Science.gov

Sample records for lyotropic liquid crystals

  1. Nanostructuring lyotropic chromonic liquid crystals

    NASA Astrophysics Data System (ADS)

    Schneider, Tod L.

    Lyotropic Chromonic Liquid Crystals (LCLCs) are an interesting and little known family of liquid crystals. Although materials such as Disodium Cromoglycate have been studied in depth for their phase behavior for use as antiasthmatic drugs, practical applications had yet to emerge. The focus of this work was to provide new applications for LCLC materials. The three most important results are: the uniform alignment of dried LCLC films, a new type of Langmuir Blodgett molecular monolayer or stack of molecular monolayers with long-range in-plane orientational order, and the use of LCLCs as an amplifying medium of antibody-antigen binding for the purpose of biodetection. To uniformly align LCLC materials, a diblock copolymer additive was used to reduce or eliminate tiger-stripe defects in the films. Uniformly aligned LCLC films can be useful as polarizing, compensating, or alignment layers in liquid crystal displays. In-plane oriented molecular monolayers were created using the method electrostatic self assembled monolayers and allowed for interesting experiments such as imaging individual LCLC aggregates via Atomic Force Microscopy (AFM). Controlling the in-plane long-range ordering one monolayer at a time allows for the creation of novel integrated optical systems. Finally, LCLCs are biocompatible and can be used to detect specific antibody-antigen binding events through the formation of immune complexes. Once the immune complex becomes larger than a critical size (determined by the elastic and surface properties of the LCLC-immune complex), the LCLC becomes distorted around the complex and can be optically detected.

  2. Nanoparticle guests in lyotropic liquid crystals

    NASA Astrophysics Data System (ADS)

    Dölle, Sarah; Park, Ji Hyun; Schymura, Stefan; Jo, Hyeran; Scalia, Giusy; Lagerwall, Jan P. F.

    In this chapter we discuss the benefits, peculiarities and main challenges related to nanoparticle templating in lyotropic liquid crystals. We first give a brief bird's-eye view of the field, discussing different nanoparticles as well as different lyotropic hosts that have been explored, but then quickly focus on the dispersion of carbon nanotubes in surfactant-based lyotropic nematic phases. We discuss in some detail how the transfer of orientational order from liquid crystal host to nanoparticle guest can be verified and which degree of ordering can be expected, as well as the importance of choosing the right surfactant and its concentration for the stability of the nanoparticle suspension. We introduce a method for dispersing nanoparticles with an absolute minimum of stabilizing surfactant, based on dispersion below the Krafft temperature, and we discuss the peculiar phenomenon of filament formation in lyotropic nematic phases with a sufficient concentration of well-dispersed carbon nanotubes. Finally, we describe how the total surfactant concentration in micellar nematics can be greatly reduced by combining cat- and anionic surfactants, and we discuss how nanotubes can help in inducing the liquid crystal phase close to the isotropic-nematic boundary.

  3. Optical characterization of lyotropic chromonic liquid crystals

    NASA Astrophysics Data System (ADS)

    Liu, Hui

    Lyotropic chromonic liquid crystals (LCLCs) represent a special class of lyotropic mesophases markedly different from conventional amphiphilic mesogens. Materials forming LCLCs are composed of plank-like molecules with a polyaromatic central core and hydrophilic ionic groups at the periphery. The individual molecules tend to assemble into rodlike aggregates that form the N phase once the concentration exceeds about 0.1M. The LCLC materials show a tremendous potential for applications in optics as self-assembling polarizing and compensating films and in the area of real-time biological sensing. The emerging applications require an understanding of basic properties of LCLC. This work addresses these needs by providing the optical characterization of LCLC. We studied in detail the optical anisotropic properties of three different nematic LCLCs: disodium cromoglycate (DSCG), Blue 27, and Violet 20. We determined the birefringence of these three materials as the function of the temperature T and wavelength lambda and the corresponding dependencies of the absorption coefficients for Blue 27 and Violet 20. The birefringence is negative and significantly lower in the absolute value as compared to the birefringence of typical thermotropic N materials. We determined the scalar order parameter of the nematic phase of Blue 27 and its temperature dependence. The scalar order parameter is close to the one predicted by the classic Onsager theory for solutions of rigid rods. However, this similarity is not complete, as the measured scalar order parameter depends on temperature. The I-N pretransitional fluctuations in an aqueous solution of DSCG were studied by light scattering. We obtained the correlation length of the orientational order-parameter fluctuations of isotropic DSCG solution. The pretransitional behavior of light scattering does not completely follow the classic Landau-de Gennes model. This feature is explained by the variable length of DSCG aggregates as a function

  4. Lyotropic liquid crystal directed synthesis of nanostructured materials

    PubMed Central

    Wang, Cuiqing; Chen, Dairong; Jiao, Xiuling

    2009-01-01

    This review introduces and summarizes lyotropic liquid crystal (LLC) directed syntheses of nanostructured materials consisting of porous nanostructures and zero-dimensional (0-D), one-dimensional (1-D) and two-dimensional (2-D) nanostructures. After a brief introduction to the liquid crystals, the LLCs used to prepare mesoporous materials are discussed; in particular, recent advances in controlling mesostructures are summarized. The LLC templates directing the syntheses of nanoparticles, nanorods, nanowires and nanoplates are also presented. Finally, future development in this field is discussed. PMID:27877273

  5. Brownian Dynamics of Colloidal Particles in Lyotropic Chromonic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Martinez, Angel; Collings, Peter J.; Yodh, Arjun G.

    We employ video microscopy to study the Brownian dynamics of colloidal particles in the nematic phase of lyotropic chromonic liquid crystals (LCLCs). These LCLCs (in this case, DSCG) are water soluble, and their nematic phases are characterized by an unusually large elastic anisotropy. Our preliminary measurements of particle mean-square displacement for polystyrene colloidal particles (~5 micron-diameter) show diffusive and sub-diffusive behaviors moving parallel and perpendicular to the nematic director, respectively. In order to understand these motions, we are developing models that incorporate the relaxation of elastic distortions of the surrounding nematic field. Further experiments to confirm these preliminary results and to determine the origin of these deviations compared to simple diffusion theory are ongoing; our results will also be compared to previous diffusion experiments in nematic liquid crystals. We gratefully acknowledge financial support through NSF DMR12-05463, MRSEC DMR11-20901, and NASA NNX08AO0G.

  6. Parity breaking in nematic tactoids of lyotropic chromonic liquid crystals

    NASA Astrophysics Data System (ADS)

    Tortora, Luana; Lavrentovich, Oleg D.

    2011-03-01

    In many colloidal systems, an orientationally ordered nematic phase emerges from the isotropic melt in the form of spindle-like birefringent tactoids. In cases studied so far, the tactoids always reveal a mirror-symmetric non-chiral structure, even when the building units are chiral, as in the case of tobacco mosaic virus and fd virus. We report on parity breaking in the nematic tactoids formed in molecularly non-chiral polymer-crowded solutions of lyotropic chromonic liquid crystals. The effect is manifested by twist of the director and optical activity. Fluorescent confocal polarizing microscopy reveals that the tactoids nucleate at boundaries of cells. We explain the chirality induction by the effect of geometrical anchoring and by increase of the splay elastic constant in condensed nematic regions of crowded solutions. NSF DMR MWN 0710544.

  7. Interaction between lyotropic chromonic liquid crystals and polymers

    NASA Astrophysics Data System (ADS)

    Yao, Xuxia; Park, Jung; Srinivasarao, Mohan

    2010-03-01

    Lyotropic chromonic liquid crystals (LCLCs) consist of various dyes, drugs, etc., so their importance is self-evident. The interaction of chromonic molecules and polymers is involved in their real applications, such as the dyeing process of fibers, textiles and food, and the functionalization of drugs in vivo. In our research, polymer dispersed LCLC droplets and polymer coated LCLC cells have been fabricated. Effect of interaction was observed by optical texture of LCLCs, as the different polymers induce different director configuration of LCLCs. A textile dye-Benzopurpurine 4B, food dye-Sunset Yellow FCF, and drug-Disodium Cromoglycate mixed with water soluble polymers, proteins and textile polymers have been all studied and compared.

  8. Chirality Amplification in Tactoids of Lyotropic Chromonic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Peng, Chenhui; Lavrentovich, Oleg

    2014-03-01

    We demonstrate an effective chirality amplification based on the long-range forces, extending over the scales of tens of micrometers, much larger than the single molecule (nanometer) scale. The mechanism is rooted in the long-range elastic nature of orientational order in lyotropic chromonic liquid crystals (LCLCs) that represent water solutions of achiral disc-like molecules. Minute quantities of chiral molecules such as amino acid L-alanine and limonene added to the droplets of LCLC lead to chiral amplification characterized by an increase of optical activity by a factor of 103 - 104. This effect allows one to discriminate and detect the absolute configuration of chiral molecules in an aqueous system, thus opening new possibilities in biosensing and other biological applications.

  9. Secondary and lyotropic liquid crystal membranes for improved aqueous separations

    NASA Astrophysics Data System (ADS)

    Nemade, Parag Ramesh

    An effective membrane separation process should have high flux (i.e., volume filtered per unit membrane surface area per unit time) and selectivity (i.e., passage of the desired species and rejection of undesired species). This dissertation examined two approaches, secondary membranes and lyotropic liquid crystal membranes, for improving flux and selectivity in aqueous liquid separations. The first part of my work emphasizes the use of pre-deposited secondary membranes and backflushing for controlling membrane fouling in microfiltration and ultrafiltration of biological mixtures. Use of secondary membranes increased the permeate flux in microfiltration by several fold. Protein transmission is also enhanced due to the presence of the secondary membrane, and the amount of protein recovered is more than twice that obtained during filtration of protein-only solutions under otherwise identical conditions. In ultrafiltration, the flux enhancement due to secondary membranes is 50%, or less. For the second part of my research, I developed and evaluated polymerized lyotropic liquid crystal (LLC) thin-film composite membranes. LLC assemblies provide an opportunity to make nanoporous polymer membranes with precise control over chemical and structural features on the nanometer scale, which is currently lacking in commercial reverse osmosis (RO) and nanofiltration (NF) membranes available today. These LLC composite membranes are prepared by photopolymerization of solution-cast films of LLC monomer on an ultrafiltration support membrane. These LLC membranes appeared to exhibit almost linearly increasing ionic rejection based on ionic diameter. LLC monomer was modified to achieve a 15% reduction in channel diameter, through the use of a larger multivalent Eu3+ cation as the carboxylate counterion. However, the monomers synthesized required use of solvents such as tetrahydrofuran, which resulted in the dissolution and damage of the support membranes used. Therefore, this direction

  10. Lyotropic chromonic liquid crystals: From viscoelastic properties to living liquid crystals

    NASA Astrophysics Data System (ADS)

    Zhou, Shuang

    Lyotropic chromonic liquid crystal (LCLC) represents a broad range of molecules, from organic dyes and drugs to DNA, that self-assemble into linear aggregates in water through face-to-face stacking. These linear aggregates of high aspect ratio are capable of orientational order, forming, for example nematic phase. Since the microscopic properties (such as length) of the chromonic aggregates are results of subtle balance between energy and entropy, the macroscopic viscoelastic properties of the nematic media are sensitive to change of external factors. In the first part of this thesis, by using dynamic light scattering and magnetic Frederiks transition techniques, we study the Frank elastic moduli and viscosity coefficients of LCLC disodium cromoglycate (DSCG) and sunset yellow (SSY) as functions of concentration c , temperature T and ionic contents. The elastic moduli of splay (K1) and bend (K3) are in the order of 10pN, about 10 times larger than the twist modulus (K2). The splay modulus K1 and the ratio K1/K3 both increase substantially as T decreases or c increases, which we attribute to the elongation of linear aggregates at lower T or higher c . The bend viscosity is comparable to that of thermotropic liquid crystals, while the splay and twist viscosities are several orders of magnitude larger, changing exponentially with T . Additional ionic additives into the system influence the viscoelastic properties of these systems in a dramatic and versatile way. For example, monovalent salt NaCl decreases bend modulus K3 and increases twist viscosity, while an elevated pH decreases all the parameters. We attribute these features to the ion-induced changes in length and flexibility of building units of LCLC, the chromonic aggregates, a property not found in conventional thermotropic and lyotropic liquid crystals form by covalently bound units of fixed length. The second part of the thesis studies a new active bio-mechanical hybrid system called living liquid crystal

  11. Synthesis of Distinct Iron Oxide Nanomaterial Shapes Using Lyotropic Liquid Crystal Solvents.

    PubMed

    Salili, Seyyed Muhammad; Worden, Matthew; Nemati, Ahlam; Miller, Donald W; Hegmann, Torsten

    2017-08-02

    A room temperature reduction-hydrolysis of Fe(III) precursors such as FeCl₃ or Fe(acac)₃ in various lyotropic liquid crystal phases (lamellar, hexagonal columnar, or micellar) formed by a range of ionic or neutral surfactants in H₂O is shown to be an effective and mild approach for the preparation of iron oxide (IO) nanomaterials with several morphologies (shapes and dimensions), such as extended thin nanosheets with lateral dimensions of several hundred nanometers as well as smaller nanoflakes and nanodiscs in the tens of nanometers size regime. We will discuss the role of the used surfactants and lyotropic liquid crystal phases as well as the shape and size differences depending upon when and how the resulting nanomaterials were isolated from the reaction mixture. The presented synthetic methodology using lyotropic liquid crystal solvents should be widely applicable to several other transition metal oxides for which the described reduction-hydrolysis reaction sequence is a suitable pathway to obtain nanoscale particles.

  12. Synthesis of Distinct Iron Oxide Nanomaterial Shapes Using Lyotropic Liquid Crystal Solvents

    PubMed Central

    Salili, Seyyed Muhammad; Worden, Matthew; Nemati, Ahlam; Miller, Donald W.

    2017-01-01

    A room temperature reduction-hydrolysis of Fe(III) precursors such as FeCl3 or Fe(acac)3 in various lyotropic liquid crystal phases (lamellar, hexagonal columnar, or micellar) formed by a range of ionic or neutral surfactants in H2O is shown to be an effective and mild approach for the preparation of iron oxide (IO) nanomaterials with several morphologies (shapes and dimensions), such as extended thin nanosheets with lateral dimensions of several hundred nanometers as well as smaller nanoflakes and nanodiscs in the tens of nanometers size regime. We will discuss the role of the used surfactants and lyotropic liquid crystal phases as well as the shape and size differences depending upon when and how the resulting nanomaterials were isolated from the reaction mixture. The presented synthetic methodology using lyotropic liquid crystal solvents should be widely applicable to several other transition metal oxides for which the described reduction-hydrolysis reaction sequence is a suitable pathway to obtain nanoscale particles. PMID:28767058

  13. Fluorescent Guests in Thermotropic and Chirality in Lyotropic Liquid Crystals.

    DTIC Science & Technology

    1984-03-01

    lyotropic nematic systems. The nematic systems used as solvents are (see Table I): (A) di- sodium cromoglycate4 𔃿 ( DSCG ) and 1120 with negative...In the case of system A, c Lydon 9 suggested on the basis of x-ray evidence and a high degree of hydra- tion that DSCG molecules form hollow finite...observations of an interesting dye induced stabilization of a biaxial nematic (N Bx) phase in system B. Experimental The DSCG was provided by Fisons Ltd. and

  14. Lyotropic liquid crystal engineering-ordered nanostructured small molecule amphiphile self-assembly materials by design.

    PubMed

    Fong, Celesta; Le, Tu; Drummond, Calum J

    2012-02-07

    Future nanoscale soft matter design will be guided to a large extent by the teachings of amphiphile (lipid or surfactant) self-assembly. Ordered nanostructured lyotropic liquid crystalline mesophases may form in select mixtures of amphiphile and solvent. To reproducibly engineer the low energy amphiphile self-assembly of materials for the future, we must first learn the design principles. In this critical review we discuss the evolution of these design rules and in particular discuss recent key findings regarding (i) what drives amphiphile self-assembly, (ii) what governs the self-assembly structures that are formed, and (iii) how can amphiphile self-assembly materials be used to enhance product formulations, including drug delivery vehicles, medical imaging contrast agents, and integral membrane protein crystallisation media. We focus upon the generation of 'dilutable' lyotropic liquid crystal phases with two- and three-dimensional geometries from amphiphilic small molecules (225 references). This journal is © The Royal Society of Chemistry 2012

  15. Phase and Topological Behavior of Lyotropic Chromonic Liquid Crystals in Double Emulsions

    NASA Astrophysics Data System (ADS)

    Davidson, Zoey S.; Jeong, Joonwoo; Tu, Fuquan; Lohr, Matt; Lee, Daeyeon; Collings, Peter J.; Lubensky, Tom C.; Yodh, A. G.

    2013-03-01

    Lyotropic chromonic liquid crystals, assembled by non-covalent interactions, have fascinating temperature- and concentration-dependent phase behavior. Using water-oil-water double emulsions, we are able control the inner droplet chromonic phase concentration by osmosis through the oil phase. We then study the configurations of the chromonic liquid crystal phases in droplets by varying the oil types, oil soluble surfactants, and inner droplet diameter. We employ polarization microscopy to observe resulting nematic and columnar phases of Sunset Yellow FCF, and we deduce the liquid crystal configuration of both phases within the droplets. Simulations based on Jones matrices confirm droplet appearance, and preliminary observations of chromonic liquid crystal shells in oil-water-oil double emulsions are reported. Supported by UPenn MRSEC DMR 11-20901 and NSF DMR 12-05463

  16. pH-responsive lyotropic liquid crystals for the preparation of pure cubic zirconia nanoparticles

    NASA Astrophysics Data System (ADS)

    He, Wei Yan; Liu, Jin Rong; He, Zhang; Cao, Zhen Zhu; Li, Cai Hong; Gao, Yan Fang

    2016-07-01

    We present a lyotropic liquid crystal system consisting of SDS/Triton X-100/water at 25 °C. This system is respond to pH variations with a phase switch. When pH is altered from alkaline (pH 13) to acidic (pH 2) conditions, phase change occurs from a bicontinuous hexagonal phase to a partially hexagonal phase until it disappears. The hexagonal phase under alkaline conditions is stable. Thus, this system is an ideal candidate for the preparation of pure cubic ZrO2 nanoparticles. XRD results confirm that the as-synthesized powder is composed of pure cubic ZrO2. These nanoparticles also exhibit a thermal stability of up to 800 °C. The size and morphological characteristics of the nanoparticles are greatly affected by ZrOCl2 concentration. The mechanism of zirconia nanoparticle synthesis in a lyotropic hexagonal phase was proposed.

  17. Polymerized lyotropic liquid crystals as contact lens materials

    NASA Astrophysics Data System (ADS)

    Anderson, David M.; Ström, Pelle

    1991-08-01

    When an aqueous solution of a hydrophilic monomer such as 2-hydroxyethylmetharylate (HEMA) is mixed with a surfactant at the correct proportions, the components self-assemble into a lytropic liquid crystal comprising a highly ordered periodic microstructure, and polymerization of the monomer and removal of the surfactant results in a macroporous hydrogel of potential importance as a material for contact lenses and other prostheses. The two most important properties of these structured polymers as contact lens materials are: (1) unlike simple hydrogels which have irregular pores with a highly polydispersed size distribution, these new materials have an extremely well-characterized-in fact, triply periodic-network of pores of identical size, which can be preselected so as to allow for the transport of proteins, mucins, and other components of the pre-ocular tear film; and (2) this pore size can be selected independently of the polymer concentration and crosslink density, unlike simple hydrogels where large pores can only be obtained by reducing the crosslink density and along with it the shear modulus. The pore diameter can be selected in the range 20-400 Å and possibly higher. A wide variety of surfactant systems that have been shown to yield materials of this degree of precision and versatility is reviewed.

  18. Novel colloidal system: Magnetite-polymer particles/lyotropic liquid crystal under magnetic field

    NASA Astrophysics Data System (ADS)

    Mănăilă-Maximean, D.; Cîrtoaje, C.; Dănilă, O.; Donescu, D.

    2017-09-01

    We obtained a new highly ordered colloidal composite using specially manufactured magnetite-polymer nanoparticles and lyotropic liquid crystal. A good compatibility between the components was ensured by the functionalization of the particles during their synthesis. We studied the laser light transmission for the mixtures filled in sandwich-glass cells with homeotropic and planar treatment of the surfaces under external magnetic field. The Fréedericksz transition critical field was estimated, and its' behavior was compared to our new theoretical model based on the Brochard-de Gennes one.

  19. An improved directional growth apparatus for liquid crystals: applications to thermotropic and lyotropic systems

    NASA Astrophysics Data System (ADS)

    Oswald, P.; Moulin, M.; Metz, P.; Géminard, J. C.; Sotta, P.; Sallen, L.

    1993-09-01

    We have built a directional growth apparatus adapted for the study of thermotropic or lyotropic liquid crystals. This cell allows us to work under inert gas, to orient the sample from outside with respect to the temperature gradient, and to measure the front temperature within 0.1°C. Three applications are described. The first deals with the growth of a monocrystal of pivalic acid when the easy growth axis makes an angle with the heat flow direction. The second experiment is concerned with the fast growth of a discotic liquid crystal and the measurement of the molecular attachment kinetic coefficient at the interface between the columnar hexagonal mesophase and the isotropic liquid. A dynamical anchoring transition between domains of planar and homeotropic orientation will be also described. The last example focuses on the growth of a hexagonal phase of a water-surfactant binary mixture and the first observation of the Mullins-Sekerka instability in a lyotropic system. Nous avons construit une cellule de croissance directionnelle adaptée à l'étude des cristaux liquides thermotropes ou lyotropes. Cette cellule permet de travailler en atmosphère inerte, d'orienter l'échantillon de l'extérieur par rapport au gradient de température, et de mesurer la température du front à 0.1°C près. Trois exemples d'application sont décrits. Le premier porte sur la croissance d'un monocristal d'acide pivalique quand l'axe de croissance facile des cellules fait un angle avec la direction du flux de chaleur. La seconde expérience porte sur la croissance rapide d'un cristal liquide discotique et la mesure du coefficient cinétique d'attachement moléculaire à l'interface entre la mésophase colonnaire hexagonale et le liquide isotrope. Une transition d'ancrage dynamique entre des domaines d'orientations planaire et homéotrope sera également décrite. Le dernier exemple porte sur la croissance d'une phase hexagonale d'un mélange binaire eau-surfactant et la premi

  20. Alignment and Graphene-Assisted Decoration of Lyotropic Chromonic Liquid Crystals Containing DNA Origami Nanostructures.

    PubMed

    Martens, Kevin; Funck, Timon; Kempter, Susanne; Roller, Eva-Maria; Liedl, Tim; Blaschke, Benno M; Knecht, Peter; Garrido, José Antonio; Zhang, Bingru; Kitzerow, Heinz

    2016-03-23

    Composites of DNA origami nanostructures dispersed in a lyotropic chromonic liquid crystal are studied by polarizing optical microscopy. The homogeneous aqueous dispersions can be uniformly aligned by confinement between two glass substrates, either parallel to the substrates owing to uniaxial rubbing or perpendicular to the substrates using ozonized graphene layers. These opportunities of uniform alignment may pave the way for tailored anisometric plasmonic DNA nanostructures to photonic materials. In addition, a decorated texture with nonuniform orientation is observed on substrates coated with pristine graphene. When the water is allowed to evaporate slowly, microscopic crystal needles appear, which are aligned along the local orientation of the director. This decoration method can be used for studying the local orientational order and the defects in chromonic liquid crystals. © 2016 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Polyoxometalate-lyotropic liquid crystal hybrid material formed in room-temperature ionic liquids.

    PubMed

    Jiang, Wenqing; Liu, Liping; Hao, Jingcheng

    2011-03-01

    Manganese(II)-substituted polyoxometalate, Na6(NH4)4[(Mn(II)(H2O)3)2(WO2)2(BiW9O33)2] x 37H2O (POM-Mn), was assembled within lyotropic hexagonal liquid crystal (LLC) formed in the room-temperature ionic liquids (RT-ILs), ethylammonium nitrate (EAN), fabricating the POM-LLC inorganic-organic hybrid materials. Polarized optical microscope images combined with small-angle X-ray scattering (SAXS) results indicate that the introduction of POM-Mn does not destroy the structure of hexagonal LLCs. The increase of d spacing demonstrates the integration of POM-Mn within the basic unit of the hexagonal LLCs. The FTIR spectra of the POM-LLC hybrid material show the characteristic absorption peaks of W-O bond. The rheological results indicate POM-LLC hybrid materials are highly viscoelastic and that the apparent viscosity is enhanced due to the introduction of the POM-Mn. The tribological properties were explored to greatly extend the applications of POM-LLC composites in RT-ILs as lubricating materials. The research of magnetic properties indicates the POM-LLC composite is ferromagnetic, therefore illuminating the potential application in the fields of magnetic materials.

  2. Anisotropic ionic conductivities in lyotropic supramolecular liquid crystals.

    PubMed

    Huang, Youju; Cong, Yuanhua; Li, Junjun; Wang, Daoliang; Zhang, Jingtuo; Xu, Lu; Li, Weili; Li, Liangbin; Pan, Guoqiang; Yang, Chuanlu

    2009-12-28

    The designed aromatic amide discotic molecule with sulfonic acid groups at its periphery exhibits a hexagonal supramolecular columnar liquid crystalline phase, which leads to the achievement of anisotropic ionic conductivity through macroscopically aligning the ionic channels.

  3. Metal-free and MRI visible theranostic lyotropic liquid crystal nitroxide-based nanoparticles.

    PubMed

    Muir, Benjamin W; Acharya, Durga P; Kennedy, Danielle F; Mulet, Xavier; Evans, Richard A; Pereira, Suzanne M; Wark, Kim L; Boyd, Ben J; Nguyen, Tri-Hung; Hinton, Tracey M; Waddington, Lynne J; Kirby, Nigel; Wright, David K; Wang, Hong X; Egan, Gary F; Moffat, Bradford A

    2012-03-01

    The development of improved, low toxicity, clinically viable nanomaterials that provide MRI contrast have tremendous potential to form the basis of translatable theranostic agents. Herein we describe a class of MRI visible materials based on lyotropic liquid crystal nanoparticles loaded with a paramagnetic nitroxide lipid. These readily synthesized nanoparticles achieved enhanced proton-relaxivities on the order of clinically used gadolinium complexes such as Omniscan™ without the use of heavy metal coordination complexes. Their low toxicity, high water solubility and colloidal stability in buffer resulted in them being well tolerated in vitro and in vivo. The nanoparticles were initially screened in vitro for cytotoxicity and subsequently a defined concentration range was tested in rats to determine the maximum tolerated dose. Pharmacokinetic profiles of the candidate nanoparticles were established in vivo on IV administration to rats. The lyotropic liquid crystal nanoparticles were proven to be effective liver MRI contrast agents. We have demonstrated the effective in vivo performance of a T1 enhancing, biocompatible, colloidally stable, amphiphilic MRI contrast agent that does not contain a metal. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Ionic-content dependence of viscoelasticity of the lyotropic chromonic liquid crystal sunset yellow.

    PubMed

    Zhou, Shuang; Cervenka, Adam J; Lavrentovich, Oleg D

    2014-10-01

    A lyotropic chromonic liquid crystal (LCLC) is an orientationally ordered system made by self-assembled aggregates of charged organic molecules in water, bound by weak noncovalent attractive forces and stabilized by electrostatic repulsions. We determine how the ionic content of the LCLC, namely, the presence of mono- and divalent salts and pH enhancing agent, alter the viscoelastic properties of the LCLC. Aqueous solutions of the dye sunset yellow with a uniaxial nematic order are used as an example. By applying a magnetic field to impose orientational deformations, we measure the splay K1, twist K2, and bend K3 elastic constants and rotation viscosity γ1 as a function of concentration of additives. The data indicate that the viscoelastic parameters are influenced by ionic content in dramatic and versatile ways. For example, the monovalent salt NaCl decreases K3 and K2 and increases γ1, while an elevated pH decreases all the parameters. We attribute these features to the ion-induced changes in length and flexibility of building units of LCLC, the chromonic aggregates, a property not found in conventional thermotropic and lyotropic liquid crystals formed by covalently bound units of fixed length.

  5. Influence of amphiphilic block copolymers on lyotropic liquid crystals in water-oil-surfactant systems.

    PubMed

    Frank, Christian; Sottmann, Thomas; Stubenrauch, Cosima; Allgaier, Jürgen; Strey, Reinhard

    2005-09-27

    In ternary water-oil-nonionic alkyl polyglycol ether (C(i)E(j)) microemulsions, an increase in efficiency is always accompanied by the formation of a lamellar (L(alpha)) phase. The addition of an amphiphilic block copolymer to the ternary base system increases the efficiency of the microemulsion drastically while suppressing--at least partly--the formation of the L(alpha) phase. However, amphiphilic block copolymers can be used not only to suppress the formation of lyotropic liquid crystals but also for the opposite effect, namely, to induce their formation. To understand to what extent the increase in efficiency is accompanied by the formation of lyotropic liquid crystals, we studied phase diagrams of water-n-alkane-n-alkyl polyglycol ethers (C(i)E(j))-PEPX-PEOY at a constant volume fraction of oil in the water/oil mixture. Using polymers of the poly(ethylene propylene)-copoly(ethylene oxide) type, with M(PEP) = X kg mol(-1) and M(PEO) = Y kg mol(-1), we determined phase diagrams as a function of the polymer concentration, size, and symmetry. Moreover, the influence of a particular polymer mixture was studied, which turned out to be the best system if both a high efficiency and a low tendency to form an L(alpha) phase are needed.

  6. Ionic-content dependence of viscoelasticity of the lyotropic chromonic liquid crystal sunset yellow

    NASA Astrophysics Data System (ADS)

    Zhou, Shuang; Cervenka, Adam J.; Lavrentovich, Oleg D.

    2014-10-01

    A lyotropic chromonic liquid crystal (LCLC) is an orientationally ordered system made by self-assembled aggregates of charged organic molecules in water, bound by weak noncovalent attractive forces and stabilized by electrostatic repulsions. We determine how the ionic content of the LCLC, namely, the presence of mono- and divalent salts and p H enhancing agent, alter the viscoelastic properties of the LCLC. Aqueous solutions of the dye sunset yellow with a uniaxial nematic order are used as an example. By applying a magnetic field to impose orientational deformations, we measure the splay K1, twist K2, and bend K3 elastic constants and rotation viscosity γ1 as a function of concentration of additives. The data indicate that the viscoelastic parameters are influenced by ionic content in dramatic and versatile ways. For example, the monovalent salt NaCl decreases K3 and K2 and increases γ1, while an elevated p H decreases all the parameters. We attribute these features to the ion-induced changes in length and flexibility of building units of LCLC, the chromonic aggregates, a property not found in conventional thermotropic and lyotropic liquid crystals formed by covalently bound units of fixed length.

  7. Spontaneous emergence of chirality in achiral lyotropic chromonic liquid crystals confined to cylinders

    PubMed Central

    Nayani, Karthik; Chang, Rui; Fu, Jinxin; Ellis, Perry W.; Fernandez-Nieves, Alberto; Park, Jung Ok; Srinivasarao, Mohan

    2015-01-01

    The presumed ground state of a nematic fluid confined in a cylindrical geometry with planar anchoring corresponds to that of an axial configuration, wherein the director, free of deformations, is along the long axis of the cylinder. However, upon confinement of lyotropic chromonic liquid crystals in cylindrical geometries, here we uncover a surprising ground state corresponding to a doubly twisted director configuration. The stability of this ground state, which involves significant director deformations, can be rationalized by the saddle-splay contribution to the free energy. We show that sufficient anisotropy in the elastic constants drives the transition from a deformation-free ground state to a doubly twisted structure, and results in spontaneous symmetry breaking with equal probability for either handedness. Enabled by the twist angle measurements of the spontaneous twist, we determine the saddle-splay elastic constant for chromonic liquid crystals for the first time. PMID:26287517

  8. Two-Point Particle Tracking Microrheology of Nematic Lyotropic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Gomez-Gonzalez, Manuel; Del Alamo, Juan Carlos

    2016-11-01

    Biological and technological complex fluids that are usually available in microscopic amounts (e.g. liquid crystals and biopolymer networks) can exhibit microstructural order leading to nematic rheological behavior. However, current microrheological methods cannot measure their directional viscoelastic coefficients. We recently introduced a directional two-point particle-tracking microrheology (D2PTM) technique to determine these coefficients (1). Here, we experimentally validate D2PTM by applying this method to disodium cromoglycate (DSCG), a lyotropic chromonic nematic liquid crystal that has recently sparked attention due to its biocompatibility and other interesting properties. We chose DSCG because its directional viscosity coefficients have been previously characterized by dynamic light scattering and are available in the literature. Our results suggest that D2PTM measurements agree well with measurements from previous methods. Furthermore, this new technique provides additional information about the microrheological response of nematic fluids that was not accessible via previous methods.

  9. Nonaqueous lyotropic ionic liquid crystals: preparation, characterization, and application in extraction.

    PubMed

    Liu, Xianxian; Yang, Qiwei; Bao, Zongbi; Su, Baogen; Zhang, Zhiguo; Ren, Qilong; Yang, Yiwen; Xing, Huabin

    2015-06-15

    A class of new ionic liquid (IL)-based nonaqueous lyotropic liquid crystals (LLCs) and the development of an efficient IL extraction process based on LC chemistry are reported. The nonaqueous LLCs feature extraordinarily high extraction capacity, excellent separation selectivity, easy recovery, and biocompatibility. This work also demonstrates that the introduction of self-assembled anisotropic nanostructures into an IL system is an efficient way to overcome the intrinsically strong polarity of ILs and enhances the molecular recognition ability of ILs. The distribution coefficients of IL-based LLCs for organic compounds with H-bond donors reached unprecedented values of 50-60 at very high feed concentrations (>100 mg mL(-1) ), which are 800-1000 times greater than those of common ILs as well as traditional organic and polymer extractants. The IL-based nonaqueous LLCs combining the unique properties of ILs and LCs open a new avenue for the development of high-performance extraction methods.

  10. Sugar Amphiphiles as Revealing Dopants for Induced Chiral Nematic Lyotropic Liquid Crystals.

    PubMed

    von Minden, Hans Markus; Vill, Volkmar; Pape, Martin; Hiltrop, Karl

    2001-04-01

    The existence of phase chirality in lyotropic liquid crystals still raises questions. The mechanisms behind the transfer of chirality throughout the long-range orientational order are not yet obvious. Guest/host systems with chiral dopants in achiral host phases offer the capability of systematic investigations. We demonstrate that the large amount of accessible sugar amphiphiles exhibits remarkable structure/property relations. Their helical twisting power HTP increases strongly with the number of sugar units of a dopant molecule. The spatial range of the chirality information reaching from a chirally doped micelle to adjacent aggregates is essential for the development of phase chirality. The induced twist of the lyotropic nematic host phase is highly sensitive to small changes of the sugar type (e.g., galacto- to glucopyranose). Depending on the nature of the host phase, either the alpha- or the beta-linkage of the sugar to the hydrophobic moiety of the sugar dopant results in larger HTP values. We propose that our amphiphilic sugar derivatives act like antennae to transfer chirality information. Their effectiveness as chiral dopants is due to a hydrophobic anchoring within the micelles and an extension of their chiral moiety far into the intermicellar region. The chirality transfer works especially well if the hydrophilic and chiral sugar moieties are oriented toward a neighboring micelle in the direction of the helix axis. Copyright 2001 Academic Press.

  11. Characterization of the phase behaviour of a novel polymerizable lyotropic ionic liquid crystal.

    PubMed

    Goujon, Nicolas; Forsyth, Maria; Dumée, Ludovic F; Bryant, Gary; Byrne, Nolene

    2015-09-21

    The development of new polymerizable lyotropic liquid crystals (LLCs) utilizing charged amphiphilic molecules such as those based on long chain imidazolium compounds, is a relatively new design direction for producing robust membranes with controllable nano-structures. Here we have developed a novel polymerizable ionic liquid based LLC, 1-hexadecyl-3-methylimidazolium acrylate (C16mimAcr), where the acrylate anion acts as the polymerizable moiety. The phase behaviour of the C16mimAcr upon the addition of water was characterized using small and wide angle X-ray scatterings, differential scanning calorimetry and polarized optical microscopy. We compare the phase behaviour of this new polymerizable LLC to that of the well known LLC chloride analogue, 1-hexadecyl-3-methylimidazolium chloride (C16mimCl). We find that the C16mimAcr system has a more complex phase behaviour compared to the C16mimCl system. Additional lyotropic liquid crystalline mesophases such as hexagonal phase (H1) and discontinuous cubic phase (I1) are observed at 20 °C for the acrylate system at 50 and 65 wt% water respectively. The appearance of the hexagonal phase (H1) and discontinuous cubic phase (I1) for the acrylate system is likely due to the strong hydrating nature of the acrylate anion, which increases the head group area. The formation of these additional mesophases seen for the acrylate system, especially the hexagonal phase (H1), coupled with the polymerization functionality offers great potential in the design of advanced membrane materials with selective and anisotropic transport properties.

  12. Reverse lyotropic liquid crystals from europium nitrate and P123 with enhanced luminescence efficiency.

    PubMed

    Yi, Sijing; Li, Qintang; Liu, Hongguo; Chen, Xiao

    2014-10-02

    Fabrication of lyotropic aggregates containing the lanthanide ions is becoming a preferable way to prepare novel functional materials. Here, the lyotropic liquid crystals (LLCs) of reverse hexagonal, reverse bicontinuous cubic, and lamellar phases have been constructed in sequence directly from the mixtures of Eu(NO3)3·6H2O and Pluronic P123 amphiphilc block copolymer with increasing the salt proportion. Their phase types and structural characteristics were analyzed using polarized optical microscopy (POM) and small-angle X-ray scattering (SAXS) measurements. The driving forces of reverse LLC phase formation were investigated using Fourier-transformed infrared spectroscopy (FTIR) and rheological measurements. The hydrated europium salt was found to act not only as a solvent here, but also as the bridge to form hydrogen bonding between coordinated water molecules and PEO blocks, which played a key role in the reverse LLCs formation. Compared to those in aqueous solutions and solid state, the enhanced luminescence quantum yields and prolonged excited state lifetimes were observed in two europium containing reverse mesophases. The luminescence quenching effect of lanthanide ions was efficiently suppressed, probably due to the substitution of coordinated water molecules by oxyethyl groups of P123 and ordered phase structures of LLCs, where the coordinated europium ions were confined and isolated by PEO blocks. The optimum luminescence performance was then found to exist in the reverse hexagonal phase. The obtained results on such lanthanide-induced reverse LLCs should be referable for designing new luminescent soft materials construction to expand their application fields.

  13. Annihilation dynamics of stringlike topological defects in a nematic lyotropic liquid crystal.

    PubMed

    Guimarães, R R; Mendes, R S; Fernandes, P R G; Mukai, H

    2013-10-09

    Topological defects can appear whenever there is some type of ordering. Its ubiquity in nature has been the subject of several studies, from early Universe to condensed matter. In this work, we investigated the annihilation dynamics of defects and antidefects in a lyotropic nematic liquid crystal (ternary mixture of potassium laurate, decanol and deionized-destillated water) using the polarized optical light microscopy technique. We analyzed Schlieren textures with topological defects produced due to a symmetry breaking in the transition of the isotropic to nematic calamitic phase after a temperature quench. As result, we obtained for the distance D between two annihilating defects (defect-antidefect pair), as a function of time t remaining for the annihilation, the scaling law D ∝ t(α), with α = 0.390 and standard deviation σ = 0.085. Our findings go in the direction to extend experimental results related to dynamics of defects in liquid crystals since only thermotropic and polymerics ones had been investigated. In addition, our results are in good quantitative agreement with previous investigations on the subject.

  14. Line Tension of Twist-Free Carbon Nanotube Lyotropic Liquid Crystal Microdroplets on Solid Surfaces.

    PubMed

    Jamali, Vida; Biggers, Evan G; van der Schoot, Paul; Pasquali, Matteo

    2017-09-12

    Line tension, i.e., the force on a three-phase contact line, has been a subject of extensive research due to its impact on technological applications including nanolithography and nanofluidics. However, there is no consensus on the sign and magnitude of the line tension, mainly because it only affects the shape of small droplets, below the length scale dictated by the ratio of line tension to surface tension σ/τ. This ratio is related to the size of constitutive molecules in the system, which translates to a nanometer for conventional fluids. Here, we show that this ratio is orders of magnitude larger in lyotropic liquid crystal systems comprising micrometer-long colloidal particles. Such systems are known to form spindle-shaped elongated liquid crystal droplets in coexistence with the isotropic phase, with the droplets flattening when in contact with flat solid surfaces. We propose a method to characterize the line tension by fitting measured droplet shape to a macroscopic theoretical model that incorporates interfacial forces and elastic deformation of the nematic phase. By applying this method to hundreds of droplets of carbon nanotubes dissolved in chlorosulfonic acid, we find that σ/τ ∼ -0.84 ± 0.06 μm. This ratio is 2 orders of magnitude larger than what has been reported for conventional fluids, in agreement with theoretical scaling arguments.

  15. New nanotechnology for the guided tissue regeneration of skin--potential of lyotropic liquid crystals.

    PubMed

    Yamaguchi, Y; Nagasawa, T; Kitagawa, A; Nakamura, N; Matsumoto, K; Uchiwa, H; Hirata, K; Igarashi, R

    2006-02-01

    Tissue in body must quickly recognize injury to response to the rapid pace of epidermal growth. In skin, the epidermal cells must also react to danger signals from the surrounding extracellular lipid of the stratum corneum spaces and immediately participate by initiating the wound repair process. The topical administration of the lyotropic liquid crystal nanocube to stratum corneum rapidly broke down the lipid lamella structure which would be recognized as a wound without organ-change. This can activate a variety of biological processes. This study set out to determine whether the phase transition of the lipid to a neighbouring different physicochemical structure can stimulate keratinocyte cells and what mechanism is responsible for this response. Using small angle x-ray scattering (SAXS) analysis, a response to the transient structural change of lipid was detected which might result from the diffusion of oil and/or water from nanocube liquid crystal towards the lipid lamella phase. Simultaneously, a significant increase in growth factors and inflammatory cytokines was detected after administration of nanocube. Not only the excess expression of cytokines but also the extent of TEWL as a barrier marker of skin increased. These observations suggest that a structural change in lipid can stimulate and trigger recognition of a slight injury in the wound defence and a repair response as homeostasis. This method actually succeeded in improving photo-induced hyperpigmentation on a human face.

  16. Oral and transdermal drug delivery systems: role of lipid-based lyotropic liquid crystals.

    PubMed

    Rajabalaya, Rajan; Musa, Muhammad Nuh; Kifli, Nurolaini; David, Sheba R

    2017-01-01

    Liquid crystal (LC) dosage forms, particularly those using lipid-based lyotropic LCs (LLCs), have generated considerable interest as potential drug delivery systems. LCs have the physical properties of liquids but retain some of the structural characteristics of crystalline solids. They are compatible with hydrophobic and hydrophilic compounds of many different classes and can protect even biologicals and nucleic acids from degradation. This review, focused on research conducted over the past 5 years, discusses the structural evaluation of LCs and their effects in drug formulations. The structural classification of LLCs into lamellar, hexagonal and micellar cubic phases is described. The structures of these phases are influenced by the addition of surfactants, which include a variety of nontoxic, biodegradable lipids; these also enhance drug solubility. LLC structure influences drug localization, particle size and viscosity, which, in turn, determine drug delivery properties. Through several specific examples, we describe the applications of LLCs in oral and topical drug formulations, the latter including transdermal and ocular delivery. In oral LLC formulations, micelle compositions and the resulting LLC structures can determine drug solubilization and stability as well as intestinal transport and absorption. Similarly, in topical LLC formulations, composition can influence whether the drug is retained in the skin or delivered transdermally. Owing to their enhancement of drug stability and promotion of controlled drug delivery, LLCs are becoming increasingly popular in pharmaceutical formulations.

  17. Oral and transdermal drug delivery systems: role of lipid-based lyotropic liquid crystals

    PubMed Central

    Rajabalaya, Rajan; Musa, Muhammad Nuh; Kifli, Nurolaini; David, Sheba R

    2017-01-01

    Liquid crystal (LC) dosage forms, particularly those using lipid-based lyotropic LCs (LLCs), have generated considerable interest as potential drug delivery systems. LCs have the physical properties of liquids but retain some of the structural characteristics of crystalline solids. They are compatible with hydrophobic and hydrophilic compounds of many different classes and can protect even biologicals and nucleic acids from degradation. This review, focused on research conducted over the past 5 years, discusses the structural evaluation of LCs and their effects in drug formulations. The structural classification of LLCs into lamellar, hexagonal and micellar cubic phases is described. The structures of these phases are influenced by the addition of surfactants, which include a variety of nontoxic, biodegradable lipids; these also enhance drug solubility. LLC structure influences drug localization, particle size and viscosity, which, in turn, determine drug delivery properties. Through several specific examples, we describe the applications of LLCs in oral and topical drug formulations, the latter including transdermal and ocular delivery. In oral LLC formulations, micelle compositions and the resulting LLC structures can determine drug solubilization and stability as well as intestinal transport and absorption. Similarly, in topical LLC formulations, composition can influence whether the drug is retained in the skin or delivered transdermally. Owing to their enhancement of drug stability and promotion of controlled drug delivery, LLCs are becoming increasingly popular in pharmaceutical formulations. PMID:28243062

  18. Patterning of Lyotropic Chromonic Liquid Crystals by Photoalignment with Photonic Metamasks.

    PubMed

    Peng, Chenhui; Guo, Yubing; Turiv, Taras; Jiang, Miao; Wei, Qi-Huo; Lavrentovich, Oleg D

    2017-06-01

    Controlling supramolecular self-assembly in water-based solutions is an important problem of interdisciplinary character that impacts the development of many functional materials and systems. Significant progress in aqueous self-assembly and templating has been demonstrated by using lyotropic chromonic liquid crystals (LCLCs) as these materials show spontaneous orientational order caused by unidirectional stacking of plank-like molecules into elongated aggregates. In this work, it is demonstrated that the alignment direction of chromonic assemblies can be patterned into complex spatially-varying structures with very high micrometer-scale precision. The approach uses photoalignment with light beams that exhibit a spatially-varying direction of light polarization. The state of polarization is imprinted into a layer of photosensitive dye that is protected against dissolution into the LCLC by a liquid crystalline polymer layer. The demonstrated level of control over the spatial orientation of LCLC opens opportunities for engineering materials and devices for optical and biological applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Oleoylethanolamide-based lyotropic liquid crystals as vehicles for delivery of amino acids in aqueous environment.

    PubMed

    Mohammady, Sayed Z; Pouzot, Matthieu; Mezzenga, Raffaele

    2009-02-18

    We have investigated the phase behavior of self-assembled lyotropic liquid crystals (LC) formed by ternary mixtures of oleoylethanolamide (OEA), water and arginine. OEA, a natural analog of the endogenous cannabinoid anandamide involved in the peripheral regulation of feeding, was selected as a main component due to its capacity to induce efficient decreases in food intake and gains in body mass. Arginine was selected as representative hydrophilic amino acid and added to the OEA-water mixture at different concentrations. The phase diagrams were determined by combining cross-polarized optical microscopy and small angle x-ray scattering. First, the phase diagram for the OEA-water system was determined. It was shown that these two compounds give rise to reverse Ia3d double gyroid and reverse Pn3m double diamond cubic phases existing in bulk over a large window of temperature and composition, and that for water content beyond 25% Pn3m coexisted with excess water. Successively, the influence of arginine as guest molecule in the water channels of the reverse LC was investigated. For the sake of comparison, results for the OEA-water-arginine system were compared with analog series of OEA-water-glucose. The results showed that, at a fixed water content and temperature, the phase behavior of the liquid crystalline phases is strongly dependent on arginine concentration. In more detail, arginine could be encapsulated in the bulk OEA-water LC up to 2.0% wt, whereas transitions from Ia3d to Pn3m cubic phase were observed with increasing arginine concentration. Interestingly, upon an increase of water concentration beyond 20-25%, Pn3m phase started to coexist with excess water releasing the arginine in external water solution. Quantitative measurements of arginine content inside the LC water channels and in the excess external water solution revealed a complete release of the amino acid, demonstrating that the investigated lyotropic liquid crystalline systems can be used as

  20. Dynamics of Water in Gemini Surfactant-Based Lyotropic Liquid Crystals

    DOE PAGES

    McDaniel, Jesse G.; Mantha, Sriteja; Yethiraj, Arun

    2016-09-26

    The dynamics of water confined to nanometer-sized domains is important in a variety of applications ranging from proton exchange membranes to crowding effects in biophysics. In this work we study the dynamics of water in gemini surfactant-based lyotropic liquid crystals (LLCs) using molecular dynamics simulations. These systems have well characterized morphologies, e.g., hexagonal, gyroid, and lamellar, and the surfaces of the confining regions can be controlled by modifying the headgroup of the surfactants. This allows one to study the effect of topology, functionalization, and interfacial curvature on the dynamics of confined water. Through analysis of the translational diffusion and rotationalmore » relaxation we conclude that the hydration level and resulting confinement lengthscale is the predominate determiner of the rates of water dynamics, and other effects, namely surface functionality and curvature, are largely secondary. In conclusion, this novel analysis of the water dynamics in these LLC systems provides an important comparison for previous studies of water dynamics in lipid bilayers and reverse micelles.« less

  1. Dynamics of Water in Gemini Surfactant-Based Lyotropic Liquid Crystals

    SciTech Connect

    McDaniel, Jesse G.; Mantha, Sriteja; Yethiraj, Arun

    2016-09-26

    The dynamics of water confined to nanometer-sized domains is important in a variety of applications ranging from proton exchange membranes to crowding effects in biophysics. In this work we study the dynamics of water in gemini surfactant-based lyotropic liquid crystals (LLCs) using molecular dynamics simulations. These systems have well characterized morphologies, e.g., hexagonal, gyroid, and lamellar, and the surfaces of the confining regions can be controlled by modifying the headgroup of the surfactants. This allows one to study the effect of topology, functionalization, and interfacial curvature on the dynamics of confined water. Through analysis of the translational diffusion and rotational relaxation we conclude that the hydration level and resulting confinement lengthscale is the predominate determiner of the rates of water dynamics, and other effects, namely surface functionality and curvature, are largely secondary. In conclusion, this novel analysis of the water dynamics in these LLC systems provides an important comparison for previous studies of water dynamics in lipid bilayers and reverse micelles.

  2. Dynamics of Water in Gemini Surfactant-Based Lyotropic Liquid Crystals

    SciTech Connect

    McDaniel, Jesse G.; Mantha, Sriteja; Yethiraj, Arun

    2016-09-26

    The dynamics of water confined to nanometer-sized domains is important in a variety of applications ranging from proton exchange membranes to crowding effects in biophysics. In this work we study the dynamics of water in gemini surfactant-based lyotropic liquid crystals (LLCs) using molecular dynamics simulations. These systems have well characterized morphologies, e.g., hexagonal, gyroid, and lamellar, and the surfaces of the confining regions can be controlled by modifying the headgroup of the surfactants. This allows one to study the effect of topology, functionalization, and interfacial curvature on the dynamics of confined water. Through analysis of the translational diffusion and rotational relaxation we conclude that the hydration level and resulting confinement lengthscale is the predominate determiner of the rates of water dynamics, and other effects, namely surface functionality and curvature, are largely secondary. In conclusion, this novel analysis of the water dynamics in these LLC systems provides an important comparison for previous studies of water dynamics in lipid bilayers and reverse micelles.

  3. Brillouin scattering study of the swollen Lyotropic Lamellar Liquid Crystal phases

    SciTech Connect

    Mangalampalli, S.

    1993-01-01

    Studies of the elastic Properties of the Lyotropic Lamellar Liquid-Crystal phase of material composed of water, sodium dodecyl sulphate (SDS), dodecane, and pentanol are made using Brillouin Scattering technique. These studies are made as a function of the layer repeat distance d. For each value of d under investigation the longitudinal phonon velocity is measured as a function of scattering vector orientation with respect to the lamellar layer plane. Also, for the particular value of d the elastic constants C[sub 11] and C[sub 33] are determined. The data indicates that the bilayers made up of water, SDS and pentanol behave like flat sheets stacked one on top of the other; separated by layers of dodecane. At GHz frequencies the bending modulus of the bilayers is found to be [approximately]10[sup 3] times larger than that measured at low frequencies using x-ray and quasielastic light scattering. The phonon line widths are also determined for the given values of d and the scattering vector orientation. The data shows that the line widths are constants with respect to these parameters.

  4. Lyotropic liquid crystal to soft mesocrystal transformation in hydrated salt-surfactant mixtures.

    PubMed

    Albayrak, Cemal; Barım, Gözde; Dag, Ömer

    2013-10-25

    Hydrated CaCl2, LiI, and MgCl2 salts induce self-assembly in nonionic surfactants (such as C12H25(OCH2CH2)10OH) to form lyotropic liquid-crystalline (LLC) mesophases that undergo a phase transition to a new type of soft mesocrystal (SMC) under ambient conditions. The SMC samples can be obtained by aging the LLC samples, which were prepared as thin films by spin-coating, dip-coating, or drop-casting of a clear homogenized solution of water, salt, and surfactant over a substrate surface. The LLC mesophase exists up to a salt/surfactant mole ratio of 8, 10, and 4 (corresponding to 59, 68, and 40 wt% salt/surfactant) in the CaCl2, LiI, and MgCl2 mesophases, respectively. The SMC phase can transform back to a LLC mesophase at a higher relative humidity. The phase transformations have been monitored using powder X-ray diffraction (PXRD), polarized optical microscopy (POM), and FTIR techniques. The LLC mesophases only diffract at small angles, but the SMCs diffract at both small and wide angles. The broad surfactant features in the FTIR spectra of the LLC mesophases become sharp and well resolved upon SMC formation. The unit cell of the mesophases expands upon SMC transformation, in which the expansion is largest in the MgCl2 and smallest in the CaCl2 systems. The POM images of the SMCs display birefringent textures with well-defined edges, similar to crystals. However, the surface of the crystals is highly patterned, like buckling patterns, which indicates that these crystals are quite soft. This unusual phase behavior could be beneficial in designing new soft materials in the fields of phase-changing materials and mesostructured materials, and it demonstrates the richness of the phase behavior in the salt-surfactant mesophases.

  5. Real-time microbe detection based on director distortions around growing immune complexes in lyotropic chromonic liquid crystals.

    PubMed

    Shiyanovskii, S V; Schneider, T; Smalyukh, I I; Ishikawa, T; Niehaus, G D; Doane, K J; Woolverton, C J; Lavrentovich, O D

    2005-02-01

    We describe director distortions in the nematic liquid crystal (LC) caused by a spherical particle with tangential surface orientation of the director and show that light transmittance through the distorted region is a steep function of the particle's size. The effect allows us to propose a real-time microbial sensor based on a nontoxic lyotropic chromonic LC (LCLC) that detects and amplifies the presence of immune complexes. A cassette is filled with LCLC, antibody, and antigen-bearing particles. Small and isolated particles cause no macroscopic distortions of the LCLC. Upon antibody-antigen binding, the growing immune complexes distort the director and cause detectable optical transmittance between crossed polarizers.

  6. Magnetization transfer in a partly deuterated lyotropic liquid crystal by single- and dual-frequency RF irradiations

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Seung; Regatte, Ravinder R.; Jerschow, Alexej

    2017-08-01

    The mechanism of magnetization transfer (MT) in a lyotropic liquid crystal made of sodium dodecyl sulfate, decanol, and water molecules is investigated by using deuterated molecules and single- and dual-frequency RF irradiations. The resulting Z-spectra suggest that the decanol molecules are mainly responsible for the MT effects in this system, through proton exchange to water. This is further confirmed by monitoring the relaxation of dipolar order, which allows one to estimate the transfer rate of magnetization from decanol to water. The potential benefits of using dual-frequency RF irradiation for inducing MT effects are explored through numerical solutions to a MT model based on Provotorov's partial saturation theory.

  7. Assembly, Elasticity, and Structure of Lyotropic Chromonic Liquid Crystals and Disordered Colloids

    NASA Astrophysics Data System (ADS)

    Davidson, Zoey S.

    This dissertation describes experiments which explore the structure and dynamics in two classes of soft materials: lyotropic chromonic liquid crystals and colloidal glasses and super-cooled liquids. The first experiments found that the achiral LCLCs, sunset yellow FCF (SSY) and disodium cromoglycate (DSCG) both exhibit spontaneous mirror symmetry breaking in the nematic phase driven by a giant elastic anisotropy of their twist modulus compared to their splay and bend moduli. Resulting structures of the confined LCLCs display interesting director configurations due to interplay of topologically required defects and twisted director fields. At higher concentrations, the LCLC compounds form columnar phases. We studied the columnar phase confined within spherical drops and discovered and understood configurations of the LC that sometimes led to non-spherical droplet shapes. The second experiments with SSY LCLCs confined in hollow cylinders uncovered director configurations which were driven in large measure by an exotic elastic modulus known as saddle-splay. We measured this saddle-splay modulus in a LCLC for the first time and found it to be more than 50 times greater than the twist elastic modulus. This large relative value of the saddle-splay modulus violates a theoretical result/assumption known as the Ericksen inequality. A third group of experiments on LCLCs explored the drying process of sessile drops containing SSY solutions, including evaporation dynamics, morphology, and deposition patterns. These drops differ from typical, well-studied evaporating colloidal drops primarily due to the LCLC's concentration-dependent isotropic, nematic, and columnar phases. Phase separation occurs during evaporation, creating surface tension gradients and significant density and viscosity variation within the droplet. Thus, the drying multiphase drops exhibit new convective currents, drop morphologies, deposition patterns, as well as a novel ordered crystalline phase. Finally

  8. Propylammonium nitrate as a solvent for amphiphile self-assembly into micelles, lyotropic liquid crystals, and microemulsions.

    PubMed

    Atkin, Rob; Bobillier, Sophie M C; Warr, Gregory G

    2010-01-28

    The phase behavior and self-assembled microstructures of a range of oligo(oxyethylene)-n-alkyl ether (C(i)E(j)) surfactants has been investigated in propylammonium nitrate (PAN), a room temperature ionic liquid. Micelles and single-phase microemulsions were all found to form at alkyl chain lengths from dodecyl to octadecyl, and lyotropic liquid crystals formed with hexadecyl chains or longer. Small-angle neutron scattering (SANS) shows that self-assembly occurs by solvophobic interactions driving the aggregation of the alkyl chains, but several results indicate that these are weaker in PAN than in water or ethylammonium nitrate, due chiefly to the hydrophobicity of PAN. Longer alkyl chains are needed for lyotropic liquid crystals to form, and higher surfactant concentrations are needed to form a single phase microemulsion. Conductivity shows these microemulsions to be weakly structured, and relatively insensitive to oil or surfactant molecular structure, unlike water-based systems. However, SANS contrast variation reveals a nanosegregation of oil from the alkyl tails of surfactants within the microemulsion, and may suggest a cosurfactant-like role for the propylammonium cation. Molecular areas within microemulsions and lamellar phases are larger than corresponding water- or ethylammonium nitrate-based systems due to the large molecular volume of the solvating PANs.

  9. Compatibility of lyotropic liquid crystals with viruses and mammalian cells that support the replication of viruses.

    PubMed

    Cheng, Li-Lin; Luk, Yan-Yeung; Murphy, Christopher J; Israel, Barbara A; Abbott, Nicholas L

    2005-12-01

    We report a study that investigates the biocompatibility of materials that form lyotropic liquid crystals (LCs) with viruses and mammalian cells that support the replication of viruses. This study is focused on aqueous solutions of tetradecyldimethyl-amineoxide (C(14)AO) and decanol (D), or disodium cromoglycate (DSCG; C(23)H(14)O(11)Na(2)), which can form optically birefringent, liquid crystalline phases. The influence of these materials on the ability of vesicular stomatitis virus (VSV) to infect human epitheloid cervical carcinoma (HeLa) cells was examined by two approaches. First, VSV was dispersed in aqueous C(14)AO+ D or DSCG, and then HeLa cells were inoculated by contacting the cells with the aqueous C(14)AO + D or DSCG containing VSV. The infectivity of VSV to the HeLa cells was subsequently determined. Second, VSV was incubated in LC phases of either C(14)AO + D or DSCG for 4 h, and the concentration (titer) of infectious virus in the LC was determined by dilution into cell culture medium and subsequent inoculation of HeLa cells. Using these approaches, we found that the LC containing C(14)AO + D caused inactivation of virus as well as cell death. In contrast, we determined that VSV retained its infectivity in the presence of aqueous DSCG, and that greater than 74-82% of the HeLa cells survived contact with aqueous DSCG (depending on concentration of DSCG). Because VSV maintained its function (and we infer structure) in LCs formed from DSCG, we further explored the influence of the virus on the ordering of the LC. Whereas the LC formed from DSCG was uniformly aligned on surfaces prepared from self-assembled monolayers (SAMs) of HS(CH(2))(11)(OCH(2)CH(2))(4)OH on obliquely deposited films of gold in the absence of VSV, the introduction of 10(7)-10(8) infectious virus particles per milliliter caused the LC to assume a non-uniform orientation and a colorful appearance that was readily distinguished from the uniformly aligned LCs. Control experiments using

  10. Factors affecting order, photopolymerization behavior, and nanostructure development of reactive lyotropic liquid crystals

    NASA Astrophysics Data System (ADS)

    Sievens Figueroa, Lucas

    2009-10-01

    Polymerization of reactive lyotropic liquid crystals (LLC) provides a facile means for the synthesis of nanostructured organic materials. In this work the photopolymerization kinetics and polymer structure evolution have been investigated. By studying the polymerization behavior and the order retention after polymerization, the contribution of the type of reactive surfactant, cross-linking, pH, and ionic strength on the LLC order preservation has been determined. Polymerization rates are higher in more highly ordered LLC phases compared to isotropic phases. In turn, reactive LLC phases that exhibit higher reaction rates also preserve the order to a greater extent during polymerization. Reactive surfactants with longer aliphatic tails exhibit lower order and lower reaction rates. The polymerization kinetics are highly driven by segregation of the reactive groups. Lower polymerization rates are observed in isotropic discontinuous phases for the surfactant monomer bearing the reactive group near the polar head while the opposite behavior is observed for surfactant monomer bearing the reactive group in the aliphatic tail. The effect of polymerization kinetics on the resulting polymer order has also been determined using small angle X-ray scattering (SAXS). By using high light intensity and a more efficient initiator, the LLC order is more likely to be retained after polymerization. LLC phases that exhibit higher degrees of order are formed at low ionic strength and low pH. Higher polymerization rates are observed as the ionic strength increases due to an increase in the propagation rate. Higher polymerization rates are also observed as the pH increases due to an increase in the propagation rates and decrease in termination rates. The addition of a crosslinker enables the retention of LLC phases after polymerization. Competing effects between crosslinking and order are observed in the polymerization kinetics as a decrease in polymerization rate is observed at high

  11. Triply Periodic Multiply Continuous Lyotropic Liquid Crystals Derived from Gemini Surfactants

    NASA Astrophysics Data System (ADS)

    Sorenson, Gregory P.

    A subtle balance of non-covalent interactions directs the self-assembly of small molecule amphiphiles in aqueous media into supramolecular assemblies known as aqueous lyotropic liquid crystals (LLCs). Aqueous LLCs form many intricate, ordered nanoscale morphologies comprising distinct and structurally periodic hydrophobic and hydrophilic domains. Triply periodic multiply continuous (TPMC) LLC morphologies, which exhibit continuous hydrophobic and aqueous domains that percolate in three-dimensions, are of particular interest by virtue of their potentially wide ranging technological applications including advanced membranes for electrical energy storage and utilization, therapeutic delivery, and templates for new organic and inorganic mesoporous materials. However, robust molecular design criteria for amphiphiles that readily form TMPC morphologies are notably lacking in the literature. Recent reports have described the increased propensity for quaternary ammonium and phosphonium gemini surfactants, derived from dimerization of traditional single-tail surfactants at or near the hydrophilic headgroups through a hydrophobic linker, to stabilize TMPC mesophases. The generality of this surfactant design strategy remains untested in other amphiphiles classes bearing different headgroup chemistries. In this thesis, we describe the unusual aqueous LLC phase behavior of series of gemini dicarboxylate amphiphiles as a function of the alkyl tail length, hydrophobic linker length, and the charge-compensating counterion. These dicarboxylate surfactants unexpectedly exhibit a strong propensity to form TPMC LLCs over amphiphile concentration windows as wide as 20 wt% over a temperature range T = 25--100 °C. Through systematic modifications of the length of the hydrophobic linker and alkyl tails, we use small-angle X-ray scattering to demonstrate that these surfactants adopt new LLC mesophases including the first report of a single-gyroid phase (I4132 symmetry) and a new

  12. Enhanced energy transfer efficiency and stability of europium β-diketonate complex in ionic liquid-based lyotropic liquid crystals.

    PubMed

    Yi, Sijing; Wang, Jiao; Chen, Xiao

    2015-08-21

    Luminescent materials from europium β-diketonate complex in ionic liquids (ILs) could achieve enhanced luminescence efficiencies and photostabilities. However, the question of how to provide a feasible and environmentally-friendly way to distribute these lanthanide complexes uniformly and stably within IL-based matrix remains a significant challenge. Here, a soft luminescent material from IL-mediated lyotropic liquid crystals (LLCs) doped with [Bmim][Eu(TTA)4] (Bmim = 1-butyl-3-methyl imidazolium, TTA = 2-thenoyltrifluoroacetone) has been constructed by a convenient self-assembling method. The hexagonal or lamellar LLC phases could be identified by small-angle X-ray scattering (SAXS) measurements. All LLC samples exhibited intense red luminescence upon exposure to ultraviolet radiation. The good dispersibility of the complexes in LLC matrices and their good photostability (as in ILs) was verified by steady-state luminescence spectroscopy. The isolated and unique characteristics of the microenvironment within the LLCs were noteworthy to decrease the nonradiative deactivation of the excited states, thereby allowing more efficient energy transfer and longer lifetimes than those in pure complex or IL solutions. Both the luminescent property and the stability of the LLC materials were different in different phase structures, the complexes behaving better in the lamellar phase than in the hexagonal one. The findings reported herein will not only present an easy way to design novel luminescent lanthanide β-diketonate soft materials, but also provide a useful reference to better understand the LLC phase structure effects on the luminescence properties.

