALL3 cells. Our findings suggest that the Ph+ ALL population achieves dominance by functioning as a collective aberrant ecosystem subject to defective quorum-sensing regulatory mechanisms. PMID:27429840

  20. Next-Generation Sequencing in Adult B Cell Acute Lymphoblastic Leukemia Patients.

    PubMed

    Sala Torra, Olga; Othus, Megan; Williamson, David W; Wood, Brent; Kirsch, Ilan; Robins, Harlan; Beppu, Lan; O'Donnell, Margaret R; Forman, Stephen J; Appelbaum, Frederick R; Radich, Jerald P

    2017-04-01

    We used next-generation sequencing (NGS) of the immunoglobulin genes to evaluate residual disease in 153 specimens from 32 patients with adult B cell acute lymphoblastic leukemia enrolled in a single multicenter study. The sequencing results were compared with multiparameter flow cytometry (MFC) data in 66 specimens (25 patients) analyzed by both methods. There was a strong concordance (82%) between the methods in the qualitative determination of the presence of disease. However, in 17% of cases, leukemia was detected by sequencing but not by MFC. In 54 bone marrow (BM) and peripheral blood (PB) paired specimens, the burden of leukemia detected by NGS was lower in PB than in BM, although it was still detectable in 68% of the 28 paired specimens with positive BM. Lastly, patients without disease detected by NGS or MFC had a 5-year relapse free survival of > 80%. The results suggest that residual disease detection by immunoglobulin gene sequencing is an extremely sensitive technique and may identify patients that might benefit from transplantation. Moreover, the increased sensitivity of the method may allow frequent peripheral blood testing to supplement marrow sampling to measure disease response.

  1. UTX inhibition as selective epigenetic therapy against TAL1-driven T-cell acute lymphoblastic leukemia

    PubMed Central

    Benyoucef, Aissa; Palii, Carmen G.; Wang, Chaochen; Porter, Christopher J.; Chu, Alphonse; Dai, Fengtao; Tremblay, Véronique; Rakopoulos, Patricia; Singh, Kulwant; Huang, Suming; Pflumio, Francoise; Hébert, Josée; Couture, Jean-Francois; Perkins, Theodore J.; Ge, Kai; Dilworth, F. Jeffrey; Brand, Marjorie

    2016-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) is a heterogeneous group of hematological tumors composed of distinct subtypes that vary in their genetic abnormalities, gene expression signatures, and prognoses. However, it remains unclear whether T-ALL subtypes differ at the functional level, and, as such, T-ALL treatments are uniformly applied across subtypes, leading to variable responses between patients. Here we reveal the existence of a subtype-specific epigenetic vulnerability in T-ALL by which a particular subgroup of T-ALL characterized by expression of the oncogenic transcription factor TAL1 is uniquely sensitive to variations in the dosage and activity of the histone 3 Lys27 (H3K27) demethylase UTX/KDM6A. Specifically, we identify UTX as a coactivator of TAL1 and show that it acts as a major regulator of the TAL1 leukemic gene expression program. Furthermore, we demonstrate that UTX, previously described as a tumor suppressor in T-ALL, is in fact a pro-oncogenic cofactor essential for leukemia maintenance in TAL1-positive (but not TAL1-negative) T-ALL. Exploiting this subtype-specific epigenetic vulnerability, we propose a novel therapeutic approach based on UTX inhibition through in vivo administration of an H3K27 demethylase inhibitor that efficiently kills TAL1-positive primary human leukemia. These findings provide the first opportunity to develop personalized epigenetic therapy for T-ALL patients. PMID:26944678

  2. Influence of Musculoskeletal Manifestations as the Only Presenting Symptom in B-Cell Acute Lymphoblastic Leukemia.

    PubMed

    Kang, Seungcheol; Im, Ho Joon; Bae, Kunhyung; Park, Soo-Sung

    2017-03-01

    To evaluate the clinical and prognostic impact of musculoskeletal manifestations as the only initial presenting symptom in childhood acute lymphoblastic leukemia (ALL). We retrospectively reviewed 158 children with precursor B-cell type ALL who were followed up for >2 years. The patients were assigned to the groups musculoskeletal manifestations (n = 24) or nonmusculoskeletal manifestations (n = 134) based on initial presenting symptom. The symptom duration (regarding any initial presenting symptom) and the leukemic symptom duration (regarding symptoms of systemic manifestation, such as fever, bleeding, or pallor) were assessed, along with other clinical characteristics. The musculoskeletal manifestations group exhibited a longer symptom duration than the nonmusculoskeletal manifestations group (43 days vs 22 days, P = .006), but overall survival did not significantly differ between the groups. Multivariate analysis indicated that a longer symptom duration did not affect prognosis but that a longer leukemic symptom duration was associated with a poorer prognosis (hazard ratio, 7.720; P = .048). Musculoskeletal manifestations are associated significantly with diagnostic delay, but this delay does not affect the prognosis. Diagnostic delay after the onset of leukemic symptoms, however, does appear to affect the prognosis. Intensive evaluations for hematologic malignancies may be unnecessary in children who complain of limb pain without any definite cause, unless they also present with accompanying leukemic symptoms. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Pten mediates Myc oncogene dependence in a conditional zebrafish model of T cell acute lymphoblastic leukemia

    PubMed Central

    Grebliunaite, Ruta; Feng, Hui; Kozakewich, Elena; Zhu, Shizhen; Guo, Feng; Payne, Elspeth; Mansour, Marc; Dahlberg, Suzanne E.; Neuberg, Donna S.; den Hertog, Jeroen; Prochownik, Edward V.; Testa, Joseph R.; Harris, Marian; Kanki, John P.

    2011-01-01

    The MYC oncogenic transcription factor is overexpressed in most human cases of T cell acute lymphoblastic leukemia (T-ALL), often downstream of mutational NOTCH1 activation. Genetic alterations in the PTEN–PI3K–AKT pathway are also common in T-ALL. We generated a conditional zebrafish model of T-ALL in which 4-hydroxytamoxifen (4HT) treatment induces MYC activation and disease, and withdrawal of 4HT results in T-ALL apoptosis and tumor regression. However, we found that loss-of-function mutations in zebrafish pten genes, or expression of a constitutively active Akt2 transgene, rendered tumors independent of the MYC oncogene and promoted disease progression after 4HT withdrawal. Moreover, MYC suppresses pten mRNA levels, suggesting that Akt pathway activation downstream of MYC promotes tumor progression. Our findings indicate that Akt pathway activation is sufficient for tumor maintenance in this model, even after loss of survival signals driven by the MYC oncogene. PMID:21727187

  4. Distinctive genotypes in infants with T-cell acute lymphoblastic leukaemia.

    PubMed

    Mansur, Marcela B; van Delft, Frederik W; Colman, Susan M; Furness, Caroline L; Gibson, Jane; Emerenciano, Mariana; Kempski, Helena; Clappier, Emmanuelle; Cave, Hélène; Soulier, Jean; Pombo-de-Oliveira, Maria S; Greaves, Mel; Ford, Anthony M

    2015-11-01

    Infant T-cell acute lymphoblastic leukaemia (iT-ALL) is a very rare and poorly defined entity with a poor prognosis. We assembled a unique series of 13 infants with T-ALL, which allowed us to identify genotypic abnormalities and to investigate prenatal origins. Matched samples (diagnosis/remission) were analysed by single nucleotide polymorphism-array to identify genomic losses and gains. In three cases, we identified a recurrent somatic deletion on chromosome 3. These losses result in the complete deletion of MLF1 and have not previously been described in T-ALL. We observed two cases with an 11p13 deletion (LMO2-related), one of which also harboured a deletion of RB1. Another case presented a large 11q14·1-11q23·2 deletion that included ATM and only five patients (38%) showed deletions of CDKN2A/B. Four cases showed NOTCH1 mutations; in one case FBXW7 was the sole mutation and three cases showed alterations in PTEN. KMT2A rearrangements (KMT2A-r) were detected in three out of 13 cases. For three patients, mutations and copy number alterations (including deletion of PTEN) could be backtracked to birth using neonatal blood spot DNA, demonstrating an in utero origin. Overall, our data indicates that iT-ALL has a diverse but distinctive profile of genotypic abnormalities when compared to T-ALL in older children and adults.

  5. Pediatric brain tumor cell lines.

    PubMed

    Xu, Jingying; Margol, Ashley; Asgharzadeh, Shahab; Erdreich-Epstein, Anat

    2015-02-01

    Pediatric brain tumors as a group, including medulloblastomas, gliomas, and atypical teratoid rhabdoid tumors (ATRT) are the most common solid tumors in children and the leading cause of death from childhood cancer. Brain tumor-derived cell lines are critical for studying the biology of pediatric brain tumors and can be useful for initial screening of new therapies. Use of appropriate brain tumor cell lines for experiments is important, as results may differ depending on tumor properties, and can thus affect the conclusions and applicability of the model. Despite reports in the literature of over 60 pediatric brain tumor cell lines, the majority of published papers utilize only a small number of these cell lines. Here we list the approximately 60 currently-published pediatric brain tumor cell lines and summarize some of their central features as a resource for scientists seeking pediatric brain tumor cell lines for their research.

  6. Pro-apoptotic effect of Persea americana var. Hass (avocado) on Jurkat lymphoblastic leukemia cells.

    PubMed

    Bonilla-Porras, Angelica R; Salazar-Ospina, Andrea; Jimenez-Del-Rio, Marlene; Pereañez-Jimenez, Andres; Velez-Pardo, Carlos

    2013-11-05

    Abstract Context: Therapy for leukemia has a limited efficacy. There is a need to search for alternative anti-leukemia therapies. Persea americana Mill var. Hass (Lauraceae) is a tropical fruit (avocado) that might be used against cancer. Objective: To investigate whether P. americana induces death in Jurkat lymphoblastic leukemia cells. Materials and methods: Four ethanol extracts (0.1, 0.5, 1, 2 and 5 mg/mL) from avocado fruit (endocarp, whole seed, seed and leaves) were analyzed against Jurkat cells. Hydrogen peroxide generation by oxidation of 2',7'-dichlorodihydrofluorescein diacetate to the fluorescent compound 2',7'-dichlorfluorescein assay, acridine orange/ethidium bromide staining, flow cytometry analysis of annexin-V/7-amino-actinomycin, mitochondrial membrane potential and immunocytochemistry detection of transcription factor p53, caspase-3 and apoptosis-inducing factor (AIF) were evaluated. Results: Endocarp, seed, whole seed, and leaf (0.1 mg/mL) extracts induced significant apoptosis in Jurkat cells (p < 0.001) in an oxidative stress-dependent fashion via mitochondrial membrane depolarization (52-87%), activation of transcription factor p53 (6.3-25.4%), protease caspase-3 (8.3-20%) and predominance of AIF reactivity (20.6-36%) in all extracts. Similar results were obtained with 0.5 mg/mL extracts. However, extract ≥1 mg/mL concentration induced necrosis (100%). Conclusions: P. americana extracts function as a pro-apoptotic compound. Leukemic cells are eliminated through an oxidative stress mechanism. This study contributes to the understanding of the molecular mechanism of the avocado and its therapeutic action on leukemia.

  7. Targeted sequencing identifies associations between IL7R-JAK mutations and epigenetic modulators in T-cell acute lymphoblastic leukemia.

    PubMed

    Vicente, Carmen; Schwab, Claire; Broux, Michaël; Geerdens, Ellen; Degryse, Sandrine; Demeyer, Sofie; Lahortiga, Idoya; Elliott, Alannah; Chilton, Lucy; La Starza, Roberta; Mecucci, Cristina; Vandenberghe, Peter; Goulden, Nicholas; Vora, Ajay; Moorman, Anthony V; Soulier, Jean; Harrison, Christine J; Clappier, Emmanuelle; Cools, Jan

    2015-10-01

    T-cell acute lymphoblastic leukemia is caused by the accumulation of multiple oncogenic lesions, including chromosomal rearrangements and mutations. To determine the frequency and co-occurrence of mutations in T-cell acute lymphoblastic leukemia, we performed targeted re-sequencing of 115 genes across 155 diagnostic samples (44 adult and 111 childhood cases). NOTCH1 and CDKN2A/B were mutated/deleted in more than half of the cases, while an additional 37 genes were mutated/deleted in 4% to 20% of cases. We found that IL7R-JAK pathway genes were mutated in 27.7% of cases, with JAK3 mutations being the most frequent event in this group. Copy number variations were also detected, including deletions of CREBBP or CTCF and duplication of MYB. FLT3 mutations were rare, but a novel extracellular mutation in FLT3 was detected and confirmed to be transforming. Furthermore, we identified complex patterns of pairwise associations, including a significant association between mutations in IL7R-JAK genes and epigenetic regulators (WT1, PRC2, PHF6). Our analyses showed that IL7R-JAK genetic lesions did not confer adverse prognosis in T-cell acute lymphoblastic leukemia cases enrolled in the UK ALL2003 trial. Overall, these results identify interconnections between the T-cell acute lymphoblastic leukemia genome and disease biology, and suggest a potential clinical application for JAK inhibitors in a significant proportion of patients with T-cell acute lymphoblastic leukemia.

  8. FOXM1 is overexpressed in B-acute lymphoblastic leukemia (B-ALL) and its inhibition sensitizes B-ALL cells to chemotherapeutic drugs

    PubMed Central

    CONSOLARO, FRANCESCA; BASSO, GIUSEPPE; GHAEM-MAGAMI, SADAF; LAM, ERIC W.-F.; VIOLA, GIAMPIETRO

    2015-01-01

    The Forkhead box protein M1 (FOXM1) is a transcription factor that plays a central role in the regulation of cell cycle, proliferation, DNA repair, and apoptosis. FOXM1 is overexpressed in many human tumors and its upregulation has been linked to high proliferation rates and poor prognosis. We therefore studied the role of FOXM1 in B-lymphoblastic leukemia (B-ALL) in order to understand whether FOXM1 could be a key target for leukemia therapy. RT-PCR and western blot analysis were carried out in a small cohort of pediatric B-ALL patients to evaluate FOXM1 levels. To assess its biological relevance, its expression was down-modulated by transient RNA interference in B-ALL cell lines (REH and NALM-6). Our results show that FOXM1 expression is higher in both B-ALL patients and cell lines when compared to PBMC or normal B-cells (CD19+) from healthy donors. Furthermore, blocking FOXM1 activity in two B-ALL cell lines, by either knockdown or treatment with the FOXM1 inhibitor thiostrepton, causes significant decrease in their cell proliferation. This decrease in cell proliferation was coupled with both an induction of the G2/M cell cycle arrest and with a reduction in the S phase population. Finally, we noted how thiostrepton synergises with chemotherapeutic agents commonly used in B-ALL therapy, thus increasing their efficiency. Therefore our results suggest that FOXM1 is highly expressed in both patients and B-ALL cell lines, and that targeting FOXM1 could be an attractive strategy for leukemia therapy and for overcoming drug resistance. PMID:26316295

  9. Macrophage and NK-mediated killing of precursor-B acute lymphoblastic leukemia cells targeted with a-fucosylated anti-CD19 humanized antibodies.

    PubMed

    Matlawska-Wasowska, K; Ward, E; Stevens, S; Wang, Y; Herbst, R; Winter, S S; Wilson, B S

    2013-06-01

    This work reports the tumoricidal effects of a novel investigational humanized anti-CD19 monoclonal antibody (Medi-551). An a-fucosylated antibody with increased affinity for human FcγRIIIA, Medi-551 is shown to mediate both antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). Medi-551/CD19 complexes internalize slowly (>5 h) and thus remain accessible to effector cells for prolonged periods. We evaluated in vitro ADCC and ADCP activities of primary human natural killer (NK) cells and macrophages against precursor-B (pre-B) acute lymphoblastic leukemia (ALL) cell lines and pediatric patient blasts. Fluorescent imaging studies document immunological synapses formed between anti-CD19-bound target leukemia cells and effector cells and capture the kinetics of both NK-mediated killing and macrophage phagocytosis. Genetic polymorphisms in FcγRIIIA-158F/V modulate in vitro activities of effector cells, with FcγRIIIA-158V homozygotes or heterozygotes showing the strongest activity. Medi-551 treatment of severe combined immunodeficiency (SCID) mice engrafted with human pre-B cells led to prolonged animal survival and markedly reduced disease burden in blood, liver and bone marrow. These data show that anti-CD19 antibodies effectively recruit immune cells to pre-B ALL cells and support a move forward to early phase trials in this disease.

  10. CD19-Targeted CAR T cells as novel cancer immunotherapy for relapsed or refractory B-cell acute lymphoblastic leukemia.

    PubMed

    Davila, Marco L; Brentjens, Renier J

    2016-10-01

    Immunotherapy has demonstrated significant potential for the treatment of patients with chemotherapy-resistant hematologic malignancies and solid tumors. One type of immunotherapy involves the adoptive transfer of T cells that have been genetically modified with a chimeric antigen receptor (CAR) to target a tumor. These hybrid proteins are composed of the antigen-binding domains of an antibody fused to T-cell receptor signaling machinery. CAR T cells that target CD19 recently have made the jump from the laboratory to the clinic, and the results have been remarkable. CD19-targeted CAR T cells have induced complete remissions of disease in up to 90% of patients with relapsed or refractory B-cell acute lymphoblastic leukemia (B-ALL), who have an expected complete response rate of 30% in response to chemotherapy. The high efficacy of CAR T cells in B-ALL suggests that regulatory approval of this therapy for this routinely fatal leukemia is on the horizon. We review the preclinical development of CAR T cells and their early clinical application for lymphoma. We also provide a comprehensive analysis of the use of CAR T cells in patients with B-ALL. In addition, we discuss the unique toxicities associated with this therapy and the management schemes that have been developed.

  11. CD19-Targeted CAR T Cells as Novel Cancer Immunotherapy for Relapsed or Refractory B-Cell Acute Lymphoblastic Leukemia

    PubMed Central

    Davila, Marco L.; Brentjens, Renier J.

    2017-01-01

    Immunotherapy has demonstrated significant potential for the treatment of patients with chemotherapy-resistant hematologic malignancies and solid tumors. One type of immunotherapy involves the adoptive transfer of T cells that have been genetically modified with a chimeric antigen receptor (CAR) to target a tumor. These hybrid proteins are composed of the antigen-binding domains of an antibody fused to T-cell receptor signaling machinery. CAR T cells that target CD19 recently have made the jump from the laboratory to the clinic, and the results have been remarkable. CD19-targeted CAR T cells have induced complete remissions of disease in up to 90% of patients with relapsed or refractory B-cell acute lymphoblastic leukemia (B-ALL), who have an expected complete response rate of 30% in response to chemotherapy. The high efficacy of CAR T cells in B-ALL suggests that regulatory approval of this therapy for this routinely fatal leukemia is on the horizon. We review the preclinical development of CAR T cells and their early clinical application for lymphoma. We also provide a comprehensive analysis of the use of CAR T cells in patients with B-ALL. In addition, we discuss the unique toxicities associated with this therapy and the management schemes that have been developed. PMID:27930631

  12. Fli-1 overexpression in hematopoietic progenitors deregulates T cell development and induces pre-T cell lymphoblastic leukaemia/lymphoma.

    PubMed

    Smeets, Monique F M A; Chan, Angela C; Dagger, Samantha; Bradley, Cara K; Wei, Andrew; Izon, David J

    2013-01-01

    The Ets transcription factor Fli-1 is preferentially expressed in hematopoietic tissues and cells, including immature T cells, but the role of Fli-1 in T cell development has not been closely examined. To address this we retrovirally overexpressed Fli-1 in various in vitro and in vivo settings and analysed its effect on T cell development. We found that Fli-1 overexpression perturbed the DN to DP transition and inhibited CD4 development whilst enhancing CD8 development both in vitro and in vivo. Surprisingly, Fli-1 overexpression in vivo eventuated in development of pre-T cell lymphoblastic leukaemia/lymphoma (pre-T LBL). Known Fli-1 target genes such as the pro-survival Bcl-2 family members were not found to be upregulated. In contrast, we found increased NOTCH1 expression in all Fli-1 T cells and detected Notch1 mutations in all tumours. These data show a novel function for Fli-1 in T cell development and leukaemogenesis and provide a new mouse model of pre-T LBL to identify treatment options that target the Fli-1 and Notch1 signalling pathways.

  13. NF-κB in T-cell Acute Lymphoblastic Leukemia: Oncogenic Functions in Leukemic and in Microenvironmental Cells

    PubMed Central

    dos Santos, Nuno R.; Ghezzo, Marinella N.; da Silva, Ricardo C.; Fernandes, Mónica T.

    2010-01-01

    Two main NF-κB signaling pathways, canonical and noncanonical, performing distinct functions in organisms have been characterized. Identification of mutations in genes encoding components of these NF-κB signaling pathways in lymphoid malignancies confirmed their key role in leukemogenesis. T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy of thymocytes that despite significant therapeutic advances can still be fatal. Although mutations in NF-κB genes have not been reported in T-ALL, NF-κB constitutive activation in human T-ALL and in acute T-cell leukemia mouse models has been observed. Although these studies revealed activation of members of both canonical and noncanonical NF-κB pathways in acute T-cell leukemia, only inhibition of canonical NF-κB signaling was shown to impair leukemic T cell growth. Besides playing an important pro-oncogenic role in leukemic T cells, NF-κB signaling also appears to modulate T-cell leukemogenesis through its action in microenvironmental stromal cells. This article reviews recent data on the role of these transcription factors in T-ALL and pinpoints further research crucial to determine the value of NF-κB inhibition as a means to treat T-ALL. PMID:24281204

  14. Somatic inactivation of ATM in hematopoietic cells predisposes mice to cyclin D3 dependent T cell acute lymphoblastic leukemia.

    PubMed

    Ehrlich, Lori A; Yang-Iott, Katherine; DeMicco, Amy; Bassing, Craig H

    2015-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) is a cancer of immature T cells that exhibits heterogeneity of oncogenic lesions, providing an obstacle for development of more effective and less toxic therapies. Inherited deficiency of ATM, a regulator of the cellular DNA damage response, predisposes young humans and mice to T-ALLs with clonal chromosome translocations. While acquired ATM mutation or deletion occurs in pediatric T-ALLs, the role of somatic ATM alterations in T-ALL pathogenesis remains unknown. We demonstrate here that somatic Atm inactivation in haematopoietic cells starting as these cells differentiate in utero predisposes mice to T-ALL at similar young ages and harboring analogous translocations as germline Atm-deficient mice. However, some T-ALLs from haematopoietic cell specific deletion of Atm were of more mature thymocytes, revealing that the developmental timing and celluar origin of Atm inactivation influences the phenotype of ATM-deficient T-ALLs. Although it has been hypothesized that ATM suppresses cancer by preventing deletion and inactivation of TP53, we find that Atm inhibits T-ALL independent of Tp53 deletion. Finally, we demonstrate that the Cyclin D3 protein that drives immature T cell proliferation is essential for transformation of Atm-deficient thymocytes. Our study establishes a pre-clinical model for pediatric T-ALLs with acquired ATM inactivation and identifies the cell cycle machinery as a therapeutic target for this aggressive childhood T-ALL subtype.

  15. Somatic inactivation of ATM in hematopoietic cells predisposes mice to cyclin D3 dependent T cell acute lymphoblastic leukemia

    PubMed Central

    Ehrlich, Lori A; Yang-Iott, Katherine; DeMicco, Amy; Bassing, Craig H

    2015-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) is a cancer of immature T cells that exhibits heterogeneity of oncogenic lesions, providing an obstacle for development of more effective and less toxic therapies. Inherited deficiency of ATM, a regulator of the cellular DNA damage response, predisposes young humans and mice to T-ALLs with clonal chromosome translocations. While acquired ATM mutation or deletion occurs in pediatric T-ALLs, the role of somatic ATM alterations in T-ALL pathogenesis remains unknown. We demonstrate here that somatic Atm inactivation in haematopoietic cells starting as these cells differentiate in utero predisposes mice to T-ALL at similar young ages and harboring analogous translocations as germline Atm-deficient mice. However, some T-ALLs from haematopoietic cell specific deletion of Atm were of more mature thymocytes, revealing that the developmental timing and celluar origin of Atm inactivation influences the phenotype of ATM-deficient T-ALLs. Although it has been hypothesized that ATM suppresses cancer by preventing deletion and inactivation of TP53, we find that Atm inhibits T-ALL independent of Tp53 deletion. Finally, we demonstrate that the Cyclin D3 protein that drives immature T cell proliferation is essential for transformation of Atm-deficient thymocytes. Our study establishes a pre-clinical model for pediatric T-ALLs with acquired ATM inactivation and identifies the cell cycle machinery as a therapeutic target for this aggressive childhood T-ALL subtype. PMID:25659036

  16. ERG promotes T-acute lymphoblastic leukemia and is transcriptionally regulated in leukemic cells by a stem cell enhancer.

    PubMed

    Thoms, Julie A I; Birger, Yehudit; Foster, Sam; Knezevic, Kathy; Kirschenbaum, Yael; Chandrakanthan, Vashe; Jonquieres, Georg; Spensberger, Dominik; Wong, Jason W; Oram, S Helen; Kinston, Sarah J; Groner, Yoram; Lock, Richard; MacKenzie, Karen L; Göttgens, Berthold; Izraeli, Shai; Pimanda, John E

    2011-06-30

    The Ets-related gene (ERG) is an Ets-transcription factor required for normal blood stem cell development. ERG expression is down-regulated during early T-lymphopoiesis but maintained in T-acute lymphoblastic leukemia (T-ALL), where it is recognized as an independent risk factor for adverse outcome. However, it is unclear whether ERG is directly involved in the pathogenesis of T-ALL and how its expression is regulated. Here we demonstrate that transgenic expression of ERG causes T-ALL in mice and that its knockdown reduces the proliferation of human MOLT4 T-ALL cells. We further demonstrate that ERG expression in primary human T-ALL cells is mediated by the binding of other T-cell oncogenes SCL/TAL1, LMO2, and LYL1 in concert with ERG, FLI1, and GATA3 to the ERG +85 enhancer. This enhancer is not active in normal T cells but in transgenic mice targets expression to fetal liver c-kit(+) cells, adult bone marrow stem/progenitors and early CD4(-)CD8(-) double-negative thymic progenitors. Taken together, these data illustrate that ERG promotes T-ALL and that failure to extinguish activity of stem cell enhancers associated with regulatory transcription factors such as ERG can contribute to the development of leukemia.

  17. Living near overhead high voltage transmission power lines as a risk factor for childhood acute lymphoblastic leukemia: a case-control study.

    PubMed

    Sohrabi, Mohammad-Reza; Tarjoman, Termeh; Abadi, Alireza; Yavari, Parvin

    2010-01-01

    This study aimed to investigate association of living near high voltage power lines with occurrence of childhood acute lymphoblastic leukemia (ALL). Through a case-control study 300 children aged 1-18 years with confirmed ALL were selected from all referral teaching centers for cancer. They interviewed for history of living near overhead high voltage power lines during at least past two years and compared with 300 controls which were individually matched for sex and approximate age. Logistic regression, chi square and paired t-tests were used for analysis when appropriate. The case group were living significantly closer to power lines (P<0.001). More than half of the cases were exposed to two or three types of power lines (P<0.02). Using logistic regression, odds ratio of 2.61 (95%CI: 1.73 to 3.94) calculated for less than 600 meters far from the nearest lines against more than 600 meters. This ratio estimated as 9.93 (95%CI: 3.47 to 28.5) for 123 KV, 10.78 (95%CI: 3.75 to 31) for 230 KV and 2.98 (95%CI: 0.93 to 9.54) for 400 KV lines. Odds of ALL decreased 0.61 for every 600 meters from the nearest power line. This study emphasizes that living close to high voltage power lines is a risk for ALL.

  18. Genomic characterization of pediatric T-cell acute lymphoblastic leukemia reveals novel recurrent driver mutations

    PubMed Central

    Spinella, Jean-François; Cassart, Pauline; Richer, Chantal; Saillour, Virginie; Ouimet, Manon; Langlois, Sylvie; St-Onge, Pascal; Sontag, Thomas; Healy, Jasmine; Minden, Mark D.; Sinnett, Daniel

    2016-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy with variable prognosis. It represents 15% of diagnosed pediatric ALL cases and has a threefold higher incidence among males. Many recurrent alterations have been identified and help define molecular subgroups of T-ALL, however the full range of events involved in driving transformation remain to be defined. Using an integrative approach combining genomic and transcriptomic data, we molecularly characterized 30 pediatric T-ALLs and identified common recurrent T-ALL targets such as FBXW7, JAK1, JAK3, PHF6, KDM6A and NOTCH1 as well as novel candidate T-ALL driver mutations including the p.R35L missense mutation in splicesome factor U2AF1 found in 3 patients and loss of function mutations in the X-linked tumor suppressor genes MED12 (frameshit mutation p.V167fs, splice site mutation g.chrX:70339329T>C, missense mutation p.R1989H) and USP9X (nonsense mutation p.Q117*). In vitro functional studies further supported the putative role of these novel T-ALL genes in driving transformation. U2AF1 p.R35L was shown to induce aberrant splicing of downstream target genes, and shRNA knockdown of MED12 and USP9X was shown to confer resistance to apoptosis following T-ALL relevant chemotherapy drug treatment in Jurkat leukemia cells. Interestingly, nearly 60% of novel candidate driver events were identified among immature T-ALL cases, highlighting the underlying genomic complexity of pediatric T-ALL, and the need for larger integrative studies to decipher the mechanisms that contribute to its various subtypes and provide opportunities to refine patient stratification and treatment. PMID:27602765

  19. RNA sequencing unravels the genetics of refractory/relapsed T-cell acute lymphoblastic leukemia. Prognostic and therapeutic implications

    PubMed Central

    Gianfelici, Valentina; Chiaretti, Sabina; Demeyer, Sofie; Di Giacomo, Filomena; Messina, Monica; La Starza, Roberta; Peragine, Nadia; Paoloni, Francesca; Geerdens, Ellen; Pierini, Valentina; Elia, Loredana; Mancini, Marco; De Propris, Maria Stefania; Apicella, Valerio; Gaidano, Gianluca; Testi, Anna Maria; Vitale, Antonella; Vignetti, Marco; Mecucci, Cristina; Guarini, Anna; Cools, Jan; Foà, Robin

    2016-01-01

    Despite therapeutic improvements, a sizable number of patients with T-cell acute lymphoblastic leukemia still have a poor outcome. To unravel the genomic background associated with refractoriness, we evaluated the transcriptome of 19 cases of refractory/early relapsed T-cell acute lymphoblastic leukemia (discovery cohort) by performing RNA-sequencing on diagnostic material. The incidence and prognostic impact of the most frequently mutated pathways were validated by Sanger sequencing on genomic DNA from diagnostic samples of an independent cohort of 49 cases (validation cohort), including refractory, relapsed and responsive cases. Combined gene expression and fusion transcript analyses in the discovery cohort revealed the presence of known oncogenes and identified novel rearrangements inducing overexpression, as well as inactivation of tumor suppressor genes. Mutation analysis identified JAK/STAT and RAS/PTEN as the most commonly disrupted pathways in patients with chemorefractory disease or early relapse, frequently in association with NOTCH1/FBXW7 mutations. The analysis on the validation cohort documented a significantly higher risk of relapse, inferior overall survival, disease-free survival and event-free survival in patients with JAK/STAT or RAS/PTEN alterations. Conversely, a significantly better survival was observed in patients harboring only NOTCH1/FBXW7 mutations: this favorable prognostic effect was abrogated by the presence of concomitant mutations. Preliminary in vitro assays on primary cells demonstrated sensitivity to specific inhibitors. These data document the negative prognostic impact of JAK/STAT and RAS/PTEN mutations in T-cell acute lymphoblastic leukemia and suggest the potential clinical application of JAK and PI3K/mTOR inhibitors in patients harboring mutations in these pathways. PMID:27151993

  20. Acute Lymphoblastic Leukemia Cells Inhibit the Differentiation of Bone Mesenchymal Stem Cells into Osteoblasts In Vitro by Activating Notch Signaling

    PubMed Central

    Yang, Gui-Cun; Xu, You-Hua; Chen, Hong-Xia; Wang, Xiao-Jing

    2015-01-01

    The disruption of normal hematopoiesis has been observed in leukemia, but the mechanism is unclear. Osteoblasts originate from bone mesenchymal stem cells (BMSCs) and can maintain normal hematopoiesis. To investigate how leukemic cells inhibit the osteogenic differentiation of BMSCs and the role of Notch signaling in this process, we cocultured BMSCs with acute lymphoblastic leukemia (ALL) cells in osteogenic induction medium. The expression levels of Notch1, Hes1, and the osteogenic markers Runx2, Osteopontin (OPN), and Osteocalcin (OCN) were assessed by real-time RT-PCR and western blotting on day 3. Alkaline phosphatase (ALP) activity was analyzed using an ALP kit, and mineralization deposits were detected by Alizarin red S staining on day 14. And then we treated BMSCs with Jagged1 and anti-Jagged1 neutralizing Ab. The expression of Notch1, Hes1, and the abovementioned osteogenic differentiation markers was measured. Inhibition of the expression of Runx2, OPN, and OCN and reduction of ALP activity and mineralization deposits were observed in BMSCs cocultured with ALL cells, while Notch signal inhibiting rescued these effects. All these results indicated that ALL cells could inhibit the osteogenic differentiation of BMSCs by activating Notch signaling, resulting in a decreased number of osteoblastic cells, which may impair normal hematopoiesis. PMID:26339248

  1. Efficacy and Toxicity Management of 19-28z CAR T Cell Therapy in B Cell Acute Lymphoblastic Leukemia

    PubMed Central

    Davila, Marco L.; Riviere, Isabelle; Wang, Xiuyan; Bartido, Shirley; Park, Jae; Curran, Kevin; Chung, Stephen S.; Stefanski, Jolanta; Borquez-Ojeda, Oriana; Olszewska, Malgorzata; Qu, Jinrong; Wasielewska, Teresa; He, Qing; Fink, Mitsu; Shinglot, Himaly; Youssif, Maher; Satter, Mark; Wang, Yongzeng; Hosey, James; Quintanilla, Hilda; Halton, Elizabeth; Bernal, Yvette; Bouhassira, Diana C. G.; Arcila, Maria E.; Gonen, Mithat; Roboz, Gail J.; Maslak, Peter; Douer, Dan; Frattini, Mark G.; Giralt, Sergio; Sadelain, Michel; Brentjens, Renier

    2015-01-01

    We report on 16 patients with relapsed or refractory B cell acute lymphoblastic leukemia (B-ALL) that we treated with autologous T cells expressing the 19-28z chimeric antigen receptor (CAR) specific to the CD19 antigen. The overall complete response rate was 88%, which allowed us to transition most of these patients to a standard-of-care allogeneic hematopoietic stem cell transplant (allo-SCT). This therapy was as effective in high-risk patients with Philadelphia chromosome–positive (Ph+) disease as in those with relapsed disease after previous allo-SCT. Through systematic analysis of clinical data and serum cytokine levels over the first 21 days after T cell infusion, we have defined diagnostic criteria for a severe cytokine release syndrome (sCRS), with the goal of better identifying the subset of patients who will likely require therapeutic intervention with corticosteroids or interleukin-6 receptor blockade to curb the sCRS. Additionally, we found that serum C-reactive protein, a readily available laboratory study, can serve as a reliable indicator for the severity of the CRS. Together, our data provide strong support for conducting a multicenter phase 2 study to further evaluate 19-28z CAR T cells in B-ALL and a road map for patient management at centers now contemplating the use of CAR T cell therapy. PMID:24553386

  2. Morphological changes in cultured bovine lymphoid cell lines associated with bovine viral diarrhea virus (BVDV) single and dual infections with bovine leukemia virus (BLV)

    USDA-ARS?s Scientific Manuscript database

    Currently, American Type Culture Collection (ATCC) makes available two cell lines derived from the same lymphoblast-like suspension cell that have been confirmed by next-generation sequencing and RT-PCR to have either a single contaminate of BVDV2a (CRL-8037) or dual contaminates of both BVDV and BL...

