Science.gov

Sample records for lymphokine-activated killer cells

  1. Lysis of primary hepatic tumours by lymphokine activated killer cells.

    PubMed Central

    Hsieh, K H; Shu, S Y; Lee, C S; Chu, C T; Yang, C S; Chang, K J

    1987-01-01

    Lymphokine activated killer cell is a newly described lytic system against a variety of solid tumours and is distinct in several respects from the classic cytolytic T cell and the natural killer systems. This study was conducted to evaluate the lytic activity of lymphokine activated killer cells against fresh autologous and allogeneic, as well as cultured hepatocellular carcinoma cells. Lymphokine activated killer cell was generated by incubating peripheral blood mononuclear cells with various concentrations of recombinant IL-2 (rIL-2, Cetus, USA) for various periods of time. A four hour 51Cr release assay was used to measure cytotoxicity. The results show that fresh and cultured hepatocellular carcinoma cells were only slightly susceptible to natural killer cells. Normal hepatocytes were resistant to lymphokine activated killer-mediated lysis. Lymphokine activated killer cells could be generated from mononuclear cells of hepatocellular carcinoma patients and normal subjects with lytic activity against fresh autologous and allogeneic and cultured hepatocellular carcinoma cells, but lymphokine activated killer cells from the former was less efficient than that from the latter. It is concluded that the adoptive immunotherapy with combined rIL-2 and lymphokine activated killer may be worth trying in early cases of primary hepatocellular carcinoma. PMID:3030899

  2. Effect of different levels of alcohol consumption on natural killer and lymphokine activated killer cells

    SciTech Connect

    Klassen, L.W.; DeVasure, J.M.; Lemley-Gillespie, S.D.; Thiele, G.M. Omaha VA Hospital, NE )

    1991-03-11

    The effect of alcohol consumption on natural killer (NK) cell activity is controversial as both increased and decreased levels have been reported. It was the purpose of this study to determine the effects of feeding BDF1 mice different levels of alcohol on NK and lymphokine activated killer (LAK) cell activity. After four-six weeks of chronic alcohol feeding, mice were sacrificed, spleen cells obtained and assayed for NK and IL-2 boosted NK activity against YAC-1 cells in a traditional {sup 51}chromium release assay. Cells were also cultured in the presence of IL-2 for five days and tested for cytolytic activity using P815 cells as targets. Cells from each group were passed over a nylon wool column and the adherent (AD) and nonadherent (NAD) populations collected and tested as above. Increased NK, 24 hour IL-2 boosted NK and 5 day LAK activity were observed only in the spleen cells obtained from mice on 20% alcohol. Also, NAD populations had a 2-4 fold higher lytic unit values (LU{sub 20}) at all levels of alcohol consumption and in all assays, as compared with the unseparated spleen cells. Analysis of cell surface markers on these three populations of cells show that there were differences in MAC-2, Asialo GM-1, Thy 1.2, B220 and NK 1.1 that may correlate with the differences observed in the cytolytic assays. These data suggest that different levels of alcohol affect the cytolytic activity of NK and LAK cells and may result from alterations in the cell subset populations.

  3. Human lymphokine-activated killer cells are cytotoxic against cells infected with Toxoplasma gondii

    PubMed Central

    1992-01-01

    Experiments were conducted to determine whether human lymphokine- activated killer (LAK) cells are cytotoxic against cells infected with Toxoplasma gondii. Nylon wool nonadherent (NWNA) peripheral blood lymphocytes, as well as purified natural killer cell (NK) (CD3- CD16+ CD56+) and T (CD3+ CD16- CD56-) cells obtained from five healthy T. gondii seronegative volunteers exhibited minimal cytotoxic activity against T. gondii-infected cells. When standard LAK (S-LAK) cell preparations were induced by incubation of NWNA cells with recombinant interleukin 2, induction of remarkable cytotoxic activity against T. gondii-infected cells. When standard in LAK cell preparations from each of the volunteers. The phenotype of the LAK precursor and effector cells varied depending on the target cell used. Whereas the precursor and the effector cells of most of the LAK activity against K562 and Daudi cells were cells with NK phenotype, when T. gondii-infected cells were used as targets, both cells with NK and T cell phenotypes were precursors and effectors of the lysis. When cytotoxic activity of S-LAK cells was compared with the activity of adherent LAK (A-LAK) cells, A- LAK cells displayed higher cytotoxic activity against T. gondii- infected cells, as well as against K562 and Daudi cells. Cold target inhibition experiments suggested that there is a subset of LAK effector cells capable of lysing both T. gondii-infected cells and Daudi cells, whereas other subsets preferentially or exclusively lyse one of these target cells. PMID:1460415

  4. [Lymphokine-activated killer cell adoptive immunotherapy for cancer treatment and its significance].

    PubMed

    Toge, T; Yamaguchi, Y

    1992-09-01

    New culture system, CDCS-T1, was developed for clinical conduction of lymphokine-activated killer (LAK) cell adoptive immunotherapy (AIT). Advanced or recurrent cancer patients of digestive tract were treated with AIT with LAK cells generated by CDCS-T1 in combination with plasma exchange. Partial responses were shown in 10 to 20% of patients treated. Long survival was found in some responders, indicating the significance of LAK therapy for cancer treatment. AIT with LAK cell transfer was also conducted in patients with esophageal cancer as postoperative adjuvant therapy. Better restoration of postoperative depression of immunological parameters was found in patients with postoperative LAK cell transfer. It is suggested that postoperative LAK cell transfer is a good candidate for adjuvant immunotherapy for cancer treatment.

  5. Indomethacin augments lymphokine-activated killer cell generation by patients with malignant mesothelioma

    SciTech Connect

    Manning, L.S.; Bowman, R.V.; Davis, M.R.; Musk, A.W.; Robinson, B.W. )

    1989-10-01

    Human malignant mesothelioma (MM) cells are resistant to natural killer (NK) cell lysis but susceptible to lysis by lymphokine-activated killer (LAK) cells from control individuals. The present study was performed to determine the capacity of patients with MM (n = 22) and individuals occupationally exposed to asbestos (the major population at risk of developing this disease, n = 52) to generate LAK cells capable of effectively lysing human mesothelioma cells. Compared to controls (n = 20), both patient groups demonstrated significantly depressed LAK cell activity against mesothelioma tumor cell targets (55 +/- 3% lysis by controls vs 34 +/- 3% lysis by patients with MM, P less than 0.005; and 45 +/- 3% lysis by asbestos-exposed individuals, P less than 0.025). Addition of 10 micrograms/ml indomethacin during LAK cell generation restored normal LAK cell activity for patients with MM (52 +/- 6% lysis of cultured human MM cells, P = NS compared to controls), suggesting that the defective cytolytic cell function observed in some patients with MM is a result of prostaglandin-induced immunosuppression. The ability of indomethacin to restore suppressed LAK cell activity in patients with MM suggests that the concomitant use of this agent in ex vivo LAK cell generation and in patients undergoing interleukin/LAK cell therapy may be beneficial.

  6. Renal allograft rejection: possible involvement of lymphokine-activated killer cells.

    PubMed Central

    Kirby, J A; Forsythe, J L; Proud, G; Taylor, R M

    1989-01-01

    Human renal allograft tissue was recovered at transplant nephrectomy from three patients with irreversible loss of graft function. This tissue was disaggregated and separated into two fractions on the basis of particle size. Fraction 1 contained glomeruli and developed a mixed outgrowth containing adherent epithelial and mesangial cells after a limited period of culture. Fraction 2 contained fragments of renal tubules and produced monolayers of tubular epithelial cells during culture. A population of lymphoid cells was observed to grow from the primary disaggregate into medium supplemented with recombinant human interleukin-2 (IL-2). After culture for 5 days these lymphoid cells were predominantly CD3-positive and carried both class II major histocompatibility antigens (MHC) and the CD25 IL-2 receptor. Culture of peripheral blood-derived mononuclear cells with IL-2 caused the generation of lymphokine-activated killer (LAK) cells; these cells were able to lyse both glomerular and tubular cells grown from nephrectomy tissue without showing MHC antigen restriction. The lymphoid cells grown from renal allograft tissue showed a similar lytic potential for both renal cells prepared from the same nephrectomy specimen and from third party renal tissue. It is possible that any LAK cells formed within a renal allograft by the action of IL-2 may contribute to the tissue destruction observed during graft rejection. Images Figure 2 PMID:2661417

  7. Aspergillus fumigatus contamination of lymphokine-activated killer cells infused into cancer patients.

    PubMed

    Arnow, P M; Houchins, S G; Richards, J M; Chudy, R

    1991-05-01

    Lymphokine-activated killer (LAK) cells, prepared by incubating autologous lymphocytes in cell culture medium with interleukin-2, selectively lyse tumor cells and are effective immunotherapy of some cancers. During a 3-month period, two patients at our center were infused with LAK cells subsequently found to have been contaminated by Aspergillus fumigatus. Each case was investigated by obtaining environmental cultures and assessing aseptic practices during LAK cell preparation. Investigation of the first case demonstrated a malfunction of the laminar air flow hood, under which interleukin-2 and the patient's lymphocytes had been added to cell culture medium, and showed heavy A. fumigatus contamination of the hood, adjacent countertop, and cell culture incubator. Despite repair of the laminar air flow hood and cleaning of the laboratory, a second case occurred, and cultures at that time implicated the humidified cell culture incubators as the source of A. fumigatus. Following incubator sterilization and removal of the humidification apparatus from the incubators, weekly environmental cultures in the LAK cell laboratory were negative, and none of the LAK cell cultures from the 20 patients treated during the ensuing 15 months grew A. fumigatus. Our findings show that growth of fungi in humidified incubators, which previously has caused contamination problems in tissue culture and clinical microbiology laboratories, can result in patient infections when humidified incubators are used to prepare cells for reinfusion.

  8. Recombinant interleukin 2 stimulates in vivo proliferation of adoptively transferred lymphokine-activated killer (LAK) cells

    SciTech Connect

    Ettinghausen, S.E.; Lipford, E.H. 3d.; Mule, J.J.; Rosenberg, S.A.

    1985-11-01

    The authors previously reported that the adoptive transfer of lymphokine-activated killer (LAK) cells plus repetitive injections of recombinant interleukin 2 (IL 2) produced a marked reduction in established pulmonary metastases from a variety of murine sarcomas. The requirement for the exogenous administration of IL 2 prompted a subsequent examination of the role of IL 2 in the in vivo function of transferred LAK cells. The in vivo proliferation and migration patterns of lymphoid cells in C57BL/6 mice were examined after i.v. transfer of LAK cells alone, i.p. injection of IL 2 alone, or the combination of LAK cells and IL 2. A model for in vivo labeling of the DNA of dividing cells was used in which mice were injected with 5-( SVI)-iodo-2'-deoxyuridine ( SVIUdR) and, 20 hr later, their tissues were removed and were counted in a gamma analyzer. A proliferation index (PI) was calculated by dividing the mean cpm of organs of experimentally treated mice by the mean cpm of organs of control mice. In animals given LAK cells alone, the lungs and liver demonstrated little if any uptake of SVIUdR above saline-treated controls, whereas the same organs of mice receiving 6000 U of IL 2 alone displayed higher radiolabel incorporation. When mice were given LAK cells plus 6000 U of IL 2, their tissues showed an additional increase in SVIUdR uptake.

  9. Intralesional lymphokine-activated killer cells as adjuvant therapy for primary glioblastoma.

    PubMed

    Dillman, Robert Owen; Duma, Christopher Michael; Ellis, Robin Anne; Cornforth, Andrew Nimitz; Schiltz, Patric Michael; Sharp, Shari Lynn; DePriest, Madeline Carol

    2009-01-01

    Despite recent advances, median survival for patients with resectable glioblastoma multiforme (GBM) is only 12 to 15 months. We previously observed minimal toxicity and a 9.0-month median survival after treatment with intralesional autologous lymphokine-activated killer (LAK) cells in 40 patients with recurrent GBM. In this study, GBM patients were treated with adjuvant intralesional LAK cells. Eligible patients had completed primary therapy for GBM without disease progression. LAK cells were produced by incubating autologous peripheral blood mononuclear cells with interleukin-2 for 3 to 7 days and then placed into the surgically exposed tumor cavity by a neurosurgeon. The 19 men and 14 women had a median age of 57 years. Prior therapy included surgical resection (97%), partial brain irradiation (97%), gamma knife radiosurgery (97%), and temozolomide chemotherapy (70%). Median time from diagnosis to LAK cell therapy was 5.3 months (range: 3.0 to 11.1 mo). LAK cell treatment was well tolerated; average length of hospitalization was 3 days. At the time of this analysis, 27 patients have died; the median survival from the date of original diagnosis is 20.5 months with a 1-year survival rate of 75%. In subset analyses, superior survival was observed for patients who received higher numbers of CD3+/CD16+/CD56+ (T-LAK) cells in the cell products, which was associated with not taking corticosteroids in the month before leukopheresis. Intralesional LAK cell therapy is safe and the survival sufficiently encouraging to warrant further evaluation in a randomized phase 2 trial of intralesional therapies with LAK or carmustine-impregnated wafers.

  10. Assessment of human natural killer and lymphokine-activated killer cell cytotoxicity against Toxoplasma gondii trophozoites and brain cysts

    SciTech Connect

    Dannemann, B.R.; Morris, V.A.; Araujo, F.G.; Remington, J.S. )

    1989-10-15

    Because previous work has suggested that NK cells may be important in host resistance against the intracellular parasite Toxoplasma gondii we examined whether human NK cells and lymphokine-activated killer (LAK) cells have activity against trophozoites and cysts of this organism in vitro. A method to radiolabel Toxoplasma trophozoites with 51Cr was developed and direct cytotoxic activity was determined by using modifications of the standard 51Cr release assay. Viability of 51Cr-labeled trophozoites assessed by both methylene blue staining and trypan blue exclusion was greater than 90%. Significantly more 51Cr was released by anti-Toxoplasma antibody and C than by antibody in the absence of C. Incubation of trophozoites with freshly isolated human NK cells or NK cells activated with either rIL-2 or rIFN-alpha did not result in significant release of 51Cr (specific lysis was 0 to 2.3%). In contrast, the average specific lysis of radiolabeled trophozoites by LAK cells was significant. In a series of separate experiments, preincubation of radiolabeled trophozoites with heat-inactivated normal or Toxoplasma antibody-positive human serum increased the cytotoxicity of LAK cells from a mean specific lysis of 15% +/- 4.5 to 39% +/- 8.5, respectively, as assessed by 51Cr release. Because previous work has shown that radioisotope release from parasites may be nonspecific, separate experiments were performed to determine the cytotoxicity of LAK cells against antibody-coated trophozoites by using ethidium bromide-acridine orange staining to assess effector cell damage. LAK cells had a mean specific lysis of 51% against antibody-coated trophozoites by ethidium bromide-acridine orange staining. Preincubation with heat-inactivated Toxoplasma-antibody positive human serum did not increase activity of rIL-2-activated NK cells against 51CR-labeled trophozoites.

  11. Celecoxib increases lung cancer cell lysis by lymphokine-activated killer cells via upregulation of ICAM-1.

    PubMed

    Schellhorn, Melina; Haustein, Maria; Frank, Marcus; Linnebacher, Michael; Hinz, Burkhard

    2015-11-17

    The antitumorigenic mechanism of the selective cyclooxygenase-2 (COX-2) inhibitor celecoxib is still a matter of debate. Using lung cancer cell lines (A549, H460) and metastatic cells derived from a lung cancer patient, the present study investigates the impact of celecoxib on the expression of intercellular adhesion molecule 1 (ICAM-1) and cancer cell lysis by lymphokine-activated killer (LAK) cells. Celecoxib, but not other structurally related selective COX-2 inhibitors (i.e., etoricoxib, rofecoxib, valdecoxib), was found to cause a substantial upregulation of ICAM-1 protein levels. Likewise, ICAM-1 mRNA expression was increased by celecoxib. Celecoxib enhanced the susceptibility of cancer cells to be lysed by LAK cells with the respective effect being reversed by a neutralizing ICAM-1 antibody. In addition, enhanced killing of celecoxib-treated cancer cells was reversed by preincubation of LAK cells with an antibody to lymphocyte function associated antigen 1 (LFA-1), suggesting intercellular ICAM-1/LFA-1 crosslink as crucial event within this process. Finally, celecoxib elicited no significant increase of LAK cell-mediated lysis of non-tumor bronchial epithelial cells, BEAS-2B, associated with a far less ICAM-1 induction as compared to cancer cells. Altogether, our data demonstrate celecoxib-induced upregulation of ICAM-1 on lung cancer cells to be responsible for intercellular ICAM-1/LFA-1 crosslink that confers increased cancer cell lysis by LAK cells. These findings provide proof for a novel antitumorigenic mechanism of celecoxib.

  12. Celecoxib increases lung cancer cell lysis by lymphokine-activated killer cells via upregulation of ICAM-1

    PubMed Central

    Frank, Marcus; Linnebacher, Michael; Hinz, Burkhard

    2015-01-01

    The antitumorigenic mechanism of the selective cyclooxygenase-2 (COX-2) inhibitor celecoxib is still a matter of debate. Using lung cancer cell lines (A549, H460) and metastatic cells derived from a lung cancer patient, the present study investigates the impact of celecoxib on the expression of intercellular adhesion molecule 1 (ICAM-1) and cancer cell lysis by lymphokine-activated killer (LAK) cells. Celecoxib, but not other structurally related selective COX-2 inhibitors (i.e., etoricoxib, rofecoxib, valdecoxib), was found to cause a substantial upregulation of ICAM-1 protein levels. Likewise, ICAM-1 mRNA expression was increased by celecoxib. Celecoxib enhanced the susceptibility of cancer cells to be lysed by LAK cells with the respective effect being reversed by a neutralizing ICAM-1 antibody. In addition, enhanced killing of celecoxib-treated cancer cells was reversed by preincubation of LAK cells with an antibody to lymphocyte function associated antigen 1 (LFA-1), suggesting intercellular ICAM-1/LFA-1 crosslink as crucial event within this process. Finally, celecoxib elicited no significant increase of LAK cell-mediated lysis of non-tumor bronchial epithelial cells, BEAS-2B, associated with a far less ICAM-1 induction as compared to cancer cells. Altogether, our data demonstrate celecoxib-induced upregulation of ICAM-1 on lung cancer cells to be responsible for intercellular ICAM-1/LFA-1 crosslink that confers increased cancer cell lysis by LAK cells. These findings provide proof for a novel antitumorigenic mechanism of celecoxib. PMID:26513172

  13. Lymphokine-activated killer (LAK) cells can be focused at sites of tumor growth by products of macrophage activation

    SciTech Connect

    Migliori, R.J.; Gruber, S.A.; Sawyer, M.D.; Hoffman, R.; Ochoa, A.; Bach, F.H.; Simmons, R.L.

    1987-08-01

    Successful adoptive cancer immunotherapy presumably depends on the accumulation of tumoricidal leukocytes at the sites of tumor growth. Large numbers of lymphokine-activated killer (LAK) cells can be generated in vitro by growth in high concentrations of interleukin-2 (IL-2), but relatively few arrive at the tumor site after intravenous injection. We hypothesize that the delivery of LAK cells to tumor sites may be augmented by previously demonstrated lymphocyte-recruiting factors, including activated macrophage products such as interleukin-1 (IL-1) and tumor necrosis factor. /sup 111/Indium-labeled LAK cells were injected intravenously into syngeneic mice bearing the macrophage activator endotoxin (LPS) in one hind footpad, and saline solution was injected into the contralateral footpad. Significantly more activity was recovered from the LPS-bearing footpad at all times during a 96-hour period. Recombinant IL-1 also attracted more LAK cells after injection into tumor-free hind footpads. Furthermore, LAK cells preferentially homed to hind footpads that were bearing 3-day established sarcomas after intralesional injections of LPS, IL-1, or tumor necrosis factor when compared with contralateral tumor-bearing footpads injected with saline solution alone. In preliminary experiments, mice with hind-footpad tumors appeared to survive longer after combined systemic IL-2 and LAK therapy if intralesional LPS was administered. These studies demonstrate that macrophage activation factors that have been shown capable of attracting circulating normal lymphocytes can also effectively attract LAK cells from the circulation. By the stimulation of macrophages at the sites of tumor growth, more LAK cells can be attracted. It is hoped that by focusing the migration of LAK cells to tumors, LAK cells and IL-2 would effect tumor regression more efficiently and with less toxicity.

  14. All-trans retinoic acid decreases susceptibility of a gastric cancer cell line to lymphokine-activated killer cytotoxicity.

    PubMed Central

    Chao, T. Y.; Jiang, S. Y.; Shyu, R. Y.; Yeh, M. Y.; Chu, T. M.

    1997-01-01

    All-trans retinoic acid (RA) was previously shown to regulate the growth of gastric cancer cells derived from the cell line SC-M1. This study was designed to investigate the effect of RA on the sensitivity of SC-M1 cells to lymphokine-activated killer (LAK) activity. RA at the concentration range of 0.001-10 microM was shown to induce SC-M1 cells to exhibit resistance to LAK activity in a dose-dependent manner. A kinetics study indicated that a significantly increased resistance was detected after 2 days of co-culturing SC-M1 cells with RA and reached a maximum after 6 days of culture. Similar results were obtained from two other cancer cell lines: promyelocytic leukaemia HL-60 and hepatic cancer Hep 3B. A binding assay demonstrated that the binding efficacy between target SC-M1 cells and effector LAK cells was not altered by RA. Flow cytometric analyses revealed that RA exhibited no effect on the expression of cell surface molecules, including HLA class I and class II antigens, intercellular adhesion molecule-1 and -2, and lymphocyte function antigen-3. Cell cycle analysis revealed that culture of SC-M1 cells with RA resulted in an increase in G0/G1 phase and a decrease in S phase, accompanied by a decrease in cyclin A and cyclin B1 mRNA as determined by Northern blot analysis. Additionally, RA was shown to enhance the expression of retinoic acid receptor alpha (RAR alpha) in SC-M1 cells, and to have no effect on the expression of RARbeta or RARgamma. Taken together, these results indicate that RA can significantly increase gastric cancer cells SC-M1 to resist LAK cytotoxicity by means of a cytostatic effect through a mechanism relating to cell cycle regulation. The prevailing ideas, such as a decrease in effector to target cell binding, a reduced MHC class I antigen expression or an altered RARbeta expression, are not involved. Images Figure 4 Figure 5 PMID:9155047

  15. Assessment of in vitro lymphokine activated killer (LAK) cell activity against renal cancer cell lines and its suppression by serum factor using crystal violet assay.

    PubMed

    Kanamaru, H; Yoshida, O

    1989-01-01

    Lymphokine activated killer (LAK) cell activity against renal cancer cell lines was assessed in vitro using a crystal violet assay. A standard 4-h 51chromium release assay and a 48-h crystal violet assay showed that both natural killer-susceptible (NC65) and -resistant (ACHN) renal cancer cell lines were sensitive to LAK cells which had been generated by a 3-day incubation of peripheral blood mononuclear cells (PBMC) with recombinant interleukin 2 (rIL-2). Optimal LAK activity was generated by a 5-day culture of PBMC with 1 U rIL-2/ml. LAK activity was enhanced by the presence of IL-2 in the crystal violet assay system, while it was suppressed by fresh autologous serum. The suppressive effect was found in serum from both normal donors and patients with metastatic renal cell carcinoma, suggesting that non-specific suppressive factor(s) affecting LAK cell activity were present in human sera.

  16. Adoptive immunotherapy of human pancreatic cancer with lymphokine-activated killer cells and interleukin-2 in a nude mouse model

    SciTech Connect

    Marincola, F.M.; Da Pozzo, L.F.; Drucker, B.J.; Holder, W.D. Jr. )

    1990-11-01

    A pancreatic cancer cell line was grown in orthotopic and heterotopic positions in young Swiss/NIH nude mice, which were tested with adoptive immunotherapy. Mice were injected with 1 x 10(7) human cancer cells in the subcutaneous tissue and duodenal lobe of the pancreas. The mice were randomly divided into four groups: group IA (LAK + IL-2) (N = 25) received 2 X 10(7) human lymphokine-activated killer (LAK) cells from normal donors by tail vein injection followed by 10,000 units of human recombinant interleukin-2 (IL-2) given intraperitoneally every 12 hours for 28 days; group IB (IL-2) (N = 27) was given the same dose of IL-2 alone; group IC (RPMI-1640) (N = 18) received a placebo consisting of 1 ml of RPMI-1640 intraperitoneally every 12 hours; and group ID (LAK) (N = 14) received 2 X 10(7) LAK cells but no IL-2. Toxicity was significantly higher in group IB, with a mortality rate of 45.5% (10/22 animals) versus a 0% mortality (0/25) in group IA. None of the group IA or IB animals died of pancreatic cancer during the experiment. The animals that did not receive IL-2 died before 28 days in 14.2% of group IC and in 16.7% of group ID. The area under the growth curve of subcutaneous tumors during the course of treatment and the pancreatic tumor weight at the end of treatment were compared in each group. Subcutaneous tumors had a reduced rate of growth in group IA animals compared to all the other treatments. Pancreatic tumor growth was slowed in group IA. The animals treated with IL-2 alone (group IB) showed some slowing of tumor growth that was intermediate between group IA, group IC, and group ID. A similar experiment was done with irradiated (375 rad) mice. Nine nude mice with tumors were treated with LAK + IL-2 (group IIA), eight received IL-2 alone (group IIB), and seven received placebo (group IIC).

  17. The influence of prophylactic immunosuppressive regimens on natural killer and lymphokine-activated killer cells in renal transplant recipients.

    PubMed

    Alamartine, E; Sabido, O; Berthoux, F C

    1990-12-01

    We investigated natural-killer cells in 81 renal transplant recipients (RTR) in order to define what kind of in vivo prophylactic immunosuppression could be responsible of the impairment of these NK cells. Cell-surface phenotyping was performed by direct immunofluorescence with Leu7 (CD57), Leu11 (CD16), and Leu19 (CD56) antibodies, in one- and two-color stainings. Functional properties were analyzed with freshly isolated nonadherent mononuclear cells (NK activity) and after in vitro activation with r-IL-2 (LAK activity), in cytotoxicity assays using K562 and Daudi tumor lines as specific targets. A flow cytometry technique using carboxy-Fluorodiacetate was applied to monitor the cytotoxicity of NK cells. Our data emphasize the already known deficiency of NK cells: both NK subsets (CD16+ and/or CD56+) and NK activity were decreased in RTR. Moreover, we demonstrated that the in vitro IL-2-induced LAK cytotoxicity was also diminished in RTR. NK cells and functions were normal in RTR treated with cyclosporine only, decreased in RTR treated with both cyclosporine and azathioprine, and at the lowest level in RTR treated with azathioprine without cyclosporine. A multivariate statistical analysis found a negative linear regression between the doses of azathioprine and the number of functions of NK cells, confirming that azathioprine was responsible for the deficiency of NK cells in our RTR.

  18. Requirement of T-lymphokine-activated killer cell-originated protein kinase for TRAIL resistance of human HeLa cervical cancer cells

    SciTech Connect

    Kwon, Hyeok-Ran; Lee, Ki Won; Dong, Zigang; Lee, Kyung Bok; Oh, Sang-Muk

    2010-01-01

    T-lymphokine-activated killer cell-originated protein kinase (TOPK) appears to be highly expressed in various cancer cells and to play an important role in maintaining proliferation of cancer cells. However, the underlying mechanism by which TOPK regulates growth of cancer cells remains elusive. Here we report that upregulated endogenous TOPK augments resistance of cancer cells to apoptosis induced by tumor necrosis factor-related apoptosis inducing ligand (TRAIL). Stable knocking down of TOPK markedly increased TRAIL-mediated apoptosis of human HeLa cervical cancer cells, as compared with control cells. Caspase 8 or caspase 3 activities in response to TRAIL were greatly incremented in TOPK-depleted cells. Ablation of TOPK negatively regulated TRAIL-mediated NF-{kappa}B activity. Furthermore, expression of NF-{kappa}B-dependent genes, FLICE-inhibitory protein (FLIP), inhibitor of apoptosis protein 1 (c-IAP1), or X-linked inhibitor of apoptosis protein (XIAP) was reduced in TOPK-depleted cells. Collectively, these findings demonstrated that TOPK contributed to TRAIL resistance of cancer cells via NF-{kappa}B activity, suggesting that TOPK might be a potential molecular target for successful cancer therapy using TRAIL.

  19. Follicular lymphoma: in vitro effects of combining lymphokine-activated killer (LAK) cell-induced cytotoxicity and rituximab- and obinutuzumab-dependent cellular cytotoxicity (ADCC) activity.

    PubMed

    García-Muñoz, Ricardo; López-Díaz-de-Cerio, Ascensión; Feliu, Jesus; Panizo, Angel; Giraldo, Pilar; Rodríguez-Calvillo, Mercedes; Grande, Carlos; Pena, Esther; Olave, Mayte; Panizo, Carlos; Inogés, Susana

    2016-04-01

    Follicular lymphoma (FL) is a disease of paradoxes-incurable but with a long natural history. We hypothesized that a combination of lymphokine-activated killer (LAK) cells and monoclonal antibodies might provide a robust synergistic treatment and tested this hypothesis in a phase II clinical trial (NCT01329354). In this trial, in addition to R-CHOP, we alternated the administration of only rituximab with rituximab and autologous LAK cells that were expanded ex vivo. Our objective was to determine the in vitro capability of LAK cells generated from FL patients to produce cytotoxicity against tumor cell lines and to determine rituximab- and obinutuzumab-induced cytotoxicity via antibody-dependent cellular cytotoxicity (ADCC) activity. We analyzed the LAK cell-induced cytotoxicity and rituximab (R)- and obinutuzumab (GA101)-induced ADCC activity. We show that LAK cells generated from FL patients induce cytotoxicity against tumor cell lines. R and GA101 enhance cytolysis through ADCC activity of LAK cells. Impaired LAK cell cytotoxicity and ADCC activity were detected in 50 % of patients. Percentage of NK cells in LAK infusions were correlated with the R- and GA101-induced ADCC. Our results indicate that the combination of R or GA101 and LAK cells should be an option as frontline maintenance therapy in patients with FL.

  20. Immunotherapy of murine sarcomas using lymphokine activated killer cells: optimization of the schedule and route of administration of recombinant interleukin-2

    SciTech Connect

    Ettinghausen, S.E.; Rosenberg, S.A.

    1986-06-01

    Interleukin-2 (IL-2) at high doses or at low doses in concert with lymphokine-activated killer (LAK) cells can produce regression of established pulmonary and hepatic metastases from a variety of tumors in mice. IL-2 appears to mediate its antitumor effect through the generation of LAK cells in vivo from endogenous lymphocytes and by the stimulation of host and transferred LAK cell proliferation in tissues. In this paper we have investigated different strategies for IL-2 administration to determine which regimen produced maximal in vivo proliferation and optimal immunotherapeutic efficacy of LAK cells. Tissue expansion of lymphoid cells was assessed using an assay of in vivo labeling of dividing cells by the thymidine analogue, 5-(/sup 125/I)iododeoxyuridine. The therapeutic effect of the different IL-2 administration protocols was determined by evaluating their efficacy in the treatment of established, 3-day pulmonary metastases from sarcomas in mice. The selection of IL-2 injection regimens for evaluation was based upon pharmacokinetic studies of IL-2 in mice. A single i.v. or i.p. dose yielded high peak IL-2 levels that could be measured for only a few hours after injection, while IL-2 given i.p. thrice daily produced titers that were detectable throughout the study periods (greater than or equal to 6 units/ml of serum after 100,000 units of IL-2 i.p. thrice daily). Using the proliferation and therapy models, we tested the same cumulative daily doses of IL-2 administered by i.v. or i.p. once daily, or i.p. thrice daily regimens. The i.p. thrice daily protocol stimulated greater lymphoid cell proliferation in the lungs, for example, than did the other regimens.

  1. Development of an automated closed system for generation of human lymphokine-activated killer (LAK) cells for use in adoptive immunotherapy.

    PubMed

    Muul, L M; Nason-Burchenal, K; Carter, C S; Cullis, H; Slavin, D; Hyatt, C; Director, E P; Leitman, S F; Klein, H G; Rosenberg, S A

    1987-08-03

    Immunotherapy utilizing the adoptive transfer of lymphokine-activated killer (LAK) cells in conjunction with recombinant interleukin-2 (IL-2) can mediate tumor regression in some patients with advanced cancer. The activation of large numbers of LAK cells was performed in roller bottles in a research laboratory setting and required meticulous aseptic technique, at least one skilled technician per patient and one laminar flow hood per patient. To reduce the complexity and expense of LAK cell generation for human immunotherapy trials we have developed a closed-system automated procedure using a continuous flow blood cell separator. PBL were obtained by standard apheresis techniques. Platelets and plasma were elutriated using countercentrifugal flow of saline in the cell separator machine. The washed PBL were underlaid with Ficoll-Hypaque (FH) in the original separation bag. Lymphocytes were then flushed into a collection bag where they were concentrated and washed with 2 liters of saline. Mean recovery from the automated FH technique was 54.6 +/- 4.3% compared to 62.3 +/- 4.0% using manual methods in 50 ml tubes (P greater than 0.05). Cells were diluted in the collection bag with RPMI 1640 +/- 2% human AB serum and could be dispensed in an automated fashion to polyolefin bags via a sample port with 1000-1500 U/ml IL-2. After 3-4 days of culture in 5% CO2 at 37 degrees C, activated cells from the bags were harvested and washed in a closed system using the continuous flow cell separator. Cell yield from the harvest was 79.2 +/- 5.4% in the automated system compared to 64.9 +/- 5.0% in the standard procedure using manual harvest of roller bottles (P less than 0.01). Lytic capacity of the cells against fresh human tumor in a 4 h 51Cr release assay was equivalent in cells processed either by the automated or the conventional manual method. The advantages of a closed system include decreased potential for microbial contamination and reduced labor and capital equipment costs

  2. In vivo treatment with interferon causes augmentation of IL-2 induced lymphokine-activated killer cells in the organs of mice.

    PubMed Central

    Puri, R K; Leland, P

    1991-01-01

    Interferon-alpha (IFN-alpha) has been shown to synergize with IL-2 in the regression of a variety of established murine tumours and studies are underway to explore this combination in patients with advanced cancers as well. To understand the mechanism of synergy we have studied lymphokine-activated killer (LAK) cell activity in various compartments of mice in response to IFN-alpha and IL-2 administration. The effects of IFN-gamma, TNF-alpha and IL-4 were also examined. C57BL/6 mice were injected intraperitoneally with HBSS, IL-2 alone, IFN-alpha alone or both, two times a day for 7 days. On days 4 and 8, LAK activity was tested in a 4-h chromium release in cells obtained from lungs, spleen, and liver using fresh MCA-102 tumour cells as targets. The cells from control mice failed to lyse the MCA-102 target. IL-2 caused the generation of LAK activity and an increase in total cell yield in all the organs after 3 days of injection. IFN-alpha failed to generate LAK activity but when administered along with IL-2, caused synergistic enhancement of LAK lysis of MCA-102 target cells. Cell yield in this group was lower as compared with the IL-2-treated group. LAK activity tested after 7 days of IL-2 therapy was significantly decreased compared with that observed after 3 days. However, activity remained at as high a level after 7 days of therapy as after 3 days of therapy in animals treated with IFN-alpha and IL-2. FACS analysis revealed that asialo GM-1+ (ASGM-1) and NK1.1+ cells were increased in number in IL-2 and IL-2 plus IFN-alpha-treated spleen; however, the number of these cells was similar in both groups. In the liver, ASGM-1+ cells were higher in the IL-2 plus IFN-alpha group than in the group treated with IL-2 alone. By in vitro depletion utilizing antibody and Rbc' experiments, it was clear that both ASGM-1+ and NK1.1+ cells from the spleen mediated most of the cytotoxicity of MCA-102 targets. Pre-treatment irradiation (5 Gy) of mice completely abrogated the

  3. The Development of a Micro Assay for Natural Killer and Lymphokine-Activated Killer Activity and Its Use in Monitoring the Purification of an Interleukin-2 Inhibitor

    DTIC Science & Technology

    1989-05-01

    58 CHAPIER 1 INTRODUCTION AND UTERAMRE REVIEW The treatment of cancer is a constantly changing field and has recently expanded to include...and Antibody-Forming B Cell Responses. Immunological Reviews 63:131-166. 84 10. Rosenberg, S.A., M.T. Lotze, L.M. Muul, S. Leitman, A.E. Change, S.E...immunotherapy. One of the recent advances in cancer immunotherapy involves the infusion of lymphokine- activated killer (IAK) cells. The IAK cells are derived

  4. Lysis of typhus-group rickettsia-infected targets by lymphokine activated killers

    SciTech Connect

    Carl, M.; Dasch, G.A.

    1986-03-01

    The authors recently described a subset of OKT8, OKT3-positive lymphocytes from typhus-group rickettsia immune individuals which were capable of lysing autologous PHA-blasts or Epstein-Barr virus transformed B cells (LCL) infected with typhus-group rickettsiae. In order to determine if killing by these effectors was HLA-restricted, they stimulated peripheral blood mononuclear cells (PBMC) from typhus-group rickettsia immune individuals in vitro with typhus-group rickettsia-derived antigen for one week and then measured lysis of autologous LCL or HLA-mismatched LCL in a 4-6 hour Cr/sup 51/-release assay. There was significant lysis of both the autologous and the HLA-mismatched infected targets as compared to the corresponding uninfected targets. Since this suggested that the effectors were lymphokine activated killers (LAK) rather than cytotoxic T lymphocytes, they then tested this hypothesis by stimulating PBMC from both immune and non-immune individuals in vitro for one week with purified interleukin 2 and measuring lysis of infected, autologous LCL. PBMC thus treated, from both immune and non-immune individuals, were capable of significantly lysing autologous, infected LCL as compared to the non-infected control. They therefore conclude that targets infected with typhus-group rickettsiae are susceptible to lysis to LAK.

  5. The first alpha helix of interleukin (IL)-2 folds as a homotetramer, acts as an agonist of the IL-2 receptor beta chain, and induces lymphokine-activated killer cells.

    PubMed

    Eckenberg, R; Rose, T; Moreau, J L; Weil, R; Gesbert, F; Dubois, S; Tello, D; Bossus, M; Gras, H; Tartar, A; Bertoglio, J; Chouaïb, S; Goldberg, M; Jacques, Y; Alzari, P M; Thèze, J

    2000-02-07

    Interleukin (IL)-2 interacts with two types of functional receptors (IL-2Ralphabetagamma and IL-2Rbetagamma) and acts on a broad range of target cells involved in inflammatory reactions and immune responses. For the first time, we show that a chemically synthesized fragment of the IL-2 sequence can fold into a molecule mimicking the quaternary structure of a hemopoietin. Indeed, peptide p1-30 (containing amino acids 1-30, covering the entire alpha helix A of IL-2) spontaneously folds into an alpha-helical homotetramer and stimulates the growth of T cell lines expressing human IL-2Rbeta, whereas shorter versions of the peptide lack helical structure and are inactive. We also demonstrate that this neocytokine interacts with a previously undescribed dimeric form of IL-2Rbeta. In agreement with its binding to IL-2Rbeta, p1-30 activates Shc and p56(lck) but unlike IL-2, fails to activate Janus kinase (Jak)1, Jak3, and signal transducer and activator of transcription 5 (STAT5). Unexpectedly, we also show that p1-30 activates Tyk2, thus suggesting that IL-2Rbeta may bind to different Jaks depending on its oligomerization. At the cellular level, p1-30 induces lymphokine-activated killer (LAK) cells and preferentially activates CD8(low) lymphocytes and natural killer cells, which constitutively express IL-2Rbeta. A significant interferon gamma production is also detected after p1-30 stimulation. A mutant form of p1-30 (Asp20-->Lys), which is likely unable to induce vascular leak syndrome, remains capable of generating LAK cells, like the original p1-30 peptide. Altogether, our data suggest that p1-30 has therapeutic potential.

  6. The First α Helix of Interleukin (Il)-2 Folds as a Homotetramer, Acts as an Agonist of the IL-2 Receptor β Chain, and Induces Lymphokine-Activated Killer Cells

    PubMed Central

    Eckenberg, Ralph; Rose, Thierry; Moreau, Jean-Louis; Weil, Robert; Gesbert, Franck; Dubois, Sigrid; Tello, Diana; Bossus, Marc; Gras, Hélène; Tartar, André; Bertoglio, Jacques; Chouaïb, Salem; Goldberg, Michel; Jacques, Yannick; Alzari, Pedro M.; Thèze, Jacques

    2000-01-01

    Interleukin (IL)-2 interacts with two types of functional receptors (IL-2Rαβγ and IL-2Rβγ) and acts on a broad range of target cells involved in inflammatory reactions and immune responses. For the first time, we show that a chemically synthesized fragment of the IL-2 sequence can fold into a molecule mimicking the quaternary structure of a hemopoietin. Indeed, peptide p1–30 (containing amino acids 1–30, covering the entire α helix A of IL-2) spontaneously folds into an α-helical homotetramer and stimulates the growth of T cell lines expressing human IL-2Rβ, whereas shorter versions of the peptide lack helical structure and are inactive. We also demonstrate that this neocytokine interacts with a previously undescribed dimeric form of IL-2Rβ. In agreement with its binding to IL-2Rβ, p1–30 activates Shc and p56lck but unlike IL-2, fails to activate Janus kinase (Jak)1, Jak3, and signal transducer and activator of transcription 5 (STAT5). Unexpectedly, we also show that p1–30 activates Tyk2, thus suggesting that IL-2Rβ may bind to different Jaks depending on its oligomerization. At the cellular level, p1–30 induces lymphokine-activated killer (LAK) cells and preferentially activates CD8low lymphocytes and natural killer cells, which constitutively express IL-2Rβ. A significant interferon γ production is also detected after p1–30 stimulation. A mutant form of p1–30 (Asp20→Lys), which is likely unable to induce vascular leak syndrome, remains capable of generating LAK cells, like the original p1–30 peptide. Altogether, our data suggest that p1–30 has therapeutic potential. PMID:10662798

  7. Asbestos fibres inhibit the in vitro activity of lymphokine-activated killer (LAK) cells from healthy individuals and patients with malignant mesothelioma.

    PubMed Central

    Manning, L S; Davis, M R; Robinson, B W

    1991-01-01

    Asbestos exposure is associated with an increased incidence of several malignancies, including malignant mesothelioma (MM). This study evaluates the relationship between asbestos exposure and the in vitro generation and function of LAK cells, an immune effector cell population with powerful lytic activity against MM cells. Both serpentine (chrysotile) and amphibole (amosite and crocidolite) forms of asbestos fibres suppress LAK cell generation, viability (by 5-11%, P less than 0.02) and cell recovery (by 13-15%, P less than 0.02). However, the LAK cells generated in the presence of the amphiboles were as effective as unexposed cells in lysing both standard tumour cell targets (K562, 56.4% lysis versus 61.5%, respectively, P greater than 0.5; NS; Daudi, 60.5% lysis versus 64.5% P greater than 0.5; NS), and MM tumour cell targets (mean of three MM cell lines 48.3% versus 46.3%, P greater than 0.5; NS), whereas the function of LAK cells generated in the presence of chrysotile was significantly reduced against three out of the five tumour cell targets tested (P less than 0.03). In the presence of asbestos fibres, LAK cell function was reduced against all five tumour cell targets (P less than 0.01), irrespective of whether the cell donors were healthy individuals or patients with MM. NK cell activity was also suppressed (P less than 0.01). The serpentine form of asbestos, chrysotile, was significantly more suppressive of both effector cell functions than either of the amphiboles (P less than 0.01). These findings suggest that asbestos exposure may suppress the function and in some instances the generation of immune effector cell mechanisms, thereby increasing the risk of disease and malignancy. PMID:1846329

  8. Alloreactive cloned T cell lines. VI. Multiple lymphokine activities secreted by helper and cytolytic cloned T lymphocytes.

    PubMed

    Prystowsky, M B; Ely, J M; Beller, D I; Eisenberg, L; Goldman, J; Goldman, M; Goldwasser, E; Ihle, J; Quintans, J; Remold, H; Vogel, S N; Fitch, F W

    1982-12-01

    Culture supernatants generated by alloantigenic or lectin stimulation of a cloned helper T lymphocyte, designated L2, contain interleukin 2 (IL 2), granulocyte/macrophage colony-stimulating factor (CSF), B cell stimulating factor (BCSF), macrophage (Ia+)-recruiting factor (MIRF), (Ia+)-inducing activity, gamma-interferon, Fc receptor-enhancing activity, macrophage migration inhibitory factor (MIF), macrophage activation factor (MAF), interleukin 3 (IL 3), and a factor responsible for prolonging the synthesis and secretion of the fourth and second components of complement by guinea pig peritoneal macrophages. Erythropoietin was not detected. A spontaneously arising variant of L2, designated L2V, produces much lower quantities of macrophage-stimulating activities, IL 2, and interferon. However, when compared to L2, L2V produces much higher levels of BCSF, equivalent amounts of IL 3, and slightly smaller amounts of CSF. Unlike L2V, a cytolytic clone, designated L3, secretes lymphokines that primarily affect macrophage function. The time course of lymphokine production by L2 cells indicates that for the six lymphokine activities studied there are three different times at which maximal or near maximal levels are reached, as follows: 1) IL 2, 12 to 24 hr; 2) IL 3 and CSF, 24 to 48 hr; and 3) (Ia+)-inducing activity, MAF, and interferon, 48 hr or later. Only IL 2 activity disappears during the 8-day culture cycle. The time course data and the differential production of activities by the three types of lymphocyte clones suggest that at least four terminal effector lymphokine molecules account for the ten biologic activities tested.

  9. Natural Killer Cell Memory.

    PubMed

    O'Sullivan, Timothy E; Sun, Joseph C; Lanier, Lewis L

    2015-10-20

    Natural killer (NK) cells have historically been considered short-lived cytolytic cells that can rapidly respond against pathogens and tumors in an antigen-independent manner and then undergo cell death. Recently, however, NK cells have been shown to possess traits of adaptive immunity and can acquire immunological memory in a manner similar to that of T and B cells. In this review, we discuss evidence of NK cell memory and the mechanisms involved in the generation and survival of these innate lymphocytes.

  10. Natural killer cell deficiency.

    PubMed

    Orange, Jordan S

    2013-09-01

    Natural killer (NK) cells are part of the innate immune defense against infection and cancer and are especially useful in combating certain viral pathogens. The utility of NK cells in human health has been underscored by a growing number of persons who are deficient in NK cells and/or their functions. This can be in the context of a broader genetically defined congenital immunodeficiency, of which there are more than 40 presently known to impair NK cells. However, the abnormality of NK cells in certain cases represents the majority immunologic defect. In aggregate, these conditions are termed NK cell deficiency. Recent advances have added clarity to this diagnosis and identified defects in 3 genes that can cause NK cell deficiency, as well as some of the underlying biology. Appropriate consideration of these diagnoses and patients raises the potential for rational therapeutic options and further innovation.

  11. IMPAIRED NATURAL KILLER CELL LYSIS IN BREAST CANCER PATIENTS WITH HIGH LEVELS OF PSYCHOLOGICAL STRESS IS ASSOCIATED WITH ALTERED EXPRESSION OF KILLER IMMUNOGLOBULIN-LIKE RECEPTORS

    PubMed Central

    Varker, Kimberly A.; Terrell, Catherine E.; Welt, Marilyn; Suleiman, Samer; Thornton, Lisa; Andersen, Barbara L.; Carson, William E.

    2007-01-01

    Background We previously reported that cancer-related psychological stress is associated with reduced natural killer (NK) cell lysis. We hypothesized that reduced NK cell cytotoxicity in patients with increased levels of stress would correlate with alterations in the expression of inhibitory NK cell receptors (killer immunoglobulin-like receptors, or KIRs). The specific aim of this study was to examine KIR expression in patients with high or low levels of psychologic stress and correlate alterations in KIR expression with NK cell function. Materials and Methods 227 patients underwent baseline evaluation of cancer-related psychological stress and were randomized to psychosocial intervention versus observation. From this population, two groups were defined based on pre-treatment measurements of NK lytic activity, stress levels, and the availability of cryopreserved peripheral blood mononuclear cells (PBMC). Group I (n = 9) had low stress by the Impact of Events Scale (IES), and high NK cell lysis at the 50:1 effector: target ratio (NK50 = 52–89%). Group II (n = 8) had high stress and low NK50 (27–52%). Lymphokine activated killer (LAK) activity, antibody dependent cellular cytotoxicity (ADCC), and expression of cytokine receptors, adhesion molecules, and killer immunoglobulin-like receptors (KIRs) were assessed in PBMC. Results Incubation of PBMC with NK-stimulatory cytokines (IL-2, IL-12, or IL-15) led to significant increases in cytotoxic activity regardless of IES/NK50 scores. There were no significant group differences in NK cell surface expression of the IL-2 receptor components CD25 and CD122, antibody-dependent lysis of HER2/neu-positive SKBr3 cells treated with an anti-HER2/neu monoclonal antibody, expression of adhesion molecules (CD2, CD11a, CD18) and markers of activation (CD69), or expression of the KIRs CD158a, NKG2a, NKB1, and CD161. However, levels of CD158b were significantly higher in Group I after incubation in media alone or with IL-2, and CD94

  12. Immunobiology of natural killer cells

    SciTech Connect

    Lotzova, E.; Herberman, R.B.

    1986-01-01

    This book combines research from many disciplines into a review of natural killer (NK) cell-mediated immunity in humans and experimental animal system. Topics for the volumes include: Volume I: Assays for NK Cell Cytotoxicity; Their Values and Pitfalls. Separation and Characterization of Phenotypically Distinct Subsets of NK Cells. Ultrastructure and Cytochemistry of the Human Large Granular Lymphocytes. Phylogeny and Ontogeny of NK Cells. Tissue and Organ distribution of NK Cells. Genetic Control of NK Cell Activity in Rodents. Phenotype, Functional Heterogeneity, and Lineage of Natural Killer Cells. Target Cell Structures, Recognition Sites, and the Mechanism of NK Cytotoxicity. Natural Killer Cytotoxic Factors (NKCF) Role in Cell-Mediated Cytotoxicity. Characteristics of Cultured NK Cells. Lectin-Dependent Killer Cells. MLC-Induced Cytotoxicity as a Model for the Development and Regulation of NK Cytotoxicity. LGL Lymphoproliferative Diseases in Man and Experimental Animals: The Characteristics of These Cells and Their Potential Experimental Uses. Index.

  13. Natural killer cell leukaemia.

    PubMed

    Gandhi, Jamish

    2009-01-01

    A 42-year-old white woman, who was a general practitioner referral to the medical team, presented with a 3-day history of left upper quadrant pain; an urgent private ultrasound scan had showed splenomegaly. She was initially admitted with sepsis without an obvious cause but with a differential diagnosis of a haematological malignancy. Her admission blood tests showed a mildly reduced white cell count and low platelets. Her symptoms progressed and she developed right upper quadrant pain. Her blood counts deteriorated showing a disseminated intravascular coagulation (DIC) picture and mildly deranged liver function tests. Blood films were non-diagnostic. A CT scan of the abdomen/pelvis showed splenomegaly and also hepatomegaly and ascites, not seen in her initial ultrasound scan. Multiple cultures of blood/urine/ascites and infective serology were unremarkable.She was transferred to a larger tertiary centre under the care of the surgeons with presumed abdominal sepsis and underwent an open laparotomy, which showed a big firm liver and spleen but no obvious cause for sepsis. The infectious disease team were unable to find a cause, and haematology became involved to investigate the possibility of a haematological malignancy. The patient underwent two bone marrow biopsies, a percutaneous liver biopsy and had flow cytometry of her ascitic fluid, which revealed the diagnosis of a natural killer cell leukaemia. After some slight improvement on steroids, the patient was given cyclophosphamide, doxorubicin, vincristine, prednisone, rituximab (CHOP-R) chemotherapy. The patient had an initial response to chemotherapy, with reduction in ascitic volume and hepatosplenomegaly, and normalisation of her coagulation. This was accompanied by an overall improvement in her physical condition. She had a second cycle of CHOP-R, but unfortunately approximately 2 weeks after that, she deteriorated rapidly. She was too weak for salvage chemotherapy, so she was put on comfort care. She died

  14. Identification of a novel gene expressed in activated natural killer cells and T cells

    SciTech Connect

    Dahl, C.A.; Schall, R.P.; He, H.; Cairns, J.S. )

    1992-01-15

    The authors have isolated a cDNA clone from a human activated NK cell-derived cDNA library that identifies a transcript [NK4] that is selectively expressed in lymphocytes. The expression of this transcript is increased after activation of T cells by mitogens or activation of NK cells by IL-2 (lymphokine-activated killer cells). The transcript levels demonstrated by Northern blot analysis increase by 12 h after activation, remain high for at least 48 h, and require protein synthesis for expression. Southern blot analysis of B lymphoblastoid lines derived from 18 unrelated individuals reveal variable banding patterns suggestive of polymorphism within the NK4 gene. No homology was found between the sequence of the coding region of this transcript and any sequences in the GenBank data base. Sequence homology to the U1 small nuclear RNA was found within the 3[prime] untranslated region immediately upstream of the site of polyadenylation, suggesting a possible role for U1 in the polyadenylation process. Sequence analysis indicates the transcript would encode a protein having a mass of 27 kDa. The presence of a signal sequence and lack of a transmembrane region suggests that the protein is secreted. In addition, the protein contains an RGD sequence that may be involved in cellular adhesion. This transcript appears to encode a novel product common to the activation pathways of both NK cells and T cells. 50 refs., 8 figs.

  15. Differential regulation of interleukin-12- and interleukin-15-induced natural killer cell activation by interleukin-4.

    PubMed

    Salvucci, O; Mami-Chouaib, F; Moreau, J L; Thèze, J; Chehimi, J; Chouaib, S

    1996-11-01

    The regulation of human natural killer (NK) cell activation is under the control of a network of regulatory signals provided by cytokines. In the present study, we investigated the functional interaction between interleukin (IL)-4 and two monocyte/macrophage-derived cytokines, IL-12 and IL-15, during the process of NK stimulation. Using freshly isolated human NK cells, we have demonstrated that IL-4 negatively regulates lymphokine-activated killer (LAK) activity induced by IL-15 against the NK-resistant Daudi target cells. In contrast, IL-4 had no effect on IL-12-stimulated LAK generation. The differential effect of IL-4 on NK cell activation by IL-12 and IL-15 correlates with its ability to increase or to down-regulate the level of tumor necrosis factor-alpha and interferon-gamma release by NK cells, respectively. In contrast, endogenous transforming growth factor-beta 1 does not appear to be involved in the IL-4 regulatory pathway. Furthermore, while IL-4 was found to decrease the basal expression of the IL-2 receptor beta subunit utilized by IL-15, it had no effect on the expression of the beta 1 chain of the IL-12 receptor compared to untreated cells. Northern blot analysis indicated that the IL-4 regulatory effect on NK lytic function was associated with its capacity to down-regulate granzyme B and perforin gene transcription in response to IL-15 and its failure to affect the expression of both gene's in response to IL-12. Together, these data suggest the existence of a distinct cross-talk between IL-4 and IL-15 or IL-12 signaling pathways during the regulation of human non-major histocompatibility complex-restricted cytotoxicity.

  16. Deficient natural killer cell function in preeclampsia

    SciTech Connect

    Alanen, A.; Lassila, O.

    1982-11-01

    Natural killer cell activity of peripheral blood lymphocytes was measured against K-562 target cells with a 4-hour /sup 51/Cr release assay in 15 primigravid women with preeclamptic symptoms. Nineteen primigravid women with an uncomplicated pregnancy and 18 nonpregnant women served as controls. The natural killer cell activity of preeclamptic women was observed to be significantly lower than that of both control groups. Natural killer cells in preeclamptic women responded normally to augmentation caused by interferon. These findings give further evidence for the participation of the maternal immune system in this pregnancy disorder.

  17. Human natural killer cell development.

    PubMed

    Freud, Aharon G; Caligiuri, Michael A

    2006-12-01

    Our understanding of human natural killer (NK) cell development lags far behind that of human B- or T-cell development. Much of our recent knowledge of this incomplete picture comes from experimental animal models that have aided in identifying fundamental in vivo processes, including those controlling NK cell homeostasis, self-tolerance, and the generation of a diverse NK cell repertoire. However, it has been difficult to fully understand the mechanistic details of NK cell development in humans, primarily because the in vivo cellular intermediates and microenvironments of this developmental pathway have remained elusive. Although there is general consensus that NK cell development occurs primarily within the bone marrow (BM), recent data implicate secondary lymphoid tissues as principal sites of NK cell development in humans. The strongest evidence stems from the observation that the newly described stages of human NK cell development are naturally and selectively enriched within lymph nodes and tonsils compared with blood and BM. In the current review, we provide an overview of these recent findings and discuss these in the context of existing tenets in the field of lymphocyte development.

  18. Evolutionary vignettes of natural killer cell receptors.

    PubMed

    Sambrook, Jennifer G; Beck, Stephan

    2007-10-01

    The discovery of novel immune receptors has led to a recent renaissance of research into the innate immune system, following decades of intense research of the adaptive immune system. Of particular interest has been the discovery of the natural killer (NK) cell receptors which, depending on type, interact with classical or non-classical MHC class I antigens of the adaptive immune system, thus functioning at the interface of innate and adaptive immunity. Here, we review recent progress with respect to two such families of NK receptors, the killer immunoglobulin-like receptors (KIRs) and the killer cell lectin-like receptors (KLRs), and attempt to trace their evolution across vertebrates.

  19. The application of KillerRed for acute protein inactivation in living cells

    PubMed Central

    Jarvela, Timothy S.; Linstedt, Adam D.

    2017-01-01

    Generating loss of protein function is a powerful investigatory tool particularly if carried out at a physiologically relevant timescale in a live-cell fluorescent imaging experiment. KillerRed mediated chromophore assisted light inactivation (CALI) uses genetic encoding for specificity and light for acute inactivation that can also be spatially restricted. This unit provides protocols for setting up and carrying out properly controlled KillerRed experiments during live-cell imaging of cultured cells. PMID:24984963

  20. The Human Natural Killer Cell Immune Synapse

    NASA Astrophysics Data System (ADS)

    Davis, Daniel M.; Chiu, Isaac; Fassett, Marlys; Cohen, George B.; Mandelboim, Ofer; Strominger, Jack L.

    1999-12-01

    Inhibitory killer Ig-like receptors (KIR) at the surface of natural killer (NK) cells induced clustering of HLA-C at the contacting surface of target cells. In this manner, inhibitory immune synapses were formed as human NK cells surveyed target cells. At target/NK cell synapses, HLA-C/KIR distributed into rings around central patches of intercellular adhesion molecule-1/lymphocyte function-associated antigen-1, the opposite orientation to mature murine T cell-activating synapses. This organization of protein was stable for at least 20 min. Cells could support multiple synapses simultaneously, and clusters of HLA-C moved as NK cells crawled over target cells. Clustering required a divalent metal cation, explaining how metal chelators inhibit KIR function. Surprisingly, however, formation of inhibitory synapses was unaffected by ATP depletion and the cytoskeletal inhibitors, colchicine and cytochalsins B and D. Clearly, supramolecular organization within plasma membranes is critical for NK cell immunosurveillance.

  1. Natural killer cell regulation - beyond the receptors

    PubMed Central

    Urlaub, Doris; Fasbender, Frank; Claus, Maren

    2014-01-01

    Natural killer (NK) cells are lymphocytes that are important for early and effective immune responses against infections and cancer. In the last 40 years, many receptors, their corresponding ligands and signaling pathways that regulate NK cell functions have been identified. However, we now know that additional processes, such as NK cell education, differentiation and also the formation of NK cell memory, have a great impact on the reactivity of these cells. Here, we summarize the current knowledge about these modulatory processes. PMID:25374665

  2. Viral Evasion of Natural Killer Cell Activation.

    PubMed

    Ma, Yi; Li, Xiaojuan; Kuang, Ersheng

    2016-04-12

    Natural killer (NK) cells play a key role in antiviral innate defenses because of their abilities to kill infected cells and secrete regulatory cytokines. Additionally, NK cells exhibit adaptive memory-like antigen-specific responses, which represent a novel antiviral NK cell defense mechanism. Viruses have evolved various strategies to evade the recognition and destruction by NK cells through the downregulation of the NK cell activating receptors. Here, we review the recent findings on viral evasion of NK cells via the impairment of NK cell-activating receptors and ligands, which provide new insights on the relationship between NK cells and viral actions during persistent viral infections.

  3. Killer cells in chronic obstructive pulmonary disease.

    PubMed

    Fairclough, Lucy; Urbanowicz, Richard A; Corne, Jonathan; Lamb, Jonathan R

    2008-04-01

    COPD (chronic obstructive pulmonary disease) is a treatable and preventable disease state, characterized by progressive airflow limitation that is not fully reversible. It is a current and growing cause of mortality and morbidity worldwide, with the WHO (World Health Organization) projecting that total deaths attributed to COPD will increase by more than 30% in the next 10 years. The pathological hallmarks of COPD are destruction of the lung parenchyma (pulmonary emphysema), inflammation of the central airways (chronic bronchitis) and inflammation of the peripheral airways (respiratory bronchiolitis). The destructive changes and tissue remodelling observed in COPD are a result of complex interactions between cells of the innate and adaptive immune systems. The focus of the present review is directed towards the role of CD8(+) T-lymphocytes, NK (natural killer) cells and NKT cells (NK T-cells). These three classes of killer cell could all play an important part in the pathogenesis of COPD. The observed damage to the pulmonary tissue could be caused in three ways: (i) direct cytotoxic effect against the lung epithelium mediated by the activities of perforin and granzymes, (ii) FasL (Fas ligand)-induced apoptosis and/or (iii) cytokine and chemokine release. The present review considers the role of these killer cells in COPD.

  4. Cloning and characterization of the 2B4 gene encoding a molecule associated with non-MHC-restricted killing mediated by activated natural killer cells and T cells

    SciTech Connect

    Mathew, P.A.; Garni-Wagner, B.A.; Land, K.; Takashima, A.; Stoneman, E.; Bennett, M.; Kumar, V. )

    1993-11-15

    The authors have recently described a signal transducing molecule, 2B4, expressed on all NK and T cells that mediate non-MHC-restricted killing. The gene encoding this molecule was cloned and its nucleotide sequence determined. The encoded protein of 398 amino acids has a leader peptide of 18 amino acids and a transmembrane region of 24 amino acids. The predicted protein has eight N-linked glycosylation sites, suggesting that it is highly glycosylated. Comparison of 2B4 with sequences in the databanks indicates that 2B4 is a member of the Ig supergene family, and it shows homology to murine and rat CD48 and human LFA-3. Northern blot analysis has shown at least three transcripts for 2B4 in adherent lymphokine-activated killer cells of several mouse strains and TCR-[gamma]/[delta] dendritic epidermal T cell lines but not in allospecific T cell clones. These three mRNA are the products of differential splicing of heterogeneous nuclear RNA. Southern blot analysis of genomic DNA from several mouse strains revealed that 2B4 belongs to a family of closely related genes. The 2B4 gene has been mapped to mouse chromosome 1 by analysis of 2B4 expression in recombinant inbred mouse strains. 48 refs., 6 figs., 2 tabs.

  5. Immunobiology of natural killer cells. Volume II

    SciTech Connect

    Lotzova, E.; Herberman, R.B.

    1986-01-01

    This book provides a review of natural killer (NK) cell-mediated immunity in humans and experimental animal system. Topics for the volume include: In vivo activities of NK cells against primary and metastatic tumors in experimental animals; involvement of NK cells in human malignant disease; impaired NK cell profile in leukemia patients; in vivo modulation of NK activity in cancer patients; implications of aberrant NK cell activity in nonmalignant, chronic diseases; NK cell role in regulation of the growth and functions of hemopoietic and lymphoid cells; NK cells active against viral, bacterial, protozoan, and fungal infections; cytokine secretion and noncytotoxic functions of human large granular lymphocytes; augmentation of NK activity; regulation of NK cell activity by suppressor cells; NK cell cloning technology and characteristics of NK cell clones; comparison of antibody-dependent cellular cytotoxicity (ADCC) and NK activity, and index.

  6. Natural killer cells in hepatitis B virus infection.

    PubMed

    Wu, Shao-fei; Wang, Wen-jing; Gao, Yue-qiu

    2015-01-01

    Natural killer cells are a unique type of lymphocytes with cytotoxic capacity, and play important roles against tumors and infections. Recently, natural killer cells have been increasingly valued in their effects in hepatitis B virus infection. Since hepatitis B virus is not cytopathic, the subsequent antiviral immune responses of the host are responsible for sustaining the liver injury, which may result in cirrhosis and even hepatocellular carcinoma. Many studies have confirmed that natural killer cells participate in anti-hepatitis B virus responses both in the early phase after infection and in the chronic phase via cytolysis, degranulation, and cytokine secretion. However, natural killer cells play dichotomic roles: they exert antiviral and immunoregulatory functions whilst contribute to the pathogenesis of liver injury. Here, we review the roles of natural killer cells in hepatitis B virus infection, introducing novel therapeutic strategies for controlling hepatitis B virus infection via the modulation of natural killer cells.

  7. Modeling Natural Killer Cell Targeted Immunotherapies

    PubMed Central

    Lopez-Lastra, Silvia; Di Santo, James P.

    2017-01-01

    Animal models have extensively contributed to our understanding of human immunobiology and to uncover the underlying pathological mechanisms occurring in the development of diseases. However, mouse models do not reproduce the genetic and molecular complexity inherent in human disease conditions. Human immune system (HIS) mouse models that are susceptible to human pathogens and can recapitulate human hematopoiesis and tumor immunobiology provide one means to bridge the interspecies gap. Natural killer cells are the founding member of the innate lymphoid cell family. They exert a rapid and strong immune response against tumor and pathogen-infected cells. Their antitumor features have long been exploited for therapeutic purposes in the context of cancer. In this review, we detail the development of highly immunodeficient mouse strains and the models currently used in cancer research. We summarize the latest improvements in adoptive natural killer (NK) cell therapies and the development of novel NK cell sources. Finally, we discuss the advantages of HIS mice to study the interactions between human NK cells and human cancers and to develop new therapeutic strategies.

  8. Natural killer T cell based Immunotherapy

    PubMed Central

    Subrahmanyam, Priyanka B.; Sun, Wenji; East, James E.; Li, Junxin; Webb, Tonya J.

    2013-01-01

    Natural killer T (NKT) cells play an important immunoregulatory role and are thought to bridge the innate and adaptive immune responses. Following activation through cognate interactions with lipid antigen presented in the context of CD1d molecules, NKT cells rapidly produce a plethora of cytokines and can also mediate cytotoxicity. Due to their potent effector functions, extensive research has been performed to increase our understanding on how to effectively modulate these cells. In fact, NKT cell agonists have been used as vaccine adjuvants to enhance antigen specific T and B cell responses to infections and malignancy. In this review, we will focus on recent advances in NKT cell-based vaccination strategies. Given the role that NKT cells play in autoimmune disease, infectious diseases, cancer, transplant immunology and dermatology, it is important to understand how to effectively guide their effector functions in order to develop novel immunotherapeutic strategies. PMID:24089657

  9. Natural killer cells in inflammatory heart disease.

    PubMed

    Ong, SuFey; Rose, Noel R; Čiháková, Daniela

    2017-02-01

    Despite of a multitude of excellent studies, the regulatory role of natural killer (NK) cells in the pathogenesis of inflammatory cardiac disease is greatly underappreciated. Clinical abnormalities in the numbers and functions of NK cells are observed in myocarditis and inflammatory dilated cardiomyopathy (DCMi) as well as in cardiac transplant rejection [1-6]. Because treatment of these disorders remains largely symptomatic in nature, patients have little options for targeted therapies [7,8]. However, blockade of NK cells and their receptors can protect against inflammation and damage in animal models of cardiac injury and inflammation. In these models, NK cells suppress the maturation and trafficking of inflammatory cells, alter the local cytokine and chemokine environments, and induce apoptosis in nearby resident and hematopoietic cells [1,9,10]. This review will dissect each protective mechanism employed by NK cells and explore how their properties might be exploited for their therapeutic potential.

  10. Natural killer cells: In health and disease.

    PubMed

    Mandal, Arundhati; Viswanathan, Chandra

    2015-06-01

    Natural killer (NK) cells constitute our bodies' frontline defense system, guarding against tumors and launching attacks against infections. The activities of NK cells are regulated by the interaction of various receptors expressed on their surfaces with cell surface ligands. While the role of NK cells in controlling tumor activity is relatively clear, the fact that they are also linked to various other disease conditions is now being highlighted. Here, we present an overview of the role of NK cells during normal body state as well as under diseased state. We discuss the possible utilization of these powerful cells as immunotherapeutic agents in combating diseases such as asthma, autoimmune diseases, and HIV-AIDS. This review also outlines current challenges in NK cell therapy.

  11. Regulation of Murine Natural Killer Cell Development

    PubMed Central

    Goh, Wilford; Huntington, Nicholas D.

    2017-01-01

    Natural killer (NK) cells are effector lymphocytes of the innate immune system that are known for their ability to kill transformed and virus-infected cells. NK cells originate from hematopoietic stem cells in the bone marrow, and studies on mouse models have revealed that NK cell development is a complex, yet tightly regulated process, which is dependent on both intrinsic and extrinsic factors. The development of NK cells can be broadly categorized into two phases: lineage commitment and maturation. Efforts to better define the developmental framework of NK cells have led to the identification of several murine NK progenitor populations and mature NK cell subsets, each defined by a varied set of cell surface markers. Nevertheless, the relationship between some of these NK cell subsets remains to be determined. The classical approach to studying both NK cell development and function is to identify the transcription factors involved and elucidate the mechanistic action of each transcription factor. In this regard, recent studies have provided further insight into the mechanisms by which transcription factors, such as ID2, FOXO1, Kruppel-like factor 2, and GATA-binding protein 3 regulate various aspects of NK cell biology. It is also becoming evident that the biology of NK cells is not only transcriptionally regulated but also determined by epigenetic alterations and posttranscriptional regulation of gene expression by microRNAs. This review summarizes recent progress made in NK development, focusing primarily on transcriptional regulators and their mechanistic actions. PMID:28261203

  12. Revving up Natural Killer Cells and Cytokine-Induced Killer Cells Against Hematological Malignancies

    PubMed Central

    Pittari, Gianfranco; Filippini, Perla; Gentilcore, Giusy; Grivel, Jean-Charles; Rutella, Sergio

    2015-01-01

    Natural killer (NK) cells belong to innate immunity and exhibit cytolytic activity against infectious pathogens and tumor cells. NK-cell function is finely tuned by receptors that transduce inhibitory or activating signals, such as killer immunoglobulin-like receptors, NK Group 2 member D (NKG2D), NKG2A/CD94, NKp46, and others, and recognize both foreign and self-antigens expressed by NK-susceptible targets. Recent insights into NK-cell developmental intermediates have translated into a more accurate definition of culture conditions for the in vitro generation and propagation of human NK cells. In this respect, interleukin (IL)-15 and IL-21 are instrumental in driving NK-cell differentiation and maturation, and hold great promise for the design of optimal NK-cell culture protocols. Cytokine-induced killer (CIK) cells possess phenotypic and functional hallmarks of both T cells and NK cells. Similar to T cells, they express CD3 and are expandable in culture, while not requiring functional priming for in vivo activity, like NK cells. CIK cells may offer some advantages over other cell therapy products, including ease of in vitro propagation and no need for exogenous administration of IL-2 for in vivo priming. NK cells and CIK cells can be expanded using a variety of clinical-grade approaches, before their infusion into patients with cancer. Herein, we discuss GMP-compliant strategies to isolate and expand human NK and CIK cells for immunotherapy purposes, focusing on clinical trials of adoptive transfer to patients with hematological malignancies. PMID:26029215

  13. Revving up Natural Killer Cells and Cytokine-Induced Killer Cells Against Hematological Malignancies.

    PubMed

    Pittari, Gianfranco; Filippini, Perla; Gentilcore, Giusy; Grivel, Jean-Charles; Rutella, Sergio

    2015-01-01

    Natural killer (NK) cells belong to innate immunity and exhibit cytolytic activity against infectious pathogens and tumor cells. NK-cell function is finely tuned by receptors that transduce inhibitory or activating signals, such as killer immunoglobulin-like receptors, NK Group 2 member D (NKG2D), NKG2A/CD94, NKp46, and others, and recognize both foreign and self-antigens expressed by NK-susceptible targets. Recent insights into NK-cell developmental intermediates have translated into a more accurate definition of culture conditions for the in vitro generation and propagation of human NK cells. In this respect, interleukin (IL)-15 and IL-21 are instrumental in driving NK-cell differentiation and maturation, and hold great promise for the design of optimal NK-cell culture protocols. Cytokine-induced killer (CIK) cells possess phenotypic and functional hallmarks of both T cells and NK cells. Similar to T cells, they express CD3 and are expandable in culture, while not requiring functional priming for in vivo activity, like NK cells. CIK cells may offer some advantages over other cell therapy products, including ease of in vitro propagation and no need for exogenous administration of IL-2 for in vivo priming. NK cells and CIK cells can be expanded using a variety of clinical-grade approaches, before their infusion into patients with cancer. Herein, we discuss GMP-compliant strategies to isolate and expand human NK and CIK cells for immunotherapy purposes, focusing on clinical trials of adoptive transfer to patients with hematological malignancies.

  14. The evolution of natural killer cell receptors.

    PubMed

    Carrillo-Bustamante, Paola; Keşmir, Can; de Boer, Rob J

    2016-01-01

    Natural killer (NK) cells are immune cells that play a crucial role against viral infections and tumors. To be tolerant against healthy tissue and simultaneously attack infected cells, the activity of NK cells is tightly regulated by a sophisticated array of germline-encoded activating and inhibiting receptors. The best characterized mechanism of NK cell activation is "missing self" detection, i.e., the recognition of virally infected or transformed cells that reduce their MHC expression to evade cytotoxic T cells. To monitor the expression of MHC-I on target cells, NK cells have monomorphic inhibitory receptors which interact with conserved MHC molecules. However, there are other NK cell receptors (NKRs) encoded by gene families showing a remarkable genetic diversity. Thus, NKR haplotypes contain several genes encoding for receptors with activating and inhibiting signaling, and that vary in gene content and allelic polymorphism. But if missing-self detection can be achieved by a monomorphic NKR system why have these polygenic and polymorphic receptors evolved? Here, we review the expansion of NKR receptor families in different mammal species, and we discuss several hypotheses that possibly underlie the diversification of the NK cell receptor complex, including the evolution of viral decoys, peptide sensitivity, and selective MHC-downregulation.