  13. Control of Partial Coalescence of Self-Assembled Metal Nano-Particles across Lyotropic Liquid Crystals Templates towards Long Range Meso-Porous Metal Frameworks Design

    PubMed Central

    Dumée, Ludovic F.; Lemoine, Jean-Baptiste; Ancel, Alice; Hameed, Nishar; He, Li; Kong, Lingxue

    2015-01-01

    The formation of purely metallic meso-porous metal thin films by partial interface coalescence of self-assembled metal nano-particles across aqueous solutions of Pluronics triblock lyotropic liquid crystals is demonstrated for the first time. Small angle X-ray scattering was used to study the influence of the thin film composition and processing conditions on the ordered structures. The structural characteristics of the meso-structures formed demonstrated to primarily rely on the lyotropic liquid crystal properties while the nature of the metal nano-particles used as well as the their diameters were found to affect the ordered structure formation. The impact of the annealing temperature on the nano-particle coalescence and efficiency at removing the templating lyotropic liquid crystals was also analysed. It is demonstrated that the lyotropic liquid crystal is rendered slightly less thermally stable, upon mixing with metal nano-particles and that low annealing temperatures are sufficient to form purely metallic frameworks with average pore size distributions smaller than 500 nm and porosity around 45% with potential application in sensing, catalysis, nanoscale heat exchange, and molecular separation. PMID:28347094

  14. Shape-dependent dispersion and alignment of nonaggregating plasmonic gold nanoparticles in lyotropic and thermotropic liquid crystals.

    PubMed

    Liu, Qingkun; Tang, Jianwei; Zhang, Yuan; Martinez, Angel; Wang, Shaowei; He, Sailing; White, Timothy J; Smalyukh, Ivan I

    2014-05-01

    We use both lyotropic liquid crystals composed of prolate micelles and thermotropic liquid crystals made of rod-like molecules to uniformly disperse and unidirectionally align relatively large gold nanorods and other complex-shaped nanoparticles at high concentrations. We show that some of these ensuing self-assembled orientationally ordered soft matter systems exhibit polarization-dependent plasmonic properties with strongly pronounced molar extinction exceeding that previously achieved in self-assembled composites. The long-range unidirectional alignment of gold nanorods is mediated mainly by anisotropic surface anchoring interactions at the surfaces of gold nanoparticles. Polarization-sensitive absorption, scattering, and extinction are used to characterize orientations of nanorods and other nanoparticles. The experimentally measured unique optical properties of these composites, which stem from the collective plasmonic effect of the gold nanorods with long-range order in a liquid crystal matrix, are reproduced in computer simulations. A simple phenomenological model based on anisotropic surface interaction explains the alignment of gold nanorods dispersed in liquid crystals and the physical underpinnings behind our observations.

  15. Water-in-water emulsions stabilized by non-amphiphilic interactions: polymer-dispersed lyotropic liquid crystals.

    PubMed

    Simon, Karen A; Sejwal, Preeti; Gerecht, Ryan B; Luk, Yan-Yeung

    2007-01-30

    Emulsion systems involving surfactants are mainly driven by the separation of the hydrophobic interactions of the aliphatic chains from the hydrophilic interactions of amphiphilic molecules in water. In this study, we report an emulsion system that does not include amphiphilic molecules but molecules with functional groups that are completely solvated in water. These functional groups give rise to molecular interactions including hydrogen bonding, pi stacking, and salt bridging and are segregated into a dispersion of droplets forming a water-in-water emulsion. This water-in-water emulsion consists of dispersing droplets of a water-solvated biocompatible liquid crystal--disodium cromoglycate (DSCG)--in a continuous aqueous solution containing specific classes of water-soluble polymers. Whereas aqueous solutions of polyols support the formation of emulsions of spherical droplets consisting of lyotropic liquid crystal DSCG with long-term stability (for at least 30 days), aqueous solutions of polyamides afford droplets of DSCG in the shape of prolate ellipsoids that are stable for only 2 days. The DSCG liquid crystal in spherical droplets assumes a radial configuration in which the optical axis of the liquid crystal aligns perpendicular to the surface of the droplets but assumes a tangential configuration in prolate ellipsoids in which the optical axis of the liquid crystal aligns parallel to the surface of the droplet. Other classes of water-soluble polymers including polyethers, polycations, and polyanions do not afford a stable emulsion of DSCG droplets. Both the occurrence and the stability of this unique emulsion system can be rationalized on the basis of the functional groups of the polymer. The different configurations of the liquid crystal (DSCG) droplets were also found to correlate with the strength of the hydrogen bonding that can be formed by the functional groups on the polymer.

  16. Mechanical and chemical protection of a wired enzyme oxygen cathode by a cubic phase lyotropic liquid crystal.

    PubMed

    Rowinski, Pawel; Kang, Chan; Shin, Hyosul; Heller, Adam

    2007-02-01

    When implanted in animals, enzyme-containing battery electrodes, biofuel cell electrodes, and biosensors are often damaged by components of the biological environment. An O2 cathode, superior to the classical platinum cathode, which would be implanted, as part of a caseless physiological pH miniature Zn-O2 battery or as part of a caseless and membraneless miniature glucose-O2 biofuel cell, is rapidly damaged by serum urate at its operating potential. The cathode is made by electrically connecting, or wiring, reaction centers of bilirubin oxidase to carbon with an electron-conducting redox hydrogel. In the physiological pH 7.3 electrolyte battery or biofuel cell, the O2 cathode should operate at, or positive of, 0.3 V (Ag/AgCl), where the urate anion, a common serum component, is electrooxidized. Because an unidentified urate electrooxidation intermediate, formed in the presence of O2, damages the wired bilirubin oxidase electrocatalyst, urate must be excluded from the cathode. Unlike O2, which permeates through both the lipid and the aqueous interconnected networks of cubic-phase lyotropic liquid crystals, urate permeates only through their continuous three-dimensional aqueous channel networks. The aqueous channels have well-defined diameters of approximately 5 nm in the monoolein/water cubic-phase liquid crystal. Through tailoring the wall charge of the aqueous channels, the anion/cation permeability ratio can be modulated. Thus, doping the monoolein of the monoolein/water liquid crystal with 1,2-dioleoyl-sn-glycero-3-phosphate makes the aqueous channel walls anionic and reduces the urate permeation in the liquid crystal. As a result, the ratio of the urate electrooxidation current to the O2 electroreduction current is reduced from 1:3 to 1:100 for 5-mm O2 cathodes rotating at 1000 rpm. Doping with 1,2-dioleoyl-sn-glycero-3-phosphate also increases the shear strength of the cubic-phase monoolein/water lyotropic liquid crystal. While the undoped liquid crystal is

  17. Multifunctional Optical Thin Films Fabricated by the Photopolymerization of Uniaxially Oriented Lyotropic Liquid Crystal Monomers for Electro-Optical Devices

    NASA Astrophysics Data System (ADS)

    Im, Pureun; Choi, Yu-Jin; Yoon, Won-Jin; Kang, Dong-Gue; Park, Minwook; Kim, Dae-Yoon; Lee, Cheul-Ro; Yang, Seungbin; Lee, Ji-Hoon; Jeong, Kwang-Un

    2016-11-01

    A multifunctional optical thin film (MOTF) is fabricated by coating the newly synthesized perylene-based reactive mesogen (PBRM) and stabilized by the subsequent photopolymerization. Based on the spectroscopic results combined with morphological observations, it is found that nematic liquid crystal (NLC) is aligned parallel to the molecular long axis of PBRM not only due to the long-range physical anchoring effect but also due to the short-range molecular physical interactions between alignment layer and NLC molecules. From the electro-optical properties of LC test cells fabricated with the PBRM MOTF, it is clearly demonstrated that the PBRM MOTF can work as the planar LC alignment layer as well as the in-cell coatable polarizer. The coatable PBRM MOTF from lyotropic chromonic reactive mesogens can pave a new way for the flexible optoelectronic devices.

  18. Multifunctional Optical Thin Films Fabricated by the Photopolymerization of Uniaxially Oriented Lyotropic Liquid Crystal Monomers for Electro-Optical Devices

    PubMed Central

    Im, Pureun; Choi, Yu-Jin; Yoon, Won-Jin; Kang, Dong-Gue; Park, Minwook; Kim, Dae-Yoon; Lee, Cheul-Ro; Yang, Seungbin; Lee, Ji-Hoon; Jeong, Kwang-Un

    2016-01-01

    A multifunctional optical thin film (MOTF) is fabricated by coating the newly synthesized perylene-based reactive mesogen (PBRM) and stabilized by the subsequent photopolymerization. Based on the spectroscopic results combined with morphological observations, it is found that nematic liquid crystal (NLC) is aligned parallel to the molecular long axis of PBRM not only due to the long-range physical anchoring effect but also due to the short-range molecular physical interactions between alignment layer and NLC molecules. From the electro-optical properties of LC test cells fabricated with the PBRM MOTF, it is clearly demonstrated that the PBRM MOTF can work as the planar LC alignment layer as well as the in-cell coatable polarizer. The coatable PBRM MOTF from lyotropic chromonic reactive mesogens can pave a new way for the flexible optoelectronic devices. PMID:27812042

  19. CdS mineralization of hexagonal, lamellar, and cubic lyotropic liquid crystals

    SciTech Connect

    Braun, P.V.; Stupp, S.I. )

    1999-02-01

    Growth of CdS was studied in three different liquid crystalline phases demonstrating the versatility of liquid crystal templating of inorganic solids. Semiconductor growth in a hexagonal liquid crystal yielded a nanostructure with hexagonal symmetry, a lamellar liquid crystal yielded a lamellar nanostructure, and a cubic liquid crystal (consisting of spherical micelles) yielded a hollow, spherical product. The product grown in the hexagonal liquid crystal contains rod-like pores of 3 nm diameter, spaced 8 nm apart in a hexagonal lattice. The product grown in the lamellar liquid crystal consists of CdS sheets 5 nm thick, with 2 nm spaces between layers, which presumably contain the organic template. Both these superlattices have virtually identical symmetries and characteristic dimensions as the liquid crystal in which they were formed. The mineralization of the cubic phase yielded hollow spheres of CdS, 20--100 nm in diameter, 1--5 times the diameter of the micelles making up the liquid crystal.

  20. Oil and drug control the release rate from lyotropic liquid crystals.

    PubMed

    Martiel, Isabelle; Baumann, Nicole; Vallooran, Jijo J; Bergfreund, Jotam; Sagalowicz, Laurent; Mezzenga, Raffaele

    2015-04-28

    The control of the diffusion coefficient by the dimensionality d of the structure appears as a most promising lever to efficiently tune the release rate from lyotropic liquid crystalline (LLC) phases and dispersed particles towards sustained, controlled and targeted release. By using phosphatidylcholine (PC)- and monolinoleine (MLO)-based mesophases with various apolar structural modifiers and water-soluble drugs, we present a comprehensive study of the dimensional structural control of hydrophilic drug release, including 3-d bicontinuous cubic, 2-d lamellar, 1-d hexagonal and 0-d micellar cubic phases in excess water. We investigate how the surfactant, the oil properties and the drug hydrophilicity mitigate or even cancel the effect of structure variation on the drug release rate. Unexpectedly, the observed behavior cannot be fully explained by the thermodynamic partition of the drug into the lipid matrix, which points out to previously overlooked kinetic effects. We therefore interpret our results by discussing the mechanism of structural control of the diffusion rate in terms of drug permeation through the lipid membrane, which includes exchange kinetics. A wide range of implications follow regarding formulation and future developments, both for dispersed LLC delivery systems and topical applications in bulk phase.

  1. Rarely Observed Phase Transitions in a Novel Lyotropic Liquid Crystal System

    NASA Astrophysics Data System (ADS)

    Katsaras, J.; Donaberger, R. L.; Swainson, I. P.; Tennant, D. C.; Tun, Z.; Vold, R. R.; Prosser, R. S.

    1997-02-01

    This Letter presents neutron diffraction data from a novel, biologically relevant, lyotropic membrane system which is highly alignable ( <=1.0° mosaic) in a magnetic field and gives rise to a number of well-defined Bragg reflections. The system, composed of two different phosphorylcholine lipids, undergoes a rare nematic --> smectic phase transition upon doping the system with paramagnetic ions (e.g., 2.7 wt % Tm3+). In addition, the isotropic phase occurs at a lower temperature than the smectic phase, in contrast to other lyotropic systems and in contrast to the phase behavior predicted by the McMillan model [Phys. Rev. A 4, 1238 (1971)] of smectic ordering.

  2. PH-Induced Nanosegregation of Ritonavir to Lyotropic Liquid Crystal of Higher Solubility Than Crystalline Polymorphs

    SciTech Connect

    Rodriguez-Spong, B.; Acciacca, A.; Fleisher, D.; Rodriguez-Hornedo, N.

    2009-05-27

    Birefringent spherical vesicles of ritonavir (RTV) are formed by increasing the pH of aqueous solutions from 1 to 3 or to 7 and by addition of water to ethanol solutions at room temperature. Increasing the pH creates supersaturation levels of 30--400. Upon this change in pH, the solutions become translucent, implying that some kind of RTV assembly was formed. Small spherical vesicles of narrow size distribution are detectable only after a few hours by optical microscopy. The vesicles show similar X-ray diffraction patterns and differential scanning calorimetry (DSC) behavior to amorphous RTV prepared by melt-quenching crystalline RTV. Examination by polarized optical microscopy suggests that these are lyotropic liquid crystalline (LLC) assemblies. Small-angle X-ray scattering and synchrotron X-ray diffraction further support the presence of orientational order that is associated with a nematic structure. RTV self-organizes into various phases as a result of the supersaturation created in aqueous solutions. The LLC vesicles do not fuse but slowly transform to the polymorphs of RTV (in days), Form I and finally Form II. Amorphous RTV in aqueous suspension also undergoes a transformation to a mesophase of similar morphology. Transformation pathways are consistent with measured dissolution rates and solubilities: amorphous > LLC >> Form I > Form II. The dissolution and solubility of LLC is slightly lower than that of the amorphous phase and about 20 times higher than that of Form II. RTV also self-assembles at the air/water interface as indicated by the decrease in surface tension of aqueous solutions. This behavior is similar to that of amphiphilic molecules that induce LLC formation.

  3. A nonaqueous lyotropic liquid crystal fabricated by a polyoxyethylene amphiphile in protic ionic liquid.

    PubMed

    Ma, Fumin; Chen, Xiao; Zhao, Yurong; Wang, Xudong; Li, Qiuhong; Lv, Chao; Yue, Xiu

    2010-06-01

    The aggregation behaviors of oleyl polyoxyethylene (10) ether, Brij 97, in room temperature ionic liquids, ethylammonium nitrate (EAN), pyrrolidinium nitrate ([Pyrr][NO(3)]), ethylammonium butyrate (EAB), 1-butyl-3-methylimidazolium hexafluorophosphate ([Bmim][PF(6)]), and 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF(4)]), have been investigated. Only in the Brij 97/EAN binary system is the hexagonal liquid crystalline phase formed, and its ordering is found to decrease with increasing temperature. The lattice spacing values measured from the small-angle X-ray scattering (SAXS) shrink with reduction of ionic liquid content at room temperature. The general rules for aggregate formation in these ionic liquids are discussed and compared with that in water. A degraded ability to produce the ordered self-assembly of Brij 97 from H(2)O to EAN to [Bmim][PF(6)], [Bmim][BF(4)], [Pyrr][NO(3)], and EAB is found and analyzed based on the molecular packing and Gordon parameters and also hydrogen-bonding or solvophobic interactions. Steady-shear rheological measurements combined with the frequency sweep data indicate the highly viscoelastic nature of this liquid crystalline phase.

  4. Domed Silica Microcylinders Coated with Oleophilic Polypeptides and Their Behavior in Lyotropic Cholesteric Liquid Crystals of the Same Polypeptide.

    PubMed

    Rosu, Cornelia; Jacobeen, Shane; Park, Katherine; Reichmanis, Elsa; Yunker, Peter; Russo, Paul S

    2016-12-13

    Liquid crystals can organize dispersed particles into useful and exotic structures. In the case of lyotropic cholesteric polypeptide liquid crystals, polypeptide-coated particles are appealing because the surface chemistry matches that of the polymeric mesogen, which permits a tighter focus on factors such as extended particle shape. The colloidal particles developed here consist of a magnetic and fluorescent cylindrically symmetric silica core with one rounded, almost hemispherical end. Functionalized with helical poly(γ-stearyl-l-glutamate) (PSLG), the particles were dispersed at different concentrations in cholesteric liquid crystals (ChLC) of the same polymer in tetrahydrofuran (THF). Defects introduced by the particles to the director field of the bulk PSLG/THF host led to a variety of phases. In fresh mixtures, the cholesteric mesophase of the PSLG matrix was distorted, as reflected in the absence of the characteristic fingerprint pattern. Over time, the fingerprint pattern returned, more quickly when the concentration of the PSLG-coated particles was low. At low particle concentration the particles were "guided" by the PSLG liquid crystal to organize into patterns similar to that of the re-formed bulk chiral nematic phase. When their concentration increased, the well-dispersed PSLG-coated particles seemed to map onto the distortions in the bulk host's local director field. The particles located near the glass vial-ChLC interfaces were stacked lengthwise into architectures with apparent two-dimensional hexagonal symmetry. The size of these "crystalline" structures increased with particle concentration. They displayed remarkable stability toward an external magnetic field; hydrophobic interactions between the PSLG polymers in the shell and those in the bulk LC matrix may be responsible. The results show that bio-inspired LCs can assemble suitable colloidal particles into soft crystalline structures.

  5. Lyotropic liquid crystal engineering moving beyond binary compositional space - ordered nanostructured amphiphile self-assembly materials by design.

    PubMed

    van 't Hag, Leonie; Gras, Sally L; Conn, Charlotte E; Drummond, Calum J

    2017-05-22

    Ordered amphiphile self-assembly materials with a tunable three-dimensional (3D) nanostructure are of fundamental interest, and crucial for progressing several biological and biomedical applications, including in meso membrane protein crystallization, as drug and medical contrast agent delivery vehicles, and as biosensors and biofuel cells. In binary systems consisting of an amphiphile and a solvent, the ability to tune the 3D cubic phase nanostructure, lipid bilayer properties and the lipid mesophase is limited. A move beyond the binary compositional space is therefore required for efficient engineering of the required material properties. In this critical review, the phase transitions upon encapsulation of more than 130 amphiphilic and soluble additives into the bicontinuous lipidic cubic phase under excess hydration are summarized. The data are interpreted using geometric considerations, interfacial curvature, electrostatic interactions, partition coefficients and miscibility of the alkyl chains. The obtained lyotropic liquid crystal engineering design rules can be used to enhance the formulation of self-assembly materials and provides a large library of these materials for use in biomedical applications (242 references).

  6. Toward the Fabrication of Advanced Nanofiltration Membranes by Controlling Morphologies and Mesochannel Orientations of Hexagonal Lyotropic Liquid Crystals.

    PubMed

    Wang, Guang; Garvey, Christopher J; Zhao, Han; Huang, Kang; Kong, Lingxue

    2017-07-21

    Water scarcity has been recognized as one of the major threats to human activity, and, therefore, water purification technologies are increasingly drawing attention worldwide. Nanofiltration (NF) membrane technology has been proven to be an efficient and cost-effective way in terms of the size and continuity of the nanostructure. Using a template based on hexagonal lyotropic liquid crystals (LLCs) and partitioning monomer units within this structure for subsequent photo-polymerisation presents a unique path for the fabrication of NF membranes, potentially producing pores of uniform size, ranging from 1 to 5 nm, and large surface areas. The subsequent orientation of this pore network in a direction normal to a flat polymer film that provides ideal transport properties associated with continuous pores running through the membrane has been achieved by the orientation of hexagonal LLCs through various strategies. This review presents the current progresses on the strategies for structure retention from a hexagonal LLCs template and the up-to-date techniques used for the reorientation of mesochanels for continuity through the whole membrane.

  7. Toward the Fabrication of Advanced Nanofiltration Membranes by Controlling Morphologies and Mesochannel Orientations of Hexagonal Lyotropic Liquid Crystals

    PubMed Central

    Zhao, Han; Huang, Kang

    2017-01-01

    Water scarcity has been recognized as one of the major threats to human activity, and, therefore, water purification technologies are increasingly drawing attention worldwide. Nanofiltration (NF) membrane technology has been proven to be an efficient and cost-effective way in terms of the size and continuity of the nanostructure. Using a template based on hexagonal lyotropic liquid crystals (LLCs) and partitioning monomer units within this structure for subsequent photo-polymerisation presents a unique path for the fabrication of NF membranes, potentially producing pores of uniform size, ranging from 1 to 5 nm, and large surface areas. The subsequent orientation of this pore network in a direction normal to a flat polymer film that provides ideal transport properties associated with continuous pores running through the membrane has been achieved by the orientation of hexagonal LLCs through various strategies. This review presents the current progresses on the strategies for structure retention from a hexagonal LLCs template and the up-to-date techniques used for the reorientation of mesochanels for continuity through the whole membrane. PMID:28753973

  8. Highly luminescent and stable lyotropic liquid crystals based on a europium β-diketonate complex bridged by an ethylammonium cation.

    PubMed

    Yi, Sijing; Yao, Meihuan; Wang, Jiao; Chen, Xiao

    2016-10-05

    Soft lanthanide luminescent materials are impressive because of their tunable and self-assembling characteristics, which make them an attractive emerging materials field of research. In this report, novel luminescent lyotropic liquid crystals (LLCs) with four different mesophases have been fabricated by a protic ionic liquid (IL) based europium β-diketonate complex EA[Eu(TTA)4] (EA = ethylammonium, TTA = 2-thenoyltrifluoro-acetone) and an amphiphilic block copolymer (Pluronic P123). The protic IL, ethylammonium nitrate (EAN), was used as both the solvent and linkage to stabilize the doped complexes. Analyses by single-crystal X-ray diffraction for EA[Eu(TTA)4] and Fourier transform infrared spectroscopy for the LLC materials reveal convincingly that the ethylammonium cations establish an effective connection with both the carbonyl group of the β-diketonate ligand and the EO blocks of the amphiphilic block copolymer P123 via strong hydrogen bonding interactions. Due to this, an extremely long decay time of the excited state is obtained in EA[Eu(TTA)4] and excellent photostability of the luminescent LLCs could be achieved. The long-period ordered structures of the luminescent LLCs have been investigated by small-angle X-ray scattering measurements and the best luminescence performance was found in the most organized mesophase. Noteworthy, the LLCs could yield an effective confining effect on the europium complex accompanied by a sizeable elongation of the excited-state lifetime and an enhancement of the energy transfer efficiency, which reaches a remarkably high value of 52.6%. More importantly, the modulated luminescence properties observed in the four mesophase structures offer the potential and powerful possibility for these unique composite LLCs to be used in the fabrication of soft luminescent materials with tunable functions.

  9. Lyotropic liquid crystal behaviour of azelate and succinate monoester surfactants based on fragrance alcohols.

    PubMed

    Marchal, Frédéric; Nardello-Rataj, Véronique; Chailloux, Nelly; Aubry, Jean-Marie; Tiddy, Gordon J T

    2008-05-01

    Azelaic acid was used as a starting material for the preparation of new monoester surfactants based on fragrance alcohols. Sodium monocitronellyl azelate (citroC(9)Na) and sodium monomenthyl azelate (menC(9)Na) were synthesized and their aqueous phase behaviour was studied. For comparison, monoesters derived from succinic anhydride, i.e. sodium monocitronellyl succinate (citroC(4)Na) and sodium monomenthyl succinate (menC(4)Na), were also prepared as well as sodium monodecyl succinate (C(10)C(4)Na) and sodium monodecyl azelate (C(10)C(9)Na) in order to study the effect of the position of the ester function inside the hydrophobic tail and of branching and unsaturation respectively. Liquid crystal structures were examined by optical polarising microscopy and schematic partial binary phase diagrams (surfactant+water, 0-100 wt%, 10-90 degrees C) of the surfactants were established. Succinate surfactants behave as longer alkyl chain surfactants than their azelate counterparts, meaning that these last ones probably adopt a more folded conformation, with the ester function more frequently present at the micelle surface. This conformation would result in a rougher micelle surface, making it slightly less easy for micelles to pack in liquid crystalline phases. It was also shown that the tendency to adopt a more folded conformation and to form smaller micelles is ranked in this order: monomenthyl>monocitronellyl>monodecyl.

  10. Dynamics of water confined in lyotropic liquid crystals: Molecular dynamics simulations of the dynamic structure factor

    NASA Astrophysics Data System (ADS)

    Mantha, Sriteja; Yethiraj, Arun

    2016-02-01

    The properties of water under confinement are of practical and fundamental interest. In this work, we study the properties of water in the self-assembled lyotropic phases of Gemini surfactants with a focus on testing the standard analysis of quasi-elastic neutron scattering (QENS) experiments. In QENS experiments, the dynamic structure factor is measured and fit to models to extract the translational diffusion constant, DT, and rotational relaxation time, τR. We test this procedure by using simulation results for the dynamic structure factor, extracting the dynamic parameters from the fit as is typically done in experiments, and comparing the values to those directly measured in the simulations. We find that the de-coupling approximation, where the intermediate scattering function is assumed to be a product of translational and rotational contributions, is quite accurate. The jump-diffusion and isotropic rotation models, however, are not accurate when the degree of confinement is high. In particular, the exponential approximations for the intermediate scattering function fail for highly confined water and the values of DT and τR can differ from the measured value by as much as a factor of two. Other models have more fit parameters, however, and with the range of energies and wave-vectors accessible to QENS, the typical analysis appears to be the best choice. In the most confined lamellar phase, the dynamics are sufficiently slow that QENS does not access a large enough time scale.

  11. Dynamics of water confined in lyotropic liquid crystals: Molecular dynamics simulations of the dynamic structure factor.

    PubMed

    Mantha, Sriteja; Yethiraj, Arun

    2016-02-28

    The properties of water under confinement are of practical and fundamental interest. In this work, we study the properties of water in the self-assembled lyotropic phases of Gemini surfactants with a focus on testing the standard analysis of quasi-elastic neutron scattering (QENS) experiments. In QENS experiments, the dynamic structure factor is measured and fit to models to extract the translational diffusion constant, D(T), and rotational relaxation time, τ(R). We test this procedure by using simulation results for the dynamic structure factor, extracting the dynamic parameters from the fit as is typically done in experiments, and comparing the values to those directly measured in the simulations. We find that the de-coupling approximation, where the intermediate scattering function is assumed to be a product of translational and rotational contributions, is quite accurate. The jump-diffusion and isotropic rotation models, however, are not accurate when the degree of confinement is high. In particular, the exponential approximations for the intermediate scattering function fail for highly confined water and the values of D(T) and τ(R) can differ from the measured value by as much as a factor of two. Other models have more fit parameters, however, and with the range of energies and wave-vectors accessible to QENS, the typical analysis appears to be the best choice. In the most confined lamellar phase, the dynamics are sufficiently slow that QENS does not access a large enough time scale.

  12. Formulation of lyotropic liquid crystal containing mulberry stem extract: influences of formulation ingredients on the formation and the nanostructure.

    PubMed

    Yhirayha, C; Soontaranon, S; Wittaya-Areekul, S; Pitaksuteepong, T

    2014-06-01

    This study focused on the formulation of lamellar lyotropic liquid crystal (LLC) loaded with mulberry stem extract (MSE). The LLC formulation tested used two oils: n-dodecane or tridecyl salicylate, a co-solvent (propylene glycol) and a single (PEG-7 glyceryl cocoate) or mixed surfactant system. The mixed surfactant was PEG-7 glyceryl cocoate/PEG-40 hydrogenated castor oil/glyceryl monooleate. The LLC formation and phase behaviour were observed by polarized optical microscopy (POM) before and after MSE loading. Nanostructure determinations on these formulations following MSE loading used small angle X-ray scattering (SAXS) at 25-40°C. Lamellar LLCs are formed more easily with n-dodecane than tridecyl salicylate. Propylene glycol, in the aqueous phase (1 : 1), failed to form LLC due to suboptimal critical packing parameter (CPP) value. A single or mixed surfactant system also influenced the formation of lamellar LLC according to the chemical structure of both oils and especially the surfactants used. The four lamellar LLC formulations selected for MSE loading were PEG-7 glyceryl cocoate/tridecyl salicylate/water; mixed surfactant/tridecyl salicylate/water; PEG-7 glyceryl cocoate/n-dodecane/water and mixed surfactant/n-dodecane/water, named F1, F2, F3 and F4, respectively. MSE in F1 and F3 did not affect the lamellar structure, while MSE in F2 and F4 enlarged the lamellar structure. The SAXS data confirmed that the LLC formulations obtained were lamellar and the structure persisted with MSE. These lamellar formulations should find widespread application for MSE and perhaps other similar herbal cosmetics. © 2014 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  13. Dynamics of water confined in lyotropic liquid crystals: Molecular dynamics simulations of the dynamic structure factor

    SciTech Connect

    Mantha, Sriteja; Yethiraj, Arun

    2016-02-24

    The properties of water under confinement are of practical and fundamental interest. Here in this work we study the properties of water in the self-assembled lyotropic phases of gemini surfactants with a focus on testing the standard analysis of quasi-elastic neutron scattering (QENS) experiments. In QENS experiments the dynamic structure factor is measured and fit to models to extract the translational diffusion constant, DT , and rotational relaxation time, τR. We test this procedure by using simulation results for the dynamic structure factor, extracting the dynamic parameters from the fit as is typically done in experiments, and comparing the values to those directly measured in the simulations. We find that the decoupling approximation, where the intermediate scattering function is assumed to be a product of translational and rotational contributions, is quite accurate. The jump-diffusion and isotropic rotation models, however, are not accurate when the degree of confinement is high. In particular, the exponential approximations for the intermediate scattering function fail for highly confined water and the values of DT and τR can differ from the measured value by as much as a factor of two. Other models have more fit parameters, however, and with the range of energies and wave-vectors accessible to QENS, the typical analysis appears to be the best choice. In the most confined lamellar phase, the dynamics are sufficiently slow that QENS does not access a large enough time scale and neutron spin echo measurements would be a valuable technique in addition to QENS.

  14. Dynamics of water confined in lyotropic liquid crystals: Molecular dynamics simulations of the dynamic structure factor

    DOE PAGES

    Mantha, Sriteja; Yethiraj, Arun

    2016-02-24

    The properties of water under confinement are of practical and fundamental interest. Here in this work we study the properties of water in the self-assembled lyotropic phases of gemini surfactants with a focus on testing the standard analysis of quasi-elastic neutron scattering (QENS) experiments. In QENS experiments the dynamic structure factor is measured and fit to models to extract the translational diffusion constant, DT , and rotational relaxation time, τR. We test this procedure by using simulation results for the dynamic structure factor, extracting the dynamic parameters from the fit as is typically done in experiments, and comparing the valuesmore » to those directly measured in the simulations. We find that the decoupling approximation, where the intermediate scattering function is assumed to be a product of translational and rotational contributions, is quite accurate. The jump-diffusion and isotropic rotation models, however, are not accurate when the degree of confinement is high. In particular, the exponential approximations for the intermediate scattering function fail for highly confined water and the values of DT and τR can differ from the measured value by as much as a factor of two. Other models have more fit parameters, however, and with the range of energies and wave-vectors accessible to QENS, the typical analysis appears to be the best choice. In the most confined lamellar phase, the dynamics are sufficiently slow that QENS does not access a large enough time scale and neutron spin echo measurements would be a valuable technique in addition to QENS.« less

  15. Passing Current through Electrically Conducting Lyotropic Liquid Crystals and Micelles Assembled from Hybrid Surfactants with π-Conjugated Tail and Polyoxometalate Head

    PubMed Central

    2016-01-01

    The solvent-mediated ability for molecularly encoded self-assembly into states of higher order (micelles, lyotropic liquid crystals) embodies the basis for many applications of surfactants in science and society. Surfactants are used frequently in recipes for nanoparticle synthesis. Because ordinary surfactants comprise insulating constituents (alkyl groups as side-chains and charged organic heads), such nanostructures are wrapped in an electrically inactive barrier, and this is a large disadvantage for future developments in nanotechnology. Implications of micelles with electrically conducting walls made from either “metallic” or “semiconducting” surfactants are huge, also in other areas such as nanoelectrocatalysis or micellar energy storage. We cross this frontier by replacing not only the hydrophilic chain but also the hydrophilic head by electronically conducting entities. We report the synthesis of surfactants with oligo para-phenylene-ethynylene as a π-conjugated side-chain attached to a redox-active, inorganic polyoxometalate cluster as charged head. It is proven that electronic communication between head and tail takes place. Hybridization on the molecular level leads to the emergence of advanced surfactant features such as semiconductor properties (Egap = 2.6 eV) in soft lyotropic systems (micelles, liquid crystals). PMID:27809472

  16. Passing Current through Electrically Conducting Lyotropic Liquid Crystals and Micelles Assembled from Hybrid Surfactants with π-Conjugated Tail and Polyoxometalate Head.

    PubMed

    Klaiber, Alexander; Polarz, Sebastian

    2016-11-22

    The solvent-mediated ability for molecularly encoded self-assembly into states of higher order (micelles, lyotropic liquid crystals) embodies the basis for many applications of surfactants in science and society. Surfactants are used frequently in recipes for nanoparticle synthesis. Because ordinary surfactants comprise insulating constituents (alkyl groups as side-chains and charged organic heads), such nanostructures are wrapped in an electrically inactive barrier, and this is a large disadvantage for future developments in nanotechnology. Implications of micelles with electrically conducting walls made from either "metallic" or "semiconducting" surfactants are huge, also in other areas such as nanoelectrocatalysis or micellar energy storage. We cross this frontier by replacing not only the hydrophilic chain but also the hydrophilic head by electronically conducting entities. We report the synthesis of surfactants with oligo para-phenylene-ethynylene as a π-conjugated side-chain attached to a redox-active, inorganic polyoxometalate cluster as charged head. It is proven that electronic communication between head and tail takes place. Hybridization on the molecular level leads to the emergence of advanced surfactant features such as semiconductor properties (Egap = 2.6 eV) in soft lyotropic systems (micelles, liquid crystals).

  17. Thermodynamics and 2H NMR study on the insertion of small quinones into a discotic nematic lyotropic liquid crystal.

    PubMed

    Bahamonde-Padilla, Víctor Eduardo; López-Cascales, José Javier; Araya-Maturana, Ramiro; Martínez-Cifuentes, Maximiliano; Weiss López, Boris Enrique

    2014-05-19

    A detailed description of the distribution, interaction, and dynamics of molecules with biological activity dissolved in a hydrophobic bilayer, a simple model of a biological membrane, provides valuable information for a better understanding of drug functioning, which can be very useful in drug design. Here we present an (2)H NMR and molecular dynamics study on the insertion, distribution, interactions, and thermodynamics of two biologically active molecules, 9,10-dihydroxy-4,4-dimethyl-1,4,5,8-tetrahydroanthracen-1-one (HQ), with anticancer activity, and 4,4-dimethyl-1,4,5,8,9,10-hexahydroanthracen-1,9,10-trione (Q) a fungicide, dissolved in a nematic discotic lyotropic liquid crystal (ndllc) composed of sodium dodecylsulphate (SDS), decanol (DecOH) and Na2 SO4 in water. (2)H NMR quadrupole splittings (ΔνQ ) and longitudinal relaxation times (T1) from HQ-d6, Q-d4, DecOH-α-d2, partially deuterated water, and SDS-d25 were measured and several molecular dynamics trajectories were also calculated. In particular, ΔG, ΔH, and ΔS profiles for the process of both molecules crossing the bilayer were estimated. It was evidenced that the insertion of both molecules into the aggregate is a spontaneous process, and the molecules are mainly distributed in the internal side of the interface. Addition of HQ or Q decreased the mobility of all aggregate components, but this effect was more pronounced for HQ. The rotational correlation time of Q allowed an estimate of 5.3 cP for the microviscosity inside the ndllc aggregate, in the order of previously measured values in similar environments. Both guest molecules display similar free-energy profiles for the process of crossing the bilayer, with a calculated barrier height of 25 and 36 kJ mol(-1) for HQ and Q, respectively. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Shear rheology and in-vitro release kinetic study of apigenin from lyotropic liquid crystal.

    PubMed

    Fan, Jun; Liu, Feng; Wang, Zhongni

    2016-01-30

    Apigenin is a flavonoid compound with diverse pharmacological functions which could develop health benefit products, but its formulation is hampered by its poor water solubility and bioavailability. In this paper, in order to overcome these difficulties, apigenin was encapsulated in LLC formed by polyoxyethylene-10-oleyl ether (Brij 97) and sodium deoxycholate (NaDC) mixtures. The hexagonal liquid crystalline phase (H) and the cubic liquid crystalline phase (C) were found in this system. The shear rheology was used to study the structure change with temperature. It was shown that C3 (Brij 97-NaDC/IPM-PEG400/H2O=36:9:55) was C at low temperature. But above 35.6°C, the matrix of C3 completely transformed to polymer solution. The matrix of H3 was H (Brij 97-NaDC:IPM-PEG 400:H2O=50:9:41) below 50°C, but the structural strength change was obvious. Vitro release experiment was used to study drug release kinetics. It was indicated that apigenin encapsulated in LLC conformed to the concentration diffusion model, and cumulative percentage of apigenin released from C3 and H3 had corresponding relationship with the shear rheology at different temperatures.

  19. Prediction of EPR Spectra of Lyotropic Liquid Crystals using a Combination of Molecular Dynamics Simulations and the Model-Free Approach.

    PubMed

    Prior, Christopher; Oganesyan, Vasily S

    2017-09-21

    We report the first application of fully atomistic molecular dynamics (MD) simulations to the prediction of the motional electron paramagnetic resonance (EPR) spectra of lyotropic liquid crystals in different aggregation states doped with a paramagnetic spin probe. The purpose of this study is twofold. First, given that EPR spectra are highly sensitive to the motions and order of the spin probes doped within lyotropic aggregates, simulation of EPR line shapes from the results of MD modelling provides an ultimate test bed for the force fields currently employed to model such systems. Second, the EPR line shapes are simulated using the motional parameters extracted from MD trajectories using the Model-Free (MF) approach. Thus a combined MD-EPR methodology allowed us to test directly the validity of the application of the MF approach to systems with multi-component molecular motions. All-atom MD simulations using the General AMBER Force Field (GAFF) have been performed on sodium dodecyl sulfate (SDS) and dodecyltrimethylammonium chloride (DTAC) liquid crystals. The resulting MD trajectories were used to predict and interpret the EPR spectra of pre-micellar, micellar, rod and lamellar aggregates. The predicted EPR spectra demonstrate good agreement with most of experimental line shapes thus confirming the validity of both the force fields employed and the MF approach for the studied systems. At the same time simulation results confirm that GAFF tends to overestimate the packing and the order of the carbonyl chains of the surfactant molecules. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Chiral conflict: The effect of temperature on the helical sense of a polymer controlled by the competition between structurally different enantiomers. From dilute solution to the lyotropic liquid crystal state

    NASA Astrophysics Data System (ADS)

    Tang, Kai

    In this thesis control of helical sense of a series of polyisocyanate copolymers arose from the competition between structurally different enantiomers with opposing helical sense preferences. These polyisocyanates yield a new kind of relationship between optical activity and temperature and also reveal unusual details of the nature of chiral interactions. Consistent with a statistical physical theory developed for these experiments by our collaborator, J. V. Selinger, the proportion of the competing chiral groups, determined by synthesis, fixed the compensation temperature at which the helical senses were equally populated. The lyotropic liquid crystal state formed by these polymers yield a liquid crystal phase transition from a cholesteric state to a nematic state at a predetermined switch temperature (Tc) with the pitch tightening as the temperature deviates from this point. The switch temperature could be chosen continuously and over a very wide range. Far from the nematic temperature the pitch reaches the nanometer scale and therefore the reflection of visible light. Near to the nematic temperature the optical activity becomes so large, before reaching zero at the nematic temperature, as to be observed with the unaided eye through crossed polarizers. Lasing is reported at the edge and in the middle of the selective reflection band for the cholesteric phase of a lyotropic liquid crystal formed from an optically active polyisocyanate with chiral and achiral residues in toluene. This is the first observation of lasing from a stiff polymer based lyotropic liquid crystal. Lyotropic liquid crystals from poly(1(R)-deuterio-n-hexyl isocyanate) in toluene were prepared to test the effect of chirality amplification in the liquid crystal state. Even though the optical rotation of the deuterio substituted monomer is less than one degree at 589nm, the optical rotation of polymer is as much as several hundred degrees at the same wavelength. Copolypeptides of L

  1. Design and synthesis of new type I bicontinuous cubic lyotropic liquid crystal monomers based on the gemini framework for molecular-size separation applications

    NASA Astrophysics Data System (ADS)

    Wiesenauer, Brian R.

    The overall objective of this thesis research was the design and synthesis of new type I bicontinuous cubic (QI) phase-forming, gemini-shaped lyotropic liquid crystal (LLC) monomers for the preparation of nanoporous polymer membrane materials. These new QI-phase LLC monomers were designed to overcome several shortcomings of previously developed QI-phase LLC monomers in the Gin research group that include expensive and difficult synthesis, poor film processibility, and limited blendability with additives. The first method for obtaining this objective was the synthesis of six homologues of a new gemini ammonium LLC monomer, two of which exhibit a QI phase with water. Both of these LLCs form a robust Q I phase such that a gel of these materials can be fully infused into a microporous support membrane and then cross-linked to maintain the LLC phase structure. The resulting QI-phase polymer film showed a uniform pore size of 0.86 nm in water nanofiltration and desalination experiments. This QI monomer platform is less costly and less rigorous to synthesize than previously synthesized phosphonium-based gemini QI LLC monomers. These new LLC monomers also have the ability to blend with the hydrophobic, commercially available cross-linkable elastomer vinyl-EPDM (v-EPDM) to form breathable composite barrier materials. In the appropriate composition, melt-infused gemini ammonium monomer/v-EPDM polymer membranes exhibit extremely high pure water vapor fluxes, and high rejection of toxic industrial chemical vapors. A new cross-linkable gemini LLC monomer based on charged imidazolium units was also developed that forms a QI phase with glycerol. This new LLC monomer can be solution-cast from MeOH and UV-irradiated to form cross-linked thin-film composite QI membranes with slightly larger effective pore size (0.96 nm) than the previous systems. A related goal of this thesis research was to develop methods for systematically tuning the effective pore size of nanoporous QI polymer

  2. Emulsion of aqueous-based nonspherical droplets in aqueous solutions by single-chain surfactants: templated assembly by nonamphiphilic lyotropic liquid crystals in water.

    PubMed

    Varghese, Nisha; Shetye, Gauri S; Bandyopadhyay, Debjyoti; Gobalasingham, Nemal; Seo, JinAm; Wang, Jo-Han; Theiler, Barbara; Luk, Yan-Yeung

    2012-07-24

    Single-chain surfactants usually emulsify and stabilize oily substances into droplets in an aqueous solution. Here, we report a coassembly system, in which single types of anionic or non-ionic surfactants emulsify a class of water-soluble nonamphiphilic organic salts with fused aromatic rings in aqueous solutions. The nonamphiphilic organic salts are in turn promoted to form droplets of water-based liquid crystals (chromonic liquid crystals) encapsulated by single-chain surfactants. The droplets, stabilized against coalescence by encapsulated in a layer (or layers) of single chain surfactants, are of both nonspherical tactoid (elongated ellipsoid with pointy ends) and spherical shapes. The tactoids have an average long axis of ∼9 μm and a short axis of ∼3.5 μm with the liquid crystal aligning parallel to the droplet surface. The spherical droplets are 5-10 μm in diameter and have the liquid crystal aligning perpendicular to the droplet surface and a point defect in the center. Cationic and zwitterionic surfactants studied in this work did not promote the organic salt to form droplets. These results illustrate the complex interplay of self-association and thermodynamic incompatibility of molecules in water, which can cause new assembly behavior, including potential formation of vesicles or other assemblies, from surfactants that usually form only micelles. These unprecedented tactoidal shaped droplets also provide potential for the fabrication of new soft organic microcapsules.

  3. Lyotropic liquid crystalline phase behaviour in amphiphile-protic ionic liquid systems.

    PubMed

    Chen, Zhengfei; Greaves, Tamar L; Fong, Celesta; Caruso, Rachel A; Drummond, Calum J

    2012-03-21

    Approximate partial phase diagrams for nine amphiphile-protic ionic liquid (PIL) systems have been determined by synchrotron source small angle X-ray scattering, differential scanning calorimetry and cross polarised optical microscopy. The binary phase diagrams of some common cationic (hexadecyltrimethyl ammonium chloride, CTAC, and hexadecylpyridinium bromide, HDPB) and nonionic (polyoxyethylene (10) oleyl ether, Brij 97, and Pluronic block copolymer, P123) amphiphiles with the PILs, ethylammonium nitrate (EAN), ethanolammonium nitrate (EOAN) and diethanolammonium formate (DEOAF), have been studied. The phase diagrams were constructed for concentrations from 10 wt% to 80 wt% amphiphile, in the temperature range 25 °C to >100 °C. Lyotropic liquid crystalline phases (hexagonal, cubic and lamellar) were formed at high surfactant concentrations (typically >50 wt%), whereas at <40 wt%, only micelles or polydisperse crystals were present. With the exception of Brij 97, the thermal stability of the phases formed by these surfactants persisted to temperatures above 100 °C. The phase behaviour of amphiphile-PIL systems was interpreted by considering the PIL cohesive energy, liquid nanoscale order, polarity and ionicity. For comparison the phase behaviour of the four amphiphiles was also studied in water.

  4. Monodisperse nonionic isoprenoid-type hexahydrofarnesyl ethylene oxide surfactants: high throughput lyotropic liquid crystalline phase determination.

    PubMed

    Fong, Celesta; Weerawardena, Asoka; Sagnella, Sharon M; Mulet, Xavier; Krodkiewska, Irena; Chong, Josephine; Drummond, Calum J

    2011-03-15

    The neat and lyotropic phase behavior of eight new ethylene oxide amphiphiles (EO = 1-8) with a hexahydrofarnesyl chain (3,7,11-trimethyldodecyl) and narrow polydispersity (>98.5% purity) is reported. Below five EO units the behavior of the neat surfactants show only a glass transition, Tg ∼ -90 °C. Above four EO units, crystallization (Tcrys) and crystal-isotropic liquid (Tm) transitions are also observed that increase with degree of ethoxylation of the surfactant headgroup. The lyotropic liquid crystalline phase behavior spans a complex spectrum of surfactant-water interfacial curvatures. Specifically, inverse phases are present below ambient temperatures for EO < 4, with HFarn(EO)2 exhibiting an inverse hexagonal (H(II)) phase stable to dilution. The phase diagram of HFarn(EO)3 displays both the gyroid (Ia3d) and double diamond (Pn3m) inverse bicontinuous cubic phases, with the latter being thermodynamically stable in excess water within the physiological regime. There is a strong preference for planar bilayer structures at intermediate headgroup ethoxylation, with the crossover to normal phases occurring at HFarn(EO)(7-8) which exhibits normal hexagonal (H(I)) and cubic (Q(I)) phases at ambient temperatures. The toxicity of colloidal dispersions of these EO amphiphiles was assayed against normal breast epithelial (HMEpiC) and breast cancer (MCF7) cell lines. The IC50 of the EO amphiphiles was similar in both cell lines with moderate toxicity ranging from ca. <5 to 140 μM in an in vitro cell viability assay. Observations are qualitatively rationalized in terms of the molecular geometry of the surfactant. The physicochemical behavior of the HFarnesyl ethylene oxide amphiphiles is compared to other ethylene oxide surfactants.

  5. Chem I Supplement: Liquid Crystals--The Chameleon Chemicals.

    ERIC Educational Resources Information Center

    Brown, Glenn H.

    1983-01-01

    Presents information relevant to everyday life so as to stimulate student interest in the properties of the two basic types of liquid crystals: thermotropic and lyotropic. Describes the applications of liquid crystals to electronics, biomedicine, and polymer science and appraises the future of liquid crystal research. (JM)

  6. Chem I Supplement: Liquid Crystals--The Chameleon Chemicals.

    ERIC Educational Resources Information Center

    Brown, Glenn H.

    1983-01-01

    Presents information relevant to everyday life so as to stimulate student interest in the properties of the two basic types of liquid crystals: thermotropic and lyotropic. Describes the applications of liquid crystals to electronics, biomedicine, and polymer science and appraises the future of liquid crystal research. (JM)

  7. Evaporative Self-Assembly and Formation of the Lyotropic Liquid Crystalline Phase of Poly(3-hexyl thiophene)

    NASA Astrophysics Data System (ADS)

    Park, Min Sang; Aiyar, Avishek; Park, Jung Ok; Reichmanis, Elsa; Srinivasarao, Mohan

    2011-03-01

    In this study, we electrically and optically interrogated the evolution of the thin film structure in conjugated systems using poly(3-hexylthiphene) (P3HT) as a model semiconducting polymer. In an effort to understand the electrical properties of the conducting channel in terms of polymer chain orientation and relaxation in solution, we performed in-situ micro-Raman measurements using polarized incident light. We measured the extent of molecular chain alignment during the process of film formation and showed the existence of a lyotropic liquid crystal phase at the three-phase contact line. The variation of frequency dispersion and the shift of position for Raman active mode, combined with the structural anisotropy of P3HT films, suggest a phase transition to the lyotropic liquid crystalline phase. The orientational order of P3HT chains in the liquid crystalline phase was quantified as a function of evaporation time using solidified solvent, 1,3,5-triclorobenzene (1,3,5-TCB). This work was supported, in part, by the Office of Basic Energy Science, Department of Energy, Grant No. DESC0001412 and by an NSF, Grant No. DMR0706235.

  8. Lyotropic liquid crystalline L3 phase silicated nanoporous monolithic composites and their production

    DOEpatents

    McGrath, Kathryn M.; Dabbs, Daniel M.; Aksay, Ilhan A.; Gruner, Sol M.

    2003-10-28

    A mesoporous ceramic material is provided having a pore size diameter in the range of about 10-100 nanometers produced by templating with a ceramic precursor a lyotropic liquid crystalline L.sub.3 phase consisting of a three-dimensional, random, nonperiodic network packing of a multiple connected continuous membrane. A preferred process for producing the inesoporous ceramic material includes producing a template of a lyotropic liquid crystalline L.sub.3 phase by mixing a surfactant, a co-surfactant and hydrochloric acid, coating the template with an inorganic ceramic precursor by adding to the L.sub.3 phase tetramethoxysilane (TMOS) or tetraethoxysilane (TEOS) and then converting the coated template to a ceramic by removing any remaining liquids.

  9. Perylene bisimide hydrogels and lyotropic liquid crystals with temperature-responsive color change† †Electronic supplementary information (ESI) available: Detailed procedures and results for all reported experiments, along with synthetic details for PBI 1. See DOI: 10.1039/c6sc02249a Click here for additional data file.

    PubMed Central

    Görl, Daniel; Soberats, Bartolome; Herbst, Stefanie; Stepanenko, Vladimir

    2016-01-01

    The self-assembly of perylene bisimide (PBI) dyes bearing oligo ethylene glycol (OEG) units in water affords responsive functional nanostructures characterized by their lower critical solution temperature (LCST). Tuning of the LCST is realized by a supramolecular approach that relies on two structurally closely related PBI–OEG molecules. The two PBIs socially co-assemble in water and the resulting nanostructures exhibit a single LCST in between the transition temperatures of the aggregates formed by single components. This permits to precisely tune the transition from a hydrogel to a lyotropic liquid crystal state at temperatures between 26 and 51 °C by adjusting the molar fraction of the two PBIs. Owing to concomitant changes in PBI–PBI interactions this phase transition affords a pronounced color change with “fluorescence-on” response that can be utilized as a smart temperature sensory system. PMID:28451124

  10. Selective Sequence for the Peptide-Triggered Phase Transition of Lyotropic Liquid-Crystalline Structures.

    PubMed

    Liu, Qingtao; Dong, Yao-Da; Boyd, Ben J

    2016-05-24

    A novel concept of using mixed lipids to construct selective peptide-sequence-sensing lyotropic liquid-crystalline (LLC) dispersion systems was investigated. The LLC systems were constructed using a mixture of phytantriol, a lipid that forms lyotropic liquid-crystalline phases, and a novel synthesized peptide-lipid (peplipid) for sensing a target peptide with the RARAR sequence. The internal structure of the dispersed LLC particles was converted from the lamellar structure (liposomes) to the inverse bicontinuous cubic phase (cubosomes) in the presence of the target peptide. The addition of common human proteins did not induce any structural change, indicating a high selectivity of interaction with the target peptide. The concept has potential for the design of targeted controlled release drug delivery agents.

  11. Ratchet effect in faceting: a growth of perfect lyotropic crystals by temperature cycles.

    PubMed

    Plötzing, T; Pieranski, P

    2004-02-01

    The paper deals with a new phenomenon, named ratchet effect, envisioned theoretically as a likely consequence of metastability of crystal facets and expected to occur upon a temperature cycling. In experiments, Pn3m lyotropic crystals surrounded by the isotropic L1 phase in the mixture C(12)EO(2)/water are used. At equilibrium, the Pn3m/L1 interface contains small (111)-type facets in coexistence with rough surfaces. In agreement with theoretical expectations, it is shown that upon a saw-tooth-shaped temperature cycling, facets are growing until the rough surfaces are completely eliminated. A model of the ratchet effect is proposed.

  12. Facile dispersion and control of internal structure in lyotropic liquid crystalline particles by auxiliary solvent evaporation.

    PubMed

    Martiel, Isabelle; Sagalowicz, Laurent; Handschin, Stephan; Mezzenga, Raffaele

    2014-12-09

    Submicron sized, structured lyotropic liquid crystalline (LLC) particles, so-called hexosomes and cubosomes, are generally obtained by high energy input dispersion methods, notably ultrasonication and high-pressure emulsification. We present a method to obtain dispersions of such LLC particles with a significantly reduced energy input, by evaporation of an auxiliary volatile solvent immiscible with water, e.g. cyclohexane or limonene. The inner structure of the particles can be precisely controlled by the addition of a nonvolatile oil, such as α-tocopherol or tetradecane consistently with bulk phase diagrams,. Two different lyotropic surfactants were employed, industrial grade monolinoleine (MLO) and soy bean phosphatidylcholine (PC). The lyotropic surfactant and oil phase modifier were first dissolved in the volatile solvent to give a liquid reverse micellar (L2) phase, which requires significantly less energy input to be dispersed in an aqueous solution of secondary emulsifier compared to the corresponding gel-like bulk mesophase. The auxiliary volatile solvent was then removed from the emulsion by evaporation at room temperature, yielding LLC particles of the desired inner structure, Pn3̅m, H2, or Fd3̅m. The obtained particles were characterized by small-angle X-ray scattering (SAXS), dynamic light scattering (DLS), and cryogenic transmission electron microscopy (cryo-TEM). Our method enables fine-tuning of the final particle size through the volatile-to-nonvolatile volume ratio and processing conditions.

  13. Stabilization of lamellar oil-water liquid crystals by surfactant/ co-surfactant monolayers

    NASA Astrophysics Data System (ADS)

    Braganza, L. F.; Dubois, M.; Tabony, J.

    1989-03-01

    LIQUID crystals are divided into two main classes, thermotropic and lyotropic. Thermotropic liquid crystals are formed by melting, whereas lyotropic liquid crystals arise from the association of molecules, such as soap and water, that in general are not in themselves liquid crystalline. Thermotropic liquid crystals are used for liquid-crystal displays; lyotropic liquid crystals occur in living cells. Here we report a novel sequence of lyotropic liquid crystals comprising alternate layers of oil and water whose thickness varies linearly with the relative proportions of oil and water, and we have determined their structure using neutron diffraction methods. The oil and water layers are separated and stabilized by a monolayer film of surfactant and co-surfactant. The individual layers are typically a hundred ångströms or more in thickness, and total lamellar spacings of up to 1,000 Å were observed. This behaviour is difficult to describe in terms of the theories of colloid stability currently used to describe lyotropic liquid crystals. An understanding of the self-organization of such systems over such large distances would elucidate how long-range liquid-crystalline ordering arises in living cells. Moreover, thermotropic liquid crystals are expensive and chemically relatively unstable, and lamellar mesophases of the lyotopic type described here could lead to inexpensive, chemically stable liquid-crystalline materials suitable for industrial application.

  14. Ionic Liquid Crystals: Versatile Materials.

    PubMed

    Goossens, Karel; Lava, Kathleen; Bielawski, Christopher W; Binnemans, Koen

    2016-04-27

    This Review covers the recent developments (2005-2015) in the design, synthesis, characterization, and application of thermotropic ionic liquid crystals. It was designed to give a comprehensive overview of the "state-of-the-art" in the field. The discussion is focused on low molar mass and dendrimeric thermotropic ionic mesogens, as well as selected metal-containing compounds (metallomesogens), but some references to polymeric and/or lyotropic ionic liquid crystals and particularly to ionic liquids will also be provided. Although zwitterionic and mesoionic mesogens are also treated to some extent, emphasis will be directed toward liquid-crystalline materials consisting of organic cations and organic/inorganic anions that are not covalently bound but interact via electrostatic and other noncovalent interactions.

  15. Anisotropic surface melting in lyotropic cubic crystals. Part 1: Pn3m/L1 interface, poor faceting

    NASA Astrophysics Data System (ADS)

    Grenier, J.; Plötzing, T.; Rohe, D.; Pieranski, P.

    2006-02-01

    From experiments with ice or metal crystals, in the vicinity of their crystal/liquid/vapor triple points, it is known that melting of crystals starts on their surfaces and is anisotropic. It is shown here by direct observations under an optical microscope that this anisotropic surface melting phenomenon occurs also in lyotropic systems. In the case of C12EO2/water mixture, it takes place in the vicinity of the peritectic Pn3m/L3/L1 triple point. Above the peritectic triple point, where the Pn3m and L1 phases coexist in the bulk, the surface of a Pn3m-in-L1 crystal is composed of (111)-type facets surrounded by rough surfaces. The angular junction suggests that rough surfaces are wet by a L3-like layer while facets stay “dry”. This is analogous to the pre-melting at rough surfaces in solid crystals. Upon cooling below the peritectic triple point, where L3 and L1 phases coexist in the bulk, a thick layer of the L3 phase grows from the pre-melted, rough Pn3m/L1 interface. Simultaneously, facets stay dry and their radius decreases. In this tri-phasic configuration, stable in a narrow temperature range, the L3/L1 and L3/Pn3m interfaces have shapes of constant mean curvature surfaces having common borders: edges of facets.

  16. Nonionic diethanolamide amphiphiles with isoprenoid-type hydrocarbon chains: thermotropic and lyotropic liquid crystalline phase behaviour

    SciTech Connect

    Sagnella, Sharon M.; Conn, Charlotte E.; Krodkiewska, Irena; Drummond, Calum J.

    2014-09-24

    The thermotropic and lyotropic liquid crystalline phase behaviour of a series of diethanolamide amphiphiles with isoprenoid-type hydrocarbon chains (geranoyl, H-farnesoyl, and phytanoyl) has been investigated. When neat, both H-farnesoyl and phytanoyl diethanolamide form a smectic liquid crystalline structure at sub-zero temperatures. In addition, all three diethanolamides exhibit a glass transition temperature at around -73 C. Geranoyl diethanolamide forms a lamellar crystalline phase with a lattice parameter of 17.4 {angstrom} following long term storage accompanied by the loss of the glass transition. In the presence of water, H-farnesoyl and phytanoyl diethanolamide form lyotropic liquid crystalline phases, whilst geranoyl diethanolamide forms an L{sub 2} phase. H-farnesoyl diethanolamide forms a fluid lamellar phase (L{sub {alpha}}) at room temperature and up to {approx} 40 C. Phytanoyl diethanolamide displays a rich mesomorphism forming the inverse diamond (Q{sub II}{sup D}) and gyroid (Q{sub II}{sup G}) bicontinuous cubic phases in addition to an L{sub {alpha}} phase.

  17. Myelin structures formed by thermotropic smectic liquid crystals.

    PubMed

    Peddireddy, Karthik; Kumar, Pramoda; Thutupalli, Shashi; Herminghaus, Stephan; Bahr, Christian

    2013-12-17

    We report on transient structures, formed by thermotropic smectic-A liquid crystals, resembling the myelin figures of lyotropic lamellar liquid crystals. The thermotropic myelin structures form during the solubilization of a smectic-A droplet in an aqueous phase containing a cationic surfactant at concentrations above the critical micelle concentration. Similar to the lyotropic myelin figures, the thermotropic myelins appear in an optical microscope as flexible tubelike structures growing at the smectic/aqueous interface. Polarizing microscopy and confocal fluorescence microscopy show that the smectic layers are parallel to the tube surface and form a cylindrically bent arrangement around a central line defect in the tube. We study the growth behavior of this new type of myelins and discuss similarities to and differences from the classical lyotropic myelin figures.

  18. Liquid Crystals

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Thermochromic liquid crystals, or TLCs, are a type of liquid crystals that react to changes in temperature by changing color. The Hallcrest/NASA collaboration involved development of a new way to visualize boundary layer transition in flight and in wind tunnel testing of aircraft wing and body surfaces. TLCs offered a new and potentially better method of visualizing the boundary layer transition in flight. Hallcrest provided a liquid crystal formulation technique that afforded great control over the sensitivity of the liquid crystals to varying conditions. Method is of great use to industry, government and universities for aerodynamic and hydrodynamic testing. Company's principal line is temperature indicating devices for industrial use, such as non-destructive testing and flaw detection in electric/electronic systems, medical application, such as diagnostic systems, for retail sale, such as room, refrigerator, baby bath and aquarium thermometers, and for advertising and promotion specials. Additionally, Hallcrest manufactures TLC mixtures for cosmetic applications, and liquid crystal battery tester for Duracell batteries.

  19. Living Liquid Crystals.

    SciTech Connect

    Zhou, Shuang; Sokolov, Andrey; Lavrentovich, Oleg D.; Aranson, Igor S.

    2014-01-28

    Collective motion of self-propelled organisms or synthetic par­ticles, often termed •active fluid,• has attracted enormous atten­tion in the broad scientific community because of its fundamentally nonequilibrium nature. Energy input and interactions among the moving units and the medium lead to complex dynamics. Here,we introduce a class of active matter-living liquid crystals (UCs}­ that combines living swimming bacteria with a lyotropic liquid crystal. The physical properties of LLCs can be controlled by the amount of oxygen available to bacteria, by concentration of ingre­dients, or by temperature. Our studies reveal a wealth of intriguing dynamic phenomena. caused by the coupling between the activity-triggered flow and long-range orientational order of the medium. Among these are (i) nonlinear trajectories of bacterial motion guided by nonuniform director, (ii) local melting of the liquid crystal caused by the bacteria-produced shear flows, (iii) activity-triggered transition from a nonflowing uniform state into a flowing one-dimensional periodic pattern and its evolution into a turbulent array of topological defects, and (iv) birefringence­ enabled visualization of microflow generated by the nanometers­ thick bacterial flagella. Unlike their isotropic counterpart, the LLCs show collective dynamic effects at very low volume fraction of bacteria, on the order of 0.2%. Our work suggests an unorthodox design concept to control and manipulate the dynamic behavior of soft active matter and opens the door for potential biosensing and biomedical applications.

  20. Layer-by-layer polymer coating on discrete particles of cubic lyotropic liquid crystalline dispersions (cubosomes).

    PubMed

    Driever, Chantelle D; Mulet, Xavier; Waddington, Lynne J; Postma, Almar; Thissen, Helmut; Caruso, Frank; Drummond, Calum J

    2013-10-22

    Cubic phase lyotropic liquid crystalline colloidal dispersions (cubosomes) were surface-modified with seven polyelectrolyte layers using a layer-by-layer (LbL) approach. The first layer consisted of a copolymer synthesized from methacrylic acid and oleoyl methacrylate for enhanced incorporation within the bilayer of the cubic nanostructure. Six additional layers of poly(L-lysine) and poly(methacrylic acid) were then sequentially added, followed by a washing procedure to remove polymer aggregates from the soft matter particles. Polymer buildup was monitored via microelectrophoresis, dynamic light scattering, and small-angle X-ray scattering. Polymer-coated cubosomes were observed with cryo-transmission electron microscopy. A potential application of the modified nanostructured particles presented in this study is to reduce the burst-release effect associated with drug-loaded cubosomes. The effectiveness of this approach was demonstrated through loading and release results from a model hydrophilic small molecule (fluorescein).

  1. A Comprehensive Study on Lyotropic Liquid-Crystalline Behavior of an Amphiphile in 20 Kinds of Amino Acid Ionic Liquids.

    PubMed

    Fujimura, Kanae; Ichikawa, Takahiro; Yoshio, Masafumi; Kato, Takashi; Ohno, Hiroyuki

    2016-02-18

    We examined the self-organization behavior of a designed amphiphilic molecule in 20 kinds of amino acid ionic liquids composed of 1-butyl-3-methylimidazolium cation and natural amino acid anion ([C4mim][AA]). Addition of [C4mim][AA], regardless of their anion species, to the amphiphile provided homogeneous mixtures showing lyotropic liquid-crystalline (LC) behavior. Upon increasing the component ratio of [C4mim][AA] in the mixtures, a successive change of the mesophase patterns from inverted hexagonal columnar, in some case via bicontinuous cubic, to layered phases was observed. By examining the LC properties at various temperatures and component ratios, we constructed lyotropic LC phase diagrams. Interestingly, the appearance of these phase diagrams is greatly different according to the selection of [AA]. Through comparison, we found that the self-organization behavior of an amphiphile in ionic liquids can be tuned by controlling their ability to form hydrogen-bond, van der Waals, and π-π interactions.

  2. A QCM-D and SAXS Study of the Interaction of Functionalised Lyotropic Liquid Crystalline Lipid Nanoparticles with siRNA.