  3. Inhibition of autophagy potentiates anticancer property of 20(S)-ginsenoside Rh2 by promoting mitochondria-dependent apoptosis in human acute lymphoblastic leukaemia cells

    PubMed Central

    Wang, Yingnan; Wang, Yuanyuan; Cai, Jianye; Wang, Min; Chen, Qidan; Song, Jia; Yu, Ziqi; Huang, Wei; Fang, Jianpei

    2016-01-01

    Acute lymphoblastic leukaemia (ALL) is the most prevalent childhood malignancy. Although most children with ALL are cured, there is still a group of patients for which therapy fails owing to severe toxicities and drug resistance. Ginsenoside Rh2 (GRh2), a major bioactive component isolated from Panax ginseng, has been shown to have a therapeutic effect on some tumors. However, the molecular mechanisms of cell death induced by 20(S)-GRh2 in ALL cells remains unclear. In this study, we showed that 20(S)-GRh2 inhibited the cell growth and induced mitochondria-dependent apoptosis and autophagy. But it has no cytotoxic effect on human normal blood cells. Furthermore, autophagy plays a protective role in 20(S)-GRh2-induced apoptosis in ALL cell lines and human primary ALL cells. We demonstrated that either genetic or pharmacologic inhibition of autophagy could be more effective in reducing viability and enhancing 20(S)-GRh2-induced toxicity than 20(S)-GRh2 treatment alone. In addition, inhibition of autophagy could aggravate mitochondrial ROS generation and mitochondrial damage, and then accelerate mitochondria-dependent apoptosis. Taken together, these results suggest that inhibition of autophagy can sensitize ALL cells towards 20(S)-GRh2. The appropriate inhibition of autophagy could provide a powerful strategy to increase the potency of 20(S)-GRh2 as a novel anticancer agent for ALL therapy. PMID:27027340

  4. Fermented Brown Rice Extract Causes Apoptotic Death of Human Acute Lymphoblastic Leukemia Cells via Death Receptor Pathway.

    PubMed

    Horie, Yukiko; Nemoto, Hideyuki; Itoh, Mari; Kosaka, Hiroaki; Morita, Kyoji

    2016-04-01

    Mixture of brown rice and rice bran fermented with Aspergillus oryzae, designated as FBRA, has been reported to reveal anti-carcinogenic and anti-inflammatory effects in rodents. Then, to test its potential anti-cancer activity, the aqueous extract was prepared from FBRA powder, and the effect of this extract on human acute lymphoblastic leukemia Jurkat cells was directly examined. The exposure to FBRA extract reduced the cell viability in a concentration- and time-dependent manner. The reduction of the cell viability was accompanied by the DNA fragmentation, and partially restored by treatment with pan-caspase inhibitor. Further studies showed that FBRA extract induced the cleavage of caspase-8, -9, and -3, and decreased Bcl-2 protein expression. Moreover, the expression of tBid, DR5, and Fas proteins was enhanced by FBRA extract, and the pretreatment with caspase-8 inhibitor, but not caspase-9 inhibitor, restored the reduction of the cell viability induced by FBRA extract. These findings suggested that FBRA extract could induce the apoptotic death of human acute lymphoblastic leukemia cells probably through mainly the death receptor-mediated pathway and supplementarily through the tBid-mediated mitochondrial pathway, proposing the possibility that FBRA was a potential functional food beneficial to patients with hematological cancer.

  5. Tumor suppressors BTG1 and IKZF1 cooperate during mouse leukemia development and increase relapse risk in B-cell precursor acute lymphoblastic leukemia patients.

    PubMed

    Scheijen, Blanca; Boer, Judith M; Marke, René; Tijchon, Esther; van Ingen Schenau, Dorette; Waanders, Esmé; van Emst, Liesbeth; van der Meer, Laurens T; Pieters, Rob; Escherich, Gabriele; Horstmann, Martin A; Sonneveld, Edwin; Venn, Nicola; Sutton, Rosemary; Dalla-Pozza, Luciano; Kuiper, Roland P; Hoogerbrugge, Peter M; den Boer, Monique L; van Leeuwen, Frank N

    2017-03-01

    Deletions and mutations affecting lymphoid transcription factor IKZF1 (IKAROS) are associated with an increased relapse risk and poor outcome in B-cell precursor acute lymphoblastic leukemia. However, additional genetic events may either enhance or negate the effects of IKZF1 deletions on prognosis. In a large discovery cohort of 533 childhood B-cell precursor acute lymphoblastic leukemia patients, we observed that single-copy losses of BTG1 were significantly enriched in IKZF1-deleted B-cell precursor acute lymphoblastic leukemia (P=0.007). While BTG1 deletions alone had no impact on prognosis, the combined presence of BTG1 and IKZF1 deletions was associated with a significantly lower 5-year event-free survival (P=0.0003) and a higher 5-year cumulative incidence of relapse (P=0.005), when compared with IKZF1-deleted cases without BTG1 aberrations. In contrast, other copy number losses commonly observed in B-cell precursor acute lymphoblastic leukemia, such as CDKN2A/B, PAX5, EBF1 or RB1, did not affect the outcome of IKZF1-deleted acute lymphoblastic leukemia patients. To establish whether the combined loss of IKZF1 and BTG1 function cooperate in leukemogenesis, Btg1-deficient mice were crossed onto an Ikzf1 heterozygous background. We observed that loss of Btg1 increased the tumor incidence of Ikzf1(+/-) mice in a dose-dependent manner. Moreover, murine B cells deficient for Btg1 and Ikzf1(+/-) displayed increased resistance to glucocorticoids, but not to other chemotherapeutic drugs. Together, our results identify BTG1 as a tumor suppressor in leukemia that, when deleted, strongly enhances the risk of relapse in IKZF1-deleted B-cell precursor acute lymphoblastic leukemia, and augments the glucocorticoid resistance phenotype mediated by the loss of IKZF1 function. Copyright© Ferrata Storti Foundation.

  6. Evaluation of Manisa propolis effect on leukemia cell line by telomerase activity.

    PubMed

    Gunduz, Cumhur; Biray, Cigir; Kosova, Buket; Yilmaz, Berna; Eroglu, Zuhal; Sahin, Fahri; Omay, Serdar Bedii; Cogulu, Ozgur

    2005-11-01

    Propolis is a resinous substance which is used by bees to repair and maintain their hives. It has more than 180 compounds including flavonoids, phenolic acids and its esters which have anti-inflammatory, antibacterial, antiviral, immunomodulatory, antioxidant and antiproliferative effects. Propolis is shown to inhibit cell division and protein synthesis. However the exact mechanism underlying antitumor effect is not clearly described. On the other hand progressive telomere shortening to a critical level results with senescence of normal cells by inducing apoptosis and telomerase prevents erosion of telomeres. In this study we aimed to evaluate hTERT ratios in propolis-treated T-cell acute lymphoblastic leukemia (CCFR-CEM) cell line. Cell counts and cell viability of propolis-treated and propolis-free T-cell acute lymphoblastic leukemia (CCFR-CEM) cell line were assessed by trypan blue dye exclusion test and MTT assay. The LightCycler instrument was used (online real-time PCR) for the quantification of hTERT in CCFR-CEM cell line. The hTERT ratio significantly decreased 60 and 93% after 24 and 72 h respectively compared to the initial value of the cells incubated with propolis. It had almost no cytotoxic effect and caused 30, 30, 22 and 12% decrease in cell counts after 24, 48, 72 and 96 h respectively which is statistically significant. In conclusion propolis may show antitumor and apoptotic effect via inhibiting telomerase expression besides the mechanisms which have been described previously.

  7. Role of DNA methylation in long-term low-dose γ-rays induced adaptive response in human B lymphoblast cells.

    PubMed

    Ye, Shuang; Yuan, Dexiao; Xie, Yuexia; Pan, Yan; Shao, Chunlin

    2013-11-01

    With widespread use of ionizing radiation, more attention has been attracted to low-dose radiation (LDR); however, the mechanisms of long-term LDR-induced bio-effects are unclear. Here, we applied human B lymphoblast cell line HMy2.CIR to monitor the effects of long-term LDR and the potential involvement of DNA methylation. HMy2.CIR cells were irradiated with 0.032 Gy γ-rays three times per week for 1-4 weeks. Some of these primed cells were further challenged with 2 Gy γ-rays. Cell proliferation, micronuclei formation, gene expression of DNA methyltransferases (DNMT), levels of global genomic DNA methylation and protein expression of methyl CpG binding protein 2 (MeCP2) and heterochromatin protein-1 (HP1) were measured. Long-term LDR enhanced cell proliferation and clonogenicity and triggered a cellular adaptive response (AR). Furthermore, global genomic DNA methylation was increased in HMy2.CIR cells after long-term LDR, accompanied with an increase of gene expression of DNMT1 and protein expression of MeCP2 and HP1. After treatment with 5-aza-2'-deoxycytidine (5-aza-dC), a DNA methyltransferase inhibitor, the long-term LDR-induced global genomic DNA hypermethylation was decreased and the AR was eliminated. Global genomic DNA hypermethylation accompanied with increases of DNMT1 and MeCP2 expression and heterochromatin formation might be involved in long-term LDR-induced adaptive response.

  8. Design and synthesis of sulfonamide-substituted diphenylpyrimidines (SFA-DPPYs) as potent Bruton's tyrosine kinase (BTK) inhibitors with improved activity toward B-cell lymphoblastic leukemia.

    PubMed

    Liu, He; Qu, Menghua; Xu, Lina; Han, Xu; Wang, Changyuan; Shu, Xiaohong; Yao, Jihong; Liu, Kexin; Peng, Jinyong; Li, Yanxia; Ma, Xiaodong

    2017-07-28

    A new series of diphenylpyrimidine derivatives (SFA-DPPYs) were synthesized by introducing a functional sulfonamide into the C-2 aniline moiety of pyrimidine template, and then were biologically evaluated as potent Bruton's tyrosine kinase (BTK) inhibitors. Among these molecules, inhibitors 10c, 10i, 10j and 10k displayed high potency against the BTK enzyme, with IC50 values of 1.18 nM, 0.92 nM, 0.42 nM and 1.05 nM, respectively. In particular, compound 10c could remarkably inhibit the proliferation of the B lymphoma cell lines at concentrations of 6.49 μM (Ramos cells) and 13.2 μM (Raji cells), and was stronger than the novel agent spebrutinib. In addition, the inhibitory potency toward the normal PBMC cells showed that inhibitor 10c possesses low cell cytotoxicity. All these explorations indicated that molecule 10c could serve as a valuable inhibitor for B-cell lymphoblastic leukemia treatment. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. Y-box-binding protein 1 contributes to IL-7-mediated survival signaling in B-cell precursor acute lymphoblastic leukemia

    PubMed Central

    Kariminia, Amina; Ivison, Sabine M.; Leung, Vivian M.; Sung, Susanna; Couto, Nicole; Rozmus, Jacob; Rolf, Nina; Narendran, Aru; Dunn, Sandra E.; Reid, Gregor S.D.; Schultz, Kirk R.

    2017-01-01

    Y-box-binding protein 1 (YB-1) is a regulatory protein that is associated with drug resistance and relapse in solid tumors. As YB-1 mediates some of its activity through growth factor receptor signaling dysregulation, the present study compared the expression of YB-1 and interleukin 7 (IL-7) receptor α (IL-7Rα) in pediatric B-cell precursor (BCP) acute lymphoblastic leukemia (ALL) and normal BCP cells. The expression levels of IL-7Rα and YB-1 were higher in relapsed vs. diagnostic samples of primary BCP ALL; however, co-expression was also observed in a minor BCP cell population in samples from healthy donors. Functional crosstalk between YB-1 and IL-7R was detected: Overexpression of YB-1 increased surface levels of IL-7R in B cells, and the stimulation of BCP ALL cell lines and primary samples by IL-7 activated YB-1 by phosphorylation at S102 in a phosphatidylinositol 3-kinase-independent and MEK1/2-dependent manner. Targeted knockdown of YB-1 reduced IL-7-mediated protection against rapamycin, and an inhibitor of MEK1/2 potentiated rapamycin-mediated killing in the presence of IL-7. These data establish a novel link between two well-characterized pro-survival factors in acute leukemia, and suggest that YB-1 inhibition may represent a novel therapeutic strategy for increasing sensitivity to chemotherapy in patients with refractory acute B-cell leukemia. PMID:28123588

  10. Efficacy of the CDK inhibitor dinaciclib in vitro and in vivo in T-cell acute lymphoblastic leukemia.

    PubMed

    Moharram, Sausan A; Shah, Kinjal; Khanum, Fatima; Marhäll, Alissa; Gazi, Mohiuddin; Kazi, Julhash U

    2017-10-01

    T-cell acute lymphoblastic leukemia (T-ALL) is a heterogeneous disease of the blood affecting children, adolescents and adults. Although current treatment protocols for T-ALL have improved overall survival, a portion of T-ALL patients still experiences treatment failure. Thus, the development of novel therapies is needed. In this study, we used several patient-derived T-ALL cell lines to screen for an effective drug for T-ALL. Using a panel of 378 inhibitors against different kinases, we identified the CDK inhibitor dinaciclib as a potential drug for T-ALL. Dinaciclib treatment significantly reduced cell viability and completely blocked colony formation. Furthermore, cells treated with dinaciclib showed decreased expression of several pro-survival proteins including survivin, cyclin T1 and c-MYC. Dinaciclib treatment also increased accumulation of cells in G2/M phase and significantly induced apoptosis. Finally, dinaciclib extended survival of mice in a T-ALL cell xenograft model. Collectively, these data suggest that the CDK inhibitor dinaciclib is an active drug for T-ALL in the preclinical settings. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Lack of association between deletion polymorphism of BIM gene and in vitro drug sensitivity in B-cell precursor acute lymphoblastic leukemia.

    PubMed

    Huang, Meixian; Miyake, Kunio; Kagami, Keiko; Abe, Masako; Shinohara, Tamao; Watanabe, Atsushi; Somazu, Shinpei; Oshiro, Hiroko; Goi, Kumiko; Goto, Hiroaki; Minegishi, Masayoshi; Iwamoto, Shotaro; Kiyokawa, Nobutaka; Sugita, Kanji; Inukai, Takeshi

    2017-09-01

    A deletion polymorphism in the BIM gene was identified as an intrinsic mechanism for resistance to tyrosine kinase inhibitor in chronic myeloid leukemia patients in East Asia. BIM is also involved in the responses to glucocorticoid and chemotherapy in acute lymphoblastic leukemia (ALL), suggesting a possible association between deletion polymorphism of BIM and the chemosensitivity of ALL. Thus, we analyzed 72 B-cell precursor (BCP)-ALL cell lines established from Japanese patients. Indeed, higher BIM gene expression was associated with good in vitro sensitivities to glucocorticoid and chemotherapeutic agents used in induction therapy. We also analyzed the methylation status of the BIM gene promoter by next generation sequencing of genome bisulfite PCR products, since genetic polymorphism could be insignificant when epigenetically inactivated. Hypermethylation of the BIM gene promoter was associated with lower BIM gene expression and poorer sensitivity to vincristine. Of note, however, the prevalence of a deletion polymorphism was not associated with the BIM gene expression level or drug sensitivities in BCP-ALL cell lines, in which the BIM gene was unmethylated. These observations suggest that an association of a deletion polymorphism of BIM and the response to induction therapy in BCP-ALL may be clinically minimal. Copyright © 2017. Published by Elsevier Ltd.

  12. CREBBP knockdown enhances RAS/RAF/MEK/ERK signaling in Ras pathway mutated acute lymphoblastic leukemia but does not modulate chemotherapeutic response.

    PubMed

    Dixon, Zach A; Nicholson, Lindsay; Zeppetzauer, Martin; Matheson, Elizabeth; Sinclair, Paul; Harrison, Christine J; Irving, Julie A E

    2017-04-01

    Relapsed acute lymphoblastic leukemia is the most common cause of cancer-related mortality in young people and new therapeutic strategies are needed to improve outcome. Recent studies have shown that heterozygous inactivating mutations in the histone acetyl transferase, CREBBP, are particularly frequent in relapsed childhood acute lymphoblastic leukemia and associated with a hyperdiploid karyotype and KRAS mutations. To study the functional impact of CREBBP haploinsufficiency in acute lymphoblastic leukemia, RNA interference was used to knock down expression of CREBBP in acute lymphoblastic leukemia cell lines and various primagraft acute lymphoblastic leukemia cells. We demonstrate that attenuation of CREBBP results in reduced acetylation of histone 3 lysine 18, but has no significant impact on cAMP-dependent target gene expression. Impaired induction of glucocorticoid receptor targets was only seen in 1 of 4 CREBBP knockdown models, and there was no significant difference in glucocorticoid-induced apoptosis, sensitivity to other acute lymphoblastic leukemia chemotherapeutics or histone deacetylase inhibitors. Importantly, we show that CREBBP directly acetylates KRAS and that CREBBP knockdown enhances signaling of the RAS/RAF/MEK/ERK pathway in Ras pathway mutated acute lymphoblastic leukemia cells, which are still sensitive to MEK inhibitors. Thus, CREBBP mutations might assist in enhancing oncogenic RAS signaling in acute lymphoblastic leukemia but do not alter response to MEK inhibitors. Copyright© Ferrata Storti Foundation.

  13. AZD1775 sensitizes T cell acute lymphoblastic leukemia cells to cytarabine by promoting apoptosis over DNA repair.

    PubMed

    Ford, James B; Baturin, Dmitry; Burleson, Tamara M; Van Linden, Annemie A; Kim, Yong-Mi; Porter, Christopher C

    2015-09-29

    While some children with acute lymphoblastic leukemia (ALL) have excellent prognoses, the prognosis for adults and children with T cell ALL is more guarded. Treatment for T-ALL is heavily dependent upon antimetabolite chemotherapeutics, including cytarabine. Targeted inhibition of WEE1 with AZD1775 has emerged as a strategy to sensitize cancer cells to cytarabine and other chemotherapeutics. We sought to determine if this strategy would be effective for T-ALL with clinically relevant anti-leukemia agents. We found that AZD1775 sensitizes T-ALL cells to several traditional anti-leukemia agents, acting synergistically with cytarabine by enhancing DNA damage and apoptosis. In addition to increased phosphorylation of H2AX at serine 139 (γH2AX), AZD1775 led to increased phosphorylation of H2AX at tyrosine 142, a signaling event associated with promotion of apoptosis over DNA repair. In a xenograft model of T-ALL, the addition of AZD1775 to cytarabine slowed leukemia progression and prolonged survival. Inhibition of WEE1 with AZD1775 sensitizes T-ALL to several anti-leukemia agents, particularly cytarabine and that mechanistically, AZD1775 promotes apoptosis over DNA repair in cells treated with cytarabine. These data support the development of clinical trials including AZD1775 in combination with conventional chemotherapy for acute leukemia.

  14. Oxidative imbalance in nonstimulated X-adrenoleukodystrophy-derived lymphoblasts.

    PubMed

    Uto, Takuhiro; Contreras, Miguel A; Gilg, Anne G; Singh, Inderjit

    2008-01-01

    X-Adrenoleukodystrophy (X-ALD) is a peroxisomal disorder characterized by accumulation of very-long-chain (VLC) fatty acids, which induces inflammatory disease and alterations in cellular redox, both of which are reported to play a role in the pathogenesis of the severe form of the disease (childhood cerebral ALD). Here, we report on the status of oxidative stress (NADPH oxidase activity) and inflammatory mediators in an X-ALD lymphoblast cell line under nonstimulated conditions. X-ALD lymphoblasts contain nearly 7 times higher levels of the C(26:0) fatty acid compared to controls; these levels were downregulated by treatment with sodium phenylacetate (NaPA), lovastatin or the combination of both drugs. In addition, free-radicals synthesis was elevated in X-ALD lymphoblasts, and protein levels of the NADPH oxidase gp91(PHOX) membrane subunit were significantly upregulated, but no changes were observed in the p47(PHOX) and p67(PHOX) cytoplasmic subunits. Unexpectedly, there was no increase in gp91(PHOX) mRNA levels in X-ALD lymphoblasts. Furthermore, X-ALD lymphoblasts produced higher levels of nitric oxide (NO) and cytokines (tumor necrosis factor-alpha and interleukin 1 beta), and treatment with NaPA or lovastatin decreased the synthesis of NO. Our data indicate that X-ALD lymphoblasts are significantly affected by the accumulation of VLC fatty acids, which induces changes in the cell membrane properties/functions that may, in turn, play a role in the development/progression of the pathogenesis of X-ALD disease.

  15. Anti-CD22–chimeric antigen receptors targeting B-cell precursor acute lymphoblastic leukemia

    PubMed Central

    Haso, Waleed; Lee, Daniel W.; Shah, Nirali N.; Stetler-Stevenson, Maryalice; Yuan, Constance M.; Pastan, Ira H.; Dimitrov, Dimiter S.; Morgan, Richard A.; FitzGerald, David J.; Barrett, David M.; Wayne, Alan S.; Mackall, Crystal L.

    2013-01-01

    Immune targeting of B-cell malignancies using chimeric antigen receptors (CARs) is a promising new approach, but critical factors impacting CAR efficacy remain unclear. To test the suitability of targeting CD22 on precursor B-cell acute lymphoblastic leukemia (BCP-ALL), lymphoblasts from 111 patients with BCP-ALL were assayed for CD22 expression and all were found to be CD22-positive, with median CD22 expression levels of 3500 sites/cell. Three distinct binding domains targeting CD22 were fused to various TCR signaling domains ± an IgG heavy chain constant domain (CH2CH3) to create a series of vector constructs suitable to delineate optimal CAR configuration. CARs derived from the m971 anti-CD22 mAb, which targets a proximal CD22 epitope demonstrated superior antileukemic activity compared with those incorporating other binding domains, and addition of a 4-1BB signaling domain to CD28.CD3ζ constructs diminished potency, whereas increasing affinity of the anti-CD22 binding motif, and extending the CD22 binding domain away from the membrane via CH2CH3 had no effect. We conclude that second-generation m971 mAb-derived anti-CD22 CARs are promising novel therapeutics that should be tested in BCP-ALL. PMID:23243285

  16. CAR therapy for hematological cancers: can success seen in the treatment of B-cell acute lymphoblastic leukemia be applied to other hematological malignancies?

    PubMed

    Pegram, Hollie J; Smith, Eric L; Rafiq, Sarwish; Brentjens, Renier J

    2015-01-01

    Chimeric antigen receptor (CAR) T-cell therapy has recently come into the spotlight due to impressive results in patients with B-cell acute lymphoblastic leukemia. By targeting CD19, a marker expressed most B-cell tumors, as well as normal B cells, CAR T-cell therapy has been investigated as a treatment strategy for B-cell leukemia and lymphoma. This review will discuss the successes of this therapy for the treatment of B-cell acute lymphoblastic leukemia and the challenges to this therapeutic strategy. We will also discuss application of CAR T-cell therapy to chronic lymphocytic leukemia and other B-cell malignancies including a follicular lymphoma, diffuse large B-cell lymphoma, as well as acute and plasma cell malignancies.

  17. CAR therapy for hematological cancers: can success seen in the treatment of B-cell acute lymphoblastic leukemia be applied to other hematological malignancies?

    PubMed Central

    Pegram, Hollie J; Smith, Eric L; Rafq, Sarwish

    2016-01-01

    Chimeric antigen receptor (CAR) T-cell therapy has recently come into the spotlight due to impressive results in patients with B-cell acute lymphoblastic leukemia. By targeting CD19, a marker expressed most B-cell tumors, as well as normal B cells, CAR T-cell therapy has been investigated as a treatment strategy for B-cell leukemia and lymphoma. This review will discuss the successes of this therapy for the treatment of B-cell acute lymphoblastic leukemia and the challenges to this therapeutic strategy. We will also discuss application of CAR T-cell therapy to chronic lymphocytic leukemia and other B-cell malignancies including a follicular lymphoma, diffuse large B-cell lymphoma, as well as acute and plasma cell malignancies. PMID:26065479

  18. Combination Chemotherapy and Rituximab in Treating Young Patients With Recurrent or Refractory Non-Hodgkin's Lymphoma or Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2013-10-07

    B-cell Childhood Acute Lymphoblastic Leukemia; Childhood Burkitt Lymphoma; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; L3 Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma

  19. Immunohistochemical distinction of haematogones from B lymphoblastic leukaemia/lymphoma or B-cell acute lymphoblastic leukaemia (B-ALL) on bone marrow trephine biopsies: a study on 62 patients.

    PubMed

    Al-Shieban, Saeed; Byrne, Elizabeth; Trivedi, Pritesh; Morilla, Ricardo; Matutes, Estella; Naresh, Kikkeri N

    2011-08-01

    Haematogones are normal, maturing B-cell precursors. They can be confused with neoplastic immature lymphoid cells of B lymphoblastic leukaemia/lymphoma or B-cell acute lymphoblastic leukaemia (B-ALL). Though multi-colour flow-cytometry strategies for distinguishing haematogones from cells of B-ALL are well-described, similar strategies have not been determined for bone marrow trephine biopsies (BMTB). We revisited the morphological and immunohistochemical features (CD20, CD34, TdT and PAX5 expression) in 69 BMTB from 62 patients - 27 with excess haematogones; seven with residual B-ALL after therapy; 18 with no reported excess of haematogones or residual acute leukaemia on BMTB; and 17 diagnostic samples of B-ALL. The distinctive immunophenotypic pattern of BMTB with excess haematogones was of CD34, TdT, CD20 and PAX5 accounting for increasing proportions of cells in the order mentioned, whereas among B-ALL, the immunohistochemical pattern was of CD20, PAX5 and TdT accounting for an equal proportion of cells. Furthermore, among haematogones, the intensity of CD20 expression was extremely heterogeneous as compared to the neoplastic cells in CD20-positive B-ALL. The TdT-positive haematogones were generally small and uniform, while a certain degree of heterogeneity was noticed among neoplastic B-ALL cells. This study provides a practical strategy to distinguish haematogones from B-ALL cells in BMTB. © 2011 Blackwell Publishing Ltd.

  20. Discrimination and classification of acute lymphoblastic leukemia cells by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Managò, Stefano; Valente, Carmen; Mirabelli, Peppino; De Luca, Anna Chiara

    2015-05-01

    Currently, a combination of technologies is typically required to identify and classify leukemia cells. These methods often lack the specificity and sensitivity necessary for early and accurate diagnosis. Here, we demonstrate the use of Raman spectroscopy to identify normal B cells, collected from healthy patients, and three ALL cell lines (RS4;11, REH and MN60 at different differentiation level, respectively). Raman markers associated with DNA and protein vibrational modes have been identified that exhibit excellent discriminating power for leukemia cell identification. Principal Component Analysis was finally used to confirm the significance of these markers for identify leukemia cells and classifying the data. The obtained results indicate a sorting accuracy of 96% between the three leukemia cell lines.

  1. From the outside, from within: Biological and therapeutic relevance of signal transduction in T-cell acute lymphoblastic leukemia.

    PubMed

    Oliveira, Mariana L; Akkapeddi, Padma; Alcobia, Isabel; Almeida, Afonso R; Cardoso, Bruno A; Fragoso, Rita; Serafim, Teresa L; Barata, João T

    2017-10-01

    T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological cancer that arises from clonal expansion of transformed T-cell precursors. In this review we summarize the current knowledge on the external stimuli and cell-intrinsic lesions that drive aberrant activation of pivotal, pro-tumoral intracellular signaling pathways in T-cell precursors, driving transformation, leukemia expansion, spread or resistance to therapy. In addition to their pathophysiological relevance, receptors and kinases involved in signal transduction are often attractive candidates for targeted drug development. As such, we discuss also the potential of T-ALL signaling players as targets for therapeutic intervention. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Incidence and prognostic relevance of genetic variations in T-cell lymphoblastic lymphoma in childhood and adolescence.