  15. Compromised natural killer cells in pulmonary embolism

    PubMed Central

    Zhang, Xiaoyu; Wang, Qiang; Shen, Yuqin; Song, Haoming; Gong, Zhu; Wang, Lemin

    2015-01-01

    Objective: The high morbidity, mortality and misdiagnosis rate render pulmonary embolism (PE) as a worldwide health problem. However, the etiology and pathogenesis of this disease have not been well characterized. Increasing studies indicate infection and immunity play a crucial role in PE. Natural killer (NK) cells act as a bridge between the innate immune and acquired immune. This study aimed to investigate the possible function of NK cells in PE. Methods: Human cDNA microarray analysis was employed to detect genes associated with NK cells in peripheral blood mononuclear cells (PBMCs). Random variance model corrected t-test was used for statistical analysis of differential gene expression. Flow cytometry was performed to detect the CD16+CD56+ NK cells. Results: In the present study, based on gene expression microarray analysis, we showed four inhibitory receptors (KLRB1, KLRD1, KLRF1, KLRG1) and four activating receptors (KLRC1, KLRC3, KLRK1 and NCR1) on NK cells were remarkably down-regulated and the cytological experiment demonstrated the proportion of CD16+CD56+ NK cells among PBMCs decreased in the PE group. Conclusions: We confirmed the presence of reduced expression of critical activating as well as inhibitory NK cell receptors and low proportion of CD16+CD56+ NK cells in PE. The consistence between genomic and cytological examination suggests compromised NK cells may contribute to the pathogenesis of PE. PMID:26339393

  16. Manufacturing Natural Killer Cells as Medicinal Products

    PubMed Central

    Chabannon, Christian; Mfarrej, Bechara; Guia, Sophie; Ugolini, Sophie; Devillier, Raynier; Blaise, Didier; Vivier, Eric; Calmels, Boris

    2016-01-01

    Natural Killer (NK) cells are innate lymphoid cells (ILC) with cytotoxic and regulatory properties. Their functions are tightly regulated by an array of inhibitory and activating receptors, and their mechanisms of activation strongly differ from antigen recognition in the context of human leukocyte antigen presentation as needed for T-cell activation. NK cells thus offer unique opportunities for new and improved therapeutic manipulation, either in vivo or in vitro, in a variety of human diseases, including cancers. NK cell activity can possibly be modulated in vivo through direct or indirect actions exerted by small molecules or monoclonal antibodies. NK cells can also be adoptively transferred following more or less substantial modifications through cell and gene manufacturing, in order to empower them with new or improved functions and ensure their controlled persistence and activity in the recipient. In the present review, we will focus on the technological and regulatory challenges of NK cell manufacturing and discuss conditions in which these innovative cellular therapies can be brought to the clinic. PMID:27895646

  17. Manufacturing Natural Killer Cells as Medicinal Products.

    PubMed

    Chabannon, Christian; Mfarrej, Bechara; Guia, Sophie; Ugolini, Sophie; Devillier, Raynier; Blaise, Didier; Vivier, Eric; Calmels, Boris

    2016-01-01

    Natural Killer (NK) cells are innate lymphoid cells (ILC) with cytotoxic and regulatory properties. Their functions are tightly regulated by an array of inhibitory and activating receptors, and their mechanisms of activation strongly differ from antigen recognition in the context of human leukocyte antigen presentation as needed for T-cell activation. NK cells thus offer unique opportunities for new and improved therapeutic manipulation, either in vivo or in vitro, in a variety of human diseases, including cancers. NK cell activity can possibly be modulated in vivo through direct or indirect actions exerted by small molecules or monoclonal antibodies. NK cells can also be adoptively transferred following more or less substantial modifications through cell and gene manufacturing, in order to empower them with new or improved functions and ensure their controlled persistence and activity in the recipient. In the present review, we will focus on the technological and regulatory challenges of NK cell manufacturing and discuss conditions in which these innovative cellular therapies can be brought to the clinic.

  18. Immunosurveillance of senescent cancer cells by natural killer cells

    PubMed Central

    Iannello, Alexandre; Raulet, David H

    2014-01-01

    We recently dissected how senescent tumors can trigger complementing signaling pathways that mobilize natural killer (NK) cells to eliminate malignant cells. In addition to cell-intrinsic effects on proliferation, senescence induces the production of chemokine (C-C motif) ligand 2 (CCL2), which recruits NK cells to mediate direct tumoricidal effects. Hence, senescence activates a cancer cell-extrinsic oncosuppression program. PMID:24800169

  19. The role of natural killer cells in chronic myeloid leukemia

    PubMed Central

    Danier, Anna Carolyna Araújo; de Melo, Ricardo Pereira; Napimoga, Marcelo Henrique; Laguna-Abreu, Maria Theresa Cerávolo

    2011-01-01

    Chronic myeloid leukemia is a neoplasia resulting from a translocation between chromosomes 9 and 22 producing the BCR-ABL hybrid known as the Philadelphia chromosome (Ph). In chronic myeloid leukemia a proliferation of malignant myeloid cells occurs in the bone marrow due to excessive tyrosine kinase activity. In order to maintain homeostasis, natural killer cells, by means of receptors, identify the major histocompatibility complex on the surface of tumor cells and subsequently induce apoptosis. The NKG2D receptor in the natural killer cells recognizes the transmembrane proteins related to major histocompatibility complex class I chain-related genes A and B (MICA and MICB), and it is by the interaction between NKG2D and MICA that natural killer cells exert cytotoxic activity against chronic myeloid leukemia tumor cells. However, in the case of chronic exposure of the NKG2D receptor, the MICA ligand releases soluble proteins called sMICA from the tumor cell surface, which negatively modulate NKG2D and enable the tumor cells to avoid lysis mediated by the natural killer cells. Blocking the formation of sMICA may be an important antitumor strategy. Treatment using tyrosine kinase inhibitors induces modulation of NKG2DL expression, which could favor the activity of the natural killer cells. However this mechanism has not been fully described in chronic myeloid leukemia. In the present study, we analyze the role of natural killer cells to reduce proliferation and in the cellular death of tumor cells in chronic myeloid leukemia. PMID:23049299

  20. Natural killer cells and their receptors in multiple sclerosis.

    PubMed

    Kaur, Gurman; Trowsdale, John; Fugger, Lars

    2013-09-01

    The immune system has crucial roles in the pathogenesis of multiple sclerosis. While the adaptive immune cell subsets, T and B cells, have been the main focus of immunological research in multiple sclerosis, it is now important to realize that the innate immune system also has a key involvement in regulating autoimmune responses in the central nervous system. Natural killer cells are innate lymphocytes that play vital roles in a diverse range of infections. There is evidence that they influence a number of autoimmune conditions. Recent studies in multiple sclerosis and its murine model, experimental autoimmune encephalomyelitis, are starting to provide some understanding of the role of natural killer cells in regulating inflammation in the central nervous system. Natural killer cells express a diverse range of polymorphic cell surface receptors, which interact with polymorphic ligands; this interaction controls the function and the activation status of the natural killer cell. In this review, we discuss evidence for the role of natural killer cells in multiple sclerosis and experimental autoimmune encephalomyelitis. We consider how a change in the balance of signals received by the natural killer cell influences its involvement in the ensuing immune response, in relation to multiple sclerosis.

  1. The role of natural killer cells in periodontitis.

    PubMed

    Wilensky, Asaf; Chaushu, Stella; Shapira, Lior

    2015-10-01

    Periodontitis is the most common chronic inflammatory disease of humans. The microbial etiology of the disease is well documented, as is the major role of the host response in disease pathogenesis. As natural killer cells are one of the most important components of innate immunity against bacteria and viruses, they can be expected to act as major players in the development of the disease. Through direct interaction with periodontal pathogens, natural killer cells produce pro-inflammatory cytokines that subsequently may lead to tissue destruction. Indeed, using a murine periodontitis model, such mechanisms have been shown to be involved in bacterial-induced alveolar bone loss. In the present review we document the available literature and evidence base regarding the origin, biology and characteristics of natural killer cells, and their interactions with periodontal pathogens. The potential role of natural killer cells in periodontal pathogenesis and the mechanisms involved are discussed.

  2. Natural killer cells, killer immunoglobulin-like receptors and human leucocyte antigen class I in disease

    PubMed Central

    Boyton, R J; Altmann, D M

    2007-01-01

    Natural killer cells constitute a potent, rapid part of the innate immune response to infection or transformation, and also generate a link to priming of adaptive immunity. Their function can encompass direct cytotoxicity as well as the release of cytokines and chemokines. In humans, a major component of natural killer (NK) cell target recognition depends mainly on the surveillance of human leucocyte antigen (HLA) class I molecules by killer immunoglobulin-like receptors (KIR). Different KIR can transmit inhibitory or activatory signals to the cell, and effector function is considered to result from the balance of these contributing signals. The regulation of NK cell responses depends on a number of variables: KIR genotype, HLA genotype, heterozygosity versus homozygosity for these, whether there is cognate recognition between the HLA and KIR products carried by an individual, clonal variation between individual NK cells in KIR expression, and the specific modulation of HLA expression by infection, transformation or peptide binding. Different HLA/KIR genotypes can impart different thresholds of activation to the NK cell repertoire and such genotypic variation has been found to confer altered risk in a number of diseases including human immunodeficiency virus (HIV) susceptibility and progression, hepatitis C virus clearance, idiopathic bronchiectasis, autoimmunity and cancer. PMID:17521317

  3. Radiosensitivity of human natural killer cells: Binding and cytotoxic activities of natural killer cell subsets

    SciTech Connect

    Rana, R.; Vitale, M.; Mazzotti, G.; Manzoli, L.; Papa, S. )

    1990-10-01

    The sensitivity of human natural killer (NK) cell activities (both binding and killing) after exposure of peripheral blood mononuclear cells to different doses of gamma radiation was studied. A panel of monoclonal antibodies was used to identify the NK and T-lymphocyte subsets and to evaluate their radiosensitivity. Peripheral blood mononuclear cells were irradiated with low (2-6 Gy) and high (10-30 Gy) doses and NK cell binding and cytotoxic activity against K562 target cells were studied after 3 h and 48 h in culture. The primary damage to NK cell activity was identified at the postbinding level and affected mainly the lytic machinery. After 48 h culture postirradiation, an overall depression of cytotoxic activity was observed, but ionizing radiation produced either a selection of the more cytotoxic NK cell subsets, which therefore might be considered more resistant to radiation damage than the less cytotoxic NK cells, or a long-term stimulation of cytotoxic activity in surviving cells.

  4. Suppression of newborn natural killer cell activity by prostaglandin E2

    SciTech Connect

    Milch, P.O.; Salvatore, W.; Luft, B.; Baker, D.A.

    1988-10-01

    The effect of prostaglandin E2 on natural killer cell activity of cord blood was examined. Natural killer cell activity, determined by chromium 51 release, was significantly reduced after prostaglandin E2 (1 microgram/ml) treatment. Prostaglandin E2 has been found to enhance the cellular spread of herpesvirus. Thus prostaglandins may enhance viral infections indirectly by suppressing natural killer cell activity.

  5. In vivo generation of decidual natural killer cells from resident hematopoietic progenitors.

    PubMed

    Chiossone, Laura; Vacca, Paola; Orecchia, Paola; Croxatto, Daniele; Damonte, Patrizia; Astigiano, Simonetta; Barbieri, Ottavia; Bottino, Cristina; Moretta, Lorenzo; Mingari, Maria Cristina

    2014-03-01

    Decidual natural killer cells accumulate at the fetal-maternal interface and play a key role in a successful pregnancy. However, their origin is still unknown. Do they derive from peripheral natural killer cells recruited in decidua or do they represent a distinct population that originates in situ? Here, we identified natural killer precursors in decidua and uterus of pregnant mice. These precursors underwent rapid in situ differentiation and large proportions of proliferating immature natural killer cells were present in decidua and uterus as early as gestation day 4.5. Here, we investigated the origin of decidua- and uterus-natural killer cells by performing transfer experiments of peripheral mature natural killer cells or precursors from EGFP(+) mice. Results showed that mature natural killer cells did not migrate into decidua and uterus, while precursors were recruited in these organs and differentiated towards natural killer cells. Moreover, decidua- and uterus-natural killer cells displayed unique phenotypic and functional features. They expressed high levels of the activating Ly49D receptor in spite of their immature phenotype. In addition, decidua- and uterus-natural killer cells were poorly cytolytic and produced low amounts of IFN-γ, while they released factors (GM-CSF, VEGF, IP-10) involved in neo-angiogenesis and tissue remodeling. Our data reveal in situ generation of decidual natural killer cells and provide an important correlation between mouse and human decidual natural killer cells, allowing further studies to be carried out on their role in pregnancy-related diseases.

  6. Interferon induces natural killer cell blastogenesis in vivo

    NASA Technical Reports Server (NTRS)

    Biron, C. A.; Sonnenfeld, G.; Welsh, R. M.

    1984-01-01

    Interferon (IFN), types beta and gamma, and IFN inducers polyinosinic-polycytidylic acid and lymphocytic choriomeningitis virus, all stimulated the generation of blast-natural killer (NK) cells in mouse spleens, Blast-NK cells were characterized on the basis of size, 3H-thymidine uptake, and NK cell markers These data indicate that in addition to augmenting NK cell-mediated lysis, IFN may regulate NK cell proliferation in vivo.

  7. Effect of spaceflight on natural killer cell activity

    NASA Technical Reports Server (NTRS)

    Rykova, Marina P.; Sonnenfeld, Gerald; Lesniak, A. T.; Taylor, Gerald R.; Meshkov, Dimitrii O.; Mandel, Adrian D.; Medvedev, Andrei E.; Berry, Wallace D.; Fuchs, Boris B.; Konstantinova, Irina V.

    1992-01-01

    The effects of spaceflight on immune cell function were determined in rats flown on Cosmos 2044. Control groups included vivarium, synchronous, and antiorthostatically suspended rats. The ability of natural killer cells to lyse two different target cell lines was determined. Spleen and bone marrow cells obtained from flight rats showed significantly inhibited cytotoxicity for YAC-1 target cells compared with cells from synchronous control rats. This could have been due to exposure of the rats to microgravity. Antiorthostatic suspension did not affect the level of cytotoxicity from spleen cells of suspended rats for YAC-1 cells. On the other hand, cells from rats flown in space showed no significant differences from vivarium and synchronous control rats in cytotoxicity for K-562 target cells. Binding of natural killer cells to K-562 target cells was unaffected by spaceflight. Antiorthostatic suspension resulted in higher levels of cytotoxicity from spleen cells for Cr-51-labeled K-562 cells. The results indicate differential effects of spaceflight on function of natural killer cells. This shows that spaceflight has selective effects on the immune response.

  8. Impaired cytotoxicity associated with defective natural killer cell differentiation in myelodysplastic syndromes.

    PubMed

    Hejazi, Maryam; Manser, Angela R; Fröbel, Julia; Kündgen, Andrea; Zhao, Xiaoyi; Schönberg, Kathrin; Germing, Ulrich; Haas, Rainer; Gattermann, Norbert; Uhrberg, Markus

    2015-05-01

    Natural killer cells are well known to mediate anti-leukemic responses in myeloid leukemia but their role in myelodysplastic syndromes is not well understood. Here, in a cohort of newly diagnosed patients (n=75), widespread structural and functional natural killer cell defects were identified. One subgroup of patients (13%) had a selective deficiency of peripheral natural killer cells (count <10/mm(3) blood) with normal frequencies of T and natural killer-like T cells. Natural killer cell-deficient patients were predominantly found in high-risk subgroups and deficiency of these cells was significantly associated with poor prognosis. In the second subgroup, comprising the majority of patients (76%), natural killer cells were present but exhibited poor cytotoxicity. The defect was strongly associated with reduced levels of perforin and granzyme B. Notably, natural killer cell function and arming of cytotoxic granules could be fully reconstituted by in vitro stimulation. Further phenotypic analysis of these patients revealed an immature natural killer cell compartment that was biased towards CD56(bright) cells. The residual CD56(dim) cells exhibited a significant increase of the unlicensed NKG2A(-)KIR(-) subset and a striking reduction in complexity of the repertoire of killer cell immunoglobulin-like receptors. Taken together, these results suggest that the widespread defects in natural killer cell function occurring in patients with myelodysplastic syndromes are mostly due to either unsuccessful or inefficient generation of mature, functionally competent natural killer cells, which might contribute to disease progression through impaired immune surveillance.

  9. Uterine natural killer cell partnerships in early mouse decidua basalis.

    PubMed

    Felker, Allison M; Croy, B Anne

    2016-10-01

    The decidua basalis of developing mouse implantation sites is highly enriched in CD45(+) leukocytes. In intact, syngeneically mated C57BL/6 decidua basalis examined at gestation day 8.5 by whole-mount in situ immunohistochemistry, leukocyte, but not trophoblast, conjugations were reported. Nothing is known regarding time course, frequency, composition, or importance of physiologic decidual CD45(+) cell pairing. In this study, we confirmed the presence of anti-CD54(+)/anti-CD11a(+) immune synapses in CD45(+) decidual cell conjugates and characterized their cellular heterogeneity. Conjugated cell pairs were virtually absent before implantation (virgin and gestation days 3.5 and 4.5), were infrequent at gestation day 5.5, but involved 19% of all CD45(+) cells by gestation day 8.5, then declined. By gestation day 8.5, almost all CD45(+) cells coexpressed CD31, and 2 CD45(+)CD31(+) cells composed most conjugates. Conjugation partners were defined for 2 nonoverlapping uterine natural killer cell subsets (Ly49C/I (+)/Dolichos biflorus agglutinin lectin(-) and Ly49C/I(-)/Dolichos biflorus agglutinin lectin(+)). Ly49C/I(+) uterine natural killer cells were the major subset from before mating up to gestation day 6.5. At gestation day 5.5/6.5, uterine natural killer cell conjugates involving Ly49C/I (+) cells were more abundant. By gestation day 8.5/9.5, Dolichos biflorus agglutinin lectin(+) uterine natural killer cells were the dominant subset with Dolichos biflorus agglutinin lectin(+)/Dolichos biflorus agglutinin lectin(+) homologous conjugates and Dolichos biflorus agglutinin lectin(+)/Dolichos biflorus agglutinin lectin(-) heterologous conjugates dominating uterine natural killer cell pairings. At gestation day 6.5, both Ly49C/I(+)/CD45(+) and Dolichos biflorus agglutinin lectin(+)/CD45(+) heterologous conjugate pairs strongly engaged antigen-presenting cells (CD11c(+), CD68(+), or major histocompatibility complex class II(+)). By gestation day 8.5, dominant partners of

  10. Immune Surveillance of Unhealthy Cells by Natural Killer cells

    PubMed Central

    Iannello, Alexandre; Raulet, David H.

    2014-01-01

    Pathogenic and oncogenic insults result in the induction of intrinsic defense mechanisms such as cell death pathways and senescence, and extrinsic pathways that mobilize immune responses to destroy unhealthy cells. Both protective mechanisms presumably evolved to limit the damage these insults could inflict on the host. After viral infection or malignant transformation, unhealthy cells can be directly sensed by natural killer (NK) and some T cells via the activating receptor NKG2D. All NK cells and subsets of T cells express NKG2D. The NKG2D/ligand system represents a major recognition mechanism for detection and elimination of unhealthy cells. Here we discuss different pathways, including stress pathways, that are responsible for cell surface display of ligands for NKG2D, which are self-proteins that are minimally expressed by normal cells. We also discuss new results indicating that efficient elimination of tumor cells that display NKG2D ligands depends on the recruitment of NK cells and other immune cells to the tumor, which can be regulated by distinct mechanisms, including the p53-dependent production of chemokines by senescent tumors. The cooperative effect of pathways that induce the display NKG2D ligands and distinct pathways that mobilize immune cells provides a higher degree of specificity to the NK cell response. PMID:24135717

  11. Natural Killer Cells to the Attack: Combination Therapy against Neuroblastoma.

    PubMed

    Zenarruzabeitia, Olatz; Vitallé, Joana; Astigarraga, Itziar; Borrego, Francisco

    2017-02-01

    TGFβ in the tumor microenvironment diminishes natural killer (NK) cell-mediated anti-disialoganglioside (anti-GD2) mAb elimination of neuroblastoma cells. Consequently, blockade of TGFβ signaling with galunisertib in combination with the anti-GD2 mAb dinutuximab plus adoptively transferred NK cells is a promising tool for the treatment of neuroblastoma. Clin Cancer Res; 23(3); 615-7. ©2016 AACRSee related article by Tran et al., p. 804.

  12. Newtonian cell interactions shape natural killer cell education.

    PubMed

    Goodridge, Jodie P; Önfelt, Björn; Malmberg, Karl-Johan

    2015-09-01

    Newton's third law of motion states that for every action on a physical object there is an equal and opposite reaction. The dynamic change in functional potential of natural killer (NK) cells during education bears many features of such classical mechanics. Cumulative physical interactions between cells, under a constant influence of homeostatic drivers of differentiation, lead to a reactive spectrum that ultimately shapes the functionality of each NK cell. Inhibitory signaling from an array of self-specific receptors appear not only to suppress self-reactivity but also aid in the persistence of effector functions over time, thereby allowing the cell to gradually build up a functional potential. Conversely, the frequent non-cytolytic interactions between normal cells in the absence of such inhibitory signaling result in continuous stimulation of the cells and attenuation of effector function. Although an innate cell, the degree to which the fate of the NK cell is predetermined versus its ability to adapt to its own environment can be revealed through a Newtonian view of NK cell education, one which is both chronological and dynamic. As such, the development of NK cell functional diversity is the product of qualitatively different physical interactions with host cells, rather than simply the sum of their signals or an imprint based on intrinsically different transcriptional programs.

  13. Efficient killing of radioresistant breast cancer cells by cytokine-induced killer cells.

    PubMed

    Guo, Qingming; Zhu, Danni; Bu, Xiaocui; Wei, Xiaofang; Li, Changyou; Gao, Daiqing; Wei, Xiaoqiang; Ma, Xuezhen; Zhao, Peng

    2017-03-01

    Recurrence of breast cancer after radiotherapy may be partly explained by the presence of radioresistant cells. Thus, it would be desirable to develop an effective therapy against radioresistant cells. In this study, we demonstrated the intense antitumor activity of cytokine-induced killer cells against MCF-7 and radioresistant MCF-7 cells, as revealed by cytokine-induced killer-mediated cytotoxicity, tumor cell proliferation, and tumor invasion. Radioresistant MCF-7 cells were more susceptible to cytokine-induced killer cell killing. The stronger cytotoxicity of cytokine-induced killer cells against radioresistant MCF-7 cells was dependent on the expression of major histocompatibility complex class I polypeptide-related sequence A/B on radioresistant MCF-7 cells after exposure of cytokine-induced killer cells to sensitized targets. In addition, we demonstrated that cytokine-induced killer cell treatment sensitized breast cancer cells to chemotherapy via the downregulation of TK1, TYMS, and MDR1. These results indicate that cytokine-induced killer cell treatment in combination with radiotherapy and/or chemotherapy may induce synergistic antitumor activities and represent a novel strategy for breast cancer.

  14. Ozone exposed epithelial cells modify cocultured natural killer cells

    PubMed Central

    Müller, Loretta; Brighton, Luisa E.

    2013-01-01

    Ozone (O3) causes significant adverse health effects worldwide. Nasal epithelial cells (NECs) are among the first sites within the respiratory system to be exposed to inhaled air pollutants. They recruit, activate, and interact with immune cells via soluble mediators and direct cell-cell contacts. Based on our recent observation demonstrating the presence of natural killer (NK) cells in nasal lavages, the goal of this study was to establish a coculture model of NECs and NK cells and examine how exposure to O3 modifies this interaction. Flow cytometry analysis was used to assess immunophenotypes of NK cells cocultured with either air- or O3-exposed NECs. Our data show that coculturing NK cells with O3-exposed NECs decreased intracellular interferon-γ (IFN-γ), enhanced, albeit not statistically significant, IL-4, and increased CD16 expression on NK cells compared with air controls. Additionally, the cytotoxicity potential of NK cells was reduced after coculturing with O3-exposed NECs. To determine whether soluble mediators released by O3-exposed NECs caused this shift, apical and basolateral supernatants of air- and O3-exposed NECs were used to stimulate NK cells. While the conditioned media of O3-exposed NECs alone did not reduce intracellular IFN-γ, O3 enhanced the expression of NK cell ligands ULBP3 and MICA/B on NECs. Blocking ULBP3 and MICA/B reversed the effects of O3-exposed NECs on IFN-γ production in NK cells. Taken together, these data showed that interactions between NECs and NK cells in the context of O3 exposure changes NK cell activity via direct cell-cell interactions and is dependent on ULBP3/MICA/B expressed on NECs. PMID:23241529

  15. Location and cellular stages of natural killer cell development.

    PubMed

    Yu, Jianhua; Freud, Aharon G; Caligiuri, Michael A

    2013-12-01

    The identification of distinct tissue-specific natural killer (NK) cell populations that apparently mature from local precursor populations has brought new insight into the diversity and developmental regulation of this important lymphoid subset. NK cells provide a necessary link between the early (innate) and late (adaptive) immune responses to infection. Gaining a better understanding of the processes that govern NK cell development should allow us to harness better NK cell functions in multiple clinical settings, as well as to gain further insight into how these cells undergo malignant transformation. In this review, we summarize recent advances in understanding sites and cellular stages of NK cell development in humans and mice.

  16. Natural Killer Cell Lymphoma: A Case with Classification Dilemma.

    PubMed

    Jitani, Ankit Kumar; Khonglah, Yookarin; Kumar, Ritesh; Gogoi, Bidyut Bikash; Jajodia, Ekta

    2016-02-01

    Non-Hodgkins lymphoma of the Natural Killer (NK) cell type is rare. World Health Organisation recognises 3 NK-cell phenotypic entities; extranodal NK/T cell lymphoma, nasal type (ENK/TL); aggressive NK cell leukaemia (ANKL); and chronic lymphoproliferative disorders of NK cells (CLPD-NK) which is classified as a provisional entity. Though specific clinical, morphological and immunophenotypic criteria have been laid down to diagnose these conditions there may however, be considerable variations in the clinical presentation making diagnosis difficult. We present a case with contrasting clinical and haematopathological findings posing difficulty in its diagnosis and classification, and despite the aggressive presentation showing favourable response to treatment.

  17. Natural Killer Cell Lymphoma: A Case with Classification Dilemma

    PubMed Central

    Jitani, Ankit Kumar; Kumar, Ritesh; Gogoi, Bidyut Bikash; Jajodia, Ekta

    2016-01-01

    Non-Hodgkins lymphoma of the Natural Killer (NK) cell type is rare. World Health Organisation recognises 3 NK-cell phenotypic entities; extranodal NK/T cell lymphoma, nasal type (ENK/TL); aggressive NK cell leukaemia (ANKL); and chronic lymphoproliferative disorders of NK cells (CLPD-NK) which is classified as a provisional entity. Though specific clinical, morphological and immunophenotypic criteria have been laid down to diagnose these conditions there may however, be considerable variations in the clinical presentation making diagnosis difficult. We present a case with contrasting clinical and haematopathological findings posing difficulty in its diagnosis and classification, and despite the aggressive presentation showing favourable response to treatment. PMID:27042473

  18. Isolation and identification of normal killer cells from Syrian hamsters

    SciTech Connect

    Matveeva, V.A.; Klyuchareva, T.E.

    1986-09-01

    This paper gives data on isolation of normal killer cells from the blood and various tissues of Syrian hamsters in a Percoll density gradient and their identification on the basis of morphologic criteria and cytotoxic activity (CTA). CTA of the isolated cells was studied in the cytotoxic test with target cells of a human MOLT-4 thymoma cell labeled with /sup 51/Cr. Isolation of large granular lymphocytes from blood, spleen, and bone marrow of Syrian hamsters in Percoll density gradient is shown in the results of five experiments used for cells of each type.

  19. Regulatory Functions of Natural Killer Cells in Multiple Sclerosis

    PubMed Central

    Gross, Catharina C.; Schulte-Mecklenbeck, Andreas; Wiendl, Heinz; Marcenaro, Emanuela; Kerlero de Rosbo, Nicole; Uccelli, Antonio; Laroni, Alice

    2016-01-01

    There is increasing evidence that natural killer (NK) cells exhibit regulatory features. Among them, CD56bright NK cells have been suggested to play a major role in controlling T cell responses and maintaining homeostasis. Dysfunction in NK cell-mediated regulatory features has been recently described in untreated multiple sclerosis (MS), suggesting a contribution to MS pathogenesis. Moreover, biological disease-modifying treatments effective in MS apparently enhance the frequencies and/or regulatory function of NK cells, further pointing toward an immunoprotective role of NK cells in MS. Here, we summarize the current knowledge on the regulatory functions of NK cells, based on their interactions with other cells belonging to the innate compartment, as well as with adaptive effector cells. We review the more recent data reporting disruption of NK cell/T cell interactions in MS and discuss how disease-modifying treatments for MS affect NK cells. PMID:28066417

  20. Liver natural killer cells: subsets and roles in liver immunity

    PubMed Central

    Peng, Hui; Wisse, Eddie; Tian, Zhigang

    2016-01-01

    The liver represents a frontline immune organ that is constantly exposed to a variety of gut-derived antigens as a result of its unique location and blood supply. With a predominant role in innate immunity, the liver is enriched with various innate immune cells, among which natural killer (NK) cells play important roles in host defense and in maintaining immune balance. Hepatic NK cells were first described as ‘pit cells' in the rat liver in the 1970s. Recent studies of NK cells in mouse and human livers have shown that two distinct NK cell subsets, liver-resident NK cells and conventional NK (cNK) cells, are present in this organ. Here, we review liver NK cell subsets in different species, revisiting rat hepatic pit cells and highlighting recent progress related to resident NK cells in mouse and human livers, and also discuss the dual roles of NK cells in liver immunity. PMID:26639736

  1. Natural killer cells in host defense against veterinary pathogens.

    PubMed

    Shekhar, Sudhanshu; Yang, Xi

    2015-11-15

    Natural Killer (NK) cells constitute a major subset of innate lymphoid cells that do not express the T- and B-cell receptors and play an important role in antimicrobial defense. NK cells not only induce early and rapid innate immune responses, but also communicate with dendritic cells to shape the adaptive immunity, thus bridging innate and adaptive immunity. Although the functional biology of NK cells is well-documented in a variety of infections in humans and mice, their role in protecting domestic animals from infectious agents is only beginning to be understood. In this article, we summarize the current state of knowledge about the contribution of NK cells in pathogen defense in domestic animals, especially cattle and pigs. Understanding the immunobiology of NK cells will translate into strategies to manipulate these cells for preventive and therapeutic purposes.

  2. CAR-T cells are serial killers.

    PubMed

    Davenport, Alexander J; Jenkins, Misty R; Ritchie, David S; Prince, H Miles; Trapani, Joseph A; Kershaw, Michael H; Darcy, Phillip K; Neeson, Paul J

    2015-12-01

    Chimeric antigen receptor (CAR) T cells have enjoyed unprecedented clinical success against haematological malignancies in recent years. However, several aspects of CAR T cell biology remain unknown. We recently compared CAR and T cell receptor (TCR)-based killing in the same effector cell and showed that CAR T cells can not only efficiently kill single tumor targets, they can also kill multiple tumor targets in a sequential manner. Single and serial killing events were not sustained long term due to CAR down-regulation after 20 hours.

  3. Primate-Specific Regulation of Natural Killer Cells

    PubMed Central

    Parham, Peter; Abi-Rached, Laurent; Matevosyan, Lilit; Moesta, Achim K.; Norman, Paul J.; Aguilar, Anastazia M. Older; Guethlein, Lisbeth A.

    2010-01-01

    Summary Natural killer (NK) cells are circulating lymphocytes that function in innate immunity and placental reproduction. Regulating both development and function of NK cells is an array of variable and conserved receptors that interact with major histocompatibility complex (MHC) class I molecules. Families of lectin-like and immunoglobulin-like receptors are determined by genes in the natural killer (NKC) and leukocyte receptor (LRC) complexes, respectively. As a consequence of the strong, varying pressures on the immune and reproductive systems, NK cell receptors and their MHC class I ligands evolve rapidly, are highly diverse, and exhibit dramatic species-specific differences. The variable, polymorphic family of killer cell immunoglobulin-like receptors (KIR) that regulate human NK cell development and function evolved recently, from a single-copy gene during the evolution of simian primates. Our studies of KIR and MHC class I genes in representative species show how these two unlinked but functionally intertwined genetic complexes have co-evolved. In humans, combinations of KIR and HLA class I factors are associated with infectious diseases, including HIV/AIDS, autoimmunity, reproductive success and the outcome of therapeutic transplantation. The extraordinary, and unanticipated, divergence of human NK cell receptors and MHC class I ligands from their mouse counterparts can in part explain the difficulties experienced in finding informative mouse models for human diseases. Non-human primate models have far greater potential, but to realize their promise will first require more complete definition of the genetics and function of KIR and MHC variation in non-human primate species, at a level comparable to that achieved for the human species. PMID:20618586

  4. On The Role of Natural Killer Cells in Neurodegenerative Diseases

    PubMed Central

    Maghazachi, Azzam A.

    2013-01-01

    Natural killer (NK) cells exert important immunoregulatory functions by releasing several inflammatory molecules, such as IFN-γ and members of chemokines, which include CCL3/MIP-1α and CCL4/MIP-1β. These cells also express heptahelical receptors, which are coupled to heterotrimeric G proteins that guide them into inflamed and injured tissues. NK cells have been shown to recognize and destroy transformed cells and virally-infected cells, but their roles in neurodegenerative diseases have not been examined in detail. In this review, I will summarize the effects of NK cells in two neurodegenerative diseases, namely multiple sclerosis and globoid cell leukodystrophy. It is hoped that the knowledge obtained from these diseases may facilitate building rational protocols for treating these and other neurodegenerative or autoimmune diseases using NK cells and drugs that activate them as therapeutic tools. PMID:23430541

  5. Alterations of natural killer cells in traumatic brain injury.

    PubMed

    Kong, Xiao-Dong; Bai, Sheng; Chen, Xin; Wei, Hui-Jie; Jin, Wei-Na; Li, Min-Shu; Yan, Yaping; Shi, Fu-Dong

    2014-12-01

    To investigate the relationship between natural killer (NK) cells and traumatic brain injury (TBI), we tracked an established phenotype of circulating NK cells at several time points in patients with different grades of TBI. In serial peripheral blood samples, NK cells were prospectively measured by flow cytometry of CD3(-) CD56(+) lymphocytes. Compared to healthy controls, TBI patients had reductions in both the percentage and the absolute number of NK cells. Furthermore, the magnitude of NK cell reduction correlated with the degree of TBI severity at several time points. That is, NK cell population size was independently associated with lower Glasgow Coma Scale scores. In addition, at some time points, a positive correlation was found between the NK cell counts and Glasgow Outcome Scale scores. Our results indicate that TBI induces a reduction in the number of NK cells, and the magnitude of the reduction appears to parallel the severity of TBI.

  6. Transcription factor Runx3 regulates interleukin-15-dependent natural killer cell activation.

    PubMed

    Levanon, Ditsa; Negreanu, Varda; Lotem, Joseph; Bone, Karen Rae; Brenner, Ori; Leshkowitz, Dena; Groner, Yoram

    2014-03-01

    Natural killer cells belong to the family of innate lymphoid cells comprising the frontline defense against infected and transformed cells. Development and activation of natural killer cells is highly dependent on interleukin-15 signaling. However, very little is known about the transcription program driving this process. The transcription factor Runx3 is highly expressed in natural killer cells, but its function in these cells is largely unknown. We show that loss of Runx3 impaired interleukin-15-dependent accumulation of mature natural killer cells in vivo and under culture conditions and pregnant Runx3(-/-) mice completely lack the unique population of interleukin-15-dependent uterine natural killer cells. Combined chromatin immunoprecipitation sequencing and differential gene expression analysis of wild-type versus Runx3-deficient in vivo activated splenic natural killer cells revealed that Runx3 cooperates with ETS and T-box transcription factors to drive the interleukin-15-mediated transcription program during activation of these cells. Runx3 functions as a nuclear regulator during interleukin-15-dependent activation of natural killer cells by regulating the expression of genes involved in proliferation, maturation, and migration. Similar studies with additional transcription factors will allow the construction of a more detailed transcriptional network that controls natural killer cell development and function.

  7. In vivo functions of natural killer cells

    SciTech Connect

    Pollack, S.B.

    1983-01-01

    This review focuses on recent experiments in which the natural killed (NK) compartment has been directly manipulated in vivo either by passive transfer of NK-enriched cell populations or by selection depletion of NK cells. These data have provided direct evidence for the role of NK cells in vivo. It is evident that even these experiments have inherent limitations due to the complexity of in vivo interactions. In the aggregate, however, these data build a compelling case for the in vivo activity of NK cells and for their biologic importance. Most of the experiments were carried out in mice. Although there is heterogeneity among NK cells, these studies deal mainly with classical NK cells defined as bone marrow-derived, non-B (Ig/sup -/), non-T (Lyt 1/sup -/2/sup -/) lymphocytes that are nonadherent and bear the NK-associated antigens NK-1 and asialo-GMl. A natural model which has been exploited to study NK cells in the intact host is also discussed.

  8. Reduced killer cell activity of lymphocytes from patients with asbestosis.

    PubMed Central

    Kubota, M; Kagamimori, S; Yokoyama, K; Okada, A

    1985-01-01

    Immunological abnormalities in 30 patients with asbestosis were investigated by examining the cytoxicity of natural killer (NK) cells and antibody dependent cellular cytotoxicity by killer (K) cells from peripheral blood lymphocytes; the effects of interferon on NK activity was also examined. Fifteen men and 15 women (mean age 58; range 40-72) with asbestosis but who were free of complications such as tuberculosis, carcinoma, or steroid treatment were the subjects for study. There were nine cases of type 1, 19 cases of type 2, and two cases of type 3 disease as described in the ILO classification of pneumoconiosis. They were all textile workers with a mean duration of 18 years (3-40 years) since first exposure to chrysotile. Controls matched for age and sex were selected from a population without occupational exposure to asbestos. The activity of the NK and K cells in patients with asbestosis was significantly lower than in the control group, but the populations of NK and K cells in the peripheral blood lymphocytes were not significantly different in the two groups. An in vitro experiment showed that the increase in the cytotoxicity of the NK cell after treatment with interferon-alpha was significantly lower in the subjects than in the controls. These results indicate that one of the defence mechanisms in relation to cancer is deficient in patients with asbestosis. PMID:3978049

  9. HPV vaccine stimulates cytotoxic activity of killer dendritic cells and natural killer cells against HPV-positive tumour cells.

    PubMed

    Van den Bergh, Johan M J; Guerti, Khadija; Willemen, Yannick; Lion, Eva; Cools, Nathalie; Goossens, Herman; Vorsters, Alex; Van Tendeloo, Viggo F I; Anguille, Sébastien; Van Damme, Pierre; Smits, Evelien L J M

    2014-07-01

    Cervarix™ is approved as a preventive vaccine against infection with the human papillomavirus (HPV) strains 16 and 18, which are causally related to the development of cervical cancer. We are the first to investigate in vitro the effects of this HPV vaccine on interleukin (IL)-15 dendritic cells (DC) as proxy of a naturally occurring subset of blood DC, and natural killer (NK) cells, two innate immune cell types that play an important role in antitumour immunity. Our results show that exposure of IL-15 DC to the HPV vaccine results in increased expression of phenotypic maturation markers, pro-inflammatory cytokine production and cytotoxic activity against HPV-positive tumour cells. These effects are mediated by the vaccine adjuvant, partly through Toll-like receptor 4 activation. Next, we demonstrate that vaccine-exposed IL-15 DC in turn induce phenotypic activation of NK cells, resulting in a synergistic cytotoxic action against HPV-infected tumour cells. Our study thus identifies a novel mode of action of the HPV vaccine in boosting innate immunity, including killing of HPV-infected cells by DC and NK cells.

  10. Adenovirus vector delivery stimulates natural killer cell recognition

    PubMed Central

    Tomasec, Peter; Wang, Eddie C. Y.; Groh, Veronika; Spies, Thomas; McSharry, Brian P.; Aicheler, Rebecca J.; Stanton, Richard J.; Wilkinson, Gavin W. G.

    2007-01-01

    We report that delivery of first-generation replication-deficient adenovirus (RDAd) vectors into primary human fibroblasts is associated with the induction of natural killer (NK) cell-mediated cytolysis in vitro. RDAd vector delivery induced cytolysis by a range of NK cell populations including the NK cell clone NKL, primary polyclonal NK lines and a proportion of NK clones (36 %) in autologous HLA-matched assays. Adenovirus-induced cytolysis was inhibited by antibody blocking of the NK-activating receptor NKG2D, implicating this receptor in this function. NKG2D is ubiquitously expressed on NK cells and CD8+ T cells. Significantly, γ-irradiation of the vector eliminated the effect, suggesting that breakthrough expression from the vector induces at least some of the pro-inflammatory responses of unknown aetiology following the application of RDAd vectors during in vivo gene delivery. PMID:17374753

  11. Ex Vivo Generated Natural Killer Cells Acquire Typical Natural Killer Receptors and Display a Cytotoxic Gene Expression Profile Similar to Peripheral Blood Natural Killer Cells

    PubMed Central

    Lehmann, Dorit; Spanholtz, Jan; Osl, Markus; Tordoir, Marleen; Lipnik, Karoline; Bilban, Martin; Schlechta, Bernhard; Dolstra, Harry

    2012-01-01

    Ex vivo differentiation systems of natural killer (NK) cells from CD34+ hematopoietic stem cells are of potential importance for adjuvant immunotherapy of cancer. Here, we analyzed ex vivo differentiation of NK cells from cord blood-derived CD34+ stem cells by gene expression profiling, real-time RT-PCR, flow cytometry, and functional analysis. Additionally, we compared the identified characteristics to peripheral blood (PB) CD56bright and CD56dim NK cells. The data show sequential expression of CD56 and the CD94 and NKG2 receptor chains during ex vivo NK cell development, resulting finally in the expression of a range of genes with partial characteristics of CD56bright and CD56dim NK cells from PB. Expression of characteristic NK cell receptors and cytotoxic genes was mainly found within the predominant ex vivo generated population of NKG2A+ NK cells, indicating the importance of NKG2A expression during NK cell differentiation and maturation. Furthermore, despite distinct phenotypic characteristics, the detailed analysis of cytolytic genes expressed within the ex vivo differentiated NK cells revealed a pattern close to CD56dim NK cells. In line with this finding, ex vivo generated NK cells displayed potent cytotoxicity. This supports that the ex vivo differentiation system faithfully reproduces major steps of the differentiation of NK cells from their progenitors, constitutes an excellent model to study NK cell differentiation, and is valuable to generate large-scale NK cells appropriate for immunotherapy. PMID:22571679

  12. Ex vivo generated natural killer cells acquire typical natural killer receptors and display a cytotoxic gene expression profile similar to peripheral blood natural killer cells.

    PubMed

    Lehmann, Dorit; Spanholtz, Jan; Osl, Markus; Tordoir, Marleen; Lipnik, Karoline; Bilban, Martin; Schlechta, Bernhard; Dolstra, Harry; Hofer, Erhard

    2012-11-01

    Ex vivo differentiation systems of natural killer (NK) cells from CD34+ hematopoietic stem cells are of potential importance for adjuvant immunotherapy of cancer. Here, we analyzed ex vivo differentiation of NK cells from cord blood-derived CD34+ stem cells by gene expression profiling, real-time RT-PCR, flow cytometry, and functional analysis. Additionally, we compared the identified characteristics to peripheral blood (PB) CD56(bright) and CD56(dim) NK cells. The data show sequential expression of CD56 and the CD94 and NKG2 receptor chains during ex vivo NK cell development, resulting finally in the expression of a range of genes with partial characteristics of CD56(bright) and CD56(dim) NK cells from PB. Expression of characteristic NK cell receptors and cytotoxic genes was mainly found within the predominant ex vivo generated population of NKG2A+ NK cells, indicating the importance of NKG2A expression during NK cell differentiation and maturation. Furthermore, despite distinct phenotypic characteristics, the detailed analysis of cytolytic genes expressed within the ex vivo differentiated NK cells revealed a pattern close to CD56(dim) NK cells. In line with this finding, ex vivo generated NK cells displayed potent cytotoxicity. This supports that the ex vivo differentiation system faithfully reproduces major steps of the differentiation of NK cells from their progenitors, constitutes an excellent model to study NK cell differentiation, and is valuable to generate large-scale NK cells appropriate for immunotherapy.

  13. Fasting enhances TRAIL-mediated liver natural killer cell activity via HSP70 upregulation.

    PubMed

    Dang, Vu T A; Tanabe, Kazuaki; Tanaka, Yuka; Tokumoto, Noriaki; Misumi, Toshihiro; Saeki, Yoshihiro; Fujikuni, Nobuaki; Ohdan, Hideki

    2014-01-01

    Acute starvation, which is frequently observed in clinical practice, sometimes augments the cytolytic activity of natural killer cells against neoplastic cells. In this study, we investigated the molecular mechanisms underlying the enhancement of natural killer cell function by fasting in mice. The total number of liver resident natural killer cells in a unit weight of liver tissue obtained from C57BL/6J mice did not change after a 3-day fast, while the proportions of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)+ and CD69+ natural killer cells were significantly elevated (n = 7, p <0.01), as determined by flow cytometric analysis. Furthermore, we found that TRAIL- natural killer cells that were adoptively transferred into Rag-2-/- γ chain-/- mice could convert into TRAIL+ natural killer cells in fasted mice at a higher proportion than in fed mice. Liver natural killer cells also showed high TRAIL-mediated antitumor function in response to 3-day fasting. Since these fasted mice highly expressed heat shock protein 70 (n = 7, p <0.05) in liver tissues, as determined by western blot, the role of this protein in natural killer cell activation was investigated. Treatment of liver lymphocytes with 50 µg/mL of recombinant heat shock protein 70 led to the upregulation of both TRAIL and CD69 in liver natural killer cells (n = 6, p <0.05). In addition, HSP70 neutralization by intraperitoneally injecting an anti- heat shock protein 70 monoclonal antibody into mice prior to fasting led to the downregulation of TRAIL expression (n = 6, p <0.05). These findings indicate that acute fasting enhances TRAIL-mediated liver natural killer cell activity against neoplastic cells through upregulation of heat shock protein 70.

  14. Natural killer cell mediated cytotoxic responses in the Tasmanian devil.

    PubMed

    Brown, Gabriella K; Kreiss, Alexandre; Lyons, A Bruce; Woods, Gregory M

    2011-01-01

    The Tasmanian devil (Sarcophilus harrisii), the world's largest marsupial carnivore, is under threat of extinction following the emergence of an infectious cancer. Devil facial tumour disease (DFTD) is spread between Tasmanian devils during biting. The disease is consistently fatal and devils succumb without developing a protective immune response. The aim of this study was to determine if Tasmanian devils were capable of forming cytotoxic antitumour responses and develop antibodies against DFTD cells and foreign tumour cells. The two Tasmanian devils immunised with irradiated DFTD cells did not form cytotoxic or humoral responses against DFTD cells, even after multiple immunisations. However, following immunisation with xenogenic K562 cells, devils did produce cytotoxic responses and antibodies against this foreign tumour cell line. The cytotoxicity appeared to occur through the activity of natural killer (NK) cells in an antibody dependent manner. Classical NK cell responses, such as innate killing of DFTD and foreign cancer cells, were not observed. Cells with an NK-like phenotype comprised approximately 4 percent of peripheral blood mononuclear cells. The results of this study suggest that Tasmanian devils have NK cells with functional cytotoxic pathways. Although devil NK cells do not directly recognise DFTD cancer cells, the development of antibody dependent cell-mediated cytotoxicity presents a potential pathway to induce cytotoxic responses against the disease. These findings have positive implications for future DFTD vaccine research.

  15. Advantages and applications of CAR-expressing natural killer cells.

    PubMed

    Glienke, Wolfgang; Esser, Ruth; Priesner, Christoph; Suerth, Julia D; Schambach, Axel; Wels, Winfried S; Grez, Manuel; Kloess, Stephan; Arseniev, Lubomir; Koehl, Ulrike

    2015-01-01

    In contrast to donor T cells, natural killer (NK) cells are known to mediate anti-cancer effects without the risk of inducing graft-versus-host disease (GvHD). In order to improve cytotoxicity against resistant cancer cells, auspicious efforts have been made with chimeric antigen receptor (CAR) expressing T- and NK cells. These CAR-modified cells express antigen receptors against tumor-associated surface antigens, thus redirecting the effector cells and enhancing tumor-specific immunosurveillance. However, many cancer antigens are also expressed on healthy tissues, potentially leading to off tumor/on target toxicity by CAR-engineered cells. In order to control such potentially severe side effects, the insertion of suicide genes into CAR-modified effectors can provide a means for efficient depletion of these cells. While CAR-expressing T cells have entered successfully clinical trials, experience with CAR-engineered NK cells is mainly restricted to pre-clinical investigations and predominantly to NK cell lines. In this review we summarize the data on CAR expressing NK cells focusing on the possible advantage using these short-lived effector cells and discuss the necessity of suicide switches. Furthermore, we address the compliance of such modified NK cells with regulatory requirements as a new field in cellular immunotherapy.

  16. Natural killer cells in hepatitis C: Current progress.

    PubMed

    Yoon, Joo Chun; Yang, Chang Mo; Song, Youkyong; Lee, Jae Myun

    2016-01-28

    Patients infected with the hepatitis C virus (HCV) are characterized by a high incidence of chronic infection, which results in chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. The functional impairment of HCV-specific T cells is associated with the evolution of an acute infection to chronic hepatitis. While T cells are the important effector cells in adaptive immunity, natural killer (NK) cells are the critical effector cells in innate immunity to virus infections. The findings of recent studies on NK cells in hepatitis C suggest that NK cell responses are indeed important in each phase of HCV infection. In the early phase, NK cells are involved in protective immunity to HCV. The immune evasion strategies used by HCV may target NK cells and might contribute to the progression to chronic hepatitis C. NK cells may control HCV replication and modulate hepatic fibrosis in the chronic phase. Further investigations are, however, needed, because a considerable number of studies observed functional impairment of NK cells in chronic HCV infection. Interestingly, the enhanced NK cell responses during interferon-α-based therapy of chronic hepatitis C indicate successful treatment. In spite of the advances in research on NK cells in hepatitis C, establishment of more physiological HCV infection model systems is needed to settle unsolved controversies over the role and functional status of NK cells in HCV infection.

  17. Mechanism of human natural killer cell activation by Haemophilus ducreyi.

    PubMed

    Li, Wei; Janowicz, Diane M; Fortney, Kate R; Katz, Barry P; Spinola, Stanley M

    2009-08-15

    The role of natural killer (NK) cells in the host response to Haemophilus ducreyi infection is unclear. In pustules obtained from infected human volunteers, there was an enrichment of CD56bright NK cells bearing the activation markers CD69 and HLA-DR, compared with peripheral blood. To study the mechanism by which H. ducreyi activated NK cells, we used peripheral blood mononuclear cells from uninfected volunteers. H. ducreyi activated NK cells only in the presence of antigen-presenting cells. H. ducreyi-infected monocytes and monocyte-derived macrophages activated NK cells in a contact- and interleukin-18 (IL-18)-dependent manner, whereas monocyte-derived dendritic cells induced NK activation through soluble IL-12. More lesional NK cells than peripheral blood NK cells produced IFN-gamma in response to IL-12 and IL-18. We conclude that NK cells are recruited to experimental lesions and likely are activated by infected macrophages and dendritic cells. IFN-gamma produced by lesional NK cells may facilitate phagocytosis of H. ducreyi.

  18. Type I Interferons and Natural Killer Cell Regulation in Cancer

    PubMed Central

    Müller, Lena; Aigner, Petra; Stoiber, Dagmar

    2017-01-01

    Type I interferons (IFNs) are known to mediate antitumor effects against several tumor types and have therefore been commonly used in clinical anticancer treatment. However, how IFN signaling exerts its beneficial effects is only partially understood. The clinically relevant activity of type I IFNs has been mainly attributed to their role in tumor immune surveillance. Different mechanisms have been postulated to explain how type I IFNs stimulate the immune system. On the one hand, they modulate innate immune cell subsets such as natural killer (NK) cells. On the other hand, type I IFNs also influence adaptive immune responses. Here, we review evidence for the impact of type I IFNs on immune surveillance against cancer and highlight the role of NK cells therein.

  19. Role of Distinct Natural Killer Cell Subsets in Anticancer Response

    PubMed Central

    Stabile, Helena; Fionda, Cinzia; Gismondi, Angela; Santoni, Angela

    2017-01-01

    Natural killer (NK) cells, the prototypic member of innate lymphoid cells, are important effectors of anticancer immune response. These cells can survey and control tumor initiation due to their capability to recognize and kill malignant cells and to regulate the adaptive immune response via cytokines and chemokines release. However, several studies have shown that tumor-infiltrating NK cells associated with advanced disease can have profound functional defects and display protumor activity. This evidence indicates that NK cell behavior undergoes crucial alterations during cancer progression. Moreover, a further level of complexity is due to the extensive heterogeneity and plasticity of these lymphocytes, implying that different NK cell subsets, endowed with specific phenotypic and functional features, may be involved and play distinct roles in the tumor context. Accordingly, many studies reported the enrichment of selective NK cell subsets within tumor tissue, whereas the underlying mechanisms are not fully elucidated. A malignant microenvironment can significantly impact NK cell activity, by recruiting specific subpopulations and/or influencing their developmental programming or the acquisition of a mature phenotype; in particular, neoplastic, stroma and immune cells, or tumor-derived factors take part in these processes. In this review, we will summarize and discuss the recently acquired knowledge on the possible contribution of distinct NK cell subsets in the control and/or progression of solid and hematological malignancies. Moreover, we will address emerging evidence regarding the role of different components of tumor microenvironment on shaping NK cell response. PMID:28360915

  20. Role of human natural killer cells in health and disease.

    PubMed Central

    Whiteside, T L; Herberman, R B

    1994-01-01

    Natural killer (NK) cells, the CD3- CD56+ CD16+ subset of peripheral blood lymphocytes, have long been known to be involved in non-major histocompatibility complex-restricted natural immunity to virally infected and malignant target cells. The association of abnormalities in NK cell numbers or functions with a broad spectrum of human diseases has been more clearly defined in recent years as a result of the improved knowledge of NK cell physiology and advances in monitoring of NK cell functions in health and disease. The ability to reliably measure changes in NK activity and/or numbers during the course of disease or response to treatment has focused attention on the role of the NK cell in disease pathogenesis. The improved understanding of NK cell deficiency in disease has opened a way for therapies specifically designed to improve NK cell function. The therapeutic use of biologic response modifiers capable of augmenting NK cell activity in vivo and of adoptive transfer of highly enriched, activated autologous NK cells in diseases such as cancer and AIDS is being evaluated. The importance of NK cells in health and the consequences of NK cell deficiency or excess are likely to be more extensively monitored in the future. PMID:7496932

  1. Characterization of Circulating Natural Killer Cells in Neotropical Primates

    PubMed Central

    Carville, Angela; Evans, Tristan I.; Reeves, R. Keith

    2013-01-01

    Despite extensive use of nonhuman primates as models for infectious diseases and reproductive biology, imprecise phenotypic and functional definitions exist for natural killer (NK) cells. This deficit is particularly significant in the burgeoning use of small, less expensive New World primate species. Using polychromatic flow cytometry, we identified peripheral blood NK cells as CD3-negative and expressing a cluster of cell surface molecules characteristic of NK cells (i.e., NKG2A, NKp46, NKp30) in three New World primate species – common marmosets, cotton-top tamarins, and squirrel monkeys. We then assessed subset distribution using the classical NK markers, CD56 and CD16. In all species, similar to Old World primates, only a minor subset of NK cells was CD56+, and the dominant subset was CD56–CD16+. Interestingly, CD56+ NK cells were primarily cytokine-secreting cells, whereas CD56–CD16+ NK cells expressed significantly greater levels of intracellular perforin, suggesting these cells might have greater potential for cytotoxicity. New World primate species, like Old World primates, also had a minor CD56–CD16– NK cell subset that has no obvious counterpart in humans. Herein we present phenotypic profiles of New World primate NK cell subpopulations that are generally analogous to those found in humans. This conservation among species should support the further use of these species for biomedical research. PMID:24244365

  2. Natural killer cell distribution and trafficking in human tissues

    PubMed Central

    Carrega, Paolo; Ferlazzo, Guido

    2012-01-01

    Few data are available regarding the recirculation of natural killer (NK) cells among human organs. Earlier studies have been often impaired by the use of markers then proved to be either not sufficiently specific for NK cells (e.g., CD57, CD56) or expressed only by subsets of NK cells (e.g., CD16). At the present, available data confirmed that human NK cells populate blood, lymphoid organs, lung, liver, uterus (during pregnancy), and gut. Several studies showed that NK cell homing appears to be subset-specific, as secondary lymphoid organs and probably several solid tissues are preferentially inhabited by CD56brightCD16neg/dull non-cytotoxic NK cells. Similar studies performed in the mouse model showed that lymph node and bone marrow are preferentially populated by CD11bdull NK cells while blood, spleen, and lung by CD27dull NK cells. Therefore, an important topic to be addressed in the human system is the contribution of factors that regulate NK cell tissue homing and egress, such as chemotactic receptors or homeostatic mechanisms. Here, we review the current knowledge on NK cell distribution in peripheral tissues and, based on recent acquisitions, we propose our view regarding the recirculation of NK cells in the human body. PMID:23230434

  3. Antigen specificity of invariant natural killer T-cells.

    PubMed

    Birkholz, Alysia M; Kronenberg, Mitchell

    2015-12-01

    Natural killer T-cells, with an invariant T-cell antigen receptor α-chain (iNKT cells), are unique and conserved subset of lymphocytes capable of altering the immune system through their rapid and potent cytokine responses. They are reactive to lipid antigens presented by the CD1d molecule, an antigen-presenting molecule that is not highly polymorphic. iNKT cell responses frequently involve mixtures of cytokines that work against each other, and therefore attempts are underway to develop synthetic antigens that elicit only strong interferon-gamma (IFNγ) or only strong interleukin-4 responses but not both. Strong IFNγ responses may correlate with tighter binding to CD1d and prolonged stimulation of iNKT cells, and this may be useful for vaccine adjuvants and for stimulating anti-tumor responses. iNKT cells are self-reactive although the structure of the endogenous antigen is controversial. By contrast, bacterial and fungal lipids that engage the T-cell receptor and activate IFNγ from iNKT cells have been identified from both pathogenic and commensal organisms and the responses are in some cases highly protective from pathogens in mice. It is possible that the expanding knowledge of iNKT cell antigens and iNKT cell activation will provide the basis for therapies for patients suffering from infectious and immune diseases and cancer.

  4. Enhancing cytokine-induced killer cell therapy of multiple myeloma.

    PubMed

    Liu, Chunsheng; Suksanpaisan, Lukkana; Chen, Yun-Wen; Russell, Stephen J; Peng, Kah-Whye

    2013-06-01

    Cytokine-induced killer (CIK) cells are in clinical testing against various tumor types, including multiple myeloma. In this study, we show that CIK cells have activity against subcutaneous and disseminated models of human myeloma (KAS-6/1), which can be enhanced by infecting the CIK cells with an oncolytic measles virus (MV) or by pretreating the myeloma cells with ionizing radiation (XRT). KAS-6/1 cells were killed by coculture with CIK or MV-infected CIK (CIK/MV) cells, and the addition of an anti-NKG2D antibody inhibited cytolysis by 50%. However, human bone marrow stromal cells can reduce CIK and CIK/MV mediated killing of myeloma cells (RPMI 8226, JJN-3 and MM1). In vivo, CIK and CIK/MV prolonged the survival of mice with systemic myeloma, although CIK/MV showed enhanced antitumor activity compared with CIK. Irradiation of the KAS-6/1 cells induced mRNA and protein expression of NKG2D ligands, MICA, and MICB in a dose-dependent manner and enhanced delivery of CIK/MV to the irradiated tumors. In both subcutaneous and disseminated myeloma models, XRT at 2 Gy resulted in superior prolongation of the survival of mice given CIK/MV therapy compared with CIK/MV with no XRT. This study demonstrates the potential of CIK against myeloma and that the combination of virotherapy with radiation could be used to further enhance therapeutic outcome using CIK cells.

  5. Natural killer T cells in adipose tissue prevent insulin resistance.

    PubMed

    Schipper, Henk S; Rakhshandehroo, Maryam; van de Graaf, Stan F J; Venken, Koen; Koppen, Arjen; Stienstra, Rinke; Prop, Serge; Meerding, Jenny; Hamers, Nicole; Besra, Gurdyal; Boon, Louis; Nieuwenhuis, Edward E S; Elewaut, Dirk; Prakken, Berent; Kersten, Sander; Boes, Marianne; Kalkhoven, Eric

    2012-09-01

    Lipid overload and adipocyte dysfunction are key to the development of insulin resistance and can be induced by a high-fat diet. CD1d-restricted invariant natural killer T (iNKT) cells have been proposed as mediators between lipid overload and insulin resistance, but recent studies found decreased iNKT cell numbers and marginal effects of iNKT cell depletion on insulin resistance under high-fat diet conditions. Here, we focused on the role of iNKT cells under normal conditions. We showed that iNKT cell-deficient mice on a low-fat diet, considered a normal diet for mice, displayed a distinctive insulin resistance phenotype without overt adipose tissue inflammation. Insulin resistance was characterized by adipocyte dysfunction, including adipocyte hypertrophy, increased leptin, and decreased adiponectin levels. The lack of liver abnormalities in CD1d-null mice together with the enrichment of CD1d-restricted iNKT cells in both mouse and human adipose tissue indicated a specific role for adipose tissue-resident iNKT cells in the development of insulin resistance. Strikingly, iNKT cell function was directly modulated by adipocytes, which acted as lipid antigen-presenting cells in a CD1d-mediated fashion. Based on these findings, we propose that, especially under low-fat diet conditions, adipose tissue-resident iNKT cells maintain healthy adipose tissue through direct interplay with adipocytes and prevent insulin resistance.

  6. Natural killer cell biology: an update and future directions.

    PubMed

    Campbell, Kerry S; Hasegawa, Jun

    2013-09-01

    Natural killer (NK) cells constitute a minor subset of normal lymphocytes that initiate innate immune responses toward tumor and virus-infected cells. They can mediate spontaneous cytotoxicity toward these abnormal cells and rapidly secrete numerous cytokines and chemokines to promote subsequent adaptive immune responses. Significant progress has been made in the past 2 decades to improve our understanding of NK cell biology. Here we review recent discoveries, including a better comprehension of the "education" of NK cells to achieve functional competence during their maturation and the discovery of "memory" responses by NK cells, suggesting that they might also contribute to adaptive immunity. The improved understanding of NK cell biology has forged greater awareness that these cells play integral early roles in immune responses. In addition, several promising clinical therapies have been used to exploit NK cell functions in treating patients with cancer. As our molecular understanding improves, these and future immunotherapies should continue to provide promising strategies to exploit the unique functions of NK cells to treat cancer, infections, and other pathologic conditions.

  7. Activation strategies for invariant natural killer T cells.

    PubMed

    Kohlgruber, Ayano C; Donado, Carlos A; LaMarche, Nelson M; Brenner, Michael B; Brennan, Patrick J

    2016-08-01

    Invariant natural killer T (iNKT) cells are a specialized T cell subset that plays an important role in host defense, orchestrating both innate and adaptive immune effector responses against a variety of microbes. Specific microbial lipids and mammalian self lipids displayed by the antigen-presenting molecule CD1d can activate iNKT cells through their semi-invariant αβ T cell receptors (TCRs). iNKT cells also constitutively express receptors for inflammatory cytokines typically secreted by antigen-presenting cells (APCs) after recognition of pathogen-associated molecular patterns (PAMPs), and they can be activated through these cytokine receptors either in combination with TCR signals, or in some cases even in the absence of TCR signaling. During infection, experimental evidence suggests that both TCR-driven and cytokine-driven mechanisms contribute to iNKT cell activation. While the relative contributions of these two signaling mechanisms can vary widely depending on the infectious context, both lipid antigens and PAMPs mediate reciprocal activation of iNKT cells and APCs, leading to downstream activation of multiple other immune cell types to promote pathogen clearance. In this review, we discuss the mechanisms involved in iNKT cell activation during infection, focusing on the central contributions of both lipid antigens and PAMP-induced inflammatory cytokines, and highlight in vivo examples of activation during bacterial, viral, and fungal infections.

  8. Regulation of Natural Killer Cell Function by STAT3

    PubMed Central

    Cacalano, Nicholas A.

    2016-01-01

    Natural killer (NK) cells, key members of a distinct hematopoietic lineage, innate lymphoid cells, are not only critical effectors that mediate cytotoxicity toward tumor and virally infected cells but also regulate inflammation, antigen presentation, and the adaptive immune response. It has been shown that NK cells can regulate the development and activation of many other components of the immune response, such as dendritic cells, which in turn, modulate the function of NK cells in multiple synergistic feed back loops driven by cell–cell contact, and the secretion of cytokines and chemokines that control effector function and migration of cells to sites of immune activation. The signal transducer and activator of transcription (STAT)-3 is involved in driving almost all of the pathways that control NK cytolytic activity as well as the reciprocal regulatory interactions between NK cells and other components of the immune system. In the context of tumor immunology, NK cells are a first line of defense that eliminates pre-cancerous and transformed cells early in the process of carcinogenesis, through a mechanism of “immune surveillance.” Even after tumors become established, NK cells are critical components of anticancer immunity: dysfunctional NK cells are often found in the peripheral blood of cancer patients, and the lack of NK cells in the tumor microenvironment often correlates to poor prognosis. The pathways and soluble factors activated in tumor-associated NK cells, cancer cells, and regulatory myeloid cells, which determine the outcome of cancer immunity, are all critically regulated by STAT3. Using the tumor microenvironment as a paradigm, we present here an overview of the research that has revealed fundamental mechanisms through which STAT3 regulates all aspects of NK cell biology, including NK development, activation, target cell killing, and fine tuning of the innate and adaptive immune responses. PMID:27148255

  9. Emerging role of Natural killer cells in oncolytic virotherapy.

    PubMed

    Bhat, Rauf; Rommelaere, Jean

    2015-01-01

    Natural killer (NK) cells constitute a subtype of lymphocytes that initiate innate immune responses against tumors and virus-infected cells. The ability of NK cells to kill target cells or to produce cytokines depends on the balance between signals from activating and inhibitory cell-surface receptors. Therapies with NK cells involve activation of endogenous NK cells and/or exogenous transfer by hematopoietic stem cell transplantation/adoptive cell therapy. To exploit the diverse functional abilities of NK cells for cancer immunotherapy, it is important to understand NK cell biology and the underlying regulatory mechanisms. The state of immune suppression prevalent in malignancies creates the need for innovative therapies. Oncolytic viruses are novel anticancer agents showing selective tropism for tumor cells and lacking pathogenicity in humans, but the use of oncolytic virotherapy (OVT) presents multiple challenges. An increasing body of evidence suggests that the host immune response may critically influence the outcome of OVT. Classically, the immune system is thought to limit the efficacy of therapy through virus clearance mediated by innate immune effectors or through adaptive antiviral immune responses eliminating infected cells. Effective strategies do need to be designed in OVT to circumvent the early antiviral activity of NK cells and to augment late NK-cell-mediated antitumor responses. The intrinsic immunostimulating capacity of oncolytic viruses and the possibility of engineering them to express heterologous immunostimulatory molecules (eg, cytokines) support the use of these agents to enhance antitumor immune responses besides inducing direct oncolytic effects. OVT has indeed shown promising therapeutic outcomes in various clinical trials. Here, we review the biology of NK cells, strategies involving NK cells for achieving cancer therapy, and, more particularly, the emerging role of NK cells in OVT.

  10. Immunosenescence: limitations of natural killer cell-based cancer immunotherapy.

    PubMed

    Tarazona, Raquel; Sanchez-Correa, Beatriz; Casas-Avilés, Ignacio; Campos, Carmen; Pera, Alejandra; Morgado, Sara; López-Sejas, Nelson; Hassouneh, Fakhri; Bergua, Juan M; Arcos, Maria Jose; Bañas, Helena; Casado, Javier G; Durán, Esther; Labella, Fernando; Solana, Rafael

    2017-02-01

    Cancer is primarily considered a disease of old age. Immunosenescence refers to the age-associated changes in the immune system, and its contribution to the increased risk of cancer in old individuals has been discussed for many years. Natural killer (NK) cells are cytotoxic innate immune cells specialized in defence against tumour and virus-infected cells. NK cell cytotoxicity is the result of a fine balance between activating and inhibitory receptors. Several activating receptors have been identified that recognize different ligands frequently found over-expressed on tumour cells or virus-infected cells. The most important NK cell inhibitory receptors interact with major histocompatibility complex class I molecules expressed on almost all nucleated cells preventing NK cell-mediated lysis of healthy cells. NK cell immunosenescence is characterized by a redistribution of NK cell subsets, a diminished expression of several activating receptors and lower per-cell cytotoxicity. Altered expression of activating receptors has also been described in young and elderly cancer patients probably due to chronic exposure to ligands on tumour cells. Thus, the effect of both age and cancer may act synergistically to diminish NK cell-mediated tumour immunosurveillance. Different strategies harnessing the power of NK cells to target tumour cells have been designed including adoptive therapy with autologous or allogeneic expanded NK cells. In addition, checkpoint blockade of inhibitory receptors and the use of agonist antibodies to stimulate activating receptors are emerging areas of research. In this context, the effect of immunosenescence should be considered to improve the efficiency of cancer immunotherapy.

  11. Emerging role of Natural killer cells in oncolytic virotherapy

    PubMed Central

    Bhat, Rauf; Rommelaere, Jean

    2015-01-01

    Natural killer (NK) cells constitute a subtype of lymphocytes that initiate innate immune responses against tumors and virus-infected cells. The ability of NK cells to kill target cells or to produce cytokines depends on the balance between signals from activating and inhibitory cell-surface receptors. Therapies with NK cells involve activation of endogenous NK cells and/or exogenous transfer by hematopoietic stem cell transplantation/adoptive cell therapy. To exploit the diverse functional abilities of NK cells for cancer immunotherapy, it is important to understand NK cell biology and the underlying regulatory mechanisms. The state of immune suppression prevalent in malignancies creates the need for innovative therapies. Oncolytic viruses are novel anticancer agents showing selective tropism for tumor cells and lacking pathogenicity in humans, but the use of oncolytic virotherapy (OVT) presents multiple challenges. An increasing body of evidence suggests that the host immune response may critically influence the outcome of OVT. Classically, the immune system is thought to limit the efficacy of therapy through virus clearance mediated by innate immune effectors or through adaptive antiviral immune responses eliminating infected cells. Effective strategies do need to be designed in OVT to circumvent the early antiviral activity of NK cells and to augment late NK-cell-mediated antitumor responses. The intrinsic immunostimulating capacity of oncolytic viruses and the possibility of engineering them to express heterologous immunostimulatory molecules (eg, cytokines) support the use of these agents to enhance antitumor immune responses besides inducing direct oncolytic effects. OVT has indeed shown promising therapeutic outcomes in various clinical trials. Here, we review the biology of NK cells, strategies involving NK cells for achieving cancer therapy, and, more particularly, the emerging role of NK cells in OVT. PMID:27471713

  12. Natural killer cells in immunodefense against infective agents.

    PubMed

    Zucchini, Nicolas; Crozat, Karine; Baranek, Thomas; Robbins, Scott H; Altfeld, Marcus; Dalod, Marc

    2008-12-01

    Following the discovery of innate immune receptors, the topics of innate immunity and its role in defense against infective agents have recently blossomed into very active research fields, after several decades of neglect. Among innate immune cells, natural killer (NK) cells are endowed with the unique ability to recognize and kill cells infected with a variety of pathogens, irrespective of prior sensitization to these microbes. NK cells have a number of other functions, including cytokine production and immunoregulatory activities. Major advances have recently been made in the understanding of the role of NK cells in the physiopathology of infectious diseases. The cellular and molecular mechanisms regulating the acquisition of effector functions by NK cells and their triggering upon pathogenic encounters are being unraveled. The possibility that the power of NK cells could be harnessed for the design of innovative treatments against infections is a major incentive for biologists to further explore NK cell subset complexity and to identify the ligands that activate NK cell receptors.

  13. Invariant natural killer T cell-based immunotherapy for cancer.

    PubMed

    Motohashi, Shinichiro; Nakayama, Toshinori

    2009-01-01

    Human Valpha24 invariant natural killer T (iNKT) cells are a distinct lymphocyte population, characterized by an invariant T-cell receptor Valpha24 chain paired mainly with Valpha11. Valpha24 iNKT cells are activated by a glycolipid ligand - alpha-galactosylceramide - and produce a large amount of Th1 and Th2 cytokines, thereby modulating the function of other cells. iNKT cells have the capability to control a wide variety of immune responses, including antitumor immunity. Abnormalities in the number and function of Valpha24 iNKT cells have been observed in patients with malignant diseases accompanied with a poor clinical outcome. Therefore, therapeutic strategies that focused on the restoration of Valpha24 iNKT cell population and function would be a reasonable rationale for the treatment of cancer. In this article, the progress to date in the clinical studies of iNKT cell-based immunotherapy is briefly reviewed and the role of Valpha24 iNKT cells in cancer immunotherapy is highlighted.

