Science.gov

Sample records for lysosome-related organelles complex-1

  1. Biogenesis of lysosome-related organelles complex-1 subunit 1 (BLOS1) interacts with sorting nexin 2 and the endosomal sorting complex required for transport-I (ESCRT-I) component TSG101 to mediate the sorting of epidermal growth factor receptor into endosomal compartments.

    PubMed

    Zhang, Aili; He, Xin; Zhang, Ling; Yang, Lin; Woodman, Philip; Li, Wei

    2014-10-17

    Biogenesis of lysosome-related organelles complex-1 (BLOC-1) is a component of the molecular machinery required for the biogenesis of specialized organelles and lysosomal targeting of cargoes via the endosomal to lysosomal trafficking pathway. BLOS1, one subunit of BLOC-1, is implicated in lysosomal trafficking of membrane proteins. We found that the degradation and trafficking of epidermal growth factor receptor (EGFR) were delayed in BLOS1 knockdown cells, which were rescued through BLOS1 overexpression. A key feature to the delayed EGFR degradation is the accumulation of endolysosomes in BLOS1 knockdown cells or BLOS1 knock-out mouse embryonic fibroblasts. BLOS1 interacted with SNX2 (a retromer subunit) and TSG101 (an endosomal sorting complex required for transport subunit-I) to mediate EGFR lysosomal trafficking. These results suggest that coordination of the endolysosomal trafficking proteins is important for proper targeting of EGFR to lysosomes.

  2. Notochord vacuoles are lysosome-related organelles that function in axis and spine morphogenesis

    PubMed Central

    Ellis, Kathryn; Bagwell, Jennifer

    2013-01-01

    The notochord plays critical structural and signaling roles during vertebrate development. At the center of the vertebrate notochord is a large fluid-filled organelle, the notochord vacuole. Although these highly conserved intracellular structures have been described for decades, little is known about the molecular mechanisms involved in their biogenesis and maintenance. Here we show that zebrafish notochord vacuoles are specialized lysosome-related organelles whose formation and maintenance requires late endosomal trafficking regulated by the vacuole-specific Rab32a and H+-ATPase–dependent acidification. We establish that notochord vacuoles are required for body axis elongation during embryonic development and identify a novel role in spine morphogenesis. Thus, the vertebrate notochord plays important structural roles beyond early development. PMID:23460678

  3. Notochord vacuoles are lysosome-related organelles that function in axis and spine morphogenesis.

    PubMed

    Ellis, Kathryn; Bagwell, Jennifer; Bagnat, Michel

    2013-03-04

    The notochord plays critical structural and signaling roles during vertebrate development. At the center of the vertebrate notochord is a large fluid-filled organelle, the notochord vacuole. Although these highly conserved intracellular structures have been described for decades, little is known about the molecular mechanisms involved in their biogenesis and maintenance. Here we show that zebrafish notochord vacuoles are specialized lysosome-related organelles whose formation and maintenance requires late endosomal trafficking regulated by the vacuole-specific Rab32a and H(+)-ATPase-dependent acidification. We establish that notochord vacuoles are required for body axis elongation during embryonic development and identify a novel role in spine morphogenesis. Thus, the vertebrate notochord plays important structural roles beyond early development.

  4. C. elegans Major Fats Are Stored in Vesicles Distinct from Lysosome-Related Organelles

    PubMed Central

    O’Rourke, Eyleen J.; Soukas, Alexander A.; Carr, Christopher E.; Ruvkun, Gary

    2010-01-01

    SUMMARY Genetic conservation allows ancient features of fat storage endocrine pathways to be explored in C. elegans. Multiple studies have used Nile red or BODIPY-labeled fatty acids to identify regulators of fat mass. When mixed with their food, E. coli bacteria, Nile red, and BODIPY-labeled fatty acids stain multiple spherical cellular structures in the C. elegans major fat storage organ, the intestine. However, here we demonstrate that, in the conditions previously reported, the lysosome-related organelles stained by Nile red and BODIPY-labeled fatty acids are not the C. elegans major fat storage compartment. We show that the major fat stores are contained in a distinct cellular compartment that is not stained by Nile red. Using biochemical assays, we validate oil red O staining as a method to assess major fat stores in C. elegans, allowing for efficient and accurate genetic and functional genomic screens for genes that control fat accumulation at the organismal level. PMID:19883620

  5. Exocytosis of Endothelial Lysosome-Related Organelles Hair-Triggers a Patchy Loss of Glycocalyx at the Onset of Sepsis

    PubMed Central

    Zullo, Joseph A.; Fan, Jie; Azar, Tala T.; Yen, Wanyi; Zeng, Min; Chen, Jun; Ratliff, Brian B.; Song, Jun; Tarbell, John M.; Goligorsky, Michael S.; Fu, Bingmei M.

    2017-01-01

    Sepsis is a systemic inflammatory syndrome induced by bacterial infection that can lead to multiorgan failure. Endothelial surface glycocalyx (ESG) decorating the inner wall of blood vessels is a regulator of multiple vascular functions. Here, we tested a hypothesis that patchy degradation of ESG occurs early in sepsis and is a result of exocytosis of lysosome-related organelles. Time-lapse video microscopy revealed that exocytosis of Weibel-Palade bodies and secretory lysosomes occurred a few minutes after application of lipopolysaccharides to endothelial cells. Two therapeutic maneuvers, a nitric oxide intermediate, NG-hydroxy-l-arginine, and culture media conditioned by endothelial progenitor cells reduced the motility of lysosome-related organelles. Confocal and stochastic optical reconstruction microscopy confirmed the patchy loss of ESG simultaneously with the exocytosis of lysosome-related organelles and Weibel-Palade bodies in cultured endothelial cells and mouse aorta. The loss of ESG was blunted by pretreatment with NG-hydroxy-l-arginine or culture media conditioned by endothelial progenitor cells. Moreover, these treatments resulted in a significant reduction in deaths of septic mice. Our data support the hypothesis assigning to stress-induced exocytosis of these organelles the role of a hair-trigger for local degradation of ESG that initiates leukocyte infiltration, increase in vascular permeability, and partially accounts for the later rates of morbidity and mortality. PMID:26683662

  6. Function of the Caenorhabditis elegans ABC Transporter PGP-2 in the Biogenesis of a Lysosome-related Fat Storage Organelle

    PubMed Central

    Schroeder, Lena K.; Kremer, Susan; Kramer, Maxwell J.; Currie, Erin; Kwan, Elizabeth; Watts, Jennifer L.; Lawrenson, Andrea L.

    2007-01-01

    Caenorhabditis elegans gut granules are intestine specific lysosome-related organelles with birefringent and autofluorescent contents. We identified pgp-2, which encodes an ABC transporter, in screens for genes required for the proper formation of gut granules. pgp-2(−) embryos mislocalize birefringent material into the intestinal lumen and are lacking in acidified intestinal V-ATPase–containing compartments. Adults without pgp-2(+) function similarly lack organelles with gut granule characteristics. These cellular phenotypes indicate that pgp-2(−) animals are defective in gut granule biogenesis. Double mutant analysis suggests that pgp-2(+) functions in parallel with the AP-3 adaptor complex during gut granule formation. We find that pgp-2 is expressed in the intestine where it functions in gut granule biogenesis and that PGP-2 localizes to the gut granule membrane. These results support a direct role of an ABC transporter in regulating lysosome biogenesis. Previously, pgp-2(+) activity has been shown to be necessary for the accumulation of Nile Red–stained fat in C. elegans. We show that gut granules are sites of fat storage in C. elegans embryos and adults. Notably, levels of triacylglycerides are relatively normal in animals defective in the formation of gut granules. Our results provide an explanation for the loss of Nile Red–stained fat in pgp-2(−) animals as well as insight into the specialized function of this lysosome-related organelle. PMID:17202409

  7. BLOC-1 Is Required for Cargo-specific Sorting from Vacuolar Early Endosomes toward Lysosome-related Organelles

    PubMed Central

    Setty, Subba Rao Gangi; Tenza, Danièle; Truschel, Steven T.; Chou, Evelyn; Sviderskaya, Elena V.; Theos, Alexander C.; Lamoreux, M. Lynn; Di Pietro, Santiago M.; Starcevic, Marta; Bennett, Dorothy C.; Dell'Angelica, Esteban C.; Raposo, Graça

    2007-01-01

    Hermansky-Pudlak syndrome (HPS) is a genetic disorder characterized by defects in the formation and function of lysosome-related organelles such as melanosomes. HPS in humans or mice is caused by mutations in any of 15 genes, five of which encode subunits of biogenesis of lysosome-related organelles complex (BLOC)-1, a protein complex with no known function. Here, we show that BLOC-1 functions in selective cargo exit from early endosomes toward melanosomes. BLOC-1–deficient melanocytes accumulate the melanosomal protein tyrosinase-related protein-1 (Tyrp1), but not other melanosomal proteins, in endosomal vacuoles and the cell surface due to failed biosynthetic transit from early endosomes to melanosomes and consequent increased endocytic flux. The defects are corrected by restoration of the missing BLOC-1 subunit. Melanocytes from HPS model mice lacking a different protein complex, BLOC-2, accumulate Tyrp1 in distinct downstream endosomal intermediates, suggesting that BLOC-1 and BLOC-2 act sequentially in the same pathway. By contrast, intracellular Tyrp1 is correctly targeted to melanosomes in melanocytes lacking another HPS-associated protein complex, adaptor protein (AP)-3. The results indicate that melanosome maturation requires at least two cargo transport pathways directly from early endosomes to melanosomes, one pathway mediated by AP-3 and one pathway mediated by BLOC-1 and BLOC-2, that are deficient in several forms of HPS. PMID:17182842

  8. BLOC-1 is required for cargo-specific sorting from vacuolar early endosomes toward lysosome-related organelles.

    PubMed

    Setty, Subba Rao Gangi; Tenza, Danièle; Truschel, Steven T; Chou, Evelyn; Sviderskaya, Elena V; Theos, Alexander C; Lamoreux, M Lynn; Di Pietro, Santiago M; Starcevic, Marta; Bennett, Dorothy C; Dell'Angelica, Esteban C; Raposo, Graça; Marks, Michael S

    2007-03-01

    Hermansky-Pudlak syndrome (HPS) is a genetic disorder characterized by defects in the formation and function of lysosome-related organelles such as melanosomes. HPS in humans or mice is caused by mutations in any of 15 genes, five of which encode subunits of biogenesis of lysosome-related organelles complex (BLOC)-1, a protein complex with no known function. Here, we show that BLOC-1 functions in selective cargo exit from early endosomes toward melanosomes. BLOC-1-deficient melanocytes accumulate the melanosomal protein tyrosinase-related protein-1 (Tyrp1), but not other melanosomal proteins, in endosomal vacuoles and the cell surface due to failed biosynthetic transit from early endosomes to melanosomes and consequent increased endocytic flux. The defects are corrected by restoration of the missing BLOC-1 subunit. Melanocytes from HPS model mice lacking a different protein complex, BLOC-2, accumulate Tyrp1 in distinct downstream endosomal intermediates, suggesting that BLOC-1 and BLOC-2 act sequentially in the same pathway. By contrast, intracellular Tyrp1 is correctly targeted to melanosomes in melanocytes lacking another HPS-associated protein complex, adaptor protein (AP)-3. The results indicate that melanosome maturation requires at least two cargo transport pathways directly from early endosomes to melanosomes, one pathway mediated by AP-3 and one pathway mediated by BLOC-1 and BLOC-2, that are deficient in several forms of HPS.

  9. Rab27A Regulates Transport of Cell Surface Receptors Modulating Multinucleation and Lysosome-Related Organelles in Osteoclasts

    PubMed Central

    Shimada-Sugawara, Megumi; Sakai, Eiko; Okamoto, Kuniaki; Fukuda, Mitsunori; Izumi, Tetsuro; Yoshida, Noriaki; Tsukuba, Takayuki

    2015-01-01

    Rab27A regulates transport of lysosome-related organelles (LROs) and release of secretory granules in various types of cells. Here, we identified up-regulation of Rab27A during differentiation of osteoclasts (OCLs) from bone-marrow macrophages (BMMs), by DNA microarray analysis. Rab27A deficiency in OCLs, using small interfering RNA (siRNA) knockdown in RAW-D cell line or BMMs derived from ashen mice, which display genetic defects in Rab27A expression, induced multinucleated and giant cells. Upon stimulation with macrophage-colony stimulating factor (M-CSF) and receptor activator of nuclear factor kappa-B ligand (RANKL), essential cytokines for OCL differentiation, phosphorylation levels of extracellular signal-regulated kinase (Erk), proto-oncogene tyrosine-protein kinase (Src), and p-38 were slightly enhanced in ashen BMMs than in wild-type BMMs. The cell surface level of c-fms, an M-CSF receptor, was slightly higher in ashen BMMs than in wild-type BMMs, and down-regulation of RANK, a RANKL receptor, was delayed. In addition to receptors, OCLs derived from ashen mice exhibited aberrant actin ring formation, abnormal subcellular localization of lysosome-associated membrane protein (LAMP2) and cathepsin K (CTSK), and marked reduction in resorbing activity. Thus, these findings suggest that Rab27A regulates normal transport of cell surface receptors modulating multinucleation and LROs in OCLs. PMID:25882854

  10. Caenorhabditis elegans HOPS and CCZ-1 mediate trafficking to lysosome-related organelles independently of RAB-7 and SAND-1

    PubMed Central

    Delahaye, Jared L.; Foster, Olivia K.; Vine, Annalise; Saxton, Daniel S.; Curtin, Thomas P.; Somhegyi, Hannah; Salesky, Rebecca; Hermann, Greg J.

    2014-01-01

    As early endosomes mature, the SAND-1/CCZ-1 complex acts as a guanine nucleotide exchange factor (GEF) for RAB-7 to promote the activity of its effector, HOPS, which facilitates late endosome–lysosome fusion and the consumption of AP-3–containing vesicles. We show that CCZ-1 and the HOPS complex are essential for the biogenesis of gut granules, cell type–specific, lysosome-related organelles (LROs) that coexist with conventional lysosomes in Caenorhabditis elegans intestinal cells. The HOPS subunit VPS-18 promotes the trafficking of gut granule proteins away from lysosomes and functions downstream of or in parallel to the AP-3 adaptor. CCZ-1 also acts independently of AP-3, and ccz-1 mutants mistraffic gut granule proteins. Our results indicate that SAND-1 does not participate in the formation of gut granules. In the absence of RAB-7 activity, gut granules are generated; however, their size and protein composition are subtly altered. These observations suggest that CCZ-1 acts in partnership with a protein other than SAND-1 as a GEF for an alternate Rab to promote gut granule biogenesis. Point mutations in GLO-1, a Rab32/38-related protein, predicted to increase spontaneous guanine nucleotide exchange, specifically suppress the loss of gut granules by ccz-1 and glo-3 mutants. GLO-3 is known to be required for gut granule formation and has homology to SAND-1/Mon1–related proteins, suggesting that CCZ-1 functions with GLO-3 upstream of the GLO-1 Rab, possibly as a GLO-1 GEF. These results support LRO formation occurring via processes similar to conventional lysosome biogenesis, albeit with key molecular differences. PMID:24501423

  11. The SM protein Car/Vps33A regulates SNARE-mediated trafficking to lysosomes and lysosome-related organelles.

    PubMed

    Akbar, Mohammed A; Ray, Sanchali; Krämer, Helmut

    2009-03-01

    The SM proteins Vps33A and Vps33B are believed to act in membrane fusions in endosomal pathways, but their specific roles are controversial. In Drosophila, Vps33A is the product of the carnation (car) gene. We generated a null allele of car to test its requirement for trafficking to different organelles. Complete loss of car function is lethal during larval development. Eye-specific loss of Car causes late, light-independent degeneration of photoreceptor cells. Earlier in these cells, two distinct phenotypes were detected. In young adults, autophagosomes amassed indicating that their fusion with lysosomes requires Car. In eye discs, endocytosed receptors and ligands accumulate in Rab7-positive prelysosomal compartments. The requirement of Car for late endosome-to-lysosome fusion in imaginal discs is specific as early endosomes are unaffected. Furthermore, lysosomal delivery is not restored by expression of dVps33B. This specificity reflects the distinct pattern of binding to different Syntaxins in vitro: dVps33B predominantly binds the early endosomal Avl and Car to dSyntaxin16. Consistent with a role in Car-mediated fusion, dSyntaxin16 is not restricted to Golgi membranes but also present on lysosomes.

  12. The SM Protein Car/Vps33A Regulates SNARE-mediated Trafficking to Lysosomes and Lysosome-related Organelles

    PubMed Central

    Akbar, Mohammed A.; Ray, Sanchali

    2009-01-01

    The SM proteins Vps33A and Vps33B are believed to act in membrane fusions in endosomal pathways, but their specific roles are controversial. In Drosophila, Vps33A is the product of the carnation (car) gene. We generated a null allele of car to test its requirement for trafficking to different organelles. Complete loss of car function is lethal during larval development. Eye-specific loss of Car causes late, light-independent degeneration of photoreceptor cells. Earlier in these cells, two distinct phenotypes were detected. In young adults, autophagosomes amassed indicating that their fusion with lysosomes requires Car. In eye discs, endocytosed receptors and ligands accumulate in Rab7-positive prelysosomal compartments. The requirement of Car for late endosome-to-lysosome fusion in imaginal discs is specific as early endosomes are unaffected. Furthermore, lysosomal delivery is not restored by expression of dVps33B. This specificity reflects the distinct pattern of binding to different Syntaxins in vitro: dVps33B predominantly binds the early endosomal Avl and Car to dSyntaxin16. Consistent with a role in Car-mediated fusion, dSyntaxin16 is not restricted to Golgi membranes but also present on lysosomes. PMID:19158398

  13. Melanosomes – dark organelles enlighten endosomal membrane transport

    PubMed Central

    Raposo, Graça; Marks, Michael S.

    2009-01-01

    Melanosomes are tissue-specific “lysosome-related” organelles of pigment cells in which melanins are synthesized and stored. Analyses of the trafficking and fate of melanosomal components are beginning to reveal how melanosomes are formed through novel pathways from early endosomal intermediates. These studies unveil generalized structural and functional modifications of the endosomal system in specialized cells, and provide unexpected insights into the biogenesis of multivesicular bodies and how compartmentalization regulates protein refolding. Moreover, genetic disorders that affect the biogenesis of melanosomes and other lysosome-related organelles have shed light into the molecular machinery that controls specialized endosomal sorting events. PMID:17878918

  14. Nanoparticles restore lysosomal acidification defects: Implications for Parkinson and other lysosomal-related diseases

    PubMed Central

    Bourdenx, Mathieu; Daniel, Jonathan; Genin, Emilie; Soria, Federico N.; Blanchard-Desce, Mireille; Bezard, Erwan; Dehay, Benjamin

    2016-01-01

    ABSTRACT Lysosomal impairment causes lysosomal storage disorders (LSD) and is involved in pathogenesis of neurodegenerative diseases, notably Parkinson disease (PD). Strategies enhancing or restoring lysosomal-mediated degradation thus appear as tantalizing disease-modifying therapeutics. Here we demonstrate that poly(DL-lactide-co-glycolide) (PLGA) acidic nanoparticles (aNP) restore impaired lysosomal function in a series of toxin and genetic cellular models of PD, i.e. ATP13A2-mutant or depleted cells or glucocerebrosidase (GBA)-mutant cells, as well as in a genetic model of lysosomal-related myopathy. We show that PLGA-aNP are transported to the lysosome within 24 h, lower lysosomal pH and rescue chloroquine (CQ)-induced toxicity. Re-acidification of defective lysosomes following PLGA-aNP treatment restores lysosomal function in different pathological contexts. Finally, our results show that PLGA-aNP may be detected after intracerebral injection in neurons and attenuate PD-related neurodegeneration in vivo by mechanisms involving a rescue of compromised lysosomes. PMID:26761717

  15. Impact of Solvent pH on Direct Immobilization of Lysosome-Related Cell Organelle Extracts on TiO₂ for Melanin Treatment.

    PubMed

    Bang, Seung Hyuck; Kim, Pil; Oh, Suk-Jung; Kim, Yang-Hoon; Min, Jiho

    2015-05-01

    Techniques for immobilizing effective enzymes on nanoparticles for stabilization of the activity of free enzymes have been developing as a pharmaceutical field. In this study, we examined the effect of three different pH conditions of phosphate buffer, as a dissolving solvent for lysosomal enzymes, on the direct immobilization of lysosomal enzymes extracted from Hen's egg white and Saccharomyces cerevisiae. Titanium(IV) oxide (TiO2) nanoparticles, which are extensively used in many research fields, were used in this study. The lysosomal enzymes immobilized on TiO2 under each pH condition were evaluated to maintain the specific activity of lysosomal enzymes, so that we can determine the degree of melanin treatment in lysosomal enzymes immobilized on TiO2. We found that the immobilization efficiency and melanin treatment activity in both lysosomal enzymes extracted from Hen's egg white and S. cerevisiae were the highest in an acidic condition of phosphate buffer (pH 4). However, the immobilization efficiency and melanin treatment activity were inversely proportional to the increase in pH under alkaline conditions. In addition, enhanced immobilization efficiency was shown in TiO2 pretreated with a divalent, positively charged ion, Ca(2+), and the melanin treatment activity of immobilized lysosomal enzymes on TiO2 pretreated with Ca(2+) was also increased. Therefore, this result suggests that the immobilization efficiency and melanin treatment activity of lysosomal enzymes can be enhanced according to the pH conditions of the dissolving solvent.

  16. Evolving a photosynthetic organelle.

    PubMed

    Nakayama, Takuro; Archibald, John M

    2012-04-24

    The evolution of plastids from cyanobacteria is believed to represent a singularity in the history of life. The enigmatic amoeba Paulinella and its 'recently' acquired photosynthetic inclusions provide a fascinating system through which to gain fresh insight into how endosymbionts become organelles.The plastids, or chloroplasts, of algae and plants evolved from cyanobacteria by endosymbiosis. This landmark event conferred on eukaryotes the benefits of photosynthesis--the conversion of solar energy into chemical energy--and in so doing had a huge impact on the course of evolution and the climate of Earth 1. From the present state of plastids, however, it is difficult to trace the evolutionary steps involved in this momentous development, because all modern-day plastids have fully integrated into their hosts. Paulinella chromatophora is a unicellular eukaryote that bears photosynthetic entities called chromatophores that are derived from cyanobacteria and has thus received much attention as a possible example of an organism in the early stages of organellogenesis. Recent studies have unlocked the genomic secrets of its chromatophore 23 and provided concrete evidence that the Paulinella chromatophore is a bona fide photosynthetic organelle 4. The question is how Paulinella can help us to understand the process by which an endosymbiont is converted into an organelle.

  17. Cell biology of prokaryotic organelles.

    PubMed

    Murat, Dorothee; Byrne, Meghan; Komeili, Arash

    2010-10-01

    Mounting evidence in recent years has challenged the dogma that prokaryotes are simple and undefined cells devoid of an organized subcellular architecture. In fact, proteins once thought to be the purely eukaryotic inventions, including relatives of actin and tubulin control prokaryotic cell shape, DNA segregation, and cytokinesis. Similarly, compartmentalization, commonly noted as a distinguishing feature of eukaryotic cells, is also prevalent in the prokaryotic world in the form of protein-bounded and lipid-bounded organelles. In this article we highlight some of these prokaryotic organelles and discuss the current knowledge on their ultrastructure and the molecular mechanisms of their biogenesis and maintenance.

  18. Muscle intermediate filaments and their links to membranes and membranous organelles.

    PubMed

    Capetanaki, Yassemi; Bloch, Robert J; Kouloumenta, Asimina; Mavroidis, Manolis; Psarras, Stelios

    2007-06-10

    Intermediate filaments (IFs) play a key role in the integration of structure and function of striated muscle, primarily by mediating mechanochemical links between the contractile apparatus and mitochondria, myonuclei, the sarcolemma and potentially the vesicle trafficking apparatus. Linkage of all these membranous structures to the contractile apparatus, mainly through the Z-disks, supports the integration and coordination of growth and energy demands of the working myocyte, not only with force transmission, but also with de novo gene expression, energy production and efficient protein and lipid trafficking and targeting. Desmin, the most abundant and intensively studied muscle intermediate filament protein, is linked to proper costamere organization, myoblast and stem cell fusion and differentiation, nuclear shape and positioning, as well as mitochondrial shape, structure, positioning and function. Similar links have been established for lysosomes and lysosome-related organelles, consistent with the presence of widespread links between IFs and membranous structures and the regulation of their fusion, morphology and stabilization necessary for cell survival.

  19. Muscle intermediate filaments and their links to membranes and membranous organelles

    SciTech Connect

    Capetanaki, Yassemi . E-mail: ycapetanaki@bioacademy.gr; Bloch, Robert J.; Kouloumenta, Asimina; Mavroidis, Manolis; Psarras, Stelios

    2007-06-10

    Intermediate filaments (IFs) play a key role in the integration of structure and function of striated muscle, primarily by mediating mechanochemical links between the contractile apparatus and mitochondria, myonuclei, the sarcolemma and potentially the vesicle trafficking apparatus. Linkage of all these membranous structures to the contractile apparatus, mainly through the Z-disks, supports the integration and coordination of growth and energy demands of the working myocyte, not only with force transmission, but also with de novo gene expression, energy production and efficient protein and lipid trafficking and targeting. Desmin, the most abundant and intensively studied muscle intermediate filament protein, is linked to proper costamere organization, myoblast and stem cell fusion and differentiation, nuclear shape and positioning, as well as mitochondrial shape, structure, positioning and function. Similar links have been established for lysosomes and lysosome-related organelles, consistent with the presence of widespread links between IFs and membranous structures and the regulation of their fusion, morphology and stabilization necessary for cell survival.

  20. Evolution of organelle-associated protein profiling.

    PubMed

    Yan, Wei; Aebersold, Ruedi; Raines, Elaine W

    2009-02-15

    Identification of the protein constituents of cell organelles forms the basis for studies to define the roles of specific proteins in organelle structure and functions. Over the past decade, the use of mass spectrometry-based proteomics has dissected various organelles and allowed the association of many novel proteins with particular organelles. This review chronicles the evolution of organelle proteomics technology, and discusses how many limitations, such as organelle heterogeneity and purity, can be avoided with recently developed quantitative profiling approaches. Although many challenges remain, quantitative profiling of organelles holds the promise to begin to address the complex and dynamic shuttling of proteins among organelles that will be critical for application of this advanced technology to disease-based changes in organelle function.

  1. Evolution of apicomplexan secretory organelles

    PubMed Central

    Gubbels, Marc-Jan; Duraisingh, Manoj T.

    2013-01-01

    The alveolate superphylum includes many free-living and parasitic organisms, which are united by the presence of alveolar sacs lying proximal to the plasma membrane, providing cell structure. All species comprising the apicomplexan group of alveolates are parasites and have adapted to the unique requirements of the parasitic lifestyle. Here the evolution of apicomplexan secretory organelles that are involved in the critical process of egress from one cell and invasion of another is explored. The variations within the Apicomplexa and how these relate to species-specific biology will be discussed. In addition, recent studies have identified specific calcium-sensitive molecules that coordinate the various events and regulate the release of these secretory organelles within apicomplexan parasites. Some aspects of this machinery are conserved outside the Apicomplexa, and are beginning to elucidate the conserved nature of the machinery. Briefly, the relationship of this secretion machinery within the Apicomplexa will be discussed, compared with free-living and predatory alveolates, and how these might have evolved from a common ancestor. PMID:23068912

  2. Mechanisms of Polarized Organelle Distribution in Neurons.

    PubMed

    Britt, Dylan J; Farías, Ginny G; Guardia, Carlos M; Bonifacino, Juan S

    2016-01-01

    Neurons are highly polarized cells exhibiting axonal and somatodendritic domains with distinct complements of cytoplasmic organelles. Although some organelles are widely distributed throughout the neuronal cytoplasm, others are segregated to either the axonal or somatodendritic domains. Recent findings show that organelle segregation is largely established at a pre-axonal exclusion zone (PAEZ) within the axon hillock. Polarized sorting of cytoplasmic organelles at the PAEZ is proposed to depend mainly on their selective association with different microtubule motors and, in turn, with distinct microtubule arrays. Somatodendritic organelles that escape sorting at the PAEZ can be subsequently retrieved at the axon initial segment (AIS) by a microtubule- and/or actin-based mechanism. Dynamic sorting along the PAEZ-AIS continuum can thus explain the polarized distribution of cytoplasmic organelles between the axonal and somatodendritic domains.

  3. Mechanisms of Polarized Organelle Distribution in Neurons

    PubMed Central

    Britt, Dylan J.; Farías, Ginny G.; Guardia, Carlos M.; Bonifacino, Juan S.

    2016-01-01

    Neurons are highly polarized cells exhibiting axonal and somatodendritic domains with distinct complements of cytoplasmic organelles. Although some organelles are widely distributed throughout the neuronal cytoplasm, others are segregated to either the axonal or somatodendritic domains. Recent findings show that organelle segregation is largely established at a pre-axonal exclusion zone (PAEZ) within the axon hillock. Polarized sorting of cytoplasmic organelles at the PAEZ is proposed to depend mainly on their selective association with different microtubule motors and, in turn, with distinct microtubule arrays. Somatodendritic organelles that escape sorting at the PAEZ can be subsequently retrieved at the axon initial segment (AIS) by a microtubule- and/or actin-based mechanism. Dynamic sorting along the PAEZ-AIS continuum can thus explain the polarized distribution of cytoplasmic organelles between the axonal and somatodendritic domains. PMID:27065809

  4. A lumenal domain-dependent pathway for sorting to intralumenal vesicles of multivesicular endosomes involved in organelle morphogenesis.

    PubMed

    Theos, Alexander C; Truschel, Steven T; Tenza, Daniele; Hurbain, Ilse; Harper, Dawn C; Berson, Joanne F; Thomas, Penelope C; Raposo, Graça; Marks, Michael S

    2006-03-01

    Cargo partitioning into intralumenal vesicles (ILVs) of multivesicular endosomes underlies such cellular processes as receptor downregulation, viral budding, and biogenesis of lysosome-related organelles such as melanosomes. We show that the melanosomal protein Pmel17 is sorted into ILVs by a mechanism that is dependent upon lumenal determinants and conserved in non-pigment cells. Pmel17 targeting to ILVs does not require its native cytoplasmic domain or cytoplasmic residues targeted by ubiquitylation and, unlike sorting of ubiquitylated cargo, is insensitive to functional inhibition of Hrs and ESCRT complexes. Chimeric protein and deletion analyses indicate that two N-terminal lumenal subdomains are necessary and sufficient for ILV targeting. Pmel17 fibril formation, which occurs during melanosome maturation in melanocytes, requires a third lumenal subdomain and proteolytic processing that itself requires ILV localization. These results establish an Hrs- and perhaps ESCRT-independent pathway of ILV sorting by lumenal determinants and a requirement for ILV sorting in fibril formation.

  5. Mitochondrion-related organelles in eukaryotic protists.

    PubMed

    Shiflett, April M; Johnson, Patricia J

    2010-01-01

    The discovery of mitochondrion-type genes in organisms thought to lack mitochondria led to the demonstration that hydrogenosomes share a common ancestry with mitochondria, as well as the discovery of mitosomes in multiple eukaryotic lineages. No examples of examined eukaryotes lacking a mitochondrion-related organelle exist, implying that the endosymbiont that gave rise to the mitochondrion was present in the first eukaryote. These organelles, known as hydrogenosomes, mitosomes, or mitochondrion-like organelles, are typically reduced, both structurally and biochemically, relative to classical mitochondria. However, despite their diversification and adaptation to different niches, all appear to play a role in Fe-S cluster assembly, as observed for mitochondria. Although evidence supports the use of common protein targeting mechanisms in the biogenesis of these diverse organelles, divergent features are also apparent. This review examines the metabolism and biogenesis of these organelles in divergent unicellular microbes, with a focus on parasitic protists.

  6. Endosymbiotic theory for organelle origins.

    PubMed

    Zimorski, Verena; Ku, Chuan; Martin, William F; Gould, Sven B

    2014-12-01

    Endosymbiotic theory goes back over 100 years. It explains the similarity of chloroplasts and mitochondria to free-living prokaryotes by suggesting that the organelles arose from prokaryotes through (endo)symbiosis. Gene trees provide important evidence in favour of symbiotic theory at a coarse-grained level, but the finer we get into the details of branches in trees containing dozens or hundreds of taxa, the more equivocal evidence for endosymbiotic events sometimes becomes. It seems that either the interpretation of some endosymbiotic events are wrong, or something is wrong with the interpretations of some gene trees having many leaves. There is a need for evidence that is independent of gene trees and that can help outline the course of symbiosis in eukaryote evolution. Protein import is the strongest evidence we have for the single origin of chloroplasts and mitochondria. It is probably also the strongest evidence we have to sort out the number and nature of secondary endosymbiotic events that have occurred in evolution involving the red plastid lineage. If we relax our interpretation of individual gene trees, endosymbiotic theory can tell us a lot.

  7. Membraneless organelles: Phasing in and out

    NASA Astrophysics Data System (ADS)

    Shorter, James

    2016-06-01

    The low-complexity-protein, liquid phases of membraneless organelles have now been established to selectively partition biomolecules. The specialized microenvironment that they provide differs chemically from the surrounding medium and enables specific nucleic-acid remodelling reactions.

  8. Optogenetic control of organelle transport and positioning

    PubMed Central

    Hoogenraad, Casper C.; Kapitein, Lukas C.

    2016-01-01

    Proper positioning of organelles by cytoskeleton-based motor proteins underlies cellular events such as signaling, polarization, and growth1–8. For many organelles, however, the precise connection between position and function has remained unclear, because strategies to control intracellular organelle positioning with spatiotemporal precision are lacking. Here, we establish optical control of intracellular transport by using light-sensitive heterodimerization to recruit specific cytoskeletal motor proteins (kinesin, dynein or myosin) to selected cargoes. We demonstrate that the motility of peroxisomes, recycling endosomes and mitochondria can be locally and repeatedly induced or stopped, allowing rapid organelle repositioning. We applied this approach in primary neurons to test how local positioning of recycling endosomes contributes to axon outgrowth and found that dynein-driven removal of endosomes from axonal growth cones reversibly suppressed axon growth, whereas kinesin-driven endosome enrichment enhances growth. Our strategy for optogenetic control of organelle positioning will be widely applicable to directly explore site-specific organelle functions in different model systems. PMID:25561173

  9. The different facets of organelle interplay—an overview of organelle interactions

    PubMed Central

    Schrader, Michael; Godinho, Luis F.; Costello, Joseph L.; Islinger, Markus

    2015-01-01

    Membrane-bound organelles such as mitochondria, peroxisomes, or the endoplasmic reticulum (ER) create distinct environments to promote specific cellular tasks such as ATP production, lipid breakdown, or protein export. During recent years, it has become evident that organelles are integrated into cellular networks regulating metabolism, intracellular signaling, cellular maintenance, cell fate decision, and pathogen defence. In order to facilitate such signaling events, specialized membrane regions between apposing organelles bear distinct sets of proteins to enable tethering and exchange of metabolites and signaling molecules. Such membrane associations between the mitochondria and a specialized site of the ER, the mitochondria associated-membrane (MAM), as well as between the ER and the plasma membrane (PAM) have been partially characterized at the molecular level. However, historical and recent observations imply that other organelles like peroxisomes, lysosomes, and lipid droplets might also be involved in the formation of such apposing membrane contact sites. Alternatively, reports on so-called mitochondria derived-vesicles (MDV) suggest alternative mechanisms of organelle interaction. Moreover, maintenance of cellular homeostasis requires the precise removal of aged organelles by autophagy—a process which involves the detection of ubiquitinated organelle proteins by the autophagosome membrane, representing another site of membrane associated-signaling. This review will summarize the available data on the existence and composition of organelle contact sites and the molecular specializations each site uses in order to provide a timely overview on the potential functions of organelle interaction. PMID:26442263

  10. A novel pathway for sorting to intralumenal vesicles of multivesicular endosomes involved in organelle morphogenesis

    PubMed Central

    Theos, Alexander C.; Truschel, Steven T.; Tenza, Danielle; Hurbain, Ilse; Harper, Dawn C.; Berson, Joanne F.; Thomas, Penelope C.; Raposo, Graça; Marks, Michael S.

    2006-01-01

    SUMMARY Cargo partitioning into intralumenal vesicles (ILVs) of multivesicular endosomes underlies such cellular processes as growth factor down-regulation, viral budding, and biogenesis of lysosome-related organelles including melanosomes. Here we show that the melanosomal protein, Pmel17, is sorted into ILVs by a novel mechanism that is conserved in non-pigment cells and is dependent upon lumenal determinants. ILV targeting of Pmel17 is unaffected by mutagenesis of cytoplasmic lysine and cysteine residues or replacement of the cytoplasmic domain, indicating independence of ubiquitylation, and unlike ILV targeting of ubiquitylated cargo, is insensitive to functional inhibition of Hrs and ESCRT complexes. Chimeric protein and deletion analyses indicate that two N-terminal lumenal sub-domains are necessary and sufficient for ILV targeting. Pmel17 fibril formation, which occurs during melanosome maturation in melanocytes, requires a third lumenal sub-domain and proteolytic processing that itself requires ILV localization. These results establish a novel Hrs- and perhaps ESCRT-independent pathway of ILV sorting by lumenal determinants and a requirement for ILV sorting in fibril formation. PMID:16516837

  11. Calcium regulation in endosymbiotic organelles of plants.

    PubMed

    Bussemer, Johanna; Vothknecht, Ute C; Chigri, Fatima

    2009-09-01

    In plant cells calcium-dependent signaling pathways are involved in a large array of biological processes in response to hormones, biotic/abiotic stress signals and a variety of developmental cues. This is generally achieved through binding of calcium to diverse calcium-sensing proteins, which subsequently control downstream events by activating or inhibiting biochemical reactions. Regulation by calcium is considered as a eukaryotic trait and has not been described for prokaryotes. Nevertheless, there is increasing evidence indicating that organelles of prokaryotic origin, such as chloroplasts and mitochondria, are integrated into the calcium-signaling network of the cell. An important transducer of calcium in these organelles appears to be calmodulin. In this review we want to give an overview over present data showing that endosymbiotic organelles harbour calcium-dependent biological processes with a focus on calmodulin-regulation.

  12. Plant organelle proteomics: collaborating for optimal cell function.

    PubMed

    Agrawal, Ganesh Kumar; Bourguignon, Jacques; Rolland, Norbert; Ephritikhine, Geneviève; Ferro, Myriam; Jaquinod, Michel; Alexiou, Konstantinos G; Chardot, Thierry; Chakraborty, Niranjan; Jolivet, Pascale; Doonan, John H; Rakwal, Randeep

    2011-01-01

    Organelle proteomics describes the study of proteins present in organelle at a particular instance during the whole period of their life cycle in a cell. Organelles are specialized membrane bound structures within a cell that function by interacting with cytosolic and luminal soluble proteins making the protein composition of each organelle dynamic. Depending on organism, the total number of organelles within a cell varies, indicating their evolution with respect to protein number and function. For example, one of the striking differences between plant and animal cells is the plastids in plants. Organelles have their own proteins, and few organelles like mitochondria and chloroplast have their own genome to synthesize proteins for specific function and also require nuclear-encoded proteins. Enormous work has been performed on animal organelle proteomics. However, plant organelle proteomics has seen limited work mainly due to: (i) inter-plant and inter-tissue complexity, (ii) difficulties in isolation of subcellular compartments, and (iii) their enrichment and purity. Despite these concerns, the field of organelle proteomics is growing in plants, such as Arabidopsis, rice and maize. The available data are beginning to help better understand organelles and their distinct and/or overlapping functions in different plant tissues, organs or cell types, and more importantly, how protein components of organelles behave during development and with surrounding environments. Studies on organelles have provided a few good reviews, but none of them are comprehensive. Here, we present a comprehensive review on plant organelle proteomics starting from the significance of organelle in cells, to organelle isolation, to protein identification and to biology and beyond. To put together such a systematic, in-depth review and to translate acquired knowledge in a proper and adequate form, we join minds to provide discussion and viewpoints on the collaborative nature of organelles in

  13. Proteomics of a fuzzy organelle: interphase chromatin

    PubMed Central

    Kustatscher, Georg; Hégarat, Nadia; Wills, Karen L H; Furlan, Cristina; Bukowski-Wills, Jimi-Carlo; Hochegger, Helfrid; Rappsilber, Juri

    2014-01-01

    Chromatin proteins mediate replication, regulate expression, and ensure integrity of the genome. So far, a comprehensive inventory of interphase chromatin has not been determined. This is largely due to its heterogeneous and dynamic composition, which makes conclusive biochemical purification difficult, if not impossible. As a fuzzy organelle, it defies classical organellar proteomics and cannot be described by a single and ultimate list of protein components. Instead, we propose a new approach that provides a quantitative assessment of a protein's probability to function in chromatin. We integrate chromatin composition over a range of different biochemical and biological conditions. This resulted in interphase chromatin probabilities for 7635 human proteins, including 1840 previously uncharacterized proteins. We demonstrate the power of our large-scale data-driven annotation during the analysis of cyclin-dependent kinase (CDK) regulation in chromatin. Quantitative protein ontologies may provide a general alternative to list-based investigations of organelles and complement Gene Ontology. PMID:24534090

  14. Ciliary Extracellular Vesicles: Txt Msg Organelles.

    PubMed

    Wang, Juan; Barr, Maureen M

    2016-04-01

    Cilia are sensory organelles that protrude from cell surfaces to monitor the surrounding environment. In addition to its role as sensory receiver, the cilium also releases extracellular vesicles (EVs). The release of sub-micron sized EVs is a conserved form of intercellular communication used by all three kingdoms of life. These extracellular organelles play important roles in both short and long range signaling between donor and target cells and may coordinate systemic responses within an organism in normal and diseased states. EV shedding from ciliated cells and EV-cilia interactions are evolutionarily conserved phenomena, yet remarkably little is known about the relationship between the cilia and EVs and the fundamental biology of EVs. Studies in the model organisms Chlamydomonas and Caenorhabditis elegans have begun to shed light on ciliary EVs. Chlamydomonas EVs are shed from tips of flagella and are bioactive. Caenorhabditis elegans EVs are shed and released by ciliated sensory neurons in an intraflagellar transport-dependent manner. Caenorhabditis elegans EVs play a role in modulating animal-to-animal communication, and this EV bioactivity is dependent on EV cargo content. Some ciliary pathologies, or ciliopathies, are associated with abnormal EV shedding or with abnormal cilia-EV interactions. Until the 21st century, both cilia and EVs were ignored as vestigial or cellular junk. As research interest in these two organelles continues to gain momentum, we envision a new field of cell biology emerging. Here, we propose that the cilium is a dedicated organelle for EV biogenesis and EV reception. We will also discuss possible mechanisms by which EVs exert bioactivity and explain how what is learned in model organisms regarding EV biogenesis and function may provide insight to human ciliopathies.

  15. Organelle size equalization by a constitutive process.

    PubMed

    Ludington, William B; Shi, Linda Z; Zhu, Qingyuan; Berns, Michael W; Marshall, Wallace F

    2012-11-20

    How cells control organelle size is an elusive problem. Two predominant models for size control can be distinguished: (1) induced control, where organelle genesis, maintenance, and disassembly are three separate programs that are activated in response to size change, and (2) constitutive control, where stable size results from the balance between continuous organelle assembly and disassembly. The problem has been studied in Chlamydomonas reinhardtii because the flagella are easy to measure, their size changes only in the length dimension, and the genetics are comparable to yeast. Length dynamics in Chlamydomonas flagella are quite robust: they maintain a length of about 12 μm and recover from amputation in about 90 min with a growth rate that decreases smoothly to zero as the length approaches 12 μm. Despite a wealth of experimental studies, existing data are consistent with both induced and constitutive control models for flagella. Here we developed novel microfluidic trapping and laser microsurgery techniques in Chlamydomonas to distinguish between length control models by measuring the two flagella on a single cell as they equilibrate after amputation of a single flagellum. The results suggest that cells equalize flagellar length by constitutive control.

  16. Scaling properties of cell and organelle size

    PubMed Central

    Marshall, Wallace F

    2010-01-01

    How size is controlled is a fundamental question in biology. In this review, we discuss the use of scaling relationships—for example, power-laws of the form y∝xα—to provide a framework for comparison and interpretation of size measurements. Such analysis can illustrate the biological and physical principles underlying observed trends, as has been proposed for the allometric dependence of metabolic rate or limb structure on organism mass. Techniques for measuring size at smaller length-scales continue to improve, leading to more data on the control of size in cells and organelles. Size scaling of these structures is expected to influence growth patterns, functional capacity and intracellular transport. Furthermore, organelles such as the nucleus, mitochondria and endoplasmic reticulum show widely varying morphologies that affect their scaling properties. We provide brief summaries of these issues for individual organelles, and conclude with a discussion on how to apply this concept to better understand the mechanisms of size control in the cellular environment. PMID:20885855

  17. Organelle communication: signaling crossroads between homeostasis and disease.

    PubMed

    Bravo-Sagua, Roberto; Torrealba, Natalia; Paredes, Felipe; Morales, Pablo E; Pennanen, Christian; López-Crisosto, Camila; Troncoso, Rodrigo; Criollo, Alfredo; Chiong, Mario; Hill, Joseph A; Simmen, Thomas; Quest, Andrew F; Lavandero, Sergio

    2014-05-01

    Cellular organelles do not function as isolated or static units, but rather form dynamic contacts between one another that can be modulated according to cellular needs. The physical interfaces between organelles are important for Ca2+ and lipid homeostasis, and serve as platforms for the control of many essential functions including metabolism, signaling, organelle integrity and execution of the apoptotic program. Emerging evidence also highlights the importance of organelle communication in disorders such as Alzheimer's disease, pulmonary arterial hypertension, cancer, skeletal and cardiac muscle dysfunction. Here, we provide an overview of the current literature on organelle communication and the link to human pathologies.