    PubMed

    Bonn, Bettina R; Rohde, Marius; Zimmermann, Martin; Krieger, David; Oschlies, Ilske; Niggli, Felix; Wrobel, Grazyna; Attarbaschi, Andishe; Escherich, Gabriele; Klapper, Wolfram; Reiter, Alfred; Burkhardt, Birgit

    2013-04-18

    Probability of event-free survival (pEFS) in pediatric T-cell lymphoblastic lymphoma is about 80%, whereas survival in relapsed patients is very poor. No stratification criteria have been established so far. Recently, activating NOTCH1 mutations were reported to be associated with favorable prognosis, and loss of heterozygosity at chromosome 6q (LOH6q) was reported to be associated with increased relapse risk. The current project was intended to evaluate the prognostic effect of these markers. Mutations in hot spots of NOTCH1 and FBXW7 were analyzed in 116 patients. Concerning LOH6q status, 118 patients were investigated, using microsatellite marker analysis, in addition to an earlier reported cohort of 99 available patients. Ninety-two cases were evaluable for both analyses. All patients were treated with T-cell lymphoblastic lymphoma-Berlin-Frankfurt-Münster group (BFM)-type treatment. LOH6q was observed in 12% of patients (25/217) and associated with unfavorable prognosis (pEFS 27% ± 9% vs 86% ± 3%; P < .0001). In 60% (70/116) of the patients, NOTCH1 mutations were detected and associated with favorable prognosis (pEFS 84% ± 5% vs 66% ± 7%; P = .021). Interestingly, NOTCH1 mutations were rarely observed in patients with LOH in 6q16. Both prognostic markers will be used as stratification criteria in coming Non-Hodgkin Lymphoma-BFM trials.

  3. PTEN microdeletions in T-cell acute lymphoblastic leukemia are caused by illegitimate RAG-mediated recombination events.

    PubMed

    Mendes, Rui D; Sarmento, Leonor M; Canté-Barrett, Kirsten; Zuurbier, Linda; Buijs-Gladdines, Jessica G C A M; Póvoa, Vanda; Smits, Willem K; Abecasis, Miguel; Yunes, J Andres; Sonneveld, Edwin; Horstmann, Martin A; Pieters, Rob; Barata, João T; Meijerink, Jules P P

    2014-07-24

    Phosphatase and tensin homolog (PTEN)-inactivating mutations and/or deletions are an independent risk factor for relapse of T-cell acute lymphoblastic leukemia (T-ALL) patients treated on Dutch Childhood Oncology Group or German Cooperative Study Group for Childhood Acute Lymphoblastic Leukemia protocols. Some monoallelic mutated or PTEN wild-type patients lack PTEN protein, implying that additional PTEN inactivation mechanisms exist. We show that PTEN is inactivated by small deletions affecting a few exons in 8% of pediatric T-ALL patients. These microdeletions were clonal in 3% and subclonal in 5% of patients. Conserved deletion breakpoints are flanked by cryptic recombination signal sequences (cRSSs) and frequently have non-template-derived nucleotides inserted in between breakpoints, pointing to an illegitimate RAG recombination-driven activity. Identified cRSSs drive RAG-dependent recombination in a reporter system as efficiently as bona fide RSSs that flank gene segments of the T-cell receptor locus. Remarkably, equivalent microdeletions were detected in thymocytes of healthy individuals. Microdeletions strongly associate with the TALLMO subtype characterized by TAL1 or LMO2 rearrangements. Primary and secondary xenotransplantation of TAL1-rearranged leukemia allowed development of leukemic subclones with newly acquired PTEN microdeletions. Ongoing RAG activity may therefore actively contribute to the acquisition of preleukemic hits, clonal diversification, and disease progression. © 2014 by The American Society of Hematology.

  4. IGH@ translocations co-exist with other primary rearrangements in B-cell precursor acute lymphoblastic leukemia

    PubMed Central

    Jeffries, Sally J.; Jones, Lisa; Harrison, Christine J.; Russell, Lisa J.

    2014-01-01

    Primary established genetic abnormalities in B-cell precursor acute lymphoblastic leukemia include high hyperdiploidy (51–65 chromosomes), the translocations t(12;21)(p13;q22)/ETV6-RUNX1 fusion and t(9;22)(q34;q11)/BCR-ABL1 fusion, MLL rearrangements and intrachromosomal amplification of chromosome 21. These rearrangements are of prognostic and therapeutic relevance and are usually mutually exclusive. We identified 28 patients at diagnosis with both a primary genetic rearrangement and an immunoglobulin heavy chain locus translocation using chromosomal analysis and fluorescence in situ hybridization. Among these patients, the immunoglobulin heavy chain locus translocation partner gene was identified in six (CRLF2, CEBPA, CEBPB, TRA/D@, IGF2BP1 and IGK@). Clonal architecture was investigated in 17 patients using multiple color interphase fluorescence in situ hybridization analysis, which showed that the translocation was acquired as a secondary abnormality in ten patients, in four patients the etiology was undetermined and in three patients it was observed in a separate clone from the primary chromosomal rearrangement. These findings demonstrate the co-existence of immunoglobulin heavy chain locus translocations with other primary chromosomal rearrangements either in the same or separate clones, which may have prognostic significance in B-cell precursor acute lymphoblastic leukemia. Clinical trials: UKALLXII: Study ID n. ISRCTN77346223 and ALL2003: Study ID n. ISRCTN07355119 PMID:24816234

  5. DNA instability in replicating Huntington's disease lymphoblasts

    PubMed Central

    Cannella, Milena; Maglione, Vittorio; Martino, Tiziana; Ragona, Giuseppe; Frati, Luigi; Li, Guo-Min; Squitieri, Ferdinando

    2009-01-01

    Background The expanded CAG repeat in the Huntington's disease (HD) gene may display tissue-specific variability (e.g. triplet mosaicism) in repeat length, the longest mutations involving mitotic (germ and glial cells) and postmitotic (neurons) cells. What contributes to the triplet mutability underlying the development of HD nevertheless remains unknown. We investigated whether, besides the increased DNA instability documented in postmitotic neurons, possible environmental and genetic mechanisms, related to cell replication, may concur to determine CAG repeat mutability. To test this hypothesis we used, as a model, cultured HD patients' lymphoblasts with various CAG repeat lengths. Results Although most lymphoblastoid cell lines (88%) showed little or no repeat instability even after six or more months culture, in lymphoblasts with large expansion repeats beyond 60 CAG repeats the mutation size and triplet mosaicism always increased during replication, implying that the repeat mutability for highly expanded mutations may quantitatively depend on the triplet expansion size. None of the investigated genetic factors, potentially acting in cis to the mutation, significantly influence the repeat changes. Finally, in our experiments certain drugs controlled triplet expansion in two prone-to-expand HD cell lines carrying large CAG mutations. Conclusion Our data support quantitative evidence that the inherited CAG length of expanded alleles has a major influence on somatic repeat variation. The longest triplet expansions show wide somatic variations and may offer a mechanistic model to study triplet drug-controlled instability and genetic factors influencing it. PMID:19210789

  6. Rapamycin restores p14, p15 and p57 expression and inhibits the mTOR/p70S6K pathway in acute lymphoblastic leukemia cells.

    PubMed

    Li, Huibo; Kong, Xiaolin; Cui, Gang; Ren, Cuicui; Fan, Shengjin; Sun, Lili; Zhang, Yingjie; Cao, Rongyi; Li, Yinghua; Zhou, Jin

    2015-11-01

    The aim of the present study was to investigate the effects of rapamycin and its underlying mechanisms on acute lymphoblastic leukemia (ALL) cells. We found that the p14, p15, and p57 genes were not expressed in ALL cell lines (Molt-4 and Nalm-6) and adult ALL patients, whereas mTOR, 4E-BP1, and p70S6K were highly expressed. In Molt-4 and Nalm-6 cells exposed to rapamycin, cell viability decreased and the cell cycle was arrested at the G1/S phase. Rapamycin restored p14, p15, and p57 gene expression through demethylation of the promoters of these genes. As expected, rapamycin also increased p14 and p15 protein expression in both Molt-4 and Nalm-6 cells, as well as p57 protein expression in Nalm-6 cells. Rapamycin additionally decreased mTOR and p70S6K mRNA levels, as well as p70S6K and p-p70S6K protein levels. However, depletion of mTOR by siRNA did not alter the expression and promoter methylation states of p14, p15, and p57. These results indicate that the inhibitory effect of rapamycin may be due mainly to increased p14, p15, and p57 expression via promoter demethylation and decreased mTOR and p70S6K expression in ALL cell lines. These results suggest a potential role for rapamycin in the treatment of adult ALL.

  7. NKX3.1 is a direct TAL1 target gene that mediates proliferation of TAL1-expressing human T cell acute lymphoblastic leukemia

    PubMed Central

    Kusy, Sophie; Gerby, Bastien; Goardon, Nicolas; Gault, Nathalie; Ferri, Federica; Gérard, Delphine; Armstrong, Florence; Ballerini, Paola; Cayuela, Jean-Michel; Baruchel, André; Pflumio, Françoise

    2010-01-01

    TAL1 (also known as SCL) is expressed in >40% of human T cell acute lymphoblastic leukemias (T-ALLs). TAL1 encodes a basic helix-loop-helix transcription factor that can interfere with the transcriptional activity of E2A and HEB during T cell leukemogenesis; however, the oncogenic pathways directly activated by TAL1 are not characterized. In this study, we show that, in human TAL1–expressing T-ALL cell lines, TAL1 directly activates NKX3.1, a tumor suppressor gene required for prostate stem cell maintenance. In human T-ALL cell lines, NKX3.1 gene activation is mediated by a TAL1–LMO–Ldb1 complex that is recruited by GATA-3 bound to an NKX3.1 gene promoter regulatory sequence. TAL1-induced NKX3.1 activation is associated with suppression of HP1-α (heterochromatin protein 1 α) binding and opening of chromatin on the NKX3.1 gene promoter. NKX3.1 is necessary for T-ALL proliferation, can partially restore proliferation in TAL1 knockdown cells, and directly regulates miR-17-92. In primary human TAL1-expressing leukemic cells, the NKX3.1 gene is expressed independently of the Notch pathway, and its inactivation impairs proliferation. Finally, TAL1 or NKX3.1 knockdown abrogates the ability of human T-ALL cells to efficiently induce leukemia development in mice. These results suggest that tumor suppressor or oncogenic activity of NKX3.1 depends on tissue expression. PMID:20855495

  8. NKX3.1 is a direct TAL1 target gene that mediates proliferation of TAL1-expressing human T cell acute lymphoblastic leukemia.

    PubMed

    Kusy, Sophie; Gerby, Bastien; Goardon, Nicolas; Gault, Nathalie; Ferri, Federica; Gérard, Delphine; Armstrong, Florence; Ballerini, Paola; Cayuela, Jean-Michel; Baruchel, André; Pflumio, Françoise; Roméo, Paul-Henri

    2010-09-27

    TAL1 (also known as SCL) is expressed in >40% of human T cell acute lymphoblastic leukemias (T-ALLs). TAL1 encodes a basic helix-loop-helix transcription factor that can interfere with the transcriptional activity of E2A and HEB during T cell leukemogenesis; however, the oncogenic pathways directly activated by TAL1 are not characterized. In this study, we show that, in human TAL1-expressing T-ALL cell lines, TAL1 directly activates NKX3.1, a tumor suppressor gene required for prostate stem cell maintenance. In human T-ALL cell lines, NKX3.1 gene activation is mediated by a TAL1-LMO-Ldb1 complex that is recruited by GATA-3 bound to an NKX3.1 gene promoter regulatory sequence. TAL1-induced NKX3.1 activation is associated with suppression of HP1-α (heterochromatin protein 1 α) binding and opening of chromatin on the NKX3.1 gene promoter. NKX3.1 is necessary for T-ALL proliferation, can partially restore proliferation in TAL1 knockdown cells, and directly regulates miR-17-92. In primary human TAL1-expressing leukemic cells, the NKX3.1 gene is expressed independently of the Notch pathway, and its inactivation impairs proliferation. Finally, TAL1 or NKX3.1 knockdown abrogates the ability of human T-ALL cells to efficiently induce leukemia development in mice. These results suggest that tumor suppressor or oncogenic activity of NKX3.1 depends on tissue expression.

  9. [The significance of change of Th22 cells in patients with acute lymphoblastic leukemia].

    PubMed

    Liu, Li-min; Zhang, Xing-xia; Zhao, Guang-sheng; Si, Ye-jun; Lin, Guo-qiang; Zhang, Yan-ming; He, Guang-sheng; Wu, De-pei

    2012-12-01

    To investigate the proportion of Th22 cells in peripheral blood of patients with acute lymphoblastic leukemia (ALL) and evaluate its significance. The proportions of Th22 cells in peripheral blood of B-ALL and T-ALL patients before therapy (group 1), B-ALL and T-ALL patients in complete remission (ALL-CR, group 2) and healthy donors (group 3) were evaluated by flow cytometry. The cytokines IL-22, TGF-β, TNF-α and IL-6 in peripheral blood of each group were measured by enzyme-linked immunosorbent assay (ELISA). The levels of IL-22 mRNA in peripheral blood mononuclear cells of each group were examined by reverse transcription-PCR (RT-PCR). The percentages of Th22 cells and the levels of IL-22, TNF-α, IL-6 and IL-22 mRNA in B-ALL and T-ALL patients before therapy were (0.44 ± 0.10)%, (10.9 ± 3.4) ng/L, (110.7 ± 26.5) ng/L, (60.2 ± 13.8) ng/L, 0.17 ± 0.04 and (0.46 ± 0.11)%, (11.2 ± 3.5) ng/L, (114.6 ± 27.0) ng/L, (58.7 ± 12.4) ng/L, 0.19 ± 0.04, respectively; Which in B-ALL and T-ALL patients in complete remission were(0.59 ± 0.15)%, (14.3 ± 4.1) ng/L, (142.5 ± 32.7) ng/L, (83.7 ± 18.9) ng/L, 0.25 ± 0.06 and(0.60 ± 0.15)%, (14.6 ± 4.3) ng/L, (140.4 ± 31.4) ng/L, (81.4 ± 18.2) ng/L, 0.26 ± 0.06, significantly lower than those in healthy donors \\[(1.24 ± 0.31)%, (19.7 ± 6.6) ng/L, (238.3 ± 50.4) ng/L, (138.0 ± 27.1) ng/L, 0.49 ± 0.09\\] (P < 0.01). The percentages of Th22 cells and the levels of IL-22, TNF-α, IL-6 and IL-22 mRNA in group l were lower than those in group 2 (P < 0.05), there was not significant difference between B-ALL and T-ALL (P > 0.05). But the levels of TGF-β in B-ALL and T-ALL patients before therapy \\[(30.6 ± 8.2) ng/L, (31.4 ± 8.8) ng/L\\] and in complete remission \\[(24.2 ± 5.8) ng/L, (25.1 ± 6.1) ng/L\\] were significantly higher than those in group 3\\[(9.6 ± 2.8) ng/L\\] (P < 0.01). However, the level of TGF-β in group 1 was higher than that of group 2 (P < 0.05), there was not significant difference

  10. Dietary resveratrol does not delay engraftment, sensitize to vincristine or inhibit growth of high-risk acute lymphoblastic leukemia cells in NOD/SCID mice

    PubMed Central

    ZUNINO, SUSAN J.; STORMS, DAVID H.; NEWMAN, JOHN W.; PEDERSEN, THERESA L.; KEEN, CARL L.; DUCORE, JONATHAN M.

    2012-01-01

    Acute lymphoblastic leukemia (ALL) with translocation t(4;11) is a high-risk leukemia found in 60–85% of infants with ALL and is often refractory to conventional chemotherapeutics after relapse. To evaluate the efficacy of dietary resveratrol in vivo, 5-week-old NOD.CB17-Prkdcscid/J mice were fed a control diet or a diet containing 0.2% w/w resveratrol. After 3 weeks of dietary treatment, mice were engrafted with the human t(4;11) ALL line SEM by tail vein injection. Engraftment was monitored by evaluating the presence of human CD19+ cells in peripheral blood using flow cytometry. Relative to control diet, dietary resveratrol did not delay the engraftment of the leukemia cells. To determine if dietary resveratrol could increase efficacy of a chemotherapeutic agent, vincristine was injected intraperitoneally into leukemic mice fed the control or supplemented diet. Survival curves and monitoring the percentage of human leukemia cells in peripheral blood showed that resveratrol did not inhibit leukemia cell growth or influence the activity of vincristine. Mass spectrometric analysis of mouse serum revealed that the majority of resveratrol was present as glucuronidated and sulfated metabolites. These data do not support the concept that dietary resveratrol has potential as a preventative agent against the growth of high-risk t(4;11) ALL. PMID:23041950

  11. [Case report of a B-cell lymphoblastic lymphoma with massive mediastinal involvement].

    PubMed

    Wawrzyńska, L; Roszkowski, K; Filipecki, S

    1991-01-01

    A case report is presented of a 29 year old female with an initial diagnosis of a middle-grade malignant lymphoma. The diagnosis was verified basing on clinical symptoms of central nervous system involvement and results of immunological analysis of sampled lymph nodes, tonsils, and spinal fluid. The result of this analysis allowed a high-grade malignant lymphoblastic lymphoma to be diagnosed enabling to start aggressive chemotherapy followed by radiotherapy. A two year complete remission was observed.

  12. Etoposide, Prednisone, Vincristine Sulfate, Cyclophosphamide, and Doxorubicin Hydrochloride With Asparaginase in Treating Patients With Acute Lymphoblastic Leukemia or Lymphoblastic Lymphoma

    ClinicalTrials.gov

    2016-10-24

    B Acute Lymphoblastic Leukemia; B Lymphoblastic Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent B Lymphoblastic Lymphoma; Recurrent T Lymphoblastic Leukemia/Lymphoma; Refractory B Lymphoblastic Lymphoma; Refractory T Lymphoblastic Lymphoma; T Acute Lymphoblastic Leukemia; T Lymphoblastic Lymphoma

  13. Blast cell methotrexate-polyglutamate accumulation in vivo differs by lineage, ploidy, and methotrexate dose in acute lymphoblastic leukemia.

    PubMed Central

    Synold, T W; Relling, M V; Boyett, J M; Rivera, G K; Sandlund, J T; Mahmoud, H; Crist, W M; Pui, C H; Evans, W E

    1994-01-01

    High-dose methotrexate (HDMTX) is a component of most treatment protocols for childhood acute lymphoblastic leukemia (ALL), yet recent studies of receptor-mediated transport and saturable polyglutamylation have questioned its rationale. To investigate this in vivo, methotrexate and its active polyglutamated metabolites (MTX-PG) were measured in bone marrow blasts obtained from 101 children randomized to single-agent therapy with either HDMTX (1 g/m2 per 24 h i.v., n = 47) or low-dose MTX (LDMTX, 30 mg/m2 by mouth every 6 h x 6, n = 54), before remission induction therapy. Blast concentrations of total MTX-PGs (median 460 vs 1380 pmol/10(9) cells) and of long-chain MTX-glu4-6 were both significantly higher after HDMTX (P < 0.001). With either treatment, MTX-PGs were significantly higher in B-lineage blasts than in T-lineage blasts (LDMTX P = 0.001, HDMTX P = 0.03). In a multiple regression analysis of B-lineage ALL, blast MTX-PG was significantly related to MTX dose (or plasma MTX concentration), lymphoblast ploidy (hyperdiploid > nonhyperdiploid), and percentage S-phase. This is the first evidence that HDMTX achieves higher MTX-PG concentrations in ALL blasts in vivo, establishing a rationale for HDMTX in the treatment of childhood ALL, especially T-lineage or nonhyperdiploid B-lineage ALL, disease characteristics associated with a poor prognosis on conventional therapy. Images PMID:7525652

  14. Differential expression of cyclin-dependent kinase 6 in cortical thymocytes and T-cell lymphoblastic lymphoma/leukemia.

    PubMed Central

    Chilosi, M.; Doglioni, C.; Yan, Z.; Lestani, M.; Menestrina, F.; Sorio, C.; Benedetti, A.; Vinante, F.; Pizzolo, G.; Inghirami, G.

    1998-01-01

    Cyclin-dependent kinase-6 (CDK6) is the earliest inducible member of the CDK family in human T lymphocytes, involved in growth factor stimulation and cell cycle progression. CDK6 is one of the targets of p16 and p15, CDK inhibitors encoded by MTS1 and MTS2, two tumor suppressor genes that are frequently deleted in T-cell leukemia. In this study we have investigated CDK6 expression in normal and neoplastic lymphoid tissues using immunohistochemistry and flow cytometry. In normal (six samples) and hyperplastic (four samples) thymuses, strong CDK6 expression was observed in a discrete proportion of cortical thymocytes (10 to 15%), mainly located in the peripheral (subcapsular) zone of the cortex. All tested cases of T-cell lymphoblastic lymphoma/leukemia (T-LBL/ALL) showed strong CDK6 expression in the majority (up to 100%) of neoplastic lymphoid cells. Western blot analysis confirmed the expected CDK6 protein size (40 kd). According to Southern blot analysis, CDK6 overexpression in neoplastic T lymphoblasts was not due to gene amplification. In all other lymphomas investigated (28 peripheral T-cell non-Hodgkin's lympohomas (T-NHLs), 7 CD30+ anaplastic NHLs, 22 high-grade B-NHLs, 15 low-grade B-NHLs, 25 B-cell precursor ALLs), CDK6 was not expressed or expressed at low levels, with the only exception of three nasal angiocentric T-NHLs, all exhibiting CDK6 immunoreactivity comparable to that observed in T-LBL/ALL. These data provide evidence that CDK6 is abnormally expressed in T-LBL/ALL and may be involved in the pathogenesis of this malignancy. In addition, the quantitative difference of CDK6 expression between neoplastic and non-neoplastic cortical thymocytes can be potentially useful in the differential diagnosis of thymic neoplasms on histological and cytological specimens. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 7 Figure 8 PMID:9422538

  15. Mutations of PHF6 are associated with mutations of NOTCH1, JAK1 and rearrangement of SET-NUP214 in T-cell acute lymphoblastic leukemia

    PubMed Central

    Wang, Qian; Qiu, Huiying; Jiang, Hui; Wu, Lili; Dong, Shasha; Pan, Jinlan; Wang, Wenjuan; Ping, Nana; Xia, Jing; Sun, Aining; Wu, Depei; Xue, Yongquan; Drexler, Hans G.; MacLeod, Roderick A. F.; Chen, Suning

    2011-01-01

    Background Mutations in the PHF6 gene were recently described in patients with T-cell acute lymphoblastic leukemia and in those with acute myeloid leukemia. The present study was designed to determine the prevalence of PHF6 gene alterations in T-cell acute lymphoblastic leukemia. Design and Methods We analyzed the incidence and prognostic value of PHF6 mutations in 96 Chinese patients with T-cell acute lymphoblastic leukemia. PHF6 deletions were screened by real-time quantitative polymerase chain reaction and array-based comparative genomic hybridization. Patients were also investigated for NOTCH1, FBXW7, WT1, and JAK1 mutations together with CALM-AF10, SET-NUP214, and SIL-TAL1 gene rearrangements. Results PHF6 mutations were identified in 11/59 (18.6%) adult and 2/37 (5.4%) pediatric cases of T-cell acute lymphoblastic leukemia, these incidences being significantly lower than those recently reported. Although PHF6 is X-linked and mutations have been reported to occur almost exclusively in male patients, we found no sex difference in the incidences of PHF6 mutations in Chinese patients with T-cell acute lymphoblastic leukemia. PHF6 deletions were detected in 2/79 (2.5%) patients analyzed. NOTCH1 mutations, FBXW7 mutations, WT1 mutations, JAK1 mutations, SIL-TAL1 fusions, SET-NUP214 fusions and CALM-AF10 fusions were present in 44/96 (45.8%), 9/96 (9.4%), 4/96 (4.1%), 3/49 (6.1%), 9/48 (18.8%), 3/48 (6.3%) and 0/48 (0%) of patients, respectively. The molecular genetic markers most frequently associated with PHF6 mutations were NOTCH1 mutations (P=0.003), SET-NUP214 rearrangements (P=0.002), and JAK1 mutations (P=0.005). No differences in disease-free survival and overall survival between T-cell acute lymphoblastic leukemia patients with and without PHF6 mutations were observed in a short-term follow-up. Conclusions Overall, these results indicate that, in T-cell acute lymphoblastic leukemia, PHF6 mutations are a recurrent genetic abnormality associated with

  16. Pediatric precursor B acute lymphoblastic leukemia: are T helper cells the missing link in the infectious etiology theory?

    PubMed

    Bürgler, Simone; Nadal, David

    2017-12-01

    Precursor B acute lymphoblastic leukemia (BCP-ALL), the most common childhood malignancy, arises from an expansion of malignant B cell precursors in the bone marrow. Epidemiological studies suggest that infections or immune responses to infections may promote such an expansion and thus BCP-ALL development. Nevertheless, a specific pathogen responsible for this process has not been identified. BCP-ALL cells critically depend on interactions with the bone marrow microenvironment. The bone marrow is also home to memory T helper (Th) cells that have previously expanded during an immune response in the periphery. In secondary lymphoid organs, Th cells can interact with malignant cells of mature B cell origin, while such interactions between Th cells and malignant immature B cell in the bone marrow have not been described yet. Nevertheless, literature supports a model where Th cells-expanded during an infection in early childhood-migrate to the bone marrow and support BCP-ALL cells as they support normal B cells. Further research is required to mechanistically confirm this model and to elucidate the interaction pathways between leukemia cells and cells of the tumor microenvironment. As benefit, targeting these interactions could be included in current treatment regimens to increase therapeutic efficiency and to reduce relapses.

  17. Analysis of Residual DSBs in Ataxia-Telangiectasia Lymphoblast Cells Initiating Apoptosis

    PubMed Central

    Anglada, Teresa; Terradas, Mariona; Hernández, Laia; Genescà, Anna; Martín, Marta

    2016-01-01

    In order to examine the relationship between accumulation of residual DNA double-strand breaks (DSBs) and cell death, we have used a control and an ATM (Ataxia-Telangiectasia Mutated) defective cell line, as Ataxia-Telangiectasia (AT) cells tend to accumulate residual DSBs at long times after damage infliction. After irradiation, AT cells showed checkpoint impairment and a fraction of cells displayed an abnormal centrosome number and tetraploid DNA content, and this fraction increased along with apoptosis rates. At all times analyzed, AT cells displayed a significantly higher rate of radiation-induced apoptosis than normal cells. Besides apoptosis, 70–85% of the AT viable cells (TUNEL-negative) carried ≥10 γH2AX foci/cell, while only 12–27% of normal cells did. The fraction of AT and normal cells undergoing early and late apoptosis were isolated by flow cytometry and residual DSBs were concretely scored in these populations. Half of the γH2AX-positive AT cells undergoing early apoptosis carried ≥10 γH2AX foci/cell and this fraction increased to 75% in late apoptosis. The results suggest that retention of DNA damage-induced γH2AX foci is an indicative of lethal DNA damage, as cells undergoing apoptosis are those accumulating more DSBs. Scoring of residual γH2AX foci might function as a predictive tool to assess radiation-induced apoptosis. PMID:27057549

  18. Unique long non-coding RNA expression signature in ETV6/RUNX1-driven B-cell precursor acute lymphoblastic leukemia

    PubMed Central

    Ghazavi, Farzaneh; Moerloose, Barbara De; Loocke, Wouter Van; Wallaert, Annelynn; Helsmoortel, Hetty H.; Ferster, Alina; Bakkus, Marleen; Plat, Geneviève; Delabesse, Eric; Uyttebroeck, Anne; Nieuwerburgh, Filip Van; Deforce, Dieter; Roy, Nadine Van; Speleman, Frank; Benoit, Yves

    2016-01-01

    Overwhelming evidence indicates that long non-coding RNAs have essential roles in tumorigenesis. Nevertheless, their role in the molecular pathogenesis of pediatric B-cell precursor acute lymphoblastic leukemia has not been extensively explored. Here, we conducted a comprehensive analysis of the long non-coding RNA transcriptome in ETV6/RUNX1-positive BCP-ALL, one of the most frequent subtypes of pediatric leukemia. First, we used primary leukemia patient samples to identify an ETV6/RUNX1 specific expression signature consisting of 596 lncRNA transcripts. Next, integration of this lncRNA signature with RNA sequencing of BCP-ALL cell lines and lncRNA profiling of an in vitro model system of ETV6/RUNX1 knockdown, revealed that lnc-NKX2-3-1, lnc-TIMM21-5, lnc-ASTN1-1 and lnc-RTN4R-1 are truly regulated by the oncogenic fusion protein. Moreover, sustained inactivation of lnc-RTN4R-1 and lnc-NKX2-3-1 in ETV6/RUNX1 positive cells caused profound changes in gene expression. All together, our study defined a unique lncRNA expression signature associated with ETV6/RUNX1-positive BCP-ALL and identified lnc-RTN4R-1 and lnc-NKX2-3-1 as lncRNAs that might be functionally implicated in the biology of this prevalent subtype of human leukemia. PMID:27650541

  19. Unique long non-coding RNA expression signature in ETV6/RUNX1-driven B-cell precursor acute lymphoblastic leukemia.

    PubMed

    Ghazavi, Farzaneh; De Moerloose, Barbara; Van Loocke, Wouter; Wallaert, Annelynn; Helsmoortel, Hetty H; Ferster, Alina; Bakkus, Marleen; Plat, Geneviève; Delabesse, Eric; Uyttebroeck, Anne; Van Nieuwerburgh, Filip; Deforce, Dieter; Van Roy, Nadine; Speleman, Frank; Benoit, Yves; Lammens, Tim; Van Vlierberghe, Pieter

    2016-11-08

    Overwhelming evidence indicates that long non-coding RNAs have essential roles in tumorigenesis. Nevertheless, their role in the molecular pathogenesis of pediatric B-cell precursor acute lymphoblastic leukemia has not been extensively explored. Here, we conducted a comprehensive analysis of the long non-coding RNA transcriptome in ETV6/RUNX1-positive BCP-ALL, one of the most frequent subtypes of pediatric leukemia. First, we used primary leukemia patient samples to identify an ETV6/RUNX1 specific expression signature consisting of 596 lncRNA transcripts. Next, integration of this lncRNA signature with RNA sequencing of BCP-ALL cell lines and lncRNA profiling of an in vitro model system of ETV6/RUNX1 knockdown, revealed that lnc-NKX2-3-1, lnc-TIMM21-5, lnc-ASTN1-1 and lnc-RTN4R-1 are truly regulated by the oncogenic fusion protein. Moreover, sustained inactivation of lnc-RTN4R-1 and lnc-NKX2-3-1 in ETV6/RUNX1 positive cells caused profound changes in gene expression. All together, our study defined a unique lncRNA expression signature associated with ETV6/RUNX1-positive BCP-ALL and identified lnc-RTN4R-1 and lnc-NKX2-3-1 as lncRNAs that might be functionally implicated in the biology of this prevalent subtype of human leukemia.

  20. Resveratrol given intraperitoneally does not inhibit the growth of high-risk t(4;11) acute lymphoblastic leukemia cells in a NOD/SCID mouse model

    PubMed Central

    ZUNINO, SUSAN J.; STORMS, DAVID H.; NEWMAN, JOHN W.; PEDERSEN, THERESA L.; KEEN, CARL L.; DUCORE, JONATHAN M.

    2012-01-01

    The efficacy of resveratrol as a preventive agent against the growth of t(4;11) acute lymphoblastic leukemia (ALL) was evaluated in NOD.CB17-Prkdcscid/J mice engrafted with the human t(4;11) ALL SEM cell line. SEM cells were injected into the tail vein and engraftment was monitored by flow cytometry. Once engraftment was observed, mice were injected intraperitoneally with resveratrol (10 mg/kg body weight) dissolved in dimethylsulfoxide (DMSO) or DMSO alone (control) every other day, or vincristine (0.5 mg/kg body weight) 3 times per week for 4 weeks (n=16 per group). Comparisons of the percent of human leukemia cells in blood and survival curves showed resveratrol did not inhibit progression of the disease. Liquid chromatography-tandem mass spectrometry analyses of mouse sera showed resveratrol was rapidly metabolized to glucuronidated and sulfated forms 1 h post-injection, with low to no resveratrol or metabolites observed in sera by 24–48 h. These data indicate that in contrast to findings in in vitro models, parenterally administered resveratrol does not have potential as a preventive agent against high risk t(4;11) ALL. PMID:22200740

  1. The dual specificity PI3K/mTOR inhibitor PKI-587 displays efficacy against T-cell acute lymphoblastic leukemia (T-ALL).