  14. Natural killer cells in immunodefense against infective agents

    PubMed Central

    Zucchini, Nicolas; Crozat, Karine; Baranek, Thomas; Robbins, Scott H; Altfeld, Marcus; Dalod, Marc

    2009-01-01

    Following the discovery of innate immune receptors, the topics of innate immunity and its role in defense against infective agents have recently blossomed into very active research fields, after several decades of neglect. Among innate immune cells, natural killer (NK) cells are endowed with the unique ability to recognize and kill cells infected with a variety of pathogens, irrespective of prior sensitization to these microbes. NK cells have a number of other functions, including cytokine production and immunoregulatory activities. Major advances have recently been made in the understanding of the role of NK cells in the physiopathology of infectious diseases. The cellular and molecular mechanisms regulating the acquisition of effector functions by NK cells and their triggering upon pathogenic encounters are being unraveled. The possibility that the power of NK cells could be harnessed for the design of innovative treatments against infections is a major incentive for biologists to further explore NK cell subset complexity and to identify the ligands that activate NK cell receptors. PMID:19053900

  15. Natural killer T cells in adipose tissue prevent insulin resistance

    PubMed Central

    Schipper, Henk S.; Rakhshandehroo, Maryam; van de Graaf, Stan F.J.; Venken, Koen; Koppen, Arjen; Stienstra, Rinke; Prop, Serge; Meerding, Jenny; Hamers, Nicole; Besra, Gurdyal; Boon, Louis; Nieuwenhuis, Edward E.S.; Elewaut, Dirk; Prakken, Berent; Kersten, Sander; Boes, Marianne; Kalkhoven, Eric

    2012-01-01

    Lipid overload and adipocyte dysfunction are key to the development of insulin resistance and can be induced by a high-fat diet. CD1d-restricted invariant natural killer T (iNKT) cells have been proposed as mediators between lipid overload and insulin resistance, but recent studies found decreased iNKT cell numbers and marginal effects of iNKT cell depletion on insulin resistance under high-fat diet conditions. Here, we focused on the role of iNKT cells under normal conditions. We showed that iNKT cell–deficient mice on a low-fat diet, considered a normal diet for mice, displayed a distinctive insulin resistance phenotype without overt adipose tissue inflammation. Insulin resistance was characterized by adipocyte dysfunction, including adipocyte hypertrophy, increased leptin, and decreased adiponectin levels. The lack of liver abnormalities in CD1d-null mice together with the enrichment of CD1d-restricted iNKT cells in both mouse and human adipose tissue indicated a specific role for adipose tissue–resident iNKT cells in the development of insulin resistance. Strikingly, iNKT cell function was directly modulated by adipocytes, which acted as lipid antigen-presenting cells in a CD1d-mediated fashion. Based on these findings, we propose that, especially under low-fat diet conditions, adipose tissue–resident iNKT cells maintain healthy adipose tissue through direct interplay with adipocytes and prevent insulin resistance. PMID:22863618

  16. MicroRNA regulation of natural killer cells

    PubMed Central

    Sullivan, Ryan P.; Leong, Jeffrey W.; Fehniger, Todd A.

    2013-01-01

    Natural killer (NK) cells are innate immune lymphocytes critical for host defense against viral infection and surveillance against malignant transformation. MicroRNAs (miRNAs) are a family of small, non-coding RNAs that regulate a wide variety of cellular processes. Recent advances have highlighted the importance of miRNA-mediated post-transcriptional regulation in NK cell development, maturation, and function. This review focuses on several facets of this regulatory mechanism in NK cells: (1) the expressed NK cell miRNA transcriptome; (2) the impact of total miRNA deficiency on NK cells; (3) the role of specific miRNAs regulating NK cell development, survival, and maturation; (4) the intrinsic role of miRNAs regulating NK cell function, including cytokine production, proliferation, and cytotoxicity; and (5) the role of NK cell miRNAs in disease. Currently our knowledge of how miRNAs regulate NK cell biology is limited, and thus we also explore key open questions in the field, as well as approaches and techniques to ascertain the role of individual miRNAs as important molecular regulators. PMID:23450173

  17. killerFLIP: a novel lytic peptide specifically inducing cancer cell death

    PubMed Central

    Pennarun, B; Gaidos, G; Bucur, O; Tinari, A; Rupasinghe, C; Jin, T; Dewar, R; Song, K; Santos, M T; Malorni, W; Mierke, D; Khosravi-Far, R

    2013-01-01

    One of the objectives in the development of effective cancer therapy is induction of tumor-selective cell death. Toward this end, we have identified a small peptide that, when introduced into cells via a TAT cell-delivery system, shows a remarkably potent cytoxicity in a variety of cancer cell lines and inhibits tumor growth in vivo, whereas sparing normal cells and tissues. This fusion peptide was named killerFLIP as its sequence was derived from the C-terminal domain of c-FLIP, an anti-apoptotic protein. Using structure activity analysis, we determined the minimal bioactive core of killerFLIP, namely killerFLIP-E. Structural analysis of cells using electron microscopy demonstrated that killerFLIP-E triggers cell death accompanied by rapid (within minutes) plasma membrane permeabilization. Studies of the structure of the active core of killerFLIP (-E) indicated that it possesses amphiphilic properties and self-assembles into micellar structures in aqueous solution. The biochemical properties of killerFLIP are comparable to those of cationic lytic peptides, which participate in defense against pathogens and have also demonstrated anticancer properties. We show that the pro-cell death effects of killerFLIP are independent of its sequence similarity with c-FLIPL as killerFLIP-induced cell death was largely apoptosis and necroptosis independent. A killerFLIP-E variant containing a scrambled c-FLIPL motif indeed induced similar cell death, suggesting the importance of the c-FLIPL residues but not of their sequence. Thus, we report the discovery of a promising synthetic peptide with novel anticancer activity in vitro and in vivo. PMID:24176852

  18. killerFLIP: a novel lytic peptide specifically inducing cancer cell death.

    PubMed

    Pennarun, B; Gaidos, G; Bucur, O; Tinari, A; Rupasinghe, C; Jin, T; Dewar, R; Song, K; Santos, M T; Malorni, W; Mierke, D; Khosravi-Far, R

    2013-10-31

    One of the objectives in the development of effective cancer therapy is induction of tumor-selective cell death. Toward this end, we have identified a small peptide that, when introduced into cells via a TAT cell-delivery system, shows a remarkably potent cytoxicity in a variety of cancer cell lines and inhibits tumor growth in vivo, whereas sparing normal cells and tissues. This fusion peptide was named killerFLIP as its sequence was derived from the C-terminal domain of c-FLIP, an anti-apoptotic protein. Using structure activity analysis, we determined the minimal bioactive core of killerFLIP, namely killerFLIP-E. Structural analysis of cells using electron microscopy demonstrated that killerFLIP-E triggers cell death accompanied by rapid (within minutes) plasma membrane permeabilization. Studies of the structure of the active core of killerFLIP (-E) indicated that it possesses amphiphilic properties and self-assembles into micellar structures in aqueous solution. The biochemical properties of killerFLIP are comparable to those of cationic lytic peptides, which participate in defense against pathogens and have also demonstrated anticancer properties. We show that the pro-cell death effects of killerFLIP are independent of its sequence similarity with c-FLIPL as killerFLIP-induced cell death was largely apoptosis and necroptosis independent. A killerFLIP-E variant containing a scrambled c-FLIPL motif indeed induced similar cell death, suggesting the importance of the c-FLIPL residues but not of their sequence. Thus, we report the discovery of a promising synthetic peptide with novel anticancer activity in vitro and in vivo.

  19. Communication between natural killer T cells and adipocytes in obesity

    PubMed Central

    Satoh, Masashi; Iwabuchi, Kazuya

    2016-01-01

    ABSTRACT Adipose tissue contains various types of immunocompetent cells, and these cells of innate and adaptive immunity control adipose tissue inflammation that blunts insulin sensitivity. Recent studies have shown that adipocytes express CD1d and present lipid antigen(s) to activate natural killer T (NKT) cells. The function of adipocytes is in turn modulated by cytokines that NKT cells produce to alter the expression of anti-inflammatory adipokine(s) and the production of inflammatory and chemoattractant cytokines. These in vitro studies imply that the interaction between adipocytes and NKT cells might affect the development of not only obesity but also obesity-related diseases. To test the importance of the interaction between NKT cells and adipocytes, we examined whether an adipocyte-specific CD1d deletion affected the development of obesity, which had been demonstrated with B6.CD1d−/− (CD1d KO). We found that the interaction is indeed important to induce adipose tissue inflammation and insulin resistance in response to lipid excess. In this commentary, the advances and controversies on NKT cells and obesity are discussed based on our recent report that NKT cells play a pivotal role in the regulation of adipose tissue by communicating with adipocytes via CD1d. PMID:27994954

  20. Effects of murine natural killer cells on Cryptococcus neoformans

    SciTech Connect

    Nabavi Nouri, N.

    1985-01-01

    Previous data generated by Murphy and McDaniel indicate that normal murine nylon wool nonadherent splenic cells, with the characteristics of natural killer (NK) cells, effectively inhibit the in vitro growth of Cryptococcus neoformans, a yeast-like pathogen. Nylon wood nonadherent cells from spleens of 7-8 week old mice were further fractionated on discontinuous Percoll gradients. The enrichment of NK cells in Percoll fractions 1 and 2 was confirmed by morphological examination, immunofluorescent staining, and by assessing the cytolytic activity of each Percoll cell fraction against YAC-1 targets in the 4 h /sup 51/Cr release assay. Cells isolated from each Percoll fraction were tested for growth inhibitory activity against C neoformans, using an in vitro 18 h growth inhibition assay. The results showed that NK cell enrichment was concomitant with the enrichment of anti-cryptococcal activity the Percoll fractions 1 and 2. An immunolabeling method combined with scanning electron microscopy was used to demonstrate that the effector cells attached to C. neoformans were asialo GM/sub 1/ positive and, therefore, had NK cell characteristics. NK cells have Fc receptors on their surfaces , and are capable of antibody-dependent cell-mediated cytotoxicity (ADCC) against IgG-coated target cells. The author examined the effects of the IgG fraction of rabbit anti-cryptococcal antibody on the NK cell-mediated growth inhibition of C. neoformans. The data indicated that the effector cells involved in antibody-dependent growth inhibition of cryptococci are either NK cells or copurify and coexist in the same population with NK cells.

  1. Novel targets for natural killer/T-cell lymphoma immunotherapy.

    PubMed

    Kumai, Takumi; Kobayashi, Hiroya; Harabuchi, Yasuaki

    2016-01-01

    Extranodal natural killer/T-cell lymphoma, nasal type (NKTL) is a rare but highly aggressive Epstein-Barr virus-related malignancy, which mainly occurs in nasopharyngeal and nasal/paranasal areas. In addition to its high prevalence in Asian, Central American and South American populations, its incidence rate has been gradually increasing in Western countries. The current mainstay of treatment is a combination of multiple chemotherapies and irradiation. Although chemoradiotherapy can cure NKTL, it often causes severe and fatal adverse events. Because a growing body of evidence suggests that immunotherapy is effective against hematological malignancies, this treatment could provide an alternative to chemoradiotherapy for treatment of NKTL. In this review, we focus on how recent findings could be used to develop efficient immunotherapies against NKTL.

  2. Neutrophil depletion impairs natural killer cell maturation, function, and homeostasis

    PubMed Central

    Jaeger, Baptiste N.; Donadieu, Jean; Cognet, Céline; Bernat, Claire; Ordoñez-Rueda, Diana; Barlogis, Vincent; Mahlaoui, Nizar; Fenis, Aurore; Narni-Mancinelli, Emilie; Beaupain, Blandine; Bellanné-Chantelot, Christine; Bajénoff, Marc; Malissen, Bernard; Malissen, Marie

    2012-01-01

    Natural killer (NK) cells are bone marrow (BM)–derived granular lymphocytes involved in immune defense against microbial infections and tumors. In an N-ethyl N-nitrosourea (ENU) mutagenesis strategy, we identified a mouse mutant with impaired NK cell reactivity both in vitro and in vivo. Dissection of this phenotype showed that mature neutrophils were required both in the BM and in the periphery for proper NK cell development. In mice lacking neutrophils, NK cells displayed hyperproliferation and poor survival and were blocked at an immature stage associated with hyporesponsiveness. The role of neutrophils as key regulators of NK cell functions was confirmed in patients with severe congenital neutropenia and autoimmune neutropenia. In addition to their direct antimicrobial activity, mature neutrophils are thus endowed with immunoregulatory functions that are conserved across species. These findings reveal novel types of cooperation between cells of the innate immune system and prompt examination of NK cell functional deficiency in patients suffering from neutropenia-associated diseases. PMID:22393124

  3. Human natural killer cell development in secondary lymphoid tissues

    PubMed Central

    Freud, Aharon G.; Yu, Jianhua; Caligiuri, Michael A.

    2014-01-01

    For nearly a decade it has been appreciated that critical steps in human natural killer (NK) cell development likely occur outside of the bone marrow and potentially necessitate distinct microenvironments within extramedullary tissues. The latter include the liver and gravid uterus as well as secondary lymphoid tissues such as tonsils and lymph nodes. For as yet unknown reasons these tissues are naturally enriched with NK cell developmental intermediates (NKDI) that span a maturation continuum starting from an oligopotent CD34+CD45RA+ hematopoietic precursor cell to a cytolytic mature NK cell. Indeed despite the detection of NKDI within the aforementioned tissues, relatively little is known about how, why, and when these tissues may be most suited to support NK cell maturation and how this process fits in with other components of the human immune system. With the discovery of other innate lymphoid subsets whose immunophenotypes overlap with those of NKDI, there is also need to revisit and potentially re-characterize the basic immunophenotypes of the stages of the human NK cell developmental pathway in vivo. In this review, we provide an overview of human NK cell development in secondary lymphoid tissues and discuss the many questions that remain to be answered in this exciting field. PMID:24661538

  4. Id2 regulates hyporesponsive invariant natural killer T cells

    PubMed Central

    Stradner, Martin H; Cheung, Kitty P; Lasorella, Anna; Goldrath, Ananda W; D’Cruz, Louise M

    2016-01-01

    While the invariant natural killer T (iNKT)-cell response to primary stimulation with the glycolipid, α-galactosylceramide (αGalCer), is robust, the secondary response to this stimulus is muted resulting in a hyporesponsive state characterized by anti-inflammatory interleukin-10 (IL-10) production and high expression of programmed cell death 1 (PD1) and neuropilin 1 (NRP1). The E protein transcription factors and their negative regulators, the Id proteins, have previously been shown to regulate iNKT cell thymic development, subset differentiation and peripheral survival. Here, we provide evidence that the expression of the transcriptional regulator Id2 is downregulated upon stimulation of iNKT cells with their cognate antigen. Moreover, loss of Id2 expression by iNKT cells resulted in a hyporesponsive state, with splenic Id2-deficient iNKT cells expressing low levels of TBET, high levels of PD1 and NRP1 and production of IL-10 upon stimulation. We propose that downregulation of Id2 expression is an essential component of induction of the anti-inflammatory, hyporesponsive state in iNKT cells. PMID:26880074

  5. Human natural killer cell development in secondary lymphoid tissues.

    PubMed

    Freud, Aharon G; Yu, Jianhua; Caligiuri, Michael A

    2014-04-01

    For nearly a decade it has been appreciated that critical steps in human natural killer (NK) cell development likely occur outside of the bone marrow and potentially necessitate distinct microenvironments within extramedullary tissues. The latter include the liver and gravid uterus as well as secondary lymphoid tissues such as tonsils and lymph nodes. For as yet unknown reasons these tissues are naturally enriched with NK cell developmental intermediates (NKDI) that span a maturation continuum starting from an oligopotent CD34(+)CD45RA(+) hematopoietic precursor cell to a cytolytic mature NK cell. Indeed despite the detection of NKDI within the aforementioned tissues, relatively little is known about how, why, and when these tissues may be most suited to support NK cell maturation and how this process fits in with other components of the human immune system. With the discovery of other innate lymphoid subsets whose immunophenotypes overlap with those of NKDI, there is also need to revisit and potentially re-characterize the basic immunophenotypes of the stages of the human NK cell developmental pathway in vivo. In this review, we provide an overview of human NK cell development in secondary lymphoid tissues and discuss the many questions that remain to be answered in this exciting field.

  6. Natural killer cells in patients with polycythemia vera.

    PubMed

    Sanchez, Carole; Baier, Céline; Colle, Julien G; Chelbi, Rabie; Rihet, Pascal; Le Treut, Thérèse; Imbert, Jean; Sébahoun, Gérard; Venton, Geoffroy; Costello, Régis T

    2015-09-01

    Natural killer cells (NK) are pivotal cells of innate immunity. They are potent antileukemic cytotoxic effectors. A defect in their cytotoxicity has been described in some hematopoietic malignancies such as acute myeloid leukemia, multiple myeloma and myelodysplastic syndromes. This defect is at least partially linked to a decreased or absent expression of some activating NK cells molecules, more particularly the so-called natural cytotoxicity receptors. In the present study, we more particularly focused our attention on NK cells of polycythemia vera, a myeloproliferative disease characterized by the presence of mutated JAK2 tyrosine kinase. The polymerase chain reaction analysis of NK cells from patients showed that they expressed the mutated form of JAK2. In polycythemia vera the proportion of NK was increased compared to healthy donors. The proliferative and cytotoxic abilities of NK cells from patients were similar to healthy donors. Expression of activating or inhibitory receptors was comparable in patients and donors, with nonetheless an imbalance for the inhibitory form of the CD158a,h couple of receptors in patients. Finally, the transcriptomic profile analysis clearly identified a discriminant signature between NK cells from patients and donors that could putatively be the consequence of abnormal continuous activation of mutated JAK2.

  7. In vitro Natural Killer Cell Immunotherapy for Medulloblastoma

    PubMed Central

    Fernández, Lucia; Portugal, Raquel; Valentín, Jaime; Martín, Roberto; Maxwell, Hannah; González-Vicent, Marta; Díaz, Miguel Ángel; de Prada, Inmaculada; Pérez-Martínez, Antonio

    2013-01-01

    How the immune system attacks medulloblastoma (MB) tumors effectively is unclear, although natural killer (NK) cells play an important role in immune defense against tumor cells. Interactions between receptors on NK cells and ligands expressed by tumor cells are critical for tumor control by immunotherapy. In this study, we analyzed tumor samples from 54 MB patients for expression of major histocompatibility complex class I-related chains A (MICA) and UL16 binding protein (ULPB-2), which are ligands for the NK group 2 member D activatory receptor (NKG2D). The percentage of MICA and ULBP-2 positive cells was higher than 25% in 68% and 6% of MB patients, respectively. A moderate-high intensity of MICA cytoplasmic staining was observed in 46% MB patients and weak ULBP-2 staining was observed in 8% MB patients. No correlation between MICA/ULBP-2 expression and patient outcome was found. We observed that HTB-186, a MB cell line, was moderately resistant to NK cell cytotoxicity in vitro. Blocking MICA/ULBP-2 on HTB-186, and NKG2D receptor on NK cells increased resistance to NK cell lysis in vitro. However, HLA class I blocking on HTB-186 and overnight incubation with IL-15 stimulated NK cells efficiently killed tumor cells in vitro. We conclude that although NKG2D/MICA-ULBP-2 interactions have a role in NK cell cytotoxicity against MB, high expression of HLA class I can protect MB from NK cell cytotoxicity. Even so, our in vitro data indicate that if NK cells are appropriately stimulated, they may have the potential to target MB in vivo. PMID:23626949

  8. Heterogeneity of natural killer cells in the mouse

    SciTech Connect

    Lust, J.A.; Kumar, V.; Burton, R.C.; Bartlett, S.P.; Bennett, M.

    1981-08-01

    Mice were treated with the bone-seeking isotope, 89Sr, cyclophosphamide, and short-term lethal irradiation in vivo, and murine spleen cells are treated with anti-Nk-1.2 plus complement (C) in vitro. Fresh spleen cell suspensions from the above groups and from beige and neonatal mice were subsequently tested for natural killer (NK) cell activity against a panel of lymphoid and nonlymphoid tumor cell target. NK cell reactivities against YAC-1, MPC-11, and Cl.18 tumors were markedly and consistently reduced in (a) mice treated with 89Sr, (b) spleen cells treated with anti-Nk-1.2 plus C, and (c) C57BL/6 bg/bg mice. In contrast, NK activities against FLD-3 and WEHI-164.1 tumors were usually normal in mice treated with 89Sr, in beige mutant mice, and in spleen cells after treatment with anti-Nk-1.2 antibody and C. It appears, therefore, that two major groups of NK cells exist in fresh mouse spleen cells suspensions. NK-A cells are marrow dependent, Nk antigen positive, and deficient in beige mice; these lyse YAC-1, MPC-11, and Cl.18 tumors. NK-B cells, which are responsible for the lysis of WEHI-164.1 and FLD-3, are Nk antigen negative, marrow independent, and unaffected by the bg/bg mutation. Other features of NK-B cells, suggest that these NK cells, although they share the characteristics mentioned above, differ among themselves especially with respect to age of maturation and susceptibility to cyclophosphamide and total body irradiation. The NK-B group may therefore induce subsets that remain to be defined.

  9. Decidual Cell Regulation of Natural Killer Cell–Recruiting Chemokines

    PubMed Central

    Lockwood, Charles J.; Huang, S. Joseph; Chen, Chie-Pein; Huang, Yingqun; Xu, Jie; Faramarzi, Saeed; Kayisli, Ozlem; Kayisli, Umit; Koopman, Louise; Smedts, Dineke; Buchwalder, Lynn F.; Schatz, Frederick

    2014-01-01

    First trimester human decidua is composed of decidual cells, CD56brightCD16− decidual natural killer (dNK) cells, and macrophages. Decidual cells incubated with NK cell–derived IFN-γ and either macrophage-derived TNF-α or IL-1β synergistically enhanced mRNA and protein expression of IP-10 and I-TAC. Both chemokines recruit CXCR3-expressing NK cells. This synergy required IFN-γ receptor 1 and 2 mediation via JAK/STAT and NFκB signaling pathways. However, synergy was not observed on neutrophil, monocyte, and NK cell–recruiting chemokines. Immunostaining of first trimester decidua localized IP-10, I-TAC, IFN-γR1, and -R2 to vimentin-positive decidual cells versus cytokeratin-positive interstitial trophoblasts. Flow cytometry identified high CXCR3 levels on dNK cells and minority peripheral CD56brightCD16− pNK cells and intermediate CXCR3 levels on the majority of CD56dimCD16+ pNK cells. Incubation of pNK cells with either IP-10 or I-TAC elicited concentration-dependent enhanced CXCR3 levels and migration of both pNK cell subsets that peaked at 10 ng/mL, whereas each chemokine at a concentration of 50 ng/mL inhibited CXCR3 expression and pNK cell migration. Deciduae from women with preeclampsia, a leading cause of maternal and fetal morbidity and mortality, displayed significantly lower dNK cell numbers and higher IP-10 and I-TAC levels versus gestational age–matched controls. Significantly elevated IP-10 levels in first trimester sera from women eventually developing preeclampsia compared with controls, identifying IP-10 as a novel, robust early predictor of preeclampsia. PMID:23973270

  10. Granule-Dependent Natural Killer Cell Cytotoxicity to Fungal Pathogens

    PubMed Central

    Ogbomo, Henry; Mody, Christopher H.

    2017-01-01

    Natural killer (NK) cells kill or inhibit the growth of a number of fungi including Cryptococcus, Candida, Aspergillus, Rhizopus, and Paracoccidioides. Although many fungi are not dangerous, invasive fungal pathogens, such as Cryptococcus neoformans, cause life-threatening disease in individuals with impaired cell-mediated immunity. While there are similarities to cell-mediated killing of tumor cells, there are also important differences. Similar to tumor killing, NK cells directly kill fungi in a receptor-mediated and cytotoxic granule-dependent manner. Unlike tumor cell killing where multiple NK cell-activating receptors cooperate and signal events that mediate cytotoxicity, only the NKp30 receptor has been described to mediate signaling events that trigger the NK cell to mobilize its cytolytic payload to the site of interaction with C. neoformans and Candida albicans, subsequently leading to granule exocytosis and fungal killing. More recently, the NKp46 receptor was reported to bind Candida glabrata adhesins Epa1, 6, and 7 and directly mediate fungal clearance. A number of unanswered questions remain. For example, is only one NK cell-activating receptor sufficient for signaling leading to fungal killing? Are the signaling pathways activated by fungi similar to those activated by tumor cells during NK cell killing? How do the cytolytic granules traffic to the site of interaction with fungi, and how does this process compare with tumor killing? Recent insights into receptor use, intracellular signaling and cytolytic granule trafficking during NK cell-mediated fungal killing will be compared to tumor killing, and the implications for therapeutic approaches will be discussed. PMID:28123389

  11. STAT4-associated natural killer cell tolerance following liver transplantation

    PubMed Central

    Jamil, K M; Hydes, T J; Cheent, K S; Cassidy, S A; Traherne, J A; Jayaraman, J; Trowsdale, J; Alexander, G J; Little, A-M; McFarlane, H; Heneghan, M A; Purbhoo, M A; Khakoo, S I

    2017-01-01

    Objective Natural killer (NK) cells are important mediators of liver inflammation in chronic liver disease. The aim of this study was to investigate why liver transplants (LTs) are not rejected by NK cells in the absence of human leukocyte antigen (HLA) matching, and to identify a tolerogenic NK cell phenotype. Design Phenotypic and functional analyses on NK cells from 54 LT recipients were performed, and comparisons made with healthy controls. Further investigation was performed using gene expression analysis and donor:recipient HLA typing. Results NK cells from non-HCV LT recipients were hypofunctional, with reduced expression of NKp46 (p<0.05) and NKp30 (p<0.001), reduced cytotoxicity (p<0.001) and interferon (IFN)-γ secretion (p<0.025). There was no segregation of this effect with HLA-C, and these functional changes were not observed in individuals with HCV. Microarray and RT-qPCR analysis demonstrated downregulation of STAT4 in NK cells from LT recipients (p<0.0001). Changes in the expression levels of the transcription factors Helios (p=0.06) and Hobit (p=0.07), which control NKp46 and IFNγ expression, respectively, were also detected. Hypofunctionality of NK cells was associated with impaired STAT4 phosphorylation and downregulation of the STAT4 target microRNA-155. Conversely in HCV-LT NK cell tolerance was reversed, consistent with the more aggressive outcome of LT for HCV. Conclusions LT is associated with transcriptional and functional changes in NK cells, resulting in reduced activation. NK cell tolerance occurs upstream of major histocompatibility complex (MHC) class I mediated education, and is associated with deficient STAT4 phosphorylation. STAT4 therefore represents a potential therapeutic target to induce NK cell tolerance in liver disease. PMID:26887815

  12. [Immunological cell therapy].

    PubMed

    Shibata, Masahiko; Gonda, Kenji; Kumamoto, Kensuke; Takenoshita, Seiichi

    2014-01-01

    Recently there is a great advance in anti-colorectal cancer treatment. Several molecular targeting agents, mostly are antibody drugs, are playing an important role. It has recently been proven that new approaches using antibody to immunological checkpoints are effective against certain types of cancer. This is one of the reasons why cancer immunotherapy is now focused in the clinics. In this chapter, several effective immunotherapy against cancer are shown and discussed. Among several types of cancer immunotherapy, immunological cell therapy including lymphokine activated killer (LAK) cell, cytotoxic T lymphocytes (CTL), gamma delta T cell and dendritic cell therapies are reviewed. Major mechanisms that disturb cancer immunotherapy such as escape mechanisms are also discussed.

  13. [Additive effect of marihuana and retrovirus in the anergy of natural killer cells in mice].

    PubMed

    Ongrádi, J; Specter, S; Horváth, A; Friedman, H

    1999-01-10

    Among the immunosuppressive effects of marijuana, impairment of natural killer cell activity is significant. HIV also inhibits these cells. Friend leukemia virus complex and its helper component Rowson-Parr virus induce early immunosuppression in mice resembling human AIDS, and late leukemia, providing a small animal AIDS model. Leukemia susceptible BALB/c and resistant C57BL/6 mice were infected with these viruses. At different time points, their natural killer cells separated from spleens were treated with 0 to 10 micrograms/ml tetrahydrocannabinol, subsequently mixed with Yac-1 target cells for 4 and 18 h. The natural killer cell activity in both mouse strains infected by either virus complex or helper virus weakened on days 2 to 4 postinfection, normalized by day 8 and enhanced on days 11 to 14. Natural killer cell activity upon the effect of low concentration (1.0 to 2.5 micrograms/ml) of tetrahydrocannabinol slightly increased in BALB/c, was unaffected in C57BL/6, especially in 18 h assays. In the combined effects of marijuana and retrovirus, damages by marijuana dominated over those of retroviruses. Inhibition or reactive enhancement of natural killer cell activity on the effect of viruses are similar to those of infected but marijuana-free counterparts, but on the level of uninfected cells treated with marijuana. The effects of marijuana and retrovirus are additive resulting in anergy of natural killer cells.

  14. Extranodal natural killer/T-cell lymphoma, nasal-type.

    PubMed

    Chorianopoulos, Dimitrios; Samitas, Konstantinos; Vittorakis, Stylianos; Kiriazi, Vasiliki; Rondoyianni, Dimitra; Tsaousis, Georgios; Skoutelis, Athanasios

    2010-01-01

    expressed the cytotoxic proteins T-cell intracellular antigen and granzyme B (Figure 3) They lacked TdT, CD34, CD7, CD8, TCL-1, and CD123. Findings from an in situ hybridization study for Epstein-Barr virus were negative. Give this result, molecular analysis ofT-cell receptor (TCR) gene rearrangements was performed using polymerase chain reaction-based TCR-gamma gene, wit negative results. The morphology and the immunophenotype were consistent with natural killer/T-cell lymphoma, nasal-type. Nasal involvement must be first excluded to proceed to the diagnosis of nasal-type natural killer-cell lymphoma. Indeed, histologic examination of the nasal mass revealed its polypoid nature. Thus, the authors were led to the diagnosis of extranodal extranasal natural killer/T-cell lymphoma, nasal-type, CD56-positive, Ep stein-Barr virus-negative, TCR-negative. The patient received combination chemotherapy and completed 4 cycles of cyclophosphamide, doxorubicin vincristine, and prednisone every 14 days for 2 months. Skin lesions improved, and there was no fever soon after the initiation of therapy. Reevaluatio after the fourth cycle, however, disclosed pulmonary infiltrations as well as leukemic infiltration of the central nervous system. The patient had receive systemic salvage chemotherapy and intrathecal infusions of methotrexate. Although the lung lesions had diminished at that time, the patient develope paraplegia, his clinical course rapidly deteriorated, and he eventually died.

  15. Natural killer cell function in trisomy-21 (Down's syndrome).

    PubMed Central

    Nurmi, T; Huttunen, K; Lassila, O; Henttonen, M; Säkkinen, A; Linna, S L; Tiilikainen, A

    1982-01-01

    Natural killer (NK) activity and antibody-dependent cell mediated cytotoxicity (ADCC) against a human myeloid target cell line (K 562) was measured in adult patients with trisomy-21 (Down's syndrome) and in chromosomally normal age and sex matched control subjects. The effect of human leucocyte interferon (IFN-alpha) on the NK activity was also estimated. Spontaneous NK activity was stronger in the adult patients with trisomy-21 than in the healthy controls, but the difference did not reach statistical significance. The augmentation of NK activity by IFN-alpha, measured using lymphocytes not depleted of monocytes as effector cells, was statistically significant in both the trisomic patients (P less than 0.004) and the healthy controls (P less than 0.0005). Using monocyte and macrophage depleted lymphocytes in the patients with trisomy-21 the NK activity proved stronger than in the healthy controls, but not significantly and IFN-alpha did not augment it as it did in the healthy controls (P = n.s., P less than 0.05), for augmentations respectively). These results support the view that monocytes and macrophages are connected with the NK cell system. ADCC correlated with NK activity in both groups. Since NK cells are important components of many immune processes, including tumour and virus and/or bacteria-infected cell elimination, and have regulatory functions in immune reactions, the deficient augmentation of trisomic NK cells shown in vitro with extrinsic human leucocyte interferon may, paradoxically be an explanation for the greater susceptibility of trisomic individuals to lymphatic leukaemia and virus and bacterial infections. In vivo, this could be explained by the more potent secondary suppression by the 'immune' interferon produced by the virus, bacteria and malignant cells. In other words, the potential of the 'fighting couple' of the immune system, NK cell/interferon, is perhaps disturbed genetically due to the chromosome 21. PMID:6177458

  16. Potassium Channels Mediate Killing by Human Natural Killer Cells

    NASA Astrophysics Data System (ADS)

    Schlichter, Lyanne; Sidell, Neil; Hagiwara, Susumu

    1986-01-01

    Human natural killer (NK) cells in peripheral blood spontaneously recognize and kill a wide variety of target cells. It has been suggested that ion channels are involved in the killing process because there is a Ca-dependent stage and because killing by presensitized cytotoxic T lymphocytes, which in many respects resembles NK killing, is associated with changes in K and Na transport in the target cell. However, no direct evidence exists for ion channels in NK cells or in their target cells. Using the whole-cell variation of the patch-clamp technique, we found a voltage-dependent potassium (K+) current in NK cells. The K+ current was reduced in a dose-dependent manner by the K-channel blockers 4-aminopyridine and quinidine and by the traditional Ca-channel blockers verapamil and Cd2+. We tested the effects of ion-channel blockers on killing of two commonly used target cell lines: K562, which is derived from a human myeloid leukemia, and U937, which is derived from a human histiocytic leukemia. Killing of K562 target cells, determined in a standard 51Cr-release assay, was inhibited in a dose-dependent manner by verapamil, quinidine, Cd2+, and 4-aminopyridine at concentrations comparable to those that blocked the K+ current in NK cells. In K562 target cells only a voltage-dependent Na+ current was found and it was blocked by concentrations of tetrodotoxin that had no effect on killing. Killing of U937 target cells was also inhibited by the two ion-channel blockers tested, quinidine and verapamil. In this cell line only a small K+ current was found that was similar to the one in NK cells. We could not find any evidence of a Ca2+ current in target cells or in NK cells; therefore, our results cannot explain the Ca dependence of killing. Our findings show that there are K channels in NK cells and that these channels play a necessary role in the killing process. In contrast, the endogenous channel type in the target cell is probably not a factor in determining target cell

  17. Role of cytolytic impairment of natural killer and natural killer T-cell populations in rheumatoid arthritis.

    PubMed

    Aggarwal, Ashish; Sharma, Aman; Bhatnagar, Archana

    2014-08-01

    Innate immunity has been widely accepted as one of the major cause for the alteration of immune system and progression of autoimmune diseases. Natural killer (NK) cells and natural killer T (NKT) cells have not been explored in clinical studies for their cytolytic components in association with rheumatoid arthritis (RA). The literature available for these potential candidates is controversial in terms of their protective or pathogenic role in disease severity of RA. Present study explained the role of NK and NKT cell populations and intracellular expression of caspases, perforin, granzymes A and B in the pathogenesis of RA in patients. DAS28 score was measured as the disease severity. Immunochemical parameters were studied by using monoclonal antibodies (mAbs) against different cell types in flow cytometry. Results indicated that that whatsoever is the change in percentage cell populations, ratio of NK and NKT cell populations always remained poised even in the disease state. Reactive oxygen species (ROS) levels were elevated with increased intracellular active caspase-3, perforin and granzyme expression in RA patients. Their elevated expressions were positively correlated with DAS28 suggesting the pathogenic role in RA. The expressions of pro-inflammatory cytokines were enhanced while the anti-inflammatory cytokine expressions were diminished in the patients. Present study may point towards futuristic therapeutic targets which can fascinate the pharmaceutical industries to selectively target these molecules in designing the therapeutic strategy of RA patients.

  18. Role of Natural Killer Cells in HIV-Associated Malignancies

    PubMed Central

    Leal, Fabio E.; Premeaux, Thomas A.; Abdel-Mohsen, Mohamed; Ndhlovu, Lishomwa C.

    2017-01-01

    Now in its fourth decade, the burden of HIV disease still persists, despite significant milestone achievements in HIV prevention, diagnosis, treatment, care, and support. Even with long-term use of currently available antiretroviral therapies (ARTs), eradication of HIV remains elusive and now poses a unique set of challenges for the HIV-infected individual. The occurrence of HIV-associated non-AIDS-related comorbidities outside the scope of AIDS-defining illnesses, in particular non-AIDS-defining cancers, is much greater than the age-matched uninfected population. The underlying mechanism is now recognized in part to be related to the immune dysregulated and inflammatory status characteristic of HIV infection that persists despite ART. Natural killer (NK) cells are multifunctional effector immune cells that play a critical role in shaping the innate immune responses to viral infections and cancer. NK cells can modulate the adaptive immune response via their role in dendritic cell (DC) maturation, removal of immature tolerogenic DCs, and their ability to produce immunoregulatory cytokines. NK cells are therefore poised as attractive therapeutic targets that can be harnessed to control or clear both HIV and HIV-associated malignancies. To date, features of the tumor microenvironment and the evolution of NK-cell function among individuals with HIV-related malignancies remain unclear and may be distinct from malignancies observed in uninfected persons. This review intends to uncouple anti-HIV and antitumor NK-cell features that can be manipulated to halt the evolution of HIV disease and HIV-associated malignancies and serve as potential preventative and curative immunotherapeutic options. PMID:28377768

  19. Statins inhibit proliferation and cytotoxicity of a human leukemic natural killer cell line

    PubMed Central

    2013-01-01

    Background Natural killer cells comprise the body’s first line of defense against virus-infected cells. As is true of all lymphocytes, natural killer cell malignancies can develop, however natural killer cell leukemias can be very difficult to treat due to their intrinsic resistance to chemotherapeutic agents. With the recent understanding that statin drugs may have anti-cancer properties, our investigations have focused on the ability of statins to inhibit the growth and cytotoxicity of the YT-INDY natural killer cell leukemia cell line. Results Our findings indicate that several statin compounds can inhibit YT-INDY proliferation disrupt cell cycle progression and abrogate natural killer cell cytotoxicity. Since natural killer cell leukemia cytotoxicity may play a role in the pulmonary damage seen in these patients, this is an important finding. Cytotoxicity, proliferation and cell cycle progression could be restored by the addition of mevalonate, signifying that the statin effects are brought about through HMG CoA reductase inhibition. The mevalonate pathway intermediate geranylgeranyl pyrophosphate, but not other intermediates in the mevalonate pathway, partially reversed statin-induced inhibition of YT-INDY proliferation and cytotoxicity. These results suggest that blockage of products made in the latter part of the mevalonate pathway may account for the observed inhibitory effects on YT-INDY proliferation and cytotoxicity. However, geranylgeranyl pyrophosphate could not reverse the statin-induced inhibition of the cell cycle. Conclusions These results suggest that the statin drugs should be investigated as a potential therapeutic strategy for human natural killer cell leukemias possibly in combination with chemotherapeutic agents. PMID:24359683

  20. Recognition of Microbial Glycolipids by Natural Killer T Cells

    PubMed Central

    Zajonc, Dirk M.; Girardi, Enrico

    2015-01-01

    T cells can recognize microbial antigens when presented by dedicated antigen-presenting molecules. While peptides are presented by classical members of the major histocompatibility complex (MHC) family (MHC I and II), lipids, glycolipids, and lipopeptides can be presented by the non-classical MHC member, CD1. The best studied subset of lipid-reactive T cells are type I natural killer T (iNKT) cells that recognize a variety of different antigens when presented by the non-classical MHCI homolog CD1d. iNKT cells have been shown to be important for the protection against various microbial pathogens, including B. burgdorferi, the causative agents of Lyme disease, and S. pneumoniae, which causes pneumococcal meningitis and community-acquired pneumonia. Both pathogens carry microbial glycolipids that can trigger the T cell antigen receptor (TCR), leading to iNKT cell activation. iNKT cells have an evolutionary conserved TCR alpha chain, yet retain the ability to recognize structurally diverse glycolipids. They do so using a conserved recognition mode, in which the TCR enforces a conserved binding orientation on CD1d. TCR binding is accompanied by structural changes within the TCR binding site of CD1d, as well as the glycolipid antigen itself. In addition to direct recognition of microbial antigens, iNKT cells can also be activated by a combination of cytokines (IL-12/IL-18) and TCR stimulation. Many microbes carry TLR antigens, and microbial infections can lead to TLR activation. The subsequent cytokine response in turn lower the threshold of TCR-mediated iNKT cell activation, especially when weak microbial or even self-antigens are presented during the cause of the infection. In summary, iNKT cells can be directly activated through TCR triggering of strong antigens, while cytokines produced by the innate immune response may be necessary for TCR triggering and iNKT cell activation in the presence of weak antigens. Here, we will review the molecular basis of iNKT cell

  1. Effect of millimeter waves on natural killer cell activation.

    PubMed

    Makar, V R; Logani, M K; Bhanushali, A; Kataoka, M; Ziskin, M C

    2005-01-01

    Millimeter wave therapy (MMWT) is being widely used for the treatment of many diseases in Russia and other East European countries. MMWT has been reported to reduce the toxic effects of chemotherapy on the immune system. The present study was undertaken to investigate whether millimeter waves (MMWs) can modulate the effect of cyclophosphamide (CPA), an anticancer drug, on natural killer (NK) cell activity. NK cells play an important role in the antitumor response. MMWs were produced with a Russian-made YAV-1 generator. The device produced modulated 42.2 +/- 0.2 GHz radiation through a 10 x 20 mm rectangular output horn. Mice, restrained in plastic tubes, were irradiated on the nasal area. Peak SAR at the skin surface and peak incident power density were measured as 622 +/- 100 W/kg and 31 +/- 5 mW/cm2, respectively. The maximum temperature elevation, measured at the end of 30 min, was 1 degrees C. The animals, restrained in plastic tubes, were irradiated on the nasal area. CPA injection (100 mg/kg) was given intraperitoneally on the second day of 3-days exposure to MMWs. All the irradiation procedures were performed in a blinded manner. NK cell activation and cytotoxicity were measured after 2, 5, and 7 days following CPA injection. Flow cytometry of NK cells showed that CPA treatment caused a marked enhancement in NK cell activation. The level of CD69 expression, which represents a functional triggering molecule on activated NK cells, was increased in the CPA group at all the time points tested as compared to untreated mice. However, the most enhancement in CD69 expression was observed on day 7. A significant increase in TNF-alpha level was also observed on day 7 following CPA administration. On the other hand, CPA caused a suppression of the cytolytic activity of NK cells. MMW irradiation of the CPA treated groups resulted in further enhancement of CD69 expression on NK cells, as well as in production of TNF-alpha. Furthermore, MMW irradiation restored CPA

  2. Are natural killer cells protecting the metabolically healthy obese patient?

    PubMed

    Lynch, Lydia A; O'Connell, Jean M; Kwasnik, Anna K; Cawood, Thomas J; O'Farrelly, Cliona; O'Shea, Donal B

    2009-03-01

    With the emerging obesity pandemic, identifying those who appear to be protected from adverse consequences such as type 2 diabetes and certain malignancies will become important. We propose that the circulating immune system plays a role in the development of these comorbidities. Clinical data and blood samples were collected from 52 patients with severe obesity attending a hospital weight-management clinic and 11 lean healthy controls. Patients were classified into metabolically "healthy obese" (n = 26; mean age 42.6 years, mean BMI 46.8 kg/m(2)) or "unhealthy obese" (n = 26; mean age 45 years, mean BMI 47.5 kg/m(2)) groups, based upon standard cutoff points for blood pressure, lipid profile, and fasting glucose. Circulating lymphoid populations and phenotypes were assessed by flow cytometry. Obese patients had significantly less circulating natural killer (NK) and cytotoxic T lymphocytes (CTL) compared to lean controls. There were significantly higher levels of NK cells and CTLs in the healthy obese group compared to the unhealthy obese group (NK: 11.7% vs. 6.5%, P < 0.0001, CD8 13.4% vs. 9.3%, P = 0.04), independent of age and BMI and these NK cells were also less activated in the healthy compared to the unhealthy group (CD69, 4.1% vs. 11.8%, P = 0.03). This is the first time that quantitative differences in the circulating immune system of obese patients with similar BMI but different metabolic profiles have been described. The significantly higher levels of CTLs and NK cells, which express fewer inhibitory molecules, could protect against malignancy, infection, and metabolic disease seen in obesity.

  3. Bone marrow mesenchymal stem cells suppressing activation of allogeneic cytokine-induced killer/natural killer cells either by direct or indirect interaction.

    PubMed

    Li, Yang; Qu, Yu H; Wu, Yan F; Liu, Ling; Lin, Xiang H; Huang, Ke; Wei, Jing

    2015-04-01

    Bone marrow mesenchymal stem cells (MSC) were recently found to be associated with some special immunological characteristics, the immunoregulatory effect of MSC was dose-dependent. Low amount of MSC was associated with mild immunosuppression or even immune activation, while the high amount of that was associated with significant immunosuppressive effect. In this study, by using a transwell system, we explored the effect of MSC on the cell cycle, apoptosis rate and the expression of CD69, an activation marker, on the allogeneic cord blood derived cytokine-induced killer(CIK)/natural killer(NK) cells. The results showed that either by transwell or mixed cell-cell co-culture, the MSC can effect CIK/NK cells on the cell cycle, such as arrested in the G0/G1 phase, diminished the ratio of cells in S, G2/M phase, and increased the apoptosis of them. MSC can also depress the expression of CD69 on these killer cells, as well as increased the ratio of CD4(+) CD25(+) CD127(low) T regulatory (Treg) cells in the CIK/NK cell culture system. We draw conclusions that either by transwell or mixed co-culture, the MSC can suppress activation of allogeneic CB-CIK/NK cells in a dose-dependent manner.

  4. Super natural killer cells that target metastases in the tumor draining lymph nodes.

    PubMed

    Chandrasekaran, Siddarth; Chan, Maxine F; Li, Jiahe; King, Michael R

    2016-01-01

    Tumor draining lymph nodes are the first site of metastasis in most types of cancer. The extent of metastasis in the lymph nodes is often used in staging cancer progression. We previously showed that nanoscale TRAIL liposomes conjugated to human natural killer cells enhance their endogenous therapeutic potential in killing cancer cells cultured in engineered lymph node microenvironments. In this work, it is shown that liposomes decorated with apoptosis-inducing ligand TRAIL and an antibody against a mouse natural killer cell marker are carried to the tumor draining inguinal lymph nodes and prevent the lymphatic spread of a subcutaneous tumor in mice. It is shown that targeting natural killer cells with TRAIL liposomes enhances their retention time within the tumor draining lymph nodes to induce apoptosis in cancer cells. It is concluded that this approach can be used to kill cancer cells within the tumor draining lymph nodes to prevent the lymphatic spread of cancer.

  5. Activity of cytokine-induced killer cells against bone and soft tissue sarcoma

    PubMed Central

    Sangiolo, Dario; Mesiano, Giulia; Gammaitoni, Loretta; Aglietta, Massimo; Grignani, Giovanni

    2014-01-01

    Cytokine-induced killer (CIK) cells are T lymphocytes expanded ex vivo that are endowed with MHC-independent tumoricidal activity. We have recently demonstrated, in a preclinical setting, that CIK cells are active against autologous bone and soft tissue sarcomas. In particular, CIK cells killed a putative sarcoma stem cell population that may underlie disease relapse and chemoresistance. PMID:25050197

  6. Importance of killer immunoglobulin-like receptors in allogeneic hematopoietic stem cell transplantation

    PubMed Central

    Franceschi, Danilo Santana Alessio; de Souza, Cármino Antonio; Aranha, Francisco José Penteado; Cardozo, Daniela Maira; Sell, Ana Maria; Visentainer, Jeane Eliete Laguila

    2011-01-01

    Hematopoietic stem cell transplantation is the treatment of choice for many hematologic diseases, such as multiple myeloma, bone marrow aplasia and leukemia. Human leukocyte antigen (HLA) compatibility is an important tool to prevent post-transplant complications such as graft rejection and graft-versus-host disease, but the high rates of relapse limit the survival of transplant patients. Natural Killer cells, a type of lymphocyte that is a key element in the defense against tumor cells, cells infected with viruses and intracellular microbes, have different receptors on their surfaces that regulate their cytotoxicity. Killer immunoglobulin-like receptors are the most important, interacting consistently with human leukocyte antigen class I molecules present in other cells and thus controlling the activation of natural killer cells. Several studies have shown that certain combinations of killer immunoglobulin-like receptors and human leukocyte antigens (in both donors and recipients) can affect the chances of survival of transplant patients, particularly in relation to the graft-versusleukemia effect, which may be associated to decreased relapse rates in certain groups. This review aims to shed light on the mechanisms and effects of killer immunoglobulin-like receptors - human leukocyte antigen associations and their implications following hematopoietic stem cell transplantation, and to critically analyze the results obtained by the studies presented herein. PMID:23284260

  7. Decreased non-MHC-restricted (CD56+) killer cell cytotoxicity after spaceflight

    NASA Technical Reports Server (NTRS)

    Mehta, S. K.; Kaur, I.; Grimm, E. A.; Smid, C.; Feeback, D. L.; Pierson, D. L.

    2001-01-01

    Cytotoxic activity of non-major histocompatibility complex-restricted (CD56+) (NMHC) killer cells and cell surface marker expression of peripheral blood mononuclear cells were determined before and after spaceflight. Ten astronauts (9 men, 1 woman) from two space shuttle missions (9- and 10-day duration) participated in the study. Blood samples were collected 10 days before launch, within 3 h after landing, and 3 days after landing. All peripheral blood mononuclear cell preparations were cryopreserved and analyzed simultaneously in a 4-h cytotoxicity (51)Cr release assay using K562 target cells. NMHC killer cell lytic activity was normalized per 1,000 CD56+ cells. When all 10 subjects were considered as one study group, NMHC killer cell numbers did not change significantly during the three sampling periods, but at landing lytic activity had decreased by approximately 40% (P < 0.05) from preflight values. Nine of ten astronauts had decreased lytic activity immediately after flight. NMHC killer cell cytotoxicity of only three astronauts returned toward preflight values by 3 days after landing. Consistent with decreased NMHC killer cell cytotoxicity, urinary cortisol significantly increased after landing compared with preflight levels. Plasma cortisol and ACTH levels at landing were not significantly different from preflight values. No correlation of changes in NMHC killer cell function or hormone levels with factors such as age, gender, mission, or spaceflight experience was found. After landing, expression of the major lymphocyte surface markers (CD3, CD4, CD8, CD14, CD16, CD56), as determined by flow cytometric analysis, did not show any consistent changes from measurements made before flight.

  8. ICAM-1 expression by lung cancer cell lines: effects of upregulation by cytokines on the interaction with LAK cells.

    PubMed

    Melis, M; Spatafora, M; Melodia, A; Pace, E; Gjomarkaj, M; Merendino, A M; Bonsignore, G

    1996-09-01

    Intercellular adhesion molecule-1 (ICAM-1) expression by tumour cells may be involved in their interaction with defensive cells. In this study the surface ICAM-1 expression and soluble ICAM-1 (sICAM-1) production by five small cell lung cancer (SCLC) and five non-SCLC (NSCLC) cell lines was investigated. In addition, the effects of ICAM-1 upregulation by cytokines on the adhesion of lung cancer cells to allogeneic lymphokine-activated killer (LAK) cells and susceptibility to LAK cytotoxicity was also evaluated. ICAM-1 expression was assessed by flow cytometry. Soluble ICAM-1 release was measured by enzyme-linked immunosorbent assay (ELISA). Interaction with LAK cells was tested by adhesion and cytotoxicity assays. At baseline, SCLC lines did not express ICAM-1, while 4 of the 5 NSCLC lines expressed ICAM-1. ICAM-1 expression was induced by interferon-gamma (IFN-gamma) in 4 of the 5 SCLC lines and upregulated in 1 of the 5 NSCLC lines. ICAM-1 expression was induced by tumour necrosis factor-alpha (TNF-alpha) in 1 of the 5 SCLC lines (National Cancer Institute (NCI) H211), and upregulated in 2 of the 5 NSCLC lines (NCI H460 and NCI H838). Among the latter lines, one (NCI H838) released significant amounts of sICAM-1. Adhesion to LAK cells and susceptibility to LAK cytotoxicity were significantly higher in TNF-alpha-treated NCI H460 and NCI H211 cells, compared to untreated NCI H460 and NCI H211 cells. In contrast, no difference in adhesion to LAK cells and susceptibility to LAK cytotoxicity was detected between baseline and TNF-alpha-treated NCI H838 cells. Intercellular adhesion molecule-1 surface expression and soluble intercellular adhesion molecule-1 release may play an important role in interactions between lymphokine-activated killer cells and lung cancer cells.

  9. Recognition of adult and pediatric acute lymphoblastic leukemia blasts by natural killer cells.

    PubMed

    Torelli, Giovanni F; Peragine, Nadia; Raponi, Sara; Pagliara, Daria; De Propris, Maria S; Vitale, Antonella; Bertaina, Alice; Barberi, Walter; Moretta, Lorenzo; Basso, Giuseppe; Santoni, Angela; Guarini, Anna; Locatelli, Franco; Foà, Robin

    2014-07-01

    In this study, we aimed to investigate the pathways of recognition of acute lymphoblastic leukemia blasts by natural killer cells and to verify whether differences in natural killer cell activating receptor ligand expression among groups defined by age of patients, or presence of cytogenetic/molecular aberrations correlate with the susceptibility to recognition and killing. We analyzed 103 newly diagnosed acute lymphoblastic leukemia patients: 46 adults and 57 children. Pediatric blasts showed a significantly higher expression of Nec-2 (P=0.03), ULBP-1 (P=0.01) and ULBP-3 (P=0.04) compared to adult cells. The differential expression of these ligands between adults and children was confined to B-lineage acute lymphoblastic leukemia with no known molecular alterations. Within molecularly defined subgroups of patients, a high surface expression of NKG2D and DNAM1 ligands was found on BCR-ABL(+) blasts, regardless of patient age. Accordingly, BCR-ABL(+) blasts proved to be significantly more susceptible to natural killer-dependent lysis than B-lineage blasts without molecular aberrations (P=0.03). Cytotoxic tests performed in the presence of neutralizing antibodies indicated a pathway of acute lymphoblastic leukemia cell recognition in the setting of the Nec-2/DNAM-1 interaction. These data provide a biological explanation of the different roles played by alloreactive natural killer cells in pediatric versus adult acute lymphoblastic leukemia and suggest that new natural killer-based strategies targeting specific subgroups of patients, particularly those BCR-ABL(+), are worth pursuing further.

  10. Natural killer T cells: innate lymphocytes positioned as a bridge between acute and chronic inflammation?

    PubMed Central

    Fox, Lisa; Hegde, Subramanya

    2010-01-01

    Natural killer T cells are an innate population of T lymphocytes that recognize antigens derived from host lipids and glycolipids. In this review, we focus on how these unique T cells are positioned to influence both acute and chronic inflammatory processes through their early recruitment to sites of inflammation, interactions with myeloid antigen presenting cells, and recognition of lipids associated with inflammation. PMID:20850561

  11. Ocular presentation of natural killer/T-cell lymphoma in a Caucasian man.

    PubMed

    Hughes, Emily; Fogarty, Helen; Fortune, Anne; Keegan, David

    2016-04-26

    Natural killer/T-cell (NK/T-cell) lymphoma-nasal subtype, is a rare form of non-Hodgkin's lymphoma, most common in South East Asia, and can have an ophthalmological presentation. This report describes a 51-year-old Caucasian man with uveitis, recurrent retinal detachment and paraneoplastic features subsequently diagnosed as NK/T-cell lymphoma.

  12. Natural killer cell dysfunction during acute infection with foot-and-mouth diseaase virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Natural killer cells (NK) provide one of the initial barriers of cellular host defense against pathogens, in particular intracellular pathogens. The role of these cells in foot-and-mouth disease virus (FMDV) infection is unknown. Previously, we characterized the phenotype and function of NK cells fr...

  13. Rapid reuptake of granzyme B leads to emperitosis: an apoptotic cell-in-cell death of immune killer cells inside tumor cells.

    PubMed

    Wang, S; He, M-f; Chen, Y-h; Wang, M-y; Yu, X-M; Bai, J; Zhu, H-y; Wang, Y-y; Zhao, H; Mei, Q; Nie, J; Ma, J; Wang, J-f; Wen, Q; Ma, L; Wang, Y; Wang, X-n

    2013-10-10

    A cell-in-cell process refers to the invasion of one living cell into another homotypic or heterotypic cell. Different from non-apoptotic death processes of internalized cells termed entosis or cannibalism, we previously reported an apoptotic cell-in-cell death occurring during heterotypic cell-in-cell formation. In this study, we further demonstrated that the apoptotic cell-in-cell death occurred only in internalized immune killer cells expressing granzyme B (GzmB). Vacuole wrapping around the internalized cells inside the target cells was the common hallmark during the early stage of all cell-in-cell processes, which resulted in the accumulation of reactive oxygen species and subsequent mitochondrial injury of encapsulated killer or non-cytotoxic immune cells. However, internalized killer cells mediated rapid bubbling of the vacuoles with the subsequent degranulation of GzmB inside the vacuole of the target cells and underwent the reuptake of GzmB by killer cells themselves. The confinement of GzmB inside the vacuole surpassed the lysosome-mediated cell death occurring in heterotypic or homotypic entosis processes, resulting in a GzmB-triggered caspase-dependent apoptotic cell-in-cell death of internalized killer cells. On the contrary, internalized killer cells from GzmB-deficient mice underwent a typical non-apoptotic entotic cell-in-cell death similar to that of non-cytotoxic immune cells or tumor cells. Our results thus demonstrated the critical involvement of immune cells with cytotoxic property in apoptotic cell-in-cell death, which we termed as emperitosis taken from emperipolesis and apoptosis. Whereas entosis or cannibalism may serve as a feed-on mechanism to exacerbate and nourish tumor cells, emperitosis of immune killer cells inside tumor cells may serve as an in-cell danger sensation model to prevent the killing of target cells from inside, implying a unique mechanism for tumor cells to escape from immune surveillance.

  14. Severe cutaneous human papilloma virus infection associated with Natural Killer cell deficiency following stem cell transplantation for severe combined immunodeficiency

    PubMed Central

    Kamili, Qurat-ul-Ain; Seeborg, Filiz O; Saxena, Kapil; Nicholas, Sarah K; Banerjee, Pinaki P; Angelo, Laura S; Mace, Emily M; Forbes, Lisa R; Martinez, Caridad; Wright, Teresa S; Orange, Jordan S.; Hanson, Imelda Celine

    2016-01-01

    Capsule Summary The authors identify Natural Killer cell deficiency in post-transplant severe combined immunodeficiency patients who developed severe human papilloma virus infections as a long term complication. PMID:25159470

  15. Natural killer cells: the journey from puzzles in biology to treatment of cancer.

    PubMed

    Bodduluru, Lakshmi Narendra; Kasala, Eshvendar Reddy; Madhana, Rajaram Mohan Rao; Sriram, Chandra Shaker

    2015-02-28

    Natural Killer (NK) cells are innate immune effectors that are primarily involved in immunosurveillance to spontaneously eliminate malignantly transformed and virally infected cells without prior sensitization. NK cells trigger targeted attack through release of cytotoxic granules, and secrete various cytokines and chemokines to promote subsequent adaptive immune responses. NK cells selectively attack target cells with diminished major histocompatibility complex (MHC) class I expression. This "Missing-self" recognition by NK cells at first puzzled researchers in the early 1990s, and the mystery was solved with the discovery of germ line encoded killer immunoglobulin receptors that recognize MHC-I molecules. This review summarizes the biology of NK cells detailing the phenotypes, receptors and functions; interactions of NK cells with dendritic cells (DCs), macrophages and T cells. Further we discuss the various strategies to modulate NK cell activity and the practice of NK cells in cancer immunotherapy employing NK cell lines, autologous, allogeneic and genetically engineered cell populations.

  16. Rare aggressive natural killer cell leukemia presented with bone marrow fibrosis - a diagnostic challenge.

    PubMed

    Soliman, Dina S; Sabbagh, Ahmad Al; Omri, Halima El; Ibrahim, Firyal A; Amer, Aliaa M; Otazu, Ivone B

    2014-01-01

    Aggressive natural killer cell leukemia is an extraordinary rare aggressive malignant neoplasm of natural killer cells. Although its first recognition as a specific entity was approximately 20 years ago, this leukemia has not yet been satisfactorily characterized as fewer than 200 cases have been reported in the literature and up to our knowledge, this is the first case report in Qatar. Reaching a diagnosis of aggressive natural killer leukemia was a challenging experience, because in addition to being a rare entity, the relative scarcity of circulating neoplastic cells, failure to obtain an adequate aspirate sample sufficient to perform flow cytometric analysis, together with the absence of applicable method to prove NK clonality (as it lack specific clonal marker); our case had atypical confusing presentation of striking increase in bone marrow fibrosis that was misleading and complicated the case further. The bone marrow fibrosis encountered may be related to the neoplastic natural killer cells' chemokine profile and it may raise the awareness for considering aggressive natural killer leukemia within the differential diagnosis of leukemia with heightened marrow fibrosis.

  17. Killing defect of natural killer cells with the absence of natural killer cytotoxic factors in a child with Hodgkin's disease

    SciTech Connect

    Komiyama, A.; Kawai, H.; Yamada, S.; Kato, M.; Yanagisawa, M.; Miyagawa, Y.; Akabane, T.

    1987-06-01

    A killing defect of natural killer (NK) cells in the absence of NK cytotoxic factors (NKCF) was first demonstrated in a child with Hodgkin's disease. The patient lacked detectable NK cell activity in every phase of the disease as measured by a four-hour /sup 51/Cr-release assay using K562 cells as a target. The percent lysis at a 40:1 effector:target ratio by the patient's lymphocytes was persistently below 0.3% as compared with the normal lymphocyte value of 46.2% +/- 5.8% (mean +/- SD). NK cell activity was not detectable at effector:target ratios of 10:1 to 80:1 and by prolongation of the incubation time, and the NK cell defect was not restored or improved by lymphocyte stimulation with polyinosinic-polycytidilic acid, interferon (IFN)-alpha, or interleukin 2 (IL 2). The numbers of Leu-7+ cells and Leu-11+ cells were normal as counted by flow cytometry. A single cell-in-agarose assay demonstrated normal numbers of target binding cells (TBCs), and they showed the morphology of large granular lymphocytes. However, there were no TBCs with dead targets. These results indicated that the patient's lymphocytes contained normal numbers of NK cells that were capable of recognizing and binding to a target but were incapable of killing the bound target cell. The patient's lymphocytes were then studied for their release of NKCF upon interaction with K562 cells. The patient's cells did not release NKCF, and the NK cell defect was not restored or improved by stimulation of the cells with IFN or IL 2. It is suggested that the deficient release of NKCF may have been related to the killing defect of the NK cells in this patient.

  18. Effect of chaetocin on renal cell carcinoma cells and cytokine-induced killer cells.

    PubMed

    Rombo, Roman; Weiher, Hans; Schmidt-Wolf, Ingo G H

    2016-01-01

    We examined the cytotoxic effects of chaetocin on clear cell renal cell carcinoma (ccRCC) cells and the possibility to combine the effects of chaetocin with the effects of cytokine-induced killer cells (CIK) assayed by MTT assay and FACS analysis. Chaetocin is a thiodioxopiperazine produced by fungi belonging to the chaetomiaceae family. In 2007, it was first reported that chaetocin shows potent and selective ex vivo anti-cancer activity by inducing reactive oxygen species. CIK cells are generated from CD3+/CD56- T lymphocytes with double negative CD4-/CD8- phenotype that are isolated from human blood. The addition of distinct interleukins and antibodies results in the generation of CIK cells that are able to specifically target and destroy renal carcinoma cells. The results of this research state that the anti-ccRCC activity of chaetocin is weak and does not show a high grade of selectivity on clear cell renal cell carcinoma cells. Although the CIK cells show a high grade of selective anti-ccRCC activity, this effect could not be improved by the addition of chaetocin. So chaetocin seems to be no suitable agent for specific targeting ccRCC cells or for the combination therapy with CIK cells in renal cancer.

  19. Effect of chaetocin on renal cell carcinoma cells and cytokine-induced killer cells

    PubMed Central

    Rombo, Roman; Weiher, Hans; Schmidt-Wolf, Ingo G.H.

    2016-01-01

    We examined the cytotoxic effects of chaetocin on clear cell renal cell carcinoma (ccRCC) cells and the possibility to combine the effects of chaetocin with the effects of cytokine-induced killer cells (CIK) assayed by MTT assay and FACS analysis. Chaetocin is a thiodioxopiperazine produced by fungi belonging to the chaetomiaceae family. In 2007, it was first reported that chaetocin shows potent and selective ex vivo anti-cancer activity by inducing reactive oxygen species. CIK cells are generated from CD3+/CD56- T lymphocytes with double negative CD4-/CD8- phenotype that are isolated from human blood. The addition of distinct interleukins and antibodies results in the generation of CIK cells that are able to specifically target and destroy renal carcinoma cells. The results of this research state that the anti-ccRCC activity of chaetocin is weak and does not show a high grade of selectivity on clear cell renal cell carcinoma cells. Although the CIK cells show a high grade of selective anti-ccRCC activity, this effect could not be improved by the addition of chaetocin. So chaetocin seems to be no suitable agent for specific targeting ccRCC cells or for the combination therapy with CIK cells in renal cancer. PMID:27141211

  20. Deciphering the killer-cell immunoglobulin-like receptor system at super-resolution for natural killer and T-cell biology.

    PubMed

    Béziat, Vivien; Hilton, Hugo G; Norman, Paul J; Traherne, James A

    2017-03-01

    Killer-cell immunoglobulin-like receptors (KIRs) are components of two fundamental biological systems essential for human health and survival. First, they contribute to host immune responses, both innate and adaptive, through their expression by natural killer cells and T cells. Second, KIR play a key role in regulating placentation, and hence reproductive success. Analogous to the diversity of their human leucocyte antigen class I ligands, KIR are extremely polymorphic. In this review, we describe recent developments, fuelled by methodological advances, that are helping to decipher the KIR system in terms of haplotypes, polymorphisms, expression patterns and their ligand interactions. These developments are delivering deeper insight into the relevance of KIR in immune system function, evolution and disease.

  1. Functional impairment of natural killer cells in active ulcerative colitis: reversion of the defective natural killer activity by interleukin 2.

    PubMed Central

    Manzano, L; Alvarez-Mon, M; Abreu, L; Antonio Vargas, J; de la Morena, E; Corugedo, F; Duràntez, A

    1992-01-01

    We have studied the functional characteristics and clinical importance of the natural killer (NK) cytotoxicity of peripheral blood mononuclear cells (PBMNC) from patients with ulcerative colitis. Normal NK activity was observed in PBMNC from patients with inactive disease, but a pronounced decrease was found in those with active disease. Clinical change from active to inactive disease was associated with enhancement of the depressed NK activity. The impairment of NK cytotoxicity found in patients with active disese could not be ascribed to a deficient number of NK cells as the amounts of HNK-1+, CD16+ (Leu 11), and CD11b (OKM1) cells in PBMNC were within normal ranges. This defective cytotoxic PBMNC activity was normalised by short term (18 hour) incubation with recombinant interleukin 2 (rIL-2). Moreover, long term (5 day) incubation of these effector cells with rIL-2 induced strong cytotoxic activity against NK resistant and NK sensitive target cells in patients with active and inactive disease. We also found that both precursors and effectors of cytotoxic activity promoted by short term and long term incubation with rIL-2 of PBMNC from the patients showed the phenotype of NK cells (CD16+, CD3-). Taken together, these results show that active ulcerative colitis is associated with a defective function of NK cells that is found to be normal in the inactive stage of the disease. The possible pathogenic and therapeutic implications of these findings are discussed. PMID:1541421

  2. Natural Killer Cells for Immunotherapy - Advantages of the NK-92 Cell Line over Blood NK Cells.

    PubMed

    Klingemann, Hans; Boissel, Laurent; Toneguzzo, Frances

    2016-01-01

    Natural killer (NK) cells are potent cytotoxic effector cells for cancer therapy and potentially for severe viral infections. However, there are technical challenges to obtain sufficient numbers of functionally active NK cells from a patient's blood since they represent only 10% of the lymphocytes and are often dysfunctional. The alternative is to obtain cells from a healthy donor, which requires depletion of the allogeneic T cells to prevent graft-versus-host reactions. Cytotoxic cell lines have been established from patients with clonal NK-cell lymphoma. Those cells can be expanded in culture in the presence of IL-2. Except for the NK-92 cell line, though, none of the other six known NK cell lines has consistently and reproducibly shown high antitumor cytotoxicity. Only NK-92 cells can easily be genetically manipulated to recognize specific tumor antigens or to augment monoclonal antibody activity through antibody-dependent cellular cytotoxicity. NK-92 is also the only cell line product that has been infused into patients with advanced cancer with clinical benefit and minimal side effects.

  3. Paucity of natural killer and cytotoxic T cells in human neuromyelitis optica lesions.

    PubMed

    Saadoun, Samira; Bridges, Leslie R; Verkman, A S; Papadopoulos, Marios C

    2012-12-19

    Neuromyelitis optica is a severe inflammatory demyelinating disease of the central nervous system. Most patients with neuromyelitis optica have circulating immunoglobulin G (IgG) antibodies against the astrocytic water channel protein aquaporin-4 (AQP4), which are pathogenic. Anti-AQP4 IgG-mediated complement-dependent astrocyte toxicity is a key mechanism of central nervous system damage in neuromyelitis optica, but the role of natural killer and cytotoxic T cells is unknown. Our objective was to determine whether natural killer and cytotoxic T cells play a role in human neuromyelitis optica lesions. We immunostained four actively demyelinating lesions, obtained from patients with anti-AQP4 IgG positive neuromyelitis optica, for Granzyme B and Perforin. The inflammatory cells were perivascular neutrophils, eosinophils and macrophages, with only occasional Granzyme B+ or Perforin+ cells. Greater than 95% of inflamed vessels in each lesion had no surrounding Granzyme B+ or Perforin+ cells. Granzyme B+ or Perforin+ cells were abundant in human spleen (positive control). Although natural killer cells produce central nervous system damage in mice injected with anti-AQP4 IgG, our findings here indicate that natural killer-mediated and T cell-mediated cytotoxicity are probably not involved in central nervous system damage in human neuromyelitis optica.

  4. Liver natural killer and natural killer T cells: immunobiology and emerging roles in liver diseases

    PubMed Central

    Gao, Bin; Radaeva, Svetlana; Park, Ogyi

    2009-01-01

    Hepatic lymphocytes are enriched in NK and NKT cells that play important roles in antiviral and antitumor defenses and in the pathogenesis of chronic liver disease. In this review, we discuss the differential distribution of NK and NKT cells in mouse, rat, and human livers, the ultrastructural similarities and differences between liver NK and NKT cells, and the regulation of liver NK and NKT cells in a variety of murine liver injury models. We also summarize recent findings about the role of NK and NKT cells in liver injury, fibrosis, and repair. In general, NK and NKT cells accelerate liver injury by producing proinflammatory cytokines and killing hepatocytes. NK cells inhibit liver fibrosis via killing early-activated and senescent-activated stellate cells and producing IFN-γ. In regulating liver fibrosis, NKT cells appear to be less important than NK cells as a result of hepatic NKT cell tolerance. NK cells inhibit liver regeneration by producing IFN-γ and killing hepatocytes; however, the role of NK cells on the proliferation of liver progenitor cells and the role of NKT cells in liver regeneration have been controversial. The emerging roles of NK/NKT cells in chronic human liver disease will also be discussed. Understanding the role of NK and NKT cells in the pathogenesis of chronic liver disease may help us design better therapies to treat patients with this disease. PMID:19542050

  5. Functional invariant natural killer T-cell and CD1d axis in chronic lymphocytic leukemia: implications for immunotherapy.

    PubMed

    Weinkove, Robert; Brooks, Collin R; Carter, John M; Hermans, Ian F; Ronchese, Franca

    2013-03-01

    Invariant natural killer T cells recognize glycolipid antigens such as α-galactosylceramide presented by CD1d. In preclinical models of B-cell malignancies, α-galactosylceramide is an adjuvant to tumor vaccination, enhancing tumor-specific T-cell responses and prolonging survival. However, numerical and functional invariant natural killer T-cell defects exist in patients with some cancers. Our aim was to assess this axis in patients with chronic lymphocytic leukemia. The numbers of circulating invariant natural killer T cells and the expression of CD1d on antigen-presenting cells were evaluated in patients with chronic lymphocytic leukemia and age-matched controls. Cytokine profile and in vitro proliferative capacity were determined. Patient- and control-derived invariant natural killer T-cell lines were generated and characterized, and allogeneic and autologous responses to α-galactosylce-ramide-treated leukemia cells were assessed. Absolute numbers and phenotype of invariant natural killer T cells were normal in patients with untreated chronic lymphocytic leukemia, and cytokine profile and proliferative capacity were intact. Chemotherapy-treated patients had reduced numbers of invariant natural killer T cells and myeloid dendritic cells, but α-galactosylceramide-induced proliferation was preserved. Invariant natural killer T-cell lines from patients lysed CD1d-expressing targets. Irradiated α-galactosylceramide-treated leukemic cells elicited allogeneic and autologous invariant natural killer T-cell proliferation, and α-galactosylceramide treatment led to increased proliferation of conventional T cells in response to tumor. In conclusion, the invariant natural killer T-cell and CD1d axis is fundamentally intact in patients with early-stage chronic lymphocytic leukemia and, despite reduced circulating numbers, function is retained in fludarabine-treated patients. Immunotherapies exploiting the adjuvant effect of α-galactosylceramide may be feasible.

  6. Analysis of GzmbCre as a Model System for Gene Deletion in the Natural Killer Cell Lineage.

    PubMed

    Xu, Yiying; Evaristo, Cesar; Alegre, Maria-Luisa; Gurbuxani, Sandeep; Kee, Barbara L

    2015-01-01

    The analysis of gene function in mature and activated natural killer cells has been hampered by the lack of model systems for Cre-mediated recombination in these cells. Here we have investigated the utility of GzmbCre for recombination of loxp sequences in these cells predicated on the observation that Gzmb mRNA is highly expressed in mature and activated natural killer cells. Using two different reporter strains we determined that gene function could be investigated in mature natural killer cells after GzmbCre mediated recombination in vitro in conditions that lead to natural killer cell activation such as in the cytokine combination of interleukin 2 and interleukin 12. We demonstrated the utility of this model by creating GzmbCre;Rosa26IKKbca mice in which Cre-mediated recombination resulted in expression of constitutively active IKKβ, which results in activation of the NFκB transcription factor. In vivo and in vitro activation of IKKβ in natural killer cells revealed that constitutive activation of this pathway leads to natural killer cell hyper-activation and altered morphology. As a caveat to the use of GzmbCre we found that this transgene can lead to recombination in all hematopoietic cells the extent of which varies with the particular loxp flanked allele under investigation. We conclude that GzmbCre can be used under some conditions to investigate gene function in mature and activated natural killer cells.