  18. The function of genomes in bioenergetic organelles.

    PubMed Central

    Allen, John F

    2003-01-01

    Mitochondria and chloroplasts are energy-transducing organelles of the cytoplasm of eukaryotic cells. They originated as bacterial symbionts whose host cells acquired respiration from the precursor of the mitochondrion, and oxygenic photosynthesis from the precursor of the chloroplast. The host cells also acquired genetic information from their symbionts, eventually incorporating much of it into their own genomes. Genes of the eukaryotic cell nucleus now encode most mitochondrial and chloroplast proteins. Genes are copied and moved between cellular compartments with relative ease, and there is no obvious obstacle to successful import of any protein precursor from the cytosol. So why are any genes at all retained in cytoplasmic organelles? One proposal is that these small but functional genomes provide a location for genes that is close to, and in the same compartment as, their gene products. This co-location facilitates rapid and direct regulatory coupling. Redox control of synthesis de novo is put forward as the common property of those proteins that must be encoded and synthesized within mitochondria and chloroplasts. This testable hypothesis is termed CORR, for co-location for redox regulation. Principles, predictions and consequences of CORR are examined in the context of competing hypotheses and current evidence. PMID:12594916

  19. Fluorescence spectral imaging of organelle interaction

    NASA Astrophysics Data System (ADS)

    Kohen, Elli; Hirschberg, Joseph G.; Kohen, Cahide; Schachtschabel, Dietrich O.; Monti, Marco; Stanikunaite, Rita

    2000-04-01

    In cell biology, one of the great mysteries, which has bene only superficially 8investigate,d is the integration of cytoplasmic and nuclear organelles as part of the intracellular regulatory mechanism. The methodology used for the exploration of such intracellular processes is the pixel-by-pixel scanning by means of fluorescence spectral imaging and excitation emission fluorescence spectroscopy. While several of the steps required by this method are still in the process of implementation, the Michelson interferometer, the Sagnac interferometer and the related 'pentaferometer' are possible components of the instrumental design. One of the illustrative experimental models to begin the study of intracellular integrative processes is based on the hypothesis of a 'nuclear pump' in conjunction with cell treatment by chemotherapeutic agents such as adriamycin. Preliminary observations initiated in cultured fibroblasts, and to be pursued in Cloudman's melanoma cells, suggest that this cytotoxic agent first moves into the nucleus, form which it is subsequently ejected to be incorporated into the lysosomes and Golgi apparatus, possibly prior to exclusion via the multiple drug resistance pathway. The timetable of such a process is under investigation. This subject has obvious implications for diagnostic, prognostic and therapeutic studies of organelles integration.

  20. Requirements and standards for organelle genome databases

    SciTech Connect

    Boore, Jeffrey L.

    2006-01-09

    Mitochondria and plastids (collectively called organelles)descended from prokaryotes that adopted an intracellular, endosymbioticlifestyle within early eukaryotes. Comparisons of their remnant genomesaddress a wide variety of biological questions, especially when includingthe genomes of their prokaryotic relatives and the many genes transferredto the eukaryotic nucleus during the transitions from endosymbiont toorganelle. The pace of producing complete organellar genome sequences nowmakes it unfeasible to do broad comparisons using the primary literatureand, even if it were feasible, it is now becoming uncommon for journalsto accept detailed descriptions of genome-level features. Unfortunatelyno database is currently useful for this task, since they have littlestandardization and are riddled with error. Here I outline what iscurrently wrong and what must be done to make this data useful to thescientific community.

  1. The mitochondrial UPR - protecting organelle protein homeostasis.

    PubMed

    Haynes, Cole M; Ron, David

    2010-11-15

    Mitochondria are required for numerous essential metabolic processes including the regulation of apoptosis; therefore, proper maintenance of the mitochondrial proteome is crucial. The protein-folding environment in mitochondria is challenged by organelle architecture, the presence of reactive oxygen species and the difficulties associated with assembly of the electron transport chain, which consists of components encoded by both the mitochondrial and the nuclear genomes. Mitochondria have dedicated molecular chaperones and proteases that promote proper protein folding, complex assembly and quality control. Work in cultured mammalian cells and Caenorhabditis elegans has yielded clues to the mechanisms linking perturbations in the protein-folding environment in the mitochondrial matrix to the expression of nuclear genes encoding mitochondrial proteins. Here, we review the current knowledge of this mitochondrial unfolded protein response (UPR(mt)), compare it with the better understood UPR of the endoplasmic reticulum and highlight its potential impact on development and disease.

  2. Apoptotic death sensor: an organelle's alter ego?

    PubMed

    Bratton, S B; Cohen, G M

    2001-06-01

    Caspases are intracellular cysteine proteases that are primarily responsible for the stereotypic morphological and biochemical changes that are associated with apoptosis. Caspases are often activated by the apoptotic protease-activating factor 1 (APAF-1) apoptosome, a complex that is formed following mitochondrial release of cytochrome c in response to many death-inducing stimuli. Both pro- and anti-apoptotic BCL-2 family members regulate apoptosis, primarily by their effects on mitochondria, whereas many inhibitor of apoptosis proteins (IAPs) regulate apoptosis by directly inhibiting distinct caspases. Exposure of cells to chemicals and radiation, as well as loss of trophic stimuli, perturb cellular homeostasis and, depending on the type of cellular stress, particular or multiple organelles appear to 'sense' the damage and signal the cell to undergo apoptosis by stimulating the formation of unique and/or common caspase-activating complexes.

  3. Mitochondria-organelle contact sites: the plot thickens.

    PubMed

    Elbaz-Alon, Yael

    2017-04-15

    Membrane contact sites (MCSs) are areas of close apposition between the membranes of two different organelles that enable non-vesicular transfer of ions and lipids. Recent studies reveal that mitochondria maintain contact sites with organelles other than the endoplasmic reticulum such as the vacuole, plasma membrane and peroxisomes. This review focuses on novel findings achieved mainly in yeast regarding tethers, function and regulation of mitochondria-organelle contact sites. The emerging network of MCSs linking virtually all cellular organelles is highly dynamic and integrated with cellular metabolism.

  4. The inheritance of organelle genes and genomes: patterns and mechanisms.

    PubMed

    Xu, Jianping

    2005-12-01

    Unlike nuclear genes and genomes, the inheritance of organelle genes and genomes does not follow Mendel's laws. In this mini-review, I summarize recent research progress on the patterns and mechanisms of the inheritance of organelle genes and genomes. While most sexual eukaryotes show uniparental inheritance of organelle genes and genomes in some progeny at least part of the time, increasing evidence indicates that strictly uniparental inheritance is rare and that organelle inheritance patterns are very diverse and complex. In contrast with the predominance of uniparental inheritance in multicellular organisms, organelle genes in eukaryotic microorganisms, such as protists, algae, and fungi, typically show a greater diversity of inheritance patterns, with sex-determining loci playing significant roles. The diverse patterns of inheritance are matched by the rich variety of potential mechanisms. Indeed, many factors, both deterministic and stochastic, can influence observed patterns of organelle inheritance. Interestingly, in multicellular organisms, progeny from interspecific crosses seem to exhibit more frequent paternal leakage and biparental organelle genome inheritance than those from intraspecific crosses. The recent observation of a sex-determining gene in the basidiomycete yeast Cryptococcus neoformans, which controls mitochondrial DNA inheritance, has opened up potentially exciting research opportunities for identifying specific molecular genetic pathways that control organelle inheritance, as well as for testing evolutionary hypotheses regarding the prevalence of uniparental inheritance of organelle genes and genomes.

  5. Multicompartment Artificial Organelles Conducting Enzymatic Cascade Reactions inside Cells.

    PubMed

    Godoy-Gallardo, Maria; Labay, Cédric; Trikalitis, Vasileios D; Kempen, Paul J; Larsen, Jannik B; Andresen, Thomas L; Hosta-Rigau, Leticia

    2017-02-13

    Cell organelles are subcellular structures entrapping a set of enzymes to achieve a specific functionality. The incorporation of artificial organelles into cells is a novel medical paradigm which might contribute to the treatment of various cell disorders by replacing malfunctioning organelles. In particular, artificial organelles are expected to be a powerful solution in the context of enzyme replacement therapy since enzymatic malfunction is the primary cause of organelle dysfunction. Although several attempts have been made to encapsulate enzymes within a carrier vehicle, only few intracellularly active artificial organelles have been reported to date and they all consist of single-compartment carriers. However, it is noted that biological organelles consist of multicompartment architectures where enzymatic reactions are executed within distinct subcompartments. Compartmentalization allows for multiple processes to take place in close vicinity and in a parallel manner without the risk of interference or degradation. Here, we report on a subcompartmentalized and intracellularly active carrier, a crucial step for advancing artificial organelles. In particular, we develop and characterize a novel capsosome system, which consists of multiple liposomes and fluorescent gold nanoclusters embedded within a polymer carrier capsule. We subsequently demonstrate that encapsulated enzymes preserve their activity intracellularly, allowing for controlled enzymatic cascade reaction within a host cell.

  6. The Evolution of Per-cell Organelle Number

    PubMed Central

    Cole, Logan W.

    2016-01-01

    Organelles with their own distinct genomes, such as plastids and mitochondria, are found in most eukaryotic cells. As these organelles and their host cells have evolved, the partitioning of metabolic processes and the encoding of interacting gene products have created an obligate codependence. This relationship has played a role in shaping the number of organelles in cells through evolution. Factors such as stochastic evolutionary forces acting on genes involved in organelle biogenesis, organelle–nuclear gene interactions, and physical limitations may, to varying degrees, dictate the selective constraint that per-cell organelle number is under. In particular, coordination between nuclear and organellar gene expression may be important in maintaining gene product stoichiometry, which may have a significant role in constraining the evolution of this trait. PMID:27588285

  7. Organelle membranes from germinating castro bean endosperm

    SciTech Connect

    Donaldson, R.P.; Tully, R.E.; Young, O.A.; Beevers, H.

    1981-01-01

    Glyoxysome ghosts were isolated from germinating castor bean endosperms using established methods. Electron microscopic examination showed that some matrix material was retained within the glyoxysomal membrane. Two cytochrome reductases and phosphorylcholine glyceride transferase co-sedimented with the alkaline lipase, a known component of the glyoxysome membrane, in sucrose gradient centrifugation of osmotically shocked glyoxysomes. The activities of these enzymes in the glyoxysome membranes were compared to those in the endoplasmic reticulum relative to phospholipid content. On this basis, the phosphorylcholine glyceride transferase was 10-fold more active in the endoplasmic reticulum, whereas the lipase was 50-fold more active in the glyoxysome membrane. The cytochrome reductases were only 2-fold more active in the endoplasmic reticulum, indicating that they are components of the two membranes. Difference spectroscopy of the glyoxysome membrane suspension revealed the presence of a b5-type cytochrome similar to that found in the endoplasmic reticulum. Since the glyoxysome membrane is apparently derived from the endoplasmic reticulum, components of the endoplasmic reticulum such as these are likely to be incorporated into the glyoxysome membrane during biogenesis. Enzyme activites involving the cofactors NADH or CoA were measurable in broken, but not in intact, glyoxysomes. Thus, it appears that cofactors for enzymes within the organelle cannot pass through the membrane.

  8. Organelles are transported on sliding microtubules in Reticulomyxa.

    PubMed

    Orokos, D D; Cole, R W; Travis, J L

    2000-12-01

    Organelles and plasma membrane domains appear to be transported along Reticulomyxa's microtubule cytoskeleton. Previously we demonstrated that organelle and cell surface transport share the same enzymatic properties and suggested that both are powered by the same cytoplasmic dynein. Motility analysis in Reticulomyxa is complicated by the fact that the microtubules also are motile and appear to "slide" bidirectionally throughout the network. We have utilized laser ablation to address this frame-of-reference problem as to how each transport component (microtubule sliding vs. organelle translocations) contributes to reactivated bidirectional translocation of organelles along the microtubule cytoskeleton. Laser ablation was used to cut microtubule bundles from lysed networks into 4-15-microm segments. After examining these reactivated cut fragments, it appears that the majority of organelles did not move relative to microtubule fragments, but remained attached to microtubules and moved as the microtubules slid. Microtubule sliding stops after 1-2 min and cannot be reactivated even when perfused with fresh ATP. Furthermore, once sliding stops, organelle transport also stops. Our findings indicate that the majority of Reticulomyxa pseudopodial organelles do not move along the surface of the microtubules, rather it is the sliding of the microtubules to which they are attached that moves them.

  9. Programmed death phenomena: from organelle to organism.

    PubMed

    Skulachev, Vladimir P

    2002-04-01

    Programmed death phenomena appear to be inherent not only in living cells (apoptosis), but also in subcellular organelles (e.g., self-elimination of mitochondria, called mitoptosis), organs (organoptosis), and even whole organisms (phenoptosis). In all these cases, the "Samurai law of biology"--it is better to die than to be wrong--seems to be operative. The operation of this law helps complicated living systems avoid the risk of ruin when a system of lower hierarchic position makes a significant mistake. Thus, mitoptosis purifies a cell from damaged and hence unwanted mitochondria; apoptosis purifies a tissue from unwanted cells; and phenoptosis purifies a community from unwanted individuals. Defense against reactive oxygen species (ROS) is probably one of the primary evolutionary functions of programmed death mechanisms. So far, it seems that ROS play a key role in the mito-, apo-, organo-, and phenoptoses, which is consistent with Harman's theory of aging. Here a concept is described that tries to unite Weismann's hypothesis of aging as an adaptive programmed death mechanism and the generally accepted alternative point of view that considers aging as an inevitable result of accumulation in an organism of occasional injuries. It is suggested that injury accumulation is monitored by a system(s) actuating a phenoptotic death program when the number of injuries reaches some critical level. The system(s) in question are organized in such a way that the lethal case appears to be a result of phenoptosis long before the occasional injuries make impossible the functioning of the organism. It is stressed that for humans these cruel regulations look like an atavism that, if overcome, might dramatically prolong the human life span.

  10. Morphological Features of Organelles during Apoptosis: An Overview

    PubMed Central

    Bottone, Maria Grazia; Santin, Giada; Aredia, Francesca; Bernocchi, Graziella; Pellicciari, Carlo; Scovassi, Anna Ivana

    2013-01-01

    An apoptotic program leading to controlled cell dismantling implies perturbations of nuclear dynamics, as well as changes affecting the organelle structure and distribution. In human cancer cells driven to apoptosis by different stimuli, we have recently investigated the morphological properties of several organelles, including mitochondria, lysosomes, endoplasmic reticulum and Golgi apparatus. In this review, we will discuss the body of evidence in the literature suggesting that organelles are generally relocated and/or degraded during apoptosis, irrespectively of the apoptogenic stimulus and cell type. PMID:24709702

  11. Proteomics of secretory and endocytic organelles in Giardia lamblia.

    PubMed

    Wampfler, Petra B; Tosevski, Vinko; Nanni, Paolo; Spycher, Cornelia; Hehl, Adrian B

    2014-01-01

    Giardia lamblia is a flagellated protozoan enteroparasite transmitted as an environmentally resistant cyst. Trophozoites attach to the small intestine of vertebrate hosts and proliferate by binary fission. They access nutrients directly via uptake of bulk fluid phase material into specialized endocytic organelles termed peripheral vesicles (PVs), mainly on the exposed dorsal side. When trophozoites reach the G2/M restriction point in the cell cycle they can begin another round of cell division or encyst if they encounter specific environmental cues. They induce neogenesis of Golgi-like organelles, encystation-specific vesicles (ESVs), for regulated secretion of cyst wall material. PVs and ESVs are highly simplified and thus evolutionary diverged endocytic and exocytic organelle systems with key roles in proliferation and transmission to a new host, respectively. Both organelle systems physically and functionally intersect at the endoplasmic reticulum (ER) which has catabolic as well as anabolic functions. However, the unusually high degree of sequence divergence in Giardia rapidly exhausts phylogenomic strategies to identify and characterize the molecular underpinnings of these streamlined organelles. To define the first proteome of ESVs and PVs we used a novel strategy combining flow cytometry-based organelle sorting with in silico filtration of mass spectrometry data. From the limited size datasets we retrieved many hypothetical but also known organelle-specific factors. In contrast to PVs, ESVs appear to maintain a strong physical and functional link to the ER including recruitment of ribosomes to organelle membranes. Overall the data provide further evidence for the formation of a cyst extracellular matrix with minimal complexity. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the dataset identifier PXD000694.

  12. Recombination and the maintenance of plant organelle genome stability.

    PubMed

    Maréchal, Alexandre; Brisson, Normand

    2010-04-01

    Like their nuclear counterpart, the plastid and mitochondrial genomes of plants have to be faithfully replicated and repaired to ensure the normal functioning of the plant. Inability to maintain organelle genome stability results in plastid and/or mitochondrial defects, which can lead to potentially detrimental phenotypes. Fortunately, plant organelles have developed multiple strategies to maintain the integrity of their genetic material. Of particular importance among these processes is the extensive use of DNA recombination. In fact, recombination has been implicated in both the replication and the repair of organelle genomes. Revealingly, deregulation of recombination in organelles results in genomic instability, often accompanied by adverse consequences for plant fitness. The recent identification of four families of proteins that prevent aberrant recombination of organelle DNA sheds much needed mechanistic light on this important process. What comes out of these investigations is a partial portrait of the recombination surveillance machinery in which plants have co-opted some proteins of prokaryotic origin but have also evolved whole new factors to keep their organelle genomes intact. These new features presumably optimized the protection of plastid and mitochondrial genomes against the particular genotoxic stresses they face.

  13. Systematic Structural Analyses of Attachment Organelle in Mycoplasma pneumoniae.

    PubMed

    Nakane, Daisuke; Kenri, Tsuyoshi; Matsuo, Lisa; Miyata, Makoto

    2015-12-01

    Mycoplasma pneumoniae, a human pathogenic bacterium, glides on host cell surfaces by a unique and unknown mechanism. It forms an attachment organelle at a cell pole as a membrane protrusion composed of surface and internal structures, with a highly organized architecture. In the present study, we succeeded in isolating the internal structure of the organelle by sucrose-gradient centrifugation. The negative-staining electron microscopy clarified the details and dimensions of the internal structure, which is composed of terminal button, paired plates, and bowl complex from the end of cell front. Peptide mass fingerprinting of the structure suggested 25 novel components for the organelle, and 3 of them were suggested for their involvement in the structure through their subcellular localization determined by enhanced yellow fluorescent protein (EYFP) tagging. Thirteen component proteins including the previously reported ones were mapped on the organelle systematically for the first time, in nanometer order by EYFP tagging and immunoelectron microscopy. Two, three, and six specific proteins localized specifically to the terminal button, the paired plates, and the bowl, respectively and interestingly, HMW2 molecules were aligned parallel to form the plate. The integration of these results gave the whole image of the organelle and allowed us to discuss possible gliding mechanisms.

  14. Systematic Structural Analyses of Attachment Organelle in Mycoplasma pneumoniae

    PubMed Central

    Matsuo, Lisa; Miyata, Makoto

    2015-01-01

    Mycoplasma pneumoniae, a human pathogenic bacterium, glides on host cell surfaces by a unique and unknown mechanism. It forms an attachment organelle at a cell pole as a membrane protrusion composed of surface and internal structures, with a highly organized architecture. In the present study, we succeeded in isolating the internal structure of the organelle by sucrose-gradient centrifugation. The negative-staining electron microscopy clarified the details and dimensions of the internal structure, which is composed of terminal button, paired plates, and bowl complex from the end of cell front. Peptide mass fingerprinting of the structure suggested 25 novel components for the organelle, and 3 of them were suggested for their involvement in the structure through their subcellular localization determined by enhanced yellow fluorescent protein (EYFP) tagging. Thirteen component proteins including the previously reported ones were mapped on the organelle systematically for the first time, in nanometer order by EYFP tagging and immunoelectron microscopy. Two, three, and six specific proteins localized specifically to the terminal button, the paired plates, and the bowl, respectively and interestingly, HMW2 molecules were aligned parallel to form the plate. The integration of these results gave the whole image of the organelle and allowed us to discuss possible gliding mechanisms. PMID:26633540

  15. Multidimensional fluorescence microscopy of multiple organelles in Arabidopsis seedlings

    PubMed Central

    Kato, Naohiro; Reynolds, Dexter; Brown, Matthew L; Boisdore, Marietta; Fujikawa, Yukichi; Morales, Andrea; Meisel, Lee A

    2008-01-01

    Background The isolation of green fluorescent protein (GFP) and the development of spectral variants over the past decade have begun to reveal the dynamic nature of protein trafficking and organelle motility. In planta analyses of this dynamic process have typically been limited to only two organelles or proteins at a time in only a few cell types. Results We generated a transgenic Arabidopsis plant that contains four spectrally different fluorescent proteins. Nuclei, plastids, mitochondria and plasma membranes were genetically tagged with cyan, red, yellow and green fluorescent proteins, respectively. In addition, methods to track nuclei, mitochondria and chloroplasts and quantify the interaction between these organelles at a submicron resolution were developed. These analyzes revealed that N-ethylmaleimide disrupts nuclear-mitochondrial but not nuclear-plastids interactions in root epidermal cells of live Arabidopsis seedlings. Conclusion We developed a tool and associated methods for analyzing the complex dynamic of organelle-organelle interactions in real time in planta. Homozygous transgenic Arabidopsis (Kaleidocell) is available through Arabidopsis Biological Resource Center. PMID:18489765

  16. Imaging trace element distributions in single organelles and subcellular features

    SciTech Connect

    Kashiv, Yoav; Austin, Jotham R.; Lai, Barry; Rose, Volker; Vogt, Stefan; El-Muayed, Malek

    2016-02-25

    The distributions of chemical elements within cells are of prime importance in a wide range of basic and applied biochemical research. An example is the role of the subcellular Zn distribution in Zn homeostasis in insulin producing pancreatic beta cells and the development of type 2 diabetes mellitus. We combined transmission electron microscopy with micro- and nano-synchrotron X-ray fluorescence to image unequivocally for the first time, to the best of our knowledge, the natural elemental distributions, including those of trace elements, in single organelles and other subcellular features. Detected elements include Cl, K, Ca, Co, Ni, Cu, Zn and Cd (which some cells were supplemented with). Cell samples were prepared by a technique that minimally affects the natural elemental concentrations and distributions, and without using fluorescent indicators.We find it could likely be applied to all cell types and provide new biochemical insights at the single organelle level not available from organelle population level studies.

  17. Imaging trace element distributions in single organelles and subcellular features

    PubMed Central

    Kashiv, Yoav; Austin, Jotham R.; Lai, Barry; Rose, Volker; Vogt, Stefan; El-Muayed, Malek

    2016-01-01

    The distributions of chemical elements within cells are of prime importance in a wide range of basic and applied biochemical research. An example is the role of the subcellular Zn distribution in Zn homeostasis in insulin producing pancreatic beta cells and the development of type 2 diabetes mellitus. We combined transmission electron microscopy with micro- and nano-synchrotron X-ray fluorescence to image unequivocally for the first time, to the best of our knowledge, the natural elemental distributions, including those of trace elements, in single organelles and other subcellular features. Detected elements include Cl, K, Ca, Co, Ni, Cu, Zn and Cd (which some cells were supplemented with). Cell samples were prepared by a technique that minimally affects the natural elemental concentrations and distributions, and without using fluorescent indicators. It could likely be applied to all cell types and provide new biochemical insights at the single organelle level not available from organelle population level studies. PMID:26911251

  18. Poles apart: prokaryotic polar organelles and their spatial regulation.

    PubMed

    Kirkpatrick, Clare L; Viollier, Patrick H

    2011-03-01

    While polar organelles hold the key to understanding the fundamentals of cell polarity and cell biological principles in general, they have served in the past merely for taxonomical purposes. Here, we highlight recent efforts in unraveling the molecular basis of polar organelle positioning in bacterial cells. Specifically, we detail the role of members of the Ras-like GTPase superfamily and coiled-coil-rich scaffolding proteins in modulating bacterial cell polarity and in recruiting effector proteins to polar sites. Such roles are well established for eukaryotic cells, but not for bacterial cells that are generally considered diffusion-limited. Studies on spatial regulation of protein positioning in bacterial cells, though still in their infancy, will undoubtedly experience a surge of interest, as comprehensive localization screens have yielded an extensive list of (polarly) localized proteins, potentially reflecting subcellular sites of functional specialization predicted for organelles.

  19. Spatiotemporal analysis of organelle and macromolecular complex inheritance

    PubMed Central

    Menendez-Benito, Victoria; van Deventer, Sjoerd J.; Jimenez-Garcia, Victor; Roy-Luzarraga, Marina; van Leeuwen, Fred; Neefjes, Jacques

    2013-01-01

    Following mitosis, daughter cells must inherit a functional set of essential proteins and organelles. We applied a genetic tool to simultaneously monitor the kinetics and distribution of old and new proteins marking all intracellular compartments in budding yeasts. Most organelles followed a general pattern whereby preexisting proteins are symmetrically partitioned followed by template-based incorporation of new proteins. Peroxisomes belong to this group, supporting a model of biogenesis by growth and division from preexisting peroxisomes. We detected two exceptions: the nuclear pore complex (NPC) and the spindle pole body (SPB). Old NPCs are stably inherited during successive generations but remained separated from new NPCs, which are incorporated de novo in mother and daughter cells. Only the SPB displayed asymmetrical distribution, with old components primarily inherited by daughter cells and new proteins equally incorporated in both cells. Our analysis resolves conflicting models (peroxisomes, NPC) and reveals unique patterns (NPC, SPB) of organelle inheritance. PMID:23248297

  20. Lam6 Regulates the Extent of Contacts between Organelles

    PubMed Central

    Elbaz-Alon, Yael; Eisenberg-Bord, Michal; Shinder, Vera; Stiller, Sebastian Berthold; Shimoni, Eyal; Wiedemann, Nils; Geiger, Tamar; Schuldiner, Maya

    2015-01-01

    Summary Communication between organelles is crucial for eukaryotic cells to function as one coherent unit. An important means of communication is through membrane contact sites, where two organelles come into close proximity allowing the transport of lipids and small solutes between them. Contact sites are dynamic in size and can change in response to environmental or cellular stimuli; however, how this is regulated has been unclear. Here, we show that Saccharomyces cerevisiae Lam6 resides in several central contact sites: ERMES (ER/mitochondria encounter structure), vCLAMP (vacuole and mitochondria patch), and NVJ (nuclear vacuolar junction). We show that Lam6 is sufficient for expansion of contact sites under physiological conditions and necessary for coordination of contact site size. Given that Lam6 is part of a large protein family and is conserved in vertebrates, our work opens avenues for investigating the underlying principles of organelle communication. PMID:26119743

  1. Insights into the mechanisms of sterol transport between organelles.

    PubMed

    Mesmin, Bruno; Antonny, Bruno; Drin, Guillaume

    2013-09-01

    In cells, the levels of sterol vary greatly among organelles. This uneven distribution depends largely on non-vesicular routes of transfer, which are mediated by soluble carriers called lipid-transfer proteins (LTPs). These proteins have a domain with a hydrophobic cavity that accommodates one sterol molecule. However, a demonstration of their role in sterol transport in cells remains difficult. Numerous LTPs also contain membrane-binding elements, but it is not clear how these LTPs couple their ability to target organelles with lipid transport activity. This issue appears critical, since many sterol transporters are thought to act at contact sites between two membrane-bound compartments. Here, we emphasize that biochemical and structural studies provide precious insights into the mode of action of sterol-binding proteins. Recent studies on START, Osh/ORP and NPC proteins suggest models on how these proteins could transport sterol between organelles and, thereby, influence cellular functions.

  2. Transient domain formation in membrane-bound organelles undergoing maturation

    NASA Astrophysics Data System (ADS)

    Dmitrieff, Serge; Sens, Pierre

    2013-12-01

    The membrane components of cellular organelles have been shown to segregate into domains as the result of biochemical maturation. We propose that the dynamical competition between maturation and lateral segregation of membrane components regulates domain formation. We study a two-component fluid membrane in which enzymatic reaction irreversibly converts one component into another and phase separation triggers the formation of transient membrane domains. The maximum domain size is shown to depend on the maturation rate as a power law similar to the one observed for domain growth with time in the absence of maturation, despite this time dependence not being verified in the case of irreversible maturation. This control of domain size by enzymatic activity could play a critical role in regulating exchange between organelles or within compartmentalized organelles such as the Golgi apparatus.

  3. Imaging trace element distributions in single organelles and subcellular features

    NASA Astrophysics Data System (ADS)

    Kashiv, Yoav; Austin, Jotham R.; Lai, Barry; Rose, Volker; Vogt, Stefan; El-Muayed, Malek

    2016-02-01

    The distributions of chemical elements within cells are of prime importance in a wide range of basic and applied biochemical research. An example is the role of the subcellular Zn distribution in Zn homeostasis in insulin producing pancreatic beta cells and the development of type 2 diabetes mellitus. We combined transmission electron microscopy with micro- and nano-synchrotron X-ray fluorescence to image unequivocally for the first time, to the best of our knowledge, the natural elemental distributions, including those of trace elements, in single organelles and other subcellular features. Detected elements include Cl, K, Ca, Co, Ni, Cu, Zn and Cd (which some cells were supplemented with). Cell samples were prepared by a technique that minimally affects the natural elemental concentrations and distributions, and without using fluorescent indicators. It could likely be applied to all cell types and provide new biochemical insights at the single organelle level not available from organelle population level studies.

  4. Biogenesis of a bacterial organelle: the carboxysome assembly pathway.

    PubMed

    Cameron, Jeffrey C; Wilson, Steven C; Bernstein, Susan L; Kerfeld, Cheryl A

    2013-11-21

    The carboxysome is a protein-based organelle for carbon fixation in cyanobacteria, keystone organisms in the global carbon cycle. It is composed of thousands of subunits including hexameric and pentameric proteins that form a shell to encapsulate the enzymes ribulose 1,5-bisphosphate carboxylase/oxygenase and carbonic anhydrase. Here, we describe the stages of carboxysome assembly and the requisite gene products necessary for progression through each. Our results demonstrate that, unlike membrane-bound organelles of eukaryotes, in carboxysomes the interior of the compartment forms first, at a distinct site within the cell. Subsequently, shell proteins encapsulate this procarboxysome, inducing budding and distribution of functional organelles within the cell. We propose that the principles of carboxysome assembly that we have uncovered extend to diverse bacterial microcompartments.

  5. Organelle-localized potassium transport systems in plants.

    PubMed

    Hamamoto, Shin; Uozumi, Nobuyuki

    2014-05-15

    Some intracellular organelles found in eukaryotes such as plants have arisen through the endocytotic engulfment of prokaryotic cells. This accounts for the presence of plant membrane intrinsic proteins that have homologs in prokaryotic cells. Other organelles, such as those of the endomembrane system, are thought to have evolved through infolding of the plasma membrane. Acquisition of intracellular components (organelles) in the cells supplied additional functions for survival in various natural environments. The organelles are surrounded by biological membranes, which contain membrane-embedded K(+) transport systems allowing K(+) to move across the membrane. K(+) transport systems in plant organelles act coordinately with the plasma membrane intrinsic K(+) transport systems to maintain cytosolic K(+) concentrations. Since it is sometimes difficult to perform direct studies of organellar membrane proteins in plant cells, heterologous expression in yeast and Escherichia coli has been used to elucidate the function of plant vacuole K(+) channels and other membrane transporters. The vacuole is the largest organelle in plant cells; it has an important task in the K(+) homeostasis of the cytoplasm. The initial electrophysiological measurements of K(+) transport have categorized three classes of plant vacuolar cation channels, and since then molecular cloning approaches have led to the isolation of genes for a number of K(+) transport systems. Plants contain chloroplasts, derived from photoautotrophic cyanobacteria. A novel K(+) transport system has been isolated from cyanobacteria, which may add to our understanding of K(+) flux across the thylakoid membrane and the inner membrane of the chloroplast. This chapter will provide an overview of recent findings regarding plant organellar K(+) transport proteins.

  6. METABOLIC REGULATION OF ORGANELLE HOMEOSTASIS IN LUPUS T CELLS

    PubMed Central

    Caza, Tiffany N; Talaber, Gergely; Perl, Andras

    2012-01-01

    Abnormal T-cell signaling and activation is a characteristic feature in systemic lupus erythematosus (SLE). Lupus T cells are shifted towards an over-activated state, important signaling pathways are rewired, and signaling molecules are replaced. Disturbances in metabolic and organelle homeostasis, importantly within the mitochondrial, endosomal, and autophagosomal compartments, underlie the changes in signal transduction. Mitochondrial hyperpolarization, enhanced endosomal recycling, and dysregulated autophagy are hallmarks of pathologic organelle homeostasis in SLE. This review is focused on the metabolic checkpoints of endosomal traffic that control immunological synapse formation and mitophagy and may thus serve as targets for treatment in SLE. PMID:22836085

  7. The contribution of specific organelles to side scatter

    NASA Astrophysics Data System (ADS)

    Mourant, Judith R.; Marina, Oana C.; Sanders, Claire K.

    2013-02-01

    Knowledge of which cellular structures scatter light is needed to fully utilize the information available from light scattering measurements of cells and tissues. To determine how specific organelles contribute to light scattering, wide angle side scattering was imaged simultaneously with fluorescence from specific organelles for thousands of cells using flow cytometry. Images were obtained with different depth of field conditions and analyzed with different assumptions. Both sets of data demonstrated that mitochondria and lysosomes, contribute similarly to side scatter. The nucleus contributes as much or more light scatter than either the mitochondria or the lysosomes.

  8. More than a locomotive organelle: flagella in Escherichia coli.

    PubMed

    Zhou, Mingxu; Yang, Yang; Chen, Panlin; Hu, Huijie; Hardwidge, Philip R; Zhu, Guoqiang

    2015-11-01

    The flagellum is a locomotive organelle that allows bacteria to respond to chemical gradients. This review summarizes the current knowledge regarding Escherichia coli flagellin variants and the role of flagella in bacterial functions other than motility, including the relationship between flagella and bacterial virulence.

  9. Plant cell organelle proteomics in response to abiotic stress.

    PubMed

    Hossain, Zahed; Nouri, Mohammad-Zaman; Komatsu, Setsuko

    2012-01-01

    Proteomics is one of the finest molecular techniques extensively being used for the study of protein profiling of a given plant species experiencing stressed conditions. Plants respond to a stress by alteration in the pattern of protein expression, either by up-regulating of the existing protein pool or by the synthesizing novel proteins primarily associated with plants antioxidative defense mechanism. Improved protein extraction protocols and advance techniques for identification of novel proteins have been standardized in different plant species at both cellular and whole plant level for better understanding of abiotic stress sensing and intracellular stress signal transduction mechanisms. In contrast, an in-depth proteome study of subcellular organelles could generate much detail information about the intrinsic mechanism of stress response as it correlates the possible relationship between the protein abundance and plant stress tolerance. Although a wealth of reviews devoted to plant proteomics are available, review articles dedicated to plant cell organelle proteins response under abiotic stress are very scanty. In the present review, an attempt has been made to summarize all significant contributions related to abiotic stresses and their impacts on organelle proteomes for better understanding of plants abiotic stress tolerance mechanism at protein level. This review will not only provide new insights into the plants stress response mechanisms, which are necessary for future development of genetically engineered stress tolerant crop plants for the benefit of humankind, but will also highlight the importance of studying changes in protein abundance within the cell organelles in response to abiotic stress.

  10. Amyloplast sedimentation and organelle saltation in living corn columella cells

    NASA Technical Reports Server (NTRS)

    Sack, F. D.; Suyemoto, M. M.; Leopold, A. C.

    1986-01-01

    Amyloplast sedimentation during gravistimulation and organelle movements was studied in living central rootcap cells of Zea mays L. cv. Merit. Cells from sectioned roots were viewed with a horizontally-mounted videomicroscope. The kinetics of gravity-induced amyloplast sedimentation were comparable to those calculated from experiments using fixed material. Individual amyloplasts fell at an average velocity of 5.5 micrometers min-1; the maximal velocity of fall measured was 18.0 micrometers min-1. Amyloplasts often rotated, sometimes rose in the cytoplasm, and occasionally underwent sudden rapid movements as fast as 58 micrometers min-1. Saltations of other organelles were frequently observed. This appears to be the first report of cytoplasmic streaming in the presumptive statocytes of roots.

  11. Updating Our View of Organelle Genome Nucleotide Landscape

    PubMed Central

    Smith, David Roy

    2012-01-01

    Organelle genomes show remarkable variation in architecture and coding content, yet their nucleotide composition is relatively unvarying across the eukaryotic domain, with most having a high adenine and thymine (AT) content. Recent studies, however, have uncovered guanine and cytosine (GC)-rich mitochondrial and plastid genomes. These sequences come from a small but eclectic list of species, including certain green plants and animals. Here, I review GC-rich organelle DNAs and the insights they have provided into the evolution of nucleotide landscape. I emphasize that GC-biased mitochondrial and plastid DNAs are more widespread than once thought, sometimes occurring together in the same species, and suggest that the forces biasing their nucleotide content can differ both among and within lineages, and may be associated with specific genome architectural features and life history traits. PMID:22973299

  12. Nuclear regulators with a second home in organelles.

    PubMed

    Krause, Kirsten; Krupinska, Karin

    2009-04-01

    In plants, increasing evidence points towards the existence of nuclear proteins that are also targeted to either mitochondria - a well-known phenomenon from yeast and mammalians - or to plastids. One such protein is Whirly1, which was the first protein to be identified in the nucleus and plastids of the same plant cell. Like Whirly1, most of the dual targeted (nucleus and organelle) proteins have functions in the maintenance of DNA, telomere structuring or gene expression. In some instances, proteins were even shown to be relocated from one compartment to another upon environmental or developmental clues. We hypothesize that one rationale of dual targeting is storage or sequestration of these proteins inside the organelles until specific conditions require their activity in the nucleus.

  13. Genomes at the interface between bacteria and organelles.

    PubMed Central

    Douglas, Angela E; Raven, John A

    2003-01-01

    The topic of the transition of the genome of a free-living bacterial organism to that of an organelle is addressed by considering three cases. Two of these are relatively clear-cut as involving respectively organisms (cyanobacteria) and organelles (plastids). Cyanobacteria are usually free-living but some are involved in symbioses with a range of eukaryotes in which the cyanobacterial partner contributes photosynthesis, nitrogen fixation, or both of these. In several of these symbioses the cyanobacterium is vertically transmitted, and in a few instances, sufficient unsuccessful attempts have been made to culture the cyanobiont independently for the association to be considered obligate for the cyanobacterium. Plastids clearly had a cyanobacterial ancestor but cannot grow independently of the host eukaryote. Plastid genomes have at most 15% of the number of genes encoded by the cyanobacterium with the smallest number of genes; more genes than are retained in the plastid genome have been transferred to the eukaryote nuclear genome, while the rest of the cyanobacterial genes have been lost. Even the most cyanobacteria-like plastids, for example the "cyanelles" of glaucocystophyte algae, are functionally and genetically very similar to other plastids and give little help in indicating intermediates in the evolution of plastids. The third case considered is the vertically transmitted intracellular bacterial symbionts of insects where the symbiosis is usually obligate for both partners. The number of genes encoded by the genomes of these obligate symbionts is intermediate between that of organelles and that of free-living bacteria, and the genomes of the insect symbionts also show rapid rates of sequence evolution and AT (adenine, thymine) bias. Genetically and functionally, these insect symbionts show considerable similarity to organelles. PMID:12594915

  14. Gregarina niphandrodes may lack both a plastid genome and organelle.

    PubMed

    Toso, Marc A; Omoto, Charlotte K

    2007-01-01

    Gregarines are early diverging apicomplexans that appear to be closely related to Cryptosporidium. Most apicomplexans, including Plasmodium, Toxoplasma, and Eimeria, possess both plastids and corresponding plastid genomes. Cryptosporidium lacks both the organelle and the genome. To investigate the evolutionary history of plastids in the Apicomplexa, we tried to determine whether gregarines possess a plastid and/or its genome. We used PCR and dot-blot hybridization to determine whether the gregarine Gregarina niphandrodes possesses a plastid genome. We used an inhibitor of plastid function for any reduction in gregarine infection, and transmission electron microscopy to search for plastid ultrastructure. Despite an extensive search, an organelle of the appropriate ultrastructure in transmission electron microscopy, was not observed. Triclosan, an inhibitor of the plastid-specific enoyl-acyl carrier reductase enzyme, did not reduce host infection by G. niphandrodes. Plastid-specific primers produced amplicons with the DNA of Babesia equi, Plasmodium falciparum, and Toxoplasma gondii as templates, but not with G. niphandrodes DNA. Plastid-specific DNA probes, which hybridized to Babesia equi, failed to hybridize to G. niphandrodes DNA. This evidence indicates that G. niphandrodes is not likely to possess either a plastid organelle or its genome. This raises the possibility that the plastid was lost in the Apicomplexan following the divergence of gregarines and Cryptosporidium.

  15. Whole-Genome Hitchhiking on an Organelle Mutation.

    PubMed

    Flood, Pádraic J; van Heerwaarden, Joost; Becker, Frank; de Snoo, C Bastiaan; Harbinson, Jeremy; Aarts, Mark G M

    2016-05-23

    Strong selection on a beneficial mutation can cause a selective sweep, which fixes the mutation in the population and reduces the genetic variation in the region flanking the mutation [1-3]. These flanking regions have increased in frequency due to their physical association with the selected loci, a phenomenon called "genetic hitchhiking" [4]. Theoretically, selection could extend the hitchhiking to unlinked parts of the genome, to the point that selection on organelles affects nuclear genome diversity. Such indirect selective sweeps have never been observed in nature. Here we show that strong selection on a chloroplast gene in the wild plant species Arabidopsis thaliana has caused widespread and lasting hitchhiking of the whole nuclear genome. The selected allele spread more than 400 km along the British railway network, reshaping the genetic composition of local populations. This demonstrates that selection on organelle genomes can significantly reduce nuclear genetic diversity in natural populations. We expect that organelle-mediated genetic draft is a more common occurrence than previously realized and needs to be considered when studying genome evolution.

  16. Protein localization and dynamics within a bacterial organelle

    PubMed Central

    Hughes, H. Velocity; Huitema, Edgar; Pritchard, Sean; Keiler, Kenneth C.; Brun, Yves V.; Viollier, Patrick H.

    2010-01-01

    Protein localization mechanisms dictate the functional and structural specialization of cells. Of the four polar surface organelles featured by the dimorphic bacterium Caulobacter crescentus, the stalk, a cylindrical extension of all cell envelope layers, is the least well characterized at the molecular level. Here we apply a powerful experimental scheme that integrates genetics with high-throughput localization to discover StpX, an uncharacterized bitopic membrane protein that modulates stalk elongation and is sequestered to the stalk. In stalkless mutants StpX is dispersed. Two populations of StpX were discernible within the stalk with different mobilities: an immobile one near the stalk base and a mobile one near the stalk tip. Molecular anatomy provides evidence that (i) the StpX transmembrane domain enables access to the stalk organelle, (ii) the N-terminal periplasmic domain mediates retention in the stalk, and (iii) the C-terminal cytoplasmic domain enhances diffusion within the stalk. Moreover, the accumulation of StpX and an N-terminally truncated isoform is differentially coordinated with the cell cycle. Thus, at the submicron scale the localization and the mobility of a protein are precisely regulated in space and time and are important for the correct organization of a subcellular compartment or organelle such as the stalk. PMID:20212131

  17. Organelle DNA accumulation in the recently evolved papaya sex chromosomes.

    PubMed

    VanBuren, Robert; Ming, Ray

    2013-06-01

    Sex chromosomes are a pair of specialized chromosomes containing a sex determination region that is suppressed for recombination. Without recombination, Y chromosomes are thought to accumulate repetitive DNA sequences which contribute to their degeneration. A pair of primitive sex chromosomes controls sex type in papaya with male and hermaphrodite determined by the slightly different male-specific region of the Y (MSY) and hermaphrodite-specific region of Y(h) (HSY) chromosomes, respectively. Here, we show that the papaya HSY and MSY in the absence of recombination have accumulated nearly 12 times the amount of chloroplast-derived DNA than the corresponding region of the X chromosome and 4 times the papaya genome-wide average. Furthermore, a chloroplast genome fragment containing the rsp15 gene has been amplified 23 times in the HSY, evidence of retrotransposon-mediated duplication. Surprisingly, mitochondria-derived sequences are less abundant in the X and HSY compared to the whole genome. Shared organelle integrations are sparse between X and HSY, with only 11 % of chloroplast and 12 % of mitochondria fragments conserved, respectively, suggesting that the accelerated accumulation of organelle DNA occurred after the HSY was suppressed for recombination. Most of the organelle-derived sequences have divergence times of <7 MYA, reinforcing this notion. The accumulated chloroplast DNA is evidence of the slow degeneration of the HSY.