    PubMed

    Gazi, Mohiuddin; Moharram, Sausan A; Marhäll, Alissa; Kazi, Julhash U

    2017-04-28

    Although significant improvements have been made in the treatment of acute lymphoblastic leukemia (ALL), there is a substantial subset of high-risk T-cell ALL (T-ALL) patients with relatively poor prognosis. Like in other leukemia types, alterations of the PI3K/mTOR pathway are predominant in ALL which is also responsible for treatment failure and relapse. In this study, we show that relapsed T-ALL patients display an enrichment of the PI3K/mTOR pathway. Using a panel of inhibitors targeting multiple components of the PI3K/mTOR pathway, we observed that the dual-specific PI3K/mTOR inhibitor PKI-587 was the most selective inhibitor for T-ALL cells dependent on the PI3K/mTOR pathway. Furthermore, we observed that PKI-587 blocked proliferation and colony formation of T-ALL cell lines. Additionally, PKI-587 selectively abrogated PI3K/mTOR signaling without affecting MAPK signaling both in in vitro and in vivo. Inhibition of the PI3K/mTOR pathway using PKI-587 delayed tumor progression, reduced tumor load and enhanced the survival rate in immune-deficient mouse xenograft models without inducing weight loss in the inhibitor treated mice. This preclinical study shows beneficial effects of PKI-587 on T-ALL that warrants further investigation in the clinical setting.

  2. Thyroid cell lines in research on goitrogenesis.

    PubMed

    Gerber, H; Peter, H J; Asmis, L; Studer, H

    1991-12-01

    Thyroid cell lines have contributed a lot to the understanding of goitrogenesis. The cell lines mostly used in thyroid research are briefly discussed, namely the rat thyroid cell lines FRTL and FRTL-5, the porcine thyroid cell lines PORTHOS and ARTHOS, The sheep thyroid cell lines OVNIS 5H and 6H, the cat thyroid cell lines PETCAT 1 to 4 and ROMCAT, and the human thyroid cell lines FTC-133 and HTh 74. Chinese hamster ovary (CHO) cells and COS-7 cells, stably transfected with TSH receptor cDNA and expressing a functional TSH receptor, are discussed as examples for non-thyroidal cells, transfected with thyroid genes.

  3. Targeted sequencing identifies associations between IL7R-JAK mutations and epigenetic modulators in T-cell acute lymphoblastic leukemia

    PubMed Central

    Vicente, Carmen; Schwab, Claire; Broux, Michaël; Geerdens, Ellen; Degryse, Sandrine; Demeyer, Sofie; Lahortiga, Idoya; Elliott, Alannah; Chilton, Lucy; La Starza, Roberta; Mecucci, Cristina; Vandenberghe, Peter; Goulden, Nicholas; Vora, Ajay; Moorman, Anthony V.; Soulier, Jean; Harrison, Christine J.; Clappier, Emmanuelle; Cools, Jan

    2015-01-01

    T-cell acute lymphoblastic leukemia is caused by the accumulation of multiple oncogenic lesions, including chromosomal rearrangements and mutations. To determine the frequency and co-occurrence of mutations in T-cell acute lymphoblastic leukemia, we performed targeted re-sequencing of 115 genes across 155 diagnostic samples (44 adult and 111 childhood cases). NOTCH1 and CDKN2A/B were mutated/deleted in more than half of the cases, while an additional 37 genes were mutated/deleted in 4% to 20% of cases. We found that IL7R-JAK pathway genes were mutated in 27.7% of cases, with JAK3 mutations being the most frequent event in this group. Copy number variations were also detected, including deletions of CREBBP or CTCF and duplication of MYB. FLT3 mutations were rare, but a novel extracellular mutation in FLT3 was detected and confirmed to be transforming. Furthermore, we identified complex patterns of pairwise associations, including a significant association between mutations in IL7R-JAK genes and epigenetic regulators (WT1, PRC2, PHF6). Our analyses showed that IL7R-JAK genetic lesions did not confer adverse prognosis in T-cell acute lymphoblastic leukemia cases enrolled in the UK ALL2003 trial. Overall, these results identify interconnections between the T-cell acute lymphoblastic leukemia genome and disease biology, and suggest a potential clinical application for JAK inhibitors in a significant proportion of patients with T-cell acute lymphoblastic leukemia. PMID:26206799

  4. DNA methylation profiling of pediatric B-cell lymphoblastic leukemia with KMT2A rearrangement identifies hypomethylation at enhancer sites.

    PubMed

    Bergmann, Anke K; Castellano, Giancarlo; Alten, Julia; Ammerpohl, Ole; Kolarova, Julia; Nordlund, Jessica; Martin-Subero, Jose Ignacio; Schrappe, Martin; Siebert, Reiner

    2017-03-01

    Deregulation of the epigenome is an important pathogenetic mechanism in acute lymphoblastic leukemia (ALL) with lysine (K)-specific methyltransferase 2A rearrangement (KMT2Ar). We performed array-based DNA methylation profiling of KMT2Ar ALL cells from 26 children in comparison to normal B-cell precursors. Significant changes in DNA methylation in KMT2Ar ALL were identified in 2,545 CpG loci, influenced by age and the translocation partners AFF1 and MLLT1. In KMT2Ar ALL, DNA methylation loss was enriched at enhancers and for certain transcription factor binding sites such as BCL11A, EBF, and MEF2A. In summary, DNA methylation changes in KMT2Ar ALL target enhancers, genes involved in leukemogenesis and normal hematopoiesis, as well as transcription factor networks.

  5. Targeted therapy with MXD3 siRNA, anti-CD22 antibody and nanoparticles for precursor B-cell acute lymphoblastic leukaemia.

    PubMed

    Satake, Noriko; Duong, Connie; Chen, Cathy; Barisone, Gustavo A; Diaz, Elva; Tuscano, Joseph; Rocke, David M; Nolta, Jan; Nitin, Nitin

    2014-11-01

    Conventional chemotherapy for precursor B-cell (preB) acute lymphoblastic leukaemia (ALL) has limitations that could be overcome by targeted therapy. Previously, we discovered a potential therapeutic molecular target, MDX3 (MAX dimerization protein 3), in preB ALL. In this study, we hypothesize that an effective siRNA therapy for preB ALL can be developed using antiCD22 antibody (αCD22 Ab) and nanoparticles. We composed nanocomplexes with super paramagnetic iron oxide nanoparticles (SPIO NPs), αCD22 Abs and MXD3 siRNA molecules based on physical interactions between the molecules. We demonstrated that the MXD3 siRNA-αCD22 Ab-SPIO NP complexes entered leukaemia cells and knocked down MXD3, leading the cells to undergo apoptosis and resulting in decreased live cell counts in the cell line Reh and in primary preB ALL samples in vitro. Furthermore, the cytotoxic effects of the MXD3 siRNA-αCD22 Ab-SPIO NP complexes were significantly enhanced by addition of the chemotherapy drugs vincristine or doxorubicin. We also ruled out potential cytotoxic effects of the MXD3 siRNA-αCD22 Ab-SPIO NP complexes on normal primary haematopoietic cells. Normal B cells were affected while CD34-positive haematopoietic stem cells and non-B cells were not. These data suggest that MXD3 siRNA-αCD22 Ab-SPIO NP complexes have the potential to be a new targeted therapy for preB ALL. © 2014 John Wiley & Sons Ltd.

  6. Changes in cell death of peripheral blood lymphocytes isolated from children with acute lymphoblastic leukemia upon stimulation with 7 Hz, 30 mT pulsed electromagnetic field.

    PubMed

    Kaszuba-Zwoińska, Jolanta; Ćwiklińska, Magdalena; Balwierz, Walentyna; Chorobik, Paulina; Nowak, Bernadeta; Wójcik-Piotrowicz, Karolina; Ziomber, Agata; Malina-Novak, Kinga; Zaraska, Wiesław; Thor, Piotr J

    2015-03-01

    Pulsed electromagnetic field (PEMF) influenced the viability of proliferating in vitro peripheral blood mononuclear cells (PBMCs) isolated from Crohn's disease patients as well as acute myeloblastic leukemia (AML) patients by induction of cell death, but did not cause any vital changes in cells from healthy donors. Experiments with lymphoid U937 and monocytic MonoMac6 cell lines have shown a protective effect of PEMF on the death process in cells treated with death inducers. The aim of the current study was to investigate the influence of PEMF on native proliferating leukocytes originating from newly diagnosed acute lymphoblastic leukemia (ALL) patients. The effects of exposure to PEMF were studied in PBMCs from 20 children with ALL. PBMCs were stimulated with three doses of PEMF (7 Hz, 30 mT) for 4 h each with 24 h intervals. After the last stimulation, the cells were double stained with annexin V and propidium iodide dye to estimate viability by flow cytometric analysis. The results indicated an increase of annexin V positive as well as double stained annexin V and propidium iodide positive cells after exposure to threefold PEMF stimulation. A low-frequency pulsed electromagnetic field induces cell death in native proliferating cells isolated from ALL patients. The increased vulnerability of proliferating PBMCs to PEMF-induced interactions may be potentially applied in the therapy of ALL. The analysis of expression of apoptosis-related genes revealed changes in mRNA of some genes engaged in the intrinsic apoptotic pathway belonging to the Bcl-2 family and the pathway with apoptosis-inducing factor (AIF) abundance upon PEMF stimulation of PBMCs.

  7. Targeted therapy with MXD3 siRNA, anti-CD22 antibody and nanoparticles for precursor B-cell acute lymphoblastic leukaemia

    PubMed Central

    Satake, Noriko; Duong, Connie; Chen, Cathy; Barisone, Gustavo A.; Diaz, Elva; Tuscano, Joseph; Rocke, David M.; Nolta, Jan; Nitin, Nitin

    2014-01-01

    Summary Conventional chemotherapy for precursor B-cell (preB) acute lymphoblastic leukaemia (ALL) has limitations that could be overcome by targeted therapy. Previously, we discovered a potential therapeutic molecular target, MDX3 (MAX dimerization protein 3), in preB ALL. In this study, we hypothesize that an effective siRNA therapy for preB ALL can be developed using antiCD22 antibody (αCD22 Ab) and nanoparticles. We composed nanocomplexes with super paramagnetic iron oxide nanoparticles (SPIO NPs), αCD22 Abs and MXD3 siRNA molecules based on physical interactions between the molecules. We demonstrated that the MXD3 siRNA-αCD22 Ab-SPIO NP complexes entered leukaemia cells and knocked down MXD3, leading the cells to undergo apoptosis and resulting in decreased live cell counts in the cell line Reh and in primary preB ALL samples in vitro. Furthermore, the cytotoxic effects of the MXD3 siRNA-αCD22 Ab-SPIO NP complexes were significantly enhanced by addition of the chemotherapy drugs vincristine or doxorubicin. We also ruled out potential cytotoxic effects of the MXD3 siRNA-αCD22 Ab-SPIO NP complexes on normal primary haematopoietic cells. Normal B cells were affected while CD34-positive haematopoietic stem cells and non-B cells were not. These data suggest that MXD3 siRNA-αCD22 Ab-SPIO NP complexes have the potential to be a new targeted therapy for preB ALL. PMID:25196579

  8. Increased risk of childhood acute lymphoblastic leukemia (ALL) by prenatal and postnatal exposure to high voltage power lines: a case control study in Isfahan, Iran.

    PubMed

    Tabrizi, Maral Mazloomi; Bidgoli, Sepideh Arbabi

    2015-01-01

    Childhood acute lymphoblastic leukemia (ALL) is one of the most common hematologic malignancies, accounting for one fourth of all childhood cancer cases. Exposure to environmental factors around the time of conception or pregnancy can increase the risk of ALL in the offspring.This study aimed to evaluted the role of prenatal and postnatal exposure to high voltage power lines on the incidence of childhood ALL.This cross-sectional case control study was carried out on 22 cases and 100 controls who were born and lived in low socioeconomic families in Isfahan and hospitalized for therapeutic purposes in different hospitals from 2013-2014.With regard to the underlying risk factors, familial history and parental factors were noted but in this age, socioeonomic and zonal matched case control study, prenatal and childhood exposure to high voltage power lines was considered as the most important environmental risk factors of ALL (p=0.006, OR=3.651, CI 95%, 1.692-7.878). As the population was of low socioeconomic background, use of mobiles, computers and microwave was negligible. Moreover prenatal and postnatal exposure to indoor electrically charged objects was not determined to be a significant environmental factor. Thus, pre and post natal exposure to high voltage power lines and living in pollutant regions as well as familial influence could be described as risk factors of ALL for the first time in a low socioeconomic status Iranian population.

  9. Inhibition of telomerase using BIBR1532 enhances doxorubicin-induced apoptosis in pre-B acute lymphoblastic leukemia cells.

    PubMed

    Bashash, Davood; Zareii, Mohadeseh; Safaroghli-Azar, Ava; Omrani, Mir Davood; Ghaffari, Seyed H

    2017-07-01

    Interest into targeting telomerase in cancer has increased by the recent disclosure that elevated telomerase activity is associated with disease recurrence and poor outcome in cancers. In addition, cellular acquisition of unlimited replicative potential, which is closely related to the maintenance of telomeres mostly via the reactivation of telomerase, has been shown to confer loss of sensitivity to a wide range of anti-neoplastic agents. To evaluate whether telomerase inhibition using non-nucleosidic inhibitor of telomerase BIBR1532 could enhance cytotoxic effect of doxorubicin in acute lymphoblastic leukemia, Nalm-6 pre-B ALL cells were subjected to combination treatment and subsequent cell viability, growth kinetics, caspase-3 activity, and transcriptional alteration of p73, p21, FOXO3a, c-Myc, hTERT, and other apoptosis-related target genes were investigated. Combination of BIBR1532 with doxorubicin produced a synergistic anticancer effect probably through induction of p73. Transcription factor p73 not only suppressed the proliferative capacity of the cells through induction of p21-mediated G1 arrest, but also down-regulated the mRNA level of hTERT and c-Myc. Our results also report that BIBR1532 induced a caspase-dependent apoptosis, at least partially, through heightened ROS levels, and noteworthy enhanced the pro-oxidant property of doxorubicin. In harmony, transcriptional repression of survivin could be a probable underlying mechanism for the induction of apoptosis through shifting the ratio of death promoters to death repressors via alteration of Bax and Bcl2 expression. Overall, it seems that combination of BIBR1532 and doxorubicin could be a novel therapeutic strategy for acute lymphoblastic leukemia that may be clinically accessible in the near future.

  10. Effects of Pharmacological and Genetic Disruption of CXCR4 Chemokine Receptor Function in B-Cell Acute Lymphoblastic Leukaemia

    PubMed Central

    Randhawa, Shubhchintan; Cho, Byung Sik; Ghosh, Dipanjan; Sivina, Mariela; Koehrer, Stefan; Müschen, Markus; Peled, Amnon; Davis, Richard E.; Konopleva, Marina; Burger, Jan A.

    2016-01-01

    B cell acute lymphoblastic leukaemia (B-ALL) cells express high levels of CXCR4 chemokine receptors for homing and retention within the marrow microenvironment. Bone marrow stromal cells (BMSC) secrete CXCL12, the ligand for CXCR4, and protect B-ALL cells from cytotoxic drugs. Therefore, the therapeutic use of CXCR4 antagonists has been proposed to disrupt cross talk between B-ALL cells and the protective stroma. Because CXCR4 antagonists can have activating agonistic function, we compared the genetic and pharmacological deletion of CXCR4 in B-ALL cells, using CRISPR-Cas9 gene editing and CXCR4 antagonists that are in clinical use (plerixafor, BKT140). Both genetic and pharmacological CXCR4 inhibition significantly reduced B-ALL cell migration to CXCL12 gradients and beneath BMSC, and restored drug sensitivity to dexamethasone, vincristine and cyclophosphamide. NOD/SCID/IL-2rγnull mice injected with CXCR4 gene-deleted B-ALL cells had significant delay in disease progression and superior survival when compared to control mice injected with CXCR4 wild-type B-ALL cells. These findings indicate that anti-leukaemia activity of CXCR4 antagonists is primarily due to CXCR4 inhibition, rather than agonistic activity, and corroborate that CXCR4 is an important target to overcome stroma-mediated drug resistance in B-ALL. PMID:27071778

  11. Effects of pharmacological and genetic disruption of CXCR4 chemokine receptor function in B-cell acute lymphoblastic leukaemia.

    PubMed

    Randhawa, Shubhchintan; Cho, Byung S; Ghosh, Dipanjan; Sivina, Mariela; Koehrer, Stefan; Müschen, Markus; Peled, Amnon; Davis, Richard E; Konopleva, Marina; Burger, Jan A

    2016-08-01

    B cell acute lymphoblastic leukaemia (B-ALL) cells express high levels of CXCR4 chemokine receptors for homing and retention within the marrow microenvironment. Bone marrow stromal cells (BMSC) secrete CXCL12, the ligand for CXCR4, and protect B-ALL cells from cytotoxic drugs. Therefore, the therapeutic use of CXCR4 antagonists has been proposed to disrupt cross talk between B-ALL cells and the protective stroma. Because CXCR4 antagonists can have activating agonistic function, we compared the genetic and pharmacological deletion of CXCR4 in B-ALL cells, using CRISPR-Cas9 gene editing and CXCR4 antagonists that are in clinical use (plerixafor, BKT140). Both genetic and pharmacological CXCR4 inhibition significantly reduced B-ALL cell migration to CXCL12 gradients and beneath BMSC, and restored drug sensitivity to dexamethasone, vincristine and cyclophosphamide. NOD/SCID/IL-2rγnull mice injected with CXCR4 gene-deleted B-ALL cells had significant delay in disease progression and superior survival when compared to control mice injected with CXCR4 wild-type B-ALL cells. These findings indicate that anti-leukaemia activity of CXCR4 antagonists is primarily due to CXCR4 inhibition, rather than agonistic activity, and corroborate that CXCR4 is an important target to overcome stroma-mediated drug resistance in B-ALL. © 2016 John Wiley & Sons Ltd.

  12. Phenotype of NK Cells Determined on the Basis of Selected Immunological Parameters in Children Treated due to Acute Lymphoblastic Leukemia

    PubMed Central

    Koltan, Sylwia; Debski, Robert; Koltan, Andrzej; Grzesk, Elzbieta; Tejza, Barbara; Eljaszewicz, Andrzej; Gackowska, Lidia; Kubicka, Malgorzata; Kolodziej, Beata; Kurylo-Rafinska, Beata; Kubiszewska, Izabela; Wiese, Malgorzata; Januszewska, Milena; Michalkiewicz, Jacek; Wysocki, Mariusz; Styczynski, Jan; Grzesk, Grzegorz

    2015-01-01

    Abstract Acute lymphoblastic leukemia (ALL) is the most frequent pediatric malignancy. The chemotherapy for ALL is associated with a profound secondary immune deficiency. We evaluated the number and phenotype of natural killer (NK) cells at diagnosis, after the intensive chemotherapy and following the completion of the entire treatment for patients with ALL. The fraction, absolute number, and percentage of NK cells expressing interferon-γ were determined in full blood samples. The fraction of NK cells expressing CD158a, CD158b, perforin, A, B, and K granzymes was examined in isolated NK cells. We have shown that patients assessed at ALL diagnosis showed significantly lower values of the fraction of NK cells and percentage of NK cells with the granzyme A expression. Additionally, the absolute number of NK cells, the expression of CD158a, CD158b, perforin, and granzyme A were significantly lower in patients who completed intensive chemotherapy. Also, there was a significantly higher fraction of NK cells expressing granzyme K in patients who completed the therapy. Abnormalities of NK cells were found at all stages of the treatment; however, the most pronounced changes were found at the end of intensive chemotherapy. PMID:26717380

  13. The novel histone deacetylase inhibitor, LBH589, induces expression of DNA damage response genes and apoptosis in Ph- acute lymphoblastic leukemia cells.

    PubMed

    Scuto, Anna; Kirschbaum, Mark; Kowolik, Claudia; Kretzner, Leo; Juhasz, Agnes; Atadja, Peter; Pullarkat, Vinod; Bhatia, Ravi; Forman, Stephen; Yen, Yun; Jove, Richard

    2008-05-15

    We investigated the mechanism of action of LBH589, a novel broad-spectrum HDAC inhibitor belonging to the hydroxamate class, in Philadelphia chromosome-negative (Ph(-)) acute lymphoblastic leukemia (ALL). Two model human Ph(-) ALL cell lines (T-cell MOLT-4 and pre-B-cell Reh) were treated with LBH589 and evaluated for biologic and gene expression responses. Low nanomolar concentrations (IC(50): 5-20 nM) of LBH589 induced cell-cycle arrest, apoptosis, and histone (H3K9 and H4K8) hyperacetylation. LBH589 treatment increased mRNA levels of proapoptosis, growth arrest, and DNA damage repair genes including FANCG, FOXO3A, GADD45A, GADD45B, and GADD45G. The most dramatically expressed gene (up to 45-fold induction) observed after treatment with LBH589 is GADD45G. LBH589 treatment was associated with increased histone acetylation at the GADD45G promoter and phosphorylation of histone H2A.X. Furthermore, treatment with LBH589 was active against cultured primary Ph(-) ALL cells, including those from a relapsed patient, inducing loss of cell viability (up to 70%) and induction of GADD45G mRNA expression (up to 35-fold). Thus, LBH589 possesses potent growth inhibitory activity against including Ph(-) ALL cells associated with up-regulation of genes critical for DNA damage response and growth arrest. These findings provide a rationale for exploring the clinical activity of LBH589 in the treatment of patients with Ph(-) ALL.

  14. Focal cranial hyperostosis from meningioma: a complication from previous radiation treatment for childhood T-cell acute lymphoblastic leukemia.

    PubMed

    Songdej, Natthapol

    2014-03-01

    Nearly 75% of childhood cancer survivors will experience an adverse late effect from previous therapy. In patients previously treated with cranial irradiation, the late effect can manifest as secondary central nervous system tumors. Presented is a case of a 20 year man with a history of T-cell lymphoblastic leukemia diagnosed at age 22 months, treated with chemotherapy and cranial irradiation. He had developed increasing prominence of the top of his head over several months. Plain radiograph showed frontal calvarium thickening with focal "hair-on-end" periosteal reaction. Magnetic resonance imaging revealed an enhancing dural-based mass with transcalvarial extension, confirmed after resection to be meningioma (World Health Organization Grade I). This case illustrates an atypical presentation of a late effect of childhood cancer treatment and highlights the need to be informed about prior treatments received and potential attendant complications.

  15. Leukaemic infiltration and cytomegalovirus retinitis in a patient with acute T-cell lymphoblastic leukaemia in complete remission.

    PubMed

    Saldaña Garrido, J D; Martínez Rubio, M; Carrión Campo, R; Moya Moya, M A; Rico Sergado, L

    2017-03-01

    A 43-year-old woman in remission from T- cell acute lymphoblastic leukaemia was referred to our hospital with suspected leukaemic retinitis. The funduscopic examination of her left eye revealed multifocal yellow-white peripheral retinitis and retinal haemorrhage. The patient was treated for cytomegalovirus retinitis after an extended haematological investigation showed no abnormalities. Initial improvement was followed by papillitis in the left eye and motility restriction in the right eye. Magnetic resonance and lumbar puncture confirmed leukaemia relapse. Specific treatment was initiated with complete resolution. Ocular involvement may precede haematological leukaemia relapse. Physicians should be alerted when ocular symptoms appear in these cases. Copyright © 2016 Sociedad Española de Oftalmología. Publicado por Elsevier España, S.L.U. All rights reserved.

  16. Effects of Laser Printer–Emitted Engineered Nanoparticles on Cytotoxicity, Chemokine Expression, Reactive Oxygen Species, DNA Methylation, and DNA Damage: A Comprehensive in Vitro Analysis in Human Small Airway Epithelial Cells, Macrophages, and Lymphoblasts

    PubMed Central

    Pirela, Sandra V.; Miousse, Isabelle R.; Lu, Xiaoyan; Castranova, Vincent; Thomas, Treye; Qian, Yong; Bello, Dhimiter; Kobzik, Lester; Koturbash, Igor; Demokritou, Philip

    2015-01-01

    Background Engineered nanomaterials (ENMs) incorporated into toner formulations of printing equipment become airborne during consumer use. Although information on the complex physicochemical and toxicological properties of both toner powders and printer-emitted particles (PEPs) continues to grow, most toxicological studies have not used the actual PEPs but rather have primarily used raw toner powders, which are not representative of current exposures experienced at the consumer level during printing. Objectives We assessed the biological responses of a panel of human cell lines to PEPs. Methods Three physiologically relevant cell lines—small airway epithelial cells (SAECs), macrophages (THP-1 cells), and lymphoblasts (TK6 cells)—were exposed to PEPs at a wide range of doses (0.5–100 μg/mL) corresponding to human inhalation exposure durations at the consumer level of 8 hr or more. Following treatment, toxicological parameters reflecting distinct mechanisms were evaluated. Results PEPs caused significant membrane integrity damage, an increase in reactive oxygen species (ROS) production, and an increase in pro-inflammatory cytokine release in different cell lines at doses equivalent to exposure durations from 7.8 to 1,500 hr. Furthermore, there were differences in methylation patterns that, although not statistically significant, demonstrate the potential effects of PEPs on the overall epigenome following exposure. Conclusions The in vitro findings obtained in this study suggest that laser printer–emitted engineered nanoparticles may be deleterious to lung cells and provide preliminary evidence of epigenetic modifications that might translate to pulmonary disorders. Citation Pirela SV, Miousse IR, Lu X, Castranova V, Thomas T, Qian Y, Bello D, Kobzik L, Koturbash I, Demokritou P. 2016. Effects of laser printer–emitted engineered nanoparticles on cytotoxicity, chemokine expression, reactive oxygen species, DNA methylation, and DNA damage: a comprehensive in

  17. Dual inhibition of class IA phosphatidylinositol 3-kinase and mammalian target of rapamycin as a new therapeutic option for T-cell acute lymphoblastic leukemia.

    PubMed

    Chiarini, Francesca; Falà, Federica; Tazzari, Pier Luigi; Ricci, Francesca; Astolfi, Annalisa; Pession, Andrea; Pagliaro, Pasqualepaolo; McCubrey, James A; Martelli, Alberto M

    2009-04-15

    Recent investigations have documented that constitutively activated phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling is a common feature of T-cell acute lymphoblastic leukemia (T-ALL), where it strongly influences growth and survival. These findings lend compelling weight for the application of PI3K/Akt/mTOR inhibitors in T-ALL. However, our knowledge of PI3K/Akt/mTOR signaling in T-ALL is limited and it is not clear whether it could be an effective target for innovative therapeutic strategies. Here, we have analyzed the therapeutic potential of the dual PI3K/mTOR inhibitor PI-103, a small synthetic molecule of the pyridofuropyrimidine class, on both T-ALL cell lines and patient samples, which displayed constitutive activation of PI3K/Akt/mTOR signaling. PI-103 inhibited the growth of T-ALL cells, including 170-kDa P-glycoprotein overexpressing cells. PI-103 cytotoxicity was independent of p53 gene status. PI-103 was more potent than inhibitors that are selective only for PI3K (Wortmannin, LY294002) or for mTOR (rapamycin). PI-103 induced G(0)-G(1) phase cell cycle arrest and apoptosis, which was characterized by activation of caspase-3 and caspase-9. PI-103 caused Akt dephosphorylation, accompanied by dephosphorylation of the Akt downstream target, glycogen synthase kinase-3beta. Also, mTOR downstream targets were dephosphorylated in response to PI-103, including p70S6 kinase, ribosomal S6 protein, and 4E-BP1. PI-103 strongly synergized with vincristine. These findings indicate that multitargeted therapy toward PI3K and mTOR alone or with existing drugs may serve as an efficient treatment toward T-ALL cells, which require up-regulation of PI3K/Akt/mTOR signaling for their survival and growth.

  18. CD19 CAR-targeted T cells induce long-term remission and B Cell Aplasia in an immunocompetent mouse model of B cell acute lymphoblastic leukemia.

    PubMed

    Davila, Marco L; Kloss, Christopher C; Gunset, Gertrude; Sadelain, Michel

    2013-01-01

    Although many adults with B cell acute lymphoblastic leukemia (B-ALL) are induced into remission, most will relapse, underscoring the dire need for novel therapies for this disease. We developed murine CD19-specific chimeric antigen receptors (CARs) and an immunocompetent mouse model of B-ALL that recapitulates the disease at genetic, cellular, and pathologic levels. Mouse T cells transduced with an all-murine CD3ζ/CD28-based CAR that is equivalent to the one being used in our clinical trials, eradicate B-ALL in mice and mediate long-term B cell aplasias. In this model, we find that increasing conditioning chemotherapy increases tumor eradication, B cell aplasia, and CAR-modified T cell persistence. Quantification of recipient B lineage cells allowed us to estimate an in vivo effector to endogenous target ratio for B cell aplasia maintenance. In mice exhibiting a dramatic B cell reduction we identified a small population of progenitor B cells in the bone marrow that may serve as a reservoir for long-term CAR-modified T cell stimulation. Lastly, we determine that infusion of CD8+ CAR-modified T cells alone is sufficient to maintain long-term B cell eradication. The mouse model we report here should prove valuable for investigating CAR-based and other therapies for adult B-ALL.

  19. The effect of miR-146a on STAT1 expression and apoptosis in acute lymphoblastic leukemia Jurkat cells

    PubMed Central

    Yan, Weihong; Guo, Hua; Suo, Feng; Han, Chunling; Zheng, Hua; Chen, Tong

    2017-01-01

    The effect of miR-146a-dependent regulation of STAT1 on apoptosis in acute lymphoblastic leukemia (ALL) Jurkat cells was investigated. The miR-146a mimic and miR-146a inhibitor vectors were constructed in vitro, and experimental grouping was as follows: Control group (untreated Jurkat cells), empty vector group (Jurkat cells transfected with empty vector), agonist group (Jurkat cells transfected with miR-146a mimic) and the inhibitor group (Jurkat cells transfected with miR-146a inhibitor). Western blot analysis was used to observe the expression, respectively, of STAT1, p-STAT1 and Bcl-xL, and flow cytometry was used to test apoptosis in Jurkat cells. STAT1 and p-STAT1 expression in the agonist group was higher than that in the control and empty vector groups, but lower in the inhibitor group, and differences were statistically significant (P<0.05). The rate of apoptosis in the agonist group was significantly higher than that of the control group and blank vector group, and it was significantly lower in the inhibitor group (P<0.05). As a tumor suppressor, miR-146a can regulate expression of apoptosis-promoting factor STAT1, and anti-apoptosis factor Bcl-xL, and is able to promote apoptosis of ALL Jurkat cells. PMID:28123535

  20. Nilotinib and Combination Chemotherapy in Treating Patients With Newly Diagnosed Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia or Blastic Phase Chronic Myelogenous Leukemia

    ClinicalTrials.gov

    2015-10-29

    B-cell Adult Acute Lymphoblastic Leukemia; Blastic Phase Chronic Myelogenous Leukemia; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Philadelphia Chromosome Positive Adult Precursor Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia

  1. Novel in vivo model of inducible multidrug resistance in acute lymphoblastic leukemia with chromosomal translocation t(4;11)

    USDA-ARS?s Scientific Manuscript database

    Acute lymphoblastic leukemia (ALL) with translocation t(4;11) is found in 60-85% of infants with ALL and is classified as high-risk due to the generally poor prognosis for survival. Using the SEM cell line established from a patient with t(4;11) ALL, we evaluated the resistance of these cells to the...

  2. Purification and Characterization of the Principal Antimutagenic Bioactive as Ethoxy-Substituted Phylloquinone from Spinach (Spinacea oleracea L.) Based on Evaluation in Models Including Human Lymphoblast TK(+/-) Cells.