    PubMed

    Tajik-Ahmadabad, Behnoosh; Mechler, Adam; Muir, Benjamin W; McLean, Keith; Hinton, Tracey M; Separovic, Frances; Polyzos, Anastasios

    2017-02-23

    Biophysical studies were undertaken to investigate the binding and release of short interfering ribonucleic acid (siRNA) from lyotropic liquid crystalline lipid nanoparticles (LNPs) using a quartz crystal microbalance (QCM). These carriers are based on phytantriol (Phy) and a cationic lipid, DOTAP (1, 2-dioleoyl-3 trimethylammonium propane). The non-lamellar phase LNPs were tethered to the surface of the QCM chip for analysis based on biotin-neutravidin binding, which enabled the controlled deposition of siRNA-LNP complexes with different lipid/siRNA charge ratios on a QCM-D crystal sensor. The binding and release of biomolecules such as siRNA from LNPs was demonstrated to be reliably characterized using this technique. Essential physicochemical parameters of the cationic LNP/siRNA lipoplexes, such as particle size, lyotropic mesophase behavior, cytotoxicity, gene silencing and uptake efficiency, were also assessed. The SAXS data show that upon lowering the pH to 5.5, the structure of lipoplexes did not change, indicating that the acidic conditions of the endosome were not a significant factor in the release of siRNA from the cationic lipidic carriers.

  3. A phenomenological introduction to liquid crystals and colloids

    NASA Astrophysics Data System (ADS)

    Lagerwall, Jan P. F.

    This chapter aims to give the reader an overview of the full scope of the liquid crystalline state of matter and a first contact with colloids. The ambition is to introduce and explain all key phenomena and concepts that will be needed in the following chapters in a concise yet understandable way. We begin by introducing the nematic phase and defining the director concept. We then introduce the two classes of liquid crystals, thermotropics and lyotropics, discussing similarities and differences and defining necessary help concepts such as mesogenicity, amphiphilicity and micelle formation. In the context of lyotropic liquid crystals we also introduce some key concepts of colloids, which form a minimum base that the following more detailed chapter on colloids by Paul van der Schoot takes as a starting point. Thermotropic smectic and lyotropic lamellar phases are then discussed together, emphasizing shared aspects as well as their respective unique features. This is followed by columnar phases of disc-shaped thermotropic molecules and in lyotropic suspensions of nanorods, and then we introduce the modifications of the phase structures that chirality typically induces...

  4. Thermotropic and lyotropic behaviour of new liquid-crystalline materials with different hydrophilic groups: synthesis and mesomorphic properties.

    PubMed

    Bubnov, Alexej; Kašpar, Miroslav; Hamplová, Věra; Dawin, Ute; Giesselmann, Frank

    2013-01-01

    Several new calamitic liquid-crystalline (LC) materials with flexible hydrophilic chains, namely either hydroxy groups or ethylene glycol units, or both types together, have been synthesized in order to look for new functional LC materials exhibiting both, thermotropic and lyotropic behaviour. Such materials are of high potential interest for challenging issues such as the self-organization of carbon nanotubes or various nanoparticles. Thermotropic mesomorphic properties have been studied by using polarizing optical microscopy, differential scanning calorimetry and X-ray scattering. Four of these nonchiral and chiral materials exhibit nematic and chiral nematic phases, respectively. For some molecular structures, smectic phases have also been detected. A contact sample of one of the prepared compounds with diethylene glycol clearly shows the lyotropic behaviour; namely a lamellar phase was observed. The relationship between the molecular structure and mesomorphic properties of these new LCs with hydrophilic chains is discussed.

  5. Thermotropic and lyotropic behaviour of new liquid-crystalline materials with different hydrophilic groups: synthesis and mesomorphic properties

    PubMed Central

    Kašpar, Miroslav; Hamplová, Věra; Dawin, Ute; Giesselmann, Frank

    2013-01-01

    Summary Several new calamitic liquid-crystalline (LC) materials with flexible hydrophilic chains, namely either hydroxy groups or ethylene glycol units, or both types together, have been synthesized in order to look for new functional LC materials exhibiting both, thermotropic and lyotropic behaviour. Such materials are of high potential interest for challenging issues such as the self-organization of carbon nanotubes or various nanoparticles. Thermotropic mesomorphic properties have been studied by using polarizing optical microscopy, differential scanning calorimetry and X-ray scattering. Four of these nonchiral and chiral materials exhibit nematic and chiral nematic phases, respectively. For some molecular structures, smectic phases have also been detected. A contact sample of one of the prepared compounds with diethylene glycol clearly shows the lyotropic behaviour; namely a lamellar phase was observed. The relationship between the molecular structure and mesomorphic properties of these new LCs with hydrophilic chains is discussed. PMID:23504455

  6. Modification of the malus law for the torsional deformation of lyotropic nematics in magnetic field on the basis of statistical approach

    NASA Astrophysics Data System (ADS)

    Golovanov, A. V.; Shapovalov, V. I.

    2010-07-01

    A method based on the statistical approach is proposed to calculate the light intensity for the torsional deformation of lyotropic nematic liquid crystals at violated Mauguin adiabatic approximation. Theoretical dependences of the light intensity on the magnetic field strength are obtained for two limiting cases of lyotropic nematic anchoring with bearing surfaces: infinite and low anchoring energies.

  7. Swimming bacteria in liquid crystal

    NASA Astrophysics Data System (ADS)

    Sokolov, Andrey; Zhou, Shuang; Aranson, Igor; Lavrentovich, Oleg

    2014-03-01

    Dynamics of swimming bacteria can be very complex due to the interaction between the bacteria and the fluid, especially when the suspending fluid is non-Newtonian. Placement of swimming bacteria in lyotropic liquid crystal produces a new class of active materials by combining features of two seemingly incompatible constituents: self-propelled live bacteria and ordered liquid crystals. Here we present fundamentally new phenomena caused by the coupling between direction of bacterial swimming, bacteria-triggered flows and director orientations. Locomotion of bacteria may locally reduce the degree of order in liquid crystal or even trigger nematic-isotropic phase transition. Microscopic flows generated by bacterial flagella disturb director orientation. Emerged birefringence patterns allow direct optical observation and quantitative characterization of flagella dynamics. At high concentration of bacteria we observed the emergence of self-organized periodic texture caused by bacteria swimming. Our work sheds new light on self-organization in hybrid bio-mechanical systems and can lead to valuable biomedical applications. Was supported by the US DOE, Office of Basic Energy Sciences, Division of Materials Science and Engineering, under the Contract No. DE AC02-06CH11357.

  8. Liquid Crystal Devices.

    ERIC Educational Resources Information Center

    Bradshaw, Madeline J.

    1983-01-01

    The nature of liquid crystals and several important liquid crystal devices are described. Ideas for practical experiments to illustrate the properties of liquid crystals and their operation in devices are also described. (Author/JN)

  9. Liquid Crystal Inquiries.

    ERIC Educational Resources Information Center

    Marroum, Renata-Maria

    1996-01-01

    Discusses the properties and classification of liquid crystals. Presents a simple experiment that illustrates the structure of liquid crystals and the differences between the various phases liquid crystals can assume. (JRH)

  10. Hierarchical organization in liquid crystal-in-liquid crystal emulsions.

    PubMed

    Mushenheim, Peter C; Abbott, Nicholas L

    2014-11-21

    We report the formation and characterization of hierarchical ordering in systems comprised of micrometer-sized droplets of thermotropic nematic liquid crystals (LCs) dispersed in continuous nematic phases of a lyotropic chromonic LC (disodium cromoglycate (DSCG)). Significantly, we find the orientations of the two LC phases to be coupled, with nematic droplets of 4'-pentyl-4-cyanobiphenyl (5CB) exhibiting a bipolar configuration with an axis of symmetry aligned orthogonal to the far-field director of the DSCG phase. We determine that this coupling of orientations does not result from either anisometric LC droplet shape or interfacial ionic phenomena but rather is consistent with the influence of van der Waals interactions that arise from the anisotropic polarizabilities of nematic 5CB (Δn = +0.18) and DSCG (Δn = -0.02) phases. We also find that it is possible to rotate and uniformly align the nematic droplets by using a weak magnetic field (B ∼ 0.3 T). An analysis of the dynamics of relaxation of the orientations of the 5CB droplets following removal of the magnetic field reveals the DSCG and 5CB droplets to be coupled by energies of ∼10(4) kT, consistent with a simple theoretical estimate of the influence of anisotropic van der Waals interactions. We also observed the nematic 5CB droplets to form dimers and larger assemblies mediated by the elasticity of the nematic DSCG. Overall, these results reveal that LC-in-LC emulsions define a new class of hierarchically ordered soft matter in which both thermotropic and lyotropic LCs are coupled in their ordering.

  11. Hierarchical Organization in Liquid Crystal-in-Liquid Crystal Emulsions

    PubMed Central

    Mushenheim, Peter C.

    2014-01-01

    We report the formation and characterization of hierarchical ordering in systems comprised of micrometer-sized droplets of thermotropic nematic liquid crystals (LCs) dispersed in continuous nematic phases of a lyotropic chromonic LC (disodium cromoglycate (DSCG)). Significantly, we find the orientations of the two LC phases to be coupled, with nematic droplets of 4′-pentyl-4-cyanobiphenyl (5CB) exhibiting a bipolar configuration with an axis of symmetry aligned orthogonal to the far-field director of the DSCG phase. We determine that this coupling of orientations does not result from either anisometric LC droplet shape or interfacial ionic phenomena but rather is consistent with the influence of van der Waals interactions that arise from the anisotropic polarizabilities of nematic 5CB (Δn = + 0.18) and DSCG (Δn = − 0.02) phases. We also find that it is possible to rotate and uniformly align the nematic droplets by using a weak magnetic field (B ∼ 0.3 T). An analysis of the dynamics of relaxation of the orientations of the 5CB droplets following removal of the magnetic field reveals the DSCG and 5CB droplets to be coupled by energies of ∼104kT, consistent with a simple theoretical estimate of the influence of anisotropic van der Waals interactions. We also observed the nematic 5CB droplets to form dimers and larger assemblies mediated by the elasticity of the nematic DSCG. Overall, these results reveal that LC-in-LC emulsions define a new class of hierarchically ordered soft matter in which both thermotropic and lyotropic LCs are coupled in their ordering. PMID:25278032

  12. Cubic and Hexagonal Liquid Crystals as Drug Delivery Systems

    PubMed Central

    Chen, Yulin; Ma, Ping; Gui, Shuangying

    2014-01-01

    Lipids have been widely used as main constituents in various drug delivery systems, such as liposomes, solid lipid nanoparticles, nanostructured lipid carriers, and lipid-based lyotropic liquid crystals. Among them, lipid-based lyotropic liquid crystals have highly ordered, thermodynamically stable internal nanostructure, thereby offering the potential as a sustained drug release matrix. The intricate nanostructures of the cubic phase and hexagonal phase have been shown to provide diffusion controlled release of active pharmaceutical ingredients with a wide range of molecular weights and polarities. In addition, the biodegradable and biocompatible nature of lipids demonstrates the minimum toxicity and thus they are used for various routes of administration. Therefore, the research on lipid-based lyotropic liquid crystalline phases has attracted a lot of attention in recent years. This review will provide an overview of the lipids used to prepare cubic phase and hexagonal phase at physiological temperature, as well as the influencing factors on the phase transition of liquid crystals. In particular, the most current research progresses on cubic and hexagonal phases as drug delivery systems will be discussed. PMID:24995330

  13. Cubic and hexagonal liquid crystals as drug delivery systems.

    PubMed

    Chen, Yulin; Ma, Ping; Gui, Shuangying

    2014-01-01

    Lipids have been widely used as main constituents in various drug delivery systems, such as liposomes, solid lipid nanoparticles, nanostructured lipid carriers, and lipid-based lyotropic liquid crystals. Among them, lipid-based lyotropic liquid crystals have highly ordered, thermodynamically stable internal nanostructure, thereby offering the potential as a sustained drug release matrix. The intricate nanostructures of the cubic phase and hexagonal phase have been shown to provide diffusion controlled release of active pharmaceutical ingredients with a wide range of molecular weights and polarities. In addition, the biodegradable and biocompatible nature of lipids demonstrates the minimum toxicity and thus they are used for various routes of administration. Therefore, the research on lipid-based lyotropic liquid crystalline phases has attracted a lot of attention in recent years. This review will provide an overview of the lipids used to prepare cubic phase and hexagonal phase at physiological temperature, as well as the influencing factors on the phase transition of liquid crystals. In particular, the most current research progresses on cubic and hexagonal phases as drug delivery systems will be discussed.

  14. Complex dendrimer-lyotropic liquid crystalline systems: structural behavior and interactions.

    PubMed

    Bitan-Cherbakovsky, Liron; Libster, Dima; Aserin, Abraham; Garti, Nissim

    2011-10-27

    The incorporation of dendrimer into three lyotropic liquid crystalline (LLCs) mesophases is demonstrated for the first time. A second generation (G2) of poly(propylene imine) dendrimer (PPI) was solubilized into lamellar, diamond reverse cubic, and reverse hexagonal LLCs composed of glycerol monooleate (GMO), and water (and D-α-tocopherol in the H(II) system). The combination of PPI with LLCs may provide an advantageous drug delivery system. Cross-polarized light microscope, small-angle X-ray scattering (SAXS), and attenuated total reflectance Fourier transform infrared (ATR-FTIR) were utilized to study the structural behavior of the mesophases, the localization of PPI within the system, and the interactions between the guest molecule and the system's components. It was revealed that PPI-G2 functioned as a "water pump", competing with the lipid headgroups for water binding. As a result, L(α)→H(II) and Q(224)→H(II) structural shifts were detected (at 10 wt % PPI-G2 content), probably caused by the dehydration of monoolein headgroups and subsequent increase of the lipid's critical packing parameter (CPP). In the case of H(II), as a result of the balance between the dehydration of the monoolein headgroups and the significant presence of PPI within the interfacial region, increasing the quantity of hydrogen bonds, no structural transitions occurred. ATR-FTIR analysis demonstrated a downward shift of the H-O-H (water), as a result of PPI-G2 embedment, suggesting an increase in the mean water-water H-bond angle resulting from binding PPI-G2 to the water network. Additionally, the GMO hydroxyl groups at β- and γ-C-OH positions revealed a partial interaction of hydrogen bonds with N-H functional groups of the protonated PPI-G2. Other GMO interfacial functional groups were shown to interact with the PPI-G2, in parallel with the GMO dehydration phenomenon. In the future, these outcomes can be used to design advanced drug delivery systems, allowing administration of

  15. Synthesis and Liquid Crystals Properties of α-Methylated Galactosides

    NASA Astrophysics Data System (ADS)

    Rodzi, N. Z. B. M.; Heidelberg, T.; Hashim, R.; Sugimura, A.; Minamikawa, H.

    Due to the amphiphilicity nature of glycolipids, some are known to exhibits liquid crystals phases both in thermotropic and lyotropic phases. Six different glycolipids have been synthesized using three steps process and their structures have been characterized by 1H-NMR and 13C-NMR in acetylated and deacytelated forms. Their liquid crystals properties were studied using optical polarising microscopy (OPM) and differential scanning calorimetry (DSC). The effect of α-methylated tails is comparedwith those of the straight chain glycolipids. The epimeric effect of the hydroxyl group at the C-4 of the sugar group was also commented.

  16. Amphitropic liquid crystal phases from polyhydroxy sugar surfactants: Fundamental studies

    NASA Astrophysics Data System (ADS)

    Abou Zied, Osama K.; Hashim, Rauzah; Timimi, B. A.

    2015-03-01

    The self-assembly phenomena on a special class of poly-hydroxy sugar surfactant have been studied extensively. This class of material is classified as amphitropic liquid crystals since they exhibit both thermotropic and lyotropic liquid crystalline properties. Hence the potential applications of these non-ionic surfactants are more versatile than those from the conventional lyotropic liquid crystals including those from thermotropic phases, but the latters are yet to be realized. Unfortunately, due to the lack of interest (or even awareness), fundamental studies in thermotropic glycolipids are scanty to support application development, and any tangible progress is often mired by the complexity of the sugar stereochemistry. However, some applications may be pursued from these materials by taking the advantage of the sugar chirality and the tilted structure of the lipid organization which implies ferroelectric behavior. Here, we present our studies on the stereochemical diversity of the sugar units in glycosides that form the thermotropic/lyotropic phases. The structure to property relationship compares different chain designs and other popular polyhydroxy compounds, such as monooleins and alkylpolyglucosides. Different structural properties of these glycosides are discussed with respect to their self-assembly organization and potential applications, such as delivery systems and membrane mimetic study.

  17. Orthogonal Liquid Crystal Alignment Layer: Templating Speed-Dependent Orientation of Chromonic Liquid Crystals.

    PubMed

    Cha, Yun Jeong; Gim, Min-Jun; Ahn, Hyungju; Shin, Tae Joo; Jeong, Joonwoo; Yoon, Dong Ki

    2017-05-31

    Lyotropic chromonic liquid crystals (LCLCs) have been extensively studied because of the interesting structural characteristics of the linear aggregation of their plank-shaped molecules in aqueous solvents. We report a simple method to control the orientation of LCLCs such as Sunset Yellow (SSY), disodium cromoglycate (DSCG), and DNA by varying pulling speed of the top substrate and temperatures during shear flow induced experiment. Crystallized columns of LCLCs are aligned parallel and perpendicular to the shear direction, at fast and slow pulling speeds of the top substrate, respectively. On the basis of this result, we fabricated an orthogonally patterned film that can be used as an alignment layer for guiding rodlike liquid crystals (LCs) to generate both twisted and planar alignments simultaneously. Our resulting platform can provide a facile method to form multidirectional orientation of soft materials and biomaterials in a process of simple shearing and evaporation, which gives rise to potential patterning applications using LCLCs due to their unique structural characteristics.

  18. Confinement of 5CB Between Lyotropic Bilayers

    NASA Astrophysics Data System (ADS)

    Dolbashian, Cory; Mahmood, Rizwan; Bellini, Tommaso; Clark, Noel

    2013-03-01

    We report phase behavior of mixtures of 5CB (4-Cyano-4'-Pentyl-1, 1'-biphenyl), a calamitic thermotropic liquid crystal, with mixtures of the lyotropic double tailed cationic surfactant DDAB (diodecyldimethylammonium-bromide) and water. These mixtures had a fixed ratio of DDAB to water (75% / 25%) and 5CB concentrations ranging from 10% to 85%. Our preliminary phase diagram suggests transition from isotropic to lamellar phase having higher birefringence at higher DDAB concentration. We have also observed low vale of birefringence at lower DDAB concentration suggesting swelling of bilayers.

  19. Liquid Crystal Optofluidics

    SciTech Connect

    Vasdekis, Andreas E.; Cuennet, J. G.; Psaltis, D.

    2012-10-11

    By employing anisotropic fluids and namely liquid crystals, fluid flow becomes an additional degree of freedom in designing optofluidic devices. In this paper, we demonstrate optofluidic liquid crystal devices based on the direct flow of nematic liquid crystals in microfluidic channels. Contrary to previous reports, in the present embodiment we employ the effective phase delay acquired by light travelling through flowing liquid crystal, without analysing the polarisation state of the transmitted light. With this method, we demonstrate the variation in the diffraction pattern of an array of microfluidic channels acting as a grating. We also discuss our recent activities in integrating mechanical oscillators for on-chip peristaltic pumping.

  20. Liquid crystal optofluidics

    NASA Astrophysics Data System (ADS)

    Vasdekis, A. E.; Cuennet, J. G.; Psaltis, D.

    2012-10-01

    By employing anisotropic fluids and namely liquid crystals, fluid flow becomes an additional degree of freedom in designing optofluidic devices. In this paper, we demonstrate optofluidic liquid crystal devices based on the direct flow of nematic liquid crystals in microfluidic channels. Contrary to previous reports, in the present embodiment we employ the effective phase delay acquired by light travelling through flowing liquid crystal, without analysing the polarisation state of the transmitted light. With this method, we demonstrate the variation in the diffraction pattern of an array of microfluidic channels acting as a grating. We also discuss our recent activities in integrating mechanical oscillators for on-chip peristaltic pumping.

  1. Liquid crystal formation in supercoiled DNA solutions.

    PubMed Central

    Zakharova, Svetlana S; Jesse, Wim; Backendorf, Claude; van der Maarel, Johan R C

    2002-01-01

    The critical concentrations pertaining to the liquid crystal formation of pUC18 plasmid in saline solutions were obtained from (31)P nuclear magnetic resonance, polarized light microscopy, and phase equilibrium experiments. The transition is strongly first order with a broad gap between the isotropic and anisotropic phase. The critical boundaries are strongly and reversibly dependent on temperature and weakly dependent on ionic strength. With polarized light microscopy on magnetically oriented samples, the liquid crystalline phase is assigned cholesteric with a pitch on the order of 4 microm. Preliminary results show that at higher concentrations a true crystal is formed. The isotropic-cholesteric transition is interpreted with lyotropic liquid crystal theory including the effects of charge, orientation entropy, and excluded volume effects. It was found that the molecular free energy associated with the topology of the superhelix is of paramount importance in controlling the width of the phase gap. The theoretical results compare favorably with the critical boundary pertaining to the disappearance of the isotropic phase, but they fail to predict the low concentration at which the anisotropic phase first appears. PMID:12124291

  2. In vitro permeation of diclofenac salts from lyotropic liquid crystalline systems.

    PubMed

    Yariv, Doron; Efrat, Rivka; Libster, Dima; Aserin, Abraham; Garti, Nissim

    2010-07-01

    In this paper we examined feasible correlations between the structure of different lyotropic mesophases and transdermal administration of three diclofenac derivatives with varying degrees of kosmotropic or chaotropic properties, solubilized within the mesophases. It was found that the most chaotropic derivative of diclofenac diethyl amine (DEA-DFC) interacted with the polar heads of glycerol monooleate (GMO), thus expanding the water-lipid interface of the lamellar and cubic mesophases. This effect was detected by an increase in the lattice parameter of both mesophases, enhanced elastic properties, and increased solid-like response of the systems in the presence of DEA. Potassium diclofenac (K-DFC), a less chaotropic salt, had less pronounced effect on the structural features of the mesophases. Kosmotropic Na+ salt (Na-DFC) had only minor influence on both lamellar and cubic structures. The locus of solubilization of the molecules with the host mesophases was correlated with their delivery. It was suggested that transdermal delivery of kosmotropic Na-DFC was accelerated by the aqueous phase and less constrained by the interaction with monoglyceride. On the other hand, the chaotropic cations (K+ and DEA+), presumably entrapped in the water-lipid interface, interacted with monoglyceride headgroups, which is likely to be the key cause for their sustained administration.

  3. Thermotropic Ionic Liquid Crystals

    PubMed Central

    Axenov, Kirill V.; Laschat, Sabine

    2011-01-01

    The last five years’ achievements in the synthesis and investigation of thermotropic ionic liquid crystals are reviewed. The present review describes the mesomorphic properties displayed by organic, as well as metal-containing ionic mesogens. In addition, a short overview on the ionic polymer and self-assembled liquid crystals is given. Potential and actual applications of ionic mesogens are also discussed. PMID:28879986

  4. Deposition and drying dynamics of liquid crystal droplets

    PubMed Central

    Davidson, Zoey S.; Huang, Yongyang; Gross, Adam; Martinez, Angel; Still, Tim; Zhou, Chao; Collings, Peter J.; Kamien, Randall D.; Yodh, A. G.

    2017-01-01

    Drop drying and deposition phenomena reveal a rich interplay of fundamental science and engineering, give rise to fascinating everyday effects (coffee rings), and influence technologies ranging from printing to genotyping. Here we investigate evaporation dynamics, morphology, and deposition patterns of drying lyotropic chromonic liquid crystal droplets. These drops differ from typical evaporating colloidal drops primarily due to their concentration-dependent isotropic, nematic, and columnar phases. Phase separation occurs during evaporation, and in the process creates surface tension gradients and significant density and viscosity variation within the droplet. As a result, the drying multiphase drops exhibit different convective currents, drop morphologies, and deposition patterns (coffee-rings). PMID:28555621

  5. Deposition and drying dynamics of liquid crystal droplets

    NASA Astrophysics Data System (ADS)

    Davidson, Zoey S.; Huang, Yongyang; Gross, Adam; Martinez, Angel; Still, Tim; Zhou, Chao; Collings, Peter J.; Kamien, Randall D.; Yodh, A. G.

    2017-05-01

    Drop drying and deposition phenomena reveal a rich interplay of fundamental science and engineering, give rise to fascinating everyday effects (coffee rings), and influence technologies ranging from printing to genotyping. Here we investigate evaporation dynamics, morphology, and deposition patterns of drying lyotropic chromonic liquid crystal droplets. These drops differ from typical evaporating colloidal drops primarily due to their concentration-dependent isotropic, nematic, and columnar phases. Phase separation occurs during evaporation, and in the process creates surface tension gradients and significant density and viscosity variation within the droplet. As a result, the drying multiphase drops exhibit different convective currents, drop morphologies, and deposition patterns (coffee-rings).

  6. High-Throughput Screening of Saturated Fatty Acid Influence on Nanostructure of Lyotropic Liquid Crystalline Lipid Nanoparticles.

    PubMed

    Tran, Nhiem; Hawley, Adrian M; Zhai, Jiali; Muir, Benjamin W; Fong, Celesta; Drummond, Calum J; Mulet, Xavier

    2016-05-10

    Self-assembled lyotropic liquid crystalline lipid nanoparticles have been developed for a wide range of biomedical applications with an emerging focus for use as delivery vehicles for drugs, genes, and in vivo imaging agents. In this study, we report the generation of lipid nanoparticle libraries with information regarding mesophase and lattice parameter, which can aid the selection of formulation for a particular end-use application. In this study we elucidate the phase composition parameters that influence the internal structure of lipid nanoparticles produced from monoolein, monopalmitolein and phytantriol incorporating a variety of saturated fatty acids (FA) with different chain lengths at varying concentrations and temperatures. The material libraries were established using high throughput formulation and screening techniques, including synchrotron small-angle X-ray scattering. The results demonstrate the rich polymorphism of lipid nanoparticles with nonlamellar mesophases in the presence of saturated FAs. The inclusion of saturated FAs within the lipid nanoparticles promotes a gradual phase transition at all temperatures studied toward structures with higher negative surface curvatures (e.g., from inverse bicontinuous cubic phase to hexagonal phase and then emulsified microemulsion). The three partial phase diagrams produced are discussed in terms of the influence of FA chain length and concentration on nanoparticle internal mesophase structure and lattice parameters. The study also highlights a compositionally dependent coexistence of multiple mesophases, which may indicate the presence of multicompartment nanoparticles containing cubic/cubic and cubic/hexagonal mesophases.

  7. Effect of hygroscopicity of the metal salt on the formation and air stability of lyotropic liquid crystalline mesophases in hydrated salt-surfactant systems.

    PubMed

    Albayrak, Cemal; Barım, Gözde; Dag, Ömer

    2014-11-01

    It is known that alkali, transition metal and lanthanide salts can form lyotropic liquid crystalline (LLC) mesophases with non-ionic surfactants (such as CiH2i+1(OCH2CH2)jOH, denoted as CiEj). Here we combine several salt systems and show that the percent deliquescence relative humidity (%DRH) value of a salt is the determining parameter in the formation and stability of the mesophases and that the other parameters are secondary and less significant. Accordingly, salts can be divided into 3 categories: Type I salts (such as LiCl, LiBr, LiI, LiNO3, LiClO4, CaCl2, Ca(NO3)2, MgCl2, and some transition metal nitrates) have low %DRH and form stable salt-surfactant LLC mesophases in the presence of a small amount of water, type II salts (such as some sodium and potassium salts) that are moderately hygroscopic form disordered stable mesophases, and type III salts that have high %DRH values, do not form stable LLC mesophases and leach out salt crystals. To illustrate this effect, a large group of salts from alkali and alkaline earth metals were investigated using XRD, POM, FTIR, and Raman techniques. Among the different salts investigated in this study, the LiX (where X is Cl(-), Br(-), I(-), NO3(-), and ClO4(-)) and CaX2 (X is Cl(-), and NO3(-)) salts were more prone to establish LLC mesophases because of their lower %DRH values. The phase behavior with respect to concentration, stability, and thermal behavior of Li(I) systems were investigated further. It is seen that the phase transitions among different anions in the Li(I) systems follow the Hofmeister series.

  8. Liquid Crystal Airborne Display

    DTIC Science & Technology

    1977-08-01

    81/2X 11- 10 -9 .8 display using a large advertising alphanimeric ( TCI ) has been added to the front of the optical box used in the F-4 aircraft for HUD...properties over a wide range of tempera - tures, including normal room temperature. What are Liquid Crystals? Liquid crystals have been classified in three...natic fanctions and to present data needed for the semi- automatic and manual control of system functions. Existing aircraft using CRT display

  9. Inverse hexagonal and cubic micellar lyotropic liquid crystalline phase behaviour of novel double chain sugar-based amphiphiles.

    PubMed

    Feast, George C; Lepitre, Thomas; Tran, Nhiem; Conn, Charlotte E; Hutt, Oliver E; Mulet, Xavier; Drummond, Calum J; Savage, G Paul

    2017-03-01

    The lyotropic phase behaviour of a library of sugar-based amphiphiles was investigated using high-throughput small-angle X-ray scattering (SAXS). Double unsaturated-chain monosaccharide amphiphiles formed inverse hexagonal and cubic micellar (Fd3m) lyotropic phases under excess water conditions. A galactose-oleyl amphiphile from the library was subsequently formulated into hexosome nanoparticles, which have potential uses as drug delivery vehicles. The nanoparticles were shown to be stable at elevated temperatures and non-cytotoxic up to at least 200μgmL(-1). Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  10. Reversible shear-induced crystallization above equilibrium freezing temperature in a lyotropic surfactant system

    PubMed Central

    Rathee, Vikram; Krishnaswamy, Rema; Pal, Antara; Raghunathan, V. A.; Impéror-Clerc, Marianne; Pansu, Brigitte; Sood, A. K.

    2013-01-01

    We demonstrate a unique shear-induced crystallization phenomenon above the equilibrium freezing temperature in weakly swollen isotropic and lamellar mesophases with bilayers formed in a cationic-anionic mixed surfactant system. Synchrotron rheological X-ray diffraction study reveals the crystallization transition to be reversible under shear (i.e., on stopping the shear, the nonequilibrium crystalline phase melts back to the equilibrium mesophase). This is different from the shear-driven crystallization below , which is irreversible. Rheological optical observations show that the growth of the crystalline phase occurs through a preordering of the phase to an phase induced by shear flow, before the nucleation of the phase. Shear diagram of the phase constructed in the parameter space of shear rate vs. temperature exhibits and transitions above the equilibrium crystallization temperature , in addition to the irreversible shear-driven nucleation of in the phase below . In addition to revealing a unique class of nonequilibrium phase transition, the present study urges a unique approach toward understanding shear-induced phenomena in concentrated mesophases of mixed amphiphilic systems. PMID:23986497

  11. Alkyl-bis(imidazolium) salts: a new amphiphile platform that forms thermotropic and non-aqueous lyotropic bicontinuous cubic phases

    SciTech Connect

    Robertson, LA; Schenkel, MR; Wiesenauer, BR; Gin, DL

    2013-01-01

    New ionic amphiphiles with a hexyl-bridged bis(imidazolium) headgroup; Br-, BF4-, or Tf2N- anions; and a long n-alkyl tail can form thermotropic bicontinuous cubic liquid crystal phases in neat form and/or lyotropic bicontinuous cubic phases with several non-aqueous solvents or water.

  12. Novel Microstructures for Polymer-Liquid Crystal Composite Materials

    NASA Technical Reports Server (NTRS)

    Magda, Jules J.

    2004-01-01

    There are a number of interface-dominated composite materials that contain a liquid crystalline (LC) phase in intimate contact with an isotropic phase. For example, polymer- dispersed liquid crystals, used in the fabrication of windows with switchable transparency, consist of micron size LC droplets dispersed in an isotropic polymer matrix. Many other types of liquid crystal composite materials can be envisioned that might have outstanding optical properties that could be exploited in novel chemical sensors, optical switches, and computer displays. This research project was based on the premise that many of these potentially useful LC composite materials can only be fabricated under microgravity conditions where gravity driven flows are absent. In the ground-based research described below, we have focused on a new class of LC composites that we call thermotropic- lyotropic liquid crystal systems (TLLCs). TLLCs consist of nanosize droplets of water dispersed in an LC matrix, with surfactants at the interface that stabilize the structure. By varying the type of surfactant one can access almost an infinite variety of unusual LC composite microstructures. Due to the importance of the interface in these types of systems, we have also developed molecular simulation models for liquid crystals at interfaces, and made some of the first measurements of the interfacial tension between liquid crystals and water.

  13. Liquid crystal templating effects on silica gels synthesized using quaternary ammonium surfactants

    SciTech Connect

    Dabadie, T.; Ayral, A.; Guizard, C.; Cot, L.; Robert, J.C.; Poncelet, O.

    1994-12-31

    The use of lyotropic liquid crystal phases is a promising tool in tailoring the porous structure of inorganic gels. In this work, the authors examine the effect of hexagonal liquid crystal phases produced with quaternary ammonium surfactants on the textural ordering of silica gels. The sol-gel polymerization of the silicon alkoxide precursor (tetramethoxysilane) is followed by {sup 29}Si NMR and rheological measurements. The structural evolution of the material from the starting sol to the thermally treated gel is studied using low angle X-ray diffraction. The textural characteristics of the gels are correlated with the nature of the surfactant molecules.

  14. Polymerizable ionic liquid crystals.

    PubMed

    Jazkewitsch, Olga; Ritter, Helmut

    2009-09-17

    Polymerizable vinylimidazolium ionic liquids (ILs) that contain mesogenic coumarin and biphenyl units, respectively, have been synthesized. The N-alkylation of N-vinylimidazole with bromoalkylated mesogenic units 7-(6-bromohexyloxy)coumarin (1) and 4,4'-bis(6-bromohexyloxy)biphenyl (2) was then carried out. The thermal behavior of the obtained ILs 3 and 4 was investigated by differential scanning calorimetry and polarizing optical microscopy. These measurements showed that the attached mesogenic units induce the self-assembly of ILs and, therefore, the occurrence of liquid crystalline phases. Subsequently, the ionic liquid crystals (ILCs) 3 and 4 were polymerized by a free-radical mechanism.

  15. Thermoelectricity in liquid crystals

    NASA Astrophysics Data System (ADS)

    Mohd Said, Suhana; Nordin, Abdul Rahman; Abdullah, Norbani; Balamurugan, S.

    2015-09-01

    The thermoelectric effect, also known as the Seebeck effect, describes the conversion of a temperature gradient into electricity. A Figure of Merit (ZT) is used to describe the thermoelectric ability of a material. It is directly dependent on its Seebeck coefficient and electrical conductivity, and inversely dependent on its thermal conductivity. There is usually a compromise between these parameters, which limit the performance of thermoelectric materials. The current achievement for ZT~2.2 falls short of the expected threshold of ZT=3 to allow its viability in commercial applications. In recent times, advances in organic thermoelectrics been significant, improving by over 3 orders of magnitude over a period of about 10 years. Liquid crystals are newly investigated as candidate thermoelectric materials, given their low thermal conductivity, inherent ordering, and in some cases, reasonable electrical conductivity. In this work the thermoelectric behaviour of a discotic liquid crystal, is discussed. The DLC was filled into cells coated with a charge injector, and an alignment of the columnar axis perpendicular to the substrate was allowed to form. This thermoelectric behavior can be correlated to the order-disorder transition. A reasonable thermoelectric power in the liquid crystal temperature regime was noted. In summary, thermoelectric liquid crystals may have the potential to be utilised in flexible devices, as a standalone power source.

  16. Ferroelectric liquid crystal display

    NASA Technical Reports Server (NTRS)

    York, Paul K. (Inventor)

    1977-01-01

    A ferroelectric liquid crystal display device employs capacitance spoiling layers to minimize unneeded capacitances created by crossovers of X and Y address lines and to accurately define desired capacitances. The spoiler layers comprise low dielectric constant layers which space electrodes from the ferroelectric at crossover points where capacitance is not needed for device operation.

  17. Liquid crystals in tribology.

    PubMed

    Carrión, Francisco-José; Martínez-Nicolás, Ginés; Iglesias, Patricia; Sanes, José; Bermúdez, María-Dolores

    2009-09-18

    Two decades ago, the literature dealing with the possible applications of low molar mass liquid crystals, also called monomer liquid crystals (MLCs), only included about 50 references. Today, thousands of papers, conference reports, books or book chapters and patents refer to the study and applications of MLCs as lubricants and lubricant additives and efforts are made to develop new commercial applications. The development of more efficient lubricants is of paramount technological and economic relevance as it is estimated that half the energy consumption is dissipated as friction. MLCs have shown their ability to form ordered boundary layers with good load-carrying capacity and to lower the friction coefficients, wear rates and contact temperature of sliding surfaces, thus contributing to increase the components service life and to save energy. This review includes the use of MLCs in lubrication, and dispersions of MLCs in conventional polymers (PDMLCs). Finally, new lubricating system composed of MLC blends with surfactants, ionic liquids or nanophases are considered.

  18. Tuning the thermotropic and lyotropic properties of liquid-crystalline terpyridine ligands.

    PubMed

    Camerel, Franck; Donnio, Bertrand; Bourgogne, Cyril; Schmutz, Marc; Guillon, Daniel; Davidson, Patrick; Ziessel, Raymond

    2006-05-24

    A rational synthetic strategy is developed to provide compact and simple terpyridine (terpy) mesogens that show liquid-crystallinity both as pure compounds and in organic solution (amphotropic compound). The use of a central 4-methyl-3,5-diacylaminophenyl platform equipped with two lateral aromatic rings, each bearing three appended aliphatic chains, allows connection of a 2,2':6',2''-terpyridine fragment through a polar group such as an ester, amide, or flat conjugated alkyne linker. For the T(12)ester and T(12)amide scaffolds, the mesophase is best described as a lamellar phase, in which the molecules self-assemble into columnar stacks held together in layers. In the T(12)amide case, the additional amide link results in significant stabilization of the lamellar phase. The driving forces for the appearance of columnar ordering are the hydrogen-bonding interactions of the amide groups, which induce head-to-tail pi-stacking of the terpy subunits. Replacing the polar linker by a nonpolarized but linear alkyne spacer, as in the T(12)ethynyl compound, provides a columnar mesophase organized in a rectangular lattice of p2gg symmetry. In this arrangement, two nondiscotic molecules arranged into dimers by hydrogen bonding and pi-pi stacking pile up in a head-to-tail manner to form columns. In addition, the T(12)amide compound proves to be an excellent gelator of cyclohexane, linear alkanes, and DMSO. The resulting robust and transparent gels are birefringent and formed by large aggregates that are readily aligned by shear-flow. TEM and freeze-fracture microscopy reveal that the gels have an original layered morphology made of fibers.

  19. Periodic assembly of nanoparticle arrays in disclinations of cholesteric liquid crystals

    PubMed Central

    Li, Yunfeng; Prince, Elisabeth; Cho, Sangho; Salari, Alinaghi; Mosaddeghian Golestani, Youssef; Lavrentovich, Oleg D.; Kumacheva, Eugenia

    2017-01-01

    An important goal of the modern soft matter science is to discover new self-assembly modalities to precisely control the placement of small particles in space. Spatial inhomogeneity of liquid crystals offers the capability to organize colloids in certain regions such as the cores of the topological defects. Here we report two self-assembly modes of nanoparticles in linear defects-disclinations in a lyotropic colloidal cholesteric liquid crystal: a continuous helicoidal thread and a periodic array of discrete beads. The beads form one-dimensional arrays with a periodicity that matches half a pitch of the cholesteric phase. The periodic assembly is governed by the anisotropic surface tension and elasticity at the interface of beads with the liquid crystal. This mode of self-assembly of nanoparticles in disclinations expands our ability to use topological defects in liquid crystals as templates for the organization of nanocolloids. PMID:28193865

  20. Periodic assembly of nanoparticle arrays in disclinations of cholesteric liquid crystals.

    PubMed

    Li, Yunfeng; Prince, Elisabeth; Cho, Sangho; Salari, Alinaghi; Mosaddeghian Golestani, Youssef; Lavrentovich, Oleg D; Kumacheva, Eugenia

    2017-02-28

    An important goal of the modern soft matter science is to discover new self-assembly modalities to precisely control the placement of small particles in space. Spatial inhomogeneity of liquid crystals offers the capability to organize colloids in certain regions such as the cores of the topological defects. Here we report two self-assembly modes of nanoparticles in linear defects-disclinations in a lyotropic colloidal cholesteric liquid crystal: a continuous helicoidal thread and a periodic array of discrete beads. The beads form one-dimensional arrays with a periodicity that matches half a pitch of the cholesteric phase. The periodic assembly is governed by the anisotropic surface tension and elasticity at the interface of beads with the liquid crystal. This mode of self-assembly of nanoparticles in disclinations expands our ability to use topological defects in liquid crystals as templates for the organization of nanocolloids.

  1. Fast dynamic holographic recording based on conductive ionic metal-alkanoate liquid crystals and smectic glasses.

    PubMed

    Klimusheva, G; Bugaychuk, S; Garbovskiy, Yu; Kolesnyk, O; Mirnaya, T; Ishchenko, A

    2006-01-15

    Recordings of dynamic holograms with microsecond relaxation times under the action of nanosecond laser pulses are obtained in composites on the base of a novel class of liquid crystals (LCs) in ionic metal-alkanoates. Holographic parameters and relaxation characteristics are measured for doped lyotropic ionic LC, for sandwichlike cells (consisting of a dye layer and a layer of the lyotropic ionic LC), and for colored ionic smectic glasses. The structure of the materials is investigated by use of the small-angle x-ray technique. The mechanism of resonance nonlinearity in photosensitive centers and mechanisms of the grating erasure connected with a charge transport in the ionic conductive LC matrix are discussed.

  2. Dynamic self-assembly of motile bacteria in liquid crystals

    PubMed Central

    Mushenheim, Peter C.; Trivedi, Rishi R.; Tuson, Hannah H.

    2014-01-01

    This paper reports an investigation of dynamical behaviors of motile rod-shaped bacteria within anisotropic viscoelastic environments defined by lyotropic liquid crystals (LCs). In contrast to passive microparticles (including non-motile bacteria) that associate irreversibly in LCs via elasticity-mediated forces, we report that motile Proteus mirabilis bacteria form dynamic and reversible multi-cellular assemblies when dispersed in a lyotropic LC. By measuring the velocity of the bacteria through the LC (8.8 +/− 0.2 μm/s) and by characterizing the ordering of the LC about the rod-shaped bacteria (tangential anchoring), we conclude that the reversibility of the inter-bacterial interaction emerges from the interplay of forces generated by the flagella of the bacteria and the elasticity of the LC, both of which are comparable in magnitude (tens of pN) for motile Proteus mirabilis cells. We also measured the dissociation process, which occurs in a direction determined by the LC, to bias the size distribution of multi-cellular bacterial complexes in a population of motile Proteus mirabilis relative to a population of non-motile cells. Overall, these observations and others reported in this paper provide insight into the fundamental dynamical behaviors of bacteria in complex anisotropic environments and suggest that motile bacteria in LCs are an exciting model system for exploration of principles for the design of active materials. PMID:24652584

  3. Nematic liquid crystal bridges

    NASA Astrophysics Data System (ADS)

    Doss, Susannah; Ellis, Perry; Vallamkondu, Jayalakshmi; Danemiller, Edward; Vernon, Mark; Fernandez-Nieves, Alberto

    We study the effects of confining a nematic liquid crystal between two parallel glass plates with homeotropic boundary conditions for the director at all bounding surfaces. We find that the free surface of the nematic bridge is a surface of constant mean curvature. In addition, by changing the distance between the plates and the contact angle with the glass plates, we transition between loops and hedgehogs that can be either radial or hyperbolic.

  4. Pyrrolidinium ionic liquid crystals.

    PubMed

    Goossens, Karel; Lava, Kathleen; Nockemann, Peter; Van Hecke, Kristof; Van Meervelt, Luc; Driesen, Kris; Görller-Walrand, Christiane; Binnemans, Koen; Cardinaels, Thomas

    2009-01-01

    N-alkyl-N-methylpyrrolidinium cations have been used for the design of ionic liquid crystals, including a new type of uranium-containing metallomesogen. Pyrrolidinium salts with bromide, bis(trifluoromethylsulfonyl)imide, tetrafluoroborate, hexafluorophosphate, thiocyanate, tetrakis(2- thenoyltrifluoroacetonato)europate(III) and tetrabromouranyl counteranions were prepared. For the bromide salts and tetrabromouranyl compounds, the chain length of the alkyl group C(n)H(2n+1) was varied from eight to twenty carbon atoms (n = 8, 10-20). The compounds show rich mesomorphic behaviour: highly ordered smectic phases (the crystal smectic E phase and the uncommon crystal smectic T phase), smectic A phases, and hexagonal columnar phases were observed, depending on chain length and anion. This work gives better insight into the nature and formation of the crystal smectic T phase, and the molecular requirements for the appearance of this highly ordered phase. This uncommon tetragonal mesophase is thoroughly discussed on the basis of detailed powder X-ray diffraction experiments and in relation to the existing literature. Structural models are proposed for self-assembly of the molecules within the smectic layers. In addition, the photophysical properties of the compounds containing a metal complex anion were investigated. For the uranium-containing mesogens, luminescence can be induced by dissolving them in an ionic liquid matrix. The europium-containing compound shows intense red photoluminescence with high colour purity.

  5. Amphiphilic brush polymers produced using the RAFT polymerisation method stabilise and reduce the cell cytotoxicity of lipid lyotropic liquid crystalline nanoparticles.

    PubMed

    Zhai, Jiali; Suryadinata, Randy; Luan, Bao; Tran, Nhiem; Hinton, Tracey M; Ratcliffe, Julian; Hao, Xiaojuan; Drummond, Calum J

    2016-10-06

    Self-assembled lipid lyotropic liquid crystalline nanoparticles such as hexosomes and cubosomes contain internal anisotropic and isotropic nanostructures, respectively. Despite the remarkable potential of such nanoparticles in various biomedical applications, the stabilisers used in formulating the nanoparticles are often limited to commercially available polymers such as the Pluronic block copolymers. This study explored the potential of using Reversible Addition-Fragmentation chain Transfer (RAFT) technology to design amphiphilic brush-type polymers for the purpose of stabilising phytantriol and monoolein-based lipid dispersions. The synthesised brush-type polymers consisted of a hydrophobic C12 short chain and a hydrophilic poly(ethylene glycol)methyl ether acrylate (PEGA) long chain with multiple 9-unit poly(ethylene oxide) (PEO) brushes with various molecular weights. It was observed that increasing the PEO brush density and thus the length of the hydrophilic component improved the stabilisation effectiveness for phytantriol and monoolein-based cubosomes. Synchrotron small-angle X-ray scattering (SAXS) experiments confirmed that the RAFT polymer-stabilised cubosomes had an internal double-diamond cubic phase with tunable water channel sizes. These properties were dependent on the molecular weight of the polymers, which were considered in some cases to be anisotropically distributed within the cubosomes. The in vitro toxicity of the cubosomes was assessed by cell viability of two human adenocarcinoma cell lines and haemolytic activities to mouse erythrocytes. The results showed that phytantriol cubosomes stabilised by the RAFT polymers were less toxic compared to their Pluronic F127-stabilised analogues. This study provides valuable insight into designing non-linear amphiphilic polymers for the effective stabilisation and cellular toxicity improvement of self-assembled lipid lyotropic liquid crystalline nanoparticles.

  6. Controlling the nanostructure of gold nanorod-lyotropic liquid-crystalline hybrid materials using near-infrared laser irradiation.

    PubMed

    Fong, Wye-Khay; Hanley, Tracey L; Thierry, Benjamin; Kirby, Nigel; Waddington, Lynne J; Boyd, Ben J

    2012-10-09

    Lipid-based liquid-crystalline matrixes provide a unique prospect for stimuli-responsive nanomaterials, attributed to the ability to effect self-assembly of the lipids at the molecular level. Differences in liquid crystal nanostructure have previously been shown to change drug diffusion and hence release, with research progressing toward the use of in situ changes to nanostructure to control drug release. Toward this goal, we have previously communicated the ability to switch between nonlamellar structures using gold nanorod (GNR)-phytantriol-based liquid-crystalline hybrid nanomaterials as near-infrared light responsive systems (Fong et al. Langmuir 2010, 26, 6136-6139). In this study, the effect of laser activation on matrix nanostructure with changes in a number of system variables including lipid composition, GNR aspect ratio, GNR concentration, and laser pulse time were investigated. The nanostructure of the matrix was followed using small-angle X-ray scattering, while both cryoFESEM and cryoTEM were used to visualize the effect of GNR incorporation into the liquid crystal nanostructure. The system response was found to be dependent on all variables, thus demonstrating the potential of these nanocomposite materials as reversible "on-demand" drug delivery applications.

  7. Liquid Crystals in Tribology

    PubMed Central

    Carrión, Francisco-José; Martínez-Nicolás, Ginés; Iglesias, Patricia; Sanes, José; Bermúdez, María-Dolores

    2009-01-01

    Two decades ago, the literature dealing with the possible applications of low molar mass liquid crystals, also called monomer liquid crystals (MLCs), only included about 50 references. Today, thousands of papers, conference reports, books or book chapters and patents refer to the study and applications of MLCs as lubricants and lubricant additives and efforts are made to develop new commercial applications. The development of more efficient lubricants is of paramount technological and economic relevance as it is estimated that half the energy consumption is dissipated as friction. MLCs have shown their ability to form ordered boundary layers with good load-carrying capacity and to lower the friction coefficients, wear rates and contact temperature of sliding surfaces, thus contributing to increase the components service life and to save energy. This review includes the use of MLCs in lubrication, and dispersions of MLCs in conventional polymers (PDMLCs). Finally, new lubricating system composed of MLC blends with surfactants, ionic liquids or nanophases are considered. PMID:19865534

  8. Self-assembly of Ionic Chromonic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Sidky, Hythem; Whitmer, Jonathan K.

    Chromonic liquid crystals exhibit a unique self-assembly process which is of both theoretical and practical interest. A characteristic feature of chromonics is the occurrence of molecular association through stacking at extremely low concentrations. Experimental evidence has suggested that this process is approximately isodesmic across a broad concentration range. To date, only a handful of computational studies have managed to reproduce crucial aspects of chromonic phases, using expensive atomistic simulations. Here, we present a minimal model capable of capturing key features of the lyotropic chromonic phase. Molecular simulations of coarse-grained mesogens are used to map out the phase behavior and explore how structural and energetic anisotropies influence their ordering and response.

  9. Patterned liquid crystal order on the micro-, meso-, and nanoscale

    NASA Astrophysics Data System (ADS)

    Sousa, Matthew E.

    Liquid crystals are a unique class of material with many intriguing physical properties, which enable them for use in a variety of applications. The orientation of these anisotropic molecules can be controlled using external forces and surfaces, which ultimately enables the manipulation of their electrical, mechanical and optical properties. The overreaching theme of this thesis is the spatial patterning of these materials. Using these techniques for establishing and capturing patterned liquid crystalline order a variety of unique structures were fabricated. Lyotropic discotic liquid crystals as well as discotic mesophase pitch materials can be patterned and thermally polymerized in porous templates to produce arrays of carbon nanostructures. Alignment layers can be used in order to tune the orientation of the graphene planes of these structures such they are oriented either orthogonal or parallel to the long axis of the nanostructures. The combination of printing and alignment techniques open the exciting possibility of creating property patterns in nanostructure arrays, in which the graphene orientation varies systematically and periodically across the surface. Polymer networks within a liquid crystal host were fabricated using a holographic exposure process. Using a simple model and optical polarizing microscopy for verification, the effective thickness of the polymer planes in these structures was successfully predicted. A combination of factors, such as the low switching voltage, relatively fast response time, and polarization selectivity or non-selectivity make the reverse-mode structures attractive for many applications requiring diffractive optical elements. Polymeric liquid crystals, also known as reactive mesogens, are low molecular weight liquid crystalline monomers that can be photopolymerized in order to form well-organized, high-molecular weight structures. The molecular order and orientation of these materials can be controlled using a variety of

  10. Liquid-crystal lasers

    NASA Astrophysics Data System (ADS)

    Coles, Harry; Morris, Stephen

    2010-10-01

    Liquid-crystal lasers are a burgeoning area in the field of soft-matter photonics that may herald a new era of ultrathin, highly versatile laser sources. Such lasers encompass a multitude of remarkable features, including wideband tunability, large coherence area and, in some cases, multidirectional emission. They have the potential to combine large output powers with miniature cavity dimensions - two properties that have traditionally been incompatible. Their potential applications are diverse, ranging from miniature medical diagnostic tools to large-area holographic laser displays. Here we discuss the scientific origins of this technology and give a brief synopsis of the cutting-edge research currently being carried out worldwide.

  11. Adaptive liquid crystal iris

    NASA Astrophysics Data System (ADS)

    Zhou, Zuowei; Ren, Hongwen; Nah, Changwoon

    2014-09-01

    We report an adaptive iris using a twisted nematic liquid crystal (TNLC) and a hole-patterned electrode. When an external voltage is applied to the TNLC, the directors of the LC near the edge of the hole are unwound first. Increasing the voltage can continuously unwind the LC toward the center. When the TNLC is sandwiched between two polarizers, it exhibits an iris-like character. Either a normal mode or a reverse mode can be obtained depending on the orientations of the transmission axes of the two polarizers. In contrast to liquid irises, the aperture of the LC iris can be closed completely. Moreover, it has the advantages of large variability of the aperture diameter, good stability, and low power consumption. Applications of the device for controlling the laser energy and correcting optical aberration are foreseeable.

  12. Extreme Nonlinear Optics With Liquid Crystals

    DTIC Science & Technology

    2006-10-31

    Photorefractive CdSe and gold nanowire -doped liquid crystals and polymer-dispersed-liquid-crystal photonic crystals,” Mol. Cryst. Liq. Cryst. 446: 233...Mallouk, “ Photorefractive CdSe and gold nanowire -doped liquid crystals and polymer-dispersed-liquid-crystal photonic crystals,” Mol. Cryst. Liq. Cryst...Williams, B. Lewis and T. Mallouk, “Photorefractive CdSe and gold nanowire -doped liquid crystals and polymer-dispersed-liquid-crystal photonic

  13. Dielectric spectroscopy of isotropic liquids and liquid crystal phases with dispersed graphene oxide

    PubMed Central

    Al-Zangana, Shakhawan; Iliut, Maria; Boran, Gökçen; Turner, Michael; Vijayaraghavan, Aravind; Dierking, Ingo

    2016-01-01

    Graphene oxide (GO) flakes of different sizes were prepared and dispersed in isotropic and nematic (anisotropic) fluid media. The dielectric relaxation behaviour of GO-dispersions was examined for a wide temperature (25–60 oC) and frequency range (100 Hz–2 MHz). The mixtures containing GO flakes exhibited varying dielectric relaxation processes, depending on the size of the flakes and the elastic properties of the dispersant fluid. Relaxation frequencies of the GO doped isotropic media, such as isopropanol IPA, were observed to be much lower than the GO doped thermotropic nematic medium 5CB. It is anticipated that the slow relaxation frequencies (~10 kHz) could be resulting from the relaxation modes of the GO flakes while the fast relaxation frequencies (~100 kHz) could indicate strongly slowed down molecular modes of the nematogenic molecules, which are anchored to the GO flakes via dispersion interactions. The relaxation frequencies decreased as the size of the GO flakes in the isotropic solvent was increased. Polarizing microscopy showed that GO flakes with a mean diameter of 10 μm, dispersed in water, formed a lyotropic nematic liquid crystal phase. This lyotropic nematic exhibited the slowest dielectric relaxation process, with relaxation frequencies in the order of 2 kHz, as compared to the GO-isotropic suspension and the GO-doped 5CB. PMID:27555475

  14. Dielectric spectroscopy of isotropic liquids and liquid crystal phases with dispersed graphene oxide

    NASA Astrophysics Data System (ADS)

    Al-Zangana, Shakhawan; Iliut, Maria; Boran, Gökçen; Turner, Michael; Vijayaraghavan, Aravind; Dierking, Ingo

    2016-08-01

    Graphene oxide (GO) flakes of different sizes were prepared and dispersed in isotropic and nematic (anisotropic) fluid media. The dielectric relaxation behaviour of GO-dispersions was examined for a wide temperature (25-60 oC) and frequency range (100 Hz-2 MHz). The mixtures containing GO flakes exhibited varying dielectric relaxation processes, depending on the size of the flakes and the elastic properties of the dispersant fluid. Relaxation frequencies of the GO doped isotropic media, such as isopropanol IPA, were observed to be much lower than the GO doped thermotropic nematic medium 5CB. It is anticipated that the slow relaxation frequencies (~10 kHz) could be resulting from the relaxation modes of the GO flakes while the fast relaxation frequencies (~100 kHz) could indicate strongly slowed down molecular modes of the nematogenic molecules, which are anchored to the GO flakes via dispersion interactions. The relaxation frequencies decreased as the size of the GO flakes in the isotropic solvent was increased. Polarizing microscopy showed that GO flakes with a mean diameter of 10 μm, dispersed in water, formed a lyotropic nematic liquid crystal phase. This lyotropic nematic exhibited the slowest dielectric relaxation process, with relaxation frequencies in the order of 2 kHz, as compared to the GO-isotropic suspension and the GO-doped 5CB.

  15. Liquid crystals for photonic applications

    NASA Astrophysics Data System (ADS)

    Miniewicz, A.; Gniewek, A.; Parka, J.

    2003-01-01

    In this paper we describe application of liquid crystals in optical imaging and processing. Electrically and optically addressed liquid crystal spatial light modulators are key elements in real-time holographic devices. Their implementation for beam steering and hologram formation is briefly discussed. The Joint Fourier transform optical correlator for pattern recognition is presented as well as the use of liquid crystals for the adaptive optics purposes is discussed.

  16. Planar Anchoring of Achiral Nematic Liquid Crystals in Capillaries -- with a Twist

    NASA Astrophysics Data System (ADS)

    Davidson, Zoey S.; Jeong, Joonwoo; Kang, Louis; Collings, Peter J.; Lubensky, Tom C.; Yodh, A. G.

    2015-03-01

    In the common three-term Frank free energy of a nematic liquid crystal, the ground state configuration will have no deformations and all nematic directors will be parallel. However, certain confining geometries can impose significant deformations on the ground state, even if a zero-deformation configuration can be drawn that satisfies all boundary conditions. By solving the Euler-Lagrange problem of the Frank free energy equation, including the saddle-splay term, with cylindrical confinement and degenerate planar anchoring, we find conditions for a highly deformed ground state configuration that has a double twist like structure. We explore these effects experimentally with both thermotropic and lyotropic liquid crystal materials, finding good agreement with the theoretically predicted configuration. We also observe a rich phenomenology of defect structures in the liquid crystal samples. Acknowledgement: We gratefully acknowledge financial support from the National Science Foundation through NSF DMR 1205463, NSF DMR 1104707, and MRSEC DMR 1120901.

  17. Direct observation of liquid crystals using cryo-TEM: specimen preparation and low-dose imaging.

    PubMed

    Gao, Min; Kim, Young-Ki; Zhang, Cuiyu; Borshch, Volodymyr; Zhou, Shuang; Park, Heung-Shik; Jákli, Antal; Lavrentovich, Oleg D; Tamba, Maria-Gabriela; Kohlmeier, Alexandra; Mehl, Georg H; Weissflog, Wolfgang; Studer, Daniel; Zuber, Benoît; Gnägi, Helmut; Lin, Fang

    2014-10-01

    Liquid crystals (LCs) represent a challenging group of materials for direct transmission electron microscopy (TEM) studies due to the complications in specimen preparation and the severe radiation damage. In this paper, we summarize a series of specimen preparation methods, including thin film and cryo-sectioning approaches, as a comprehensive toolset enabling high-resolution direct cryo-TEM observation of a broad range of LCs. We also present comparative analysis using cryo-TEM and replica freeze-fracture TEM on both thermotropic and lyotropic LCs. In addition to the revisits of previous practices, some new concepts are introduced, e.g., suspended thermotropic LC thin films, combined high-pressure freezing and cryo-sectioning of lyotropic LCs, and the complementary applications of direct TEM and indirect replica TEM techniques. The significance of subnanometer resolution cryo-TEM observation is demonstrated in a few important issues in LC studies, including providing direct evidences for the existence of nanoscale smectic domains in nematic bent-core thermotropic LCs, comprehensive understanding of the twist-bend nematic phase, and probing the packing of columnar aggregates in lyotropic chromonic LCs. Direct TEM observation opens ways to a variety of TEM techniques, suggesting that TEM (replica, cryo, and in situ techniques), in general, may be a promising part of the solution to the lack of effective structural probe at the molecular scale in LC studies. © 2014 Wiley Periodicals, Inc.

  18. Modeling liquid crystal polymeric devices

    NASA Astrophysics Data System (ADS)

    Gimenez Pinto, Vianney Karina

    The main focus of this work is the theoretical and numerical study of materials that combine liquid crystal and polymer. Liquid crystal elastomers are polymeric materials that exhibit both the ordered properties of the liquid crystals and the elastic properties of rubbers. Changing the order of the liquid crystal molecules within the polymer network can induce shape change. These materials are very valuable for applications such as actuators, sensors, artificial muscles, haptic displays, etc. In this work we apply finite element elastodynamics simulations to study the temperature induced shape deformation in nematic elastomers with complex director microstructure. In another topic, we propose a novel numerical method to model the director dynamics and microstructural evolution of three dimensional nematic and cholesteric liquid crystals. Numerical studies presented in this work are in agreement with experimental observations and provide insight into the design of application devices.

  19. Dichroic Liquid Crystal Displays

    NASA Astrophysics Data System (ADS)

    Bahadur, Birendra

    The following sections are included: * INTRODUCTION * DICHROIC DYES * Chemical Structure * Chemical and Photochemical Stability * THEORETICAL MODELLING * DEFECTS CAUSED BY PROLONGED LIGHT IRRADIATION * CHEMICAL STRUCTURE AND PHOTOSTABILITY * OTHER PARAMETERS AFFECTING PHOTOSTABILITY * CELL PREPARATION * DICHROIC PARAMETERS AND THEIR MEASUREMENTS * Order Parameter and Dichroic Ratio Of Dyes * Absorbance, Order Parameter and Dichroic Ratio Measurements * IMPACT OF DYE STRUCTURE AND LIQUID CRYSTAL HOST ON PHYSICAL PROPERTIES OF A DICHROIC MIXTURE * Order Parameter and Dichroic Ratio * EFFECT OF LENGTH OF DICHROIC DYES ON THE ORDER PARAMETER * EFFECT OF THE BREADTH OF DYE ON THE ORDER PARAMETER * EFFECT OF THE HOST ON THE ORDER PARAMETER * TEMPERATURE VARIATION OF THE ORDER PARAMETER OF DYES IN A LIQUID CRYSTAL HOST * IMPACT OF DYE CONCENTRATION ON THE ORDER PARAMETER * Temperature Range * Viscosity * Dielectric Constant and Anisotropy * Refractive Indices and Birefringence * solubility43,153-156 * Absorption Wavelength and Auxochromic Groups * Molecular Engineering of Dichroic Dyes * OPTICAL, ELECTRO-OPTICAL AND LIFE PARAMETERS * Colour And CIE Colour space120,160-166 * CIE 1931 COLOUR SPACE * CIE 1976 CHROMATICITY DIAGRAM * CIE UNIFORM COLOUR SPACES & COLOUR DIFFERENCE FORMULAE120,160-166 * Electro-Optical Parameters120 * LUMINANCE * CONTRAST AND CONTRAST RATIO * SWITCHING SPEED * Life Parameters and Failure Modes * DICHROIC MIXTURE FORMULATION * Monochrome Mixture * Black Mixture * ACHROMATIC BLACK MIXTURE FOR HEILMEIER DISPLAYS * Effect of Illuminant on Display Colour * Colour of the Field-On State * Effect of Dye Linewidth * Optimum Centroid Wavelengths * Effect of Dye Concentration * Mixture Formulation Using More Than Three Dyes * ACHROMATIC MIXTURE FOR WHITE-TAYLOR TYPE DISPLAYS * HEILMEIER DISPLAYS * Theoretical Modelling * Threshold Characteristic * Effects of Dye Concentration on Electro-optical Parameters * Effect of Cholesteric Doping * Effect of Alignment

  20. Aqueous cholesteric liquid crystals using uncharged rodlike polypeptides.

    PubMed

    Bellomo, Enrico G; Davidson, Patrick; Impéror-Clerc, Marianne; Deming, Timothy J

    2004-07-28

    The aqueous, lyotropic liquid-crystalline phase behavior of the alpha-helical polypeptide, poly(N(epsilon)-2-[2-(2-methoxyethoxy)ethoxy]acetyl-lysine) (1), has been studied using optical microscopy and X-ray scattering. Solutions of optically pure 1 were found to form cholesteric liquid crystals at volume fractions that decreased with increasing average chain length. At very high volume fractions, the formation of a hexagonal mesophase was observed. The pitch of the cholesteric phase could be varied by a mixture of enantiomeric samples L-1 and D-1, where the pitch increased as the mixture approached equimolar. The cholesteric phases could be untwisted, using either magnetic field or shear flow, into nematic phases, which relaxed into cholesterics upon removal of field or shear. We have found that the phase diagram of 1 in aqueous solution parallels that of poly(gamma-benzyl glutamate) in organic solvents, thus providing a useful system for liquid-crystal applications requiring water as solvent.

  1. A molecular design principle of lyotropic liquid-crystalline conjugated polymers with directed alignment capability for plastic electronics.

    PubMed

    Kim, Bong-Gi; Jeong, Eun Jeong; Chung, Jong Won; Seo, Sungbaek; Koo, Bonwon; Kim, Jinsang

    2013-07-01

    Conjugated polymers with a one-dimensional p-orbital overlap exhibit optoelectronic anisotropy. Their unique anisotropic properties can be fully realized in device applications only when the conjugated chains are aligned. Here, we report a molecular design principle of conjugated polymers to achieve concentration-regulated chain planarization, self-assembly, liquid-crystal-like good mobility and non-interdigitated side chains. As a consequence of these intra- and intermolecular attributes, chain alignment along an applied flow field occurs. This liquid-crystalline conjugated polymer was realized by incorporating intramolecular sulphur-fluorine interactions and bulky side chains linked to a tetrahedral carbon having a large form factor. By optimizing the polymer concentration and the flow field, we could achieve a high dichroic ratio of 16.67 in emission from conducting conjugated polymer films. Two-dimensional grazing-incidence X-ray diffraction was performed to analyse a well-defined conjugated polymer alignment. Thin-film transistors built on highly aligned conjugated polymer films showed more than three orders of magnitude faster carrier mobility along the conjugated polymer alignment direction than the perpendicular direction.