  18. Imaging trace element distributions in single organelles and subcellular features

    DOE PAGES

    Kashiv, Yoav; Austin, Jotham R.; Lai, Barry; ...

    2016-02-25

    The distributions of chemical elements within cells are of prime importance in a wide range of basic and applied biochemical research. An example is the role of the subcellular Zn distribution in Zn homeostasis in insulin producing pancreatic beta cells and the development of type 2 diabetes mellitus. We combined transmission electron microscopy with micro- and nano-synchrotron X-ray fluorescence to image unequivocally for the first time, to the best of our knowledge, the natural elemental distributions, including those of trace elements, in single organelles and other subcellular features. Detected elements include Cl, K, Ca, Co, Ni, Cu, Zn and Cdmore » (which some cells were supplemented with). Cell samples were prepared by a technique that minimally affects the natural elemental concentrations and distributions, and without using fluorescent indicators.We find it could likely be applied to all cell types and provide new biochemical insights at the single organelle level not available from organelle population level studies.« less

  19. Highly divergent mitochondrion-related organelles in anaerobic parasitic protozoa.

    PubMed

    Makiuchi, Takashi; Nozaki, Tomoyoshi

    2014-05-01

    The mitochondria have arisen as a consequence of endosymbiosis of an ancestral α-proteobacterium with a methane-producing archae. The main function of the canonical aerobic mitochondria include ATP generation via oxidative phosphorylation, heme and phospholipid synthesis, calcium homeostasis, programmed cell death, and the formation of iron-sulfur clusters. Under oxygen-restricted conditions, the mitochondrion has often undergone remarkable reductive alterations of its content and function, leading to the generation of mitochondrion-related organelles (MROs), such as mitosomes, hydrogenosomes, and mithochondrion-like organelles, which are found in a wide range of anaerobic/microaerophilic eukaryotes that include several medically important parasitic protists such as Entamoeba histolytica, Giardia intestinalis, Trichomonas vaginalis, Cryptosporidium parvum, Blastocystis hominis, and Encephalitozoon cuniculi, as well as free-living protists such as Sawyeria marylandensis, Neocallimastix patriciarum, and Mastigamoeba balamuthi. The transformation from canonical aerobic mitochondria to MROs apparently have occurred in independent lineages, and resulted in the diversity of their components and functions. Due to medical and veterinary importance of the MRO-possessing human- and animal-pathogenic protozoa, their genomic, transcriptomic, proteomic, and biochemical evidence has been accumulated. Detailed analyses of the constituents and functions of the MROs in such anaerobic pathogenic protozoa, which reside oxygen-deprived or oxygen-poor environments such as the mammalian intestine and the genital organs, should illuminate the current evolutionary status of the MROs in these organisms, and give insight to environmental constraints that drive the evolution of eukaryotes and their organelles. In this review, we summarize and discuss the diverse metabolic functions and protein transport systems of the MROs from anaerobic parasitic protozoa.

  20. Organelle biogenesis and intracellular lipid transport in eukaryotes.

    PubMed Central

    Voelker, D R

    1991-01-01

    The inter- and intramembrane transport of phospholipids, sphingolipids, and sterols involves the most fundamental processes of membrane biogenesis. Identification of the mechanisms involved in these lipid transport reactions has lagged significantly behind that for intermembrane protein traffic until recently. Application of methods that include fluorescently labeled and spin-labeled lipid analogs, new cellular fractionation techniques, topographically specific chemical modification techniques, the identification of organelle-specific metabolism, permeabilized cell methodology, and yeast molecular genetics has contributed to revealing a diverse biochemical array of transport processes for lipids. Compelling evidence now exists for ATP-dependent, ATP-independent, vesicle-dependent, and vesicle-independent transport processes that are lipid and membrane specific. ATP-dependent transport processes include the transbilayer movement of phosphatidylserine and phosphatidylethanolamine at the plasma membrane and the transport of phosphatidylserine from its site of synthesis to the mitochondria. ATP-independent processes include the transbilayer movement of virtually all lipids at the endoplasmic reticulum, the movement of phosphatidylserine between the inner and outer mitochondrial membranes, and the transfer of nascent phosphatidylcholine and phosphatidylethanolamine to the plasma membrane. The ATP-independent movement of lipids between organelles is believed to be due to the action of lipid transfer proteins, but this still remains to be proved. Vesicle-based transport mechanisms (which are also inherently ATP dependent) include the transport of nascent cholesterol, sphingomyelin, and glycosphingolipids from the Golgi apparatus to the plasma membrane and the recycling of sphingolipids and selected pools of phosphatidylcholine from the plasma membrane to the cell interior. The vesicles involved in cholesterol transport to the plasma membrane are different from those

  1. Ligand-directed profiling of organelles with internalizing phage libraries

    PubMed Central

    Dobroff, Andrey S.; Rangel, Roberto; Guzman-Roja, Liliana; Salmeron, Carolina C.; Gelovani, Juri G.; Sidman, Richard L.; Bologa, Cristian G.; Oprea, Tudor I.; Brinker, C. Jeffrey; Pasqualini, Renata; Arap, Wadih

    2015-01-01

    Phage display is a resourceful tool to, in an unbiased manner, discover and characterize functional protein-protein interactions, to create vaccines, and to engineer peptides, antibodies, and other proteins as targeted diagnostic and/or therapeutic agents. Recently, our group has developed a new class of internalizing phage (iPhage) for ligand-directed targeting of organelles and/or to identify molecular pathways within live cells. This unique technology is suitable for applications ranging from fundamental cell biology to drug development. Here we describe the method for generating and screening the iPhage display system, and explain how to select and validate candidate internalizing homing peptide. PMID:25640897

  2. Organelle evolution, fragmented rRNAs, and Carl

    PubMed Central

    Gray, Michael W

    2014-01-01

    I am honored to have been asked to contribute to this memorial issue, although I cannot claim to have known Carl Woese well. Carl’s insights and the discoveries that his research group made over the years certainly stimulated my own research program, and at several points early on, interactions with him were pivotal in my career. Here I comment on these personal dealings with Carl and emphasize his influence in two areas of long-standing interest in my lab: organelle evolution and rRNA evolution. PMID:24572720

  3. The lipid droplet—a well-connected organelle

    PubMed Central

    Gao, Qiang; Goodman, Joel M.

    2015-01-01

    Our knowledge of inter-organellar communication has grown exponentially in recent years. This review focuses on the interactions that cytoplasmic lipid droplets have with other organelles. Twenty-five years ago droplets were considered simply particles of coalesced fat. Ten years ago there were hints from proteomics studies that droplets might interact with other structures to share lipids and proteins. Now it is clear that the droplets interact with many if not most cellular structures to maintain cellular homeostasis and to buffer against insults such as starvation. The evidence for this statement, as well as probes to understand the nature and results of droplet interactions, are presented. PMID:26322308

  4. Ligand-directed profiling of organelles with internalizing phage libraries.

    PubMed

    Dobroff, Andrey S; Rangel, Roberto; Guzman-Roja, Liliana; Salmeron, Carolina C; Gelovani, Juri G; Sidman, Richard L; Bologa, Cristian G; Oprea, Tudor I; Brinker, C Jeffrey; Pasqualini, Renata; Arap, Wadih

    2015-02-02

    Phage display is a resourceful tool to, in an unbiased manner, discover and characterize functional protein-protein interactions, create vaccines, and engineer peptides, antibodies, and other proteins as targeted diagnostic and/or therapeutic agents. Recently, our group has developed a new class of internalizing phage (iPhage) for ligand-directed targeting of organelles and to identify molecular pathways within live cells. This unique technology is suitable for applications ranging from fundamental cell biology to drug development. This unit describes the methods for generating and screening the iPhage display system, and explains how to select and validate candidate internalizing homing peptide.

  5. Sequence-Specific Polyampholyte Phase Separation in Membraneless Organelles

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Hsuan; Forman-Kay, Julie D.; Chan, Hue Sun

    2016-10-01

    Liquid-liquid phase separation of charge- and/or aromatic-enriched intrinsically disordered proteins (IDPs) is critical in the biological function of membraneless organelles. Much of the physics of this recent discovery remains to be elucidated. Here, we present a theory in the random phase approximation to account for electrostatic effects in polyampholyte phase separations, yielding predictions consistent with recent experiments on the IDP Ddx4. The theory is applicable to any charge pattern and thus provides a general analytical framework for studying sequence dependence of IDP phase separation.

  6. The Amyloid Precursor Protein of Alzheimer’s Disease Clusters at the Organelle/Microtubule Interface on Organelles that Bind Microtubules in an ATP Dependent Manner

    PubMed Central

    Stevenson, James W.; Conaty, Eliza A.; Walsh, Rylie B.; Poidomani, Paul J.; Samoriski, Colin M.; Scollins, Brianne J.; DeGiorgis, Joseph A.

    2016-01-01

    The amyloid precursor protein (APP) is a causal agent in the pathogenesis of Alzheimer’s disease and is a transmembrane protein that associates with membrane-limited organelles. APP has been shown to co-purify through immunoprecipitation with a kinesin light chain suggesting that APP may act as a trailer hitch linking kinesin to its intercellular cargo, however this hypothesis has been challenged. Previously, we identified an mRNA transcript that encodes a squid homolog of human APP770. The human and squid isoforms share 60% sequence identity and 76% sequence similarity within the cytoplasmic domain and share 15 of the final 19 amino acids at the C-terminus establishing this highly conserved domain as a functionally import segment of the APP molecule. Here, we study the distribution of squid APP in extruded axoplasm as well as in a well-characterized reconstituted organelle/microtubule preparation from the squid giant axon in which organelles bind microtubules and move towards the microtubule plus-ends. We find that APP associates with microtubules by confocal microscopy and co-purifies with KI-washed axoplasmic organelles by sucrose density gradient fractionation. By electron microscopy, APP clusters at a single focal point on the surfaces of organelles and localizes to the organelle/microtubule interface. In addition, the association of APP-organelles with microtubules is an ATP dependent process suggesting that the APP-organelles contain a microtubule-based motor protein. Although a direct kinesin/APP association remains controversial, the distribution of APP at the organelle/microtubule interface strongly suggests that APP-organelles have an orientation and that APP like the Alzheimer’s protein tau has a microtubule-based function. PMID:26814888

  7. The organelle of differentiation in embryos: the cell state splitter.

    PubMed

    Gordon, Natalie K; Gordon, Richard

    2016-03-10

    The cell state splitter is a membraneless organelle at the apical end of each epithelial cell in a developing embryo. It consists of a microfilament ring and an intermediate filament ring subtending a microtubule mat. The microtubules and microfilament ring are in mechanical opposition as in a tensegrity structure. The cell state splitter is bistable, perturbations causing it to contract or expand radially. The intermediate filament ring provides metastability against small perturbations. Once this snap-through organelle is triggered, it initiates signal transduction to the nucleus, which changes gene expression in one of two readied manners, causing its cell to undergo a step of determination and subsequent differentiation. The cell state splitter also triggers the cell state splitters of adjacent cells to respond, resulting in a differentiation wave. Embryogenesis may be represented then as a bifurcating differentiation tree, each edge representing one cell type. In combination with the differentiation waves they propagate, cell state splitters explain the spatiotemporal course of differentiation in the developing embryo. This review is excerpted from and elaborates on "Embryogenesis Explained" (World Scientific Publishing, Singapore, 2016).

  8. Targeting mammalian organelles with internalizing phage (iPhage) libraries

    PubMed Central

    Rangel, Roberto; Dobroff, Andrey S.; Guzman-Rojas, Liliana; Salmeron, Carolina C.; Gelovani, Juri G.; Sidman, Richard L.; Pasqualini, Renata; Arap, Wadih

    2015-01-01

    Techniques largely used for protein interaction studies and discovery of intracellular receptors, such as affinity capture complex purification and yeast two-hybrid, may produce inaccurate datasets due to protein insolubility, transient or weak protein interactions, or irrelevant intracellular context. A versatile tool to overcome these limitations as well as to potentially create vaccines and engineer peptides and antibodies as targeted diagnostic and therapeutic agents, is the phage display technique. We have recently developed a new technology for screening internalizing phage (iPhage) vectors and libraries utilizing a ligand/receptor-independent mechanism to penetrate eukaryotic cells. iPhage particles provide a unique discovery platform for combinatorial intracellular targeting of organelle ligands along with their corresponding receptors and to fingerprint functional protein domains in living cells. Here we explain the design, cloning, construction, and production of iPhage-based vectors and libraries, along with basic ligand-receptor identification and validation methodologies for organelle receptors. An iPhage library screening can be performed in ~8 weeks. PMID:24030441

  9. Prokaryotic cells: structural organisation of the cytoskeleton and organelles.

    PubMed

    Souza, Wanderley de

    2012-05-01

    For many years, prokaryotic cells were distinguished from eukaryotic cells based on the simplicity of their cytoplasm, in which the presence of organelles and cytoskeletal structures had not been discovered. Based on current knowledge, this review describes the complex components of the prokaryotic cell cytoskeleton, including (i) tubulin homologues composed of FtsZ, BtuA, BtuB and several associated proteins, which play a fundamental role in cell division, (ii) actin-like homologues, such as MreB and Mb1, which are involved in controlling cell width and cell length, and (iii) intermediate filament homologues, including crescentin and CfpA, which localise on the concave side of a bacterium and along its inner curvature and associate with its membrane. Some prokaryotes exhibit specialised membrane-bound organelles in the cytoplasm, such as magnetosomes and acidocalcisomes, as well as protein complexes, such as carboxysomes. This review also examines recent data on the presence of nanotubes, which are structures that are well characterised in mammalian cells that allow direct contact and communication between cells.

  10. Geometric modeling of subcellular structures, organelles, and multiprotein complexes.

    PubMed

    Feng, Xin; Xia, Kelin; Tong, Yiying; Wei, Guo-Wei

    2012-12-01

    Recently, the structure, function, stability, and dynamics of subcellular structures, organelles, and multiprotein complexes have emerged as a leading interest in structural biology. Geometric modeling not only provides visualizations of shapes for large biomolecular complexes but also fills the gap between structural information and theoretical modeling, and enables the understanding of function, stability, and dynamics. This paper introduces a suite of computational tools for volumetric data processing, information extraction, surface mesh rendering, geometric measurement, and curvature estimation of biomolecular complexes. Particular emphasis is given to the modeling of cryo-electron microscopy data. Lagrangian-triangle meshes are employed for the surface presentation. On the basis of this representation, algorithms are developed for surface area and surface-enclosed volume calculation, and curvature estimation. Methods for volumetric meshing have also been presented. Because the technological development in computer science and mathematics has led to multiple choices at each stage of the geometric modeling, we discuss the rationales in the design and selection of various algorithms. Analytical models are designed to test the computational accuracy and convergence of proposed algorithms. Finally, we select a set of six cryo-electron microscopy data representing typical subcellular complexes to demonstrate the efficacy of the proposed algorithms in handling biomolecular surfaces and explore their capability of geometric characterization of binding targets. This paper offers a comprehensive protocol for the geometric modeling of subcellular structures, organelles, and multiprotein complexes.

  11. Plants grow with a little help from their organelle friends.

    PubMed

    Van Dingenen, Judith; Blomme, Jonas; Gonzalez, Nathalie; Inzé, Dirk

    2016-12-01

    Chloroplasts and mitochondria are indispensable for plant development. They not only provide energy and carbon sources to cells, but also have evolved to become major players in a variety of processes such as amino acid metabolism, hormone biosynthesis and cellular signalling. As semi-autonomous organelles, they contain a small genome that relies largely on nuclear factors for its maintenance and expression. An intensive crosstalk between the nucleus and the organelles is therefore essential to ensure proper functioning, and the nuclear genes encoding organellar proteins involved in photosynthesis and oxidative phosphorylation are obviously crucial for plant growth. Organ growth is determined by two main cellular processes: cell proliferation and cell expansion. Here, we review how plant growth is affected in mutants of organellar proteins that are differentially expressed during leaf and root development. Our findings indicate a clear role for organellar proteins in plant organ growth, primarily during cell proliferation. However, to date, the role of the nuclear-encoded organellar proteins in the cellular processes driving organ growth has not been investigated in much detail. We therefore encourage researchers to extend their phenotypic characterization beyond macroscopic features in order to get a better view on how chloroplasts and mitochondria regulate the basic processes of cell proliferation and cell expansion, essential to driving growth.

  12. Visualization of lipid droplet composition by direct organelle mass spectrometry.

    PubMed

    Horn, Patrick J; Ledbetter, Nicole R; James, Christopher N; Hoffman, William D; Case, Charlene R; Verbeck, Guido F; Chapman, Kent D

    2011-02-04

    An expanding appreciation for the varied functions of neutral lipids in cellular organisms relies on a more detailed understanding of the mechanisms of lipid production and packaging into cytosolic lipid droplets (LDs). Conventional lipid profiling procedures involve the analysis of tissue extracts and consequently lack cellular or subcellular resolution. Here, we report an approach that combines the visualization of individual LDs, microphase extraction of lipid components from droplets, and the direct identification of lipid composition by nanospray mass spectrometry, even to the level of a single LD. The triacylglycerol (TAG) composition of LDs from several plant sources (mature cotton (Gossypium hirsutum) embryos, roots of cotton seedlings, and Arabidopsis thaliana seeds and leaves) were examined by direct organelle mass spectrometry and revealed the heterogeneity of LDs derived from different plant tissue sources. The analysis of individual LDs makes possible organellar resolution of molecular compositions and will facilitate new studies of LD biogenesis and functions, especially in combination with analysis of morphological and metabolic mutants. Furthermore, direct organelle mass spectrometry could be applied to the molecular analysis of other subcellular compartments and macromolecules.

  13. Following mitochondria dynamism: confocal analysis of the organelle morphology.

    PubMed

    Mariotti, Francesca R; Corrado, Mauro; Campello, Silvia

    2015-01-01

    Mitochondria are highly dynamic organelles, whose morphology can vary from an elongated and interconnected network to fragmented units. In recent years, outstanding discoveries have linked mitochondrial morphology to the regulation of an increasing number of biological processes, such as biosynthetic pathways, oxidative phosphorylation and ATP production, calcium buffering, and cell death. Here we describe two of the main methods used to analyze the mitochondrial length in fixed cells and the mitochondrial fusion rate in live cells. Moreover, we focus one of the protocols on T cells, as an example of non-adherent cells, which present some particularities and difficulties in the analysis of mitochondrial shape. We also discuss the main mouse models carrying a mitochondrial targeted fluorescent protein, an invaluable tool to deeply investigate in vivo mitochondrial morphology.

  14. Cilia in the CNS: the Quiet Organelle Claims Center Stage

    PubMed Central

    Louvi, Angeliki; Grove, Elizabeth A.

    2011-01-01

    Summary The primary cilium is a cellular organelle that is almost ubiquitous in eukaryotes, yet its functions in vertebrates have been slow to emerge. The last fifteen years have been marked by accelerating insight into the biology of primary cilia, arising from the synergy of three major lines of research. These research programs describe a specialized mode of protein trafficking in cilia, reveal that genetic disruptions of primary cilia cause complex human disease syndromes, and establish that Sonic hedgehog (Shh) signal transduction requires the primary cilium. New lines of research have branched off to investigate the role of primary cilia in neuronal signaling, adult neurogenesis, and brain tumor formation. We review a fast expanding literature to determine what we now know about the primary cilium in the developing and adult CNS, and what new directions should lead to further clarity. PMID:21435552

  15. Sizing Subcellular Organelles and Nanoparticles Confined within Aqueous Droplets

    PubMed Central

    Gadd, Jennifer C.; Kuyper, Christopher L.; Fujimoto, Bryant S.; Allen, Richard W.; Chiu, Daniel T.

    2009-01-01

    This paper describes two complementary techniques, single-particle tracking and correlation spectroscopy, for accurately sizing nanoparticles confined within picoliter-volume aqueous droplets. Single-particle tracking works well with bright particles that can be continuously illuminated and imaged, and we demonstrated this approach for sizing single fluorescent beads. Fluorescence correlation spectroscopy detects small intensity bursts from particles or molecules diffusing through the confocal probe volume, which works well with dim and rapidly diffusing particles or molecules; we demonstrated FCS for sizing synaptic vesicles confined in aqueous droplets. In combination with recent advances in droplet manipulations and analysis, we anticipate this capability to size single nanoparticles and molecules in free solution will complement existing tools for probing cellular systems, subcellular organelles, and nanoparticles. PMID:18363409

  16. Organelle targeting during bacterial infection: insights from Listeria.

    PubMed

    Lebreton, Alice; Stavru, Fabrizia; Cossart, Pascale

    2015-06-01

    Listeria monocytogenes, a facultative intracellular bacterium responsible for severe foodborne infections, is now recognized as a multifaceted model in infection biology. Comprehensive studies of the molecular and cellular basis of the infection have unraveled how the bacterium crosses the intestinal and feto-placental barriers, invades several cell types in which it multiplies and moves, and spreads from cell to cell. Interestingly, although Listeria does not actively invade host cell organelles, it can interfere with their function. We discuss the effect of Listeria on the endoplasmic reticulum (ER) and the mechanisms leading to the fragmentation of the mitochondrial network and its consequences, and review the strategies used by Listeria to subvert nuclear functions, more precisely to control host gene expression at the chromatin level.

  17. Quantum dots targeted to the assigned organelle in living cells.

    PubMed

    Hoshino, Akiyoshi; Fujioka, Kouki; Oku, Taisuke; Nakamura, Shun; Suga, Masakazu; Yamaguchi, Yukio; Suzuki, Kazuo; Yasuhara, Masato; Yamamoto, Kenji

    2004-01-01

    Fluorescent nanocrystal quantum dots (QDs) have the potential to be applied to bioimaging since QDs emit higher and far longer fluorescence than conventional organic probes. Here we show that QDs conjugated with signal peptide obey the order to transport the assigned organelle in living cells. We designed the supermolecule of luminescent QDs conjugated with nuclear- and mitochondria-targeting ligands. When QDs with nuclear-localizing signal peptides were added to the culture media, we can visualize the movements of the QDs being delivered into the nuclear compartment of the cells with 15 min incubation. In addition, mitochondrial signal peptide can also transport QDs to the mitochondria in living cells. In conclusion, these techniques have the possibility that QDs can reveal the transduction of proteins and peptides into specific subcellular compartments as a powerful tool for studying intracellular analysis in vitro and even in vivo.

  18. Structure and function of ER membrane contact sites with other organelles.

    PubMed

    Phillips, Melissa J; Voeltz, Gia K

    2016-02-01

    The endoplasmic reticulum (ER) is the largest organelle in the cell, and its functions have been studied for decades. The past several years have provided novel insights into the existence of distinct domains between the ER and other organelles, known as membrane contact sites (MCSs). At these contact sites, organelle membranes are closely apposed and tethered, but do not fuse. Here, various protein complexes can work in concert to perform specialized functions such as binding, sensing and transferring molecules, as well as engaging in organelle biogenesis and dynamics. This Review describes the structure and functions of MCSs, primarily focusing on contacts of the ER with mitochondria and endosomes.

  19. Characteristics in Sliding Motions of Small Organelles in a Nitella Internodal Cell

    NASA Astrophysics Data System (ADS)

    Uchida, Go; Nemoto, Tomomi; Tsuchiya, Yoshimi

    1995-12-01

    Steady velocities of small organelles smoothly moving on chloroplasts in a Nitella internodal cell have been investigated at various temperatures. It has been found that variance in the velocities of the organelles changes in proportion to their average velocity, which has been first elucidated from the temperature dependence of the organelle's velocity. This result suggests that the generation process of the force due to the actin-myosin is a Poisson like stochastic one. Thus, we have discussed a stochastic model for the motion of the organelle with many myosin-like molecules and estimated the force to be 4.2×10-12 N.

  20. Organelle DB: a cross-species database of protein localization and function.

    PubMed

    Wiwatwattana, Nuwee; Kumar, Anuj

    2005-01-01

    To efficiently utilize the growing body of available protein localization data, we have developed Organelle DB, a web-accessible database cataloging more than 25,000 proteins from nearly 60 organelles, subcellular structures and protein complexes in 154 organisms spanning the eukaryotic kingdom. Organelle DB is the first on-line resource devoted to the identification and presentation of eukaryotic proteins localized to organelles and subcellular structures. As such, Organelle DB is a strong resource of data from the human proteome as well as from the major model organisms Saccharomyces cerevisiae, Arabidopsis thaliana, Drosophila melanogaster, Caenorhabditis elegans and Mus musculus. In particular, Organelle DB is a central repository of yeast data, incorporating results--and actual fluorescent imagesfrom ongoing large-scale studies of protein localization in S.cerevisiae. Each protein in Organelle DB is presented with its sequence and, as available, a detailed description of its function; functions were extracted from relevant model organism databases, and links to these databases are provided within Organelle DB. To facilitate data interoperability, we have annotated all protein localizations using vocabulary from the Gene Ontology consortium. We also welcome new data for inclusion in Organelle DB, which may be freely accessed at http://organelledb.lsi.umich.edu.

  1. Seeing is believing: on the use of image databases for visually exploring plant organelle dynamics.

    PubMed

    Mano, Shoji; Miwa, Tomoki; Nishikawa, Shuh-ichi; Mimura, Tetsuro; Nishimura, Mikio

    2009-12-01

    Organelle dynamics vary dramatically depending on cell type, developmental stage and environmental stimuli, so that various parameters, such as size, number and behavior, are required for the description of the dynamics of each organelle. Imaging techniques are superior to other techniques for describing organelle dynamics because these parameters are visually exhibited. Therefore, as the results can be seen immediately, investigators can more easily grasp organelle dynamics. At present, imaging techniques are emerging as fundamental tools in plant organelle research, and the development of new methodologies to visualize organelles and the improvement of analytical tools and equipment have allowed the large-scale generation of image and movie data. Accordingly, image databases that accumulate information on organelle dynamics are an increasingly indispensable part of modern plant organelle research. In addition, image databases are potentially rich data sources for computational analyses, as image and movie data reposited in the databases contain valuable and significant information, such as size, number, length and velocity. Computational analytical tools support image-based data mining, such as segmentation, quantification and statistical analyses, to extract biologically meaningful information from each database and combine them to construct models. In this review, we outline the image databases that are dedicated to plant organelle research and present their potential as resources for image-based computational analyses.

  2. Mechanisms of organelle transport and capture along proplatelets during platelet production

    PubMed Central

    Richardson, Jennifer L.; Shivdasani, Ramesh A.; Boers, Chad; Hartwig, John H.; Italiano, Joseph E.

    2005-01-01

    Megakaryocytes generate platelets by remodeling their cytoplasm into long proplatelet extensions, which serve as assembly lines for platelet production. Platelet packaging and release concludes at the tips of each proplatelet. Essential in this process is the distribution of organelles and platelet-specific granules into the nascent platelets. To investigate the mechanism of delivery of organelles into putative platelets, the distribution and dynamics of organelles/granules was monitored. Individual organelles are sent from the cell body to the proplatelets where they move bidirectionally until they are captured at proplatelet ends. Movement occurs at approximately 0.2 μm/min, but pauses and changes in direction are frequent. At any given time, approximately 30% of organelles/granules are in motion. Actin poisons do not diminish organelle motion, and vesicular structures are intimately associated with the microtubules. Therefore, movement appears to involve microtubule-based forces. Bidirectional organelle movement is conveyed by the bipolar organization of microtubules within the proplatelet, as kinesin-coated beads move bidirectionally on the microtubule arrays of permeabilized proplatelets. Movement of organelles along proplatelets involves 2 mechanisms: organelles travel along microtubules, and the linked microtubules move relative to each other. These studies demonstrate that the components that form platelets are delivered to and assembled de novo along proplatelets. PMID:16118320

  3. Structure and function of ER membrane contact sites with other organelles

    PubMed Central

    Phillips, Melissa J.; Voeltz, Gia K.

    2016-01-01

    The endoplasmic reticulum (ER) is the largest organelle in the cell, and its functions have been studied for decades. The past several years have provided novel insights into the existence of distinct domains between the ER and other organelles, known as membrane contact sites (MCSs). At these contact sites, organelle membranes are closely apposed and tethered, but do not fuse. Here, various protein complexes can work in concert to perform specialized functions such as binding, sensing and transferring molecules, as well as engaging in organelle biogenesis and dynamics. This Review describes the structure and functions of MCSs, primarily focusing on contacts of the ER with mitochondria and endosomes. PMID:26627931

  4. Fluorogenic Substrates for Visualizing Acidic Organelle Enzyme Activities

    PubMed Central

    Harlan, Fiona Karen; Lusk, Jason Scott; Mohr, Breanna Michelle; Guzikowski, Anthony Peter; Batchelor, Robert Hardy; Jiang, Ying

    2016-01-01

    Lysosomes are acidic cytoplasmic organelles that are present in all nucleated mammalian cells and are involved in a variety of cellular processes including repair of the plasma membrane, defense against pathogens, cholesterol homeostasis, bone remodeling, metabolism, apoptosis and cell signaling. Defects in lysosomal enzyme activity have been associated with a variety of neurological diseases including Parkinson’s Disease, Lysosomal Storage Diseases, Alzheimer's disease and Huntington's disease. Fluorogenic lysosomal staining probes were synthesized for labeling lysosomes and other acidic organelles in a live-cell format and were shown to be capable of monitoring lysosomal metabolic activity. The new targeted substrates were prepared from fluorescent dyes having a low pKa value for optimum fluorescence at the lower physiological pH found in lysosomes. They were modified to contain targeting groups to direct their accumulation in lysosomes as well as enzyme-cleavable functions for monitoring specific enzyme activities using a live-cell staining format. Application to the staining of cells derived from blood and skin samples of patients with Metachromatic Leukodystrophy, Krabbe and Gaucher Diseases as well as healthy human fibroblast and leukocyte control cells exhibited localization to the lysosome when compared with known lysosomal stain LysoTracker® Red DND-99 as well as with anti-LAMP1 Antibody staining. When cell metabolism was inhibited with chloroquine, staining with an esterase substrate was reduced, demonstrating that the substrates can be used to measure cell metabolism. When applied to diseased cells, the intensity of staining was reflective of lysosomal enzyme levels found in diseased cells. Substrates specific to the enzyme deficiencies in Gaucher or Krabbe disease patient cell lines exhibited reduced staining compared to that in non-diseased cells. The new lysosome-targeted fluorogenic substrates should be useful for research, diagnostics and

  5. Bidirectional Ca2+ signaling occurs between the endoplasmic reticulum and acidic organelles

    PubMed Central

    Davis, Lianne C.; Wagner, Siegfried K.T.Y.; Lewis, Alexander M.; Parrington, John; Churchill, Grant C.

    2013-01-01

    The endoplasmic reticulum (ER) and acidic organelles (endo-lysosomes) act as separate Ca2+ stores that release Ca2+ in response to the second messengers IP3 and cADPR (ER) or NAADP (acidic organelles). Typically, trigger Ca2+ released from acidic organelles by NAADP subsequently recruits IP3 or ryanodine receptors on the ER, an anterograde signal important for amplification and Ca2+ oscillations/waves. We therefore investigated whether the ER can signal back to acidic organelles, using organelle pH as a reporter of NAADP action. We show that Ca2+ released from the ER can activate the NAADP pathway in two ways: first, by stimulating Ca2+-dependent NAADP synthesis; second, by activating NAADP-regulated channels. Moreover, the differential effects of EGTA and BAPTA (slow and fast Ca2+ chelators, respectively) suggest that the acidic organelles are preferentially activated by local microdomains of high Ca2+ at junctions between the ER and acidic organelles. Bidirectional organelle communication may have wider implications for endo-lysosomal function as well as the generation of Ca2+ oscillations and waves. PMID:23479744

  6. Myosin IIA is critical for organelle distribution and F-actin organization in megakaryocytes and platelets.

    PubMed

    Pertuy, Fabien; Eckly, Anita; Weber, Josiane; Proamer, Fabienne; Rinckel, Jean-Yves; Lanza, François; Gachet, Christian; Léon, Catherine

    2014-02-20

    During proplatelet formation, a relatively homogeneous content of organelles is transported from the megakaryocyte (MK) to the nascent platelets along microtubule tracks. We found that platelets from Myh9(-/-) mice and a MYH9-RD patient were heterogeneous in their organelle content (granules and mitochondria). In addition, Myh9(-/-) MKs have an abnormal cytoplasmic clustering of organelles, suggesting that the platelet defect originates in the MKs. Myosin is not involved in the latest stage of organelle traffic along microtubular tracks in the proplatelet shafts as shown by confocal observations of proplatelet buds. By contrast, it is required for the earlier distribution of organelles within the large MK preplatelet fragments shed into the sinusoid circulation before terminal proplatelet remodeling. We show here that F-actin is abnormally clustered in the cytoplasm of Myh9(-/-) MKs and actin polymerization is impaired in platelets. Myosin IIA is required for normal granule motility and positioning within MKs, mechanisms that may be dependent on organelle traveling and tethering onto F-actin cytoskeleton tracks. Altogether, our results indicate that the distribution of organelles within platelets critically depends on a homogeneous organelle distribution within MKs and preplatelet fragments, which requires myosin IIA.

  7. Protein import into the photosynthetic organelles of Paulinella chromatophora and its implications for primary plastid endosymbiosis.

    PubMed

    Mackiewicz, Paweł; Bodył, Andrzej; Gagat, Przemysław

    2012-12-01

    The rhizarian amoeba Paulinella chromatophora harbors two photosynthetically active organelles of cyanobacterial origin that have been acquired independently of classic primary plastids. Because their acquisition did take place relatively recently, they are expected to provide new insight into the ancient cyanobacterial primary endosymbiosis. During the process of Paulinella endosymbiont-to-organelle transformation, more than 30 genes have been transferred from the organelle to the host nuclear genome via endosymbiotic gene transfer (EGT). The article discusses step-by-step protein import of EGT-derived proteins into Paulinella photosynthetic organelles with the emphasis on the nature of their targeting signals and the final passage of proteins through the inner organelle membrane. The latter most probably involves a simplified Tic translocon composed of Tic21- and Tic32-like proteins as well as a Hsp70-based motor responsible for pulling of imported proteins into the organelle matrix. Our results indicate that although protein translocation across the inner membrane of Paulinella photosynthetic organelles seems to resemble the one in classic primary plastids, the transport through the outer membrane does not. The differences could result from distinct integration pathways of Paulinella photosynthetic organelles and primary plastids with their respective host cells.

  8. Organelles in Blastocystis that blur the distinction between mitochondria and hydrogenosomes.

    PubMed

    Stechmann, Alexandra; Hamblin, Karleigh; Pérez-Brocal, Vicente; Gaston, Daniel; Richmond, Gregory S; van der Giezen, Mark; Clark, C Graham; Roger, Andrew J

    2008-04-22

    Blastocystis is a unicellular stramenopile of controversial pathogenicity in humans. Although it is a strict anaerobe, Blastocystis has mitochondrion-like organelles with cristae, a transmembrane potential and DNA. An apparent lack of several typical mitochondrial pathways has led some to suggest that these organelles might be hydrogenosomes, anaerobic organelles related to mitochondria. We generated 12,767 expressed sequence tags (ESTs) from Blastocystis and identified 115 clusters that encode putative mitochondrial and hydrogenosomal proteins. Among these is the canonical hydrogenosomal protein iron-only [FeFe] hydrogenase that we show localizes to the organelles. The organelles also have mitochondrial characteristics, including pathways for amino acid metabolism, iron-sulfur cluster biogenesis, and an incomplete tricarboxylic acid cycle as well as a mitochondrial genome. Although complexes I and II of the electron transport chain (ETC) are present, we found no evidence for complexes III and IV or F1Fo ATPases. The Blastocystis organelles have metabolic properties of aerobic and anaerobic mitochondria and of hydrogenosomes. They are convergently similar to organelles recently described in the unrelated ciliate Nyctotherus ovalis. These findings blur the boundaries between mitochondria, hydrogenosomes, and mitosomes, as currently defined, underscoring the disparate selective forces that shape these organelles in eukaryotes.

  9. Mitochondrial swelling impairs the transport of organelles in cerebellar granule neurons.

    PubMed

    Kaasik, Allen; Safiulina, Dzhamilja; Choubey, Vinay; Kuum, Malle; Zharkovsky, Alexander; Veksler, Vladimir

    2007-11-09

    Organelle transport in neuronal processes is central to the organization, developmental fate, and functions of neurons. Organelles must be transported through the slender, highly branched neuronal processes, making the axonal transport vulnerable to any perturbation. However, some intracellular structures like mitochondria are able to considerably modify their volume. We therefore hypothesized that swollen mitochondria could impair the traffic of other organelles in neurite shafts. To test this hypothesis, we have investigated the effects of mitochondrial swellers on the organelle traffic. Our data demonstrate that treatment of neurons with potassium ionophore valinomycin led to the fast time-dependent inhibition of organelle movement in cerebellar granule neurons. Similar inhibition was observed in neurons treated with the inhibitors of the mitochondrial respiratory chain, sodium azide and antimycin, which also induced swelling. No decrease in the motility of organelles was observed in cultures treated with inhibitors of ATP production or transport, oligomycin or bongkrekic acid, suggesting that inhibition of the ATP-generating activity itself without swelling does not affect the motility of organelles. The effect of swellers on the traffic was more important in thin processes, thus indicating the role of steric hindrance of swollen mitochondria. We propose that the size and morphology of the transported cargo is also relevant for seamless axonal transport and speculate that mitochondrial swelling could be one of the reasons for impaired organelle transport in neuronal processes.

  10. Characteristics of weak base-induced vacuoles formed around individual acidic organelles.

    PubMed

    Hiruma, Hiromi; Kawakami, Tadashi

    2011-01-01

    We have previously found that the weak base 4-aminopyridine induces Brownian motion of acidic organelles around which vacuoles are formed, causing organelle traffic disorder in neurons. Our present study investigated the characteristics of vacuoles induced by weak bases (NH(4)Cl, aminopyridines, and chloroquine) using mouse cells. Individual vacuoles included acidic organelles identified by fluorescent protein expression. Mitochondria and actin filaments were extruded outside the vacuoles, composing the vacuole rim. Staining with amine-reactive fluorescence showed no protein/amino acid content in vacuoles. Thus, serous vacuolar contents are probably partitioned by viscous cytosol, other organelles, and cytoskeletons, but not membrane. The weak base (chloroquine) was immunochemically detected in intravacuolar organelles, but not in vacuoles. Early vacuolization was reversible, but long-term vacuolization caused cell death. The vacuolization and cell death were blocked by the vacuolar H(+)-ATPase inhibitor and Cl--free medium. Staining with LysoTracker or LysoSensor indicated that intravacuolar organelles were strongly acidic and vacuoles were slightly acidic. This suggests that vacuolization is caused by accumulation of weak base and H(+) in acidic organelles, driven by vacuolar H(+)-ATPase associated with Cl(-) entering, and probably by subsequent extrusion of H(+) and water from organelles to the surrounding cytoplasm.

  11. Cytonuclear interactions and relaxed selection accelerate sequence evolution in organelle ribosomes.

    PubMed

    Sloan, Daniel B; Triant, Deborah A; Wu, Martin; Taylor, Douglas R

    2014-03-01

    Many mitochondrial and plastid protein complexes contain subunits that are encoded in different genomes. In animals, nuclear-encoded mitochondrial proteins often exhibit rapid sequence evolution, which has been hypothesized to result from selection for mutations that compensate for changes in interacting subunits encoded in mutation-prone animal mitochondrial DNA. To test this hypothesis, we analyzed nuclear genes encoding cytosolic and organelle ribosomal proteins in flowering plants. The model angiosperm genus Arabidopsis exhibits low organelle mutation rates, typical of most plants. Nevertheless, we found that (nuclear-encoded) subunits of organelle ribosomes in Arabidopsis have higher amino acid sequence polymorphism and divergence than their counterparts in cytosolic ribosomes, suggesting that organelle ribosomes experience relaxed functional constraint. However, the observed difference between organelle and cytosolic ribosomes was smaller than in animals and could be partially attributed to rapid evolution in N-terminal organelle-targeting peptides that are not involved in ribosome function. To test the role of organelle mutation more directly, we used transcriptomic data from an angiosperm genus (Silene) with highly variable rates of organelle genome evolution. We found that Silene species with unusually fast-evolving mitochondrial and plastid DNA exhibited increased amino acid sequence divergence in ribosomal proteins targeted to the organelles but not in those that function in cytosolic ribosomes. Overall, these findings support the hypothesis that rapid organelle genome evolution has selected for compensatory mutations in nuclear-encoded proteins. We conclude that coevolution between interacting subunits encoded in different genomic compartments within the eukaryotic cell is an important determinant of variation in rates of protein sequence evolution.

  12. Lipid Composition of Organelles from Germinating Castor Bean Endosperm 1

    PubMed Central

    Donaldson, Robert P.; Beevers, Harry

    1977-01-01

    Glyoxysome, endoplasmic reticulum, mitochondria, and proplastid fractions were isolated from endosperm of castor beans (Ricinus communis) germinated for 5 days at 30 C. Samples from sucrose density gradients were diluted with 0.15 m KCI and the membranes pelleted. Lipid extracts of these membranes were analyzed for phosphoglyceride, acyl lipid, and sterol content. The endoplasmic reticulum contains 1.24 μmol of phosphoglyceride per mg of protein; the mitochondria, 0.65 μmol/mg; and the glyoxysome membranes, 0.55 μmol/mg. Phosphatidyl choline and phosphatidyl ethanolamine are the most abundant lipids in all membranes studied, accounting for 70% or more of the lipid phosphorus and 50% or more of the fatty acid. Glyoxysome membranes and endoplasmic reticulum also contain phosphatidyl inositol (respectively, 9 and 17% of the lipid phosphorus) and free fatty acids (13% of the total fatty acid in each). Compared with other organelles, mitochondrial membranes have more phosphatidyl ethanolamine relative to phosphatidyl choline and are characterized by the presence of cardiolipin, in which 80% of the fatty acid is linoleate. The relative amounts of linoleate, palmitate, oleate, stearate, and linolenate in each of the phosphotoglycerides are constant regardless of the membrane source. Stimasgasterol and β-sitosterol are present in the membranes (1-9 nmol each/mg protein). The data provide further evidence that glyoxysome membranes are derived from the endoplasmic reticulum but at the same time indicate some differentiation. PMID:16659829

  13. The perennial organelle: assembly and disassembly of the primary cilium

    PubMed Central

    Seeley, E. Scott; Nachury, Maxence V.

    2010-01-01

    Primary cilia contain signaling receptors of diverse classes, and ciliary dysfunction results in a variety of developmental defects. Thus, primary cilia are thought to have an important role in sensing and transducing cellular signals. Although there is clear evidence demonstrating that these organelles are assembled and disassembled dynamically as cells progress through the cell cycle, the mechanisms by which the cell cycle controls the assembly and disassembly of the primary cilium remain poorly understood. In this Commentary, we review the basic cellular mechanisms that underlie the early stages of cilium assembly and discuss how the cell cycle communicates with the ciliation program. A commonly held view is that ciliation occurs exclusively in cells that have exited the cell cycle and entered quiescence or differentiation. However, this concept is at odds with the finding that, during development, many actively proliferating cells require cilia-mediated signaling pathways to instruct their developmental fate. Here, we reassess the quiescence-centric view of ciliation by reviewing historic and current literature. We discuss ample evidence that cilia are in fact present on many proliferating cells, and that a transient peak of ciliation before the G1-S transition might be tightly coupled to entry into the DNA replication phase. Finally, we touch on the relationship between the ciliation and cell-division cycles and the tissue distribution of primary cilia in order to highlight potential roles for the primary cilium in restraining cells from the hyperproliferative state that contributes to cancer. PMID:20144999

  14. Modularity of a carbon-fixing protein organelle.

    PubMed

    Bonacci, Walter; Teng, Poh K; Afonso, Bruno; Niederholtmeyer, Henrike; Grob, Patricia; Silver, Pamela A; Savage, David F

    2012-01-10

    Bacterial microcompartments are proteinaceous complexes that catalyze metabolic pathways in a manner reminiscent of organelles. Although microcompartment structure is well understood, much less is known about their assembly and function in vivo. We show here that carboxysomes, CO(2)-fixing microcompartments encoded by 10 genes, can be heterologously produced in Escherichia coli. Expression of carboxysomes in E. coli resulted in the production of icosahedral complexes similar to those from the native host. In vivo, the complexes were capable of both assembling with carboxysomal proteins and fixing CO(2). Characterization of purified synthetic carboxysomes indicated that they were well formed in structure, contained the expected molecular components, and were capable of fixing CO(2) in vitro. In addition, we verify association of the postulated pore-forming protein CsoS1D with the carboxysome and show how it may modulate function. We have developed a genetic system capable of producing modular carbon-fixing microcompartments in a heterologous host. In doing so, we lay the groundwork for understanding these elaborate protein complexes and for the synthetic biological engineering of self-assembling molecular structures.