    PubMed

    Kumar, Sanjeev; Chatterjee, Suchandra; Tripathi, Jyoti; Gautam, Satyendra

    2016-11-23

    During in vitro analysis, spinach (Spinacea oleracea L.) leaf extracts displayed varying antimutagenicity when analyzed in models including human lymphoblast (TK(+/-)) cell line (thymidine kinase gene mutation assay) and Escherichia coli MG1655 (rifampicin resistance assay) against chemically (ethyl methanesulfonate and 5-azacytidine) induced mutagenicity. Highest antimutagenicity was displayed by the quinone extract. The principal bioactive compound exhibited fluorescence in TLC at 366 nm (termed C4) resolved at Rf 0.32 and tR 15.2 min in TLC and HPLC, respectively. On the TLC plate, three spots (C1-C3), observed at 254 nm, displayed comparatively lesser antimutagenicity. Furthermore, biochemical and spectroscopic analyses using MALDI-TOF MS and NMR indicated the nature of the potent compound (C4) as an ethoxy-substituted phylloquinone derivative [2-ethoxy-3-((E)-3,7,11,15-tetramethylhexadec-2-enyl)naphthalene-1,4-dione]. The C4 compound did not display any cytotoxicity and hence possesses significant nutraceutical-based intervention possibility to combat the onset of mutation-associated disease(s).

  3. Sulfonoquinovosyl diacylglyceride selectively targets acute lymphoblastic leukemia cells and exerts potent anti-leukemic effects in vivo

    PubMed Central

    Jain, Chetan Kumar; Pradhan, Bhola Shankar; Banerjee, Sukdeb; Mondal, Nirup Bikash; Majumder, Subeer S.; Bhattacharyya, Madhumita; Chakrabarti, Saikat; Roychoudhury, Susanta; Majumder, Hemanta Kumar

    2015-01-01

    DNA topoisomerase II inhibitors e.g. doxorubicin and etoposide are currently used in the chemotherapy for acute lymphoblastic leukemia (ALL). These inhibitors have serious side effects during the chemotherapy e.g. cardiotoxicity and secondary malignancies. In this study we show that sulfonoquinovosyl diacylglyceride (SQDG) isolated from Azadirachta indica exerts potent anti-ALL activity both in vitro and in vivo in nude mice and it synergizes with doxorubicin and etoposide. SQDG selectively targets ALL MOLT-4 cells by inhibiting catalytic activity of topoisomerase I enzyme and inducing p53 dependent apoptotic pathway. SQDG treatment induces recruitment of ATR at chromatin and arrests the cells in S-phase. Down-regulation of topoisomerase I or p53 renders the cells less sensitive for SQDG, while ectopic expression of wild type p53 protein in p53 deficient K562 cells results in chemosensitization of the cells for SQDG. We also show that constant ratio combinations of SQDG and etoposide or SDQG and doxorubicin exert synergistic effects on MOLT-4 cell killing. This study suggests that doses of etoposide/doxorubicin can be substantially reduced by combining SQDG with these agents during ALL chemotherapy and side effects caused can be minimized. Thus dual targeting of topoisomerase I and II enzymes is a promising strategy for improving ALL chemotherapy. PMID:26189912

  4. The synergism of MCL1 and glycolysis on pediatric acute lymphoblastic leukemia cell survival and prednisolone resistance.

    PubMed

    Ariës, Ingrid M; Hansen, Bo R; Koch, Troels; van den Dungen, Rosanna; Evans, William E; Pieters, Rob; den Boer, Monique L

    2013-12-01

    In vitro and in vivo resistance to prednisolone are predictive for an adverse prognosis in pediatric precursor B-acute lymphoblastic leukemia. Causes of resistance are still poorly understood. In this study, we observed that prednisolone exposure of prednisolone-sensitive patients' leukemic cells decreased anti-apoptotic MCL1 protein levels by 2.9-fold, while MCL1 protein expression in prednisolone-resistant leukemic patients' cells was unaffected (P<0.01). Locked nucleic acid oligonucleotides directed against MCL1 reduced MCL1 protein levels by 82±16% (P<0.05) in leukemic cells, decreased proliferation by 9-fold and sensitized to prednisolone up to 80.8-fold, compared to a non-silencing-control locked nucleic acid (P<0.05). Remarkably, we discovered that MCL1-silencing up-regulated the glucose consumption of leukemic cells by 2.5-fold (P<0.05), suggesting a potential rescue mechanism mediated by glycolysis. Targeting glycolysis by 2-deoxyglucose synergistically inhibited leukemic survival by 23.2-fold in MCL1-silenced cells (P<0.05). Moreover, 2-deoxyglucose and MCL1 locked nucleic acid concomitantly sensitized leukemic cells to prednisolone compared to MCL1 locked nucleic acid or 2-deoxyglucose alone (P<0.05). In conclusion, these results indicate the need to target both MCL1 and glycolysis simultaneously to inhibit leukemic survival and sensitize acute leukemia patients towards prednisolone.

  5. The synergism of MCL1 and glycolysis on pediatric acute lymphoblastic leukemia cell survival and prednisolone resistance

    PubMed Central

    Ariës, Ingrid M.; Hansen, Bo R.; Koch, Troels; van den Dungen, Rosanna; Evans, William E.; Pieters, Rob; den Boer, Monique L.

    2013-01-01

    In vitro and in vivo resistance to prednisolone are predictive for an adverse prognosis in pediatric precursor B-acute lymphoblastic leukemia. Causes of resistance are still poorly understood. In this study, we observed that prednisolone exposure of prednisolone-sensitive patients’ leukemic cells decreased anti-apoptotic MCL1 protein levels by 2.9-fold, while MCL1 protein expression in prednisolone-resistant leukemic patients’ cells was unaffected (P<0.01). Locked nucleic acid oligonucleotides directed against MCL1 reduced MCL1 protein levels by 82±16% (P<0.05) in leukemic cells, decreased proliferation by 9-fold and sensitized to prednisolone up to 80.8-fold, compared to a non-silencing-control locked nucleic acid (P<0.05). Remarkably, we discovered that MCL1-silencing up-regulated the glucose consumption of leukemic cells by 2.5-fold (P<0.05), suggesting a potential rescue mechanism mediated by glycolysis. Targeting glycolysis by 2-deoxyglucose synergistically inhibited leukemic survival by 23.2-fold in MCL1-silenced cells (P<0.05). Moreover, 2-deoxyglucose and MCL1 locked nucleic acid concomitantly sensitized leukemic cells to prednisolone compared to MCL1 locked nucleic acid or 2-deoxyglucose alone (P<0.05). In conclusion, these results indicate the need to target both MCL1 and glycolysis simultaneously to inhibit leukemic survival and sensitize acute leukemia patients towards prednisolone. PMID:24142999

  6. Ibrutinib inhibits pre-BCR(+) B-cell acute lymphoblastic leukemia progression by targeting BTK and BLK.

    PubMed

    Kim, Ekaterina; Hurtz, Christian; Koehrer, Stefan; Wang, Zhiqiang; Balasubramanian, Sriram; Chang, Betty Y; Müschen, Markus; Davis, R Eric; Burger, Jan A

    2017-03-02

    Targeting B-cell receptor (BCR) signaling is a successful therapeutic strategy in mature B-cell malignancies. Precursor BCR (pre-BCR) signaling, which is critical during normal B lymphopoiesis, also plays an important role in pre-BCR(+) B cell acute lymphoblastic leukemia (B-ALL). Here, we investigated the activity and mechanism of action of the BTK inhibitor ibrutinib in preclinical models of B-ALL. Pre-BCR(+) ALL cells were exquisitely sensitive to ibrutinib at therapeutically relevant drug concentrations. In pre-BCR(+) ALL, ibrutinib thwarted autonomous and induced pre-BCR signaling, resulting in deactivation of PI3K/Akt signaling. Ibrutinib modulated the expression of pre-BCR regulators (PTPN6, CD22, CD72, and PKCβ) and substantially reduced BCL6 levels. Ibrutinib inhibited ALL cell migration toward CXCL12 and beneath marrow stromal cells and reduced CD44 expression. CRISPR-Cas9 gene editing revealed that both BTK and B lymphocyte kinase (BLK) are relevant targets of ibrutinib in pre-BCR(+) ALL. Consequently, in mouse xenograft models of pre-BCR(+) ALL, ibrutinib treatment significantly prolonged survival. Combination treatment of ibrutinib with dexamethasone or vincristine demonstrated synergistic activity against pre-BCR(+) ALL. These data corroborate ibrutinib as a promising targeted agent for pre-BCR(+) ALL and highlight the importance of ibrutinib effects on alternative kinase targets.

  7. Concurrent intensive chemotherapy and imatinib before and after stem cell transplantation in newly diagnosed Philadelphia chromosome-positive acute lymphoblastic leukemia. Final results of the CSTIBES02 trial.

    PubMed

    Ribera, Josep-Maria; Oriol, Albert; González, Marcos; Vidriales, Belén; Brunet, Salut; Esteve, Jordi; Del Potro, Eloy; Rivas, Concepción; Moreno, Maria-José; Tormo, Mar; Martín-Reina, Victoria; Sarrá, Josep; Parody, Ricardo; de Oteyza, Jaime Pérez; Bureo, Encarna; Bernal, Maria-Teresa

    2010-01-01

    Imatinib, given concurrently or alternating with chemotherapy, has improved the response and survival of patients with Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph(+) ALL) but relapses are still frequent. The aim of this study was to evaluate the feasibility and results of giving imatinib concurrently with intensive chemotherapy, stem cell transplantation and post-transplant imatinib maintenance therapy in patients with newly diagnosed Ph(+) ALL. This was a phase II study of patients with newly diagnosed Ph(+) ALL given standard chemotherapy, together with imatinib (400 mg/day) until stem cell transplantation, followed by imatinib maintenance therapy for all patients regardless of the molecular status of the disease. Of the 30 patients included, 27 (90%) achieved complete remission, one was resistant to treatment and two died during induction therapy. The percentages of major and complete molecular responses were 86% and 21% after induction, and 81% and 65% after consolidation, respectively. Similar results were observed assessing minimal residual disease by flow cytometry. Of the 27 patients who achieved complete remission, 21 underwent stem cell transplantation (16 allogeneic, 5 autologous). Imatinib (400 mg/day) could be administered after transplantation for a median of 3.9 months in 12 patients, although it was interrupted in 10 patients (in 2 cases because of side effects of the drug). Nine patients relapsed, four before and five after stem cell transplantation and eight patients died of transplant-related causes. With a median follow-up of 4.1 years, the probabilities (95% CI) of disease-free and overall survival were 30% (15% to 45%) and 30% (16% to 45%), respectively. These results confirm that imatinib is an effective first-line treatment for adult Ph(+) ALL when given concurrently with chemotherapy, making stem cell transplantation feasible in a high proportion of patients. However, post-transplantation imatinib administration was

  8. Concurrent intensive chemotherapy and imatinib before and after stem cell transplantation in newly diagnosed Philadelphia chromosome-positive acute lymphoblastic leukemia. Final results of the CSTIBES02 trial

    PubMed Central

    Ribera, Josep-Maria; Oriol, Albert; González, Marcos; Vidriales, Belén; Brunet, Salut; Esteve, Jordi; del Potro, Eloy; Rivas, Concepción; Moreno, Maria-José; Tormo, Mar; Martín-Reina, Victoria; Sarrá, Josep; Parody, Ricardo; de Oteyza, Jaime Pérez; Bureo, Encarna; Bernal, Maria-Teresa

    2010-01-01

    Background Imatinib, given concurrently or alternating with chemotherapy, has improved the response and survival of patients with Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) but relapses are still frequent. The aim of this study was to evaluate the feasibility and results of giving imatinib concurrently with intensive chemotherapy, stem cell transplantation and post-transplant imatinib maintenance therapy in patients with newly diagnosed Ph+ ALL. Design and Methods This was a phase II study of patients with newly diagnosed Ph+ ALL given standard chemotherapy, together with imatinib (400 mg/day) until stem cell transplantation, followed by imatinib maintenance therapy for all patients regardless of the molecular status of the disease. Results Of the 30 patients included, 27 (90%) achieved complete remission, one was resistant to treatment and two died during induction therapy. The percentages of major and complete molecular responses were 86% and 21% after induction, and 81% and 65% after consolidation, respectively. Similar results were observed assessing minimal residual disease by flow cytometry. Of the 27 patients who achieved complete remission, 21 underwent stem cell transplantation (16 allogeneic, 5 autologous). Imatinib (400 mg/day) could be administered after transplantation for a median of 3.9 months in 12 patients, although it was interrupted in 10 patients (in 2 cases because of side effects of the drug). Nine patients relapsed, four before and five after stem cell transplantation and eight patients died of transplant-related causes. With a median follow-up of 4.1 years, the probabilities (95% CI) of disease-free and overall survival were 30% (15% to 45%) and 30% (16% to 45%), respectively. Conclusions These results confirm that imatinib is an effective first-line treatment for adult Ph+ ALL when given concurrently with chemotherapy, making stem cell transplantation feasible in a high proportion of patients. However, post

  9. Variations in mRNA and protein levels of Ikaros family members in pediatric T cell acute lymphoblastic leukemia

    PubMed Central

    Mitchell, Julie L.

    2016-01-01

    Background Pediatric T cell acute lymphoblastic leukemia (T-ALL) is a highly heterogeneous disease in which the cells share phenotypic characteristics with normal human thymocytes. The Ikaros family of transcription factors includes five members that are required for normal T cell development and are implicated in leukemogenesis. The goal of this work was to correlate the pattern of expression of Ikaros family members with the phenotype of the T-ALL cells. Methods We obtained twenty-four samples from pediatric T-ALL patients and used multi-parameter flow cytometry to characterize each sample, comparing the phenotype of the leukemic cells with normal human thymocytes. Then, we defined the expression levels of each Ikaros family member to determine whether the mRNA levels or splicing or protein levels were similar to the normal patterns seen during human T cell development. Results Multi-parameter analysis of the phenotype of T-ALL cells revealed that each patient’s cells were unique and could not be readily correlated with stages of T cell development. Similarly, the pattern of Ikaros expression varied among patients. In most patients, Ikaros mRNA was the dominant family member expressed, but some patients’ cells contained mostly Helios, Aiolos, or Eos mRNA. Despite that most patients had elevated mRNA levels of Ikaros family members and unique patterns of mRNA splicing, most patients had significantly reduced protein levels of Ikaros and Aiolos. Conclusions Our analysis of the cell phenotype and Ikaros expression levels in T-ALL cells revealed the extent of heterogeneity among patients. While it is rarely possible to trace leukemic cells to their developmental origin, we found distinct patterns of Ikaros family mRNA levels in groups of patients. Further, mRNA and protein levels of Ikaros and Aiolos did not correlate, indicating that mRNA and protein levels are regulated via distinct mechanisms. PMID:27826566

  10. Chapter 6. available lepidopteran insect cell lines

    USDA-ARS?s Scientific Manuscript database

    This chapter lists the known cell lines from Lepidoptera, largely based on previous compilations of insect cell lines published by W. Fred Hink. More than 320 lines from 65 species are listed. The official designation is given for each cell line as well as the species, tissue source, and, when kno...

  11. Activation-induced cytidine deaminase accelerates clonal evolution in BCR-ABL1-driven B cell lineage acute lymphoblastic leukemia

    PubMed Central

    Gruber, Tanja Andrea; Chang, Mi Sook; Sposto, Richard; Müschen, Markus

    2010-01-01

    Activation-Induced Cytidine Deaminase (AID) is required for somatic hypermutation and immunoglobulin (Ig) class switch recombination in germinal center B cells. Occasionally, AID can target non-Ig genes and thereby promote GC B cell lymphomagenesis. We recently demonstrated that the oncogenic BCR-ABL1 kinase induces aberrant expression of AID in pre-B acute lymphoblastic leukemia (ALL) and lymphoid CML blast crisis. To elucidate the biological significance of aberrant AID expression, we studied loss of AID function in a murine model of BCR-ABL1 ALL. Mice transplanted with BCR-ABL1-transduced AID-/- bone marrow had prolonged survival as compared to mice transplanted with leukemia cells generated from AID+/+ bone marrow. Consistent with a causative role of AID in genetic instability, AID-/- leukemia had a lower frequency of amplifications, deletions and a lower frequency of mutations in non-Ig genes including Pax5 and Rhoh as compared to AID+/+ leukemias. AID-/- and AID+/+ ALL cells showed a markedly distinct gene expression pattern and AID-/- ALL cells failed to downregulate a number of tumor suppressor genes including Rhoh, Cdkn1a (p21), and Blnk (SLP65). We conclude that AID accelerates clonal evolution in BCR-ABL1 ALL by enhancing genetic instability, aberrant somatic hypermutation, and by negative regulation of tumor suppressor genes. PMID:20876806

  12. Ezh2 Controls an Early Hematopoietic Program and Growth and Survival Signaling in Early T Cell Precursor Acute Lymphoblastic Leukemia.

    PubMed

    Danis, Etienne; Yamauchi, Taylor; Echanique, Kristen; Zhang, Xi; Haladyna, Jessica N; Riedel, Simone S; Zhu, Nan; Xie, Huafeng; Orkin, Stuart H; Armstrong, Scott A; Bernt, Kathrin M; Neff, Tobias

    2016-03-01

    Early T cell precursor acute lymphoblastic leukemia (ETP-ALL) is an aggressive subtype of ALL distinguished by stem-cell-associated and myeloid transcriptional programs. Inactivating alterations of Polycomb repressive complex 2 components are frequent in human ETP-ALL, but their functional role is largely undefined. We have studied the involvement of Ezh2 in a murine model of NRASQ61K-driven leukemia that recapitulates phenotypic and transcriptional features of ETP-ALL. Homozygous inactivation of Ezh2 cooperated with oncogenic NRASQ61K to accelerate leukemia onset. Inactivation of Ezh2 accentuated expression of genes highly expressed in human ETP-ALL and in normal murine early thymic progenitors. Moreover, we found that Ezh2 contributes to the silencing of stem-cell- and early-progenitor-cell-associated genes. Loss of Ezh2 also resulted in increased activation of STAT3 by tyrosine 705 phosphorylation. Our data mechanistically link Ezh2 inactivation to stem-cell-associated transcriptional programs and increased growth/survival signaling, features that convey an adverse prognosis in patients. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Deletion of Pten in CD45-expressing cells leads to development of T-cell lymphoblastic lymphoma but not myeloid malignancies

    PubMed Central

    Mirantes, Cristina; Dosil, Maria Alba; Hills, David; Yang, Jian; Eritja, Núria; Santacana, Maria; Gatius, Sònia; Vilardell, Felip; Medvinsky, Alexander; Matias-Guiu, Xavier

    2016-01-01

    Since its discovery in the late 1990s, Pten has turned out to be one of the most important tumor suppressor genes. Pten loss results in increased activation of the phosphatidylinositol 3-kinase/Akt signaling pathway, which is associated with increased proliferation, survival, and neoplastic growth. Here, we have addressed the effects of conditional deletion of Pten in hematopoietic cells by crossing Pten conditional knockout mice with a knock-in mouse expressing the Cre recombinase in the CD45 locus. CD45 is also known as leukocyte common antigen, and it is expressed in virtually all white cells and in hematopoietic stem cells. Using a reporter mouse, we demonstrate that CD45:Cre mouse displays recombinase activity in both myeloid and lymphoid cells. However, deletion of Pten in CD45-expressing cells induces development of T-cell acute lymphoblastic leukemia and lymphoma, but not other hematologic malignancies. PMID:26773036

  14. IL-7 Receptor Mutations and Steroid Resistance in Pediatric T cell Acute Lymphoblastic Leukemia: A Genome Sequencing Study

    PubMed Central

    Stubbs, Andrew P.; Vroegindeweij, Eric M.; Smits, Willem K.; van Marion, Ronald; Dinjens, Winand N. M.; Horstmann, Martin; Kuiper, Roland P.; Zaman, Guido J. R.; van der Spek, Peter J.; Pieters, Rob; Meijerink, Jules P. P.

    2016-01-01

    Background Pediatric acute lymphoblastic leukemia (ALL) is the most common childhood cancer and the leading cause of cancer-related mortality in children. T cell ALL (T-ALL) represents about 15% of pediatric ALL cases and is considered a high-risk disease. T-ALL is often associated with resistance to treatment, including steroids, which are currently the cornerstone for treating ALL; moreover, initial steroid response strongly predicts survival and cure. However, the cellular mechanisms underlying steroid resistance in T-ALL patients are poorly understood. In this study, we combined various genomic datasets in order to identify candidate genetic mechanisms underlying steroid resistance in children undergoing T-ALL treatment. Methods and Findings We performed whole genome sequencing on paired pre-treatment (diagnostic) and post-treatment (remission) samples from 13 patients, and targeted exome sequencing of pre-treatment samples from 69 additional T-ALL patients. We then integrated mutation data with copy number data for 151 mutated genes, and this integrated dataset was tested for associations of mutations with clinical outcomes and in vitro drug response. Our analysis revealed that mutations in JAK1 and KRAS, two genes encoding components of the interleukin 7 receptor (IL7R) signaling pathway, were associated with steroid resistance and poor outcome. We then sequenced JAK1, KRAS, and other genes in this pathway, including IL7R, JAK3, NF1, NRAS, and AKT, in these 69 T-ALL patients and a further 77 T-ALL patients. We identified mutations in 32% (47/146) of patients, the majority of whom had a specific T-ALL subtype (early thymic progenitor ALL or TLX). Based on the outcomes of these patients and their prednisolone responsiveness measured in vitro, we then confirmed that these mutations were associated with both steroid resistance and poor outcome. To explore how these mutations in IL7R signaling pathway genes cause steroid resistance and subsequent poor outcome, we

  15. Oxindole alkaloids from Uncaria tomentosa induce apoptosis in proliferating, G0/G1-arrested and bcl-2-expressing acute lymphoblastic leukaemia cells.

    PubMed

    Bacher, Nicole; Tiefenthaler, Martin; Sturm, Sonja; Stuppner, Hermann; Ausserlechner, Michael J; Kofler, Reinhard; Konwalinka, Günther

    2006-03-01

    Natural products are still an untapped source of promising lead compounds for the generation of antineoplastic drugs. Here, we investigated for the first time the antiproliferative and apoptotic effects of highly purified oxindole alkaloids, namely isopteropodine (A1), pteropodine (A2), isomitraphylline (A3), uncarine F (A4) and mitraphylline (A5) obtained from Uncaria tomentosa, a South American Rubiaceae, on human lymphoblastic leukaemia T cells (CCRF-CEM-C7H2). Four of the five tested alkaloids inhibited proliferation of acute lymphoblastic leukaemia cells. Furthermore, the antiproliferative effect of the most potent alkaloids pteropodine (A2) and uncarine F (A4) correlated with induction of apoptosis. After 48 h, 100 micromol/l A2 or A4 increased apoptotic cells by 57%. CEM-C7H2 sublines with tetracycline-regulated expression of bcl-2, p16ink4A or constitutively expressing the cowpox virus protein crm-A were used for further studies of the apoptosis-inducing properties of these alkaloids. Neither overexpression of bcl-2 or crm-A nor cell-cycle arrest in G0/G1 phase by tetracycline-regulated expression of p16INK4A could prevent alkaloid-induced apoptosis. Our results show the strong apoptotic effects of pteropodine and uncarine F on acute leukaemic lymphoblasts and recommend the alkaloids for further studies in xenograft models.

  16. The Role of Histone Protein Modifications and Mutations in Histone Modifiers in Pediatric B-Cell Progenitor Acute Lymphoblastic Leukemia

    PubMed Central

    Janczar, Szymon; Janczar, Karolina; Pastorczak, Agata; Harb, Hani; Paige, Adam J. W.; Zalewska-Szewczyk, Beata; Danilewicz, Marian; Mlynarski, Wojciech

    2017-01-01

    While cancer has been long recognized as a disease of the genome, the importance of epigenetic mechanisms in neoplasia was acknowledged more recently. The most active epigenetic marks are DNA methylation and histone protein modifications and they are involved in basic biological phenomena in every cell. Their role in tumorigenesis is stressed by recent unbiased large-scale studies providing evidence that several epigenetic modifiers are recurrently mutated or frequently dysregulated in multiple cancers. The interest in epigenetic marks is especially due to the fact that they are potentially reversible and thus druggable. In B-cell progenitor acute lymphoblastic leukemia (BCP-ALL) there is a relative paucity of reports on the role of histone protein modifications (acetylation, methylation, phosphorylation) as compared to acute myeloid leukemia, T-cell ALL, or other hematologic cancers, and in this setting chromatin modifications are relatively less well studied and reviewed than DNA methylation. In this paper, we discuss the biomarker associations and evidence for a driver role of dysregulated global and loci-specific histone marks, as well as mutations in epigenetic modifiers in BCP-ALL. Examples of chromatin modifiers recurrently mutated/disrupted in BCP-ALL and associated with disease outcomes include MLL1, CREBBP, NSD2, and SETD2. Altered histone marks and histone modifiers and readers may play a particular role in disease chemoresistance and relapse. We also suggest that epigenetic regulation of B-cell differentiation may have parallel roles in leukemogenesis. PMID:28054944

  17. PI3K inhibition synergizes with glucocorticoids but antagonizes with methotrexate in T-cell acute lymphoblastic leukemia

    PubMed Central

    Silveira, André Bortolini; Laranjeira, Angelo Brunelli Albertoni; Rodrigues, Gisele Olinto Libanio; Leal, Paulo César; Cardoso, Bruno António; Barata, João Taborda; Yunes, Rosendo Augusto; Zanchin, Nilson Ivo Tonin; Brandalise, Sílvia Regina; Yunes, José Andrés

    2015-01-01

    The PI3K pathway is frequently hyperactivated in primary T-cell acute lymphoblastic leukemia (T-ALL) cells. Activation of the PI3K pathway has been suggested as one mechanism of glucocorticoid resistance in T-ALL, and patients harboring mutations in the PI3K negative regulator PTEN may be at increased risk of induction failure and relapse. By gene expression microarray analysis of T-ALL cells treated with the PI3K inhibitor AS605240, we identified Myc as a prominent downstream target of the PI3K pathway. A significant association was found between the AS605240 gene expression signature and that of glucocorticoid resistance and relapse in T-ALL. AS605240 showed anti-leukemic activity and strong synergism with glucocorticoids both in vitro and in a NOD/SCID xenograft model of T-ALL. In contrast, PI3K inhibition showed antagonism with methotrexate and daunorubicin, drugs that preferentially target dividing cells. This antagonistic interaction, however, could be circumvented by the use of correct drug scheduling schemes. Our data indicate the potential benefits and difficulties for the incorporation of PI3K inhibitors in T-ALL therapy. PMID:25869207

  18. Identification of CD34+ and CD34− leukemia-initiating cells in MLL-rearranged human acute lymphoblastic leukemia

    PubMed Central

    Aoki, Yuki; Watanabe, Takashi; Saito, Yoriko; Kuroki, Yoko; Hijikata, Atsushi; Takagi, Masatoshi; Tomizawa, Daisuke; Eguchi, Mariko; Eguchi-Ishimae, Minenori; Kaneko, Akiko; Ono, Rintaro; Sato, Kaori; Suzuki, Nahoko; Fujiki, Saera; Koh, Katsuyoshi; Ishii, Eiichi; Shultz, Leonard D.; Ohara, Osamu; Mizutani, Shuki

    2015-01-01

    Translocation of the mixed-lineage leukemia (MLL) gene with AF4, AF9, or ENL results in acute leukemia with both lymphoid and myeloid involvement. We characterized leukemia-initiating cells (LICs) in primary infant MLL-rearranged leukemia using a xenotransplantation model. In MLL-AF4 patients, CD34+CD38+CD19+ and CD34−CD19+ cells initiated leukemia, and in MLL-AF9 patients, CD34−CD19+ cells were LICs. In MLL-ENL patients, either CD34+ or CD34− cells were LICs, depending on the pattern of CD34 expression. In contrast, in patients with these MLL translocations, CD34+CD38−CD19−CD33− cells were enriched for normal hematopoietic stem cells (HSCs) with in vivo long-term multilineage hematopoietic repopulation capacity. Although LICs developed leukemic cells with clonal immunoglobulin heavy-chain (IGH) rearrangement in vivo, CD34+CD38−CD19−CD33− cells repopulated recipient bone marrow and spleen with B cells, showing broad polyclonal IGH rearrangement and recipient thymus with CD4+ single positive (SP), CD8+ SP, and CD4+CD8+ double-positive (DP) T cells. Global gene expression profiling revealed that CD9, CD32, and CD24 were over-represented in MLL-AF4, MLL-AF9, and MLL-ENL LICs compared with normal HSCs. In patient samples, these molecules were expressed in CD34+CD38+ and CD34− LICs but not in CD34+CD38−CD19−CD33− HSCs. Identification of LICs and LIC-specific molecules in primary human MLL-rearranged acute lymphoblastic leukemia may lead to improved therapeutic strategies for MLL-rearranged leukemia. PMID:25538041

  19. Differentially expressed cytosolic proteins in human leukemia and lymphoma cell lines correlate with lineages and functions.

    PubMed

    Gez, Swetlana; Crossett, Ben; Christopherson, Richard I

    2007-09-01

    Identification of cytosolic proteins differentially expressed between types of leukemia and lymphoma may provide a molecular basis for classification and understanding their cellular properties. Two-dimensional fluorescence difference gel electrophoresis (DIGE) and mass spectrometry have been used to identify proteins that are differentially expressed in cytosolic extracts from four human leukemia and lymphoma cell lines: HL-60 (acute promyelocytic leukemia), MEC1 (B-cell chronic lymphocytic leukemia), CCRF-CEM (T-cell acute lymphoblastic leukemia) and Raji (B-cell Burkitt's lymphoma). A total of 247 differentially expressed proteins were identified between the four cell lines. Analysis of the data by principal component analysis identified 22 protein spots (17 different protein species) differentially expressed at more than a 95% variance level between these cell lines. Several of these proteins were differentially expressed in only one cell line: HL-60 (myeloperoxidase, phosphoprotein 32 family member A, ras related protein Rab-11B, protein disulfide-isomerase, ran-specific GTPase-activating protein, nucleophosmin and S-100 calcium binding protein A4), and Raji (ezrin). Several of these proteins were differentially expressed in two cell lines: Raji and MEC1 (C-1-tetrahydrofolate synthase, elongation factor 2, alpha- and beta-tubulin, transgelin-2 and stathmin). MEC1 and CCRF-CEM (gamma-enolase), HL-60 and CCRF-CEM (ubiquitin-conjugating enzyme E2 N). The differentially expressed proteins identified in these four cell lines correlate with cellular properties and provide insights into the molecular basis of these malignancies.

  20. The Functional Role of PRC2 in Early T-cell Precursor Acute Lymphoblastic Leukemia (ETP-ALL) – Mechanisms and Opportunities

    PubMed Central

    Bernt, Kathrin M.; Hunger, Stephen P.; Neff, Tobias

    2016-01-01

    Early T-Cell precursor acute lymphoblastic leukemia (ETP-ALL) is a relatively newly identified subset of T-lineage ALL. There are conflicting results regarding prognosis, and the genetic basis of this condition is variable. Here, we summarize the current status of the field and discuss the role of mutations in the Polycomb Repressive Complex 2 frequently identified in ETP-ALL patients. PMID:27242978

  1. Establishment and genetic characterization of a novel mixed-phenotype acute leukemia cell line with EP300-ZNF384 fusion.

    PubMed

    Ping, Nana; Qiu, Huiying; Wang, Qian; Dai, Haiping; Ruan, Changgeng; Ehrentraut, Stefan; Drexler, Hans G; MacLeod, Roderick A F; Chen, Suning

    2015-08-21

    Herein, we describe the establishment and characterization of the first mixed-phenotype acute leukemia cell line (JIH-5). The JIH-5 cell line was established from leukemia cells with B lymphoid/myeloid phenotype from a female mixed-phenotype acute leukemia patient. JIH-5 cells exhibit an immunophenotype comprised of myeloid and B lymphoid antigens. Whole-exome sequencing revealed somatic mutations in nine genes in JIH-5 cells. Transcriptional sequencing of JIH-5 cells identified EP300-ZNF384 fusion transcript, which is a recurrent alteration in B cell acute lymphoblastic leukemia. Our results suggest that the JIH-5 cell line may serve as a tool for the study of mixed-phenotype acute leukemia or EP300-ZNF384.