  2. A molecular design principle of lyotropic liquid-crystalline conjugated polymers with directed alignment capability for plastic electronics

    NASA Astrophysics Data System (ADS)

    Kim, Bong-Gi; Jeong, Eun Jeong; Chung, Jong Won; Seo, Sungbaek; Koo, Bonwon; Kim, Jinsang

    2013-07-01

    Conjugated polymers with a one-dimensional p-orbital overlap exhibit optoelectronic anisotropy. Their unique anisotropic properties can be fully realized in device applications only when the conjugated chains are aligned. Here, we report a molecular design principle of conjugated polymers to achieve concentration-regulated chain planarization, self-assembly, liquid-crystal-like good mobility and non-interdigitated side chains. As a consequence of these intra- and intermolecular attributes, chain alignment along an applied flow field occurs. This liquid-crystalline conjugated polymer was realized by incorporating intramolecular sulphur-fluorine interactions and bulky side chains linked to a tetrahedral carbon having a large form factor. By optimizing the polymer concentration and the flow field, we could achieve a high dichroic ratio of 16.67 in emission from conducting conjugated polymer films. Two-dimensional grazing-incidence X-ray diffraction was performed to analyse a well-defined conjugated polymer alignment. Thin-film transistors built on highly aligned conjugated polymer films showed more than three orders of magnitude faster carrier mobility along the conjugated polymer alignment direction than the perpendicular direction.

  3. Pressure sensor using liquid crystals

    NASA Technical Reports Server (NTRS)

    Parmar, Devendra S. (Inventor); Holmes, Harlan K. (Inventor)

    1994-01-01

    A pressure sensor includes a liquid crystal positioned between transparent, electrically conductive films (18 and 20), that are biased by a voltage (V) which induces an electric field (E) that causes the liquid crystal to assume a first state of orientation. Application of pressure (P) to a flexible, transparent film (24) causes the conductive film (20) to move closer to or farther from the conductive film (18), thereby causing a change in the electric field (E'(P)) which causes the liquid crystal to assume a second state of orientation. Polarized light (P.sub.1) is directed into the liquid crystal and transmitted or reflected to an analyzer (A or 30). Changes in the state of orientation of the liquid crystal induced by applied pressure (P) result in a different light intensity being detected at the analyzer (A or 30) as a function of the applied pressure (P). In particular embodiments, the liquid crystal is present as droplets (10) in a polymer matrix (12) or in cells (14) in a polymeric or dielectric grid (16) material in the form of a layer (13) between the electrically conductive films (18 and 20). The liquid crystal fills the open wells in the polymer matrix (12) or grid (16) only partially.

  4. Biological liquid crystal elastomers.

    PubMed Central

    Knight, David P; Vollrath, Fritz

    2002-01-01

    Liquid crystal elastomers (LCEs) have recently been described as a new class of matter. Here we review the evidence for the novel conclusion that the fibrillar collagens and the dragline silks of orb web spiders belong to this remarkable class of materials. Unlike conventional rubbers, LCEs are ordered, rather than disordered, at rest. The identification of these biopolymers as LCEs may have a predictive value. It may explain how collagens and spider dragline silks are assembled. It may provide a detailed explanation for their mechanical properties, accounting for the variation between different members of the collagen family and between the draglines in different spider species. It may provide a basis for the design of biomimetic collagen and dragline silk analogues by genetic engineering, peptide- or classical polymer synthesis. Biological LCEs may exhibit a range of exotic properties already identified in other members of this remarkable class of materials. In this paper, the possibility that other transversely banded fibrillar proteins are also LCEs is discussed. PMID:11911772

  5. Living liquid crystal: collective bacteria motion in anisotropic viscoelastic media

    NASA Astrophysics Data System (ADS)

    Zhou, Shuang; Sokolov, Andrey; Lavrentovich, Oleg D.; Aranson, Igor S.

    2014-03-01

    By transducing energy stored in the environment to drive systematic movements, bio-mechanical hybrids can move and reconfigure their structure and properties in response to external stimuli. Here, we create a fundamentally new class of bio-mechanical hybrid - living liquid crystals (LLCs), by combining two seemingly incompatible concepts, living swimming bacteria and inanimate but orientationally ordered lyotropic liquid crystal. The coupling between the activity-triggered flows and director reorientations results in a wealth of phenomena, including: (a) a characteristic length ξ to describe the coupling between the orientation of LLC and the bacterial motion, (b) periodic stripe instabilities of the director in surface-anchored LLCs, (c) director pattern evolution into an array of disclinations with positive and negative topological charges as the surface anchoring is weakened or when the bacterial activity is enhanced. Our study provides an insight in understanding hierarchy of spatial scales in other active matter systems, as well as providing basis for devices with new functionalities, including specific responses to chemical agents, toxins, or photons. This work is supported by US DOE under the Contract No. DE AC02-06CH11357 and NSF grants DMR 1104850 and 1121288.

  6. Adaptive Liquid Crystal Windows

    SciTech Connect

    Taheri, Bahman; Bodnar, Volodymyr

    2011-12-31

    Energy consumption by private and commercial sectors in the U.S. has steadily grown over the last decade. The uncertainty in future availability of imported oil, on which the energy consumption relies strongly, resulted in a dramatic increase in the cost of energy. About 20% of this consumption are used to heat and cool houses and commercial buildings. To reduce dependence on the foreign oil and cut down emission of greenhouse gases, it is necessary to eliminate losses and reduce total energy consumption by buildings. To achieve this goal it is necessary to redefine the role of the conventional windows. At a minimum, windows should stop being a source for energy loss. Ideally, windows should become a source of energy, providing net gain to reduce energy used to heat and cool homes. It is possible to have a net energy gain from a window if its light transmission can be dynamically altered, ideally electronically without the need of operator assistance, providing optimal control of the solar gain that varies with season and climate in the U.S. In addition, the window must not require power from the building for operation. Resolution of this problem is a societal challenge and of national interest and will have a broad global impact. For this purpose, the year-round, allclimate window solution to provide an electronically variable solar heat gain coefficient (SHGC) with a wide dynamic range is needed. AlphaMicron, Inc. (AMI) developed and manufactured 1ft × 1ft prototype panels for the world’s first auto-adjusting Adaptive Liquid Crystal Windows (ALCWs) that can operate from sunlight without the need for external power source and demonstrate an electronically adjustable SHGC. This novel windows are based on AlphaMicron’s patented e-Tint® technology, a guesthost liquid crystal system implemented on flexible, optically clear plastic films. This technology is suitable both for OEM and aftermarket (retro-fitting) lamination to new and existing windows. Low level of

  7. Liquid Crystals for Organic Photovoltaics

    NASA Astrophysics Data System (ADS)

    O'Neill, Mary; Kelly, Stephen M.

    As discussed in Chaps. 2 (10.1007/978-90-481-2873-0_2), 3 (10.1007/978-90-481-2873-3), 5 (10.1007/978-90-481-2873-5) and 6 (10.1007/978-90-481-2873-6), columnar, smectic and, more recently, nematic liquid crystals are widely recognized as very promising charge-transporting organic semiconductors due to their ability to spontaneously self-assemble into highly ordered domains in uniform thin films over large areas. This and their broad absorption spectra make them suitable as active materials for organic photovoltaic devices. In this chapter, we discuss the use of liquid crystals in such devices. Firstly, we examine the principle of power generation via the photovoltaic effect in organic materials and the various device configurations that can optimise efficiency. Then we discuss photovoltaic devices incorporating columnar liquid crystals combined with electron accepting materials based on either perylene or fullerene. The use of nematic and sanditic liquid crystals in photovoltaics is investigated as well as a novel solar cell concentrator incorporating liquid crystals. Finally, we analyse the benefits and limitations of liquid-crystal-based photovoltaics in the context of the state-of-the-art for organics photovoltaics.

  8. Interactions of biomacromolecules with reverse hexagonal liquid crystals: drug delivery and crystallization applications.

    PubMed

    Libster, Dima; Aserin, Abraham; Garti, Nissim

    2011-04-15

    Recently, self-assembled lyotropic liquid crystals (LLCs) of lipids and water have attracted the attention of both scientific and applied research communities, due to their remarkable structural complexity and practical potential in diverse applications. The phase behavior of mixtures of glycerol monooleate (monoolein, GMO) was particularly well studied due to the potential utilization of these systems in drug delivery systems, food products, and encapsulation and crystallization of proteins. Among the studied lyotropic mesophases, reverse hexagonal LLC (H(II)) of monoolein/water were not widely subjected to practical applications since these were stable only at elevated temperatures. Lately, we obtained stable H(II) mesophases at room temperature by incorporating triacylglycerol (TAG) molecules into the GMO/water mixtures and explored the physical properties of these structures. The present feature article summarizes recent systematic efforts in our laboratory to utilize the H(II) mesophases for solubilization, and potential release and crystallization of biomacromolecules. Such a concept was demonstrated in the case of two therapeutic peptides-cyclosporin A (CSA) and desmopressin, as well as RALA peptide, which is a model skin penetration enhancer, and eventually a larger macromolecule-lysozyme (LSZ). In the course of the study we tried to elucidate relationships between the different levels of organization of LLCs (from the microstructural level, through mesoscale, to macroscopic level) and find feasible correlations between them. Since the structural properties of the mesophase systems are a key factor in drug release applications, we investigated the effects of these guest molecules on their conformations and the way these molecules partition within the domains of the mesophases. The examined H(II) mesophases exhibited great potential as transdermal delivery vehicles for bioactive peptides, enabling tuning the release properties according to their chemical

  9. Aqueous Gemini Surfactant Self-Assembly into Complex Lyotropic Phases

    NASA Astrophysics Data System (ADS)

    Mahanthappa, Mahesh; Sorenson, Gregory

    2012-02-01

    In spite of the potentially wide-ranging applications of aqueous bicontinuous lyotropic liquid crystals (LLCs), the discovery of amphiphiles that reliably form these non-constant mean curvature morphologies over large phase windows remains largely serendipitous. Recent work has established that cationic gemini surfactants exhibit a pronounced tendency to form bicontinuous cubic (e.g. gyroid) phases as compared to their parent single-tail amphiphiles. The universality of this phenomenon in other surfactant systems remains untested. In this paper, we will report the aqueous LLC phase behavior of a new class of anionic gemini surfactants derived from long chain carboxylic acids. Our studies show that these new surfactants favor the formation of non-constant mean curvature gyroid and primitive (``Plumber's Nightmare'') structures over amphiphile concentration windows up to 20 wt% wide. Based on these observations, we will discuss insights gained into the delicate force balance governing the self-assembly of these surfactants into aqueous bicontinuous LLCs.

  10. Macroscopic structures of lyotropic lamellar phase under spatial confinement

    NASA Astrophysics Data System (ADS)

    Iwashita, Yasutaka; Tanaka, Hajime

    2004-03-01

    We study the formation of lamellar structure of lyotropic liquid crystal composed of C_12E_5/H_2O in wedge-shaped cell. The equilibrium lamellar structure in this cell is known to be an edge dislocation array, which is formed if lamellar layers well align homeotropically to cell surface. When we formed the lamellar phase in the cell, however, some lamellar structures far from equilibrium appeared such as random orientation lamella with dense defects and onion phase in particular condition. This means non-equilibrium, which has not been taken into account so far, is important in this problem. In observing their formation processes in detail, we found the origin of these non-equilibrium lamellar structures is a complex coupling between homo- or heterogeneous nucleation of lamella, elasticity of membrane and spatial confinement (or sample thickness). We will show the relation between spatial confinement and the morphology of structure, and discuss their physical origins.

  11. Computer Modeling of Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Hashim, Rauzah

    This chapter outlines the methodologies and models which are commonly used in the simulation of liquid crystals. The approach in the simulation of liquid crystals has always been to understand the nature of the phase and to relate this to fundamental molecular features such as geometry and intermolecular forces, before important properties related to certain applications are elucidated. Hence, preceding the description of the main "molecular-based" models for liquid crystals, a general but brief outline of the nature of liquid crystals and their historical development is given. Three main model classes, namely the coarse-grained single-site lattice and Gay-Berne models and the full atomistic model will be described here where for each a brief review will be given followed by assessment of its application in describing the phase phenomena with an emphasis on understanding the molecular organization in liquid crystal phases and the prediction of their bulk properties. Variants and hybrid models derived from these classes and their applications are given.

  12. Crystallization of supercooled liquids

    NASA Astrophysics Data System (ADS)

    Odagaki, Takashi; Shikuya, Yuuna

    2014-03-01

    We investigate the crystallization process on the basis of the free energy landscape (FEL) approach to non-equilibrium systems. In this approach, the crystallization time is given by the first passage time of the representative point arriving at the crystalline basin in the FEL. We devise an efficient method to obtain the first passage time exploiting a specific boundary condition. Applying this formalism to a model system, we show that the first passage time is determined by two competing effects; one is the difference in the free energy of the initial and the final basins, and the other is the slow relaxation. As the temperature is reduced, the former accelerates the crystallization and the latter retards it. We show that these competing effects give rise to the typical nose-shape form of the time-temperature transformation curve and that the retardation of the crystallization is related to the mean waiting time of the jump motion.

  13. Carbon nanotubes as liquid crystals.

    PubMed

    Zhang, Shanju; Kumar, Satish

    2008-09-01

    Carbon nanotubes are the best of known materials with a combination of excellent mechanical, electronic, and thermal properties. To fully exploit individual nanotube properties for various applications, the grand challenge is to fabricate macroscopic ordered nanotube assemblies. Liquid-crystalline behavior of the nanotubes provides a unique opportunity toward reaching this challenge. In this Review, the recent developments in this area are critically reviewed by discussing the strategies for fabricating liquid-crystalline phases, addressing the solution properties of liquid-crystalline suspensions, and exploiting the practical techniques of liquid-crystal routes to prepare macroscopic nanotube fibers and films.

  14. Microstructure and phase behavior in colloids and liquid crystals

    NASA Astrophysics Data System (ADS)

    Lohr, Matthew Alan

    This thesis describes our investigation of microstructure and phase behavior in colloids and liquid crystals. The first set of experiments explores the phase behavior of helical packings of thermoresponsive microspheres inside glass capillaries as a function of volume fraction. Stable helical packings are observed with long-range orientational order. Some of these packings evolve abruptly to disordered states as the volume fraction is reduced. We quantify these transitions using correlation functions and susceptibilities of an orientational order parameter. The emergence of coexisting metastable packings, as well as coexisting ordered and disordered states, is also observed. These findings support the notion of phase-transition-like behavior in quasi-one-dimensional systems. The second set of experiments investigates cross-over behavior from glasses with attractive interactions to sparse gel-like states. In particular, the vibrational modes of quasi-two-dimensional disordered colloidal packings of hard colloidal spheres with short-range attractions are measured as a function of packing fraction. A crossover from glassy to sparse gel-like states is indicated by an excess of low-frequency phonon modes. This change in vibrational mode distribution appears to arise from highly localized vibrations that tend to involve individual and/or small clusters of particles with few local bonds. These mode behaviors and corresponding structural insights may serve as a useful signature for glass-gel transitions in wider classes of attractive packings. A third set of experiments explores the director structures of aqueous lyotropic chromonic liquid crystal (LCLC) films created on square lattice cylindrical-micropost substrates. The structures are manipulated by modulating of the concentration-dependent elastic properties of LCLC s via drying. Nematic LCLC films exhibit preferred bistable alignment along the diagonals of the micropost lattice. Columnar LCLC films form two distinct

  15. Liquid crystal Fresnel lens display

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Qian; Abhishek Kumar, Srivastava; Alwin Tam, Ming-Wai; Zheng, Zhi-Gang; Shen, Dong; Vladimir, Chigrinov G.; Kwok, Hoi-Sing

    2016-09-01

    A novel see-through display with a liquid crystal lens array was proposed. A liquid crystal Fresnel lens display (LCFLD) with a holographic screen was demonstrated. The proposed display system has high efficiency, simple fabrication, and low manufacturing cost due to the absence of a polarizer and color filter. Project supported by Partner State Key Laboratory on Advanced Displays and Optoelectronics Technologies HKUST, China, the National Natural Science Foundation of China (Grant Nos. 61435008 and 61575063), and the Fundamental Research Funds for the Central Universities, China (Grant No. WM1514036).

  16. Liquid crystal thermometry during anaesthesia.

    PubMed

    Lacoumenta, S; Hall, G M

    1984-01-01

    The use of cutaneous liquid crystal thermometry (EZ Temp) as an estimate of core temperature during routine surgery was investigated in 20 patients. Seventeen per cent of the recordings made with the EZ Temp were more than 1 degree C different from oesophageal temperature. There was a poor correlation between EZ Temp values and both oesophageal and aural temperatures (r = 0.54 for both sites). We conclude that liquid crystal thermometry of the forehead is not sufficiently accurate to be used as an indicator of core temperature during routine surgery.

  17. A liquid crystal adaptive lens

    NASA Technical Reports Server (NTRS)

    Kowel, S. T.; Cleverly, D.

    1981-01-01

    Creation of an electronically controlled liquid crystal lens for use as a focusing mechanism in a multi-element lens system or as an adaptive optical element is analyzed. Varying the index of refraction is shown to be equivalent to the shaping of a solid refracting material. Basic characteristics of liquid crystals, essential for the creation of a lens, are reviewed. The required variation of index of refraction is provided by choosing appropriate electrode voltages. The configuration required for any incoming polarization is given and its theoretical performance in terms of modulation transfer function derived.

  18. Importance of hydrophobic traps for proton diffusion in lyotropic liquid crystals

    DOE PAGES

    McDaniel, Jesse G.; Yethiraj, Arun

    2016-03-04

    The diffusion of protons in self-assembled systems is potentially important for the design of efficient proton exchange membranes. In this work, we study proton dynamics in a low-water content, lamellar phase of an sodium-carboxylate gemini surfactant/water system using computer simulations. The hopping of protons via the Grotthuss mechanism is explicity allowed through the multi-state empirical valence bond (MS-EVB) method. We find that the hydronium ion is trapped on the hydrophobic side of the surfactant-water interface, and proton diffusion then proceeds by hopping between surface sites. The importance of hydrophobic traps is surprising, because one would expect the hydronium ions tomore » be trapped at the charged head-groups. Finally, the physics illustrated in this system should be relevant to the proton dynamics in other amphiphilic membrane systems, whenever there exists exposed hydrophobic surface regions.« less

  19. Chiral symmetry breaking by spatial confinement in tactoidal droplets of lyotropic chromonic liquid crystals.

    PubMed

    Tortora, Luana; Lavrentovich, Oleg D

    2011-03-29

    In many colloidal systems, an orientationally ordered nematic (N) phase emerges from the isotropic (I) melt in the form of spindle-like birefringent tactoids. In cases studied so far, the tactoids always reveal a mirror-symmetric nonchiral structure, sometimes even when the building units are chiral. We report on chiral symmetry breaking in the nematic tactoids formed in molecularly nonchiral polymer-crowded aqueous solutions of low-molecular weight disodium cromoglycate. The parity is broken by twisted packing of self-assembled molecular aggregates within the tactoids as manifested by the observed optical activity. Fluorescent confocal microscopy reveals that the chiral N tactoids are located at the boundaries of cells. We explain the chirality induction as a replacement of energetically costly splay packing of the aggregates within the curved bipolar tactoidal shape with twisted packing. The effect represents a simple pathway of macroscopic chirality induction in an organic system with no molecular chirality, as the only requirements are orientational order and curved shape of confinement.

  20. High Magnetic Field-Induced Birefringence in Lyotropic Chromonic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Ostapenko, T.; Nastishin, Yu.; Gleeson, J. T.; Sprunt, S. N.; Lavrentovich, O. D.; Collings, P. J.

    2009-03-01

    We studied the effect of magnetic-field induced birefringence of a 14% solution of disodium cromoglycate (DSCG) in water at temperatures above the nematic-isotropic coexistence region. According to Landau-deGennes mean field theory, we expect to find a linear relationship between the inverse of the induced birefringence, δn, and the quantity (T-T*), where T* is the stability limit of the isotropic phase. Using the 31 T resistive magnet at the National High Magnetic Field Laboratory, we observed that, as we increase the temperature above the coexistence region, we deviate from this linear dependence. Our data shows that δn goes to zero, whereas Landau-deGennes predicts that δn should decrease asymptotically. This may be due to the lack of isodesmic aggregate formation at a finite temperature above the coexistence region.Supported by NSF (DMR-0710544 and DMR-0606160). Work performed at NHMFL, supported by NSF cooperative agreements DMR-0084173, the State of Florida and the DOE.

  1. Importance of hydrophobic traps for proton diffusion in lyotropic liquid crystals

    SciTech Connect

    McDaniel, Jesse G.; Yethiraj, Arun

    2016-03-04

    The diffusion of protons in self-assembled systems is potentially important for the design of efficient proton exchange membranes. In this work, we study proton dynamics in a low-water content, lamellar phase of an sodium-carboxylate gemini surfactant/water system using computer simulations. The hopping of protons via the Grotthuss mechanism is explicity allowed through the multi-state empirical valence bond (MS-EVB) method. We find that the hydronium ion is trapped on the hydrophobic side of the surfactant-water interface, and proton diffusion then proceeds by hopping between surface sites. The importance of hydrophobic traps is surprising, because one would expect the hydronium ions to be trapped at the charged head-groups. Finally, the physics illustrated in this system should be relevant to the proton dynamics in other amphiphilic membrane systems, whenever there exists exposed hydrophobic surface regions.

  2. Fine structure of the topological defect cores studied for disclinations in lyotropic chromonic liquid crystals

    PubMed Central

    Zhou, Shuang; Shiyanovskii, Sergij V.; Park, Heung-Shik; Lavrentovich, Oleg D.

    2017-01-01

    The detailed structure of singularities of ordered field represents a fundamental problem in diverse areas of physics. At the defect cores, the deformations are so strong that the system explores states with symmetry different from that of an undistorted material. These regions are difficult to explore experimentally as their spatial extension is very small, a few molecular lengths in the condensed matter. Here we explore the cores of disclinations in the so-called chromonic nematics that extend over macroscopic length scales accessible for optical characterization. We demonstrate that the amplitude S and the phase (the director) of the order parameter vary along both the radial and azimuthal directions, in contrast to the classic models in which S varies only with the distance from the centre and depends only on the azimuthal coordinate. This unexpected core structure is explained by a strong coupling of the phase and amplitude of the order parameter in the free energy. PMID:28429783

  3. Chiral symmetry breaking by spatial confinement in tactoidal droplets of lyotropic chromonic liquid crystals

    PubMed Central

    Tortora, Luana; Lavrentovich, Oleg D.

    2011-01-01

    In many colloidal systems, an orientationally ordered nematic (N) phase emerges from the isotropic (I) melt in the form of spindle-like birefringent tactoids. In cases studied so far, the tactoids always reveal a mirror-symmetric nonchiral structure, sometimes even when the building units are chiral. We report on chiral symmetry breaking in the nematic tactoids formed in molecularly nonchiral polymer-crowded aqueous solutions of low-molecular weight disodium cromoglycate. The parity is broken by twisted packing of self-assembled molecular aggregates within the tactoids as manifested by the observed optical activity. Fluorescent confocal microscopy reveals that the chiral N tactoids are located at the boundaries of cells. We explain the chirality induction as a replacement of energetically costly splay packing of the aggregates within the curved bipolar tactoidal shape with twisted packing. The effect represents a simple pathway of macroscopic chirality induction in an organic system with no molecular chirality, as the only requirements are orientational order and curved shape of confinement. PMID:21402929

  4. Geometrical aspects of the frustration in the cubic phases of lyotropic liquid crystals.

    PubMed Central

    Anderson, D M; Gruner, S M; Leibler, S

    1988-01-01

    Bicontinuous cubic phases, composed of bilayers arranged in the geometries of periodic minimal surfaces, are found in a variety of different lipid/water systems. It has been suggested recently that these cubic structures arrive as the result of competition between two free-energy terms: the curvature energy of each monolayer and the stretching energy of the lipid chains. This scenario, closely analogous to the one that explains the origin of the hexagonal phases, is investigated here by means of simple geometrical calculations. It is first assumed that the lipid bilayer is of constant thickness and the distribution of the (local) mean curvature of the phospholipid-water interfaces is calculated. Then, assuming the mean curvature of these interfaces is constant, the distribution of the bilayer's thickness is calculated. Both calculations quantify the fact that the two energy terms are frustrated and cannot be satisfied simultaneously. However, the amount of the frustration can be smaller for the cubic phase than for the lamellar and hexagonal structures. Therefore, this phase can appear in the phase diagram between the other two, as observed in many recent experiments. PMID:3399497

  5. Experiments with Cholesteric Liquid Crystals

    ERIC Educational Resources Information Center

    Fergason, James L.

    1970-01-01

    Describes laboratory experiments designed to demonstrate (1) the properties of cholesteric liquid crystals, (2) thermal mapping, (3) thermal diffusivity, (4) adiabatic expansion of rubber, and (5) measurement of radiated energy by a point source. Contains all of the information on materials and apparatus needed to perform the experiments.…

  6. Copper sulfate: Liquid or crystals?

    USDA-ARS?s Scientific Manuscript database

    Two separate experiments were conducted to evaluate copper toxicity to channel catfish and free-swimming Ichthyophthirius multifiliis or Ich (the stage of Ich that can be treated); the compounds we used were CuSO4 crystals and a non-chelated liquid CuSO4 product. In 96 hr tests conducted in aquaria...

  7. Liquid-Crystal Optical Correlator

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang

    1989-01-01

    Optical correlator uses commercially-available liquid-crystal television (LCTV) screen as spatial light modulator. Correlations with this device done at video frame rates, making such operations as bar-code recognition possible at reasonable cost. With further development, such correlator useful in automation, robotic vision, and optical image processing.

  8. Experiments with Cholesteric Liquid Crystals

    ERIC Educational Resources Information Center

    Fergason, James L.

    1970-01-01

    Describes laboratory experiments designed to demonstrate (1) the properties of cholesteric liquid crystals, (2) thermal mapping, (3) thermal diffusivity, (4) adiabatic expansion of rubber, and (5) measurement of radiated energy by a point source. Contains all of the information on materials and apparatus needed to perform the experiments.…

  9. Liquid crystal polyester thermosets

    DOEpatents

    Benicewicz, Brian C.; Hoyt, Andrea E.

    1992-01-01

    The present invention provides (1) curable liquid crystalline polyester monomers represented by the formula: R.sup.1 --A.sup.1 --B.sup.1 --A.sup.2 --B.sup.2 --A.sup.3 --R.sup.2 where R.sup.1 and R.sup.2 are radicals selected from the group consisting of maleimide, substituted maleimide, nadimide, substituted naimide, ethynyl, and (C(R.sup.3).sub.2).sub.2 where R.sup.3 is hydrogen with the proviso that the two carbon atoms of (C(R.sup.3).sub.2).sub.2 are bound on the aromatic ring of A.sup.1 or A.sup.3 to adjacent carbon atoms, A.sup.1 and A.sup.3 are 1,4-phenylene and the same where said group contains one or more substituents selected from the group consisting of halo, e.g., fluoro, chloro, bromo, or iodo, nitro lower alkyl, e.g., methyl, ethyl, or propyl, alkoxy, e.g., methoxy, ethoxy, or propoxy, and fluoroalkyl, e.g., trifluoromethyl, pentafluoroethyl and the like, A.sup.2 is selected from the group consisting of 1,4-phenylene, 4,4'-biphenyl, 2,6-naphthylene and the same where said groups contain one or more substituents selected from the group consisting of halo, e.g., fluoro, chloro, bromo, or iodo, nitro, lower alkyl, e.g., methyl, ethyl, and propyl, lower alkoxy, e.g., methoxy, ethoxy, or propoxy, and fluoroalkyl or fluoroalkoxy, e.g., trifluoromethyl, pentafluoroethyl and the like, and B.sup.1 and B.sup.2 are selected from the group consisting of --C(O)--O-- and --O--C(O)--, (2) thermoset liquid crystalline polyester compositions comprised of heat-cured segments derived from monomers represented by the formula: R.sup.1 --A.sup.1 --B.sup.1 --A.sup.2 --B.sup.2 --A.sup.3 --R.sup.2 as described above, (3) curable blends of at least two of the polyester monomers and (4) processes of preparing the curable liquid crystalline polyester monomers.

  10. Liquid Crystals: The Phase of the Future.

    ERIC Educational Resources Information Center

    Ondris-Crawford, Renate; And Others

    1992-01-01

    Liquid crystal displays are currently utilized to convey information via graphic displays. Presents experiments and explanations that employ the concept of liquid crystals to learn concepts related to the various states of matter, electric and magnetic forces, refraction of light, and optics. Discusses applications of liquid crystal technology.…

  11. Chiral structures from achiral liquid crystals in cylindrical capillaries

    NASA Astrophysics Data System (ADS)

    Jeong, Joonwoo; Kang, Louis; Davidson, Zoey S.; Collings, Peter J.; Lubensky, Tom C.; Yodh, A. G.

    2015-04-01

    We study chiral symmetry-broken configurations of nematic liquid crystals (LCs) confined to cylindrical capillaries with homeotropic anchoring on the cylinder walls (i.e., perpendicular surface alignment). Interestingly, achiral nematic LCs with comparatively small twist elastic moduli relieve bend and splay deformations by introducing twist deformations. In the resulting twisted and escaped radial (TER) configuration, LC directors are parallel to the cylindrical axis near the center, but to attain radial orientation near the capillary wall, they escape along the radius through bend and twist distortions. Chiral symmetry-breaking experiments in polymer-coated capillaries are carried out using Sunset Yellow FCF, a lyotropic chromonic LC with a small twist elastic constant. Its director configurations are investigated by polarized optical microscopy and explained theoretically with numerical calculations. A rich phenomenology of defects also arises from the degenerate bend/twist deformations of the TER configuration, including a nonsingular domain wall separating domains of opposite twist handedness but the same escape direction and singular point defects (hedgehogs) separating domains of opposite escape direction. We show the energetic preference for singular defects separating domains of opposite twist handedness compared with those of the same handedness, and we report remarkable chiral configurations with a double helix of disclination lines along the cylindrical axis. These findings show archetypally how simple boundary conditions and elastic anisotropy of confined materials lead to multiple symmetry breaking and how these broken symmetries combine to create a variety of defects.

  12. Chiral structures from achiral liquid crystals in cylindrical capillaries

    PubMed Central

    Jeong, Joonwoo; Kang, Louis; Davidson, Zoey S.; Collings, Peter J.; Lubensky, Tom C.; Yodh, A. G.

    2015-01-01

    We study chiral symmetry-broken configurations of nematic liquid crystals (LCs) confined to cylindrical capillaries with homeotropic anchoring on the cylinder walls (i.e., perpendicular surface alignment). Interestingly, achiral nematic LCs with comparatively small twist elastic moduli relieve bend and splay deformations by introducing twist deformations. In the resulting twisted and escaped radial (TER) configuration, LC directors are parallel to the cylindrical axis near the center, but to attain radial orientation near the capillary wall, they escape along the radius through bend and twist distortions. Chiral symmetry-breaking experiments in polymer-coated capillaries are carried out using Sunset Yellow FCF, a lyotropic chromonic LC with a small twist elastic constant. Its director configurations are investigated by polarized optical microscopy and explained theoretically with numerical calculations. A rich phenomenology of defects also arises from the degenerate bend/twist deformations of the TER configuration, including a nonsingular domain wall separating domains of opposite twist handedness but the same escape direction and singular point defects (hedgehogs) separating domains of opposite escape direction. We show the energetic preference for singular defects separating domains of opposite twist handedness compared with those of the same handedness, and we report remarkable chiral configurations with a double helix of disclination lines along the cylindrical axis. These findings show archetypally how simple boundary conditions and elastic anisotropy of confined materials lead to multiple symmetry breaking and how these broken symmetries combine to create a variety of defects. PMID:25825733

  13. Lyotropic liquid crystalline nanoparticles of CoQ10: implication of lipase digestibility on oral bioavailability, in vivo antioxidant activity, and in vitro-in vivo relationships.

    PubMed

    Swarnakar, Nitin K; Thanki, Kaushik; Jain, Sanyog

    2014-05-05

    The present investigation reports implications of the lipase digestibility of lyotropic liquid crystalline nanoparticles (LCNPs) on the oral bioavailability, in vivo antioxidant potential, and in vitro-in vivo relationship (IVIVR) of CoQ10 loaded LCNPs prepared from glyceryl monooleate (GLCQ) and phytantriol (PLCQ). Exhaustive optimization of the process variables was carried out, and optimized lyophilized formulations were found to have particle sizes of 140.45 ± 5.47 nm and 238.42 ± 8.35 nm and a polydispersity index (PDI) of 0.15 ± 0.01 and 0.22 ± 0.03 for GLCQ and PLCQ, respectively. The entrapment efficiency at 10% theoretical loading was found to be >90% in both the cases. The morphological characteristics of the developed formulations were assessed using high resolution transmission electron microscopy and small-angle X-ray scattering analysis, which showed hexagonal (HII) structure. The developed formulations were also found to be stable in simulated gastrointestinal fluids for the stipulated period of time. The in vitro drug release studies revealed a bimodal sustained release drug profile with Higuchi type release kinetics as the best fit release model for both the formulations. The best fit release models were found to be of the Hixson Crowell type in the case of GLCQ when carried out in lipase rich media, suggestive of matrix erosion and subsequent formation of secondary structures, which was further corroborated by carrier degradation studies. Furthermore, 9.1- and 10.67-fold increase in Caco-2 cell uptake was observed in the case of GLCQ and PLCQ, respectively, attributed to the formation of the virtual channel pathway as a probable absorption mechanism. Consequently, 7.09- and 8.67-fold increase in oral bioavailability was observed in the case of GLCQ and PLCQ, respectively. The IVIVR was also established with r(2) values in the order of 0.996 and 0.999 for GLCQ and PLCQ, respectively, in contrast to that of 0.484 for free CoQ10. Finally, in vivo

  14. Function Spaces for Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Bedford, Stephen

    2016-02-01

    We consider the relationship between three continuum liquid crystal theories: Oseen-Frank, Ericksen and Landau-de Gennes. It is known that the function space is an important part of the mathematical model and by considering various function space choices for the order parameters s, n, and Q, we establish connections between the variational formulations of these theories. We use these results to justify a version of the Oseen-Frank theory using special functions of bounded variation. This proposed model can describe both orientable and non-orientable defects. Finally we study a number of frustrated nematic and cholesteric liquid crystal systems and show that the model predicts the existence of point and surface discontinuities in the director.

  15. Liquid crystal light valve structures

    NASA Technical Reports Server (NTRS)

    Koda, N. J. (Inventor)

    1985-01-01

    An improved photosensor film and liquid crystal light valves embodying said film is provided. The photosensor film and liquid crystal light valve is characterized by a significant lower image retention time while maintaining acceptable photosensitivity. The photosensor film is produced by sputter depositing CdS onto an ITO substrate in an atmosphere of argon/H2S gas while maintaining the substrate at a temperature in the range of about 130 C to about 200 C and while introducing nitrogen gas into the system to the extent of not more than about 1% of plasma mixture. Following sputter deposition of the CdS, the film is annealed in an inert gas at temperatures ranging from about 300 C to about 425 C.

  16. Spectro polarimetry with liquid crystals .

    NASA Astrophysics Data System (ADS)

    Malherbe, J.-M.; Roudier, Th.; Moity, J.; Mein, P.; Arnaud, J.; Muller, R.

    We report spectro polarimetric observations made with the spectrograph of the Lunette Jean Rösch at Pic du Midi, France. We have tested Ferroelectric (FLC) and Nematic (NLC) Liquid Crystals. The instrument setup is briefly decribed, together with first observations of magnetic fields obtained with the Multichannel Subtractive Double Pass (MSDP). Polarization analysis of various spectral lines performed with the single pass (SP) spectrograph in active regions or at the limb is also presented.

  17. Passive Sensor Materials Based on Liquid Crystals

    DTIC Science & Technology

    2011-03-12

    Program, National Cancer Institute, Cambridge, MA, October, 2008. Abbott, N.L., “Amplification of Biomolecular Interactions Based on Liquid Crystals...of Liquid Crystals" Columbia University, February, 2010, "Novel Colloidal and Interfacial Phenomena in Liquid Crystalline Systems" CBD Conference

  18. Defect structures mediate the isotropic-nematic transition in strongly confined liquid crystals.

    PubMed

    Gârlea, Ioana C; Mulder, Bela M

    2015-01-21

    Using Monte Carlo simulations, we study rod-like lyotropic liquid crystals confined to a square slab-like geometry with lateral dimensions comparable to the length of the particles. We observe that this system develops linear defect structures upon entering the planar nematic phase. These defect structures flank a lens-shaped nematic region oriented along a diagonal of the square box. We interpret these structures as a compromise between the 2-fold order of the bulk nematic phase and the 4-fold order imposed by the lateral boundaries. A simple Onsager-type theory that effectively implements these competing tendencies is used to model the phase behavior in the center of the box and shows that the free-energy cost of forming the defect structures strongly offsets the transition-inducing effects of both the transverse and lateral confinement.

  19. Spreading of Nematic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Poulard, Christophe

    2004-11-01

    A cyanobiphenyl liquid crystal drop in the nematic phase should spread on a silicon wafer. In fact, the drop hardly spreads due to the strong antagonist anchoring on the substrate and at the free surface. In a humidity controlled box at high RH and on a hydrophilic substrate, the friction is considerably reduced and the drop spreads easily. A well defined instability develops at the contact line, with two characteristic wavelengths, associated with a modulation of the drop thickness. A theoretical analysis, made by M. Ben Amar and L. Cummings, allows to understand one of the wavelength by an elastic approach and gives a wavelength proportionnal to the local drop's thickness.

  20. Liquid crystals in nondestructive testing.

    PubMed

    Fergason, J L

    1968-09-01

    The cholesteric phase is associated with scattering effects that give rise to iridescent colors, the dominant wavelength being influenced by very small changes in temperature, which can be as large as 1000 A shift per degree. This unusually high temperature sensitivity has given rise to the use of the cholesteric phase as a sensitive thermometer and thermal mapping media. This paper reviews the optical effects in the cholesteric phase with some new additions that are particularly relevant to thermal mapping. An attempt has been made to give a complete picture of the cholesteric liquid crystal as applied to nondestructive testing, rather than to review the work actually being done in this field.

  1. Perspectives in active liquid crystals.

    PubMed

    Majumdar, Apala; Cristina, Marchetti M; Virga, Epifanio G

    2014-11-28

    Active soft matter is a young, growing field, with potential applications to a wide variety of systems. This Theme Issue explores this emerging new field by highlighting active liquid crystals. The collected contributions bridge theory to experiment, mathematical theories of passive and active nematics, spontaneous flows to defect dynamics, microscopic to continuum levels of description, spontaneous activity to biological activation. While the perspectives offered here only span a small part of this rapidly evolving field, we trust that they might provide the interested reader with a taste for this new class of non-equilibrium systems and their rich behaviour.

  2. Optically switchable liquid crystal photonic structures.

    PubMed

    Urbas, Augustine; Tondiglia, Vincent; Natarajan, Lalgudi; Sutherland, Richard; Yu, Haiping; Li, J-H; Bunning, Timothy

    2004-10-27

    Photo-optic materials offer the possibility of light controlled photonic devices, intelligent and environmentally adaptive optical materials. One strategy for creating these materials is the combination of structure formation through holographic photopolymerization and the variable optical properties of liquid crystals. Holographically patterned, polymer stabilized liquid crystals (HPSLCs) have proven to be useful optical materials. By incorporating photo-optic, azobenzene-derived liquid crystal blends into such material systems, we have generated practical photoresponsive optical materials.

  3. Orthoconic liquid crystals--a case study.

    PubMed

    Lagerwall, Sven T

    2014-06-01

    Since the early investigations on liquid crystals it was realized how the confining surfaces often determine the textures and even properties of the material. This influence is particularly complex and important for chiral materials. When we come to chiral smectics the surfaces may have dramatic effects. These are illustrated on the ferroelectric liquid crystals; they then again increase in importance for the antiferroelectric liquid crystals where the most recent example is given by the orthoconic liquid crystals. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Nanoscopic Manipulation and Imaging of Liquid Crystals

    SciTech Connect

    Rosenblatt, Charles S.

    2014-02-04

    This is the final project report. The project’s goals centered on nanoscopic imaging and control of liquid crystals and surfaces. We developed and refined techniques to control liquid crystal orientation at surfaces with resolution as small as 25 nm, we developed an optical imaging technique that we call Optical Nanotomography that allows us to obtain images inside liquid crystal films with resolution of 60 x 60 x 1 nm, and we opened new thrust areas related to chirality and to liquid crystal/colloid composites.

  5. Continuous Rotation of Achiral Nematic Liquid Crystal Droplets Driven by Heat Flux

    NASA Astrophysics Data System (ADS)

    Ignés-Mullol, Jordi; Poy, Guilhem; Oswald, Patrick

    2016-07-01

    Suspended droplets of cholesteric (chiral nematic) liquid crystals spontaneously rotate in the presence of a heat flux due to a temperature gradient, a phenomenon known as the Lehmann effect. So far, it is not clear whether this effect is due to the chirality of the phase and the molecules or only to the chirality of the director field. Here, we report the continuous rotation in a temperature gradient of nematic droplets of a lyotropic chromonic liquid crystal featuring a twisted bipolar configuration. The achiral nature of the molecular components leads to a random handedness of the spontaneous twist, resulting in the coexistence of droplets rotating in the two senses, with speeds proportional to the temperature gradient and inversely proportional to the droplet radius. This result shows that a macroscopic twist of the director field is sufficient to induce a rotation of the droplets, and that the phase and the molecules do not need to be chiral. This suggests that one can also explain the Lehmann rotation in cholesteric liquid crystals without introducing the Leslie thermomechanical coupling—only present in chiral mesophases. An explanation based on the Akopyan and Zeldovich theory of thermomechanical effects in nematics is proposed and discussed.

  6. Polymer Crystallization at Curved Liquid/Liquid Interface

    NASA Astrophysics Data System (ADS)

    Wang, Wenda

    Liquid/liquid interface, either flat or curved, is a unique template for studying self-assembly of a variety of nanomaterials such as nanoparticles and nanorods. The resultant monolayer films can be ordered or disordered depending on the regularity of the nanomaterials. Integration of nanoparticles into two-dimensional structure leads to intriguing collective properties of the nanoparticles. Crystallization can also be guided by liquid/liquid interface. Due to the particular shape of the interface, crystallization can happen in a different manner comparing to the normal solution crystallization. In this dissertation, liquid/liquid interface is employed to guide the crystallization of polymers, mainly focusing on using curved liquid/liquid interface. Due to the unique shape of the interface and feasibility to control the curvature, polymer crystallization can take place in different manner and lead to the formation of curved or vesicular crystals. Curved liquid/liquid interface is typically created through o/w emulsions. With the presence of surfactant, the emulsions are controlled to be stable at least for the polymer crystallization periods. The difference to normal solution crystallization is: the nuclei will diffuse to the curved interface due to the Pickering effect and guide the crystallization along the curved liquid/liquid interface. If the supercooling can be controlled to be very small, crystal growth in the bulk droplets can be avoided. The advantages of this strategy are: 1) the formation process of vesicular type crystals can be monitored by controlling the polymer supply; 2) curved crystals, bowl-like structures and enclosed capsules can be easily obtained comparing to the self-assembly method for vesicle formation; 3) the obtained vesicles will be made of polymer crystals, which will possess the extraordinary mechanical properties. Based on the nucleation type, this dissertation is divided into two parts. The first part is focused on the self

  7. Nonlinear and quantum optics with liquid crystals

    NASA Astrophysics Data System (ADS)

    Lukishova, Svetlana G.

    2014-04-01

    Thermotropic liquid crystals' usual application is display technology. This paper describes experiments on light interaction with pure and doped liquid crystals under for these materials unconventional incident light powers: (1) under high-power laser irradiation, and (2) at the single-photon level. In (1), I will outline several nonlinear optical effects under high-power, nanosecond laser irradiation which should be taken into account in the design of lasers with liquid crystal components and in fabrication of optical power limiters based on liquid crystals: (1.1) athermal helical pitch dilation and unwinding of cholesteric mirrors (both in free space and inside laser resonators); (1.2) some pitfalls in measurements of refractive nonlinearity using z-scan technique under two-photon or linear absorption of liquids; (1.3) the first observation of thermal lens effects in liquid crystals under several-nanosecond, low-pulse-repetition rate (2-10 Hz) laser irradiation in the presence of two-photon absorption; (1.4) feedback-free kaleidoscope of patterns (hexagons, stripes, etc.) in dye-doped liquid crystals. In (2), at the single-photon level, it will be shown that with a proper selection of liquid crystals and a single-emitter dopant spectral range, liquid crystal structures can be used to control emitted single photons (both polarization and count rate). The application of the latter research is absolutely secure quantum communication with polarization coding of information. In particular, in (2.1), definite handedness, circular polarized cholesteric microcavity resonance in quantum dot fluorescence is reported. In (2.2), definite linear polarization of single (antibunched) photons from single-dye-molecules in planar-aligned nematic host is discussed. In (2.3), some results on photon antibunching from NV-color center in nanodiamond in liquid crystal host and circularly polarized fluorescence of definite handedness from nanocrystals doped with trivalent ions of rare

  8. Demonstrations with a Liquid Crystal Shutter

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2012-01-01

    The experiments presented show the response of a liquid crystal shutter to applied electric voltages and the delay of the operations. Both properties are important for liquid crystal displays of computers and television sets. Two characteristics of the shutter are determined: (i) the optical transmittance versus applied voltage of various…

  9. Liquid-Crystal Point-Diffraction Interferometer

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.

    1996-01-01

    Liquid-crystal point-diffraction interferometer (LCPDI) invented to combine flexible control of liquid-crystal phase-shifts with robustness of point-diffraction interferometers. Produces interferograms indicative of shapes of wavefronts of laser beams having passed through or reflected from objects of interest. Interferograms combined in computers to produce phase maps describing wavefronts.

  10. Demonstrations with a Liquid Crystal Shutter

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2012-01-01

    The experiments presented show the response of a liquid crystal shutter to applied electric voltages and the delay of the operations. Both properties are important for liquid crystal displays of computers and television sets. Two characteristics of the shutter are determined: (i) the optical transmittance versus applied voltage of various…

  11. Liquid crystal-templated conducting organic polymers

    DOEpatents

    Stupp, Samuel I.; Hulvat, James F.

    2004-01-20

    A method of preparing a conductive polymeric film, includes providing a liquid crystal phase comprising a plurality of hydrophobic cores, the phase on a substrate, introducing a hydrophobic component to the phase, the component a conductive polymer precursor, and applying an electric potential across the liquid crystal phase, the potential sufficient to polymerize the said precursor.

  12. Liquid Crystals in Education--The Basics

    ERIC Educational Resources Information Center

    Cepic, Mojca

    2012-01-01

    The introduction of teaching about liquid crystals is discussed from several points of view: the rationale why to teach them, the basics about liquid crystals or what the teacher should teach about them, the fundamental pre-knowledge of students required, the set of experiments accompanying the teaching and the brief report on the already…

  13. Liquid crystal tunable metamaterial absorber.

    PubMed

    Shrekenhamer, David; Chen, Wen-Chen; Padilla, Willie J

    2013-04-26

    We present an experimental demonstration of electronically tunable metamaterial absorbers in the terahertz regime. By incorporation of active liquid crystal into strategic locations within the metamaterial unit cell, we are able to modify the absorption by 30% at 2.62 THz, as well as tune the resonant absorption over 4% in bandwidth. Numerical full-wave simulations match well to experiments and clarify the underlying mechanism, i.e., a simultaneous tuning of both the electric and magnetic response that allows for the preservation of the resonant absorption. These results show that fundamental light interactions of surfaces can be dynamically controlled by all-electronic means and provide a path forward for realization of novel applications.

  14. Chemical and biological sensing using liquid crystals

    PubMed Central

    Carlton, Rebecca J.; Hunter, Jacob T.; Miller, Daniel S.; Abbasi, Reza; Mushenheim, Peter C.; Tan, Lie Na; Abbott, Nicholas L.

    2014-01-01

    The liquid crystalline state of matter arises from orientation-dependent, non-covalent interaction between molecules within condensed phases. Because the balance of intermolecular forces that underlies formation of liquid crystals is delicate, this state of matter can, in general, be easily perturbed by external stimuli (such as an electric field in a display). In this review, we present an overview of recent efforts that have focused on exploiting the responsiveness of liquid crystals as the basis of chemical and biological sensors. In this application of liquid crystals, the challenge is to design liquid crystalline systems that undergo changes in organization when perturbed by targeted chemical and biological species of interest. The approaches described below revolve around the design of interfaces that selectively bind targeted species, thus leading to surface-driven changes in the organization of the liquid crystals. Because liquid crystals possess anisotropic optical and dielectric properties, a range of different methods can be used to read out the changes in organization of liquid crystals that are caused by targeted chemical and biological species. This review focuses on principles for liquid crystal-based sensors that provide an optical output. PMID:24795857

  15. Liquid crystal device and method thereof

    DOEpatents

    Shiyanovskii, Sergij V; Gu, Mingxia; Lavrentovich, Oleg D

    2012-10-23

    The invention provides a liquid crystal device and method thereof. Subsequent to applying a first electrical voltage on a liquid crystal to induce a reorientation of the liquid crystal, a second electrical voltage with proper polarity is applied on the liquid crystal to assist the relaxation of the reorientation that was induced by the first electrical voltage. The "switch-off" phase of the liquid crystal can therefore be accelerated or temporally shortened, and the device can exhibit better performance such as fast response to on/off signals. The invention can be widely used LCD, LC shutter, LC lens, spatial light modulator, telecommunication device, tunable filter, beam steering device, and electrically driven LC device, among others.

  16. Phototropic liquid crystals comprising one component

    NASA Astrophysics Data System (ADS)

    Sobolewska, Anna; Zawada, Joanna; Bartkiewicz, Stanislaw; Galewski, Zbigniew

    2013-09-01

    Phototropic liquid crystals (PtLC), in which the phase transition can be controlled by the light, are a new class of liquid crystal materials possessing number of potential applications, especially in photonic devices. So far a significant majority of PtLC materials has been realized by the doping a classical liquid crystal with a photochromic dye. Here we report PtLCs comprising a single compound. Liquid-crystalline and photochromic properties have been accomplished in alkylo-alkoxy derivatives of azobenzene. Such compounds show a rich polymorphism which can be controlled by the light. The phenomenon of the photochemical phase transition has been investigated by means of holographic grating recording.

  17. Nanotube networks in liquid crystals

    NASA Astrophysics Data System (ADS)

    Urbanski, Martin; Lagerwall, Jan Peter F.; Scalia, Giusy

    2016-03-01

    Liquid crystals (LCs) are very attractive hosts for the organization of anisotropic nanoparticles such as carbon nanotubes (CNTs) because of the macroscopic organization resulting in properties of nanoparticles manifest at a macroscopic scale. Different types of LCs have demonstrated the ability to organize nanotubes, showing the generality of the approach, i.e., that the liquid crystallinity per se is the driving factor for the organization. Compared to standard nanotube composites (e.g. with disordered polymer hosts) the introduction of carbon nanotubes into an LC allows not only the transfer of the outstanding CNT properties to the macroscopic phase, providing strength and conductivity, but these properties also become anisotropic, following the transfer of the orientational order from the LC to the CNTs. The LC molecular structure plays an important even if ancillary role since it enters in the surface interactions, fulfilling a mediating action between the particle and the bulk of the LC. Isolated nanotubes can be obtained by optimized dispersions at lower concentrations and this process requires the use or development of tailored strategies like using solvents or even another LC for pre-dispersing CNTs. Aggregates or networks can be observed in poor dispersions and at higher nanoparticle concentrations. In those, due to surface interactions, the LC behaviour can be strongly affected with changes in phase sequences or transition temperatures and the effect is expected to be more pronounced as the concentration of nanotubes increases. We present preliminary investigations and observations on nanotube - LC systems based on a smectic LC host.

  18. Liquid crystals for organic transistors (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hanna, Jun-ichi; Iino, Hiroaki

    2016-09-01

    Liquid crystals are a new type of organic semiconductors exhibiting molecular orientation in self-organizing manner, and have high potential for device applications. In fact, various device applications have been proposed so far, including photosensors, solar cells, light emitting diodes, field effect transistors, and so on.. However, device performance in those fabricated with liquid crystals is less than those of devices fabricated with conventional materials in spite of unique features of liquid crystals. Here we discuss how we can utilize the liquid crystallinity in organic transistors and how we can overcome conventional non-liquid crystalline organic transistor materials. Then, we demonstrate high performance organic transistors fabricated with a smectic E liquid crystal of Ph-BTBT-10, which show high mobility of over 10cm2/Vs and high thermal durability of over 200oC in OFETs fabricated with its spin-coated polycrystalline thin films.

  19. Formation of a 1,8-octanedithiol self-assembled monolayer on Au(111) prepared in a lyotropic liquid-crystalline medium.

    PubMed

    García Raya, Daniel; Madueño, Rafael; Blázquez, Manuel; Pineda, Teresa

    2010-07-20

    A characterization of the 1,8-octanedithiol (ODT) self-assembled monolayer (SAM) formed from a Triton X-100 lyotropic medium has been conducted by electrochemical techniques. It is found that an ODT layer of standing-up molecules is obtained at short modification time without removing oxygen from the medium. The electrochemical study shows that the ODT layer formed after 15 min of modification time has similar electron-transfer blocking properties to the layers formed from organic solvents at much longer modification times. On the basis of XPS data, it is demonstrated that the inability to bind gold nanoparticles (AuNPs) is due to the presence of extra ODT molecules either interdigited or on top of the layer. Treatment consisting of an acid washing step following the formation of the ODT-Au(111) SAM produces a layer that is able to attach AuNPs as demonstrated by electrochemical techniques and atomic force microscopy (AFM) images.

  20. Bistable liquid crystal device fabricated via microscale liquid crystal alignment

    NASA Astrophysics Data System (ADS)

    Honma, Michinori; Toyoshima, Wataru; Nose, Toshiaki

    2016-10-01

    Bistable liquid crystal (LC) molecular orientation properties in micropatterned LC cells were investigated experimentally and theoretically. When an LC cell was heated to the phase-transition temperature and then cooled, an LC orientation with ±π/2-twist domains (±π/2-twist mode) was obtained. Furthermore, a different LC orientation with ±π-twist domains (±π-twist mode) was observed when a 10-V potential was applied across a sample LC cell. Both orientation states were stably retained over a long period. Herein, cross-sectional LC orientation models in the ±π/2- and ±π-twist modes are proposed to explain the generation and behavior of two different disclination lines. The total energies within one period in the ±π/2- and ±π-twist modes (F±π/2 and F±π, respectively) were estimated theoretically. These energies were found to depend on the LC layer thickness and to cross over at a certain thickness; this indicates that F±π is equal to F±π/2 at this equilibrium thickness. The best temporal stability is likely attained at this equilibrium thickness. We demonstrated a bistable color-switching device by combining a full-wave plate and crossed polarizers. When these optical components were configured properly, stable bistable switching between two colors was achieved.

  1. A swing driven by liquid crystals

    NASA Astrophysics Data System (ADS)

    Cheng, Cheng

    Angular momentum in liquid crystals exists as flow, director reorientation, etc. However, it is hard to observe and measure angular momentum in liquid crystals by a direct mechanical approach. Torsion pendulum is a general tool to measure angular momentum by torque balance. Our torsion pendulum can harvest the angular momentum in liquid crystals to make it observable. The oscillation of the pendulum keeps increasing by constructively adding a small angular momentum of liquid crystals each period at the resonant frequency of the pendulum. Its similar to a swing driven by a force at its resonant frequency. For the torsion pendulum, a cage made of two aluminum discs, in which a liquid crystal cell is placed, is suspended between two thin tungsten wires. A gold mirror, which is a part of the optical lever system, is attached on one tungsten wire. As first demonstration, we fabricate a circular hybrid liquid crystal cell, which can induce concentric backflows to generate angular momentum. The alignment on the planar substrate is concentric and tangential. Due to the coupling between director rotation and flow, the induced backflow goes around the cell when we add electrical pulses between top and bottom substrates. The oscillation is observed by a position sensitive detector and analyzed on the basis of Eriksen-Leslie theory. With vacuum condition and synchronous driving system, the oscillation signal is improved. We demonstrate that this torsion pendulum can sensitively detect the angular momentum in liquid crystals.

  2. Temperature sensing with thermochromic liquid crystals

    NASA Astrophysics Data System (ADS)

    Smith, C. R.; Sabatino, D. R.; Praisner, T. J.

    A review of the most recent developments in the application of thermochromic liquid crystals to fluid flow temperature measurement is presented. The experimental aspects including application, illumination, recording, and calibration of liquid crystals on solid surfaces, as well as in fluid suspensions, are discussed. Because of the anisotropic optical properties of liquid crystals, on-axis lighting/viewing arrangements, combined with in-situ calibration techniques, generally provide the most accurate temperature assessments. However, where on-axis viewing is not possible, calibration techniques can be employed, which reduce the uncertainty associated with off-axis viewing and lighting arrangements. It has been determined that the use of hue definitions that display a linear trend across the color spectrum yield the most accurate correlation with temperature. The uncertainty of both wide-band and narrow-band thermochromic liquid crystal calibration techniques can be increased due to hysteresis effects, which occur when the temperature of the liquid crystals exceeds their maximum activation temperature. Although liquid crystals are commonly used to provide time-mean temperature measurements, techniques are available which allow the monitoring of temporal changes. Selected examples illustrating the use of thermochromic liquid crystals are shown, and a survey of reported temperature measurement uncertainties is presented.

  3. Stimuli-responsive photoluminescent liquid crystals.

    PubMed

    Yamane, Shogo; Tanabe, Kana; Sagara, Yoshimitsu; Kato, Takashi

    2012-01-01

    We describe mechanochromic and thermochromic photoluminescent liquid crystals. In particular, mechanochromic photoluminescent liquid crystals found recently, which are new stimuli-responsive materials are reported. For example, photoluminescent liquid crystals having bulky dendritic moieties with long alkyl chains change their photoluminescent colors by mechanical stimuli associated with isothermal phase transitions. The photoluminescent properties of molecular assemblies depend on their assembled structures. Therefore, controlling the structures of molecular assemblies with external stimuli leads to the development of stimuli-responsive luminescent materials. Mechanochromic photoluminescent properties are also observed for a photoluminescent metallomesogen and a liquid-crystalline polymer. We also show thermochromic photoluminescent liquid crystals based on origo-(p-phenylenevinylene) and anthracene moieties and a thermochromic photoluminescent metallocomplex.

  4. Unexpected role of linker position on ammonium gemini surfactant lyotropic gyroid phase stability.

    PubMed

    Sorenson, Gregory P; Mahanthappa, Mahesh K

    2016-02-28

    Arising from the water-driven self-assembly of amphiphiles over generally narrow temperature and composition phase windows, aqueous lyotropic liquid crystal (LLC) network phases are useful in applications as therapeutic delivery vehicles and templates for mesoporous material syntheses. While a clear set of amphiphile design rules that enables access to these intricate three-dimensional structures has yet to emerge, recent work indicates that bis(ammonium), bis(phosphonium), and dicarboxylate gemini ("twin tail") surfactants enable enhanced access to LLC network phases such as the double gyroid (G). In order to better understand the scope of this amphiphile design strategy, we investigated the synthesis and aqueous LLC self-assembly behaviors of a homologous series of quaternary gemini bis(ammonium) dichloride surfactants, in which we varied the position of the hydrophobic linker that connects the constituent single tail surfactants. These experiments demonstrate that the position of the linker directly impacts the maximum counterion-headgroup hydration capacity and the extent of counterion-headgroup association, all of which contribute to the aqueous lyotropic double gyroid network phase stability. Thus, judicious selection of the linker position in ionic gemini surfactants provides a new molecular design tool for manipulating LLC network phase stability.

  5. Photorefractive effect in ferroelectric liquid crystals

    NASA Astrophysics Data System (ADS)

    Sasaki, Takeo; Naka, Yumiko

    2014-03-01

    In this paper, we review recent progress of research on the photorefractive effect of ferroelectric liquid crystals. The photorefractive effect is a phenomenon that forms a dynamic hologram in a material. The interference of two laser beams in a photorefractive material establishes a refractive index grating. This phenomenon is applicable to a wide range of devices related to diffraction optics including 3D displays, optical amplification, optical tomography, novelty filters, and phase conjugate wave generators. Ferroelectric liquid crystals are considered as a candidate for practical photorefractive materials. A refractive index grating formation time of 8-10 ms and a large gain coefficient are easily obtained in photorefractive ferroelectric liquid crystals.

  6. Liquid Crystal Research Shows Deformation By Drying

    NASA Technical Reports Server (NTRS)

    2003-01-01

    These images, from David Weitz's liquid crystal research, show ordered uniform sized droplets (upper left) before they are dried from their solution. After the droplets are dried (upper right), they are viewed with crossed polarizers that show the deformation caused by drying, a process that orients the bipolar structure of the liquid crystal within the droplets. When an electric field is applied to the dried droplets (lower left), and then increased (lower right), the liquid crystal within the droplets switches its alignment, thereby reducing the amount of light that can be scattered by the droplets when a beam is shone through them.

  7. Nanoparticles in discotic liquid crystals

    NASA Astrophysics Data System (ADS)

    Kumar, Sandeep

    The self-assembly of disc-shaped molecules creates discotic liquid crystals (DLCs). These nanomaterials of the sizes ranging from 2-6 nm are emerging as a new class of organic semiconducting materials. The unique geometry of columnar mesophases formed by discotic molecules is of great importance to study the one-dimensional charge and energy migration in organized systems. A number of applications of DLCs, such as, one-dimensional conductor, photoconductor, photovoltaic solar cells, light emitting diodes and gas sensors have been reported. The conductivity along the columns in columnar mesophases has been observed to be several orders of magnitude greater than in perpendicular direction and, therefore, DLCs are described as molecular wires. On the other hand, the fields of nanostructured materials, such as gold nanoparticles, quantum dots, carbon nanotubes and graphene, have received tremendous development in the past decade due to their technological and fundamental interest. Recently the hybridization of DLCs with various metallic and semiconducting nanoparticles has been realized to alter and improve their properties. These nanocomposites are not only of basic science interest but also lead to novel materials for many device applications. This article provides an overview on the development in the field of newly immersed discotic nanoscience. After a brief introduction of DLCs, the article will cover the inclusion of various zero-, one- and two-dimensional nanoparticles in DLCs. Finally, an outlook into the future of this newly emerging intriguing field of discotic nanoscience research will be provided.

  8. Liquid crystals for laser applications

    NASA Astrophysics Data System (ADS)

    Jacobs, S. D.; Marshall, K. L.; Schmid, A.

    1992-10-01

    This article highlights some of the advances made in the use of liquid crystals for laser applications from 1982 through 1992. New materials and new effects were discovered, many new devices were developed, and novel applications for well-understood phenomena were conceived. This was quite an eventful time period. Several new books were published on the broad subject of LC's, and the international scientific community organized a society devoted to encouraging further scientific and educational advancement in the field. Attention was focused on LC's in October of 1991 when the Nobel Prize in Physics was awarded to Pierre-Gilles de Gennes for his pioneering work toward understanding order phenomena in LC's and polymers. This article is divided into four sections. The first section discusses new materials, specifically ferroelectric LC's and LC polymers. The former have opened up the realm of submicrosecond response for LC devices, and the latter have significantly reduced the sensitivity of LC optics to temperature. Some new insights into the optical properties of materials are also mentioned. The second section reviews new developments in passive applications for cholesterics and nematics. Included here are the fabrication of cholesteric laser mirrors and apodizers, the use of LC polymers for notch filters and as optical storage media, and some novel nematic retarder concepts such as the distributed polarization rotator.

  9. Tactoids of chiral liquid crystals

    NASA Astrophysics Data System (ADS)

    Palacio-Betancur, Viviana; Villada-Gil, Stiven; Zhou, Ye; Armas-Pérez, Julio C.; de Pablo, Juan José; Hernández-Ortiz, Juan Pablo

    The phase diagram of chiral liquid crystals confined in ellipsoids is obtained, by following a theoretically informed Monte Carlo relaxation of the tensor alignment field Q. The free energy of the system is described by a functional in the framework of the Landau-de Gennes formalism. This study also includes the effect of anchoring strength, curvature, and chirality of the system. In the low chirality region of the phase diagram we found the twist bipolar (BS) phase and some cholesteric phases such as the radial spherical structure (RSS), twist cylinder (TC) and double twist cylinder (DTC) whose axis of rotation is not necessarily aligned with the major axis of the geometry. For high chirality scenarios, the disclination lines are twisted or bent near the surface preventing the formation of symmetric networks of defects, although an hexagonal pattern is formed on the surface which might serve as open sites for collocation of colloids. By analyzing the free energies of isochoric systems, prolate geometries tend to be more favorable for high chirality and low anchoring conditions. Universidad Nacional de Colombia Ph.D. grant and COLCIENCIAS under the Contract No. 110-165-843-748. CONACYT for Postdoctoral Fellowships Nos. 186166 and 203840.

  10. Electronically scanned analog liquid crystal displays.

    PubMed

    Soref, R A

    1970-06-01

    A new analog display technique for liquid crystal display panels is demonstrated. The size, shape, and location of display patterns can be changed continuously using low power electronic control. The display consists of a thin liquid crystal layer sandwiched between high resistance transparent area electrodes. Transverse voltage gradients on the electrodes actuate the device. The display operates with either dynamic scattering liquids or quiescent scattering liquids. Experimental results are given for three prototype analog displays: a voltmeter, a flying spot scanner, and a null indicator.

  11. Polymer single crystal membrane from liquid/liquid interface

    NASA Astrophysics Data System (ADS)

    Wang, Wenda; Li, Christopher; Soft Matter Research Group-Drexel University Team

    2013-03-01

    Vesicles, mimicking the structure of cell membrane at the molecular scale, are small membrane-enclosed sacks that can store or transport substances. The weak mechanical properties and the nature of environment-sensitivity of the current available vesicles: liposomes, polymersomes, colloidsomes limit their applications as an excellent candidate for targeting delivery of drugs/genes in biomedical engineering and treatment. Recently, we developed an emulsion-based method to grow curved polymer single crystals. Varying the polymer concentration and/or the emulsification conditions (such as surfactant concentration, water-oil volume ratio), curved crystals with different sizes and different openness could be obtained. This growing process was attributed to polymer crystal growth along the liquid/liquid interface. In addition, the liquid/liquid interfacial crystal growth is promising for synthesis of enclosed hollow sphere.