  7. Suicide gene-modified killer cells as an allogeneic alternative to autologous cytokine-induced killer cell immunotherapy of hepatocellular carcinoma.

    PubMed

    Wu, Tao; Leboeuf, Céline; Durand, Sarah; Su, Bin; Deschamps, Marina; Zhang, Xiaowen; Ferrand, Christophe; Pessaux, Patrick; Robinet, Eric

    2016-03-01

    Adoptive immunotherapy using autologous cytokine-induced killer (CIK) cells reduces the recurrence rate of hepatocellular carcinoma (HCC) in association with transarterial chemoembolization or radiofrequency. However, a large‑scale development of this immunotherapy remains difficult to consider in an autologous setting, considering the logistical hurdles associated with the production of this cell therapy product. A previous study has provided the in vitro and in vivo proof‑of‑concept that allogeneic suicide gene‑modified killer cells (aSGMKCs) from healthy blood donors (a cell therapy product previously demonstrated to provide anti‑leukemic effects to patients receiving allogeneic hematopoietic transplantation) may exert a potent anti‑tumor effect towards HCC. Therefore, the development of a bank of 'ready‑for‑use' aSGMKCs was proposed as an approach allowing for the development of immunotherapies that are more convenient and on a broader scale than that of autologous therapies. In the present study, aSGMKCs were compared with CIK cells generated according to three different protocols. Similar to CIK cells, the cytotoxic activity of aSGMKCs toward the Huh‑7 HCC cell line was mediated by tumor necrosis factor‑related apoptosis‑inducing ligand, tumor necrosis factor‑α and interferon‑γ. Furthermore, the frequency of natural killer (NK), NK‑like T and T cells, and their in vitro and in vivo cytotoxicity activities were similar between aSGMKCs and CIK cells. Thus, the present study demonstrated that aSGMKCs are similar to CIK cells, further suggesting the possibility for future use of aSGMKCs in the treatment of solid tumors, including HCC.

  8. Liaison between natural killer cells and dendritic cells in human gestation.

    PubMed

    Leno-Durán, Ester; Muñoz-Fernández, Raquel; Olivares, Enrique García; Tirado-González, Irene

    2014-09-01

    A successful pregnancy relies on immunological adaptations that allow the fetus to grow and develop in the uterus, despite being recognized by maternal immune cells. Among several immunocompetent cell types present within the human maternal/fetal interface, DC-SIGN(+) dendritic cells (DCs) and CD56(+) natural killer (NK) cells are of major importance for early pregnancy maintenance, not only generating maternal immunological tolerance but also regulating stromal cell differentiation. Previous reports show the presence of NK-DC cell conjugates in first trimester human decidua, suggesting that these cells may play a role in the modulation of the local immune response within the uterus. While effective immunity is necessary to protect the mother from harmful pathogens, some form of tolerance must be activated to avoid an immune response against fetal antigens. This review article discusses current evidence concerning the functions of DC and NK cells in pregnancy and their liaison in human decidua.

  9. Liaison between natural killer cells and dendritic cells in human gestation

    PubMed Central

    Leno-Durán, Ester; Muñoz-Fernández, Raquel; García Olivares, Enrique; Tirado-González, Irene

    2014-01-01

    A successful pregnancy relies on immunological adaptations that allow the fetus to grow and develop in the uterus, despite being recognized by maternal immune cells. Among several immunocompetent cell types present within the human maternal/fetal interface, DC-SIGN+ dendritic cells (DCs) and CD56+ natural killer (NK) cells are of major importance for early pregnancy maintenance, not only generating maternal immunological tolerance but also regulating stromal cell differentiation. Previous reports show the presence of NK–DC cell conjugates in first trimester human decidua, suggesting that these cells may play a role in the modulation of the local immune response within the uterus. While effective immunity is necessary to protect the mother from harmful pathogens, some form of tolerance must be activated to avoid an immune response against fetal antigens. This review article discusses current evidence concerning the functions of DC and NK cells in pregnancy and their liaison in human decidua. PMID:24954224

  10. Natural killer cells: can they be useful as adoptive immunotherapy for cancer?

    PubMed

    Arai, Sally; Klingemann, Hans-G

    2005-02-01

    As part of the innate immune system, natural killer (NK) cells form the first line of defence against pathogens or transformed/cancerous host cells. Recent experimental and clinical data show the possibility of exploiting NK activity as a cell-based immunotherapy to treat cancer. This review discusses the recent knowledge on NK cell biology that has impacted on its development as a treatment for cancer.

  11. Noninvasive Imaging of Natural Killer Cell-Mediated Apoptosis in a Mouse Tumor Model.

    PubMed

    Singh, Thoudam Debraj; Lee, Jaetae; Jeon, Yong Hyun

    2016-01-01

    Natural killer (NK) cells are cytotoxic lymphocytes that induce apoptosis in cancer cells infected with viruses and bacteria through a caspase-3-dependent pathway. Effective NK cell-based immunotherapy requires highly sensitive imaging tools for in vivo monitoring of the dynamic events involved in apoptosis. Here, we describe a noninvasive bioluminescence imaging approach to determine the antitumor effects of NK cell-based therapy by serial imaging of caspase-3-dependent apoptosis in a mouse model of human glioma.

  12. Phenotypic modulation of porcine CD14+ monocytes, natural killer/natural killer T cells and CD8αβ+ T cell subsets by an antibody-derived killer peptide (KP).

    PubMed

    Ferrari, Luca; Borghetti, Paolo; Ferrarini, Giulia; De Angelis, Elena; Canelli, Elena; Ogno, Giulia; Catella, Alessia; Ciociola, Tecla; Magliani, Walter; Martelli, Paolo

    2016-12-01

    An engineered killer peptide (KP) based on a recombinant anti-idiotypic antibody representing the functional image of a yeast killer toxin (KT) was demonstrated to mediate antimicrobial effects against fungi and viruses. KP binds to murine dendritic cells and macrophages and up-regulate co-receptor expression, thus sustaining CD4+ lymphocyte activation. No immunological data are available in domestic animals thus KP-induced immunomodulation was evaluated in porcine monocyte and lymphocyte subsets. PBMC from healthy adult pigs were stimulated with KP or a scramble peptide (SP), or kept unstimulated for 24, 48 and 72h, and subsequently analyzed by flow cytometry. In monocytes, KP induced a strong dose-dependent shift from a major fraction of CD172α+CD14+(low) cells to a predominant fraction of CD172α+CD14+(high) cells, known to sustain leukocyte activation/differentiation and inflammatory responses. The CD16+ cell percentages, specifically the CD3+CD16+ natural killer T (NKT) cell fraction and CD16 expression showed an intense and stable dose-dependent increase while the CD3-CD16+ NK cell fraction decreased. CD4+ and CD8+ T cells increased and CD8α and CD8β expression were up-regulated. CD8β+ cytotoxic T cells and CD16+ cells comparably increased. A marked stimulation of activated CD16+CD25+ and CD8β+CD25+ cells was observed at 24h. The increase of CD8α+ cells and CD8α expression were due to increased CD4+CD8α+ (memory T helper) cells, also showing a CD8α+(high) phenotype. Concomitantly, the CD4+CD8α- T helper lymphocyte fraction significantly decreased. Overall, KP induced a wide modulation of innate immune and T cells that can exert regulatory and cytotoxic functions, which are fundamental for an efficient Th1 response.

  13. Innate immune responses involving natural killer and natural killer T cells promote liver regeneration after partial hepatectomy in mice.

    PubMed

    Hosoya, Satoko; Ikejima, Kenichi; Takeda, Kazuyoshi; Arai, Kumiko; Ishikawa, Sachiko; Yamagata, Hisafumi; Aoyama, Tomonori; Kon, Kazuyoshi; Yamashina, Shunhei; Watanabe, Sumio

    2013-02-01

    To clarify the roles of innate immune cells in liver regeneration, here, we investigated the alteration in regenerative responses after partial hepatectomy (PH) under selective depletion of natural killer (NK) and/or NKT cells. Male, wild-type (WT; C57Bl/6), and CD1d-knockout (KO) mice were injected with anti-NK1.1 or anti-asialo ganglio-N-tetraosylceramide (GM1) antibody and then underwent the 70% PH. Regenerative responses after PH were evaluated, and hepatic expression levels of cytokines and growth factors were measured by real-time RT-PCR and ELISA. Phosphorylation of STAT3 was detected by Western blotting. Depletion of both NK and NKT cells with an anti-NK1.1 antibody in WT mice caused drastic decreases in bromodeoxyuridine uptake, expression of proliferating cell nuclear antigen, and cyclin D1, 48 h after PH. In mice given NK1.1 antibody, increases in hepatic TNF-α, IL-6/phospho-STAT3, and hepatocyte growth factor (HGF) levels following PH were also blunted significantly, whereas IFN-γ mRNA levels were not different. CD1d-KO mice per se showed normal liver regeneration; however, pretreatment with an antiasialo GM1 antibody to CD1d-KO mice, resulting in depletion of both NK and NKT cells, also blunted regenerative responses. Collectively, these observations clearly indicated that depletion of both NK and NKT cells by two different ways results in impaired liver regeneration. NK and NKT cells most likely upregulate TNF-α, IL-6/STAT3, and HGF in a coordinate fashion, thus promoting normal regenerative responses in the liver.

  14. Neural stem cells sustain natural killer cells that dictate recovery from brain inflammation

    PubMed Central

    Liu, Qiang; Sanai, Nader; Jin, Wei-Na; La Cava, Antonio; Van Kaer, Luc; Shi, Fu-Dong

    2017-01-01

    Recovery from organ-specific autoimmune diseases largely relies on the mobilization of endogenous repair mechanisms and local factors that control them. Natural killer (NK) cells are swiftly mobilized to organs targeted by autoimmunity and typically undergo numerical contraction when inflammation wanes. We report the unexpected finding that NK cells are retained in the brain subventricular zone (SVZ) during the chronic phase of multiple sclerosis in humans and its animal model in mice. These NK cells were found preferentially in close proximity to SVZ neural stem cells (NSCs) that produce interleukin-15 and sustain functionally competent NK cells. Moreover, NK cells limited the reparative capacity of NSCs following brain inflammation. These findings reveal that reciprocal interactions between NSCs and NK cells regulate neurorepair. PMID:26752157

  15. Identification of Anti-tumor Cells Carrying Natural Killer (NK) Cell Antigens in Patients With Hematological Cancers.

    PubMed

    Krzywinska, Ewelina; Allende-Vega, Nerea; Cornillon, Amelie; Vo, Dang-Nghiem; Cayrefourcq, Laure; Panabieres, Catherine; Vilches, Carlos; Déchanet-Merville, Julie; Hicheri, Yosr; Rossi, Jean-François; Cartron, Guillaume; Villalba, Martin

    2015-10-01

    Natural killer (NK) cells, a cytotoxic lymphocyte lineage, are able to kill tumor cells in vitro and in mouse models. However, whether these cells display an anti-tumor activity in cancer patients has not been demonstrated. Here we have addressed this issue in patients with several hematological cancers. We found a population of highly activated CD56(dim)CD16(+) NK cells that have recently degranulated, evidence of killing activity, and it is absent in healthy donors. A high percentage of these cells expressed natural killer cell p46-related protein (NKp46), natural-killer group 2, member D (NKG2D) and killer inhibitory receptors (KIRs) and a low percentage expressed NKG2A and CD94. They are also characterized by a high metabolic activity and active proliferation. Notably, we found that activated NK cells from hematological cancer patients have non-NK tumor cell antigens on their surface, evidence of trogocytosis during tumor cell killing. Finally, we found that these activated NK cells are distinguished by their CD45RA(+)RO(+) phenotype, as opposed to non-activated cells in patients or in healthy donors displaying a CD45RA(+)RO(-) phenotype similar to naïve T cells. In summary, we show that CD45RA(+)RO(+) cells, which resemble a unique NK population, have recognized tumor cells and degranulate in patients with hematological neoplasias.

  16. Mechanisms of Invariant Natural Killer T Cell-Mediated Immunoregulation in Cancer

    DTIC Science & Technology

    2011-05-01

    immunoregulatory phenotype. Specifically, three non-mutually exclusive hypothesis will be tested –1) that a lipid antigen derived from 4T1 tumor cells can be...made significant progress in demonstrating that lipid antigen/s derived from 4T1 tumors can differentially modulate the maturational markers in...4 INTRODUCTION Invariant natural killer T (iNKT) cells comprise a unique group of immune cells that specifically recognize lipid antigens

  17. Virus-Infected Human Mast Cells Enhance Natural Killer Cell Functions.

    PubMed

    Portales-Cervantes, Liliana; Haidl, Ian D; Lee, Patrick W; Marshall, Jean S

    2017-01-01

    Mucosal surfaces are protected from infection by both structural and sentinel cells, such as mast cells. The mast cell's role in antiviral responses is poorly understood; however, they selectively recruit natural killer (NK) cells following infection. Here, the ability of virus-infected mast cells to enhance NK cell functions was examined. Cord blood-derived human mast cells infected with reovirus (Reo-CBMC) and subsequent mast cell products were used for the stimulation of human NK cells. NK cells upregulated the CD69 molecule and cytotoxicity-related genes, and demonstrated increased cytotoxic activity in response to Reo-CBMC soluble products. NK cell interferon (IFN)-γ production was also promoted in the presence of interleukin (IL)-18. In vivo, SCID mice injected with Reo-CBMC in a subcutaneous Matrigel model, could recruit and activate murine NK cells, a property not shared by normal human fibroblasts. Soluble products of Reo-CBMC included IL-10, TNF, type I and type III IFNs. Blockade of the type I IFN receptor abrogated NK cell activation. Furthermore, reovirus-infected mast cells expressed multiple IFN-α subtypes not observed in reovirus-infected fibroblasts or epithelial cells. Our data define an important mast cell IFN response, not shared by structural cells, and a subsequent novel mast cell-NK cell immune axis in human antiviral host defense.

  18. Selection and expansion of natural killer cells for NK cell-based immunotherapy.

    PubMed

    Becker, Petra S A; Suck, Garnet; Nowakowska, Paulina; Ullrich, Evelyn; Seifried, Erhard; Bader, Peter; Tonn, Torsten; Seidl, Christian

    2016-04-01

    Natural killer (NK) cells have been used in several clinical trials as adaptive immunotherapy. The low numbers of these cells in peripheral blood mononuclear cells (PBMC) have resulted in various approaches to preferentially expand primary NK cells from PBMC. While some clinical trials have used the addition of interleukin 2 (IL-2) to co-stimulate the expansion of purified NK cells from allogeneic donors, recent studies have shown promising results in achieving in vitro expansion of NK cells to large numbers for adoptive immunotherapy. NK cell expansion requires multiple cell signals for survival, proliferation and activation. Thus, expansion strategies have been focused either to substitute these factors using autologous feeder cells or to use genetically modified allogeneic feeder cells. Recent developments in the clinical use of genetically modified NK cell lines with chimeric antigen receptors, the development of expansion protocols for the clinical use of NK cell from human embryonic stem cells and induced pluripotent stem cells are challenging improvements for NK cell-based immunotherapy. Transfer of several of these protocols to clinical-grade production of NK cells necessitates adaptation of good manufacturing practice conditions, and the development of freezing conditions to establish NK cell stocks will require some effort and, however, should enhance the therapeutic options of NK cells in clinical medicine.

  19. Recruitment and Activation of Natural Killer (Nk) Cells in Vivo Determined by the Target Cell Phenotype

    PubMed Central

    Glas, Rickard; Franksson, Lars; Une, Clas; Eloranta, Maija-Leena; Öhlén, Claes; Örn, Anders; Kärre, Klas

    2000-01-01

    Natural killer (NK) cells can spontaneously lyse certain virally infected and transformed cells. However, early in immune responses NK cells are further activated and recruited to tissue sites where they perform effector functions. This process is dependent on cytokines, but it is unclear if it is regulated by NK cell recognition of susceptible target cells. We show here that infiltration of activated NK cells into the peritoneal cavity in response to tumor cells is controlled by the tumor major histocompatibility complex (MHC) class I phenotype. Tumor cells lacking appropriate MHC class I expression induced NK cell infiltration, cytotoxic activation, and induction of transcription of interferon γ in NK cells. The induction of these responses was inhibited by restoration of tumor cell MHC class I expression. The NK cells responding to MHC class I–deficient tumor cells were ∼10 times as active as endogenous NK cells on a per cell basis. Although these effector cells showed a typical NK specificity in that they preferentially killed MHC class I–deficient cells, this specificity was even more distinct during induction of the intraperitoneal response. Observations are discussed in relation to a possible adaptive component of the NK response, i.e., recruitment/activation in response to challenges that only NK cells are able to neutralize. PMID:10620611

  20. Effects of OK-432 on murine bone marrow and the production of natural killer cells

    SciTech Connect

    Pollack, S.B.; Rosse, C.

    1985-01-01

    The streptococcal preparation, OK-432, which augments anti-tumor responses in humans and mice, has been shown to be a potent immunomodulator. Among its effects is a pronounced augmentation of natural killer (NK) activity. The hypothesis that OK-432 alters the rates of production and maturation of NK cells in the bone marrow was tested. Studies to determine the kinetic parameters of NK cell production in normal C57BL/6J mice using tritiated thymidine, /sup 3/H-TdR, as a DNA marker are described. We are now extending those studies to determine the effect of OK-432 on the bone marrow and on the production of NK cells in the marrow. Initial observations are reported which indicate that OK-432 has profound effects on the cellularity and mitotic activity of the bone marrow, and in particular, on cells with the characteristics of natural killer cells within the marrow. 17 refs., 3 figs., 4 tabs.

  1. Type 1 Innate Lymphoid Cell Biology: Lessons Learnt from Natural Killer Cells

    PubMed Central

    Jiao, Yuhao; Huntington, Nicholas D.; Belz, Gabrielle T.; Seillet, Cyril

    2016-01-01

    Group 1 innate lymphoid cells (ILCs) comprise the natural killer (NK) cells and ILC1s that reside within peripheral tissues. Several different ILC1 subsets have recently been characterized; however, no unique markers have been identified that uniquely define these subsets. Whether ILC1s and NK cells are in fact distinct lineages, or alternately exhibit transitional molecular programs that allow them to adapt to different tissue niches remains an open question. NK cells are the prototypic member of the Group 1 ILCs and have been historically assigned the functions of what now appears to be a multi-subset family that are distributed throughout the body. This raises the question of whether each of these populations mediate distinct functions during infection and tumor immunosurveillance. Here, we review the diversity of the Group 1 ILC subsets in their transcriptional regulation, localization, mobility, and receptor expression, and highlight the challenges in unraveling the individual functions of these different populations of cells. PMID:27785129

  2. Type 1 Innate Lymphoid Cell Biology: Lessons Learnt from Natural Killer Cells.

    PubMed

    Jiao, Yuhao; Huntington, Nicholas D; Belz, Gabrielle T; Seillet, Cyril

    2016-01-01

    Group 1 innate lymphoid cells (ILCs) comprise the natural killer (NK) cells and ILC1s that reside within peripheral tissues. Several different ILC1 subsets have recently been characterized; however, no unique markers have been identified that uniquely define these subsets. Whether ILC1s and NK cells are in fact distinct lineages, or alternately exhibit transitional molecular programs that allow them to adapt to different tissue niches remains an open question. NK cells are the prototypic member of the Group 1 ILCs and have been historically assigned the functions of what now appears to be a multi-subset family that are distributed throughout the body. This raises the question of whether each of these populations mediate distinct functions during infection and tumor immunosurveillance. Here, we review the diversity of the Group 1 ILC subsets in their transcriptional regulation, localization, mobility, and receptor expression, and highlight the challenges in unraveling the individual functions of these different populations of cells.

  3. Umbilical Cord Blood Natural Killer Cells, Their Characteristics, and Potential Clinical Applications

    PubMed Central

    Sarvaria, Anushruti; Jawdat, Dunia; Madrigal, J. Alejandro; Saudemont, Aurore

    2017-01-01

    Natural killer (NK) cells are lymphocytes of the innate immune system able to kill different targets such as cancer cells and virally infected cells without prior activation making then attractive candidates for cancer immunotherapy. Umbilical cord blood (UCB) has become a source of hematopoietic stem cells for transplantation but as we gain a better understanding of the characteristics of each immune cell that UCB contains, we will also be able to develop new cell therapies for cancer. In this review, we present what is currently known of the phenotype and functions of UCB NK cells and how these cells could be used in the future for cancer immunotherapy. PMID:28386260

  4. The Impact of HLA Class I-Specific Killer Cell Immunoglobulin-Like Receptors on Antibody-Dependent Natural Killer Cell-Mediated Cytotoxicity and Organ Allograft Rejection

    PubMed Central

    Rajalingam, Raja

    2016-01-01

    Natural killer (NK) cells of the innate immune system are cytotoxic lymphocytes that play an important roles following transplantation of solid organs and hematopoietic stem cells. Recognition of self-human leukocyte antigen (HLA) class I molecules by inhibitory killer cell immunoglobulin-like receptors (KIRs) is involved in the calibration of NK cell effector capacities during the developmental stage, allowing the subsequent recognition and elimination of target cells with decreased expression of self-HLA class I (due to virus infection or tumor transformation) or HLA class I disparities (in the setting of allogeneic transplantation). NK cells expressing an inhibitory KIR-binding self-HLA can be activated when confronted with allografts lacking a ligand for the inhibitory receptor. Following the response of the adaptive immune system, NK cells can further destroy allograft endothelium by antibody-dependent cell-mediated cytotoxicity (ADCC), triggered through cross-linking of the CD16 Fc receptor by donor-specific antibodies bound to allograft. Upon recognizing allogeneic target cells, NK cells also secrete cytokines and chemokines that drive maturation of dendritic cells to promote cellular and humoral adaptive immune responses against the allograft. The cumulative activating and inhibitory signals generated by ligation of the receptors regulates mature NK cell killing of target cells and their production of cytokines and chemokines. This review summarizes the role of NK cells in allograft rejection and proposes mechanistic concepts that indicate a prominent role for KIR–HLA interactions in facilitating NK cells for Fc receptor-mediated ADCC effector function involved in antibody-mediated rejection of solid organ transplants. PMID:28066408

  5. The Impact of HLA Class I-Specific Killer Cell Immunoglobulin-Like Receptors on Antibody-Dependent Natural Killer Cell-Mediated Cytotoxicity and Organ Allograft Rejection.

    PubMed

    Rajalingam, Raja

    2016-01-01

    Natural killer (NK) cells of the innate immune system are cytotoxic lymphocytes that play an important roles following transplantation of solid organs and hematopoietic stem cells. Recognition of self-human leukocyte antigen (HLA) class I molecules by inhibitory killer cell immunoglobulin-like receptors (KIRs) is involved in the calibration of NK cell effector capacities during the developmental stage, allowing the subsequent recognition and elimination of target cells with decreased expression of self-HLA class I (due to virus infection or tumor transformation) or HLA class I disparities (in the setting of allogeneic transplantation). NK cells expressing an inhibitory KIR-binding self-HLA can be activated when confronted with allografts lacking a ligand for the inhibitory receptor. Following the response of the adaptive immune system, NK cells can further destroy allograft endothelium by antibody-dependent cell-mediated cytotoxicity (ADCC), triggered through cross-linking of the CD16 Fc receptor by donor-specific antibodies bound to allograft. Upon recognizing allogeneic target cells, NK cells also secrete cytokines and chemokines that drive maturation of dendritic cells to promote cellular and humoral adaptive immune responses against the allograft. The cumulative activating and inhibitory signals generated by ligation of the receptors regulates mature NK cell killing of target cells and their production of cytokines and chemokines. This review summarizes the role of NK cells in allograft rejection and proposes mechanistic concepts that indicate a prominent role for KIR-HLA interactions in facilitating NK cells for Fc receptor-mediated ADCC effector function involved in antibody-mediated rejection of solid organ transplants.

  6. [Natural killer cells and the innate immune system in infectious pathology].

    PubMed

    Sepúlveda, C; Puente, J

    2000-12-01

    Natural killer (NK) cells form a unique third group of lymphocytes that differs from T and B cells in surface phenotype, target cell recognition and function. NK cells have two relevant functions, related to the innate immune response against pathogens microorganisms. One is cytotoxicity, mediated by the recognition and lysis of target cells such as virus and bacteria infected-cells. The second NK cell function is to produce cytokines, mainly IFN-gamma, that can modulate innate and specific immune responses. Cytotoxicity and cytokine secretion contribute to host resistance against microorganisms and both functions are significantly altered in infectious diseases.

  7. Hematopoietic and nature killer cell development from human pluripotent stem cells.

    PubMed

    Ni, Zhenya; Knorr, David A; Kaufman, Dan S

    2013-01-01

    Natural killer (NK) cells are key effectors of the innate immune system, protecting the host from a variety of infections, as well as malignant cells. Recent advances in the field of NK cell biology have led to a better understanding of how NK cells develop. This progress has directly translated to improved outcomes in patients receiving hematopoietic stem cell transplants to treat potentially lethal malignancies. However, key differences between mouse and human NK cell development and biology limits the use of rodents to attain a more in depth understanding of NK cell development. Therefore, a readily accessible and genetically tractable cell source to study human NK cell development is warranted. Our lab has pioneered the development of lymphocytes, specifically NK cells, from human embryonic stem cells (hESCs) and more recently induced pluripotent stem cells (iPSCs). This chapter describes a reliable method to generate NK cells from hESCs and iPSCs using murine stromal cell lines. Additionally, we include an updated approach using a spin-embryoid body (spin-EB) differentiation system that allows for human NK cell development completely defined in vitro conditions.

  8. Cytokine-induced killer cells/dendritic cells and cytokine-induced killer cells immunotherapy for the treatment of esophageal cancer in China: a meta-analysis

    PubMed Central

    Liu, Yan; Mu, Ying; Zhang, Anqi; Ren, Shaoda; Wang, Weihua; Xie, Jiaping; Zhang, Yingxin; Zhou, Changhui

    2017-01-01

    Background Immunotherapy based on cytokine-induced killer cells or combination of dendritic cells and cytokine-induced killer cells (CIK/DC-CIK) showed promising clinical outcomes for treating esophageal cancer (EC). However, the clinical benefit varies among previous studies. Therefore, it is necessary to systematically evaluate the curative efficacy and safety of CIK/DC-CIK immunotherapy as an adjuvant therapy for conventional therapeutic strategies in the treatment of EC. Materials and methods Clinical trials published before October 2016 and reporting CIK/DC-CIK immunotherapy treatment responses or safety for EC were searched in Cochrane Library, EMBASE, PubMed, Wanfang and China National Knowledge Internet databases. Research quality and heterogeneity were evaluated before analysis, and pooled analyses were performed using random- or fixed-effect models. Results This research covered 11 trials including 994 EC patients. Results of this meta-analysis indicated that compared with conventional therapy, the combination of conventional therapy with CIK/DC-CIK immunotherapy significantly prolonged the 1-year overall survival (OS) rate, overall response rate (ORR) and disease control rate (DCR) (1-year OS: P=0.0005; ORR and DCR: P<0.00001). Patients with combination therapy also showed significantly improved quality of life (QoL) (P=0.02). After CIK/DC-CIK immunotherapy, lymphocyte percentages of CD3+ and CD3−CD56+ subsets (P<0.01) and cytokines levels of IFN-γ, -2, TNF-α and IL-12 (P<0.00001) were significantly increased, and the percentage of cluster of differentiation (CD)4+CD25+CD127− subset was significantly decreased, whereas analysis of CD4+, CD8+, CD4+/CD8+ and CD3+CD56+ did not show significant difference (P>0.05). Conclusion The combination of CIK/DC-CIK immunotherapy and conventional therapy is safe and markedly prolongs survival time, enhances immune function and improves the treatment efficacy for EC.

  9. Action of T-activin on activity of human natural killer cells in vitro

    SciTech Connect

    Cheknev, S.B.; Saidov, M.Z.; Koval'chuk, L.V.; Pavlyuk, A.S.; Arion, V.Ya.

    1986-09-01

    This paper describes a study of the action of T-activin on activity of human natural killer cells (NKC) in vitro. The K-562 chronic human myeloid leukemia cells, cultured in vitro, used as targets were labeled with /sup 3/H-uridine. The experimental results indicate that T-activin can depress NKC activity but under certain conditions, it can also stimulate NKC. T-activin possesses immunoregulatory properties relative to NKC activity in vitro.

  10. Toll-like receptor-4 agonist in post-haemorrhage pneumonia: role of dendritic and natural killer cells.

    PubMed

    Roquilly, Antoine; Broquet, Alexis; Jacqueline, Cedric; Gautreau, Laetitia; Segain, Jean Pierre; de Coppet, Pierre; Caillon, Jocelyne; Altare, Frédéric; Josien, Regis; Asehnoune, Karim

    2013-11-01

    Haemorrhage-induced immunosuppression has been linked to nosocomial infections. We assessed the impact of monophosphoryl lipid A, a Toll/interleukin-1 receptor-domain-containing adaptor protein inducing interferon-biased Toll-like receptor-4 agonist currently used as a vaccine adjuvant in humans, on post-haemorrhage susceptibility to infection. We used a mouse model of post-haemorrhage pneumonia induced by methicillin-susceptible Staphylococcus aureus. Monophosphoryl lipid A was administered intravenously after haemorrhage and before pneumonia onset. Haemorrhage altered survival rate, increased lung damage (neutrophil accumulation, oedema and cytokine release) and altered the functions of dendritic and natural killer cells. Here, we show that monophosphoryl lipid A decreased systemic dissemination of S. aureus and dampened inflammatory lung lesions. Monophosphoryl lipid A partially restored the capacity for antigen presentation and the transcriptional activity in dendritic cells. Monophosphoryl lipid A did not restore the interferon-γ mRNA but prevented interleukin-10 mRNA overexpression in natural killer cells compared with untreated mice. Ex vivo monophosphoryl lipid A-stimulated dendritic cells or natural killer cells harvested from haemorrhaged animals were adoptively transferred into mice undergoing post-haemorrhage pneumonia. Stimulated dendritic cells (but not stimulated natural killer cells) improved the survival rate compared with mice left untreated. In vivo depletion of natural killer cells decreased survival rate of monophosphoryl lipid A-treated mice. Dendritic and natural killer cells are critically involved in the beneficial effects of monophosphoryl lipid A within post-haemorrhage pneumonia.

  11. Cell cycle progression dictates the requirement for BCL2 in natural killer cell survival.

    PubMed

    Viant, Charlotte; Guia, Sophie; Hennessy, Robert J; Rautela, Jai; Pham, Kim; Bernat, Claire; Goh, Wilford; Jiao, Yuhao; Delconte, Rebecca; Roger, Michael; Simon, Vanina; Souza-Fonseca-Guimaraes, Fernando; Grabow, Stephanie; Belz, Gabrielle T; Kile, Benjamin T; Strasser, Andreas; Gray, Daniel; Hodgkin, Phillip D; Beutler, Bruce; Vivier, Eric; Ugolini, Sophie; Huntington, Nicholas D

    2017-02-01

    Natural killer (NK) cells are innate lymphoid cells with antitumor functions. Using an N-ethyl-N-nitrosourea (ENU)-induced mutagenesis screen in mice, we identified a strain with an NK cell deficiency caused by a hypomorphic mutation in the Bcl2 (B cell lymphoma 2) gene. Analysis of these mice and the conditional deletion of Bcl2 in NK cells revealed a nonredundant intrinsic requirement for BCL2 in NK cell survival. In these mice, NK cells in cycle were protected against apoptosis, and NK cell counts were restored in inflammatory conditions, suggesting a redundant role for BCL2 in proliferating NK cells. Consistent with this, cycling NK cells expressed higher MCL1 (myeloid cell leukemia 1) levels in both control and BCL2-null mice. Finally, we showed that deletion of BIM restored survival in BCL2-deficient but not MCL1-deficient NK cells. Overall, these data demonstrate an essential role for the binding of BCL2 to BIM in the survival of noncycling NK cells. They also favor a model in which MCL1 is the dominant survival protein in proliferating NK cells.

  12. Glucocorticoid cell reception in mice of different strains with natural killer cell activity depressed during immobilization stress

    SciTech Connect

    Lyashko, V.N.; Sukhikh, G.T.

    1987-08-01

    The authors study differences in stress-induced depression of natural killer cell activity in mice of different inbred lines, depending on parameters of glucocorticoid binding with glucorticoid receptors of spleen cells and on the hormonal status of the animals. In determining the parameters of glucocorticoid binding on intact splenocytes, aliquots of a suspension of washed splenocytes were incubated with tritium-labeled dexamethasone.

  13. Characterization of natural killer cells cultured from human bone marrow cells

    SciTech Connect

    Yoda, Y.; Kawakami, Z.; Shibuya, A.; Abe, T.

    1988-09-01

    Human bone marrow (BM) cells, depleted of nylon wool-adherent cells, T cells, and natural killer (NK) cells, were cultured in medium containing recombinant interleukin 2 (rIL2). After 21 or 24 days in culture, numerous lymphoid cells with multiple azurophilic granules and a morphology similar to large granular lymphocytes (LGL) were found. Two-color analysis of surface phenotype showed many of these cells to be NKH1-positive and a limited number of cells had other NK markers such as CD16, CD2, or CD8. The CD3 antigen was not coexpressed with NKH1. The cultured BM cells were cytotoxic for K562, Daudi, and Raji cell lines. The NKH1+, CD2-, CD3-, CD16- cells were sorted and, in addition to having the LGL morphology, were found to be cytotoxic for K562 cells (NK (K562)). The generation of NK(K562) activity was significantly suppressed by 5-bromodeoxyuridine plus ultraviolet light treatment, indicating that DNA synthesis is required. These experiments suggest that the described culture conditions allow differentiation of progenitor cells, into immature, but functionally active, NK cells.

  14. Carbamate pesticide-induced apoptosis and necrosis in human natural killer cells.

    PubMed

    Li, Q; Kobayashi, M; Kawada, T

    2014-01-01

    We previously found that ziram, a carbamate fungicide, significantly induced apoptosis and necrosis in human NK-92MI, a natural killer cell line. To investigate whether other carbamate pesticides also induce apoptosis and necrosis in human natural killer cell, we conducted further experiments with NK-92CI, a human natural killer cell line using a more sensitive assay. NK-92CI cells were treated with ziram, thiram, maneb or carbaryl at 0.031-40 microM for 2-24 h in the present study. Apoptosis and necrosis were determined by FITC-Annexin-V/PI staining. To explore the mechanism of apoptosis, intracellular levels of active caspases 3 and mitochondrial cytochrome-c release were determined by flow cytometry. We found that ziram and thiram also induced apoptosis and necrosis in a time- and dose-dependent manner; however, maneb and carbaryl induced apoptosis and necrosis only at higher doses in NK-92CI cells. The strength of the apoptosis-inducing effect differed among the pesticides, and the order was as follows: thiram > ziram greater than maneb greater than carbaryl. NK-92CI was more sensitive to ziram than NK-92MI. Moreover, ziram and thiram significantly increased the intracellular level of active caspase 3 in NK-92CI and caspase inhibitor significantly inhibited the apoptosis. Ziram and thiram significantly caused mitochondrial cytochrome-c release in NK-92CI. These findings indicate that carbamate pesticides can induce apoptosis in natural killer cells, and the apoptosis is mediated by both the caspase-cascade and mitochondrial cytochrome-c pathways.

  15. Regulation of natural killer activity of lymphocytes from normal subjects and patients with chronic lymphatic leukemia by interaction between T and non-T cells

    SciTech Connect

    Khonina, N.A.; Shubinskii, G.Z.; Lozovoi, V.P.

    1987-08-01

    The authors study the effect of culture of human cells on functional activity of natural killer cells and investigate the possible mechanisms of regulation of natural killer activity by acting on cytodifferentiation of lymphocytes in normal subjects and in patients with the B-cell variant of chromic lymphatic leukemia. To estimate natural killer cell function, a membranotoxic test was carried out, using cells of the transplantable line K-562, labeled with /sup 3/H-uridine as the targets.

  16. Classification of human natural killer cells based on migration behavior and cytotoxic response.

    PubMed

    Vanherberghen, Bruno; Olofsson, Per E; Forslund, Elin; Sternberg-Simon, Michal; Khorshidi, Mohammad Ali; Pacouret, Simon; Guldevall, Karolin; Enqvist, Monika; Malmberg, Karl-Johan; Mehr, Ramit; Önfelt, Björn

    2013-02-21

    Despite intense scrutiny of the molecular interactions between natural killer (NK) and target cells, few studies have been devoted to dissection of the basic functional heterogeneity in individual NK cell behavior. Using a microchip-based, time-lapse imaging approach allowing the entire contact history of each NK cell to be recorded, in the present study, we were able to quantify how the cytotoxic response varied between individual NK cells. Strikingly, approximately half of the NK cells did not kill any target cells at all, whereas a minority of NK cells was responsible for a majority of the target cell deaths. These dynamic cytotoxicity data allowed categorization of NK cells into 5 distinct classes. A small but particularly active subclass of NK cells killed several target cells in a consecutive fashion. These "serial killers" delivered their lytic hits faster and induced faster target cell death than other NK cells. Fast, necrotic target cell death was correlated with the amount of perforin released by the NK cells. Our data are consistent with a model in which a small fraction of NK cells drives tumor elimination and inflammation.

  17. Antibody-dependent cellular cytotoxicity toward neuroblastoma enhanced by activated invariant natural killer T cells.

    PubMed

    Mise, Naoko; Takami, Mariko; Suzuki, Akane; Kamata, Toshiko; Harada, Kazuaki; Hishiki, Tomoro; Saito, Takeshi; Terui, Keita; Mitsunaga, Tetsuya; Nakata, Mitsuyuki; Ikeuchi, Takayuki; Nakayama, Toshinori; Yoshida, Hideo; Motohashi, Shinichiro

    2016-03-01

    Anti-ganglioside GD2 antibodies mainly work through antibody-dependent cellular cytotoxicity (ADCC) and have demonstrated clinical benefit for children with neuroblastoma. However, high-risk neuroblastoma still has a high recurrence rate. For further improvement in patient outcomes, ways to maximize the cytotoxic effects of anti-GD2 therapies with minimal toxicity are required. Activated invariant natural killer T (iNKT) cells enhance both innate and type I acquired anti-tumor immunity by producing several kinds of cytokines. In this report, we investigated the feasibility of combination therapy using iNKT cells and an anti-GD2 antibody. Although some of the expanded iNKT cells expressed natural killer (NK) cell markers, including FcγR, iNKT cells were not directly associated with ADCC. When co-cultured with activated iNKT cells, granzyme A, granzyme B and interferon gamma (IFNγ) production from NK cells were upregulated, and the cytotoxicity of NK cells treated with anti-GD2 antibodies was increased. Not only cytokines produced by activated iNKT cells, but also NK-NKT cell contact or NK cell-dendritic cell contact contributed to the increase in NK cell cytotoxicity and further IFNγ production by iNKT cells and NK cells. In conclusion, iNKT cell-based immunotherapy could be an appropriate candidate for anti-GD2 antibody therapy for neuroblastoma.

  18. Killer Cell Immunoglobulin-like Receptor Genotype and Haplotype Investigation of Natural Killer Cells from an Australian Population of Chronic Fatigue Syndrome/Myalgic Encephalomyelitis Patients.

    PubMed

    Huth, T K; Brenu, E W; Staines, D R; Marshall-Gradisnik, S M

    2016-01-01

    Killer cell immunoglobulin-like receptor (KIR) genes encode for activating and inhibitory surface receptors, which are correlated with the regulation of Natural Killer (NK) cell cytotoxic activity. Reduced NK cell cytotoxic activity has been consistently reported in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME) patients, and KIR haplotypes and allelic polymorphism remain to be investigated. The aim of this article was to conduct a pilot study to examine KIR genotypes, haplotypes, and allelic polymorphism in CFS/ME patients and nonfatigued controls (NFCs). Comparison of KIR and allelic polymorphism frequencies revealed no significant differences between 20 CFS/ME patients and 20 NFCs. A lower frequency of the telomeric A/B motif (P < 0.05) was observed in CFS/ME patients compared with NFCs. This pilot study is the first to report the differences in the frequency of KIR on the telomeric A/B motif in CFS/ME patients. Further studies with a larger CFS/ME cohort are required to validate these results.

  19. Diversification of both KIR and NKG2 natural killer cell receptor genes in macaques - implications for highly complex MHC-dependent regulation of natural killer cells.

    PubMed

    Walter, Lutz; Petersen, Beatrix

    2017-02-01

    The killer immunoglobulin-like receptors (KIR) as well as their MHC class I ligands display enormous genetic diversity and polymorphism in macaque species. Signals resulting from interaction between KIR or CD94/NKG2 receptors and their cognate MHC class I proteins essentially regulate the activity of natural killer (NK) cells. Macaque and human KIR share many features, such as clonal expression patterns, gene copy number variations, specificity for particular MHC class I allotypes, or epistasis between KIR and MHC class I genes that influence susceptibility and resistance to immunodeficiency virus infection. In this review article we also annotated publicly available rhesus macaque BAC clone sequences and provide the first description of the CD94-NKG2 genomic region. Besides the presence of genes that are orthologous to human NKG2A and NKG2F, this region contains three NKG2C paralogues. Hence, the genome of rhesus macaques contains moderately expanded and diversified NKG2 genes in addition to highly diversified KIR genes. The presence of two diversified NK cell receptor families in one species has not been described before and is expected to require a complex MHC-dependent regulation of NK cells.

  20. Natural killer cell activity in cigarette smokers and asbestos workers

    SciTech Connect

    Ginns, L.C.; Ryu, J.H.; Rogol, P.R.; Sprince, N.L.; Oliver, L.C.; Larsson, C.J.

    1985-06-01

    In order to evaluate the effects of cigarette smoking and asbestos exposure on cellular immunity, the authors tested a group of cigarette smokers and asbestos workers for natural killer (NK) activity in the peripheral blood. The mean NK activity in cigarette smokers was lower than in normal subjects (13.7 +/- 1.6 versus 29.0 +/- 3%; p less than 0.05). As a group, the mean NK activity for the asbestos-exposed group was also reduced compared with that of the nonsmoking control group (22.6 +/- 3.2%; p less than 0.05). When divided according to the smoking status, the asbestos workers who were nonsmokers or ex-smokers showed similar decreases in NK activity compared with normal subjects (19.5 +/- 6.2 and 21.2 +/- 4.5%, respectively; p less than 0.05). A subgroup of asbestos-exposed subjects who currently smoked showed no decrease in NK activity. The data show that NK activity is reduced in the peripheral blood of cigarette smokers and asbestos workers. The relatively normal NK activity found in asbestos workers who also smoked is unexplained. Impairment of NK activity is a potential mechanism for the increased incidence of infection and cancer in smokers and neoplasia in asbestos workers.

  1. Interactive effects of Na and K in killing by natural killer cells

    SciTech Connect

    Schlichter, L.C.; MacCoubrey, I.C. )

    1989-09-01

    Contact-mediated lysis by human natural killer cells is inhibited by a number of drugs that block the predominant K channel. In this study the authors have further examined the role of the K channel and the interactions between passive K and Na transport in killing. Low external Na-inhibited killing and inhibition were not due to reduced inward current through the Na channels in the target cell. A role for the Na/H antiport is suggested since amiloride inhibited killing in a dose-dependent manner that was competitive with external Na. Depolarizing the killer cell with elevated external K did not inhibit killing. On the contrary, high K{sub 0} reduced the inhibition caused by low Na{sub 0} and by the K-channel blockers quinidine, verapamil, and retinoic acid. Hyperpolarizing the killer cell with low K{sub 0} or valinomycin inhibited killing. Hence, the primary role of the K channels during killing is not to maintain the negative membrane potential. On the contrary, depolarization may promote killing under conditions where killing is submaximal.

  2. Natural killer cells facilitate PRAME-specific T-cell reactivity against neuroblastoma.

    PubMed

    Spel, Lotte; Boelens, Jaap-Jan; van der Steen, Dirk M; Blokland, Nina J G; van Noesel, Max M; Molenaar, Jan J; Heemskerk, Mirjam H M; Boes, Marianne; Nierkens, Stefan

    2015-11-03

    Neuroblastoma is the most common solid tumor in children with an estimated 5-year progression free survival of 20-40% in stage 4 disease. Neuroblastoma actively avoids recognition by natural killer (NK) cells and cytotoxic T lymphocytes (CTLs). Although immunotherapy has gained traction for neuroblastoma treatment, these immune escape mechanisms restrain clinical results. Therefore, we aimed to improve neuroblastoma immunogenicity to further the development of antigen-specific immunotherapy against neuroblastoma. We found that neuroblastoma cells significantly increase surface expression of MHC I upon exposure to active NK cells which thereby readily sensitize neuroblastoma cells for recognition by CTLs. We show that oncoprotein PRAME serves as an immunodominant antigen for neuroblastoma as NK-modulated neuroblastoma cells are recognized by PRAMESLLQHLIGL/A2-specific CTL clones. Furthermore, NK cells induce MHC I upregulation in neuroblastoma through contact-dependent secretion of IFNγ. Our results demonstrate remarkable plasticity in the peptide/MHC I surface expression of neuroblastoma cells, which is reversed when neuroblastoma cells experience innate immune attack by sensitized NK cells. These findings support the exploration of NK cells as adjuvant therapy to enforce neuroblastoma-specific CTL responses.

  3. Killer artificial antigen-presenting cells: a novel strategy to delete specific T cells.

    PubMed

    Schütz, Christian; Fleck, Martin; Mackensen, Andreas; Zoso, Alessia; Halbritter, Dagmar; Schneck, Jonathan P; Oelke, Mathias

    2008-04-01

    Several cell-based immunotherapy strategies have been developed to specifically modulate T cell-mediated immune responses. These methods frequently rely on the utilization of tolerogenic cell-based antigen-presenting cells (APCs). However, APCs are highly sensitive to cytotoxic T-cell responses, thus limiting their therapeutic capacity. Here, we describe a novel bead-based approach to modulate T-cell responses in an antigen-specific fashion. We have generated killer artificial APCs (kappaaAPCs) by coupling an apoptosis-inducing alpha-Fas (CD95) IgM mAb together with HLA-A2 Ig molecules onto beads. These kappaaAPCs deplete targeted antigen-specific T cells in a Fas/Fas ligand (FasL)-dependent fashion. T-cell depletion in cocultures is rapidly initiated (30 minutes), dependent on the amount of kappaaAPCs and independent of activation-induced cell death (AICD). kappaaAPCs represent a novel technology that can control T cell-mediated immune responses, and therefore has potential for use in treatment of autoimmune diseases and allograft rejection.

  4. Modeling Human Natural Killer Cell Development in the Era of Innate Lymphoid Cells

    PubMed Central

    Scoville, Steven D.; Freud, Aharon G.; Caligiuri, Michael A.

    2017-01-01

    Decades after the discovery of natural killer (NK) cells, their developmental pathways in mice and humans have not yet been completely deciphered. Accumulating evidence indicates that NK cells can develop in multiple tissues throughout the body. Moreover, detailed and comprehensive models of NK cell development were proposed soon after the turn of the century. However, with the recent identification and characterization of other subtypes of innate lymphoid cells (ILCs), which show some overlapping functional and phenotypic features with NK cell developmental intermediates, the distinct stages through which human NK cells develop from early hematopoietic progenitor cells remain unclear. Thus, there is a need to reassess and refine older models of NK cell development in the context of new data and in the era of ILCs. Our group has focused on elucidating the developmental pathway of human NK cells in secondary lymphoid tissues (SLTs), including tonsils and lymph nodes. Here, we provide an update of recent progress that has been made with regard to human NK cell development in SLTs, and we discuss these new findings in the context of contemporary models of ILC development.

  5. Tributyltin and dibutyltin alter secretion of tumor necrosis factor alpha from human natural killer cells and a mixture of T cells and natural killer cells.

    PubMed

    Hurt, Kelsi; Hurd-Brown, Tasia; Whalen, Margaret

    2013-06-01

    Butyltins (BTs) have been in widespread use. Tributyltin (TBT) has been used as a biocide in a variety of applications and is found in human blood samples. Dibutyltin (DBT) has been used as a stabilizer in polyvinyl chloride plastics and as a de-worming agent in poultry. DBT, like TBT, is found in human blood. Human natural killer (NK) cells are the earliest defense against tumors and viral infections and secrete the cytokine tumor necrosis factor-alpha (TNF-α). TNF-α is an important regulator of adaptive and innate immune responses. TNF-α promotes inflammation and an association between malignant transformation and inflammation has been established. Previously, we have shown that TBT and DBT were able to interfere with the ability of NK cells to lyse tumor target cells. Here we show that BTs alter cytokine secretion by NK cells as well as a mixture of T and NK lymphocytes (T/NK cells). We examined 24-, 48-h and 6-day exposures to TBT (200-2.5 nM) and DBT (5-0.05 μM) on TNF-α secretion by highly enriched human NK cells and T/NK cells. The results indicate that TBT (200-2.5 nM) decreased TNF-α secretion from NK cells. In the T/NK cells, 200 nM TBT decreased secretion whereas 100-5 nM TBT increased secretion of TNF-α. NK cells or T/NK cells exposed to higher concentrations of DBT showed decreased TNF-α secretion whereas lower concentrations showed increased secretion. The effects of BTs on TNF-α secretion are seen at concentrations present in human blood.

  6. Induced Pluripotent Stem Cell-Derived Natural Killer Cells for Treatment of Ovarian Cancer.

    PubMed

    Hermanson, David L; Bendzick, Laura; Pribyl, Lee; McCullar, Valarie; Vogel, Rachel Isaksson; Miller, Jeff S; Geller, Melissa A; Kaufman, Dan S

    2016-01-01

    Natural killer (NK) cells can provide effective immunotherapy for ovarian cancer. Here, we evaluated the ability of NK cells isolated from peripheral blood (PB) and NK cells derived from induced pluripotent stem cell (iPSC) to mediate killing of ovarian cancer cells in a mouse xenograft model. A mouse xenograft model was used to evaluate the intraperitoneal delivery of three different NK cell populations: iPSC-derived NK cells, PB-NK cells that had been activated and expanded in long-term culture, and overnight activated PB-NK cells that were isolated through CD3/CD19 depletion of PB B and T cells. Bioluminescent imaging was used to monitor tumor burden of luciferase expressing tumor lines. Tumors were allowed to establish prior to administering NK cells via intraperitoneal injection. These studies demonstrate a single dose of any of the three NK cell populations significantly reduced tumor burden. When mice were given three doses of either iPSC-NK cells or expanded PB-NK cells, the median survival improved from 73 days in mice untreated to 98 and 97 days for treated mice, respectively. From these studies, we conclude iPSC-derived NK cells mediate antiovarian cancer killing at least as well as PB-NK cells, making these cells a viable resource for immunotherapy for ovarian cancer. Due to their ability to be easily differentiated into NK cells and their long-term expansion potential, iPSCs can be used to produce large numbers of well-defined NK cells that can be banked and used to treat a large number of patients including treatment with multiple doses if necessary.

  7. A biodegradable killer microparticle to selectively deplete antigen-specific T cells in vitro and in vivo

    PubMed Central

    Wang, Wei; Fang, Kun; Li, Miao-Chen; Chang, Di; Shahzad, Khawar Ali; Xu, Tao; Zhang, Lei; Gu, Ning; Shen, Chuan-Lai

    2016-01-01

    The specific eradication of pathogenic T cells for the treatment of allograft rejections and autoimmune disorders without impairment of overall immune function is a fundamental goal. Here, cell-sized poly(lactic-co-glycolic acid) microparticles (PLGA MPs) were prepared as a scaffold to co-display the peptide/major histocompatibility complex (pMHC, target antigen) and anti-Fas monoclonal antibody (apoptosis-inducing molecule) for the generation of biodegradable killer MPs. Ovalbumin (OVA) antigen-targeted killer MPs significantly depleted OVA-specific CD8+ T cells in an antigen-specific manner, both in vitro and in OT-1 mice. After intravenous administration, the killer MPs predominantly accumulated in the liver, lungs, and gut of OT-1 mice with a retention time of up to 48 hours. The killing effects exerted by killer MPs persisted for 4 days after two injections. Moreover, the H-2Kb alloantigen-targeted killer MPs were able to eliminate low-frequency alloreactive T cells and prolong alloskin graft survival for 41.5 days in bm1 mice. Our data indicate that PLGA-based killer MPs are capable of specifically depleting pathogenic T cells, which highlights their therapeutic potential for treating allograft rejection and autoimmune disorders. PMID:26910923

  8. A biodegradable killer microparticle to selectively deplete antigen-specific T cells in vitro and in vivo.

    PubMed

    Wang, Wei; Fang, Kun; Li, Miao-Chen; Chang, Di; Shahzad, Khawar Ali; Xu, Tao; Zhang, Lei; Gu, Ning; Shen, Chuan-Lai

    2016-03-15

    The specific eradication of pathogenic T cells for the treatment of allograft rejections and autoimmune disorders without impairment of overall immune function is a fundamental goal. Here, cell-sized poly(lactic-co-glycolic acid) microparticles (PLGA MPs) were prepared as a scaffold to co-display the peptide/major histocompatibility complex (pMHC, target antigen) and anti-Fas monoclonal antibody (apoptosis-inducing molecule) for the generation of biodegradable killer MPs. Ovalbumin (OVA) antigen-targeted killer MPs significantly depleted OVA-specific CD8+ T cells in an antigen-specific manner, both in vitro and in OT-1 mice. After intravenous administration, the killer MPs predominantly accumulated in the liver, lungs, and gut of OT-1 mice with a retention time of up to 48 hours. The killing effects exerted by killer MPs persisted for 4 days after two injections. Moreover, the H-2Kb alloantigen-targeted killer MPs were able to eliminate low-frequency alloreactive T cells and prolong alloskin graft survival for 41.5 days in bm1 mice. Our data indicate that PLGA-based killer MPs are capable of specifically depleting pathogenic T cells, which highlights their therapeutic potential for treating allograft rejection and autoimmune disorders.

  9. HPV16E7 silencing enhances susceptibility of CaSki cells to natural killer cells.

    PubMed

    Guo, Huimin; Hu, Ruili; Guan, Xinlei; Guo, Fang; Zhao, Shuzhen; Zhang, Xueying

    2014-04-01

    The aim of the present study was to investigate the cytotoxicity of natural killer (NK) cells to CaSki cells following knockdown of the E7 protein of the human papillomavirus type 16 (HPV16E7). Recombinant adenovirus-short hairpin-E7 protein of the human panillomavirus type 16 (Ad‑sh‑HPV16E7) was constructed and used to infect CaSki cells. The expression of HPV16E7 in CaSki cells was assessed using western blot analysis. The expression of cell surface molecule major histocompatibility complex‑I (MHC‑I) in CaSki cells infected with Ad‑sh‑HPV16E7 was examined using flow cytometry. The cytotoxicity of NK cells isolated and expanded from healthy volunteers on Ad‑sh‑HPV16E7‑infected CaSki cells was assessed using the lactate dehydrogenase (LDH) release assay. Ad‑sh‑HPV16E7 was successfully constructed and able to inhibit HPV16E7 the expression in CaSki cells. The expression of major histocompa-tibility complex I (MHC‑I), a surface molecule, in CaSki cells was increased after infection with Ad‑sh‑HPV16E7. Compared with the controls, the cytotoxicity of NK cells on CaSki cells, which were infected with Ad‑sh‑HPV16E7, was decreased (p<0.05). In conclusion, HPV16E7 suppresses the expression of MHC‑I on CaSki cells to evade cytotoxic T‑cell (CTL) response. However, it was possible to enhance the cytotoxicity of expanded NK cells to cervical cancer cells or HPV16‑infected cells in vitro, indicating that NK cells may be used for immunotherapy of cervical cancer.

  10. Identification of a cell-surface antigen selectively expressed on the natural killer cell

    PubMed Central

    1977-01-01

    We have studied the cell-surface phenotype of natural killer (NK) cells of NZB and B6 mice which react to an MuLV+ lymphoid tumor. (a) NK cells do not express Thy1, Ly2, or Ig surface markers. (b) NK cells express an antigen recognized by C3H anti-CE antiserum ('anti-Ly1.2 antiserum'). Inasmuch as NK activity of spleen cells from B6 and B6/Ly1.1 congenic strains were both equally sensitive to C3H anti-CE antiserum, the NK antigen is distinct from Ly1.2. This point was confirmed by the observation that alphaNK activity was removed by absorption of C3H anti-CE antiserum with spleen cells from either B6 or B6/Ly1.1 congenic strains. Absorption of C3H alphaCE serum with BALB/c thymocytes and spleen cells (which are Ly1.2+NK-) removed anti-Ly1.2 activity and left anti-NK activity intact. This absorption step could be circumvented by inserting the BALB/c genotype into the recipient immunized to CE cells (i.e., (C3H X BALB/c)F1 alphaCE spleen cells). This antiserum, provisionally termed 'anti-NK', defines a new subclass of lymphocytes which may play a central role in the immunosurveillance against tumors. PMID:187714

  11. Phosphatidylinositol turnover is associated with human natural killer cell activation by tumor target cells

    SciTech Connect

    Steele, T.A.; Brahmi, Z.

    1986-03-01

    Natural Killer (NK) cell activity has been shown to be a binding-dependent event leading to the destruction of various targets. This suggests a possible role for plasma membrane phospholipid turnover in coupling a receptor-mediated binding event with transduction of a intracellular signal to result in the activation of the effector cell. Currently, phosphatidylinositol (PI) turnover is implicated in several immune cell systems. Therefore, in this study, the authors examined phospholipid turnover in human NK cells upon exposure to a sensitive (K562) and a resistant (YAC-1) target cell (TC). NK cell membrane phospholipids were labelled with Phosphorus-32 (/sup 32/P) and, following stimulation, were extracted and run on silica gel thin-layer chromatography. Labelled phospholipids were visualized by autoradiography then scraped and counted in a liquid scintillation counter. A 2.5 fold increase in label incorporation into PI relative to controls was shown to occur when NK cells were stimulated by K562 for 2 hours. In contrast, no increased labelling of PI relative to controls was noted when NK cells were stimulated by YAC-1 for the same period of time. No change in incorporation of /sup 32/P into phosphatidylcholine or phosphatidylethanolamine occurred in either set of conditions. These results suggest that PI turnover may be an early activation event in NK cells following binding of K562.

  12. Glycolipid presentation to natural killer T cells differs in an organ-dependent fashion

    NASA Astrophysics Data System (ADS)

    Schmieg, John; Yang, Guangli; Franck, Richard W.; van Rooijen, Nico; Tsuji, Moriya

    2005-01-01

    It has been shown that dendritic cells (DCs) are able to present glycolipids to natural killer (NK) T cells in vivo. However, the essential role of DCs, as well as the role of other cells in glycolipid presentation, is unknown. Here, we show that DCs are the crucial antigen-presenting cells (APCs) for splenic NK T cells, whereas Kupffer cells are the key APCs for hepatic NK T cells. Both cell types stimulate cytokine production by NK T cells within 2 h of glycolipid administration, but only DCs are involved in the systemic, downstream responses to glycolipid administration. More specifically, CD8+ DCs produce IL-12 in response to glycolipid presentation, which stimulates secondary IFN- production by NK cells in different organs. Different APCs participate in glycolipid presentation to NK T cells in vivo but differ in their involvement in the overall glycolipid response. dendritic cell | Kupffer cell

  13. Inhibition of human natural killer cell activity by Pseudomonas aeruginosa alkaline protease and elastase.

    PubMed Central

    Pedersen, B K; Kharazmi, A

    1987-01-01

    The present study was designed to examine the effect of Pseudomonas aeruginosa alkaline protease (AP) and elastase (Ela) on human natural killer (NK) cell activity in vitro. AP and Ela were found to inhibit NK cell function. Addition of alpha interferon and interleukin-2 did not abolish this inhibition of NK cell activity. Adhesion of effector to target cells was studied in a single-cell agarose assay of monocyte-depleted NK-cell-enriched cell populations. AP and Ela were shown to inhibit effector/target cell conjugate formation. Furthermore, AP and Ela inhibited the binding of the monoclonal antibody Leu-11, which reacts with the Fc receptor of NK cells. The inhibition of NK cell binding to the target cell by P. aeruginosa proteases is most likely due to proteolytic cleavage of the surface receptors involved in the binding of the effector cell to the target cell. PMID:3030937

  14. Carbohydrate affects natural killer cell redistribution but not activity after running.

    PubMed

    Nieman, D C; Henson, D A; Garner, E B; Butterworth, D E; Warren, B J; Utter, A; Davis, J M; Fagoaga, O R; Nehlsen-Cannarella, S L

    1997-10-01

    This randomized, double-blind, placebo-controlled study was designed to determine the influence of carbohydrate supplementation on the natural killer cell response to 2.5 h of high-intensity running (76.7 +/- 0.4% VO2max). Thirty experienced marathon runners (VO2max 53.4 +/- 1.0 mL x kg[-1] x min[-1], age 41.5 +/- 1.4 yr) were randomized into carbohydrate supplement (N = 17) and placebo (N = 13) groups. Subjects rested for 10-15 min before a blood sample at 0715, and then ingested 0.75 L of carbohydrate beverage (Gatorade) or placebo. At 0730, subjects began running at 75-80% VO2max for 2.5 h and drank 0.25 L of carbohydrate or placebo fluid every 15 min. Immediately after the 2.5 h run (1000), another blood sample was taken, followed by 1.5 h, 3 h, and 6-h recovery samples. Carbohydrate supplementation versus placebo had a significant effect on the pattern of change in glucose, cortisol, and the blood concentration of natural killer cells ([F (4,25) = 3.79, P = 0.015], but not natural killer cell activity following 2.5 h of intensive running.

  15. Clinical applications of adoptive natural killer cell immunotherapy for cancer: current status and future prospects.

    PubMed

    Guo, Hongfeng; Qian, Xifeng

    2010-01-01

    Natural killer (NK) cells are cytotoxic and cytokine-producing lymphocytes involved in the immune defense against viral infections and tumors. NK cells activated with cytokines, such as interleukin-2, have been used since the 1980s as adoptive immunotherapy against cancer. NK cell alloreactivity has been demonstrated to enhance control of acute myeloid leukemia relapse and greatly reduce the risk of graft-versus-host disease in HLA haplotype-mismatched hematopoietic transplantation, and has been explored as a tool for adoptive immunotherapy for cancer patients. Future manipulation to improve NK cell adoptive immunotherapy by means of increasing target recognition and reducing inhibitory signaling is being explored.

  16. Invariant natural killer T cells and mucosal-associated invariant T cells in multiple sclerosis.

    PubMed

    Bianchini, Elena; De Biasi, Sara; Simone, Anna Maria; Ferraro, Diana; Sola, Patrizia; Cossarizza, Andrea; Pinti, Marcello

    2017-03-01

    Multiple sclerosis (MS) is a chronic progressive inflammatory demyelinating disorder of the central nervous system, and in several countries is a leading cause of permanent neurological disability in young adults, particularly women. MS is considered an autoimmune disease, caused by an aberrant immune response to environmental triggers in genetically susceptible subjects. However, the contribution of the innate or of the adaptive immune system to the development and progression of the disease has not yet been fully elucidated. Innate-like T lymphocytes are unconventional T cells that bridge the innate and adaptive arms of the immune system, because they use a T cell receptor to sense external ligands, but behave like innate cells when they rapidly respond to stimuli. These cells could play an important role in the pathogenesis of MS. Here, we focus on invariant natural killer T (iNKT) cells and mucosal-associated invariant T (MAIT) cells, and we review the current knowledge on their biology and possible involvement in MS. Although several studies have evaluated the frequency and functions of iNKT and MAIT cells both in MS patients and in experimental mouse models, contradictory observations have been reported, and it is not clear whether they exert a protective or a pro-inflammatory and harmful role. A better understanding of how immune cells are involved in MS, and of their interactions could be of great interest for the development of new therapeutic strategies.

  17. Clinical-Scale Derivation of Natural Killer Cells From Human Pluripotent Stem Cells for Cancer Therapy

    PubMed Central

    Knorr, David A.; Ni, Zhenya; Hermanson, David; Hexum, Melinda K.; Bendzick, Laura; Cooper, Laurence J.N.; Lee, Dean A.

    2013-01-01

    Adoptive transfer of antitumor lymphocytes has gained intense interest in the field of cancer therapeutics over the past two decades. Human natural killer (NK) cells are a promising source of lymphocytes for anticancer immunotherapy. NK cells are part of the innate immune system and exhibit potent antitumor activity without need for human leukocyte antigen matching and without prior antigen exposure. Moreover, the derivation of NK cells from pluripotent stem cells could provide an unlimited source of lymphocytes for off-the-shelf therapy. To date, most studies on hematopoietic cell development from human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) have used incompletely defined conditions and been on a limited scale. Here, we have used a two-stage culture system to efficiently produce NK cells from hESCs and iPSCs in the absence of cell sorting and without need for xenogeneic stromal cells. This novel combination of embryoid body formation using defined conditions and membrane-bound interleukin 21-expressing artificial antigen-presenting cells allows production of mature and functional NK cells from several different hESC and iPSC lines. Although different hESC and iPSC lines had varying efficiencies in hematopoietic development, all cell lines tested could produce functional NK cells. These methods can be used to generate enough cytotoxic NK cells to treat a single patient from fewer than 250,000 input hESCs/iPSCs. Additionally, this strategy provides a genetically amenable platform to study normal NK cell development and education in vitro. PMID:23515118

  18. Human natural killer cell committed thymocytes and their relation to the T cell lineage

    PubMed Central

    1993-01-01

    Recent studies have demonstrated that mature natural killer (NK) cells can be grown from human triple negative (TN; CD3-, CD4-, CD8-) thymocytes, suggesting that a common NK/T cell precursor exists within the thymus that can give rise to both NK cells and T cells under appropriate conditions. In the present study, we have investigated human fetal and postnatal thymus to determine whether NK cells and their precursors exist within this tissue and whether NK cells can be distinguished from T cell progenitors. Based on the surface expression of CD56 (an NK cell-associated antigen) and CD5 (a T cell-associated antigen), three phenotypically distinctive populations of TN thymocytes were identified. CD56+, CD5-; CD56-, CD5-, and CD56-, CD5+. The CD56+, CD5- population of TN thymocytes, although displaying a low cytolytic function against NK sensitive tumor cell targets, were similar in antigenic phenotype to fetal liver NK cells, gave rise to NK cell clones, and were unable to generate T cells in mouse fetal thymic organ cultures (mFTOC). This population of thymocytes represents a relatively mature population of lineage-committed NK cells. The CD56-, CD5- population of TN thymocytes were similar to thymic NK cells in antigenic phenotype and NK cell clonogenic potential. Clones derived from this population of TN thymocytes acquired CD56 surface expression and NK cell cytolytic function. CD56-, CD5- TN thymocytes thus contain a novel population of NK cell-committed precursors. The CD56-, CD5- population of TN thymocytes also contains a small percentage of CD34+ cells, which demonstrate no in vitro clonogenic potential, but possess T cell reconstituting capabilities in mFTOC. The majority of TN thymocytes do not express CD56, but coexpress CD34 and CD5. These CD56- , CD5+, CD34+ cells demonstrate no NK or T cell clonogenic potential, but are extremely efficient in repopulating mFTOC and differentiating into CD3+, CD4+, CD8+ T cells. The results of this investigation have

  19. Ocular anatomy, ganglion cell distribution and retinal resolution of a killer whale (Orcinus orca).

    PubMed

    Mass, Alla M; Supin, Alexander Y; Abramov, Andrey V; Mukhametov, Lev M; Rozanova, Elena I

    2013-01-01

    Retinal topography, cell density and sizes of ganglion cells in the killer whale (Orcinus orca) were analyzed in retinal whole mounts stained with cresyl violet. A distinctive feature of the killer whale's retina is the large size of ganglion cells and low cell density compared to terrestrial mammals. The ganglion cell diameter ranged from 8 to 100 µm, with the majority of cells within a range of 20-40 µm. The topographic distribution of ganglion cells displayed two spots of high cell density located in the temporal and nasal quadrants, 20 mm from the optic disk. The high-density areas were connected by a horizontal belt-like area passing below the optic disk of the retina. Peak cell densities in these areas were evaluated. Mean peak cell densities were 334 and 288 cells/mm(2) in the temporal and nasal high-density areas, respectively. With a posterior nodal distance of 19.5 mm, these high-density data predict a retinal resolution of 9.6' (3.1 cycles/deg.) and 12.6' (2.4 cycles/deg.) in the temporal and nasal areas, respectively, in water.

  20. Linking CD11b+ Dendritic Cells and Natural Killer T Cells to Plaque Inflammation in Atherosclerosis

    PubMed Central

    Rombouts, Miche; Ammi, Rachid; Van Brussel, Ilse; Roth, Lynn; De Winter, Benedicte Y.; Vercauteren, Sven R.; Hendriks, Jeroen M. H.; Lauwers, Patrick; Van Schil, Paul E.; De Meyer, Guido R. Y.; Fransen, Erik; Cools, Nathalie; Schrijvers, Dorien M.

    2016-01-01

    Atherosclerosis remains the leading cause of death and disability in our Western society. To investigate whether the dynamics of leukocyte (sub)populations could be predictive for plaque inflammation during atherosclerosis, we analyzed innate and adaptive immune cell distributions in blood, plaques, and lymphoid tissue reservoirs in apolipoprotein E-deficient (ApoE−/−) mice and in blood and plaques from patients undergoing endarterectomy. Firstly, there was predominance of the CD11b+ conventional dendritic cell (cDC) subset in the plaque. Secondly, a strong inverse correlation was observed between CD11b+ cDC or natural killer T (NKT) cells in blood and markers of inflammation in the plaque (including CD3, T-bet, CCR5, and CCR7). This indicates that circulating CD11b+ cDC and NKT cells show great potential to reflect the inflammatory status in the atherosclerotic plaque. Our results suggest that distinct changes in inflammatory cell dynamics may carry biomarker potential reflecting atherosclerotic lesion progression. This not only is crucial for a better understanding of the immunopathogenesis but also bares therapeutic potential, since immune cell-based therapies are emerging as a promising novel strategy in the battle against atherosclerosis and its associated comorbidities. The cDC-NKT cell interaction in atherosclerosis serves as a good candidate for future investigations. PMID:27051078

  1. A shed NKG2D ligand that promotes natural killer cell activation and tumor rejection

    PubMed Central

    Deng, Weiwen; Gowen, Benjamin G.; Zhang, Li; Wang, Lin; Lau, Stephanie; Iannello, Alexandre; Xu, Jianfeng; Rovis, Tihana L.; Xiong, Na; Raulet, David H.

    2016-01-01

    Immune cells, including natural killer (NK) cells, recognize transformed cells and eliminate them in a process termed immunosurveillance. It is thought that tumor cells evade immunosurveillance by shedding membrane ligands that bind to the NKG2D activating receptor on NK cells and/or T cells, and desensitize these cells. In contrast, we show that in mice, shedding of MULT1, a high affinity NKG2D ligand, causes NK cell activation and tumor rejection. Recombinant soluble MULT1 stimulated tumor rejection in mice. Soluble MULT1 functions, at least in part, by competitively reversing a global desensitization of NK cells imposed by engagement of membrane NKG2D ligands on tumor-associated cells, such as myeloid cells. The results overturn conventional wisdom that soluble ligands are inhibitory, and suggest a new approach for cancer immunotherapy. PMID:25745066

  2. Natural killer cell immunosenescence in acute myeloid leukaemia patients: new targets for immunotherapeutic strategies?

    PubMed

    Sanchez-Correa, Beatriz; Campos, Carmen; Pera, Alejandra; Bergua, Juan M; Arcos, Maria Jose; Bañas, Helena; Casado, Javier G; Morgado, Sara; Duran, Esther; Solana, Rafael; Tarazona, Raquel

    2016-04-01

    Several age-associated changes in natural killer (NK) cell phenotype have been reported that contribute to the defective NK cell response observed in elderly patients. A remodelling of the NK cell compartment occurs in the elderly with a reduction in the output of immature CD56(bright) cells and an accumulation of highly differentiated CD56(dim) NK cells. Acute myeloid leukaemia (AML) is generally a disease of older adults. NK cells in AML patients show diminished expression of several activating receptors that contribute to impaired NK cell function and, in consequence, to AML blast escape from NK cell immunosurveillance. In AML patients, phenotypic changes in NK cells have been correlated with disease progression and survival. NK cell-based immunotherapy has emerged as a possibility for the treatment of AML patients. The understanding of age-associated alterations in NK cells is therefore necessary to define adequate therapeutic strategies in older AML patients.

  3. Psychoneuroimmunology and natural killer cells: the chromium release whole blood assay.

    PubMed

    Fletcher, Mary Ann; Barnes, Zachary; Broderick, Gordon; Klimas, Nancy G

    2012-01-01

    Natural killer (NK) cells are an essential component of innate immunity. These lymphocytes are also sensitive barometers of the effects of endogenous and exogenous stressors on the immune system. This chapter will describe a chromium ((51)Cr) release bioassay designed to measure the target cell killing capacity of NK cells (NKCC). Key features of the cytotoxicity assay are that it is done with whole blood and that numbers of effector cells are determined for each sample by flow cytometry and lymphocyte count. Effector cells are defined as CD3-CD56+ lymphocytes. Target cells are the K562 eyrthroleukemia cell line. Killing capacity is defined as number of target cells killed per effector cell, at an effector cell/target cell ratio of 1:1 during a 4 h in vitro assay.