  2. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia

    PubMed Central

    Brentjens, Renier; Davila, Marco L; Riviere, Isabelle; Park, Jae; Wang, Xiuyan; Cowell, Lindsay G; Bartido, Shirley; Stefanski, Jolanta; Taylor, Clare; Olszewska, Malgorzata; Borquez-Ojeda, Oriana; Qu, Jinrong; Wasielewska, Teresa; He, Qing; Bernal, Yvette; Rijo, Ivelise V; Hedvat, Cyrus; Kobos, Rachel; Curran, Kevin; Steinherz, Peter; Jurcic, Joseph; Rosenblat, Todd; Maslak, Peter; Frattini, Mark; Sadelain, Michel

    2013-01-01

    Adults with relapsed B-acute lymphoblastic leukemia (ALL) have a dismal prognosis. Only those patients able to achieve a second remission with no minimal residual disease (MRD−) have a hope for long-term survival in the context of a subsequent allogeneic hematopoietic stem cell transplantation (allo-HSCT). We have treated 5 relapsed B-ALL subjects with autologous T cells expressing a CD19-specific CD28/CD3ζ second generation dual-signaling chimeric antigen receptor (CAR) termed 19-28z. All patients with persistent morphological disease or MRD+ disease upon T cell infusion demonstrated rapid tumor eradication and achieved MRD-negative complete remissions as assessed by deep sequencing PCR. Therapy was well tolerated although significant cytokine elevations, specifically observed in those patients with morphologic evidence of disease at the time of treatment, required lymphotoxic steroid therapy to ameliorate cytokine-mediated toxicities. Significantly, cytokine elevations directly correlated to tumor burden at the time of CAR modified T cell infusions. Tumor cells from one patient with relapsed disease after CAR modified T cell therapy, ineligible for additional allo-HSCT therapy, exhibited persistent expression of CD19 and sensitivity to autologous 19-28z T cell mediated cytotoxicity suggesting potential clinical benefit of additional CAR modified T cell infusions. These results demonstrate the marked anti-tumor efficacy of 19-28z CAR modified T cells in patients with relapsed/refractory B-ALL and the reliability of this novel therapy to induce profound molecular remissions, an ideal bridge to potentially curative therapy with subsequent allo-HSCT. PMID:23515080

  3. Allogeneic haematopoietic stem cell transplantation for infant acute lymphoblastic leukaemia with KMT2A (MLL) rearrangements: a retrospective study from the paediatric acute lymphoblastic leukaemia working group of the Japan Society for Haematopoietic Cell Transplantation.

    PubMed

    Kato, Motohiro; Hasegawa, Daiichiro; Koh, Katsuyoshi; Kato, Keisuke; Takita, Junko; Inagaki, Jiro; Yabe, Hiromasa; Goto, Hiroaki; Adachi, Souichi; Hayakawa, Akira; Takeshita, Yasufumi; Sawada, Akihisa; Atsuta, Yoshiko; Kato, Koji

    2015-02-01

    Allogeneic haematopoietic stem cell transplantation (HSCT) is still considered to play an important role as a consolidation therapy for high-risk infants with acute lymphoblastic leukaemia (ALL). Here, we retrospectively analysed outcomes of HSCT in infants with ALL based on nationwide registry data of the Japan Society for Haematopoietic Cell Transplantation. A total of 132 allogeneic HSCT for infant ALL with KMT2A (MLL) gene rearrangements, which were performed in first complete remission (CR1), were analysed. The 5-year overall survival rate after transplantation was 67·4 ± 4·5%). Although recent HSCT (after 2004) had a trend toward better survival, no statistical correlation was observed between outcomes and each factor, including age at diagnosis, initial leucocyte count, cytogenetics, donor types or conditioning of HSCT. Myeloablative conditioning with total body irradiation did not provide a better survival (60·7 ± 9·2%) over that with busulfan (BU; 67·8 ± 5·7%). Two of the 28 patients treated with irradiation, but none of the 90 BU-treated patients, developed a secondary malignant neoplasm. In conclusion, allogeneic HSCT using BU was a valuable option for infant ALL with KMT2A rearrangements in CR1.

  4. Dose response of micronuclei induced by combination radiation of α-particles and γ-rays in human lymphoblast cells.

    PubMed

    Ren, Ruiping; He, Mingyuan; Dong, Chen; Xie, Yuexia; Ye, Shuang; Yuan, Dexiao; Shao, Chunlin

    2013-01-01

    Combination radiation is a real situation of both nuclear accident exposure and space radiation environment, but its biological dosimetry is still not established. This study investigated the dose-response of micronuclei (MN) induction in lymphocyte by irradiating HMy2.CIR lymphoblast cells with α-particles, γ-rays, and their combinations. Results showed that the dose-response of MN induced by γ-rays was well-fitted with the linear-quadratic model. But for α-particle irradiation, the MN induction had a biphasic phenomenon containing a low dose hypersensitivity characteristic and its dose response could be well-stimulated with a state vector model where radiation-induced bystander effect (RIBE) was involved. For the combination exposure, the dose response of MN was similar to that of α-irradiation. However, the yield of MN was closely related to the sequence of irradiations. When the cells were irradiated with α-particles at first and then γ-rays, a synergistic effect of MN induction was observed. But when the cells were irradiated with γ-rays followed by α-particles, an antagonistic effect of MN was observed in the low dose range although this combination radiation also yielded a synergistic effect at high doses. When the interval between two irradiations was extended to 4h, a cross-adaptive response against the other irradiation was induced by a low dose of γ-rays but not α-particles.

  5. Sleeping Beauty transposon screen identifies signaling modules that cooperate with STAT5 activation to induce B cell acute lymphoblastic leukemia

    PubMed Central

    Heltemes-Harris, Lynn M.; Larson, Jon D.; Starr, Timothy K.; Hubbard, Gregory K.; Sarver, Aaron L.; Largaespada, David A.; Farrar, Michael A.

    2015-01-01

    STAT5 activation occurs frequently in human progenitor B cell acute lymphoblastic leukemia (B-ALL). To identify gene alterations that cooperate with STAT5 activation to initiate leukemia we crossed mice expressing a constitutively active form of STAT5 (Stat5b-CA) to mice in which a mutagenic Sleeping Beauty transposon (T2/Onc) was mobilized only in B cells. Stat5b-CA mice typically do not develop B-ALL (<2% penetrance); in contrast, 89% of Stat5b–CA mice in which the T2/Onc transposon had been mobilized died of B-ALL by 3 months of age. High-throughput sequencing approaches were used to identify genes frequently targeted by the T2/Onc transposon; these included Sos1 (74%), Kdm2a (35%), Jak1 (26%), Bmi1 (19%), Prdm14 or Ncoa2 (13%), Cdkn2a (10%), Ikzf1 (8%), Caap1 (6%) and Klf3 (6%). Collectively, these mutations target three major cellular processes: (i) the JAK/STAT5 pathway (ii) progenitor B cell differentiation and (iii) the CDKN2A tumor suppressor pathway. Transposon insertions typically resulted in altered expression of these genes, as well as downstream pathways including STAT5, ERK and p38. Importantly, expression of Sos1 and Kdm2a, and activation of p38, correlated with survival, further underscoring the role these genes and associated pathways play in B-ALL. PMID:26500062

  6. Novel activating JAK2 mutation in a patient with Down syndrome and B-cell precursor acute lymphoblastic leukemia.

    PubMed

    Malinge, Sebastien; Ben-Abdelali, Raouf; Settegrana, Catherine; Radford-Weiss, Isabelle; Debre, Marianne; Beldjord, Kheira; Macintyre, Elizabeth A; Villeval, Jean-Luc; Vainchenker, William; Berger, Roland; Bernard, Olivier A; Delabesse, Eric; Penard-Lacronique, Virginie

    2007-03-01

    Activation of tyrosine kinase genes is a frequent event in human hematologic malignancies. Because gene activation could be associated with gene dysregulation, we attempted to screen for activating gene mutation based on high-level gene expression. We focused our study on the Janus kinase 2 (JAK2) gene in 90 cases of acute leukemia. This strategy led to the identification of a novel JAK2-acquired mutation in a patient with Down syndrome (DS) with B-cell precursor acute lymphoblastic leukemia (BCP-ALL). This mutation involves a 5-amino acid deletion within the JH2 pseudokinase domain (JAK2DeltaIREED). Expression of JAK2DeltaIREED in Ba/F3 cells induced constitutive activation of the JAK-STAT pathway and growth factor-independent cell proliferation. These results highlight the JAK2 pseudokinase domain as an oncogenic hot spot and indicate that activation of the JAK-STAT pathway may contribute to lymphoid malignancies and hematologic disorders observed in children with DS.

  7. Wntless (GPR177) expression correlates with poor prognosis in B-cell precursor acute lymphoblastic leukemia via Wnt signaling.

    PubMed

    Chiou, Shyh-Shin; Wang, Li-Ting; Huang, Shih-Bo; Chai, Chee-Yin; Wang, Shen-Nien; Liao, Yu-Mei; Lin, Pei-Chin; Liu, Kwei-Yan; Hsu, Shih-Hsien

    2014-10-01

    B-cell precursor acute lymphoblastic leukemia (BCP ALL) is the most common childhood leukemia, with a cure rate of 80%. Nevertheless, disease relapse is the most important prognostic factor for the disease outcome. We aimed to elucidate the role of Wnt secretion-regulating protein, Wntless (Wls)/GPR177, on disease outcome in pediatric patients with BCP ALL, and assess its pathogenetic role in the regulation of the disease. Wls expression was characterized and correlated with Wnt pathway signaling in the bone marrow leukemia cells isolated from 44 pediatric patients with BCP ALL. The overexpression of Wls was detected in leukemia cells and was significantly correlated with the disease relapse and poor survival in the patients. The high expression of Wls also correlated with the Wnt expression and consequent downstream signaling activation, which was shown to provide essential proliferation, transformation and anti-apoptotic activity during leukemogenesis. These results indicated that Wls played an essential role in disease relapse and poor survival in patients with BCP ALL. Therefore, Wls may provide a potential future therapeutic target, particularly for patients who do not respond to existing therapies and suffer relapse.

  8. T-cell acute lymphoblastic leukaemia after liver transplantation: post-transplant lymphoproliferative disorder or coincidental de novo leukaemia?

    PubMed

    Fang, Yanan; Pinkney, Kerice A; Lee, John C; Gindin, Tatyana; Weiner, Michael A; Alobeid, Bachir; Bhagat, Govind

    2013-03-01

    Post-transplant lymphoproliferative disorders of T-cell origin are quite uncommon, and the vast majority represent neoplasms of mature, post-thymic T- or natural killer cells. Here, we report a rare case of T-cell acute lymphoblastic leukaemia (T-ALL), which occurred in an 18-year-old man who had undergone three liver transplants, initially for biliary atresia and subsequently for graft failure due to chronic rejection. He had received immunosuppression with cyclosporine and tacrolimus, as well as short-term treatment with OKT3. The T-ALL occurred 16 years after the first liver transplant. This case highlights the challenge for classifying rare neoplasms occurring in recipients of solid organ transplants that are currently not recognized to lie within the spectrum of post-transplant lymphoproliferative disorders. Given the long interval between the liver transplants and the development of T-ALL, a coincidental occurrence of the leukaemia cannot be ruled out. However, the potential roles of immunosuppressive therapy and other co-morbid conditions of the individual as possible risk factors for the pathogenesis of T-ALL are discussed. Copyright © 2012 John Wiley & Sons, Ltd.

  9. Complete hematologic response of early T-cell progenitor acute lymphoblastic leukemia to the γ-secretase inhibitor BMS-906024: genetic and epigenetic findings in an outlier case

    PubMed Central

    Knoechel, Birgit; Bhatt, Ami; Pan, Li; Pedamallu, Chandra S.; Severson, Eric; Gutierrez, Alejandro; Dorfman, David M.; Kuo, Frank C.; Kluk, Michael; Kung, Andrew L.; Zweidler-McKay, Patrick; Meyerson, Matthew; Blacklow, Stephen C.; DeAngelo, Daniel J.; Aster, Jon C.

    2015-01-01

    Notch pathway antagonists such as γ-secretase inhibitors (GSIs) are being tested in diverse cancers, but exceptional responses have yet to be reported. We describe the case of a patient with relapsed/refractory early T-cell progenitor acute lymphoblastic leukemia (ETP-ALL) who achieved a complete hematologic response following treatment with the GSI BMS-906024. Whole-exome sequencing of leukemic blasts revealed heterozygous gain-of-function driver mutations in NOTCH1, CSF3R, and PTPN11, and a homozygous/hemizygous loss-of-function mutation in DNMT3A. The three gain-of-function mutations were absent from remission marrow cells, but the DNMT3A mutation persisted in heterozygous form in remission marrow, consistent with an origin for the patient's ETP-ALL from clonal hematopoiesis. Ex vivo culture of ETP-ALL blasts confirmed high levels of activated NOTCH1 that were repressed by GSI treatment, and RNA-seq documented that GSIs downregulated multiple known Notch target genes. Surprisingly, one potential target gene that was unaffected by GSIs was MYC, a key Notch target in GSI-sensitive T-ALL of cortical T-cell type. H3K27ac super-enhancer landscapes near MYC showed a pattern previously reported in acute myeloid leukemia (AML) that is sensitive to BRD4 inhibitors, and in line with this ETP-ALL blasts downregulated MYC in response to the BRD4 inhibitor JQ1. To our knowledge, this is the first example of complete response of a Notch-mutated ETP-ALL to a Notch antagonist and is also the first description of chromatin landscapes associated with ETP-ALL. Our experience suggests that additional attempts to target Notch in Notch-mutated ETP-ALL are merited. PMID:27148573

  10. Retrospective chart review of hospitalizations and costs associated with the treatment of adults with Philadelphia-negative B-cell relapsed or refractory acute lymphoblastic leukemia in Belgium.

    PubMed

    Maertens, Johan; Graux, Carlos; Breems, Dimitri; Havelange, Violaine; Wittnebel, Sebastian; Strens, Daniëlle; Hoefkens, Caroline

    2017-04-13

    To quantify hospitalizations and costs among adults with Philadelphia-negative relapsed or refractory (R/R) B-cell acute lymphoblastic leukemia (ALL) who received current salvage chemotherapies in Belgium. A retrospective chart review identified patients aged ≥18 years and hospitalized between 2005 and 2015 for Ph-negative R/R B-cell ALL. Data were collected from the index date (first diagnosis of R/R ALL) until death or loss to follow-up. The salvage chemotherapy period was defined as the first chemotherapy hospitalization after the index date to the earliest of death, loss to follow-up, last chemotherapy dose plus 30 days, or initiation of hematological stem cell transplantation (HSCT). The primary endpoint was the percent of time in the hospital during the salvage chemotherapy period. Hospitalization costs were reported from the public health care payer perspective. Nineteen patients were included, with median age of 37 years. The average proportion of time patients spent in the hospital during the salvage chemotherapy period was 50.5%. From the index date to death, patients received a mean of 1.8 lines of chemotherapy, most commonly hyper-CVAD (31%). There was a mean of 5.5 inpatient hospitalizations and 40.1 outpatient visits with 40.8 outpatient lab tests. Mean costs per patient were €79,973 for hospitalization (excluding HSCT), €26,337 for HSCT, €21,007 for chemotherapy drugs, and €6,341 for outpatient management, resulting in a total cost from the payer's perspective of €133,965 per patient. Adults with Ph-negative R/R ALL spend half the time receiving salvage chemotherapy in the hospital. Their treatment is associated with large reimbursement costs in Belgium.

  11. Haploidentical hematopoietic stem cell transplantation for paediatric high-risk T-cell acute lymphoblastic leukaemia.

    PubMed

    Xu, Zheng-Li; Huang, Xiao-Jun; Liu, Kai-Yan; Chen, Huan; Zhang, Xiao-Hui; Han, Wei; Chen, Yu-Hong; Wang, Feng-Rong; Wang, Jing-Zhi; Wang, Yu; Chen, Yao; Yan, Chen-Hua; Xu, Lan-Ping

    2016-06-01

    Paediatric HR T-cell ALL demonstrates dismal prognosis with chemotherapy, and poor outcomes could be improved with allo-SCT. HID-SCT is an almost immediately available choice; however, few studies have focused on the outcomes of HID-SCT for paediatric HR T-ALL. Forty-eight consecutive HR T-ALL children who underwent HID-SCT were included. Survival outcomes and factors predictive of outcomes were retrospectively analysed. Of the 48 patients, 35 were in CR1, 10 in CR2, and three in relapse. The cumulative incidence of grade 3/4 aGVHD was 10.4% and that of extensive cGVHD was 28.4%. The CIR at three yr was 30.8% and that of NRM at three yr was 14.7%. At a median follow-up of 20.0 (range 2.5-124.2) months, the three-yr LFS was 54.4%. Children who received transplants during CR1 had a better LFS (65.7% vs. 26.0%, p = 0.008) and a lower relapse rate (19.8% vs. 56.7%, p = 0.014) compared to those during non-CR1. HID-SCT is feasible for HR T-ALL children, and survival outcomes are better when performed in CR1 compared to non-CR1. Prospective clinical trials would be needed to confirm that. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Bortezomib interferes with adhesion of B cell precursor acute lymphoblastic leukemia cells through SPARC up-regulation in human bone marrow mesenchymal stromal/stem cells.

    PubMed

    Iwasa, Masaki; Miura, Yasuo; Fujishiro, Aya; Fujii, Sumie; Sugino, Noriko; Yoshioka, Satoshi; Yokota, Asumi; Hishita, Terutoshi; Hirai, Hideyo; Andoh, Akira; Ichinohe, Tatsuo; Maekawa, Taira

    2017-01-02

    The poor prognosis of adults with B cell precursor acute lymphoblastic leukemia (BCP-ALL) is attributed to leukemia cells that are protected by the bone marrow (BM) microenvironment. In the present study, we explored the pharmacological targeting of mesenchymal stromal/stem cells in BM (BM-MSCs) to eliminate chemoresistant BCP-ALL cells. Human BCP-ALL cells (NALM-6 cells) that adhered to human BM-MSCs (NALM-6/Ad) were highly resistant to multiple anti-cancer drugs, and exhibited pro-survival characteristics, such as an enhanced Akt/Bcl-2 pathway and increased populations in the G0 and G2/S/M cell cycle stages. Bortezomib, a proteasome inhibitor, interfered with adhesion between BM-MSCs and NALM-6 cells and up-regulated the matricellular protein SPARC (secreted protein acidic and rich in cysteine) in BM-MSCs, thereby reducing the NALM-6/Ad population. Inhibition of SPARC expression in BM-MSCs using a small interfering RNA enhanced adhesion of NALM-6 cells. Conversely, recombinant SPARC protein interfered with adhesion of NALM-6 cells. These results suggest that SPARC disrupts adhesion between BM-MSCs and NALM-6 cells. Co-treatment with bortezomib and doxorubicin prolonged the survival of BCP-ALL xenograft mice, with a significant reduction of leukemia cells in BM. Our findings demonstrate that bortezomib contributes to the elimination of BCP-ALL cells through disruption of their adhesion to BM-MSCs, and offer a novel therapeutic strategy for BCP-ALL through targeting of BM-MSCs.

  13. Dnmt3a haploinsufficiency cooperates with oncogenic Kras to promote an early-onset T-cell acute lymphoblastic leukemia

    PubMed Central

    Chang, Yuan-I; Kong, Guangyao; Ranheim, Erik A; Tu, Po-Shu; Yu, Yi-Shan; Zhang, Jing

    2017-01-01

    Mutations in DNA methyltransferase 3A (DNMT3A) are prevalent in various myeloid and lymphoid malignancies. The most common DNMT3A R882 mutations inhibit methyltransferase activity of the remaining wild-type DNMT3A proteins at a heterozygous state due to their dominant-negative activity. Reports and COSMIC database analysis reveal significantly different frequencies of R882 mutations in myeloid versus T-cell malignancies, inspiring us to investigate whether downregulation of DNMT3A regulates malignancies of different lineages in a dose-dependent manner. In a competitive transplant setting, the survival of recipients with KrasG12D/+; Dnmt3a+/- bone marrow (BM) cells was significantly shortened than that of recipients with KrasG12D/+ cells. Moreover, all of the recipients with KrasG12D/+; Dnmt3a+/- cells developed a lethal T-cell acute lymphoblastic leukemia (T-ALL) without significant myeloproliferative neoplasm (MPN) phenotypes, while ~20% of recipients with KrasG12D/+ cells developed MPN with or without T-ALL. This is in sharp contrast to the recipients with KrasG12D/+; Dnmt3a-/- cells, in which ~60% developed a lethal myeloid malignancy (MPN or acute myeloid leukemia [AML]). Our data suggest that in the context of oncogenic Kras, loss of Dnmt3a promotes myeloid malignancies, while Dnmt3a haploinsufficiency induces T-ALL. This dose-dependent phenotype is highly consistent with the prevalence of DNMT3A R882 mutations in AML versus T-ALL in human. PMID:28386358

  14. New and emerging prognostic and predictive genetic biomarkers in B-cell precursor acute lymphoblastic leukemia

    PubMed Central

    Moorman, Anthony V.

    2016-01-01

    Acute lymphoblastic leukemia (ALL) is a heterogeneous disease at the genetic level. Chromosomal abnormalities are used as diagnostic, prognostic and predictive biomarkers to provide subtype, outcome and drug response information. t(12;21)/ETV6-RUNX1 and high hyper-diploidy are good-risk prognostic biomarkers whereas KMT2A (MLL) translocations, t(17;19)/TCF3-HLF, haploidy or low hypodiploidy are high-risk biomarkers. t(9;22)/BCR-ABL1 patients require targeted treatment (imatinib/dasatinib), whereas iAMP21 patients achieve better outcomes when treated intensively. High-risk genetic biomarkers are four times more prevalent in adults compared to children. The application of genomic technologies to cases without an established abnormality (B-other) reveals copy number alterations which can be used either individually or in combination as prognostic biomarkers. Transcriptome sequencing studies have identified a network of fusion genes involving kinase genes - ABL1, ABL2, PDGFRB, CSF1R, CRLF2, JAK2 and EPOR. In vitro and in vivo studies along with emerging clinical observations indicate that patients with a kinase-activating aberration may respond to treatment with small molecular inhibitors like imatinib/dasatinib and ruxolitinib. Further work is required to determine the true frequency of these abnormalities across the age spectrum and the optimal way to incorporate such inhibitors into protocols. In conclusion, genetic biomarkers are playing an increasingly important role in the management of patients with ALL. PMID:27033238

  15. Cytotoxic T cell response against the chimeric ETV6-AML1 protein in childhood acute lymphoblastic leukemia.

    PubMed

    Yotnda, P; Garcia, F; Peuchmaur, M; Grandchamp, B; Duval, M; Lemonnier, F; Vilmer, E; Langlade-Demoyen, P

    1998-07-15

    Cytotoxic T lymphocytes (CTL) are potent effector cells that could provide long term antitumor immunity if induced by appropriate vaccines. CTL recognize 8-14 amino acid-long peptides processed intracellularly and presented by MHC class I molecules. A well-characterized example of a potential tumor antigen in childhood pre-B Acute Lymphoblastic Leukemia (ALL) results from the chromosomal translocation 12;21 leading to the fusion of the ETV6 and AML1 genes. This translocation is observed in > 25% of ALL-patients. In this study, we have examined whether the chimeric ETV6-AML1 protein could serve as a tumor specific antigen for CTL in HLA-A2.1 individuals. We have identified a nonapeptide (RIAECILGM), encoded by the fusion region of the ETV6-AML1 protein, that binds to HLA-A2.1 molecules and induces specific primary CTL in peripheral blood lymphocytes from healthy donors. These CTL specifically lysed HLA-A2.1 tumor cells endogeneously expressing the ETV6-AML fusion protein. CTL with similar functional capacities were found with high frequencies and cloned from one patient's bone marrow indicating that ETV6-AML1-specific anti-ALL CTL are, at least in some patients, spontaneously stimulated and might participate to host antileukemia defense.

  16. Notch and NF-kB signaling pathways regulate miR-223/FBXW7 axis in T-cell acute lymphoblastic leukemia.

    PubMed

    Kumar, V; Palermo, R; Talora, C; Campese, A F; Checquolo, S; Bellavia, D; Tottone, L; Testa, G; Miele, E; Indraccolo, S; Amadori, A; Ferretti, E; Gulino, A; Vacca, A; Screpanti, I

    2014-12-01

    Notch signaling deregulation is linked to the onset of several tumors including T-cell acute lymphoblastic leukemia (T-ALL). Deregulated microRNA (miRNA) expression is also associated with several cancers, including leukemias. However, the transcriptional regulators of miRNAs, as well as the relationships between Notch signaling and miRNA deregulation, are poorly understood. To identify miRNAs regulated by Notch pathway, we performed microarray-based miRNA profiling of several Notch-expressing T-ALL models. Among seven miRNAs, consistently regulated by overexpressing or silencing Notch3, we focused our attention on miR-223, whose putative promoter analysis revealed a conserved RBPjk binding site, which was nested to an NF-kB consensus. Luciferase and chromatin immunoprecipitation assays on the promoter region of miR-223 show that both Notch and NF-kB are novel coregulatory signals of miR-223 expression, being able to activate cooperatively the transcriptional activity of miR-223 promoter. Notably, the Notch-mediated activation of miR-223 represses the tumor suppressor FBXW7 in T-ALL cell lines. Moreover, we observed the inverse correlation of miR-223 and FBXW7 expression in a panel of T-ALL patient-derived xenografts. Finally, we show that miR-223 inhibition prevents T-ALL resistance to γ-secretase inhibitor (GSI) treatment, suggesting that miR-223 could be involved in GSI sensitivity and its inhibition may be exploited in target therapy protocols.

  17. Severe Mucha-Habermann-Like Ulceronecrotic Skin Disease in T-Cell Acute Lymphoblastic Leukemia Responsive to Basiliximab and Stem Cell Transplant.

    PubMed

    Orenstein, Lauren A V; Coughlin, Carrie C; Flynn, Andrea T; Pillai, Vinodh; Boos, Markus D; Wertheim, Gerald B; Treat, James R; Teachey, David T

    2017-09-01

    A 5-year-old girl with T-cell acute lymphoblastic leukemia (T-ALL) developed a progressive eruption of crusted papules and ulcerative plaques involving 80% of her body surface area with histopathology consistent with febrile ulceronecrotic Mucha-Habermann disease (FUMHD), although multiple specimens also contained clonal leukemic cells. Her skin disease was refractory to many classic treatments for FUMHD, including methotrexate, and became so severe that concern about superinfection prevented intensification of chemotherapy for her malignancy. The addition of basiliximab promoted gradual improvement of the skin, allowing for chemotherapy intensification and subsequent bone marrow transplantation, after which the eruption resolved completely. This report describes a severe case of FUMHD-like eruption associated with clonal leukemic cells that improved with basiliximab, suggesting anti-CD25 therapy as a novel treatment for ulceronecrotic skin disease in the setting of high interleukin-2 levels. © 2017 Wiley Periodicals, Inc.

  18. Epigenetic remodeling in B-cell acute lymphoblastic leukemia occurs in two tracks and employs embryonic stem cell-like signatures

    PubMed Central

    Lee, Seung-Tae; Muench, Marcus O.; Fomin, Marina E.; Xiao, Jianqiao; Zhou, Mi; de Smith, Adam; Martín-Subero, José I.; Heath, Simon; Houseman, E. Andres; Roy, Ritu; Wrensch, Margaret; Wiencke, John; Metayer, Catherine; Wiemels, Joseph L.

    2015-01-01

    We investigated DNA methylomes of pediatric B-cell acute lymphoblastic leukemias (B-ALLs) using whole-genome bisulfite sequencing and high-definition microarrays, along with RNA expression profiles. Epigenetic alteration of B-ALLs occurred in two tracks: de novo methylation of small functional compartments and demethylation of large inter-compartmental backbones. The deviations were exaggerated in lamina-associated domains, with differences corresponding to methylation clusters and/or cytogenetic groups. Our data also suggested a pivotal role of polycomb and CTBP2 in de novo methylation, which may be traced back to bivalency status of embryonic stem cells. Driven by these potent epigenetic modulations, suppression of polycomb target genes was observed along with disruption of developmental fate and cell cycle and mismatch repair pathways and altered activities of key upstream regulators. PMID:25690899

  19. Molluscan cells in culture: primary cell cultures and cell lines

    PubMed Central

    Yoshino, T. P.; Bickham, U.; Bayne, C. J.

    2013-01-01

    In vitro cell culture systems from molluscs have significantly contributed to our basic understanding of complex physiological processes occurring within or between tissue-specific cells, yielding information unattainable using intact animal models. In vitro cultures of neuronal cells from gastropods show how simplified cell models can inform our understanding of complex networks in intact organisms. Primary cell cultures from marine and freshwater bivalve and gastropod species are used as biomonitors for environmental contaminants, as models for gene transfer technologies, and for studies of innate immunity and neoplastic disease. Despite efforts to isolate proliferative cell lines from molluscs, the snail Biomphalaria glabrata Say, 1818 embryonic (Bge) cell line is the only existing cell line originating from any molluscan species. Taking an organ systems approach, this review summarizes efforts to establish molluscan cell cultures and describes the varied applications of primary cell cultures in research. Because of the unique status of the Bge cell line, an account is presented of the establishment of this cell line, and of how these cells have contributed to our understanding of snail host-parasite interactions. Finally, we detail the difficulties commonly encountered in efforts to establish cell lines from molluscs and discuss how these difficulties might be overcome. PMID:24198436

  20. Imatinib compared with chemotherapy as front-line treatment of elderly patients with Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ALL).

    PubMed

    Ottmann, Oliver G; Wassmann, Barbara; Pfeifer, Heike; Giagounidis, Aristoteles; Stelljes, Matthias; Dührsen, Ulrich; Schmalzing, Marc; Wunderle, Lydia; Binckebanck, Anja; Hoelzer, Dieter

    2007-05-15

    Elderly patients with Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ALL) have a poor prognosis, with a low complete remission (CR) rate, high induction mortality, and short remission duration. Imatinib (IM) has a favorable toxicity profile but limited antileukemic activity in advanced Ph+ALL. Imatinib in combination with intensive chemotherapy has yielded promising results as front-line therapy, but its value as monotherapy in newly diagnosed Ph+ALL is not known. Patients with de novo Ph+ALL were randomly assigned to induction therapy with either imatinib (Ind(IM)) or multiagent, age-adapted chemotherapy (Ind(chemo)). Imatinib was subsequently coadministered with consolidation chemotherapy. In all, 55 patients (median age, 68 years) were enrolled. The overall CR rate was 96.3% in patients randomly assigned to Ind(IM) and 50% in patients allocated to Ind(chemo) (P = .0001). Nine patients (34.6%) were refractory and 2 patients died during Ind(chemo); none failed imatinib induction. Severe adverse events were significantly more frequent during Ind(chemo) (90% vs 39%; P = .005). The estimated overall survival (OS) of all patients was 42% +/- 8% at 24 months, with no significant difference between the 2 cohorts. Median disease-free survival was significantly longer in the 43% of patients (21 of 49 evaluable) in whom BCR-ABL transcripts became undetectable (18.3 months vs 7.2 months; P = .002). In elderly patients with de novo Ph+ALL, imatinib induction results in a significantly higher CR rate and lower toxicity than induction chemotherapy. With subsequent combined imatinib and chemotherapy consolidation, this initial benefit does not translate into improved survival compared with chemotherapy induction. (c) 2007 American Cancer Society

  1. Vaccination to improve the persistence of CD19CAR gene-modified T cells in relapsed pediatric acute lymphoblastic leukemia.