  12. Thermal Conductivity and Liquid Crystal Thermometers.

    ERIC Educational Resources Information Center

    Edge, R. D., Ed.

    1993-01-01

    Describes using stock liquid crystal postcards as inexpensive classroom thermometers. Also suggests using these postcards as a good visual temperature indicator for classroom demonstrations such as temperature gradients. One such activity is provided. (MVL)

  13. Rapid leak detection with liquid crystals

    NASA Technical Reports Server (NTRS)

    Heisman, R. M.; Iceland, W. F.; Ruppe, E. P.

    1978-01-01

    Small leaks in vacuum lines are detected by applying liquid-crystal coating, warming suspected area, and observing color change due to differential cooling by leak jet. Technique is used on inside or outside walls of vacuum-jacketed lines.

  14. Liquid crystal on subwavelength metal gratings

    SciTech Connect

    Palto, S. P.; Barnik, M. I.; Artemov, V. V.; Shtykov, N. M.; Geivandov, A. R.; Yudin, S. G.; Gorkunov, M. V.

    2015-06-14

    Optical and electrooptical properties of a system consisting of subwavelength metal gratings and nematic liquid crystal layer are studied. Aluminium gratings that also act as interdigitated electrodes are produced by focused ion beam lithography. It is found that a liquid crystal layer strongly influences both the resonance and light polarization properties characteristic of the gratings. Enhanced transmittance is observed not only for the TM-polarized light in the near infrared spectral range but also for the TE-polarized light in the visible range. Although the electrodes are separated by nanosized slits, and the electric field is strongly localized near the surface, a pronounced electrooptical effect is registered. The effect is explained in terms of local reorientation of liquid crystal molecules at the grating surface and propagation of the orientational deformation from the surface into the bulk of the liquid crystal layer.

  15. Liquid crystal television spatial light modulators

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang; Chao, Tien-Hsin

    1989-01-01

    The spatial light modulation characteristics and capabilities of the liquid crystal television (LCTV) spatial light modulators (SLMs) are discussed. A comparison of Radio Shack, Epson, and Citizen LCTV SLMs is made.

  16. Formation of a crystal nucleus from liquid

    PubMed Central

    Kawasaki, Takeshi; Tanaka, Hajime

    2010-01-01

    Crystallization is one of the most fundamental nonequilibrium phenomena universal to a variety of materials. It has so far been assumed that a supercooled liquid is in a “homogeneous disordered state” before crystallization. Contrary to this common belief, we reveal that a supercooled colloidal liquid is actually not homogeneous, but has transient medium-range structural order. We find that nucleation preferentially takes place in regions of high structural order via wetting effects, which reduce the crystal–liquid interfacial energy significantly and thus promotes crystal nucleation. This novel scenario provides a clue to solving a long-standing mystery concerning a large discrepancy between the rigorous numerical estimation of the nucleation rate on the basis of the classical nucleation theory and the experimentally observed ones. Our finding may shed light not only on the mechanism of crystal nucleation, but also on the fundamental nature of a supercooled liquid state. PMID:20663951

  17. Liquid crystal television spatial light modulators

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang; Chao, Tien-Hsin

    1989-01-01

    The spatial light modulation characteristics and capabilities of the liquid crystal television (LCTV) spatial light modulators (SLMs) are discussed. A comparison of Radio Shack, Epson, and Citizen LCTV SLMs is made.

  18. Thermal Conductivity and Liquid Crystal Thermometers.

    ERIC Educational Resources Information Center

    Edge, R. D., Ed.

    1993-01-01

    Describes using stock liquid crystal postcards as inexpensive classroom thermometers. Also suggests using these postcards as a good visual temperature indicator for classroom demonstrations such as temperature gradients. One such activity is provided. (MVL)

  19. Liquid crystal interfaces: Experiments, simulations and biosensors

    NASA Astrophysics Data System (ADS)

    Popov, Piotr

    Interfacial phenomena are ubiquitous and extremely important in various aspects of biological and industrial processes. For example, many liquid crystal applications start by alignment with a surface. The underlying mechanisms of the molecular organization of liquid crystals at an interface are still under intensive study and continue to be important to the display industry in order to develop better and/or new display technology. My dissertation research has been devoted to studying how complex liquid crystals can be guided to organize at an interface, and to using my findings to develop practical applications. Specifically, I have been working on developing biosensors using liquid-crystal/surfactant/lipid/protein interactions as well as the alignment of low-symmetry liquid crystals for potential new display and optomechanical applications. The biotechnology industry needs better ways of sensing biomaterials and identifying various nanoscale events at biological interfaces and in aqueous solutions. Sensors in which the recognition material is a liquid crystal naturally connects the existing knowledge and experience of the display and biotechnology industries together with surface and soft matter sciences. This dissertation thus mainly focuses on the delicate phenomena that happen at liquid interfaces. In the introduction, I start by defining the interface and discuss its structure and the relevant interfacial forces. I then introduce the general characteristics of biosensors and, in particular, describe the design of biosensors that employ liquid crystal/aqueous solution interfaces. I further describe the basic properties of liquid crystal materials that are relevant for liquid crystal-based biosensing applications. In CHAPTER 2, I describe the simulation methods and experimental techniques used in this dissertation. In CHAPTER 3 and CHAPTER 4, I present my computer simulation work. CHAPTER 3 presents insight of how liquid crystal molecules are aligned by

  20. Directed peptide amphiphile assembly using aqueous liquid crystal templates in magnetic fields.

    PubMed

    van der Asdonk, Pim; Keshavarz, Masoumeh; Christianen, Peter C M; Kouwer, Paul H J

    2016-08-21

    An alignment technique based on the combination of magnetic fields and a liquid crystal (LC) template uses the advantages of both approaches: the magnetic fields offer non-contact methods that apply to all sample sizes and shapes, whilst the LC templates offer high susceptibilities. The combination introduces a route to control the spatial organization of materials with low intrinsic susceptibilities. We demonstrate that we can unidirectionally align one such material, peptide amphiphiles in water, on a centimeter scale at a tenfold lower magnetic field by using a lyotropic chromonic liquid crystal as a template. We can transform the aligned supramolecular assemblies into optically active π-conjugated polymers after photopolymerization. Lastly, by reducing the magnetic field strength needed for addressing these assemblies, we are able to create more complex structures by initiating self-assembly of our supramolecular materials under competing alignment forces between the magnetically induced alignment of the assemblies (with a positive diamagnetic anisotropy) and the elastic force dominated alignment of the template (with a negative diamagnetic anisotropy), which is directed orthogonally. Although the approach is still in its infancy and many critical parameters need optimization, we believe that it is a very promising technique to create tailor-made complex structures of (aqueous) functional soft matter.

  1. Time-Resolved Soft X-ray Diffraction Reveals Transient Structural Distortions of Ternary Liquid Crystals

    PubMed Central

    Quevedo, Wilson; Peth, Christian; Busse, Gerhard; Scholz, Mirko; Mann, Klaus; Techert, Simone

    2009-01-01

    Home-based soft X-ray time-resolved scattering experiments with nanosecond time resolution (10 ns) and nanometer spatial resolution were carried out at a table top soft X-ray plasma source (2.2–5.2 nm). The investigated system was the lyotropic liquid crystal C16E7/paraffin/glycerol/formamide/IR 5. Usually, major changes in physical, chemical, and/or optical properties of the sample occur as a result of structural changes and shrinking morphology. Here, these effects occur as a consequence of the energy absorption in the sample upon optical laser excitation in the IR regime. The liquid crystal shows changes in the structural response within few hundred nanoseconds showing a time decay of 182 ns. A decrease of the Bragg peak diffracted intensity of 30% and a coherent macroscopic movement of the Bragg reflection are found as a response to the optical pump. The Bragg reflection movement is established to be isotropic and diffusion controlled (1 μs). Structural processes are analyzed in the Patterson analysis framework of the time-varying diffraction peaks revealing that the inter-lamellar distance increases by 2.7 Å resulting in an elongation of the coherently expanding lamella crystallite. The present studies emphasize the possibility of applying TR-SXRD techniques for studying the mechanical dynamics of nanosystems. PMID:20087463

  2. Multidimensional optics and dynamics of liquid crystals

    NASA Astrophysics Data System (ADS)

    Tang, Shouping

    2007-12-01

    In this dissertation, we present an alternative description of multidimensional optics in liquid crystals and uniaxial media, and a systematical investigation on the dynamic properties of twist nematic devices and ECB devices including flow. We also present our investigation on the backflow and dynamic properties of nematic liquid crystals in modulated electric fields. Based on the understanding to backflow and dynamics of liquid crystals, the dynamics of colloidal particles dispersed in nematic liquid crystals and the flow-induced dynamic optical crosstalk between pixels in nematic liquid crystal devices are also studied. The alternative description of multidimensional optics combines the geometrical optics approximation (GOA) with the beam propagation method (BPM). The general treatment of this approach is developed both theoretically and numerically. The investigation on the dynamic properties of twist nematic devices and ECB devices with consideration of backflow is done experimentally, theoretically and numerically. The calculation results are compared with the experimental results, and the optical responses due to backflow are discussed in detail. The investigation on the backflow and dynamic properties of a nematic liquid crystal in modulated electric fields includes director, flow and the shift of liquid crystal fluid. Especially, an important phenomenon, reverseswitching, is shown in this investigation. The dynamics of colloidal particles dispersed in a nematic cela is studied experimentally and by computer simulation. The polarity of director distortions determines the direction of lift force, and the backflow is responsible for the horizontal translational motion. The optical crosstalk between pixels demonstrates the significance of switching-induce flow in pixilated devices. The electrical switching of a pixel in a twisted nematic device can induce an optical response in neighboring pixels. These phenomena are studied in detail, both experimentally and

  3. Optical vortex arrays from smectic liquid crystals.

    PubMed

    Son, Baeksik; Kim, Sejeong; Kim, Yun Ho; Käläntär, K; Kim, Hwi-Min; Jeong, Hyeon-Su; Choi, Siyoung Q; Shin, Jonghwa; Jung, Hee-Tae; Lee, Yong-Hee

    2014-02-24

    We demonstrate large-area, closely-packed optical vortex arrays using self-assembled defects in smectic liquid crystals. Self-assembled smectic liquid crystals in a three-dimensional torus structure are called focal conic domains. Each FCD, having a micro-scale feature size, produces an optical vortex with consistent topological charge of 2. The spiral profile in the interferometry confirms the formation of an optical vortex, which is predicted by Jones matrix calculations.

  4. The Liquid Crystal Shutter In Automotive Environments

    NASA Astrophysics Data System (ADS)

    Haven, Thomas J.; Melcher, Dean

    1988-10-01

    The Liquid Crystal Shutter (LCS) is being developed for the automotive market. Liquid crystal material that meets operation to 85°C has been screened. Thin film heaters have been explored to obtain -40°C operation. Sunlight viewability has been improved and system colors have been matched to standard vacuum fluorescent automotive instrumentation. Successful completion of automotive humidity and thermal cycling tests have led to the adaptation of a flex connector.

  5. Nonlinear Optical Effects in Liquid Crystals.

    DTIC Science & Technology

    1980-12-10

    nematic MBBA is studied. The experiments involve the detection of optical radiation at second- harmonic frequency when aligned thin film liquid crystals...studied. The experiments involve the detection of optical radiation at second-harmonic frequency when aligned thin film liquid crystals sam- ples are...used in our experiments. The shematic circuit diagram is shown in Fig. 7. A resistance sensing bridge network is used with a thermistor sensor and a

  6. Development of liquid crystal infrared imaging sensors

    NASA Astrophysics Data System (ADS)

    Finnemeyer, Valerie

    Outside of the display industry, liquid crystals have been used to create many optical components across a wide range of applications. Their variable anisotropic properties give them the unique capability to replace more complex and expensive and less rugged components in a number of imaging applications across the electro-magnetic spectrum. In this dissertation, two key infrared imaging applications for liquid crystal sensors are described. In the long-wave infrared range, liquid crystals can be used for thermal imaging. However, this application requires pre-formed microcavities with only one fill port. This makes it extremely difficult to generate high-quality alignment for the liquid crystals. As such, a method of infusing an azo dye photoalignment layer into these microcavities is developed to align the liquid crystals. The use of a surface-localized polymer layer which is infused into the microcavities mixed with the liquid crystal is demonstrated to stabilize the alignment layer against subsequent exposure to light. Evidence is provided that infused photoalignment layers cannot be considered equivalent to spun photoalignment layers; there are several key factors which affect the quality of the infused layers, which are demonstrated in bulk liquid crystal cells. Several factors that affect the ability of the surface-localized polymer layer to stabilize the photoalignment layer are also considered. Finally, these methods are extended to the development of stable photoaligned microcavities for the thermal imaging application. Next, a birefringent Fourier-transform imaging spectrometer is described which operates in the near-infrared range. A modification to an existing birefringent design is described which offers significant field-of-view improvements. The relative trade-offs of incorporating liquid crystal variable elements into this design are considered. The majority of this work is completed using computer simulation of the propagation of light through the

  7. Optofluidics based on liquid crystal microflows

    NASA Astrophysics Data System (ADS)

    Vasdekis, A. E.; Cuennet, J. G.; De Sio, L.; Psaltis, D.

    2011-10-01

    By replacing common buffers with anisotropic liquids in microfluidics, an enhanced range of optofluidic functionalities is enabled. Such an anisotropic liquid is nematic liquid crystals (NLC), which exhibits optical properties that can be tuned by optical, electrical or mechanical fields, such as flow. We demonstrate an optofluidic modulator based on direct flow of nematic liquid crystals in microfluidic channels. We discuss this optofluidic paradigm both under steady state conditions, and under flow. Rapid pulsatile flows are detrimental towards more compact and ultra-fast devices. These were enabled via peristaltic pumps, demonstrating liquid crystal modulators operating above the limit of 3 kHz. We discuss the latter results, but also assess the feasibility of performing ultra-fast optics and additional functionalities for on- and off-chip imaging.

  8. Vacuum pyrolysis characteristics and kinetic analysis of liquid crystal from scrap liquid crystal display panels.

    PubMed

    Chen, Ya; Zhang, Lingen; Xu, Zhenming

    2017-04-05

    Recycling of waste liquid crystal display (LCD) panels is an urgent task with the rapid expanding LCD market. However, as important composition of LCD panels, the treatment of liquid crystal is seldom concerned for its low concentration. In present study, a stripping product enriched liquid crystal and indium is gained by mechanical stripping process, in which liquid crystal is enriched from 0.3wt.% to 53wt.% and indium is enriched from 0.02wt.% to 7.95wt.%. For the stripping product, liquid crystal should be removed before indium recovery because (a) liquid crystal will hinder indium recycling; (b) liquid crystal is hazardous waste. Hence, an effective and green approach by vacuum pyrolysis is proposed to treat liquid crystal in the stripping product. The results are summarized as: (i) From the perspective of apparent activation energy, the advantages of vacuum pyrolysis is expounded according to kinetic analysis. (ii) 89.10wt.% of liquid crystal is converted and the content of indium in residue reaches 14.18wt.% under 773K, 15min and system pressure of 20Pa. This study provides reliable information for further industrial application and an essential pretreatment for the next step of indium recycling.

  9. Liquid crystal optical fibers for sensing applications

    NASA Astrophysics Data System (ADS)

    Choudhury, P. K.

    2013-09-01

    Propagation characteristics of optical fibers are greatly dependent on materials, which the guides are comprised of. Varieties of materials have been developed and investigated for their usage in fabricating optical fibers for specific applications. Within the context, a liquid crystal medium is both inhomogeneous and optically anisotropic, and fibers made of such mediums are greatly useful. Also, liquid crystals exhibit strong electro-optic behavior, which allows alternation in their optical properties under the influence of external electric fields. These features make liquid crystal fibers greatly important for optical applications. The present communication is aimed at providing a glimpse of the efficacy of liquid crystals and/or fibers made of liquid crystals, followed by the analytical investigation of wave propagation through such guides. The sustainment of modes is explored in these fibers under varying fiber dimensions, and the novelty is discussed. The case of tapered liquid crystal fibers is also briefly discussed highlighting the usefulness. Control on the dispersion characteristics of such fibers may be imposed by making the guide even more complex; the possibility of devising such options is also touched upon.

  10. Molecular Models of Liquid Crystal Elastomers

    NASA Astrophysics Data System (ADS)

    Rajshekhar

    Liquid crystal elastomers combine the elastic properties of conventional rubbers with the optical properties of liquid crystals. This dual nature gives rise to unusual physical properties, including the stress induced transition from a polydomain state, consisting of multiple nematic regions with independent orientations, to a monodomain state consisting of a single nematic region with a uniform director. We propose several molecular-scale coarse-grained models of liquid crystal elastomers with varying degrees of resolution. The models employ the Gay-Berne soft potential, and exhibit the chain connectivity of a diamond network. Simulation results show that these models are able to capture the polydomain state exhibited by liquid crystal elastomers in the absence of any external stress. When subjected to uniaxial stress, our models exhibit a polydomain to monodomain transition. We explain that the polydomain state occurs through the aggregation of liquid crystal molecules assisted by crosslinking sites, and conclude that the transition mechanism to the monodomain state is based on the reorientation of nematic domains along the direction of applied stress. Our modeling efforts are primarily focused on three models. The first two models consider the effects of rigid and flexible crosslinkers in liquid crystal elastomers with a diamond topology for chain connectivity. The third model deviates from the diamond network topology and adopts a random network topology.

  11. 21 CFR 880.6970 - Liquid crystal vein locator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Liquid crystal vein locator. 880.6970 Section 880... Devices § 880.6970 Liquid crystal vein locator. (a) Identification. A liquid crystal vein locator is a... skin by displaying the color changes of heat sensitive liquid crystals (cholesteric esters)....

  12. 21 CFR 880.6970 - Liquid crystal vein locator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Liquid crystal vein locator. 880.6970 Section 880... Devices § 880.6970 Liquid crystal vein locator. (a) Identification. A liquid crystal vein locator is a... skin by displaying the color changes of heat sensitive liquid crystals (cholesteric esters). (b...

  13. 21 CFR 880.6970 - Liquid crystal vein locator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Liquid crystal vein locator. 880.6970 Section 880... Devices § 880.6970 Liquid crystal vein locator. (a) Identification. A liquid crystal vein locator is a... skin by displaying the color changes of heat sensitive liquid crystals (cholesteric esters). (b...

  14. 21 CFR 880.6970 - Liquid crystal vein locator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Liquid crystal vein locator. 880.6970 Section 880... Devices § 880.6970 Liquid crystal vein locator. (a) Identification. A liquid crystal vein locator is a... skin by displaying the color changes of heat sensitive liquid crystals (cholesteric esters). (b...

  15. 21 CFR 880.6970 - Liquid crystal vein locator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Liquid crystal vein locator. 880.6970 Section 880... Devices § 880.6970 Liquid crystal vein locator. (a) Identification. A liquid crystal vein locator is a... skin by displaying the color changes of heat sensitive liquid crystals (cholesteric esters). (b...

  16. Semiconductor liquid crystal composition and methods for making the same

    DOEpatents

    Alivisatos, A. Paul; Li, Liang-shi

    2005-04-26

    Semiconductor liquid crystal compositions and methods for making such compositions are disclosed. One embodiment of the invention is directed to a liquid crystal composition including a solvent and semiconductor particles in the solvent. The solvent and the semiconductor particles are in an effective amount in the liquid crystal composition to form a liquid crystal phase.

  17. Nanoscale Positional Order Correlations: Swarms, Cybotactic Groups, Clusters, and Pretransitional Fluctuations in Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Kumar, Satyendra; Agra-Kooijman, Dena; Acharya, Bharat

    2012-02-01

    Short-range molecular associations in organic liquids were first described as ``cybotactic'' groups [1] followed by the development of the swarm theory [2] to explain the structure, strong light scattering, and flow behavior of the nematic (N) liquid crystal phase. However, these ideas became inconsequential with the advent of the Oseen-Frank's continuum theory [3]. In 1970, de Vries reinvoked cybotactic groups for the N phase of bis-(4'-n-octyloxybenzal)-2-chloro-l,4-phenylenediamine. These were eventually understood to be SmC pretransitional fluctuations, i.e., small correlated regions of the lower symmetry phase near the transition. Thermotropic biaxial mesophases have resurrected the faith in cybotacticity in the guise of a new word - ``clusters''. Previous x-ray studies of normal organic fluids, and calamitic, lyotropic, and bent-core mesogens show that these clusters fall into three groups depending on the relative contributions of normal liquid structure and pretransitional fluctuations. A comparison with other organic and inorganic fluids will also be made.[4pt] [1] G.W. Stewart, Phys. Rev. 35, 726 (1930).[0pt] [2] L.S. Ornestein and W. Kast, Trans. Farad. Soc. 29, 931 (1933).[0pt] [3] FC Frank, Discuss. Faraday Soc. 25, 19 (1958); W. Oseen, Ark. Mat., Astron. Fys. 19, 1 (1925).

  18. Electro-osmosis in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Tovkach, O. M.; Carme Calderer, M.; Golovaty, Dmitry; Lavrentovich, Oleg; Walkington, Noel J.

    2016-04-01

    We derive a mathematical model of a nematic electrolyte based on a variational formulation of nematodynamics. Extending our previous work, we consider a general setup which incorporates dielectric anisotropy of the liquid-crystalline matrix and the full set of nematic viscosities. We verify the model by comparing its predictions to the results of the experiments on the substrate-controlled liquid-crystal-enabled electrokinetics. In the experiments a nematic liquid crystal confined to a thin planar cell with surface-patterned anchoring conditions exhibit electro-osmotic flows along the "guiding rails" imposed by the spatially varying director.

  19. Atomic force microscopy on liquid crystals

    NASA Astrophysics Data System (ADS)

    Bahr, Christian; Schulz, Benjamin

    This chapter provides an introduction to the atomic force microscopy (AFM) on thermotropic liquid crystals. We first give a general introduction to the technique of AFM and then describe the special requirements that have to be met for the imaging of liquid-crystalline surfaces. We also discuss the relation between the quality or reliability of the imaging results and various parameters of the scanning conditions. We briey review the existing work on AFM on liquid crystals and finally describe applications beyond the imaging, such as molecular force spectroscopy or manipulation of surface structures.

  20. Electro-osmosis in nematic liquid crystals.

    PubMed

    Tovkach, O M; Calderer, M Carme; Golovaty, Dmitry; Lavrentovich, Oleg; Walkington, Noel J

    2016-07-01

    We derive a mathematical model of a nematic electrolyte based on a variational formulation of nematodynamics. We verify the model by comparing its predictions to the results of the experiments on the substrate-controlled liquid-crystal-enabled electrokinetics. In the experiments, a nematic liquid crystal confined to a thin planar cell with surface-patterned anchoring conditions exhibits electro-osmotic flows along the "guiding rails" imposed by the spatially varying director. Extending our previous work, we consider a general setup which incorporates dielectric anisotropy of the liquid-crystalline matrix and the full set of nematic viscosities.

  1. Electro-osmosis in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Tovkach, O. M.; Calderer, M. Carme; Golovaty, Dmitry; Lavrentovich, Oleg; Walkington, Noel J.

    2016-07-01

    We derive a mathematical model of a nematic electrolyte based on a variational formulation of nematodynamics. We verify the model by comparing its predictions to the results of the experiments on the substrate-controlled liquid-crystal-enabled electrokinetics. In the experiments, a nematic liquid crystal confined to a thin planar cell with surface-patterned anchoring conditions exhibits electro-osmotic flows along the "guiding rails" imposed by the spatially varying director. Extending our previous work, we consider a general setup which incorporates dielectric anisotropy of the liquid-crystalline matrix and the full set of nematic viscosities.

  2. The Effect of Electroporation of a Lyotroic Liquid Crystal Genistein-Based Formulation in the Recovery of Murine Melanoma Lesions.

    PubMed

    Danciu, Corina; Berkó, Szilvia; Varju, Gábor; Balázs, Boglárka; Kemény, Lajos; Németh, István Balázs; Cioca, Andreea; Petruș, Alexandra; Dehelean, Cristina; Cosmin, Citu Ioan; Amaricai, Elena; Toma, Claudia Crina

    2015-07-08

    A lamellar lyotropic liquid crystal genistein-based formulation (LLC-Gen) was prepared in order to increase the aqueous solubility of the lipophilic phytocompound genistein. The formulation was applied locally, in a murine model of melanoma, with or without electroporation. The results demonstrated that, when the formulation was applied by electroporation, the tumors appeared later. During the 21 days of the experiment, the LLC-Gen formulation decreased the tumor volume, the amount of melanin and the degree of erythema, but when electroporation was applied, all these parameters indicated a better prognosis even (lower tumor volume, amount of melanin and degree of erythema). Although hematoxylin-eosin (HE) staining confirmed the above events, application of the LLC-Gen formulation by electroporation did not lead to a significant effect in terms of the serum concentrations of the protein S100B and serum neuron specific enolase (NSE), or the tissue expression of the platelet-derived growth factor receptor β (PDGFRβ) antibody.

  3. Pyroelectric manipulation of liquid crystal droplets

    NASA Astrophysics Data System (ADS)

    Merola, F.; Grilli, S.; Coppola, S.; Vespini, V.; De Nicola, S.; Maddalena, P.; Carfagna, C.; Ferraro, P.

    2013-04-01

    Very interesting effects can be observed in maneuvering nematic liquid crystal (NLC) droplets onto functionalized polar lithium niobate (LN) crystal surfaces, covered with thin films of Polydimethylsiloxane (PDMS). It has been discovered that pyroelectric effect is able to drive a reversible fragmentation process in liquid crystal drops, starting from nanoliter drops and obtaining pico/femtoliter droplets. These small droplets are patterned according to the geometry of the substrate and aligned along the electric field lines. This novel approach for manipulating different classes of liquids by exploiting the pyroelectric effect, where the strong electric fields generated allow to manipulate liquids in 2D on a substrate or even in 3D, has been recently discovered and exploited for different purposes. In particular, manipulation of liquid crystals by a thermal stimulus could be suitable for applications such as spatial modulation of the wettability (i.e. wettability patterning), or, in principle, a dynamical optical element able to switch from a diffuser (fragmentation) state to a microlens array. Moreover, the biocompatibility of some kinds of nematic or cholesteric liquid crystals makes them suitable as biomaterials for applications in biology and tissue engineering.

  4. Liquid nitrogen dewar for protein crystal growth

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Gaseous Nitrogen Dewar apparatus developed by Dr. Alex McPherson of the University of California, Irvine for use aboard Mir and the International Space Station allows large quantities of protein samples to be crystallized in orbit. The specimens are contained either in plastic tubing (heat-sealed at each end). Biological samples are prepared with a precipitating agent in either a batch or liquid-liquid diffusion configuration. The samples are then flash-frozen in liquid nitrogen before crystallization can start. On orbit, the Dewar is placed in a quiet area of the station and the nitrogen slowly boils off (it is taken up by the environmental control system), allowing the proteins to thaw to begin crystallization. The Dewar is returned to Earth after one to four months on orbit, depending on Shuttle flight opportunities. The tubes then are analyzed for crystal presence and quality

  5. Liquid nitrogen dewar for protein crystal growth

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Gaseous Nitrogen Dewar apparatus developed by Dr. Alex McPherson of the University of California, Irvine for use aboard Mir and the International Space Station allows large quantities of protein samples to be crystallized in orbit. The specimens are contained either in plastic tubing (heat-sealed at each end). Biological samples are prepared with a precipitating agent in either a batch or liquid-liquid diffusion configuration. The samples are then flash-frozen in liquid nitrogen before crystallization can start. On orbit, the Dewar is placed in a quiet area of the station and the nitrogen slowly boils off (it is taken up by the environmental control system), allowing the proteins to thaw to begin crystallization. The Dewar is returned to Earth after one to four months on orbit, depending on Shuttle flight opportunities. The tubes then are analyzed for crystal presence and quality

  6. Solid microparticles in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Muševič, Igor

    A brief historic overview of colloidal experiments in the 1990's is given in the introduction. These experiments have later inspired research on nematic colloids, after the technique of laser tweezers manipulation of particles was introduced to this field. Basic topological properties of colloidal inclusions in the nematic liquid crystals are discussed and the nematic-mediated forces between dipolar and quadrupolar colloidal particles in bulk nematic are explained. Structural and topological properties of 2D and 3D colloidal crystals and superstructures made of colloidal particles of different size and symmetry in bulk nematic liquid crystal are described. Laser-tweezer manipulation and rewiring of topological defect loops around colloidal particles is introduced. This results in the colloidal entanglement, as well as knotting and linking of defect loops of the order parameter field. Shape and size-dependent colloidal interactions in the nematic liquid crystals are reviewed. The chapter concludes with the discussion of bulk chiral nematic and blue phase colloids.

  7. Tetrahedral Order in Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Pleiner, Harald; Brand, Helmut R.

    2016-10-01

    We review the impact of tetrahedral order on the macroscopic dynamics of bent-core liquid crystals. We discuss tetrahedral order comparing with other types of orientational order, like nematic, polar nematic, polar smectic, and active polar order. In particular, we present hydrodynamic equations for phases, where only tetrahedral order exists or tetrahedral order is combined with nematic order. Among the latter, we discriminate between three cases, where the nematic director (a) orients along a fourfold, (b) along a threefold symmetry axis of the tetrahedral structure, or (c) is homogeneously uncorrelated with the tetrahedron. For the optically isotropic T d phase, which only has tetrahedral order, we focus on the coupling of flow with, e.g., temperature gradients and on the specific orientation behavior in external electric fields. For the transition to the nematic phase, electric fields lead to a temperature shift that is linear in the field strength. Electric fields induce nematic order, again linear in the field strength. If strong enough, electric fields can change the tetrahedral structure and symmetry leading to a polar phase. We briefly deal with the T phase that arises when tetrahedral order occurs in a system of chiral molecules. To case (a), defined above, belong (i) the non-polar, achiral, optically uniaxial D2d phase with ambidextrous helicity (due to a linear gradient free energy contribution) and with orientational frustration in external fields, (ii) the non-polar tetragonal S4 phase, (iii) the non-polar, orthorhombic D2 phase that is structurally chiral featuring ambidextrous chirality, (iv) the polar orthorhombic C2v phase, and (v) the polar, structurally chiral, monoclinic C2 phase. Case (b) results in a trigonal C3v phase that behaves like a biaxial polar nematic phase. An example for case (c) is a splay bend phase, where the ground state is inhomogeneous due to a linear gradient free energy contribution. Finally, we discuss some experiments

  8. Key Developments in Ionic Liquid Crystals.

    PubMed

    Alvarez Fernandez, Alexandra; Kouwer, Paul H J

    2016-05-16

    Ionic liquid crystals are materials that combine the classes of liquid crystals and ionic liquids. The first one is based on the multi-billion-dollar flat panel display industry, whilst the latter quickly developed in the past decades into a family of highly-tunable non-volatile solvents. The combination yields materials with a unique set of properties, but also with many challenges ahead. In this review, we provide an overview of the key concepts in ionic liquid crystals, particularly from a molecular perspective. What are the important molecular parameters that determine the phase behavior? How should they be introduced into the molecules? Finally, which other tools does one have to realize specific properties in the material?

  9. Key Developments in Ionic Liquid Crystals

    PubMed Central

    Alvarez Fernandez, Alexandra; Kouwer, Paul H. J.

    2016-01-01

    Ionic liquid crystals are materials that combine the classes of liquid crystals and ionic liquids. The first one is based on the multi-billion-dollar flat panel display industry, whilst the latter quickly developed in the past decades into a family of highly-tunable non-volatile solvents. The combination yields materials with a unique set of properties, but also with many challenges ahead. In this review, we provide an overview of the key concepts in ionic liquid crystals, particularly from a molecular perspective. What are the important molecular parameters that determine the phase behavior? How should they be introduced into the molecules? Finally, which other tools does one have to realize specific properties in the material? PMID:27196890

  10. Liquid crystal quantitative temperature measurement technique

    NASA Astrophysics Data System (ADS)

    Lu, Wei; Wu, Zongshan

    2001-10-01

    Quantitative temperature measurement using wide band thermochromic liquid crystals is an “area” thermal measurement technique. This technique utilizes the feature that liquid crystal changes its reflex light color with variation of temperature and applies an image capturing and processing system to calibrate the characteristic curve of liquid crystal’s color-temperature. Afterwards, the technique uses this curve to measure the distribution of temperature on experimental model. In this paper, firstly, each part of quantitative temperature measurement system using liquid crystal is illustrated and discussed. Then the technique is employed in a long duration hypersonic wind tunnel, and the quantitative result of the heat transfer coefficient along laminar plate is obtained. Additionally, some qualitative results are also given. In the end, comparing the experimental results with reference enthalpy theoretical results, a conclusion of thermal measurement accuracy is drawn.

  11. Phase diagram of the cholesteric lyotropic mesophase potassium laurate/1-decanol/D/sub 2/O/brucine sulfate/ferrofluid

    SciTech Connect

    Neto, A.M.F.; Helene, M.E.M.

    1987-03-12

    A surface of the phase diagram of the cholesteric lyotropic liquid crystal potassium laurate/1-decanol/D/sub 2/O/brucine sulfate heptahydrate/ferrofluid is studied by optical microscopy and X-ray diffraction as a function of the temperature and the relative molar concentration of brucine. The cholesteric pitches as a function of the brucine content are shown to have two independent behaviors for low and high brucine concentration. The brucine doping and its influence in favoring the cholesteric discotic phase formation are discussed in terms of the brucine packing at the electric double layer and its influence on the orientational fluctuations.

  12. Polymer's anchoring behavior in liquid crystal cells

    NASA Astrophysics Data System (ADS)

    Cui, Yue

    The current dissertation mainly discusses about the polymers anchoring behavior in liquid crystal cells in two aspects: surface interaction and bulk interaction. The goal of the research is to understand the fundamental physics of anchoring strength and apply the knowledge to liquid crystal display devices. Researchers proposed two main contributors to the surface anchoring strength: the micro grooves generated by external force and the polymer chain's alignment. Both of them has experimental proofs. In the current study, explorations were made to understand the mechanisms of surface anchoring strength and easy axis of surface liquid crystal provided by rubbed polymer alignment layer. The work includes not only the variation of the alignment layer itself such as thickness(Chapter 3) and polymer side chain (Chapter 5), but also the variation of external conditions such as temperature (Chapter 4) and rubbing condition (Chapter 6). To determine the polar and azimuthal anchoring strengths, Rapini-Papoular's expression was applied. However, it was discovered that higher order terms may be required in order to fit the experimental result or theoretically predict unique anchoring behaviors (Chapter 2, Chapter 6). SEM and AFM technologies were introduced to gather the actual structures of polymer alignment layer and extrapolate the alignment of liquid crystal in a micro scale. The result shows that the anchoring strength can be adjusted by the layer thickness, side chain structure, while the easy axis direction can be adjusted by a second rubbing direction. In addition, different anchoring conditions combined with liquid crystal's elastic energy can generate quite different forms of liquid crystals (Chapter 7). In the study of bulk alignment, the main contrition from the current dissertation is applying the understanding of anchoring behavior to optimizing actual switchable devices. Conventional PDLC performance can be tuned with the knowledge of the polymer and the liquid

  13. Charge transfer reactions in nematic liquid crystals

    SciTech Connect

    Wiederrecht, G.P.; Wasielewski, M.R. |; Galili, T.; Levanon, H.

    1998-07-01

    Ultrafast transient absorption studies of intramolecular photoinduced charge separation and thermal charge recombination were carried out on a molecule consisting of a 4-(N-pyrrolidino)naphthalene-1,8-imide donor (PNI) covalently attached to a pyromellitimide acceptor (PI) dissolved in the liquid crystal 4{prime}-(n-pentyl)-4-cyanobiphenyl (5CB). The temperature dependencies of the charge separation and recombination rates were obtained at temperatures above the nematic-isotropic phase transition of 5CB, where ordered microdomains exist and scattering of visible light by these domains is absent. The authors show that excited state charge separation is dominated by molecular reorientation of 5CB perpendicular to the director within the liquid crystal microdomains. They also show that charge recombination is adiabatic and is controlled by the comparatively slow collective reorientation of the liquid crystal microdomains relative to the orientation of PNI{sup +}-PI{sup {minus}}. They also report the results of time resolved electron paramagnetic resonance (TREPR) studies of photoinduced charge separation in a series of supramolecular compounds dissolved in oriented liquid crystal solvents. These studies permit the determination of the radical pair energy levels as the solvent reorganization energy increases from the low temperature crystalline phase, through the soft glass phase, to the nematic phase of the liquid crystal.

  14. Liquid crystals of self-assembled DNA bottlebrushes.

    PubMed

    Storm, Ingeborg M; Kornreich, Micha; Hernandez-Garcia, Armando; Voets, Ilja K; Beck, Roy; Cohen Stuart, Martien A; Leermakers, Frans A M; de Vries, Renko

    2015-03-12

    Early theories for bottlebrush polymers have suggested that the so-called main-chain stiffening effect caused by the presence of a dense corona of side chains along a central main chain should lead to an increased ratio of effective persistence length (lp,eff) over the effective thickness (Deff) and, hence, ultimately to lyotropic liquid crystalline behavior. More recent theories and simulations suggest that lp,eff ∼ Deff, such that no liquid crystalline behavior is induced by bottlebrushes. In this paper we investigate experimentally how lyotropic liquid crystalline behavior of a semiflexible polymer is affected by a dense coating of side chains. We use semiflexible DNA as the main chain. A genetically engineered diblock protein polymer C4K12 is used to physically adsorb long side chains on the DNA. The C4K12 protein polymer consists of a positively charged binding block (12 lysines, K12) and a hydrophilic random coil block of 400 amino acids (C4). From light scattering we find that, at low ionic strength (10 mM Tris-HCl), the thickness of the self-assembled DNA bottlebrushes is on the order of 30 nm and the effective grafting density is 1 side chain per 2.7 nm of DNA main chain. We find these self-assembled DNA bottlebrushes form birefringent lyotropic liquid crystalline phases at DNA concentrations as low as 8 mg/mL, roughly 1 order of magnitude lower than for bare DNA. Using small-angle X-ray scattering (SAXS) we show that, at DNA concentrations of 12 mg/mL, there is a transition to a hexagonal phase. We also show that, while the effective persistence length increases due to the bottlebrush coating, the effective thickness of the bottlebrush increases even more, such that in our case the bottlebrush coating reduces the effective aspect ratio of the DNA. This is in agreement with theoretical estimates that show that, in most cases of practical interest, a bottlebrush coating will lead to a decrease of the effective aspect ratio, whereas, only for bottlebrushes

  15. Characterising laser beams with liquid crystal displays

    NASA Astrophysics Data System (ADS)

    Dudley, Angela; Naidoo, Darryl; Forbes, Andrew

    2016-02-01

    We show how one can determine the various properties of light, from the modal content of laser beams to decoding the information stored in optical fields carrying orbital angular momentum, by performing a modal decomposition. Although the modal decomposition of light has been known for a long time, applied mostly to pattern recognition, we illustrate how this technique can be implemented with the use of liquid-crystal displays. We show experimentally how liquid crystal displays can be used to infer the intensity, phase, wavefront, Poynting vector, and orbital angular momentum density of unknown optical fields. This measurement technique makes use of a single spatial light modulator (liquid crystal display), a Fourier transforming lens and detector (CCD or photo-diode). Such a diagnostic tool is extremely relevant to the real-time analysis of solid-state and fibre laser systems as well as mode division multiplexing as an emerging technology in optical communication.

  16. Polymer-dispersed liquid crystal elastomers

    NASA Astrophysics Data System (ADS)

    Rešetič, Andraž; Milavec, Jerneja; Zupančič, Blaž; Domenici, Valentina; Zalar, Boštjan

    2016-10-01

    The need for mechanical manipulation during the curing of conventional liquid crystal elastomers diminishes their applicability in the field of shape-programmable soft materials and future applications in additive manufacturing. Here we report on polymer-dispersed liquid crystal elastomers, novel composite materials that eliminate this difficulty. Their thermal shape memory anisotropy is imprinted by curing in external magnetic field, providing for conventional moulding of macroscopically sized soft, thermomechanically active elastic objects of general shapes. The binary soft-soft composition of isotropic elastomer matrix, filled with freeze-fracture-fabricated, oriented liquid crystal elastomer microparticles as colloidal inclusions, allows for fine-tuning of thermal morphing behaviour. This is accomplished by adjusting the concentration, spatial distribution and orientation of microparticles or using blends of microparticles with different thermomechanical characteristics. We demonstrate that any Gaussian thermomechanical deformation mode (bend, cup, saddle, left and right twist) of a planar sample, as well as beat-like actuation, is attainable with bilayer microparticle configurations.

  17. Microfluidic flow of cholesteric liquid crystals.

    PubMed

    Wiese, Oliver; Marenduzzo, Davide; Henrich, Oliver

    2016-11-16

    We explore the rheology and flow-induced morphological changes of cholesteric liquid crystal patterns subject to Poiseuille flow within a slab geometry, and under different anchoring conditions at the wall. Our focus is particularly on the behaviour of "Cholesteric Fingers of the first kind" and of Blue Phase II. Depending on the applied pressure gradient, we observe a number of dynamic regimes with different rheological properties. Our results provide the first insight into the flow response of cholesteric phases with fully two- or three-dimensional director field patterns and normal and planar degenerate anchoring conditions as commonly realised in experiments. They are also of high relevance for a fundamental understanding of complex liquid crystals in confinement and an important step towards future microfluidic applications that are based on cholesteric liquid crystals.

  18. Optical Properties of Liquid Crystal Elastomers

    NASA Astrophysics Data System (ADS)

    Khosla, Samriti; Lal, Suman; Tripathi, S. K.; Sood, Nitin; Singh, Darshan

    2011-12-01

    The linking of liquid crystals polymer chains together into gel network fixes their topology, and melt becomes an elastic solid. These materials are called liquid crystals elastomers. Liquid crystal elastomers possess properties of soft elasticity and spontaneous shape change. The constituent molecules of LCEs are orientationally ordered and there exist a strong coupling between the orientational order and mechanical strain. In LCEs the molecules start elongate when their component rods orient and reversibly contract when the order is lost (typically by heating). So there is a change of average molecular shape from spherical to spheroidal. These unique properties make these materials suitable for future biological applications. Various research groups have studied different properties of LCEs in which optical properties are predominant. LCE has been synthesized in our laboratory. In this paper, we report on the optical behavior of this material.

  19. Topology and bistability in liquid crystal devices.

    PubMed

    Majumdar, A; Newton, C J P; Robbins, J M; Zyskin, M

    2007-05-01

    We study nematic liquid crystal configurations in a prototype bistable device -- the post aligned bistable nematic (PABN) cell. Working within the Oseen-Frank continuum model, we describe the liquid crystal configuration by a unit-vector field n , in a model version of the PABN cell. First, we identify four distinct topologies in this geometry. We explicitly construct trial configurations with these topologies which are used as initial conditions for a numerical solver, based on the finite-element method. The morphologies and energetics of the corresponding numerical solutions qualitatively agree with experimental observations and suggest a topological mechanism for bistability in the PABN cell geometry.

  20. Dynamic Theory of Polydomain Liquid Crystal Elastomers.

    PubMed

    Duzgun, Ayhan; Selinger, Jonathan V

    2015-10-30

    When liquid crystal elastomers are prepared without any alignment, disordered polydomain structures emerge as the materials are cooled into the nematic phase. These polydomain structures are often attributed to quenched disorder in the cross-linked polymer network. As an alternative explanation, we develop a theory for the dynamics of the isotropic-nematic transition in liquid crystal elastomers, and show that the dynamics can induce a polydomain structure with a characteristic length scale, through a mechanism analogous to the Cahn-Hilliard equation for phase separation.

  1. Chirality and biaxiality in cholesteric liquid crystals.

    PubMed

    Dhakal, Subas; Selinger, Jonathan V

    2011-02-01

    We investigate the statistical mechanics of chirality and biaxiality in liquid crystals through a variety of theoretical approaches, including Monte Carlo simulations, lattice mean-field theory, and Landau theory. All of these calculations show that there is an important interaction between cholesteric twist and biaxial order: The twist acts as a field on the biaxial order, and conversely, the biaxial order increases the twist, that is, reduces the pitch. We model the behavior of chiral biaxial liquid crystals as a function of temperature and discuss how the predictions can be tested in experiments.

  2. Hydrodynamics and Rheology of Active Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Cui, Zhenlu

    2012-02-01

    Active liquid crystals such as swimming bacteria, active gels and assemblies of motors and filaments are active complex fluids. Such systems differ from their passive counterparts in that particles absorb energy and generate motion. They are interesting from a more fundamental perspective as their dynamic phenomenons are both physically fascinating and potentially of great biological significance. In this talk, I will present a continuum model for active liquid crystals and analyze the behavior of a suspension subjected to a weak Poiseuille flow. Hydrodynamics, stability and rheology will also be discussed.

  3. Statistical foundations of liquid-crystal theory

    PubMed Central

    Seguin, Brian; Fried, Eliot

    2013-01-01

    Working on a state space determined by considering a discrete system of rigid rods, we use nonequilibrium statistical mechanics to derive macroscopic balance laws for liquid crystals. A probability function that satisfies the Liouville equation serves as the starting point for deriving each macroscopic balance. The terms appearing in the derived balances are interpreted as expected values and explicit formulas for these terms are obtained. Among the list of derived balances appear two, the tensor moment of inertia balance and the mesofluctuation balance, that are not standard in previously proposed macroscopic theories for liquid crystals but which have precedents in other theories for structured media. PMID:23554513

  4. Crystals, liquid crystals and superfluid helium on curved surfaces

    NASA Astrophysics Data System (ADS)

    Vitelli, Vincenzo

    In this thesis we study the ground state of ordered phases grown as thin layers on substrates with smooth spatially varying Gaussian curvature. The Gaussian curvature acts as a source for a one body potential of purely geometrical origin that controls the equilibrium distribution of the defects in liquid crystal layers, thin films of He4 and two dimensional crystals on a frozen curved surface. For superfluids, all defects are repelled (attracted) by regions of positive (negative) Gaussian curvature. For liquid crystals, charges between 0 and 4pi are attracted by regions of positive curvature while all other charges are repelled. As the thickness of the liquid crystal film increases, transitions between two and three dimensional defect structures are triggered in the ground state of the system. Thin spherical shells of nematic molecules with planar anchoring possess four short 12 disclination lines but, as the thickness increases, a three dimensional escaped configuration composed of two pairs of half-hedgehogs becomes energetically favorable. Finally, we examine the static and dynamical properties that distinguish two dimensional crystals constrained to lie on a curved substrate from their flat space counterparts. A generic mechanism of dislocation unbinding in the presence of varying Gaussian curvature is presented. We explore how the geometric potential affects the energetics and dynamics of dislocations and point defects such as vacancies and interstitials.

  5. Reversed hexagonal lyotropic liquid-crystal and open-shell glycodendrimers as potential vehicles for sustained release of sodium diclofenac.

    PubMed

    Bitan-Cherbakovsky, Liron; Libster, Dima; Appelhans, Dietmar; Voit, Brigitte; Aserin, Abraham; Garti, Nissim

    2014-04-10

    The effect of second, third, and fifth generations of poly(propylene imine) glycodendrimers-open maltose shell (PPI-Mal) on reverse hexagonal (HII) mesophase and on the release of sodium diclofenac (Na-DFC) drug was investigated. The HII mesophase comprised glycerol monooleate (GMO)/tricaprylin (TAG) in a weight ratio of 90/10 and 20 wt % water (+0.5 wt % PPI-Mal of each generation) without or with 0.25 wt % (Na-DFC). The microstructural characteristics of these systems were determined by small-angle X-ray scattering; attenuated total reflectance Fourier transform infrared was used to characterize the molecular level interactions and the location of the PPI-Mal. Third-and fifth-generation PPI-Mal, because of their maltose groups, interact mainly with the bulk water within the cylinders of the HII and strongly bind the water molecules, as manifested by the decrease in the lattice parameter and dehydration of the lipid headgroups. Co-solubilization of Na-DFC with the third and fifth generations caused competition of the two host compounds for water binding and induced relocation of the drug from the bulk water to the GMO-water interface. In vitro release of Na-DFC from the HII showed that the release process was faster in the systems with third- and fifth-generation PPI-Mal compared with the control and second-generation systems.

  6. Initiatorless Photopolymerization of Liquid Crystal Monomers.

    PubMed

    Lee, Kyung Min; Ware, Taylor H; Tondiglia, Vincent P; McBride, Matthew K; Zhang, Xinpeng; Bowman, Christopher N; White, Timothy J

    2016-10-04

    Liquid crystal monomers are widely employed in industry to prepare optical compensating films as well as extend or enhance the properties of certain display modes. Because of the thermotropic nature of liquid crystalline materials, polymerization of liquid crystalline monomers (sometimes referred to as reactive mesogens) is often initiated by radical photoinitiation (photopolymerization) of (meth)acrylate functional groups. Here, we report on the initiatorless photopolymerization of commercially available liquid crystalline monomers upon exposure to 365 nm UV light. Initiatorless polymerization is employed to prepare thin films as well as polymer stabilizing networks in mixtures with low-molar-mass liquid crystals. EPR and FTIR confirm radical generation upon exposure to 365 nm light and conversion of the acrylate functional groups. A potential mechanism is proposed, informed by control experiments that indicate that the monomers undergo a type II Norrish mechanism. The initiatorless polymerization of the liquid crystalline monomers yield liquid crystalline polymer networks with mechanical properties that can be equal to those prepared with conventional radical photoinitiators. We demonstrate that initiatorless polymerization of display modes significantly increases the voltage holding ratio, which could result in a reduction in drive voltages in flat-panel televisions and hand-held devices, extending battery life and reducing power consumption.

  7. Investigations into complex liquid crystal mixtures

    NASA Astrophysics Data System (ADS)

    Kirchhoff, Jennifer

    Liquid crystal phases exhibit physical characteristics that lie between those of liquid and crystal phases. The many liquid crystal sub-phases are defined based on the degree of positional and orientational ordering the molecules have and the materials that make up these liquid crystal phases. This thesis presents a study of the molecular packing and physical properties of complex liquid crystal phases using dopants to better examine the stability and packing mechanisms of these phases. It also looks at the dispersion of quantum dots in liquid crystal materials, examining the electro-optical properties of the mixtures. The main goal of this thesis is to examine the effects of dopants on the properties of liquid crystal phases using optical microscopy, differential scanning calorimetry, electro-optical measurements, and X-ray scattering. For those mixtures with quantum dots fluorescence microscopy and photoluminescence measurements were also conducted. Rod-like liquid crystals are commonly used in display applications when the material is in a nematic liquid crystal phase, which is the least ordered phase exhibiting no positional ordering. The more complicated chiral smectic liquid crystal phases, which have a one dimensional layer structure, show potential for faster and tri-stable switching. A chiral rod-like liquid crystal material is doped with both chiral and achiral rod-like liquid crystals to examine the stability of one of the chiral smectic sub-phase, the SmC* FI1 phase. This phase consists of tilted molecules rotating about the cone defined by the tilt angle with a periodicity of three layers and an overall helical structure. The SmC*FI1 phase is stabilized by the competition between antiferroelectric and ferroelectric interactions, and small amounts of the achiral dopant broadens the range of this phase by almost 5°C. Higher dopant concentrations of the achiral material result in the destabilization of not just the SmC*FI1 phase but all tilted sub

  8. Diffraction from a liquid crystal phase grating.

    PubMed

    Kashnow, R A; Bigelow, J E

    1973-10-01

    The diffraction of light by a sinusoidal perturbation of the optic axis in a nematic liquid crystal is discussed. This corresponds to experiments at the electrohydrodynamic instability thresholds. An interesting qualitative feature appears: The diffraction pattern exhibits a contribution at half of the expected spatial frequency, corresponding to nonorthogonal traversals of the thick phase grating.

  9. Helmet-Mounted Liquid-Crystal Display

    NASA Technical Reports Server (NTRS)

    Smith, Steve; Plough, Alan; Clarke, Robert; Mclean, William; Fournier, Joseph; Marmolejo, Jose A.

    1991-01-01

    Helmet-mounted binocular display provides text and images for almost any wearer; does not require fitting for most users. Accommodates users from smallest interpupillary distance to largest. Two liquid-crystal display units mounted in helmet. Images generated seen from any position head can assume inside helmet. Eyes directed to position for best viewing.

  10. Helmet-Mounted Liquid-Crystal Display

    NASA Technical Reports Server (NTRS)

    Smith, Steve; Plough, Alan; Clarke, Robert; Mclean, William; Fournier, Joseph; Marmolejo, Jose A.

    1991-01-01

    Helmet-mounted binocular display provides text and images for almost any wearer; does not require fitting for most users. Accommodates users from smallest interpupillary distance to largest. Two liquid-crystal display units mounted in helmet. Images generated seen from any position head can assume inside helmet. Eyes directed to position for best viewing.

  11. Inexpensive Electrooptic Experiments on Liquid Crystal Displays.

    ERIC Educational Resources Information Center

    Ciferno, Thomas M.; And Others

    1995-01-01

    Describes the construction and use of an electrooptic apparatus that can be incorporated into the classroom to test liquid crystal displays (LCDs) and introduce students to experiments of an applied physics nature with very practical implications. Presents experiments that give students hands-on experience with technologies of current interest to…

  12. Fluctuation and dissipation in liquid crystal electroconvection

    NASA Astrophysics Data System (ADS)

    Goldburg, Walter I.; Goldschmidt, Yadin Y.; Kellay, Hamid

    2002-11-01

    The power dissipation P( t) was measured in a liquid crystal (MBBA) driven by an ac voltage into the chaotic electroconvective state. In that state, the power fluctuates about its mean value < P>. The quantity measured, and compared with the fluctuation theorem of Gallavotti and Cohen, is the dimensionless standard deviation of the fluctuations, σP/< P>.

  13. Infrared diagnosis using liquid crystal detectors

    NASA Technical Reports Server (NTRS)

    Hugenschmidt, M.; Vollrath, K.

    1986-01-01

    The possible uses of pulsed carbon dioxide lasers for analysis of plasmas and flows need appropriate infrared image converters. Emphasis was placed on liquid crystal detectors and their operational modes. Performance characterstics and selection criteria, such as high sensitivity, short reaction time, and high spatial resolution are discussed.

  14. Photosensitive Polymers for Liquid Crystal Alignment

    NASA Astrophysics Data System (ADS)

    Mahilny, U. V.; Stankevich, A. I.; Trofimova, A. V.; Muravsky, A. A.; Murauski, A. A.

    The peculiarities of alignment of liquid crystal (LC) materials by the layers of photocrosslinkable polymers with side benzaldehyde groups are considered. The investigation of mechanism of photostimulated alignment by rubbed benzaldehyde layer is performed. The methods of creation of multidomain aligning layers on the basis of photostimulated rubbing alignment are described.

  15. Liquid-Crystal Thermal-Control Panels

    NASA Technical Reports Server (NTRS)

    Dehaye, R. F.; Edge, T. M.; Feltner, W. R.

    1987-01-01

    Radiative temperature regulators have no moving parts. Conceptual temperature-regulating system proposed for spacecraft useful in automatic or remotely controlled regulation of solar heating in buildings, provided cost reduced sufficiently. System consists of liquid-crystal panels made to absorb or reflect sunlight.

  16. Molecular Photonics of Supra Nonlinear Liquid Crystals

    DTIC Science & Technology

    2003-05-11

    multifunctional optical devices have also been developed. Specifically, (i) the large optical nonlinearities of nematic liquid crystals in the optical ... communication wavelength regime (1 .55 microns) as well as the visible region have been quantitatively established. (ii) All-optical self-action processes such

  17. A curcumin-loaded liquid crystal precursor mucoadhesive system for the treatment of vaginal candidiasis

    PubMed Central

    Salmazi, Rafael; Calixto, Giovana; Bernegossi, Jéssica; Ramos, Matheus Aparecido dos Santos; Bauab, Taís Maria; Chorilli, Marlus

    2015-01-01

    Women often develop vaginal infections that are caused primarily by organisms of the genus Candida. The current treatments of vaginal candidiasis usually involve azole-based antifungals, though fungal resistance to these compounds has become prevalent. Therefore, much attention has been given to molecules with antifungal properties from natural sources, such as curcumin (CUR). However, CUR has poor solubility in aqueous solvents and poor oral bioavailability. This study attempted to overcome this problem by developing, characterizing, and evaluating the in vitro antifungal action of a CUR-loaded liquid crystal precursor mucoadhesive system (LCPM) for vaginal administration. A low-viscosity LCPM (F) consisting of 40% wt/wt polyoxpropylene-(5)-polyoxyethylene-(20)-cetyl alcohol, 50% wt/wt oleic acid, and 10% wt/wt chitosan dispersion at 0.5% with the addition of 16% poloxamer 407 was developed to take advantage of the lyotropic phase behavior of this formulation. Notably, F could transform into liquid crystal systems when diluted with artificial vaginal mucus at ratios of 1:3 and 1:1 (wt/wt), resulting in the formation of F30 and F100, respectively. Polarized light microscopy and rheological studies revealed that F behaved like an isotropic formulation, whereas F30 and F100 behaved like an anisotropic liquid crystalline system (LCS). Moreover, F30 and F100 presented higher mucoadhesion to porcine vaginal mucosa than F. The analysis of the in vitro activity against Candida albicans revealed that CUR-loaded F was more potent against standard and clinical strains compared with a CUR solution. Therefore, the vaginal administration of CUR-loaded LCPMs represents a promising platform for the treatment of vaginal candidiasis. PMID:26257519

  18. Randomized Grain Boundary Liquid Crystal Phase

    NASA Astrophysics Data System (ADS)

    Chen, D.; Wang, H.; Li, M.; Glaser, M.; Maclennan, J.; Clark, N.

    2012-02-01

    The formation of macroscopic, chiral domains, in the B4 and dark conglomerate phases, for example, is a feature of bent-core liquid crystals resulting from the interplay of chirality, molecular bend and molecular tilt. We report a new, chiral phase observed in a hockey stick-like liquid crystal molecule. This phase appears below a smectic A phase and cools to a crystal phase. TEM images of the free surface of the chiral phase show hundreds of randomly oriented smectic blocks several hundred nanometers in size, similar to those seen in the twist grain boundary (TGB) phase. However, in contrast to the TGB phase, these blocks are randomly oriented. The characteristic defects in this phase are revealed by freeze-fracture TEM images. We will show how these defects mediate the randomized orientation and discuss the intrinsic mechanism driving the formation of this phase. This work is supported by NSF MRSEC Grant DMR0820579 and NSF Grant DMR0606528.

  19. Colloidal cholesteric liquid crystal in spherical confinement

    PubMed Central

    Li, Yunfeng; Jun-Yan Suen, Jeffrey; Prince, Elisabeth; Larin, Egor M.; Klinkova, Anna; Thérien-Aubin, Héloïse; Zhu, Shoujun; Yang, Bai; Helmy, Amr S.; Lavrentovich, Oleg D.; Kumacheva, Eugenia

    2016-01-01

    The organization of nanoparticles in constrained geometries is an area of fundamental and practical importance. Spherical confinement of nanocolloids leads to new modes of packing, self-assembly, phase separation and relaxation of colloidal liquids; however, it remains an unexplored area of research for colloidal liquid crystals. Here we report the organization of cholesteric liquid crystal formed by nanorods in spherical droplets. For cholesteric suspensions of cellulose nanocrystals, with progressive confinement, we observe phase separation into a micrometer-size isotropic droplet core and a cholesteric shell formed by concentric nanocrystal layers. Further confinement results in a transition to a bipolar planar cholesteric morphology. The distribution of polymer, metal, carbon or metal oxide nanoparticles in the droplets is governed by the nanoparticle size and yields cholesteric droplets exhibiting fluorescence, plasmonic properties and magnetic actuation. This work advances our understanding of how the interplay of order, confinement and topological defects affects the morphology of soft matter. PMID:27561545

  20. Colloidal cholesteric liquid crystal in spherical confinement

    NASA Astrophysics Data System (ADS)

    Li, Yunfeng; Jun-Yan Suen, Jeffrey; Prince, Elisabeth; Larin, Egor M.; Klinkova, Anna; Thérien-Aubin, Héloïse; Zhu, Shoujun; Yang, Bai; Helmy, Amr S.; Lavrentovich, Oleg D.; Kumacheva, Eugenia

    2016-08-01

    The organization of nanoparticles in constrained geometries is an area of fundamental and practical importance. Spherical confinement of nanocolloids leads to new modes of packing, self-assembly, phase separation and relaxation of colloidal liquids; however, it remains an unexplored area of research for colloidal liquid crystals. Here we report the organization of cholesteric liquid crystal formed by nanorods in spherical droplets. For cholesteric suspensions of cellulose nanocrystals, with progressive confinement, we observe phase separation into a micrometer-size isotropic droplet core and a cholesteric shell formed by concentric nanocrystal layers. Further confinement results in a transition to a bipolar planar cholesteric morphology. The distribution of polymer, metal, carbon or metal oxide nanoparticles in the droplets is governed by the nanoparticle size and yields cholesteric droplets exhibiting fluorescence, plasmonic properties and magnetic actuation. This work advances our understanding of how the interplay of order, confinement and topological defects affects the morphology of soft matter.

  1. Enhanced dual-frequency operation of a polymerized liquid crystal microplate by liquid crystal infiltration

    NASA Astrophysics Data System (ADS)

    Kumagai, Takayuki; Yoshida, Hiroyuki; Ozaki, Masanori

    2017-04-01

    The electric-field-induced switching behavior of a polymer microplate is investigated. A microplate fabricated with a photopolymerizable dual-frequency liquid crystal was surrounded by an unpolymerized photopolymerizable dual-frequency liquid crystal in the isotropic phase. As an electric field was applied along the plane of the microplate, the microplate switched to set its interior molecular orientation to be either parallel or perpendicular to the field, depending on the frequency. Analysis of the rotational behavior, as well as numerical calculations, showed that the surrounding unpolymerized photopolymerizable dual-frequency liquid crystal infiltrated into the microplate, which enhanced the dielectric properties of the microplate. To the best of our knowledge, this is the first report of an enhanced dual-frequency dielectric response of a polymer microplate induced by liquid crystal infiltration.

  2. 21 CFR 880.2200 - Liquid crystal forehead temperature strip.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... color changes of heat sensitive liquid crystals corresponding to the variation in the surface temperature of the skin. The liquid crystals, which are cholesteric esters, are sealed in plastic. (b...

  3. 21 CFR 880.2200 - Liquid crystal forehead temperature strip.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... color changes of heat sensitive liquid crystals corresponding to the variation in the surface temperature of the skin. The liquid crystals, which are cholesteric esters, are sealed in plastic. (b...

  4. Shear-Sensitive Monomer/Polymer Liquid Crystal System

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Eftekhari, Abe; Parmar, D. S.

    1993-01-01

    Report describes preliminary investigation of new monomer/polymer liquid crystal system, thin film of shear-sensitive cholesteric monomer liquid crystal (TI 511) on Xydar (STR800) (or equivalent) liquid crystal polymer substrate. Monomer/polymer liquid crystal films applied to surfaces provide quantitative indications of shear stresses caused by winds blowing along surfaces. Effects of shear stresses reversible in new coating system. System provides quantitative data on flows in wind tunnels.

  5. 21 CFR 880.2200 - Liquid crystal forehead temperature strip.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Liquid crystal forehead temperature strip. 880... Personal Use Monitoring Devices § 880.2200 Liquid crystal forehead temperature strip. (a) Identification. A liquid crystal forehead temperature strip is a device applied to the forehead that is used to indicate...

  6. 21 CFR 880.2200 - Liquid crystal forehead temperature strip.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Liquid crystal forehead temperature strip. 880... Personal Use Monitoring Devices § 880.2200 Liquid crystal forehead temperature strip. (a) Identification. A liquid crystal forehead temperature strip is a device applied to the forehead that is used to indicate...

  7. 21 CFR 880.2200 - Liquid crystal forehead temperature strip.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Liquid crystal forehead temperature strip. 880... Personal Use Monitoring Devices § 880.2200 Liquid crystal forehead temperature strip. (a) Identification. A liquid crystal forehead temperature strip is a device applied to the forehead that is used to indicate...

  8. Drying, phase separation, and deposition in droplets of sunset yellow chromonic liquid crystal

    NASA Astrophysics Data System (ADS)

    Gross, Adam; Davidson, Zoey S.; Huang, Yongyang; Still, Tim; Zhou, Chao; Yodh, A. G.

    We investigate the drying process and the final deposition patterns of multi-phase sessile droplets containing aqueous lyotropic chromonic liquid crystal (LC). The experiments employ a variety of optical techniques including profilometry, polarization optical microscopy and optical coherence microscopy. An unusual hierarchical LC assembly is observed during drying; in particular, LC mesogens are first formed at the start of drying and then compartments of isotropic, nematic and columnar phases arise. Nonuniform evaporation creates concentration gradients in droplets such that LC phases emerge from the outer edge of the drop and advance to the center over the course of drying. Distinct outward flows associated with the ``coffee-ring effect'' are seen initially, but the assembly of the mesogens creates viscosity, density, and surface tension gradients that effectively introduce new convective flows and complex LC phase boundaries within the drop. Finally, we show that the final deposit shape of chromonic materials changes with rate of evaporation. We gratefully acknowledge financial support through NSF DMR12-05463, MRSEC DMR11-20901, NASA NNX08AO0G, and NSF DBI-1455613.