  4. Stage-dependent gene expression profiles during natural killer cell development.

    PubMed

    Kang, Hyung-Sik; Kim, Eun-Mi; Lee, Sanggyu; Yoon, Suk-Ran; Kawamura, Toshihiko; Lee, Young-Cheol; Kim, Sangsoo; Myung, Pyung-Keun; Wang, San Ming; Choi, Inpyo

    2005-11-01

    Natural killer (NK) cells develop from hematopoietic stem cells (HSCs) in the bone marrow. To understand the molecular regulation of NK cell development, serial analysis of gene expression (SAGE) was applied to HSCs, NK precursor (pNK) cells, and mature NK cells (mNK) cultured without or with OP9 stromal cells. From 170,464 total individual tags from four SAGE libraries, 35,385 unique genes were identified. A set of genes was expressed in a stage-specific manner: 15 genes in HSCs, 30 genes in pNK cells, and 27 genes in mNK cells. Among them, lipoprotein lipase induced NK cell maturation and cytotoxic activity. Identification of genome-wide profiles of gene expression in different stages of NK cell development affords us a fundamental basis for defining the molecular network during NK cell development.

  5. Recognition of tumors by the innate immune system and natural killer cells

    PubMed Central

    Marcus, Assaf; Gowen, Benjamin G.; Thompson, Thornton W.; Iannello, Alexandre; Ardolino, Michele; Deng, Weiwen; Wang, Lin; Shifrin, Nataliya; Raulet, David H.

    2014-01-01

    In recent years, roles of the immune system in immune surveillance of cancer have been explored using a variety of approaches. The roles of the adaptive immune system have been a major emphasis, but increasing evidence supports a role for innate immune effector cells such as natural killer (NK) cells in tumor surveillance. Here, we discuss some of the evidence for roles in tumor surveillance of innate immune cells, particularly NK cells and other immune cells that express germline-encoded receptors that are often labeled NK receptors. The impact of these receptors and the cells that express them on tumor suppression are summarized. We discuss in detail some of the pathways and events in tumor cells that induce or upregulate cell surface expression of the ligands for these receptors, and the logic of how those pathways serve to identify malignant, or potentially malignant cells. How tumors often evade tumor suppression mediated by innate killer cells is another major subject of the review. We end with a discussion of some of the implications of the various findings with respect to possibly therapeutic approaches. PMID:24507156

  6. Recognition of tumors by the innate immune system and natural killer cells.

    PubMed

    Marcus, Assaf; Gowen, Benjamin G; Thompson, Thornton W; Iannello, Alexandre; Ardolino, Michele; Deng, Weiwen; Wang, Lin; Shifrin, Nataliya; Raulet, David H

    2014-01-01

    In recent years, roles of the immune system in immune surveillance of cancer have been explored using a variety of approaches. The roles of the adaptive immune system have been a major emphasis, but increasing evidence supports a role for innate immune effector cells such as natural killer (NK) cells in tumor surveillance. Here, we discuss some of the evidence for roles in tumor surveillance of innate immune cells. In particular, we focus on NK cells and other immune cells that express germline-encoded receptors, often labeled NK receptors. The impact of these receptors and the cells that express them on tumor suppression is summarized. We discuss in detail some of the pathways and events in tumor cells that induce or upregulate cell-surface expression of the ligands for these receptors, and the logic of how those pathways serve to identify malignant, or potentially malignant cells. How tumors often evade tumor suppression mediated by innate killer cells is another major subject of the review. We end with a discussion on some of the implications of the various findings with respect to possible therapeutic approaches.

  7. PD1 blockade enhances cytotoxicity of in vitro expanded natural killer cells towards myeloma cells

    PubMed Central

    Guo, Yanan; Feng, Xiaoli; Jiang, Yang; Shi, Xiaoyun; Xing, Xiangling; Liu, Xiaoli; Li, Nailin; Fadeel, Bengt; Zheng, Chengyun

    2016-01-01

    Aiming for an adoptive natural killer (NK) cell therapy, we have developed a novel protocol to expand NK cells from peripheral blood. With this protocol using anti-human CD16 antibody and interleukin (IL)-2, NK (CD3−CD56+) cells could be expanded about 4000-fold with over 70% purity during a 21-day culture. The expanded NK (exNK) cells were shown to be highly cytotoxic to multiple myeloma (MM) cells (RPMI8226) at low NK-target cell ratios. Furthermore, NK cells expanded in the presence of a blocking antibody (exNK+PD1-blockage) against programmed cell death protein-1 (PD1), a key counteracting molecule for NK and T cell activity, demonstrated more potent cytolytic activity against the RPMI8226 than the exNK cells without PD1 blocking. In parallel, the exNK cells showed significantly higher expression of NK activation receptors NKG2D, NKp44 and NKp30. In a murine model of MM, transfusion of exNK cells, exNK+PD1-blockage, and exNK plus intratumor injection of anti-PD-L2 antibody (exNK+PD-L2 blockage) all significantly suppressed tumor growth and prolonged survival of the myeloma mice. Importantly, exNK+PD1-blockage presented more efficient therapeutic effects. Our results suggest that the NK cell expansion protocol with PD1 blockade presented in this study has considerable potential for the clinical application of allo- and auto-NK cell-based therapies against malignancies. PMID:27356741

  8. Genetic engineering of hematopoietic stem cells to generate invariant natural killer T cells.

    PubMed

    Smith, Drake J; Liu, Siyuan; Ji, Sunjong; Li, Bo; McLaughlin, Jami; Cheng, Donghui; Witte, Owen N; Yang, Lili

    2015-02-03

    Invariant natural killer T (iNKT) cells comprise a small population of αβ T lymphocytes. They bridge the innate and adaptive immune systems and mediate strong and rapid responses to many diseases, including cancer, infections, allergies, and autoimmunity. However, the study of iNKT cell biology and the therapeutic applications of these cells are greatly limited by their small numbers in vivo (∼0.01-1% in mouse and human blood). Here, we report a new method to generate large numbers of iNKT cells in mice through T-cell receptor (TCR) gene engineering of hematopoietic stem cells (HSCs). We showed that iNKT TCR-engineered HSCs could generate a clonal population of iNKT cells. These HSC-engineered iNKT cells displayed the typical iNKT cell phenotype and functionality. They followed a two-stage developmental path, first in thymus and then in the periphery, resembling that of endogenous iNKT cells. When tested in a mouse melanoma lung metastasis model, the HSC-engineered iNKT cells effectively protected mice from tumor metastasis. This method provides a powerful and high-throughput tool to investigate the in vivo development and functionality of clonal iNKT cells in mice. More importantly, this method takes advantage of the self-renewal and longevity of HSCs to generate a long-term supply of engineered iNKT cells, thus opening up a new avenue for iNKT cell-based immunotherapy.

  9. Interleukin-7 receptor alpha is essential for the development of gamma delta + T cells, but not natural killer cells

    PubMed Central

    1996-01-01

    Mice that lack a functional gamma c subunit of the receptors for interleukin (IL)-2, IL-4, IL-7, IL-9, and IL-15 display profound defects in lymphoid development. The IL-7/IL-7R system represents a critical interaction for conventional T and B cell development. In this report, the role of IL-7R alpha in the development of lymphoid lineages other than conventional T and B cells was examined. We demonstrate that gamma delta + T cells were absent in IL-7R alpha-deficient mice, whereas the development and function of natural killer cells were normal. Thus, IL-7R alpha function is required for the development of gamma delta + T cells but not natural killer cells. PMID:8691145

  10. Evasion of natural killer cells by influenza virus.

    PubMed

    Guo, Hailong; Kumar, Pawan; Malarkannan, Subramaniam

    2011-02-01

    NK cells are important innate immune effectors during influenza virus infection. However, the influenza virus seems able to use several tactics to counter NK cell recognition for immune evasion. In this review, we will summarize and discuss recent advances regarding the understanding of NK cell evasion mechanisms manipulated by the influenza virus to facilitate its rapid replication inside the respiratory epithelial cells.

  11. ACCUMULATION OF DIBUTYLTIN IN HUMAN NATURAL KILLER CELLS

    EPA Science Inventory

    NK cells are a subset of lymphocytes capable of killing tumor cells, virally infected cells and antibody coated cells. Dibutyltin dichloride (DBT) is a butyltin that has been used as a stabilizer in polyvinyl chloride (PVC) plastics and also as a deworming product in poultry. DBT...

  12. Cell-based Immunotherapy for Colorectal Cancer with Cytokine-induced Killer Cells

    PubMed Central

    Kim, Ji Sung; Kim, Yong Guk; Park, Eun Jae; Kim, Boyeong; Lee, Hong Kyung; Hong, Jin Tae; Kim, Youngsoo

    2016-01-01

    Colorectal cancer is the third leading cancer worldwide. Although incidence and mortality of colorectal cancer are gradually decreasing in the US, patients with metastatic colorectal cancer have poor prognosis with an estimated 5-year survival rate of less than 10%. Over the past decade, advances in combination chemotherapy regimens for colorectal cancer have led to significant improvement in progression-free and overall survival. However, patients with metastatic disease gain little clinical benefit from conventional therapy, which is associated with grade 3~4 toxicity with negative effects on quality of life. In previous clinical studies, cell-based immunotherapy using dendritic cell vaccines and sentinel lymph node T cell therapy showed promising therapeutic results for metastatic colorectal cancer. In our preclinical and previous clinical studies, cytokine-induced killer (CIK) cells treatment for colorectal cancer showed favorable responses without toxicities. Here, we review current treatment options for colorectal cancer and summarize available clinical studies utilizing cell-based immunotherapy. Based on these studies, we recommend the use CIK cell therapy as a promising therapeutic strategy for patients with metastatic colorectal cancer. PMID:27162526

  13. Bone marrow mesenchymal stem cells altered the immunoregulatory activities of hepatic natural killer cells.

    PubMed

    Qingqing, Ma; Xin, Zu; Meizhong, Sun

    2014-12-01

    We explored the biological characteristics of bone marrow-derived mesenchymal stem cells (BMSCs) and their immunological effects in vivo. To establish the characteristics of BMSCs, we first examined their morphology, differentiation ability, phenotype, and growth patterns. We further explored the effects of intravenous infusion of BMSCs on the immunological activities in vivo and the possible mechanism involved in it. The results showed that BMSCs displayed a fibroblast-like morphology and could differentiate into bone, fat and cartilage cells. Phenotypic analysis indicated the cells were negative for CD34 and CD31 but positive for Flk1, CD29, CD44 and CD105. In addition, BMSC culture supernatants could not improve the resistance against H2O2-induced apoptosis in L02 cells. We also found that infusion of BMSCs suppressed the activity of intrahepatic natural killer T cells. In summary, BMSCs are an ideal candidate for therapeutic application because they are relatively easy to harvest, easily expandable in vitro, and can be isolated from adult bone marrow while retaining their differentiation potential. BMSCs have stem cell properties, and BMSC therapy is an alternative treatment for acute liver disease.

  14. Enhanced mesenchymal stromal cell recruitment via natural killer cells by incorporation of inflammatory signals in biomaterials

    PubMed Central

    Almeida, Catarina R.; Vasconcelos, Daniela P.; Gonçalves, Raquel M.; Barbosa, Mário A.

    2012-01-01

    An exacerbated inflammatory response questions biomaterial biocompatibility, but on the other hand, inflammation has a central role in the regulation of tissue regeneration. Therefore, it may be argued that an ‘ideal’ inflammatory response is crucial to achieve efficient tissue repair/regeneration. Natural killer (NK) cells, being one of the first populations arriving at an injury site, can have an important role in regulating bone repair/regeneration, particularly through interactions with mesenchymal stem/stromal cells (MSCs). Here, we studied how biomaterials designed to incorporate inflammatory signals affected NK cell behaviour and NK cell–MSC interactions. Adsorption of the pro-inflammatory molecule fibrinogen (Fg) to chitosan films led to a 1.5-fold increase in adhesion of peripheral blood human NK cells, without an increase in cytokine secretion. Most importantly, it was found that NK cells are capable of stimulating a threefold increase in human bone marrow MSC invasion, a key event taking place in tissue repair, but did not affect the expression of the differentiation marker alkaline phosphatase (ALP). Of significant importance, this NK cell-mediated MSC recruitment was modulated by Fg adsorption. Designing novel biomaterials leading to rational modulation of the inflammatory response is proposed as an alternative to current bone regeneration strategies. PMID:21752807

  15. Identification of a potent microbial lipid antigen for diverse Natural Killer T cells1

    PubMed Central

    Wolf, Benjamin J.; Tatituri, Raju V. V.; Almeida, Catarina F.; Le Nours, Jérôme; Bhowruth, Veemal; Johnson, Darryl; Uldrich, Adam P.; Hsu, Fong-Fu; Brigl, Manfred; Besra, Gurdyal S.; Rossjohn, Jamie; Godfrey, Dale I.; Brenner, Michael B.

    2016-01-01

    Invariant Natural Killer T (iNKT) cells are a well-characterized CD1d-restricted T cell subset. The availability of potent antigens and tetramers for iNKT cells has allowed this population to be extensively studied and has revealed their central roles in infection, autoimmunity, and tumor immunity. In contrast, diverse Natural Killer T (dNKT) cells are poorly understood because the lipid antigens they recognize are largely unknown. We sought to identify dNKT cell lipid antigen(s) by interrogating a panel of dNKT mouse cell hybridomas with lipid extracts from the pathogen Listeria monocytogenes. We identified Listeria phosphatidylglycerol (PG) as a microbial antigen that was significantly more potent than a previously characterized dNKT cell antigen, mammalian PG. Further, while mammalian PG loaded CD1d tetramers did not stain dNKT cells, the Listeria-derived PG loaded tetramers did. The structure of Listeria PG was distinct from mammalian PG since it contained shorter, fully-saturated anteiso fatty acid lipid tails. CD1d binding lipid displacement studies revealed that the microbial PG antigen binds significantly better to CD1d than counterparts with the same headgroup. These data reveal a highly-potent microbial lipid antigen for a subset of dNKT cells and provide an explanation for its increased antigen potency compared to the mammalian counterpart. PMID:26254340

  16. Abnormalities of quantities and functions of natural killer cells in severe aplastic anemia.

    PubMed

    Liu, Chunyan; Li, Zhishang; Sheng, Weiwei; Fu, Rong; Li, Lijuan; Zhang, Tian; Wu, Yuhong; Xing, Limin; Song, Jia; Wang, Huaquan; Shao, Zonghong

    2014-01-01

    Severe aplastic anemia (SAA) is a rare disease characterized by severe pancytopenia and bone marrow failure. Natural killer (NK) cells are large granular lymphocytes derived from hematopoietic stem cells (HSCs) or common lymphoid progenitors (CLP). They play a key role in n the innate immunity and adaptive immune. In this study, the quantitative and functional changes of natural killer (NK) cell subsets in peripheral blood of severe aplastic anemia (SAA) patients before and after immunosuppressive therapy (IST) were investigated. Results showed that the percentage of NK cells and its subsets in peripheral blood lymphocytes was decreased in SAA patients. After IST, the percentage of NK cells and their subsets increased dramatically. The median expressions of CD158a, NKG2D and NKp46 on NK cells were higher in SAA patients compared to that in normal controls, and the expressions of perforin in newly diagnosed and recovery SAA patients were higher than that in controls. Therefore, we concluded that the decrease of total NK cells, and CD56(bright), CD56(dim) NK cell subsets and the higher expressions of NKp46 and perforin on NK cells may cause the over-function of T lymphocytes and thus lead to hematopoiesis failure in SAA.

  17. Adoptive Cell Therapies for Glioblastoma

    PubMed Central

    Bielamowicz, Kevin; Khawja, Shumaila; Ahmed, Nabil

    2013-01-01

    Glioblastoma (GBM) is the most common and most aggressive primary brain malignancy and, as it stands, is virtually incurable. With the current standard of care, maximum feasible surgical resection followed by radical radiotherapy and adjuvant temozolomide, survival rates are at a median of 14.6 months from diagnosis in molecularly unselected patients (1). Collectively, the current knowledge suggests that the continued tumor growth and survival is in part due to failure to mount an effective immune response. While this tolerance is subtended by the tumor being utterly “self,” it is to a great extent due to local and systemic immune compromise mediated by the tumor. Different cell modalities including lymphokine-activated killer cells, natural killer cells, cytotoxic T lymphocytes, and transgenic chimeric antigen receptor or αβ T cell receptor grafted T cells are being explored to recover and or redirect the specificity of the cellular arm of the immune system toward the tumor complex. Promising phase I/II trials of such modalities have shown early indications of potential efficacy while maintaining a favorable toxicity profile. Efficacy will need to be formally tested in phase II/III clinical trials. Given the high morbidity and mortality of GBM, it is imperative to further investigate and possibly integrate such novel cell-based therapies into the current standards-of-care and herein we collectively assess and critique the state-of-the-knowledge pertaining to these efforts. PMID:24273748

  18. Natural killer cell immunotherapy for cancer: a new hope.

    PubMed

    Srivastava, S; Lundqvist, A; Childs, R W

    2008-01-01

    Recently there has been a substantial gain in our understanding of the role NK-cells play in mediating innate host immune responses. Although NK cells have long been known to mediate antigen independent tumor cytotoxicity, the therapeutic potential of NK cell-based immunotherapy has yet to be realized. Manipulating the balance between inhibitory and activating NK receptor signals, sensitization of tumor target cells to NK cell-mediated apoptosis, and recent discoveries in NK-cell receptor biology have fueled translational research that has led to clinical trials investigating a number of novel methods to potentiate NK cytotoxicity against human malignancies.

  19. Opportunities and limitations of natural killer cells as adoptive therapy for malignant disease.

    PubMed

    Davies, James O J; Stringaris, Kate; Barrett, A John; Rezvani, Katayoun

    2014-11-01

    Although natural killer (NK) cells can be readily generated for adoptive therapy with current techniques, their optimal application to treat malignant diseases requires an appreciation of the dynamic balance between signals that either synergize with or antagonize each other. Individuals display wide differences in NK function that determine their therapeutic efficacy. The ability of NK cells to kill target cells or produce cytokines depends on the balance between signals from activating and inhibitory cell-surface receptors. The selection of NK cells with a predominant activating profile is critical for delivering successful anti-tumor activity. This can be achieved through selection of killer immunoglobulin-like receptor-mismatched NK donors and by use of blocking molecules against inhibitory pathways. Optimum NK cytotoxicity may require licensing or priming with tumor cells. Recent discoveries in the molecular and cellular biology of NK cells inform in the design of new strategies, including adjuvant therapies, to maximize the cytotoxic potential of NK cells for adoptive transfer to treat human malignancies.

  20. Interactions between natural killer cells, cortisol and prolactin in malaria during pregnancy.

    PubMed

    Mavoungou, Elie

    2006-03-01

    Natural killer cells derived from pluripotent hematopoietic stem cells are important cells of the immune system that have two main functions: a cytolytic activity and a cytokine-producing capacity. These functions are tightly regulated by numerous activating and inhibitory receptors, including newly discovered receptors that selectively trigger the cytolytic activity in a major histocompatibility complex independent manner. Based on their defining function of spontaneous cytotoxicity without prior immunization, natural killer (NK) cells have been thought to play a critical role in immune surveillance and cancer therapy. New insights into NK cell biology have suggested their major roles in the control of infections, particularly in Plasmodium falciparum infection and in fetal implantation. P. falciparum is the main protozoan parasite responsible for malaria causing 200-300 million clinical cases and killing over 3 million people each year. This review provides an update on NK cell function, ontogeny and biology in order to better understand the role of NK cells in pregnancy in regions where malaria is endemic. Understanding mechanisms of NK cell functions may lead to novel therapeutic strategies for the treatment of human disease, in general, and particularly in the fight against malaria.

  1. Inhibition of hematopoietic recovery from radiation-induced myelosuppression by natural killer cells

    SciTech Connect

    Pantel, K.; Boertman, J.; Nakeff, A. )

    1990-05-01

    We have examined the role of natural killer (NK) cells in situ in the recovery of marrow hematopoiesis in B6D2F1 mice receiving various doses of total-body irradiation (TBI) as a well-characterized model for treatment-induced myelosuppression. Applying an in situ cytotoxic approach for ablating NK 1.1 cells, we have demonstrated that NK 1.1 cells differentially inhibit the recovery of hematopoietic stem cells (CFU-S) and their progenitor cells committed to granulocyte-macrophage differentiation from a sublethal dose of TBI (9 Gy) while not affecting the recovery of progenitor cells committed to either erythroid or megakaryocyte differentiation from TBI. However, recoveries of CFU-S and progenitor cells were unaffected by the ablation of NK cells prior to a moderate dose of TBI (2 Gy). These findings provide in situ evidence that NK cells are potential inhibitors of hematopoietic recovery from treatment-induced myelosuppression.

  2. Natural Killer Cell Adoptive Transfer Therapy: Exploiting the First Line of Defense Against Cancer.

    PubMed

    Davis, Zachary B; Felices, Martin; Verneris, Michael R; Miller, Jeffrey S

    2015-01-01

    Natural killer (NK) cells constitute an important component of the initial immunological response against transformed cells. However, chronic exposure to the tumor microenvironment can fundamentally alter the ability of NK cells to sufficiently control tumor progression. Thus, the adoptive transfer of healthy, functional NK cells as an interventional therapy has been an area of great interest for improving patient outcomes. Recent developments in the field have provided a better understanding of what makes the NK compartment effective against malignant cells. Moreover, there are now multiple potential sources of NK cell products for infusion as well as techniques to manipulate these cells to enhance their antitumor functions. This review explores the advantages and disadvantages of various sources of NK cells as well as prospective therapeutic enhancements to adoptively transferred NK cells.

  3. A new self: MHC-class-I-independent natural-killer-cell self-tolerance.

    PubMed

    Kumar, Vinay; McNerney, Megan E

    2005-05-01

    A fundamental tenet of the immune system is the requirement for lymphocytes to respond to transformed or infected cells while remaining tolerant of normal cells. Natural killer (NK) cells discriminate between self and non-self by monitoring the expression of MHC class I molecules. According to the 'missing-self' hypothesis, cells that express self-MHC class I molecules are protected from NK cells, but those that lack this self-marker are eliminated by NK cells. Recent work has revealed that there is another system of NK-cell inhibition, which is independent of MHC class I molecules. Newly discovered NK-cell inhibitory receptors that have non-MHC-molecule ligands broaden the definition of self as seen by NK cells.

  4. Transcription factor Foxo1 is a negative regulator of natural killer cell maturation and function.

    PubMed

    Deng, Youcai; Kerdiles, Yann; Chu, Jianhong; Yuan, Shunzong; Wang, Youwei; Chen, Xilin; Mao, Hsiaoyin; Zhang, Lingling; Zhang, Jianying; Hughes, Tiffany; Deng, Yafei; Zhang, Qi; Wang, Fangjie; Zou, Xianghong; Liu, Chang-Gong; Freud, Aharon G; Li, Xiaohui; Caligiuri, Michael A; Vivier, Eric; Yu, Jianhua

    2015-03-17

    Little is known about the role of negative regulators in controlling natural killer (NK) cell development and effector functions. Foxo1 is a multifunctional transcription factor of the forkhead family. Using a mouse model of conditional deletion in NK cells, we found that Foxo1 negatively controlled NK cell differentiation and function. Immature NK cells expressed abundant Foxo1 and little Tbx21 relative to mature NK cells, but these two transcription factors reversed their expression as NK cells proceeded through development. Foxo1 promoted NK cell homing to lymph nodes by upregulating CD62L expression and inhibited late-stage maturation and effector functions by repressing Tbx21 expression. Loss of Foxo1 rescued the defect in late-stage NK cell maturation in heterozygous Tbx21(+/-) mice. Collectively, our data reveal a regulatory pathway by which the negative regulator Foxo1 and the positive regulator Tbx21 play opposing roles in controlling NK cell development and effector functions.

  5. Natural Killers Are Made Not Born: How to Exploit NK Cells in Lung Malignancies

    PubMed Central

    Carrega, Paolo; Ferlazzo, Guido

    2017-01-01

    In recent years, progress has been made in the characterization of natural killer (NK) cells in lung malignancies, and we have now gained a better understanding of the frequency, localization, phenotype, and functional status of NK cells infiltrating these tumors. NK cell subset recruited in lung cancer is mainly capable of producing relevant cytokines rather than exerting direct cancer cell killing. Thus, the relevance of NK cells in tumor microenvironment might also go beyond the killing of tumor cells, being NK cells endowed with regulatory functions toward an ample array of immune effectors. Nevertheless, boosting their cytotoxic functions and redirecting the migration of cytotoxic NK cell subset to the tumor site might open new therapeutic avenues for lung cancer. Also, we believe that a deeper investigation into the impact of both conventional (e.g., chemotherapy) or new therapies (e.g., anti-immune checkpoints mAbs) on NK cell homeostasis in lung cancer patients is now required. PMID:28348567

  6. Allogeneic haematopoietic stem cell transplantation as a promising treatment for natural killer-cell neoplasms.

    PubMed

    Murashige, Naoko; Kami, Masahiro; Kishi, Yukiko; Kim, Sung-Won; Takeuchi, Masami; Matsue, Kosei; Kanda, Yoshinobu; Hirokawa, Makoto; Kawabata, Yoshinari; Matsumura, Tomoko; Kusumi, Eiji; Hirabayashi, Noriyuki; Nagafuji, Koji; Suzuki, Ritsuro; Takeuchi, Kengo; Oshimi, Kazuo

    2005-08-01

    The efficacy of allogeneic haematopoietic stem-cell transplantation (allo-HSCT) for natural killer (NK)-cell neoplasms is unknown. We investigated the results of allo-HSCT for NK-cell neoplasms between 1990 and 2003 through questionnaires. After reclassification by a haematopathologist, of 345 patients who underwent allo-HSCT for malignant lymphoma, 28 had NK-cell neoplasms (World Health Organization classification): extranodal NK/T-cell lymphoma (n=22), blastic NK-cell lymphoma (n=3), and aggressive NK-cell leukaemia (n=3). Twelve were chemosensitive and 16 chemorefractory. Twenty-two had matched-related donors. Stem-cell source was bone marrow in eight and mobilised peripheral blood in 20. Conditioning regimens were myeloablative (n=23) and non-myeloablative (n=5). Grade 2-4 acute graft-versus-host disease (GVHD) and chronic GVHD developed in 12 and 8 respectively. Eight died of disease progression, three of infection, two of acute GVHD, one of veno-occlusive disease, one of interstitial pneumonitis, and one of thrombotic microangiopathy. Two-year progression-free and overall survivals were 34% and 40% respectively (median follow-up, 34 months). All patients who did not relapse/progress within 10 months achieved progression-free survival (PFS) during the follow-up. In multivariate analysis, stem cell source (BM versus peripheral blood; relative risk 3.03), age (>or=40 years vs. <40 years; relative risk 2.85), and diagnoses (extranodal NK/T-cell lymphoma versus others; relative risk 3.94) significantly affected PFS. Allo-HSCT is a promising treatment for NK-cell neoplasms.

  7. Studies on the mechanism of natural killer cytotoxicity. III. Activation of NK cells by interferon augments the lytic activity of released natural killer cytotoxic factors (NKCF).

    PubMed

    Wright, S C; Bonavida, B

    1983-06-01

    The mechanism by which interferon (IFN) pretreatment of effector cells augments natural killer (NK) cell-mediated cytotoxicity (CMC) was examined by determining whether IFN has any effect on the production of natural killer cytotoxic factors (NKCF). NKCF are released into the supernatant of co-cultures of murine spleen cells and YAC-1 stimulator cells, and their lytic activity is measured against YAC-1 target cells. It was demonstrated that pretreatment of effector cells with murine fibroblast IFN or polyinosinic-polycytidylic acid (pIC) resulted in the release of NKCF with augmented lytic activity. Evidence indicated that the IFN-induced augmentation of NKCF activity required protein synthesis during the IFN pretreatment period, because concurrent pretreatment with both IFN and cycloheximide abrogated the IFN effect. Protein synthesis, however, is not required for the production of base levels of NKCF because emetine pretreatment of normal spleen cells did not result in a decrease in NKCF production. Furthermore, substantial levels of NKCF activity could be detected in freeze-thaw lysates of freshly isolated spleen cells. Cell populations enriched for NK effector cells, such as nylon wool-nonadherent nude mouse spleen cells, produced lysates with high levels of NKCF activity, whereas lysates of CBA thymocytes were devoid of NKCF activity. Pretreatment of spleen cells with either IFN or pIC resulted in an augmentation of the NKCF activity present in their cell lysates. Taken altogether, these findings suggest that freshly isolated NK cells contain preformed pools of NKCF. Pretreatment of these cells with IFN causes de novo synthesis of additional NKCF and/or activation of preexisting NKCF. According to our model for the mechanism of NK CMC, target cell lysis is ultimately the result of transfer of NKCF from the effector cell to the target cell. The evidence presented here suggests that the IFN-induced augmentation of NK activity could be accounted for by an

  8. HLA-C levels impact natural killer cell subset distribution and function.

    PubMed

    Sips, Magdalena; Liu, Qingquan; Draghi, Monia; Ghebremichael, Musie; Berger, Christoph T; Suscovich, Todd J; Sun, Yongtao; Walker, Bruce D; Carrington, Mary; Altfeld, Marcus; Brouckaert, Peter; De Jager, Philip L; Alter, Galit

    2016-12-01

    Differences in HLA-C expression are inversely correlated with HIV viral load set-point and slower progression to AIDS, linked to enhanced cytotoxic T cell immunity. Yet, beyond T cells, HLA-C serves as a dominant ligand for natural killer (NK) cell killer immunoglobulin-like receptors (KIR). Thus, we speculated that HLA-C expression levels may also impact NK activity, thereby modulating HIV antiviral control. Phenotypic and functional profiling was performed on freshly isolated PBMCs. HLA-C expression was linked to changes in NK subset distribution and licensing, particularly in HLA-C1/C1, KIR2DL3+2DL2-individuals. Moreover, high levels of HLA-C, were associated with reduced frequencies of anergic CD56(neg) NKs and lower frequencies of KIR2DL1/2/3+ NK cells, pointing to an HLA-C induced influence on the NK cell development in the absence of disease. In HIV infection, several spontaneous controllers, that expressed higher levels of HLA-C demonstrated robust NK-IFN-γ secretion in response to target cells, highlighting a second disease induced licensing phenotype. Thus this population study points to a potential role for HLA-C levels both in NK cell education and development.

  9. Targeting breast cancer stem cells with HER2-specific antibodies and natural killer cells.

    PubMed

    Diessner, Joachim; Bruttel, Valentin; Becker, Kathrin; Pawlik, Miriam; Stein, Roland; Häusler, Sebastian; Dietl, Johannes; Wischhusen, Jörg; Hönig, Arnd

    2013-01-01

    Breast cancer is the most common cancer among women worldwide. Every year, nearly 1.4 million new cases of breast cancer are diagnosed, and about 450.000 women die of the disease. Approximately 15-25% of breast cancer cases exhibit increased quantities of the trans-membrane receptor tyrosine kinase human epidermal growth factor receptor 2 (HER2) on the tumor cell surface. Previous studies showed that blockade of this HER2 proto-oncogene with the antibody trastuzumab substantially improved the overall survival of patients with this aggressive type of breast cancer. Recruitment of natural killer (NK) cells and subsequent induction of antibody-dependent cell-mediated cytotoxicity (ADCC) contributed to this beneficial effect. We hypothesized that antibody binding to HER2-positive breast cancer cells and thus ADCC might be further improved by synergistically applying two different HER2-specific antibodies, trastuzumab and pertuzumab. We found that tumor cell killing via ADCC was increased when the combination of trastuzumab, pertuzumab, and NK cells was applied to HER2-positive breast cancer cells, as compared to the extent of ADCC induced by a single antibody. Furthermore, a subset of CD44(high)CD24(low)HER2(low) cells, which possessed characteristics of cancer stem cells, could be targeted more efficiently by the combination of two HER2-specific antibodies compared to the efficiency of one antibody. These in vitro results demonstrated the immunotherapeutic benefit achieved by the combined application of trastuzumab and pertuzumab. These findings are consistent with the positive results of the clinical studies, CLEOPATRA and NEOSPHERE, conducted with patients that had HER2-positive breast cancer. Compared to a single antibody treatment, the combined application of trastuzumab and pertuzumab showed a stronger ADCC effect and improved the targeting of breast cancer stem cells.

  10. Cytotoxic activity of natural killer cells in vitro under microgravity

    NASA Astrophysics Data System (ADS)

    Grigorieva, O. V.; Buravkova, L. B.; Rykova, M. P.

    2005-08-01

    Changes in the immune response during space flight are close relation to functions of NK lymphocytes and their ability to interact with target cells. The aim of this research was to study NK cells cytotoxic activity and their ability to produce cytokines under microgravity in vitro. The modification of the method to study NK cells cytotoxic activity with the use of human peripheral blood mononuclear cells and myeloblasts K-562 (as target cells) proved highly effective (Buravkova et al., 2004). The flight experiment "Cell-to-cell interaction" with the use of the special device "Fibroblast-1" was carried out by Russian cosmonauts within the first two days after the docking when a new crew was taking over on International Space Station (ISS 8 - 10). The data collected on board ISS revealed that NK lymphocytes cytotoxic activity in vitro can increase under microgravity. The ground-based simulation experiments showed that long-term changes in gravity vector direction clinorotation resulted in a smaller increase of NK cells cytotoxic activity than it did in microgravity. As lymphocytes produce cytokines while interacting with target cells, the levels of TNF-α, IL-1α, IL- 2, IL-6 in cell-conditioned medium were assessed. The data showed that microgravity has varied effects on cytokines production level.

  11. Inflammatory infiltrates and natural killer cell presence in human brain tumors.

    PubMed

    Stevens, A; Klöter, I; Roggendorf, W

    1988-02-15

    Immunohistochemical analysis of subpopulations of inflammatory cells in 81 primary and secondary human brain tumors was done. Natural killer (NK) cells, representing non-major histocompatibility complex-restricted, spontaneous cytotoxicity and monocytic cells are virtually absent in infiltrates of gliomas and account only for a minor percentage of inflammatory cells in brain metastases of carcinoma and in craniopharyngeomas. Infiltrates in gliomas consist almost exclusively of T-cells of the suppressor/cytotoxic type whereas infiltrates in carcinoma metastases and craniopharyngeomas contain considerable numbers of T-helper/inducer cells and B-cells. From this the authors conclude (1) that NK cells do not play a major role in tumor rejection, and (2) that the kind of inflammatory reaction does not depend upon the tumor site but more likely on the tumor type. No correlation between tumor differentiation and infiltrate composition is evident.

  12. Innate-like functions of natural killer T cell subsets result from highly divergent gene programs.

    PubMed

    Engel, Isaac; Seumois, Grégory; Chavez, Lukas; Samaniego-Castruita, Daniela; White, Brandie; Chawla, Ashu; Mock, Dennis; Vijayanand, Pandurangan; Kronenberg, Mitchell

    2016-06-01

    Natural killer T cells (NKT cells) have stimulatory or inhibitory effects on the immune response that can be attributed in part to the existence of functional subsets of NKT cells. These subsets have been characterized only on the basis of the differential expression of a few transcription factors and cell-surface molecules. Here we have analyzed purified populations of thymic NKT cell subsets at both the transcriptomic level and epigenomic level and by single-cell RNA sequencing. Our data indicated that despite their similar antigen specificity, the functional NKT cell subsets were highly divergent populations with many gene-expression and epigenetic differences. Therefore, the thymus 'imprints' distinct gene programs on subsets of innate-like NKT cells that probably impart differences in proliferative capacity, homing, and effector functions.

  13. Innate-like functions of natural killer T cell subsets result from highly divergent gene programs

    PubMed Central

    Engel, Isaac; Seumois, Grégory; Chavez, Lukas; Samaniego-Castruita, Daniela; White, Brandie; Chawla, Ashu; Mock, Dennis; Vijayanand, Pandurangan; Kronenberg, Mitchell

    2016-01-01

    Natural killer T cells (NKT cells) have stimulatory or inhibitory effects on the immune response that can be attributed in part to the existence of functional subsets of NKT cells. These subsets have been characterized only on the basis of the differential expression of a few transcription factors and cell-surface molecules. Here we have analyzed purified populations of thymic NKT cell subsets at both the transcriptomic level and epigenomic level and by single-cell RNA sequencing. Our data indicated that despite their similar antigen specificity, the functional NKT cell subsets were highly divergent populations with many gene-expression and epigenetic differences. Therefore, the thymus ‘imprints’ distinct gene programs on subsets of innate-like NKT cells that probably impart differences in proliferative capacity, homing, and effector functions. PMID:27089380

  14. A long noncoding RNA positively regulates CD56 in human natural killer cells

    PubMed Central

    Fu, Binqing; Wu, Yang; Sun, Rui; Tian, Zhigang; Wei, Haiming

    2016-01-01

    Natural killer (NK) cells are innate immune lymphocytes that play critical roles in host defense against viral infection and surveillance against malignant transformation. Long noncoding RNAs (lncRNAs) are important immune system regulators. Here, we analyzed human primary lymphocyte lncRNA expression profiles to identify NK-lncRNA signatures. We detected numerous novel NK-specific lncRNAs with potential roles in regulating human NK cell differentiation and function. Expression of lnc-CD56, an NK-specific lncRNA, was positively correlated with that of CD56, a classical human NK cell surface marker. We showed that lnc-CD56 may function as a positive regulator of CD56 in primary human NK cells and differentiated NK cells from human CD34+ hematopoietic progenitor cells. Our data provide an annotated human NK cell lncRNA expression catalog and demonstrate a key role for lncRNAs in NK cell biology. PMID:27713137

  15. Gene deregulation and chronic activation in natural killer cells deficient in the transcription factor ETS1.

    PubMed

    Ramirez, Kevin; Chandler, Katherine J; Spaulding, Christina; Zandi, Sasan; Sigvardsson, Mikael; Graves, Barbara J; Kee, Barbara L

    2012-06-29

    Multiple transcription factors guide the development of mature functional natural killer (NK) cells, yet little is known about their function. We used global gene expression and genome-wide binding analyses combined with developmental and functional studies to unveil three roles for the ETS1 transcription factor in NK cells. ETS1 functions at the earliest stages of NK cell development to promote expression of critical transcriptional regulators including T-BET and ID2, NK cell receptors (NKRs) including NKp46, Ly49H, and Ly49D, and signaling molecules essential for NKR function. As a consequence, Ets1(-/-) NK cells fail to degranulate after stimulation through activating NKRs. Nonetheless, these cells are hyperresponsive to cytokines and have characteristics of chronic stimulation including increased expression of inhibitory NKRs and multiple activation-associated genes. Therefore, ETS1 regulates a broad gene expression program in NK cells that promotes target cell recognition while limiting cytokine-driven activation.

  16. [HMGB1 as metabolic weapon in the arsenal of natural killer cells].

    PubMed

    Gdynia, G

    2016-11-01

    The German Nobel Prize winner Otto Warburg discovered the importance of glycolysis in cancer cells in the 1920s. Nearly one century later the inhibition of tumor glycolysis in cancer cells could literally be the Achilles Heel in cancer therapy. Surprisingly, we could show that Natural Killer (NK) cells pursue this strategy. They employ specific metabolic weapons to eliminate cancer cells by targeting tumor glycolysis. In colon cancer cells a specifically modified form of high mobility group box 1 (HMGB1) protein released by NK cells induced a previously unknown form of cell death. This new link between the killing of cancer cells and the innate immune system opened up new perspectives for immunotherapy in oncology.

  17. Natural Killer Cell Recognition of Melanoma: New Clues for a More Effective Immunotherapy

    PubMed Central

    Tarazona, Raquel; Duran, Esther; Solana, Rafael

    2016-01-01

    Natural killer (NK) cells participate in the early immune response against melanoma and also contribute to the development of an adequate adaptive immune response by their crosstalk with dendritic cells and cytokine secretion. Melanoma resistance to conventional therapies together with its high immunogenicity justifies the development of novel therapies aimed to stimulate effective immune responses against melanoma. However, melanoma cells frequently escape to CD8 T cell recognition by the down-regulation of major histocompatibility complex (MHC) class I molecules. In this scenario, NK cells emerge as potential candidates for melanoma immunotherapy due to their capacity to recognize and destroy melanoma cells expressing low levels of MHC class I molecules. In addition, the possibility to combine immune checkpoint blockade with other NK cell potentiating strategies (e.g., cytokine induction of activating receptors) has opened new perspectives in the potential use of adoptive NK cell-based immunotherapy in melanoma. PMID:26779186

  18. Dietary gluten increases natural killer cell cytotoxicity and cytokine secretion.

    PubMed

    Larsen, Jesper; Dall, Morten; Antvorskov, Julie Christine; Weile, Christian; Engkilde, Kåre; Josefsen, Knud; Buschard, Karsten

    2014-10-01

    Dietary gluten influences the development of type 1 diabetes in nonobese diabetic (NOD) mice and biobreeding rats, and has been shown to influence a wide range of immunological factors in the pancreas and gut. In the present study, the effects of gluten on NK cells were studied in vitro and in vivo. We demonstrated that gliadin increased direct cytotoxicity and IFN-γ secretion from murine splenocytes and NK cells toward the pancreatic beta-cell line MIN6 cells. Additionally, stimulation of MIN6 cells led to a significantly increased proportion of degranulating C57BL/6 CD107a(+) NK cells. Stimulation of C57BL/6 pancreatic islets with gliadin significantly increased secretion of IL-6 more than ninefold. In vivo, the gluten-containing diet led to a higher expression of NKG2D and CD71 on NKp46(+) cells in all lymphoid organs in BALB/c and NOD mice compared with the gluten-free diet. Collectively, our data suggest that dietary gluten increases murine NK-cell activity against pancreatic beta cells. This mechanism may contribute to development of type 1 diabetes and explain the higher disease incidence associated with gluten intake in NOD mice.

  19. Natural killer cells after altaïr mission

    NASA Astrophysics Data System (ADS)

    Konstantinova, I. V.; Rykova, M.; Meshkov, D.; Peres, C.; Husson, D.; Schmitt, D. A.

    Reduced in vitro NK cytotoxic activity have routinely been observed after both prolonged and short-term space flights. This study investigated the effects of space flight on NK cell functions, NK cell counts and the production of IL-2 and TNF by lymphocytes of French-Russian crew members. In the French cosmonaut, after 21 days space flight, the cytotoxic activity of NK cells, the capacity the NK cells to bind and lyse the individual target cells and the percentage of NK cells were decreased. In this cosmonaut a twofold reduction TNF production in cultures of lymphocytes stimulated with PMA and with the mixture of PHA and PMA was observed on the first day after landing. However, the activity of the production of TNF in 48-hour PHA-cultures of lymphocytes was unchanged and the biological activity of IL-2 was not reduced. The immunological examination did not detecte any substantial deviations from the norm in both russian cosmonauts after 197 days space flight. Various explanations for decreased cytotoxicity in cosmonauts after space flight can be proposed, and these include the defective function of NK cells and reduced numbers of circulating effector cells.

  20. Cytokine-induced killer (CIK) cell therapy for patients with hepatocellular carcinoma: efficacy and safety

    PubMed Central

    2012-01-01

    Purpose To evaluate the efficacy of cytokine-induced killer (CIK) cell therapy in the treatment of hepatocellular carcinoma. Materials and methods Randomized phase II and III trials on CIK cell-based therapy were identified by electronic searches using a combination of "hepatocellular carcinoma" and "cytokine-induced killer cells". Results The analysis showed significant survival benefit (one-year survival, p < 0.001; two-year survival, p < 0.001; median overall survival, p < 0.001) in favor of CIK-based therapy. Comparison of CIK group versus non-CIK group resulted in a significantly prolonged progression-free survival (PFS) (p < 0.01). A favored disease control rate (DCR) and overall response rate (ORR) were also observed in patients receiving CIK cell therapy (p < 0.01). Meanwhile, patients in the CIK group showed better quality of life (QoL), diminished HBV-DNA content and AFP level (p < 0.01). Comparing T-lymphocyte subsets in peripheral blood, the analysis showed the ratio of CD3+, CD4+, CD4+CD8+ and CD3+CD4+ T cells significantly increased in the CIK group, compared with the non-CIK group (p < 0.01). Conclusions CIK cell therapy demonstrated a significant superiority in prolonging the median overall survival, PFS, DCR, ORR and QoL of HCC patients. These results support further larger scale randomized controlled trials for HCC patients with or without the combination of other therapeutic methods. PMID:23210562

  1. Glutathione diminishes tributyltin- and dibutyltin-induced loss of lytic function in human natural killer cells.

    PubMed

    Powell, Jeralyn J; Davis, McLisa V; Whalen, Margaret M

    2009-01-01

    This study investigated whether reduced glutathione (GSH) was able to alter the negative effects of tributyltin (TBT) or dibutyltin (DBT) on the lytic function of human natural killer (NK) cells. NK cells are an initial immune defense against the development of tumors or viral infections. TBT and DBT are widespread environmental contaminants, due to their various industrial applications. Both TBT and DBT have been shown to decrease the ability of NK cells to lyse tumor cells (lytic function). The results indicated that the presence of GSH during the exposure of NK cells to TBT or DBT diminished the negative effect of the butyltin on the lytic function of NK cells. This suggests that the interaction of TBT and DBT with functionally relevant sulfhydryl groups in NK cells may be part of the mechanism by which they decrease NK lytic function.

  2. Natural Killer Cell Receptor Genes in the Family Equidae: Not only Ly49

    PubMed Central

    Futas, Jan; Horin, Petr

    2013-01-01

    Natural killer (NK) cells have important functions in immunity. NK recognition in mammals can be mediated through killer cell immunoglobulin-like receptors (KIR) and/or killer cell lectin-like Ly49 receptors. Genes encoding highly variable NK cell receptors (NKR) represent rapidly evolving genomic regions. No single conservative model of NKR genes was observed in mammals. Single-copy low polymorphic NKR genes present in one mammalian species may expand into highly polymorphic multigene families in other species. In contrast to other non-rodent mammals, multiple Ly49-like genes appear to exist in the horse, while no functional KIR genes were observed in this species. In this study, Ly49 and KIR were sought and their evolution was characterized in the entire family Equidae. Genomic sequences retrieved showed the presence of at least five highly conserved polymorphic Ly49 genes in horses, asses and zebras. These findings confirmed that the expansion of Ly49 occurred in the entire family. Several KIR-like sequences were also identified in the genome of Equids. Besides a previously identified non-functional KIR-Immunoglobulin-like transcript fusion gene (KIR-ILTA) and two putative pseudogenes, a KIR3DL-like sequence was analyzed. In contrast to previous observations made in the horse, the KIR3DL sequence, genomic organization and mRNA expression suggest that all Equids might produce a functional KIR receptor protein molecule with a single non-mutated immune tyrosine-based inhibition motif (ITIM) domain. No evidence for positive selection in the KIR3DL gene was found. Phylogenetic analysis including rhinoceros and tapir genomic DNA and deduced amino acid KIR-related sequences showed differences between families and even between species within the order Perissodactyla. The results suggest that the order Perissodactyla and its family Equidae with expanded Ly49 genes and with a potentially functional KIR gene may represent an interesting model for evolutionary biology of

  3. Natural killer cell receptor genes in the family Equidae: not only Ly49.

    PubMed

    Futas, Jan; Horin, Petr

    2013-01-01

    Natural killer (NK) cells have important functions in immunity. NK recognition in mammals can be mediated through killer cell immunoglobulin-like receptors (KIR) and/or killer cell lectin-like Ly49 receptors. Genes encoding highly variable NK cell receptors (NKR) represent rapidly evolving genomic regions. No single conservative model of NKR genes was observed in mammals. Single-copy low polymorphic NKR genes present in one mammalian species may expand into highly polymorphic multigene families in other species. In contrast to other non-rodent mammals, multiple Ly49-like genes appear to exist in the horse, while no functional KIR genes were observed in this species. In this study, Ly49 and KIR were sought and their evolution was characterized in the entire family Equidae. Genomic sequences retrieved showed the presence of at least five highly conserved polymorphic Ly49 genes in horses, asses and zebras. These findings confirmed that the expansion of Ly49 occurred in the entire family. Several KIR-like sequences were also identified in the genome of Equids. Besides a previously identified non-functional KIR-Immunoglobulin-like transcript fusion gene (KIR-ILTA) and two putative pseudogenes, a KIR3DL-like sequence was analyzed. In contrast to previous observations made in the horse, the KIR3DL sequence, genomic organization and mRNA expression suggest that all Equids might produce a functional KIR receptor protein molecule with a single non-mutated immune tyrosine-based inhibition motif (ITIM) domain. No evidence for positive selection in the KIR3DL gene was found. Phylogenetic analysis including rhinoceros and tapir genomic DNA and deduced amino acid KIR-related sequences showed differences between families and even between species within the order Perissodactyla. The results suggest that the order Perissodactyla and its family Equidae with expanded Ly49 genes and with a potentially functional KIR gene may represent an interesting model for evolutionary biology of

  4. The dual-functional capability of cytokine-induced killer cells and application in tumor immunology.

    PubMed

    Zhang, Qiang; Liu, Xiao-yan; Zhang, Teng; Zhang, Xin-feng; Zhao, Lin; Long, Fei; Liu, Zhuang-kai; Wang, En-hua

    2015-05-01

    Cytokine-induced killer (CIK) cells represent a heterogeneous cell population, including a large majority of CD3+CD56+ cells, a relatively minor fractions of typical T cells (CD3+CD56-), and natural killer (NK) cells (CD3-CD56+). In order to elucidate the tumor killing mechanism of these three subpopulations of CIK cells, this review summarized the concordances and differences among CD3+CD56+ CIK cells, CD3-CD56+ NK cells and CD3+CD56- T cells to the following aspects: the effects of cell surface molecules, mechanisms of tumor killing, and clinical applications of these cells in immunotherapy. NK cells can be classified into CD56brightCD16- NK cells, which produce cytokines in response to monokine co-stimulation, and the CD56dimCD16+ NK cells, which contribute to lysing susceptible target. Also, the immunity of NK cells is mainly regulated by several immune-receptors, such as ACR, ICR, NCR and KIRs. T cells require TCR and co-stimulatory molecules for initiation of T cell activation. The CD3+CD56+ CIK cells co-express with T-cell marker CD3 and NK cell marker CD56 to appear the most potent cytotoxicity and high impact on adoptive cellular immunotherapy. These CIK subpopulations share some similar tumor killing mechanisms. LFA-1 not only mediates the binding of NK cells to target cells through its ligand ICAM-1 to localize actin accumulation but also acts as a co-stimulatory receptor on NK cells. LFA-1 also functions as co-stimulatory receptor for T cells to transmit intracellular signals from the TCR to LFA-1. Furthermore, cytotoxic effect of CD3+CD56+ CIK cells is blocked by antibodies directly against LFA-1 and its counter receptor, ICAM-1. Clinically, antibody-dependent cell-mediated cytotoxicity (ADCC) is shown in both NK cells and T cells for tumor killing while dendritic cells are another main regulator for the activation of three subpopulations. In summary, CD3+CD56+ CIK cells have dual-functional capability as T-cell subsets which acquire NK cells function

  5. High frequency of activated natural killer and natural killer T-cells in patients with new onset of type 2 diabetes mellitus.

    PubMed

    Guo, Hui; Xu, Bingchuan; Gao, Lichao; Sun, Xiguang; Qu, Xiaozhang; Li, Xiaowei; Liu, Shumei; Feng, Junyan; Wang, Juan; Tang, Ying; Yan, Guoqiang; Gao, Xiuzhu; Jiang, Yanfang

    2012-05-01

    Chronic low-grade inflammation is crucial for the development of insulin resistance and type 2 diabetes mellitus (T2DM), and immunocompetent cells, such as T-cells, B-cells, mast cells and macrophages, regulate the pathogenesis of T2DM. However, little is known about the role of natural killer (NK) and natural killer T (NKT) cells in the pathogenic process of T2DM. A total of 16 patients with new onset T2DM and nine healthy subjects were recruited, and the frequency of peripheral blood activated and inhibitory NK and NKT cells in individual subjects was determined by flow cytometry. The frequency of spontaneous and inducible interferon gamma (IFN-γ) and CD107a(+) NK cells was further examined, and the potential association of the frequency of NK cells with clinical measures was analyzed. While there was no significant difference in the frequency of peripheral blood NK and NKT cells between patients and controls, the frequency of NKG2D(+) NK and NKT cells in patients was significantly higher than those in the controls (P = 0.011). In contrast, the frequency of NKG2A(+) and KIR2DL3(+) inhibitory NK and NKT cells in patients was significantly lower than those in the controls (P = 0.002, P < 0.0001, respectively). Furthermore, the frequencies of NKG2D(+) NK cells were correlated significantly with the values of body mass index in patients. Moreover, the frequencies of spontaneous and inducible CD107a(+), but not IFN-γ-secreting, NK cells in patients were significantly higher than those in the controls (P < 0.004, P < 0.0001). Our data indicated that a higher frequency of activated NK cells may participate in the obesity-related chronic inflammation involved in the pathogenesis of T2DM.

  6. NCR1 Expression Identifies Canine Natural Killer Cell Subsets with Phenotypic Similarity to Human Natural Killer Cells

    PubMed Central

    Foltz, Jennifer A.; Somanchi, Srinivas S.; Yang, Yanwen; Aquino-Lopez, Arianexys; Bishop, Erin E.; Lee, Dean A.

    2016-01-01

    Canines spontaneously develop many cancers similar to humans – including osteosarcoma, leukemia, and lymphoma – offering the opportunity to study immune therapies in a genetically heterogeneous and immunocompetent environment. However, a lack of antibodies recognizing canine NK cell markers has resulted in suboptimal characterization and unknown purity of NK cell products, hindering the development of canine models of NK cell adoptive immunotherapy. To this end, we generated a novel antibody to canine NCR1 (NKp46), the putative species-wide marker of NK cells, enabling purification of NK cells for further characterization. We demonstrate that CD3−/NKp46+ cells in healthy and osteosarcoma-bearing canines have phenotypic similarity to human CD3−/NKp46+ NK cells, expressing mRNA for CD16 and the natural cytotoxicity receptors NKp30, NKp44, and NKp80. Functionally, we demonstrate with the calcein release assay that canine CD3−/NKp46+ cells kill canine tumor cell lines without prior sensitization and secrete IFN-γ, TNF-α, IL-8, IL-10, and granulocyte-macrophage colony-stimulating factor as measured by Luminex. Similar to human NK cells, CD3−/NKp46+ cells expand rapidly on feeder cells expressing 4-1BBL and membrane-bound IL-21 (median = 20,283-fold in 21 days). Furthermore, we identify a minor Null population (CD3−/CD21−/CD14−/NKp46−) with reduced cytotoxicity against osteosarcoma cells, but similar cytokine secretion as CD3−/NKp46+ cells. Null cells in canines and humans have reduced expression of NKG2D, NKp44, and CD16 compared to NKp46+ NK cells and can be induced to express NKp46 with further expansion on feeder cells. In conclusion, we have identified and characterized canine NK cells, including an NKp46− subset of canine and human NK cells, using a novel anti-canine NKp46 antibody, and report robust ex vivo expansion of canine NK cells sufficient for adoptive immunotherapy. PMID:27933061

  7. Innate immune natural killer cells and their role in HIV and SIV infection

    PubMed Central

    Bostik, Pavel; Takahashi, Yoshiaki; Mayne, Ann E; Ansari, Aftab A

    2010-01-01

    The findings that early events during HIV-1 and SIV infection of Asian rhesus macaques dictate the levels of viremia and rate of disease progression prior to the establishment of mature and effective adaptive immune responses strongly suggest an important role for innate immune mechanisms. In addition, the fact that the major target of HIV and SIV during this period of acute infection is the gastrointestinal tissue suggests that whatever role the innate immune system plays must either directly and/or indirectly focus on the GI tract. The object of this article is to provide a general overview of the innate immune system with a focus on natural killer (NK) cells and their role in the pathogenesis of lentivirus infection. The studies summarized include our current understanding of the phenotypic heterogeneity, the putative functions ascribed to the subsets, the maturation/differentiation of NK cells, the mechanisms by which their function is mediated and regulated, the studies of these NK-cell subsets, with a focus on killer cell immunoglobulin-like receptors (KIRs) in nonhuman primates and humans, and finally, how HIV and SIV infection affects these NK cells in vivo. Clearly much has yet to be learnt on how the innate immune system influences the interaction between lentiviruses and the host within the GI tract, knowledge of which is reasoned to be critical for the formulation of effective vaccines against HIV-1. PMID:20730028

  8. Novel strategies of adoptive immunotherapy: How natural killer cells may change the treatment of elderly patients with acute myeloblastic leukemia.

    PubMed

    Lemoli, Roberto M; Parisi, Sarah; Curti, Antonio

    2017-01-01

    Although many attempts have been made to identify novel molecular-targeted therapies for patients with acute myeloid leukemia, their translation into the clinic have had limited impact. In particular, the question of effective and curative treatments for elderly patients, who are not eligible for stem cell transplantation, remains an unmet medical need. To answer this question, a wide range of immunologic therapeutic strategies, mostly T cell based, have been proposed and investigated. At present, however, the clinical results have been largely unsatisfactory. Natural killer cells have recently been used as a means of adoptive immunotherapy with promising clinical results. On the basis of recent clinical reports and moving from the basic immunobiology of natural killer cells, here we discuss some open issues in the clinical translation of natural killer-based adoptive immunotherapy for the management of elderly patients with acute myeloid leukemia.

  9. Tentative and transient natural killer cell polarization balances the requirements for discriminatory recognition and cytolytic efficacy.

    PubMed

    Sinai, Parisa; Roybal, Kole T; Wülfing, Christoph

    2010-11-01

    Natural killer (NK) cells are immune cells that lyse virally infected and tumor cells. Initially, their cytolytic capability is induced by cytokines. Subsequently, in their decision whether to kill a potential target cell, NK cells have to distinguish between small differences in the expression of ligands that report on the viral infection or transformation of the target. NK killing requires tight coupling to the target cell and extensive NK cell polarization. Here we discuss, often in contrast to the second cytolytic immune cell type, cytotoxic T cells, how NK cell polarization is shaped by three constraints of their activation. First, NK cell have to respond to cytokines: Different priming cytokines yield dramatically divergent NK cell polarization. Second, NK cells have to distinguish small differences in ligand expression: NK cell polarization is tentative, likely to allow discriminatory recognition close to the NK cell activation threshold. A critical contributor to the tentative nature of NK cell polarization may be poorly developed spatiotemporal organization of NK cell signaling. Third, NK cells have to kill effectively: NK cell polarization is transient, allowing for efficient killing by sequential interactions of a single NK cell with numerous target cells.

  10. Developmental programming of natural killer and innate lymphoid cells.

    PubMed

    Vosshenrich, Christian A J; Di Santo, James P

    2013-04-01

    In recent years we have witnessed a blooming interest in innate lymphoid cell (ILC) biology thanks to the discovery of novel lineages of ILC that are phenotypically and functionally distinct from NK cells. While the importance of these novel ILC subsets as essential functional components of the early immune responses are now clearly established, many questions remain as to how early ILC developmental fates are determined and how specific effector functions associated with individual ILC subsets are achieved. As the founding member of the ILC family, properties of NK cells have defining attributes that characterize this group of innate effectors. Analysing their developmental rules may provide clues to principles that guide ILC development in general.

  11. Mouse Adenovirus Type 1 Infection of Natural Killer Cell-Deficient Mice

    PubMed Central

    Welton, Amanda R.; Gralinski, Lisa E.; Spindler, Katherine R.

    2008-01-01

    Natural killer (NK) cells contribute to the initial nonspecific response to viral infection, and viruses exhibit a range of sensitivities to NK cells in vivo. We investigated the role of NK cells in infection of mice by mouse adenovirus type 1 (MAV-1) using antibody-mediated depletion and knockout mice. MAV-1 causes encephalomyelitis and replicates to highest levels in brains. NK cell-depleted mice infected with MAV-1 showed brain viral loads 8-20 days p.i. that were similar to wild-type control non-depleted mice. Mice genetically deficient for NK cells behaved similarly to wild-type control mice with respect to brain viral loads and survival. We conclude that NK cells are not required to control virus replication in the brains of MAV-1-infected mice. PMID:18155121

  12. Designed DNA Surfaces for in Vitro Modulation of Natural Killer Cells.

    PubMed

    Garrecht, Ruben; Meyer, Rebecca; Duppach, Janine; Reipschläger, Simone; Watzl, Carsten; Niemeyer, Christof M

    2016-03-15

    Natural killer (NK) cells are at the junction of the innate and the adaptive immune response and play a very important role in host defense against viral infections and cancer. They have numerous cell surface receptors that activate or inhibit various intracellular signaling cascades that are then integrated to determine the functional activity of these cells. Here we present a surface-based approach that aims to tackle the largely unknown molecular mechanisms of signal integration. We use DNA microarrays containing capture oligonucleotides for the DNA-directed immobilization (DDI) of oligonucleotide-tagged αCD16 antibodies as ligands for NK cells. We demonstrate that the resulting surfaces can be gradually tuned in terms of ligand density to trigger the activation of living NK cells, as evidenced by degranulation, the release of cytokines, and intracellular Ca(2+) flux, measured at the level of single cells.

  13. [Music therapy induced alternations in natural killer cell count and function].

    PubMed

    Hasegawa, Y; Kubota, N; Inagaki, T; Shinagawa, N

    2001-03-01

    The effects of music therapy on natural killer (NK) cell count and activity (NKCA) were studied in 19 persons. Alzheimer's disease, cerebrovessel disease and Parkinson's disease subjects were assigned to a music therapy. Blood samples were drawn at rest and after completion of music therapy. Music therapy did not change the number of circulating lymphocytes. The percentage of NK cells increased during music therapy, along with an increase in the NK cell activity. The proportion of T cells, CD4 and CD8 did not change significantly during music therapy. One hour after the music therapy session, plasma adrenaline increased but cortisol and noradrenalin did not change. The results indicate that music therapy can significantly increase NK cell count and activity. The change in NK cell and function were independent of neuro-degenerative diseases.

  14. G-protein-coupled receptors in control of natural killer cell migration.

    PubMed

    Walzer, Thierry; Vivier, Eric

    2011-10-01

    Natural killer (NK) cells are highly motile cells that patrol lymphoid and non-lymphoid organs, and are poised to react to infectious or other inflammatory situations. Several NK cell subsets equipped with different sets of chemotactic G-protein-coupled receptors, and which display distinct distribution across lymphoid and non-lymphoid organs, have been described. These receptors detect various guidance cues including sphingosine-1-phosphate and chemokines that orchestrate NK cell trafficking. Here, we highlight recent advances regarding the receptors involved in NK cell migration, with a focus on bone marrow egress, entry into activated lymph nodes, extravasation into inflamed tissues, and motility within lymph nodes or tumors. Understanding NK cell migration could provide a rational basis for the design of novel therapies in various clinical conditions.

  15. A case of hypersensitivity to mosquito bite associated with Epstein-barr viral infection and natural killer cell lymphocytosis.

    PubMed

    Roh, Eui Jung; Chung, Eun Hee; Chang, Young Pyo; Myoung, Na Hye; Jee, Young Koo; Seo, Min; Kang, Jin Han

    2010-02-01

    Hypersensitivity to mosquito bites (HMB) is a disorder characterized by a necrotic skin reaction and generalized symptoms subsequent to mosquito bites. It has been suggested that HMB is associated with chronic Epstein-Barr virus (EBV) infection and natural killer cell leukemia/lymphoma. We describe here a Korean child who had HMB associated with chronic EBV infection and natural killer cell lymphocytosis. A 5-yr-old boy was suffered from necrotic skin lesions on the right ear lobe. Type A EB virus was detected from hlood cells and bone marrow biospy recognized hemophagocyrosis.

  16. Expression of functionally relevant cell surface markers in dibutyltin-exposed human natural killer cells.

    PubMed

    Odman-Ghazi, Sabah O; Hatcher, Frank; Whalen, Margaret M

    2003-07-25

    Butyltin (BT) compounds are known for their worldwide contamination. Dibutyltin (DBT) is used as a stabilizer in plastic products, and as a deworming agent in poultry. Poultry products have been shown to contain measurable levels of DBT. Drinking water has also been reported to contain BTs due to leaching from PVC pipes. We, and others, have found measurable levels of DBT in human blood. BTs appear to increase the risk of cancer and other viral infections in exposed individuals. In previous studies we have shown that the tumor killing function of natural killer (NK) lymphocytes was greatly diminished after as little as a 1 h exposure to DBT and the inhibition continued even after removal of the compound. We also showed that there was a significant decrease in NK cell lysis of K562 target cells after an exposure to 1.5 microM DBT for 24 h. This 24 h exposure also decreased the ability of NK cells to bind to tumor cells. Loss of binding function was not seen when NK cells were exposed to 5-10 microM DBT for 1 h. However, NK cells exposed to 5 microM DBT for 1 h and then incubated in DBT-free media for 24, 48, or 96 h, showed a significant loss of tumor-binding function within 24 h. The effects of DBT exposure on seven cell surface molecules that are involved in NK-cell interactions with target cells were investigated. The results indicated that the exposure of NK cells to 1.5 microM DBT for 24 h decreased the expression of CD2, CD11a, CD16, CD11c. There was no decrease in expression of any of the markers studied when NK cells were exposed to 5 microM DBT for 1 h, consistent with the fact that a 1-h exposure had no effect on the ability of NK cells to bind tumor cells. However, when NK cells were exposed to 5 microM DBT for 1 h followed by 24, 48 or 96 h incubations in DBT-free media there was decreased expression of several of the cells surface molecules with the most dramatic decreases being in CD16 and CD56.

  17. Bacterial activation of human natural killer cells: role of cell surface lipopolysaccharide.

    PubMed Central

    Lindemann, R A

    1988-01-01

    Culture of human peripheral blood lymphocytes with gram-negative bacteria associated with periodontal disease caused a rapid increase in the cytotoxic potential of natural killer (NK) cells. The NK cells were activated to kill NK-resistant targets, the peak cytotoxicity occurring on day 1 of culture. The addition of anti-Tac, anti-CD3, or anti-OKT-11 antibodies to block activation via the interleukin-2 (IL-2), T-cell, or E rosette receptors had a minimal effect on this inductive process. Anti-IL-2 antiserum was effective in blocking a significant amount, but not all, of the cytotoxicity in bacterium-activated cultures. Modest IL-2 production (5 to 6 National Institutes of Health units) was measured in lymphocyte cultures activated by bacteria, but proliferation was not induced during a 1-week period. When polymixin B sulfate was added to bind and block lipopolysaccharides, bacterium-induced cytotoxicity was completely abrogated for all activating bacteria. In addition, when culture supernatants from Actinobacillus actinomycetemcomitans were tested, activation still occurred. However, again, this activation was totally inhibited by polymixin B sulfate. Monocytes were also activated by bacteria to produce tumor necrosis factor (TNF). To exclude the possibility that TNF was responsible for cytotoxicity, an antiserum to TNF was added to cocultures of bacteria and lymphocytes with adherent cells removed. The antiserum had no effect on the inductive process. In addition, exogenous TNF did not kill M14 targets. These results suggest that bacterial cell surface lipopolysaccharides provide a major activation signal for NK cells to enhance cytotoxicity. PMID:2895743

  18. TGF-β-inducible microRNA-183 silences tumor-associated natural killer cells.

    PubMed

    Donatelli, Sarah S; Zhou, Jun-Min; Gilvary, Danielle L; Eksioglu, Erika A; Chen, Xianghong; Cress, W Douglas; Haura, Eric B; Schabath, Matthew B; Coppola, Domenico; Wei, Sheng; Djeu, Julie Y

    2014-03-18

    Transforming growth factor β1 (TGF-β), enriched in the tumor microenvironment and broadly immunosuppressive, inhibits natural killer (NK) cell function by yet-unknown mechanisms. Here we show that TGF-β-treated human NK cells exhibit reduced tumor cytolysis and abrogated perforin polarization to the immune synapse. This result was accompanied by loss of surface expression of activating killer Ig-like receptor 2DS4 and NKp44, despite intact cytoplasmic stores of these receptors. Instead, TGF-β depleted DNAX activating protein 12 kDa (DAP12), which is critical for surface NK receptor stabilization and downstream signal transduction. Mechanistic analysis revealed that TGF-β induced microRNA (miR)-183 to repress DAP12 transcription/translation. This pathway was confirmed with luciferase reporter constructs bearing the DAP12 3' untranslated region as well as in human NK cells by use of sense and antisense miR-183. Moreover, we documented reduced DAP12 expression in tumor-associated NK cells in lung cancer patients, illustrating this pathway to be consistently perturbed in the human tumor microenvironment.

  19. Enough! Stop the arguments and get on with the science of natural killer cell testing.

    PubMed

    Sacks, Gavin

    2015-07-01

    Natural killer cell testing is currently practised widely, and there are studies indicating potential benefit in terms of targeting women with repeated reproductive failure for immune therapy. This may be a better approach than empirical immune therapy without any investigation. More and better studies are needed before such an approach can be fully endorsed. There is still uncertainty over the precise pathophysiological basis for all immune investigation and therapy, but this should not be a barrier for clinical observation and empirical care. On the contrary, clinicians and researchers should work more closely together to provide the best care for our patients.

  20. NCR1+ cells in dogs show phenotypic characteristics of natural killer cells.

    PubMed

    Grøndahl-Rosado, Christine; Bønsdorff, Tina B; Brun-Hansen, Hege C; Storset, Anne K

    2015-03-01

    No specific markers for natural killer (NK) cells in dogs have currently been described. NCR1 (NKp46, CD355) has been considered a pan species NK cell marker and is expressed on most or all NK cells in all species investigated except for the pig which has both a NCR1(+) and a NCR1(-) population. In this study peripheral blood mononuclear cells (PBMC) from 14 healthy dogs, 37 dogs with a clinical diagnosis, including a dog diagnosed with LGL leukemia, and tissue samples from 8 dogs were evaluated for NCR1(+) expression by a cross reacting anti bovine NCR1 antibody. CD3(-)NCR1(+) cells were found in the blood of 93 % of healthy dogs and comprised up to 2.5 % of lymphocytes in PBMC. In a selection of healthy dogs, sampling and immunophenotyping were repeated throughout a period of 1 year revealing a substantial variation in the percentage of CD3(-)NCR1(+) over time. Dogs allocated to 8 disease groups had comparable amounts of CD3(-)NCR1(+) cells in PBMC to the healthy individuals. All organs examined including liver, spleen and lymph nodes contained CD3(-)NCR1(+) cells. Circulating CD3(-)NCR1(+) cells were further characterized as CD56(-)GranzymeB(+)CD8(-). A CD3(+)NCR1(+) population was observed in PBMC in 79 % of the healthy dogs examined representing at the most 4.8 % of the lymphocyte population. In canine samples examined for CD56 expression, CD56(+) cells were all CD3(+) and NCR1(-). To our knowledge, this is the first examination of NCR1 expression in the dog. The study shows that this NK cell associated receptor is expressed both on populations of CD3(+) and CD3(-) blood lymphocytes in dogs and the receptor is found on a CD3(+) GranzymeB(+) CD8(+) leukemia. Our results support that CD56 is expressed only on CD3(+) cells in dogs and shows that NCR1 defines a different CD3(+) lymphocyte population than CD56(+)CD3(+) cells in this species. CD3(-)NCR1(+) cells may represent canine NK cells.

  1. Toxicity of chronic high alcohol intake on mouse natural killer cell activity.

    PubMed

    Abdallah, R M; Starkey, J R; Meadows, G G

    1988-02-01

    The toxicity of chronic alcohol intake on natural killer (NK) cell activity of spleen cells from well-nourished, female C57BL/6 mice was studied in a 4-hour cytolytic chromium-release assay against YAC-1 lymphoma cells. Mice were fed a nutritionally complete crystalline amino acid diet and received 20% w/v alcohol solution for 12 weeks. Ad libitum and pair-fed control mice were given diet and either an isocaloric glucose solution or water. Decreased NK cell activity was observed in alcohol-consuming mice relative to all other control groups. NK cell activity was moderately decreased by feeding mice a high glucose diet, but more severely lowered in pair-fed groups compared to ad libitum control groups.

  2. Invariant natural killer T cells as sensors and managers of inflammation.

    PubMed

    Van Kaer, Luc; Parekh, Vrajesh V; Wu, Lan

    2013-02-01

    Invariant natural killer T (iNKT) cells are a subset of innate-like lymphocytes that recognize glycolipid antigens bound by the major histocompatibility complex (MHC)-class-I-related protein CD1d. iNKT cells are activated early during a variety of infections and inflammatory diseases and contribute to the subsequent development of adaptive immune responses. Consequently, iNKT cells play a critical role in the development and resolution of inflammatory diseases and represent attractive targets for the development of immunotherapies. Recent studies have provided important insight into the mechanisms by which iNKT cells become activated in response to diverse inflammatory stimuli. These new findings should be instrumental to promote the immunomodulatory properties of iNKT cells for treatment of inflammatory diseases.

  3. Critical roles of co-activation receptor DNAX accessory molecule-1 in natural killer cell immunity

    PubMed Central

    Xiong, Peng; Sang, Hai-Wei; Zhu, Min

    2015-01-01

    Natural killer (NK) cells, which can exert early and powerful anti-tumour and anti-viral responses, are important components of the innate immune system. DNAX accessory molecule-1 (DNAM-1) is an activating receptor molecule expressed on the surface of NK cells. Recent findings suggest that DNAM-1 is a critical regulator of NK cell biology. DNAM-1 is involved in NK cell education and differentiation, and also plays a pivotal role in the development of cancer, viral infections and immune-related diseases. However, tumours and viruses have developed multiple mechanisms to evade the immune system. They are able to impair DNAM-1 activity by targeting the DNAM-1 receptor–ligand system. We have reviewed the roles of DNAM-1, and its biological functions, with respect to NK cell biology and DNAM-1 chimeric antigen receptor-based immunotherapy. PMID:26235210

  4. Control of immune ligands by members of a cytomegalovirus gene expansion suppresses natural killer cell activation

    PubMed Central

    Fielding, Ceri A; Weekes, Michael P; Nobre, Luis V; Ruckova, Eva; Wilkie, Gavin S; Paulo, Joao A; Chang, Chiwen; Suárez, Nicolás M; Davies, James A; Antrobus, Robin; Stanton, Richard J; Aicheler, Rebecca J; Nichols, Hester; Vojtesek, Borek; Trowsdale, John; Davison, Andrew J; Gygi, Steven P

    2017-01-01

    The human cytomegalovirus (HCMV) US12 family consists of ten sequentially arranged genes (US12-21) with poorly characterized function. We now identify novel natural killer (NK) cell evasion functions for four members: US12, US14, US18 and US20. Using a systematic multiplexed proteomics approach to quantify ~1300 cell surface and ~7200 whole cell proteins, we demonstrate that the US12 family selectively targets plasma membrane proteins and plays key roles in regulating NK ligands, adhesion molecules and cytokine receptors. US18 and US20 work in concert to suppress cell surface expression of the critical NKp30 ligand B7-H6 thus inhibiting NK cell activation. The US12 family is therefore identified as a major new hub of immune regulation. DOI: http://dx.doi.org/10.7554/eLife.22206.001 PMID:28186488

  5. Chromosomal localization of the human natural killer cell class I receptor family genes to 19q13.4 by fluorescence in situ hybridization

    SciTech Connect

    Suto, Yumiko; Maenaka, Katsumi; yabe, Toshio

    1996-07-01

    This report describes the localization of the human natural killer cell I receptor family genes to human chromosome 19q13.4 using fluorescence in situ hybridization. These genes mediate the inhibition of the cytotoxicity of subsets of natural killer cells. 8 refs., 1 fig.