  15. The Gas Vacuole - an Early Organelle of Prokaryote Motility

    NASA Astrophysics Data System (ADS)

    Staley, James T.

    1980-06-01

    Several lines of evidence suggest that the gas vesicle may have been an early organelle of prokaryote motility. First, it is found in bacteria that are thought to be representatives of primitive groups. Second, it is a simple structure, and the structure alone imparts the function of motility. Thirdly, it is widely distributed amongst prokaryotes, having been found in the purple and green sulfur photosynthetic bacteria, cyanobacteria, methanogenic bacteria, obligate and facultative anaerobic heterotrophic bacteria, as well as aerobic heterotrophic bacteria that divide by budding and binary transverse fission. Recent evidence suggests that in some bacteria the genes for gas vesicle synthesis occur on plasmids. Thus, the wide distribution of this characteristic could be due to recent evolution and rapid dispersal, though early evolution is not precluded. Though the gas vesicle structure itself appears to be highly conserved among the various groups of bacteria, it seems doubtful that the regulatory mechanism to control its synthesis could be the same for the diverse gas vacuolate bacterial groups.

  16. Nanopreparations for Organelle-Specific Delivery in Cancer

    PubMed Central

    Biswas, Swati; Torchilin, Vladimir P.

    2014-01-01

    To efficiently deliver therapeutics into cancer cells, a number of strategies have been recently investigated. The toxicity associated with the administration of chemotherapeutic drugs due to their random interactions throughout the body necessitates the development of drug-encapsulating nanopreparations that significantly mask, or reduce, the toxic side effects of the drugs. In addition to reduced side effects associated with drug encapsulation, nanocarriers preferentially accumulate in tumors as a result of its abnormally leaky vasculature via the Enhanced Permeability and Retention (EPR) effect. However, simple passive nanocarrier delivery to the tumor site is unlikely to be enough to elicit a maximum therapeutic response as the drug-loaded carriers must reach the intracellular target sites. Therefore, efficient translocation of the nanocarrier through the cell membrane is necessary for cytosolic delivery of the cargo. However, Crossing the cell membrane barrier and reaching cytosol might still not be enough for achieving maximum therapeutic benefit, which necessitates the delivery of drugs directly to intracellular targets, such as bringing pro-apoptotic drugs to mitochondria, nucleic acid therapeutics to nuclei, and lysosomal enzymes to defective lysosomes. In this review, we discuss the strategies developed for tumor targeting, cytosolic delivery via cell membrane translocation, and finally organelle-specific targeting, which may be applied for developing highly efficacious, truly multifunctional, cancer-targeted nanopreparations. PMID:24270008

  17. Organelle Redox of CF and CFTR-Corrected Airway Epithelia

    PubMed Central

    Schwarzer, Christian; Illek, Beate; Suh, Jung H.; Remington, S. James; Fischer, Horst; Machen, Terry E.

    2014-01-01

    In cystic fibrosis reduced CFTR function may alter redox properties of airway epithelial cells. Redox-sensitive GFP (roGFP1) and imaging microscopy were used to measure redox potentials of cytosol, ER, mitochondria and cell surface of cystic fibrosis nasal epithelial cells and CFTR-corrected cells. We also measured glutathione and cysteine thiol redox states in cell lysates and apical fluids to provide coverage over a range of redox potentials and environments that might be affected by CFTR. As measured with roGFP1, redox potentials at the cell surface (~ -207 ±8 mV) and in the ER (~ -217 ±1 mV) and rates of regulation of the apical fluid and ER lumen following DTT treatment were similar for CF and CFTR-corrected cells. CF and CFTR-corrected cells had similar redox potentials in mitochondria (-344 ±9 mV) and cytosol (-322 ±7 mV). Oxidation of carboxy-dichlorodihydrofluoresceindiacetate and of apical Amplex Red occurred at equal rates in CF and CFTR-corrected cells. Glutathione and cysteine redox couples in cell lysates and apical fluid were equal in CF and CFTR-corrected cells. These quantitative estimates of organelle redox potentials combined with apical and cell measurements using small molecule couples confirmed there were no differences in redox properties of CF and CFTR-corrected cells. PMID:17603939

  18. Structure, Function, and Assembly of Adhesive Organelles by Uropathogenic Bacteria

    PubMed Central

    Chahales, Peter; Thanassi, David G.

    2015-01-01

    Bacteria assemble a wide range of adhesive proteins, termed adhesins, to mediate binding to receptors and colonization of surfaces. For pathogenic bacteria, adhesins are critical for early stages of infection, allowing the bacteria to initiate contact with host cells, colonize different tissues, and establish a foothold within the host. The adhesins expressed by a pathogen are also critical for bacterial-bacterial interactions and the formation of bacterial communities such as biofilms. The ability to adhere to host tissues is particularly important for bacteria that colonize sites such as the urinary tract, where the flow of urine functions to maintain sterility by washing away non-adherent pathogens. Adhesins vary from monomeric proteins that are directly anchored to the bacterial surface to polymeric, hairlike fibers that extend out from the cell surface. These latter fibers are termed pili or fimbriae, and were among the first identified virulence factors of uropathogenic Escherichia coli. Studies since then have identified a range of both pilus and non-pilus adhesins that contribute to bacterial colonization of the urinary tract, and have revealed molecular details of the structures, assembly pathways, and functions of these adhesive organelles. In this review, we describe the different types of adhesins expressed by both Gram-negative and Gram-positive uropathogens, what is known about their structures, how they are assembled on the bacterial surface, and the functions of specific adhesins in the pathogenesis of urinary tract infections. PMID:26542038

  19. Ion Channels in Plant Bioenergetic Organelles, Chloroplasts and Mitochondria: From Molecular Identification to Function.

    PubMed

    Carraretto, Luca; Teardo, Enrico; Checchetto, Vanessa; Finazzi, Giovanni; Uozumi, Nobuyuki; Szabo, Ildiko

    2016-03-07

    Recent technical advances in electrophysiological measurements, organelle-targeted fluorescence imaging, and organelle proteomics have pushed the research of ion transport a step forward in the case of the plant bioenergetic organelles, chloroplasts and mitochondria, leading to the molecular identification and functional characterization of several ion transport systems in recent years. Here we focus on channels that mediate relatively high-rate ion and water flux and summarize the current knowledge in this field, focusing on targeting mechanisms, proteomics, electrophysiology, and physiological function. In addition, since chloroplasts evolved from a cyanobacterial ancestor, we give an overview of the information available about cyanobacterial ion channels and discuss the evolutionary origin of chloroplast channels. The recent molecular identification of some of these ion channels allowed their physiological functions to be studied using genetically modified Arabidopsis plants and cyanobacteria. The view is emerging that alteration of chloroplast and mitochondrial ion homeostasis leads to organelle dysfunction, which in turn significantly affects the energy metabolism of the whole organism. Clear-cut identification of genes encoding for channels in these organelles, however, remains a major challenge in this rapidly developing field. Multiple strategies including bioinformatics, cell biology, electrophysiology, use of organelle-targeted ion-sensitive probes, genetics, and identification of signals eliciting specific ion fluxes across organelle membranes should provide a better understanding of the physiological role of organellar channels and their contribution to signaling pathways in plants in the future.

  20. Trans-Membrane Area Asymmetry Controls the Shape of Cellular Organelles

    PubMed Central

    Beznoussenko, Galina V.; Pilyugin, Sergei S.; Geerts, Willie J. C.; Kozlov, Michael M.; Burger, Koert N. J.; Luini, Alberto; Derganc, Jure; Mironov, Alexander A.

    2015-01-01

    Membrane organelles often have complicated shapes and differ in their volume, surface area and membrane curvature. The ratio between the surface area of the cytosolic and luminal leaflets (trans-membrane area asymmetry (TAA)) determines the membrane curvature within different sites of the organelle. Thus, the shape of the organelle could be critically dependent on TAA. Here, using mathematical modeling and stereological measurements of TAA during fast transformation of organelle shapes, we present evidence that suggests that when organelle volume and surface area are constant, TAA can regulate transformation of the shape of the Golgi apparatus, endosomal multivesicular bodies, and microvilli of brush borders of kidney epithelial cells. Extraction of membrane curvature by small spheres, such as COPI-dependent vesicles within the Golgi (extraction of positive curvature), or by intraluminal vesicles within endosomes (extraction of negative curvature) controls the shape of these organelles. For instance, Golgi tubulation is critically dependent on the fusion of COPI vesicles with Golgi cisternae, and vice versa, for the extraction of membrane curvature into 50–60 nm vesicles, to induce transformation of Golgi tubules into cisternae. Also, formation of intraluminal ultra-small vesicles after fusion of endosomes allows equilibration of their TAA, volume and surface area. Finally, when microvilli of the brush border are broken into vesicles and microvilli fragments, TAA of these membranes remains the same as TAA of the microvilli. Thus, TAA has a significant role in transformation of organelle shape when other factors remain constant. PMID:25761238

  1. Nuclearly encoded splicing factors implicated in RNA splicing in higher plant organelles.

    PubMed

    de Longevialle, Andéol Falcon; Small, Ian D; Lurin, Claire

    2010-07-01

    Plant organelles arose from two independent endosymbiosis events. Throughout evolutionary history, tight control of chloroplasts and mitochondria has been gained by the nucleus, which regulates most steps of organelle genome expression and metabolism. In particular, RNA maturation, including RNA splicing, is highly dependent on nuclearly encoded splicing factors. Most introns in organelles are group II introns, whose catalytic mechanism closely resembles that of the nuclear spliceosome. Plant group II introns have lost the ability to self-splice in vivo and require nuclearly encoded proteins as cofactors. Since the first splicing factor was identified in chloroplasts more than 10 years ago, many other proteins have been shown to be involved in splicing of one or more introns in chloroplasts or mitochondria. These new proteins belong to a variety of different families of RNA binding proteins and provide new insights into ribonucleo-protein complexes and RNA splicing machineries in organelles. In this review, we describe how splicing factors, encoded by the nucleus and targeted to the organelles, take part in post-transcriptional steps in higher plant organelle gene expression. We go on to discuss the potential for these factors to regulate organelle gene expression.

  2. Effects of organelle shape on fluorescence recovery after photobleaching.

    PubMed

    Sbalzarini, Ivo F; Mezzacasa, Anna; Helenius, Ari; Koumoutsakos, Petros

    2005-09-01

    The determination of diffusion coefficients from fluorescence recovery data is often complicated by geometric constraints imposed by the complex shapes of intracellular compartments. To address this issue, diffusion of proteins in the lumen of the endoplasmic reticulum (ER) is studied using cell biological and computational methods. Fluorescence recovery after photobleaching (FRAP) experiments are performed in tissue culture cells expressing GFP-KDEL, a soluble, fluorescent protein, in the ER lumen. The three-dimensional (3D) shape of the ER is determined by confocal microscopy and computationally reconstructed. Within these ER geometries diffusion of solutes is simulated using the method of particle strength exchange. The simulations are compared to experimental FRAP curves of GFP-KDEL in the same ER region. Comparisons of simulations in the 3D ER shapes to simulations in open 3D space show that the constraints imposed by the spatial confinement result in two- to fourfold underestimation of the molecular diffusion constant in the ER if the geometry is not taken into account. Using the same molecular diffusion constant in different simulations, the observed speed of fluorescence recovery varies by a factor of 2.5, depending on the particular ER geometry and the location of the bleached area. Organelle shape considerably influences diffusive transport and must be taken into account when relating experimental photobleaching data to molecular diffusion coefficients. This novel methodology combines experimental FRAP curves with high accuracy computer simulations of diffusion in the same ER geometry to determine the molecular diffusion constant of the solute in the particular ER lumen.

  3. Effects of Organelle Shape on Fluorescence Recovery after Photobleaching

    PubMed Central

    Sbalzarini, Ivo F.; Mezzacasa, Anna; Helenius, Ari; Koumoutsakos, Petros

    2005-01-01

    The determination of diffusion coefficients from fluorescence recovery data is often complicated by geometric constraints imposed by the complex shapes of intracellular compartments. To address this issue, diffusion of proteins in the lumen of the endoplasmic reticulum (ER) is studied using cell biological and computational methods. Fluorescence recovery after photobleaching (FRAP) experiments are performed in tissue culture cells expressing GFP–KDEL, a soluble, fluorescent protein, in the ER lumen. The three-dimensional (3D) shape of the ER is determined by confocal microscopy and computationally reconstructed. Within these ER geometries diffusion of solutes is simulated using the method of particle strength exchange. The simulations are compared to experimental FRAP curves of GFP–KDEL in the same ER region. Comparisons of simulations in the 3D ER shapes to simulations in open 3D space show that the constraints imposed by the spatial confinement result in two- to fourfold underestimation of the molecular diffusion constant in the ER if the geometry is not taken into account. Using the same molecular diffusion constant in different simulations, the observed speed of fluorescence recovery varies by a factor of 2.5, depending on the particular ER geometry and the location of the bleached area. Organelle shape considerably influences diffusive transport and must be taken into account when relating experimental photobleaching data to molecular diffusion coefficients. This novel methodology combines experimental FRAP curves with high accuracy computer simulations of diffusion in the same ER geometry to determine the molecular diffusion constant of the solute in the particular ER lumen. PMID:15951382

  4. Hypoxia signaling pathways: modulators of oxygen-related organelles

    PubMed Central

    Schönenberger, Miriam J.; Kovacs, Werner J.

    2015-01-01

    Oxygen (O2) is an essential substrate in cellular metabolism, bioenergetics, and signaling and as such linked to the survival and normal function of all metazoans. Low O2 tension (hypoxia) is a fundamental feature of physiological processes as well as pathophysiological conditions such as cancer and ischemic diseases. Central to the molecular mechanisms underlying O2 homeostasis are the hypoxia-inducible factors-1 and -2 alpha (HIF-1α and EPAS1/HIF-2α) that function as master regulators of the adaptive response to hypoxia. HIF-induced genes promote characteristic tumor behaviors, including angiogenesis and metabolic reprogramming. The aim of this review is to critically explore current knowledge of how HIF-α signaling regulates the abundance and function of major O2-consuming organelles. Abundant evidence suggests key roles for HIF-1α in the regulation of mitochondrial homeostasis. An essential adaptation to sustained hypoxia is repression of mitochondrial respiration and induction of glycolysis. HIF-1α activates several genes that trigger mitophagy and represses regulators of mitochondrial biogenesis. Several lines of evidence point to a strong relationship between hypoxia, the accumulation of misfolded proteins in the endoplasmic reticulum, and activation of the unfolded protein response. Surprisingly, although peroxisomes depend highly on molecular O2 for their function, there has been no evidence linking HIF signaling to peroxisomes. We discuss our recent findings that establish HIF-2α as a negative regulator of peroxisome abundance and suggest a mechanism by which cells attune peroxisomal function with O2 availability. HIF-2α activation augments peroxisome turnover by pexophagy and thereby changes lipid composition reminiscent of peroxisomal disorders. We discuss potential mechanisms by which HIF-2α might trigger pexophagy and place special emphasis on the potential pathological implications of HIF-2α-mediated pexophagy for human health. PMID:26258123

  5. Rapidly transported organelles containing membrane and cytoskeletal components: their relation to axonal growth

    PubMed Central

    1987-01-01

    We have examined the movements, composition, and cellular origin of phase-dense varicosities in cultures of chick sympathetic and sensory neurons. These organelles are variable in diameter (typically between 0.2 and 2 microns) and undergo saltatory movements both towards and away from the neuronal cell body. Their mean velocities vary inversely with the size of the organelle and are greater in the retrograde than the anterograde direction. Organelles stain with the lipophilic dye 1, 1'-dioctadecyl-3,3,3',3'-tetramethyl-indocarbocyanine and with antibodies to cytoskeletal components. In cultures double-stained with antibodies to alpha-tubulin and 70-kD neurofilament protein (NF-L), approximately 40% of the organelles stain for tubulin, 30% stain for NF- L, 10% stain for both tubulin and NF-L, and 40% show no staining with either antibody. The association of cytoskeletal proteins with the organelles shows that these proteins are able to move by a form of rapid axonal transport. Under most culture conditions the predominant direction of movement is towards the cell body, suggesting that the organelles are produced at or near the growth cone. Retrograde movements continue in culture medium lacking protein or high molecular mass components and increase under conditions in which the advance of the growth cone is arrested. There is a fourfold increase in the number of organelles moving retrogradely in neurites that encounter a substratum-associated barrier to elongation; retrograde movements increase similarly in cultures exposed to cytochalasin at levels known to block growth cone advance. No previously described organelle shows behavior coordinated with axonal growth in this way. We propose that the organelles contain membrane and cytoskeletal components that have been delivered to the growth cone, by slow or fast anterograde transport, in excess of the amounts required to synthesize more axon. In view of their rapid mobility and variable contents, we suggest that they

  6. Bidirectional organelle transport can occur in cell processes that contain single microtubules.

    PubMed

    Koonce, M P; Schliwa, M

    1985-01-01

    Intracellular organelle transport was studied in a new model system, the giant freshwater ameba Reticulomyxa. The ameba extends a large reticulate network of cytoplasmic strands in which various phase-dense organelles can be seen to move at a rate of up to 25 microns/s. This combined light and high voltage electron microscopic study shows that organelles move bidirectionally in even the finest network strands that contain only a single microtubule. In terms of microtubule-associated intracellular transport, this observation defines a minimum set of conditions necessary for such movement. The implications of this finding for possible models of force generation are discussed.

  7. Target Biological Structures: The Cell, Organelles, DNA and RNA

    NASA Astrophysics Data System (ADS)

    van Holst, Marcelis; Grant, Maxine P.; Aldrich-Wright, Janice

    Living organisms are self replicating molecular factories of staggering complexity [1]. As a result, we are often overwhelmed when trying to identify potential targets for therapeutics. Water, inorganic ions and a large array of relatively small organic molecules (e.g., sugars, vitamins and fatty acids) account for approximately 80% of living matter, with water being the most abundant. Macromolecules such as proteins, polysaccharides, ribonucleic acid (RNA) and deoxyribonucleic acid (DNA) constitute the rest. The majority of potential therapeutic targets are found within the cell. Small molecules which are vital for cellular function are imported into the cell by a variety of mechanisms but unlike smaller molecules, macromolecules are assembled within the cell itself. Drugs are usually designed to target cellular macromolecules, as they perform very specific roles in the metabolic processes.

  8. Integrated regulation of motor-driven organelle transport by scaffolding proteins.

    PubMed

    Fu, Meng-meng; Holzbaur, Erika L F

    2014-10-01

    Intracellular trafficking pathways, including endocytosis, autophagy, and secretion, rely on directed organelle transport driven by the opposing microtubule motor proteins kinesin and dynein. Precise spatial and temporal targeting of vesicles and organelles requires the integrated regulation of these opposing motors, which are often bound simultaneously to the same cargo. Recent progress demonstrates that organelle-associated scaffolding proteins, including Milton/TRAKs (trafficking kinesin-binding protein), JIP1, JIP3 (JNK-interacting proteins), huntingtin, and Hook1, interact with molecular motors to coordinate activity and sustain unidirectional transport. Scaffolding proteins also bind to upstream regulatory proteins, including kinases and GTPases, to modulate transport in the cell. This integration of regulatory control with motor activity allows for cargo-specific changes in the transport or targeting of organelles in response to cues from the complex cellular environment.

  9. Organelle genome complexity scales positively with organism size in volvocine green algae.

    PubMed

    Smith, David Roy; Hamaji, Takashi; Olson, Bradley J S C; Durand, Pierre M; Ferris, Patrick; Michod, Richard E; Featherston, Jonathan; Nozaki, Hisayoshi; Keeling, Patrick J

    2013-04-01

    It has been argued that for certain lineages, noncoding DNA expansion is a consequence of the increased random genetic drift associated with long-term escalations in organism size. But a lack of data has prevented the investigation of this hypothesis in most plastid-bearing protists. Here, using newly sequenced mitochondrial and plastid genomes, we explore the relationship between organelle DNA noncoding content and organism size within volvocine green algae. By looking at unicellular, colonial, and differentiated multicellular algae, we show that organelle DNA complexity scales positively with species size and cell number across the volvocine lineage. Moreover, silent-site genetic diversity data suggest that the volvocine species with the largest cell numbers and most bloated organelle genomes have the smallest effective population sizes. Together, these findings support the view that nonadaptive processes, like random genetic drift, promote the expansion of noncoding regions in organelle genomes.

  10. Bioinformatics and functional analyses of coronavirus nonstructural proteins involved in the formation of replicative organelles.

    PubMed

    Neuman, Benjamin W

    2016-11-01

    Replication of eukaryotic positive-stranded RNA viruses is usually linked to the presence of membrane-associated replicative organelles. The purpose of this review is to discuss the function of proteins responsible for formation of the coronavirus replicative organelle. This will be done by identifying domains that are conserved across the order Nidovirales, and by summarizing what is known about function and structure at the level of protein domains.

  11. FtsZ and the division of prokaryotic cells and organelles.

    PubMed

    Margolin, William

    2005-11-01

    Binary fission of many prokaryotes as well as some eukaryotic organelles depends on the FtsZ protein, which self-assembles into a membrane-associated ring structure early in the division process. FtsZ is homologous to tubulin, the building block of the microtubule cytoskeleton in eukaryotes. Recent advances in genomics and cell-imaging techniques have paved the way for the remarkable progress in our understanding of fission in bacteria and organelles.

  12. Mitochondrial fission factor Drp1 maintains oocyte quality via dynamic rearrangement of multiple organelles.

    PubMed

    Udagawa, Osamu; Ishihara, Takaya; Maeda, Maki; Matsunaga, Yui; Tsukamoto, Satoshi; Kawano, Natsuko; Miyado, Kenji; Shitara, Hiroshi; Yokota, Sadaki; Nomura, Masatoshi; Mihara, Katsuyoshi; Mizushima, Noboru; Ishihara, Naotada

    2014-10-20

    Mitochondria are dynamic organelles that change their morphology by active fusion and fission in response to cellular signaling and differentiation. The in vivo role of mitochondrial fission in mammals has been examined by using tissue-specific knockout (KO) mice of the mitochondria fission-regulating GTPase Drp1, as well as analyzing a human patient harboring a point mutation in Drp1, showing that Drp1 is essential for embryonic and neonatal development and neuronal function. During oocyte maturation and aging, structures of various membrane organelles including mitochondria and the endoplasmic reticulum (ER) are changed dynamically, and their organelle aggregation is related to germ cell formation and epigenetic regulation. However, the underlying molecular mechanisms of organelle dynamics during the development and aging of oocytes have not been well understood. Here, we analyzed oocyte-specific mitochondrial fission factor Drp1-deficient mice and found that mitochondrial fission is essential for follicular maturation and ovulation in an age-dependent manner. Mitochondria were highly aggregated with other organelles, such as the ER and secretory vesicles, in KO oocyte, which resulted in impaired Ca(2+) signaling, intercellular communication via secretion, and meiotic resumption. We further found that oocytes from aged mice displayed reduced Drp1-dependent mitochondrial fission and defective organelle morphogenesis, similar to Drp1 KO oocytes. On the basis of these findings, it appears that mitochondrial fission maintains the competency of oocytes via multiorganelle rearrangement.

  13. Designer amphiphilic proteins as building blocks for the intracellular formation of organelle-like compartments.

    PubMed

    Huber, Matthias C; Schreiber, Andreas; von Olshausen, Philipp; Varga, Balázs R; Kretz, Oliver; Joch, Barbara; Barnert, Sabine; Schubert, Rolf; Eimer, Stefan; Kele, Péter; Schiller, Stefan M

    2015-01-01

    Nanoscale biological materials formed by the assembly of defined block-domain proteins control the formation of cellular compartments such as organelles. Here, we introduce an approach to intentionally 'program' the de novo synthesis and self-assembly of genetically encoded amphiphilic proteins to form cellular compartments, or organelles, in Escherichia coli. These proteins serve as building blocks for the formation of artificial compartments in vivo in a similar way to lipid-based organelles. We investigated the formation of these organelles using epifluorescence microscopy, total internal reflection fluorescence microscopy and transmission electron microscopy. The in vivo modification of these protein-based de novo organelles, by means of site-specific incorporation of unnatural amino acids, allows the introduction of artificial chemical functionalities. Co-localization of membrane proteins results in the formation of functionalized artificial organelles combining artificial and natural cellular function. Adding these protein structures to the cellular machinery may have consequences in nanobiotechnology, synthetic biology and materials science, including the constitution of artificial cells and bio-based metamaterials.

  14. Counting molecules in single organelles with superresolution microscopy allows tracking of the endosome maturation trajectory.

    PubMed

    Puchner, Elias M; Walter, Jessica M; Kasper, Robert; Huang, Bo; Lim, Wendell A

    2013-10-01

    Cells tightly regulate trafficking of intracellular organelles, but a deeper understanding of this process is technically limited by our inability to track the molecular composition of individual organelles below the diffraction limit in size. Here we develop a technique for intracellularly calibrated superresolution microscopy that can measure the size of individual organelles as well as accurately count absolute numbers of molecules, by correcting for undercounting owing to immature fluorescent proteins and overcounting owing to fluorophore blinking. Using this technique, we characterized the size of individual vesicles in the yeast endocytic pathway and the number of accessible phosphatidylinositol 3-phosphate binding sites they contain. This analysis reveals a characteristic vesicle maturation trajectory of composition and size with both stochastic and regulated components. The trajectory displays some cell-to-cell variability, with smaller variation between organelles within the same cell. This approach also reveals mechanistic information on the order of events in this trajectory: Colocalization analysis with known markers of different vesicle maturation stages shows that phosphatidylinositol 3-phosphate production precedes fusion into larger endosomes. This single-organelle analysis can potentially be applied to a range of small organelles to shed light on their precise composition/structure relationships, the dynamics of their regulation, and the noise in these processes.

  15. Granulation in amine-storage organelles of mouse megakaryocytes: X-ray microprobe analysis and radioautography.

    PubMed

    Daimon, T; Kawai, K; Uchida, K

    1995-02-01

    The mechanisms and the processes of the storage of bivalent cations, ATP and 5-hydroxytryptamine (5HT) in the precursors of the amine-storage organelles of megakaryocytes were studied at the electron microscopic level. Although the precursors of the amine-storage organelles in the megakaryocytes fixed with glutaraldehyde and osmium tetroxide were empty, the electron opaque granules were observed in these organelles of the freeze-substituted megakaryocytes cut onto ethylene glycol. X-ray microprobe analysis demonstrated that they contained P, Mg and Ca. Quantitative differences in bivalent cations in the granules were not observed between megakaryocytes and blood platelets. Electron opaque uranaffin-reaction products were observed in the precursors of the amine-storage organelles of the megakaryocytes after treatment with the uranaffin reaction for ATP. However, few chromaffin positive granules were observed in the precursors of the amine-storage organelles after the chromaffin reaction for monoamines. Radioautographic analysis demonstrated that blood platelets avidly took up 3H-5HT but megakaryocytes were not able to accumulate 3H-5HT in vivo. These results indicate that megakaryocytes do not yet acquire the well developed uptake system of 5HT in vivo, while they readily accumulate cations and ATP in the precursors of the amine-storage organelles.

  16. Novel mitochondrion-related organelles in the anaerobic amoeba Mastigamoeba balamuthi.

    PubMed

    Gill, Erin E; Diaz-Triviño, Sara; Barberà, Maria José; Silberman, Jeffrey D; Stechmann, Alexandra; Gaston, Daniel; Tamas, Ivica; Roger, Andrew J

    2007-12-01

    Unicellular eukaryotes that lack mitochondria typically contain related organelles such as hydrogenosomes or mitosomes. To characterize the evolutionary diversity of these organelles, we conducted an expressed sequence tag (EST) survey on the free-living amoeba Mastigamoeba balamuthi, a relative of the human parasite Entamoeba histolytica. From 19 182 ESTs, we identified 21 putative mitochondrial proteins implicated in protein import, amino acid interconversion and carbohydrate metabolism, two components of the iron-sulphur cluster (Fe-S) assembly apparatus as well as two enzymes characteristic of hydrogenosomes. By immunofluorescence microscopy and subcellular fractionation, we show that mitochondrial chaperonin 60 is targeted to small abundant organelles within Mastigamoeba. In transmission electron micrographs, we identified double-membraned compartments that likely correspond to these mitochondrion-derived organelles, The predicted organellar proteome of the Mastigamoeba organelle indicates a unique spectrum of functions that collectively have never been observed in mitochondrion-related organelles. However, like Entamoeba, the Fe-S cluster assembly proteins in Mastigamoeba were acquired by lateral gene transfer from epsilon-proteobacteria and do not possess obvious organellar targeting peptides. These data indicate that the loss of classical aerobic mitochondrial functions and acquisition of anaerobic enzymes and Fe-S cluster assembly proteins occurred in a free-living member of the eukaryote super-kingdom Amoebozoa.

  17. Designer amphiphilic proteins as building blocks for the intracellular formation of organelle-like compartments

    NASA Astrophysics Data System (ADS)

    Huber, Matthias C.; Schreiber, Andreas; von Olshausen, Philipp; Varga, Balázs R.; Kretz, Oliver; Joch, Barbara; Barnert, Sabine; Schubert, Rolf; Eimer, Stefan; Kele, Péter; Schiller, Stefan M.

    2015-01-01

    Nanoscale biological materials formed by the assembly of defined block-domain proteins control the formation of cellular compartments such as organelles. Here, we introduce an approach to intentionally ‘program’ the de novo synthesis and self-assembly of genetically encoded amphiphilic proteins to form cellular compartments, or organelles, in Escherichia coli. These proteins serve as building blocks for the formation of artificial compartments in vivo in a similar way to lipid-based organelles. We investigated the formation of these organelles using epifluorescence microscopy, total internal reflection fluorescence microscopy and transmission electron microscopy. The in vivo modification of these protein-based de novo organelles, by means of site-specific incorporation of unnatural amino acids, allows the introduction of artificial chemical functionalities. Co-localization of membrane proteins results in the formation of functionalized artificial organelles combining artificial and natural cellular function. Adding these protein structures to the cellular machinery may have consequences in nanobiotechnology, synthetic biology and materials science, including the constitution of artificial cells and bio-based metamaterials.

  18. Nanomanipulation-Coupled Matrix-Assisted Laser Desorption/ Ionization-Direct Organelle Mass Spectrometry: A Technique for the Detailed Analysis of Single Organelles

    NASA Astrophysics Data System (ADS)

    Phelps, Mandy S.; Sturtevant, Drew; Chapman, Kent D.; Verbeck, Guido F.

    2016-02-01

    We describe a novel technique combining precise organelle microextraction with deposition and matrix-assisted laser desorption/ionization (MALDI) for a rapid, minimally invasive mass spectrometry (MS) analysis of single organelles from living cells. A dual-positioner nanomanipulator workstation was utilized for both extraction of organelle content and precise co-deposition of analyte and matrix solution for MALDI-direct organelle mass spectrometry (DOMS) analysis. Here, the triacylglycerol (TAG) profiles of single lipid droplets from 3T3-L1 adipocytes were acquired and results validated with nanoelectrospray ionization (NSI) MS. The results demonstrate the utility of the MALDI-DOMS technique as it enabled longer mass analysis time, higher ionization efficiency, MS imaging of the co-deposited spot, and subsequent MS/MS capabilities of localized lipid content in comparison to NSI-DOMS. This method provides selective organellar resolution, which complements current biochemical analyses and prompts for subsequent subcellular studies to be performed where limited samples and analyte volume are of concern.

  19. Nanomanipulation-Coupled Matrix-Assisted Laser Desorption/ Ionization-Direct Organelle Mass Spectrometry: A Technique for the Detailed Analysis of Single Organelles.

    PubMed

    Phelps, Mandy S; Sturtevant, Drew; Chapman, Kent D; Verbeck, Guido F

    2016-02-01

    We describe a novel technique combining precise organelle microextraction with deposition and matrix-assisted laser desorption/ionization (MALDI) for a rapid, minimally invasive mass spectrometry (MS) analysis of single organelles from living cells. A dual-positioner nanomanipulator workstation was utilized for both extraction of organelle content and precise co-deposition of analyte and matrix solution for MALDI-direct organelle mass spectrometry (DOMS) analysis. Here, the triacylglycerol (TAG) profiles of single lipid droplets from 3T3-L1 adipocytes were acquired and results validated with nanoelectrospray ionization (NSI) MS. The results demonstrate the utility of the MALDI-DOMS technique as it enabled longer mass analysis time, higher ionization efficiency, MS imaging of the co-deposited spot, and subsequent MS/MS capabilities of localized lipid content in comparison to NSI-DOMS. This method provides selective organellar resolution, which complements current biochemical analyses and prompts for subsequent subcellular studies to be performed where limited samples and analyte volume are of concern. Graphical Abstract ᅟ.

  20. Intracellular organelles mediate cytoplasmic pulling force for centrosome centration in the Caenorhabditis elegans early embryo

    PubMed Central

    Kimura, Akatsuki

    2010-01-01

    The centrosome is generally maintained at the center of the cell. In animal cells, centrosome centration is powered by the pulling force of microtubules, which is dependent on cytoplasmic dynein. However, it is unclear how dynein brings the centrosome to the cell center, i.e., which structure inside the cell functions as a substrate to anchor dynein. Here, we provide evidence that a population of dynein, which is located on intracellular organelles and is responsible for organelle transport toward the centrosome, generates the force required for centrosome centration in Caenorhabditis elegans embryos. By using the database of full-genome RNAi in C. elegans, we identified dyrb-1, a dynein light chain subunit, as a potential subunit involved in dynein anchoring for centrosome centration. DYRB-1 is required for organelle movement toward the minus end of the microtubules. The temporal correlation between centrosome centration and the net movement of organelle transport was found to be significant. Centrosome centration was impaired when Rab7 and RILP, which mediate the association between organelles and dynein in mammalian cells, were knocked down. These results indicate that minus end-directed transport of intracellular organelles along the microtubules is required for centrosome centration in C. elegans embryos. On the basis of this finding, we propose a model in which the reaction forces of organelle transport generated along microtubules act as a driving force that pulls the centrosomes toward the cell center. This is the first model, to our knowledge, providing a mechanical basis for cytoplasmic pulling force for centrosome centration. PMID:21173218

  1. Fluoroquinolone Resistance among Clonal Complex 1 Group B Streptococcus Strains

    PubMed Central

    Teatero, Sarah; Patel, Samir N.

    2016-01-01

    Fluoroquinolone resistance in group B Streptococcus is increasingly being reported worldwide. Here, we correlated fluoroquinolone resistance with mutations in gyrA, gyrB, parC, and parE genes, identified by mining whole-genome sequencing (WGS) data of 190 clonal complex 1 group B Streptococcus strains recovered from patients with invasive diseases in North America. We report a high prevalence of fluoroquinolone resistance (12%) among GBS strains in our collection. Our approach is the first step towards accurate prediction of fluoroquinolone resistance from WGS data in this opportunistic pathogen. PMID:27559344

  2. Functional diversity of Arabidopsis organelle-localized RNA-recognition motif-containing proteins.

    PubMed

    Shi, Xiaowen; Hanson, Maureen R; Bentolila, Stephane

    2017-03-29

    RNA-Binding Proteins (RBPs) play key roles in plant gene expression and regulation. RBPs contain a variety of RNA-binding motifs, the most abundant and most widespread one in eukaryotes is the RNA recognition motif (RRM). Many nucleus-encoded RRM-containing proteins are transported into chloroplasts and/or mitochondria, and participate in various RNA-related processes in plant organelles. Loss of these proteins can have a detrimental effect on some critical processes such as photosynthesis and respiration, sometimes leading to lethality. Progress has been made in the last few years in understanding the function of particular organelle-localized RRM-containing proteins. Members of the Organelle RRM protein (ORRM, some also characterized as Glycine-Rich RNA-Binding Proteins) family and the Chloroplast RiboNucleoProtein (cpRNP) family, are involved in various types of RNA metabolism, including RNA editing, RNA stability and RNA processing. Organelle-localized RRM proteins also function in plant development and stress responses, in some conditions acting as protein or RNA chaperones. There has been recent progress in characterizing the function of organelle-localized RRM proteins in RNA-related processes and how RRM proteins contribute to the normal growth and development of plants. For further resources related to this article, please visit the WIREs website.

  3. Nucleotide specificity for the bidirectional transport of membrane-bounded organelles in isolated axoplasm.

    PubMed

    Leopold, P L; Snyder, R; Bloom, G S; Brady, S T

    1990-01-01

    Video microscopy of isolated axoplasm from the squid giant axon permits correlated quantitative analyses of membrane-bounded organelle transport both in the intact axoplasm and along individual microtubules. As a result, the effects of experimental manipulations on both anterograde and retrograde movements of membrane-bounded organelles can be evaluated under nearly physiological conditions. Since anterograde and retrograde fast axonal transport are similar but distinct cellular processes, a systematic biochemical analysis is important for a further understanding of the molecular mechanisms for each. In this series of experiments, we employed isolated axoplasm of the squid to define the nucleoside triphosphate specificity for bidirectional organelle motility in the axon. Perfusion of axoplasm with 2-20 mM ATP preserved optimal vesicle velocities in both the anterograde and retrograde directions. Organelle velocities decreased to less than 50% of optimal values when the axoplasm was perfused with 10-20 mM UTP, GTP, ITP, or CTP with simultaneous depletion of endogenous ATP with hexokinase. Under the same conditions, TTP and ATP-gamma-S were unable to support significant levels of transport. None of the NTPs tested had a differential effect on anterograde vs. retrograde movement of vesicles. Surprisingly, several inconsistencies were revealed when a comparison was made between these results and nucleoside triphosphate specificities that have been reported for putative organelle motors by using in vitro assays. These data may be used in conjunction with data from well-defined in vitro assays to develop models for the molecular mechanisms of axonal transport.

  4. Mitochondria and hydrogenosomes are two forms of the same fundamental organelle.

    PubMed Central

    Embley, T Martin; van der Giezen, Mark; Horner, David S; Dyal, Patricia L; Foster, Peter

    2003-01-01

    Published data suggest that hydrogenosomes, organelles found in diverse anaerobic eukaryotes that make energy and hydrogen, were once mitochondria. As hydrogenosomes generally lack a genome, the conversion is probably one way. The sources of the key hydrogenosomal enzymes, pyruvate : ferredoxin oxidoreductase (PFO) and hydrogenase, are not resolved by current phylogenetic analyses, but it is likely that both were present at an early stage of eukaryotic evolution. Once thought to be restricted to a few unusual anaerobic eukaryotes, the proteins are intimately integrated into the fabric of diverse eukaryotic cells, where they are targeted to different cell compartments, and not just hydrogenosomes. There is no evidence supporting the view that PFO and hydrogenase originated from the mitochondrial endosymbiont, as posited by the hydrogen hypothesis for eukaryogenesis. Other organelles derived from mitochondria have now been described in anaerobic and parasitic microbial eukaryotes, including species that were once thought to have diverged before the mitochondrial symbiosis. It thus seems possible that all eukaryotes may eventually be shown to contain an organelle of mitochondrial ancestry, to which different types of biochemistry can be targeted. It remains to be seen if, despite their obvious differences, this family of organelles shares a common function of importance for the eukaryotic cell, other than energy production, that might provide the underlying selection pressure for organelle retention. PMID:12594927

  5. Regulation of Mouse Oocyte Microtubule and Organelle Dynamics by PADI6 and the Cytoplasmic Lattices

    PubMed Central

    Kan, Rui; Yurttas, Piraye; Kim, Boram; Jin, Mei; Wo, Luccie; Lee, Bora; Gosden, Roger; Coonrod, Scott A.

    2010-01-01

    Organelle positioning and movement in oocytes is largely mediated by microtubules (MTs) and their associated motor proteins. While yet to be studied in germ cells, cargo trafficking in somatic cells is also facilitated by specific recognition of acetylated MTs by motor proteins. We have previously shown that oocyte-restricted PADI6 is essential for formation of a novel oocyte-restricted fibrous structure, the cytoplasmic lattices (CPLs). Here, we show that α-tubulin appears to be associated with the PADI6/CPL complex. Next, we demonstrate that organelle positioning and redistribution is defective in PADI6-null oocytes and that alteration of MT polymerization or MT motor activity does not induce organelle redistribution in these oocytes. Finally, we report that levels of acetylated microtubules are dramatically suppressed in the cytoplasm of PADI6-null oocytes, suggesting that the observed organelle redistribution failure is due to defects in stable cytoplasmic MTs. These results demonstrate that the PADI6/CPL superstructure plays a key role in regulating MT-mediated organelle positioning and movement. PMID:21147087

  6. The exception proves the rule? Dual targeting of nuclear-encoded proteins into endosymbiotic organelles.

    PubMed

    Baudisch, Bianca; Langner, Uwe; Garz, Ingo; Klösgen, Ralf Bernd

    2014-01-01

    Plant cells harbor two types of endosymbiotic organelle: mitochondria and chloroplasts. As a consequence of endosymbiotic gene transfer, the majority of their proteins are encoded in the nucleus and post-translationally 're'-imported into the respective target organelle. The corresponding transport signals are usually selective for a single organelle, but several proteins are transported into both the mitochondria and chloroplasts. To estimate the number of proteins with such dual targeting properties in Arabidopsis, we classified the proteins encoded by nuclear genes of endosymbiotic origin according to the respective targeting specificity of their N-terminal transport signals as predicted by the TargetP software package. Selected examples of the resulting protein classes were subsequently analyzed by transient transformation assays as well as by in organello protein transport experiments. It was found that most proteins with high prediction values for both organelles show dual targeting with both experimental approaches. Unexpectedly, however, dual targeting was even found among those proteins that are predicted to be localized solely in one of the two endosymbiotic organelles. In total, among the 16 candidate proteins analyzed, we identified 10 proteins with dual targeting properties. This unexpectedly high proportion suggests that such transport properties are much more abundant than anticipated.

  7. New organelles by gene duplication in a biophysical model of eukaryote endomembrane evolution.

    PubMed

    Ramadas, Rohini; Thattai, Mukund

    2013-06-04

    Extant eukaryotic cells have a dynamic traffic network that consists of diverse membrane-bound organelles exchanging matter via vesicles. This endomembrane system arose and diversified during a period characterized by massive expansions of gene families involved in trafficking after the acquisition of a mitochondrial endosymbiont by a prokaryotic host cell >1.8 billion years ago. Here we investigate the mechanistic link between gene duplication and the emergence of new nonendosymbiotic organelles, using a minimal biophysical model of traffic. Our model incorporates membrane-bound compartments, coat proteins and adaptors that drive vesicles to bud and segregate cargo from source compartments, and SNARE proteins and associated factors that cause vesicles to fuse into specific destination compartments. In simulations, arbitrary numbers of compartments with heterogeneous initial compositions segregate into a few compositionally distinct subsets that we term organelles. The global structure of the traffic system (i.e., the number, composition, and connectivity of organelles) is determined completely by local molecular interactions. On evolutionary timescales, duplication of the budding and fusion machinery followed by loss of cross-interactions leads to the emergence of new organelles, with increased molecular specificity being necessary to maintain larger organellar repertoires. These results clarify potential modes of early eukaryotic evolution as well as more recent eukaryotic diversification.

  8. Organelle Transport in Cultured Drosophila Cells: S2 Cell Line and Primary Neurons.

    PubMed Central

    Gelfand, Vladimir I.

    2013-01-01

    Drosophila S2 cells plated on a coverslip in the presence of any actin-depolymerizing drug form long unbranched processes filled with uniformly polarized microtubules. Organelles move along these processes by microtubule motors. Easy maintenance, high sensitivity to RNAi-mediated protein knock-down and efficient procedure for creating stable cell lines make Drosophila S2 cells an ideal model system to study cargo transport by live imaging. The results obtained with S2 cells can be further applied to a more physiologically relevant system: axonal transport in primary neurons cultured from dissociated Drosophila embryos. Cultured neurons grow long neurites filled with bundled microtubules, very similar to S2 processes. Like in S2 cells, organelles in cultured neurons can be visualized by either organelle-specific fluorescent dyes or by using fluorescent organelle markers encoded by DNA injected into early embryos or expressed in transgenic flies. Therefore, organelle transport can be easily recorded in neurons cultured on glass coverslips using living imaging. Here we describe procedures for culturing and visualizing cargo transport in Drosophila S2 cells and primary neurons. We believe that these protocols make both systems accessible for labs studying cargo transport. PMID:24300413

  9. Systematic study of subcellular localization of Arabidopsis PPR proteins confirms a massive targeting to organelles

    PubMed Central

    Colcombet, Jean; Lopez-Obando, Mauricio; Heurtevin, Laure; Bernard, Clément; Martin, Karine; Berthomé, Richard; Lurin, Claire

    2013-01-01

    Four hundred and fifty-eight genes coding for PentatricoPeptide Repeat (PPR) proteins are annotated in the Arabidopsis thaliana genome. Over the past 10 years, numerous reports have shown that many of these proteins function in organelles to target specific transcripts and are involved in post-transcriptional regulation. Therefore, they are thought to be important players in the coordination between nuclear and organelle genome expression. Only four of these proteins have been described to be addressed outside organelles, indicating that some PPRs could function in post-transcriptional regulations of nuclear genes. In this work, we updated and improved our current knowledge on the localization of PPR proteins of Arabidopsis within the plant cell. We particularly investigated the subcellular localization of 166 PPR proteins whose targeting predictions were ambiguous, using a combination of high-throughput cloning and microscopy. Through systematic localization experiments and data integration, we confirmed that PPR proteins are largely targeted to organelles and showed that dual targeting to both the mitochondria and plastid occurs more frequently than expected. These results allow us to speculate that dual-targeted PPR proteins could be important for the fine coordination of gene expressions in both organelles. PMID:24037373

  10. The cytoskeleton maintains organelle partitioning required for single-cell C4 photosynthesis in Chenopodiaceae species.