    PubMed

    Rossig, C; Pule, M; Altvater, B; Saiagh, S; Wright, G; Ghorashian, S; Clifton-Hadley, L; Champion, K; Sattar, Z; Popova, B; Hackshaw, A; Smith, P; Roberts, T; Biagi, E; Dreno, B; Rousseau, R; Kailayangiri, S; Ahlmann, M; Hough, R; Kremens, B; Sauer, M G; Veys, P; Goulden, N; Cummins, M; Amrolia, P J

    2017-03-10

    Trials with second generation CD19 chimeric antigen receptors (CAR) T-cells report unprecedented responses but are associated with risk of cytokine release syndrome (CRS). Instead, we studied the use of donor Epstein-Barr virus-specific T-cells (EBV CTL) transduced with a first generation CD19CAR, relying on the endogenous T-cell receptor for proliferation. We conducted a multi-center phase I/II study of donor CD19CAR transduced EBV CTL in pediatric acute lymphoblastic leukaemia (ALL). Patients were eligible pre-emptively if they developed molecular relapse (>5 × 10(-4)) post first stem cell transplant (SCT), or prophylactically post second SCT. An initial cohort showed poor expansion/persistence. We therefore investigated EBV-directed vaccination to enhance expansion/persistence. Eleven patients were treated. No CRS, neurotoxicity or graft versus host disease (GVHD) was observed. At 1 month, 5 patients were in CR (4 continuing, 1 de novo), 1 PR, 3 had stable disease and 3 no response. At a median follow-up of 12 months, 10 of 11 have relapsed, 2 are alive with disease and 1 alive in CR 3 years. Although CD19CAR CTL expansion was poor, persistence was enhanced by vaccination. Median persistence was 0 (range: 0-28) days without vaccination compared to 56 (range: 0-221) days with vaccination (P=0.06). This study demonstrates the feasibility of multi-center studies of CAR T cell therapy and the potential for enhancing persistence with vaccination.Leukemia advance online publication, 10 March 2017; doi:10.1038/leu.2017.39.

  2. Anti-CD19 chimeric antigen receptor T-cell therapy for adult Philadelphia chromosome-positive acute lymphoblastic leukemia

    PubMed Central

    Zhu, Yang-min; Wu, Zhao; Tan, You-ping; Du, Yuan-yuan; Liu, Zhi; Ou, Rui-ming; Liu, Shuang; Pu, Cheng-fei; Jiang, Jing; Wang, Jin-ping; Xiao, Lei; Zhang, Qing

    2016-01-01

    Abstract Rationale: The presence of the Philadelphia chromosome (Ph) in acute lymphoblastic leukemia (ALL) has been associated with a high risk of disease relapse and a poor prognosis. Allogeneic hematopoietic stem cell transplantation (HSCT) is an established treatment for adults with Ph-positive ALL, but relapse remains the primary cause of treatment failure, and is associated with an extremely poor prognosis. The emergence of resistance to tyrosine kinase inhibitors (TKIs) poses a challenge for patients with disease relapses after initial treatment with TKI-containing regimens. Patient concerns: Two patients with TKI-resistant recurrent Ph-positive ALL. Diagnoses: Ph-positive ALL. Interventions: Anti-CD19 CAR T-cell infusion. Outcomes: One patient's bone marrow blasts decreased significantly, and the other reached negative minimal residual disease (MRD). However, we first recorded the development of new-onset acute graft-versus-host disease (aGVHD) after anti-CD19 CAR T-cell infusion in a patient who received allogeneic HSCT. Our 2 case reports also demonstrate the efficacy of anti-CD19 CAR T-cell therapy in the treatment of TKI-resistant Ph-positive ALL. Lessons: Our report suggests that anti-CD19 CAR T-cell therapy may be a promising option for the treatment of relapsed Ph-positive ALL after conventional chemotherapy or allogeneic HSCT. However, caution is due given the possibility of the adverse effects of cytokine release syndrome (CRS)-induced aGVHD for patients receiving allogeneic HSCT. PMID:28002337

  3. Low expression of Toll-like receptors in peripheral blood mononuclear cells of pediatric patients with acute lymphoblastic leukemia.

    PubMed

    Sánchez-Cuaxospa, María; Contreras-Ramos, Alejandra; Pérez-Figueroa, Erandi; Medina-Sansón, Aurora; Jiménez-Hernández, Elva; Torres-Nava, José R; Rojas-Castillo, Emilio; Maldonado-Bernal, Carmen

    2016-08-01

    Cancer is the second most common cause of death among children aged 1-14 years. Leukemia accounts for one-third of all childhood cancers, 78% of which is acute lymphoblastic leukemia (ALL). The development of cancer has been associated with malignant cells that express low levels of immunogenic molecules, which facilitates their escape from the antineoplastic immune response. It is thought that it may be possible to rescue the antineoplastic immune response through the activation of recognition receptors, such as Toll-like receptors (TLRs), which activate the innate immune system. TLRs are type I membrane glycoproteins expressed mainly in immune system cells such as monocytes, neutrophils, macrophages, dendritic cells, T, B and natural killer cells. The aim of the present study was to evaluate the expression of TLR1, TLR3, TLR4, TLR7 and TLR9 in peripheral blood mononuclear cells (PBMCs) in patients with ALL and prior to any treatment. PBMCs were obtained from 50 pediatric patients diagnosed with ALL and from 20 children attending the ophthalmology and orthopedics services. The mean fluorescence intensity was obtained by analysis of immunofluorescence. We found lower expression levels of TLR1, TLR3, TLR4, TLR7 and TLR9 in PBMCs from patients with ALL compared with those from control patients. We also observed that the PBMCs from patients with Pre-B and B ALL had lower TLR4 expression than controls and patients with Pro-B, Pre-B, B and T ALL had lower TLR7 expression than controls. The present study is the first to demonstrate reduced expression of TLRs in PBMCs from pediatric patients with ALL. This finding is of great relevance and may partly explain the reduction in the antineoplastic immune response in patients with ALL.

  4. rRNA synthesis inhibitor, CX-5461, activates ATM/ATR pathway in acute lymphoblastic leukemia, arrests cells in G2 phase and induces apoptosis

    PubMed Central

    Negi, Sandeep S.; Brown, Patrick

    2015-01-01

    Ribosome biogenesis is a fundamental cellular process and is elevated in cancer cells. As one of the most energy consuming cellular processes, it is highly regulated by signaling pathways in response to changing cellular conditions. Many of the regulators of this process are aberrantly activated in various cancers. Recently two novel rRNA synthesis inhibitors, CX-5461 and BMH-21, have been shown to selectively kill cancer cells while sparing normal cells. Here, we tested the effectiveness of pre-rRNA synthesis inhibitor CX-5461 on acute lymphoblastic leukemia cells with different cytogenetic abnormalities. Acute lymphoblastic leukemia cells are more sensitive to rRNA synthesis inhibition compared to normal bone marrow cells. CX-5461 treated cells undergo caspase-dependent apoptosis independent of their p53 status. More-over, CX5461, activates checkpoint kinases and arrests cells in G2 phase of cell cycle. Finally, overcoming this G2 arrest by inhibiting ATR kinase leads to robust cell killing. These results show that CX-5461 can be even more potent in combination with ATR inhibitors. PMID:26061708

  5. rRNA synthesis inhibitor, CX-5461, activates ATM/ATR pathway in acute lymphoblastic leukemia, arrests cells in G2 phase and induces apoptosis.

    PubMed

    Negi, Sandeep S; Brown, Patrick

    2015-07-20

    Ribosome biogenesis is a fundamental cellular process and is elevated in cancer cells. As one of the most energy consuming cellular processes, it is highly regulated by signaling pathways in response to changing cellular conditions. Many of the regulators of this process are aberrantly activated in various cancers. Recently two novel rRNA synthesis inhibitors, CX-5461 and BMH-21, have been shown to selectively kill cancer cells while sparing normal cells. Here, we tested the effectiveness of pre-rRNA synthesis inhibitor CX-5461 on acute lymphoblastic leukemia cells with different cytogenetic abnormalities. Acute lymphoblastic leukemia cells are more sensitive to rRNA synthesis inhibition compared to normal bone marrow cells. CX-5461 treated cells undergo caspase-dependent apoptosis independent of their p53 status. More-over, CX5461, activates checkpoint kinases and arrests cells in G2 phase of cell cycle. Finally, overcoming this G2 arrest by inhibiting ATR kinase leads to robust cell killing. These results show that CX-5461 can be even more potent in combination with ATR inhibitors.

  6. A novel long non-coding RNA T-ALL-R-LncR1 knockdown and Par-4 cooperate to induce cellular apoptosis in T-cell acute lymphoblastic leukemia cells.

    PubMed

    Zhang, Lin; Xu, Hong-Gui; Lu, Chao

    2014-06-01

    T-cell acute lymphoblastic leukemia (T-ALL) is a hematologic malignancy with a poor prognosis. It has been shown that long non-coding RNA (lncRNA) plays an important role in tumorigenesis. Here, we characterized a novel lncRNA, T-ALL-R-LncR1, with whole-transcriptome deep sequencing from the Jurkat leukemic T-cell line. T-ALL-R-LncR1 was not observed in human normal tissues. However, an obvious expression was observed in some tumor tissues. T-ALL-R-LncR1 was markedly expressed in neoplastic T lymphocytes of 11 cases out of 21 children with T-ALL, indicating that T-ALL-R-LncR1 might be associated with T-ALL. T-ALL-R-LncR1 knockdown predisposed Jurkat cells to undergo pro-apoptotic factor Par-4-induced apoptosis. Further studies revealed that T-ALL-R-LncR1 knockdown facilitated the formation of a Par-4/THAP1 protein complex, resulting in the activation of caspase-3 and an increase of pro-apoptotic Smac protein in T-ALL cells. Our studies indicate a potential role of suppressing the novel long non-coding RNA T-ALL-R-LncR1 in the therapy of human T-ALL.

  7. The expression of TIPE1 in murine tissues and human cell lines.

    PubMed

    Cui, Jian; Zhang, Guizhong; Hao, Chunyan; Wang, Yan; Lou, Yunwei; Zhang, Wenqian; Wang, Juan; Liu, Suxia

    2011-07-01

    Members of the tumor necrosis factor-alpha-induced protein-8 (TNFAIP8 or TIPE) family play important roles in immune homeostasis and cancer. TIPE1 (TNFAIP8-like 1) is a new member of the TIPE family that may regulate cell death. However, due to the lack of a suitable antibody, the nature of cells and tissues that express TIPE1 protein has not been determined. In this study, we generated a highly specific antibody to TIPE1 and examined TIPE1 expression in various murine tissues and human cell lines by immunohistochemistry, reverse transcription real-time PCR, and Western blot. We found that TIPE1 protein was detected in a wide variety of tissues in C57BL/6 mice, such as neurons in brain, hepatocytes, germ cells of female and male reproductive organs, muscular tissues, and a variety of cells of the epithelial origin, particularly those with secretory functions. TIPE1 protein was not expressed in mature T or B lymphocytes, but detectable in human B lymphoblast cell line HMy2.CIR and murine T cell line EL4. Furthermore, high levels of TIPE1 mRNA were detected in most human carcinoma cell lines, especially in cells transformed with viral genomes. These results indicate that TIPE1 may perform functions in cell secretion and carcinogenesis, but not in immunity.

  8. Acute lymphoblastic leukaemia

    PubMed Central

    Inaba, Hiroto; Greaves, Mel; Mullighan, Charles G.

    2013-01-01

    Summary Acute lymphoblastic leukaemia (ALL) is seen in both children and adults, but its incidence peaks between ages 2 and 5 years. The causation of ALL is considered to be multi-factorial, including exogenous or endogenous exposures, genetic susceptibility, and chance. The survival rate of paediatric ALL has improved to approximately 90% in recent trials with risk stratification by biologic features of leukaemic cells and response to therapy, therapy modification based on patient pharmacodynamics and pharmacogenomics, and improved supportive care. However, innovative approaches are needed to further improve survival while reducing adverse effects. While most children can be cured, the prognosis of infants and adults with ALL remains poor. Recent genome-wide profiling of germline and leukaemic cell DNA has identified novel submicroscopic structural genetic alterations and sequence mutations that contribute to leukaemogenesis, define new ALL subtypes, influence responsiveness to treatment, and may provide novel prognostic markers and therapeutic targets for personalized medicine. PMID:23523389

  9. Reduced-intensity stem-cell transplantation for adult acute lymphoblastic leukemia: a retrospective study of 33 patients.

    PubMed

    Hamaki, T; Kami, M; Kanda, Y; Yuji, K; Inamoto, Y; Kishi, Y; Nakai, K; Nakayama, I; Murashige, N; Abe, Y; Ueda, Y; Hino, M; Inoue, T; Ago, H; Hidaka, M; Hayashi, T; Yamane, T; Uoshima, N; Miyakoshi, S; Taniguchi, S

    2005-03-01

    Efficacy of reduced-intensity stem-cell transplantation (RIST) for acute lymphoblastic leukemia (ALL) was investigated in 33 patients (median age, 55 years). RIST sources comprised 20 HLA-identical related donors, five HLA-mismatched related, and eight unrelated donors. Six patients had undergone previous transplantation. Disease status at RIST was first remission (n=13), second remission (n=6), and induction failure or relapse (n=14). All patients tolerated preparatory regimens and achieved neutrophil engraftment (median, day 12.5). Acute and chronic graft-versus-host disease (GVHD) developed in 45 and 64%, respectively. Six patients received donor lymphocyte infusion (DLI), for prophylaxis (n=1) or treatment of recurrent ALL (n=5). Nine patients died of transplant-related mortality, with six deaths due to GVHD. The median follow-up of surviving patients was 11.6 months (range, 3.5-37.3 months). The 1-year relapse-free and overall survival rates were 29.8 and 39.6%, respectively. Of the 14 patients transplanted in relapse, five remained relapse free for longer than 6 months. Cumulative rates of progression and progression-free mortality at 3 years were 50.9 and 30.4%, respectively. These findings suggest the presence of a graft-versus-leukemia effect for ALL. RIST for ALL is worth considering for further evaluation.

  10. A cooperative microRNA-tumor suppressor gene network in acute T-cell lymphoblastic leukemia (T-ALL)

    PubMed Central

    Mavrakis, Konstantinos J; Van Der Meulen, Joni; Wolfe, Andrew L; Liu, Xiaoping; Mets, Evelien; Taghon, Tom; Khan, Aly A; Setty, Manu; Rondou, Pieter; Vandenberghe, Peter; Delabesse, Eric; Benoit, Yves; Socci, Nicholas B; Leslie, Christina S; Van Vlierberghe, Pieter; Speleman, Frank; Wendel, Hans-Guido

    2014-01-01

    The importance of individual microRNAs (miRNAs) has been established in specific cancers. However, a comprehensive analysis of the contribution of miRNAs to the pathogenesis of any specific cancer is lacking. Here we show that in T-cell acute lymphoblastic leukemia (T-ALL), a small set of miRNAs is responsible for the cooperative suppression of several tumor suppressor genes. Cross-comparison of miRNA expression profiles in human T-ALL with the results of an unbiased miRNA library screen allowed us to identify five miRNAs (miR-19b, miR-20a, miR-26a, miR-92 and miR-223) that are capable of promoting T-ALL development in a mouse model and which account for the majority of miRNA expression in human T-ALL. Moreover, these miRNAs produce overlapping and cooperative effects on tumor suppressor genes implicated in the pathogenesis of T-ALL, including IKAROS (also known as IKZF1), PTEN, BIM, PHF6, NF1 and FBXW7. Thus, a comprehensive and unbiased analysis of miRNA action in T-ALL reveals a striking pattern of miRNA-tumor suppressor gene interactions in this cancer. PMID:21642990

  11. Generation of a tetracycline regulated mouse model of MYC-induced T-cell acute lymphoblastic leukemia.

    PubMed

    Rakhra, Kavya; Felsher, Dean W

    2013-01-01

    The tetracycline regulatory system provides a tractable strategy to interrogate the role of oncogenes in the initiation and maintenance of tumorigenesis through both spatial and temporal control of expression. This approach has several potential advantages over conventional methods to generate genetically engineered mouse models. First, continuous constitutive overexpression of an oncogene can be lethal to the host impeding further study. Second, constitutive overexpression fails to model adult onset of disease. Third, constitutive deletion does not permit, whereas conditional overexpression of an oncogene enables the study of the consequences of restoring expression of an oncogene back to endogenous levels. Fourth, the conditional activation of oncogenes enables examination of specific and/or developmental state-specific consequences. Hence, by allowing precise control of when and where a gene is expressed, the tetracycline regulatory system provides an ideal approach for the study of putative oncogenes in both the initiation and maintenance of tumorigenesis. In this protocol, we describe the methods involved in the development of a conditional mouse model of MYC-induced T-cell acute lymphoblastic leukemia.

  12. Clonal variegation and dynamic competition of leukemia-initiating cells in infant acute lymphoblastic leukemia with MLL rearrangement.

    PubMed

    Bardini, M; Woll, P S; Corral, L; Luc, S; Wittmann, L; Ma, Z; Lo Nigro, L; Basso, G; Biondi, A; Cazzaniga, G; Jacobsen, S E W

    2015-01-01

    Distinct from other forms of acute lymphoblastic leukemia (ALL), infant ALL with mixed lineage leukemia (MLL) gene rearrangement, the most common leukemia occurring within the first year of life, might arise without the need for cooperating genetic lesions. Through Ig/TCR rearrangement analysis of MLL-AF4+ infant ALL at diagnosis and xenograft leukemias from mice transplanted with the same diagnostic samples, we established that MLL-AF4+ infant ALL is composed of a branching subclonal architecture already at diagnosis, frequently driven by an Ig/TCR-rearranged founder clone. Some MLL-AF4+ clones appear to be largely quiescent at diagnosis but can reactivate and dominate when serially transplanted into immunodeficient mice, whereas other dominant clones at diagnosis can become more quiescent, suggesting a dynamic competition between actively proliferating and quiescent subclones. Investigation of paired diagnostic and relapse samples suggested that relapses often occur from subclones already present but more quiescent at diagnosis. Copy-number alterations identified at relapse might contribute to the activation and expansion of previously quiescent subclones. Finally, each of the identified subclones is able to contribute to the diverse phenotypic pool of MLL-AF4+ leukemia-propagating cells. Unraveling of the subclonal architecture and dynamics in MLL+ infant ALL may provide possible explanations for the therapy resistance and frequent relapses observed in this group of poor prognosis ALL.

  13. Absolute lymphocyte count is associated with minimal residual disease level in childhood B-cell precursor acute lymphoblastic leukemia.

    PubMed

    Shen, Hong-Qiang; Feng, Jian-Hua; Tang, Yong-Min; Song, Hua; Yang, Shi-Long; Shi, Shu-Wen; Xu, Wei-Qun

    2013-06-01

    The prognostic value of absolute lymphocyte count (ALC) has been a recent matter of debate in childhood acute lymphoblastic leukemia (ALL). In the current study, ALCs at the time of diagnosis (ALC-0), after 7 days of initial therapy (ALC-8) and at interim of the induction therapy (ALC-22) were examined in Chinese children with B-cell precursor (BCP) ALL and correlated with the level of minimal residual disease (MRD) at day 22 of induction therapy. Medical and laboratory records of 140 patients diagnosed with childhood BCP ALL were retrieved and analyzed. ALC-22 is significantly correlated with MRD level at day 22 of therapy and can be a good prognostic factor for childhood BCP-ALL. Furthermore, lymphocyte count at initial diagnosis is correlated with MRD level at day 22 in childhood BCP-ALL with the immnunophenotype of CD19(pos)/CD10(pos)/CD34(pos)/CD45(neg) and role as a new prognostic factor was determined.

  14. Identification of Predictive Biomarkers for Cytokine Release Syndrome after Chimeric Antigen Receptor T cell Therapy for Acute Lymphoblastic Leukemia

    PubMed Central

    Teachey, David T.; Lacey, Simon F.; Shaw, Pamela A.; Melenhorst, J. Joseph; Maude, Shannon L.; Frey, Noelle; Pequignot, Edward; Gonzalez, Vanessa E.; Chen, Fang; Finklestein, Jeffrey; Barrett, David M.; Weiss, Scott L.; Fitzgerald, Julie C.; Berg, Robert A.; Aplenc, Richard; Callahan, Colleen; Rheingold, Susan R.; Zheng, Zhaohui; Rose-John, Stefan; White, Jason C.; Nazimuddin, Farzana; Wertheim, Gerald; Levine, Bruce L.; June, Carl H.; Porter, David L.; Grupp, Stephan A.

    2017-01-01

    Chimeric antigen receptor (CAR)-modified T cells with anti-CD19 specificity are a highly effective novel immune therapy for relapsed/refractory acute lymphoblastic leukemia (ALL). Cytokine release syndrome (CRS) is the most significant and life-threatening toxicity. To improve understanding of CRS, we measured cytokines and clinical biomarkers in 51 CTL019-treated patients. Peak levels of 24 cytokines, including IFNγ, IL6, sgp130, and sIL6R in the first month after infusion were highly associated with severe CRS. Using regression modeling, we could accurately predict which patients would develop severe CRS with a signature composed of three cytokines. Results validated in an independent cohort. Changes in serum biochemical markers, including C-reactive protein and ferritin, were associated with CRS but failed to predict development of severe CRS. These comprehensive profiling data provide novel insights into CRS biology, and importantly represent the first data that can accurately predict which patients have a high probability of becoming critically ill. PMID:27076371

  15. Germline mutations in ETV6 are associated with thrombocytopenia, red cell macrocytosis and predisposition to lymphoblastic leukemia

    PubMed Central

    Lee-Sherick, Alisa B.; Callaghan, Michael; Noris, Patrizia; Savoia, Anna; Rajpurkar, Madhvi; Jones, Kenneth; Gowan, Katherine; Balduini, Carlo; Pecci, Alessandro; Gnan, Chiara; De Rocco, Daniela; Doubek, Michael; Li, Ling; Lu, Lily; Leung, Richard; Landolt-Marticorena, Carolina; Hunger, Stephen; Heller, Paula; Gutierrez-Hartmann, Arthur; Xiayuan, Liang; Pluthero, Fred G.; Rowley, Jesse W.; Weyrich, Andrew S.

    2015-01-01

    Some familial platelet disorders are associated with predisposition to leukemia, myelodysplastic syndrome (MDS) or dyserythropoietic anemia.1,2 We identified a family with autosomal dominant thrombocytopenia, high erythrocyte mean corpuscular volume (MCV) and two occurrences of B-cell precursor acute lymphoblastic leukemia (ALL). Whole exome sequencing identified a heterozygous single nucleotide change in ETV6 (Ets Variant Gene 6), c.641C>T, encoding a p.Pro214Leu substitution in the central domain, segregating with thrombocytopenia and elevated MCV. A screen of 23 families with similar phenotype found two with ETV6 mutations. One family had the p.Pro214Leu mutation and one individual with ALL. The other family had a c.1252A>G transition producing a p.Arg418Gly substitution in the DNA binding domain, with alternative splicing and exon-skipping. Functional characterization of these mutations showed aberrant cellular localization of mutant and endogenous ETV6, decreased transcriptional repression and altered megakaryocyte maturation. Our findings underscore a key role for ETV6 in platelet formation and leukemia predisposition. PMID:25807284

  16. Revisiting the biology of infant t(4;11)/MLL-AF4+ B-cell acute lymphoblastic leukemia

    PubMed Central

    Bueno, Clara; Prieto, Cristina; Acha, Pamela; Stam, Ronald W.; Marschalek, Rolf; Menéndez, Pablo

    2015-01-01

    Infant B-cell acute lymphoblastic leukemia (B-ALL) accounts for 10% of childhood ALL. The genetic hallmark of most infant B-ALL is chromosomal rearrangements of the mixed-lineage leukemia (MLL) gene. Despite improvement in the clinical management and survival (∼85-90%) of childhood B-ALL, the outcome of infants with MLL-rearranged (MLL-r) B-ALL remains dismal, with overall survival <35%. Among MLL-r infant B-ALL, t(4;11)+ patients harboring the fusion MLL-AF4 (MA4) display a particularly poor prognosis and a pro-B/mixed phenotype. Studies in monozygotic twins and archived blood spots have provided compelling evidence of a single cell of prenatal origin as the target for MA4 fusion, explaining the brief leukemia latency. Despite its aggressiveness and short latency, current progress on its etiology, pathogenesis, and cellular origin is limited as evidenced by the lack of mouse/human models recapitulating the disease phenotype/latency. We propose this is because infant cancer is from an etiologic and pathogenesis standpoint distinct from adult cancer and should be seen as a developmental disease. This is supported by whole-genome sequencing studies suggesting that opposite to the view of cancer as a “multiple-and-sequential-hit” model, t(4;11) alone might be sufficient to spawn leukemia. The stable genome of these patients suggests that, in infant developmental cancer, one “big-hit” might be sufficient for overt disease and supports a key contribution of epigenetics and a prenatal cell of origin during a critical developmental window of stem cell vulnerability in the leukemia pathogenesis. Here, we revisit the biology of t(4;11)+ infant B-ALL with an emphasis on its origin, genetics, and disease models. PMID:26463423

  17. LINE-1 Cultured Cell Retrotransposition Assay.

    PubMed

    Kopera, Huira C; Larson, Peter A; Moldovan, John B; Richardson, Sandra R; Liu, Ying; Moran, John V

    2016-01-01

    The Long INterspersed Element-1 (LINE-1 or L1) retrotransposition assay has facilitated the discovery and characterization of active (i.e., retrotransposition-competent) LINE-1 sequences from mammalian genomes. In this assay, an engineered LINE-1 containing a retrotransposition reporter cassette is transiently transfected into a cultured cell line. Expression of the reporter cassette, which occurs only after a successful round of retrotransposition, allows the detection and quantification of the LINE-1 retrotransposition efficiency. This assay has yielded insight into the mechanism of LINE-1 retrotransposition. It also has provided a greater understanding of how the cell regulates LINE-1 retrotransposition and how LINE-1 retrotransposition impacts the structure of mammalian genomes. Below, we provide a brief introduction to LINE-1 biology and then detail how the LINE-1 retrotransposition assay is performed in cultured mammalian cells.

  18. B cell origin of non-T cell acute lymphoblastic leukemia. A model for discrete stages of neoplastic and normal pre-B cell differentiation.

    PubMed Central

    Nadler, L M; Korsmeyer, S J; Anderson, K C; Boyd, A W; Slaughenhoupt, B; Park, E; Jensen, J; Coral, F; Mayer, R J; Sallan, S E

    1984-01-01

    The expression of B cell associated and restricted antigens on tumor cells isolated from 138 patients with non-T cell acute lymphoblastic leukemia (non-T cell ALL) was investigated by flow cytometric analysis by means of a panel of monoclonal antibodies. Tumor cells from these patients could be assigned to one of four subgroups: human leukocyte antigen-DR-related Ia-like antigens (Ia) alone (4%, stage I); IaB4 (14%, stage II); IaB4CALLA (33%, stage III); and IaB4CALLAB1 (49%, stage IV). The expression of B cell-restricted antigens (B4 and B1) and rearrangements of Ig heavy chain genes provided strong evidence for the B cell lineage of stages II, III, and IV tumors. The lineage of the Ia alone group is still unknown. The B4 antigen was expressed on approximately 95% of all non-T cell ALLs tested, and given its absence on T cell and myeloid tumors, it appears to be an exceptional marker to define cells of B lineage. The demonstration that Ia alone, IaB4, IaB4CALLA, and IaB4CALLAB1 positive cells can be readily identified by dual fluorescence analysis in normal fetal and adult bone marrow provided critical support for the view that these leukemic pre-B cell phenotypes were representative of the stages of normal pre-B cell differentiation. It was interesting that the IaB4+ cell was more frequently identified in fetal bone marrow than in adult marrow, whereas the predominant cell found in adult marrow expressed the IaB4CALLAB1 phenotype. These data suggest that the leukemogenic event may be random, since the predominant pre-B cell leukemic phenotype appears to correspond to the normal pre-B cell phenotype present in these hematopoietic organs. Our observations provide an additional distinction between adult and childhood ALL, since these studies show that most non-T cell ALLs seen in children less than 2 yr old are of stage II phenotype, whereas the majority of non-T ALLs in adults are of stage IV phenotype. Finally, it should be noted that the present study suggests

  19. ZNF384-related fusion genes define a subgroup of childhood B-cell precursor acute lymphoblastic leukemia with a characteristic immunotype

    PubMed Central

    Hirabayashi, Shinsuke; Ohki, Kentaro; Nakabayashi, Kazuhiko; Ichikawa, Hitoshi; Momozawa, Yukihide; Okamura, Kohji; Yaguchi, Akinori; Terada, Kazuki; Saito, Yuya; Yoshimi, Ai; Ogata-Kawata, Hiroko; Sakamoto, Hiromi; Kato, Motohiro; Fujimura, Junya; Hino, Moeko; Kinoshita, Akitoshi; Kakuda, Harumi; Kurosawa, Hidemitsu; Kato, Keisuke; Kajiwara, Ryosuke; Moriwaki, Koichi; Morimoto, Tsuyoshi; Nakamura, Kozue; Noguchi, Yasushi; Osumi, Tomoo; Sakashita, Kazuo; Takita, Junko; Yuza, Yuki; Matsuda, Koich; Yoshida, Teruhiko; Matsumoto, Kenji; Hata, Kenichiro; Kubo, Michiaki; Matsubara, Yoichi; Fukushima, Takashi; Koh, Katsuyoshi; Manabe, Atsushi; Ohara, Akira; Kiyokawa, Nobutaka

    2017-01-01

    Fusion genes involving ZNF384 have recently been identified in B-cell precursor acute lymphoblastic leukemia, and 7 fusion partners have been reported. We further characterized this type of fusion gene by whole transcriptome sequencing and/or polymerase chain reaction. In addition to previously reported genes, we identified BMP2K as a novel fusion partner for ZNF384. Including the EP300-ZNF384 that we reported recently, the total frequency of ZNF384-related fusion genes was 4.1% in 291 B-cell precursor acute lymphoblastic leukemia patients enrolled in a single clinical trial, and TCF3-ZNF384 was the most recurrent, with a frequency of 2.4%. The characteristic immunophenotype of weak CD10 and aberrant CD13 and/or CD33 expression was revealed to be a common feature of the leukemic cells harboring ZNF384-related fusion genes. The signature gene expression profile in TCF3-ZNF384-positive patients was enriched in hematopoietic stem cell features and related to that of EP300-ZNF384-positive patients, but was significantly distinct from that of TCF3-PBX1-positive and ZNF384-fusion-negative patients. However, clinical features of TCF3-ZNF384-positive patients are markedly different from those of EP300-ZNF384-positive patients, exhibiting higher cell counts and a younger age at presentation. TCF3-ZNF384-positive patients revealed a significantly poorer steroid response and a higher frequency of relapse, and the additional activating mutations in RAS signaling pathway genes were detected by whole exome analysis in some of the cases. Our observations indicate that ZNF384-related fusion genes consist of a distinct subgroup of B-cell precursor acute lymphoblastic leukemia with a characteristic immunophenotype, while the clinical features depend on the functional properties of individual fusion partners. PMID:27634205

  20. Breakpoint sites disclose the role of the V(D)J recombination machinery in the formation of T-cell receptor (TCR) and non-TCR associated aberrations in T-cell acute lymphoblastic leukemia.

    PubMed

    Larmonie, Nicole S D; Dik, Willem A; Meijerink, Jules P P; Homminga, Irene; van Dongen, Jacques J M; Langerak, Anton W

    2013-08-01

    Aberrant recombination between T-cell receptor genes and oncogenes gives rise to chromosomal translocations that are genetic hallmarks in several subsets of human T-cell acute lymphoblastic leukemias. The V(D)J recombination machinery has been shown to play a role in the formation of these T-cell receptor translocations. Other, non-T-cell receptor chromosomal aberrations, such as SIL-TAL1 deletions, have likewise been recognized as V(D)J recombination associated aberrations. Despite the postulated role of V(D)J recombination, the extent of the V(D)J recombination machinery involvement in the formation of T-cell receptor and non-T-cell receptor aberrations in T-cell acute lymphoblastic leukemia is still poorly understood. We performed a comprehensive in silico and ex vivo evaluation of 117 breakpoint sites from 22 different T-cell receptor translocation partners as well as 118 breakpoint sites from non-T-cell receptor chromosomal aberrations. Based on this extensive set of breakpoint data, we provide a comprehensive overview of T-cell receptor and oncogene involvement in T-ALL. Moreover, we assessed the role of the V(D)J recombination machinery in the formation of chromosomal aberrations, and propose an up-dated mechanistic classification on how the V(D)J recombination machinery contributes to the formation of T-cell receptor and non-T-cell receptor aberrations in human T-cell acute lymphoblastic leukemia.