  6. Leukemia-induced phenotypic and functional defects in natural killer cells predict failure to achieve remission in acute myeloid leukemia.

    PubMed

    Stringaris, Kate; Sekine, Takuya; Khoder, Ahmad; Alsuliman, Abdullah; Razzaghi, Bonnie; Sargeant, Ruhena; Pavlu, Jiri; Brisley, Gill; de Lavallade, Hugues; Sarvaria, Anushruthi; Marin, David; Mielke, Stephan; Apperley, Jane F; Shpall, Elizabeth J; Barrett, A John; Rezvani, Katayoun

    2014-05-01

    The majority of patients with acute myeloid leukemia will relapse, and older patients often fail to achieve remission with induction chemotherapy. We explored the possibility that leukemic suppression of innate immunity might contribute to treatment failure. Natural killer cell phenotype and function was measured in 32 consecutive acute myeloid leukemia patients at presentation, including 12 achieving complete remission. Compared to 15 healthy age-matched controls, natural killer cells from acute myeloid leukemia patients were abnormal at presentation, with downregulation of the activating receptor NKp46 (P=0.007) and upregulation of the inhibitory receptor NKG2A (P=0.04). Natural killer cells from acute myeloid leukemia patients had impaired effector function against autologous blasts and K562 targets, with significantly reduced CD107a degranulation, TNF-α and IFN-γ production. Failure to achieve remission was associated with NKG2A overexpression and reduced TNF-α production. These phenotypic and functional abnormalities were partially restored in the 12 patients achieving remission. In vitro co-incubation of acute myeloid leukemia blasts with natural killer cells from healthy donors induced significant impairment in natural killer cell TNF-α and IFN-γ production (P=0.02 and P=0.01, respectively) against K562 targets and a trend to reduced CD107a degranulation (P=0.07). Under transwell conditions, the inhibitory effect of AML blasts on NK cytotoxicity and effector function was still present, and this inhibitory effect was primarily mediated by IL-10. These results suggest that acute myeloid leukemia blasts induce long-lasting changes in natural killer cells, impairing their effector function and reducing the competence of the innate immune system, favoring leukemia survival.

  7. Natural Killer Group 2, Member D/NKG2D Ligands in Hematopoietic Cell Transplantation

    PubMed Central

    Carapito, Raphael; Aouadi, Ismail; Ilias, Wassila; Bahram, Seiamak

    2017-01-01

    Natural killer group 2, member D (NKG2D) is an invariant activatory receptor present on subsets of natural killer and T lymphocytes. It stimulates the cytolytic effector response upon engagement of its various stress-induced ligands NKG2D ligands (NKG2DL). Malignant transformation and conditioning treatment prior to hematopoietic cell transplantation (HCT) are stress factors leading to the activation of the NKG2D/NKG2DL signaling in clinical settings. In the context of HCT, NKG2D-bearing cells can kill both tumor and healthy cells expressing NKG2DL. The NKG2D/NKG2DL engagement has therefore a key role in the regulation of one of the most salient issues in allogeneic HCT, i.e., maintaining a balance between graft-vs.-leukemia effect and graft-vs.-host disease. The present review summarizes the current state of our knowledge pertaining to the role of the NKG2D and NKG2DL in HCT.

  8. A STED-FLIM microscope applied to imaging the natural killer cell immune synapse

    NASA Astrophysics Data System (ADS)

    Lenz, M. O.; Brown, A. C. N.; Auksorius, E.; Davis, D. M.; Dunsby, C.; Neil, M. A. A.; French, P. M. W.

    2011-03-01

    We present a stimulated emission depletion (STED) fluorescence lifetime imaging (FLIM) microscope, excited by a microstructured optical fibre supercontinuum source that is pumped by a femtosecond Ti:Sapphire-laser, which is also used for depletion. Implemented using a piezo-scanning stage on a laser scanning confocal fluorescence microscope system with FLIM realised using time correlated single photon counting (TCSPC), this provides convenient switching between confocal and STED-FLIM with spatial resolution down to below 60 nm. We will present our design considerations to make a robust instrument for biological applications including a comparison between fixed phase plate and spatial light modulator (SLM) approaches to shape the STED beam and the correlation of STED and confocal FLIM microscopy. Following our previous application of FLIM-FRET to study intercellular signalling at the immunological synapse (IS), we are employing STED microscopy to characterize the spatial distribution of cellular molecules with subdiffraction resolution at the IS. In particular, we are imaging cytoskeletal structure at the Natural Killer cell activated immune synapse. We will also present our progress towards multilabel STED microscopy to determine how relative spatial molecular organization, previously undetectable by conventional microscopy techniques, is important for NK cell cytotoxic function. Keywords: STED, Stimulated Emission Depletion Microscopy, Natural Killer (NK) cell, Fluorescence lifetime imaging, FLIM, Super resolution microscopy.

  9. Favorable impact of natural killer cell reconstitution on chronic graft-versus-host disease and cytomegalovirus reactivation after allogeneic hematopoietic stem cell transplantation.

    PubMed

    Kheav, Vissal David; Busson, Marc; Scieux, Catherine; Peffault de Latour, Régis; Maki, Guitta; Haas, Philippe; Mazeron, Marie-Christine; Carmagnat, Maryvonnick; Masson, Emeline; Xhaard, Aliénor; Robin, Marie; Ribaud, Patricia; Dulphy, Nicolas; Loiseau, Pascale; Charron, Dominique; Socié, Gérard; Toubert, Antoine; Moins-Teisserenc, Hélène

    2014-12-01

    Natural killer cells are the first lymphocyte subset to reconstitute, and play a major role in early immunity after allogeneic hematopoietic stem cell transplantation. Cells expressing the activating receptor NKG2C seem crucial in the resolution of cytomegalovirus episodes, even in the absence of T cells. We prospectively investigated natural killer-cell reconstitution in a cohort of 439 adult recipients who underwent non-T-cell-depleted allogeneic hematopoietic stem cell transplantation between 2005 and 2012. Freshly collected blood samples were analyzed 3, 6, 12 and 24 months after transplantation. Data were studied with respect to conditioning regimen, source of stem cells, underlying disease, occurrence of graft-versus-host disease, and profiles of cytomegalovirus reactivation. In multivariate analysis we found that the absolute numbers of CD56(bright) natural killer cells at month 3 were significantly higher after myeloablative conditioning than after reduced intensity conditioning. Acute graft-versus-host disease impaired reconstitution of total and CD56(dim) natural killer cells at month 3. In contrast, high natural killer cell count at month 3 was associated with a lower incidence of chronic graft-versus-host disease, independently of a previous episode of acute graft-versus-host disease and stem cell source. NKG2C(+)CD56(dim) and total natural killer cell counts at month 3 were lower in patients with reactivation of cytomegalovirus between month 0 and month 3, but expanded greatly afterwards. These cells were also less numerous in patients who experienced later cytomegalovirus reactivation between month 3 and month 6. Our results advocate a direct role of NKG2C-expressing natural killer cells in the early control of cytomegalovirus reactivation after allogeneic hematopoietic stem cell transplantation.

  10. The role of natural killer (NK) cells and NK cell receptor polymorphisms in the assessment of HIV-1 neutralization.

    PubMed

    Brown, Bruce K; Wieczorek, Lindsay; Kijak, Gustavo; Lombardi, Kara; Currier, Jeffrey; Wesberry, Maggie; Kappes, John C; Ngauy, Viseth; Marovich, Mary; Michael, Nelson; Ochsenbauer, Christina; Montefiori, David C; Polonis, Victoria R

    2012-01-01

    The importance of innate immune cells in HIV-1 pathogenesis and protection has been highlighted by the role of natural killer (NK) cells in the containment of viral replication. Use of peripheral blood mononuclear cells (PBMC) in immunologic studies provides both HIV-1 target cells (ie. CD4+ T cells), as well as anti-HIV-1 effector cells, such as NK cells. In this study, NK and other immune cell populations were analyzed in HIV-negative donor PBMC for an impact on the anti-HIV activity of polyclonal and monoclonal antibodies. NK cell percentages were significantly higher in donor PBMC that supported lower levels of viral replication. While the percentage of NK cells was not directly associated with neutralization titers, NK cell-depletion significantly diminished the antiviral antibody activity by up to three logs, and polymorphisms in NK killer immunoglobulin receptor (KIR) and FcγRIIIa alleles appear to be associated with this affect. These findings demonstrate that NK cells and NK cell receptor polymorphisms may influence assessment of traditional HIV-1 neutralization in a platform where antibody is continuously present. This format appears to simultaneously assess conventional entry inhibition (neutralization) and non-neutralizing antibody-dependent HIV inhibition, which may provide the opportunity to delineate the dominant antibody function(s) in polyclonal vaccine responses.

  11. The Role of Natural Killer (NK) Cells and NK Cell Receptor Polymorphisms in the Assessment of HIV-1 Neutralization

    PubMed Central

    Brown, Bruce K.; Wieczorek, Lindsay; Kijak, Gustavo; Lombardi, Kara; Currier, Jeffrey; Wesberry, Maggie; Kappes, John C.; Ngauy, Viseth; Marovich, Mary; Michael, Nelson; Ochsenbauer, Christina; Montefiori, David C.; Polonis, Victoria R.

    2012-01-01

    The importance of innate immune cells in HIV-1 pathogenesis and protection has been highlighted by the role of natural killer (NK) cells in the containment of viral replication. Use of peripheral blood mononuclear cells (PBMC) in immunologic studies provides both HIV-1 target cells (ie. CD4+ T cells), as well as anti-HIV-1 effector cells, such as NK cells. In this study, NK and other immune cell populations were analyzed in HIV-negative donor PBMC for an impact on the anti-HIV activity of polyclonal and monoclonal antibodies. NK cell percentages were significantly higher in donor PBMC that supported lower levels of viral replication. While the percentage of NK cells was not directly associated with neutralization titers, NK cell-depletion significantly diminished the antiviral antibody activity by up to three logs, and polymorphisms in NK killer immunoglobulin receptor (KIR) and FcγRIIIa alleles appear to be associated with this affect. These findings demonstrate that NK cells and NK cell receptor polymorphisms may influence assessment of traditional HIV-1 neutralization in a platform where antibody is continuously present. This format appears to simultaneously assess conventional entry inhibition (neutralization) and non-neutralizing antibody-dependent HIV inhibition, which may provide the opportunity to delineate the dominant antibody function(s) in polyclonal vaccine responses. PMID:22509241

  12. Resistance to RadLV-induced leukemia: non-participation of splenic natural killer cells

    SciTech Connect

    St.-Pierre, Y.; Hugo, P.; Lemieux, S.; Lussier, G.; Potworowski, E.F.

    1988-08-01

    The phenotypic expression of genetically determined resistance to radiation leukemia virus (RadLV)-induced leukemia in mice has been shown to reside in the bone marrow. Because the bone marrow contains precursors of natural killer (NK) cells, known to play a role in retrovirally induced infections, and because these cells have been suggested as participating in resistance to radiation-induced leukemia, it was pertinent to establish whether their levels differed in strains of mice susceptible and resistant to leukemia. We therefore tested splenic NK cell levels in C57BL/Ka (susceptible) and B10.A(5R) (resistant) mice before viral inoculation, immediately after viral inoculation, and throughout the preleukemic period and showed that they were not different. This indicates that splenic NK cell levels have no bearing on the resistance to RadLV-induced leukemia and that other immune or non-immune mechanisms must be sought.

  13. Inhibition of natural killer cell activity by eicosapentaenoic acid in vivo and in vitro

    SciTech Connect

    Yamashita, N.; Sugiyama, E.; Hamazaki, T.; Yano, S.

    1988-01-15

    To examine the effects of in vivo eicosapentaenoic acid (EPA) on natural killer (NK) cell activity, C3H/He mice each received a single intraperitoneal bolus of an emulsion of trieicosapentaenoyl-glycerol (EPA-TG). Spleen cells were tested for NK activity using /sup 51/Chromium-release assays against YAC-1 target cells. Forty eight hours after injection, NK activity was inhibited in a dose-dependent manner. EPA-TG emulsion also inhibited the NK activity of NK-enriched effector cells. Decreased cytotoxicity was first noted 24 hr after injection; it resumed the baseline by 7 days. The addition of EPA-TG emulsion to a cytotoxicity assay system resulted in moderate depression of NK activity. These results demonstrate that EPA has significant immunomodulatory effects on NK activity.

  14. Natural killer T cell defects in multiple myeloma and the impact of lenalidomide therapy

    PubMed Central

    Chan, A C; Neeson, P; Leeansyah, E; Tainton, K; Quach, H; Prince, H M; Harrison, S J; Godfrey, D I; Ritchie, D; Berzins, S P

    2014-01-01

    The causes of multiple myeloma (MM) remain obscure and there are few known risk factors; however, natural killer T (NKT) cell abnormalities have been reported in patients with MM, and therapeutic targeting of NKT cells is promoted as a potential treatment. We characterized NKT cell defects in treated and untreated patients with MM and determined the impact of lenalidomide therapy on the NKT cell pool. Lenalidomide is an immunomodulatory drug with co-stimulatory effects on NKT cells in vitro and is an approved treatment for MM, although its mode of action in that context is not well defined. We find that patients with relapsed/progressive MM had a marked deficiency in NKT cell numbers. In contrast, newly diagnosed patients had relatively normal NKT cell frequency and function prior to treatment, although a specific NKT cell deficiency emerged after high-dose melphalan and autologous stem cell transplantation (ASCT) regimen. This also impacted NK cells and conventional T cells, but the recovery of NKT cells was considerably delayed, resulting in a prolonged, treatment-induced NKT cell deficit. Longitudinal analysis of individual patients revealed that lenalidomide therapy had no in-vivo impact on NKT cell numbers or cytokine production, either as induction therapy, or as maintenance therapy following ASCT, indicating that its clinical benefits in this setting are independent of NKT cell modulation. PMID:24032527

  15. Molecular checkpoints controlling natural killer cell activation and their modulation for cancer immunotherapy

    PubMed Central

    Kwon, Hyung-Joon; Kim, Nayoung; Kim, Hun Sik

    2017-01-01

    Natural killer (NK) cells have gained considerable attention as promising therapeutic tools for cancer therapy due to their innate selectivity against cancer cells over normal healthy cells. With an array of receptors evolved to sense cellular alterations, NK cells provide early protection against cancer cells by producing cytokines and chemokines and exerting direct cytolytic activity. These effector functions are governed by signals transmitted through multiple receptor–ligand interactions but are not achieved by engaging a single activating receptor on resting NK cells. Rather, they require the co-engagement of different activating receptors that use distinct signaling modules, due to a cell-intrinsic inhibition mechanism. The redundancy of synergizing receptors and the inhibition of NK cell function by a single class of inhibitory receptor suggest the presence of common checkpoints to control NK cell activation through different receptors. These molecular checkpoints would be therapeutically targeted to harness the power of NK cells against diverse cancer cells that express heterogeneous ligands for NK cell receptors. Recent advances in understanding the activation of NK cells have revealed promising candidates in this category. Targeting such molecular checkpoints will facilitate NK cell activation by lowering activation thresholds, thereby providing therapeutic strategies that optimize NK cell reactivity against cancer. PMID:28360428

  16. Therapeutic Potential and Challenges of Natural Killer Cells in Treatment of Solid Tumors

    PubMed Central

    Gras Navarro, Andrea; Björklund, Andreas T.; Chekenya, Martha

    2015-01-01

    Natural killer (NK) cells are innate lymphoid cells that hold tremendous potential for effective immunotherapy for a broad range of cancers. Due to the mode of NK cell killing, requiring one-to-one target engagement and site-directed release of cytolytic granules, the therapeutic potential of NK cells has been most extensively explored in hematological malignancies. However, their ability to precisely kill antibody coated cells, cancer stem cells, and genotoxically altered cells, while maintaining tolerance to healthy cells makes them appealing therapeutic effectors for all cancer forms, including metastases. Due to their release of pro-inflammatory cytokines, NK cells may potently reverse the anti-inflammatory tumor microenvironment (TME) and augment adaptive immune responses by promoting differentiation, activation, and/or recruitment of accessory immune cells to sites of malignancy. Nevertheless, integrated and coordinated mechanisms of subversion of NK cell activity against the tumor and its microenvironment exist. Although our understanding of the receptor ligand interactions that regulate NK cell functionality has evolved remarkably, the diversity of ligands and receptors is complex, as is their mechanistic foundations in regulating NK cell function. In this article, we review the literature and highlight how the TME manipulates the NK cell phenotypes, genotypes, and tropism to evade tumor recognition and elimination. We discuss counter strategies that may be adopted to augment the efficacy of NK cell anti-tumor surveillance, the clinical trials that have been undertaken so far in solid malignancies, critically weighing the challenges and opportunities with this approach. PMID:25972872

  17. Preventing postoperative metastatic disease by inhibiting surgery-induced dysfunction in natural killer cells.

    PubMed

    Tai, Lee-Hwa; de Souza, Christiano Tanese; Bélanger, Simon; Ly, Lundi; Alkayyal, Almohanad A; Zhang, Jiqing; Rintoul, Julia L; Ananth, Abhirami A; Lam, Tiffany; Breitbach, Caroline J; Falls, Theresa J; Kirn, David H; Bell, John C; Makrigiannis, Andrew P; Auer, Rebecca A

    2013-01-01

    Natural killer (NK) cell clearance of tumor cell emboli following surgery is thought to be vital in preventing postoperative metastases. Using a mouse model of surgical stress, we transferred surgically stressed NK cells into NK-deficient mice and observed enhanced lung metastases in tumor-bearing mice as compared with mice that received untreated NK cells. These results establish that NK cells play a crucial role in mediating tumor clearance following surgery. Surgery markedly reduced NK cell total numbers in the spleen and affected NK cell migration. Ex vivo and in vivo tumor cell killing by NK cells were significantly reduced in surgically stressed mice. Furthermore, secreted tissue signals and myeloid-derived suppressor cell populations were altered in surgically stressed mice. Significantly, perioperative administration of oncolytic parapoxvirus ovis (ORFV) and vaccinia virus can reverse NK cell suppression, which correlates with a reduction in the postoperative formation of metastases. In human studies, postoperative cancer surgery patients had reduced NK cell cytotoxicity, and we show for the first time that oncolytic vaccinia virus markedly increases NK cell activity in patients with cancer. These data provide direct in vivo evidence that surgical stress impairs global NK cell function. Perioperative therapies aimed at enhancing NK cell function will reduce metastatic recurrence and improve survival in surgical cancer patients.

  18. Human natural killer cells promote cross-presentation of tumor cell-derived antigens by dendritic cells.

    PubMed

    Deauvieau, Florence; Ollion, Vincent; Doffin, Anne-Claire; Achard, Carole; Fonteneau, Jean-François; Verronese, Estelle; Durand, Isabelle; Ghittoni, Raffaella; Marvel, Jacqueline; Dezutter-Dambuyant, Colette; Walzer, Thierry; Vie, Henri; Perrot, Ivan; Goutagny, Nadège; Caux, Christophe; Valladeau-Guilemond, Jenny

    2015-03-01

    Dendritic cells (DCs) cross-present antigen (Ag) to initiate T-cell immunity against most infections and tumors. Natural killer (NK) cells are innate cytolytic lymphocytes that have emerged as key modulators of multiple DC functions. Here, we show that human NK cells promote cross-presentation of tumor cell-derived Ag by DC leading to Ag-specific CD8(+) T-cell activation. Surprisingly, cytotoxic function of NK cells was not required. Instead, we highlight a critical and nonredundant role for IFN-γ and TNF-α production by NK cells to enhance cross-presentation by DC using two different Ag models. Importantly, we observed that NK cells promote cell-associated Ag cross-presentation selectively by monocytes-derived DC (Mo-DC) and CD34-derived CD11b(neg) CD141(high) DC subsets but not by myeloid CD11b(+) DC. Moreover, we demonstrate that triggering NK cell activation by monoclonal antibodies (mAbs)-coated tumor cells leads to efficient DC cross-presentation, supporting the concept that NK cells can contribute to therapeutic mAbs efficiency by inducing downstream adaptive immunity. Taken together, our findings point toward a novel role of human NK cells bridging innate and adaptive immunity through selective induction of cell-associated Ag cross-presentation by CD141(high) DC, a process that could be exploited to better harness Ag-specific cellular immunity in immunotherapy.

  19. [Activation of natural killer T cells by NK-4, a criptocyanine dye].

    PubMed

    Kunikata, Toshio; Kohno, Keizo; Ushio, Shimpei; Fukuda, Shigeharu

    2011-01-01

    We previously reported that oral administration of NK-4, a criptocyanine dye, enhances interleukin (IL)-12-depend- ent interferon (IFN)-γ production by lipopolysaccharide (LPS)-stimulated mouse splenocytes. These findings raised a possibility that NK-4 potentiated IFN-γ production by T cells, natural killer (NK) cells or natural killer T (NKT) cells in response to IL-12 produced by macrophage and dendritic cells. To explore this possibility, we first analyzed percentages of T, NK or NKT cells in splenocytes of mice that were administered NK-4 orally for three days. The percentage of NKT cells in splenocytes from NK-4-treated mice was significantly (p<0.05) increased compared to vehicle-treated mice. When splenocytes were stimulated with α-galactosylceramide (α-GalCer), an NKT cell ligand, IFN-γ production by splenocytes from NK-4-treated mice tended to increase, while no difference in the IL-4 production and proliferation were observed between the vehicle- and NK-4-treated mice. When IFN-γ/IL-4 ratios were calculated in individual mice, the ratios were significantly (p<0.05) elevated in NK-4-treated mice. Furthermore, IL-12 production by α-GalCer-stimulated splenocytes from NK-4-treated mice was also significantly (p<0.05) increased. These results suggest that oral administration of NK-4 increases the population of type I NKT cells with potent IFN-γ-producing activities. Since IL-12 and IFN-γ have been shown to play important roles in anti-tumor immunity as well as in the defence against bacterial infection, our results further imply that NK-4 may provide a potential therapeutic tool in cancer immunotherapy.

  20. Immune checkpoint inhibitors enhance cytotoxicity of cytokine-induced killer cells against human myeloid leukaemic blasts.

    PubMed

    Poh, Su Li; Linn, Yeh Ching

    2016-05-01

    We studied whether blockade of inhibitory receptors on cytokine-induced killer (CIK) cells by immune checkpoint inhibitors could increase its anti-tumour potency against haematological malignancies. CIK cultures were generated from seven normal donors and nine patients with acute myeloid leukaemia (AML), acute lymphoblastic leukaemia (ALL) or multiple myeloma (MM). The inhibitory receptors B and T lymphocyte attenuator, CD200 receptor, lymphocyte activation gene-3 (LAG-3) and T cell immunoglobulin and mucin-domain-containing-3 (TIM-3) were present at variable percentages in most CIK cultures, while cytotoxic T lymphocyte-associated protein 4 (CTLA-4), programmed death-1 (PD-1) and killer cell immunoglobulin-like receptors (KIR2DL1/2/3) were expressed at low level in most cultures. Without blockade, myeloid leukaemia cells were susceptible to autologous and allogeneic CIK-mediated cytotoxicity. Blockade of KIR, LAG-3, PD-1 and TIM-3 but not CTLA-4 resulted in remarkable increase in killing against these targets, even in those with poor baseline cytotoxicity. ALL and MM targets were resistant to CIK-mediated cytotoxicity, and blockade of receptors did not increase cytotoxicity to a meaningful extent. Combination of inhibitors against two receptors did not further increase cytotoxicity. Interestingly, potentiation of CIK killing by blocking antibodies was not predicted by expression of receptors on CIK and their respective ligands on the targets. Compared to un-activated T and NK cells, blockade potentiated the cytotoxicity of CIK cells to a greater degree and at a lower E:T ratio, but without significant increase in cytotoxicity against normal white cell. Our findings provide the basis for clinical trial combining autologous CIK cells with checkpoint inhibitors for patients with AML.

  1. Relation of Depression, Natural Killer Cell Function, and Infections after Coronary Artery Bypass in Women

    PubMed Central

    Doering, Lynn V.; Martínez-Maza, Otoniel; Vredevoe, Donna L.; Cowan, Marie J.

    2008-01-01

    Background After hospital discharge for coronary artery bypass grafting (CABG), infection is a common cause of morbidity. Although depression has been associated with immune dysfunction, its role in post-CABG infection is unknown. Aims The purpose of this study was to: 1) compare natural killer cell cytotoxicity (NKCC) and post-hospitalization infections in depressed and non-depressed women after CABG; and 2) test whether NKCC mediated the relationship between post-discharge depression and infections. Methods Sixty-seven women recovering from CABG were assessed for depression prior to hospital discharge and followed for six months. Major depression was identified by a structured clinical interview. Infections were identified by patient report using the Modified Health Review and by medical chart audit. Results Compared to non-depressed women after CABG, women with major depression had reduced NKCC, more all-cause infections, and more self-reported illnesses. Although NKCC did not mediate the relationship between depression and wound (i.e. incisional) infections after CABG, it did mediate the relationship between depression and non-wound infections, including pneumonias and upper respiratory infections. Conclusions For the first six months after CABG, women with major depression are at increased risk for infections. Natural killer cell cytotoxicity may be related to this phenomenon, particularly to non-wound infections. PMID:17716947

  2. Killer cell immunoglobulin-like receptor (KIR) locus profiles in the Tunisian population.

    PubMed

    Meriem, Bani; Jihen, Seket; Houda, Kaabi; Ghaya, Cherif; Manel, Chaabane; Hedi, Bellali; Slama, Hmida

    2015-05-01

    Killer cell immunoglobulin-like receptors (KIRs) are a family of inhibitory and activatory receptors that are expressed by most natural killer (NK) cells. The KIR gene family is polymorphic: genomic diversity is achieved through differences in gene content and allelic polymorphism. The number of KIR loci has been reported to vary among individuals, resulting in different KIR haplotypes. In this study we report the genotypic structure of KIRs in 267 unrelated and healthy Tunisian subjects by polymerase chain reaction-sequence-specific primer (PCR-SSP) method. All 16 KIR genes were observed in the population with different frequencies; framework genes KIR3DP1 and KIR3DL2 and the nonframework genes KIR2DL1 and KIR2DP1 were present in all individuals. A total of 26 different KIR gene profiles and 54 subgenotypes were observed in the tested population samples. Genotype 1, with a frequency of 36.6%, is the most commonly observed in the Tunisian population. Our results showed that the Tunisian population possesses the previously reported general features of the Caucasian as well as African populations, with some additional interesting differences. Such knowledge of the KIR gene distribution in populations is very useful in the study of associations with diseases and in selection of donors for haploidentical bone marrow transplantation.

  3. The "killer cell story" in recurrent miscarriage: Association between activated peripheral lymphocytes and uterine natural killer cells.

    PubMed

    Kuon, R J; Vomstein, K; Weber, M; Müller, F; Seitz, C; Wallwiener, S; Strowitzki, T; Schleussner, E; Markert, U R; Daniel, V; Toth, B

    2017-02-01

    Peripheral and uterine NK cells (pNK, uNK) can be distinguished according to their receptor expression. Recent studies indicate an association of elevated pNK and uNK with recurrent miscarriage (RM). This study aimed to analyze pNK and uNK in patients with RM and healthy controls. Out of n=590 RM patients screened according to a standard diagnostic protocol, n=268 couples with ≥3 consecutive RM were identified. Subgroups consisted of n=151 primary RM (pRM), n=85 secondary RM (sRM), n=32 tertiary RM (tRM) and n=42 healthy controls. Finally, n=147 idiopathic RM (iRM) and n=121 non-iRM patients were identified. Peripheral blood levels of CD45+CD3-CD56+CD16+ NK cells were determined in non-pregnant patients and controls in the mid-luteal phase by FACS. In n=129 RM patients a uterine biopsy was taken to evaluate CD56+ NK cells by immunohistochemistry. PRM showed higher absolute pNK than sRM (median/μl (Q1;Q3): 234 (147;306) vs 176 (128;245), p=0.02). Further a trend towards higher pNK percentages in pRM was detected. UNK numbers did not differ between RM subgroups and did not correlate with pNK. However, the rate of highly elevated uNK was increased in iRM compared to non-iRM patients (p=0.04). Further, higher numbers of CD45+CD3-DR+ (p<0.01) and CD45+CD3+CD8+DR+ (p=0.04) peripheral lymphocytes were associated with higher uNK numbers. In conclusion, elevated pNK were present in pRM patients. Although pNK and uNK numbers did not correlate, the association between high CD45+CD3-DR+ and CD45+CD3+CD8+DR+ peripheral lymphocytes and uNK might indicate that activated NK, B and T cells provide cytokines for the differentiation of uNK.

  4. Clinical applications of natural killer T cell-based immunotherapy for cancer.

    PubMed

    Motohashi, Shinichiro; Nakayama, Toshinori

    2008-04-01

    Human invariant V alpha 24 natural killer T (NKT) cells are a novel, distinct lymphocyte population, characterized by an invariant T-cell receptor V alpha 24 chain paired with V beta 11. V alpha 24 NKT cells are activated by a specific glicolipid ligand, alpha-GalCer, and rapidly produce a large amount of Th1 and Th2 cytokines, thereby modulating other immune cells such as antigen-specific CD4 and CD8 T cells, NK cells, and dendritic cells. Recent studies have shown that NKT cells play pivotal regulatory roles in many immune responses, including antitumor immunity. We herein review the quantitative alteration and functional deterioration of circulating V alpha 24 NKT cells in various cancer-bearing patients. We also summarize the recent progress in the clinical studies of NKT cell-based tumor immunotherapy. Novel immunological results including the increased peripheral blood V alpha 24 NKT cells and IFN-producing cells after the immunotherapy were revealed. The details of the safety profile and the antitumor responses were also disclosed. Although the objective clinical responses still remain unclear, some encouraging results have emerged. Therefore, NKT cell-based immunotherapy may potentially be an effective strategy for the treatment of cancer patients.

  5. Proteome Analysis of Distinct Developmental Stages of Human Natural Killer (NK) Cells

    PubMed Central

    Scheiter, Maxi; Lau, Ulrike; van Ham, Marco; Bulitta, Björn; Gröbe, Lothar; Garritsen, Henk; Klawonn, Frank; König, Sebastian; Jänsch, Lothar

    2013-01-01

    The recent Natural Killer (NK) cell maturation model postulates that CD34+ hematopoietic stem cells (HSC) first develop into CD56bright NK cells, then into CD56dimCD57− and finally into terminally maturated CD56dimCD57+. The molecular mechanisms of human NK cell differentiation and maturation however are incompletely characterized. Here we present a proteome analysis of distinct developmental stages of human primary NK cells, isolated from healthy human blood donors. Peptide sequencing was used to comparatively analyze CD56bright NK cells versus CD56dim NK cells and CD56dimCD57− NK cells versus CD56dimCD57+ NK cells and revealed distinct protein signatures for all of these subsets. Quantitative data for about 3400 proteins were obtained and support the current differentiation model. Furthermore, 11 donor-independently, but developmental stage specifically regulated proteins so far undescribed in NK cells were revealed, which may contribute to NK cell development and may elucidate a molecular source for NK cell effector functions. Among those proteins, S100A4 (Calvasculin) and S100A6 (Calcyclin) were selected to study their dynamic subcellular localization. Upon activation of human primary NK cells, both proteins are recruited into the immune synapse (NKIS), where they colocalize with myosin IIa. PMID:23315794

  6. Murine cytomegalovirus stimulates natural killer cell function but kills genetically resistant mice treated with radioactive strontium

    SciTech Connect

    Masuda, A.; Bennett, M.

    1981-12-01

    Treatment of C3H/St mice with 100 microCi of 89Sr weakened their genetic resistance to murine cytomegalovirus (MCMV) infection. The criteria utilized to detect increased susceptibility were: (i) survival of mice; (ii) numbers of MCMV-infected cells in the spleens and liver; and (iii) serum glutamic pyruvic transaminase levels. The natural killer (NK) cell activity of spleen cells from mice treated with 89Sr is very low. However, the NK activities of spleen cells of both normal and 89Sr-treated mice were greatly augmented 3 days after infection with MCMV. These NK cells lysed a variety of tumor cells and shared several features with conventional NK cells, but were not lysed by anti-Nk-1.2 serum (specific for NK cells) plus complement. Splenic adherent cells did not lyse tumor cells themselves but were necessary for the stimulation of NK cells by MCMV. The paradox of high NK cell function and poor survival in 89Sr-treated mice infected with MCMV was a surprise. We conclude that these augmented NK cells, of themselves, cannot account for the genetic resistance of C3H/St mice to infection with MCMV.

  7. Intravenous transplantation of mesenchymal stromal cells has therapeutic effects in a sepsis mouse model through inhibition of septic natural killer cells.

    PubMed

    Liu, Wenhua; Gao, Yang; Li, Haibo; Wang, Hongliang; Ye, Ming; Jiang, Guihua; Chen, Yongsheng; Liu, Yang; Kong, Junying; Liu, Wei; Sun, Meng; Hou, Meng; Yu, Kaijiang

    2016-10-01

    Transplantation of mesenchymal stromal cells is a promising strategy for treating sepsis. Natural killer cells are important in the development of sepsis, and their functions can be inhibited by mesenchymal stromal cells, we asked whether mesenchymal stromal cells exert their therapeutic effects through inhibiting the functions of natural killer cells in a septic mouse model generated with cecal ligation puncture method. Using co-cultures of cells, small interfering RNA, enzyme-linked immnuosorbent assays, fluorescence assays, western blotting, and pathological examination, we investigated the levels of inflammatory cytokines, proliferation of natural killer cells, inflammatory infiltration of important organs in mice, and activity of the Janus kinase/signal transducer and activator of transcription signaling pathway and found that mesenchymal stromal cells inhibited the function and proliferation of septic natural killer cells, increased interleukin-10 levels and increased the expression of components, such as Janus kinase 1, Janus kinase 2, and signal transducer and activator of transcription 3 in the Janus kinase/signal transducer and activator of transcription pathway both in vitro and in vivo. We conclude that mesenchymal stromal cells have their therapeutic effect in the septic mouse model through inhibiting the function and proliferation of septic natural killer cells. This biological process may involve interleukin-10 and suppressor of cytokine signaling 3 as well as other pathway components in the Janus kinase/signal transducer and activator of transcription pathway. Transplantation of mesenchymal stromal cells is an effective strategy to treat sepsis.

  8. Effect of low-dose oral contraceptives on natural killer cell activity.

    PubMed

    Baker, D A; Salvatore, W; Milch, P O

    1989-01-01

    Several reports indicate an association between oral contraceptives and increased infection rates. One mechanism that could explain this increased infection rate is a decrease in immune function. A study comparing T cell subsets showed no differences in numbers between oral contraceptive users and controls. In this study, natural killer cell activity was compared in women before and 3 and 6 months after oral contraceptive use. There was a statistically significant decrease in NK cell activity after three months. There was no further decrease by six months and the differences were no longer significant due to greater variability. No infections were reported during the study period. Thus, the observed reduction in NK activity was either physiologically insignificant or the previously reported increase in infections may be the result of non-immunological factors.

  9. Natural Sphingomonas glycolipids vary greatly in their ability to activate natural killer T cells.

    PubMed

    Kinjo, Yuki; Pei, Bo; Bufali, Simone; Raju, Ravinder; Richardson, Stewart K; Imamura, Masakazu; Fujio, Masakazu; Wu, Douglass; Khurana, Archana; Kawahara, Kazuyoshi; Wong, Chi-Huey; Howell, Amy R; Seeberger, Peter H; Kronenberg, Mitchell

    2008-07-21

    Mouse natural killer T (NKT) cells expressing an invariant T cell antigen receptor (TCR) recognize glycosphingolipids (GSLs) from Sphingomonas bacteria. The synthetic antigens previously tested, however, were designed to closely resemble the potent synthetic agonist alpha-galactosyl ceramide (alphaGalCer), which contains a monosaccharide and a C18:0 sphingosine lipid. Some Sphingomonas bacteria, however, also have oligosaccharide-containing GSLs, and they normally synthesize several GSLs with different sphingosine chains including one with a cyclopropyl ring-containing C21:0 (C21cycl) sphingosine. Here we studied the stimulation of NKT cells with synthetic GSL antigens containing natural tetrasaccharide sugars, or the C21cycl sphingosine. Our results indicate that there is a great degree of variability in the antigenic potency of different natural Sphingomonas glycolipids, with the C21cycl sphingosine having intermediate potency and the oligosaccharide-containing antigens exhibiting limited or no stimulatory capacity.

  10. Inflammasomes Coordinate Pyroptosis and Natural Killer Cell Cytotoxicity to Clear Infection by a Ubiquitous Environmental Bacterium.

    PubMed

    Maltez, Vivien I; Tubbs, Alan L; Cook, Kevin D; Aachoui, Youssef; Falcone, E Liana; Holland, Steven M; Whitmire, Jason K; Miao, Edward A

    2015-11-17

    Defective neutrophils in patients with chronic granulomatous disease (CGD) cause susceptibility to extracellular and intracellular infections. Microbes must first be ejected from intracellular niches to expose them to neutrophil attack, so we hypothesized that inflammasomes detect certain CGD pathogens upstream of neutrophil killing. Here, we identified one such ubiquitous environmental bacterium, Chromobacterium violaceum, whose extreme virulence was fully counteracted by the NLRC4 inflammasome. Caspase-1 protected via two parallel pathways that eliminated intracellular replication niches. Pyroptosis was the primary bacterial clearance mechanism in the spleen, but both pyroptosis and interleukin-18 (IL-18)-driven natural killer (NK) cell responses were required for liver defense. NK cells cleared hepatocyte replication niches via perforin-dependent cytotoxicity, whereas interferon-γ was not required. These insights suggested a therapeutic approach: exogenous IL-18 restored perforin-dependent cytotoxicity during infection by the inflammasome-evasive bacterium Listeria monocytogenes. Therefore, inflammasomes can trigger complementary programmed cell death mechanisms, directing sterilizing immunity against intracellular bacterial pathogens.

  11. Lack of the programmed death-1 receptor renders host susceptible to enteric microbial infection through impairing the production of the mucosal natural killer cell effector molecules.

    PubMed

    Solaymani-Mohammadi, Shahram; Lakhdari, Omar; Minev, Ivelina; Shenouda, Steve; Frey, Blake F; Billeskov, Rolf; Singer, Steven M; Berzofsky, Jay A; Eckmann, Lars; Kagnoff, Martin F

    2016-03-01

    The programmed death-1 receptor is expressed on a wide range of immune effector cells, including T cells, natural killer T cells, dendritic cells, macrophages, and natural killer cells. In malignancies and chronic viral infections, increased expression of programmed death-1 by T cells is generally associated with a poor prognosis. However, its role in early host microbial defense at the intestinal mucosa is not well understood. We report that programmed death-1 expression is increased on conventional natural killer cells but not on CD4(+), CD8(+) or natural killer T cells, or CD11b(+) or CD11c(+) macrophages or dendritic cells after infection with the mouse pathogen Citrobacter rodentium. Mice genetically deficient in programmed death-1 or treated with anti-programmed death-1 antibody were more susceptible to acute enteric and systemic infection with Citrobacter rodentium. Wild-type but not programmed death-1-deficient mice infected with Citrobacter rodentium showed significantly increased expression of the conventional mucosal NK cell effector molecules granzyme B and perforin. In contrast, natural killer cells from programmed death-1-deficient mice had impaired expression of those mediators. Consistent with programmed death-1 being important for intracellular expression of natural killer cell effector molecules, mice depleted of natural killer cells and perforin-deficient mice manifested increased susceptibility to acute enteric infection with Citrobacter rodentium. Our findings suggest that increased programmed death-1 signaling pathway expression by conventional natural killer cells promotes host protection at the intestinal mucosa during acute infection with a bacterial gut pathogen by enhancing the expression and production of important effectors of natural killer cell function.

  12. Characterization of IFNγ-producing natural killer cells induced by cytomegalovirus reactivation after haploidentical hematopoietic stem cell transplantation

    PubMed Central

    Jin, Fengyan; Lin, Hai; Gao, Sujun; Wang, Hengxiang; Yan, Hongmin; Guo, Jinglong; Hu, Zheng; Jin, Chunhui; Wang, Yongqi; Wang, Zhidong; Zhao, Yangzhi; Liu, Yu; Zheng, Xiaoli; Tan, Yehui; Li, Wei; Dai, Yun; Yang, Yanping

    2017-01-01

    During human cytomegalovirus (CMV) infection after umbilical cord blood or HLA-matched hematopoietic stem cell transplantation (HSCT), a population of NKG2C-expressing natural killer (NK) cells expand and persist. The expanded NK cells express high levels of inhibitory killer immunoglobulin-like receptors (KIR) specific for self-HLA and potently produce IFNγ. However, it remains unknown whether similar events would occur after haploidentical HSCT (haplo-HSCT). Here, we demonstrated that IFNγ-producing NK cells were expanded in haplo-HSCT patients with CMV reactivation. We then identified these expanded cells as a subset of CD56dim NK cells that expressed higher levels of both NKG2C and KIR, but lower level of NKG2A. Functionally, the subset of NK cells expressing NKG2C and self-KIR in patients with CMV reactivation accounted for IFNγ production in response to K562 cells. However, these phenomena were not observed in patients without CMV reactivation. We therefore characterized a subset of NK cells with the CD56dim, NKG2C+, and self-KIR+ phenotype that expanded and were responsible for IFNγ production during CMV infection after haplo-HSCT. Together, these findings support a notion that CMV reactivation induces expansion of more mature NK cells with memory-like features, which contributes to long-term control of both CMV infection and leukemia relapse after haplo-HSCT. PMID:27980216

  13. Natural Killer Cell Receptors and Cytotoxic Activity in Phosphomannomutase 2 Deficiency (PMM2-CDG)

    PubMed Central

    García-López, Roberto; de la Morena-Barrio, María Eugenia; Alsina, Laia; Pérez-Dueñas, Belén; Jaeken, Jaak; Serrano, Mercedes; Casado, Mercedes; Hernández-Caselles, Trinidad

    2016-01-01

    Background PMM2-CDG is the most common N-glycosylation defect and shows an increased risk of recurrent and/or severe, sometimes fatal, infections in early life. We hypothesized that natural killer (NK) cells, as important mediators of the immune response against microbial pathogens and regulators of adaptive immunity, might be affected in this genetic disorder. Objective To evaluate possible defects on PMM2-CDG NK peripheral blood cell number, killing activity and expression of membrane receptors. Methods We studied fresh and activated NK cells from twelve PMM2-CDG cells. The number and expression of lymphoid surface receptors were studied by flow cytometry. The NK responsiveness (frequency of degranulated NK cells) and killing activity against K562 target cells was determined in the NK cytotoxicity assay. Results We found an increase of blood NK cells in three patients with a severe phenotype. Two of them, who had suffered from moderate/severe viral infections during their first year of life, also had reduced T lymphocyte numbers. Patient activated NK cells showed increased expression of CD54 adhesion molecule and NKG2D and NKp46 activating receptors. NKp46 and 2B4 expression was inversely correlated with the expression of NKG2D in activated PMM2-CDG cells. Maximal NK activity against K562 target cells was similar in control and PMM2-CDG cells. Interestingly, the NK cell responsiveness was higher in patient cells. NKG2D and specially CD54 increased surface expression significantly correlated with the increased NK cell cytolytic activity according to the modulation of the killer activity by expression of triggering receptors and adhesion molecules. Conclusions Our results indicate that hypoglycosylation in PMM2-CDG altered NK cell reactivity against target cells and the expression of CD54 and NKG2D, NKp46 and 2B4 activating receptors during NK cell activation. This suggests a defective control of NK cell killing activity and the overall anti-viral immune response

  14. Determination of the reactivity of cytotoxic immune cells with preimplantation mouse embryos

    SciTech Connect

    Ewoldsen, M.A.

    1987-01-01

    Cytotoxic immune cells were used in an assay, MELIA (mixed embryo leukocyte interaction assay) to test the ability of the cells to kill blastocyst stage embryos. The cytotoxic immune cells generated for use in this study, cytotoxic T lymphocytes (CTLs), natural killer (NK) cells, and lymphokine activated killer (LAK) cells were shown to have phenotypic and cytolytic characteristics similar to those reported by other investigators. The lysis of the blastocysts in the MELIA was determined by measuring the inhibition of blastocoel retention and/or by the inhibition of incorporation of tritiated thymidine (/sup 3/H-TdR) into embryonic DNA. Blastocysts which possess or lack their zonae pellucidae were tested to determine whether the zona pellucida plays an immunoprotective role in preimplantation development. The results indicated that CTLs only lysed embryonic cells when the zona pellucida was absent, but NK and LAK cells lysed embryonic cells whether the zona pellucida was present or absent. The results suggest that the zona pellucida may protect the preimplantation mouse embryo from lysis by CTLs but what protects the embryo from lysis by NK and LAK cells is unclear.

  15. Interleukin-12 bypasses common gamma-chain signalling in emergency natural killer cell lymphopoiesis

    PubMed Central

    Ohs, Isabel; van den Broek, Maries; Nussbaum, Kathrin; Münz, Christian; Arnold, Sebastian J.; Quezada, Sergio A.; Tugues, Sonia; Becher, Burkhard

    2016-01-01

    Differentiation and homeostasis of natural killer (NK) cells relies on common gamma-chain (γc)-dependent cytokines, in particular IL-15. Consequently, NK cells do not develop in mice with targeted γc deletion. Herein we identify an alternative pathway of NK-cell development driven by the proinflammatory cytokine IL-12, which can occur independently of γc-signalling. In response to viral infection or upon exogenous administration, IL-12 is sufficient to elicit the emergence of a population of CD122+CD49b+ cells by targeting NK-cell precursors (NKPs) in the bone marrow (BM). We confirm the NK-cell identity of these cells by transcriptome-wide analyses and their ability to eliminate tumour cells. Rather than using the conventional pathway of NK-cell development, IL-12-driven CD122+CD49b+ cells remain confined to a NK1.1lowNKp46low stage, but differentiate into NK1.1+NKp46+ cells in the presence of γc-cytokines. Our data reveal an IL-12-driven hard-wired pathway of emergency NK-cell lymphopoiesis bypassing steady-state γc-signalling. PMID:27982126

  16. Serum supplementation modulates the effects of dibutyltin on human natural killer cell function.

    PubMed

    Whalen, Margaret M; DeWitt, Jamie C; Luebke, Robert W

    2008-08-01

    Natural killer (NK) cells are a subset of lymphocytes capable of killing tumor cells, virally infected cells and antibody-coated cells. Dibutyltin (DBT) dichloride is an organotin used as a stabilizer in polyvinylchloride (PVC) plastics and as a deworming product in poultry. DBT may leach from PVC water supply pipes and therefore poses a potential risk to human health. We previously reported diminished NK cells lysis of tumor cells following exposure to DBT in serum-free cell culture medium. However, under in vivo conditions, circulating cells will be exposed to DBT in the presence of 100% plasma; thus we investigated whether serum supplementation and incubation time modulates DBT effects on NK cell killing and the accumulation of DBT in freshly isolated NK cells, to determine whether a serum-free model accurately predicts possible effects of DBT on human NK cells under in vivo conditions. Lytic function was decreased by approximately 35% at an intracellular DBT (DBTi) concentration of 200 microM and nearly complete loss of lytic function was observed at DBTi above 300 microM for one h. However, an intracellular concentration of 50 microM DBT, achieved over 24 h of exposure in 50% serum, reduced lytic function by 50%. Thus, conditions that reflect prolonged contact with circulating DBT, in the presence of serum, suggest that NK cell activity is decreased at lower DBTi. These data indicate that the model is useful in predicting potential human effects of relatively low DBTi concentrations.

  17. Invariant natural killer T cells: front line fighters in the war against pathogenic microbes.

    PubMed

    Crosby, Catherine M; Kronenberg, Mitchell

    2016-08-01

    Invariant natural killer T (iNKT) cells constitute a unique subset of innate-like T cells that have been shown to have crucial roles in a variety of immune responses. iNKT cells are characterized by their expression of both NK cell markers and an invariant T cell receptor (TCR) α chain, which recognizes glycolipids presented by the MHC class I-like molecule CD1d. Despite having a limited antigen repertoire, the iNKT cell response can be very complex, and participate in both protective and harmful immune responses. The protective role of these cells against a variety of pathogens has been particularly well documented. Through the use of these pathogen models, our knowledge of the breadth of the iNKT cell response has been expanded. Specific iNKT cell antigens have been isolated from several different bacteria, from which iNKT cells are critical for protection in mouse models. These responses can be generated by direct, CD1d-mediated activation, or indirect, cytokine-mediated activation, or a combination of the two. This can lead to secretion of a variety of different Th1, Th2, or Th17 cytokines, which differentially impact the downstream immune response against these pathogens. This critical role is emphasized by the conservation of these cells between mice and humans, warranting further investigation into how iNKT cells participate in protective immune responses, with the ultimate goal of harnessing their potential for treatment.

  18. The effect of different anesthetics on tumor cytotoxicity by natural killer cells.

    PubMed

    Tazawa, Kazumasa; Koutsogiannaki, Sophia; Chamberlain, Matthew; Yuki, Koichi

    2017-01-15

    A number of retrospective studies have suggested that choice of anesthetic drugs during surgical tumor resection might affect tumor recurrence/metastasis, or outcome of patients. The recent study showed that volatile anesthetics-based general anesthesia was associated with the worse outcomes than intravenous anesthetics-based general anesthesia. However, the underlying mechanism is yet to be determined. Because natural killer (NK) cells are implicated as important immune cells for tumor recurrence/metastasis in the perioperative period, we examined the effect of different anesthetics on NK cell-mediated tumor cytotoxicity. Because adhesion molecule leukocyte function-associated antigen-1 (LFA-1) is functionally important in NK cells and is inhibited by commonly used volatile anesthetics isoflurane and sevoflurane, we hypothesized that these anesthetics would attenuate NK cell-mediated cytotoxicity. Using human NK cell line NK92-MI cells and tumor cell line K562 cells as a model system, we performed cytotoxicity, proliferation, conjugation and degranulation assays. Lytic granule polarization was also assessed. We showed that isoflurane, sevoflurane and LFA-1 inhibitor BIRT377 attenuated cytotoxicity, and reduced conjugation and polarization, but not degranulation of NK cells. Our data suggest that isoflurane and sevoflurane attenuated NK cell-mediated cytotoxicity at least partly by their LFA-1 inhibition in vitro. Whether or not isoflurane and sevoflurane attenuate NK cell-mediated tumor cytotoxicity in patients needs to be determined in the future.

  19. Alloreactive Natural Killer Cells for the Treatment of Acute Myeloid Leukemia: From Stem Cell Transplantation to Adoptive Immunotherapy

    PubMed Central

    Ruggeri, Loredana; Parisi, Sarah; Urbani, Elena; Curti, Antonio

    2015-01-01

    Natural killer (NK) cells express activating and inhibitory receptors, which recognize MHC class-I alleles, termed “Killer cell Immunoglobulin-like Receptors” (KIRs). Preclinical and clinical data from haploidentical T-cell-depleted stem cell transplantation have demonstrated that alloreactive KIR-L mismatched NK cells play a major role as effectors against acute myeloid leukemia (AML). Outside the transplantation setting, several reports have proven the safety and feasibility of NK cell infusion in AML patients and, in some cases, provided evidence that transferred NK cells are functionally alloreactive and may have a role in disease control. The aim of the present work is to briefly summarize the most recent advances in the field by moving from the first preclinical and clinical demonstration of donor NK alloreactivity in the transplantation setting to the most recent attempts at exploiting the use of alloreactive NK cell infusion as a means of adoptive immunotherapy against AML. Altogether, these data highlight the pivotal role of NK cells for the development of novel immunological approaches in the clinical management of AML. PMID:26528283

  20. Multiple Myeloma Impairs Bone Marrow Localization of Effector Natural Killer Cells by Altering the Chemokine Microenvironment.

    PubMed

    Ponzetta, Andrea; Benigni, Giorgia; Antonangeli, Fabrizio; Sciumè, Giuseppe; Sanseviero, Emilio; Zingoni, Alessandra; Ricciardi, Maria Rosaria; Petrucci, Maria Teresa; Santoni, Angela; Bernardini, Giovanni

    2015-11-15

    Natural killer (NK) cells are key innate immune effectors against multiple myeloma, their activity declining in multiple myeloma patients with disease progression. To identify the mechanisms underlying NK cell functional impairment, we characterized the distribution of functionally distinct NK cell subsets in the bone marrow of multiple myeloma-bearing mice. Herein we report that the number of KLRG1(-) NK cells endowed with potent effector function rapidly and selectively decreases in bone marrow during multiple myeloma growth, this correlating with decreased bone marrow NK cell degranulation in vivo. Altered NK cell subset distribution was dependent on skewed chemokine/chemokine receptor axes in the multiple myeloma microenvironment, with rapid downmodulation of the chemokine receptor CXCR3 on NK cells, increased CXCL9 and CXCL10, and decreased CXCL12 expression in bone marrow. Similar alterations in chemokine receptor/chemokine axes were observed in patients with multiple myeloma. Adoptive transfer experiments demonstrated that KLRG1(-) NK cell migration to the bone marrow was more efficient in healthy than multiple myeloma-bearing mice. Furthermore, bone marrow localization of transferred CXCR3-deficient NK cells with respect to wild type was enhanced in healthy and multiple myeloma-bearing mice, suggesting that CXCR3 restrains bone marrow NK cell trafficking. Our results indicate that multiple myeloma-promoted CXCR3 ligand upregulation together with CXCL12 downmodulation act as exit signals driving effector NK cells outside the bone marrow, thus weakening the antitumor immune response at the primary site of tumor growth.

  1. Primary naive and interleukin-2-activated natural killer cells do not support efficient ectromelia virus replication.

    PubMed

    Parker, April Keim; Yokoyama, Wayne M; Corbett, John A; Chen, Nanhai; Buller, R Mark L

    2008-03-01

    Natural killer (NK) cells are known for their ability to lyse tumour cell targets. Studies of infections by a number of viruses, including poxviruses and herpesviruses, have demonstrated that NK cells are vital for recovery from these infections. Little is known of the ability of viruses to infect and complete a productive replication cycle within NK cells. Even less is known concerning the effect of infection on NK cell biology. This study investigated the ability of ectromelia virus (ECTV) to infect NK cells in vitro and in vivo. Following ECTV infection, NK cell gamma interferon (IFN-gamma) production was diminished and infected cells ceased proliferating and lost viability. ECTV infection of NK cells led to early and late virus gene expression and visualization of immature and mature virus particles, but no detectable increase in viable progeny virus. It was not unexpected that early gene expression occurred in infected NK cells, as the complete early transcription system is packaged within the virions. The detection of the secreted early virus-encoded immunomodulatory proteins IFN-gamma-binding protein and ectromelia inhibitor of complement enzymes (EMICE) in NK cell culture supernatants suggests that even semi-permissive infection may permit immunomodulation of the local environment.

  2. PGC-1α-Dependent Mitochondrial Adaptation Is Necessary to Sustain IL-2-Induced Activities in Human NK Cells

    PubMed Central

    Jara, Claudia; Ibañez, Jorge; Ahumada, Viviana; Acuña-Castillo, Claudio; Martin, Adrian; Córdova, Alexandra

    2016-01-01

    Human Natural Killer (NK) cells are a specialized heterogeneous subpopulation of lymphocytes involved in antitumor defense reactions. NK cell effector functions are critically dependent on cytokines and metabolic activity. Among various cytokines modulating NK cell function, interleukin-2 (IL-2) can induce a more potent cytotoxic activity defined as lymphokine activated killer activity (LAK). Our aim was to determine if IL-2 induces changes at the mitochondrial level in NK cells to support the bioenergetic demand for performing this enhanced cytotoxic activity more efficiently. Purified human NK cells were cultured with high IL-2 concentrations to develop LAK activity, which was assessed by the ability of NK cells to lyse NK-resistant Daudi cells. Here we show that, after 72 h of culture of purified human NK cells with enough IL-2 to induce LAK activity, both the mitochondrial mass and the mitochondrial membrane potential increased in a PGC-1α-dependent manner. In addition, oligomycin, an inhibitor of ATP synthase, inhibited IL-2-induced LAK activity at 48 and 72 h of culture. Moreover, the secretion of IFN-γ from NK cells with LAK activity was also partially dependent on PGC-1α expression. These results indicate that PGC-1α plays a crucial role in regulating mitochondrial function involved in the maintenance of LAK activity in human NK cells stimulated with IL-2. PMID:27413259

  3. The role of natural killer cells in autoimmune liver disease: a comprehensive review.

    PubMed

    Hudspeth, Kelly; Pontarini, Elena; Tentorio, Paolo; Cimino, Matteo; Donadon, Matteo; Torzilli, Guido; Lugli, Enrico; Della Bella, Silvia; Gershwin, M Eric; Mavilio, Domenico

    2013-10-01

    Natural Killer (NK) cells are important players of the innate arm of the immune system and provide an early defense against pathogens and tumor-transformed cells. Peripheral blood NK (PB-NK) cells were first identified because of their ability to spontaneously kill tumor-cell targets in vitro without the need for specific antigen priming, which is the reason that they were named 'natural killer' cells. The characterization of NK cells in human tissues and body organs represented another important step forward to better understand their physiology and physiopathology. In this regard, many reports revealed over the past decade a differential anatomic distribution of NK cell subsets in several sites such as the intestine, lung, cervix, placenta and liver as well as in secondary lymphoid organs such as spleen, lymph nodes and tonsils. Among all these tissues, the liver is certainly unique as its parenchyma contains an unusually high number of infiltrating immune cells with 30-50% of total lymphocytes being NK cells. Given the constant liver intake of non-self antigens from the gastrointestinal tract via the portal vein, hepatic NK (H-NK) cells must retain a certain degree of tolerance in the context of their immune-surveillance against dangers to the host. Indeed, the breakdown of the tolerogenic state of the liver-associated immune system has been shown to induce autoimmunity. However, the role of NK cells during the course of autoimmune liver diseases is still being debated mainly because a complete characterization of H-NK cells normally resident in healthy human liver has not yet been fully disclosed. Furthermore, the differences in phenotype and functions between human and mouse H-NK cells often preclude translation of results obtained from murine models into experimental approaches to be performed in humans. Here, we provide an extensive characterization of the phenotype of H-NK cells physiologically resident in the human liver by both mentioning data available

  4. Development of Spontaneous Anergy in Invariant Natural Killer T Cells in a Mouse Model of Dyslipidemia

    PubMed Central

    Braun, Nicole A.; Mendez-Fernandez, Yanice V.; Covarrubias, Roman; Porcelli, Steven A.; Savage, Paul B.; Yagita, Hideo; Van Kaer, Luc; Major, Amy S.

    2010-01-01

    Objective In this study, we investigated whether dyslipidemia-associated perturbed invariant natural killer T (iNKT) cell function is due to intrinsic changes in iNKT cells or defects in the ability of antigen-presenting cells to activate iNKT cells. Methods and Results We compared iNKT cell expansion and cytokine production in C57BL/6J (B6) and apolipoprotein E-deficient (apoE−/−) mice. In response to in vivo stimulation with α-galactosylceramide, a prototypic iNKT cell glycolipid antigen, apoE−/− mice showed significantly decreased splenic iNKT cell expansion at 3 days after injection, a profile associated with iNKT cell anergy due to chronic stimulation. This decrease in expansion and cytokine production was accompanied by a 2-fold increase in percentage of iNKT cells expressing the inhibitory marker programmed death-1 in apoE−/− mice compared with controls. However, in vivo and in vitro blockade of programmed death-1 using monoclonal antibody was not able to restore functions of iNKT cells from apoE−/− mice to B6 levels. iNKT cells from apoE−/− mice also had increased intracellular T cell receptor and Ly49 expression, a phenotype associated with previous activation. Changes in iNKT cell functions were cell autonomous, because dendritic cells from apoE−/− mice were able to activate B6 iNKT cells, but iNKT cells from apoE−/− mice were not able to respond to B6 dendritic cells. Conclusion These data suggest that chronic dyslipidemia induces an iNKT cell phenotype that is unresponsive to further simulation by exogenous glycolipid and that sustained unresponsiveness is iNKT cell intrinsic. PMID:20539017

  5. Human natural killer cells prevent infectious mononucleosis features by targeting lytic Epstein-Barr virus infection.

    PubMed

    Chijioke, Obinna; Müller, Anne; Feederle, Regina; Barros, Mario Henrique M; Krieg, Carsten; Emmel, Vanessa; Marcenaro, Emanuela; Leung, Carol S; Antsiferova, Olga; Landtwing, Vanessa; Bossart, Walter; Moretta, Alessandro; Hassan, Rocio; Boyman, Onur; Niedobitek, Gerald; Delecluse, Henri-Jacques; Capaul, Riccarda; Münz, Christian

    2013-12-26

    Primary infection with the human oncogenic Epstein-Barr virus (EBV) can result in infectious mononucleosis (IM), a self-limiting disease caused by massive lymphocyte expansion that predisposes for the development of distinct EBV-associated lymphomas. Why some individuals experience this symptomatic primary EBV infection, whereas the majority acquires the virus asymptomatically, remains unclear. Using a mouse model with reconstituted human immune system components, we show that depletion of human natural killer (NK) cells enhances IM symptoms and promotes EBV-associated tumorigenesis mainly because of a loss of immune control over lytic EBV infection. These data suggest that failure of innate immune control by human NK cells augments symptomatic lytic EBV infection, which drives lymphocyte expansion and predisposes for EBV-associated malignancies.

  6. Melanoma cells inhibit natural killer cell function by modulating the expression of activating receptors and cytolytic activity.

    PubMed

    Pietra, Gabriella; Manzini, Claudia; Rivara, Silvia; Vitale, Massimo; Cantoni, Claudia; Petretto, Andrea; Balsamo, Mirna; Conte, Romana; Benelli, Roberto; Minghelli, Simona; Solari, Nicola; Gualco, Marina; Queirolo, Paola; Moretta, Lorenzo; Mingari, Maria Cristina

    2012-03-15

    Natural killer (NK) cells play a key role in tumor immune surveillance. However, adoptive immunotherapy protocols using NK cells have shown limited clinical efficacy to date, possibly due to tumor escape mechanisms that inhibit NK cell function. In this study, we analyzed the effect of coculturing melanoma cells and NK cells on their phenotype and function. We found that melanoma cells inhibited the expression of major NK receptors that trigger their immune function, including NKp30, NKp44, and NKG2D, with consequent impairment of NK cell-mediated cytolytic activity against various melanoma cell lines. This inhibitory effect was primarily mediated by indoleamine 2,3-dioxygenase (IDO) and prostaglandin E2 (PGE2). Together, our findings suggest that immunosuppressive barriers erected by tumors greatly hamper the antitumor activity of human NK cells, thereby favoring tumor outgrowth and progression.

  7. Insufficient natural killer cell responses against retroviruses: how to improve NK cell killing of retrovirus-infected cells.

    PubMed

    Littwitz-Salomon, Elisabeth; Dittmer, Ulf; Sutter, Kathrin

    2016-11-08

    Natural killer (NK) cells belong to the innate immune system and protect against cancers and a variety of viruses including retroviruses by killing transformed or infected cells. They express activating and inhibitory receptors on their cell surface and often become activated after recognizing virus-infected cells. They have diverse antiviral effector functions like the release of cytotoxic granules, cytokine production and antibody dependent cellular cytotoxicity. The importance of NK cell activity in retroviral infections became evident due to the discovery of several viral strategies to escape recognition and elimination by NK cells. Mutational sequence polymorphisms as well as modulation of surface receptors and their ligands are mechanisms of the human immunodeficiency virus-1 to evade NK cell-mediated immune pressure. In Friend retrovirus infected mice the virus can manipulate molecular or cellular immune factors that in turn suppress the NK cell response. In this model NK cells lack cytokines for optimal activation and can be functionally suppressed by regulatory T cells. However, these inhibitory pathways can be overcome therapeutically to achieve full activation of NK cell responses and ultimately control dissemination of retroviral infection. One effective approach is to modulate the crosstalk between NK cells and dendritic cells, which produce NK cell-stimulating cytokines like type I interferons (IFN), IL-12, IL-15, and IL-18 upon retrovirus sensing or infection. Therapeutic administration of IFNα directly increases NK cell killing of retrovirus-infected cells. In addition, IL-2/anti-IL-2 complexes that direct IL-2 to NK cells have been shown to significantly improve control of retroviral infection by NK cells in vivo. In this review, we describe novel approaches to improve NK cell effector functions in retroviral infections. Immunotherapies that target NK cells of patients suffering from viral infections might be a promising treatment option for the

  8. Innate-like recognition of microbes by invariant natural killer T cells.

    PubMed

    Kronenberg, Mitchell; Kinjo, Yuki

    2009-08-01

    Invariant natural killer T cells (iNKT cells) express a restricted T cell antigen receptor (TCR) repertoire and they respond rapidly to glycolipid antigens presented by CD1d. These glycolipid antigens have hexose sugars in alpha-linkage to two types of lipids that can bind to CD1d. Recent work has shown that the responses of iNKT cells to antigen-bearing microbes can have a profound impact on the development of inflammatory diseases. iNKT cells overcome the limitation of their limited TCR diversity by also responding in a foreign antigen-independent fashion to some infectious agents, similar to NK cells. Recent results demonstrate several mechanisms for the indirect activation of iNKT cells by viruses or TLR ligands, dependent on self-antigen recognition and/or different cytokines produced by antigen presenting cells. The means by which iNKT cells influence other cell types and overall host defense are likewise diverse, illustrating the flexibility and functional diversity of this T lymphocyte sublineage.

  9. Primitive neuroectodermal tumor in an ovarian cystic teratoma: natural killer and neuroblastoma cell analysis.

    PubMed

    Tabellini, Giovanna; Benassi, Marzia; Marcenaro, Emanuela; Coltrini, Daniela; Patrizi, Ornella; Ricotta, Doris; Rampinelli, Fabio; Moretta, Alessandro; Parolini, Silvia

    2014-01-01

    In the present study, we report an extremely rare case of a 31-year-old woman with neuroblastoma arising in an ovarian cystic teratoma. We analyzed the expression of activating receptors on natural killer (NK) cells derived from the patient's peripheral blood and peritoneal fluid. In addition, we investigated the presence of specific ligands recognized by different NK cell receptors on tumor cells. We show that NK cells isolated from peritoneal fluid expressed certain triggering receptors including DNAM-1 (CD226) and CD16 with lower intensity as compared to peripheral blood NK cells. Remarkably, at variance with most cases of childhood neuroblastoma, the tumor cells from this patient expressed substantial amounts of HLA class-I molecules. These molecules are known to be protective against NK cell-mediated lysis. In addition, neuroblastoma cells expressed B7-H3 (CD276), another surface molecule that inhibits NK cell function. Finally, this tumor did not express the PVR (CD155) and nectin-2 (CD112) ligands for the DNAM-1 activating NK receptor, which plays a crucial role in NK/neuroblastoma interactions. Altogether, these findings indicate that the neuroblastoma cells of this patient express an NK-resistant surface phenotype, which is at least in part similar to that previously described in a fraction of childhood neuroblastoma.

  10. Role of cortactin homolog HS1 in transendothelial migration of natural killer cells.

    PubMed

    Mukherjee, Suranjana; Kim, Joanna; Mooren, Olivia L; Shahan, Stefanie T; Cohan, Megan; Cooper, John A

    2015-01-01

    Natural Killer (NK) cells perform many functions that depend on actin assembly, including adhesion, chemotaxis, lytic synapse assembly and cytolysis. HS1, the hematopoietic homolog of cortactin, binds to Arp2/3 complex and promotes actin assembly by helping to form and stabilize actin filament branches. We investigated the role of HS1 in transendothelial migration (TEM) by NK cells. Depletion of HS1 led to a decrease in the efficiency of TEM by NK cells, as measured by transwell assays with endothelial cell monolayers on porous filters. Transwell assays involve chemotaxis of NK cells across the filter, so to examine TEM more specifically, we imaged live-cell preparations and antibody-stained fixed preparations, with and without the chemoattractant SDF-1α. We found small to moderate effects of HS1 depletion on TEM, including whether the NK cells migrated via the transcellular or paracellular route. Expression of HS1 mutants indicated that phosphorylation of HS1 tyrosines at positions 222, 378 and 397 was required for rescue in the transwell assay, but HS1 mutations affecting interaction with Arp2/3 complex or SH3-domain ligands had no effect. The GEF Vav1, a ligand of HS1 phosphotyrosine, influenced NK cell transendothelial migration. HS1 and Vav1 also affected the speed of NK cells migrating across the surface of the endothelium. We conclude that HS1 has a role in transendothelial migration of NK cells and that HS1 tyrosine phosphorylation may signal through Vav1.

  11. Natural killer cell subsets in cerebrospinal fluid of patients with multiple sclerosis

    PubMed Central

    Rodríguez-Martín, E; Picón, C; Costa-Frossard, L; Alenda, R; Sainz de la Maza, S; Roldán, E; Espiño, M; Villar, L M; Álvarez-Cermeño, J C

    2015-01-01

    Changes in blood natural killer (NK) cells, important players of the immune innate system, have been described in multiple sclerosis (MS). We studied percentages and total cell counts of different effector and regulatory NK cells in cerebrospinal fluid (CSF) of MS patients and other neurological diseases to gain clearer knowledge of the role of these cells in neuroinflammation. NK cell subsets were assessed by flow cytometry in CSF of 85 consecutive MS patients (33 with active disease and 52 with stable MS), 16 with other inflammatory diseases of the central nervous system (IND) and 17 with non-inflammatory neurological diseases (NIND). MS patients showed a decrease in percentages of different CSF NK subpopulations compared to the NIND group. However, absolute cell counts showed a significant increase of all NK subsets in MS and IND patients, revealing that the decrease in percentages does not reflect a real reduction of these immune cells. Remarkably, MS patients showed a significant increase of regulatory/effector (CD56bright/CD56dim) NK ratio compared to IND and NIND groups. In addition, MS activity associated with an expansion of NK T cells. These data show that NK cell subsets do not increase uniformly in all inflammatory neurological disease and suggest strongly that regulatory CD56bright and NK T cells may arise in CSF of MS patients as an attempt to counteract the CNS immune activation characteristic of the disease. PMID:25565222

  12. Activation of human natural killer cells by the soluble form of cellular prion protein.

    PubMed

    Seong, Yeon-Jae; Sung, Pil Soo; Jang, Young-Soon; Choi, Young Joon; Park, Bum-Chan; Park, Su-Hyung; Park, Young Woo; Shin, Eui-Cheol

    2015-08-21

    Cellular prion protein (PrP(C)) is widely expressed in various cell types, including cells of the immune system. However, the specific roles of PrP(C) in the immune system have not been clearly elucidated. In the present study, we investigated the effects of a soluble form of recombinant PrP(C) protein on human natural killer (NK) cells. Recombinant soluble PrP(C) protein was generated by fusion of human PrP(C) with the Fc portion of human IgG1 (PrP(C)-Fc). PrP(C)-Fc binds to the surface of human NK cells, particularly to CD56(dim) NK cells. PrP(C)-Fc induced the production of cytokines and chemokines and the degranulation of granzyme B from NK cells. In addition, PrP(C)-Fc facilitated the IL-15-induced proliferation of NK cells. PrP(C)-Fc induced phosphorylation of ERK-1/2 and JNK in NK cells, and inhibitors of the ERK or the JNK pathways abrogated PrP(C)-Fc-induced cytokine production in NK cells. In conclusion, the soluble form of recombinant PrP(C)-Fc protein activates human NK cells via the ERK and JNK signaling pathways.

  13. Invariant natural killer T cells in adipose tissue: novel regulators of immune-mediated metabolic disease.

    PubMed

    Rakhshandehroo, M; Kalkhoven, E; Boes, M

    2013-12-01

    Adipose tissue (AT) represents a microenvironment where intersection takes place between immune processes and metabolic pathways. A variety of immune cells have been characterized in AT over the past decades, with the most recent addition of invariant natural killer T (iNKT) cells. As members of the T cell family, iNKT cells represent a subset that exhibits both innate and adaptive characteristics and directs ensuing immune responses. In disease conditions, iNKT cells have established roles that include disorders in the autoimmune spectrum in malignancies and infectious diseases. Recent work supports a role for iNKT cells in the maintenance of AT homeostasis through both immune and metabolic pathways. The deficiency of iNKT cells can result in AT metabolic disruptions and insulin resistance. In this review, we summarize recent work on iNKT cells in immune regulation, with an emphasis on AT-resident iNKT cells, and identify the potential mechanisms by which adipocytes can mediate iNKT cell activity.