    PubMed

    Chuong, Simon D X; Franceschi, Vincent R; Edwards, Gerald E

    2006-09-01

    Recently, three Chenopodiaceae species, Bienertia cycloptera, Bienertia sinuspersici, and Suaeda aralocaspica, were shown to possess novel C(4) photosynthesis mechanisms through the compartmentalization of organelles and photosynthetic enzymes into two distinct regions within a single chlorenchyma cell. Bienertia has peripheral and central compartments, whereas S. aralocaspica has distal and proximal compartments. This compartmentalization achieves the equivalent of spatial separation of Kranz anatomy, including dimorphic chloroplasts, but within a single cell. To characterize the mechanisms of organelle compartmentalization, the distribution of the major organelles relative to the cytoskeleton was examined. Examination of the distribution of the cytoskeleton using immunofluorescence studies and transient expression of green fluorescent protein-tagged cytoskeleton markers revealed a highly organized network of actin filaments and microtubules associating with the chloroplasts and showed that the two compartments in each cell had different cytoskeletal arrangements. Experiments using cytoskeleton-disrupting drugs showed in Bienertia and S. aralocaspica that microtubules are critical for the polarized positioning of chloroplasts and other organelles. Compartmentalization of the organelles in these species represents a unique system in higher plants and illustrates the degree of control the plant cell has over the organization and integration of multiorganellar processes within its cytoplasm.

  11. Widespread occurrence of organelle genome-encoded 5S rRNAs including permuted molecules

    PubMed Central

    Valach, Matus; Burger, Gertraud; Gray, Michael W.; Lang, B. Franz

    2014-01-01

    5S Ribosomal RNA (5S rRNA) is a universal component of ribosomes, and the corresponding gene is easily identified in archaeal, bacterial and nuclear genome sequences. However, organelle gene homologs (rrn5) appear to be absent from most mitochondrial and several chloroplast genomes. Here, we re-examine the distribution of organelle rrn5 by building mitochondrion- and plastid-specific covariance models (CMs) with which we screened organelle genome sequences. We not only recover all organelle rrn5 genes annotated in GenBank records, but also identify more than 50 previously unrecognized homologs in mitochondrial genomes of various stramenopiles, red algae, cryptomonads, malawimonads and apusozoans, and surprisingly, in the apicoplast (highly derived plastid) genomes of the coccidian pathogens Toxoplasma gondii and Eimeria tenella. Comparative modeling of RNA secondary structure reveals that mitochondrial 5S rRNAs from brown algae adopt a permuted triskelion shape that has not been seen elsewhere. Expression of the newly predicted rrn5 genes is confirmed experimentally in 10 instances, based on our own and published RNA-Seq data. This study establishes that particularly mitochondrial 5S rRNA has a much broader taxonomic distribution and a much larger structural variability than previously thought. The newly developed CMs will be made available via the Rfam database and the MFannot organelle genome annotator. PMID:25429974

  12. Intracellular Microreactors as Artificial Organelles to Conduct Multiple Enzymatic Reactions Simultaneously.

    PubMed

    Godoy-Gallardo, María; Labay, Cédric; Jansman, Michelle M T; Ek, Pramod K; Hosta-Rigau, Leticia

    2017-02-01

    The creation of artificial organelles is a new paradigm in medical therapy that aims to substitute for missing cellular function by replenishing a specific cellular task. Artificial organelles tackle the challenge of mimicking metabolism, which is the set of chemical reactions that occur within a cell, mainly catalyzed by enzymes. So far, the few reported carriers able to conduct enzymatic reactions intracellularly are based on single-compartment carriers. However, cell organelles outperform by conducting multiple reactions simultaneously within confined sub-compartments. Here, the field of artificial organelles is advanced by reporting the assembly of a microreactor consisting of polymer capsules entrapping gold nanoclusters (AuNCs) and liposomes as sub-compartments. The fluorescence properties of AuNCs are employed to monitor the microreactors uptake by macrophages. Encapsulation is demonstrated and functionality of microreactors with trypsin (TRP) and horseradish peroxidase (HRP)-loaded liposomes is preserved. Multiple enzymatic reactions taking place simultaneously is demonstrated by exposing macrophages with the internalized microreactors to bis-(benzyloxycarbonyl-Ile-Pro-Arg)-Rho-110 and Amplex Red substrates, which are specific for TRP and HRP, respectively. Conversion of the substrates into the respective fluorescent products is observed. This report on the first microreactor conducting multiple enzymatic reactions simultaneously inside a cell is a considerable step in the field of artificial organelles.

  13. Phosphorylation-mediated RNA/peptide complex coacervation as a model for intracellular liquid organelles

    NASA Astrophysics Data System (ADS)

    Aumiller, William M.; Keating, Christine D.

    2016-02-01

    Biological cells are highly organized, with numerous subcellular compartments. Phosphorylation has been hypothesized as a means to control the assembly/disassembly of liquid-like RNA- and protein-rich intracellular bodies, or liquid organelles, that lack delimiting membranes. Here, we demonstrate that charge-mediated phase separation, or complex coacervation, of RNAs with cationic peptides can generate simple model liquid organelles capable of reversibly compartmentalizing biomolecules. Formation and dissolution of these liquid bodies was controlled by changes in peptide phosphorylation state using a kinase/phosphatase enzyme pair. The droplet-generating phase transition responded to modification of even a single serine residue. Electrostatic interactions between the short cationic peptides and the much longer polyanionic RNAs drove phase separation. Coacervates were also formed on silica beads, a primitive model for localization at specific intracellular sites. This work supports phosphoregulation of complex coacervation as a viable mechanism for dynamic intracellular compartmentalization in membraneless organelles.

  14. Ca2+/H+ exchange by acidic organelles regulates cell migration in vivo

    PubMed Central

    Melchionda, Manuela; Pittman, Jon K.

    2016-01-01

    Increasing evidence implicates Ca2+ in the control of cell migration. However, the underlying mechanisms are incompletely understood. Acidic Ca2+ stores are fast emerging as signaling centers. But how Ca2+ is taken up by these organelles in metazoans and the physiological relevance for migration is unclear. Here, we identify a vertebrate Ca2+/H+ exchanger (CAX) as part of a widespread family of homologues in animals. CAX is expressed in neural crest cells and required for their migration in vivo. It localizes to acidic organelles, tempers evoked Ca2+ signals, and regulates cell-matrix adhesion during migration. Our data provide new molecular insight into how Ca2+ is handled by acidic organelles and link this to migration, thereby underscoring the role of noncanonical Ca2+ stores in the control of Ca2+-dependent function. PMID:27002171

  15. Artificially-induced organelles are optimal targets for optical trapping experiments in living cells

    PubMed Central

    López-Quesada, C.; Fontaine, A.-S.; Farré, A.; Joseph, M.; Selva, J.; Egea, G.; Ludevid, M. D.; Martín-Badosa, E.; Montes-Usategui, M.

    2014-01-01

    Optical trapping supplies information on the structural, kinetic or rheological properties of inner constituents of the cell. However, the application of significant forces to intracellular objects is notoriously difficult due to a combination of factors, such as the small difference between the refractive indices of the target structures and the cytoplasm. Here we discuss the possibility of artificially inducing the formation of spherical organelles in the endoplasmic reticulum, which would contain densely packed engineered proteins, to be used as optimized targets for optical trapping experiments. The high index of refraction and large size of our organelles provide a firm grip for optical trapping and thereby allow us to exert large forces easily within safe irradiation limits. This has clear advantages over alternative probes, such as subcellular organelles or internalized synthetic beads. PMID:25071944

  16. Artificially-induced organelles are optimal targets for optical trapping experiments in living cells.

    PubMed

    López-Quesada, C; Fontaine, A-S; Farré, A; Joseph, M; Selva, J; Egea, G; Ludevid, M D; Martín-Badosa, E; Montes-Usategui, M

    2014-07-01

    Optical trapping supplies information on the structural, kinetic or rheological properties of inner constituents of the cell. However, the application of significant forces to intracellular objects is notoriously difficult due to a combination of factors, such as the small difference between the refractive indices of the target structures and the cytoplasm. Here we discuss the possibility of artificially inducing the formation of spherical organelles in the endoplasmic reticulum, which would contain densely packed engineered proteins, to be used as optimized targets for optical trapping experiments. The high index of refraction and large size of our organelles provide a firm grip for optical trapping and thereby allow us to exert large forces easily within safe irradiation limits. This has clear advantages over alternative probes, such as subcellular organelles or internalized synthetic beads.

  17. Protein kinase Darkener of apricot and its substrate EF1γ regulate organelle transport along microtubules.

    PubMed

    Serpinskaya, Anna S; Tuphile, Karine; Rabinow, Leonard; Gelfand, Vladimir I

    2014-01-01

    Regulation of organelle transport along microtubules is important for proper distribution of membrane organelles and protein complexes in the cytoplasm. RNAi-mediated knockdown in cultured Drosophila S2 cells demonstrates that two microtubule-binding proteins, a unique isoform of Darkener of apricot (DOA) protein kinase, and its substrate, translational elongation factor EF1γ, negatively regulate transport of several classes of membrane organelles along microtubules. Inhibition of transport by EF1γ requires its phosphorylation by DOA on serine 294. Together, our results indicate a new role for two proteins that have not previously been implicated in regulation of the cytoskeleton. These results further suggest that the biological role of some of the proteins binding to the microtubule track is to regulate cargo transport along these tracks.

  18. GAP, an aequorin-based fluorescent indicator for imaging Ca2+ in organelles.

    PubMed

    Rodriguez-Garcia, Arancha; Rojo-Ruiz, Jonathan; Navas-Navarro, Paloma; Aulestia, Francisco Javier; Gallego-Sandin, Sonia; Garcia-Sancho, Javier; Alonso, Maria Teresa

    2014-02-18

    Genetically encoded calcium indicators allow monitoring subcellular Ca(2+) signals inside organelles. Most genetically encoded calcium indicators are fusions of endogenous calcium-binding proteins whose functionality in vivo may be perturbed by competition with cellular partners. We describe here a novel family of fluorescent Ca(2+) sensors based on the fusion of two Aequorea victoria proteins, GFP and apo-aequorin (GAP). GAP exhibited a unique combination of features: dual-excitation ratiometric imaging, high dynamic range, good signal-to-noise ratio, insensitivity to pH and Mg(2+), tunable Ca(2+) affinity, uncomplicated calibration, and targetability to five distinct organelles. Moreover, transgenic mice for endoplasmic reticulum-targeted GAP exhibited a robust long-term expression that correlated well with its reproducible performance in various neural tissues. This biosensor fills a gap in the actual repertoire of Ca(2+) indicators for organelles and becomes a valuable tool for in vivo Ca(2+) imaging applications.

  19. A nanobuffer reporter library for fine-scale imaging and perturbation of endocytic organelles | Office of Cancer Genomics

    Cancer.gov

    Endosomes, lysosomes and related catabolic organelles are a dynamic continuum of vacuolar structures that impact a number of cell physiological processes such as protein/lipid metabolism, nutrient sensing and cell survival. Here we develop a library of ultra-pH-sensitive fluorescent nanoparticles with chemical properties that allow fine-scale, multiplexed, spatio-temporal perturbation and quantification of catabolic organelle maturation at single organelle resolution to support quantitative investigation of these processes in living cells.

  20. A workflow for the automatic segmentation of organelles in electron microscopy image stacks

    PubMed Central

    Perez, Alex J.; Seyedhosseini, Mojtaba; Deerinck, Thomas J.; Bushong, Eric A.; Panda, Satchidananda; Tasdizen, Tolga; Ellisman, Mark H.

    2014-01-01

    Electron microscopy (EM) facilitates analysis of the form, distribution, and functional status of key organelle systems in various pathological processes, including those associated with neurodegenerative disease. Such EM data often provide important new insights into the underlying disease mechanisms. The development of more accurate and efficient methods to quantify changes in subcellular microanatomy has already proven key to understanding the pathogenesis of Parkinson's and Alzheimer's diseases, as well as glaucoma. While our ability to acquire large volumes of 3D EM data is progressing rapidly, more advanced analysis tools are needed to assist in measuring precise three-dimensional morphologies of organelles within data sets that can include hundreds to thousands of whole cells. Although new imaging instrument throughputs can exceed teravoxels of data per day, image segmentation and analysis remain significant bottlenecks to achieving quantitative descriptions of whole cell structural organellomes. Here, we present a novel method for the automatic segmentation of organelles in 3D EM image stacks. Segmentations are generated using only 2D image information, making the method suitable for anisotropic imaging techniques such as serial block-face scanning electron microscopy (SBEM). Additionally, no assumptions about 3D organelle morphology are made, ensuring the method can be easily expanded to any number of structurally and functionally diverse organelles. Following the presentation of our algorithm, we validate its performance by assessing the segmentation accuracy of different organelle targets in an example SBEM dataset and demonstrate that it can be efficiently parallelized on supercomputing resources, resulting in a dramatic reduction in runtime. PMID:25426032

  1. The acquisition of phototrophy: adaptive strategies of hosting endosymbionts and organelles.

    PubMed

    Johnson, Matthew D

    2011-01-01

    Many non-photosynthetic species of protists and metazoans are capable of hosting viable algal endosymbionts or their organelles through adaptations of phagocytic pathways. A form of mixotrophy combining phototrophy and heterotrophy, acquired phototrophy (AcPh) encompasses a suite of endosymbiotic and organelle retention interactions, that range from facultative to obligate. AcPh is a common phenomenon in aquatic ecosystems, with endosymbiotic associations generally more prevalent in nutrient poor environments, and organelle retention typically associated with more productive ones. All AcPhs benefit from enhanced growth due to access to photosynthetic products; however, the degree of metabolic integration and dependency in the host varies widely. AcPh is found in at least four of the major eukaryotic supergroups, and is the driving force in the evolution of secondary and tertiary plastid acquisitions. Mutualistic resource partitioning characterizes most algal endosymbiotic interactions, while organelle retention is a form of predation, characterized by nutrient flow (i.e., growth) in one direction. AcPh involves adaptations to recognize specific prey or endosymbionts and to house organelles or endosymbionts within the endomembrane system but free from digestion. In many cases, hosts depend upon AcPh for the production of essential nutrients, many of which remain obscure. The practice of AcPh has led to multiple independent secondary and tertiary plastid acquisition events among several eukaryote lineages, giving rise to the diverse array of algae found in modern aquatic ecosystems. This article highlights those AcPhs that are model research organisms for both metazoans and protists. Much of the basic biology of AcPhs remains enigmatic, particularly (1) which essential nutrients or factors make certain forms of AcPh obligatory, (2) how hosts regulate and manipulate endosymbionts or sequestered organelles, and (3) what genomic imprint, if any, AcPh leaves on non

  2. The effect of elevated intraocular oxygen on organelle degradation in the embryonic chicken lens.

    PubMed

    Bassnett, Steven; McNulty, Richard

    2003-12-01

    In the vertebrate lens, nuclei and other cytoplasmic organelles are degraded in fiber cells situated in the center of the tissue. This is believed to ensure the transparency of the tissue. The mechanism that triggers this process is unknown. We hypothesized that standing gradients of oxygen generated within the tissue may serve as a spatial cue for organelle degradation. To examine this possibility, we incubated fertilized chicken eggs under hyperoxic (50% O(2)) or normoxic (21% O(2)) conditions. Hyperoxic treatment was initiated on the seventh day of embryonic development (E7), five days before organelle degradation normally commences in the lens core. Hyperoxia was maintained until E17. Under normoxic conditions, the partial pressure of oxygen (P(O)) within the vitreous compartment was low. Direct measurement of P(O) using an optode oxygen sensor indicated values of 1.3 kPa and 0.4 kPa for the mid- and anterior vitreous, respectively. Similarly, treatment with pimonidazole, a bio-reductive hypoxia marker, led to the formation of immuno-positive protein adducts within the lens, suggesting that the embryonic lens is chronically hypoxic in situ. Following hyperoxic treatment, vitreous P(O) significantly increased, although pimonidazole staining in the lens was not markedly affected. Confocal microscopy of slices prepared from hyperoxic lenses revealed a significant increase in the size of the lens relative to age-matched normoxic controls. By E13, an organelle-free zone (OFZ) was present in the center of normoxic and hyperoxic lenses. However, in hyperoxic lenses, the OFZ was consistently smaller, and the distance from the lens surface to the border of the OFZ significantly larger, than in normoxic controls. These observations suggest that hyperoxia delays organelle breakdown and are consistent with a model in which hypoxia in the deep cortical layers of the normal lens serves as a trigger for the organelle loss process.

  3. The mitochondrion-like organelle of Trimastix pyriformis contains the complete glycine cleavage system.

    PubMed

    Zubáčová, Zuzana; Novák, Lukáš; Bublíková, Jitka; Vacek, Vojtěch; Fousek, Jan; Rídl, Jakub; Tachezy, Jan; Doležal, Pavel; Vlček, Cestmír; Hampl, Vladimír

    2013-01-01

    All eukaryotic organisms contain mitochondria or organelles that evolved from the same endosymbiotic event like classical mitochondria. Organisms inhabiting low oxygen environments often contain mitochondrial derivates known as hydrogenosomes, mitosomes or neutrally as mitochondrion-like organelles. The detailed investigation has shown unexpected evolutionary plasticity in the biochemistry and protein composition of these organelles in various protists. We investigated the mitochondrion-like organelle in Trimastix pyriformis, a free-living member of one of the three lineages of anaerobic group Metamonada. Using 454 sequencing we have obtained 7 037 contigs from its transcriptome and on the basis of sequence homology and presence of N-terminal extensions we have selected contigs coding for proteins that putatively function in the organelle. Together with the results of a previous transcriptome survey, the list now consists of 23 proteins - mostly enzymes involved in amino acid metabolism, transporters and maturases of proteins and transporters of metabolites. We have no evidence of the production of ATP in the mitochondrion-like organelle of Trimastix but we have obtained experimental evidence for the presence of enzymes of the glycine cleavage system (GCS), which is part of amino acid metabolism. Using homologous antibody we have shown that H-protein of GCS localizes into vesicles in the cell of Trimastix. When overexpressed in yeast, H- and P-protein of GCS and cpn60 were transported into mitochondrion. In case of H-protein we have demonstrated that the first 16 amino acids are necessary for this transport. Glycine cleavage system is at the moment the only experimentally localized pathway in the mitochondrial derivate of Trimastix pyriformis.

  4. The Influence of Reserpine and Ethylenediaminetetraacetic Acid (EDTA) on Serotonin Storage Organelles of Blood Platelets

    PubMed Central

    Gerrard, Jonathan M.; Rao, Gundu H. R.; White, James G.

    1977-01-01

    The present investigation has evaluated the influence of reserpine on the serotonin-rich organelles bodies) in platelets from dogs, rabbits, and humans. Reserpine markedly depresses the levels of stored serotonin in human and animal platelets, accompanied by a small decrease in platelet ATP but no change in platelet ADP content. Thin sections of human platelets showed no change in the number or morphology of serotonin storage organelles during reserpine therapy, whereas a profound decrease in the size and number of dense bodies occurred in platelets from rabbits treated with reserpine. Dog platelets also showed a decrease in the number and density of serotonin storage organelles after reserpine therapy. The basis for the difference between rabbit and human platelets was explored by fixing platelets in glutaraldehyde and osmium in the presence or absence of the chelating agent ethylenediaminetetraacetic acid (EDTA). Most of the dense bodies in fixed human platelets were removed by EDTA while rabbit platelet dense bodies remained essentially intact. The results suggested that the opacity of rabbit platelet dense bodies following fixation with glutaraldehyde and osmium relate primarily to their serotonin content, while the electron density of human serotonin storage organelles in fixed cells is due primarily to their calcium content. Further confirmation of this concept came from studies of platelets using the whole mount technique. Rabbit platelet serotonin storage organelles were found to lack the inherent opacity of the human dense bodies, a finding consistent with the lower concentration of calcium in the rabbit organelles. ImagesFigures 1A-DFigure 2Figure 3Figure 4Figures 5 and 6Figure 7Figure 8 PMID:405872

  5. Autophagy and lysosomal related protein expression patterns in human glioblastoma.

    PubMed

    Giatromanolaki, Alexandra; Sivridis, Efthimios; Mitrakas, Achileas; Kalamida, Dimitra; Zois, Christos E; Haider, Syed; Piperidou, Charitomeni; Pappa, Aglaia; Gatter, Kevin C; Harris, Adrian L; Koukourakis, Michael I

    2014-01-01

    Glioblastoma cells are resistant to apoptotic stimuli with autophagic death prevailing under cytotoxic stress. Autophagy interfering agents may represent a new strategy to test in combination with chemo-radiation. We investigated the patterns of expression of autophagy related proteins (LC3A, LC3B, p62, Beclin 1, ULK1 and ULK2) in a series of patients treated with post-operative radiotherapy. Experiments with glioblastoma cell lines (T98 and U87) were also performed to assess autophagic response under conditions simulating the adverse intratumoral environment. Glioblastomas showed cytoplasmic overexpression of autophagic proteins in a varying extent, so that cases could be grouped into low and high expression groups. 10/23, 5/23, 13/23, 5/23, 8/23 and 9/23 cases examined showed extensive expression of LC3A, LC3B, Beclin 1, Ulk 1, Ulk 2 and p62, respectively. Lysosomal markers Cathepsin D and LAMP2a, as well as the lyososomal biogenesis transcription factor TFEB were frequently overexpressed in glioblastomas (10/23, 11/23, and 10/23 cases, respectively). TFEB was directly linked with PTEN, Cathepsin D, HIF1α, LC3B, Beclin 1 and p62 expression. PTEN was also significantly related with LC3B but not LC3A expression, in both immunohistochemistry and gene expression analysis. Confocal microscopy in T98 and U87 cell lines showed distinct identity of LC3A and LC3B autophagosomes. The previously reported stone-like structure (SLS) pattern of LC3 expression was related with prognosis. SLS were inducible in glioblastoma cell lines under exposure to acidic conditions and 2DG mediated glucose antagonism. The present study provides the basis for autophagic characterization of human glioblastoma for further translational studies and targeted therapy trials.

  6. RNase P branches out from RNP to protein: organelle-triggered diversification?

    PubMed Central

    Goldfarb, Katherine C.; Borah, Sumit; Cech, Thomas R.

    2012-01-01

    RNase P is the enzyme that removes 5′ leader sequences from precursor tRNAs. Remarkably, in most organisms, RNase P is a ribonucleoprotein particle where the RNA component is responsible for catalysis. In this issue of Genes & Development, Gutmann and colleagues (pp. 1022–1027) report the first organism, Arabidopsis thaliana, to employ protein-only RNase P in both its nucleus and organelles. An intriguing possibility is that replacement of RNase P ribonucleoprotein particles (RNPs) by proteins may have been triggered by the acquisition of organelles. PMID:22588715

  7. In Vitro Assays Demonstrate That Pollen Tube Organelles Use Kinesin-Related Motor Proteins to Move along MicrotubulesW⃞

    PubMed Central

    Romagnoli, Silvia; Cai, Giampiero; Cresti, Mauro

    2003-01-01

    The movement of pollen tube organelles relies on cytoskeletal elements. Although the movement of organelles along actin filaments in the pollen tube has been studied widely and is becoming progressively clear, it remains unclear what role microtubules play. Many uncertainties about the role of microtubules in the active transport of pollen tube organelles and/or in the control of this process remain to be resolved. In an effort to determine if organelles are capable of moving along microtubules in the absence of actin, we extracted organelles from tobacco pollen tubes and analyzed their ability to move along in vitro–polymerized microtubules under different experimental conditions. Regardless of their size, the organelles moved at different rates along microtubules in the presence of ATP. Cytochalasin D did not inhibit organelle movement, indicating that actin filaments are not required for organelle transport in our assay. The movement of organelles was cytosol independent, which suggests that soluble factors are not necessary for the organelle movement to occur and that microtubule-based motor proteins are present on the organelle surface. By washing organelles with KI, it was possible to release proteins capable of gliding carboxylated beads along microtubules. Several membrane fractions, which were separated by Suc density gradient centrifugation, showed microtubule-based movement. Proteins were extracted by KI treatment from the most active organelle fraction and then analyzed with an ATP-sensitive microtubule binding assay. Proteins isolated by the selective binding to microtubules were tested for the ability to glide microtubules in the in vitro motility assay, for the presence of microtubule-stimulated ATPase activity, and for cross-reactivity with anti-kinesin antibodies. We identified and characterized a 105-kD organelle-associated motor protein that is functionally, biochemically, and immunologically related to kinesin. This work provides clear

  8. Nucleotide specificities of anterograde and retrograde organelle transport in Reticulomyxa are indistinguishable.

    PubMed

    Schliwa, M; Shimizu, T; Vale, R D; Euteneuer, U

    1991-03-01

    Membrane-bound organelles move bidirectionally along microtubules in the freshwater ameba, Reticulomyxa. We have examined the nucleotide requirements for transport in a lysed cell model and compared them with kinesin and dynein-driven motility in other systems. Both anterograde and retrograde transport in Reticulomyxa show features characteristic of dynein but not of kinesin-powered movements: organelle transport is reactivated only by ATP and no other nucleoside triphosphates; the Km and Vmax of the ATP-driven movements are similar to values obtained for dynein rather than kinesin-driven movement; and of 15 ATP analogues tested for their ability to promote organelle transport, only 4 of them did. This narrow specificity resembles that of dynein-mediated in vitro transport and is dissimilar to the broad specificity of the kinesin motor (Shimizu, T., K. Furusawa, S. Ohashi, Y. Y. Toyoshima, M. Okuno, F. Malik, and R. D. Vale. 1991. J. Cell Biol. 112: 1189-1197). Remarkably, anterograde and retrograde organelle transport cannot be distinguished at all with respect to nucleotide specificity, kinetics of movement, and the ability to use the ATP analogues. Since the "kinetic fingerprints" of the motors driving transport in opposite directions are indistinguishable, the same type of motor(s) may be involved in the two directions of movement.

  9. Changes in architecture of the Golgi complex and other subcellular organelles during myogenesis

    PubMed Central

    1993-01-01

    Myogenesis involves changes in both gene expression and cellular architecture. Little is known of the organization, in muscle in vivo, of the subcellular organelles involved in protein synthesis despite the potential importance of targeted protein synthesis for formation and maintenance of functional domains such as the neuromuscular junction. A panel of antibodies to markers of the ER, the Golgi complex, and the centrosome were used to localize these organelles by immunofluorescence in myoblasts and myotubes of the mouse muscle cell line C2 in vitro, and in intact single muscle fibers from the rat flexor digitorum brevis. Antibodies to the ER stained structures throughout the cytoplasm of both C2 myoblasts and myotubes. In contrast, the spatial relationship between nucleus, centrosome, and Golgi complex was dramatically altered. These changes could also be observed in a low- calcium medium that allowed differentiation while preventing myoblast fusion. Muscle fibers in vivo resembled myotubes except that the ER occupied a smaller volume of cytoplasm and no staining was found for one of the Golgi complex markers, the enzyme alpha-mannosidase II. Electron microscopy, however, clearly showed the presence of stacks of Golgi cisternae in both junctional and extrajunctional regions of muscle fibers. The perinuclear distribution of the Golgi complex was also observed in live muscle fibers stained with a fluorescent lipid. Thus, the distribution of subcellular organelles of the secretory pathway was found to be similar in myotubes and muscle fibers, and all organelles were found in both junctional and extrajunctional areas of muscle. PMID:7678420

  10. Biogenesis of the crystalloid organelle in Plasmodium involves microtubule-dependent vesicle transport and assembly

    PubMed Central

    Saeed, Sadia; Tremp, Annie Z.; Dessens, Johannes T.

    2015-01-01

    Malaria parasites possess unique subcellular structures and organelles. One of these is the crystalloid, a multivesicular organelle that forms during the parasite’s development in vector mosquitoes. The formation and function of these organelles remain poorly understood. A family of six conserved and modular proteins named LCCL-lectin adhesive-like proteins (LAPs), which have essential roles in sporozoite transmission, localise to the crystalloids. In this study we analyse crystalloid formation using transgenic Plasmodium berghei parasites expressing GFP-tagged LAP3. We show that deletion of the LCCL domain from LAP3 causes retarded crystalloid development, while knockout of LAP3 prevents formation of the organelle. Our data reveal that the process of crystalloid formation involves active relocation of endoplasmic reticulum-derived vesicles to common assembly points via microtubule-dependent transport. Inhibition of microtubule-dependent cargo transport disrupts this process and replicates the LCCL domain deletion mutant phenotype in wildtype parasites. These findings provide the first clear insight into crystalloid biogenesis, demonstrating a fundamental role for the LAP family in this process, and identifying the crystalloid and its formation as potential targets for malaria transmission control. PMID:25900212

  11. An organelle-specific protein landscape identifies novel diseases and molecular mechanisms

    PubMed Central

    Boldt, Karsten; van Reeuwijk, Jeroen; Lu, Qianhao; Koutroumpas, Konstantinos; Nguyen, Thanh-Minh T.; Texier, Yves; van Beersum, Sylvia E. C.; Horn, Nicola; Willer, Jason R.; Mans, Dorus A.; Dougherty, Gerard; Lamers, Ideke J. C.; Coene, Karlien L. M.; Arts, Heleen H.; Betts, Matthew J.; Beyer, Tina; Bolat, Emine; Gloeckner, Christian Johannes; Haidari, Khatera; Hetterschijt, Lisette; Iaconis, Daniela; Jenkins, Dagan; Klose, Franziska; Knapp, Barbara; Latour, Brooke; Letteboer, Stef J. F.; Marcelis, Carlo L.; Mitic, Dragana; Morleo, Manuela; Oud, Machteld M.; Riemersma, Moniek; Rix, Susan; Terhal, Paulien A.; Toedt, Grischa; van Dam, Teunis J. P.; de Vrieze, Erik; Wissinger, Yasmin; Wu, Ka Man; Apic, Gordana; Beales, Philip L.; Blacque, Oliver E.; Gibson, Toby J.; Huynen, Martijn A.; Katsanis, Nicholas; Kremer, Hannie; Omran, Heymut; van Wijk, Erwin; Wolfrum, Uwe; Kepes, François; Davis, Erica E.; Franco, Brunella; Giles, Rachel H.; Ueffing, Marius; Russell, Robert B.; Roepman, Ronald; Al-Turki, Saeed; Anderson, Carl; Antony, Dinu; Barroso, Inês; Bentham, Jamie; Bhattacharya, Shoumo; Carss, Keren; Chatterjee, Krishna; Cirak, Sebahattin; Cosgrove, Catherine; Danecek, Petr; Durbin, Richard; Fitzpatrick, David; Floyd, Jamie; Reghan Foley, A.; Franklin, Chris; Futema, Marta; Humphries, Steve E.; Hurles, Matt; Joyce, Chris; McCarthy, Shane; Mitchison, Hannah M.; Muddyman, Dawn; Muntoni, Francesco; O'Rahilly, Stephen; Onoufriadis, Alexandros; Payne, Felicity; Plagnol, Vincent; Raymond, Lucy; Savage, David B.; Scambler, Peter; Schmidts, Miriam; Schoenmakers, Nadia; Semple, Robert; Serra, Eva; Stalker, Jim; van Kogelenberg, Margriet; Vijayarangakannan, Parthiban; Walter, Klaudia; Whittall, Ros; Williamson, Kathy

    2016-01-01

    Cellular organelles provide opportunities to relate biological mechanisms to disease. Here we use affinity proteomics, genetics and cell biology to interrogate cilia: poorly understood organelles, where defects cause genetic diseases. Two hundred and seventeen tagged human ciliary proteins create a final landscape of 1,319 proteins, 4,905 interactions and 52 complexes. Reverse tagging, repetition of purifications and statistical analyses, produce a high-resolution network that reveals organelle-specific interactions and complexes not apparent in larger studies, and links vesicle transport, the cytoskeleton, signalling and ubiquitination to ciliary signalling and proteostasis. We observe sub-complexes in exocyst and intraflagellar transport complexes, which we validate biochemically, and by probing structurally predicted, disruptive, genetic variants from ciliary disease patients. The landscape suggests other genetic diseases could be ciliary including 3M syndrome. We show that 3M genes are involved in ciliogenesis, and that patient fibroblasts lack cilia. Overall, this organelle-specific targeting strategy shows considerable promise for Systems Medicine. PMID:27173435

  12. Calcium signaling in plant cell organelles delimited by a double membrane.

    PubMed

    Xiong, Tou-Cheu; Bourque, Stéphane; Lecourieux, David; Amelot, Nicolas; Grat, Sabine; Brière, Christian; Mazars, Christian; Pugin, Alain; Ranjeva, Raoul

    2006-11-01

    Increases in the concentration of free calcium in the cytosol are one of the general events that relay an external stimulus to the internal cellular machinery and allow eukaryotic organisms, including plants, to mount a specific biological response. Different lines of evidence have shown that other intracellular organelles contribute to the regulation of free calcium homeostasis in the cytosol. The vacuoles, the endoplasmic reticulum and the cell wall constitute storage compartments for mobilizable calcium. In contrast, the role of organelles surrounded by a double membrane (e.g. mitochondria, chloroplasts and nuclei) is more complex. Here, we review experimental data showing that these organelles harbor calcium-dependent biological processes. Mitochondria, chloroplasts as well as nuclei are equipped to generate calcium signal on their own. Changes in free calcium in a given organelle may also favor the relocalization of proteins and regulatory components and therefore have a profound influence on the integrated functioning of the cell. Studying, in time and space, the dynamics of different components of calcium signaling pathway will certainly give clues to understand the extraordinary flexibility of plants to respond to stimuli and mount adaptive responses. The availability of technical and biological resources should allow breaking new grounds by unveiling the contribution of signaling networks in integrative plant biology.

  13. Phase Transition of a Disordered Nuage Protein Generates Environmentally Responsive Membraneless Organelles

    PubMed Central

    Nott, Timothy J.; Petsalaki, Evangelia; Farber, Patrick; Jervis, Dylan; Fussner, Eden; Plochowietz, Anne; Craggs, Timothy D.; Bazett-Jones, David P.; Pawson, Tony; Forman-Kay, Julie D.; Baldwin, Andrew J.

    2015-01-01

    Summary Cells chemically isolate molecules in compartments to both facilitate and regulate their interactions. In addition to membrane-encapsulated compartments, cells can form proteinaceous and membraneless organelles, including nucleoli, Cajal and PML bodies, and stress granules. The principles that determine when and why these structures form have remained elusive. Here, we demonstrate that the disordered tails of Ddx4, a primary constituent of nuage or germ granules, form phase-separated organelles both in live cells and in vitro. These bodies are stabilized by patterned electrostatic interactions that are highly sensitive to temperature, ionic strength, arginine methylation, and splicing. Sequence determinants are used to identify proteins found in both membraneless organelles and cell adhesion. Moreover, the bodies provide an alternative solvent environment that can concentrate single-stranded DNA but largely exclude double-stranded DNA. We propose that phase separation of disordered proteins containing weakly interacting blocks is a general mechanism for forming regulated, membraneless organelles. PMID:25747659

  14. Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation.

    PubMed

    Tovar, Jorge; León-Avila, Gloria; Sánchez, Lidya B; Sutak, Robert; Tachezy, Jan; van der Giezen, Mark; Hernández, Manuel; Müller, Miklós; Lucocq, John M

    2003-11-13

    Giardia intestinalis (syn. lamblia) is one of the most widespread intestinal protozoan pathogens worldwide, causing hundreds of thousands of cases of diarrhoea each year. Giardia is a member of the diplomonads, often described as an ancient protist group whose primitive nature is suggested by the lack of typical eukaryotic organelles (for example, mitochondria, peroxisomes), the presence of a poorly developed endomembrane system and by their early branching in a number of gene phylogenies. The discovery of nuclear genes of putative mitochondrial ancestry in Giardia and the recent identification of mitochondrial remnant organelles in amitochondrial protists such as Entamoeba histolytica and Trachipleistophora hominis suggest that the eukaryotic amitochondrial state is not a primitive condition but is rather the result of reductive evolution. Using an in vitro protein reconstitution assay and specific antibodies against IscS and IscU--two mitochondrial marker proteins involved in iron-sulphur cluster biosynthesis--here we demonstrate that Giardia contains mitochondrial remnant organelles (mitosomes) bounded by double membranes that function in iron-sulphur protein maturation. Our results indicate that Giardia is not primitively amitochondrial and that it has retained a functional organelle derived from the original mitochondrial endosymbiont.

  15. Phosphorylation of αSNAP is Required for Secretory Organelle Biogenesis in Toxoplasma gondii.

    PubMed

    Stewart, Rebecca J; Ferguson, David J P; Whitehead, Lachlan; Bradin, Clare H; Wu, Hong J; Tonkin, Christopher J

    2016-02-01

    Upon infection, apicomplexan parasites quickly invade host cells and begin a replicative cycle rapidly increasing in number over a short period of time, leading to tissue lysis and disease. The secretory pathway of these highly polarized protozoan parasites tightly controls, in time and space, the biogenesis of specialized structures and organelles required for invasion and intracellular survival. In other systems, regulation of protein trafficking can occur by phosphorylation of vesicle fusion machinery. Previously, we have shown that Toxoplasma gondii αSNAP - a protein that controls the disassembly of cis-SNARE complexes--is phosphorylated. Here, we show that this post-translational modification is required for the correct function of αSNAP in controlling secretory traffic. We demonstrate that during intracellular development conditional expression of a non-phosphorylatable form of αSNAP results in Golgi fragmentation and vesiculation of all downstream secretory organelles. In addition, we show that the vestigial plastid (termed apicoplast), although reported not to be reliant on Golgi trafficking for biogenesis, is also affected upon overexpression of αSNAP and is much more sensitive to the levels of this protein than targeting to other organelles. This work highlights the importance of αSNAP and its phosphorylation in Toxoplasma organelle biogenesis and exposes a hereto fore-unexplored mechanism of regulation of vesicle fusion during secretory pathway trafficking in apicomplexan parasites.

  16. Biochemical characterization of a mitochondrial-like organelle from Blastocystis sp. subtype 7.

    PubMed

    Lantsman, Yelena; Tan, Kevin S W; Morada, Mary; Yarlett, Nigel

    2008-09-01

    A mitochondrion-like organelle (MLO) was isolated from isotonic homogenates of Blastocystis. The organelle sedimented at 5000 g for 10 min, and had an isopycnic density in sucrose of 1.2 g ml(-1). Biochemical characterization enabled the demonstration of several key enzymes that allowed the construction of a metabolic pathway consisting of an incomplete Krebs cycle linked to the oxygen-sensitive enzymes pyruvate : NADP(+) oxidoreductase (PNO), acetate : succinate CoA transferase (ASCT) and succinate thiokinase (STK), which cumulatively are responsible for recycling CoA and generating ATP. The organelle differs from typical aerobic mitochondria in possessing an oxygen-sensitive PNO that can use FAD(+) or FMN(+) as electron acceptor but is inactive with NAD(+), Spinacia oleracea ferredoxin or Clostridium pasteurianum ferredoxin. A gene with 77 % sequence similarity to the PNO mitochondrion precursor cluster from Euglena gracilis sp[Q941N5] was identified in the Blastocystis genome database. A second cluster with 56 % sequence similarity to the pyruvate : ferredoxin oxidoreductase (PFOR) from Trichomonas vaginalis was also identified, which is in agreement with the concept that the PNO gene arose through the fusion of a eubacterial gene for PFOR with the gene for NADPH : cytochrome p450 reductase. Hydrogenase activity was not detected under the conditions used in this study. The Blastocystis oranelle therefore demonstrates significant biochemical differences from traditional mitochondria and hydrogenosomes, but possesses features of both. Based upon the results of this study, the Blastocystis organelle falls into the category of a MLO.

  17. Divide and Conquer: the Application of Organelle Proteomics to Heart Failure

    PubMed Central

    Agnetti, Giulio; Husberg, Cathrine; Van Eyk, Jennifer E.

    2013-01-01

    Chronic heart failure is a worldwide cause of mortality and morbidity and is the final outcome of a number of different etiologies. This reflects both the complexity of the disease and our incomplete understanding of its underlying molecular mechanisms. One experimental approach to address this is to study subcellular organelles and how their functions are activated and synchronized under physiological and pathological conditions. In this review, we discuss the application of proteomic technologies to organelles and how this has deepened our perception of the cellular proteome and its alterations with heart failure. The use of proteomics to monitor protein quantity and post-translational modifications (PTMs) has revealed a highly intricate and sophisticated level of protein regulation. PTMs have the potential to regulate organelle function and interplay most likely by targeting both structural and signaling proteins throughout the cell, ultimately coordinating their responses. The potentials and limitations of current proteomic technologies are also discussed emphasizing that the development of novel methods will enhance our ability to further investigate organelles and decode intracellular communication. PMID:21335433

  18. Organelle-Specific Sensors for Monitoring Ca2+ Dynamics in Neurons

    PubMed Central

    Kwon, Seok-Kyu; Hirabayashi, Yusuke; Polleux, Franck

    2016-01-01

    Calcium (Ca2+) plays innumerable critical functions in neurons ranging from regulation of neurotransmitter release and synaptic plasticity to activity-dependent transcription. Therefore, more than any other cell types, neurons are critically dependent on spatially and temporally controlled Ca2+ dynamics. This is achieved through an exquisite level of compartmentalization of Ca2+ storage and release from various organelles. The function of these organelles in the regulation of Ca2+ dynamics has been studied for decades using electrophysiological and optical methods combined with pharmacological and genetic alterations. Mitochondria and the endoplasmic reticulum (ER) are among the organelles playing the most critical roles in Ca2+ dynamics in neurons. At presynaptic boutons, Ca2+ triggers neurotransmitter release and synaptic plasticity, and postsynaptically, Ca2+ mobilization mediates long-term synaptic plasticity. To explore Ca2+ dynamics in live cells and intact animals, various synthetic and genetically encoded fluorescent Ca2+ sensors were developed, and recently, many groups actively increased the sensitivity and diversity of genetically encoded Ca2+ indicators (GECIs). Following conjugation with various signal peptides, these improved GECIs can be targeted to specific subcellular compartments, allowing monitoring of organelle-specific Ca2+ dynamics. Here, we review recent findings unraveling novel roles for mitochondria- and ER-dependent Ca2+ dynamics in neurons and at synapses. PMID:27695411

  19. Nucleotide specificities of anterograde and retrograde organelle transport in Reticulomyxa are indistinguishable

    PubMed Central

    1991-01-01

    Membrane-bound organelles move bidirectionally along microtubules in the freshwater ameba, Reticulomyxa. We have examined the nucleotide requirements for transport in a lysed cell model and compared them with kinesin and dynein-driven motility in other systems. Both anterograde and retrograde transport in Reticulomyxa show features characteristic of dynein but not of kinesin-powered movements: organelle transport is reactivated only by ATP and no other nucleoside triphosphates; the Km and Vmax of the ATP-driven movements are similar to values obtained for dynein rather than kinesin-driven movement; and of 15 ATP analogues tested for their ability to promote organelle transport, only 4 of them did. This narrow specificity resembles that of dynein-mediated in vitro transport and is dissimilar to the broad specificity of the kinesin motor (Shimizu, T., K. Furusawa, S. Ohashi, Y. Y. Toyoshima, M. Okuno, F. Malik, and R. D. Vale. 1991. J. Cell Biol. 112: 1189-1197). Remarkably, anterograde and retrograde organelle transport cannot be distinguished at all with respect to nucleotide specificity, kinetics of movement, and the ability to use the ATP analogues. Since the "kinetic fingerprints" of the motors driving transport in opposite directions are indistinguishable, the same type of motor(s) may be involved in the two directions of movement. PMID:1825662

  20. Human p80-coilin is targeted to sphere organelles in the amphibian germinal vesicle.

    PubMed Central

    Wu, Z; Murphy, C; Gall, J G

    1994-01-01

    Cultured vertebrate cells often display one or more coiled bodies in their nuclei. These are spherical structures approximately 0.5-1.0 micron in diameter that contain high concentrations of small nuclear ribonucleoproteins (snRNPs); they are distinct from nuclear speckles and nucleoli, the other major sites of snRNP concentration. Coiled bodies in human cells contain a unique protein, p80-coilin, that has an M(r) = 80 kDa. Cloned p80-coilin cDNA encodes 576 amino acids with a calculated molecular weight of 62.6 kDa. To determine which of several snRNP-containing structures in the amphibian germinal vesicle (GV) might be the homologue of coiled bodies, we injected myc-tagged transcripts of full-length human p80-coilin into the cytoplasm of Xenopus oocytes and followed the fate of the translated proteins with an antibody specific for the tag. Western blots of GV proteins showed rapid appearance of both full-length and truncated p80-coilin in the nucleus. Immunofluorescent staining of spread GV contents demonstrated specific uptake of p80-coilin by the sphere organelle within 1 h after injection. Similar experiments were performed with a series of deletion constructs that lacked progressively longer segments from the carboxy terminus. A construct that contained only the first 102 amino acids (18% of the molecule) was specifically targeted to the sphere organelle. Conversely, a construct lacking the first 92 amino acids failed to localize, although it was imported into the GV. Thus, a relatively short region at the amino terminus of human p80-coilin is both necessary and sufficient for localization in the sphere organelle. Sphere organelles in the GV and coiled bodies in somatic nuclei are clearly related in composition. We suggest that they are homologous organelles with similar functions in preassembly and sorting of RNA processing components. Differences in their composition suggest functional specialization in the two cell types. Images PMID:7532471

  1. Mitochondria-derived organelles in the diplomonad fish parasite Spironucleus vortens.

    PubMed

    Millet, Coralie O M; Williams, Catrin F; Hayes, Anthony J; Hann, Anthony C; Cable, Joanne; Lloyd, David

    2013-10-01

    In some eukaryotes, mitochondria have become modified during evolution to yield derived organelles (MDOs) of a similar size (hydrogenosomes), or extremely reduced to produce tiny cellular vesicles (mitosomes). The current study provides evidence for the presence of MDOs in the highly infectious fish pathogen Spironucleus vortens, an organism that produces H₂ and is shown here to have no detectable cytochromes. Transmission electron microscopy (TEM) reveals that S. vortens trophozoites contain electron-dense, membranous structures sometimes with an electron-dense core (200 nm-1 μm), resembling the hydrogenosomes previously described in other protists from habitats deficient in O₂. Confocal microscopy establishes that these organelles exhibit autofluorescence emission spectra similar to flavoprotein constituents previously described for mitochondria and also present in hydrogenosomes. These organelles possess a membrane potential and are labelled by a fluorescently labeled antibody against Fe-hydrogenase from Blastocystis hominis. Heterologous antibodies raised to mitochondrial proteins frataxin and Isu1, also exhibit a discrete punctate pattern of localization in S. vortens; however these labelled structures are distinctly smaller (90-150 nm) than hydrogenosomes as observed previously in other organisms. TEM confirms the presence of double-membrane bounded organelles of this smaller size. In addition, strong background immunostaining occurs in the cytosol for frataxin and Isu1, and labelling by anti-ferredoxin antibody is generally distributed and not specifically localized except for at the anterior polar region. This suggests that some of the functions traditionally attributed to such MDOs may also occur elsewhere. The specialized parasitic life-style of S. vortens may necessitate more complex intracellular compartmentation of redox reactions than previously recognized. Control of infection requires biochemical characterization of redox-related organelles.