  1. Phosphoflow-Based Evaluation of Mek Inhibitors as Small-Molecule Therapeutics for B-Cell Precursor Acute Lymphoblastic Leukemia.

    PubMed

    George, Aswathi A; Paz, Helicia; Fei, Fei; Kirzner, Jonathan; Kim, Yong-Mi; Heisterkamp, Nora; Abdel-Azim, Hisham

    2015-01-01

    Upstream mutations that lead to constitutive activation of Erk in B-cell precursor acute lymphoblastic leukemia (BCP-ALL) are relatively common. In the era of personalized medicine, flow cytometry could be used as a rapid method for selection of optimal therapies, which may include drugs that target the Erk pathway. Here, we evaluated the utility of phospho-flow, compared to Western blotting, to monitor Erk pathway activation and its inhibition by targeted Mek kinase inhibitors in human BCP ALL. Because the Erk pathway is not only activated endogenously, by mutations, but also by normal extracellular stimulation through stromal contact and serum growth factors, we compared Erk activation ex vivo in ALL cells in the presence and absence of stroma and serum. Phospho-flow was able to readily detect changes in the pool of pErk1/2 that had been generated by normal microenvironmental stimuli in patient-derived BCP-ALL cells passaged in NSG mice, in viably frozen primary patient samples, and in fresh patient samples. Treatment with the Mek1/2 inhibitor selumetinib resulted in a rapid, complete and persistent reduction of microenvironment-generated pErk1/2. Imaging flow cytometry confirmed reduction of nuclear pErk1/2 upon selumetinib treatment. An ALL relapsing with an activating KRasG12V mutation contained higher endogenous as well as serum/stromal-stimulated levels of pErk1/2 than the matched diagnosis sample which lacked the mutation, but selumetinib treatment reduced pErk1/2 to the same level in both samples. Selumetinib and trametinib as Mek inhibitors were mainly cytostatic, but combined treatment with the PI3K∂ inhibitor CAL101 increased cytotoxicity. Thus phospho-flow cytometry could be used as a platform for rapid, individualized in vitro drug sensitivity assessment for leukemia patients at the time of diagnosis.

  2. Allogeneic Hematopoietic Stem Cell Transplantation for Adult Acute Lymphoblastic Leukemia: Results from a Single Center, 1993-2011

    PubMed Central

    Yonal-Hindilerden, Ipek; Kalayoglu-Besisik, Sevgi; Gurses-Koc, Nuray; Hindilerden, Fehmi; Sargin, Deniz

    2017-01-01

    Background: For adult ALL patients, the indications and appropriate timing of allogeneic hematopoietic stem cell transplantation (AHSCT) continue to be debated. The primary aim of this single-institution study was to compare the results of our adult ALL patients that had been allografted with those reported in the current literature. Subjects and Methods: This study included 53 consecutive adults with acute lymphoblastic leukemia (ALL) who underwent allogeneic hematopoietic stem cell transplantation (AHSCT) with myeloablative (92%) and reduced-intensity (8%) conditioning between 1993 and 2011. Results: Mean patient age was 27 years (SD:8.62) and donor age was 33.7 years (SD:9.47). Fourteen patients were in first remission; 21 in ≥2nd remission, 15 in relapse and 3 had primary refractory leukemia. Thirty-four, 15 and 4 patients received busulfan plus cyclophosphamide, cyclophosphamide/total body irradiation and fludarabine-based regimens, respectively. For graft-versus-host disease (GVHD) prophylaxis, cyclosporine plus methotrexate were used. Forty-six donors were related and 7 were unrelated. Thirty patients received granulocyte-colony stimulating factor (G-CSF) mobilized peripheral blood and 23 received bone marrow as stem cell source. Twenty-six patients relapsed at a mean duration of 11.3 months (SD:19.1). Forty-four patients succumbed to their disease after a mean follow-up of 13.6 months (SD:19.5). The cause of mortality was relapse (n=24; 54.5%) and transplant-related etiologies (n=20; 45.5%). The estimated five year probabilities of overall survival (OS) and progression-free survival (PFS) were 37% and 12%, respectively. Conclusion: By multivariate analyses, transplantation in first remission was the most important predictor of transplant success. PMID:28286617

  3. IL-12-secreting CD19-targeted cord blood-derived T cells for the immunotherapy of B-cell acute lymphoblastic leukemia.

    PubMed

    Pegram, H J; Purdon, T J; van Leeuwen, D G; Curran, K J; Giralt, S A; Barker, J N; Brentjens, R J

    2015-02-01

    Disease relapse or progression is a major cause of death following umbilical cord blood (UCB) transplantation (UCBT) in patients with high-risk, relapsed or refractory acute lymphoblastic leukemia (ALL). Adoptive transfer of donor-derived T cells modified to express a tumor-targeted chimeric antigen receptor (CAR) may eradicate persistent disease after transplantation. Such therapy has not been available to UCBT recipients, however, due to the low numbers of available UCB T cells and the limited capacity for ex vivo expansion of cytolytic cells. We have developed a novel strategy to expand UCB T cells to clinically relevant numbers in the context of exogenous cytokines. UCB-derived T cells cultured with interleukin (IL)-12 and IL-15 generated >150-fold expansion with a unique central memory/effector phenotype. Moreover, UCB T cells were modified to both express the CD19-specific CAR, 1928z, and secrete IL-12. 1928z/IL-12 UCB T cells retained a central memory-effector phenotype and had increased antitumor efficacy in vitro. Furthermore, adoptive transfer of 1928z/IL-12 UCB T cells resulted in significantly enhanced survival of CD19(+) tumor-bearing SCID-Beige mice. Clinical translation of CAR-modified UCB T cells could augment the graft-versus-leukemia effect after UCBT and thus further improve disease-free survival of transplant patients with B-cell ALL.

  4. CD19/CD22 Chimeric Antigen Receptor T Cells and Chemotherapy in Treating Patients With Recurrent or Refractory CD19 Positive Diffuse Large B-Cell Lymphoma or B Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2017-07-26

    B Acute Lymphoblastic Leukemia; CD19 Positive; Diffuse Large B-Cell Lymphoma Associated With Chronic Inflammation; Diffuse Large B-Cell Lymphoma, Not Otherwise Specified; Epstein-Barr Virus Positive Diffuse Large B-Cell Lymphoma of the Elderly; Minimal Residual Disease; Philadelphia Chromosome Positive; Recurrent Diffuse Large B-Cell Lymphoma; Recurrent Mediastinal (Thymic) Large B-Cell Cell Lymphoma; Refractory Diffuse Large B-Cell Lymphoma; Refractory Mediastinal (Thymic) Large B-Cell Cell Lymphoma; T-Cell/Histiocyte-Rich Large B-Cell Lymphoma

  5. Transplantability of human lymphoid cell line, lymphoma, and leukemia in splenectomized and/or irradiated nude mice

    SciTech Connect

    Watanabe, S.; Shimosato, Y.; Kuroki, M.; Sato, Y.; Nakajima, T.

    1980-07-01

    The effects of splenectomy and/or whole-body irradiation of nude mice before xenotransplantation of lymphoid cell lines, lymphoma, and leukemia were studied. Transplantation after whole-body irradiation resulted in the increased ''take'' rate of three cultured cell lines (two of T-cell-derived acute lymphocytic leukemia and one of B-cell derived acute lymphocytic leukemia) and in the tumorous growth of Burkitt-derived Raji and spontaneously transformed lymphoblastoid cell lines. With splenectomy plus irradiation as a pretreatment, tumorous growth occurred in four other cell lines which were not transplantable after irradiation only (two cell lines of Epstein-Barr virus-transformed cord blood cells and one each of null acute lymphocytic leukemia and nodular lymphoma-derived cell lines). Direct transplantation of leukemia and lymphoma cells into the pretreated mice was successful in 7 of 24 cases (29%). B-cell-derived diffuse large lymphoid lymphoma was transplantable in three of seven cases (43%). However, lymphoma and leukemia of peripheral T-cell origin was difficult to transplant even with pretreatment, and only one pleomorphic T-cell lymphoma grew to a significant size (2 cm). One tumor each of B-cell-derived diffuse large lymphoid and T-cell diffuse lymphoblastic lymphoma became transplantable.

  6. Tyrosine kinase inhibitors improve long-term outcome of allogeneic hematopoietic stem cell transplantation for adult patients with Philadelphia chromosome positive acute lymphoblastic leukemia

    PubMed Central

    Brissot, Eolia; Labopin, Myriam; Beckers, Marielle M.; Socié, Gérard; Rambaldi, Alessandro; Volin, Liisa; Finke, Jürgen; Lenhoff, Stig; Kröger, Nicolaus; Ossenkoppele, Gert J.; Craddock, Charles F.; Yakoub-Agha, Ibrahim; Gürman, Günhan; Russell, Nigel H.; Aljurf, Mahmoud; Potter, Michael N.; Nagler, Armon; Ottmann, Oliver; Cornelissen, Jan J.; Esteve, Jordi; Mohty, Mohamad

    2015-01-01

    This study aimed to determine the impact of tyrosine kinase inhibitors given pre- and post-allogeneic stem cell transplantation on long-term outcome of patients allografted for Philadelphia chromosome-positive acute lymphoblastic leukemia. This retrospective analysis from the EBMT Acute Leukemia Working Party included 473 de novo Philadelphia chromosome-positive acute lymphoblastic leukemia patients in first complete remission who underwent an allogeneic stem cell transplantation using a human leukocyte antigen-identical sibling or human leukocyte antigen-matched unrelated donor between 2000 and 2010. Three hundred and ninety patients received tyrosine kinase inhibitors before transplant, 329 at induction and 274 at consolidation. Kaplan-Meier estimates of leukemia-free survival, overall survival, cumulative incidences of relapse incidence, and non-relapse mortality at five years were 38%, 46%, 36% and 26%, respectively. In multivariate analysis, tyrosine-kinase inhibitors given before allogeneic stem cell transplantation was associated with a better overall survival (HR=0.68; P=0.04) and was associated with lower relapse incidence (HR=0.5; P=0.01). In the post-transplant period, multivariate analysis identified prophylactic tyrosine-kinase inhibitor administration to be a significant factor for improved leukemia-free survival (HR=0.44; P=0.002) and overall survival (HR=0.42; P=0.004), and a lower relapse incidence (HR=0.40; P=0.01). Over the past decade, administration of tyrosine kinase inhibitors before allogeneic stem cell transplantation has significantly improved the long-term allogeneic stem cell transplantation outcome of adult Philadelphia chromosome-positive acute lymphoblastic leukemia. Prospective studies will be of great interest to further confirm the potential benefit of the prophylactic use of tyrosine kinase inhibitors in the post-transplant setting. PMID:25527562

  7. In vitro viability of lymphoid cells from lines of mice genetically selected for high or low responsiveness to phytohemagglutinin.

    PubMed

    Stiffel, C; Liacopoulos-Briot, M; Decreusefond, C; Lambert, F

    1983-04-01

    The kinetics of viability of lymph node and spleen cells of mice genetically selected for "high" or "low" in vitro lymphocyte responsiveness to PHA were studied in PHA or PPD-stimulated short-term cultures. Lo/PHA cells were found to be less viable than Hi/PHA cells in unstimulated control cultures. PHA improved the viability of Lo/PHA cells while inducing proliferation of Hi/PHA cells with the appearance of more and larger lymphoblasts in the latter. PPD only improved the viability of spleen cell cultures, more so for the Hi/PHA line. The interline difference in thymidine uptake was smaller after PPD than after PHA stimulation. Modifications of culture conditions designed to decrease the interline difference in cell viability lessened but did not abolish the separation between the two lines for the PHA response as measured by thymidine uptake.

  8. Andrographolide inhibits growth of human T-cell acute lymphoblastic leukemia Jurkat cells by downregulation of PI3K/AKT and upregulation of p38 MAPK pathways.

    PubMed

    Yang, Tingfang; Yao, Shuluan; Zhang, Xianfeng; Guo, Yan

    2016-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) as a prevalent hematologic malignancy is one of the most common malignant tumors worldwide in children. Andrographolide (Andro), the major active component from Andrographis paniculata, has been shown to possess antitumor activities in several types of cancer cells. However, whether Andro would inhibit T-ALL cell growth remains unclear. In this study, we investigated the cytotoxic effect of Andro on human T-ALL Jurkat cells and explored the mechanisms of cell death. Cell apoptosis was assayed by flow cytometry, and the signaling transduction for Andro was analyzed by Western blotting. The results indicated 10 μg/mL Andro could significantly induce Jurkat cells' apoptosis, depending on the inhibition of PI3K/AKT pathway. Moreover, Andro-induced apoptosis is enhanced by AKT-selective inhibitor LY294002. ERK- or JNK-selective inhibitors PD98059 and SP600125 had no effect on Andro-induced apoptosis. In addition, p38 inhibitor SB203580 could reverse Andro-induced apoptosis in Jurkat cells. We also found that the protein expression of p-p53 and p-p38 were increased after Andro treatments. The result of an in vivo study also demonstrated Andro's dose-dependent inhibition in subcutaneous Jurkat xenografts. In conclusion, our findings explained a novel mechanism of drug action by Andro in Jurkat cells and suggested that Andro might be developed into a new candidate therapy for T-ALL patients in the coming days.

  9. GZD824 suppresses the growth of human B cell precursor acute lymphoblastic leukemia cells by inhibiting the SRC kinase and PI3K/AKT pathways.

    PubMed

    Ye, Wei; Jiang, Zhiwu; Lu, Xiaoyun; Ren, Xiaomei; Deng, Manman; Lin, Shouheng; Xiao, Yiren; Lin, Simiao; Wang, Suna; Li, Baiheng; Zheng, Yi; Lai, Peilong; Weng, Jianyu; Wu, Donghai; Ma, Yuguo; Chen, Xudong; Wen, Zhesheng; Chen, Yaoyu; Feng, Xiaoyan; Li, Yangqiu; Liu, Pentao; Du, Xin; Pei, Duanqing; Yao, Yao; Xu, Bing; Ding, Ke; Li, Peng

    2016-07-28

    Available therapeutic options for advanced B cell precursor acute lymphoblastic leukemia (pre-B ALL) are limited. Many lead to neutropenia, leaving patients at risk of life-threatening infections and result in bad outcomes. New treatment options are needed to improve overall survival. We previously showed that GZD824, a novel BCR-ABL tyrosine kinase inhibitor, has anti-tumor activity in Philadelphia chromosome-positive (Ph+) chronic myeloid leukemia cells and tumor models. Here, we show that GZD824 decreases cell viability, induces cell-cycle arrest, and causes apoptosis in pre-B ALL cells. Furthermore, Ph- pre-B ALL cells were more sensitive to GZD824 than Ph+ pre-B ALL cells. GZD824 consistently reduced tumor loads in Ph- pre-B ALL xenografts but failed to suppress Ph+ pre-B ALL xenografts. GZD824 decreased phosphorylation of SRC kinase, STAT3, RB and C-myc. It also downregulated the expression of BCL-XL, CCND1 and CDK4 and upregulated expression of CCKN1A. Expression of IRS1 was decreased in GZD824-treated pre-B ALL cells, blocking the PI3K/AKT pathway. These data demonstrate that GZD824 suppresses pre-B ALL cells through inhibition of the SRC kinase and PI3K/AKT pathways and may be a potential therapeutic agent for the management of pre-B ALL.

  10. T cell acute lymphoblastic leukemia (T-ALL): New insights into the cellular origins and infiltration mechanisms common and unique among hematologic malignancies.

    PubMed

    Vadillo, Eduardo; Dorantes-Acosta, Elisa; Pelayo, Rosana; Schnoor, Michael

    2017-08-15

    T-cell acute lymphoblastic leukemia (T-ALL) accounts for 15% and 25% of total childhood and adult ALL cases, respectively. During T-ALL, patients are at risk of organ infiltration by leukemic T-cells. Infiltration is a major consequence of disease relapse and correlates with poor prognosis. Transendothelial migration of leukemic cells is required to exit the blood stream into target organs. While mechanisms of normal T-cell transmigration are well known, the mechanisms of leukemic T-cell extravasation remain elusive; but involvement of chemokines, integrins and Notch signaling play critical roles. Here, we summarize current knowledge about molecular mechanisms of leukemic T-cell infiltration with special emphasis on the newly identified subtype early T-cell-progenitor (ETP)-ALL. Furthermore, we compare the extravasation potential of T-ALL cells with that of other hematologic malignancies such as B-ALL and acute myeloid leukemia (AML). Copyright © 2017. Published by Elsevier Ltd.

  11. Clinical utility of next-generation sequencing-based minimal residual disease in paediatric B-cell acute lymphoblastic leukaemia.

    PubMed

    Sekiya, Yuko; Xu, Yinyan; Muramatsu, Hideki; Okuno, Yusuke; Narita, Atsushi; Suzuki, Kyogo; Wang, Xinan; Kawashima, Nozomu; Sakaguchi, Hirotoshi; Yoshida, Nao; Hama, Asahito; Takahashi, Yoshiyuki; Kato, Koji; Kojima, Seiji

    2017-01-01

    We assessed the clinical utility of next-generation sequencing (NGS)-based monitoring of minimal residual disease (MRD) in a uniformly treated cohort of 79 patients with paediatric B-cell acute lymphoblastic leukaemia. Bone marrow samples were collected at the time of diagnosis, days 33 and 80, pre- (4-5 months) and post- (24 months) maintenance therapy time points, and at relapse. We identified leukaemia-specific CDR3 sequences in 72 of 79 patients (91%) and detected MRD in 59 of 232 samples. Although MRD was detected in 28 of 55 samples (51%) on day 33, the frequencies of MRD detection decreased to 25% (16/65) at day 80, 19% (11/58) at 4-5 months and 7·4% (4/54) at 24 months. In a univariate analysis, positive MRD results on day 80 [relative risk (RR) 95% confidence interval (CI) = 7·438 (2·561-21·6), P < 0·001], at 4-5 months [RR (95% CI) = 10·24 (3·374-31·06), P < 0·001], and at 24 months [RR (95% CI) = 19·26 (4·974-74·59), P < 0·001] exhibited statistically significant associations with inferior leukaemia-free survival; this was confirmed using a Cox proportional hazard model. Our study suggests the promising potential of NGS-MRD for patients with B-cell ALL. © 2016 John Wiley & Sons Ltd.

  12. Identification of cellular responses to low-dose radiation by the profiling of phosphorylated proteins in human B-lymphoblast IM-9 cells.

    PubMed

    Eom, Hyeon Soo; Park, Hyung Sun; You, Ga Eun; Kim, Ji Young; Nam, Seon Young

    2017-09-07

    The aim of this study was to explore the potential for radiation-specific signaling of various LDIR-induced effects in human B-lymphoblast IM-9 cells. Human lymphoblast IM-9 cells were exposed to ionization radiation at 0.1 and 2 Gy using a (137)Cs γ-irradiator at a dose rate of 0.8 Gy/min. Cell viability and DNA fragmentation was determined using MTT assay and TUNEL assay at 24 hr after irradiation. Profiling of protein phosphorylation by radiation was identified using a phospho-antibody array at 4 hr after irradiation and Dataset of the profiling was analyzed by IPA. Cell survival and apoptotic signaling was not affected by 0.1 Gy of radiation, whereas 2 Gy induced cellular damage. The analysis of low-dose ionizing radiation (LDIR) or high-dose ionizing radiation (HDIR)-specific responses by IPA generated different results. Various cell maintenance functions were only apparent following the analysis of increased protein phosphorylation by LDIR, whereas several cancer formation- and development-related functions were only detected following the analysis of increased protein phosphorylation by HDIR Conclusions: The LDIR-induced protein phosphorylation patterns might be involved in various cell survival responses or cellular maintenance functions, which provide important insight into our understanding of the different effects of LDIR and HDIR.

  13. Development and application of human cell lines engineered to metabolically activate structurally diverse environmental mutagens

    NASA Astrophysics Data System (ADS)

    Crespi, C. I.; Langenbach, Robert; Gonzalez, Frank J.; Gelboin, Harry V.; Penman, B. W.

    1993-03-01

    Cytochromes P450 are responsible for the mutagenic/carcinogenic activation of many environmental promutagens/procarcinogens. These enzymes are present at highest concentrations in liver in vivo but are markedly absent in tester organisms for most in vitro mutagenicity test systems. Two approaches have been used to supply needed metabolic activation, incorporation of an extracellular activating system, usually derived from a rodent liver and introduction of activating enzymes into the target cell. The latter approach appears to result in a more sensitive testing system because of the close proximity of the activating enzymes and the target DNA. Human cell lines have been developed which stably express human cytochromes P450 and other cDNAs which have been introduced individually or in combination. The resulting cell lines are exquisitely sensitive to exposure to promutagens and procarcinogens. Mutagenicity is measured at the hypoxanthine phosphoribosyl transferase (hprt) and thymidine kinase (tk) gene loci. The most versatile cell line, designated MCL-5, stably express five cDNAs encoding all of the human hepatic P450s known to be principally responsible for known human procarcinogen activation. The induction of mutation is observed in MCL-5 cells upon exposure to ng/ml levels of model compounds such as nitrosamines, aflatoxin B1 and benzo(a)pyrene. A lower volume mutagenicity assay has been developed for use with samples available in limited amounts. Human lymphoblast mutation assays have been used to screen for mutagenic activity sediment samples from a polluted watershed. Two sediment samples were found to have mutagenic activity to human lymphoblasts.

  14. High curability via intensive reinduction chemotherapy and stem cell transplantation in young adults with relapsed acute lymphoblastic leukemia in Sweden 2003–2007

    PubMed Central

    Kozlowski, Piotr; Åström, Maria; Ahlberg, Lucia; Bernell, Per; Hulegårdh, Erik; Hägglund, Hans; Karlsson, Karin; Markuszewska-Kuczymska, Alicja; Tomaszewska-Toporska, Beata; Smedmyr, Bengt; Hallböök, Helene

    2012-01-01

    Background A minority of patients with adult acute lymphoblastic leukemia who relapse are rescued. The aim of this population-based study was to assess the results of reinduction treatment and allogeneic stem cell transplantation in patients in second complete remission. Design and Methods Between 2003–2007, 76 adults (<66 years) with relapsed acute lymphoblastic leukemia (Burkitt’s leukemia excluded) were prospectively reported to The Swedish Adult Acute Leukemia Registry and later evaluated. Results Reinduction with: (i) mitoxantrone, etoposide, and cytarabine (MEA); (ii) fludarabine, cytarabine, pegylated-asparaginase plus granulocyte colony-stimulating factor (FLAG-Asp); and (iii) cytarabine, betamethasone, cyclophosphamide, daunorubicin, and vincristine (ABCDV) resulted in complete remission in 6/9 (67%), 10/16 (63%) and 9/21 (43%) of the patients, respectively. Allogeneic stem cell transplantation was performed during second complete remission in 29 patients. Multivariate analysis regarding overall survival after relapse revealed that age over 35 years at diagnosis and relapse within 18 months were negative prognostic factors. Overall survival rates at 3 and 5 years were 22% (95% CI: 13–32) and 15% (95% CI: 7–24). Of 19 patients less than 35 years at diagnosis who underwent allogeneic stem cell transplantation in second remission, ten (53%) are still alive at a median of 5.5 years (range, 4.2–8.3) after relapse, whereas all patients over 35 years old at diagnosis have died. Conclusions Allogeneic stem cell transplantation remains the treatment of choice for young adults with relapsed acute lymphoblastic leukemia. Both (i) mitoxantrone, etoposide, and cytarabine and (ii) fludarabine, cytarabine, pegylated-asparaginase plus granulocyte colony-stimulating factor seem effective as reinduction treatments and should be further evaluated. New salvage strategies are needed, especially for patients over 35 years old at diagnosis. PMID:22511497

  15. [Expression level of Th22 cells and its cytokines in patients with acute lymphoblastic leukemia and its significance].

    PubMed

    Cheng, Rong-Hua

    2013-08-01

    This study was purposed to analyze the expression level of Th22 cells and their cytokines in patients with acute lymphoblastic leukemia (ALL) and evaluate its significance. Forty-eight patients with ALL were selected. According to the treatment, all patients were divided into the newly diagnosed group (n = 26) and complete remission (CR) group (n = 22). The proportion of Th22 cells in peripheral blood was detected by flow cytometry (FCM). The expression levels of cytokines IL-22, IL-6, TNF-α and TGF-β in peripheral blood were measured by ELISA. The expression level of IL-22 mRNA in peripheral blood mononuclear cells was examined by semi-quantitative-reverse transcription PCR (RT-PCR). Meanwhile, 30 healthy individuals were selected as a control group. The parameters of the 3 groups were compared. The results showed that the percentage of Th22 cells and the expression levels of IL-22, IL-6, TNF-α and IL-22 mRNA in newly diagnosed group and the CR group were significantly lower than that in control group, the expression level of TGF-β in above mentioned two group was obviously higher than that in control group (P < 0.05). The percentage of Th22 cells and the expression levels of IL-22, IL-6, TNF-α and IL-22 mRNA in newly diagnosed group were evidently lower than that in CR group (P < 0.05), but the expression level of TGF-β in newly diagnosed group obviously higher than that in CR group. The expression level of IL-22 in newly diagnosed group was positively related with expression level of IL-6 and TNF-α, but it was negatively related with expression level of TGF-β. It is concluded that the decreasing of Th22 cells and down-regulation of IL-22 expression level may be related with pathogenesis of ALL, the decreasing of Th22 cells is risk factor for ALL.

  16. Persistent use of false myeloma cell lines.

    PubMed

    Drexler, Hans G; Matsuo, Yoshinobu; MacLeod, Roderick A E

    2003-09-01

    Multiple myeloma (MM) is a neoplasm of a terminally differentiated B-cell. Human myeloma cell lines were shown to be suitable model systems for use in various fields of the biological sciences. Within the last 20 years more than 100 cell lines have been established. So-called 'myeloma cell lines' have been previously reported and are still widely used which are in reality Epstein-Barr virus (EBV)-positive B-lymphoblastoid cell lines. The presence of the EBV-genome in residual normal B-cells provides them with a selective growth advantage after explantation. Cell lines represent an extremely important resource for research in a variety of fields and disciplines. As the cell lines are used as in vitro model systems in lieu of primary material, it is crucial that the cells in the culture flasks faithfully correspond to the purported objects of study. On closer examination, the use of false cell lines may be seen to invalidate a significant percentage of scientific work, or at least cast doubts on the relevance of these in vitro results to the cell type or tumor in vivo. Ultimately, use of cross-contaminated cell lines is a waste of human and material resources. Henceforth, it should be mandatory to prove the proper derivation of each new cell line by comparing DNA fingerprints or karyotypes of the patient's primary cells and the cultured cells. The availability of well characterized and authenticated bona fide MM cell lines is of great importance for the study of the biology, etiology and treatment of the disease.

  17. KPT-330 inhibitor of CRM1 (XPO1)-mediated nuclear export has selective anti-leukaemic activity in preclinical models of T-cell acute lymphoblastic leukaemia and acute myeloid leukaemia.

    PubMed

    Etchin, Julia; Sanda, Takaomi; Mansour, Marc R; Kentsis, Alex; Montero, Joan; Le, Bonnie T; Christie, Amanda L; McCauley, Dilara; Rodig, Scott J; Kauffman, Michael; Shacham, Sharon; Stone, Richard; Letai, Anthony; Kung, Andrew L; Thomas Look, A

    2013-04-01

    This study explored the anti-leukaemic efficacy of novel irreversible inhibitors of the major nuclear export receptor, chromosome region maintenance 1 (CRM1, also termed XPO1). We found that these novel CRM1 antagonists, termed SINE (Selective Inhibitors of Nuclear Export), induced rapid apoptosis at low nanomolar concentrations in a panel of 14 human T-cell acute lymphoblastic leukaemia (T-ALL) cell lines representing different molecular subtypes of the disease. To assess in vivo anti-leukaemia cell activity, we engrafted immunodeficient mice intravenously with the human T-ALL MOLT-4 cells, which harbour activating mutations of NOTCH1 and NRAS as well as loss of function of the CDKN2A, PTEN and TP53 tumour suppressors and express a high level of oncogenic transcription factor TAL1. Importantly, we examined the in vivo anti-leukaemic efficacy of the clinical SINE compound KPT-330 against T-ALL and acute myeloid leukaemia (AML) cells. These studies demonstrated striking in vivo activity of KPT-330 against T-ALL and AML cells, with little toxicity to normal murine haematopoietic cells. Taken together, our results show that SINE CRM1 antagonists represent promising 'first-in-class' drugs with a novel mechanism of action and wide therapeutic index, and imply that drugs of this class show promise for the targeted therapy of T-ALL and AML.

  18. Epstein-Barr virus and regulatory T cells in Egyptian paediatric patients with acute B lymphoblastic leukaemia.

    PubMed

    Ateyah, Mohamed E; Hashem, Mona E; Abdelsalam, Mohamed

    2017-02-01

    Acute B lymphoblastic leukaemia (B-ALL) is the most common type of childhood malignancy worldwide but little is known of its origin. Recently, many studies showed both a high incidence of Epstein-Barr virus (EBV) infection and high levels of CD4(+)CD25(+)Foxp3(+)(Treg cells) in children with B-ALL. In our study, we investigated the possible relationship between EBV infection and the onset of B-ALL, and its relation to expression of CD4(+), CD25(high+)Foxp3+ T regulatory cells. We analysed expression and mean fluorescence intensity (MFI) of Treg cells in peripheral blood of 45 children with B-ALL and in 40 apparently healthy children as a control, using flow cytometry. Serum anti-EBV viral capsid antigen (VCA) IgG, anti-EBV nuclear antigen (EBNA) IgG (for latent infection) and anti-EBV VCA IgM (for acute infection) were investigated using ELISA. Analysis of the Treg cells population in patients and controls revealed that expression of CD4(+) CD25(high+) T lymphocytes was higher in patients than in controls (mean±SD 15.7±4.1 and 10.61±2.6 in patients and controls, respectively, and MFI of Foxp3 was 30.1±7.1 and 16.7±3.7 in patients and controls, respectively (p<0.001)). There was a high incidence of latent EBV infection in patients (31%) compared with controls (10%) while the incidence of acute infection was 12% in patients and 0% in the control group. To study the role of latent EBV infection in the pathogenesis of acute B-ALL, OR was calculated (OR=4.06, coefficient index 1.2-13.6). These findings suggest a possible role for Treg cells and EBV in the pathogenesis of B-ALL. Further studies are needed on the possible mechanisms of tumour genesis related to Treg cells and EBV in children with B-ALL. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  19. Evaluation of the NOD/SCID xenograft model for glucocorticoid-regulated gene expression in childhood B-cell precursor acute lymphoblastic leukemia

    PubMed Central

    2011-01-01

    Background Glucocorticoids such as prednisolone and dexamethasone are critical drugs used in multi-agent chemotherapy protocols used to treat acute lymphoblastic leukemia (ALL), and response to glucocorticoids is highly predictive of outcome. The NOD/SCID xenograft mouse model of ALL is a clinically relevant model in which the mice develop a systemic leukemia which retains the fundamental biological characteristics of the original disease. Here we report a study evaluating the NOD/SCID xenograft mouse model to investigate glucocorticoid-induced gene expression. Cells from a glucocorticoid-sensitive xenograft derived from a child with B-cell precursor ALL were inoculated into NOD/SCID mice. When highly engrafted the mice were randomized into groups of 4 to receive dexamethasone 15 mg/kg by intraperitoneal injection or vehicle control. Leukemia cells were harvested from mice spleens at 0, 8, 24 or 48 hour