  14. Natural killer cell subsets in cerebrospinal fluid of patients with multiple sclerosis.

    PubMed

    Rodríguez-Martín, E; Picón, C; Costa-Frossard, L; Alenda, R; Sainz de la Maza, S; Roldán, E; Espiño, M; Villar, L M; Álvarez-Cermeño, J C

    2015-05-01

    Changes in blood natural killer (NK) cells, important players of the immune innate system, have been described in multiple sclerosis (MS). We studied percentages and total cell counts of different effector and regulatory NK cells in cerebrospinal fluid (CSF) of MS patients and other neurological diseases to gain clearer knowledge of the role of these cells in neuroinflammation. NK cell subsets were assessed by flow cytometry in CSF of 85 consecutive MS patients (33 with active disease and 52 with stable MS), 16 with other inflammatory diseases of the central nervous system (IND) and 17 with non-inflammatory neurological diseases (NIND). MS patients showed a decrease in percentages of different CSF NK subpopulations compared to the NIND group. However, absolute cell counts showed a significant increase of all NK subsets in MS and IND patients, revealing that the decrease in percentages does not reflect a real reduction of these immune cells. Remarkably, MS patients showed a significant increase of regulatory/effector (CD56(bright) /CD56(dim) ) NK ratio compared to IND and NIND groups. In addition, MS activity associated with an expansion of NK T cells. These data show that NK cell subsets do not increase uniformly in all inflammatory neurological disease and suggest strongly that regulatory CD56(bright) and NK T cells may arise in CSF of MS patients as an attempt to counteract the CNS immune activation characteristic of the disease.

  15. Cytokine-induced killer cells eradicate bone and soft-tissue sarcomas.

    PubMed

    Sangiolo, Dario; Mesiano, Giulia; Gammaitoni, Loretta; Leuci, Valeria; Todorovic, Maja; Giraudo, Lidia; Cammarata, Cristina; Dell'Aglio, Carmine; D'Ambrosio, Lorenzo; Pisacane, Alberto; Sarotto, Ivana; Miano, Sara; Ferrero, Ivana; Carnevale-Schianca, Fabrizio; Pignochino, Ymera; Sassi, Francesco; Bertotti, Andrea; Piacibello, Wanda; Fagioli, Franca; Aglietta, Massimo; Grignani, Giovanni

    2014-01-01

    Unresectable metastatic bone sarcoma and soft-tissue sarcomas (STS) are incurable due to the inability to eradicate chemoresistant cancer stem-like cells (sCSC) that are likely responsible for relapses and drug resistance. In this study, we investigated the preclinical activity of patient-derived cytokine-induced killer (CIK) cells against autologous bone sarcoma and STS, including against putative sCSCs. Tumor killing was evaluated both in vitro and within an immunodeficient mouse model of autologous sarcoma. To identify putative sCSCs, autologous bone sarcoma and STS cells were engineered with a CSC detector vector encoding eGFP under the control of the human promoter for OCT4, a stem cell gene activated in putative sCSCs. Using CIK cells expanded from 21 patients, we found that CIK cells efficiently killed allogeneic and autologous sarcoma cells in vitro. Intravenous infusion of CIK cells delayed autologous tumor growth in immunodeficient mice. Further in vivo analyses established that CIK cells could infiltrate tumors and that tumor growth inhibition occurred without an enrichment of sCSCs relative to control-treated animals. These results provide preclinical proof-of-concept for an effective strategy to attack autologous sarcomas, including putative sCSCs, supporting the clinical development of CIK cells as a novel class of immunotherapy for use in settings of untreatable metastatic disease.

  16. Suppression of a Natural Killer Cell Response by Simian Immunodeficiency Virus Peptides.

    PubMed

    Schafer, Jamie L; Ries, Moritz; Guha, Natasha; Connole, Michelle; Colantonio, Arnaud D; Wiertz, Emmanuel J; Wilson, Nancy A; Kaur, Amitinder; Evans, David T

    2015-09-01

    Natural killer (NK) cell responses in primates are regulated in part through interactions between two highly polymorphic molecules, the killer-cell immunoglobulin-like receptors (KIRs) on NK cells and their major histocompatibility complex (MHC) class I ligands on target cells. We previously reported that the binding of a common MHC class I molecule in the rhesus macaque, Mamu-A1*002, to the inhibitory receptor Mamu-KIR3DL05 is stabilized by certain simian immunodeficiency virus (SIV) peptides, but not by others. Here we investigated the functional implications of these interactions by testing SIV peptides bound by Mamu-A1*002 for the ability to modulate Mamu-KIR3DL05+ NK cell responses. Twenty-eight of 75 SIV peptides bound by Mamu-A1*002 suppressed the cytolytic activity of primary Mamu-KIR3DL05+ NK cells, including three immunodominant CD8+ T cell epitopes previously shown to stabilize Mamu-A1*002 tetramer binding to Mamu-KIR3DL05. Substitutions at C-terminal positions changed inhibitory peptides into disinhibitory peptides, and vice versa, without altering binding to Mamu-A1*002. The functional effects of these peptide variants on NK cell responses also corresponded to their effects on Mamu-A1*002 tetramer binding to Mamu-KIR3DL05. In assays with mixtures of inhibitory and disinhibitory peptides, low concentrations of inhibitory peptides dominated to suppress NK cell responses. Consistent with the inhibition of Mamu-KIR3DL05+ NK cells by viral epitopes presented by Mamu-A1*002, SIV replication was significantly higher in Mamu-A1*002+ CD4+ lymphocytes co-cultured with Mamu-KIR3DL05+ NK cells than with Mamu-KIR3DL05- NK cells. These results demonstrate that viral peptides can differentially affect NK cell responses by modulating MHC class I interactions with inhibitory KIRs, and provide a mechanism by which immunodeficiency viruses may evade NK cell responses.

  17. In vitro atrazine-exposure inhibits human natural killer cell lytic granule release

    SciTech Connect

    Rowe, Alexander M.; Brundage, Kathleen M.; Barnett, John B. . E-mail: jbarnett@hsc.wvu.edu

    2007-06-01

    The herbicide atrazine is a known immunotoxicant and an inhibitor of human natural killer (NK) cell lytic function. The precise changes in NK cell lytic function following atrazine exposure have not been fully elucidated. The current study identifies the point at which atrazine exerts its affect on the stepwise process of human NK cell-mediated lyses of the K562 target cell line. Using intracellular staining of human peripheral blood lymphocytes, it was determined that a 24-h in vitro exposure to atrazine did not decrease the level of NK cell lytic proteins granzyme A, granzyme B or perforin. Thus, it was hypothesized that atrazine exposure was inhibiting the ability of the NK cells to bind to the target cell and subsequently inhibit the release of lytic protein from the NK cell. To test this hypothesis, flow cytometry and fluorescent microscopy were employed to analyze NK cell-target cell co-cultures following atrazine exposure. These assays demonstrated no significant decrease in the level of target cell binding. However, the levels of NK intracellular lytic protein retained and the amount of lytic protein released were assessed following a 4-h incubation with K562 target cells. The relative level of intracellular lytic protein was 25-50% higher, and the amount of lytic protein released was 55-65% less in atrazine-treated cells than vehicle-treated cells following incubation with the target cells. These results indicate that ATR exposure inhibits the ability of NK cells to lyse target cells by blocking lytic granule release without affecting the ability of the NK cell to form stable conjugates with target cells.

  18. Large-scale isolation and cytotoxicity of extracellular vesicles derived from activated human natural killer cells

    PubMed Central

    Jong, Ambrose Y.; Wu, Chun-Hua; Li, Jingbo; Sun, Jianping; Fabbri, Muller; Wayne, Alan S.; Seeger, Robert C.

    2017-01-01

    ABSTRACT Extracellular vesicles (EVs) have been the focus of great interest, as they appear to be involved in numerous important cellular processes. They deliver bioactive macromolecules such as proteins, lipids, and nucleic acids, allowing intercellular communication in multicellular organisms. EVs are secreted by all cell types, including immune cells such as natural killer cells (NK), and they may play important roles in the immune system. Currently, a large-scale procedure to obtain functional NK EVs is lacking, limiting their use clinically. In this report, we present a simple, robust, and cost-effective method to isolate a large quantity of NK EVs. After propagating and activating NK cells ex vivo and then incubating them in exosome-free medium for 48 h, EVs were isolated using a polymer precipitation method. The isolated vesicles contain the tetraspanin CD63, an EV marker, and associated proteins (fibronectin), but are devoid of cytochrome C, a cytoplasmic marker. Nanoparticle tracking analysis showed a size distribution between 100 and 200 nm while transmission electron microscopy imaging displayed vesicles with an oval shape and comparable sizes, fulfilling the definition of EV. Importantly, isolated EV fractions were cytotoxic against cancer cells. Furthermore, our results demonstrate for the first time that isolated activated NK (aNK) cell EVs contain the cytotoxic proteins perforin, granulysin, and granzymes A and B, incorporated from the aNK cells. Activation of caspase -3, -7 and -9 was detected in cancer cells incubated with aNK EVs, and caspase inhibitors blocked aNK EV-induced cytotoxicity, suggesting that aNK EVs activate caspase pathways in target cells. The ability to isolate functional aNK EVs on a large scale may lead to new clinical applications. Abbreviations: NK: natural killer cells; activated NK (aNK) cells; EVs: extracellular vesicles; ALL: acute lymphoblastic leukaemia; aAPC: artificial antigen-presenting cell; TEM: transmission

  19. Effects of X-ray irradiation on natural killer (NK) cell system. II. Increased sensitivity to natural killer cytotoxic factor (NKCF)

    SciTech Connect

    Uchida, A.; Mizutani, Y.; Nagamuta, M.; Ikenaga, M. )

    1989-01-01

    Irradiation with low-doses of X-rays of tumor cells elevated their susceptibility to lysis by natural killer (NK) cells in an accompanying paper. Cytotoxicity assays conducted at the single cell level revealed that X-ray irradiation of K562 cells did not affect the number of effector-target conjugates but increased the frequency of dead conjugated target cells. During interaction with K562 cells large granular lymphocytes released a soluble cytotoxic factor (NKCF) that killed the target cells. X-ray irradiation did not affect the NKCF stimulatory ability of K562 cells, while it elevated their sensitivity to the lytic effect of NKCF. In contrast to X-rays, exposure to ultraviolet (UV) radiation of K562 cells did not elevate their NK sensitivity but rather reduced it. Treatment with mitomycin C produced no effect on NK sensitivity. These results indicate that X-ray irradiation elevates the target sensitivity to NKCF, which may be involved in the increased NK sensitivity, and that the X-ray effect may be different from that of UV radiation or DNA synthesis inhibition.

  20. Rapid and reliable generation of invariant natural killer T-cell lines in vitro

    PubMed Central

    Chiba, Asako; Cohen, Nadia; Brigl, Manfred; Brennan, Patrick J; Besra, Gurdal S; Brenner, Michael B

    2009-01-01

    Several tools have proved useful in the study of invariant natural killer T (iNKT) cells, including CD1d-deficient mice, Jα281-deficient mice, synthetic lipid antigens and antigen-loaded CD1d tetramers. However, the generation and examination of long-term primary murine iNKT cell lines in vitro has been challenging. Here, we show the rapid generation of iNKT cell lines from splenic iNKT cells of Vα14 T-cell receptor (TCR) transgenic (Tg) mice. These purified iNKT cells were stimulated by bone marrow-derived dendritic cells (BMDCs) loaded with α-galactosylceramide (αGalCer) and cultured with interleukin (IL)-2 and IL-7. iNKT cells proliferated dramatically, and the cell number exhibited a 100-fold increase within 2 weeks and a 105-fold increase in 8 weeks after repeated stimulation with αGalCer. The iNKT cell lines consisted of iNKT cells expressing Vβ chains including Vβ8.1/8.2, Vβ14, Vβ10, Vβ6 and Vβ7, and responded to stimulation with αGalCer presented both by BMDCs and by plate-bound CD1d. In addition, the iNKT cell lines produced interferon (IFN)-γ when activated by lipopolysaccharide (LPS) or CpG oligodeoxynucleotide (ODN)-stimulated BMDCs. Further, we show that iNKT cell lines produced cytokines in response to microbial antigens. In summary, high-yield iNKT cell lines were generated very rapidly and robustly expanded, and these iNKT cells responded to both TCR and cytokine stimulation in vitro. Given the desire to study primary iNKT cells for many purposes, these iNKT cell lines should provide an important tool for the study of iNKT cell subsets, antigen and TCR specificity, activation, inactivation and effector functions. PMID:20067532

  1. The anti-canine distemper virus activities of ex vivo-expanded canine natural killer cells.

    PubMed

    Park, Ji-Yun; Shin, Dong-Jun; Lee, Soo-Hyeon; Lee, Je-Jung; Suh, Guk-Hyun; Cho, Duck; Kim, Sang-Ki

    2015-04-17

    Natural killer (NK) cells play critical roles in induction of antiviral effects against various viruses of humans and animals. However, few data on NK cell activities during canine distemper virus (CDV) infections are available. Recently, we established a culture system allowing activation and expansion of canine non-B, non-T, large granular NK lymphocytes from PBMCs of normal dogs. In the present study, we explored the ability of such expanded NK cells to inhibit CDV infection in vitro. Cultured CD3-CD5-CD21- NK cells produced large amounts of IFN-γ, exhibited highly upregulated expression of mRNAs encoding NK-cell-associated receptors, and demonstrated strong natural killing activity against canine tumor cells. Although the expanded NK cells were dose-dependently cytotoxic to both normal and CDV-infected Vero cells, CDV infection rendered Vero cells more susceptible to NK cells. Pretreatment with anti-CDV serum from hyperimmunized dogs enhanced the antibody-dependent cellular cytotoxicity (ADCC) of NK cells against CDV-infected Vero cells. The culture supernatants of NK cells, added before or after infection, dose-dependently inhibited both CDV replication and development of CDV-induced cytopathic effects (CPEs) in Vero cells. Anti-IFN-γ antibody neutralized the inhibitory effects of NK cell culture supernatants on CDV replication and CPE induction in Vero cells. Such results emphasize the potential significance of NK cells in controlling CDV infection, and indicate that NK cells may play roles both during CDV infection and in combating such infections, under certain conditions.

  2. Role for early-differentiated natural killer cells in infectious mononucleosis

    PubMed Central

    Azzi, Tarik; Lünemann, Anna; Murer, Anita; Ueda, Seigo; Béziat, Vivien; Malmberg, Karl-Johan; Staubli, Georg; Gysin, Claudine; Berger, Christoph; Münz, Christian

    2014-01-01

    A growing body of evidence suggests that the human natural killer (NK)-cell compartment is phenotypically and functionally heterogeneous and is composed of several differentiation stages. Moreover, NK-cell subsets have been shown to exhibit adaptive immune features during herpes virus infection in experimental mice and to expand preferentially during viral infections in humans. However, both phenotype and role of NK cells during acute symptomatic Epstein-Barr virus (EBV) infection, termed infectious mononucleosis (IM), remain unclear. Here, we longitudinally assessed the kinetics, the differentiation, and the proliferation of subsets of NK cells in pediatric IM patients. Our results indicate that acute IM is characterized by the preferential proliferation of early-differentiated CD56dim NKG2A+ immunoglobulin-like receptor- NK cells. Moreover, this NK-cell subset exhibits features of terminal differentiation and persists at higher frequency during at least the first 6 months after acute IM. Finally, we demonstrate that this NK-cell subset preferentially degranulates and proliferates on exposure to EBV-infected B cells expressing lytic antigens. Thus, early-differentiated NK cells might play a key role in the immune control of primary infection with this persistent tumor-associated virus. PMID:25205117

  3. Natural killer cells regulate Th1/Treg and Th17/Treg balance in chlamydial lung infection.

    PubMed

    Li, Jing; Dong, Xiaojing; Zhao, Lei; Wang, Xiao; Wang, Yan; Yang, Xi; Wang, Hong; Zhao, Weiming

    2016-07-01

    Natural killer (NK) cell is an important component in innate immunity, playing a critical role in bridging innate and adaptive immunity by modulating the function of other immune cells including T cells. In this study, we focused on the role of NK cells in regulating Th1/Treg and Th17/Treg balance during chlamydial lung infection. We found that NK cell-depleted mice showed decreased Th1 and Th17 cells, which was correlated with reduced interferon-γ, interleukin (IL)-12, IL-17 and IL-22 production as well as T-bet and receptor-related orphan receptor gamma t expression compared with mice treated with the isotype control antibody. In contrast, NK cell depletion significantly increased Treg in cell number and related transcription factor (Foxp3) expression. The opposite trends of changes of Th1/Th17 and Treg led to significant reduction in the Th1/Treg and Th17/Treg ratios. The data implicate that NK cells play an important role in host defence against chlamydial lung infection, mainly through maintaining Th1/Treg and Th17/Treg balance.

  4. Killer artificial antigen-presenting cells: the synthetic embodiment of a 'guided missile'.

    PubMed

    Schütz, Christian; Oelke, Mathias; Schneck, Jonathan P; Mackensen, Andreas; Fleck, Martin

    2010-07-01

    At present, the treatment of T-cell-dependent autoimmune diseases relies exclusively on strategies leading to nonspecific suppression of the immune systems causing a substantial reduced ability to control concomitant infections or malignancies. Furthermore, long-term treatment with most drugs is accompanied by several serious adverse effects and does not consequently result in cure of the primary immunological malfunction. By contrast, antigen-specific immunotherapy offers the potential to achieve the highest therapeutic efficiency in accordance with minimal adverse effects. Therefore, several studies have been performed utilizing antigen-presenting cells specifically engineered to deplete allo- or antigen-specific T cells ('guided missiles'). Many of these strategies take advantage of the Fas/Fas ligand signaling pathway to efficiently induce antigen-presenting cell-mediated apoptosis in targeted T cells. In this article, we discuss the advantages and shortcomings of a novel non-cell-based 'killer artificial antigen-presenting cell' strategy, developed to overcome obstacles related to current cell-based approaches for the treatment of T-cell-mediated autoimmunity.

  5. What Lies Beneath: Antibody Dependent Natural Killer Cell Activation by Antibodies to Internal Influenza Virus Proteins.

    PubMed

    Vanderven, Hillary A; Ana-Sosa-Batiz, Fernanda; Jegaskanda, Sinthujan; Rockman, Steven; Laurie, Karen; Barr, Ian; Chen, Weisan; Wines, Bruce; Hogarth, P Mark; Lambe, Teresa; Gilbert, Sarah C; Parsons, Matthew S; Kent, Stephen J

    2016-06-01

    The conserved internal influenza proteins nucleoprotein (NP) and matrix 1 (M1) are well characterised for T cell immunity, but whether they also elicit functional antibodies capable of activating natural killer (NK) cells has not been explored. We studied NP and M1-specific ADCC activity using biochemical, NK cell activation and killing assays with plasma from healthy and influenza-infected subjects. Healthy adults had antibodies to M1 and NP capable of binding dimeric FcγRIIIa and activating NK cells. Natural symptomatic and experimental influenza infections resulted in a rise in antibody dependent NK cell activation post-infection to the hemagglutinin of the infecting strain, but changes in NK cell activation to M1 and NP were variable. Although antibody dependent killing of target cells infected with vaccinia viruses expressing internal influenza proteins was not detected, opsonising antibodies to NP and M1 likely contribute to an antiviral microenvironment by stimulating innate immune cells to secrete cytokines early in infection. We conclude that effector cell activating antibodies to conserved internal influenza proteins are common in healthy and influenza-infected adults. Given the significance of such antibodies in animal models of heterologous influenza infection, the definition of their importance and mechanism of action in human immunity to influenza is essential.

  6. Post-transplantation lymphoproliferative disease of natural killer cell lineage: a clinicopathological and molecular analysis.

    PubMed

    Kwong, Y L; Lam, C C; Chan, T M

    2000-07-01

    Post-transplantation lymphoproliferative disorders (PTLD) occur after solid organ and bone marrow transplantation. They are predominantly of B-cell and occasionally of T-cell lineage. We report a case of PTLD of natural killer (NK) cell lineage. A renal allograft recipient developed progressive pancytopenia 1 year after transplantation. Serial bone marrow biopsies showed an increasing infiltration by large granular lymphoid cells. A subsequent leukaemic phase also developed with systemic infiltration of other organs. Immunophenotyping showed that these cells were CD2+, CD3-, CD3epsilon+, CD56+, CD94+, CD158a- and CD158b-. In situ hybridization showed Epstein-Barr virus (EBV) infection of the neoplastic cells. Genotypical analysis showed the T-cell receptor gene in germline configuration and clonal EBV episomal integration. The overall features were consistent with NK cell lymphoma/leukaemia. The patient did not respond to cessation of immunosuppression or anti-EBV treatment. Combination chemotherapy was given, but the patient died ultimately of disseminated fungal infection. In conclusion, we have demonstrated that NK cell lymphoma is another rare type of PTLD that appears to be highly aggressive and therefore may require early chemotherapy to improve treatment outcome.

  7. Optimal effector functions in human natural killer cells rely upon autocrine bone morphogenetic protein signaling.

    PubMed

    Robson, Neil C; Hidalgo, Laura; McAlpine, Tristan; Wei, Heng; Martínez, Víctor G; Entrena, Ana; Melen, Gustavo J; MacDonald, Andrew S; Phythian-Adams, Alexander; Sacedón, Rosa; Maraskovsky, Eugene; Cebon, Jonathan; Ramírez, Manuel; Vicente, Angeles; Varas, Alberto

    2014-09-15

    Natural killer (NK) cells are critical for innate tumor immunity due to their specialized ability to recognize and kill neoplastically transformed cells. However, NK cells require a specific set of cytokine-mediated signals to achieve optimal effector function. Th1-associated cytokines promote effector functions that are inhibited by the prototypic Th2 cytokine IL4 and the TGFβ superfamily members TGFβ1 and activin-A. Interestingly, the largest subgroup of the TGFβ superfamily are the bone morphogenetic proteins (BMP), but the effects of BMP signaling on NK cell effector functions have not been evaluated. Here, we demonstrate that blood-circulating NK cells express type I and II BMP receptors, BMP-2 and BMP-6 ligands, and phosphorylated isoforms of Smad-1/-5/-8, which mediate BMP family member signaling. In opposition to the inhibitory effects of TGFβ1 or activin-A, autocrine BMP signaling was supportive to NK cell function. Mechanistic investigations in cytokine and TLR-L-activated NK cells revealed that BMP signaling optimized IFNγ and global cytokine and chemokine production, phenotypic activation and proliferation, and autologous dendritic cell activation and target cytotoxicity. Collectively, our findings identify a novel auto-activatory pathway that is essential for optimal NK cell effector function, one that might be therapeutically manipulated to help eradicate tumors. Cancer Res; 74(18); 5019-31. ©2014 AACR.

  8. Therapeutic CD94/NKG2A blockade improves natural killer cell dysfunction in chronic lymphocytic leukemia.

    PubMed

    McWilliams, Emily M; Mele, Jennifer M; Cheney, Carolyn; Timmerman, Elizabeth A; Fiazuddin, Faraz; Strattan, Ethan J; Mo, Xiaokui; Byrd, John C; Muthusamy, Natarajan; Awan, Farrukh T

    2016-01-01

    Natural killer (NK)-cell count is predictive of chronic lymphoid leukemia (CLL) disease progression and their dysfunction is well documented, but the etiology of this is currently lacking. CLL cells have been shown to over-express HLA-E, the natural ligand for NKG2A expressed on NK-cells that generates a distinct negative signal relative to direct NK-cell cytotoxicity in other disease models. Utilizing a novel anti-NKG2A monoclonal blocking antibody (mAb), monalizumab, we explored the in vitro preclinical activity of targeting the NKG2A receptor, and the NKG2A/HLA-E interaction as a mechanism of tumor evasion in CLL patients. Our work confirmed overexpression of HLA-E on CLL B-cells and demonstrated NKG2A expression on CD56+/16+ NK-cells from CLL patients. We also demonstrate that blocking NKG2A on CLL NK-cells was sufficient to restore direct cytotoxicity ability of NK-cells against HLA-E-expressing targets without impacting NK-cell mediated antibody-dependent cellular cytotoxicity. Additionally, we proved the specificity of monalizumab in blocking NKG2A through Fc-blocking mechanisms. This paper provides justification for the potential clinical utility of monalizumab in the treatment of patients with CLL.

  9. NKp80 Defines a Critical Step during Human Natural Killer Cell Development.

    PubMed

    Freud, Aharon G; Keller, Karen A; Scoville, Steven D; Mundy-Bosse, Bethany L; Cheng, Stephanie; Youssef, Youssef; Hughes, Tiffany; Zhang, Xiaoli; Mo, Xiaokui; Porcu, Pierluigi; Baiocchi, Robert A; Yu, Jianhua; Carson, William E; Caligiuri, Michael A

    2016-07-12

    Human natural killer (NK) cells develop in secondary lymphoid tissues (SLTs) through distinct stages. We identified two SLT lineage (Lin)(-)CD34(-)CD117(+/-)CD94(+)CD16(-) "stage 4" subsets according to expression of the C-type lectin-like surface-activating receptor, NKp80: NKp80(-) (stage "4a") and NKp80(+) (stage "4b"). Whereas stage 4b cells expressed more of the transcription factors T-BET and EOMES, produced interferon-gamma, and were cytotoxic, stage 4a cells expressed more of the transcription factors RORγt and AHR and produced interleukin-22, similar to SLT Lin(-)CD34(-)CD117(+)CD94(-)CD16(-) "stage 3" cells, whose phenotype overlaps with that of group 3 innate lymphoid cells (ILC3s). Co-culture with dendritic cells or transplantation into immunodeficient mice produced mature NK cells from stage 3 and stage 4a populations. These data identify NKp80 as a marker of NK cell maturity in SLTs and support a model of human NK cell development through a stage 4a intermediate with ILC3-associated features.

  10. Inhibition of human natural killer cell functional activity by human aspartyl β-hydroxylase.

    PubMed

    Huyan, Ting; Li, Qi; Ye, Lin-Jie; Yang, Hui; Xue, Xiao-Ping; Zhang, Ming-Jie; Huang, Qing-Sheng; Yin, Da-Chuan; Shang, Peng

    2014-12-01

    Natural killer (NK) cells are a key component of the innate immune system and play pivotal roles as inflammatory regulators and in tumor surveillance. Human aspartyl β-hydroxylase (HAAH) is a plasma membrane and endoplasmic reticulum protein with hydroxylation activity, which is over-expressed in many malignant neoplasms and can be detected from the sera of tumor patients. HAAH is involved in regulating tumor cell infiltration and metastasis. Escaping from immune surveillance may help tumor cell infiltration and metastasis. However, the effects of HAAH on tumor immune surveillance have not yet been investigated carefully. The present study investigated the potential use of HAAH as an immune regulator of human NK cells. We assessed the effects of recombinant HAAH (r-HAAH) on primary human NK cell morphology, viability, cytotoxicity, apoptosis, receptors expression and cytokine/cytolytic proteins production. Our results demonstrated that r-HAAH negatively affects NK cell activity in a time and dose-dependent manner. It noticeably reduces the viability of the NK cells by increasing apoptosis and necrosis via caspase signaling pathways. Moreover, r-HAAH reduces the NK cell cytotoxicity by inhibiting surface expression of NKG2D, NKp44 and IFN-γ secretion. These findings suggest that one of the ways by which HAAH actively promotes tumor formation and proliferation is by inhibiting NK cell-surveillance activity.

  11. Tumor necrosis factor-{alpha} enhances IL-15-induced natural killer cell differentiation

    SciTech Connect

    Lee, Jiwon; Lee, Suk Hyung; Shin, Nara; Jeong, Mira; Kim, Mi Sun; Kim, Mi Jeong; Yoon, Suk Ran; Chung, Jin Woong; Kim, Tae-Don; Choi, Inpyo

    2009-09-04

    The differentiation of natural killer (NK) cells is regulated by various factors including soluble growth factors and transcription factors. Here, we have demonstrated that tumor necrosis factor-{alpha} (TNF-{alpha}) is a positive regulator of NK cell differentiation. TNF-{alpha} augmented the IL-15-induced expression of NK1.1 and CD122 in mature NK cells, and TNF-{alpha} alone also induced NK cell maturation as well as IL-15. TNF-{alpha} also increased IFN-{gamma} production in NK cells in the presence of IL-15. Meanwhile, mRNA expression of several transcription factors, including T-bet and GATA-3, was increased by the addition of TNF-{alpha} and IL-15. In addition, TNF-{alpha} increased nuclear factor-kappa B (NF-{kappa}B) activity in NK cells and inhibition of NF-{kappa}B impeded TNF-{alpha}-enhanced NK cell maturation. Overall, these data suggest that TNF-{alpha} significantly increased IL-15-driven NK cell differentiation by increasing the expression of transcription factors that play crucial roles in NK cell maturation and inducing the NF-{kappa}B activity.

  12. Multifunctional human CD56low CD16low natural killer cells are the prominent subset in bone marrow of both healthy pediatric donors and leukemic patients

    PubMed Central

    Stabile, Helena; Nisti, Paolo; Morrone, Stefania; Pagliara, Daria; Bertaina, Alice; Locatelli, Franco; Santoni, Angela; Gismondi, Angela

    2015-01-01

    We phenotypically and functionally characterized a distinct CD56low natural killer cell subset based on CD16 expression levels in bone marrow and peripheral blood of healthy children and pediatric patients with acute lymphoblastic leukemia. Our findings demonstrate for the first time that CD56lowCD16low natural killer cells are more abundant in bone marrow than in peripheral blood and that their frequency is further increased in children with acute lymphoblastic leukemia. Bone marrow and peripheral blood CD56lowCD16low natural killer cells compared with CD56lowCD16high natural killer cells express lower levels of killer inhibitory receptors, higher levels of CD27, CD127, CD122, CD25, but undetectable levels of CD57, suggesting that they have a higher proliferative and differentiation potential. Moreover, CD56lowCD16low natural killer cells display higher levels of CXCR4 and undetectable levels of CX3CR1 and can be consistently and rapidly mobilized in peripheral blood in response to CXCR4 antagonist. Unlike CD56lowCD16high, both bone marrow and peripheral blood CD56lowCD16low natural killer cells release IFNγ following cytokine stimulation, and represent the major cytotoxic natural killer cell population against K562 or acute lymphoblastic leukemia target cells. All these data suggest that CD56lowCD16low natural killer cells are multifunctional cells, and that the presence of hematologic malignancies affects their frequency and functional ability at both tumor site and in the periphery. PMID:25596273

  13. Multifunctional human CD56 low CD16 low natural killer cells are the prominent subset in bone marrow of both healthy pediatric donors and leukemic patients.

    PubMed

    Stabile, Helena; Nisti, Paolo; Morrone, Stefania; Pagliara, Daria; Bertaina, Alice; Locatelli, Franco; Santoni, Angela; Gismondi, Angela

    2015-04-01

    We phenotypically and functionally characterized a distinct CD56(low) natural killer cell subset based on CD16 expression levels in bone marrow and peripheral blood of healthy children and pediatric patients with acute lymphoblastic leukemia. Our findings demonstrate for the first time that CD56(low)CD16(low) natural killer cells are more abundant in bone marrow than in peripheral blood and that their frequency is further increased in children with acute lymphoblastic leukemia. Bone marrow and peripheral blood CD56(low)CD16(low) natural killer cells compared with CD56(low)CD16(high) natural killer cells express lower levels of killer inhibitory receptors, higher levels of CD27, CD127, CD122, CD25, but undetectable levels of CD57, suggesting that they have a higher proliferative and differentiation potential. Moreover, CD56(low)CD16(low) natural killer cells display higher levels of CXCR4 and undetectable levels of CX3CR1 and can be consistently and rapidly mobilized in peripheral blood in response to CXCR4 antagonist. Unlike CD56(low)CD16(high), both bone marrow and peripheral blood CD56(low)CD16(low) natural killer cells release IFNγ following cytokine stimulation, and represent the major cytotoxic natural killer cell population against K562 or acute lymphoblastic leukemia target cells. All these data suggest that CD56(low)CD16(low) natural killer cells are multifunctional cells, and that the presence of hematologic malignancies affects their frequency and functional ability at both tumor site and in the periphery.

  14. Physiology of natural killer cells. In vivo regulation of progenitors by interleukin 3

    SciTech Connect

    Kalland, T.

    1987-12-01

    Adoptive transfer of bone marrow cells to syngeneic lethally irradiated C57BL/6 mice was used to study the maturation of natural killer (NK) cells from their progenitors. The NK progenitor cell was found to be asialomonoganglioside-negative, (aGM1-) Thy-1-, NK-1-, Ly-1-, Ly-2-, and L3T4-. The NK cells emerging from the bone marrow grafts were aGM1+, NK-1+, Thy-1+/-, Ly-1-, Ly-2-, and L3T4- and to have a target specter similar to that of NK cells isolated from the spleen of normal mice. The regulatory role of interleukin 2 (IL-2) and interleukin 3 (IL-3) for the maturation of NK cells was examined by exposure of the bone marrow cells to the lymphokines in vitro before bone marrow grafting or by treatment of bone marrow-grafted mice with lymphokines through s.c. implanted miniosmotic pumps. IL-3 antagonized the IL-2-induced maturation of NK cells in vitro and strongly inhibited the generation of NK cells after adoptive transfer of bone marrow cells in vivo. The suppressive effect of IL-3 was evident throughout the treatment period (8 or 16 days) but was apparently reversible because NK activity returned to control levels within 8 days after cessation of treatment. The inhibition of cytotoxic activity was accompanied by a reduced appearance of cells with the NK phenotypic markers aGM1 or NK-1, indicating that not only the cytotoxic activity of NK cells but also their actual formation was inhibited. Concomitantly, a moderate increase in cells expressing the T cell marker L3T4 and an increased proliferative response to the T cell mitogen concanavalin A was observed. A direct estimate of the effect of IL-3 on the frequency of NK cell progenitors was obtained by limiting dilution analysis of bone marrow cells at day 8 after bone marrow transplantation.

  15. Report From the First and Second Spanish Killer Immunoglobulin-Like Receptor Genotyping Workshops: External Quality Control for Natural Killer Alloreactive Donor Selection in Haploidentical Stem Cell Transplantation.

    PubMed

    Planelles, D; Vilches, C; González-Escribano, F; Muro, M; González-Fernández, R; Sánchez, F; Gonzalo Ocejo, J; Eiras, A; Caro, J L; Palou, E; Campillo, J A; de Juan, M D; Montes, O; Balas, A; Marín, L; Torío, A; Fernández-Arquero, M; González-Roiz, C; López-Vázquez, A; Cisneros, E; Abad-Molina, C; López, R; Abad-Alastruey, M L; Serra, C; García-Alonso, A M; Vicario, J L

    2016-11-01

    An important factor affecting the success in the setting of related haploidentical hematopoietic stem cell transplantation (HSCT) is the graft-versus-leukemia effect mediated by natural killer (NK) cells when the donor displays NK alloreactivity versus the recipient. NK cell function is regulated by killer immunoglobulin-like receptors (KIR) and it has been described that donor KIR genotype influences transplantation outcome. This has led to a requirement of laboratories to have a quality assurance program for validation and control of their KIR genotyping methods. The goal of the 1st and 2nd Spanish KIR Genotyping Workshops was to provide an external proficiency testing program in KIR genotyping for Spanish immunology and transplant laboratories. These workshops were conducted during the years 2014-2016 and consisted of 17 participating laboratories typing a set of 20 samples. The presence/absence of 16 mandatory KIR loci (2DL1, 2DL2, 2DL3, 2DL4, 2DL5, 2DS1, 2DS2, 2DS3, 2DS4, 2DS5, 2DP1, 3DL1, 3DL2, 3DL3, 3DS1, and 3DP1) was evaluated per sample. Methods for KIR genotyping included polymerase chain reaction with the use of sequence-specific primers and sequence-specific oligoprobes. Consensus typing was reached in all samples, and the performance of laboratories in external proficiency testing was satisfactory in all cases. The polymorphism detected in the small sample studied in both workshops is indicative of an ample variety of KIR gene profiles in the Spanish population.

  16. Occurrence of Nodular Lymphocyte-Predominant Hodgkin Lymphoma in Hermansky-Pudlak Type 2 Syndrome Is Associated to Natural Killer and Natural Killer T Cell Defects

    PubMed Central

    Moratto, Daniele; Porta, Fulvio; Notarangelo, Lucia D.; Patrizi, Ornella; Sozzani, Silvano; de Saint Basile, Genevieve; Latour, Sylvain; Pace, David; Lonardi, Silvia; Facchetti, Fabio; Badolato, Raffaele; Parolini, Silvia

    2013-01-01

    Hermansky Pudlak type 2 syndrome (HPS2) is a rare autosomal recessive primary immune deficiency caused by mutations on β3A gene (AP3B1 gene). The defect results in the impairment of the adaptor protein 3 (AP-3) complex, responsible for protein sorting to secretory lysosomes leading to oculo-cutaneous albinism, bleeding disorders and immunodeficiency. We have studied peripheral blood and lymph node biopsies from two siblings affected by HPS2. Lymph node histology showed a nodular lymphocyte predominance type Hodgkin lymphoma (NLPHL) in both HPS2 siblings. By immunohistochemistry, CD8 T-cells from HPS2 NLPHL contained an increased amount of perforin (Prf) + suggesting a defect in the release of this granules-associated protein. By analyzing peripheral blood immune cells we found a significant reduction of circulating NKT cells and of CD56brightCD16− Natural Killer (NK) cells subset. Functionally, NK cells were defective in their cytotoxic activity against tumor cell lines including Hodgkin Lymphoma as well as in IFN-γ production. This defect was associated with increased baseline level of CD107a and CD63 at the surface level of unstimulated and IL-2-activated NK cells. In summary, these results suggest that a combined and profound defect of innate and adaptive effector cells might explain the susceptibility to infections and lymphoma in these HPS2 patients. PMID:24302998

  17. Optimal effector functions in human natural killer cells rely upon autocrine bone morphogenetic protein signaling

    PubMed Central

    Mc Alpine, Tristan; Wei, Heng; Martínez, Víctor G.; Entrena, Ana; Melen, Gustavo J; MacDonald, Andrew S.; Phythian-Adams, Alexander; Sacedón, Rosa; Maraskovsky, Eugene; Cebon, Jonathan; Ramírez, Manuel

    2014-01-01

    Natural killer (NK) cells are critical for innate tumor immunity due to their specialized ability to recognize and kill neoplastically transformed cells. However, NK cells require a specific set of cytokine-mediated signals to achieve optimal effector function. Th1-associated cytokines promote effector functions which are inhibited by the prototypic Th-2 cytokine IL-4 and the TGF-β superfamily members TGF-β1 and activin-A. Interestingly, the largest subgroup of the TGF-β superfamily are the bone morphogenetic proteins (BMP), but the effects of BMP signaling to NK cell effector functions have not been evaluated. Here we demonstrate that blood-circulating NK cells express type I and II BMP receptors, BMP-2 and BMP-6 ligands, and phosphorylated isoforms of Smad-1/-5/-8 which mediate BMP family member signaling. In opposition to the inhibitory effects of TGF-β1 or activin-A, autocrine BMP signaling was supportive to NK cell function. Mechanistic investigations in cytokine and TLR-L activated NK cells revealed that BMP signaling optimized IFN-γ and global cytokine and chemokine production; phenotypic activation and proliferation; autologous DC activation and target cytotoxicity. Collectively, our findings identify a novel auto-activatory pathway that is essential for optimal NK cell effector function, one which might be therapeutically manipulated to help eradicate tumors. PMID:25038228

  18. Ezh2 regulates differentiation and function of natural killer cells through histone methyltransferase activity

    PubMed Central

    Yin, Jie; Leavenworth, Jianmei W.; Li, Yang; Luo, Qi; Xie, Huafeng; Liu, Xinhua; Huang, Shan; Yan, Han; Fu, Zheng; Zhang, Liyun Y.; Zhang, Litao; Hao, Junwei; Wu, Xudong; Deng, Xianming; Roberts, Charles W. M.; Orkin, Stuart H.; Cantor, Harvey; Wang, Xi

    2015-01-01

    Changes of histone modification status at critical lineage-specifying gene loci in multipotent precursors can influence cell fate commitment. The contribution of these epigenetic mechanisms to natural killer (NK) cell lineage determination from common lymphoid precursors is not understood. Here we investigate the impact of histone methylation repressive marks (H3 Lys27 trimethylation; H3K27me3) on early NK cell differentiation. We demonstrate that selective loss of the histone-lysine N-methyltransferase Ezh2 (enhancer of zeste homolog 2) or inhibition of its enzymatic activity with small molecules unexpectedly increased generation of the IL-15 receptor (IL-15R) CD122+ NK precursors and mature NK progeny from both mouse and human hematopoietic stem and progenitor cells. Mechanistic studies revealed that enhanced NK cell expansion and cytotoxicity against tumor cells were associated with up-regulation of CD122 and the C-type lectin receptor NKG2D. Moreover, NKG2D deficiency diminished the positive effects of Ezh2 inhibitors on NK cell commitment. Identification of the contribution of Ezh2 to NK lineage specification and function reveals an epigenetic-based mechanism that regulates NK cell development and provides insight into the clinical application of Ezh2 inhibitors in NK-based cancer immunotherapies. PMID:26668377

  19. Ezh2 regulates differentiation and function of natural killer cells through histone methyltransferase activity.

    PubMed

    Yin, Jie; Leavenworth, Jianmei W; Li, Yang; Luo, Qi; Xie, Huafeng; Liu, Xinhua; Huang, Shan; Yan, Han; Fu, Zheng; Zhang, Liyun Y; Zhang, Litao; Hao, Junwei; Wu, Xudong; Deng, Xianming; Roberts, Charles W M; Orkin, Stuart H; Cantor, Harvey; Wang, Xi

    2015-12-29

    Changes of histone modification status at critical lineage-specifying gene loci in multipotent precursors can influence cell fate commitment. The contribution of these epigenetic mechanisms to natural killer (NK) cell lineage determination from common lymphoid precursors is not understood. Here we investigate the impact of histone methylation repressive marks (H3 Lys27 trimethylation; H3K27(me3)) on early NK cell differentiation. We demonstrate that selective loss of the histone-lysine N-methyltransferase Ezh2 (enhancer of zeste homolog 2) or inhibition of its enzymatic activity with small molecules unexpectedly increased generation of the IL-15 receptor (IL-15R) CD122(+) NK precursors and mature NK progeny from both mouse and human hematopoietic stem and progenitor cells. Mechanistic studies revealed that enhanced NK cell expansion and cytotoxicity against tumor cells were associated with up-regulation of CD122 and the C-type lectin receptor NKG2D. Moreover, NKG2D deficiency diminished the positive effects of Ezh2 inhibitors on NK cell commitment. Identification of the contribution of Ezh2 to NK lineage specification and function reveals an epigenetic-based mechanism that regulates NK cell development and provides insight into the clinical application of Ezh2 inhibitors in NK-based cancer immunotherapies.

  20. Interferon-γ-Mediated Natural Killer Cell Activation by an Aqueous Panax ginseng Extract

    PubMed Central

    Takeda, Kazuyoshi; Okumura, Ko

    2015-01-01

    Panax ginseng extracts are used in traditional herbal medicines, particularly in eastern Asia, but their effect on natural killer (NK) cell activity is not completely understood. This study aimed to examine the effects of P. ginseng extracts on the cytotoxic activity of NK cells. We orally administered P. ginseng extracts or ginsenosides to wild-type (WT) C57BL/6 (B6) and BALB/c mice and to B6 mice deficient in either recombination activating gene 2 (RAG-2) or interferon-γ (IFN-γ). We then tested the cytotoxic activity of NK cells (of spleen and liver mononuclear cells) against NK-sensitive YAC-1 cells. Oral administration of P. ginseng aqueous extract augmented the cytotoxicity of NK cells in WT B6 and BALB/c mice and in RAG-2-deficient B6 mice, but not in IFN-γ-deficient B6 mice. This effect was only observed with the aqueous extract of P. ginseng. Interestingly, the ginsenosides Rb1 and Rg1 did not augment NK cell cytotoxicity. These results demonstrated that the aqueous P. ginseng extract augmented NK cell activation in vivo via an IFN-γ-dependent pathway. PMID:26649061

  1. Luminescent-Activated Transfected Killer Cells to Monitor Leukocyte Trafficking During Systemic Bacterial and Fungal Infection

    PubMed Central

    Lin, Lin; Ibrahim, Ashraf S.; Baquir, Beverlie; Palosaari, Andrew

    2012-01-01

    Background. Activated transfected killer (ATAK) cells are immortal phagocytes transfected with a luminescence reporter that effectively treat lethal infections in neutropenic mice. Their in vivo trafficking, lifespan, and immunogenicity are unknown. Methods. Mice were made neutropenic; infected or not with Staphylococcus aureus, Acinetobacter baumannii, Candida albicans, or Aspergillus fumigatus; and treated intraperitoneally with ATAK cells. Cell trafficking and lifespan were assessed by in vivo imaging and reverse transcription–polymerase chain reaction. Results. In uninfected neutropenic mice, ATAK cells spread from the mesentery into visceral organs on days 1–3. Splenic accumulation of ATAK cells increased at day 1 after infection with S. aureus and A. baumannii, and kidney accumulation increased in mice infected with C. albicans. Lung accumulation was seen at day 3 in mice infected by inhalation with A. fumigatus. By day 8, coincident with increasing anti-ATAK antibodies, luminescence signal was lost and there was no detectable mRNA transcription from ATAK cells. Conclusions. ATAK cells accumulated in target organs with distinct profiles, depending on the microbial etiology of infection. Finally, generation of an anti-ATAK immune response may provide an important safety mechanism that helps clear the cells from the host as the marrow recovers. PMID:22124127

  2. Natural Killer Cell Evasion Is Essential for Infection by Rhesus Cytomegalovirus

    PubMed Central

    Sturgill, Elizabeth R.; Malouli, Daniel; Hansen, Scott G.; Burwitz, Benjamin J.; Schneider, Christine L.; Womack, Jennie L.; Verweij, Marieke C.; Ventura, Abigail B.; Bhusari, Amruta; Jeffries, Krystal M.; Legasse, Alfred W.; Axthelm, Michael K.; Hudson, Amy W.; Sacha, Jonah B.; Picker, Louis J.; Früh, Klaus

    2016-01-01

    The natural killer cell receptor NKG2D activates NK cells by engaging one of several ligands (NKG2DLs) belonging to either the MIC or ULBP families. Human cytomegalovirus (HCMV) UL16 and UL142 counteract this activation by retaining NKG2DLs and US18 and US20 act via lysomal degradation but the importance of NK cell evasion for infection is unknown. Since NKG2DLs are highly conserved in rhesus macaques, we characterized how NKG2DL interception by rhesus cytomegalovirus (RhCMV) impacts infection in vivo. Interestingly, RhCMV lacks homologs of UL16 and UL142 but instead employs Rh159, the homolog of UL148, to prevent NKG2DL surface expression. Rh159 resides in the endoplasmic reticulum and retains several NKG2DLs whereas UL148 does not interfere with NKG2DL expression. Deletion of Rh159 releases human and rhesus MIC proteins, but not ULBPs, from retention while increasing NK cell stimulation by infected cells. Importantly, RhCMV lacking Rh159 cannot infect CMV-naïve animals unless CD8+ cells, including NK cells, are depleted. However, infection can be rescued by replacing Rh159 with HCMV UL16 suggesting that Rh159 and UL16 perform similar functions in vivo. We therefore conclude that cytomegaloviral interference with NK cell activation is essential to establish but not to maintain chronic infection. PMID:27580123

  3. The proinflammatory cytokine interleukin-18 alters multiple signaling pathways to inhibit natural killer cell death

    USGS Publications Warehouse

    Hodge, D.L.; Subleski, J.J.; Reynolds, D.A.; Buschman, M.D.; Schill, W.B.; Burkett, M.W.; Malyguine, A.M.; Young, H.A.

    2006-01-01

    The proinflammatory cytokine, interleukin-18 (IL-18), is a natural killer (NK) cell activator that induces NK cell cytotoxicity and interferon-?? (IFN-??) expression. In this report, we define a novel role for IL-18 as an NK cell protective agent. Specifically, IL-18 prevents NK cell death initiated by different and distinct stress mechanisms. IL-18 reduces NK cell self-destruction during NK-targeted cell killing, and in the presence of staurosporin, a potent apoptotic inducer, IL-18 reduces caspase-3 activity. The critical regulatory step in this process is downstream of the mitochondrion and involves reduced cleavage and activation of caspase-9 and caspase-3. The ability of IL-18 to regulate cell survival is not limited to a caspase death pathway in that IL-18 augments tumor necrosis factor (TNF) signaling, resulting in increased and prolonged mRNA expression of c-apoptosis inhibitor 2 (cIAP2), a prosurvival factor and caspase-3 inhibitor, and TNF receptor-associated factor 1 (TRAF1), a prosurvival protein. The cumulative effects of IL-18 define a novel role for this cytokine as a molecular survival switch that functions to both decrease cell death through inhibition of the mitochondrial apoptotic pathway and enhance TNF induction of prosurvival factors. ?? Mary Ann Liebert, Inc.

  4. Selective Blockade of Human Natural Killer Cells by a Monoclonal Antibody

    NASA Astrophysics Data System (ADS)

    Newman, Walter

    1982-06-01

    A murine monoclonal antibody, 13.1, which blocks human natural killer (NK) cell-mediated lysis, has been developed. Hybridoma 13.1 was derived by fusion of NS-1 cells with spleen cells from mice immunized with an enriched population of NK cells. Supernatants of growing hybridomas were screened for their ability to block NK cell-mediated lysis of K562 targets. Antibody 13.1 is an IgG1 with a single light chain type and it does not fix complement. The 13.1 antigen is expressed on all peripheral blood mononuclear cells, with an antigen density approximately 1/30th that of HLA antigen heavy chain. Pretreatment and washing experiments revealed that inhibition of cytotoxicity occurred at the effector cell level only. Significant blocking was achieved with nanogram quantities of antibody and was not due to toxic effects on NK cells. Likewise, controls with other antibodies of the same subclass demonstrated that blocking was not a consequence of mere binding to NK cells. When a panel of 17 NK cell-susceptible targets was tested, the lysis of only 5 of these was blocked, namely K562, HL-60, KG-1, Daudi, and HEL, a human erythroleukemic cell line. The lysis of 12 human B cell and T cell line targets was not inhibited. In addition to the demonstration that the 13.1 antigen is a crucial cell surface structure involved in NK lysis, a heterogeneity of target cell recognition has been revealed that argues for the proposition that individual NK cells have multiple recognitive capabilities.

  5. Regulation of human natural killer cell migration and proliferation by the exodus subfamily of CC chemokines.

    PubMed

    Robertson, M J; Williams, B T; Christopherson, K; Brahmi, Z; Hromas, R

    2000-01-10

    Natural killer (NK) cells play an important role in innate and adaptive immune responses to obligate intracellular pathogens. Nevertheless, the regulation of NK cell trafficking and migration to inflammatory sites is poorly understood. Exodus-1/MIP-3alpha/LARC, Exodus-2/6Ckine/SLC, and Exodus-3/MIP-3beta/ELC/CKbeta-11 are CC chemokines that share a unique aspartate-cysteine-cysteine-leucine motif near their amino terminus and preferentially stimulate the migration of T lymphocytes. The effects of Exodus chemokines on human NK cells were examined. Exodus-1, -2, and -3 did not induce detectable chemotaxis of resting peripheral blood NK cells. In contrast, Exodus-2 and -3 stimulated migration of polyclonal activated peripheral blood NK cells in a dose-dependent fashion. Exodus-2 and -3 also induced dose-dependent chemotaxis of NKL, an IL-2-dependent human NK cell line. Results of modified checkerboard assays indicate that migration of NKL cells in response to Exodus-2 and -3 represents true chemotaxis and not simply chemokinesis. Exodus-1, -2, and -3 did not induce NK cell proliferation in the absence of other stimuli. Nevertheless, Exodus-2 and -3 significantly augmented IL-2-induced proliferation of normal human CD56(dim) NK cells. In contrast, Exodus-1, -2, and -3 did not affect the cytolytic activity of resting or activated peripheral blood NK cells. Expression of message for CCR7, a shared receptor for Exodus-2 and -3, was detected in activated polyclonal NK cells and NKL cells but not resting NK cells. Taken together, these results indicate that Exodus-2 and -3 can participate in the recruitment and proliferation of activated NK cells. Exodus-2 and -3 may regulate interactions between T cells and NK cells that are crucial for the generation of optimal immune responses.

  6. Beta 2-adrenergic stimulation causes detachment of natural killer cells from cultured endothelium.

    PubMed

    Benschop, R J; Oostveen, F G; Heijnen, C J; Ballieux, R E

    1993-12-01

    Physical exercise, mental stress, or infusion of beta-adrenergic agonists result in an increase in the number of natural killer (NK) cells in the peripheral circulation. In view of the specific migration pattern of NK cells in vivo, it has been suggested that these cells may be released from the marginating pool in blood vessels. In the present report, the in vitro effect of catecholamines on the adhesion of NK cells to unstimulated human endothelial cells (EC) was characterized. Peripheral blood mononuclear cells were allowed to adhere to monolayers of EC, after which the adherent lymphocyte fraction was analyzed phenotypically by flow cytometry. NK cells were found to adhere preferentially to EC, a process that was reversed by the addition of various adrenergic agonists. Catecholamines selectively affected adhesion of NK cells and had no effect on T cell adhesion to EC, as was determined by the use of purified cell populations. Detachment of NK cells from EC could be achieved by short incubations (5 min) with epinephrine (EPI) and was concentration-dependent, with an ED50 of 2 x 10(-10)M. Using a panel of alpha- and beta-adrenergic agonists and antagonists, we show that the detachment of NK cells is mediated via beta 2-adrenergic receptors. In line with the lower affinity for beta 2-adrenergic receptors, norepinephrine was less effective than EPI in inducing detachment of NK cells from EC. Direct activation of adenylate-cyclase with forskolin gave similar results as observed with EPI, indicating that signaling through cAMP is necessary to induce detachment of NK cells from EC. The results of the present study lend support to the hypothesis that catecholamines, via beta 2-adrenergic receptors, can induce recruitment of NK cells from the marginating pool to the circulating pool, by changing the adhesive interactions between NK cells and EC.

  7. Killer Treg cells ameliorate inflammatory insulitis in non-obese diabetic mice through local and systemic immunomodulation.

    PubMed

    Kaminitz, Ayelet; Yolcu, Esma S; Mizrahi, Keren; Shirwan, Haval; Askenasy, Nadir

    2013-08-01

    Treg cells endowed with enhanced killing activity through decoration with Fas-ligand (FasL) protein (killer Treg) have been effective in delay of hyperglycemia in prediabetic non-obese diabetic (NOD) mice. In this study, we assessed the therapeutic efficacy of these cells, harvested from age-matched euglycemic NOD donors, on the course of disease in new-onset diabetics. One dose of 4 × 10(6) killer Treg cells stabilized blood glucose associated with increased insulin levels in 5 of 9 mice and partially reversed the severity of islet inflammation, whereas naive Treg cells did not modulate the course of disease significantly. Killer Treg cells were shown to operate through induction of cell apoptosis within the pancreatic lymph nodes, resulting in reduced efficiency of adoptive disease transfer to NOD/SCID recipients. A second mechanism of action consisted of increased fractions of CD4(+)CD25(-)FoxP3(+) T cells in the pancreas and all lymphoid organs. Immunomodulation with FasL rather than Treg cells enhanced the expression of CD25 and FoxP3 in the thymus, suggesting a possible contribution of thymic output to prolonged stabilization of the glucose levels. Autologous Treg cells evolve as excellent vehicles for targeted delivery of FasL as an immunomodulatory protein, which delete pathogenic cells at the site of inflammation and induce systemic dominance of suppressor subsets.

  8. Natural killer cells produce T cell-recruiting chemokines in response to antibody-coated tumor cells.

    PubMed

    Roda, Julie M; Parihar, Robin; Magro, Cynthia; Nuovo, Gerard J; Tridandapani, Susheela; Carson, William E

    2006-01-01

    In the current report, we have examined the ability of natural killer (NK) cells to produce T cell-recruiting chemokines following dual stimulation with interleukin (IL)-2 or IL-12 and human breast cancer cells coated with an antitumor antibody (trastuzumab). NK cells stimulated in this manner secreted an array of T cell-recruiting chemotactic factors, including IL-8, macrophage-derived chemokine, macrophage inflammatory protein 1alpha (MIP-1alpha), monocyte chemoattractant protein 1, and regulated on activation, normal T-cell expressed and secreted (RANTES), whereas stimulation of NK cells with either agent alone had minimal effect. Furthermore, these factors were functional for T-cell chemotaxis as culture supernatants derived from costimulated NK cells induced migration of both naïve and activated T cells in an in vitro chemotaxis assay. T-cell migration was significantly reduced when neutralizing antibodies to IL-8, MIP-1alpha, or RANTES were added to culture supernatants before their use in the chemotaxis assay. In addition, coadministration of trastuzumab-coated tumor cells and IL-12 to mice led to enhanced serum MIP-1alpha. As a clinical correlate, we examined the chemokine content of serum samples from breast cancer patients enrolled on a phase I trial of trastuzumab and IL-12, and found elevated levels of IL-8, RANTES, IFN-gamma inducible protein 10, monokine induced by IFN-gamma, and MIP-1alpha, specifically in those patients that experienced a clinical benefit. Sera from these patients exhibited the ability to direct T-cell migration in a chemotaxis assay, and neutralization of chemokines abrogated this effect. These data are the first to show chemokine production by NK cells, specifically in response to stimulation with antibody-coated tumor cells, and suggest a potential role for NK cell-derived chemokines in patients receiving therapeutic monoclonal antibodies.

  9. Natural killer cells require monocytic Gr-1(+)/CD11b(+) myeloid cells to eradicate orthotopically engrafted glioma cells.

    PubMed

    Baker, Gregory J; Chockley, Peter; Zamler, Daniel; Castro, Maria G; Lowenstein, Pedro R

    2016-06-01

    Malignant gliomas are resistant to natural killer (NK) cell immune surveillance. However, the mechanisms used by these cancers to suppress antitumor NK cell activity remain poorly understood. We have recently reported on a novel mechanism of innate immune evasion characterized by the overexpression of the carbohydrate-binding protein galectin-1 by both mouse and rat malignant glioma. Here, we investigate the cytokine profile of galectin-1-deficient GL26 cells and describe the process by which these tumors are targeted by the early innate immune system in RAG1(-/-) and C57BL/6J mice. Our data reveal that galectin-1 knockdown in GL26 cells heightens their inflammatory status leading to the rapid recruitment of Gr-1(+)/CD11b(+) myeloid cells and NK1.1(+) NK cells into the brain tumor microenvironment, culminating in tumor clearance. We show that immunodepletion of Gr-1(+) myeloid cells in RAG1(-/-) mice permits the growth of galectin-1-deficient glioma despite the presence of NK cells, thus demonstrating an essential role for myeloid cells in the clearance of galectin-1-deficient glioma. Further characterization of tumor-infiltrating Gr-1(+)/CD11b(+) cells reveals that these cells also express CCR2 and Ly-6C, markers consistent with inflammatory monocytes. Our results demonstrate that Gr-1(+)/CD11b(+) myeloid cells, often referred to as myeloid-derived suppressor cells (MDSCs), are required for antitumor NK cell activity against galectin-1-deficient GL26 glioma. We conclude that glioma-derived galectin-1 represents an important factor in dictating the phenotypic behavior of monocytic Gr-1(+)/CD11b(+) myeloid cells. Galectin-1 suppression may be a valuable treatment approach for clinical glioma by promoting their innate immune-mediated recognition and clearance through the concerted effort of innate myeloid and lymphoid cell lineages.

  10. Diversity of killer cell immunoglobulin like receptor genes in the Mongolian population.

    PubMed

    Jiang, Bo; Wang, Aili; Ju, Zhong; Zhang, Yonghong

    2013-06-01

    Killer cell immunoglobulin like receptor (KIR) is highly polymorphic in genotype, haplotype and allele levels. This study was done to investigate KIR genes frequencies, genotypes and inheritance in Mongolian. Gene-specific PCR amplification was used to identify the presence or absence of 16 KIR loci.KIR genotypes were obtained by a KIR genotypes website. The KIR genes frequencies of Mongolian were compared to 24 different populations around the world. The distribution of haplotype B in Mongolian was higher than that in Mongoloid and less than that in Caucasian. Thirty discovered genotypes and five novel genotypes were identified from 1 to 34 individuals. 37.8% of Mongolian carried KIR haplotype AA.Mongolian was exhibited between North Mongoloid and Caucasus by principal component and genetic tree analysis.

  11. Increase in natural killer cell activity following living-related liver transplantation.

    PubMed

    Hirata, M; Kita, Y; Saito, S; Nishimura, M; Ito, M; Mizuta, K; Tanaka, H; Harihara, Y; Kawarasaki, H; Hashizume, K; Makuuchi, M

    1998-01-01

    We monitored the serial changes of natural killer cell (NK) activity in eight recipients of living-related liver transplantation. The HLA types of all eight patients were haplotypically identical with those of their donors. Tacrolimus and methylprednisolone were used for immunosuppression. The NK activity before transplantation was 24.1 +/- 20.2% which is surprisingly low when compared with the value for normal individuals (67.7 +/- 13.2%, P < 0.01) or a liver dysfunction group (49.4 +/- 21.9%, P < 0.05). Serial changes in NK activity revealed a minimum of 6.1 +/- 3.6% 1 week after transplantation, gradually increasing to 49.2 +/- 12.5% at 2 months after transplantation. These results suggest that the diseased liver might play an important role in the suppression of NK activity.

  12. CD20-Positive nodal natural killer/T-cell lymphoma with cutaneous involvement.

    PubMed

    Tsai, Yi-Chiun; Chen, Chi-Kuan; Wu, Yu-Hung

    2015-09-01

    CD20-positive natural killer (NK)/T-cell lymphoma is extremely rare. We describe a case of a CD20-positive nodal NK/T-cell lymphoma with cutaneous involvement in a 32-year-old man. The patient presented with fever, night sweats, right inguinal lymphadenopathy and multiple violaceous to erythematous nodules and plaques on the back and bilateral legs. Immunohistochemical analysis showed diffusely and strongly positive staining for CD3, CD3 epsilon, CD43, CD56, TIA-1 and CD20 but negative staining for other B-cell markers, including CD79a and PAX-5 and T-cell markers CD5 and CD7. The tumor cell nuclei were diffusely positive for Epstein-Barr virus-encoded RNA in situ hybridization. A partial clinical response was observed after chemotherapy, indicated by the decreased size of the lymph nodes and skin lesions. It is a diagnostic challenge to deal with lymphoma cells that present with the surface proteins of both T- and B-cells.

  13. Natural killer cell populations in Egyptians infected with hepatitis C virus.

    PubMed

    Rafik, M; Sidhom, G; Mamdouh, R; Ellebedy, D; Mohamed, M

    2012-09-01

    Natural killer (NK) cells are key players in the immune response to viruses. This study examined the effect of hepatitis C virus (HCV) on the frequency of NK cells and their subsets in individuals with different clinical outcomes; 20 positive for anti-HCV and HCV-RNA (chronic hepatitis C), 20 positive for anti-HCV but negative for HCV-RNA (spontaneously resolved) and 20 healthy controls free of HCV. There was a significant reduction in the frequency of total NK cells in the chronic group compared to the control (P = 0.001) or resolved (P = 0.01) groups. The percentage of CD56(bright) cells was significantly higher than the control group (P = 0.04). While the percentages of CD56 (dim) cells and their CD16 expression were lower in the chronic group, this was not statistically significant. The frequency of CD3+CD56- T cells was significantly lower in both the chronic and resolved groups compared to the control group (P = 0.04). Our results confirm a potential role of NK cells and the different subsets in the pathogenesis of chronic HCV infection.

  14. Dibutyltin exposure decreases granzyme B and perforin in human natural killer cells.

    PubMed

    Catlin, Reetta; Shah, Hemangini; Bankhurst, Arthur D; Whalen, Margaret M

    2005-11-01

    Natural killer (NK) cells are a subset of lymphocytes that are capable of killing tumor and virally-infected cells. Dibutyltin (DBT) is a catalyst in the production of PVC plastics and a breakdown product of tributyltin (TBT). DBT is a significant environmental contaminant. This study investigates the mechanism by which DBT exposure decreases the immune function of human NK cells. NK cells destroy their target cells by releasing cytotoxic proteins, perforin, and granzyme B. We examined the effect of DBT exposures on the levels of cytotoxic proteins and their mRNAs. Exposure of NK cells to DBT for 1h caused significant decreases in the mRNAs for granzyme B and perforin but not in protein levels. A 24h exposure to DBT decreased mRNAs as well as protein levels for both granzyme B and perforin. Exposure to DBT for 1h followed by either a 24 or 48h period in DBT-free media, decreased levels of granzyme B and perforin. The results indicate that decreases in granzyme B and perforin levels in NK cells are consequences of DBT exposure. Additionally, DBT causes rapid decreases in mRNAs for perforin and granzyme B, suggesting decreases in transcription and/or increases in mRNA degradation.

  15. Carbohydrate specificity of the recognition of diverse glycolipids by natural killer T cells.

    PubMed

    Zajonc, Dirk M; Kronenberg, Mitchell

    2009-07-01

    Most T lymphocytes recognize peptide antigens bound to or presented by molecules encoded in the major histocompatibility complex (MHC). The CD1 family of antigen-presenting molecules is related to the MHC-encoded molecules, but CD1 proteins present lipid antigens, mostly glycolipids. Here we review T-lymphocyte recognition of glycolipids, with particular emphasis on the subpopulation known as natural killer T (NKT) cells. NKT cells influence many immune responses, they have a T-cell antigen receptor (TCR) that is restricted in diversity, and they share properties with cells of the innate immune system. NKT cells recognize antigens presented by CD1d with hexose sugars in alpha-linkage to lipids, although other, related antigens are known. The hydrophobic alkyl chains are buried in the CD1d groove, with the carbohydrate exposed for TCR recognition, together with the surface of the CD1d molecule. Therefore, understanding the biochemical basis for antigen recognition by NKT cells requires an understanding of how the trimolecular complex of CD1d, glycolipid, and the TCR is formed, which is in part a problem of carbohydrate recognition by the TCR. Recent investigations from our laboratories as well as studies from other groups have provided important information on the structural basis for NKT-cell specificity.

  16. HIV Latency-Reversing Agents Have Diverse Effects on Natural Killer Cell Function

    PubMed Central

    Garrido, Carolina; Spivak, Adam M.; Soriano-Sarabia, Natalia; Checkley, Mary Ann; Barker, Edward; Karn, Jonathan; Planelles, Vicente; Margolis, David M.

    2016-01-01

    In an effort to clear persistent HIV infection and achieve a durable therapy-free remission of HIV disease, extensive pre-clinical studies and early pilot clinical trials are underway to develop and test agents that can reverse latent HIV infection and present viral antigen to the immune system for clearance. It is, therefore, critical to understand the impact of latency-reversing agents (LRAs) on the function of immune effectors needed to clear infected cells. We assessed the impact of LRAs on the function of natural killer (NK) cells, the main effector cells of the innate immune system. We studied the effects of three histone deacetylase inhibitors [SAHA or vorinostat (VOR), romidepsin, and panobinostat (PNB)] and two protein kinase C agonists [prostratin (PROST) and ingenol] on the antiviral activity, cytotoxicity, cytokine secretion, phenotype, and viability of primary NK cells. We found that ex vivo exposure to VOR had minimal impact on all parameters assessed, while PNB caused a decrease in NK cell viability, antiviral activity, and cytotoxicity. PROST caused non-specific NK cell activation and, interestingly, improved antiviral activity. Overall, we found that LRAs can alter the function and fate of NK cells, and these effects must be carefully considered as strategies are developed to clear persistent HIV infection. PMID:27708642

  17. Synthetic glycolipid activators of natural killer T cells as immunotherapeutic agents.

    PubMed

    Carreño, Leandro J; Saavedra-Ávila, Noemí A; Porcelli, Steven A

    2016-04-01

    Certain types of glycolipids have been found to have remarkable immunomodulatory properties as a result of their ability to activate specific T lymphocyte populations with an extremely wide range of immune effector properties. The most extensively studied glycolipid reactive T cells are known as invariant natural killer T (iNKT) cells. The antigen receptors of these cells specifically recognize certain glycolipids, most notably glycosphingolipids with α-anomeric monosaccharides, presented by the major histocompatibility complex class I-like molecule CD1d. Once activated, iNKT cells can secrete a very diverse array of pro- and anti-inflammatory cytokines to modulate innate and adaptive immune responses. Thus, glycolipid-mediated activation of iNKT cells has been explored for immunotherapy in a variety of disease states, including cancer and a range of infections. In this review, we discuss the design of synthetic glycolipid activators for iNKT cells, their impact on adaptive immune responses and their use to modulate iNKT cell responses to improve immunity against infections and cancer. Current challenges in translating results from preclinical animal studies to humans are also discussed.

  18. MicroRNA-155 is a potential molecular marker of natural killer/T-cell lymphoma

    PubMed Central

    Huang, Ruixia; Li, Lifeng; Wang, Xinhua; Li, Ling; Fu, Xiaorui; Sun, Zhenchang; Li, Zhaoming; Chen, Qingjiang; Zhang, Mingzhi

    2016-01-01

    Natural killer/T-cell lymphoma (NKTCL) is characterized by its highly aggressive nature and rapid progression. MicroRNAs (miRNAs) play key roles in the development of NKTCL. We utilized next-generation Solexa high-throughput sequencing to compare miRNA expression in the SNK-6 and YTS NKTCL cell lines with expression in normal NK cells. We found that 195 miRNAs were upregulated in the SNK-6 cells and 286 miRNAs were upregulated in the YTS cells. Based on those results, we selected six miRNAs, including miRNA-155, and confirmed their expression using real-time polymerase chain reaction. Expression of miRNA-155 was higher in SNK-6 and YKS cells than in normal NK cells. We next determined the levels of miRNA-155 in the serum of healthy individuals and NKTCL patients, and correlated its expression with clinical parameters and inflammatory factors detected using enzyme-linked immunoabsorbent assays. Levels of miRNA-155 were higher in NKTCL patients’ serum than in serum from healthy individuals. miRNA-155 expression was higher in patients with stable or progressive disease (SD+PD) than in those with partial or complete remission (PR+CR). While further studies are needed to clarify the underlying molecular mechanisms, it appears miRNA-155 may be a molecular marker of NKTCL. PMID:27462776

  19. The up side of decidual natural killer cells: new developments in immunology of pregnancy

    PubMed Central

    Jabrane-Ferrat, Nabila; Siewiera, Johan

    2014-01-01

    Early phases of human pregnancy are associated with the accumulation of a unique subset of natural killer (NK) cells in the maternal decidua. Decidual NK (dNK) cells that are devoid of cytotoxicity play a pivotal role in successful pregnancy. By secreting large amounts of cytokines/chemokines and angiogenic factors, dNK cells participate in all steps of placentation including trophoblast invasion into the maternal endometrium and vascular remodelling. In this review, we summarize some of dNK cell features and discuss more recent exciting data that challenge the conventional view of these cells. Our new data demonstrate that dNK cells undergo fine tuning or even subvert their classical inhibitory machinery and turn into a real defence force in order to prevent the spread of viruses to fetal tissue. Today it is not clear how these phenotypic and functional adaptations impact cellular cross-talk at the fetal–maternal interface and tissue homeostasis. Ultimately, precise understanding of the molecular mechanisms that govern dNK cell plasticity during congenital human cytomegalovirus infection should lead to the design of more robust strategies to reverse immune escape during viral infection and cancer. PMID:24256296

  20. Imaging burst kinetics and spatial coordination during serial killing by single natural killer cells.

    PubMed

    Choi, Paul J; Mitchison, Timothy J

    2013-04-16

    Cytotoxic lymphocytes eliminate virus-infected and cancerous cells by immune recognition and killing through the perforin-granzyme pathway. Traditional killing assays measure average target cell lysis at fixed times and high effector:target ratios. Such assays obscure kinetic details that might reveal novel physiology. We engineered target cells to report on granzyme activity, used very low effector:target ratios to observe potential serial killing, and performed low magnification time-lapse imaging to reveal time-dependent statistics of natural killer (NK) killing at the single-cell level. Most kills occurred during serial killing, and a single NK cell killed up to 10 targets over a 6-h assay. The first kill was slower than subsequent kills, especially on poor targets, or when NK signaling pathways were partially inhibited. Spatial analysis showed that sequential kills were usually adjacent. We propose that NK cells integrate signals from the previous and current target, possibly by simultaneous contact. The resulting burst kinetics and spatial coordination may control the activity of NK cells in tissues.

  1. Homing of cytokine-induced killer cells during the treatment of acute promyelocytic leukemia.

    PubMed

    Wang, Hong; Cao, Fenglin; Li, Jinmei; Li, Yong; Liu, Xiuhua; Wang, Lifan; Liu, Zhiyu; Li, Yang; Zhao, Hui; Zhou, Jin

    2014-08-01

    Cytokine-induced killer (CIK) cells have been shown to be an effective immunotherapy for malignancies. However, their clinical application has been limited due to lack of knowledge on their in vivo kinesis. In this study, we explored their biodistribution by labeling CIK cells with (18)F-FDG and tracking their in vivo migration by PET/CT imaging. In the nine refractory APL patients enrolled in this study, pre-treatment PET/CT scans revealed leukemia burdens in vertebrae, and the bones of the pelvis and limbs. Post-treatment serial PET/CT tracked the localization of CIK cells over time: at 1 h, the majority of these cells accumulated diffusely in the lungs, while the first minor cell activities were observed in brain, liver and spleen; at 4 and 8 h, they not only migrated to the heart, spleen, and liver, but also showed tendencies to accumulate in bone marrow and brain. This specific cell migration route suggested that CIK cells show in vivo functional kinesis and potency as a targeted immunotherapy. The clinical outcome of this small cohort of nine patients supported the efficacy of this regimen: two patients achieved rapid complete remission after three-cycle treatment, and six patients remained stable, subsequently became sensitive to conventional therapy, and also achieved complete remission.