  9. Liquid crystal assemblies in biologically inspired systems

    PubMed Central

    Safinya, Cyrus R.; Deek, Joanna; Beck, Roy; Jones, Jayna B.; Leal, Cecilia; Ewert, Kai K.; Li, Youli

    2013-01-01

    In this paper, which is part of a collection in honor of Noel Clark's remarkable career on liquid crystal and soft matter research, we present examples of biologically inspired systems, which form liquid crystal (LC) phases with their LC nature impacting biological function in cells or being important in biomedical applications. One area focuses on understanding network and bundle formation of cytoskeletal polyampholytes (filamentous-actin, microtubules, and neurofilaments). Here, we describe studies on neurofilaments (NFs), the intermediate filaments of neurons, which form open network nematic liquid crystal hydrogels in axons. Synchrotron small-angle-x-ray scattering studies of NF-protein dilution experiments and NF hydrogels subjected to osmotic stress show that neurofilament networks are stabilized by competing long-range repulsion and attractions mediated by the neurofilament's polyampholytic sidearms. The attractions are present both at very large interfilament spacings, in the weak sidearm-interpenetrating regime, and at smaller interfilament spacings, in the strong sidearm-interpenetrating regime. A second series of experiments will describe the structure and properties of cationic liposomes (CLs) complexed with nucleic acids (NAs). CL-NA complexes form liquid crystalline phases, which interact in a structure-dependent manner with cellular membranes enabling the design of complexes for efficient delivery of nucleic acid (DNA, RNA) in therapeutic applications. PMID:24558293

  10. Liquid crystals for holographic optical data storage.

    PubMed

    Matharu, Avtar S; Jeeva, Shehzad; Ramanujam, P S

    2007-12-01

    A tutorial review is presented to inform and inspire the reader to develop and integrate strong scientific links between liquid crystals and holographic data storage, from a materials scientist's viewpoint. The principle of holographic data storage as a means of providing a solution to the information storage demands of the 21st century is detailed. Holography is a small subset of the much larger field of optical data storage and similarly, the diversity of materials used for optical data storage is enormous. The theory of polarisation holography which produces holograms of constant intensity, is discussed. Polymeric liquid crystals play an important role in the development of materials for holographic storage and photoresponsive materials based on azobenzene are targeted for discussion due to their ease of photo-reversion between trans- and cis-states. Although the final polymer may not be liquid crystalline, irradiation can induce ordered domains. The mesogens act in a co-operative manner, enhancing refractive indices and birefringences. Surface relief gratings are discussed as a consequence of holographic storage. Cholesteric polymers comprising azobenzene are briefly highlighted. Irradiation causing cis-trans-isomerisation can be used to control helix pitch. A brief mention of liquid crystals is also made since these materials may be of future interest since they are optically transparent and amenable to photo-induced anisotropy.

  11. Zeolite-like liquid crystals

    PubMed Central

    Poppe, Silvio; Lehmann, Anne; Scholte, Alexander; Prehm, Marko; Zeng, Xiangbing; Ungar, Goran; Tschierske, Carsten

    2015-01-01

    Zeolites represent inorganic solid-state materials with porous structures of fascinating complexity. Recently, significant progress was made by reticular synthesis of related organic solid-state materials, such as metal-organic or covalent organic frameworks. Herein we go a step further and report the first example of a fluid honeycomb mimicking a zeolitic framework. In this unique self-assembled liquid crystalline structure, transverse-lying π-conjugated rod-like molecules form pentagonal channels, encircling larger octagonal channels, a structural motif also found in some zeolites. Additional bundles of coaxial molecules penetrate the centres of the larger channels, unreachable by chains attached to the honeycomb framework. This creates a unique fluid hybrid structure combining positive and negative anisotropies, providing the potential for tuning the directionality of anisotropic optical, electrical and magnetic properties. This work also demonstrates a new approach to complex soft-matter self-assembly, by using frustration between space filling and the entropic penalty of chain extension. PMID:26486751

  12. Zeolite-like liquid crystals

    NASA Astrophysics Data System (ADS)

    Poppe, Silvio; Lehmann, Anne; Scholte, Alexander; Prehm, Marko; Zeng, Xiangbing; Ungar, Goran; Tschierske, Carsten

    2015-10-01

    Zeolites represent inorganic solid-state materials with porous structures of fascinating complexity. Recently, significant progress was made by reticular synthesis of related organic solid-state materials, such as metal-organic or covalent organic frameworks. Herein we go a step further and report the first example of a fluid honeycomb mimicking a zeolitic framework. In this unique self-assembled liquid crystalline structure, transverse-lying π-conjugated rod-like molecules form pentagonal channels, encircling larger octagonal channels, a structural motif also found in some zeolites. Additional bundles of coaxial molecules penetrate the centres of the larger channels, unreachable by chains attached to the honeycomb framework. This creates a unique fluid hybrid structure combining positive and negative anisotropies, providing the potential for tuning the directionality of anisotropic optical, electrical and magnetic properties. This work also demonstrates a new approach to complex soft-matter self-assembly, by using frustration between space filling and the entropic penalty of chain extension.

  13. Frustration of crystallisation by a liquid-crystal phase.

    PubMed

    Syme, Christopher D; Mosses, Joanna; González-Jiménez, Mario; Shebanova, Olga; Walton, Finlay; Wynne, Klaas

    2017-02-17

    Frustration of crystallisation by locally favoured structures is critically important in linking the phenomena of supercooling, glass formation, and liquid-liquid transitions. Here we show that the putative liquid-liquid transition in n-butanol is in fact caused by geometric frustration associated with an isotropic to rippled lamellar liquid-crystal transition. Liquid-crystal phases are generally regarded as being "in between" the liquid and the crystalline state. In contrast, the liquid-crystal phase in supercooled n-butanol is found to inhibit transformation to the crystal. The observed frustrated phase is a template for similar ordering in other liquids and likely to play an important role in supercooling and liquid-liquid transitions in many other molecular liquids.

  14. Cracks and Topological Defects in Lyotropic Nematic Gels

    NASA Astrophysics Data System (ADS)

    Islam, M. F.; Nobili, M.; Ye, Fangfu; Lubensky, T. C.; Yodh, A. G.

    2005-09-01

    We report on the effects of the coupling of nematic order and elasticity in anisotropic lyotropic gels consisting of large nematic domains of surfactant coated single wall carbon nanotubes embedded in a cross-linked N-isopropyl acrylamide polymer matrix. We observe the following striking features: (i) undulations and then cusping of the gel sidewalls, (ii) a nematic director field that evolves as the gel sidewalls deform, (iii) networks of surface cracks that are orthogonal to the nematic director field, and (iv) fissures at the sidewall cusps and associated topological defects that would not form in liquid nematics.

  15. Errors in thermochromic liquid crystal thermometry

    SciTech Connect

    Wiberg, Roland; Lior, Noam

    2004-09-01

    This article experimentally investigates and assesses the errors that may be incurred in the hue-based thermochromic liquid crystal thermochromic liquid crystal (TLC) method, and their causes. The errors include response time, hysteresis, aging, surrounding illumination disturbance, direct illumination and viewing angle, amount of light into the camera, TLC thickness, digital resolution of the image conversion system, and measurement noise. Some of the main conclusions are that: (1) The 3x8 bits digital representation of the red green and blue TLC color values produces a temperature measurement error of typically 1% of the TLC effective temperature range, (2) an eight-fold variation of the light intensity into the camera produced variations, which were not discernable from the digital resolution error, (3) this temperature depends on the TLC film thickness, and (4) thicker films are less susceptible to aging and thickness nonuniformities.

  16. Ultrabroadband terahertz spectroscopy of a liquid crystal.

    PubMed

    Vieweg, N; Fischer, B M; Reuter, M; Kula, P; Dabrowski, R; Celik, M A; Frenking, G; Koch, M; Jepsen, P U

    2012-12-17

    Liquid crystals (LCs) are becoming increasingly important for applications in the terahertz frequency range. A detailed understanding of the spectroscopic parameters of these materials over a broad frequency range is crucial in order to design customized LC mixtures for improved performance. We present the frequency dependent index of refraction and the absorption coefficients of the nematic liquid crystal 5CB over a frequency range from 0.3 THz to 15 THz using a dispersion-free THz time-domain spectrometer system based on two-color plasma generation and air biased coherent detection (ABCD). We show that the spectra are dominated by multiple strong spectral features mainly at frequencies above 4 THz, originating from intramolecular vibrational modes of the weakly LC molecules.

  17. Phototunable reflection notches of cholesteric liquid crystals

    NASA Astrophysics Data System (ADS)

    Hrozhyk, Uladzimir A.; Serak, Svetlana V.; Tabiryan, Nelson V.; Bunning, Timothy J.

    2008-09-01

    The reflection notch of cholesteric liquid crystals (CLCs) formed from highly photosenstive azobenzene nematic liquid crystals doped with light-insensitive, large helical twisting power chiral dopants is shown to be widely phototunable by green laser beams. The nonlinear transmission properties of these materials were studied. We have shown that the relative shift in Bragg wavelength is independent of the chiral dopant concentration and develop a predictive theory of such behavior. The theory describes the dynamics of phototuning as well. Reflection shifts greater than 150 nm were driven with low power, cw of 532 nm in these photosensitive CLCs, previously attainable only through UV pre-exposure. A nonlinear feedback mechanism was demonstrated for CLCs of left, right, and both handedness upon laser-induced blueshifting of the reflection notch from a red wavelength using a green cw laser.

  18. Carbon nanotubes dispersed in liquid crystal elastomers

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Ji, Yan

    Liquid crystal elastomers (LCEs), as the name indicates, unite the anisotropic order of liquid crystals and rubber elasticity of elastomers into polymer networks. One of the most notable features of LCEs is that properly aligned LCEs exhibit dramatic and reversible shape deformation (e.g. elongation-contraction) in response to various stimuli. In recent years, carbon nanotubes (CNTs) were introduced into LCEs. Besides enabling remote and spatial control of the actuation via light and electronic field, CNTs are also utilized to align mesogens as well as to improve the mechanical and electronic property of the composites. Some potential applications of CNT-LCE nanocomposites have been demonstrated. This chapter describes the preparation of CNT dispersed LCEs, new physical properties resulted from CNTs, their actuation and their proposed applications.

  19. Nanoparticle interfacial assembly in liquid crystal droplets

    NASA Astrophysics Data System (ADS)

    Rahimi, Mohammad; Roberts, Tyler; Armas-Perez, Julio; Wang, Xiaoguang; Bukusoglu, Emre; Abbott, Nicholas L.; de Pablo, Juan J.

    2015-03-01

    Controlled assembly of nanoparticles at liquid crystal interfaces could lead to easily manufacturable building blocks for assembly of materials with tunable mechanical, optical, and electronic properties. Past work has examined nanoparticle assembly at planar liquid crystal interfaces. In this work we show that nanoparticle assembly on curved interfaces is drastically different, and arises for conditions under which assembly is too weak to occur on planar interfaces. We also demonstrate that LC-mediated nanoparticle interactions are strong, are remarkably sensitive to surface anchoring, and lead to hexagonal arrangements that do not arise in bulk systems. All these elements form the basis for a highly tunable, predictable, and versatile platform for hierarchical materials assembly. National Science Foundation through the UW MRSEC.

  20. Phototunable reflection notches of cholesteric liquid crystals

    SciTech Connect

    Hrozhyk, Uladzimir A.; Serak, Svetlana V.; Tabiryan, Nelson V.; Bunning, Timothy J.

    2008-09-15

    The reflection notch of cholesteric liquid crystals (CLCs) formed from highly photosenstive azobenzene nematic liquid crystals doped with light-insensitive, large helical twisting power chiral dopants is shown to be widely phototunable by green laser beams. The nonlinear transmission properties of these materials were studied. We have shown that the relative shift in Bragg wavelength is independent of the chiral dopant concentration and develop a predictive theory of such behavior. The theory describes the dynamics of phototuning as well. Reflection shifts greater than 150 nm were driven with low power, cw of 532 nm in these photosensitive CLCs, previously attainable only through UV pre-exposure. A nonlinear feedback mechanism was demonstrated for CLCs of left, right, and both handedness upon laser-induced blueshifting of the reflection notch from a red wavelength using a green cw laser.

  1. Angular effects on thermochromic liquid crystal thermography

    NASA Astrophysics Data System (ADS)

    Kodzwa, Paul M.; Eaton, John K.

    2007-12-01

    This paper directly discusses the effects of lighting and viewing angles on liquid crystal thermography. This is because although thermochromic liquid crystals (TLCs) are a widely-used and accepted tool in heat transfer research, little effort has been directed to analytically describing these effects. Such insight is invaluable for the development of effective mitigation strategies. Using analytical relationships that describe the perceived color shift, a systematic manner of improving the performance of a TLC system is presented. This is particularly relevant for applications where significant variations in lighting and/or viewing angles are expected (such as a highly curved surface). This discussion includes an examination of the importance of the definition of the hue angle used to calibrate the color of a TLC-painted surface. The theoretical basis of the validated high-accuracy calibration approach reported by Kodzwa et al. (Exp Fluids s00348-007-0310-6, 2007) is presented.

  2. Errors in thermochromic liquid crystal thermometry

    NASA Astrophysics Data System (ADS)

    Wiberg, Roland; Lior, Noam

    2004-09-01

    This article experimentally investigates and assesses the errors that may be incurred in the hue-based thermochromic liquid crystal thermochromic liquid crystal (TLC) method, and their causes. The errors include response time, hysteresis, aging, surrounding illumination disturbance, direct illumination and viewing angle, amount of light into the camera, TLC thickness, digital resolution of the image conversion system, and measurement noise. Some of the main conclusions are that: (1) The 3×8 bits digital representation of the red green and blue TLC color values produces a temperature measurement error of typically 1% of the TLC effective temperature range, (2) an eight-fold variation of the light intensity into the camera produced variations, which were not discernable from the digital resolution error, (3) this temperature depends on the TLC film thickness, and (4) thicker films are less susceptible to aging and thickness nonuniformities.

  3. Paintable band-edge liquid crystal lasers.

    PubMed

    Gardiner, Damian J; Morris, Stephen M; Hands, Philip J W; Mowatt, Carrie; Rutledge, Rupert; Wilkinson, Timothy D; Coles, Harry J

    2011-01-31

    In this paper we demonstrate photonic band-edge laser emission from emulsion-based polymer dispersed liquid crystals. The lasing medium consists of dye-doped chiral nematic droplets dispersed within a polymer matrix that spontaneously align as the film dries. Such lasers can be easily formed on single substrates with no alignment layers. The system combines the self-organizing periodic structure of chiral nematic liquid crystals with the simplicity of the emulsion procedure so as to produce a material that retains the emission characteristics of band-edge lasers yet can be readily coated. Sequential and stacked layers demonstrate the possibility of achieving simultaneous multi-wavelength laser output from glass, metallic, and flexible substrates.

  4. Periodically-segmented liquid crystal core waveguides

    NASA Astrophysics Data System (ADS)

    Sharma, Mukesh; Shenoy, M. R.; Sinha, Aloka

    2017-09-01

    We report the fabrication and characterization of electrically-tunable periodically segmented waveguides (PSWs) with different duty cycles of 0.25, 0.33, 0.50 and 0.76, using the nematic liquid crystal 5CB as the guiding layer, and the negative photoresist AZ15nXT as the cladding. The experimental results show that light diffracts and re-focuses periodically on propagation through the liquid crystal (LC) core PSW, when an external voltage is applied to the periodically segmented electrodes. The performance of the fabricated LC core PSWs are analyzed in terms of effective refractive index, output power and duty cycle. The electrically-tunable LC core PSWs have potential application in the realization of optical filters, polarizers and dynamic mode size converters.

  5. Liquid crystal display for phase shifting

    NASA Astrophysics Data System (ADS)

    Villalobos-Mendoza, B.; Granados-Agustín, F. S.; Aguirre-Aguirre, D.; Cornejo-Rodríguez, A.

    2013-11-01

    This work arises based on the idea proposed by Millered et al. in 2004, where they show how to get in one shot interferograms with phase shift using a mask with micro-polarizers, in this work we pretend to obtain phase shift in localized areas of an interferogram using the properties of polarization and the pixelated configuration of a liquid crystal display (LCD) for testing optical surfaces. In this work we describes the process of characterization of a liquid crystal display CRL Opto and XGA2P01 model, which is introduced in one arm of a Twyman Green interferometer. Finally we show the experimental interferograms with phase shifts which are caused by different gray levels displayed in the LCD.

  6. Theory of skyrmion states in liquid crystals.

    PubMed

    Leonov, A O; Dragunov, I E; Rößler, U K; Bogdanov, A N

    2014-10-01

    Within the Oseen-Frank theory we derive numerically exact solutions for axisymmetric localized states in chiral liquid crystal layers with homeotropic anchoring. These solutions describe recently observed two-dimensional skyrmions in confinement-frustrated chiral nematics [P. J. Ackerman et al., Phys. Rev. E 90, 012505 (2014)]. We stress that these solitonic states arise due to a fundamental stabilization mechanism responsible for the formation of skyrmions in cubic helimagnets and other noncentrosymmetric condensed-matter systems.

  7. Viscous fingering and liquid crystals in confinement

    NASA Astrophysics Data System (ADS)

    Zacharoudiou, Ioannis

    This thesis focuses on two problems lying within the field of soft condensed matter: the viscous fingering or Saffman-Taylor instability and nematic liquid crystals in confinement. Whenever a low viscosity fluid displaces a high viscosity fluid in a porous medium, for example water pushing oil out of oil reservoirs, the interface between the two fluids is rendered unstable. Viscous fingers develop, grow and compete until a single finger spans all the way from inlet to outlet. Here, using a free energy lattice Boltzmann algorithm, we examine the Saffman-Taylor instability for two different wetting situations: (a) when neither of the two fluids wet the walls of the channel and (b) when the displacing fluids completely wets the walls. We demonstrate that curvature effects in the third dimension, which arise because of the wetting boundary conditions, can lead to a novel suppression of the instability. Recent experiments in microchannels using colloid-polymer mixtures support our findings. In the second part of the thesis we examine nematic liquid crystals confined in wedge-structured geometries. In these systems the final stable configuration of the liquid crystal system is controlled by the complex interplay between confinement, elasticity and surface anchoring. Varying the wedge opening angle this competition leads to a splay to bend transition mediated by a defect in the bulk of the wedge. Using a hybrid lattice Boltzmann algorithm we study the splay-bend transition and compare to recent experiments on {em fd} virus particles in microchannels. Our numerical results, in quantitative agreement with the experiments, enable us to predict the position of the defect as a function of opening angle, and elucidate its role in the change of director structure. This has relevance to novel energy saving, liquid crystal devices which rely on defect motion and pinning to create bistable director configurations.

  8. Polymer-dispersed liquid crystal elastomers

    PubMed Central

    Rešetič, Andraž; Milavec, Jerneja; Zupančič, Blaž; Domenici, Valentina; Zalar, Boštjan

    2016-01-01

    The need for mechanical manipulation during the curing of conventional liquid crystal elastomers diminishes their applicability in the field of shape-programmable soft materials and future applications in additive manufacturing. Here we report on polymer-dispersed liquid crystal elastomers, novel composite materials that eliminate this difficulty. Their thermal shape memory anisotropy is imprinted by curing in external magnetic field, providing for conventional moulding of macroscopically sized soft, thermomechanically active elastic objects of general shapes. The binary soft-soft composition of isotropic elastomer matrix, filled with freeze-fracture-fabricated, oriented liquid crystal elastomer microparticles as colloidal inclusions, allows for fine-tuning of thermal morphing behaviour. This is accomplished by adjusting the concentration, spatial distribution and orientation of microparticles or using blends of microparticles with different thermomechanical characteristics. We demonstrate that any Gaussian thermomechanical deformation mode (bend, cup, saddle, left and right twist) of a planar sample, as well as beat-like actuation, is attainable with bilayer microparticle configurations. PMID:27713478

  9. Liquid crystal phase shifters for space applications

    NASA Astrophysics Data System (ADS)

    Woehrle, Christopher D.

    Space communication satellites have historically relied heavily on high gain gimbal dish antennas for performing communications. Reflector dish antennas lack flexibility in anti-jamming capabilities, and they tend to have a high risk associated to them given the need for mechanical mechanisms to beam steer. In recent years, a great amount of investment has been made into phased array antenna technologies. Phased arrays offer increased signal flexibility at reduced financial cost and in system risk. The problem with traditional phased arrays is the significant program cost and overall complexity added to the satellite by integrating antenna elements that require many dedicated components to properly perform adaptive beam steering. Several unique methods have been proposed to address the issues that plague traditional phase shifters slated for space applications. Proposed approaches range from complex mechanical switches (MEMS) and ferroelectric devices to more robust molecular changes. Nematic liquid crystals offer adaptive beam steering capabilities that traditional phased arrays have; however, with the added benefit of reduced system cost, complexity, and increased resilience to space environmental factors. The objective of the work presented is to investigate the feasibility of using nematic liquid crystals as a means of phase shifting individual phased array elements slated for space applications. Significant attention is paid to the survivability and performance of liquid crystal and associated materials in the space environment. Performance regarding thermal extremes and interactions with charged particles are the primary factors addressed.

  10. Liquid Crystal Microlenses for Autostereoscopic Displays

    PubMed Central

    Algorri, José Francisco; Urruchi, Virginia; García-Cámara, Braulio; Sánchez-Pena, José M.

    2016-01-01

    Three-dimensional vision has acquired great importance in the audiovisual industry in the past ten years. Despite this, the first generation of autostereoscopic displays failed to generate enough consumer excitement. Some reasons are little 3D content and performance issues. For this reason, an exponential increase in three-dimensional vision research has occurred in the last few years. In this review, a study of the historical impact of the most important technologies has been performed. This study is carried out in terms of research manuscripts per year. The results reveal that research on spatial multiplexing technique is increasing considerably and today is the most studied. For this reason, the state of the art of this technique is presented. The use of microlenses seems to be the most successful method to obtain autostereoscopic vision. When they are fabricated with liquid crystal materials, extended capabilities are produced. Among the numerous techniques for manufacturing liquid crystal microlenses, this review covers the most viable designs for its use in autostereoscopic displays. For this reason, some of the most important topologies and their relation with autostereoscopic displays are presented. Finally, the challenges in some recent applications, such as portable devices, and the future of three-dimensional displays based on liquid crystal microlenses are outlined. PMID:28787837

  11. Nanoparticles and networks created within liquid crystals

    NASA Astrophysics Data System (ADS)

    Kang, Shin-Wong; Kundu, Sudarshan

    We report the in situ creation of growing polymer nanoparticles and resulting polymer networks formed in liquid crystals. Depending on the concentration of monomer, polymerization-induced phase separation proceeds in two distinct regimes. For a high monomer concentration with a good miscibility, phase separation is initiated through the nucleation and growth mechanism in the binodal decomposition regime and rapidly crosses over to the spinodal decomposition process, consequently resulting in interpenetrating polymer networks. For a dilute system, however, the phase separation mainly proceeds and completes in the binodal decomposition regime. The system resembles the aggregation process of colloidal particles. For a dilute system, the reaction kinetics is limited by the reaction between in situ created polymer aggregates and hence the network morphologies are greatly inuenced by the diffusion of reactive growing polymer particles. The thin polymer layers localized at the surface of substrate are frequently observed and can be comprehended by the interfacial adsorption and further cross-linking reaction of in situ created polymer aggregates at the interface. This process provides a direct perception on understanding polymer stabilized liquid crystals accomplished by the interfacial polymer layer formed by polymerization of dilute reactive monomers in liquid crystal (LC) host.

  12. Orientational transitions in antiferromagnetic liquid crystals

    NASA Astrophysics Data System (ADS)

    Zakhlevnykh, A. N.; Petrov, D. A.

    2016-09-01

    The orientational phases in an antiferromagnetic liquid crystal (ferronematic) based on the nematic liquid crystal with the negative anisotropy of diamagnetic susceptibility are studied in the framework of the continuum theory. The ferronematic was assumed to be compensated; i.e., in zero field, impurity ferroparticles with the magnetic moments directed parallel and antiparallel to the director are equiprobably distributed in it. It is established that under the action of a magnetic field the ferronematic undergoes orientational transitions compensated (antiferromagnetic) phase-non-uniform phase-saturation (ferrimagnetic) phase. The analytical expressions for threshold fields of the transitions as functions of material parameters are obtained. It is shown that with increasing magnetic impurity segregation parameter, the threshold fields of the transitions significantly decrease. The bifurcation diagram of the ferronematic orientational phases is built in terms of the energy of anchoring of magnetic particles with the liquid-crystal matrix and magnetic field. It is established that the Freedericksz transition is the second-order phase transition, while the transition to the saturation state can be second- or first-order. In the latter case, the suspension exhibits orientational bistability. The orientational and magnetooptical properties of the ferronematic in different applied magnetic fields are studied.

  13. Liquid Crystal Elastomer Actuators from Anisotropic Porous Polymer Template.

    PubMed

    Wang, Qian; Yu, Li; Yu, Meina; Zhao, Dongyu; Song, Ping; Chi, Hun; Guo, Lin; Yang, Huai

    2017-08-01

    Controlling self-assembly behaviors of liquid crystals is a fundamental issue for designing them as intelligent actuators. Here, anisotropic porous polyvinylidene fluoride film is utilized as a template to induce homogeneous alignment of liquid crystals. The mechanism of liquid crystal alignment induced by anisotropic porous polyvinylidene fluoride film is illustrated based on the relationship between the alignment behavior of liquid crystals and surface microstructure of anisotropic polyvinylidene fluoride film. Liquid crystal elastomer actuators with fast responsiveness, large strain change, and reversible actuation behaviors are achieved by the photopolymerization of liquid crystal monomer in liquid crystal cells coated with anisotropic porous films. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Structures of cyano-biphenyl liquid crystals

    NASA Technical Reports Server (NTRS)

    Chu, Yuan-Chao; Tsang, Tung; Rahimzadeh, E.; Yin, L.

    1989-01-01

    The structures of p-alkyl- p'-cyano- bicyclohexanes, C(n)H(2n+1) (C6H10)(C6H10) CN (n-CCH), and p-alkyl- p'-cyano- biphenyls, C(n)H(2n+1) (C6H4)(C6H4) CN (n-CBP), were studied. It is convenient to use an x ray image intensification device to search for symmetric x ray diffraction patterns. Despite the similarities in molecular structures of these compounds, very different crystal structures were found. For the smectic phase of 2CCH, the structure is close to rhombohedral with threefold symmetry. In contrast, the structure is close to hexagonal close-packed with two molecules per unit cell for 4CCH. Since intermolecular forces may be quite weak for these liquid crystals systems, it appears that crystal structures change considerably when the alkyl chain length is slightly altered. Different structures were also found in the crystalline phase of n-CBP for n = 6 to 9. For n = 7 to 9, the structures are close to monclinic. The structures are reminiscent of the smectic-A liquid crystal structures with the linear molecules slightly tilted away from the c-axis. In contrast, the structure is quite different for n = 6 with the molecules nearly perpendicular to the c-axis.

  15. Small Angle X-Ray Scattering and Quasi-Elastic Light Scattering Studies of Polymer Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Ao, Xiaolei

    In order to understand the structural properties of semiflexible polymer liquid crystals, small angle X -ray scattering data from the synthetic polypeptide poly -gamma-benzyl glutamate (PBG) in the nematic phase are presented. The important features of the data are discussed in terms of the current understanding of the nature of nematic ordering in main chain polymer systems. This includes analysis of the angular distribution function for the polymer segments, long wavelength fluctuations dictated by elastic phenomena, the effects of finite chain lengths, and the effects due to the short range interactions and packing of the chains. The rigid rod-like biological macromolecule, tobacco mosaic virus (TMV), in the nematic and the smectic A phases is studied by quasi-elastic light scattering in order to understand the hydrodynamic properties of rigid rod-like lyotropic liquid crystals. A nonlocal behavior of the elasticity in the nematic phase is observed and discussed in terms of a recent developed nonlocal theory. The relative diffusion and undulation modes in the smectic A phase are observed. The results are compared with theory.

  16. PEGylation of phytantriol-based lyotropic liquid crystalline particles--the effect of lipid composition, PEG chain length, and temperature on the internal nanostructure.

    PubMed

    Nilsson, Christa; Østergaard, Jesper; Larsen, Susan Weng; Larsen, Claus; Urtti, Arto; Yaghmur, Anan

    2014-06-10

    Poly(ethylene glycol)-grafted 1,2-distearoyl-sn-glycero-3-phosphoethanolamines (DSPE-mPEGs) are a family of amphiphilic lipopolymers attractive in formulating injectable long-circulating nanoparticulate drug formulations. In addition to long circulating liposomes, there is an interest in developing injectable long-circulating drug nanocarriers based on cubosomes and hexosomes by shielding and coating the dispersed particles enveloping well-defined internal nonlamellar liquid crystalline nanostructures with hydrophilic PEG segments. The present study attempts to shed light on the possible PEGylation of these lipidic nonlamellar liquid crystalline particles by using DSPE-mPEGs with three different block lengths of the hydrophilic PEG segment. The effects of lipid composition, PEG chain length, and temperature on the morphology and internal nanostructure of these self-assembled lipidic aqueous dispersions based on phytantriol (PHYT) were investigated by means of synchrotron small-angle X-ray scattering and Transmission Electron Cryo-Microscopy. The results suggest that the used lipopolymers are incorporated into the water-PHYT interfacial area and induce a significant effect on the internal nanostructures of the dispersed submicrometer-sized particles. The hydrophilic domains of the internal liquid crystalline nanostructures of these aqueous dispersions are functionalized, i.e., the hydrophilic nanochannels of the internal cubic Pn3m and Im3m phases are significantly enlarged in the presence of relatively small amounts of the used DSPE-mPEGs. It is evident that the partial replacement of PHYT by these PEGylated lipids could be an attractive approach for the surface modification of cubosomal and hexosomal particles. These PEGylated nanocarriers are particularly attractive in designing injectable cubosomal and hexosomal nanocarriers for loading drugs and/or imaging probes.

  17. Solvent-free Liquid Crystals and Liquids from DNA.

    PubMed

    Liu, Kai; Shuai, Min; Chen, Dong; Tuchband, Michael; Gerasimov, Jennifer Y; Su, Juanjuan; Liu, Qing; Zajaczkowski, Wojciech; Pisula, Wojciech; Müllen, Klaus; Clark, Noel A; Herrmann, Andreas

    2015-03-23

    As DNA exhibits persistent structures with dimensions that exceed the range of their intermolecular forces, solid-state DNA undergoes thermal degradation at elevated temperatures. Therefore, the realization of solvent-free DNA fluids, including liquid crystals and liquids, still remains a significant challenge. To address this intriguing issue, we demonstrate that combining DNA with suitable cationic surfactants, followed by dehydration, can be a simple generic scheme for producing these solvent-free DNA fluid systems. In the anhydrous smectic liquid crystalline phase, DNA sublayers are intercalated between aliphatic hydrocarbon sublayers. The lengths of the DNA and surfactant are found to be extremely important in tuning the physical properties of the fluids. Stable liquid-crystalline and liquid phases are obtained in the -20 °C to 200 °C temperature range without thermal degradation of the DNA. Thus, a new type of DNA-based soft biomaterial has been achieved, which will promote the study and application of DNA in a much broader context. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Encapsulated liquid crystals as probes for remote thermometry.

    PubMed

    Franklin, K J; Buist, R J; den Hartog, J; McRae, G A; Spencer, D P

    1992-01-01

    A temperature probe based on the magnetic resonance properties of an encapsulated liquid crystal has been investigated. Large changes in magnetic resonance signals occur as the liquid crystal undergoes a phase transition from an anisotropic (nematic) state to the isotropic liquid. The low latent heat of such phase transitions allows for rapid phase changes during a hyperthermia treatment. Transition temperatures can be tailored by adding suitable compounds such as analogues of the liquid crystal or various solvents. Encapsulation is required to maintain the integrity of the liquid crystal, particularly for applications in vivo. Results of preliminary studies designed to demonstrate the technical feasibility of the concept are presented.

  19. Liquid crystal-ZnO nanoparticle photovoltaics: Role of nanoparticles in ordering the liquid crystal

    SciTech Connect

    Martinez-Miranda, L. J.; Traister, Kaitlin M.; Melendez-Rodriguez, Iriselies; Salamanca-Riba, Lourdes

    2010-11-29

    We investigate the role that order plays in the transfer of charges in the ZnO nano-particle-octylcyanobiphenyl (8CB) liquid crystal system, considered for photovoltaic applications. We have changed the concentration of ZnO nanoparticles in 8CB from 1.18 to 40 wt %. Our results show an improvement in the alignment of the liquid crystal with increasing weight percentage of ZnO nanoparticles, up to a concentration of 30 wt %. In addition, the current generated by the system increases by three orders of magnitude.

  20. Liquid-crystal blazed grating with azimuthally distributed liquid-crystal directors.

    PubMed

    Honma, Michinori; Nose, Toshiaki

    2004-09-20

    We propose a novel formation method of arbitrary phase profiles of circular light by controlling azimuthal angles of liquid-crystal directors; its principle is described theoretically. A new liquid-crystal blazed grating is demonstrated by use of the proposed method. It is revealed that the first-order diffraction efficiency reaches the maximum value (theoretically 100%, experimentally approximately 90%) at an optimum applied voltage when the phase difference between the extraordinary and ordinary rays agrees with one-half the wavelength. Furthermore, the polarization states of the diffracted light beams are analyzed by Stokes parameter measurements, and unique polarization-splitting properties are revealed.

  1. Liquid Crystalline Behavior and Related Properties of Colloidal Systems of Inorganic Oxide Nanosheets

    PubMed Central

    Nakato, Teruyuki; Miyamoto, Nobuyoshi

    2009-01-01

    Inorganic layered crystals exemplified by clay minerals can be exfoliated in solvents to form colloidal dispersions of extremely thin inorganic layers that are called nanosheets. The obtained “nanosheet colloids” form lyotropic liquid crystals because of the highly anisotropic shape of the nanosheets. This system is a rare example of liquid crystals consisting of inorganic crystalline mesogens. Nanosheet colloids of photocatalytically active semiconducting oxides can exhibit unusual photoresponses that are not observed for organic liquid crystals. This review summarizes experimental work on the phase behavior of the nanosheet colloids as well as photochemical reactions observed in the clay and semiconducting nanosheets system.

  2. Phototropic liquid crystal materials containing naphthopyran dopants

    NASA Astrophysics Data System (ADS)

    Rumi, Mariacristina; Cazzell, Seth; Kosa, Tamas; Sukhomlinova, Ludmila; Taheri, Bahman; Bunning, Timothy; White, Timothy

    2015-03-01

    Dopant molecules dispersed in a liquid crystalline material usually affects the order of the system and the transition temperature between various phases. If the dopants undergo photoisomerization between conformers with different shapes, the interactions with the liquid crystal molecules can be different for the material in the dark and during exposure to light of appropriate wavelength. This can be used to achieve isothermal photoinduced phase transitions (phototropism). With proper selection of materials components, both order-to-disorder and disorder-to-order photoinduced transition have been demonstrated. Isothermal order-increasing transitions have been observed recently using naphthopyran derivatives as dopants. We are investigating the changes in order parameter and transition temperature of liquid crystal mixtures containing naphthopyrans and how they are related to exposure conditions and to the concentration and molecular structure of the dopants. We are also studying the nature of the photoinduced phase transitions, and comparing the behavior with that of azobenzene-doped mixtures, in which exposure to light leads to a decrease, instead of an increase, in the order of the system.

  3. Perdeuterated liquid crystals for near infrared applications

    NASA Astrophysics Data System (ADS)

    Kula, P.; Bennis, N.; Marć, P.; Harmata, P.; Gacioch, K.; Morawiak, P.; Jaroszewicz, L. R.

    2016-10-01

    For majority of Liquid Crystalline compounds the absorption occurs at two spectral regions: ultraviolet UV (due to electronic excitations) and infrared IR (caused by molecular vibrations). Both cause the absorption which deteriorates electro-optical modulation abilities of LC. In the MWIR and LWIR regions, there are many fundamental molecular vibration bands. The most intense are the ones with high anharmonicity, which in the case of LCs corresponds to the Csbnd H bonds, especially present in the aliphatic chains. In the NIR region, overtone molecular vibration bands derived from IR region begin to appear. In the case of Csbnd H bond system, the first overtones are present at 1.6-1.7 μm. To reduce NIR absorptions, perdeuterated Liquid crystal has been proposed. In this paper, we report the physical and optical properties of liquid crystals based on polarimetry measurements method. We also provide a polar decomposition of experimentally measured Mueller matrix in order to determine polarization properties of the device such as depolarization and diattenuation which cannot be obtained from absorption spectra.

  4. Biologically relevant lyotropic liquid crystalline phases in mixtures of n-octyl β-D-glucoside and water. Determination of the phase diagram by fluorescence spectroscopy.

    PubMed

    Karukstis, Kerry K; Duim, Whitney C; Van Hecke, Gerald R; Hara, Nagiko

    2012-03-29

    When mixed with water, n-octyl β-D-glucoside forms self-assembled nanostructures, several of which are liquid crystalline and all of which depend on the water/glucoside ratio and temperature. For practical use of these phases, a detailed understanding of the conditions under which they exist (i.e., the isobaric phase diagram) is required. We use the fluorescence of the dye molecule prodan as a new approach to probe the phases formed in these mixtures. The prodan fluorescence signal depends on the polarity of its environment and thus the phase(s) in which the dye exists. Visual inspection of the total fluorescence signal can qualitatively determine the phases present, including coexisting phases. Temperature-induced phase changes are also detected from variations observed in the prodan fluorescence spectrum. The sensitivity of this new technique allows the single- and multiple-phase regions to be mapped carefully for the first time.

  5. Stealth, biocompatible monoolein-based lyotropic liquid crystalline nanoparticles for enhanced aloe-emodin delivery to breast cancer cells: in vitro and in vivo studies

    PubMed Central

    Freag, May S; Elnaggar, Yosra SR; Abdelmonsif, Doaa A; Abdallah, Ossama Y

    2016-01-01

    Recently, research has progressively highlighted on clues from conventional use of herbal medicines to introduce new anticancer drugs. Aloe-emodin (AE) is a herbal drug with promising anticancer activity. Nevertheless, its clinical utility is handicapped by its low solubility. For the first time, this study aims to the fabrication of surface-functionalized polyethylene glycol liquid crystalline nanoparticles (PEG-LCNPs) of AE to enhance its water solubility and enable its anticancer use. Developed AE-PEG-LCNPs were optimized via particle size and zeta potential measurements. Phase behavior, solid state characteristics, hemocompatibility, and serum stability of LCNPs were assessed. Sterile formulations were developed using various sterilization technologies. Furthermore, the potential of the formulations was investigated using cell culture, pharmacokinetics, biodistribution, and toxicity studies. AE-PEG-LCNPs showed particle size of 190 nm and zeta potential of −49.9, and PEGylation approach reduced the monoolein hemolytic tendency to 3% and increased the serum stability of the nanoparticles. Sterilization of liquid and lyophilized AE-PEG-LCNPs via autoclaving and γ-radiations, respectively, insignificantly affected the physicochemical properties of the nanoparticles. Half maximal inhibitory concentration of AE-PEG-LCNPs was 3.6-fold lower than free AE after 48 hours and their cellular uptake was threefold higher than free AE after 24-hour incubation. AE-PEG-LCNPs presented 5.4-fold increase in t1/2 compared with free AE. Biodistribution and toxicity studies showed reduced AE-PEG-LCNP uptake by reticuloendothelial system organs and good safety profile. PEGylated LCNPs could serve as a promising nanocarrier for efficient delivery of AE to cancerous cells. PMID:27703348

  6. Stealth, biocompatible monoolein-based lyotropic liquid crystalline nanoparticles for enhanced aloe-emodin delivery to breast cancer cells: in vitro and in vivo studies.

    PubMed

    Freag, May S; Elnaggar, Yosra Sr; Abdelmonsif, Doaa A; Abdallah, Ossama Y

    Recently, research has progressively highlighted on clues from conventional use of herbal medicines to introduce new anticancer drugs. Aloe-emodin (AE) is a herbal drug with promising anticancer activity. Nevertheless, its clinical utility is handicapped by its low solubility. For the first time, this study aims to the fabrication of surface-functionalized polyethylene glycol liquid crystalline nanoparticles (PEG-LCNPs) of AE to enhance its water solubility and enable its anticancer use. Developed AE-PEG-LCNPs were optimized via particle size and zeta potential measurements. Phase behavior, solid state characteristics, hemocompatibility, and serum stability of LCNPs were assessed. Sterile formulations were developed using various sterilization technologies. Furthermore, the potential of the formulations was investigated using cell culture, pharmacokinetics, biodistribution, and toxicity studies. AE-PEG-LCNPs showed particle size of 190 nm and zeta potential of -49.9, and PEGylation approach reduced the monoolein hemolytic tendency to 3% and increased the serum stability of the nanoparticles. Sterilization of liquid and lyophilized AE-PEG-LCNPs via autoclaving and γ-radiations, respectively, insignificantly affected the physicochemical properties of the nanoparticles. Half maximal inhibitory concentration of AE-PEG-LCNPs was 3.6-fold lower than free AE after 48 hours and their cellular uptake was threefold higher than free AE after 24-hour incubation. AE-PEG-LCNPs presented 5.4-fold increase in t1/2 compared with free AE. Biodistribution and toxicity studies showed reduced AE-PEG-LCNP uptake by reticuloendothelial system organs and good safety profile. PEGylated LCNPs could serve as a promising nanocarrier for efficient delivery of AE to cancerous cells.

  7. Facilitated Ion Transport in Smectic Ordered Ionic Liquid Crystals.

    PubMed

    Lee, Jin Hong; Han, Kee Sung; Lee, Je Seung; Lee, Albert S; Park, Seo Kyung; Hong, Sung Yun; Lee, Jong-Chan; Mueller, Karl T; Hong, Soon Man; Koo, Chong Min

    2016-11-01

    A novel ionic mixture of an imidazolium-based room-temperature ionic liquid containing ethylene-oxide-functionalized phosphite anions is fabricated, which, when doped with lithium salt, self-assembles into a smectic-ordered ionic liquid crystal through Coulombic interactions between the ion species. Interestingly, the smectic order in the ionic-liquid-crystal ionogel facilitates ionic transport.

  8. Liquid crystal devices for photonics applications

    NASA Astrophysics Data System (ADS)

    Chigrinov, Vladimir G.

    2007-11-01

    Liquid crystal (LC) devices for Photonics applications is a hot topic of research. Such elements begin to appear in Photonics market. Passive elements for fiber optical communication systems (DWDM components) based on LC cells can successfully compete with the other elements used for the purpose, such as micro electromechanical (MEM), thermo-optical, opto-mechanical or acousto-optical devices. Application of nematic and ferroelectric LC for high speed communication systems, producing elements that are extremely fast, stable, durable, of low loss, operable over a wide temperature range, and that require small operating voltages and extremely low power consumption. The known LC applications in fiber optics enable to produce switches, filters, attenuators, equalizers, polarization controllers, phase emulators and other fiber optical components. Good robustness due to the absence of moving parts and compatibility with VLSI technology, excellent parameters in a large photonic wavelength range, whereas the complexity of the design and the cost of the device are equivalent to regular passive matrix LC displays makes LC fiber optical devices very attractive for mass production. We have already successfully fabricated certain prototypes of the optical switches based on ferroelectric and nematic LC materials. The electrooptical modes used for the purpose included the light polarization rotation, voltage controllable diffraction and fast switching of the LC refractive index. We used the powerful software to optimize the LC modulation characteristics. Use of photo-alignment technique pioneered by us makes it possible to develop new LC fiber components. Almost all the criteria of perfect LC alignment are met in case of azo-dye layers. We have already used azo-dye materials to align LC in superthin photonic holes, curved and 3D surfaces and as cladding layers in microring silicon based resonators. The prototypes of new LC efficient Photonics devices are envisaged. Controllable

  9. Lyotropic model membrane structures of hydrated DPPC: DSC and small-angle X-ray scattering studies of phase transitions in the presence of membranotropic agents

    NASA Astrophysics Data System (ADS)

    Bulavin, L. A.; Soloviov, D. V.; Gordeliy, V. I.; Svechnikova, O. S.; Krasnikova, A. O.; Kasian, N. A.; Vashchenko, O. V.; Lisetski, L. N.

    2015-06-01

    Multibilayer structures of hydrated phospholipids, often considered as model biological membranes, are, from the physical viewpoint, lyotropic liquid crystalline systems undergoing temperature-induced mesomorphic phase transitions. Effects of silver nitrate and urocanic acid on lyotropic phase states of hydrated L-α-dipalmitoylphosphatidylcholine (DPPC) have been studied by small-angle X-ray scattering and differential scanning calorimetry (DSC). Both methods show increase of the main phase-transition temperature (Tm) of hydrated DPPC upon introduction of AgNO3 or urocanic acid, decrease of pre-transition temperature (Tp) in the presence of urocanic acid and its increase in the presence of AgNO3. Thus, urocanic acid widened the ripple-phase temperature region. Silver nitrate caused the appearance of an additional high-temperature peak on DSC thermograms, evidencing phase separation in the system. Both agents caused minor effects on DPPC lipid bilayer repeat distance (D) in gel phase, but resulted in noticeable increase of D in the liquid crystal phase with temperature as compared to undoped DPPC structures.

  10. Crystallization Response of Hydrous Granitic Liquids

    NASA Astrophysics Data System (ADS)

    London, D.; Morgan, G. B.; Evensen, J. M.

    2006-05-01

    Preconditioning of hydrous haplogranite liquid (200 MPa eutectic composition Ab38Or28Qz34) at 100° C above the liquidus temperature for 72 hr is sufficient to eliminate any vestiges of the initial structural states of vitreous or crystalline starting materials. Experimental crystallization of this composition in the presence of aqueous vapor begins by nucleation in the vapor space, following which crystal growth advances into supercooled melt. The minimum in nucleation delay (~ 200 hrs) and maximum in nucleation density and growth rate occur at liquidus undercooling (ΔT) of 200° C. Crystallization does not exceed 10% in experiments up to 600 hrs at any value of ΔT, and no crystallization occurs within 50° C of the liquidus up to 700 hrs. Though the melt composition is invariant (eutectic), and no compositional gradients are discernable by EMPA in quenched glasses, the crystallization response is sequential: at ΔT = 200° C, coarsely skeletal K-feldspar nucleates and grows first, followed by graphic to spherulitic quartz-sodic alkali feldspar intergrowths, and lastly in some experiments, monophase quartz blebs. Once formed, crystals or clusters tend not to grow larger, but rather, new centers of nucleation and growth appear. The result is a sequential history of uniform crystal texture (size and habit). At comparable ΔT, the nucleation delay decreases as the bulk composition is displaced (by choosing a composition) farther from the eutectic. At comparable ΔT, fluxes (P, F) serve to increase the nucleation delay and decrease the nucleation density but do not notably change either growth rates or crystal habits. Diffusion of alkalis through melt is rapid, such that any gradients in alkalis that should result from non-eutectic crystallization are erased in minutes or hours over distances of 5 mm and down to ΔT = 350° C, in the field of glass. These relations of undercooling (ΔT) to time (t) apply only to H2O-oversaturated systems. We do not have data for the

  11. Piperidinium, piperazinium and morpholinium ionic liquid crystals.

    PubMed

    Lava, Kathleen; Binnemans, Koen; Cardinaels, Thomas

    2009-07-16

    Piperidinium, piperazinium and morpholinium cations have been used for the design of ionic liquid crystals. These cations were combined with several types of anions, namely bromide, tetrafluoroborate, hexafluorophosphate, dodecylsulfate, bis(trifluoromethylsulfonyl)imide, dioctylsulfosuccinate, dicyclohexylsulfosuccinate, and dihexylsulfosuccinate. For the bromide salts of piperidinium containing one alkyl chain, the chain length was varied, ranging from 8 to 18 carbon atoms (n = 8, 10, 12, 14, 16, 18). The compounds show a rich mesomorphic behavior. High-ordered smectic phases (crystal smectic E and T phases), smectic A phases, and hexagonal columnar phases were observed, depending on the type of cation and anion. The morpholinium compounds with sulfosuccinate anions showed hexagonal columnar phases at room temperature and a structural model for the self-assembly of these morpholinium compounds into hexagonal columnar phases is proposed.

  12. New triazolium based ionic liquid crystals

    SciTech Connect

    Stappert, Kathrin; Unal, Derya; Mallick, Bert; Mudring, Anja-Verena

    2014-01-01

    A set of novel 1,2,3-triazolium based ionic liquid crystals was synthesized and their mesomorphic behaviour studied by DSC (differential scanning calorimetry), POM (polarizing optical microscopy) and SAXS (small angle X-ray scattering). Beside the variation of the chain length (C10, C12 and C14) at the 1,2,3-triazolium cation also the anion has been varied (Br-, I-, I3-, BF4-, SbF6-, N(CN)2-, Tf2N-) to study the influence of ion size, symmetry and H-bonding capability on the mesophase formation. Interestingly, for the 1,3-didodecyl-1,2,3-triazolium cation two totally different conformations were found in the crystal structure of the bromide (U-shaped) and the triiodide (rod shaped).

  13. Laser damage resistant nematic liquid crystal cell

    NASA Astrophysics Data System (ADS)

    Raszewski, Z.; Piecek, W.; Jaroszewicz, L.; Soms, L.; Marczak, J.; Nowinowski-Kruszelnicki, E.; Perkowski, P.; Kedzierski, J.; Miszczyk, E.; Olifierczuk, M.; Morawiak, P.; Mazur, R.

    2013-08-01

    There exists a problem in diagnostics of a dense plasma (so-called Thomson diagnostics). For this purpose, the plasma is illuminated by series of high energy laser pulses. Such pulses are generated by several independent lasers operating sequentially, and these pulses are to be directed along an exactly the same optical path. In this case, the energy of each separate pulse is as large as 3 J, so it is impossible to generate a burst of such pulses by a single laser. In this situation, several independent lasers have to be used. To form optical path with λ = 1.064 μm and absolute value of the energy of laser pulse through of 3 J, a special refractive index matched twisted Nematic Liquid Crystal Cell (NLCC) of type LCNP2 with switching on time τON smaller than 5 μs might be applied. High laser damage resistance of NLCC and short τON can be fulfilled by preparation of liquid crystal cells with Liquid Crystal Mixture (LCM), well tuned to twisted nematic electro-optical effect, and well tuned all optical interfaces (Air - Antireflection - Quartz Plate - Electrode - Blocking Film - Aligning Layer - LCM - Aligning Layer - Blocking Film - Electrode - Quartz Plate - Antireflection - Air). In such LCNP2 cell, the transmission is higher than 97% at λ = 1.064 μm, as it is presented by Gooch and Tarry [J. Phys. D: Appl. Phys. 8, 1575 (1975)]. The safe laser density energy is about 0.6 J/cm2 for a train of laser pulses (λ = 1.064 μm, pulse duration 10 ns FWHM, pulse repetition rate 100 pps, train duration 10 s), so the area of liquid crystal cell tolerating 3 J through it shall be as large as 5 cm2. Due to the presence of two blocking film layers between electrodes, LCNP2 can be driven by high voltages. Switching on time smaller than τON = 5 μs was obtained under 200 V switching voltage.

  14. Liquid crystal temperature monitoring for microsurgery.

    PubMed

    Sudarsky, L A; Salomon, J

    1991-01-01

    Postoperative monitoring of free tissue transfers remains a problem for the microsurgeon. Liquid crystal temperature probes (LCT) are used by anesthesiologists to monitor patient core temperature and to indicate changes in temperature trends as an indicator of pending malignant hyperthermia. By placing an LCT monitor on the flap and adjacent tissue at the completion of surgery, temperature differentials can be reliably monitored. If the temperature differential exceeds 2 degrees C, the flap is re-explored. The LCT readout resembles a standard thermometer and can easily be recorded by even inexperienced personnel. LCTs are a convenient, inexpensive, and easy method to monitor both free muscle and free fasciocutaneous flaps.

  15. Conformation and chirality in liquid crystals

    NASA Astrophysics Data System (ADS)

    West, John L.; Zhao, Lei

    2013-09-01

    High helical twisting powerchiral additives are required for an expanding variety of liquid crystal displays and devices. Molecular conformation plays a critical role in determining the helical twisting power, HTP, of chiral additives. We studied additives based on an isosorbide benzoate ester core. Molecular modeling revealed two low energy states with very different conformations for this core The ultra-violet absorption and NMR spectra show two stable isosorbide conformers These spectra reveal how the relative populations of these two conformations change with temperature and how this is related to the helical twisting power. Conformation changes can explain many of the observed anomalous responses of HPT to temperature.

  16. Liquid crystal-based hydrophone arrays

    NASA Astrophysics Data System (ADS)

    Brodzeli, Zourab; Silvestri, Leonardo; Michie, Andrew; Chigrinov, Vladimir G.; Guo, Qi; Pozhidaev, Eugene P.; Kiselev, Alexei D.; Ladouceur, Francois

    2012-09-01

    We describe a fiber optic hydrophone array system that could be used for underwater acoustic surveillance applications (e.g. military, counter terrorist, and customs authorities in protecting ports and harbors), offshore production facilities or coastal approaches as well as various marine applications. In this paper, we propose a new approach to underwater sonar systems using the voltage-controlled liquid crystals and simple multiplexing method. The proposed method permits measurement of sound under water at multiple points along an optical fiber using the low cost components and standard single mode fiber, without complex interferometric measurement techniques, electronics or demodulation software.

  17. Optical vortices from liquid crystal droplets.

    PubMed

    Brasselet, Etienne; Murazawa, Naoki; Misawa, Hiroaki; Juodkazis, Saulius

    2009-09-04

    We report on the generation of mono- and polychromatic optical phase singularities from micron-sized birefringent droplets. This is done experimentally by using liquid crystal droplets whose three dimensional architecture of the optical axis is controlled within the bulk by surfactant agents. Because of its microscopic size these optical vortex generators are optically trapped and manipulated at will, thus realizing a robust self-aligned micro-optical device for orbital angular momentum conversion. Experimental observations are supported by a simple model of optical spin-orbit coupling in uniaxial dielectrics that emphasizes the prominent role of the transverse optical anisotropy with respect to the beam propagation direction.

  18. Stochastic rotation dynamics for nematic liquid crystals

    SciTech Connect

    Lee, Kuang-Wu Mazza, Marco G.

    2015-04-28

    We introduce a new mesoscopic model for nematic liquid crystals (LCs). We extend the particle-based stochastic rotation dynamics method, which reproduces the Navier-Stokes equation, to anisotropic fluids by including a simplified Ericksen-Leslie formulation of nematodynamics. We verify the applicability of this hybrid model by studying the equilibrium isotropic-nematic phase transition and nonequilibrium problems, such as the dynamics of topological defects and the rheology of sheared LCs. Our simulation results show that this hybrid model captures many essential aspects of LC physics at the mesoscopic scale, while preserving microscopic thermal fluctuations.

  19. Faster pitch control of cholesteric liquid crystals

    NASA Astrophysics Data System (ADS)

    Inoue, Yo; Hattori, Mayo; Kubo, Hitoshi; Moritake, Hiroshi

    2017-08-01

    We report the spectral broadening of selective reflection (SR) with higher response speed in cholesteric liquid crystals (ChLCs). A planarly aligned ChLC was applied with an in-plane electric field with an inhomogeneous intensity in the cell-depth direction by using common interdigitated electrodes and selecting the cell gap and the interval between electrodes. The electric field normal to the helix increased the helical pitch of the ChLC, while the inhomogeneous field intensity caused the spatial distribution of the helical pitch in the cell-depth direction, increasing the SR band width from 100 to 300 nm with the response time of 3 ms.

  20. Wide Angle Liquid Crystal Optical Phased Array

    NASA Technical Reports Server (NTRS)

    Wang, Xing-Hua; Wang, Bin; Bos, Philip J.; Anderson, James E.; Pouch, John J.; Miranda, Felix A.; McManamon, Paul F.

    2004-01-01

    Accurate modeling of a high resolution, liquid crystal (LC) based, optical phased array (OPA) is shown. The simulation shows excellent agreement with a test 2-D LC OPA. The modeling method is extendable to cases where the array element size is close to the wavelength of light. The fringing fields of such a device are first studied, and subsequently reduced. This results in a device that demonstrates plus or minus 7.4 degrees of continuous beam steering at a wavelength of 1550 nm, and a diffraction efficiency (DE) higher than 72%.

  1. Tuning Fluidic Resistance via Liquid Crystal Microfluidics

    PubMed Central

    Sengupta, Anupam

    2013-01-01

    Flow of molecularly ordered fluids, like liquid crystals, is inherently coupled with the average local orientation of the molecules, or the director. The anisotropic coupling—typically absent in isotropic fluids—bestows unique functionalities to the flowing matrix. In this work, we harness this anisotropy to pattern different pathways to tunable fluidic resistance within microfluidic devices. We use a nematic liquid crystalline material flowing in microchannels to demonstrate passive and active modulation of the flow resistance. While appropriate surface anchoring conditions—which imprint distinct fluidic resistances within microchannels under similar hydrodynamic parameters—act as passive cues, an external field, e.g., temperature, is used to actively modulate the flow resistance in the microfluidic device. We apply this simple concept to fabricate basic fluidic circuits, which can be hierarchically extended to create complex resistance networks, without any additional design or morphological patterning of the microchannels. PMID:24256819

  2. 1,10-Phenanthrolinium ionic liquid crystals.

    PubMed

    Cardinaels, Thomas; Lava, Kathleen; Goossens, Karel; Eliseeva, Svetlana V; Binnemans, Koen

    2011-03-01

    The 1,10-phenanthrolinium cation is introduced as a new building block for the design of ionic liquid crystals. 1,10-Phenanthroline, 5-methyl-1,10-phenanthroline, 5-chloro-1,10-phenanthroline, and 4,7-diphenyl-1,10-phenanthroline were quaternized by reaction with 1,3-dibromopropane or 1,2-dibromoethane. The resulting cations were combined with dodecyl sulfate or dioctyl sulfosuccinate anions. The influence of both the cation and anion type on the thermal behavior was investigated. Several of the complexes exhibit mesomorphic behavior, with smectic E phases for the dodecyl sulfate salts and smectic A phases for the dioctyl sulfosuccinate salts. Structural models for the packing of the 1,10-phenanthrolinium and anionic moieties in the liquid-crystalline phases are presented. The ionic compounds show fluorescence in the solid state and in solution.

  3. Ionic liquid crystals derived from amino acids.

    PubMed

    Mansueto, Markus; Frey, Wolfgang; Laschat, Sabine

    2013-11-18

    Novel chiral amino acid derived ionic liquid crystals with amine and amide moieties as spacers between the imidazolium head group and the alkyl chain were synthesised. The key step in the synthesis utilised the relatively uncommon SO3 leaving group in a microwave-assisted reaction. The mesomorphic properties of the mesogens were determined by differential scanning calorimetry (DSC), polarising optical microscopy (POM) and X-ray diffraction. All liquid crystalline salts exhibit a smectic A mesophase geometry with strongly interdigitated bilayer structures. An increase of the steric bulk of the stereogenic centre hindered the formation of mesophases. In case of phenylalanine-derived derivatives a mesomorphic behaviour was observed for shorter alkyl chains as compared to other amino acid derivatives indicating an additional stabilising effect by the phenyl moiety.

  4. Inorganic nanotubes and nanorods in liquid crystals

    NASA Astrophysics Data System (ADS)

    Drevenšek-Olenik, Irena

    Research efforts that focus on possible improvement of the physical properties of thermotropic liquid crystals by addition of inorganic 1D nanoparticles (inorganic nanotubes, nanorods, etc.) are reviewed. The emphasis is on modification of electro-optic switching characteristics relevant for display-related applications. In most cases the dopants generate a decrease of the threshold voltage for electrooptic switching and also a decrease of the corresponding switching times. We discuss various possible reasons for the observed effects and point out specific characteristics related to 1D nature of the dopants. We also describe investigations of inclusion of 1D nanoparticles into photo-polymerizable nematic liquid crystalline materials. Photo-polymerization in the aligned nematic phase provides a convenient way to fabricate solid polymer films with strongly anisotropic angular distribution of the nanoparticles. Investigations of structural and optical properties of some selected systems are surveyed.

  5. UV sensors based on liquid crystals mixtures

    NASA Astrophysics Data System (ADS)

    Chanishvili, Andro; Petriashvili, Gia; Chilaya, Guram; Barberi, Riccardo; De Santo, Maria P.; Matranga, Mario A.; Ciuchi, F.

    2006-04-01

    The Erythemal Response Spectrum is a scientific expression that describes the sensitivity of the skin to the ultraviolet radiation. The skin sensitivity strongly depends on the UV wavelength: a long exposition to UV radiation causes erythema once a threshold dose has been exceeded. In the past years several devices have been developed in order to monitor the UV exposure, most of them are based on inorganic materials that are able to mimic the human skin behaviour under UV radiation. We present a new device based on liquid crystals technology. The sensor is based on a liquid crystalline mixture that absorbs photons at UV wavelength and emits them at a longer one. This system presents several innovative features: the absorption range of the mixture can be varied to be sensitive to different wavelengths, the luminescence intensity can be tuned, the system can be implemented on flexible devices.

  6. Control of liquid crystal molecular orientation using ultrasound vibration

    SciTech Connect

    Taniguchi, Satoki; Koyama, Daisuke; Matsukawa, Mami; Shimizu, Yuki; Emoto, Akira; Nakamura, Kentaro

    2016-03-07

    We propose a technique to control the orientation of nematic liquid crystals using ultrasound and investigate the optical characteristics of the oriented samples. An ultrasonic liquid crystal cell with a thickness of 5–25 μm and two ultrasonic lead zirconate titanate transducers was fabricated. By exciting the ultrasonic transducers, the flexural vibration modes were generated on the cell. An acoustic radiation force to the liquid crystal layer was generated, changing the molecular orientation and thus the light transmission. By modulating the ultrasonic driving frequency and voltage, the spatial distribution of the molecular orientation of the liquid crystals could be controlled. The distribution of the transmitted light intensity depends on the thickness of the liquid crystal layer because the acoustic field in the liquid crystal layer is changed by the orientational film.

  7. Dynamic Photonic Materials Based on Liquid Crystals (Postprint)

    DTIC Science & Technology

    2013-09-01

    AFRL-RX-WP-JA-2015-0059 DYNAMIC PHOTONIC MATERIALS BASED ON LIQUID CRYSTALS (POSTPRINT) Luciano De Sio and Cesare Umeton University...ON LIQUID CRYSTALS (POSTPRINT) 5a. CONTRACT NUMBER In-House 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) (see back...10.1016/B978-0-444-62644-8.00001-7. 14. ABSTRACT Liquid crystals, combining optical non-linearity and self-organizing properties with fluidity, and being

  8. Electrically Tilted Liquid Crystal Display Mode for High Speed Operation

    NASA Astrophysics Data System (ADS)

    Gwag, Jin Seog; Kim, Jae Chang; Yoon, Tae-Hoon

    2006-09-01

    To develop liquid crystal displays suitable for moving picture, a liquid crystal display mode having an electrically tilted phase is proposed. This is realized by initially having a tilted liquid crystal with low bias voltage. We found that its measured response time is in good agreement with numerical calculation obtained using the Erickson-Leslie equation. The falling times were smaller than 10 ms with conventional driving and 6 ms with overdriving.

  9. Partially exposed polymer dispersed liquid crystals for boundary layer investigations

    NASA Technical Reports Server (NTRS)

    Parmar, Devendra S.; Singh, Jag J.

    1992-01-01

    A new configuration termed partially exposed polymer dispersed liquid crystal in which the liquid crystal microdroplets dispersed in a rigid polymer matrix are partially entrapped on the free surface of the thin film deposited on a glass substrate is reported. Optical transmission characteristics of the partially exposed polymer dispersed liquid crystal thin film in response to an air flow induced shear stress field reveal its potential as a sensor for gas flow and boundary layer investigations.

  10. Tailoring liquid crystals to become fast and efficient terahertz devices

    NASA Astrophysics Data System (ADS)

    Pickwell-MacPherson, E.; Parrott, E. P. J.; Park, H.; Fan, F.; Chigrinov, V. G.

    2012-10-01

    Liquid crystals have been employed for several decades in devices such as phase shifters, Fabry-Perot filters, polarizers, phase gratings, and Bragg switches at optical frequencies. However it is only recently that such devices have been demonstrated at terahertz frequencies. This is because of several fundamental frequency dependent relationships between device properties and frequency of operation. When designing liquid crystal devices, we need to find liquid crystals with high birefringence, low viscosity and low absorption at terahertz frequencies. In this paper we will present some measurements and simulations of potentially suitable liquid crystal mixtures.

  11. Handbook of Liquid Crystals, Handbook of Liquid Crystals: Four Volume Set

    NASA Astrophysics Data System (ADS)

    Demus, Dietrich; Goodby, John W.; Gray, George W.; Spiess, Hans W.; Vill, Volkmar

    1998-06-01

    The Handbook of Liquid Crystals is a unique compendium of knowledge on all aspects of liquid crystals. In over 2000 pages the Handbook provides detailed information on the basic principles of both low- and high-molecular weight materials, as well as the synthesis, characterization, modification, and applications (such as in computer displays or as structural materials) of all types of liquid crystals. The five editors of the Handbook are internationally renowned experts from both industry and academia and have drawn together over 70 leading figures in the field as authors. The four volumes of the Handbook are designed both to be used together or as stand-alone reference sources. Some users will require the whole set, others will be best served with a selection of the volumes. Volume 1 deals with the basic physical and chemical principles of liquid crystals, including structure-property relationships, nomenclature, phase behavior, characterization methods, and general synthesis and application strategies. As such this volume provides an excellent introduction to the field and a powerful learning and teaching tool for graduate students and above. Volume 2 concentrates on low-molecular weight materials, for example those typically used in display technology. A high quality survey of the literature is provided along with full details of molecular design strategies, phase characterization and control, and applications development. This volume is therefore by far the most detailed reference source on these industrially very important materials, ideally suited for professionals in the field. Volume 3 concentrates on high-molecular weight, or polymeric, liquid crystals, some of which are found in structural applications and others occur as natural products of living systems. A high-quality literature survey is complemented by full detail of the synthesis, processing, analysis, and applications of all important materials classes. This volume is the most comprehensive

  12. Particles and curvatures in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Serra, Francesca; Luo, Yimin; Yang, Shu; Kamien, Randall D.; Stebe, Kathleen J.