  2. Phylogeny of endocytic components yields insight into the process of nonendosymbiotic organelle evolution

    PubMed Central

    Dacks, Joel B.; Poon, Pak P.; Field, Mark C.

    2008-01-01

    The process by which some eukaryotic organelles, for example the endomembrane system, evolved without endosymbiotic input remains poorly understood. This problem largely arises because many major cellular systems predate the last common eukaryotic ancestor (LCEA) and thus do not provide examples of organellogenesis in progress. A model is emerging whereby gene duplication and divergence of multiple “specificity-” or “identity-” encoding proteins for the various endomembranous organelles produced the diversity of nonendosymbiotically derived cellular compartments present in modern eukaryotes. To address this possibility, we analyzed three molecular components of the endocytic membrane-trafficking machinery. Phylogenetic analyses of the endocytic syntaxins, Rab 5, and the β-adaptins each reveal a pattern of ancestral, undifferentiated endocytic homologues in the LCEA. Subsequently, these undifferentiated progenitors independently duplicated in widely divergent lineages, convergently producing components with similar endocytic roles, e.g., β1 and β2-adaptin. In contrast, β3, β4, and all other adaptin complex subunits, as well as paralogues of the syntaxins and Rabs specific for the other membrane-trafficking organelles, all evolved before the LCEA. Thus, the process giving rise to the differentiated organelles of the endocytic system appears to have been interrupted by the major speciation event that produced the extant eukaryotic lineages. These results suggest that although many endocytic components evolved before the LCEA, other major features evolved independently and convergently after diversification into the primary eukaryotic supergroups. This finding provides an example of a basic cellular system that was simpler in the LCEA than in many extant eukaryotes and yields insight into nonendosymbiotic organelle evolution. PMID:18182495

  3. Organelle Size Scaling of the Budding Yeast Vacuole by Relative Growth and Inheritance.

    PubMed

    Chan, Yee-Hung M; Reyes, Lorena; Sohail, Saba M; Tran, Nancy K; Marshall, Wallace F

    2016-05-09

    It has long been noted that larger animals have larger organs compared to smaller animals of the same species, a phenomenon termed scaling [1]. Julian Huxley proposed an appealingly simple model of "relative growth"-in which an organ and the whole body grow with their own intrinsic rates [2]-that was invoked to explain scaling in organs from fiddler crab claws to human brains. Because organ size is regulated by complex, unpredictable pathways [3], it remains unclear whether scaling requires feedback mechanisms to regulate organ growth in response to organ or body size. The molecular pathways governing organelle biogenesis are simpler than organogenesis, and therefore organelle size scaling in the cell provides a more tractable case for testing Huxley's model. We ask the question: is it possible for organelle size scaling to arise if organelle growth is independent of organelle or cell size? Using the yeast vacuole as a model, we tested whether mutants defective in vacuole inheritance, vac8Δ and vac17Δ, tune vacuole biogenesis in response to perturbations in vacuole size. In vac8Δ/vac17Δ, vacuole scaling increases with the replicative age of the cell. Furthermore, vac8Δ/vac17Δ cells continued generating vacuole at roughly constant rates even when they had significantly larger vacuoles compared to wild-type. With support from computational modeling, these results suggest there is no feedback between vacuole biogenesis rates and vacuole or cell size. Rather, size scaling is determined by the relative growth rates of the vacuole and the cell, thus representing a cellular version of Huxley's model.

  4. The Dunaliella salina organelle genomes: large sequences, inflated with intronic and intergenic DNA

    SciTech Connect

    Smith, David R.; Lee, Robert W.; Cushman, John C.; Magnuson, Jon K.; Tran, Duc; Polle, Juergen E.

    2010-05-07

    Abstract Background: Dunaliella salina Teodoresco, a unicellular, halophilic green alga belonging to the Chlorophyceae, is among the most industrially important microalgae. This is because D. salina can produce massive amounts of β-carotene, which can be collected for commercial purposes, and because of its potential as a feedstock for biofuels production. Although the biochemistry and physiology of D. salina have been studied in great detail, virtually nothing is known about the genomes it carries, especially those within its mitochondrion and plastid. This study presents the complete mitochondrial and plastid genome sequences of D. salina and compares them with those of the model green algae Chlamydomonas reinhardtii and Volvox carteri. Results: The D. salina organelle genomes are large, circular-mapping molecules with ~60% noncoding DNA, placing them among the most inflated organelle DNAs sampled from the Chlorophyta. In fact, the D. salina plastid genome, at 269 kb, is the largest complete plastid DNA (ptDNA) sequence currently deposited in GenBank, and both the mitochondrial and plastid genomes have unprecedentedly high intron densities for organelle DNA: ~1.5 and ~0.4 introns per gene, respectively. Moreover, what appear to be the relics of genes, introns, and intronic open reading frames are found scattered throughout the intergenic ptDNA regions -- a trait without parallel in other characterized organelle genomes and one that gives insight into the mechanisms and modes of expansion of the D. salina ptDNA. Conclusions: These findings confirm the notion that chlamydomonadalean algae have some of the most extreme organelle genomes of all eukaryotes. They also suggest that the events giving rise to the expanded ptDNA architecture of D. salina and other Chlamydomonadales may have occurred early in the evolution of this lineage. Although interesting from a genome evolution standpoint, the D. salina organelle DNA sequences will aid in the development of a viable

  5. Effects of Cisplatin in Neuroblastoma Rat Cells: Damage to Cellular Organelles

    PubMed Central

    Santin, Giada; Scietti, Luigi; Veneroni, Paola; Barni, Sergio; Bernocchi, Graziella; Bottone, Maria Grazia

    2012-01-01

    Cisplatin (cisPt) is a chemotherapy agent used as a treatment for several types of cancer. The main cytotoxic effect of cisplatin is generally accepted to be DNA damage. Recently, the mechanism by which cisPt generates the cascade of events involved in the apoptotic process has been demonstrated. In particular it has been shown that some organelles are cisPt target and are involved in cell death. This paper aims to describe the morphological and functional changes of the Golgi apparatus and lysosomes during apoptosis induced in neuronal rat cells (B50) by cisplatin. The results obtained show that the cellular organelles are the target of cisPt, so their damage can induce cell death. PMID:22505928

  6. Cell organelles from crassulacean-acid-metabolism (CAM) plants : I. Enzymes in isolated peroxisomes.

    PubMed

    Herbert, M; Burkhard, C; Schnarrenberger, C

    1978-01-01

    Cell organelles were isolated from the CAM plants Crassula lycopodioides Lam., Bryophyllum calycinum Salisb. and Sedum rubrotinctum R.T. Clausen by isopycnic centrifugation in sucrose gradients. The inclusion of 2.5% Ficoll in the grinding medium proved to be essential for a satisfactory separation of cell organelles during the subsequent centrifugation. Peroxisomes, mitochondria, and whole and broken chloroplasts were at least partially resolved as judged by marker-enzyme-activity profiles. The isolated peroxisomes contained activities of glycollate oxidase, catalase, hydroxypyruvate reductase, glycine aminotransferase, serine-glyoxylate aminotransferase, and aspartate aminotransferase, comparable to activities found in spinach (Spinacia oleracea L.) leaf peroxisomes. In contrast to spinach, however, only little, if any, particulate malate dehydrogenase activity could be attributed to isolated peroxisomes of the three CAM plants.

  7. Organelle DNA haplotypes reflect crop-use characteristics and geographic origins of Cannabis sativa.

    PubMed

    Gilmore, Simon; Peakall, Rod; Robertson, James

    2007-10-25

    Comparative sequencing of cannabis individuals across 12 chloroplast and mitochondrial DNA loci revealed 7 polymorphic sites, including 5 length variable regions and 2 single nucleotide polymorphisms. Simple PCR assays were developed to assay these polymorphisms, and organelle DNA haplotypes were obtained for 188 cannabis individuals from 76 separate populations, including drug-type, fibre-type and wild populations. The haplotype data were analysed using parsimony, UPGMA and neighbour joining methods. Three haplotype groups were recovered by each analysis method, and these groups are suggestive of the crop-use characteristics and geographical origin of the populations, although not strictly diagnostic. We discuss the relationship between our haplotype data and taxonomic opinions of cannabis, and the implications of organelle DNA haplotyping to forensic investigations of cannabis.

  8. Quantitatively Mapping Cellular Viscosity with Detailed Organelle Information via a Designed PET Fluorescent Probe

    PubMed Central

    Liu, Tianyu; Liu, Xiaogang; Spring, David R.; Qian, Xuhong; Cui, Jingnan; Xu, Zhaochao

    2014-01-01

    Viscosity is a fundamental physical parameter that influences diffusion in biological processes. The distribution of intracellular viscosity is highly heterogeneous, and it is challenging to obtain a full map of cellular viscosity with detailed organelle information. In this work, we report 1 as the first fluorescent viscosity probe which is able to quantitatively map cellular viscosity with detailed organelle information based on the PET mechanism. This probe exhibited a significant ratiometric fluorescence intensity enhancement as solvent viscosity increases. The emission intensity increase was attributed to combined effects of the inhibition of PET due to restricted conformational access (favorable for FRET, but not for PET), and the decreased PET efficiency caused by viscosity-dependent twisted intramolecular charge transfer (TICT). A full map of subcellular viscosity was successfully constructed via fluorescent ratiometric detection and fluorescence lifetime imaging; it was found that lysosomal regions in a cell possess the highest viscosity, followed by mitochondrial regions. PMID:24957323

  9. Active diffusion and microtubule-based transport oppose myosin forces to position organelles in cells

    NASA Astrophysics Data System (ADS)

    Lin, Congping; Schuster, Martin; Guimaraes, Sofia Cunha; Ashwin, Peter; Schrader, Michael; Metz, Jeremy; Hacker, Christian; Gurr, Sarah Jane; Steinberg, Gero

    2016-06-01

    Even distribution of peroxisomes (POs) and lipid droplets (LDs) is critical to their role in lipid and reactive oxygen species homeostasis. How even distribution is achieved remains elusive, but diffusive motion and directed motility may play a role. Here we show that in the fungus Ustilago maydis ~95% of POs and LDs undergo diffusive motions. These movements require ATP and involve bidirectional early endosome motility, indicating that microtubule-associated membrane trafficking enhances diffusion of organelles. When early endosome transport is abolished, POs and LDs drift slowly towards the growing cell end. This pole-ward drift is facilitated by anterograde delivery of secretory cargo to the cell tip by myosin-5. Modelling reveals that microtubule-based directed transport and active diffusion support distribution, mobility and mixing of POs. In mammalian COS-7 cells, microtubules and F-actin also counteract each other to distribute POs. This highlights the importance of opposing cytoskeletal forces in organelle positioning in eukaryotes.

  10. Multiple vacuoles in impaired tonoplast trafficking3 mutants are independent organelles.

    PubMed

    Zheng, Jiameng; Han, Sang Won; Munnik, Teun; Rojas-Pierce, Marcela

    2014-01-01

    Plant vacuoles are essential and dynamic organelles, and mechanisms of vacuole biogenesis and fusion are not well characterized. We recently demonstrated that Wortmannin, an inhibitor of Phosphatidylinositol 3-Kinase (PI3K), induces the fusion of plant vacuoles both in roots of itt3/vti11 mutant alleles and in guard cells of wild type Arabidopsis and Fava bean. Here we used Fluorescence Recovery After Photobleaching (FRAP) to demonstrate that the vacuoles in itt3/vti11 are independent organelles. Furthermore, we used fluorescent protein reporters that bind specifically to Phosphatidylinositol 3-Phosphate (PtdIns(3)P) or PtdIns(4)P to show that Wortmannin treatments that induce the fusion of vti11 vacuoles result in the loss of PtdIns(3)P from cellular membranes. These results provided supporting evidence for a critical role of PtdIns(3)P in vacuole fusion in roots and guard cells.

  11. Multiple vacuoles in impaired tonoplast trafficking3 mutants are independent organelles.

    PubMed

    Zheng, Jiameng; Won Han, Sang; Munnik, Teun; Rojas-Pierce, Marcela

    2014-08-13

    Plant vacuoles are essential and dynamic organelles, and mechanisms of vacuole biogenesis and fusion are not well characterized. We recently demonstrated that Wortmannin, an inhibitor of Phosphatidylinositol-3-Kinase (PI3K), induces the fusion of plant vacuoles both in roots of itt3/vti11 mutant alleles and in guard cells of wild type Arabidopsis and Fava bean. Here we used Fluorescence Recovery After Photobleaching (FRAP) to demonstrate that the vacuoles in itt3/vti11 are independent organelles. Furthermore, we used fluorescent protein reporters that bind specifically to Phosphatidylinositol-3-Phosphate (PtdIns(3)P) or PtdIns(4)P to show that Wortmannin treatments that induce the fusion of vti11 vacuoles result in the loss of PtdIns(3)P from cellular membranes. These results provided supporting evidence for a critical role of PtdIns(3)P in vacuole fusion in roots and guard cells.

  12. Multiple vacuoles in impaired tonoplast trafficking3 mutants are independent organelles

    PubMed Central

    Zheng, Jiameng; Han, Sang Won; Munnik, Teun; Rojas-Pierce, Marcela

    2014-01-01

    Plant vacuoles are essential and dynamic organelles, and mechanisms of vacuole biogenesis and fusion are not well characterized. We recently demonstrated that Wortmannin, an inhibitor of Phosphatidylinositol 3-Kinase (PI3K), induces the fusion of plant vacuoles both in roots of itt3/vti11 mutant alleles and in guard cells of wild type Arabidopsis and Fava bean. Here we used Fluorescence Recovery After Photobleaching (FRAP) to demonstrate that the vacuoles in itt3/vti11 are independent organelles. Furthermore, we used fluorescent protein reporters that bind specifically to Phosphatidylinositol 3-Phosphate (PtdIns(3)P) or PtdIns(4)P to show that Wortmannin treatments that induce the fusion of vti11 vacuoles result in the loss of PtdIns(3)P from cellular membranes. These results provided supporting evidence for a critical role of PtdIns(3)P in vacuole fusion in roots and guard cells. PMID:25482812

  13. Organelle-Specific Activity-Based Protein Profiling in Living Cells

    SciTech Connect

    Wiedner, Susan D.; Anderson, Lindsey N.; Sadler, Natalie C.; Chrisler, William B.; Kodali, Vamsi K.; Smith, Richard D.; Wright, Aaron T.

    2014-02-06

    A multimodal acidic organelle targeting activity-based probe was developed for analysis of subcellular native enzymatic activity of cells by fluorescent microscopy and mass spectrometry. A cathepsin reactive warhead was conjugated to an acidotropic amine, and a clickable alkyne for appendage of AlexaFluor 488 or biotin reporter tags. This probe accumulated in punctate vesicles surrounded by LAMP1, a lysosome marker, as observed by Structured Illumination Microscopy (SIM) in J774 mouse macrophage cells. Biotin conjugation, affinity purification, and analysis of in vivo labeled J774 by mass spectrometry showed that the probe was very selective for Cathepsins B and Z, two lysosomal cysteine proteases. Analysis of starvation induced autophagy, which is an increase in cell component catabolism involving lysosomes, showed a large increase in tagged protein number and an increase in cathepsin activity. Organelle targeting activity-based probes and subsequent analysis of resident proteins by mass spectrometry is enabled by tuning the physicochemical properties of the probe.

  14. Resonance Raman Probes for Organelle-Specific Labeling in Live Cells

    PubMed Central

    Kuzmin, Andrey N.; Pliss, Artem; Lim, Chang-Keun; Heo, Jeongyun; Kim, Sehoon; Rzhevskii, Alexander; Gu, Bobo; Yong, Ken-Tye; Wen, Shangchun; Prasad, Paras N.

    2016-01-01

    Raman microspectroscopy provides for high-resolution non-invasive molecular analysis of biological samples and has a breakthrough potential for dissection of cellular molecular composition at a single organelle level. However, the potential of Raman microspectroscopy can be fully realized only when novel types of molecular probes distinguishable in the Raman spectroscopy modality are developed for labeling of specific cellular domains to guide spectrochemical spatial imaging. Here we report on the design of a next generation Raman probe, based on BlackBerry Quencher 650 compound, which provides unprecedentedly high signal intensity through the Resonance Raman (RR) enhancement mechanism. Remarkably, RR enhancement occurs with low-toxic red light, which is close to maximum transparency in the biological optical window. The utility of proposed RR probes was validated for targeting lysosomes in live cultured cells, which enabled identification and subsequent monitoring of dynamic changes in this organelle by Raman imaging. PMID:27339882

  15. Resonance Raman Probes for Organelle-Specific Labeling in Live Cells

    NASA Astrophysics Data System (ADS)

    Kuzmin, Andrey N.; Pliss, Artem; Lim, Chang-Keun; Heo, Jeongyun; Kim, Sehoon; Rzhevskii, Alexander; Gu, Bobo; Yong, Ken-Tye; Wen, Shangchun; Prasad, Paras N.

    2016-06-01

    Raman microspectroscopy provides for high-resolution non-invasive molecular analysis of biological samples and has a breakthrough potential for dissection of cellular molecular composition at a single organelle level. However, the potential of Raman microspectroscopy can be fully realized only when novel types of molecular probes distinguishable in the Raman spectroscopy modality are developed for labeling of specific cellular domains to guide spectrochemical spatial imaging. Here we report on the design of a next generation Raman probe, based on BlackBerry Quencher 650 compound, which provides unprecedentedly high signal intensity through the Resonance Raman (RR) enhancement mechanism. Remarkably, RR enhancement occurs with low-toxic red light, which is close to maximum transparency in the biological optical window. The utility of proposed RR probes was validated for targeting lysosomes in live cultured cells, which enabled identification and subsequent monitoring of dynamic changes in this organelle by Raman imaging.

  16. Active diffusion and microtubule-based transport oppose myosin forces to position organelles in cells

    PubMed Central

    Lin, Congping; Schuster, Martin; Guimaraes, Sofia Cunha; Ashwin, Peter; Schrader, Michael; Metz, Jeremy; Hacker, Christian; Gurr, Sarah Jane; Steinberg, Gero

    2016-01-01

    Even distribution of peroxisomes (POs) and lipid droplets (LDs) is critical to their role in lipid and reactive oxygen species homeostasis. How even distribution is achieved remains elusive, but diffusive motion and directed motility may play a role. Here we show that in the fungus Ustilago maydis ∼95% of POs and LDs undergo diffusive motions. These movements require ATP and involve bidirectional early endosome motility, indicating that microtubule-associated membrane trafficking enhances diffusion of organelles. When early endosome transport is abolished, POs and LDs drift slowly towards the growing cell end. This pole-ward drift is facilitated by anterograde delivery of secretory cargo to the cell tip by myosin-5. Modelling reveals that microtubule-based directed transport and active diffusion support distribution, mobility and mixing of POs. In mammalian COS-7 cells, microtubules and F-actin also counteract each other to distribute POs. This highlights the importance of opposing cytoskeletal forces in organelle positioning in eukaryotes. PMID:27251117

  17. Quantitatively Mapping Cellular Viscosity with Detailed Organelle Information via a Designed PET Fluorescent Probe

    NASA Astrophysics Data System (ADS)

    Liu, Tianyu; Liu, Xiaogang; Spring, David R.; Qian, Xuhong; Cui, Jingnan; Xu, Zhaochao

    2014-06-01

    Viscosity is a fundamental physical parameter that influences diffusion in biological processes. The distribution of intracellular viscosity is highly heterogeneous, and it is challenging to obtain a full map of cellular viscosity with detailed organelle information. In this work, we report 1 as the first fluorescent viscosity probe which is able to quantitatively map cellular viscosity with detailed organelle information based on the PET mechanism. This probe exhibited a significant ratiometric fluorescence intensity enhancement as solvent viscosity increases. The emission intensity increase was attributed to combined effects of the inhibition of PET due to restricted conformational access (favorable for FRET, but not for PET), and the decreased PET efficiency caused by viscosity-dependent twisted intramolecular charge transfer (TICT). A full map of subcellular viscosity was successfully constructed via fluorescent ratiometric detection and fluorescence lifetime imaging; it was found that lysosomal regions in a cell possess the highest viscosity, followed by mitochondrial regions.

  18. Maternal inheritance of mitochondrial DNA: degradation of paternal mitochondria by allogeneic organelle autophagy, allophagy.

    PubMed

    Sato, Miyuki; Sato, Ken

    2012-03-01

    Maternal inheritance of mitochondrial DNA (mtDNA) is generally observed in many eukaryotes. Sperm-derived paternal mitochondria and their mtDNA enter the oocyte cytoplasm upon fertilization and then normally disappear during early embryogenesis. However, the mechanism underlying this clearance of paternal mitochondria has remained largely unknown. Recently, we showed that autophagy is required for the elimination of paternal mitochondria in Caenorhabditis elegans embryos. Shortly after fertilization, autophagosomes are induced locally around the penetrated sperm components. These autophagosomes engulf paternal mitochondria, resulting in their lysosomal degradation during early embryogenesis. In autophagy-defective zygotes, paternal mitochondria and their genomes remain even in the larval stage. Therefore, maternal inheritance of mtDNA is accomplished by autophagic degradation of paternal mitochondria. We also found that another kind of sperm-derived structure, called the membranous organelle, is degraded by zygotic autophagy as well. We thus propose to term this allogeneic (nonself) organelle autophagy as allophagy.

  19. Effects of the uncoupling agents FCCP and CCCP on the saltatory movements of cytoplasmic organelles.

    PubMed

    Hollenbeck, P J; Bray, D; Adams, R J

    1985-02-01

    Two potent uncoupling agents, carbonylcyanide-4-trifluoromethoxyphenylhydrazone (FCCP) and carbonylcyanide-3-chlorophenylhydrazone (CCCP) inhibit the movement of organelles in neurites of chick sensory neurones in culture. FCCP applied for 30 minutes at 10 microM reduces the number of moving organelles by 78% and a similar treatment with CCCP causes a reduction of 47%. At 100 microM either compound abolishes all directed movements both in neurites and in cultured 3T3 cells. These effects are probably not due to the discharge of proton gradients since 2,4-dinitrophenol (DNP), at concentrations shown to uncouple mitochondria by the discharge of the permeant cationic fluorescent probe rhodamine 123, fails to inhibit cytoplasmic movements. The inhibition of cytoplasmic movements by FCCP and CCCP is likely to be a consequence of their inhibitory action on a variety of enzymes, including dynein and myosin ATPases, through a reaction with sulfhydryl groups.

  20. Quantitatively mapping cellular viscosity with detailed organelle information via a designed PET fluorescent probe.

    PubMed

    Liu, Tianyu; Liu, Xiaogang; Spring, David R; Qian, Xuhong; Cui, Jingnan; Xu, Zhaochao

    2014-06-24

    Viscosity is a fundamental physical parameter that influences diffusion in biological processes. The distribution of intracellular viscosity is highly heterogeneous, and it is challenging to obtain a full map of cellular viscosity with detailed organelle information. In this work, we report 1 as the first fluorescent viscosity probe which is able to quantitatively map cellular viscosity with detailed organelle information based on the PET mechanism. This probe exhibited a significant ratiometric fluorescence intensity enhancement as solvent viscosity increases. The emission intensity increase was attributed to combined effects of the inhibition of PET due to restricted conformational access (favorable for FRET, but not for PET), and the decreased PET efficiency caused by viscosity-dependent twisted intramolecular charge transfer (TICT). A full map of subcellular viscosity was successfully constructed via fluorescent ratiometric detection and fluorescence lifetime imaging; it was found that lysosomal regions in a cell possess the highest viscosity, followed by mitochondrial regions.

  1. The Membrane Marker mCLING Reveals the Molecular Composition of Trafficking Organelles.

    PubMed

    Revelo, Natalia H; Rizzoli, Silvio O

    2016-01-04

    mCLING is a fixable endocytosis marker that can be combined with immunolabeling techniques to study the molecular composition of trafficking organelles. mCLING can be used both in cultured cells and in tissue if critical sample preparation steps, such as fixation, are correctly performed. This unit describes protocols for the application of mCLING and for the subsequent sample processing. We include immunostaining protocols and embedding procedures for confocal and high-resolution microscopy.

  2. An NMR probe for the study of aerobic suspensions of cells and organelles

    SciTech Connect

    Balaban, R.S.; Gadian, D.G.; Radda, G.K.; Wong, G.G.

    1981-09-15

    The construction of an NMR probe and cell chamber with good mixing, pH buffering, and oxygenation characteristics, which can be used for relatively dilute cell and organelle suspension is described. The /sup 31/P NMR spectra of acceptable signal-to-noise ratios are obtained from approximately 200 mg (protein) of tissues, and kinetic studies of mitochondrial oxidative phosphorylation are demonstrated. Representative spectra from rabbit kidney cortical tubules and rabbit kidney cortical mitochondria are presented.

  3. The giant organelles in beige and Chediak-Higashi fibroblasts are derived from late endosomes and mature lysosomes

    PubMed Central

    1993-01-01

    Chediak-Higashi Syndrome (CHS) is an autosomal recessive disease affecting secretory granules and lysosomes-like organelles. In CHS fibroblasts, acidic organelles are abnormally large and clustered in the perinuclear area. We have analyzed fibroblast cell lines from a CHS patient and from the murine model for CHS, the beige mouse, to determine which lysosome-like compartments are affected. Uptake of neutral red showed that in both beige and CHS cell lines, the acidic organelles were markedly clustered in the perinuclear region of the cells. Giant organelles (> 4 microns) were observed in a fraction of the cells, and these were more dramatic in the beige fibroblasts than in the CHS fibroblasts. The total dye uptake of both mutant cell lines was similar to their respective wild type fibroblasts, suggesting that the overall volume of acidic compartments is unaffected by the disorder. Histochemistry and immunofluorescence showed that the giant organelles in both beige and CHS fibroblasts were positive for cathepsin D, lysosome-associated membrane protein (LAMP) 1, LAMP 2, and a 120-kD lysosomal glycoprotein, all marker proteins for late endosomes and lysosomes. The giant organelles were also negative for transferrin receptor and mannose-6-phosphate receptor, and most of them were also negative for rab 7. This distribution of marker proteins shows that the giant organelles in both beige and CHS are derived from late compartments of the endocytic pathway. This conclusion was confirmed using endocytic tracers. BSA was transported to the giant organelles, but only after long incubation times, and only at 37 degrees C. alpha 2- Macroglobulin was taken up and degraded at similar rates by CHS or beige cells and their respective wild type control cells. Taken together, our results indicate that the mutation in CHS specifically affects late endosomes and lysosomes, with little or no effect on early endosomes. Although the mutation clearly causes mislocalization of these

  4. The sigma-1 receptor chaperone as an inter-organelle signaling modulator

    PubMed Central

    Su, Tsung-Ping; Hayashi, Teruo; Maurice, Tangui; Buch, Shilpa; Ruoho, Arnold E.

    2010-01-01

    Inter-organelle signaling plays important roles in many physiological functions. Endoplasmic reticulum (ER)-mitochondrion signaling affects intra-mitochondrial calcium (Ca2+) homeostasis and cellular bioenergetics. ER-nucleus signaling attenuates ER stress. ER-plasma membrane signaling regulates cytosolic Ca2+ homeostasis, and ER-mitochondrion-plasma membrane signaling regulates hippocampal dendritic spine formation. Here we propose that the sigma-1 receptor (Sig-1R), an ER chaperone protein, acts as an inter-organelle signaling modulator. Sig-1Rs normally reside at the ER-mitochondrion contact called the MAM (mitochondrion-associated ER membrane), where Sig-1Rs regulate ER-mitochondrion signaling and the ER-nucleus cross-talk. When cells are stimulated by ligands or undergo prolonged stress, Sig-1Rs translocate from the MAM to the ER reticular network and plasmalemma/plasma membrane to regulate a variety of functional proteins, including ion channels, receptors, and kinases. Thus, the Sig-1R serves as an inter-organelle signaling modulator locally at the MAM and remotely at the plasmalemma/plasma membrane. Many pharmacological/physiological effects of Sig-1Rs may relate to this unique action of Sig-1Rs. PMID:20869780

  5. DNA transfer from organelles to the nucleus: the idiosyncratic genetics of endosymbiosis.

    PubMed

    Kleine, Tatjana; Maier, Uwe G; Leister, Dario

    2009-01-01

    In eukaryotes, DNA is exchanged between endosymbiosis-derived compartments (mitochondria and chloroplasts) and the nucleus. Organelle-to-nucleus DNA transfer involves repair of double-stranded breaks by nonhomologous end-joining, and resulted during early organelle evolution in massive relocation of organelle genes to the nucleus. A large fraction of the products of the nuclear genes so acquired are retargeted to their ancestral compartment; many others now function in new subcellular locations. Almost all present-day nuclear transfers of mitochondrial or plastid DNA give rise to noncoding sequences, dubbed nuclear mitochondrial DNAs (NUMTs) and nuclear plastid DNAs (NUPTs). Some of these sequences were recruited as exons, thus introducing new coding sequences into preexisting nuclear genes by a novel mechanism. In organisms derived from secondary or tertiary endosymbiosis, serial gene transfers involving nucleus-to-nucleus migration of DNA have also occurred. Intercompartmental DNA transfer therefore represents a significant driving force for gene and genome evolution, relocating and refashioning genes and contributing to genetic diversity.

  6. AQUATIC PLANT SPECIATION AFFECTED BY DIVERSIFYING SELECTION OF ORGANELLE DNA REGIONS(1).

    PubMed

    Kato, Syou; Misawa, Kazuharu; Takahashi, Fumio; Sakayama, Hidetoshi; Sano, Satomi; Kosuge, Keiko; Kasai, Fumie; Watanabe, Makoto M; Tanaka, Jiro; Nozaki, Hisayoshi

    2011-10-01

    Many of the genes that control photosynthesis are carried in the chloroplast. These genes differ among species. However, evidence has yet to be reported revealing the involvement of organelle genes in the initial stages of plant speciation. To elucidate the molecular basis of aquatic plant speciation, we focused on the unique plant species Chara braunii C. C. Gmel. that inhabits both shallow and deep freshwater habitats and exhibits habitat-based dimorphism of chloroplast DNA (cpDNA). Here, we examined the "shallow" and "deep" subpopulations of C. braunii using two nuclear DNA (nDNA) markers and cpDNA. Genetic differentiation between the two subpopulations was measured in both nDNA and cpDNA regions, although phylogenetic analyses suggested nuclear gene flow between subpopulations. Neutrality tests based on Tajima's D demonstrated diversifying selection acting on organelle DNA regions. Furthermore, both "shallow" and "deep" haplotypes of cpDNA detected in cultures originating from bottom soils of three deep environments suggested that migration of oospores (dormant zygotes) between the two habitats occurs irrespective of the complete habitat-based dimorphism of cpDNA from field-collected vegetative thalli. Therefore, the two subpopulations are highly selected by their different aquatic habitats and show prezygotic isolation, which represents an initial process of speciation affected by ecologically based divergent selection of organelle genes.

  7. Molecular characterization of a trafficking organelle: dissecting the axonal paths of calsyntenin-1 transport vesicles.

    PubMed

    Steuble, Martin; Gerrits, Bertran; Ludwig, Alexander; Mateos, José María; Diep, Tu-My; Tagaya, Mitsuo; Stephan, Alexander; Schätzle, Philipp; Kunz, Beat; Streit, Peter; Sonderegger, Peter

    2010-11-01

    Kinesin motors play crucial roles in the delivery of membranous cargo to its destination and thus for the establishment and maintenance of cellular polarization. Recently, calsyntenin-1 was identified as a cargo-docking protein for Kinesin-1-mediated axonal transport of tubulovesicular organelles along axons of central nervous system neurons. To further define the function of calsyntenin-1, we immunoisolated calsyntenin-1 organelles from murine brain homogenates and determined their proteome by MS. We found that calsyntenin-1 organelles are endowed with components of the endosomal trafficking machinery and contained the β-amyloid precursor protein (APP). Detailed biochemical analyses of calsyntenin-1 immunoisolates in conjunction with immunocytochemical colocalization studies with cultured hippocampal neurons, using endosomal marker proteins for distinct subcompartments of the endosomal pathways, indicated that neuronal axons contain at least two distinct, nonoverlapping calsyntenin-1-containing transport packages: one characterized as early-endosomal, APP positive, the other as recycling-endosomal, APP negative. We postulate that calsyntenin-1 acts as a general mediator of anterograde axonal transportation of endosomal vesicles. In this role, calsyntenin-1 may actively contribute to axonal growth and pathfinding in the developing as well as to the maintenance of neuronal polarity in the adult nervous system; further, it may actively contribute to the stabilization of APP during its anterograde axonal trajectory.

  8. Organelle sedimentation in gravitropic roots of Limnobium is restricted to the elongation zone

    NASA Technical Reports Server (NTRS)

    Sack, F. D.; Kim, D.; Stein, B.

    1994-01-01

    Roots of the aquatic angiosperm Limnobium spongia (Bosc) Steud. were evaluated by light and electron microscopy to determine the distribution of organelle sedimentation towards gravity. Roots of Limnobium are strongly gravitropic. The rootcap consists of only two layers of cells. Although small amyloplasts are present in the central cap cells, no sedimentation of any organelle, including amyloplasts, was found. In contrast, both amyloplasts and nuclei sediment consistently and completely in cells of the elongation zone. Sedimentation occurs in one cell layer of the cortex just outside the endodermis. Sedimentation of both amyloplasts and nuclei begins in cells that are in their initial stages of elongation and persists at least to the level of the root where root hairs emerge. This is the first modern report of the presence of sedimentation away from, but not in, the rootcap. It shows that sedimentation in the rootcap is not necessary for gravitropic sensing in at least one angiosperm. If amyloplast sedimentation is responsible for gravitropic sensing, then the site of sensing in Limnobium roots is the elongation zone and not the rootcap. These data do not necessarily conflict with the hypothesis that sensing occurs in the cap in other roots, since Limnobium roots are exceptional in rootcap origin and structure, as well as in the distribution of organelle sedimentation. Similarly, if nuclear sedimentation is involved in gravitropic sensing, then nuclear mass would function in addition to, not instead of, that of amyloplasts.

  9. Metabolic Capacity of Mitochondrion-related Organelles in the Free-living Anaerobic Stramenopile Cantina marsupialis.

    PubMed

    Noguchi, Fumiya; Shimamura, Shigeru; Nakayama, Takuro; Yazaki, Euki; Yabuki, Akinori; Hashimoto, Tetsuo; Inagaki, Yuji; Fujikura, Katsunori; Takishita, Kiyotaka

    2015-11-01

    Functionally and morphologically degenerate mitochondria, so-called mitochondrion-related organelles (MROs), are frequently found in eukaryotes inhabiting hypoxic or anoxic environments. In the last decade, MROs have been discovered from a phylogenetically broad range of eukaryotic lineages and these organelles have been revealed to possess diverse metabolic capacities. In this study, the biochemical characteristics of an MRO in the free-living anaerobic protist Cantina marsupialis, which represents an independent lineage in stramenopiles, were inferred based on RNA-seq data. We found transcripts for proteins known to function in one form of MROs, the hydrogenosome, such as pyruvate:ferredoxin oxidoreductase, iron-hydrogenase, acetate:succinate CoA-transferase, and succinyl-CoA synthase, along with transcripts for acetyl-CoA synthetase (ADP-forming). These proteins possess putative mitochondrial targeting signals at their N-termini, suggesting dual ATP generation systems through anaerobic pyruvate metabolism in Cantina MROs. In addition, MROs in Cantina were also shown to share several features with canonical mitochondria, including amino acid metabolism and an "incomplete" tricarboxylic acid cycle. Transcripts for all four subunits of complex II (CII) of the electron transport chain were detected, while there was no evidence for the presence of complexes I, III, IV, or F1Fo ATPase. Cantina MRO biochemistry challenges the categories of mitochondrial organelles recently proposed.

  10. A pH-independent DNA nanodevice for quantifying chloride transport in organelles of living cells

    NASA Astrophysics Data System (ADS)

    Saha, Sonali; Prakash, Ved; Halder, Saheli; Chakraborty, Kasturi; Krishnan, Yamuna

    2015-07-01

    The concentration of chloride ions in the cytoplasm and subcellular organelles of living cells spans a wide range (5-130 mM), and is tightly regulated by intracellular chloride channels or transporters. Chloride-sensitive protein reporters have been used to study the role of these chloride regulators, but they are limited to a small range of chloride concentrations and are pH-sensitive. Here, we show that a DNA nanodevice can precisely measure the activity and location of subcellular chloride channels and transporters in living cells in a pH-independent manner. The DNA nanodevice, called Clensor, is composed of sensing, normalizing and targeting modules, and is designed to localize within organelles along the endolysosomal pathway. It allows fluorescent, ratiometric sensing of chloride ions across the entire physiological regime. We used Clensor to quantitate the resting chloride concentration in the lumen of acidic organelles in Drosophila melanogaster. We showed that lumenal lysosomal chloride, which is implicated in various lysosomal storage diseases, is regulated by the intracellular chloride transporter DmClC-b.

  11. Crystal Structures of DNA-Whirly Complexes and Their Role in Arabidopsis Organelle Genome Repair

    SciTech Connect

    Cappadocia, Laurent; Maréchal, Alexandre; Parent, Jean-Sébastien; Lepage, Étienne; Sygusch, Jurgen; Brisson, Normand

    2010-09-07

    DNA double-strand breaks are highly detrimental to all organisms and need to be quickly and accurately repaired. Although several proteins are known to maintain plastid and mitochondrial genome stability in plants, little is known about the mechanisms of DNA repair in these organelles and the roles of specific proteins. Here, using ciprofloxacin as a DNA damaging agent specific to the organelles, we show that plastids and mitochondria can repair DNA double-strand breaks through an error-prone pathway similar to the microhomology-mediated break-induced replication observed in humans, yeast, and bacteria. This pathway is negatively regulated by the single-stranded DNA (ssDNA) binding proteins from the Whirly family, thus indicating that these proteins could contribute to the accurate repair of plant organelle genomes. To understand the role of Whirly proteins in this process, we solved the crystal structures of several Whirly-DNA complexes. These reveal a nonsequence-specific ssDNA binding mechanism in which DNA is stabilized between domains of adjacent subunits and rendered unavailable for duplex formation and/or protein interactions. Our results suggest a model in which the binding of Whirly proteins to ssDNA would favor accurate repair of DNA double-strand breaks over an error-prone microhomology-mediated break-induced replication repair pathway.

  12. A simple, straightforward correlative live-cell-imaging-structured-illumination-microscopy approach for studying organelle dynamics.

    PubMed

    Sherman, Shachar; Nachmias, Dikla; Elia, Natalie

    2015-09-01

    Most cellular organelles are highly dynamic and continuously undergo membrane fission and fusion to mediate their function. Documenting organelle dynamics under physiological conditions, therefore, requires high temporal resolution of the recording system. Concurrently, these structures are relatively small and determining their substructural organization is often impossible using conventional microscopy. Structured Illumination Microscopy (SIM) is a super resolution technique providing a two-fold increase in resolution. Importantly, SIM is versatile because it allows the use of any fluorescent dye or protein and, hence, is highly applicable for cell biology. However, similar to other SR techniques, the applicability of SIM to high-speed live cell imaging is limited. Here we present an easy, straightforward methodology for coupling of high-speed live cell recordings, using spinning disk (SD) microscopy, with SIM. Using this simple methodology, we are able to track individual mitochondrial membrane fission and fusion events in real time and to determine the network connectivity and substructural organization of the membrane at high resolution. Applying this methodology to other cellular organelles such as, ER, golgi, and cilia will no doubt contribute to our understanding of membrane dynamics in cells.

  13. Bacterial microcompartments: widespread prokaryotic organelles for isolation and optimization of metabolic pathways

    PubMed Central

    Bobik, Thomas A.; Lehman, Brent P.; Yeates, Todd O.

    2016-01-01

    Summary Prokaryotes use subcellular compartments for a variety of purposes. An intriguing example is a family of complex subcellular organelles known as bacterial microcompartments (MCPs). MCPs are widely distributed among bacteria and impact processes ranging global carbon fixation and enteric pathogenesis. Overall, MCPs consist of metabolic enzymes encased within a protein shell, and their function is to optimize biochemical pathways by confining toxic or volatile metabolic intermediates. MCPs are fundamentally different from other organelles in having a complex protein shell rather than a lipid-based membrane as an outer barrier. This unusual feature raises basic questions about organelle assembly, protein targeting and metabolite transport. In this review, we discuss the three best-studied MCPs highlighting atomic-level models for shell assembly, targeting sequences that direct enzyme encapsulation, multivalent proteins that organize the lumen enzymes, the principles of metabolite movement across the shell, internal cofactor recycling, a potential system of allosteric regulation of metabolite transport and the mechanism and rationale behind the functional diversification of the proteins that form the shell. We also touch on some potential biotechnology applications an unusual compartment designed by nature to optimize metabolic processes within a cellular context. PMID:26148529

  14. A nanobuffer reporter library for fine-scale imaging and perturbation of endocytic organelles

    PubMed Central

    Wang, Chensu; Wang, Yiguang; Li, Yang; Bodemann, Brian; Zhao, Tian; Ma, Xinpeng; Huang, Gang; Hu, Zeping; DeBerardinis, Ralph J.; White, Michael A.; Gao, Jinming

    2015-01-01

    Endosomes, lysosomes and related catabolic organelles are a dynamic continuum of vacuolar structures that impact a number of cell physiological processes such as protein/lipid metabolism, nutrient sensing and cell survival. Here we develop a library of ultra-pH-sensitive fluorescent nanoparticles with chemical properties that allow fine-scale, multiplexed, spatio-temporal perturbation and quantification of catabolic organelle maturation at single organelle resolution to support quantitative investigation of these processes in living cells. Deployment in cells allows quantification of the proton accumulation rate in endosomes; illumination of previously unrecognized regulatory mechanisms coupling pH transitions to endosomal coat protein exchange; discovery of distinct pH thresholds required for mTORC1 activation by free amino acids versus proteins; broad-scale characterization of the consequence of endosomal pH transitions on cellular metabolomic profiles; and functionalization of a context-specific metabolic vulnerability in lung cancer cells. Together, these biological applications indicate the robustness and adaptability of this nanotechnology-enabled ‘detection and perturbation' strategy. PMID:26437053

  15. Bacterial microcompartments: widespread prokaryotic organelles for isolation and optimization of metabolic pathways.

    PubMed

    Bobik, Thomas A; Lehman, Brent P; Yeates, Todd O

    2015-10-01

    Prokaryotes use subcellular compartments for a variety of purposes. An intriguing example is a family of complex subcellular organelles known as bacterial microcompartments (MCPs). MCPs are widely distributed among bacteria and impact processes ranging from global carbon fixation to enteric pathogenesis. Overall, MCPs consist of metabolic enzymes encased within a protein shell, and their function is to optimize biochemical pathways by confining toxic or volatile metabolic intermediates. MCPs are fundamentally different from other organelles in having a complex protein shell rather than a lipid-based membrane as an outer barrier. This unusual feature raises basic questions about organelle assembly, protein targeting and metabolite transport. In this review, we discuss the three best-studied MCPs highlighting atomic-level models for shell assembly, targeting sequences that direct enzyme encapsulation, multivalent proteins that organize the lumen enzymes, the principles of metabolite movement across the shell, internal cofactor recycling, a potential system of allosteric regulation of metabolite transport and the mechanism and rationale behind the functional diversification of the proteins that form the shell. We also touch on some potential biotechnology applications of an unusual compartment designed by nature to optimize metabolic processes within a cellular context.