  2. Serious foetal growth restriction is associated with reduced proportions of natural killer cells in decidua basalis.

    PubMed

    Eide, Irina P; Rolfseng, Toril; Isaksen, Christina V; Mecsei, Reidun; Roald, Borghild; Lydersen, Stian; Salvesen, Kjell A; Harsem, Nina K; Austgulen, Rigmor

    2006-03-01

    Extravillous trophoblasts are major participants in placental development and remodelling of spiral arteries. Trophoblast invasion is regulated by maternal immune cells, and abnormal leucocyte subpopulation composition has been reported in implantation failure. In pre-eclampsia (PE), with or without foetal growth restriction (FGR), superficial trophoblast invasion and insufficient remodelling of spiral arteries are common findings. In the present study, we have compared spiral artery remodelling and leucocyte composition in decidual tissue from 30 cases (PE=8, FGR=5, PE + FGR=17) and 31 controls. Six histological remodelling criteria were established, and each pregnancy obtained a remodelling score. Numbers of natural killer (NK) cells (CD56+), T cells (CD3+) and activated (CD25+ or CD69+) leucocytes were determined and related to total leucocyte (CD45+) numbers in serial sections. Cases demonstrated significantly impaired spiral artery remodelling, inappropriate placental growth and reduced NK cell proportions, as compared to controls (P=0.02, P<0.001 and P=0.01, respectively). Reduced NK cell proportion was primarily found in pregnancies complicated by FGR, with or without PE, and a significant positive correlation was observed between NK cell proportion, trophoblast infiltration and placental growth. Our in vivo observations support the hypothesized association between NK cells, impaired placental development and pathogenesis of PE/FGR.

  3. Enterogenous bacterial glycolipids are required for the generation of natural killer T cells mediated liver injury

    PubMed Central

    Wei, Yingfeng; Zeng, Benhua; Chen, Jianing; Cui, Guangying; Lu, Chong; Wu, Wei; Yang, Jiezuan; Wei, Hong; Xue, Rufeng; Bai, Li; Chen, Zhi; Li, Lanjuan; Iwabuchi, Kazuya; Uede, Toshimitsu; Van Kaer, Luc; Diao, Hongyan

    2016-01-01

    Glycolipids are potent activator of natural killer T (NKT) cells. The relationship between NKT cells and intestinal bacterial glycolipids in liver disorders remained unclear. We found that, in sharp contrast to specific pathogen-free (SPF) mice, germ-free (GF) mice are resistant to Concanavalin A (ConA)-induced liver injury. ConA treatment failed to trigger the activation of hepatic NKT cells in GF mice. These defects correlated with the sharply reduced levels of CD1d-presented glycolipid antigens in ConA-treated GF mice compared with SPF counterparts. Nevertheless, CD1d expression was similar between these two kinds of mice. The absence of intestinal bacteria did not affect the incidence of αGalCer-induced liver injury in GF mice. Importantly, we found the intestinal bacteria contain glycolipids which can be presented by CD1d and recognized by NKT cells. Furthermore, supplement of killed intestinal bacteria was able to restore ConA-mediated NKT cell activation and liver injury in GF mice. Our results suggest that glycolipid antigens derived from intestinal commensal bacteria are important hepatic NKT cell agonist and these antigens are required for the activation of NKT cells during ConA-induced liver injury. These finding provide a mechanistic explanation for the capacity of intestinal microflora to control liver inflammation. PMID:27821872

  4. FHL2 Regulates Natural Killer Cell Development and Activation during Streptococcus pneumoniae Infection

    PubMed Central

    Baranek, Thomas; Morello, Eric; Valayer, Alexandre; Aimar, Rose-France; Bréa, Déborah; Henry, Clemence; Besnard, Anne-Gaelle; Dalloneau, Emilie; Guillon, Antoine; Dequin, Pierre-François; Narni-Mancinelli, Emilie; Vivier, Eric; Laurent, Fabrice; Wei, Yu; Paget, Christophe; Si-Tahar, Mustapha

    2017-01-01

    Recent in silico studies suggested that the transcription cofactor LIM-only protein FHL2 is a major transcriptional regulator of mouse natural killer (NK) cells. However, the expression and role of FHL2 in NK cell biology are unknown. Here, we confirm that FHL2 is expressed in both mouse and human NK cells. Using FHL2−/− mice, we found that FHL2 controls NK cell development in the bone marrow and maturation in peripheral organs. To evaluate the importance of FHL2 in NK cell activation, FHL2−/− mice were infected with Streptococcus pneumoniae. FHL2−/− mice are highly susceptible to this infection. The activation of lung NK cells is altered in FHL2−/− mice, leading to decreased IFNγ production and a loss of control of bacterial burden. Collectively, our data reveal that FHL2 is a new transcription cofactor implicated in NK cell development and activation during pulmonary bacterial infection. PMID:28243234

  5. HIV Latency-Reversing Agents Have Diverse Effects on Natural Killer Cell Function.

    PubMed

    Garrido, Carolina; Spivak, Adam M; Soriano-Sarabia, Natalia; Checkley, Mary Ann; Barker, Edward; Karn, Jonathan; Planelles, Vicente; Margolis, David M

    2016-01-01

    In an effort to clear persistent HIV infection and achieve a durable therapy-free remission of HIV disease, extensive pre-clinical studies and early pilot clinical trials are underway to develop and test agents that can reverse latent HIV infection and present viral antigen to the immune system for clearance. It is, therefore, critical to understand the impact of latency-reversing agents (LRAs) on the function of immune effectors needed to clear infected cells. We assessed the impact of LRAs on the function of natural killer (NK) cells, the main effector cells of the innate immune system. We studied the effects of three histone deacetylase inhibitors [SAHA or vorinostat (VOR), romidepsin, and panobinostat (PNB)] and two protein kinase C agonists [prostratin (PROST) and ingenol] on the antiviral activity, cytotoxicity, cytokine secretion, phenotype, and viability of primary NK cells. We found that ex vivo exposure to VOR had minimal impact on all parameters assessed, while PNB caused a decrease in NK cell viability, antiviral activity, and cytotoxicity. PROST caused non-specific NK cell activation and, interestingly, improved antiviral activity. Overall, we found that LRAs can alter the function and fate of NK cells, and these effects must be carefully considered as strategies are developed to clear persistent HIV infection.

  6. Uterine natural killer cells: a specialized differentiation regulated by ovarian hormones.

    PubMed

    Croy, B Anne; van den Heuvel, Marianne J; Borzychowski, Angela M; Tayade, Chandrakant

    2006-12-01

    In adult females of many species, a transient population of natural killer (NK) cells appears in cycles within the uterine endometrium (lining). Appearance of these lymphocytes coincides with specific phases of the ovarian hormone cycle and/or early pregnancy. Studies in rodents, women, and pigs dominate the literature and suggest the uterine (u)NK cells are an activated subset sharing many but not all features with circulating or lymphoid organ-residing NK cells. During successful murine pregnancy, uNK cells appear to regulate initiation of structural changes in the feed arterial systems that support maternal endometrial tissue at sites of implantation and subsequent placental development. These changes, which reverse after pregnancy, create a higher volume arterial bed with flaccid vessels unresponsive to vasoactive compounds. These unique pregnancy-associated arterial changes elevate the volume of low-pressure, nutrient-rich, maternal arterial blood available to conceptuses. Regulation of the differentiation, activation, and functions of uNK cells is only partially known, and there is lively debate regarding whether and how uNK cells participate in infertility or spontaneous abortion. This review highlights the biology of uNK cells during successful pregnancy.

  7. Killer Cell Immunoglobulin-Like Receptor Gene Associations with Autoimmune and Allergic Diseases, Recurrent Spontaneous Abortion, and Neoplasms

    PubMed Central

    Kuśnierczyk, Piotr

    2013-01-01

    Killer cell immunoglobulin-like receptors (KIRs) are a family of cell surface inhibitory or activating receptors expressed on natural killer cells and some subpopulations of T lymphocytes. KIR genes are clustered in the 19q13.4 region and are characterized by both allelic (high numbers of variants) and haplotypic (different numbers of genes for inhibitory and activating receptors on individual chromosomes) polymorphism. This contributes to diverse susceptibility to diseases and other clinical situations. Associations of KIR genes, as well as of genes for their ligands, with selected diseases such as psoriasis vulgaris and atopic dermatitis, rheumatoid arthritis, recurrent spontaneous abortion, and non-small cell lung cancer are discussed in the context of NK and T cell functions. PMID:23372569

  8. Interleukin-5 Supports the Expansion of Fas Ligand-Expressing Killer B Cells that Induce Antigen-Specific Apoptosis of CD4+ T Cells and Secrete Interleukin-10

    PubMed Central

    Klinker, Matthew W.; Reed, Tamra J.; Fox, David A.; Lundy, Steven K.

    2013-01-01

    Beyond their critical role in humoral immunity, B lymphocytes can employ a variety of immunomodulatory mechanisms including expression of the apoptosis-inducing molecule Fas ligand (FasL; CD178). Here, we extensively characterized the surface phenotype of FasL+ killer B cells, showing they are enriched in the IgMhighCD5+CD1dhigh B cell subset previously reported to contain a higher frequency of B cells producing interleukin-10 (IL-10). A rare population of B cells expressing IL-10 was present among FasL+ B cells, but most FasL+ B cells did not produce IL-10. We also identify interleukin-5 (IL-5) as a novel inducer of killer B cell function. Constitutively FasL+ B cells expressed higher levels of the IL-5 receptor, and treating B cells with IL-5 and CD40L resulted in the expansion of a B cell population enriched for FasL+ cells. B cells stimulated with IL-5 and CD40L were potent inducers of apoptosis in activated primary CD4+ T cells, and this killing function was antigen-specific and dependent upon FasL. IL-5 also enhanced IL-10 secretion in B cells stimulated with CD40L. Taken together these findings elucidate the relationship of FasL+ B cells and IL-10-producing B cells and demonstrate that IL-5 can induce or enhance both killer B cell activity and IL-10 secretion in B cells. Finally, we found that the killer B cell activity induced by IL-5 was completely blocked by IL-4, suggesting the existence of a previously unknown antagonistic relationship between these type-2 cytokines in modulating the activity of killer B cells. Targeting this IL-5/IL-4 signaling axis may therefore represent a novel area of drug discovery in inflammatory disorders. PMID:23940537

  9. Human herpesvirus-6 enhances natural killer cell cytotoxicity via IL-15.

    PubMed Central

    Flamand, L; Stefanescu, I; Menezes, J

    1996-01-01

    The marked tropism of human herpesvirus-6 (HHV-6) for natural killer (NK) cells and T lymphocytes has led us to investigate the effect of HHV-6 on cellular cytotoxicity. We describe here how HHV-6 infection of peripheral blood mononuclear cells (PBMC) leads to upregulation of their NK cell cytotoxicity. The induction of NK cell activity by HHV-6 was abrogated by monoclonal antibodies (mAbs) to IL-15 but not by mAbs to other cytokines (IFN-alpha, IFN-gamma, TNF-alpha, TNF-beta, IL-2, IL-12) suggesting that IL-15 secreted in response to viral infection was responsible for the observed effect. Furthermore, NK activation by HHV-6 was blocked with mAb to CD122, as well as by human anti-HHV-6 neutralizing antibodies. Using RT-PCR, we were able to detect IL-15 mRNA upregulation in purified monocyte and NK cell preparations. IL-15 protein synthesis was increased in response to HHV-6. Finally, addition of IL-15 to PBMC cultures was found to severely curtail HHV-6 expression. Taken together, our data suggest that enhanced NK activity in response to viral infection represent a natural anti-viral defense mechanism aimed at rapidly eliminating virus-infected cells. PMID:8617868

  10. Dibutyltin activates MAP kinases in human natural killer cells, in vitro.

    PubMed

    Odman-Ghazi, Sabah O; Abraha, Abraham; Isom, Erica Taylor; Whalen, Margaret M

    2010-10-01

    Previous studies have shown that dibutyltin (DBT) interferes with the function of human natural killer (NK) cells, diminishing their capacity to destroy tumor cells, in vitro. DBT is a widespread environmental contaminant and has been found in human blood. As NK cells are our primary immune defense against tumor cells, it is important to understand the mechanism by which DBT interferes with their function. The current study examines the effects of DBT exposures on key enzymes in the signaling pathway that regulates NK responsiveness to tumor cells. These include several protein tyrosine kinases (PTKs), mitogen-activated protein kinases (MAPKs), and mitogen-activated protein kinase kinases (MAP2Ks). The results showed that in vitro exposures of NK cells to DBT had no effect on PTKs. However, exposures to DBT for as little as 10 min were able to increase the phosphorylation (activation) of the MAPKs. The DBT-induced activations of these MAPKs appear to be due to DBT-induced activations of the immediate upstream activators of the MAPKs, MAP2Ks. The results suggest that DBT-interference with the MAPK signaling pathway is a consequence of DBT exposures, which could account for DBT-induced decreases in NK function.

  11. Atypical natural killer T-cell receptor recognition of CD1d–lipid antigens

    PubMed Central

    Le Nours, Jérôme; Praveena, T.; Pellicci, Daniel G.; Gherardin, Nicholas A.; Ross, Fiona J.; Lim, Ricky T.; Besra, Gurdyal S.; Keshipeddy, Santosh; Richardson, Stewart K.; Howell, Amy R.; Gras, Stephanie; Godfrey, Dale I.; Rossjohn, Jamie; Uldrich, Adam P.

    2016-01-01

    Crucial to Natural Killer T (NKT) cell function is the interaction between their T-cell receptor (TCR) and CD1d-antigen complex. However, the diversity of the NKT cell repertoire and the ensuing interactions with CD1d-antigen remain unclear. We describe an atypical population of CD1d–α-galactosylceramide (α-GalCer)-reactive human NKT cells that differ markedly from the prototypical TRAV10-TRAJ18-TRBV25-1+ type I NKT cell repertoire. These cells express a range of TCR α- and β-chains that show differential recognition of glycolipid antigens. Two atypical NKT TCRs (TRAV21-TRAJ8-TRBV7–8 and TRAV12-3-TRAJ27-TRBV6-5) bind orthogonally over the A′-pocket of CD1d, adopting distinct docking modes that contrast with the docking mode of all type I NKT TCR-CD1d-antigen complexes. Moreover, the interactions with α-GalCer differ between the type I and these atypical NKT TCRs. Accordingly, diverse NKT TCR repertoire usage manifests in varied docking strategies and specificities towards CD1d–α-GalCer and related antigens, thus providing far greater scope for diverse glycolipid antigen recognition. PMID:26875526

  12. Two modes of lytic granule fusion during degranulation by natural killer cells.

    PubMed

    Liu, Dongfang; Martina, Jose A; Wu, Xufeng S; Hammer, John A; Long, Eric O

    2011-08-01

    Lytic granules in cytotoxic lymphocytes, which include T cells and natural killer (NK) cells, are secretory lysosomes that release their content upon fusion with the plasma membrane (PM), a process known as degranulation. Although vesicle exocytosis has been extensively studied in endocrine and neuronal cells, much less is known about the fusion of lytic granules in cytotoxic lymphocytes. Here, we used total internal reflection fluorescence microscopy to examine lytic granules labeled with fluorescently tagged Fas ligand (FasL) in the NK cell line NKL stimulated with phorbol ester and ionomycin and in primary NK cells activated by physiological receptor-ligand interactions. Two fusion modes were observed: complete fusion, characterized by loss of granule content and rapid diffusion of FasL at the PM; and incomplete fusion, characterized by transient fusion pore opening and retention of FasL at the fusion site. The pH-sensitive green fluorescence protein (pHluorin) fused to the lumenal domain of FasL was used to visualize fusion pore opening with a time resolution of 30 ms. Upon incomplete fusion, pHluorin emission lasted several seconds in the absence of noticeable diffusion. Thus, we conclude that lytic granules in NK cells undergo both complete and incomplete fusion with the PM, and propose that incomplete fusion may promote efficient recycling of lytic granule membrane after the release of cytotoxic effector molecules.

  13. Natural killer cell-mediated cytotoxicity is increased by a type II arabinogalactan from Anoectochilus formosanus.

    PubMed

    Yang, Li-Chan; Lai, Ching-Yi; Lin, Wen-Chuan

    2017-01-02

    This study investigated the effects of a type II arabinogalactan from Anoectochilus formosanus (AGAF) on natural killer (NK) cell-mediated cytotoxicity and the possible underlying mechanisms. This study reported that sustained exposure to AGAF increased NK-92MI cell-mediated cytotoxicity in a time- and concentration-dependent manner, as characterized according to the cellular lactic dehydrogenase leakage from K562 leukemia cells. Additionally, antibody neutralization studies have reported that interferon (IFN)-γ, but not perforin or tumor necrosis factor-α, released by NK-92MI NK cells is crucial in enhancing cytotoxicity through an autocrine loop. In this study, AGAF was further demonstrated to induce IFN-γ expression, increasing the susceptibility to NK-92MI cell-mediated cytotoxicity through the toll-like receptor (TLR)-2, TLR4, extracellular signal-regulated kinase, p38 mitogen-activated protein kinase, and nuclear factor-κB pathways. A pharmacological study revealed that Janus kinase 2/signal transducers and activators of the signal transducers and of transcription 3 signaling are involved in IFN-γ-induced NK cell-mediated cytotoxicity.

  14. Interleukin-12- and interferon-gamma-mediated natural killer cell activation by Agaricus blazei Murill.

    PubMed

    Yuminamochi, Eri; Koike, Taisuke; Takeda, Kazuyoshi; Horiuchi, Isao; Okumura, Ko

    2007-06-01

    Dried fruiting bodies of Agaricus blazei Murill (A. blazei) and its extracts have generally used as complementary and alternative medicines (CAMs). Here, we report that the oral administration of A. blazei augmented cytotoxicity of natural killer (NK) cells in wild-type (WT) C57BL/6, C3H/HeJ, and BALB/c mice. Augmented cytotoxicity was demonstrated by purified NK cells from treated wild-type (WT) and RAG-2-deficient mice, but not from interferon-gamma (IFN-gamma) deficient mice. NK cell activation and IFN-gamma production was also observed in vitro when dendritic cell (DC)-rich splenocytes of WT mice were coincubation with an extract of A. blazei. Both parameters were largely inhibited by neutralizing anti-interleukin-12 (IL-12) monoclonal antibody (mAb) and completely inhibited when anti-IL-12 mAb and anti-IL-18 mAb were used in combination. An aqueous extract of the hemicellulase-digested compound of A. blazei particle; (ABPC) induced IFN-gamma production more effectively, and this was completely inhibited by anti-IL-12 mAb alone. NK cell cytotoxicty was augmented with the same extracts, again in an IL-12 and IFN-gamma-dependent manner. These results clearly demonstrated that A. blazei and ABPC augmented NK cell activation through IL-12-mediated IFN-gamma production.

  15. The natural killer cell serine protease gene Lmet1 maps to mouse chromosome 10

    SciTech Connect

    Thia, K.Y.T.; Smyth, M.J.; Jenkins, N.A.; Gilbert, D.J.; Copeland, N.G.

    1995-01-01

    Cytotoxic lymphocytes play a key role in immune responses against viruses and tumors. Lymphocyte-mediated cytolysis by both cytotoxic T lymphocytes (CTL) and natural killer (NK) cells is often associated with the formation of membrane lesions on target cells caused by exocytosis of cytoplasmic granule serine proteases and a pore-forming protein, perforin. A variety of granzymes have been found to reside within the cytoplasmic granules of cytotoxic lymphocytes, but unlike perforin, isolated serine proteases are not intrinsically lytic. However, a role for serine proteases in cellular cytotoxicity has been supported by the ability of protease inhibitors to completely abrogate lymphocyte cytotoxicity, and the demonstration that serine proteases can initiate DNA fragmentation in target cells transfected or pretreated with a sublytic concentration of perforin. Granzymes cloned in human, mouse, and rat encode four granzyme activities and all are expressed in either T cells, their thymic precursors, and/or NK cells. In particular, a rat granzyme that cleaves after methionine residues, but not phenylalanine residues and its human equivalent, human Met-ase 1, are unique granzymes with restricted expression in CD3-NK cells. 24 refs., 2 figs.

  16. Activation of human natural killer cells by the soluble form of cellular prion protein

    SciTech Connect

    Seong, Yeon-Jae; Sung, Pil Soo; Jang, Young-Soon; Choi, Young Joon; Park, Bum-Chan; Park, Su-Hyung; Park, Young Woo; Shin, Eui-Cheol

    2015-08-21

    Cellular prion protein (PrP{sup C}) is widely expressed in various cell types, including cells of the immune system. However, the specific roles of PrP{sup C} in the immune system have not been clearly elucidated. In the present study, we investigated the effects of a soluble form of recombinant PrP{sup C} protein on human natural killer (NK) cells. Recombinant soluble PrP{sup C} protein was generated by fusion of human PrP{sup C} with the Fc portion of human IgG{sub 1} (PrP{sup C}-Fc). PrP{sup C}-Fc binds to the surface of human NK cells, particularly to CD56{sup dim} NK cells. PrP{sup C}-Fc induced the production of cytokines and chemokines and the degranulation of granzyme B from NK cells. In addition, PrP{sup C}-Fc facilitated the IL-15-induced proliferation of NK cells. PrP{sup C}-Fc induced phosphorylation of ERK-1/2 and JNK in NK cells, and inhibitors of the ERK or the JNK pathways abrogated PrP{sup C}-Fc-induced cytokine production in NK cells. In conclusion, the soluble form of recombinant PrP{sup C}-Fc protein activates human NK cells via the ERK and JNK signaling pathways. - Highlights: • Recombinant soluble PrP{sup C} (PrP{sup C}-Fc) was generated by fusion of human PrP{sup C} with IgG1 Fc portion. • PrP{sup C}-Fc protein induces the production of cytokines and degranulation from human NK cells. • PrP{sup C}-Fc protein enhances the IL-15-induced proliferation of human NK cells. • PrP{sup C}-Fc protein activates human NK cells via the ERK and JNK signaling pathways.

  17. Underground Adaptation to a Hostile Environment: Acute Myeloid Leukemia vs. Natural Killer Cells

    PubMed Central

    Dulphy, Nicolas; Chrétien, Anne-Sophie; Khaznadar, Zena; Fauriat, Cyril; Nanbakhsh, Arash; Caignard, Anne; Chouaib, Salem; Olive, Daniel; Toubert, Antoine

    2016-01-01

    Acute myeloid leukemia (AML) is a heterogeneous group of malignancies which incidence increases with age. The disease affects the differentiation of hematopoietic stem or precursor cells in the bone marrow and can be related to abnormal cytogenetic and/or specific mutational patterns. AML blasts can be sensitive to natural killer (NK) cell antitumor response. However, NK cells are frequently defective in AML patients leading to tumor escape. NK cell defects affect not only the expression of the activating NK receptors, including the natural cytotoxicity receptors, the NK group 2, member D, and the DNAX accessory molecule-1, but also cytotoxicity and IFN-γ release. Such perturbations in NK cell physiology could be related to the adaptation of the AML to the immune pressure and more generally to patient’s clinical features. Various mechanisms are potentially involved in the inhibition of NK-cell functions in AML, including defects in the normal lymphopoiesis, reduced expression of activating receptors through cell-to-cell contacts, and production of immunosuppressive soluble agents by leukemic blasts. Therefore, the continuous cross-talk between AML and NK cells participates to the leukemia immune escape and eventually to patient’s relapse. Methods to restore or stimulate NK cells seem to be attractive strategies to treat patients once the complete remission is achieved. Moreover, our capacity in stimulating the NK cell functions could lead to the development of preemptive strategies to eliminate leukemia-initiating cells before the emergence of the disease in elderly individuals presenting preleukemic mutations in hematopoietic stem cells. PMID:27014273

  18. Effect of dibutyltin on ATP levels in human natural killer cells.

    PubMed

    Dudimah, Fred D; Gibson, Constance; Whalen, Margaret M

    2007-04-01

    This study investigates the role that decreased ATP levels may play in dibutyltin (DBT)-induced decreases in the tumor-cell-lysing (lytic) function of natural killer (NK) cells. NK cells are a subset of lymphocytes capable of killing tumor cells, virally infected cells, and antibody coated cells. DBT is used as stabilizer in PVC plastics and has also been used as a deworming product in poultry. NK cells were exposed to various concentrations of DBT for 1 h, 24 h, 48 h, and 6 days before determining ATP levels and lytic function. ATP levels and lytic function were also determined in NK cells that were exposed to DBT for 1 h followed by 24 h, 48 h, and 6 days in DBT-free media. The results indicated that exposure of NK cells to 10 muM DBT for 1 h did not cause any significant decrease in NK cell ATP levels but did cause a very significant loss in lytic function. NK cells exposed to 500 nM DBT for 24 h showed significant loss of lytic function but showed no decrease in ATP levels. However, 48 h and 6 days exposures to those concentrations of DBT that caused decreases in tumor lysing function also caused significant decreases in ATP levels. Exposures of NK cells to varying DBT concentrations for 1 h followed by 24 h, 48 h, and 6 days in DBT free media produced effects on lytic function and ATP levels that were similar to those seen with continuous DBT exposures. The results indicate that DBT exposures decrease ATP levels in NK cells but that tumor lysing function can be reduced independent of any decreases in ATP levels. Additionally the results show that the effects of a range of DBT concentrations on ATP levels and tumor lysing function are irreversible.

  19. Natural killer T (NKT) cells accelerate Shiga toxin type 2 (Stx2) pathology in mice

    PubMed Central

    Obata, Fumiko; Subrahmanyam, Priyanka B.; Vozenilek, Aimee E.; Hippler, Lauren M.; Jeffers, Tynae; Tongsuk, Methinee; Tiper, Irina; Saha, Progyaparamita; Jandhyala, Dakshina M.; Kolling, Glynis L.; Latinovic, Olga; Webb, Tonya J.

    2015-01-01

    Shiga toxin-producing Escherichia coli (STEC) is a leading cause of childhood renal disease Hemolytic Uremic Syndrome (HUS). The involvement of renal cytokines and chemokines is suspected to play a critical role in disease progression. In current article, we tested the hypothesis that NKT cells are involved in Stx2-induced pathology in vivo. To address this hypothesis we compared Stx2 toxicity in WT and CD1 knockout (KO) mice. In CD1KO mice, which lack natural killer T (NKT) cells, Stx2-induced pathologies such as weight loss, renal failure, and death were delayed. In WT mice, Stx2-specific selective increase in urinary albumin occurs in later time points, and this was also delayed in NKT cell deficient mice. NKT cell-associated cytokines such as IL-2, IL-4, IFN-γ, and IL-17 were detected in kidney lysates of Stx2-injected WT mice with the peak around 36 h after Stx2 injection. In CD1KO, there was a delay in the kinetics, and increases in these cytokines were observed 60 h post Stx2 injection. These data suggest that NKT cells accelerate Stx2-induced pathology in mouse kidneys. To determine the mechanism by which NKT cells promote Stx2-associated disease, in vitro studies were performed using murine renal cells. We found that murine glomerular endothelial cells and podocytes express functional CD1d molecules and can present exogenous antigen to NKT cells. Moreover, we observed the direct interaction between Stx2 and the receptor Gb3 on the surface of mouse renal cells by 3D STORM-TIRF which provides single molecule imaging. Collectively, these data suggest that Stx2 binds to Gb3 on renal cells and leads to aberrant CD1d-mediated NKT cell activation. Therefore, strategies targeting NKT cells could have a significant impact on Stx2-associated renal pathology in STEC disease. PMID:25904903

  20. Induction of natural killer cell responses by ectromelia virus controls infection.

    PubMed

    Parker, April Keim; Parker, Scott; Yokoyama, Wayne M; Corbett, John A; Buller, R Mark L

    2007-04-01

    Natural killer (NK) cells play a pivotal role in the innate immune response to viral infections, particularly murine cytomegalovirus (MCMV) and human herpesviruses. In poxvirus infections, the role of NK cells is less clear. We examined disease progression in C57BL/6 mice after the removal of NK cells by both antibody depletion and genetic means. We found that NK cells were crucial for survival and the early control of virus replication in spleen and to a lesser extent in liver in C57BL/6 mice. Studies of various knockout mice suggested that gammadelta T cells and NKT cells are not important in the C57BL/6 mousepox model and CD4+ and CD8+ T cells do not exhibit antiviral activity at 6 days postinfection, when the absence of NK cells has a profound effect on virus titers in spleen and liver. NK cell cytotoxicity and/or gamma interferon (IFN-gamma) secretion likely mediated the antiviral effect needed to control virus infectivity in target organs. Studies of the effects of ectromelia virus (ECTV) infection on NK cells demonstrated that NK cells proliferate within target tissues (spleen and liver) and become activated following a low-dose footpad infection, although the mechanism of activation appears distinct from the ligand-dependent activation observed with MCMV. NK cell IFN-gamma secretion was detected by intracellular cytokine staining transiently at 32 to 72 h postinfection in the lymph node, suggesting a role in establishing a Th1 response. These results confirm a crucial role for NK cells in controlling an ECTV infection.

  1. Identification of a common T/natural killer cell progenitor in human fetal thymus

    PubMed Central

    1994-01-01

    The phenotypic similarities between natural killer (NK) and T cells have led to the hypothesis that these distinctive lymphocyte subsets may be developmentally related and thus may share a common progenitor (Lanier, L. L., H. Spits, and J. H. Phillips, 1992. Immunol. Today. 13:392; Rodewald, H.-R., P. Moingeon, J. L. Lurich, C. Dosiou, P. Lopez, and E. L. Reinherz. 1992. Cell. 69:139). In this report, we have investigated the potential of human CD34+ triple negative thymocytes ([TN] CD3-, CD4-, CD8-) to generate both T cells and NK cells in murine fetal thymic organ cultures (mFTOC) and in vitro clonogenic assays. CD34+ TN thymocytes, the majority of which express prominent cytoplasmic CD3 epsilon (cytoCD3 epsilon) protein, can be divided into high (CD34Bright) and low (CD34Dim) surface expressing populations. CD34Bright TN thymocytes were capable of differentiating into T and NK cells when transferred into mFTOC, and demonstrated high NK cell clonogenic capabilities when cultured in interleukin (IL)-2, IL-7, and stem cell factor (SCF). Likewise, CD34Bright TN thymocyte clones after 5 d in culture were capable of generating NK and T cells when transferred into mFTOC but demonstrated clonogenic NK cell differentiation capabilities when maintained in culture with IL-2. CD34Dim TN thymocytes, however, possessed only T cell differentiation capabilities in mFTOC but were not expandable in clonogenic conditions containing IL-2, IL-7, and SCF. No significant differentiation of other cell lineage was detected in either mFTOC or in clonogenic assays from CD34+ TN thymocytes. These results represent the first definitive evidence of a common T/NK cell progenitor in the human fetal thymus and delineate the point in thymocyte differentiation where T and NK cells diverge. PMID:7519241

  2. Influence of autologous dendritic cells on cytokine-induced killer cell proliferation, cell phenotype and antitumor activity in vitro.

    PubMed

    Cao, Jingsong; Chen, Cong; Wang, Yuhuan; Chen, Xuecheng; Chen, Zeying; Luo, Xiaoling

    2016-09-01

    Dendritic cell (DCs) are essential antigen processing and presentation cells that play a key role in the immune response. In this study, DCs were co-cultured with cytokine-induced killer cells (DC-CIKs) in vitro to detect changes in cell proliferation, cell phenotype and cell cytotoxicity. The results revealed that the DCs were suitable for co-culture with CIKs at day 7, and that cell quantity of DC-CIKs was lower than that of CIKs until day 11, but it was significantly improved to 1.17-fold that of CIKs at day 13. Flow cytometry was used to detect the cell phenotype of CIKs and DC-CIKs. Compared with CIKs at day 13, the percentage of CD3(+), CD3(+)CD4(+), CD3(+)CD8(+) and CD3(+)CD56(+) T cells in DC-CIKs was significantly improved 1.02, 1.79, 1.26 and 2.44-fold, respectively. In addition, trypan blue staining analysis demonstrated that the cell viability of CIKs and DC-CIKs was 96% and 98%, respectively. Furthermore, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) analysis verified that CIK and DC-CIK cytotoxicity in Hela cells was 58% and 80%, respectively, with a significant difference. Taken together, our results indicate that the cell proliferation, cell phenotype and antitumor activity of CIKs were all enhanced following co-culture with DCs in vitro. These results are likely to be useful for DC-CIK application in antitumor therapies.

  3. Identification and functional analysis of ligands for natural killer cell activating receptors in colon carcinoma.

    PubMed

    Zhang, Zhang; Su, Tao; He, Liang; Wang, Hongtao; Ji, Gang; Liu, Xiaonan; Zhang, Yun; Dong, Guanglong

    2012-01-01

    Natural killer (NK) cells play important roles in the immune defense against tumor cells. The function of NK cells is determined by a balance between activating and inhibitory signals. DNAX accessory molecule-1 (DNAM-1) and NK group 2 member D (NKG2D) are major NK cell activating receptors, which transduce activating signals after binding their ligands CD155, CD112 and major histocompatibility complex class I-related chains A and B (MICA/B). However, the expression and functions of these ligands in colon carcinoma are still elusive. Here, we show the higher expression of CD155, CD112 and MICA/B in colon carcinoma tissues, although no correlations between the ligands expression and patient clinicopathological parameters were found. The subsequent cytotoxicity assay indicated that NK cells effectively kill colon carcinoma cells. Functional blocking of these ligands and/or receptors with antibodies led to significant inhibition of NK cell cytotoxicity. Importantly, expression of DNAM-1 and NKG2D was reduced in NK cells of colon cancer patients, and this reduction could directly suppress the activation of NK cells. Moreover, colon cancer patients have higher serum concentrations of sCD155 and sMICA/B (soluble ligands, secreted or shed from cells) than those in healthy donors (sCD155, 127.82 ± 44.12 vs. 63.67 ± 22.30 ng/ml; sMICA, 331.51 ± 65.23 vs. 246.74 ± 20.76 pg/ml; and sMICB, 349.42 ± 81.69 vs. 52.61 ± 17.56 pg/ml). The up-regulation of these soluble ligands may down-regulate DNAM-1 and NKG2D on NK cells, ultimately leading to the inhibition of NK cytotoxicity. Colon cancer might be a promising target for NK cell-based adoptive immunotherapy.

  4. Activation of decidual invariant natural killer T cells promotes lipopolysaccharide-induced preterm birth.

    PubMed

    Li, Liping; Yang, Jing; Jiang, Yao; Tu, Jiaoqin; Schust, Danny J

    2015-04-01

    Invariant natural killer T (iNKT) cells are crucial for host defense against a variety of microbial pathogens, but the underlying mechanisms of iNKT cells activation by microbes are not fully explained. In this study, we investigated the molecular mechanisms of iNKT cell activation in lipopolysaccharide (LPS)-stimulated preterm birth using an adoptive transfer system and diverse neutralizing antibodies (Abs) and inhibitors. We found that adoptive transfer of decidual iNKT cells to LPS-stimulated iNKT cell deficient Jα18(-/-) mice that lack invariant Vα14Jα281T cell receptor (TCR) expression significantly decreased the time to delivery and increased the percentage of decidual iNKT cells. Neutralizing Abs against Toll-like receptor 4 (TLR-4), CD1d, interleukin (IL)-12 and IL-18, and inhibitors blocking the activation of nuclear factor κB (NF-κB), mitogen-activated protein kinase (MAPK) p38 and extracellular signal-regulated kinase (ERK) significantly reduced in vivo percentages of decidual iNKT cells, their intracellular interferon (IFN)-γ production and surface CD69 expression. In vitro, in the presence of the same Abs and inhibitors used as in vivo, decidual iNKT cells co-cultured with LPS-pulsed dendritic cells (DCs) showed significantly decreased extracellular and intracellular IFN-γ secretion and surface CD69 expression. Our data demonstrate that the activation of decidual iNKT cells plays an important role in inflammation-induced preterm birth. Activation of decidual iNKT cells also requires TLR4-mediated NF-κB, MAPK p38 and ERK pathways, the proinflammatory cytokines IL-12 and IL-18, and endogenous glycolipid antigens presented by CD1d.

  5. Acute, lethal, natural killer cell-resistant myeloproliferative disease induced by polyomavirus in severe combined immunodeficient mice.

    PubMed Central

    Szomolanyi-Tsuda, E.; Dundon, P. L.; Joris, I.; Shultz, L. D.; Woda, B. A.; Welsh, R. M.

    1994-01-01

    Infection of severe combined immunodeficient mice, which lack T and B lymphocytes, with polyomavirus (PyV) induced an acute hematological disorder leading to the death of the mice by 2 weeks postinfection. The disease was characterized by a dramatic decrease in megakaryocytes, multiple hemorrhages, anemia, thrombocytopenia, splenomegaly, a massive myeloproliferation and splenic erythroproliferation with a defect in maturation of the myeloid elements similar to that in acute leukemia. This pathology in severe combined immunodeficient mice is very different from that of the well-characterized tumor profiles induced by PyV in normal newborn or nude mice. Viral T and capsid (VP1) antigens and viral genome were detected in some cells in the spleen, but not in the majority of the proliferating myeloid cells. This suggests that the myeloproliferation is induced by some indirect mechanism, such as secretion of growth factors or cytokines by virus-infected cells, rather than by direct transformation by PyV. Neither the spread of PyV, its replication in different organs, nor the pathogenesis or the time of death were altered by depleting natural killer cells in vivo by anti-natural killer cell antibodies. Analysis of the spleen leukocyte population indicated that the cells expressed high levels of class I major histocompatibility complex antigens and were resistant to lysis by activated natural killer cells. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:8311119

  6. Trans-presentation of IL-15 dictates IFN-producing killer dendritic cells effector functions.

    PubMed

    Ullrich, Evelyn; Bonmort, Mathieu; Mignot, Gregoire; Jacobs, Benedikt; Bosisio, Daniela; Sozzani, Silvano; Jalil, Abdelali; Louache, Fawzia; Bulanova, Elena; Geissman, Frederic; Ryffel, Bernard; Chaput, Nathalie; Bulfone-Paus, Silvia; Zitvogel, Laurence

    2008-06-15

    IFN-producing killer dendritic cells (IKDC) were initially described as B220(+)CD11c(+)CD3(-)NK1.1(+) tumor-infiltrating cells that mediated part of the antitumor effects of the combination therapy with imatinib mesylate and IL-2. In this study, we show their functional dependency on IL-15 during homeostasis and inflammatory processes. Trans-presentation of IL-15 by IL-15Ralpha allows dramatic expansion of IKDC in vitro and in vivo, licenses IKDC for TRAIL-dependent killing and endows IKDC with immunizing potential, all three biological attributes not shared by B220(-)NK cells. However, IL-15 down-regulates the capacity of IKDC to induce MHC class I- or II-restricted T cell activation in vitro. Trans-presentation of IL-15 by IL-15Ralpha allows IKDC to respond to TLR3 and TLR4 ligands for the production of CCL2, a chemokine that is critical for IKDC trafficking into tumor beds (as described recently). We conclude that IKDC represent a unique subset of innate effectors functionally distinguishable from conventional NK cells in their ability to promptly respond to IL-15-driven inflammatory processes.

  7. Characterization of Natural Killer Cells and Cytokines in Maternal Placenta and Fetus of Diabetic Mothers

    PubMed Central

    Hara, Cristiane de Castro Pernet; França, Eduardo Luzía; Fagundes, Danny Laura Gomes; de Queiroz, Adriele Ataides; Rudge, Marilza Vieira Cunha; Honorio-França, Adenilda Cristina; Calderon, Iracema de Mattos Paranhos

    2016-01-01

    The present study characterized natural killer cells and cytokines in diabetic mothers, their placenta, and fetus. In the maternal blood from the hyperglycemic groups, the CD16+CD56− NK cells increased, whereas that of CD16+CD56+ decreased in gestational diabetes mellitus [GDM] group. Cord blood from type 2 diabetes [DM-2] showed a higher proportion of CD16+CD56− and CD16−CD56+. The placental extravillous layer of GDM and DM-2 showed an increase of CD16+CD56− cells and, irrespective of region, the proportion of CD16−CD56+ cells was higher in mild gestational hyperglycemia [MGH] and GDM and lower in DM-2. IL-2 was lower in maternal blood and IFN-γ higher in maternal and cord blood from the GDM group. IL-17 was higher in maternal and cord blood from the DM-2 group. The placental extravillous layer of the MGH showed high levels of IL-4, IL-6, IL-10, IL-17, and IFN-γ and low levels of IL-1β and IL-8, whereas the placental villous layer contained high levels of IL-17 and IFN-γ. The GDM group, irrespective of region, showed higher levels of IL-8. The DM-2 group, irrespective of region, placenta showed high levels of TNF-α, IL-17, and IFN-γ. The hyperglycemia produces an inflammatory environment with a high content of inflammatory cytokines and cells expressing CD16+. PMID:27294162

  8. Characterization of Natural Killer Cells and Cytokines in Maternal Placenta and Fetus of Diabetic Mothers.

    PubMed

    Hara, Cristiane de Castro Pernet; França, Eduardo Luzía; Fagundes, Danny Laura Gomes; de Queiroz, Adriele Ataides; Rudge, Marilza Vieira Cunha; Honorio-França, Adenilda Cristina; Calderon, Iracema de Mattos Paranhos

    2016-01-01

    The present study characterized natural killer cells and cytokines in diabetic mothers, their placenta, and fetus. In the maternal blood from the hyperglycemic groups, the CD16(+)CD56(-) NK cells increased, whereas that of CD16(+)CD56(+) decreased in gestational diabetes mellitus [GDM] group. Cord blood from type 2 diabetes [DM-2] showed a higher proportion of CD16(+)CD56(-) and CD16(-)CD56(+). The placental extravillous layer of GDM and DM-2 showed an increase of CD16(+)CD56(-) cells and, irrespective of region, the proportion of CD16(-)CD56(+) cells was higher in mild gestational hyperglycemia [MGH] and GDM and lower in DM-2. IL-2 was lower in maternal blood and IFN-γ higher in maternal and cord blood from the GDM group. IL-17 was higher in maternal and cord blood from the DM-2 group. The placental extravillous layer of the MGH showed high levels of IL-4, IL-6, IL-10, IL-17, and IFN-γ and low levels of IL-1β and IL-8, whereas the placental villous layer contained high levels of IL-17 and IFN-γ. The GDM group, irrespective of region, showed higher levels of IL-8. The DM-2 group, irrespective of region, placenta showed high levels of TNF-α, IL-17, and IFN-γ. The hyperglycemia produces an inflammatory environment with a high content of inflammatory cytokines and cells expressing CD16(+).

  9. Natural killer cells and HLA-G expression in the basal decidua of human placenta adhesiva.

    PubMed

    van Beekhuizen, H J; Joosten, I; Lotgering, F K; Bulten, J; van Kempen, L C

    2010-12-01

    Retained placenta is caused by abnormal adherence of the placenta to the uterine wall, leading to delayed expulsion of the placenta and causing postpartum haemorrhage. The mildest form of retained placenta is the placenta adhesiva (PA), of which the cause is unknown. The aim of our study was to explore possible differences in immune response in the basal decidua between PA and control placentas (CP). We performed a descriptive analysis of immunohistochemical differences in 17 PA and 10 CP. Our results show that in PA the amount of uterine natural killer (uNK) cells is significantly reduced (0.2 uNK cell/standardised area) as compared to CP (9.8 uNK cell/standardised area, p < 0.001) whereas the number of trophoblast cells and the expression of HLA-G by trophoblast are similar in the decidua of PA and CP. We speculate that adequate numbers of uNK cells in the basal decidua are needed for normal expulsion of the placenta.

  10. Sphingolipids from a symbiotic microbe regulate homeostasis of host intestinal natural killer T cells

    PubMed Central

    An, Dingding; Oh, Sungwhan F.; Olszak, Torsten; Neves, Joana F.; Avci, Fikri; Erturk-Hasdemir, Deniz; Lu, Xi; Zeissig, Sebastian; Blumberg, Richard S.; Kasper, Dennis L.

    2014-01-01

    Summary Co-evolution of beneficial microorganisms with the mammalian intestine fundamentally shapes mammalian physiology. Herein we report that the intestinal microbe Bacteroides fragilis modifies the homeostasis of host invariant natural killer T (iNKT) cells by supplementing the host’s endogenous lipid antigen milieu with unique inhibitory sphingolipids. The process occurs early in life and effectively impedes iNKT cell proliferation during neonatal development. Consequently, total colonic iNKT cell numbers are restricted into adulthood and hosts are protected against experimental iNKT cell–mediated, oxazolone-induced colitis. In studies with neonatal mice lacking access to bacterial sphingolipids, we found that treatment with B. fragilis glycosphingolipids—exemplified by an isolated peak (M.W.=717.6) called GSL-Bf717—reduces colonic iNKT cell numbers and confers protection against oxazolone-induced colitis in adulthood. Our results suggest that the distinctive inhibitory capacity of GSL-Bf717 and similar molecules may prove useful in the treatment of autoimmune and allergic disorders in which iNKT cell activation is destructive. PMID:24439373

  11. All-trans retinoic acid negatively regulates cytotoxic activities of nature killer cell line 92

    SciTech Connect

    Li Ang . E-mail: liang3829@sina.com.cn; He Meilan; Wang Hui; Qiao Bin; Chen Ping; Gu Hua; Zhang Mengjie; He Shengxiang

    2007-01-05

    NK cells are key components of innate immune systems and their activities are regulated by cytokines and hormones. All-trans retinoic acid (ATRA), as a metabolite of vitamin A and an immunomodulatory hormone, plays an important role in regulating immune responses. In the present study, we investigated the effect of ATRA on human NK cell line NK92. We found that ATRA dose-dependently suppressed cytotoxic activities of NK92 cells without affecting their proliferation. To explore the mechanisms underlying the ATRA influence on NK92 cells, we examined the production of cytokines (TNF-{alpha}, IFN-{gamma}), gene expression of cytotoxic-associated molecules (perforin, granzyme B, nature killer receptors (NCRs), and NKG2D), and the activation of NF-{kappa}B pathways related with immune response. Our results demonstrated that ATRA suppressed NF-{kappa}B activity and prevented I{kappa}B{alpha} degradation in a dose-dependent way, inhibited IFN-{gamma} production and gene expression of granzyme B and NKp46. Our findings suggest that ATRA is a negative regulator of NK92 cell activation and may act as a potential regulator of anti-inflammatory functions in vivo.

  12. Mass spectrometric analysis of the glycosphingolipid-enriched microdomains of rat natural killer cells.

    PubMed

    Man, Petr; Novák, Petr; Cebecauer, Marek; Horváth, Ondrej; Fiserová, Anna; Havlícek, Vladimír; Bezouska, Karel

    2005-01-01

    Glycosphingolipid-enriched microdomains (GEM) are membrane entities that concentrate glycosylphosphatiolylinositol(GPI)-anchored, acylated and membrane proteins important for immune receptor signaling. Using rat leukemic cell line RNK-16 we have initiated proteomic studies of microdomains in natural killer (NK) cells. Isolated plasma membranes were treated with Brij 58, or Nonidet-P40, or sodium carbonate. Extracts were separated by sucrose density gradient centrifugation into very light membrane, medium light membrane and heavy fractions, and a complete protein profile was analyzed by tandem mass spectrometry. Up to 250 proteins were unambiguously identified in each analyzed fraction. The first study of the proteome of NK cell GEM revealed several new aspects including identification of molecules not expected to be expressed in rat NK cells (e.g., NAP-22) or associated with GEM (e.g., NKR-P1, CD45, CD2). Moreover, it provided clear data consolidating controversial views concerning the occurrence of major histcompatibility complex glycoproteins and RT6.1/CD73/CD38 complex in NK cells. Our results also identified a large number of receptors as candidates for future functional studies.

  13. Dual Functional Capability of Dendritic Cells – Cytokine-Induced Killer Cells in Improving Side Effects of Colorectal Cancer Therapy

    PubMed Central

    Mosińska, Paula; Gabryelska, Agata; Zasada, Malwina; Fichna, Jakub

    2017-01-01

    The aim of cancer therapy is to eradicate cancer without affecting healthy tissues. Current options available for treating colorectal cancer (CRC), including surgery, chemotherapy or radiotherapy, usually elicit multiple adverse effects and frequently fail to completely remove the tumor cells. Thus, there is a constant need for seeking cancer cell-specific therapeutics to improve the course of cancer therapy and reduce the risk of relapse. In this review we elaborate on the mechanisms underlying the immunotherapy with dendritic cells (DCs) and cytokine-induced killer (CIK) cells, and summarize their effectiveness and tolerability available clinical studies. Finally, we discuss the up-to-date combinatorial adoptive anti-cancer immunotherapy with CIK cells co-cultured with DCs that recently showed encouraging efficacy and usefulness in treating malignant disease, including CRC. PMID:28352234

  14. Diverse Endogenous Antigens for Mouse Natural Killer T Cells: Self-Antigens That Are Not Glycosphingolipids

    PubMed Central

    Pei, Bo; Speak, Anneliese O; Shepherd, Dawn; Butters, Terry; Cerundolo, Vincenzo; Platt, Frances M; Kronenberg, Mitchell

    2011-01-01

    Natural killer T cells with an invariant antigen receptor (iNKT cells) represent a highly conserved and unique subset of T lymphocytes having properties of innate and adaptive immune cells. They have been reported to regulate a variety of immune responses, including the response to cancers and the development of autoimmunity. The development and activation of iNKT cells is dependent on self-antigens presented by the CD1d antigen-presenting molecule. It is widely believed that these self-antigens are glycosphingolipids (GSLs), molecules that contain ceramide as the lipid backbone. Here we used a variety of methods to show that mammalian antigens for mouse iNKT cells need not be GSLs, including the use of cell lines deficient in GSL biosynthesis and an inhibitor of GSL biosynthesis. Presentation of these antigens required the expression of CD1d molecules that could traffic to late endosomes, the site where self-antigen is acquired. Extracts of antigen-presenting cells (APCs) contain a self-antigen that could stimulate iNKT cells when added to plates coated with soluble, recombinant CD1d molecules. The antigen(s) in these extracts are resistant to sphingolipid-specific hydrolase digestion, consistent with the results using live APCs. Lyosphosphatidylcholine, a potential self-antigen that activated human iNKT cell lines, did not activate mouse iNKT cell hybridomas. Our data indicate that there may be more than one type of self-antigen for iNKT cells, that the self-antigens comparing mouse and human may not be conserved, and that the search to identify these molecules should not be confined to GSLs. PMID:21191069

  15. Mechanisms of diminished natural killer cell activity in pregnant women and neonates

    SciTech Connect

    Baley, J.E.; Schacter, B.Z.

    1985-05-01

    Because alterations in natural killer (NK) activity in the perinatal period may be important in the maintenance of a healthy pregnancy, the mechanisms by which these alterations are mediated in neonates and in pregnant and postpartum women was examined. NK activity, as measured in a 4-hr /sup 51/Cr-release assay and compared with adult controls, is significantly diminished in all three trimesters of pregnancy and in immediately postpartum women. In postpartum women, NK activity appears to be higher than in pregnant women, although this does not reach statistical significance. Pregnant and postpartum women have normal numbers of large granular lymphocytes and normal target cell binding in an agarose single cell assay but decreased lysis of the bound target cells. NK activity of mononuclear cells from postpartum women, in addition, demonstrate a shift in distribution to higher levels of resistance to gamma-irradiation. Further, sera from postpartum women cause a similar shift to increased radioresistance in mononuclear cells from adult controls. Because radioresistance is a property of interleukin 2-stimulated NK, the shift to radioresistance may represent lymphokine-mediated stimulation occurring during parturition. In contrast, cord blood cells have a more profound decrease in NK activity as determined by /sup 51/Cr-release assay and decreases in both binding and lysis of bound target cells in the single cell assay. The resistance of NK activity in cord cells to gamma-irradiation is also increased, as seen in postpartum women. Cord blood serum, however, did not alter radioresistance or inhibit NK activity. The results suggest that the observed diminished NK activity in pregnant women and neonates arise by different mechanisms: an absence of mature NK cells in the neonate and an alteration of the NK cell in pregnancy leading to decreased killing.

  16. Interaction of natural killer cells with neutrophils exerts a significant antitumor immunity in hematopoietic stem cell transplantation recipients.

    PubMed

    Ueda, Ryosuke; Narumi, Kenta; Hashimoto, Hisayoshi; Miyakawa, Reina; Okusaka, Takuji; Aoki, Kazunori

    2016-01-01

    Autologous hematopoietic stem cell transplantation (HSCT) can induce a strong antitumor immunity by homeostatic proliferation (HP) of T cells and suppression of regulatory T cells following preconditioning-induced lymphopenia. However, the role of innate immunity including natural killer (NK) cells is still not understood. Here, first, we examined whether NK cells exert an antitumor effect after syngeneic HSCT in a murine colon cancer model. Flow cytometry showed that NK cells as well as T cells rapidly proliferated after HSCT, and the frequency of mature NK cells was increased in tumor during HP. Furthermore, NK cells undergoing HP were highly activated, which contributed to substantial tumor suppression. Then, we found that a large number of neutrophils accumulated in tumor early after syngeneic HSCT. It was recently reported that neutrophil-derived mediators modulate NK cell effector functions, and so we examined whether the neutrophils infiltrated in tumor are associated with NK cell-mediated antitumor effect. The depletion of neutrophils significantly impaired an activation of NK cells in tumor and increased the fraction of proliferative NK cells accompanied by a decrease in NK cell survival. The results suggested that neutrophils in tumor prevent NK cells from activation-induced cell death during HP, thus leading to a significant antitumor effect by NK cells. This study revealed a novel aspect of antitumor immunity induced by HSCT and may contribute to the development of an effective therapeutic strategy for cancer using HSCT.

  17. Stereotaxic implantation of dispersed cell suspensions into brain. A systematic appraisal of cell placement and survival

    SciTech Connect

    Plunkett, R.J.; Weber, R.J.; Oldfield, E.H.

    1988-08-01

    The application of several recent advances in cell biology, brain implantation, and cell-mediated tumor immunotherapy requires successful and reproducible placement of viable cell suspensions into brain. Stereotaxic implantation is being used to inject cytotoxic lymphocytes into gliomas and to replace dopaminergic cells in parkinsonian models. Systematic assessment of the factors that influence success in implantation of cell suspensions into solid tissues is needed. A model was developed for investigation of stereotaxic implantation using radiolabeled rat lymphokine-activated killer (LAK) cells. Anesthetized rats received microliter injections of cell suspension into the right caudate nucleus. The injection volume, cell concentration, infusion rate, and needle size were varied systematically. The animals were sacrificed 1 hour after injection; the brain was removed and sectioned, and the radioactivity was counted. Three aliquots of the suspension were injected into counting tubes for control analysis. Recovery of radioactivity was expressed as the percent of mean counts per minute (cpm) in the right frontal lobe/mean cpm in the three control tubes. To assess the viability of implanted cells, the right frontal region was mechanically dissociated in media and centrifuged, and the pellet and supernatant were counted. By using small needles and slow infusion of volumes of 10 microliters or less, 85% to 90% of the radioactivity was recovered in the caudate nucleus. At least half of the implanted cells were viable. Consistent, accurate implantation of dispersed cells into brain over a range of volumes, cell concentrations, infusion rates, and needle sizes was achieved.

  18. A Novel Method for Assessment of Natural Killer Cell Cytotoxicity Using Image Cytometry.

    PubMed

    Somanchi, Srinivas S; McCulley, Kelsey J; Somanchi, Anitha; Chan, Leo L; Lee, Dean A

    2015-01-01

    Natural killer (NK) cells belong to the innate arm of the immune system and though activated NK cells can modulate immune responses through the secretion of cytokines, their primary effector function is through target cell lysis. Accordingly, cytotoxicity assays are central to studying NK cell function. The 51Chromium release assay, is the "gold standard" for cytotoxicity assay, however, due to concerns over toxicity associated with the use and disposal of radioactive compounds there is a significant interest in non-radioactive methods. We have previously used the calcein release assay as a non-radioactive alternative for studying NK cell cytotoxicity. In this study, we show that the calcein release assay varies in its dynamic range for different tumor targets, and that the entrapped calcein could remain unreleased within apoptotic bodies of lysed tumor targets or incompletely released resulting in underestimation of percent specific lysis. To overcome these limitations, we developed a novel cytotoxicity assay using the Cellometer Vision Image Cytometer and compared this method to standard calcein release assay for measuring NK cell cytotoxicity. Using tumor lines K562, 721.221, and Jurkat, we demonstrate here that image cytometry shows significantly higher percent specific lysis of the target cells compared to the standard calcein release assay within the same experimental setup. Image cytometry is able to accurately analyze live target cells by excluding dimmer cells and smaller apoptotic bodies from viable target cell counts. The image cytometry-based cytotoxicity assay is a simple, direct and sensitive method and is an appealing option for routine cytotoxicity assay.

  19. Natural killer T cells in multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis.

    PubMed

    Van Kaer, Luc; Wu, Lan; Parekh, Vrajesh V

    2015-09-01

    Multiple sclerosis (MS) is a chronic inflammatory disease that causes demyelination of neurons in the central nervous system. Traditional therapies for MS have involved anti-inflammatory and immunosuppressive drugs with significant side effects that often only provide short-term relief. A more desirable outcome of immunotherapy would be to protect against disease before its clinical manifestation or to halt disease after its initiation. One attractive approach to accomplish this goal would be to restore tolerance by targeting immunoregulatory cell networks. Although much of the work in this area has focused on CD4(+) Foxp3(+) regulatory T cells, other studies have investigated natural killer T (NKT) cells, a subset of T cells that recognizes glycolipid antigens in the context of the CD1d glycoprotein. Studies with human MS patients have revealed alterations in the numbers and functions of NKT cells, which have been partially supported by studies with the experimental autoimmune encephalomyelitis model of MS. Additional studies have shown that activation of NKT cells with synthetic lipid antigens can, at least under certain experimental conditions, protect mice against the development of MS-like disease. Although mechanisms of this protection remain to be fully investigated, current evidence suggests that it involves interactions with other immunoregulatory cell types such as regulatory T cells and immunosuppressive myeloid cells. These studies have provided a strong foundation for the rational design of NKT-cell-based immunotherapies for MS that induce tolerance while sparing overall immune function. Nevertheless, additional pre-clinical and clinical studies will be required to bring this goal to fruition.

  20. A role for natural killer cells in the immunopathogenesis of multiple sclerosis.

    PubMed

    Kastrukoff, L F; Morgan, N G; Zecchini, D; White, R; Petkau, A J; Satoh, J; Paty, D W

    1998-06-15

    Seventeen relapsing-remitting (R/R) multiple sclerosis (MS) patients and age/sex matched controls were studied every 6 weeks for 2 years. Disease activity, determined both clinically and by serial MRI, was correlated with natural killer (NK) cell functional activity (FA) and phenotype. Mean NK cell FA is significantly lower in MS patients, compared to controls (P < 0.001), while variability around the means is significantly greater (P < 0.01). The spectrum of mean NK cell FA, observed in the patient cohort, along with cyclical nature of the FA and phenotype over time, observed in both patients and controls, may begin to explain the discrepant results reported in previous studies. In R/R MS, there is a significant correlation between reductions (valleys) in NK cell FA and the development of active lesions on MRI, new (P < 0.001) or enlarging (P = 0.05). More importantly, a significant number of active lesions, new (P = 0.01) and enlarging (P = 0.02), are preceded by a reduction in NK cell FA. The correlation between the onset of clinical attacks and valleys of NK cell FA is also significant (P = 0.002). When taken together, the results suggest that reductions (valleys) in NK cell FA represent periods of susceptibility for the development of active lesions on MRI and clinical attacks. A significant positive correlation is also identified between mean NK cell FA for each R/R MS patient and total number of active MRI lesions developed by that patient over the 2 years (P = 0.001). The results would suggest that R/R MS patients with a higher mean NK cell FA are at greater risk for the development of active lesions. These results support the proposal that NK cells may play a role in the immunopathogenesis of R/R MS.

  1. Association of Killer Cell Immunoglobulin-Like Receptor Genes with Hodgkin's Lymphoma in a Familial Study

    PubMed Central

    Williams, Fionnuala; Orsi, Laurent; Amiel, Corinne; Lependeven, Catherine; Antoni, Guillemette; Hermine, Olivier; Brice, Pauline; Ferme, Christophe; Carde, Patrice; Canioni, Danielle; Brière, Josette; Raphael, Martine; Nicolas, Jean-Claude; Clavel, Jacqueline; Middleton, Derek; Vivier, Eric; Abel, Laurent

    2007-01-01

    Background Epstein-Barr virus (EBV) is the major environmental factor associated with Hodgkin's lymphoma (HL), a common lymphoma in young adults. Natural killer (NK) cells are key actors of the innate immune response against viruses. The regulation of NK cell function involves activating and inhibitory Killer cell Immunoglobulin-like receptors (KIRs), which are expressed in variable numbers on NK cells. Various viral and virus-related malignant disorders have been associated with the presence/absence of certain KIR genes in case/control studies. We investigated the role of the KIR cluster in HL in a family-based association study. Methodology We included 90 families with 90 HL index cases (age 16–35 years) and 255 first-degree relatives (parents and siblings). We developed a procedure for reconstructing full genotypic information (number of gene copies) at each KIR locus from the standard KIR gene content. Out of the 90 collected families, 84 were informative and suitable for further analysis. An association study was then carried out with specific family-based analysis methods on these 84 families. Principal Findings Five KIR genes in strong linkage disequilibrium were found significantly associated with HL. Refined haplotype analysis showed that the association was supported by a dominant protective effect of KIR3DS1 and/or KIR2DS1, both of which are activating receptors. The odds ratios for developing HL in subjects with at least one copy of KIR3DS1 or KIR2DS1 with respect to subjects with neither of these genes were 0.44[95% confidence interval 0.23–0.85] and 0.42[0.21–0.85], respectively. No significant association was found in a tentative replication case/control study of 68 HL cases (age 18–71 years). In the familial study, the protective effect of KIR3DS1/KIR2DS1 tended to be stronger in HL patients with detectable EBV in blood or tumour cells. Conclusions This work defines a template for family-based association studies based on full genotypic

  2. Multi-cellular natural killer (NK) cell clusters enhance NK cell activation through localizing IL-2 within the cluster

    PubMed Central

    Kim, Miju; Kim, Tae-Jin; Kim, Hye Mi; Doh, Junsang; Lee, Kyung-Mi

    2017-01-01

    Multi-cellular cluster formation of natural killer (NK) cells occurs during in vivo priming and potentiates their activation to IL-2. However, the precise mechanism underlying this synergy within NK cell clusters remains unclear. We employed lymphocyte-laden microwell technologies to modulate contact-mediated multi-cellular interactions among activating NK cells and to quantitatively assess the molecular events occurring in multi-cellular clusters of NK cells. NK cells in social microwells, which allow cell-to-cell contact, exhibited significantly higher levels of IL-2 receptor (IL-2R) signaling compared with those in lonesome microwells, which prevent intercellular contact. Further, CD25, an IL-2R α chain, and lytic granules of NK cells in social microwells were polarized toward MTOC. Live cell imaging of lytic granules revealed their dynamic and prolonged polarization toward neighboring NK cells without degranulation. These results suggest that IL-2 bound on CD25 of one NK cells triggered IL-2 signaling of neighboring NK cells. These results were further corroborated by findings that CD25-KO NK cells exhibited lower proliferation than WT NK cells, and when mixed with WT NK cells, underwent significantly higher level of proliferation. These data highlights the existence of IL-2 trans-presentation between NK cells in the local microenvironment where the availability of IL-2 is limited. PMID:28074895

  3. Multi-cellular natural killer (NK) cell clusters enhance NK cell activation through localizing IL-2 within the cluster

    NASA Astrophysics Data System (ADS)

    Kim, Miju; Kim, Tae-Jin; Kim, Hye Mi; Doh, Junsang; Lee, Kyung-Mi

    2017-01-01

    Multi-cellular cluster formation of natural killer (NK) cells occurs during in vivo priming and potentiates their activation to IL-2. However, the precise mechanism underlying this synergy within NK cell clusters remains unclear. We employed lymphocyte-laden microwell technologies to modulate contact-mediated multi-cellular interactions among activating NK cells and to quantitatively assess the molecular events occurring in multi-cellular clusters of NK cells. NK cells in social microwells, which allow cell-to-cell contact, exhibited significantly higher levels of IL-2 receptor (IL-2R) signaling compared with those in lonesome microwells, which prevent intercellular contact. Further, CD25, an IL-2R α chain, and lytic granules of NK cells in social microwells were polarized toward MTOC. Live cell imaging of lytic granules revealed their dynamic and prolonged polarization toward neighboring NK cells without degranulation. These results suggest that IL-2 bound on CD25 of one NK cells triggered IL-2 signaling of neighboring NK cells. These results were further corroborated by findings that CD25-KO NK cells exhibited lower proliferation than WT NK cells, and when mixed with WT NK cells, underwent significantly higher level of proliferation. These data highlights the existence of IL-2 trans-presentation between NK cells in the local microenvironment where the availability of IL-2 is limited.

  4. Characterization of a subset of bone marrow-derived natural killer cells that regulates T cell activation in rats.

    PubMed

    Kheradmand, Taba; Trivedi, Prachi P; Wolf, Norbert A; Roberts, Paul C; Swanborg, Robert H

    2008-05-01

    We report that bone marrow-derived natural killer (BMNK) cells from DA or F344 rats inhibit PMA/ionomycin-induced T cell proliferation. These NK-regulatory cells are NKR-P1A(dim), whereas a minor subpopulation is NKR-P1A(bright). Only the NKR-P1A(dim) BMNK cells inhibit T cell proliferation. If activated with rat Con A supernatant, the NKR-P1A(dim) cells become NKR-P1A(bright) and lose the ability to inhibit T cell proliferation. In contrast to BMNK cells, all DA and F344 rat NK cells isolated from the blood, spleen, cervical, or mesenteric lymph nodes or Peyer's patches are NKR-P1A(bright) and lack the ability to inhibit T cell proliferation. Inhibition of T cell proliferation correlates with significant down-regulation of CD3, suggesting that this may be the mechanism through which the NKR-P1A(dim) cells mediate suppression. The nitric oxide synthase inhibitor N(G)-monomethyl-arginine acetate-abrogated NKR-P1A(dim) cell inhibition of T cell proliferation. We conclude that rat bone marrow NKR-P1A(dim) cells represent a unique population that may play a role in maintaining immune homeostasis by regulating the clonal expansion of activated T cells.

  5. Capacity of tumor necrosis factor to augment lymphocyte-mediated tumor cell lysis of malignant mesothelioma

    SciTech Connect

    Bowman, R.V.; Manning, L.S.; Davis, M.R.; Robinson, B.W. )

    1991-01-01

    Recombinant human tumor necrosis factor (rHuTNF) was evaluated both for direct anti-tumor action against human malignant mesothelioma and for its capacity to augment the generation and lytic phases of lymphocyte-mediated cytotoxicity against this tumor. rHuTNF was directly toxic by MTT assay to one of two mesothelioma cell lines evaluated, but had no effect on susceptibility to subsequent lymphocyte-mediated lysis of either line. TNF alone was incapable of generating anti-mesothelioma lymphokine-activated killer cell (LAK) activity. Furthermore, it did not augment the degree or LAK activity produced by submaximal interleukin-2 (IL-2) concentrations nor did it augment lysis of mesothelioma cells by natural killer (NK) or LAK effector cells during the 4-hr 51chromium release cytolytic reaction. The studies also suggest that mesothelioma targets are less responsive to TNF plus submaximal IL-2 concentrations than the standard LAK sensitive target Daudi, raising the possibility that intermediate LAK sensitive tumors such as mesothelioma may require separate and specific evaluation in immunomodulation studies. This in vitro study indicates that use of low-dose rHuTNF and IL-2 is unlikely to be an effective substitute for high-dose IL-2 in generation and maintenance of LAK activity in adoptive immunotherapy for mesothelioma.

  6. Suppression of natural killer cell cytotoxicity in postpartum women: time course and potential mechanisms.

    PubMed

    Groer, Maureen W; El-Badri, Nagwa; Djeu, Julie; Williams, S Nicole; Kane, Bradley; Szekeres, Karoly

    2014-07-01

    Little is known about the recovery of the immune system from normal pregnancy and whether the postpartum period is a uniquely adapted immune state. This report extends previous observations from our group of decreased natural killer (NK) cell cytotoxicity in the postpartum period. NK cytotoxicity was measured from 1 week through 9 months postpartum. In addition, NK cytotoxicity was assayed in the presence or absence of pooled plasmas collected from either postpartum or nonpostpartum women. Samples of cells were stained for inhibitory receptors and analyzed by flow cytometry. NK cytotoxicity remained decreased in postpartum women compared to controls through the first 6 postpartum months, returned to normal levels by 9 months, and remained normal at 12 months. NK cytotoxicity during the first 6 months was further inhibited by the addition of pooled plasma to NK cultures from postpartum women, but the addition of pooled plasma from the control group did not affect that group's NK cultures. There were differences in inhibitory receptor staining between the two groups, with decreased CD158a and CD158b and increased NKG2A expression on postpartum NK cells during the first 3 postpartum months. These data suggest that NK cytotoxicity postpartum inhibition lasts 6 months and is influenced by unidentified postpartum plasma components. The effect may also involve receptors on NK cells.

  7. Targeting natural killer cell reactivity by employing antibody to NKp46: implications for type 1 diabetes.

    PubMed

    Yossef, Rami; Gur, Chamutal; Shemesh, Avishai; Guttman, Ofer; Hadad, Uzi; Nedvetzki, Shlomo; Miletić, Antonija; Nalbandyan, Karen; Cerwenka, Adelheid; Jonjic, Stipan; Mandelboim, Ofer; Porgador, Angel

    2015-01-01

    Natural killer (NK) cells belong to the innate lymphoid cells. Their cytotoxic activity is regulated by the delicate balance between activating and inhibitory signals. NKp46 is a member of the primary activating receptors of NK cells. We previously reported that the NKp46 receptor is involved in the development of type 1 diabetes (T1D). Subsequently, we hypothesized that blocking this receptor could prevent or hinder disease development. To address this goal, we developed monoclonal antibodies for murine NKp46. One mAb, named NCR1.15, recognizes the mouse homologue protein of NKp46, named Ncr1, and was able to down-regulate the surface expression of NKp46 on primary murine NK cells following antibody injection in vivo. Additionally, NCR1.15 treatments were able to down-regulate cytotoxic activity mediated by NKp46, but not by other NK receptors. To test our primary assumption, we examined T1D development in two models, non-obese diabetic mice and low-dose streptozotocin. Our results show a significantly lower incidence of diabetic mice in the NCR1.15-treated group compared to control groups. This study directly demonstrates the involvement of NKp46 in T1D development and suggests a novel treatment strategy for early insulitis.

  8. Use of flameless atomic absorption spectroscopy in immune cytolysis for nonradioactive determination of killer cell activity.

    PubMed

    Borella, P; Bargellini, A; Salvioli, S; Cossarizza, A

    1996-02-01

    We describe here a novel method to evaluate natural killer (NK) cytolytic activity by use of flameless atomic absorption spectroscopy (GF-AAS). This technique may be adopted for use in laboratories equipped with electrothermal atomic absorption spectrometers. Nonradioactive Cr as Na2CrO4 was used to label target cells (K562), and cell lysis was evaluated by measuring Cr released after 4 h of incubation with the effectors. We selected 520 micrograms/L as the optimal dose for labeling targets, between 12 and 20 h as the optimal incubation time, and 10(4) cells as the optimal target size. Advantages of this method include: (a) exclusion of radioactive tracer, with no risk for workers; (b) limited costs; (c) high sensitivity and reproducibility; (d) possibility to store samples; and (e) better control of Cr used for labeling cells due to well-determined, fixed Cr concentrations in the range of nontoxic and linear cellular uptake. Comparison with data obtained by conventional 51Cr labeling of targets killed by the same effectors was excellent, yielding comparable results and corroborating the method.

  9. Green Tea Catechin Metabolites Exert Immunoregulatory Effects on CD4(+) T Cell and Natural Killer Cell Activities.

    PubMed

    Kim, Yoon Hee; Won, Yeong-Seon; Yang, Xue; Kumazoe, Motofumi; Yamashita, Shuya; Hara, Aya; Takagaki, Akiko; Goto, Keiichi; Nanjo, Fumio; Tachibana, Hirofumi

    2016-05-11

    Tea catechins, such as (-)-epigallocatechin-3-O-gallate (EGCG), have been shown to effectively enhance immune activity and prevent cancer, although the underlying mechanism is unclear. Green tea catechins are instead converted to catechin metabolites in the intestine. Here, we show that these green tea catechin metabolites enhance CD4(+) T cell activity as well as natural killer (NK) cell activity. Our data suggest that the absence of a 4'-hydroxyl on this phenyl group (B ring) is important for the effect on immune activity. In particular, 5-(3',5'-dihydroxyphenyl)-γ-valerolactone (EGC-M5), a major metabolite of EGCG, not only increased the activity of CD4(+) T cells but also enhanced the cytotoxic activity of NK cells in vivo. These data suggest that EGC-M5 might show immunostimulatory activity.

  10. Targeting VEGF-A in myeloid cells enhances natural killer cell responses to chemotherapy and ameliorates cachexia

    PubMed Central

    Klose, Ralph; Krzywinska, Ewelina; Castells, Magali; Gotthardt, Dagmar; Putz, Eva Maria; Kantari-Mimoun, Chahrazade; Chikdene, Naima; Meinecke, Anna-Katharina; Schrödter, Katrin; Helfrich, Iris; Fandrey, Joachim; Sexl, Veronika; Stockmann, Christian

    2016-01-01

    Chemotherapy remains a mainstay of cancer treatment but its use is often limited by the development of adverse reactions. Severe loss of body weight (cachexia) is a frequent cause of death in cancer patients and is exacerbated by chemotherapy. We show that genetic inactivation of vascular endothelial growth factor (VEGF)-A in myeloid cells prevents chemotherapy-induced cachexia by inhibiting skeletal muscle loss and the lipolysis of white adipose tissue. It also improves clearance of senescent tumour cells by natural killer cells and inhibits tumour regrowth after chemotherapy. The effects depend on the chemoattractant chemerin, which is released by the tumour endothelium in response to chemotherapy. The findings define chemerin as a critical mediator of the immune response, as well as an important inhibitor of cancer cachexia. Targeting myeloid cell-derived VEGF signalling should impede the lipolysis and weight loss that is frequently associated with chemotherapy, thereby substantially improving the therapeutic outcome. PMID:27538380

  11. Hepatitis B viral replication influences the expression of natural killer cell ligands

    PubMed Central

    Koumbi, Lemonica; Pollicino, Teresa; Raimondo, Giovanni; Kumar, Naveenta; Karayiannis, Peter; Khakoo, Salim I.

    2016-01-01

    Background Hepatitis B virus (HBV) is accounting for over one million deaths annually due to immune-mediated chronic liver damage. Natural killer (NK) cells are abundant in the liver and contribute in HBV persistence. NK cytotoxic effects are controlled by signals from activati