    Elastic interactions in anisotropic fluids can be harnessed to direct particle interactions. A strategy to smoothly manipulate the director field in nematic liquid crystals is to vary the topography of the bounding surfaces. A rugged landscape with peaks and valleys create local deformations of the director field which can interact with particles in solution. We study this complex interaction in two different settings. The first consists of an array of shallow pores in a poly-dimethyl-siloxane (PDMS) membrane, whose curvature can be tuned either by swelling the PDMS membrane or by mechanical stretching. The second is a set of grooves with wavy walls, fabricated by photolithography, with various parameters of curvature and shapes. In this contexts we study how the motion of colloidal particles in nematic liquid crystals can be influenced by their interaction with the peaks and valleys of the bottom substrate or of the side walls. Particles with different associated topological defects (hedgehogs or Saturn rings) behave differently as they interact with the topographical features, favoring the docking on peaks or valleys. These experimental systems are also ideal to study the ``lock and key'' mechanism of particles in holes and to investigate a possible route for particle sorting.

  13. Switching dynamics in cholesteric liquid crystal emulsions

    NASA Astrophysics Data System (ADS)

    Fadda, F.; Gonnella, G.; Marenduzzo, D.; Orlandini, E.; Tiribocchi, A.

    2017-08-01

    In this work we numerically study the switching dynamics of a 2D cholesteric emulsion droplet immersed in an isotropic fluid under an electric field, which is either uniform or rotating with constant speed. The overall dynamics depend strongly on the magnitude and on the direction (with respect to the cholesteric axis) of the applied field, on the anchoring of the director at the droplet surface and on the elasticity. If the surface anchoring is homeotropic and a uniform field is parallel to the cholesteric axis, the director undergoes deep elastic deformations and the droplet typically gets stuck into metastable states which are rich in topological defects. When the surface anchoring is tangential, the effects due to the electric field are overall less dramatic, as a small number of topological defects form at equilibrium. The application of the field perpendicular to the cholesteric axis usually has negligible effects on the defect dynamics. The presence of a rotating electric field of varying frequency fosters the rotation of the defects and of the droplet as well, typically at a lower speed than that of the field, due to the inertia of the liquid crystal. If the surface anchoring is homeotropic, a periodic motion is found. Our results represent a first step to understand the dynamical response of a cholesteric droplet under an electric field and its possible application in designing novel liquid crystal-based devices.

  14. Ferroelectric Liquid Crystals In Aerodynamic Testing

    NASA Technical Reports Server (NTRS)

    Parmar, Devendra S.; Holmes, Harlan K.

    1994-01-01

    The process of simultaneous optical visualization and quantitative measurement of aerodynamic boundary layer parameters requires new concepts, materials and utilization methods. Measurement of shear stress in terms of the transmitted or the reflected light intensity from an aligned ferroelectric liquid crystal (FLC) thin (approx. 1 micron) film deposited on a glass substrate has been the first step in this direction. In this paper, recent progress in utilization of FLC thin films for skin friction measurement and for studying the state of the boundary layer in a wind tunnel environment is reviewed. The switching characteristics of FLCs have been used to measure pressure from the newly devised system of partially exposed polymer dispersed ferroelectric liquid crystals (PEPDFLCs). In this configuration, a PEPDFLC thin film (approx. 10-25 microns) is sandwiched between two transparent conducting electrodes, one a rigid surface and the other a flexible sheet such as polyvinylidene fluoride or mylar. The switching characteristics of the film are a function of the pressure applied to the flexible transparent electrode and a predetermined bias voltage across the two electrodes. The results, considering the dielectrics of composite media, are discussed.

  15. Dispersive shock waves in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Smyth, Noel F.

    2016-10-01

    The propagation of coherent light with an initial step intensity profile in a nematic liquid crystal is studied using modulation theory. The propagation of light in a nematic liquid crystal is governed by a coupled system consisting of a nonlinear Schrödinger equation for the light beam and an elliptic equation for the medium response. In general, the intensity step breaks up into a dispersive shock wave, or undular bore, and an expansion fan. In the experimental parameter regime for which the nematic response is highly nonlocal, this nematic bore is found to differ substantially from the standard defocusing nonlinear Schrödinger equation structure due to the effect of the nonlocality of the nematic medium. It is found that the undular bore is of Korteweg-de Vries equation-type, consisting of bright waves, rather than of nonlinear Schrödinger equation-type, consisting of dark waves. In addition, ahead of this Korteweg-de Vries bore there can be a uniform wavetrain with a short front which brings the solution down to the initial level ahead. It is found that this uniform wavetrain does not exist if the initial jump is below a critical value. Analytical solutions for the various parts of the nematic bore are found, with emphasis on the role of the nonlocality of the nematic medium in shaping this structure. Excellent agreement between full numerical solutions of the governing nematicon equations and these analytical solutions is found.

  16. Ferromagnetic and ferroelectric nanoparticles in liquid crystals

    NASA Astrophysics Data System (ADS)

    Reznikov, Yuriy; Glushchenko, Anatoliy; Garbovskiy, Yuriy

    This chapter introduces the basic principles of physics of magnetic and ferroelectric nanoparticles suspensions in thermotropic liquid crystals (LCs). It also covers the main features of such suspensions along with the look at the challenges that researchers in the field are facing today. Special attention is paid to understanding of major physical mechanisms responsible for the inuence of nanoparticles on the properties of LCs. In the case of magnetic nanoparticles, their dipole moments are aligned by an external magnetic field that, in turn, results in a reorientation of the LC due to the surface anchoring between the nanoparticles and the LC. This mechanical coupling between the LC and the magnetic particles determines the unique sensitivity of the suspension to magnetic fields. In regard to the ferroelectric particles, their effect on LCs is due to a strong electric field by the permanent electric dipoles of the particles. This field is strong enough to change the orientational ordering of the LC surrounding the particle. In addition, the above-mentioned mechanism of the surface anchoring may also take place. The ongoing scientific and technological problems related to the suspensions are discussed. Among such problems are the stability of the suspensions, selection of the proper surfactants, formation of the particle chains, and the effect of the electric charges on the properties of the ferroelectric liquid crystal suspensions.

  17. Electrically tunable liquid crystal photonic bandgap fiber laser

    NASA Astrophysics Data System (ADS)

    Olausson, Christina B.; Scolari, Lara; Wei, Lei; Noordegraaf, Danny; Weirich, Johannes; Alkeskjold, Thomas T.; Hansen, Kim P.; Bjarklev, Anders

    2010-02-01

    We demonstrate electrical tunability of a fiber laser using a liquid crystal photonic bandgap fiber. Tuning of the laser is achieved by combining the wavelength filtering effect of a liquid crystal photonic bandgap fiber device with an ytterbium-doped photonic crystal fiber. We fabricate an all-spliced laser cavity based on a liquid crystal photonic bandgap fiber mounted on a silicon assembly, a pump/signal combiner with single-mode signal feed-through and an ytterbium-doped photonic crystal fiber. The laser cavity produces a single-mode output and is tuned in the range 1040- 1065 nm by applying an electric field to the silicon assembly.

  18. Orientational relaxation in a discotic liquid crystal.

    PubMed

    Chakrabarti, Dwaipayan; Jana, Biman; Bagchi, Biman

    2007-06-01

    We investigate orientational relaxation of a model discotic liquid crystal, consisting of disclike molecules, by molecular dynamics simulations along two isobars starting from the high temperature isotropic phase. The two isobars have been so chosen that (a) the phase sequence isotropic- (I-) nematic- (N-) columnar (C) appears upon cooling along one of them and (b) the sequence isotropic- (I-) columnar- (C) along the other. While the orientational relaxation in the isotropic phase near the I-N phase transition in system (a) shows a power law decay at short to intermediate times, such power law relaxation is not observed in the isotropic phase near the I-C phase boundary in system (b). In order to understand this difference (the existence or the absence of the power law decay), we calculated the growth of the orientational pair distribution functions (OPDFs) near the I-N phase boundary and also near the I-C phase boundary. We find that the OPDF shows a marked growth in long range correlation as the I-N phase boundary is approached in the I-N-C system (a), but such a growth is absent in the I-C system, which appears to be consistent with the result that I-N phase transition in the former is weakly first order while the I-C phase transition in the latter is not weak. As the system settles into the nematic phase, the decay of the single-particle second-rank orientational time correlation function follows a pattern that is similar to what is observed with calamitic liquid crystals and supercooled molecular liquids.

  19. Dispersion properties of transverse anisotropic liquid crystal core photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Karasawa, Naoki

    2016-04-01

    The dispersion properties of liquid crystal core photonic crystal fibers for different core diameters have been calculated by a full vectorial finite difference method. In calculations, air holes are assumed to be arranged in a regular hexagonal array in fused silica and a central hole is filled with liquid crystal to create a core. In this study, three types of transverse anisotropic configurations, where liquid crystal molecules are oriented in a transverse plane, and a planar configuration, where liquid crystal molecules are oriented in a propagation direction, are considered. The large changes of the dispersion properties are found when the orientation of the liquid crystal molecules is changed from a planar configuration to a uniform configuration, where all molecules are oriented in the same direction in a transverse plane. Since the orientation of liquid crystal molecules may be controlled by applying an electric field, it could be utilized for various applications including the spectral control of supercontinuum generation.

  20. Isotropization of nematic liquid crystals by TMDSC

    SciTech Connect

    Chen, Wei; Dadmun, M.; Zhang, Ge; Boller, A.; Wunderlich, B. |

    1997-12-01

    Temperature-modulated differential scanning calorimetry (TMDSC) and traditional DSC are used to study the transition between the nematic liquid crystalline state and the isotropic liquid for two small molecules [4,4{prime}-azoxyanisole and N,N`-bis(4-n-octyloxybenzal)-1,4-phenylenediamine] and one macromolecule (4,4{prime}-dihydroxy-{alpha}-methylstilbene copolymerized with a 1:1 molar mixture of 1,7-dibromoheptane and 1,9-dibromononane). The DSC measurements with 4,4{prime}-azoxyanisole were used for temperature calibration with varying heating and cooling rates. Quasi-isothermal TMDSC with small temperature amplitude and standard TMDSC with underlying heating and cooling rates were utilized to analyze the breadth of the transitions. It could be verified that the isotropization transition of a nematic liquid crystal is, indeed, reversible for all three molecules. The nature of the transition changes, however, from relatively sharp, for small, rigid molecules, to about three kelvins wide for the small molecule with flexible ends, to as broad as 20 K for the macromolecule. It was also demonstrated that quantitative heats of fusion of sharp transitions can be extracted from TMDSC, but only from the time-domain heat-flow signal.

  1. Hydrogen-Bonded Liquid Crystal Nanocomposites.

    PubMed

    Roohnikan, Mahdi; Toader, Violeta; Rey, Alejandro; Reven, Linda

    2016-08-23

    Nanoparticle-liquid crystal (NP-LC) composites based on hydrogen bonding were explored using a model system. The ligand shells of 3 nm diameter zirconium dioxide nanoparticles (ZrO2 NPs) were varied to control their interaction with 4-n-hexylbenzoic acid (6BA). The miscibility and effect of the NPs on the nematic order as a function of particle concentration was characterized by polarized optical microscopy (POM), fluorescence microscopy and (2)H NMR spectroscopy. Nonfunctionalized ZrO2 NPs have the lowest miscibility and strongest effect on the LC matrix due to irreversible binding of 6BA to the NPs via a strong zirconium carboxylate bond. The ZrO2 NPs were functionalized with 6-phosphonohexanoic acid (6PHA) or 4-(6-phosphonohexyloxy)benzoic acid (6BPHA) which selectively bind to the ZrO2 NP surface via the phosphonic acid groups. The miscibility was increased by controlling the concentration of the pendant CO2H groups by adding hexylphosphonic acid (HPA) to act as a spacer group. Fluorescence microscopy of lanthanide doped ZrO2 NPs showed no aggregates in the nematic phase below the NP concentration where aggregates are observed in the isotropic phase. The functionalized NPs preferably concentrate into LC defects and any remaining isotropic liquid but are still present throughout the nematic liquid at a lower concentration.

  2. Rotation of a liquid crystal by the Casimir torque

    NASA Astrophysics Data System (ADS)

    Somers, David A. T.; Munday, Jeremy N.

    2015-03-01

    We present a calculation of the Casimir torque acting on a liquid crystal near a birefringent crystal. In this system, a liquid crystal bulk is uniformly aligned at one surface and is twisted at the other surface by a birefringent crystal, e.g., barium titanate. The liquid crystal is separated from the solid crystal by an isotropic, transparent material such as SiO2. By varying the thickness of the deposited layer, we can observe the effect of retardation on the torque (which differentiates it from the close-range van der Waals torque). We find that a barium titanate slab would cause 5CB (4 -cyano -4 '-pentylbiphenyl) liquid crystal to rotate by 10∘ through its bulk when separated by 35 nm of SiO2. The optical technique for measuring this twist is also outlined.

  3. Atomic force microscopy images of lyotropic lamellar phases.

    PubMed

    Garza, C; Thieghi, L T; Castillo, R

    2007-02-07

    For the very first time, atomic force microscope images of lamellar phases were observed combined with a freeze fracture technique that does not involve the use of replicas. Samples are rapidly frozen, fractured, and scanned directly with atomic force microscopy, at liquid nitrogen temperature and in high vacuum. This procedure can be used to investigate micro-structured liquids. The lamellar phases in Sodium bis(2-ethylhexyl) sulfosuccinate (AOT)/water and in C12E5/water systems were used to asses this new technique. Our observations were compared with x-ray diffraction measurements and with other freeze fracture methods reported in the literature. Our results show that this technique is useful to image lyotropic lamellar phases and the estimated repeat distances for lamellar periodicity are consistent with those obtained by x-ray diffraction.

  4. Quantum theory of cholesteric liquid crystals

    NASA Astrophysics Data System (ADS)

    Issaenko, Sergei A.

    A long standing and central problem in cholesteric liquid crystals is to relate the macroscopic pitch to the underlying microscopic interactions. These interactions are of two types which we call quantum (dispersion) and classical. Here we show that, contrary to common belief, intermolecular biaxial correlations usually play an important role for dispersion forces. To understand the microscopic picture of cholesteric liquid crystal we first analyze the effective chiral interaction between molecules arising front long-range quantum interactions between fluctuating charge moments in terms of a simple model of a chiral molecule. This model is based on the approximations that (a) the dominant excited states of a molecule form a band whose width is small compared to the average energy of excitation above the ground state and (b) biaxial orientational correlation between adjacent molecules can be neglected. We consider a system consisted of elongated molecules and, although we invoke the expansion in terms of coordinates transverse to the long axis of constituent molecules, we treat the longitudinal coordinate exactly. We identify two distinct physical limits depending on whether one or both of the interacting molecules are excited in the virtual state. The two-molecule interaction can be interpreted in terms of a superposition of pairwise interactions between individual atoms (or local chiral centers) on a chiral molecule and centers of anisotropic part of polarizability on the other molecule, while the one-molecule term involves three-body interactions between two local dipole moments of a chiral molecule and centers of anisotropic part of polarizability on the other, possibly nonchiral molecule. The numerical estimates of the pitch appeared from the above mechanism even without the Taylor expansion of the potential turns out to be considerably larger than experimental results and so it appears that the mean field treatment of these interactions can be used only in

  5. Electron paramagnetic resonance study of two smectic A liquid crystals.

    NASA Technical Reports Server (NTRS)

    Fryburg, G. C.; Gelerinter, E.; Fishel, D. L.

    1972-01-01

    Study of the molecular ordering in two smectic A liquid crystals using vanadyl acetylacetonate as a paramagnetic probe. The average hyperfine splitting of the spectrum in the smectic A mesophase is measured as a function of the orientation relative to the dc magnetic field of the spectrometer after alignment of the molecules of the liquid crystal.

  6. Time-programmed helix inversion in phototunable liquid crystals.

    PubMed

    Asshoff, Sarah J; Iamsaard, Supitchaya; Bosco, Alessandro; Cornelissen, Jeroen J L M; Feringa, Ben L; Katsonis, Nathalie

    2013-05-14

    Doping cholesteric liquid crystals with photo-responsive molecules enables controlling the colour and polarisation of the light they reflect. However, accelerating the rate of relaxation of these photo-controllable liquid crystals remains challenging. Here we show that the relaxation rate of the cholesteric helix is fully determined by helix inversion of the molecular dopants.

  7. Quantum Liquid Crystal Phases in Strongly Correlated Fermionic Systems

    ERIC Educational Resources Information Center

    Sun, Kai

    2009-01-01

    This thesis is devoted to the investigation of the quantum liquid crystal phases in strongly correlated electronic systems. Such phases are characterized by their partially broken spatial symmetries and are observed in various strongly correlated systems as being summarized in Chapter 1. Although quantum liquid crystal phases often involve…

  8. Microwave modulation characteristics of twisted liquid crystals with chiral dopant

    NASA Astrophysics Data System (ADS)

    Yuan, Rui; Xing, Hongyu; Ye, Wenjiang

    2017-01-01

    Adding a chiral dopant in twisted nematic (TN) liquid crystal cell can stabilize the orientation of liquid crystal molecules, particularly in high TN (HTN) or super TN (STN) liquid crystal cells. The difference in pitches in liquid crystal is induced by the chiral dopant, and these different pitches affect the orientation of liquid crystal director under an external applied voltage and influence the characteristics of microwave modulation. To illustrate this point, the microwave phase shift per unit length (MPSL) versus voltage is calculated on the basis of the elastic theory of liquid crystal and the finite-difference iterative method. Enhancing the pitch induced by the chiral dopant in liquid crystal increases the MPSLs, but the stability of the twisted structures is decreased. Thus, appropriate pitches of 100d, 4d, and 2d can be applied in TN, HTN, and STN cells with cell gap d to enhance the characteristics of microwave modulation and stabilize the structures in twisted cell. This method can improve the characteristics of liquid crystal microwave modulators such that the operating voltage and the size of such phase shifters can be decreased.

  9. Liquid Crystal-based Beam Steering Technologies for NASA Applications

    NASA Technical Reports Server (NTRS)

    Pouch, John; Nguyen, Hung; Miranda, Felix; Bos, Philip; Lavrentovich, Oleg; Wang, Xinghua; Pishnyak, Oleg; Kreminska, Liubov; Golovin, Andrii

    2006-01-01

    Liquid crystal-based beam steering devices can provide electronic beam scanning to angles above 1 milliradian, sub-microradian beam pointing accuracy, as well as wave-front correction to maintain output optical beam quality. The liquid crystal technology effort will be summarized, and the potential application of the resulting devices to NASA space-based scenarios will be described.

  10. Synthesis and Physical Properties of Liquid Crystals: An Interdisciplinary Experiment

    ERIC Educational Resources Information Center

    Van Hecke, Gerald R.; Karukstis, Kerry K.; Hanhan Li; Hendargo, Hansford C.; Cosand, Andrew J.; Fox, Marja M.

    2005-01-01

    A study involves multiple chemistry and physics concepts applied to a state of matter that has biological relevance. An experiment involving the synthesis and physical properties of liquid crystals illustrates the interdisciplinary nature of liquid crystal research and the practical devices derived from such research.

  11. Slovenian Pre-Service Teachers' Conceptions about Liquid Crystals

    ERIC Educational Resources Information Center

    Pavlin, Jerneja; Vaupotic, Natasa; Glazar, Sasa A.; Cepic, Mojca; Devetak, Iztok

    2011-01-01

    A total of 448 first-year university students participated in the study at the beginning of the academic year 2009/10. A paper-pencil liquid crystal questionnaire (LCQ) comprising 20 items was used to evaluate students' general conceptions related to liquid crystals, their properties and to the state of matter in general. The results show that 2/3…

  12. Quantum Liquid Crystal Phases in Strongly Correlated Fermionic Systems

    ERIC Educational Resources Information Center

    Sun, Kai

    2009-01-01

    This thesis is devoted to the investigation of the quantum liquid crystal phases in strongly correlated electronic systems. Such phases are characterized by their partially broken spatial symmetries and are observed in various strongly correlated systems as being summarized in Chapter 1. Although quantum liquid crystal phases often involve…

  13. Color changing plasmonic surfaces utilizing liquid crystal (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Franklin, Daniel; Wu, Shin-Tson; Chanda, Debashis

    2016-09-01

    Plasmonic structural color has recently garnered significant interest as an alternative to the organic dyes standard in print media and liquid crystal displays. These nanostructured metallic systems can produce diffraction limited images, be made polarization dependent, and exhibit resistance to color bleaching. Perhaps even more advantageous, their optical characteristics can also be tuned, post-fabrication, by altering the surrounding media's refractive index parallel to the local plasmonic fields. A common material with which to achieve this is liquid crystal. By reorienting the liquid crystal molecules through external electric fields, the optical resonances of the plasmonic filters can be dynamically controlled. Demonstrations of this phenomenon, however, have been limited to modest shifts in plasmon resonance. Here, we report a liquid crystal-plasmonic system with an enhanced tuning range through the use of a shallow array of nano-wells and high birefringent liquid crystal. The continuous metallic nanostructure maximizes the overlap between plasmonic fields and liquid crystal while also allowing full reorientation of the liquid crystal upon an applied electric field. Sweeping over structural dimensions and voltages results in a color palette for these dynamic reflective pixels that can further be exploited to create color tunable images. These advances make plasmonic-liquid crystal systems more attractive candidates for filter, display, and other tunable optical technologies.

  14. Binary Operation Of A Liquid-Crystal Light Valve

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey A.

    1990-01-01

    Conditions for operation of commercially available liquid-crystal light valve as binary spatial light modulator discovered. In mode, modulator turns on sharply and then saturates as intensity of writing beam increases. Valve comprises photoconductive layer and liquid-crystal layer separated by dielectric mirror and sandwiched between two transparent electrodes. Potential applications include enhancement of images, optical recording, and holography.

  15. Slovenian Pre-Service Teachers' Conceptions about Liquid Crystals

    ERIC Educational Resources Information Center

    Pavlin, Jerneja; Vaupotic, Natasa; Glazar, Sasa A.; Cepic, Mojca; Devetak, Iztok

    2011-01-01

    A total of 448 first-year university students participated in the study at the beginning of the academic year 2009/10. A paper-pencil liquid crystal questionnaire (LCQ) comprising 20 items was used to evaluate students' general conceptions related to liquid crystals, their properties and to the state of matter in general. The results show that 2/3…

  16. Synthesis and Physical Properties of Liquid Crystals: An Interdisciplinary Experiment

    ERIC Educational Resources Information Center

    Van Hecke, Gerald R.; Karukstis, Kerry K.; Hanhan Li; Hendargo, Hansford C.; Cosand, Andrew J.; Fox, Marja M.

    2005-01-01

    A study involves multiple chemistry and physics concepts applied to a state of matter that has biological relevance. An experiment involving the synthesis and physical properties of liquid crystals illustrates the interdisciplinary nature of liquid crystal research and the practical devices derived from such research.

  17. Band transport model for discotic liquid crystals

    NASA Astrophysics Data System (ADS)

    Lever, L. J.; Kelsall, R. W.; Bushby, R. J.

    2005-07-01

    A theoretical model is presented for charge transport in discotic liquid crystals in which a charge is delocalized over more than one lattice site. As such, charge transport is via a banded conduction process in a narrow bandwidth system and takes place over coherent lengths of a few molecules. The coherent lengths are disrupted by the geometrical disorder of the system and are treated as being terminated by quantum tunnel barriers. The transmission probabilities at these barriers have been calculated as a function of the charge carrier energy. Phononic interactions are also considered and the charge carrier scattering rates are calculated for intermolecular and intramolecular vibrations. The results of the calculations have been used to develop a Monte Carlo simulation of the charge transport model. Simulated data are presented and used to discuss the nature of the tunnel barriers required to reproduce experimental data. We find that the model successfully reproduces experimental time of flight data including temperature dependence.

  18. Thermal response of cholesteric liquid crystal elastomers

    NASA Astrophysics Data System (ADS)

    Nagai, Hama; Urayama, Kenji

    2015-08-01

    The effects of temperature variation on photonic properties of cholesteric liquid crystal elastomers (CLCEs) are investigated in mechanically unconstrained and constrained geometries. In the unconstrained geometry, cooling in the cholesteric state induces both a considerable shift of the selective reflection band to shorter wavelengths and a finite degree of macroscopic expansion in the two directions normal to the axis of the helical director configuration. The thermal deformation is driven by a change in orientational order of the underlying nematic structure S and the relation between the macroscopic strain and S is explained on the basis of the anisotropic Gaussian chain network model. The helical pitch varies with the film thickness in an affine manner under temperature variation. The CLCEs under the constrained geometry where thermal deformation is strictly prohibited show no shift of the reflection bands when subjected to temperature variation. This also reveals the strong correlation between the macroscopic dimensions and the pitch of the helical director configuration.

  19. Lipid decorated liquid crystal pressure sensors

    NASA Astrophysics Data System (ADS)

    Lopatkina, Tetiana; Popov, Piotr; Honaker, Lawrence; Jakli, Antal; Mann, Elizabeth; Mann's Group Collaboration; Jakli's Group Collaboration

    Surfactants usually promote the alignment of liquid crystal (LC) director parallel to the surfactant chains, and thus on average normal to the substrate (homeotropic), whereas water promotes tangential (planar) alignment. A water-LC interface is therefore very sensitive to the presence of surfactants, such as lipids: this is the principle of LC-based chemical and biological sensing introduced by Abbott et al.Using a modified configuration, we found that at higher than 10 micro molar lipid concentration, the uniformly dark texture seen for homeotropic alignment between left-, and right-handed circular polarizers becomes unstable and slowly brightens again. This texture shows extreme sensitivity to external air pressure variations offering its use for sensitive pressure sensors. Our analysis indicates an osmotic pressure induced bending of the suspended films explaining both the birefringence and pressure sensitivity. In the talk we will discuss the experimental details of these effects. This work was financially supported by NSF DMR No. DMR-0907055.

  20. Photoinduced broadening of cholesteric liquid crystal reflectors

    NASA Astrophysics Data System (ADS)

    White, Timothy J.; Freer, Alexander S.; Tabiryan, Nelson V.; Bunning, Timothy J.

    2010-04-01

    The selective reflection of cholesteric liquid crystals (CLCs) is well-known and has been utilized in a number of dynamic optical applications. This work presents a novel approach to passively (e.g., all-optically) cue reflection notch broadening in photoresponsive CLC formulations based on high helical twisting power (HTP) bis(azo) chiral dopants. The original reflection bandwidth of approximately 100 nm is increased to as much as 1700 nm, by exposing 36 μm thick cells to UV light. The maximum attainable bandwidth is shown to be a function of cell thickness, light intensity, and strongly related to the HTP of the photoresponsive chiral dopants. An all-optical technique of simultaneous UV and green light exposure is demonstrated to trap the reflection notch at a predetermined position and bandwidth.

  1. Fork gratings based on ferroelectric liquid crystals.

    PubMed

    Ma, Y; Wei, B Y; Shi, L Y; Srivastava, A K; Chigrinov, V G; Kwok, H-S; Hu, W; Lu, Y Q

    2016-03-21

    In this article, we disclose a fork grating (FG) based on the photo-aligned ferroelectric liquid crystal (FLC). The Digital Micro-mirror Device based system is used as a dynamic photomask to generated different holograms. Because of controlled anchoring energy, the photo alignment process offers optimal conditions for the multi-domain FLC alignment. Two different electro-optical modes namely DIFF/TRANS and DIFF/OFF switchable modes have been proposed where the diffraction can be switched either to no diffraction or to a completely black state, respectively. The FLC FG shows high diffraction efficiency and fast response time of 50µs that is relatively faster than existing technologies. Thus, the FLC FG may pave a good foundation toward optical vertices generation and manipulation that could find applications in a variety of devices.

  2. Statistical foundations of liquid-crystal theory

    PubMed Central

    Seguin, Brian; Fried, Eliot

    2013-01-01

    We develop a mechanical theory for systems of rod-like particles. Central to our approach is the assumption that the external power expenditure for any subsystem of rods is independent of the underlying frame of reference. This assumption is used to derive the basic balance laws for forces and torques. By considering inertial forces on par with other forces, these laws hold relative to any frame of reference, inertial or noninertial. Finally, we introduce a simple set of constitutive relations to govern the interactions between rods and find restrictions necessary and sufficient for these laws to be consistent with thermodynamics. Our framework provides a foundation for a statistical mechanical derivation of the macroscopic balance laws governing liquid crystals. PMID:23772091

  3. Composite Dislocations in Smectic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Aharoni, Hillel; Machon, Thomas; Kamien, Randall D.

    2017-06-01

    Smectic liquid crystals are characterized by layers that have a preferred uniform spacing and vanishing curvature in their ground state. Dislocations in smectics play an important role in phase nucleation, layer reorientation, and dynamics. Typically modeled as possessing one line singularity, the layer structure of a dislocation leads to a diverging compression strain as one approaches the defect center, suggesting a large, elastically determined melted core. However, it has been observed that for large charge dislocations, the defect breaks up into two disclinations [C. E. Williams, Philos. Mag. 32, 313 (1975), 10.1080/14786437508219956]. Here we investigate the topology of the composite core. Because the smectic cannot twist, transformations between different disclination geometries are highly constrained. We demonstrate the geometric route between them and show that despite enjoying precisely the topological rules of the three-dimensional nematic, the additional structure of line disclinations in three-dimensional smectics localizes transitions to higher-order point singularities.

  4. Fluctuation and Dissipation in Liquid Crystal Electroconvection

    NASA Astrophysics Data System (ADS)

    Goldburg, W. I.; Goldschmidt, Y. Y.

    2001-11-01

    Recently, Gallavotti and Cohen (GC) have generalized the fluctuation-dissipation theorem (FDT) to encompass systems that are in a steady state far from thermal equilibrium. We describe an experiment aimed at putting the GC theory to an experimental test [1]. The system is a liquid crystal (lc) across which an ac voltage \\cal V=√ 2V\\cos(ω t) is applied. We measure σ_P, the rms fluctuations of the power P(t) dissipated in the lc when V is large enough to generate chaotic or turbulent flow in the sample. To compare the experimental results with the GC theory, it is necessary to assign a dynamical temperature to the system by introducing a kinetic energy per quasi-particle generated by the chaotic flow. [1] W.I. Goldburg, Y. Y. Goldschmidt and Hamid Kellay, nlin.CD/0106015

  5. Clinical evaluation of liquid crystal skin thermometers.

    PubMed

    MacKenzie, R; Asbury, A J

    1994-02-01

    We have examined two types of liquid crystal thermometers (LCT) designed for clinical use: one designed to measure skin surface temperature (LCTS) and the other had its calibration shifted by 1.9 degrees C to read a "core" temperature (LCTC). In laboratory tests with LCT on a glass beaker, there were highly significant correlations between temperatures measured by thermocouples, LCTS (r = 0.99) and LCTC (r = 0.99). In five patients undergoing cooling and warming during cardiopulmonary bypass with an LCT on their forehead, next to a thermocouple, the smallest correlation coefficient was 0.92. In 7.3% of observations in patients, the LCT scale was blurred, but readable. The graph relating LCT temperature and forehead thermocouple temperature showed hysteresis between the cooling and warming phases. An additional laboratory experiment suggested that LCT might be affected by draughts; they should therefore be protected from draught in use.

  6. Mueller Polarimetric Imaging System with Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Laude-Boulesteix, Blandine; de Martino, Antonello; Drévillon, Bernard; Schwartz, Laurent

    2004-05-01

    We present a new polarimetric imaging system based on liquid-crystal modulators, a spectrally filtered white-light source, and a CCD camera. The whole Mueller matrix image of the sample is measured in approximately 5 s in the transmission mode. The instrument design, together with an original and easy-to-operate calibration procedure, provides high accuracy over a wide spectral range (500-700 nm). This accuracy has been assessed by measurement of a linear polarizer at different orientations and a thick wedged quartz plate as an example of a partially depolarized retarder. Polarimetric images of a stained hepatic biopsy with significant fibrosis have been taken at several wavelengths. The optical properties of Picrosirius Red stained collagen (diattenuation, retardance, and polarizance) have been measured independently from each other between 500 and 700 nm.

  7. Planar optics with patterned chiral liquid crystals

    NASA Astrophysics Data System (ADS)

    Kobashi, Junji; Yoshida, Hiroyuki; Ozaki, Masanori

    2016-06-01

    Reflective metasurfaces based on metallic and dielectric nanoscatterers have attracted interest owing to their ability to control the phase of light. However, because such nanoscatterers require subwavelength features, the fabrication of elements that operate in the visible range is challenging. Here, we show that chiral liquid crystals with a self-organized helical structure enable metasurface-like, non-specular reflection in the visible region. The phase of light that is Bragg-reflected off the helical structure can be controlled over 0-2π depending on the spatial phase of the helical structure; thus planar elements with arbitrary reflected wavefronts can be created via orientation control. The circular polarization selectivity and external field tunability of Bragg reflection open a wide variety of potential applications for this family of functional devices, from optical isolators to wearable displays.

  8. Dielectric Dispersion Effects in Liquid Crystals.

    NASA Astrophysics Data System (ADS)

    Lavrentovich, Oleg; Yin, Ye; Gu, Mingxia; Shiyanovskii, Sergij

    2006-03-01

    As the switching speed in practical LC devices is pushed from the currently common 10 ms to sub-millisecond levels, it is important to take into account the effects associated with the finite rate with which the electric displacement changes in the external electric field. We discuss two important general consequences of the dielectric relaxation phenomenon: (1) Non-local time relationship between the electric displacement and the electric field [1]. In a quickly changing electric field, orientation of the liquid crystal depends not only on the instantaneous value of the electric field, but also on the previous values of the field and previous orientations of the material. (2) Dielectric heating. [1] Y. Yin, S.V. Shiyanovskii, A.B. Golovin, and O. D. Lavrentovich, Phys. Rev. Lett. 95, 087801 (2005) .

  9. Helical motion of chiral liquid crystal droplets

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takaki; Sano, Masaki

    Artificial swimmers have been intensively studied to understand the mechanism of the locomotion and collective behaviors of cells and microorganisms. Among them, most of the artificial swimmers are designed to move along the straight path. However, in biological systems, chiral dynamics such as circular and helical motion are quite common because of the chirality of their bodies, which are made of chiral biomolecules. To understand the role of the chirality in the physics of microswimmers, we designed chiral artificial swimmers and the theoretical model for the chiral motion. We found that chiral liquid crystal droplets, when dispersed in surfactant solutions, swim in the helical path induced by the Marangoni effect. We will discuss the mechanism of the helical motion with our phenomenological model. This work is supported by Grant-in-Aid for JSPS Fellows (Grant No. 26.9814), and MEXT KAKENHI Grant No. 25103004.

  10. Chiral liquid crystals as biosensing platforms

    NASA Astrophysics Data System (ADS)

    Lee, Mon-Juan; Sung, Yu-Chien; Hsiao, Yu-Cheng; Lee, Wei

    2016-09-01

    The texture observation has long been the core technique in liquid crystal (LC)-based bioassays. Its working principle stems from the dark-to-bright texture change induced by the interruption of the initially homeotropic alignment in nematic bulks or from the radial-to-bipolar configuration transition in LC droplets in the presence of biomolecules. One of the drawbacks of this observational scheme, which requires a polarizing optical microscope, is the difficulty in quantitative analysis. In this invited paper, we report on our recent development of alternative optical biosensing techniques based on cholesteric LCs (CLCs) without the use of a polarizer. The increase in structural order in a vertically anchored CLC cell in the quasi-planar state provides a means to allow detection and quantification of the concentration of biomolecules immobilized on the interface between the mesophase and the surfactant DMOAP for LC vertical alignment.

  11. Dynamic states of swimming bacteria in a nematic liquid crystal cell with homeotropic alignment

    NASA Astrophysics Data System (ADS)

    Zhou, Shuang; Tovkach, Oleh; Golovaty, Dmitry; Sokolov, Andrey; Aranson, Igor S.; Lavrentovich, Oleg D.

    2017-05-01

    Flagellated bacteria such as Escherichia coli and Bacillus subtilis exhibit effective mechanisms for swimming in fluids and exploring the surrounding environment. In isotropic fluids such as water, the bacteria change swimming direction through the run-and-tumble process. Lyotropic chromonic liquid crystals (LCLCs) have been introduced recently as an anisotropic environment in which the direction of preferred orientation, the director, guides the bacterial trajectories. In this work, we describe the behavior of bacteria B. subtilis in a homeotropic LCLC geometry, in which the director is perpendicular to the bounding plates of a shallow cell. We demonstrate that the bacteria are capable of overcoming the stabilizing elastic forces of the LCLC and swim perpendicularly to the imposed director (and parallel to the bounding plates). The effect is explained by a finite surface anchoring of the director at the bacterial body; the role of surface anchoring is analyzed by numerical simulations of a rod realigning in an otherwise uniform director field. Shear flows produced by a swimming bacterium cause director distortions around its body, as evidenced both by experiments and numerical simulations. These distortions contribute to a repulsive force that keeps the swimming bacterium at a distance of a few micrometers away from the bounding plates. The homeotropic alignment of the director imposes two different scenarios of bacterial tumbling: one with an 180° reversal of the horizontal velocity and the other with the realignment of the bacterium by two consecutive 90° turns. In the second case, the angle between the bacterial body and the imposed director changes from 90° to 0° and then back to 90° the new direction of swimming does not correlate with the previous swimming direction.

  12. Dynamic states of swimming bacteria in a nematic liquid crystal cell with homeotropic alignment

    DOE PAGES

    Zhou, Shuang; Tovkach, Oleh; Golovaty, Dmitry; ...

    2017-05-17

    Flagellated bacteria such as Escherichia coli and Bacillus subtilis exhibit effective mechanisms for swimming in fluids and exploring the surrounding environment. In isotropic fluids such as water, the bacteria change swimming direction through the run-and-tumble process. Lyotropic chromonic liquid crystals (LCLCs) have been introduced recently as an anisotropic environment in which the direction of preferred orientation, the director, guides the bacterial trajectories. In this work, we describe the behavior of bacteria B. subtilis in a homeotropic LCLC geometry, in which the director is perpendicular to the bounding plates of a shallow cell. We demonstrate that the bacteria are capable ofmore » overcoming the stabilizing elastic forces of the LCLC and swim perpendicularly to the imposed director (and parallel to the bounding plates). The effect is explained by a finite surface anchoring of the director at the bacterial body; the role of surface anchoring is analyzed by numerical simulations of a rod realigning in an otherwise uniform director field. Shear flows produced by a swimming bacterium cause director distortions around its body, as evidenced both by experiments and numerical simulations. These distortions contribute to a repulsive force that keeps the swimming bacterium at a distance of a few micrometers away from the bounding plates. The homeotropic alignment of the director imposes two different scenarios of bacterial tumbling: one with an 180° reversal of the horizontal velocity and the other with the realignment of the bacterium by two consecutive 90° turns. Finally, in the second case, the angle between the bacterial body and the imposed director changes from 90° to 0° and then back to 90°; the new direction of swimming does not correlate with the previous swimming direction.« less

  13. Aberration Compensation Using Nematic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Somalingam, S.; Hain, M.; Tschudi, T.; Knittel, J.; Richter, H.

    We have developed a novel transmissive nematic liquid crystal device which is capable of compensating spherical wavefront aberration that occurs during the operation of optical pickup systems. In order to increase the storage capacity, next generation optical data storage systems beyond CD and DVD will use according to the Blu-Ray specification (BD) blue laser light and an objective lens with high numerical aperture (N.A.) of 0.85. However, such high N.A. systems have an inherent higher sensitivity on aberrations. For example spherical aberration is inversely proportional to the wavelength and grows with the fourth power of N.A. of the objective lens. In an optical pickup system there are two sources for spherical aberration: The first one is the variation of the substrate thickness due to manufacturing tolerances under mass production conditions. The second one concerns disks with multiple data-layers, which cause spherical aberration when layers are switched, as the objective lens can only be optimized for a single layer thickness. We report a method for effective compensation of spherical aberration by utilizing a novel liquid crystal device, which generates a parabolic wavefront profile. This particular shape makes the device highly tolerant against lateral movement. A sophisticated electrode design allows us to reduce the number of driving electrodes down to two by using the method of conductive ladder mashing. Further evaluation in a blue-DVD test drive has been carried out with good results. By placing the device into an optical pick-up we were able to readout a dual-layer ROM disk with a total capacity of 50 gigabytes (GB). A data-to-clock jitter of 6.9% for the 80 μm and of 8.0% for the 100 μm cover layer could be realized.

  14. Thermally switchable flexible liquid crystal devices in prepolymer-doped cholesteric liquid crystals

    NASA Astrophysics Data System (ADS)

    Fuh, A. Y.-G.; Li, J.-H.; Cheng, K.-T.

    2010-10-01

    This work describes an approach for fabricating thermally switchable flexible liquid crystal devices in prepolymer-doped cholesteric liquid crystals (CLCs). The roughness of the UV-cured polymer film eliminates the stability of planar CLCs, allowing the textures in the UV-cured regions to be changed from planar to focal conic. Impurities associated with doping with prepolymers cause the clearing temperature of LCs in the UV-cured regions to differ from that in the uncured regions as the prepolymers are polymerized. Therefore, the textures in these two regions can be switched by controlling the temperature. Thermally switchable flexible LC devices, such as optically addressed smart cards, light valves, and others, can be realized using this approach.

  15. Insertion of liquid crystal molecules into hydrocarbon monolayers

    SciTech Connect

    Popov, Piotr Mann, Elizabeth K.; Lacks, Daniel J.; Jákli, Antal

    2014-08-07

    Atomistic molecular dynamics simulations were carried out to investigate the molecular mechanisms of vertical surface alignment of liquid crystals. We study the insertion of nCB (4-Cyano-4{sup ′}-n-biphenyl) molecules with n = 0,…,6 into a bent-core liquid crystal monolayer that was recently found to provide good vertical alignment for liquid crystals. The results suggest a complex-free energy landscape for the liquid crystal within the layer. The preferred insertion direction of the nCB molecules (core or tail first) varies with n, which can be explained by entropic considerations. The role of the dipole moments was found to be negligible. As vertical alignment is the leading form of present day liquid crystal displays (LCD), these results will help guide improvement of the LCD technology, as well as lend insight into the more general problem of insertion of biological and other molecules into lipid and surfactant layers.

  16. Random lasing from cholesteric liquid crystal microspheres dispersed in glycerol.

    PubMed

    Li, Yong; Luo, Dan; Chen, Rui

    2016-11-01

    We demonstrate random lasing from a scattering system formed by a cholesteric liquid crystal dispersed in glycerol. Strong scattering of light is produced from the interference between the cholesteric liquid crystal microsphere and glycerol and leads to random lasing. The optical properties of random lasing, such as intensity, threshold, and the temperature effect on lasing emission are demonstrated. The random laser is distinguished from the band-edge laser generated within the cholesteric liquid crystal microspheres by analyzing the positions of the photonic band-edge of the cholesteric liquid crystal and the photoluminescence of the doped laser dye. The random laser from cholesteric liquid crystal microspheres in glycerol possesses a simple fabrication process, small volume, and low threshold, which enable it to be used in speckle-free imaging, target identification, biomedicine, document coding, and other photonic devices.

  17. Graphene chiral liquid crystals and macroscopic assembled fibres

    PubMed Central

    Xu, Zhen; Gao, Chao

    2011-01-01

    Chirality and liquid crystals are both widely expressed in nature and biology. Helical assembly of mesophasic molecules and colloids may produce intriguing chiral liquid crystals. To date, chiral liquid crystals of 2D colloids have not been explored. As a typical 2D colloid, graphene is now receiving unprecedented attention. However, making macroscopic graphene fibres is hindered by the poor dispersibility of graphene and by the lack of an assembly method. Here we report that soluble, chemically oxidized graphene or graphene oxide sheets can form chiral liquid crystals in a twist-grain-boundary phase-like model with simultaneous lamellar ordering and long-range helical frustrations. Aqueous graphene oxide liquid crystals were continuously spun into metres of macroscopic graphene oxide fibres; subsequent chemical reduction gave the first macroscopic neat graphene fibres with high conductivity and good mechanical performance. The flexible, strong graphene fibres were knitted into designed patterns and into directionally conductive textiles. PMID:22146390

  18. The measurement of droplet temperature using thermochromic liquid crystals

    SciTech Connect

    Peterson, D.; Hu, S.H.; Richards, C.D.; Richards, R.F.

    1995-12-31

    A noninvasive technique to determine the temperature of droplets in flight is under development. The technique involves atomizing droplets of neat thermochromic liquid crystals and then inferring the droplet temperatures form the liquid crystals` color-play. Previous work has shown the feasibility of atomizing the neat liquid crystal. The present work reports results of a calibration of the temperature response of 200 to 300 micron droplets of neat liquid crystal. The calibration is accomplished by suspending droplets of the neat liquid crystal on a microthermocouple within a controlled temperature environment. The droplet is imaged using a long-distance microscope, an RGB video camera, and a frame grabber. Images of the droplet are acquired and digitized to quantify changes in RGB values (color) with temperature. The RGB information is transformed into hue, saturation, intensity (HSI) space to relate hue, H, to temperature. The temperature of the droplet is measured directly with the micro-thermocouple.

  19. Methods of making composite optical devices employing polymer liquid crystal

    DOEpatents

    Jacobs, Stephen D.; Marshall, Kenneth L.; Cerqua, Kathleen A.

    1991-01-01

    Composite optical devices using polymer liquid crystal materials both as optical and adhesive elements. The devices are made by assembling a heated polymer liquid crystal compound, while in a low viscosity form between optically transparent substrates. The molecules of the polymer are oriented, while in the liquid crystalline state and while above the glass transition temperature (T.sub.g) of the polymer, to provide the desired optical effects, such as polarization, and selective reflection. The liquid crystal polymer cements the substrates together to form an assembly providing the composite optical device.

  20. Methods of making composite optical devices employing polymer liquid crystal

    DOEpatents

    Jacobs, S.D.; Marshall, K.L.; Cerqua, K.A.

    1991-10-08

    Composite optical devices are disclosed using polymer liquid crystal materials both as optical and adhesive elements. The devices are made by assembling a heated polymer liquid crystal compound, while in a low viscosity form between optically transparent substrates. The molecules of the polymer are oriented, while in the liquid crystalline state and while above the glass transition temperature (T[sub g]) of the polymer, to provide the desired optical effects, such as polarization, and selective reflection. The liquid crystal polymer cements the substrates together to form an assembly providing the composite optical device. 7 figures.

  1. Localized soft elasticity in liquid crystal elastomers

    PubMed Central

    Ware, Taylor H.; Biggins, John S.; Shick, Andreas F.; Warner, Mark; White, Timothy J.

    2016-01-01

    Synthetic approaches to prepare designer materials that localize deformation, by combining rigidity and compliance in a single material, have been widely sought. Bottom-up approaches, such as the self-organization of liquid crystals, offer potential advantages over top–down patterning methods such as photolithographic control of crosslink density, relating to the ease of preparation and fidelity of resolution. Here, we report on the directed self-assembly of materials with spatial and hierarchical variation in mechanical anisotropy. The highly nonlinear mechanical properties of the liquid crystalline elastomers examined here enables strain to be locally reduced >15-fold without introducing compositional variation or other heterogeneities. Each domain (⩾0.01 mm2) exhibits anisotropic nonlinear response to load based on the alignment of the molecular orientation with the loading axis. Accordingly, we design monoliths that localize deformation in uniaxial and biaxial tension, shear, bending and crack propagation, and subsequently demonstrate substrates for globally deformable yet locally stiff electronics. PMID:26902873

  2. Electrical Properties of Reactive Liquid Crystal Semiconductors

    NASA Astrophysics Data System (ADS)

    McCulloch, Iain; Coelle, Michael; Genevicius, Kristijonas; Hamilton, Rick; Heckmeier, Michael; Heeney, Martin; Kreouzis, Theo; Shkunov, Maxim; Zhang, Weimin

    2008-01-01

    Fabrication of display products by low cost printing technologies such as ink jet, gravure offset lithography and flexography requires solution processable semiconductors for the backplane electronics. The products will typically be of lower performance than polysilicon transistors, but comparable to amorphous silicon. A range of prototypes are under development, including rollable electrophoretic displays, active matrix liquid crystal displays (AMLCD's), and flexible organic light-emitting diode (OLED) displays. Organic semiconductors that offer both electrical performance and stability with respect to storage and operation under ambient conditions are required. This work describes the initial evaluation of reactive mesogen semiconductors, which can polymerise within mesophase temperatures, “freezing in” the order in crosslinked domains. These crosslinked domains offer mechanical stability and are inert to solvent exposure in further processing steps. Reactive mesogens containing conjugated aromatic cores, designed to facilitate charge transport and provide good oxidative stability, were prepared and their liquid crystalline properties evaluated. Both time-of-flight and field effect transistor devices were prepared and their electrical characterisation reported.

  3. Influence of driving voltage of liquid crystal on modulation phase

    NASA Astrophysics Data System (ADS)

    Guo, Hongyang; Du, Shengping

    2017-09-01

    Based on the elastic theory and the dynamics equation of liquid crystal, we use Finite-Difference iterative method to calculate the liquid crystal molecules director distributions under the effect of electric field. According to the director distributions, this paper gets the relationship between LCD modulation phase and the driving voltage. The results of simulation proves that with driving voltage varying from 0 to 5v and the crystal modulation phase varies from 0 to 4π.

  4. Formation of anisotropic polymer blend by photopolymerization of lyotropic LC-phase

    NASA Astrophysics Data System (ADS)

    Wojciechowski, Piotr; Ulanski, J.; Kryszewski, Marian; Okrasa, Lidia; Czajkowski, Wojciech

    1995-08-01

    The structural characteristics are given for the polymer blend (PB) prepared by photopolymerization of the uniaxially oriented liquid crystal (LC)-phase of the hydroxypropylcellulose-acrylic acid (HPC-AA) system. The uniaxially oriented films of HPC- AA mesophase show a so-called banded structure under cross polarizers, characteristic for uniaxially oriented LC-polymer films. The state of order of HPC-AA mesophase was investigated by effect of dye orientation in LC-media. The influence of the length of the cholesteric pitch of HPC-AA on the order parameter of dye was found. The polymer blend as a product of the photopolymerization of AA in the lyotropic and uniaxially oriented medium HPC-AA is a birefringent solid system, was strongly affected by crosslinking processes. The PB has a LC-organization up to thermal decomposition at 230 degrees C, as shown by TOA and microscopic observations. The PB can be regarded as a new kind of the thermally resistant LC-polymer network.

  5. Flexible and Patterned Thin Film Polarizer: Photopolymerization of Perylene-based Lyotropic Chromonic Reactive Mesogens.

    PubMed

    Im, Pureun; Kang, Dong-Gue; Kim, Dae-Yoon; Choi, Yu-Jin; Yoon, Won-Jin; Lee, Myong-Hoon; Lee, In-Hwan; Lee, Cheul-Ro; Jeong, Kwang-Un

    2016-01-13

    A perylene-based reactive mesogen (DAPDI) forming a lyotropic chromonic liquid crystal (LCLC) phase was newly designed and synthesized for the fabrication of macroscopically oriented and patterned thin film polarizer (TFP) on the flexible polymer substrates. The anisotropic optical property and molecular self-assembly of DAPDI were investigated by the combination of microscopic, scattering and spectroscopic techniques. The main driving forces of molecular self-assembly were the face-to-face π-π intermolecular interaction among aromatic cores and the nanophase separation between hydrophilic ionic groups and hydrophobic aromatic cores. Degree of polarization for the macroscopically oriented and photopolymerized DAPDI TFP was estimated to be 99.81% at the λmax = 491 nm. After mechanically shearing the DAPDI LCLC aqueous solution on the flexible polymer substrates, we successfully fabricated the patterned DAPDI TFP by etching the unpolymerized regions selectively blocked by a photomask during the photopolymerization process. Chemical and mechanical stabilities were confirmed by the solvent and pencil hardness tests, and its surface morphology was further investigated by optical microscopy, atomic force microscopy, and three-dimensional surface nanoprofiler. The flexible and patterned DAPDI TFP with robust chemical and mechanical stabilities can be a stepping stone for the advanced flexible optoelectronic devices.

  6. Tyrosine-Based Ionic Liquid Crystals: Switching from a Smectic A to a Columnar Mesophase by Exchange of the Spherical Counterion.

    PubMed

    Neidhardt, Manuel M; Wolfrum, Manpreet; Beardsworth, Stuart; Wöhrle, Tobias; Frey, Wolfgang; Baro, Angelika; Stubenrauch, Cosima; Giesselmann, Frank; Laschat, Sabine

    2016-11-07

    Synthetic strategies were developed to prepare l-tyrosine-based ionic liquid crystals with structural variations at the carboxylic and phenolic OH groups as well as the amino functionality. Salt metathesis additionally led to counterion variation. The liquid-crystalline properties were investigated by differential scanning calorimetry (DSC), polarizing optical microscopy (POM) and X-ray diffraction (WAXS, SAXS). The symmetrical ILC chlorides bearing the same alkyl chain at both the ester and ether but either an acyclic or cyclic guanidinium group displayed enantiotropic SmA2 mesophases with phase widths of 31-88 K irrespective of the head group. It was particularly the replacement of chloride in the acyclic guanidinium ILC by hexafluorophosphate that induced a phase change from SmA2 to Colr . This phase change was attributed to a higher curvature of the interface due to the larger anion, which increased the effective head group cross-sectional area of the amphiphilic ILC. The unsymmetrical acyclic guanidinium chlorides, bearing a constant C14 ester and variable alkyl chains on the phenolic position, formed enantiotropic SmA2 phases. The derivative with the largest difference in chain lengths, however, displayed a Colr phase, resulting from discoid aggregates of the cone-shaped guanidinium chloride. The results are discussed in terms of the packing parameters, which indicate that the phase behaviour of the thermotropic tyrosine-based ILCs shows analogies to those of lyotropic liquid crystals.

  7. Self-Organisation, Thermotropic and Lyotropic Properties of Glycolipids Related to their Biological Implications

    PubMed Central

    Garidel, Patrick; Kaconis, Yani; Heinbockel, Lena; Wulf, Matthias; Gerber, Sven; Munk, Ariane; Vill, Volkmar; Brandenburg, Klaus

    2015-01-01

    Glycolipids are amphiphilic molecules which bear an oligo- or polysaccharide as hydrophilic head group and hydrocarbon chains in varying numbers and lengths as hydrophobic part. They play an important role in life science as well as in material science. Their biological and physiological functions are quite diverse, ranging from mediators of cell-cell recognition processes, constituents of membrane domains or as membrane-forming units. Glycolipids form an exceptional class of liquid-crystal mesophases due to the fact that their self-organisation obeys more complex rules as compared to classical monophilic liquid-crystals. Like other amphiphiles, the supra-molecular structures formed by glycolipids are driven by their chemical structure; however, the details of this process are still hardly understood. Based on the synthesis of specific glycolipids with a clearly defined chemical structure, e.g., type and length of the sugar head group, acyl chain linkage, substitution pattern, hydrocarbon chain lengths and saturation, combined with a profound physico-chemical characterisation of the formed mesophases, the principles of the organisation in different aggregate structures of the glycolipids can be obtained. The importance of the observed and formed phases and their properties are discussed with respect to their biological and physiological relevance. The presented data describe briefly the strategies used for the synthesis of the used glycolipids. The main focus, however, lies on the thermotropic as well as lyotropic characterisation of the self-organised structures and formed phases based on physico-chemical and biophysical methods linked to their potential biological implications and relevance. PMID:26464591

  8. Self-assembly of amphiphilic liquid crystal polymers obtained from a cyclopropane-1,1-dicarboxylate bearing a cholesteryl mesogen.

    PubMed

    Jia, Lin; Liu, Ming; Di Cicco, Aurélie; Albouy, Pierre-Antoine; Brissault, Blandine; Penelle, Jacques; Boileau, Sylvie; Barbier, Valessa; Li, Min-Hui

    2012-07-31

    We study the self-assembly of a new family of amphiphilic liquid crystal (LC) copolymers synthesized by the anionic ring-opening polymerization of a new cholesterol-based LC monomer, 4-(cholesteryl)butyl ethyl cyclopropane-1,1-dicarboxylate. Using the t-BuP(4) phosphazene base and thiophenol or a poly(ethylene glycol) (PEG) functionalized with thiol group to generate in situ the initiator during the polymerization, LC homopolymer and amphiphilic copolymers with narrow molecular weight distributions were obtained. The self-assemblies of the LC monomer, homopolymer, and block copolymers in bulk and in solution were studied by small-angle X-ray scattering (SAXS), differential scanning calorimetry (DSC), polarizing optical microscopy (POM), and transmission electron microscopy (TEM). All polymers exhibit in bulk an interdigitated smectic A (SmA(d)) phase with a lamellar period of 4.6 nm. The amphiphilic copolymers self-organize in solution into vesicles with wavy membrane and nanoribbons with twisted and folded structures, depending on concentration and size of LC hydrophobic block. These new morphologies will help the comprehension of the fascinating organization of thermotropic mesophase in lyotropic structures.

  9. Role of Molecular Structure on X-ray Diffraction in Uniaxial and Biaxial Phases of Thermotropic Liquid Crystals

    SciTech Connect

    Acharya, Bharat R.; Kang, Shin-Woong; Prasad, Veena; Kumar, Satyendra

    2009-04-29

    X-ray diffraction is one of the most definitive methods to determine the structure of condensed matter phases, and it has been applied to unequivocally infer the structures of conventional calamitic and lyotropic liquid crystals. With the advent of bent-core and tetrapodic mesogens and the discovery of the biaxial nematic phase in them, the experimental results require more careful interpretation and analysis. Here, we present ab-initio calculations of X-ray diffraction patterns in the isotropic, uniaxial nematic, and biaxial nematic phases of bent-core mesogens. A simple Meier-Saupe-like molecular distribution function is employed to describe both aligned and unaligned mesophases. The distribution function is decomposed into two, polar and azimuthal, distribution functions to calculate the effect of the evolution of uniaxial and biaxial nematic orientational order. The calculations provide satisfactory semiquantitative interpretations of experimental results. The calculations presented here should provide a pathway to more refined and quantitative analysis of X-ray diffraction data from the biaxial nematic phase.

  10. Role of Molecular Structure on X-ray Diffraction in Thermotropic Uniaxial and Biaxial Nematic Liquid Crystal Phases

    SciTech Connect

    Acharya, Bharat R.; Kang, Shin-Woong; Prasad, Veena; Kumar, Satyendra

    2009-08-27

    X-ray diffraction is one of the most definitive methods to determine the structure of condensed matter phases, and it has been applied to unequivocally infer the structures of conventional calamitic and lyotropic liquid crystals. With the advent of bent-core and tetrapodic mesogens and the discovery of the biaxial nematic phase in them, the experimental results require more careful interpretation and analysis. Here, we present ab-initio calculations of X-ray diffraction patterns in the isotropic, uniaxial nematic, and biaxial nematic phases of bent-core mesogens. A simple Meier-Saupe-like molecular distribution function is employed to describe both aligned and unaligned mesophases. The distribution function is decomposed into two, polar and azimuthal, distribution functions to calculate the effect of the evolution of uniaxial and biaxial nematic orientational order. The calculations provide satisfactory semiquantitative interpretations of experimental results. The calculations presented here should provide a pathway to more refined and quantitative analysis of X-ray diffraction data from the biaxial nematic phase.

  11. The Effect of Electroporation of a Lyotroic Liquid Crystal Genistein-Based Formulation in the Recovery of Murine Melanoma Lesions

    PubMed Central

    Danciu, Corina; Berkó, Szilvia; Varju, Gábor; Balázs, Boglárka; Kemény, Lajos; Németh, István Balázs; Cioca, Andreea; Petruș, Alexandra; Dehelean, Cristina; Cosmin, Citu Ioan; Amaricai, Elena; Toma, Claudia Crina

    2015-01-01

    A lamellar lyotropic liquid crystal genistein-based formulation (LLC-Gen) was prepared in order to increase the aqueous solubility of the lipophilic phytocompound genistein. The formulation was applied locally, in a murine model of melanoma, with or without electroporation. The results demonstrated that, when the formulation was applied by electroporation, the tumors appeared later. During the 21 days of the experiment, the LLC-Gen formulation decreased the tumor volume, the amount of melanin and the degree of erythema, but when electroporation was applied, all these parameters indicated a better prognosis even (lower tumor volume, amount of melanin and degree of erythema). Although hematoxylin–eosin (HE) staining confirmed the above events, application of the LLC-Gen formulation by electroporation did not lead to a significant effect in terms of the serum concentrations of the protein S100B and serum neuron specific enolase (NSE), or the tissue expression of the platelet-derived growth factor receptor β (PDGFRβ) antibody. PMID:26184156

  12. Defects and order in liquid crystal phases

    NASA Astrophysics Data System (ADS)

    Jain, Shilpa

    This thesis investigates the partial destruction of ordering in liquid crystalline systems due to the influence of defects and thermal fluctuations. The systems under consideration are hexagonal columnar crystals with crystalline order perpendicular to the columns, and two-dimensional smectics with order perpendicular to the layers. We first study the possibility of reentrant melting of a hexagonal columnar crystal of flexible charged polymers at high enough densities. The Lindemann criterion is employed in determining the melting point. Lattice fluctuations are calculated in the Debye model, and an analogy with the Abrikosov vortex lattice in superconductors is exploited in estimating both the elastic constants of the hexagonal lattice, and the appropriate Lindemann constant. We also discuss the unusual functional integral describing the statistical mechanics of a single polymer in an Einstein cage model using the path-integral formulation. A crossover as a function of an external field along the column axis is discussed as well. Next, we study defects in a columnar crystal in the form of vacancy/interstitial loops or strings of vacancies and interstitials bounded by column "heads" and "tails". These defect strings are oriented by the columnar lattice and can change size and shape by movement of the ends and forming kinks along the length. Hence an analysis in terms of directed living polymers is appropriate to study their size and shape distribution, volume fraction, etc. If the entropy of transverse fluctuations overcomes the string line tension in the crystalline phase, a string proliferation transition occurs, leading to a "supersolid" phase with infinitely long vacancy or interstitial strings. We estimate the wandering entropy and examine the behaviour in the transition regime. We also calculate numerically the line tension of various species of vacancies and interstitials in a triangular lattice for power-law potentials as well as for a modified Bessel

  13. Crystal Growth in Liquid-Encapsulated Float Zone

    NASA Technical Reports Server (NTRS)

    Naumann, Robert J.; Frazier, Donald O.; Lehoczky, Sandor; Vlasse, Marcus; Facemire, Barbara

    1987-01-01

    Suitably chosen liquid encapsulant placed around melt zone in float-zone crystal-growth system performs four important functions enhancing purity and reducing strains and dislocations in final crystal. In new technique, grow dislocation-free crystals with precisely controlled composition even from materials not amenable to conventional float-zone crystal-growth method. Support provided by encapsulant make it practical to process materials of low surface tension.

  14. Recent advances in liquid-crystal fiber optics and photonics

    NASA Astrophysics Data System (ADS)

    Woliński, T. R.; Siarkowska, A.; Budaszewski, D.; Chychłowski, M.; Czapla, A.; Ertman, S.; Lesiak, P.; Rutkowska, K. A.; Orzechowski, K.; Sala-Tefelska, M.; Sierakowski, M.; DÄ browski, R.; Bartosewicz, B.; Jankiewicz, B.; Nowinowski-Kruszelnicki, E.; Mergo, P.

    2017-02-01

    Liquid crystals over the last two decades have been successfully used to infiltrate fiber-optic and photonic structures initially including hollow-core fibers and recently micro-structured photonic crystal fibers (PCFs). As a result photonic liquid crystal fibers (PLCFs) have been created as a new type of micro-structured fibers that benefit from a merge of "passive" PCF host structures with "active" LC guest materials and are responsible for diversity of new and uncommon spectral, propagation, and polarization properties. This combination has simultaneously boosted research activities in both fields of Liquid Crystals Photonics and Fiber Optics by demonstrating that optical fibers can be more "special" than previously thought. Simultaneously, photonic liquid crystal fibers create a new class of fiber-optic devices that utilize unique properties of the photonic crystal fibers and tunable properties of LCs. Compared to "classical" photonic crystal fibers, PLCFs can demonstrate greatly improved control over their optical properties. The paper discusses the latest advances in this field comprising PLCFs that are based on nanoparticles-doped LCs. Doping of LCs with nanoparticles has recently become a common method of improving their optical, magnetic, electrical, and physical properties. Such a combination of nanoparticles-based liquid crystals and photonic crystal fibers can be considered as a next milestone in developing a new class of fiber-based optofluidic systems.

  15. Isothermal crystallization of Imwitor 742 from supercooled liquid state.

    PubMed

    Kawakami, Kohsaku

    2007-04-01

    Crystallization behavior of Imwitor 742 was investigated for use as a liquid-filled capsule carrier. The crystallization behavior of Imwitor 742 was assessed using DSC, X-ray diffraction, and microscopy. The physical stability of Imwitor 742 under refrigerated and ambient conditions was estimated by isothermal crystallization studies using DSC. The effect of hard capsule shells and additives on crystallization kinetics was also examined. When Imwitor 742 was cooled in the DSC measurement, the form alpha appeared at -20 degrees C. When this form was heated from -40 degrees C, melt-crystallization into the form beta + beta' was initiated at -30 degrees C, followed by successive melting. Isothermal crystallization studies at temperatures higher than -14 degrees C yielded the form beta + beta'. The crystallization behavior was explained in terms of the Avrami model fitting by assuming 2-dimensional crystal growth. Kinetic analysis suggested that the liquid state of Imwitor 742 was maintained for 46 h and 40 months at 5 and 25 degrees C, respectively, although the deviation in induction time was expected to be large at these temperatures. Addition of hard capsule shells promoted the crystallization behavior, while addition of drug or water prolonged the induction time. The supercooled liquid state of Imwitor 742 was quite stable. However, additives to retard crystallization should be used, because the deviation in the induction time was very large. Hard capsule shells enhanced the crystallization of Imwitor 742, possibly by acting as nuclei for crystal growth.

  16. Complex tiling patterns in liquid crystals

    PubMed Central

    Tschierske, C.; Nürnberger, C.; Ebert, H.; Glettner, B.; Prehm, M.; Liu, F.; Zeng, X.-B.; Ungar, G.