  16. Characterization of the reflective materials and organelles in the bright irides of North American blackbirds (Icterinae).

    PubMed

    Hudon, J; Muir, A D

    1996-04-01

    The reflective materials in the iris stroma of bright-irised American blackbirds (Icterinae, Emberizidae) and the red-eyed vireo (vireo olivaceus) (Vireonidae) were characterized using high-performance liquid chromatography (HPLC) and diode-array detection. Two purines, guanine and hypoxanthine, and two pteridines, leucopterin and xanthopterin, were detected in large amounts in all bright irides. The brown iris of the red-winged blackbird (Agelaius phoeniceus) by comparison contained only small amounts of these and additional unidentified compounds. The absolute and relative amounts of light-absorbing compounds in the iris varied somewhat among species of blackbirds with bright irides, and markedly within one species (brewer's blackbird, Euphagus cyanocephalus) between sexes and age classes that very in eye color. Differences in the types, numbers, and sizes of pigment organelles in the irides appeared to underlie the differences in amounts of light-absorbing compounds. Guanine was the most abundant light-absorbing compound in all bright irides, accounting for about 90% of the total absorption at 250 nm. A wide range of concentrations of guanine, from 96 to 9 micrograms per iris, produced bright irides. The primary pigment organelles of pigment cells in bright irides were reflecting platelets, which typically appeared as open spaces on electron micrographs. In the red-eyed vireo there were in addition red pterinosome-like pigment organelles in the pigment cells on the anterior surface of the iris stroma. Guanine was present even in irides with no overt reflecting platelets.

  17. A close look at axonal transport: Cargos slow down when crossing stationary organelles.

    PubMed

    Che, Daphne L; Chowdary, Praveen D; Cui, Bianxiao

    2016-01-01

    The bidirectional transport of cargos along the thin axon is fundamental for the structure, function and survival of neurons. Defective axonal transport has been linked to the mechanism of neurodegenerative diseases. In this paper, we study the effect of the local axonal environment to cargo transport behavior in neurons. Using dual-color fluorescence imaging in microfluidic neuronal devices, we quantify the transport dynamics of cargos when crossing stationary organelles such as non-moving endosomes and stationary mitochondria in the axon. We show that the axonal cargos tend to slow down, or pause transiently within the vicinity of stationary organelles. The slow-down effect is observed in both retrograde and anterograde transport directions of three different cargos (TrkA, lysosomes and TrkB). Our results agree with the hypothesis that bulky axonal structures can pose as steric hindrance for axonal transport. However, the results do not rule out the possibility that cellular mechanisms causing stationary organelles are also responsible for the delay in moving cargos at the same locations.

  18. F-actin cytoskeleton and the fate of organelles in chromaffin cells.

    PubMed

    Villanueva, José; Gimenez-Molina, Yolanda; Viniegra, Salvador; Gutiérrez, Luis M

    2016-06-01

    In addition to playing a fundamental structural role, the F-actin cytoskeleton in neuroendocrine chromaffin cells has a prominent influence on governing the molecular mechanism and regulating the secretory process. Performing such roles, the F-actin network might be essential to first transport, and later locate the cellular organelles participating in the secretory cycle. Chromaffin granules are transported from the internal cytosolic regions to the cell periphery along microtubular and F-actin structures. Once in the cortical region, they are embedded in the F-actin network where these vesicles experience restrictions in motility. Similarly, mitochondria transport is affected by both microtubule and F-actin inhibitors and suffers increasing motion restrictions when they are located in the cortical region. Therefore, the F-actin cortex is a key factor in defining the existence of two populations of cortical and perinuclear granules and mitochondria which could be distinguished by their different location and mobility. Interestingly, other important organelles for controlling intracellular calcium levels, such as the endoplasmic reticulum network, present clear differences in distribution and much lower mobility than chromaffin vesicles and mitochondria. Nevertheless, both mitochondria and the endoplasmic reticulum appear to distribute in the proximity of secretory sites to fulfill a pivotal role, forming triads with calcium channels ensuring the fine tuning of the secretory response. This review presents the contributions that provide the basis for our current view regarding the influence that F-actin has on the distribution of organelles participating in the release of catecholamines in chromaffin cells, and summarizes this knowledge in simple models. In chromaffin cells, organelles such as granules and mitochondria distribute forming cortical and perinuclear populations whereas others like the ER present homogenous distributions. In the present review we discuss

  19. A Critical Role for Toxoplasma gondii Vacuolar Protein Sorting VPS9 in Secretory Organelle Biogenesis and Host Infection

    PubMed Central

    Sakura, Takaya; Sindikubwabo, Fabien; Oesterlin, Lena K.; Bousquet, Hugo; Slomianny, Christian; Hakimi, Mohamed-Ali; Langsley, Gordon; Tomavo, Stanislas

    2016-01-01

    Accurate sorting of proteins to the three types of parasite-specific secretory organelles namely rhoptry, microneme and dense granule in Toxoplasma gondii is crucial for successful host cell invasion by this obligate intracellular parasite. Despite its tiny body architecture and limited trafficking machinery, T. gondii relies heavily on transport of vesicles containing proteins, lipids and important virulence-like factors that are delivered to these secretory organelles. However, our understanding on how trafficking of vesicles operates in the parasite is still limited. Here, we show that the T. gondii vacuolar protein sorting 9 (TgVps9), has guanine nucleotide exchange factor (GEF) activity towards Rab5a and is crucial for sorting of proteins destined to secretory organelles. Our results illuminate features of TgVps9 protein as a key trafficking facilitator that regulates protein maturation, secretory organelle formation and secretion, thereby ensuring a primary role in host infection by T. gondii. PMID:27966671

  20. A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants.

    PubMed

    Nelson, Brook K; Cai, Xue; Nebenführ, Andreas

    2007-09-01

    Genome sequencing has resulted in the identification of a large number of uncharacterized genes with unknown functions. It is widely recognized that determination of the intracellular localization of the encoded proteins may aid in identifying their functions. To facilitate these localization experiments, we have generated a series of fluorescent organelle markers based on well-established targeting sequences that can be used for co-localization studies. In particular, this organelle marker set contains indicators for the endoplasmic reticulum, the Golgi apparatus, the tonoplast, peroxisomes, mitochondria, plastids and the plasma membrane. All markers were generated with four different fluorescent proteins (FP) (green, cyan, yellow or red FPs) in two different binary plasmids for kanamycin or glufosinate selection, respectively, to allow for flexible combinations. The labeled organelles displayed characteristic morphologies consistent with previous descriptions that could be used for their positive identification. Determination of the intracellular distribution of three previously uncharacterized proteins demonstrated the usefulness of the markers in testing predicted subcellular localizations. This organelle marker set should be a valuable resource for the plant community for such co-localization studies. In addition, the Arabidopsis organelle marker lines can also be employed in plant cell biology teaching labs to demonstrate the distribution and dynamics of these organelles.

  1. The internal architecture of leukocyte lipid body organelles captured by three-dimensional electron microscopy tomography.

    PubMed

    Melo, Rossana C N; Paganoti, Guillherme F; Dvorak, Ann M; Weller, Peter F

    2013-01-01

    Lipid bodies (LBs), also known as lipid droplets, are complex organelles of all eukaryotic cells linked to a variety of biological functions as well as to the development of human diseases. In cells from the immune system, such as eosinophils, neutrophils and macrophages, LBs are rapidly formed in the cytoplasm in response to inflammatory and infectious diseases and are sites of synthesis of eicosanoid lipid mediators. However, little is known about the structural organization of these organelles. It is unclear whether leukocyte LBs contain a hydrophobic core of neutral lipids as found in lipid droplets from adipocytes and how diverse proteins, including enzymes involved in eicosanoid formation, incorporate into LBs. Here, leukocyte LB ultrastructure was studied in detail by conventional transmission electron microscopy (TEM), immunogold EM and electron tomography. By careful analysis of the two-dimensional ultrastructure of LBs from human blood eosinophils under different conditions, we identified membranous structures within LBs in both resting and activated cells. Cyclooxygenase, a membrane inserted protein that catalyzes the first step in prostaglandin synthesis, was localized throughout the internum of LBs. We used fully automated dual-axis electron tomography to study the three-dimensional architecture of LBs in high resolution. By tracking 4 nm-thick serial digital sections we found that leukocyte LBs enclose an intricate system of membranes within their "cores". After computational reconstruction, we showed that these membranes are organized as a network of tubules which resemble the endoplasmic reticulum (ER). Our findings explain how membrane-bound proteins interact and are spatially arranged within LB "cores" and support a model for LB formation by incorporating cytoplasmic membranes of the ER, instead of the conventional view that LBs emerge from the ER leaflets. This is important to understand the functional capabilities of leukocyte LBs in health and

  2. Neospora caninum Recruits Host Cell Structures to Its Parasitophorous Vacuole and Salvages Lipids from Organelles.

    PubMed

    Nolan, Sabrina J; Romano, Julia D; Luechtefeld, Thomas; Coppens, Isabelle

    2015-05-01

    Toxoplasma gondii and Neospora caninum, which cause the diseases toxoplasmosis and neosporosis, respectively, are two closely related apicomplexan parasites. They have similar heteroxenous life cycles and conserved genomes and share many metabolic features. Despite these similarities, T. gondii and N. caninum differ in their transmission strategies and zoonotic potential. Comparative analyses of the two parasites are important to identify the unique biological features that underlie the basis of host preference and pathogenicity. T. gondii and N. caninum are obligate intravacuolar parasites; in contrast to T. gondii, events that occur during N. caninum infection remain largely uncharacterized. We examined the capability of N. caninum (Liverpool isolate) to interact with host organelles and scavenge nutrients in comparison to that of T. gondii (RH strain). N. caninum reorganizes the host microtubular cytoskeleton and attracts endoplasmic reticulum (ER), mitochondria, lysosomes, multivesicular bodies, and Golgi vesicles to its vacuole though with some notable differences from T. gondii. For example, the host ER gathers around the N. caninum parasitophorous vacuole (PV) but does not physically associate with the vacuolar membrane; the host Golgi apparatus surrounds the N. caninum PV but does not fragment into ministacks. N. caninum relies on plasma lipoproteins and scavenges cholesterol from NPC1-containing endocytic organelles. This parasite salvages sphingolipids from host Golgi Rab14 vesicles that it sequesters into its vacuole. Our data highlight a remarkable degree of conservation in the intracellular infection program of N. caninum and T. gondii. The minor differences between the two parasites related to the recruitment and rearrangement of host organelles around their vacuoles likely reflect divergent evolutionary paths.

  3. Evidence for Proteolytic Processing and Stimulated Organelle Redistribution of iPLA2β

    PubMed Central

    Song, Haowei; Bao, Shunzhong; Lei, Xiaoyong; Jin, Chun; Zhang, Sheng; Turk, John; Ramanadham, Sasanka

    2010-01-01

    Over the past decade, important roles for the 84–88 kDa Group VIA Ca2+-independent phospholipase A2 (iPLA2β) in various organs have been described. We demonstrated that iPLA2β participates in insulin secretion, insulinoma cells and native pancreatic islets express full-length and truncated isoforms of iPLA2β, and certain stimuli promote perinuclear localization of iPLA2β. To gain a better understanding of its mobilization, iPLA2β was expressed in INS-1 cells as a fusion protein with EGFP, enabling detection of subcellular localization of iPLA2β by monitoring EGFP fluorescence. Cells stably-transfected with fusion protein expressed nearly 5-fold higher catalytic iPLA2β activity than control cells transfected with EGFP cDNA alone, indicating that co-expression of EGFP does not interfere with manifestation of iPLA2β activity. Dual fluorescence monitoring of EGFP and organelle Trackers combined with immunoblotting analyses revealed expression of truncated iPLA2β isoforms in separate subcellular organelles. Exposure to secretagogues and induction of ER stress are known to activate iPLA2β in β-cells and we find here that these stimuli promote differential localization of iPLA2β in subcellular organelles. Further, mass spectrometric analyses identified iPLA2β variants from which N-terminal residues were removed. Collectively, these findings provide evidence for endogenous proteolytic processing of iPLA2β and redistribution of iPLA2β variants in subcellular compartments. It might be proposed that in vivo processing of iPLA2β facilitates its participation in multiple biological processes. PMID:20132906

  4. Optical tweezers for single molecule force spectroscopy on bacterial adhesion organelles

    NASA Astrophysics Data System (ADS)

    Andersson, Magnus; Axner, Ove; Uhlin, Bernt Eric; Fällman, Erik

    2006-08-01

    Instrumentation and methodologies for single molecule force spectroscopy on bacterial adhesion organelles by the use of force measuring optical tweezers have been developed. A thorough study of the biomechanical properties of fimbrial adhesion organelles expressed by uropathogenic E. coli, so-called pili, is presented. Steady-state as well as dynamic force measurements on P pili, expressed by E. coli causing pyelonephritis, have revealed, among other things, various unfolding and refolding properties of the helical structure of P pili, the PapA rod. Based on these properties an energy landscape model has been constructed by which specific biophysical properties of the PapA rod have been extracted, e.g. the number of subunits, the length of a single pilus, bond lengths and activation energies for bond opening and closure. Moreover, long time repetitive measurements have shown that the rod can be unfolded and refolded repetitive times without losing its intrinsic properties. These properties are believed to be of importance for the bacteria's ability to maintain close contact with host cells during initial infections. The results presented are considered to be of importance for the field of biopolymers in general and the development of new pharmaceuticals towards urinary tract infections in particular. The results show furthermore that the methodology can be used to gain knowledge of the intrinsic biomechanical function of adhesion organelles. The instrumentation is currently used for characterization of type 1 pili, expressed by E. coli causing cystitis, i.e. infections in the bladder. The first force spectrometry investigations of these pili will be presented.

  5. Off to the Organelles - Killing Cancer Cells with Targeted Gold Nanoparticles

    PubMed Central

    Kodiha, Mohamed; Wang, Yi Meng; Hutter, Eliza; Maysinger, Dusica; Stochaj, Ursula

    2015-01-01

    Gold nanoparticles (AuNPs) are excellent tools for cancer cell imaging and basic research. However, they have yet to reach their full potential in the clinic. At present, we are only beginning to understand the molecular mechanisms that underlie the biological effects of AuNPs, including the structural and functional changes of cancer cells. This knowledge is critical for two aspects of nanomedicine. First, it will define the AuNP-induced events at the subcellular and molecular level, thereby possibly identifying new targets for cancer treatment. Second, it could provide new strategies to improve AuNP-dependent cancer diagnosis and treatment. Our review summarizes the impact of AuNPs on selected subcellular organelles that are relevant to cancer therapy. We focus on the nucleus, its subcompartments, and mitochondria, because they are intimately linked to cancer cell survival, growth, proliferation and death. While non-targeted AuNPs can damage tumor cells, concentrating AuNPs in particular subcellular locations will likely improve tumor cell killing. Thus, it will increase cancer cell damage by photothermal ablation, mechanical injury or localized drug delivery. This concept is promising, but AuNPs have to overcome multiple hurdles to perform these tasks. AuNP size, morphology and surface modification are critical parameters for their delivery to organelles. Recent strategies explored all of these variables, and surface functionalization has become crucial to concentrate AuNPs in subcellular compartments. Here, we highlight the use of AuNPs to damage cancer cells and their organelles. We discuss current limitations of AuNP-based cancer research and conclude with future directions for AuNP-dependent cancer treatment. PMID:25699096

  6. Differential phosphorylation in vivo of cytoplasmic dynein associated with anterogradely moving organelles

    PubMed Central

    1994-01-01

    Two microtubule-stimulated ATPases, cytoplasmic dynein, and kinesin, are believed to be responsible for the intracellular movement of membrane-bound organelles in opposite directions along microtubules. An unresolved component of this model is the mechanism by which cells regulate these two motors to direct various membrane-bound organelles to their proper locations. To determine if phosphorylation may play a role in the regulation of cytoplasmic dynein, the in vivo phosphorylation state of cytoplasmic dynein from two cellular pools was examined. The entire cellular pool of brain cytoplasmic dynein was metabolically labeled by the infusion of [32P]orthophosphate into the cerebrospinal fluid of rat brain ventricles. To characterize the phosphorylation of dynein associated with anterograde membrane-bound organelles, the optic nerve fast axonal transport system was used. Using a monoclonal antibody to the 74-kD polypeptide of brain cytoplasmic dynein, the native dynein complex was immunoprecipitated from the radiolabled tissue extracts. Autoradiographs of one and two dimensional gels showed labeling of nearly all of the polypeptide isoforms of cytoplasmic dynein from rat brain. These polypeptides are phosphorylated on serine residues. Comparison of the amount of 32P incorporated into the dynein polypeptides revealed differences in the phosphorylation of dynein polypeptides from the anterograde and the cellular pools. Most interestingly, the 530-kD heavy chain of dynein appears to be phosphorylated to a lesser extent in the anterograde pool than in the cellular pool. Since the anterograde pool contains inactive dynein, while the entire cellular pool contains both inactive and active dynein, these results are consistent with the hypothesis that phosphorylation regulates the functional activity of cytoplasmic dynein. PMID:7528220

  7. Modular electron-transport chains from eukaryotic organelles function to support nitrogenase activity

    PubMed Central

    Yang, Jianguo; Xie, Xiaqing; Yang, Mingxuan; Dixon, Ray; Wang, Yi-Ping

    2017-01-01

    A large number of genes are necessary for the biosynthesis and activity of the enzyme nitrogenase to carry out the process of biological nitrogen fixation (BNF), which requires large amounts of ATP and reducing power. The multiplicity of the genes involved, the oxygen sensitivity of nitrogenase, plus the demand for energy and reducing power, are thought to be major obstacles to engineering BNF into cereal crops. Genes required for nitrogen fixation can be considered as three functional modules encoding electron-transport components (ETCs), proteins required for metal cluster biosynthesis, and the “core” nitrogenase apoenzyme, respectively. Among these modules, the ETC is important for the supply of reducing power. In this work, we have used Escherichia coli as a chassis to study the compatibility between molybdenum and the iron-only nitrogenases with ETC modules from target plant organelles, including chloroplasts, root plastids, and mitochondria. We have replaced an ETC module present in diazotrophic bacteria with genes encoding ferredoxin–NADPH oxidoreductases (FNRs) and their cognate ferredoxin counterparts from plant organelles. We observe that the FNR–ferredoxin module from chloroplasts and root plastids can support the activities of both types of nitrogenase. In contrast, an analogous ETC module from mitochondria could not function in electron transfer to nitrogenase. However, this incompatibility could be overcome with hybrid modules comprising mitochondrial NADPH-dependent adrenodoxin oxidoreductase and the Anabaena ferredoxins FdxH or FdxB. We pinpoint endogenous ETCs from plant organelles as power supplies to support nitrogenase for future engineering of diazotrophy in cereal crops. PMID:28193863

  8. Myosin-Va and dynamic actin oppose microtubules to drive long-range organelle transport.

    PubMed

    Evans, Richard D; Robinson, Christopher; Briggs, Deborah A; Tooth, David J; Ramalho, Jose S; Cantero, Marta; Montoliu, Lluis; Patel, Shyamal; Sviderskaya, Elena V; Hume, Alistair N

    2014-08-04

    In animal cells, microtubule and actin tracks and their associated motors (dynein, kinesin, and myosin) are thought to regulate long- and short-range transport, respectively. Consistent with this, microtubules extend from the perinuclear centrosome to the plasma membrane and allow bidirectional cargo transport over long distances (>1 μm). In contrast, actin often comprises a complex network of short randomly oriented filaments, suggesting that myosin motors move cargo short distances. These observations underpin the "highways and local roads" model for transport along microtubule and actin tracks. The "cooperative capture" model exemplifies this view and suggests that melanosome distribution in melanocyte dendrites is maintained by long-range transport on microtubules followed by actin/myosin-Va-dependent tethering. In this study, we used cell normalization technology to quantitatively examine the contribution of microtubules and actin/myosin-Va to organelle distribution in melanocytes. Surprisingly, our results indicate that microtubules are essential for centripetal, but not centrifugal, transport. Instead, we find that microtubules retard a centrifugal transport process that is dependent on myosin-Va and a population of dynamic F-actin. Functional analysis of mutant proteins indicates that myosin-Va works as a transporter dispersing melanosomes along actin tracks whose +/barbed ends are oriented toward the plasma membrane. Overall, our data highlight the role of myosin-Va and actin in transport, and not tethering, and suggest a new model in which organelle distribution is determined by the balance between microtubule-dependent centripetal and myosin-Va/actin-dependent centrifugal transport. These observations appear to be consistent with evidence coming from other systems showing that actin/myosin networks can drive long-distance organelle transport and positioning.

  9. Myosin-Va and Dynamic Actin Oppose Microtubules to Drive Long-Range Organelle Transport

    PubMed Central

    Evans, Richard D.; Robinson, Christopher; Briggs, Deborah A.; Tooth, David J.; Ramalho, Jose S.; Cantero, Marta; Montoliu, Lluis; Patel, Shyamal; Sviderskaya, Elena V.; Hume, Alistair N.

    2014-01-01

    Summary In animal cells, microtubule and actin tracks and their associated motors (dynein, kinesin, and myosin) are thought to regulate long- and short-range transport, respectively [1–8]. Consistent with this, microtubules extend from the perinuclear centrosome to the plasma membrane and allow bidirectional cargo transport over long distances (>1 μm). In contrast, actin often comprises a complex network of short randomly oriented filaments, suggesting that myosin motors move cargo short distances. These observations underpin the “highways and local roads” model for transport along microtubule and actin tracks [2]. The “cooperative capture” model exemplifies this view and suggests that melanosome distribution in melanocyte dendrites is maintained by long-range transport on microtubules followed by actin/myosin-Va-dependent tethering [5, 9]. In this study, we used cell normalization technology to quantitatively examine the contribution of microtubules and actin/myosin-Va to organelle distribution in melanocytes. Surprisingly, our results indicate that microtubules are essential for centripetal, but not centrifugal, transport. Instead, we find that microtubules retard a centrifugal transport process that is dependent on myosin-Va and a population of dynamic F-actin. Functional analysis of mutant proteins indicates that myosin-Va works as a transporter dispersing melanosomes along actin tracks whose +/barbed ends are oriented toward the plasma membrane. Overall, our data highlight the role of myosin-Va and actin in transport, and not tethering, and suggest a new model in which organelle distribution is determined by the balance between microtubule-dependent centripetal and myosin-Va/actin-dependent centrifugal transport. These observations appear to be consistent with evidence coming from other systems showing that actin/myosin networks can drive long-distance organelle transport and positioning [10, 11]. PMID:25065759

  10. Clonidine promotes the accumulation of /sup 45/Ca in pancreatic beta-cell organelles

    SciTech Connect

    Andersson, T.; Nygren, P.

    1983-12-01

    Glucose-stimulated insulin release from pancreatic islets of ob/ob-mice was inhibited by 10(-9) M of the alpha 2-adrenergic agonist clonidine. This inhibitory effect was abolished by 10(-7) M of the antagonist yohimbine. Loading the islets with /sup 45/Ca during the clonidine exposure followed by isolation of subcellular fractions under conditions known to minimize the /sup 45/Ca redistribution resulted in increased accumulation of the isotope in the mitochondrial and microsomal fractions. It is suggested that clonidine inhibits glucose-stimulated insulin release by increasing the organelle sequestration of Ca2+.

  11. Fluorescent macrocyclic probes with pendant functional groups as markers of acidic organelles within live cells.

    PubMed

    Wadhavane, Prashant D; Izquierdo, M Ángeles; Lutters, Dennis; Burguete, M Isabel; Marín, María J; Russell, David A; Galindo, Francisco; Luis, Santiago V

    2014-02-07

    A new family of acidity sensitive fluorescent macrocycles has been synthesized and fully characterized. Their photophysical properties including emission quantum yield and fluorescence lifetime have been determined. The acid-base properties of the new molecules can be tuned by the incorporation of pendant functional groups. The nature of such functional groups (carboxylic acid or ester) influences dramatically the pKa of the probes, two compounds of which exhibit low values. Preliminary intracellular studies using confocal microscopy together with emission spectra of the probes from the cellular environment have shown that the synthesized fluorescent macrocycles mark the acidic organelles of RAW 264.7 macrophage cells.

  12. [Porosome: a new organelle and the universal secretion machine in cells].

    PubMed

    Lazrishvili, I L; Zhvaniia, M G

    2010-01-01

    A new cell organelle, porosome, discovered in the mid 1990's and its demonstration as the universal secretory machinery in cells is described. In contrast to the generally accepted belief that the secretory vesicle membrane is totally incorporated into the plasma membrane during cell secretion, it has been shown that secretory vesicles transiently dock and fuse with the porosome base via SNARE proteins to expel vesicular contents under intravesicular pressure which is generated by active transport of water through water channels located at the secretory vesicle membrane.

  13. Time-lapse recording of centrosomes and other organelles in Drosophila neuroblasts.

    PubMed

    Pampalona, Judit; Januschke, Jens; Sampaio, Paula; Gonzalez, Cayetano

    2015-01-01

    Drosophila larval neuroblasts (NBs) are an excellent model for asymmetric division and cell cycle studies in general. For decades, visualizing relevant structures like centrosomes, chromosomes, or the mitotic spindle relied exclusively on immunofluorescence on fix samples. More recently, improvements on sensitivity and acquisition speed of different confocal systems have made it possible to acquire time-resolved images of combined fluorescent reporters from single larval NBs. Here, we provide protocols to visualize centrosomes and other organelles from both primary cultures of isolated single NBs and ex vivo, whole-mounted larval brains.

  14. The endoplasmic reticulum exerts control over organelle streaming during cell expansion.

    PubMed

    Stefano, Giovanni; Renna, Luciana; Brandizzi, Federica

    2014-03-01

    Cytoplasmic streaming is crucial for cell homeostasis and expansion but the precise driving forces are largely unknown. In plants, partial loss of cytoplasmic streaming due to chemical and genetic ablation of myosins supports the existence of yet-unknown motors for organelle movement. Here we tested a role of the endoplasmic reticulum (ER) as propelling force for cytoplasmic streaming during cell expansion. Through quantitative live-cell analyses in wild-type Arabidopsis thaliana cells and mutants with compromised ER structure and streaming, we demonstrate that cytoplasmic streaming undergoes profound changes during cell expansion and that it depends on motor forces co-exerted by the ER and the cytoskeleton.

  15. Using targeted variants of aequorin to measure Ca2+ levels in intracellular organelles.

    PubMed

    Granatiero, Veronica; Patron, Maria; Tosatto, Anna; Merli, Giulia; Rizzuto, Rosario

    2014-01-01

    Aequorin is a Ca(2+)-sensitive photoprotein isolated from the jellyfish Aequorea victoria. It is an ideal probe for measuring Ca(2+) concentration ([Ca(2+)]) in intracellular organelles because it can be modified to include specific targeting sequences. On the binding of Ca(2+) to three high-affinity sites in aequorin, an irreversible reaction occurs in which the prosthetic group coelenterazine is released and a photon is emitted. This protocol presents procedures for expressing, targeting, and reconstituting aequorin in intact and permeabilized mammalian cells and describes how to use this photoprotein to measure intracellular [Ca(2+)] in various subcellular compartments.

  16. Oxidative Stress in the Healthy and Wounded Hepatocyte: A Cellular Organelles Perspective

    PubMed Central

    Mello, Tommaso; Zanieri, Francesca; Ceni, Elisabetta; Galli, Andrea

    2016-01-01

    Accurate control of the cell redox state is mandatory for maintaining the structural integrity and physiological functions. This control is achieved both by a fine-tuned balance between prooxidant and anti-oxidant molecules and by spatial and temporal confinement of the oxidative species. The diverse cellular compartments each, although structurally and functionally related, actively maintain their own redox balance, which is necessary to fulfill specialized tasks. Many fundamental cellular processes such as insulin signaling, cell proliferation and differentiation and cell migration and adhesion, rely on localized changes in the redox state of signal transducers, which is mainly mediated by hydrogen peroxide (H2O2). Therefore, oxidative stress can also occur long before direct structural damage to cellular components, by disruption of the redox circuits that regulate the cellular organelles homeostasis. The hepatocyte is a systemic hub integrating the whole body metabolic demand, iron homeostasis and detoxification processes, all of which are redox-regulated processes. Imbalance of the hepatocyte's organelles redox homeostasis underlies virtually any liver disease and is a field of intense research activity. This review recapitulates the evolving concept of oxidative stress in the diverse cellular compartments, highlighting the principle mechanisms of oxidative stress occurring in the healthy and wounded hepatocyte. PMID:26788252

  17. Membraneless organelles can melt nucleic acid duplexes and act as biomolecular filters

    NASA Astrophysics Data System (ADS)

    Nott, Timothy J.; Craggs, Timothy D.; Baldwin, Andrew J.

    2016-06-01

    Membraneless organelles are cellular compartments made from drops of liquid protein inside a cell. These compartments assemble via the phase separation of disordered regions of proteins in response to changes in the cellular environment and the cell cycle. Here we demonstrate that the solvent environment within the interior of these cellular bodies behaves more like an organic solvent than like water. One of the most-stable biological structures known, the DNA double helix, can be melted once inside the liquid droplet, and simultaneously structures formed from regulatory single-stranded nucleic acids are stabilized. Moreover, proteins are shown to have a wide range of absorption or exclusion from these bodies, and can act as importers for otherwise-excluded nucleic acids, which suggests the existence of a protein-mediated trafficking system. A common strategy in organic chemistry is to utilize different solvents to influence the behaviour of molecules and reactions. These results reveal that cells have also evolved this capability by exploiting the interiors of membraneless organelles.

  18. An organelle-exclusion envelope assists mitosis and underlies distinct molecular crowding in the spindle region.

    PubMed

    Schweizer, Nina; Pawar, Nisha; Weiss, Matthias; Maiato, Helder

    2015-08-31

    The mitotic spindle is a microtubular assembly required for chromosome segregation during mitosis. Additionally, a spindle matrix has long been proposed to assist this process, but its nature has remained elusive. By combining live-cell imaging with laser microsurgery, fluorescence recovery after photobleaching, and fluorescence correlation spectroscopy in Drosophila melanogaster S2 cells, we uncovered a microtubule-independent mechanism that underlies the accumulation of molecules in the spindle region. This mechanism relies on a membranous system surrounding the mitotic spindle that defines an organelle-exclusion zone that is conserved in human cells. Supported by mathematical modeling, we demonstrate that organelle exclusion by a membrane system causes spatio-temporal differences in molecular crowding states that are sufficient to drive accumulation of mitotic regulators, such as Mad2 and Megator/Tpr, as well as soluble tubulin, in the spindle region. This membranous "spindle envelope" confined spindle assembly, and its mechanical disruption compromised faithful chromosome segregation. Thus, cytoplasmic compartmentalization persists during early mitosis to promote spindle assembly and function.

  19. The Neurospora organelle motor: a distant relative of conventional kinesin with unconventional properties.

    PubMed Central

    Steinberg, G; Schliwa, M

    1995-01-01

    The "conventional" kinesins comprise a conserved family of molecular motors for organelle transport that have been identified in various animal species. Organelle motors from other phyla have not yet been analyzed at the molecular level. Here we report the identification, biochemical and immunological characterization, and molecular cloning of a cytoplasmic motor in a "lower" eukaryote, the Ascomycete fungus Neurospora crassa. This motor, termed Nkin (for Neurospora kinesin), exhibits several unique structural and functional features, including a high rate of microtubule transport, a lack of copurifying light chains, a second P-loop motif, and an overall sequence organization reminiscent of a kinesin-like protein. However, a greater than average sequence homology in the motor domain and the presence of a highly conserved region in the C-terminus identify Nkin as a distant relative of the family of conventional kinesins. A molecular phylogenetic analysis suggests Nkin to have diverged early in the evolution of this family of motors. The discovery of Nkin may help identify domains important for specific biological functions in conventional kinesins. Images PMID:8589459

  20. A parafusin-related Toxoplasma protein in Ca2+-regulated secretory organelles.

    PubMed

    Matthiesen, S H; Shenoy, S M; Kim, K; Singer, R H; Satir, B H

    2001-12-01

    We cloned a gene, PRPI, of Toxoplasma gondii encoding a 637-amino-acids protein having a calculated mass of 70 kDa. The sequence showed high homology to parafusin, a protein that in Paramecium tetraurelia participates in Ca2+-regulated exocytosis and is a paralog of phosphoglucomutase. We show that Toxoplasma gondii homogenate and an expressed recombinant PRP1 fusion protein cross-react with a specific peptide-derived antibody to parafusin in Western blots. Antibodies to the recombinant PRP1 showed cross-reaction with parafusin and recognized PRP1, as bands at M, 63 x 10(3) and 68 x 10(3), respectively. PRP1 is labeled when Toxoplasma gondii cells are incubated with inorganic 32P and appears as the major band on autoradiograms of SDS-PAGE gels. The localization of PRP1 was examined in secretory organelles of Toxoplasma gondii by deconvolution light microscopy followed by three dimensional reconstruction using pairwise combinations of specific antibodies. PRP1 localized to the apical third of the cell. It co-localized with micronemes, the only secretory organelle the secretion of which is Ca2+ dependent. Quantification of the co-localized stain suggests that only mature micronemes ready for exocytosis have PRP1. These findings suggest that PRP1, parafusin and other members of the phosphoglucomutase superfamily have a conserved role in Ca2+-regulated exocytic processes.

  1. Propeptides of eukaryotic proteases encode histidines to exploit organelle pH for regulation.

    PubMed

    Elferich, Johannes; Williamson, Danielle M; Krishnamoorthy, Bala; Shinde, Ujwal

    2013-08-01

    Eukaryotic cells maintain strict control over protein secretion, in part by using the pH gradient maintained within their secretory pathway. How eukaryotic proteins evolved from prokaryotic orthologs to exploit the pH gradient for biological functions remains a fundamental question in cell biology. Our laboratory previously demonstrated that protein domains located within precursor proteins, propeptides, encode histidine-driven pH sensors to regulate organelle-specific activation of the eukaryotic proteases furin and proprotein convertase-1/3. Similar findings have been reported in other unrelated protease families. By analyzing >10,000 unique proteases within evolutionarily unrelated families, we show that eukaryotic propeptides are enriched in histidines compared with prokaryotic orthologs. On this basis, we hypothesize that eukaryotic proteins evolved to enrich histidines within their propeptides to exploit the tightly controlled pH gradient of the secretory pathway, thereby regulating activation within specific organelles. Enrichment of histidines in propeptides may therefore be used to predict the presence of pH sensors in other proteases or even protease substrates.

  2. Identification of the Moving Junction Complex of Toxoplasma gondii: A Collaboration between Distinct Secretory Organelles

    PubMed Central

    2005-01-01

    Apicomplexan parasites, including Toxoplasma gondii and Plasmodium sp., are obligate intracellular protozoa. They enter into a host cell by attaching to and then creating an invagination in the host cell plasma membrane. Contact between parasite and host plasma membranes occurs in the form of a ring-shaped moving junction that begins at the anterior end of the parasite and then migrates posteriorly. The resulting invagination of host plasma membrane creates a parasitophorous vacuole that completely envelops the now intracellular parasite. At the start of this process, apical membrane antigen 1 (AMA1) is released onto the parasite surface from specialized secretory organelles called micronemes. The T. gondii version of this protein, TgAMA1, has been shown to be essential for invasion but its exact role has not previously been determined. We identify here a trio of proteins that associate with TgAMA1, at least one of which associates with TgAMA1 at the moving junction. Surprisingly, these new proteins derive not from micronemes, but from the anterior secretory organelles known as rhoptries and specifically, for at least two, from the neck portion of these club-shaped structures. Homologues for these AMA1-associated proteins are found throughout the Apicomplexa strongly suggesting that this moving junction apparatus is a conserved feature of this important class of parasites. Differences between the contributing proteins in different species may, in part, be the result of selective pressure from the different niches occupied by these parasites. PMID:16244709

  3. Genome-wide transcriptome analysis revealed organelle specific responses to temperature variations in algae

    PubMed Central

    Shin, HyeonSeok; Hong, Seong-Joo; Yoo, Chan; Han, Mi-Ae; Lee, Hookeun; Choi, Hyung-Kyoon; Cho, Suhyung; Lee, Choul-Gyun; Cho, Byung-Kwan

    2016-01-01

    Temperature is a critical environmental factor that affects microalgal growth. However, microalgal coping mechanisms for temperature variations are unclear. Here, we determined changes in transcriptome, total carbohydrate, total fatty acid methyl ester, and fatty acid composition of Tetraselmis sp. KCTC12432BP, a strain with a broad temperature tolerance range, to elucidate the tolerance mechanisms in response to large temperature variations. Owing to unavailability of genome sequence information, de novo transcriptome assembly coupled with BLAST analysis was performed using strand specific RNA-seq data. This resulted in 26,245 protein-coding transcripts, of which 83.7% could be annotated to putative functions. We identified more than 681 genes differentially expressed, suggesting an organelle-specific response to temperature variation. Among these, the genes related to the photosynthetic electron transfer chain, which are localized in the plastid thylakoid membrane, were upregulated at low temperature. However, the transcripts related to the electron transport chain and biosynthesis of phosphatidylethanolamine localized in mitochondria were upregulated at high temperature. These results show that the low energy uptake by repressed photosynthesis under low and high temperature conditions is compensated by different mechanisms, including photosystem I and mitochondrial oxidative phosphorylation, respectively. This study illustrates that microalgae tolerate different temperature conditions through organelle specific mechanisms. PMID:27883062

  4. Massive and Widespread Organelle Genomic Expansion in the Green Algal Genus Dunaliella

    PubMed Central

    Del Vasto, Michael; Figueroa-Martinez, Francisco; Featherston, Jonathan; González, Mariela A.; Reyes-Prieto, Adrian; Durand, Pierre M.; Smith, David Roy

    2015-01-01

    The mitochondrial genomes of chlamydomonadalean green algae are renowned for their highly reduced and conserved gene repertoires, which are almost fixed at 12 genes across the entire lineage. The sizes of these genomes, however, are much more variable, with some species having small, compact mitochondrial DNAs (mtDNAs) and others having expanded ones. Earlier work demonstrated that the halophilic genus Dunaliella contains extremely inflated organelle genomes, but to date the mtDNA of only one isolate has been explored. Here, by surveying mtDNA architecture across the Chlamydomonadales, we show that various Dunaliella species have undergone massive levels of mitochondrial genomic expansion, harboring the most inflated, intron-dense mtDNAs available from chlorophyte green algae. The same also appears to be true for their plastid genomes, which are potentially among the largest of all plastid-containing eukaryotes. Genetic divergence data are used to investigate the underlying causes of such extreme organelle genomic architectures, and ultimately reveal order-of-magnitude differences in mitochondrial versus plastid mutation rates within Dunaliella. PMID:25663488

  5. From endosymbiont to host-controlled organelle: the hijacking of mitochondrial protein synthesis and metabolism.

    PubMed

    Gabaldón, Toni; Huynen, Martijn A

    2007-11-01

    Mitochondria are eukaryotic organelles that originated from the endosymbiosis of an alpha-proteobacterium. To gain insight into the evolution of the mitochondrial proteome as it proceeded through the transition from a free-living cell to a specialized organelle, we compared a reconstructed ancestral proteome of the mitochondrion with the proteomes of alpha-proteobacteria as well as with the mitochondrial proteomes in yeast and man. Overall, there has been a large turnover of the mitochondrial proteome during the evolution of mitochondria. Early in the evolution of the mitochondrion, proteins involved in cell envelope synthesis have virtually disappeared, whereas proteins involved in replication, transcription, cell division, transport, regulation, and signal transduction have been replaced by eukaryotic proteins. More than half of what remains from the mitochondrial ancestor in modern mitochondria corresponds to translation, including post-translational modifications, and to metabolic pathways that are directly, or indirectly, involved in energy conversion. Altogether, the results indicate that the eukaryotic host has hijacked the proto-mitochondrion, taking control of its protein synthesis and metabolism.

  6. Isolation of Intact Chloroplasts and Other Cell Organelles from Spinach Leaf Protoplasts 1

    PubMed Central

    Nishimura, Mikio; Graham, Douglas; Akazawa, Takashi

    1976-01-01

    Freshly prepared spinach leaf protoplasts were gently ruptured by mechanical shearing followed by sucrose density gradient centrifugation to separate constituent cell organelles. The isolation of intact Class I chloroplasts (d = 1.21) in high yield, well separated from peroxisomes and mitochondria, was evidenced by the specific localization of ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39), NADP triose-P dehydrogenase (EC 1.2.1.9), and carbonic anhydrase (EC 4.2.1.1) in the fractions. A clear separation of chloroplastic ribosomes from the soluble cytoplasmic ribosomes was also demonstrated by the band patterns of constituent RNA species in the polyacrylamide gel electrophoresis. Localization of several enzyme activities specific to leaf peroxisomes, e.g. catalase (EC 1.11.1.6), glycolate oxidase (EC 1.1.3.1), glyoxylate reductase (EC 1.1.1.26), glutamate glyoxylate aminotransferase (EC 2.6.1.4), serine glyoxylate aminotransferase, and alanine glyoxylate aminotransferase (EC 2.6.1.12) in the peroxisomal fractions (d = 1.25), was demonstrated. Overall results show the feasibility of the method for the isolation of pure organelle components in leaf tissues. Images PMID:16659669

  7. Extension of the concept of an anomalous water component to images of T-cell organelles

    NASA Astrophysics Data System (ADS)

    Tychinsky, Vladimir P.

    2014-12-01

    Microscopic images of a living cell are the main source of information on its functional state. Modern interference microscopy techniques allow the numerical parameters of cell images to be obtained with an accuracy not available with other methods. Quantitative analysis of phase images of T lymphocytes (TCs) in different functional states demonstrated that variations of the properties of intracellular water should be taken into account. This conclusion agrees with the current view that the physical parameters of water, including the refractive index (RI) of a water layer, depend on the hydrophilicity and other characteristics of the adjacent surface. Application of this concept to phase images of TCs showed that the contribution of the fourth phase of water (4-water) or the structured water component, which has an increased RI, should be considered. The proportion of 4-water depends on the functional state of the cell determined by the culture medium composition. Normally, the proportion of 4-water in organelles is as high as 30% it is considerably lower in organelles of cells with inhibited metabolism.

  8. Multiclassifier combinatorial proteomics of organelle shadows at the example of mitochondria in chromatin data.

    PubMed

    Kustatscher, Georg; Grabowski, Piotr; Rappsilber, Juri

    2016-02-01

    Subcellular localization is an important aspect of protein function, but the protein composition of many intracellular compartments is poorly characterized. For example, many nuclear bodies are challenging to isolate biochemically and thus remain inaccessible to proteomics. Here, we explore covariation in proteomics data as an alternative route to subcellular proteomes. Rather than targeting a structure of interest biochemically, we target it by machine learning. This becomes possible by taking data obtained for one organelle and searching it for traces of another organelle. As an extreme example and proof-of-concept we predict mitochondrial proteins based on their covariation in published interphase chromatin data. We detect about ⅓ of the known mitochondrial proteins in our chromatin data, presumably most as contaminants. However, these proteins are not present at random. We show covariation of mitochondrial proteins in chromatin proteomics data. We then exploit this covariation by multiclassifier combinatorial proteomics to define a list of mitochondrial proteins. This list agrees well with different databases on mitochondrial composition. This benchmark test raises the possibility that, in principle, covariation proteomics may also be applicable to structures for which no biochemical isolation procedures are available.

  9. Isolation and characterization of a prokaryotic cell organelle from the anammox bacterium Kuenenia stuttgartiensis.

    PubMed

    Neumann, Sarah; Wessels, Hans J C T; Rijpstra, W Irene C; Sinninghe Damsté, Jaap S; Kartal, Boran; Jetten, Mike S M; van Niftrik, Laura

    2014-11-01

    Anaerobic ammonium oxidizing (anammox) bacteria oxidize ammonium with nitrite to nitrogen gas in the absence of oxygen. These microorganisms form a significant sink for fixed nitrogen in the oceans and the anammox process is applied as a cost-effective and environment-friendly nitrogen removal system from wastewater. Anammox bacteria have a compartmentalized cell plan that consists of three separate compartments. Here we report the fractionation of the anammox bacterium Kuenenia stuttgartiensis in order to isolate and analyze the innermost cell compartment called the anammoxosome. The subcellular fractions were microscopically characterized and all membranes in the anammox cell were shown to contain ladderane lipids which are unique for anammox bacteria. Proteome analyses and activity assays with the isolated anammoxosomes showed that these organelles harbor the energy metabolism in anammox cells. Together the experimental data provide the first thorough characterization of a respiratory cell organelle from a bacterium and demonstrate the essential role of the anammoxosome in the production of a major portion of the nitrogen gas in our atmosphere.