    2012-01-01

    In this account recent progress in enhancing the complexity of liquid crystal self-assembly is highlighted. The discussed superstructures are formed mainly by polyphilic T-shaped and X-shaped molecules composed of a rod-like core, tethered with glycerol units at both ends and flexible non-polar chain(s) in lateral position, but also related inverted molecular structures are considered. A series of honeycomb phases composed of polygonal cylinders ranging from triangular to hexagonal, followed by giant cylinder honeycombs is observed for ternary T-shaped polyphiles on increasing the size of the lateral chain(s). Increasing the chain size further leads to new modes of lamellar organization followed by three-dimensional and two-dimensional structures incorporating branched and non-branched axial rod-bundles. Grafting incompatible chains to opposite sides of the rod-like core leads to quaternary X-shaped polyphiles. These form liquid crystalline honeycombs where different cells are filled with different material. Projected on an Euclidian plane, all honeycomb phases can be described either by uniformly coloured Archimedean and Laves tiling patterns (T-shaped polyphiles) or as multi-colour tiling patterns (X-shaped polyphiles). It is shown that geometric frustration, combined with the tendency to segregate incompatible chains into different compartments and the need to find a periodic tiling pattern, leads to a significant increase in the complexity of soft self-assembly. Mixing of different chains greatly enhances the number of possible ‘colours’ and in this way, periodic structures comprising up to seven distinct compartments can be generated. Relations to biological self-assembly are discussed shortly. PMID:24098852

  17. Liquid crystals in micron-scale droplets, shells and fibers.

    PubMed

    Urbanski, Martin; Reyes, Catherine G; Noh, JungHyun; Sharma, Anshul; Geng, Yong; Subba Rao Jampani, Venkata; Lagerwall, Jan P F

    2017-04-05

    The extraordinary responsiveness and large diversity of self-assembled structures of liquid crystals are well documented and they have been extensively used in devices like displays. For long, this application route strongly influenced academic research, which frequently focused on the performance of liquid crystals in display-like geometries, typically between flat, rigid substrates of glass or similar solids. Today a new trend is clearly visible, where liquid crystals confined within curved, often soft and flexible, interfaces are in focus. Innovation in microfluidic technology has opened for high-throughput production of liquid crystal droplets or shells with exquisite monodispersity, and modern characterization methods allow detailed analysis of complex director arrangements. The introduction of electrospinning in liquid crystal research has enabled encapsulation in optically transparent polymeric cylinders with very small radius, allowing studies of confinement effects that were not easily accessible before. It also opened the prospect of functionalizing textile fibers with liquid crystals in the core, triggering activities that target wearable devices with true textile form factor for seamless integration in clothing. Together, these developments have brought issues center stage that might previously have been considered esoteric, like the interaction of topological defects on spherical surfaces, saddle-splay curvature-induced spontaneous chiral symmetry breaking, or the non-trivial shape changes of curved liquid crystal elastomers with non-uniform director fields that undergo a phase transition to an isotropic state. The new research thrusts are motivated equally by the intriguing soft matter physics showcased by liquid crystals in these unconventional geometries, and by the many novel application opportunities that arise when we can reproducibly manufacture these systems on a commercial scale. This review attempts to summarize the current understanding of

  18. Liquid crystals in micron-scale droplets, shells and fibers

    NASA Astrophysics Data System (ADS)

    Urbanski, Martin; Reyes, Catherine G.; Noh, JungHyun; Sharma, Anshul; Geng, Yong; Subba Rao Jampani, Venkata; Lagerwall, Jan P. F.

    2017-04-01

    The extraordinary responsiveness and large diversity of self-assembled structures of liquid crystals are well documented and they have been extensively used in devices like displays. For long, this application route strongly influenced academic research, which frequently focused on the performance of liquid crystals in display-like geometries, typically between flat, rigid substrates of glass or similar solids. Today a new trend is clearly visible, where liquid crystals confined within curved, often soft and flexible, interfaces are in focus. Innovation in microfluidic technology has opened for high-throughput production of liquid crystal droplets or shells with exquisite monodispersity, and modern characterization methods allow detailed analysis of complex director arrangements. The introduction of electrospinning in liquid crystal research has enabled encapsulation in optically transparent polymeric cylinders with very small radius, allowing studies of confinement effects that were not easily accessible before. It also opened the prospect of functionalizing textile fibers with liquid crystals in the core, triggering activities that target wearable devices with true textile form factor for seamless integration in clothing. Together, these developments have brought issues center stage that might previously have been considered esoteric, like the interaction of topological defects on spherical surfaces, saddle-splay curvature-induced spontaneous chiral symmetry breaking, or the non-trivial shape changes of curved liquid crystal elastomers with non-uniform director fields that undergo a phase transition to an isotropic state. The new research thrusts are motivated equally by the intriguing soft matter physics showcased by liquid crystals in these unconventional geometries, and by the many novel application opportunities that arise when we can reproducibly manufacture these systems on a commercial scale. This review attempts to summarize the current understanding of

  19. Optic properties of bile liquid crystals in human body

    PubMed Central

    Yang, Hai Ming; Wu, Jie; Li, Jin Yi; Zhou, Jian Li; He, Li Jun; Xu, Xian Fang

    2000-01-01

    AIM: To further study the properties of bile liquid crystals, and probe into the relationship between bile liquid crystals and gallbladder stone formation, and provide evidence for the prevention and treatment of cholecystolithiasis. METHODS: The optic properties of bile liquid crystals in human body were determined by the method of crystal optics under polarizing microscope with plane polarized light and perpendicular polarized light. RESULTS: Under a polarizing microscope with plane polarized light, bile liquid crystals scattered in bile appeared round, oval or irregularly round. The color of bile liquid crystals was a little lighter than that of the bile around. When the stage was turned round, the color of bile liquid crystals or the darkness and lightness of the color did not change obviously. On the border between bile liquid crystals and the bile around, brighter Becke-Line could be observed. When the microscope tube is lifted, Becke-Line moved inward, and when lowered, Becke-Line moved outward. Under a perpendicular polarized light, bile liquid crystals showd some special interference patterns, called Malta cross. When the stage was turning round at an angle of 360°, the Malta cross showed four times of extinction. In the vibrating direction of 45° angle of relative to upper and lower polarizing plate, gypsum test-board with optical path difference of 530 nm was inserted, the first and the third quadrants of Malt a cross appeared to be blue, and the second and the fourth quadrants appeared orange. When mica test-board with optical path difference of 147 nm was inserted, the first and the third quadrants of Malta cross appeared yellow, and the second and the fourth quadrants appeared dark grey. CONCLUSION: The bile liquid crystals were distributed in bile in the form of global grains. Their polychroism and absorption were slight, but the edge and Becke*Line were very clear. Its refractive index was larger than that of the bile. These liquid crystals were

  20. Passive Temperature Stabilization of Silicon Photonic Devices Using Liquid Crystals

    PubMed Central

    Ptasinski, Joanna; Khoo, Iam-Choon; Fainman, Yeshaiahu

    2014-01-01

    In this work we explore the negative thermo-optic properties of liquid crystal claddings for passive temperature stabilization of silicon photonic integrated circuits. Photonic circuits are playing an increasing role in communications and computing, but they suffer from temperature dependent performance variation. Most existing techniques aimed at compensation of thermal effects rely on power hungry Joule heating. We show that integrating a liquid crystal cladding helps to minimize the effects of a temperature dependent drift. The advantage of liquid crystals lies in their high negative thermo-optic coefficients in addition to low absorption at the infrared wavelengths. PMID:28788565

  1. Polarization effects in reconfigurable liquid crystal phase holograms

    NASA Astrophysics Data System (ADS)

    Komarčević, Miloš; Manolis, Ilias G.; Wilkinson, Timothy D.; Crossland, William A.

    2005-01-01

    An improved configuration for achieving true polarization insensitive reconfigurable phase holograms for optical switches using homogeneously aligned nematic liquid crystal devices is presented. Previous experimental results have been analyzed and explained using numerical modeling of the nematic liquid crystal orientation and associated optical modulation. Twisting of the liquid crystal optical axis from the optimal 45° orientation from the quarter waveplate is shown to degrade the polarization insensitive performance. The alternative direction of surface alignment perpendicular to the long pixel edge eliminates the twist of the director during switching. True polarization insensitivity is predicted with our model for this mode of operation.

  2. Electro-optic phase modulation by polymer dispersed liquid crystals

    NASA Astrophysics Data System (ADS)

    Vicari, L.

    1997-05-01

    We present a mathematical model to describe the optical phase shift induced by polymer dispersed liquid crystals (PDLCs) on light impinging transversely on the sample. PDLCs are dispersions of liquid crystal microdroplets in a polymeric binder. Droplets appear as optically uniaxial spheres randomly oriented so that the material is optically isotropic. The application of an external electric field results in a reorientation of the liquid crystal and therefore in an electrically controllable optical uniaxicity of the material. The model is discussed by comparison with experimental data and with previous theory [F. Basile, F. Bloisi, L. Vicari, and F. Simoni, Phys. Rev. E 48, 432 (1993)].

  3. New High Spatio-Thermal Resolution Liquid Crystal Sheet

    NASA Astrophysics Data System (ADS)

    Liegeois, , C.; Fontaine, J.; Quenneville, Y.

    1980-05-01

    Liquid crystal is used with full success, mainly in breast cancer detection, skin disease, scrotal disease, and veterinarian experimentation, in addition to industrial quality control (mechanical and electronic circuitry testing). The importance of the results of these uses demonstrates the necessity of improving the spatiothermal resolution and isothermic possibilities. This work introduces new manufacturing processes of encapsulated liquid crystal mixtures selected for specific characteristics. The coating of the liquid crystal-Is explained, the accuracy measurement and testing are exposed, with all the new applications possible due to the high quality of the product. Comparison of special cases of old sheets and new ones are detailed. New potential uses and developments are discussed.

  4. Positron lifetime measurements in chiral nematic liquid crystals

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Eftekhari, Abe; Parmar, Devendra S.

    1991-01-01

    Positron lifetimes in the isotropic phases of chiral nematic liquid crystal formulations and their mixtures up to the racemic level were measured. The lifetime spectra for all liquid crystal systems were analyzed into three components. Although the individual spectra in the left- and right-handed components are identical, their racemic mixtures exhibit much larger orthopositronium lifetimes; these larger lifetimes indicate the presence of larger microvoids. This result is consistent with the reportedly higher thermodynamic stability and color play range in the racemic mixtures of chiral nematic liquid crystals.

  5. Liquid crystal bubbles forming a tunable micro-lenses array

    NASA Astrophysics Data System (ADS)

    Hamdi, R.; Petriashvili, G.; Lombardo, G.; De Santo, M. P.; Barberi, R.

    2011-10-01

    Cholesteric liquid crystals with long pitch confined in homeotropic cells can be used to generate stable but distorted and localized liquid crystal structures exhibiting spherulitic textures, known as "bubbles." As these bubbles can be induced by an external electric field with a narrow range following the confinement ratio C=d/p ≈1 (d representing cell thickness and p representing cholesteric pitch), it is possible to obtain electrically controlled micro-lenses. Here we investigated the optical and electro-optical properties of such liquid crystal bubbles for creating an array of micro-lenses with electrically tunable focal length.

  6. Infrared cylindrical cloak in nanosphere dispersed liquid crystal metamaterial.

    PubMed

    Pawlik, G; Tarnowski, K; Walasik, W; Mitus, A C; Khoo, I C

    2012-06-01

    We present a design of an infrared cylindrical cloak using nanosphere dispersed nematic liquid crystal (NLC) metamaterial following the approach of Smith's group [Science 314, 977 (2006)]. Cloaking conditions require spatial distribution of liquid crystal birefringence with constant extraordinary index of refraction and radially dependent ordinary index of refraction. An approximate analytical formula for the latter is derived. Finite element (FE) simulations confirm the cloaking effect. Owing to the tunable birefringence of the liquid crystal component, such cloaking material offers the interesting possibilities of real-time control of invisibility. The possibility of experimental realization is briefly discussed.

  7. Impact of Liquid Crystals in Active and Adaptive Optics

    PubMed Central

    Arines, Justo

    2009-01-01

    Active and dynamic modulation of light has been one of major contributions of liquid crystals to Optics. The spectrum of application range from signposting panels to high resolution imaging. The development of new materials is the key to continued progress in this field. To promote this we will present in this paper recent uses of liquid crystals as active or adaptive modulators of light. Besides, we will reflect on their current limitations. We expect with this to contribute to the progress in the field of liquid crystals and thus the development of new useful tools for Active and Adaptive Optics.

  8. Acousto-optics of liquid crystals: Yesterday, today, and tomorrow

    NASA Astrophysics Data System (ADS)

    Kapustina, O. A.

    2014-09-01

    The most important results of the recent theoretical and experimental studies in the field of acousto-optics of liquid crystals (LCs) in research lines initiated by the pioneering studies of Professor A.P. Kapustin at the Institute of Crystallography of the Russian Academy of Sciences and carried out at the Acoustic Institute of the Russian Academy of Sciences are generalized and analyzed. These lines include the study of the nature of acoustically induced supramolecular structures in nematic liquid crystals (NLCs) and cholesteric liquid crystals (CLCs) and the development of physical bases of practical LC acousto-optics, related to the detection of acoustic signals.

  9. Liquid crystal photoalignment material based on chloromethylated polyimide

    SciTech Connect

    Zhong Zhenxin; Li Xiangdan; Lee, Seung Hee; Lee, Myong-Hoon

    2004-09-27

    We report a liquid crystal photoalignment material with high photosensitivity and excellent thermal stability. The chloromethylated aromatic polyimide exhibited defect-free homogeneous alignment of liquid crystals upon irradiation of polarized deep ultraviolet (UV) for 50 s. The aligning ability of the film was retained up to 210 deg. C, and the cell containing liquid crystals could be stored at 85 deg. C for more than 14 days without any deterioration. FT-IR and UV-vis spectra confirmed that the alignment was induced by photodecomposition of polyimide, drastically accelerated by the introduction of chloromethyl side group.

  10. Liquid crystal polyester-carbon fiber composites

    NASA Technical Reports Server (NTRS)

    Chung, T. S.

    1984-01-01

    Liquid crystal polymers (LCP) have been developed as a thermoplastic matrix for high performance composites. A successful melt impregnation method has been developed which results in the production of continuous carbon fiber (CF) reinforced LCP prepreg tape. Subsequent layup and molding of prepreg into laminates has yielded composites of good quality. Tensile and flexural properties of LCP/CF composites are comparable to those of epoxy/CF composites. The LCP/CF composites have better impact resistance than the latter, although epoxy/CF composites possess superior compression and shear strength. The LCP/CF composites have good property retention until 200 F (67 % of room temperature value). Above 200 F, mechanical properties decrease significantly. Experimental results indicate that the poor compression and shear strength may be due to the poor interfacial adhesion between the matrix and carbon fiber as adequate toughness of the LCP matrix. Low mechanical property retention at high temperatures may be attributable to the low beta-transition temperature (around 80 C) of the LCP matrix material.

  11. Liquid crystal helical ribbons as isometric textures

    NASA Astrophysics Data System (ADS)

    Achard, M.-F.; Kleman, M.; Nastishin, Yu. A.; Nguyen, H.-T.

    2005-01-01

    Deformations that conserve the parallelism and the distances between layers, in smectic phases; between columns, in columnar phases are commonplace in liquid crystals. The resulting isometric deformed textures display specific geometric features. The corresponding order parameter singularities extend over rather large, macroscopic, distances, e.g., cofocal conics in smectics. This well-known picture is modified when, superimposed to the 1D or 2D periodicities, the structure is helical. However isometry can be preserved. This paper discusses the case of a medium whose structure is made of 1D modulated layers (a lamello-columnar phase), assuming that the modulations rotate helically from one layer to the next. The price to pay is that any isometric texture is necessarily frustrated; it consists of layers folded into a set of parallel helicoids, in the manner of a screw dislocation (of macroscopic Burgers vector), the modulations being along the helices, i.e. double-twisted. The singularity set is made of two helical disclination lines. We complete this geometric analysis by a crude calculation of the energy of a helical ribbon. It is suggested that the helical ribbons observed in the B7 phase of banana-like molecules are such isometric textures. As a side result, let us mention that the description of double-twist, traditionally made in terms of a partition of the director field into nested cylinders, could more than often be profitably tested against a partition into nested helicoids.

  12. Free surface dynamics of nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Cummings, Linda; Kondic, Lou; Lam, Michael; Lin, Te-Sheng

    2014-11-01

    Spreading thin films of nematic liquid crystal (NLC) are known to behave very differently to those of isotropic fluids. The polar interactions of the rod-like molecules with each other, and the interactions with the underlying substrate, can lead to intricate patterns and instabilities that are not yet fully understood. The physics of a system even as simple as a film of NLC spreading slowly over a surface (inclined or horizontal) are remarkably complex: the outcome depends strongly on the details of the NLC's behavior at both the substrate and the free surface (so-called ``anchoring'' effects). We will present a dynamic flow model that takes careful account of such nematic-substrate and nematic-free surface interactions. We will present model simulations for several different flow scenarios that indicate the variety of behavior that can emerge. Spreading over a horizontal substrate may exhibit a range of unstable behavior. Flow down an incline also exhibits intriguing instabilities: in addition to the usual transverse fingering, instabilities can be manifested behind the flowing front in a manner reminiscent of Newtonian flow down an inverted substrate. NSF DMS-1211713.

  13. Optically rewritable 3D liquid crystal displays.

    PubMed

    Sun, J; Srivastava, A K; Zhang, W; Wang, L; Chigrinov, V G; Kwok, H S

    2014-11-01

    Optically rewritable liquid crystal display (ORWLCD) is a concept based on the optically addressed bi-stable display that does not need any power to hold the image after being uploaded. Recently, the demand for the 3D image display has increased enormously. Several attempts have been made to achieve 3D image on the ORWLCD, but all of them involve high complexity for image processing on both hardware and software levels. In this Letter, we disclose a concept for the 3D-ORWLCD by dividing the given image in three parts with different optic axis. A quarter-wave plate is placed on the top of the ORWLCD to modify the emerging light from different domains of the image in different manner. Thereafter, Polaroid glasses can be used to visualize the 3D image. The 3D image can be refreshed, on the 3D-ORWLCD, in one-step with proper ORWLCD printer and image processing, and therefore, with easy image refreshing and good image quality, such displays can be applied for many applications viz. 3D bi-stable display, security elements, etc.

  14. Structural Transitions in Cholesteric Liquid Crystal Droplets

    SciTech Connect

    Zhou, Ye; Bukusoglu, Emre; Martínez-González, José A.; Rahimi, Mohammad; Roberts, Tyler F.; Zhang, Rui; Wang, Xiaoguang; Abbott, Nicholas L.; de Pablo, Juan J.

    2016-07-26

    Confinement of cholesteric liquid crystals (ChLC) into droplets leads to a delicate interplay between elasticity, chirality, and surface energy. In this work, we rely on a combination of theory and experiments to understand the rich morphological behavior that arises from that balance. More specifically, a systematic study of micrometer-sized ChLC droplets is presented as a function of chirality and surface energy (or anchoring). With increasing chirality, a continuous transition is observed from a twisted bipolar structure to a radial spherical structure, all within a narrow range of chirality. During such a transition, a bent structure is predicted by simulations and confirmed by experimental observations. Simulations are also able to capture the dynamics of the quenching process observed in experiments. Consistent with published work, it is found that nanoparticles are attracted to defect regions on the surface of the droplets. For weak anchoring conditions at the nanoparticle surface, ChLC droplets adopt a morphology similar to that of the equilibrium helical phase observed for ChLCs in the bulk. As the anchoring strength increases, a planar bipolar structure arises, followed by a morphological transition to a bent structure. The influence of chirality and surface interactions are discussed in the context of the potential use of ChLC droplets as stimuli-responsive materials for reporting molecular adsorbates.

  15. Liquid crystal elastomer strips as soft crawlers

    NASA Astrophysics Data System (ADS)

    DeSimone, Antonio; Gidoni, Paolo; Noselli, Giovanni

    2015-11-01

    In this paper, we speculate on a possible application of Liquid Crystal Elastomers to the field of soft robotics. In particular, we study a concept for limbless locomotion that is amenable to miniaturisation. For this purpose, we formulate and solve the evolution equations for a strip of nematic elastomer, subject to directional frictional interactions with a flat solid substrate, and cyclically actuated by a spatially uniform, time-periodic stimulus (e.g., temperature change). The presence of frictional forces that are sensitive to the direction of sliding transforms reciprocal, 'breathing-like' deformations into directed forward motion. We derive formulas quantifying this motion in the case of distributed friction, by solving a differential inclusion for the displacement field. The simpler case of concentrated frictional interactions at the two ends of the strip is also solved, in order to provide a benchmark to compare the continuously distributed case with a finite-dimensional benchmark. We also provide explicit formulas for the axial force along the crawler body.

  16. Generalized Onsager theory of liquid crystals.

    PubMed

    Xiao, Xiaobin; Sheng, Ping

    2013-12-01

    The Onsager theory is known to be inaccurate in its prediction of the critical transition density for small aspect ratio hard rods. In this paper we generalize the Onsager theory in two dimensions by taking into account the short-range order as well as the higher-order virial coefficients, up to the fourth order. By carrying out molecular dynamics (MD) simulations on "molecules" comprising linked hard disks with an aspect ratio ℓ ranging from 5 to 13, we show that the generalized theory is much improved as compared to the traditional theory, with its predictions of the transition density agreeing well with the simulation results. This indicates the importance of short-range order considerations (in conjunction with steric repulsion) for molecules with ℓ≤10, a group which includes the most commonly encountered thermotropic liquid crystals. MD simulations further yield evidence for hexagonal order for molecules with ℓ≤8, indicating an intermediate hexagonal phase before solidifying at higher densities.

  17. Light transmission loss in liquid crystal waveguides

    NASA Astrophysics Data System (ADS)

    Nowinowski-Kruszelnicki, Edward; Walczak, Andrzej; Kiezun, Aleksander; Jaroszewicz, Leszek R.

    1998-02-01

    The investigation results of the propagation loss due to light scattering in electrically induced channel in planar waveguides are presented. The channel structure was obtained by means of electric driven stripe electrode made by photolithographic process. Planar waveguiding cell has been fabricated using ITO/SiO2/polyimide-coated glass plates and LC film 20 micrometers thick. A nematic liquid crystal layer with 90 degrees-twisted nematic orientation was studied. The He-Ne light beam was endfire coupled into an input edge of a waveguide using an objective lens. The propagation loss have been evaluated from the spatial variation intensity of light scattered out perpendicularly to the waveguide surface along the light propagation direction measured with CCD camera. Loss measurements have been made in room temperature. Waveguiding channel effect has been observed above 2.5 Vrms of applied voltage with the loss of about 17 +/- 1 dB. Increased driving voltage up to 100 Vrms reduces the loss to minimum value of 12 +/- 1 dB/cm. As a result of the experiments one may conclude that transmission loss in thick nematic waveguide have bulk character caused by imperfection of molecular alignment.

  18. Latest Developments In Liquid Crystal Television Displays

    NASA Astrophysics Data System (ADS)

    Morozumi, Shinji; Oguchi, Kouichi; Ohshima, Hiroyuki

    1984-06-01

    This paper will discuss developments in liquid crystal (LC) television displays, mainly for pocket-size TV sets. There are two types of LC television displays. One is a simple multiplexing type, and the other is an active matrix type. The former type is an easier way to fabricate large and low-cost LC panels than the latter. However, it has serious drawbacks. The contrast gets lower as the duty ratio gets higher. Therefore the TV image of this type inevitably has rather low contrast and resolution. On the other hand, the active matrix type, which consists of active elements in each pixel, has several advantages in overcoming such problems. The metal oxide semiconductor transistors and the amorphous or polycrystalline Si thin-film transistors (TFTs) have possibilities in this application. A full-color LC display, which can be realized by the combina-tion of color filters and poly Si TFT arrays on a transparent substrate, was proven to have excellent color image, close to that of conventional CRTs. Here, several examples of LC television displays, including color, are shown. Some of them are already on the market, and others will be soon.

  19. Numerical modeling of confined liquid crystal systems

    NASA Astrophysics Data System (ADS)

    Mkaddem, Sami

    There has been much research interest in fine structures and defects of equilibrium configurations of nematic liquid crystal droplets subject to strong homeotropic anchoring and modeled by Landau-de Gennes free-energy functionals. In particular, two configurations are the center of attention. The first one is the radial hedgehog, which has an isotropic core and a spherically symmetric structure. The second one is the ring disclination, which has a ring disclination of strength 1/2 and a cylindrically symmetric structure. In this dissertation, we undertake a detailed numerical study of the two described equilibrium configurations using the imposed symmetries to simplify the problem and utilizing a high order finite element discretization to solve it. In addition to the radial hedgehog and the ring disclination, we found a new, metastable configuration, which also is axially symmetric and consists of two isotropic points along its symmetry axis narrowly separated by a line disclination. We generate phase and bifurcation diagrams of the equilibrium configurations. We also investigate the qualitative behavior and the stability of the radial hedgehog. Using a perturbation against the radial hedgehog, we show that such configurations must become unstable at sufficiently low temperatures or in sufficiently large droplets.

  20. Infrared shutter using cholesteric liquid crystal.

    PubMed

    Choi, Gyu Jin; Jung, Hye Min; Lee, Seung Hee; Gwag, Jin Seog

    2016-06-01

    In this paper, we propose an infrared light shutter device using cholesteric liquid crystals. The pitch of the device corresponds to the wavelengths of the infrared region with a strong thermal effect. This device is intended for use as a smart window to maintain an optimal indoor temperature by controlling the infrared radiation coming from the sun. The proposed cholesteric device switches between the planar state and the isotropic state by controlling the temperature using an electrically heated transparent electrode made of indium tin oxide. A window with a planar state that reflects infrared radiation would be used mainly in the summer, while the isotropic state that transmits infrared would be applied in the winter. The proposed device produced a variety of gray levels of transmittance based on the temperature, and thus it can provide the proper temperature for each user. The easy fabrication process gives it appeal as a functional device in the smart window market, and it compares favorably with previous light shutter devices. The infrared shutter is expected to be useful for next-generation window applications.

  1. Artificial muscles based on liquid crystal elastomers.

    PubMed

    Li, Min-Hui; Keller, Patrick

    2006-10-15

    This paper presents our results on liquid crystal (LC) elastomers as artificial muscle, based on the ideas proposed by de Gennes. In the theoretical model, the material consists of a repeated series of main-chain nematic LC polymer blocks, N, and conventional rubber blocks, R, based on the lamellar phase of a triblock copolymer RNR. The motor for the contraction is the reversible macromolecular shape change of the chain, from stretched to spherical, that occurs at the nematic-to-isotropic phase transition in the main-chain nematic LC polymers. We first developed a new kind of muscle-like material based on a network of side-on nematic LC homopolymers. Side-on LC polymers were used instead of main-chain LC polymers for synthetic reasons. The first example of these materials was thermo-responsive, with a typical contraction of around 35-45% and a generated force of around 210 kPa. Subsequently, a photo-responsive material was developed, with a fast photochemically induced contraction of around 20%, triggered by UV light. We then succeeded in preparing a thermo-responsive artificial muscle, RNR, with lamellar structure, using a side-on nematic LC polymer as N block.Micrometre-sized artificial muscles were also prepared. This paper illustrates the bottom-up design of stimuli-responsive materials, in which the overall material response reflects the individual macromolecular response, using LC polymer as building block.

  2. Thermochromic liquid crystals in heat transfer research

    NASA Astrophysics Data System (ADS)

    Stasiek, Jan A.; Kowalewski, Tomasz A.

    2002-06-01

    In recent years Thermochromic Liquid Crystals (TLC) have been successfully used in non-intrusive heat transfer and fluid mechanics studies. Thin coatings of TLC's at surfaces is utilized to obtain detailed heat transfer data of steady or transient process. Application of TLC tracers allows instantaneous measurement of the temperature and velocity fields for two-dimensional cross-section of flow. Computerized flow visualization techniques allow automatic quantification of temperature of the analyzed surface or the visualized flow cross-section. Here we describe our experience in applying the method to selected problems studied in our laboratory. They include modeling flow configurations in the differentially heated inclined cavity with vertical temperature gradient simulating up-slope flow as well as thermal convection under freezing surface. The main aim of these experimental models is to generate reliable experimental database on velocity and temperature fields for specific flow. The methods are based on computerized true-color analysis of digital images for temperature measurements and modified Particle Image Velocimetry and Thermometry (PIVT) used to obtain the flow field velocity.

  3. Liquid crystal filled surface plasmon resonance thermometer.

    PubMed

    Lu, Mengdi; Zhang, Xinpu; Liang, Yuzhang; Li, Lixia; Masson, Jean-Francois; Peng, Wei

    2016-05-16

    A novel surface plasmon resonance (SPR) thermometer based on liquid crystal (LC) filled hollow fiber is demonstrated in this paper. A hollow fiber was internally coated with silver and then filled with LC. The SPR response to temperature was studied using modeling and verified experimentally. The results demonstrated that the refractive index of LC decreases with the increasing temperature and the variation can be detected by the resonance wavelength shift of the plasmon resonance. The temperature sensitivities were 4.72 nm/°C in the temperature range of 20 to 34.5 °C and 0.55 nm/°C in the temperature range of 36 to 50 °C, At the phase transition temperature between nematic and isotropic phases of the LC, the temperature sensitivity increased by one order of magnitude and a shift of more than 46 nm was observed with only a 1.5 °C temperature change. This sensor can be used for temperature monitoring and alarming, and can be extended for other physical parameter measurement.

  4. Liquid crystal uncooled thermal imager development

    NASA Astrophysics Data System (ADS)

    Clark, H. R.; Bozler, C. O.; Berry, S. R.; Reich, R. K.; Bos, P. J.; Finnemeyer, V. A.; Bryant, D. R.; McGinty, C.

    2016-09-01

    An uncooled thermal imager is being developed based on a liquid crystal (LC) transducer. Without any electrical connections, the LC transducer pixels change the long-wavelength infrared (LWIR) scene directly into a visible image as opposed to an electric signal in microbolometers. The objectives are to develop an imager technology scalable to large formats (tens of megapixels) while maintaining or improving the noise equivalent temperature difference (NETD) compared to microbolometers. The present work is demonstrating that the LCs have the required performance (sensitivity, dynamic range, speed, etc.) to enable a more flexible uncooled imager. Utilizing 200-mm wafers, a process has been developed and arrays have been fabricated using aligned LCs confined in 20×20-μm cavities elevated on thermal legs. Detectors have been successfully fabricated on both silicon and fused silica wafers using less than 10 photolithographic mask steps. A breadboard camera system has been assembled to test the imagers. Various sensor configurations are described along with advantages and disadvantages of component arrangements.

  5. Molecular wires from discotic liquid crystals

    NASA Astrophysics Data System (ADS)

    Park, Ji Hyun; Labardi, Massimiliano; Scalia, Giusy

    2014-02-01

    Discotic liquid crystal (LC) can arrange in columnar structures along which electrical conduction occurs via π-π interaction between adjacent molecular cores. The efficiency of the conductivity is strongly dependent on the overlap of the orbitals of neighbor molecules and, in general, on the structural arrangements. The understanding of the factors that influence the organization is crucial for the optimization of the final conductive properties of the self-assembled columns. In this paper we present a study on the self-organization into molecular wires of a discotic LC using a solution based method. In particular, we focus on the effect of solvents used for preparing the LC solution. The resulting morphologies were investigated by atomic force microscopy (AFM) and optical microscopy, showing that diverse structures result from different solvents. With suitable conditions, we were able to induce very long fibers, with several tents of micrometer in length that, in turn, self-organize assuming a common orientation on a macroscopic scale.

  6. Electronic electrooptic effects in ferroelectric liquid crystals

    NASA Astrophysics Data System (ADS)

    Rickard, Malcolm J.

    2005-11-01

    There are a variety of potential applications in telecommunications and data processing for high-speed second-order nonlinear electronic electro-optic (EEO) switches in chip-based electronics. In these applications the ability to process optical materials and to integrate the electro-optical and electronic components are key issues that have led to the interest in and development of organic-based electro-optical materials. Ferroelectric liquid crystals (FLCs) have potential because they are intrinsically polar by symmetry, a result of their tilted chiral smectic structure, which puts chiral molecules in a monoclinic environment. The directed design of FLCs for second order NLO and EEO applications has evolved a systematic increase in their performance in recent years with electrooptic coefficients, r ˜ 3 pm/V, demonstrated in EEO devices and d ˜ 20 pm/V in NLO applications. The integration of FLCs with silicon-based electronics is a proven commercial technology, but to apply FLCs for EEO it is clear that LC materials with larger second-order nonlinear coefficients (susceptibilities) must be developed. In this dissertation EEO characteristics of FLCs are explored. Including bent-core molecules and materials for potential telecommunication use, probing the modulation of the refractive index for lambda = 1310 nm light induced by applied radio frequency (RF) electric field.

  7. Optical defect modes in chiral liquid crystals

    SciTech Connect

    Belyakov, V. A.; Semenov, S. V.

    2011-04-15

    An analytic approach to the theory of optical defect modes in chiral liquid crystals (CLCs) is developed. The analytic study is facilitated by the choice of the problem parameters. Specifically, an isotropic layer (with the dielectric susceptibility equal to the average CLC dielectric susceptibility) sandwiched between two CLC layers is studied. The chosen model allows eliminating the polarization mixing and reducing the corresponding equations to the equations for light of diffracting polarization only. The dispersion equation relating the defect mode (DM) frequency to the isotropic layer thickness and an analytic expression for the field distribution in the DM structure are obtained and the corresponding dependences are plotted for some values of the DM structure parameters. Analytic expressions for the transmission and reflection coefficients of the DM structure (CLC-defect layer-CLC) are presented and analyzed for nonabsorbing, absorbing, and amplifying CLCs. The anomalously strong light absorption effect at the DM frequency is revealed. The limit case of infinitely thick CLC layers is considered in detail. It is shown that for distributed feedback lasing in a defect structure, adjusting the lasing frequency to the DM frequency results in a significant decrease in the lasing threshold. The DM dispersion equations are solved numerically for typical values of the relevant parameters. Our approach helps clarify the physics of the optical DMs in CLCs and completely agrees with the corresponding results of the previous numerical investigations.

  8. Mechanism of the emergence of the photo-EMF upon silicon liquid crystal-single crystal contact

    NASA Astrophysics Data System (ADS)

    Budagov, K. M.; Guseinov, A. G.; Pashaev, B. G.

    2017-03-01

    The effect light has on a silicon liquid crystal-single crystal contact at different temperatures of the surface doping of silicon, and when BaTiO3 nanoparticles are added to the composition of a liquid crystal, is studied. The mechanism of the emergence of the photo-EMF in the liquid crystal-silicon structure is explained.

  9. Vitrification and crystallization of metallic liquid under pressures.

    PubMed

    Wang, Li; Peng, Chuanxiao; Wang, Yuqing; Zhang, Yanning

    2006-08-16

    Using molecular dynamics simulation with the embedded atom method, the structural properties of liquid NiAl in a pressure range of 0-20 GPa are investigated with a quenching rate of 2 K ps(-1). Not only is vitrification of liquid at low temperature detected, but also crystallization by change of average atomic volume as a function of temperature. Convincing evidence is presented that the applied pressure strongly affects the vitrification and crystallization of metallic liquid. The simulated glass transition temperature T(g) increases with pressure by 38.4 K GPa(-1) within the range 0-10 GPa, while external pressure induces crystallization of metallic liquid within the pressure range 10-20 GPa, and the crystallization temperature T(c) increases with a slope of 6.4 K GPa(-1). Therefore, the critical pressure for the formation of metallic glass at this cooling rate is estimated to be 10 GPa. The competition between the densification and the suppression of atomic diffusion in the liquid by pressure is able to explain the vitrification and crystallization behaviours of the liquid. Our present work provides a possible guidance for an experiment to study the pressure effect on the glass transition and crystallization process in metallic liquid.

  10. Effect of binder liquid type on spherical crystallization.

    PubMed

    Maghsoodi, Maryam; Hajipour, Ali

    2014-11-01

    Spherical crystallization is a process of formation of agglomerates of crystals held together by binder liquid. This research focused on understanding the effect of type of solvents used as binder liquid on the agglomeration of crystals. Carbamazepine and ethanol/water were used respectively as a model drug and crystallization system. Eight solvents as binder liquid including chloroform, dichloromethane, isopropyl acetate, ethyl acetate, n-hexane, dimethyl aniline, benzene and toluene were examined to better understand the relationship between the physical properties of the binder liquid and its ability to bring about the formation of the agglomerates. Moreover, the agglomerates obtained from effective solvents as binder liquid were evaluated in term of size, apparent particle density and compressive strength. In this study the clear trend was observed experimentally in the agglomerate formation as a function of physical properties of the binder liquid such as miscibility with crystallization system. Furthermore, the properties of obtained agglomerates such as size, apparent particle density and compressive strength were directly related to physical properties of effective binder liquids. RESULTS of this study offer a useful starting point for a conceptual framework to guide the selection of solvent systems for spherical crystallization.

  11. Liquid crystal devices especially for use in liquid crystal point diffraction interferometer systems

    NASA Technical Reports Server (NTRS)

    Marshall, Kenneth L. (Inventor)

    2009-01-01

    Liquid crystal point diffraction interferometer (LCPDI) systems that can provide real-time, phase-shifting interferograms that are useful in the characterization of static optical properties (wavefront aberrations, lensing, or wedge) in optical elements or dynamic, time-resolved events (temperature fluctuations and gradients, motion) in physical systems use improved LCPDI cells that employ a "structured" substrate or substrates in which the structural features are produced by thin film deposition or photo resist processing to provide a diffractive element that is an integral part of the cell substrate(s). The LC material used in the device may be doped with a "contrast-compensated" mixture of positive and negative dichroic dyes.

  12. Liquid crystal devices especially for use in liquid crystal point diffraction interferometer systems

    DOEpatents

    Marshall, Kenneth L [Rochester, NY

    2009-02-17

    Liquid crystal point diffraction interferometer (LCPDI) systems that can provide real-time, phase-shifting interferograms that are useful in the characterization of static optical properties (wavefront aberrations, lensing, or wedge) in optical elements or dynamic, time-resolved events (temperature fluctuations and gradients, motion) in physical systems use improved LCPDI cells that employ a "structured" substrate or substrates in which the structural features are produced by thin film deposition or photo resist processing to provide a diffractive element that is an integral part of the cell substrate(s). The LC material used in the device may be doped with a "contrast-compensated" mixture of positive and negative dichroic dyes.

  13. Ferroelectricity in the Lyotropic Cholesteric Phase of Poly L-Glutamate

    NASA Astrophysics Data System (ADS)

    Park, Byoungchoo; Kinoshita, Yoshitaka; Takezoe, Hideo; Watanabe, Junji

    1998-02-01

    Relatively strong second-harmonic generation (SHG) was observed in the lyotropic cholesteric phase of the poly(γ-benzyl-L-glutamate-co-γ-methyl L-glutamate) (PBMLG) in benzyl alcohol (BA) with application of an electric field. Using an SHG interferometry technique, we confirmed that the phase of SHG was reversed by reversing the electric field, clearly indicating the switching of nonlinear polarization. By applying a triangular wave voltage, a switching current peak was observed, indicating the existence of spontaneous polarization. Based on these experimental results, we safely concluded that the cholesteric phase of the PBMLG-BA lyotropic system is in fact a ferroelectric cholesteric phase, where a polar plane rotates along the helical axis. This is the first proper ferroelectricity in liqiud crystals.

  14. Controllable light diffraction in woodpile photonic crystals filled with liquid crystal

    SciTech Connect

    Ho, Chih-Hua; Zeng, Hao; Wiersma, Diederik S.; Cheng, Yu-Chieh; Maigyte, Lina; Trull, Jose; Cojocaru, Crina; Staliunas, Kestutis

    2015-01-12

    An approach to switching between different patterns of light beams transmitted through the woodpile photonic crystals filled with liquid crystals is proposed. The phase transition between the nematic and isotropic liquid crystal states leads to an observable variation of the spatial pattern transmitted through the photonic structure. The transmission profiles in the nematic phase also show polarization sensibility due to refractive index dependence on the field polarization. The experimental results are consistent with a numerical calculation by Finite Difference Time Domain method.

  15. Liquid Crystal Displays: A Motivator for Some Simple Investigations.

    ERIC Educational Resources Information Center

    Selkirk, Keith

    1980-01-01

    The format of digits in liquid crystal displays (LCDs) on calculators and watches can motivate some simple investigations appropriate for school mathematics. Several sample problems or investigations are provided. (MK)

  16. Biomolecular interactions at phospholipid-decorated surfaces of liquid crystals.

    PubMed

    Brake, Jeffrey M; Daschner, Maren K; Luk, Yan-Yeung; Abbott, Nicholas L

    2003-12-19

    The spontaneous assembly of phospholipids at planar interfaces between thermotropic liquid crystals and aqueous phases gives rise to patterned orientations of the liquid crystals that reflect the spatial and temporal organization of the phospholipids. Strong and weak specific-binding events involving proteins at these interfaces drive the reorganization of the phospholipids and trigger orientational transitions in the liquid crystals. Because these interfaces are fluid, processes involving the lateral organization of proteins (such as the formation of protein- and phospholipid-rich domains) are also readily imaged by the orientational response of the liquid crystal, as are stereospecific enzymatic events. These results provide principles for label-free monitoring of aqueous streams for molecular and biomolecular species without the need for complex instrumentation.

  17. Visualization of Thin Liquid Crystal Bubbles in Microgravity

    NASA Technical Reports Server (NTRS)

    Park, C. S.; Clark, N. A.; Maclennan, J. E.; Glaser, M. A.; Tin, P.; Stannarius, R.; Hall, N.; Storck, J.; Sheehan, C.

    2015-01-01

    The Observation and Analysis of Smectic Islands in Space (OASIS) experiment exploits the unique characteristics of freely suspended liquid crystals in a microgravity environment to advance the understanding of fluid state physics.

  18. Field induced heliconical structure of cholesteric liquid crystal

    DOEpatents

    Lavrentovich, Oleg D.; Shiyanovsii, Sergij V.; Xiang, Jie; Kim, Young-Ki

    2017-06-27

    A diffraction grating comprises a liquid crystal (LC) cell configured to apply an electric field through a cholesteric LC material that induces the cholesteric LC material into a heliconical state with an oblique helicoid director. The applied electric field produces diffracted light from the cholesteric LC material within the visible, infrared or ultraviolet. The axis of the heliconical state is in the plane of the liquid crystal cell or perpendicular to the plane, depending on the application. A color tuning device operates with a similar heliconical state liquid crystal material but with the heliconical director axis oriented perpendicular to the plane of the cell. A power generator varies the strength of the applied electric field to adjust the wavelength of light reflected from the cholesteric liquid crystal material within the visible, infrared or ultraviolet.

  19. Aligned nanostructured polymers by magnetic-field-directed self-assembly of a polymerizable lyotropic mesophase.

    PubMed

    Tousley, Marissa E; Feng, Xunda; Elimelech, Menachem; Osuji, Chinedum O

    2014-11-26

    Magnetic-field-directed assembly of lyotropic surfactant mesophases provides a scalable approach for the fabrication of aligned nanoporous polymers by templated polymerization. We develop and characterize a lyotropic liquid crystalline system containing hexagonally packed cylindrical micelles of a polymerizable surfactant in a polymerizable solvent. The system exhibits negative magnetic anisotropy, resulting in the degenerate alignment of cylindrical micelles perpendicular to the magnetic field. Sample rotation during field alignment is used to effectively break this degeneracy and enable the production of uniformly well-aligned mesophases. High-fidelity retentions of the hexagonal structure and alignment were successfully achieved in polymer films produced upon UV exposure of the reactive system. The success of this effort provides a route for the fabrication of aligned nanoporous membranes suitable for highly selective separations, sensing, and templated nanomaterial synthesis.

  20. Surface-functionalized ionic liquid crystal-supported ionic liquid phase materials: ionic liquid crystals in mesopores.

    PubMed

    Kohler, Florian T U; Morain, Bruno; Weiss, Alexander; Laurin, Mathias; Libuda, Jörg; Wagner, Valentin; Melcher, Berthold U; Wang, Xinjiao; Meyer, Karsten; Wasserscheid, Peter

    2011-12-23

    The influence of confinement on the ionic liquid crystal (ILC) [C(18)C(1)Im][OTf] is studied using differential scanning calorimetry (DSC), polarized optical microscopy (POM), and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The ILC studied is supported on Si-based powders and glasses with pore sizes ranging from 11 to 50 nm. The temperature of the solid-to-liquid-crystalline phase transition seems mostly unaffected by the confinement, whereas the temperature of the liquid-crystalline-to-liquid phase transition is depressed for smaller pore sizes. A contact layer with a thickness in the order of 2 nm is identified. The contact layer exhibits a phase transition at a temperature 30 K lower than the solid-to-liquid-crystalline phase transition observed for the neat ILC. For applications within the "supported ionic liquid phase (SILP)" concept, the experiments show that in pores of diameter 50 nm a pore filling of α>0.4 is sufficient to reproduce the phase transitions of the neat ILC.

  1. Optical detection of sepsis markers using liquid crystal based biosensors

    NASA Astrophysics Data System (ADS)

    McCamley, Maureen K.; Artenstein, Andrew W.; Opal, Steven M.; Crawford, Gregory P.

    2007-02-01

    A liquid crystal based biosensor for the detection and diagnosis of sepsis is currently in development. Sepsis, a major clinical syndrome with a significant public health burden in the US due to a large elderly population, is the systemic response of the body to a localized infection and is defined as the combination of pathologic infection and physiological changes. Bacterial infections are responsible for 90% of cases of sepsis in the US. Currently there is no bedside diagnostic available to positively identify sepsis. The basic detection scheme employed in a liquid crystal biosensor contains attributes that would find value in a clinical setting, especially for the early detection of sepsis. Utilizing the unique properties of liquid crystals, such as birefringence, a bedside diagnostic is in development which will optically report the presence of biomolecules. In a septic patient, an endotoxin known as lipopolysaccharide (LPS) is released from the outer membrane of Gram-negative bacteria and can be found in the blood stream. It is hypothesized that this long chained molecule will cause local disruptions to the open surface of a sensor containing aligned liquid crystal. The bulk liquid crystal ampli.es these local changes at the surface due to the presence of the sepsis marker, providing an optical readout through polarizing microscopy images. Liquid crystal sensors consisting of both square and circular grids, 100-200 μm in size, have been fabricated and filled with a common liquid crystal material, 5CB. Homeotropic alignment was confirmed using polarizing microscopy. The grids were then contacted with either saline only (control), or saline with varying concentrations of LPS. Changes in the con.guration of the nematic director of the liquid crystal were observed through the range of concentrations tested (5mg/mL - 1pg/mL) which have been confirmed by a consulting physician as clinically relevant levels.

  2. Engineered liquid crystal anchoring energies with nanopatterned surfaces.

    PubMed

    Gear, Christopher; Diest, Kenneth; Liberman, Vladimir; Rothschild, Mordechai

    2015-01-26

    The anchoring energy of liquid crystals was shown to be tunable by surface nanopatterning of periodic lines and spaces. Both the pitch and height were varied using hydrogen silsesquioxane negative tone electron beam resist, providing for flexibility in magnitude and spatial distribution of the anchoring energy. Using twisted nematic liquid crystal cells, it was shown that this energy is tunable over an order of magnitude. These results agree with a literature model which predicts the anchoring energy of sinusoidal grooves.

  3. Low-Absorption Liquid Crystals for Infrared Beam Steering

    DTIC Science & Technology

    2015-09-30

    absorption, deuterated, fluorinated and chlorinated liquid crystals, eutectic mixture, MWIR and LWIR spatial light modulators. 16. SECURITY...transmittance. Key words: Low absorption, deuterated, fluorinated and chlorinated liquid crystals, eutectic mixture, MWER and LWIR spatial light ...polarized He-Ne laser (^=633nm), a tunable Argon-ion laser (X=514nm, 488nm and 457nm) and a semiconductor laser (A,= 1550nm) were used as the light

  4. Thermo optical study of nematic liquid crystal doped with ferrofluid

    NASA Astrophysics Data System (ADS)

    Jessy P., J.; Shalini, M.; Patel, Nainesh; Sarawade, Pradip; Radha, S.

    2017-05-01

    Liquid crystal composite materials with tunable physical properties are of great scientific interest because of optoelectronic and biomedical applications. We report our study of modified optical properties of 5CB Nematic Liquid Crystal (NLC) by doping with ferrofluid at low concentrations of 0.1% by the investigation of thermo optic behaviour. The observed sensitivity of optical response in ferrofluid doped NLC is expected to pave way for several thermo-optic applications.

  5. All-optical image processing with nonlinear liquid crystals

    NASA Astrophysics Data System (ADS)

    Hong, Kuan-Lun

    Liquid crystals are fascinating materials because of several advantages such as large optical birefringence, dielectric anisotropic, and easily compatible to most kinds of materials. Compared to the electro-optical properties of liquid crystals widely applied in displays and switching application, transparency through most parts of wavelengths also makes liquid crystals a better candidate for all-optical processing. The fast response time of liquid crystals resulting from multiple nonlinear effects, such as thermal and density effect can even make real-time processing realized. In addition, blue phase liquid crystals with spontaneously self-assembled three dimensional cubic structures attracted academic attention. In my dissertation, I will divide the whole contents into six parts. In Chapter 1, a brief introduction of liquid crystals is presented, including the current progress and the classification of liquid crystals. Anisotropy and laser induced director axis reorientation is presented in Chapter 2. In Chapter 3, I will solve the electrostrictive coupled equation and analyze the laser induced thermal and density effect in both static and dynamic ways. Furthermore, a dynamic simulation of laser induced density fluctuation is proposed by applying finite element method. In Chapter 4, two image processing setups are presented. One is the intensity inversion experiment in which intensity dependent phase modulation is the mechanism. The other is the wavelength conversion experiment in which I can read the invisible image with a visible probe beam. Both experiments are accompanied with simulations to realize the matching between the theories and practical experiment results. In Chapter 5, optical properties of blue phase liquid crystals will be introduced and discussed. The results of grating diffractions and thermal refractive index gradient are presented in this chapter. In addition, fiber arrays imaging and switching with BPLCs will be included in this chapter

  6. Coherent beam amplification with a photorefractive liquid crystal.

    PubMed

    Khoo, I C; Guenther, B D; Wood, M V; Chen, P; Shih, M Y

    1997-08-15

    Coherent amplification of a signal beam by a strong pump beam is observed in thin films of fullerene-doped nematic liquid crystal. Exponential gain constants as high as 2890 cm(-1) with no phase cross talk are achieved at low applied dc bias voltage and pump beam intensity. The underlying mechanism is the electro-optically induced spatially reorientation of the liquid-crystal axis and the resultant phase-shifted index grating required for two-beam coupling.

  7. Modeling of Optical Aberration Correction using a Liquid Crystal Device

    NASA Technical Reports Server (NTRS)

    Xinghua, Wang; Bin, Wang; McManamon, Paul F.; Pouch, John J.; Miranda, Felix A.

    2006-01-01

    Gruneisen (sup 1-3), has shown that small, light weight, liquid crystal based devices can correct for the optical distortion caused by an imperfect primary mirror in a telescope and has discussed the efficiency of this correction. In this paper we expand on that work and propose a semi-analytical approach for quantifying the efficiency of a liquid crystal based wavefront corrector for this application.

  8. Polarization controllable Fresnel lens using dye-doped liquid crystals.

    PubMed

    Lin, Tsung-Hsien; Huang, Yuhua; Fuh, Andy Y G; Wu, Shin-Tson

    2006-03-20

    A scattering-free, polarization controllable Fresnel zone plate lens is demonstrated using a photo-induced alignment of the dye-doped liquid crystal film. This photo-aligned liquid crystal zone plate provides orthogonal polarization states for odd and even zones. The different focus orders can be separated because of their different polarization states. The fabrication process is relatively simple and the operation voltage is less than 5 V(rms).

  9. Boundary layer elasto-optic switching in ferroelectric liquid crystals

    NASA Technical Reports Server (NTRS)

    Parmar, D. S.

    1992-01-01

    The first experimental observation of a change in the director azimuthal angle due to applied shear stress is reported in a sample configuration involving a liquid-crystal-coated top surface exposed directly to gas flow. The electrooptic response caused by the shear stress is large, fast, and reversible. These findings are relevant to the use of liquid crystals in boundary layer investigations on wind tunnel models.

  10. Colors Of Liquid Crystals Used To Measure Surface Shear Stresses

    NASA Technical Reports Server (NTRS)

    Reda, D. C.; Muratore, J. J., Jr.

    1996-01-01

    Developmental method of mapping shear stresses on aerodynamic surfaces involves observation, at multiple viewing angles, of colors of liquid-crystal surface coats illuminated by white light. Report describing method referenced in "Liquid Crystals Indicate Directions Of Surface Shear Stresses" (ARC-13379). Resulting maps of surface shear stresses contain valuable data on magnitudes and directions of skin friction forces associated with surface flows; data used to refine mathematical models of aerodynamics for research and design purposes.

  11. Liquid crystal thermography and true-colour digital image processing

    NASA Astrophysics Data System (ADS)

    Stasiek, J.; Stasiek, A.; Jewartowski, M.; Collins, M. W.

    2006-06-01

    In the last decade thermochromic liquid crystals (TLC) and true-colour digital image processing have been successfully used in non-intrusive technical, industrial and biomedical studies and applications. Thin coatings of TLCs at surfaces are utilized to obtain detailed temperature distributions and heat transfer rates for steady or transient processes. Liquid crystals also can be used to make visible the temperature and velocity fields in liquids by the simple expedient of directly mixing the liquid crystal material into the liquid (water, glycerol, glycol, and silicone oils) in very small quantities to use as thermal and hydrodynamic tracers. In biomedical situations e.g., skin diseases, breast cancer, blood circulation and other medical application, TLC and image processing are successfully used as an additional non-invasive diagnostic method especially useful for screening large groups of potential patients. The history of this technique is reviewed, principal methods and tools are described and some examples are also presented.

  12. Columnar liquid crystals in cylindrical nanoconfinement.

    PubMed

    Zhang, Ruibin; Zeng, Xiangbing; Kim, Bongseock; Bushby, Richard J; Shin, Kyusoon; Baker, Patrick J; Percec, Virgil; Leowanawat, Pawaret; Ungar, Goran

    2015-02-24

    Axial orientation of discotic columnar liquid crystals in nanopores of inorganic templates, with the columns parallel to the axis of the nanochannels, is considered desirable for applications such as production of molecular wires. Here, we evaluate experimentally the role of the rigidity of the LC columns in achieving such orientation in nanopores where the planar anchoring (i.e., columns parallel to wall surface) is enforced. We studied the columnar phase of several discotic compounds with increasing column rigidity in the following order: dendronized carbazole, hexakis(hexyloxy)triphenylene (HAT6), a 1:1 HAT6-trinitrofluorenone (TNF) complex, and a helicene derivative. Using 2-D X-ray diffraction, AFM, grazing incidence diffraction, and polarized microscopy, we observed that the orientation of the columns changes from circular concentric to axial with increasing column rigidity. Additionally, when the rigidity is borderline, increasing pore diameter can change the configuration from axial back to circular. We derive expressions for distortion free energy that suggest that the orientation is determined by the competition between, on the one hand, the distortion energy of the 2-d lattice and the mismatch of its crystallographic facets with the curved pore wall in the axial orientation and, on the other hand, the bend energy of the columns in the circular configuration. Furthermore, the highly detailed AFM images of the core of the disclinations of strength +1 and +1/2 in the center of the pore reveal that the columns spiral down to the very center of the disclination and that there is no amorphous or misaligned region at the core, as suggested previously.

  13. Defects in liquid crystal nematic shells

    NASA Astrophysics Data System (ADS)

    Fernandez-Nieves, A.; Utada, A. S.; Vitelli, V.; Link, D. R.; Nelson, D. R.; Weitz, D. A.

    2006-03-01

    We generate water/liquid crystal (LC)/water double emulsions via recent micro-capillary fluidic devices [A. S. Utada, et.al. Science 308, 537 (2005)]. The resultant objects are stabilized against coalescence by using surfactants or adequate polymers; these also fix the boundary conditions for the director field n. We use 4-pentyl-4-cyanobiphenyl (5CB) and impose tangential boundary conditions at both water/LC interfaces by having polyvinyl alcohol (PVA) dispersed in the inner and outer water phases. We confirm recent predictions [D. R. Nelson, NanoLetters 2, 1125 (2002)] and find that four strength s=+1/2 defects are present; this is in contrast to the two s=+1 defect bipolar configuration observed for bulk spheres [A. Fernandez-Nieves, et.al. Phys. Rev. Lett. 92, 105503 (2004)]. However, these defects do not lie in the vertices of a tetrahedron but are pushed towards each other until certain equilibration distance is reached. In addition to the four defect shells, we observe shells with two s=+1 defects and even with three defects, a s=+1 and two s=+1/2. We argue these configurations arise from nematic bulk distortions that become important as the shell thickness increases. Finally, by adding a different surfactant, sodium dodecyl sulphate (SDS), to the outer phase, we can change the director boundary conditions at the outermost interface from parallel to homeotropic, to induce coalescing of the two pair of defects in the four defect shell configuration to yield two defect bipolar shells.

  14. Liquid Crystal on Silicon Wavefront Corrector

    NASA Technical Reports Server (NTRS)

    Pouch, John; Miranda, Felix; Wang, Xinghua; Bos, Philip, J.

    2004-01-01

    A low cost, high resolution, liquid crystal on silicon, spatial light modulator has been developed for the correction of huge aberrations in an optical system where the polarization dependence and the chromatic nature are tolerated. However, the overall system performance suggests that this device is also suitable for real time correction of aberration in human eyes. This device has a resolution of 1024 x 768, and is driven by an XGA display driver. The effective stroke length of the device is 700 nm and 2000 nm for the visible and IR regions of the device, respectively. The response speeds are 50 Hz and 5 Hz, respectively, which are fast enough for real time adaptive optics for aberrations in human eyes. By modulating a wavefront of 2 pi, this device can correct for arbitrary high order wavefront aberrations since the 2-D pixel array is independently controlled by the driver. The high resolution and high accuracy of the device allow for diffraction limited correction of the tip and tilt or defocus without an additional correction loop. We have shown that for every wave of aberration, an 8 step blazed grating is required to achieve high diffraction efficiency around 80%. In light of this, up to 125 waves peak to valley of tip and tilt can be corrected if we choose the simplest aberration. Corrections of 34 waves of aberration, including high order Zernicke terms in a high magnification telescope, to diffraction limited performance (residual wavefront aberration less than 1/30 lambda at 632.8 nm) have been observed at high efficiency.

  15. Flexoelectricity of a Calamitic Liquid Crystal Elastomer Swollen with a Bent-core Liquid Crystal

    SciTech Connect

    Chambers, M.; Verduzco, R; Gleeson, J; Sprunt, S; Jakli, A

    2009-01-01

    We have measured the electric current induced by mechanical distortion of a calamitic liquid crystal elastomer (LCE) swollen with a low molecular weight bent-core nematic (BCN) liquid crystal, and have determined, for the first time, the bend flexoelectric coefficient e{sub 3} of such a BCN-LCE composite. In one method, we utilize air-pressure to induce a mechanical bend deformation and flexoelectric polarization in a BCN-LCE film, and then measure the polarization current as a function of time. An alternative technique uses a rotary-motor driven scotch yoke to periodically flex the BCN-LCE; in this case, the magnitude and phase of the induced current are recorded via a lock-in amplifier. The flexoelectric coefficient, e{sub 3}, was found to be {approx}20 nC/cm{sup 2}, and is stable in magnitude from room temperature to {approx}65 C. It is about one third the value measured in samples of the pure BCN; this fraction corresponds closely to the molar concentration of BCN in the LCE. The flexoelectric current increases linearly with the magnitude of the bend deformation and decays with frequency. These observations indicate a promising way forward towards producing very low-cost, self-standing, rugged electromechanical energy conversion devices.

  16. Preparation of Monodomain Liquid Crystal Elastomers and Liquid Crystal Elastomer Nanocomposites.

    PubMed

    Kim, Hojin; Zhu, Bohan; Chen, Huiying; Adetiba, Oluwatomiyin; Agrawal, Aditya; Ajayan, Pulickel; Jacot, Jeffrey G; Verduzco, Rafael

    2016-02-06

    LCEs are shape-responsive materials with fully reversible shape change and potential applications in medicine, tissue engineering, artificial muscles, and as soft robots. Here, we demonstrate the preparation of shape-responsive liquid crystal elastomers (LCEs) and LCE nanocomposites along with characterization of their shape-responsiveness, mechanical properties, and microstructure. Two types of LCEs - polysiloxane-based and epoxy-based - are synthesized, aligned, and characterized. Polysiloxane-based LCEs are prepared through two crosslinking steps, the second under an applied load, resulting in monodomain LCEs. Polysiloxane LCE nanocomposites are prepared through the addition of conductive carbon black nanoparticles, both throughout the bulk of the LCE and to the LCE surface. Epoxy-based LCEs are prepared through a reversible esterification reaction. Epoxy-based LCEs are aligned through the application of a uniaxial load at elevated (160 °C) temperatures. Aligned LCEs and LCE nanocomposites are characterized with respect to reversible strain, mechanical stiffness, and liquid crystal ordering using a combination of imaging, two-dimensional X-ray diffraction measurements, differential scanning calorimetry, and dynamic mechanical analysis. LCEs and LCE nanocomposites can be stimulated with heat and/or electrical potential to controllably generate strains in cell culture media, and we demonstrate the application of LCEs as shape-responsive substrates for cell culture using a custom-made apparatus.

  17. X-ray study of liquid crystal alignment films and discotic liquid crystal strands

    NASA Astrophysics Data System (ADS)

    Ghosh, Surya S.

    1997-10-01

    We present x-ray diffuse scattering measurements from freely-suspended strands of discotic liquid crystals, and x-ray reflectivity measurements of polyimide films on glass. The diffuse scattering measurements are the first quantitative measurements of the diffuse scattering from a discotic-hexagonal phase. We report a toroid of diffuse scattering in the basal plane, consisting of constant-|Q| arcs surrounding the Bragg $ points. The toroid has an anisotropic cross-section in the HOL plane, and exhibits a surprising sinusoidal variation in intensity as the phi$-angle is varied. We compare our results to the diffuse scattering expected from phonons in the discotic-hexagonal phase. We also report x-ray reflectivity measurements of mechanically rubbed polyimide films and dye-doped polyimide films that have been exposed to linearly-polarized laser light. We find anisotropic off-specular diffuse scattering in the mechanically rubbed films, which we attribute to grooves created by the rubbing process. Our x-ray reflectivity analysis suggests that the optically "aligned" dye-doped polyimide film has laterally distributed regions which are slightly thicker and much less electron-dense than the surrounding polyimide. An anisotropic roughness has been measured suggesting that these regions have some alignment. We suggest that the molecular-scale anisotropy in these regions gives clues to the mechanism of nematic liquid crystal alignment on the dye-doped optically "aligned" polyimides.

  18. Reflective liquid crystal light valve with hybrid field effect mode

    NASA Technical Reports Server (NTRS)

    Boswell, Donald D. (Inventor); Grinberg, Jan (Inventor); Jacobson, Alexander D. (Inventor); Myer, Gary D. (Inventor)

    1977-01-01

    There is disclosed a high performance reflective mode liquid crystal light valve suitable for general image processing and projection and particularly suited for application to real-time coherent optical data processing. A preferred example of the device uses a CdS photoconductor, a CdTe light absorbing layer, a dielectric mirror, and a liquid crystal layer sandwiched between indium-tin-oxide transparent electrodes deposited on optical quality glass flats. The non-coherent light image is directed onto the photoconductor; this reduces the impedance of the photoconductor, thereby switching the AC voltage that is impressed across the electrodes onto the liquid crystal to activate the device. The liquid crystal is operated in a hybrid field effect mode. It utilizes the twisted nematic effect to create a dark off-state (voltage off the liquid crystal) and the optical birefringence effect to create the bright on-state. The liquid crystal thus modulates the polarization of the coherent read-out or projection light responsively to the non-coherent image. An analyzer is used to create an intensity modulated output beam.

  19. Magnetite nanorod thermotropic liquid crystal colloids: synthesis, optics and theory.

    PubMed

    Podoliak, Nina; Buchnev, Oleksandr; Bavykin, Dmitry V; Kulak, Alexander N; Kaczmarek, Malgosia; Sluckin, Timothy J

    2012-11-15

    We have developed a facile method for preparing magnetic nanoparticles which couple strongly with a liquid crystal (LC) matrix, with the aim of preparing ferronematic liquid crystal colloids for use in magneto-optical devices. Magnetite nanoparticles were prepared by oxidising colloidal Fe(OH)(2) with air in aqueous media, and were then subject to alkaline hydrothermal treatment with 10 mol dm(-3) NaOH at 100°C, transforming them into a polydisperse set of domain magnetite nanorods with maximal length ~500 nm and typical diameter ~20 nm. The nanorods were coated with 4-n-octyloxybiphenyl-4-carboxylic acid (OBPh) and suspended in nematic liquid crystal E7. As compared to the conventional oleic acid coating, this coating stabilizes LC-magnetic nanorod suspensions. The suspension acts as a ferronematic system, using the colloidal particles as intermediaries to amplify magnetic field-LC director interactions. The effective Frederiks magnetic threshold field of the magnetite nanorod-liquid crystal composite is reduced by 20% as compared to the undoped liquid crystal. In contrast with some previous work in this field, the magneto-optical effects are reproducible on time scales of months. Prospects for magnetically switched liquid crystal devices using these materials are good, but a method is required to synthesize single magnetic domain nanorods. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Liquid crystals: a new topic in physics for undergraduates

    NASA Astrophysics Data System (ADS)

    Pavlin, Jerneja; Vaupotič, Nataša; Čepič, Mojca

    2013-05-01

    This paper presents a teaching module about liquid crystals. Since liquid crystals are linked to everyday student experiences and are also a topic of current scientific research, they are an excellent candidate for a modern topic to be introduced into education. We show that liquid crystals can provide a pathway through several fields of physics such as thermodynamics, optics and electromagnetism. We discuss what students should learn about liquid crystals and what physical concepts they should know before considering them. In the presentation of the teaching module, which consists of a lecture and experimental work in a chemistry and physics laboratory, we focus on experiments on phase transitions, polarization of light, double refraction and colours. A pilot evaluation of the module was performed among pre-service primary school teachers who have no special preference for natural sciences. The evaluation shows that the module is very efficient in transferring knowledge. A prior study showed that the informally obtained pre-knowledge on liquid crystals of the first-year students from several different fields of study was negligible. Since social science students are the least interested in natural sciences, it can be expected that students in any study programme will on average achieve at least as good qualitative knowledge of phenomena related to liquid crystals as the group involved in the pilot study.