  10. Manipulation and Motion of Organelles and Single Molecules in Living Cells.

    PubMed

    Norregaard, Kamilla; Metzler, Ralf; Ritter, Christine M; Berg-Sørensen, Kirstine; Oddershede, Lene B

    2017-03-08

    The biomolecule is among the most important building blocks of biological systems, and a full understanding of its function forms the scaffold for describing the mechanisms of higher order structures as organelles and cells. Force is a fundamental regulatory mechanism of biomolecular interactions driving many cellular processes. The forces on a molecular scale are exactly in the range that can be manipulated and probed with single molecule force spectroscopy. The natural environment of a biomolecule is inside a living cell, hence, this is the most relevant environment for probing their function. In vivo studies are, however, challenged by the complexity of the cell. In this review, we start with presenting relevant theoretical tools for analyzing single molecule data obtained in intracellular environments followed by a description of state-of-the art visualization techniques. The most commonly used force spectroscopy techniques, namely optical tweezers, magnetic tweezers, and atomic force microscopy, are described in detail, and their strength and limitations related to in vivo experiments are discussed. Finally, recent exciting discoveries within the field of in vivo manipulation and dynamics of single molecule and organelles are reviewed.

  11. Inheritance of organelle DNA sequences in a citrus-poncirus intergeneric cross.

    PubMed

    Moreira, C D; Gmitter, F G; Grosser, J W; Huang, S; Ortega, V M; Chase, C D

    2002-01-01

    Many land plants deviate from the maternal pattern of organelle inheritance. In this study, heterologous mitochondrial and chloroplast probes were used to investigate the inheritance of organelle genomes in the progeny of an intergeneric cross. The seed parent was LB 1-18 (a hybrid of Citrus reticulata Blanco cv. Clementine x C. paradisi Macf. cv. Duncan) and the pollen parent was the cross-compatible species Poncirus trifoliata (L.) Raf. All 26 progeny examined exhibited maternal inheritance of plastid petA and petD loci. However, 17 of the 26 progeny exhibited an apparent biparental inheritance of mitochondrial atpA, cob, coxII, and coxIII restriction fragment length polymorphisms (RFLPs) and maternal inheritance of mitochondrial rrn26 and coxI RFLPs. The remaining nine progeny inherited only maternal mitochondrial DNA (mtDNA) configurations. Investigations of plant mitochondrial genome inheritance are complicated by the multipartite structure of this genome, nuclear gene control over mitochondrial genome organization, and transfer of mitochondrial sequences to the nucleus. In this study, paternal mtDNA configurations were not detected in purified mtDNA of progeny plants, but were present in progeny DNA preparations enriched for nuclear genome sequences. MtDNA sequences in the nuclear genome therefore produced an inheritance pattern that mimics biparental inheritance of mtDNA.

  12. Interrelations between the Parasitophorous Vacuole of Toxoplasma gondii and Host Cell Organelles

    NASA Astrophysics Data System (ADS)

    Cardoso Magno, Rodrigo; Cobra Straker, Lorian; de Souza, Wanderley; Attias, Marcia

    2005-04-01

    Toxoplasma gondii, the causative agent of toxoplasmosis, is capable of actively penetrating and multiplying in any nucleated cell of warm-blooded animals. Its survival strategies include escape from fusion of the parasitophorous vacuole with host cell lysosomes and rearrangement of host cell organelles in relation to the parasitophorous vacuole. In this article we report the rearrangement of host cell organelles and elements of the cytoskeleton of LLCMK2 cells, a lineage derived from green monkey kidney epithelial cells, in response to infection by T. gondii tachyzoites. Transmission electron microscopy made on flat embedded monolayers cut horizontally to the apical side of the cells or field emission scanning electron microscopy of monolayers scraped with scotch tape before sputtering showed that association of mitochondria to the vacuole is much less frequent than previously described. On the other hand, all parasitophorous vacuoles were surrounded by elements of the endoplasmic reticulum. These data were complemented by observations by laser scanning microscopy using fluorescent probes from mitochondria and endoplasmic reticulum and reinforced by three-dimensional reconstruction from serial sections observed by transmission electron microscopy and labeling of mitochondria and endoplasmic reticulum by fluorescent probes.

  13. Multiclassifier combinatorial proteomics of organelle shadows at the example of mitochondria in chromatin data

    PubMed Central

    Kustatscher, Georg; Grabowski, Piotr

    2016-01-01

    Subcellular localization is an important aspect of protein function, but the protein composition of many intracellular compartments is poorly characterized. For example, many nuclear bodies are challenging to isolate biochemically and thus remain inaccessible to proteomics. Here, we explore covariation in proteomics data as an alternative route to subcellular proteomes. Rather than targeting a structure of interest biochemically, we target it by machine learning. This becomes possible by taking data obtained for one organelle and searching it for traces of another organelle. As an extreme example and proof‐of‐concept we predict mitochondrial proteins based on their covariation in published interphase chromatin data. We detect about ⅓ of the known mitochondrial proteins in our chromatin data, presumably most as contaminants. However, these proteins are not present at random. We show covariation of mitochondrial proteins in chromatin proteomics data. We then exploit this covariation by multiclassifier combinatorial proteomics to define a list of mitochondrial proteins. This list agrees well with different databases on mitochondrial composition. This benchmark test raises the possibility that, in principle, covariation proteomics may also be applicable to structures for which no biochemical isolation procedures are available. PMID:26510496

  14. Cadmium stress disrupts the endomembrane organelles and endocytosis during Picea wilsonii pollen germination and tube growth.

    PubMed

    Wang, Xiaoxia; Gao, Yuan; Feng, Yu; Li, Xue; Wei, Qian; Sheng, Xianyong

    2014-01-01

    As one of the most severe pollutants, cadmium has been reported to be harmful to plant cells, but the effects of cadmium on gymnosperm pollen germination and tube growth and the mechanism of this involvement are still unclear. Here, we report that cadmium not only strongly inhibited P. wilsonii pollen germination and tube growth, but also significantly altered tube morphology in a dose-dependent manner. Time-lapse images obtained with a laser scanning confocal microscope revealed that endocytosis was dramatically inhibited by cadmium stress. Further investigation with ER-Tracker dye indicated that cadmium stress reduced the number of the Golgi apparatus, and induced dilation of ER. Additionally, Lyso-Tracker staining showed that cadmium distinctly promoted the formation of acidic organelles in pollen tubes, likely derived from the dilated ER. Taken together, our studies indicated that P. wilsonii pollens were highly susceptible to cadmium stress, and that cadmium stress strongly inhibited pollen germination and tube growth by disrupting the endomembrane organelles, inhibiting endo/exocytosis, and forming acidic vacuoles, resulting in swollen tube tips and irregularly broadened tube diameters. These findings provide a new insight into the effects of cadmium toxicity on the tip growth of pollen tubes.

  15. Cadmium Stress Disrupts the Endomembrane Organelles and Endocytosis during Picea wilsonii Pollen Germination and Tube Growth

    PubMed Central

    Feng, Yu; Li, Xue; Wei, Qian; Sheng, Xianyong

    2014-01-01

    As one of the most severe pollutants, cadmium has been reported to be harmful to plant cells, but the effects of cadmium on gymnosperm pollen germination and tube growth and the mechanism of this involvement are still unclear. Here, we report that cadmium not only strongly inhibited P. wilsonii pollen germination and tube growth, but also significantly altered tube morphology in a dose-dependent manner. Time-lapse images obtained with a laser scanning confocal microscope revealed that endocytosis was dramatically inhibited by cadmium stress. Further investigation with ER-Tracker dye indicated that cadmium stress reduced the number of the Golgi apparatus, and induced dilation of ER. Additionally, Lyso-Tracker staining showed that cadmium distinctly promoted the formation of acidic organelles in pollen tubes, likely derived from the dilated ER. Taken together, our studies indicated that P. wilsonii pollens were highly susceptible to cadmium stress, and that cadmium stress strongly inhibited pollen germination and tube growth by disrupting the endomembrane organelles, inhibiting endo/exocytosis, and forming acidic vacuoles, resulting in swollen tube tips and irregularly broadened tube diameters. These findings provide a new insight into the effects of cadmium toxicity on the tip growth of pollen tubes. PMID:24722362

  16. Apical Organelle Secretion by Toxoplasma Controls Innate and Adaptive Immunity and Mediates Long-Term Protection.

    PubMed

    Sloves, Pierre-Julien; Mouveaux, Thomas; Ait-Yahia, Saliha; Vorng, Han; Everaere, Laetitia; Sangare, Lamba Omar; Tsicopoulos, Anne; Tomavo, Stanislas

    2015-11-01

    Apicomplexan parasites have unique apical rhoptry and microneme secretory organelles that are crucial for host infection, although their role in protection against Toxoplasma gondii infection is not thoroughly understood. Here, we report a novel function of the endolysosomal T. gondii sortilin-like receptor (TgSORTLR), which mediates trafficking to functional apical organelles and their subsequent secretion of virulence factors that are critical to the induction of sterile immunity against parasite reinfection. We further demonstrate that the T. gondii armadillo repeats-only protein (TgARO) mutant, which is deficient only in apical secretion of rhoptries, is also critical in mounting protective immunity. The lack of TgSORTLR and TgARO proteins completely inhibited T-helper 1-dependent adaptive immunity and compromised the function of natural killer T-cell-mediated innate immunity. Our findings reveal an essential role for apical secretion in promoting sterile protection against T. gondii and provide strong evidence for rhoptry-regulated discharge of antigens as a key effector for inducing protective immunity.

  17. Detection, imaging, and kinetics of sub-micron organelles of chondrocytes by multiple beam interference microscopy

    NASA Astrophysics Data System (ADS)

    Joshi, Narahari V.; Medina, Honorio; Barboza, J. M.; Colantuoni, Gladys; Quintero, Maritza

    2004-07-01

    Chondrocytes, obtained from testosterone treated human articular cartilage, were examined by a recently developed Multiple Beam Interference Microscopy (MBIM) attached to a confocal set up, Video-enhanced differential interference microphotography and also by cinematography. In the MBIM, the intensity of the transmitted pattern is given by the Airy function which increases the contrast dramatically as the coefficient of the reflectance of the parallel plates increases. Moreover, in this configuration, the beam passes several times through a specific organelle and increases its optical path difference both because of the increase in the trajectory and refractive index (high density) of the organelle. The improved contrast enhances the resolving power of the system and makes visible several structural details of sub micron dimensions like nucleolus, retraction fibers, podia, etc. which are not possible to reveal with such a clarity by conventional techniques such as bright field, phase contrast or DIC. This technique permits to detect the oscillatory and rotational motions of unstained cilia for the first time. The frequency of oscillations was found to be 0.8 Hz.

  18. The anammoxosome organelle is crucial for the energy metabolism of anaerobic ammonium oxidizing bacteria.

    PubMed

    van Teeseling, Muriel C F; Neumann, Sarah; van Niftrik, Laura

    2013-01-01

    Anammox bacteria convert ammonium and nitrite to dinitrogen gas under anaerobic conditions to obtain their energy for growth. The anammox reaction was deemed impossible until its discovery in the early 1990s. Now, anammox bacteria are recognized as major players in the global nitrogen cycle and estimated to be responsible for up to 50% of the nitrogen in the air that we breathe. In addition, anammox bacteria are extremely valuable for wastewater treatment where they are applied for the removal of ammonium. Besides their importance in industry and the environment, anammox bacteria defy some basic biological concepts. Whereas most other bacteria have only one cell compartment, the cytoplasm, anammox bacteria have three independent cell compartments bounded by bilayer membranes, from out- to inside; the paryphoplasm, riboplasm and anammoxosome. The anammoxosome is the largest compartment of the anammox cell and is proposed to be dedicated to energy conservation. As such it would be analogous to the mitochondria of eukaryotes. This review will discuss the anammox cell plan in detail, with the main focus on the anammoxosome. The identity of the anammoxosome as a prokaryotic organelle and the importance of this organelle for anammox bacteria are discussed as well as challenges these bacteria face by having three independent cell compartments.

  19. The Cytoskeleton Maintains Organelle Partitioning Required for Single-Cell C4 Photosynthesis in Chenopodiaceae Species[W

    PubMed Central

    Chuong, Simon D.X.; Franceschi, Vincent R.; Edwards, Gerald E.

    2006-01-01

    Recently, three Chenopodiaceae species, Bienertia cycloptera, Bienertia sinuspersici, and Suaeda aralocaspica, were shown to possess novel C4 photosynthesis mechanisms through the compartmentalization of organelles and photosynthetic enzymes into two distinct regions within a single chlorenchyma cell. Bienertia has peripheral and central compartments, whereas S. aralocaspica has distal and proximal compartments. This compartmentalization achieves the equivalent of spatial separation of Kranz anatomy, including dimorphic chloroplasts, but within a single cell. To characterize the mechanisms of organelle compartmentalization, the distribution of the major organelles relative to the cytoskeleton was examined. Examination of the distribution of the cytoskeleton using immunofluorescence studies and transient expression of green fluorescent protein–tagged cytoskeleton markers revealed a highly organized network of actin filaments and microtubules associating with the chloroplasts and showed that the two compartments in each cell had different cytoskeletal arrangements. Experiments using cytoskeleton-disrupting drugs showed in Bienertia and S. aralocaspica that microtubules are critical for the polarized positioning of chloroplasts and other organelles. Compartmentalization of the organelles in these species represents a unique system in higher plants and illustrates the degree of control the plant cell has over the organization and integration of multiorganellar processes within its cytoplasm. PMID:16905659

  20. Chloroplast DNA Copy Number Changes during Plant Development in Organelle DNA Polymerase Mutants

    PubMed Central

    Morley, Stewart A.; Nielsen, Brent L.

    2016-01-01

    Chloroplast genome copy number is very high in leaf tissue, with upwards of 10,000 or more copies of the chloroplast DNA (ctDNA) per leaf cell. This is often promoted as a major advantage for engineering the plastid genome, as it provides high gene copy number and thus is expected to result in high expression of foreign proteins from integrated genes. However, it is also known that ctDNA copy number and ctDNA integrity decrease as cells age. Quantitative PCR (qPCR) allows measurement of organelle DNA levels relative to a nuclear gene target. We have used this approach to determine changes in copy number of ctDNA relative to the nuclear genome at different ages of Arabidopsis plant growth and in organellar DNA polymerase mutants. The mutant plant lines have T-DNA insertions in genes encoding the two organelle localized DNA polymerases (PolIA and PolIB). Each of these mutant lines exhibits some delay in plant growth and development as compared to wild-type plants, with the PolIB plants having a more pronounced delay. Both mutant lines develop to maturity and produce viable seeds. Mutants for both proteins were observed to have a reduction in ctDNA and mtDNA copy number relative to wild type plants at all time points as measured by qPCR. Both DNA polymerase mutants had a fairly similar decrease in ctDNA copy number, while the PolIB mutant had a greater effect of reduction in mtDNA levels. However, despite similar decreases in genome copy number, RT-PCR analysis of PolIA mutants show that PolIB expression remains unchanged, suggesting that PolIA may not be essential to plant survival. Furthermore, genotypic analysis of plants from heterozygous parents display a strong pressure to maintain two functioning copies of PolIB. These results indicate that the two DNA polymerases are both important in ctDNA replication, and they are not fully redundant to each other, suggesting each has a specific function in plant organelles. PMID:26870072

  1. Toxoplasma gondii Vps11, a subunit of HOPS and CORVET tethering complexes, is essential for the biogenesis of secretory organelles.

    PubMed

    Morlon-Guyot, Juliette; Pastore, Sandra; Berry, Laurence; Lebrun, Maryse; Daher, Wassim

    2015-08-01

    Apicomplexan parasites harbour unique secretory organelles (dense granules, rhoptries and micronemes) that play essential functions in host infection. Toxoplasma gondii parasites seem to possess an atypical endosome-like compartment, which contains an assortment of proteins that appear to be involved in vesicular sorting and trafficking towards secretory organelles. Recent studies highlighted the essential roles of many regulators such as Rab5A, Rab5C, sortilin-like receptor and syntaxin-6 in secretory organelle biogenesis. However, little is known about the protein complexes that recruit Rab-GTPases and SNAREs for membrane tethering in Apicomplexa. In mammals and yeast, transport, tethering and fusion of vesicles from early endosomes to lysosomes and the vacuole, respectively, are mediated by CORVET and HOPS complexes, both built on the same Vps-C core that includes Vps11 protein. Here, we show that a T. gondii Vps11 orthologue is essential for the biogenesis or proper subcellular localization of secretory organelle proteins. TgVps11 is a dynamic protein that associates with Golgi endosomal-related compartments, the vacuole and immature apical secretory organelles. Conditional knock-down of TgVps11 disrupts biogenesis of dense granules, rhoptries and micronemes. As a consequence, parasite motility, invasion, egress and intracellular growth are affected. This phenotype was confirmed with additional knock-down mutants of the HOPS complex. In conclusion, we show that apicomplexan parasites use canonical regulators of the endolysosome system to accomplish essential parasite-specific functions in the biogenesis of their unique secretory organelles.

  2. The dynamic subcellular localization of ERK: mechanisms of translocation and role in various organelles.

    PubMed

    Wainstein, Ehud; Seger, Rony

    2016-04-01

    The dynamic subcellular localization of ERK in resting and stimulated cells plays an important role in its regulation. In resting cells, ERK localizes in the cytoplasm, and upon stimulation, it translocates to its target substrates and organelles. ERK signaling initiated from different places in resting cells has distinct outcomes. In this review, we summarize the mechanisms of ERK1/2 translocation to the nucleus and mitochondria, and of ERK1c to the Golgi. We also show that ERK1/2 translocation to the nucleus is a useful anti cancer target. Unraveling the complex subcellular localization of ERK and its dynamic changes upon stimulation provides a better understanding of the regulation of ERK signaling and may result in the development of new strategies to combat ERK-related diseases.

  3. The Role of the Transmembrane RING Finger Proteins in Cellular and Organelle Function

    PubMed Central

    Nakamura, Nobuhiro

    2011-01-01

    A large number of RING finger (RNF) proteins are present in eukaryotic cells and the majority of them are believed to act as E3 ubiquitin ligases. In humans, 49 RNF proteins are predicted to contain transmembrane domains, several of which are specifically localized to membrane compartments in the secretory and endocytic pathways, as well as to mitochondria and peroxisomes. They are thought to be molecular regulators of the organization and integrity of the functions and dynamic architecture of cellular membrane and membranous organelles. Emerging evidence has suggested that transmembrane RNF proteins control the stability, trafficking and activity of proteins that are involved in many aspects of cellular and physiological processes. This review summarizes the current knowledge of mammalian transmembrane RNF proteins, focusing on their roles and significance. PMID:24957874

  4. Behavior of DNA-lacking mitochondria in Entamoeba histolytica revealed by organelle transplant

    PubMed Central

    Kazama, Makoto; Ogiwara, Sanae; Makiuchi, Takashi; Yoshida, Kazuhiro; Nakada-Tsukui, Kumiko; Nozaki, Tomoyoshi; Tachibana, Hiroshi

    2017-01-01

    The anaerobic protozoan parasite Entamoeba histolytica has mitosomes that are mitochondria lacking some canonical functions and organelle DNA. Mitosomes play an important role in the life cycle of the parasite. The distribution of proteins in mitosomes is not uniform, and how mitosomes are maintained and retained is unknown. To answer these questions, we developed a transplant method for mitosomes with hemagglutinin-tagged protein into recipient cells containing mitosomes with Myc-tagged protein. Immunofluorescence staining showed that the two protein tags colocalized in single mitosomes in some recipient cells. These results suggest that our transplant method can be used in anaerobic protozoa and that donor mitosomes may obtain recipient proteins through fusion with other mitosomes or through de novo synthesis of proteins in recipient cells. PMID:28287148

  5. Organelle-specific injury to melanin-containing cells in human skin by pulsed laser irradiation

    SciTech Connect

    Murphy, G.F.; Shepard, R.S.; Paul, B.S.; Menkes, A.; Anderson, R.R.; Parrish, J.A.

    1983-12-01

    Physical models predict that ultraviolet laser radiation of appropriately brief pulses can selectively alter melanin-containing cellular targets in human skin. Skin of normal human volunteers was exposed to brief (20 nanosecond) 351-nm wave length pulses from a XeF excimer laser, predicting that those cells containing the greatest quantities of melanized melanosomes (lower half of the epidermis) would be selectively damaged. Transmission electron microscopy revealed the earliest cellular alteration to be immediate disruption of melanosomes, both within melanocytes and basal keratinocytes. This disruption was dose dependent and culminated in striking degenerative changes in these cells. Superficial keratinocytes and Langerhans cells were not affected. It was concluded that the XeF excimer laser is capable of organelle-specific injury to melanosomes. These findings may have important clinical implications in the treatment of both benign and malignant pigmented lesions by laser radiations of defined wave lengths and pulse durations.

  6. From organelle to protein gel: a 6-wk laboratory project on flagellar proteins.

    PubMed

    Mitchell, Beth Ferro; Graziano, Mary R

    2006-01-01

    Research suggests that undergraduate students learn more from lab experiences that involve longer-term projects. We have developed a one-semester laboratory sequence aimed at sophomore-level undergraduates. In designing this curriculum, we focused on several educational objectives: 1) giving students a feel for the scientific research process, 2) introducing them to commonly used lab techniques, and 3) building skills in both data analysis and scientific writing. Over the course of the semester, students carry out two project-based lab experiences and write two substantial lab reports modeled on primary literature. Student assessment data indicate that this lab curriculum achieved these objectives. This article describes the first of these projects, which uses the biflagellate alga Chlamydomonas reinhardtii to introduce students to the study of flagellar motility, protein synthesis, microtubule polymerization, organelle assembly, and protein isolation and characterization.

  7. Biochemical properties of platelet microparticle membranes formed during exocytosis resemble organelles more than plasma membrane.

    PubMed

    Olas, Beata; Lundell, Kerstin; Holmsen, Holm; Fukami, Miriam H

    2002-08-14

    Studies of [3H]glycerol turnover in phosphatidylcholine (PC) in platelets revealed two metabolic pools, a 'low turnover PC' in collagen-induced microparticles with specific radioactivity only 10% of that found in the 'high turnover PC' of bulk platelet PC. Isolated organelle fractions of [3H]glycerol-labelled platelets contained [3H]PC with specific radioactivities about 20% of that in membrane fractions. These results together with studies on distribution of concanavalin A-FITC and GPlb, a plasma membrane receptor, indicate that microparticles formed during exocytosis are not simple vesiculations of plasma membrane, but they seem rather to originate from a relatively metabolically static membrane pool not accessible to extracellular reagents.

  8. New insights into an old organelle: meeting report on biology of cilia and flagella.

    PubMed

    Sengupta, Piali; Barr, Maureen M

    2014-06-01

    The rising interest of the scientific community in cilia biology was evident from the fact that registration for the third FASEB conference on 'The Biology of Cilia and Flagella' closed out before the early bird deadline. Cilia and flagella are organelles of profound medical importance; defects in their structure or function result in a plethora of human diseases called ciliopathies. 240 clinicians and basic scientists from around the world gathered from 23 June 2013 to 28 June 2013 at Sheraton at the Falls, Niagara Falls, NY to present and discuss their research on this intensely studied subcellular structure. The meeting was organized by Gregory Pazour (University of Massachusetts Medical School), Bradley Yoder (University of Alabama-Birmingham), and Maureen Barr (Rutgers University) and was sponsored by the Federation of American Societies for Experimental Biology (FASEB). Here, we report highlights, points of discussion, and emerging themes from this exciting meeting.

  9. The Role of Organelle Stresses in Diabetes Mellitus and Obesity: Implication for Treatment

    PubMed Central

    Chang, Yi-Cheng; Hee, Siow-Wey; Hsieh, Meng-Lun; Jeng, Yung-Ming; Chuang, Lee-Ming

    2015-01-01

    The type 2 diabetes pandemic in recent decades is a huge global health threat. This pandemic is primarily attributed to the surplus of nutrients and the increased prevalence of obesity worldwide. In contrast, calorie restriction and weight reduction can drastically prevent type 2 diabetes, indicating a central role of nutrient excess in the development of diabetes. Recently, the molecular links between excessive nutrients, organelle stress, and development of metabolic disease have been extensively studied. Specifically, excessive nutrients trigger endoplasmic reticulum stress and increase the production of mitochondrial reactive oxygen species, leading to activation of stress signaling pathway, inflammatory response, lipogenesis, and pancreatic beta-cell death. Autophagy is required for clearance of hepatic lipid clearance, alleviation of pancreatic beta-cell stress, and white adipocyte differentiation. ROS scavengers, chemical chaperones, and autophagy activators have demonstrated promising effects for the treatment of insulin resistance and diabetes in preclinical models. Further results from clinical trials are eagerly awaited. PMID:26613076

  10. Behavior of DNA-lacking mitochondria in Entamoeba histolytica revealed by organelle transplant.

    PubMed

    Kazama, Makoto; Ogiwara, Sanae; Makiuchi, Takashi; Yoshida, Kazuhiro; Nakada-Tsukui, Kumiko; Nozaki, Tomoyoshi; Tachibana, Hiroshi

    2017-03-13

    The anaerobic protozoan parasite Entamoeba histolytica has mitosomes that are mitochondria lacking some canonical functions and organelle DNA. Mitosomes play an important role in the life cycle of the parasite. The distribution of proteins in mitosomes is not uniform, and how mitosomes are maintained and retained is unknown. To answer these questions, we developed a transplant method for mitosomes with hemagglutinin-tagged protein into recipient cells containing mitosomes with Myc-tagged protein. Immunofluorescence staining showed that the two protein tags colocalized in single mitosomes in some recipient cells. These results suggest that our transplant method can be used in anaerobic protozoa and that donor mitosomes may obtain recipient proteins through fusion with other mitosomes or through de novo synthesis of proteins in recipient cells.

  11. Influence of organelle geometry on the apparent binding kinetics of peripheral membrane proteins

    NASA Astrophysics Data System (ADS)

    Hoffmann, Julia; Fickentscher, Rolf; Weiss, Matthias

    2015-02-01

    Information processing in living cells frequently involves an exchange of peripheral membrane proteins between the cytosol and organelle membranes. The typical time scale τ of these association-dissociation cycles is commonly quantified in vivo via fluorescence recovery after photobleaching (FRAP). Contrary to common assumptions, we show here that τ values determined by FRAP depend on the size and number of target structures. Hence, FRAP times alone are insufficient to draw conclusions about the proteins' binding kinetics. In contrast, extracting primary molecular association and dissociation rates from FRAP approaches provides a size-independent and therefore robust measure for the proteins' binding kinetics. We support our theoretical considerations with experiments on the small GTPase Arf-1 that transiently associates with Golgi membranes: While Arf-1 recovery times in untreated cells and in cells with disrupted microtubules are significantly different, the molecular kinetic rates are shown to be the same in both cases.

  12. Mapping organelle motion reveals a vesicular conveyor belt spatially replenishing secretory vesicles in stimulated chromaffin cells.

    PubMed

    Maucort, Guillaume; Kasula, Ravikiran; Papadopulos, Andreas; Nieminen, Timo A; Rubinsztein-Dunlop, Halina; Meunier, Frederic A

    2014-01-01

    How neurosecretory cells spatially adjust their secretory vesicle pools to replenish those that have fused and released their hormonal content is currently unknown. Here we designed a novel set of image analyses to map the probability of tracked organelles undergoing a specific type of movement (free, caged or directed). We then applied our analysis to time-lapse z-stack confocal imaging of secretory vesicles from bovine Chromaffin cells to map the global changes in vesicle motion and directionality occurring upon secretagogue stimulation. We report a defined region abutting the cortical actin network that actively transports secretory vesicles and is dissipated by actin and microtubule depolymerizing drugs. The directionality of this "conveyor belt" towards the cell surface is activated by stimulation. Actin and microtubule networks therefore cooperatively probe the microenvironment to transport secretory vesicles to the periphery, providing a mechanism whereby cells globally adjust their vesicle pools in response to secretagogue stimulation.

  13. Calcium homeostasis and organelle function in the pathogenesis of obesity and diabetes

    PubMed Central

    Arruda, Ana Paula; Hotamisligil, Gökhan S.

    2015-01-01

    Summary A number of chronic metabolic pathologies, including obesity, diabetes, cardiovascular disease, asthma, and cancer cluster together to present the greatest threat to human health. As research in this field has advanced, it has become clear that unresolved metabolic inflammation, organelle dysfunction, and other cellular and metabolic stresses underlie the development of these chronic metabolic diseases. However, the relationship between these systems and pathological mechanisms is poorly understood. Here, we will discuss the role of cellular Ca2+ homeostasis as a critical mechanism integrating the myriad of cellular and subcellular dysfunctional networks found in metabolic tissues such as liver and adipose tissue in the context of metabolic disease particularly in obesity and diabetes. PMID:26190652

  14. Maternally supplied S-acyl-transferase is required for crystalloid organelle formation and transmission of the malaria parasite

    PubMed Central

    Duarte, Neuza; Ramesar, Jai; Avramut, M. Cristina; Koster, Abraham J.; Dessens, Johannes T.; Frischknecht, Friedrich; Chevalley-Maurel, Séverine; Janse, Chris J.; Franke-Fayard, Blandine; Mair, Gunnar R.

    2016-01-01

    Transmission of the malaria parasite from the mammalian host to the mosquito vector requires the formation of adequately adapted parasite forms and stage-specific organelles. Here we show that formation of the crystalloid—a unique and short-lived organelle of the Plasmodium ookinete and oocyst stage required for sporogony—is dependent on the precisely timed expression of the S-acyl-transferase DHHC10. DHHC10, translationally repressed in female Plasmodium berghei gametocytes, is activated translationally during ookinete formation, where the protein is essential for the formation of the crystalloid, the correct targeting of crystalloid-resident protein LAP2, and malaria parasite transmission. PMID:27303037

  15. A review of reagents for fluorescence microscopy of cellular compartments and structures, Part II: reagents for non-vesicular organelles.

    PubMed

    Kilgore, Jason A; Dolman, Nick J; Davidson, Michael W

    2013-10-09

    A wide range of fluorescent dyes and reagents exist for labeling organelles in live and fixed cells. Choosing between them can sometimes be confusing, and optimization for many of them can be challenging. Presented here is a discussion on the commercially-available reagents that have shown the most promise for each organelle of interest, including endoplasmic reticulum/nuclear membrane, Golgi apparatus, mitochondria, nucleoli, and nuclei, with an emphasis on localization of these structures for microscopy. Included is a featured reagent for each structure with a recommended protocol, troubleshooting guide, and example image.

  16. Characterization of a Planctomycetal Organelle: a Novel Bacterial Microcompartment for the Aerobic Degradation of Plant Saccharides

    PubMed Central

    Erbilgin, Onur; McDonald, Kent L.

    2014-01-01

    Bacterial microcompartments (BMCs) are organelles that encapsulate functionally linked enzymes within a proteinaceous shell. The prototypical example is the carboxysome, which functions in carbon fixation in cyanobacteria and some chemoautotrophs. It is increasingly apparent that diverse heterotrophic bacteria contain BMCs that are involved in catabolic reactions, and many of the BMCs are predicted to have novel functions. However, most of these putative organelles have not been experimentally characterized. In this study, we sought to discover the function of a conserved BMC gene cluster encoded in the majority of the sequenced planctomycete genomes. This BMC is especially notable for its relatively simple genetic composition, its remote phylogenetic position relative to characterized BMCs, and its apparent exclusivity to the enigmatic Verrucomicrobia and Planctomycetes. Members of the phylum Planctomycetes are known for their morphological dissimilarity to the rest of the bacterial domain: internal membranes, reproduction by budding, and lack of peptidoglycan. As a result, they are ripe for many discoveries, but currently the tools for genetic studies are very limited. We expanded the genetic toolbox for the planctomycetes and generated directed gene knockouts of BMC-related genes in Planctomyces limnophilus. A metabolic activity screen revealed that BMC gene products are involved in the degradation of a number of plant and algal cell wall sugars. Among these sugars, we confirmed that BMCs are formed and required for growth on l-fucose and l-rhamnose. Our results shed light on the functional diversity of BMCs as well as their ecological role in the planctomycetes, which are commonly associated with algae. PMID:24487526

  17. A repeat protein links Rubisco to form the eukaryotic carbon-concentrating organelle

    PubMed Central

    Mackinder, Luke C. M.; Meyer, Moritz T.; Mettler-Altmann, Tabea; Chen, Vivian K.; Mitchell, Madeline C.; Caspari, Oliver; Freeman Rosenzweig, Elizabeth S.; Pallesen, Leif; Reeves, Gregory; Itakura, Alan; Roth, Robyn; Sommer, Frederik; Geimer, Stefan; Mühlhaus, Timo; Schroda, Michael; Goodenough, Ursula; Stitt, Mark; Griffiths, Howard; Jonikas, Martin C.

    2016-01-01

    Biological carbon fixation is a key step in the global carbon cycle that regulates the atmosphere's composition while producing the food we eat and the fuels we burn. Approximately one-third of global carbon fixation occurs in an overlooked algal organelle called the pyrenoid. The pyrenoid contains the CO2-fixing enzyme Rubisco and enhances carbon fixation by supplying Rubisco with a high concentration of CO2. Since the discovery of the pyrenoid more that 130 y ago, the molecular structure and biogenesis of this ecologically fundamental organelle have remained enigmatic. Here we use the model green alga Chlamydomonas reinhardtii to discover that a low-complexity repeat protein, Essential Pyrenoid Component 1 (EPYC1), links Rubisco to form the pyrenoid. We find that EPYC1 is of comparable abundance to Rubisco and colocalizes with Rubisco throughout the pyrenoid. We show that EPYC1 is essential for normal pyrenoid size, number, morphology, Rubisco content, and efficient carbon fixation at low CO2. We explain the central role of EPYC1 in pyrenoid biogenesis by the finding that EPYC1 binds Rubisco to form the pyrenoid matrix. We propose two models in which EPYC1’s four repeats could produce the observed lattice arrangement of Rubisco in the Chlamydomonas pyrenoid. Our results suggest a surprisingly simple molecular mechanism for how Rubisco can be packaged to form the pyrenoid matrix, potentially explaining how Rubisco packaging into a pyrenoid could have evolved across a broad range of photosynthetic eukaryotes through convergent evolution. In addition, our findings represent a key step toward engineering a pyrenoid into crops to enhance their carbon fixation efficiency. PMID:27166422

  18. Organelles contribute differentially to reactive oxygen species-related events during extended darkness.

    PubMed

    Rosenwasser, Shilo; Rot, Ilona; Sollner, Evelyn; Meyer, Andreas J; Smith, Yoav; Leviatan, Noam; Fluhr, Robert; Friedman, Haya

    2011-05-01

    Treatment of Arabidopsis (Arabidopsis thaliana) leaves by extended darkness generates a genetically activated senescence program that culminates in cell death. The transcriptome of leaves subjected to extended darkness was found to contain a variety of reactive oxygen species (ROS)-specific signatures. The levels of transcripts constituting the transcriptome footprints of chloroplasts and cytoplasm ROS stresses decreased in leaves, as early as the second day of darkness. In contrast, an increase was detected in transcripts associated with mitochondrial and peroxisomal ROS stresses. The sequential changes in the redox state of the organelles during darkness were examined by redox-sensitive green fluorescent protein probes (roGFP) that were targeted to specific organelles. In plastids, roGFP showed a decreased level of oxidation as early as the first day of darkness, followed by a gradual increase to starting levels. However, in mitochondria, the level of oxidation of roGFP rapidly increased as early as the first day of darkness, followed by an increase in the peroxisomal level of oxidation of roGFP on the second day. No changes in the probe oxidation were observed in the cytoplasm until the third day. The increase in mitochondrial roGFP degree of oxidation was abolished by sucrose treatment, implying that oxidation is caused by energy deprivation. The dynamic redox state visualized by roGFP probes and the analysis of microarray results are consistent with a scenario in which ROS stresses emanating from the mitochondria and peroxisomes occur early during darkness at a presymptomatic stage and jointly contribute to the senescence program.

  19. Developmental changes and organelle biogenesis in the reproductive organs of thermogenic skunk cabbage (Symplocarpus renifolius).

    PubMed

    Ito-Inaba, Yasuko; Sato, Mayuko; Masuko, Hiromi; Hida, Yamato; Toyooka, Kiminori; Watanabe, Masao; Inaba, Takehito

    2009-01-01

    Sex-dependent thermogenesis during reproductive organ development in the inflorescence is a characteristic feature of some of the protogynous arum species. One such plant, skunk cabbage (Symplocarpus renifolius), can produce massive heat during the female stage but not during the subsequent male stage in which the stamen completes development, the anthers dehisce, and pollen is released. Unlike other thermogenic species, skunk cabbage belongs to the bisexual flower group. Although recent studies have identified the spadix as the thermogenic organ, it remains unclear how individual tissues or intracellular structures are involved in thermogenesis. In this study, reproductive organ development and organelle biogenesis were examined during the transition from the female to the male stage. During the female stage, the stamens exhibit extensive structural changes including changes in organelle structure and density. They accumulate high levels of mitochondrial proteins, including possible thermogenic factors, alternative oxidase, and uncoupling protein. By contrast, the petals and pistils do not undergo extensive changes during the female stage. However, they contain a larger number of mitochondria than during the male stage in which they develop large cytoplasmic vacuoles. Comparison between female and male spadices suggests that mitochondrial number rather than their level of activity correlates with thermogenesis. Their spadices, even in the male, contain a larger amount of mitochondria that had greater oxygen consumption, compared with non-thermogenic plants. Taken together, our data suggest that the extensive maturation process in stamens produces massive heat through increased metabolic activities. The possible mechanisms by which petal and pistil metabolism may affect thermogenesis are also discussed.

  20. Local cytoskeletal and organelle interactions impact molecular motor-driven early endosomal trafficking

    PubMed Central

    Zajac, Allison L.; Goldman, Yale E.; Holzbaur, Erika L.F.; Ostap, E. Michael

    2013-01-01

    SUMMARY Background In the intracellular environment, motor-driven cargo must navigate a dense cytoskeletal network among abundant organelles. Results We investigated the effects of the crowded intracellular environment on early endosomal trafficking. Live-cell imaging of an endosomal cargo (endocytosed epidermal growth factor-conjugated quantum dots) combined with high-resolution tracking was used to analyze the heterogeneous motion of individual endosomes. The motile population of endosomes moved towards the perinuclear region in directed bursts of microtubule-based, dynein-dependent transport interrupted by longer periods of diffusive motion. Actin network density did not affect motile endosomes during directed runs or diffusive interruptions. Simultaneous two-color imaging was used to correlate changes in endosomal movement with potential obstacles to directed runs. Termination of directed runs spatially correlated with microtubule-dense regions, encounters with other endosomes, and interactions with the endoplasmic reticulum. During a subset of run terminations, we also observed merging and splitting of endosomes, deformation of the endoplasmic reticulum, and directional reversals at speeds up to ten-fold greater than characteristic in vitro motor velocities. These observations suggest endosomal membrane tension is high during directed run termination. Conclusions Our results indicate that the crowded cellular environment significantly impacts the motor-driven motility of organelles. Rather than simply acting as impediments to movement, interactions of trafficking cargos with intracellular obstacles may facilitate communication between membrane-bound compartments or contribute to the generation of membrane tension necessary for fusion and fission of endosomal membranes or remodeling of the endoplasmic reticulum. PMID:23770188

  1. Metabolic Interplay between Peroxisomes and Other Subcellular Organelles Including Mitochondria and the Endoplasmic Reticulum

    PubMed Central

    Wanders, Ronald J. A.; Waterham, Hans R.; Ferdinandusse, Sacha

    2016-01-01

    Peroxisomes are unique subcellular organelles which play an indispensable role in several key metabolic pathways which include: (1.) etherphospholipid biosynthesis; (2.) fatty acid beta-oxidation; (3.) bile acid synthesis; (4.) docosahexaenoic acid (DHA) synthesis; (5.) fatty acid alpha-oxidation; (6.) glyoxylate metabolism; (7.) amino acid degradation, and (8.) ROS/RNS metabolism. The importance of peroxisomes for human health and development is exemplified by the existence of a large number of inborn errors of peroxisome metabolism in which there is an impairment in one or more of the metabolic functions of peroxisomes. Although the clinical signs and symptoms of affected patients differ depending upon the enzyme which is deficient and the extent of the deficiency, the disorders involved are usually (very) severe diseases with neurological dysfunction and early death in many of them. With respect to the role of peroxisomes in metabolism it is clear that peroxisomes are dependent on the functional interplay with other subcellular organelles to sustain their role in metabolism. Indeed, whereas mitochondria can oxidize fatty acids all the way to CO2 and H2O, peroxisomes are only able to chain-shorten fatty acids and the end products of peroxisomal beta-oxidation need to be shuttled to mitochondria for full oxidation to CO2 and H2O. Furthermore, NADH is generated during beta-oxidation in peroxisomes and beta-oxidation can only continue if peroxisomes are equipped with a mechanism to reoxidize NADH back to NAD+, which is now known to be mediated by specific NAD(H)-redox shuttles. In this paper we describe the current state of knowledge about the functional interplay between peroxisomes and other subcellular compartments notably the mitochondria and endoplasmic reticulum for each of the metabolic pathways in which peroxisomes are involved. PMID:26858947

  2. Lipid Body Organelles within the Parasite Trypanosoma cruzi: A Role for Intracellular Arachidonic Acid Metabolism

    PubMed Central

    Toledo, Daniel A. M.; Roque, Natália R.; Teixeira, Lívia; Milán-Garcés, Erix A.; Carneiro, Alan B.; Almeida, Mariana R.; Andrade, Gustavo F. S.; Martins, Jefferson S.; Pinho, Roberto R.; Freire-de-Lima, Célio G.; Bozza, Patrícia T.; D’Avila, Heloisa

    2016-01-01

    Most eukaryotic cells contain varying amounts of cytosolic lipidic inclusions termed lipid bodies (LBs) or lipid droplets (LDs). In mammalian cells, such as macrophages, these lipid-rich organelles are formed in response to host-pathogen interaction during infectious diseases and are sites for biosynthesis of arachidonic acid (AA)-derived inflammatory mediators (eicosanoids). Less clear are the functions of LBs in pathogenic lower eukaryotes. In this study, we demonstrated that LBs, visualized by light microscopy with different probes and transmission electron microscopy (TEM), are produced in trypomastigote forms of the parasite Trypanosoma cruzi, the causal agent of Chagas’ disease, after both host interaction and exogenous AA stimulation. Quantitative TEM revealed that LBs from amastigotes, the intracellular forms of the parasite, growing in vivo have increased size and electron-density compared to LBs from amastigotes living in vitro. AA-stimulated trypomastigotes released high amounts of prostaglandin E2 (PGE2) and showed PGE2 synthase expression. Raman spectroscopy demonstrated increased unsaturated lipid content and AA incorporation in stimulated parasites. Moreover, both Raman and MALDI mass spectroscopy revealed increased AA content in LBs purified from AA-stimulated parasites compared to LBs from unstimulated group. By using a specific technique for eicosanoid detection, we immunolocalized PGE2 within LBs from AA-stimulated trypomastigotes. Altogether, our findings demonstrate that LBs from the parasite Trypanosoma cruzi are not just lipid storage inclusions but dynamic organelles, able to respond to host interaction and inflammatory events and involved in the AA metabolism. Acting as sources of PGE2, a potent immunomodulatory lipid mediator that inhibits many aspects of innate and adaptive immunity, newly-formed parasite LBs may be implicated with the pathogen survival in its host. PMID:27490663

  3. Nonperturbative Chemical Imaging of Organelle Transport in Living Cells with Coherent Anti-Stokes Raman Scattering Microscopy

    PubMed Central

    Nan, Xiaolin; Potma, Eric O.; Xie, X. Sunney

    2006-01-01

    Nonperturbative monitoring of intracellular organelle transport in unstained living cells was achieved with coherent anti-Stokes Raman scattering (CARS) microscopy. To avoid possible interference with the organelle transport introduced by laser radiation, we first examined different illumination conditions. Using a new photodamage criterion based on morphological changes of the cells, we determined the threshold values of both pulse energy and average power at relevant wavelengths. Under excitation conditions much milder than the threshold levels, we were able to monitor the motions of lipid droplet (LD) organelles in steroidogenic mouse adrenal cortical (Y-1) cells with CARS microscopy in real time without perturbations to the cells. Particle tracking analyses revealed subdiffusion as well as active transport of LDs along microtubules. Interestingly, LD active transport is only present in Y-1 cells that rounded up in culture, a morphological change associated with steroidogenesis, suggesting possible involvements of LD active transport in the latter. Simultaneous imaging of LDs and mitochondria with CARS and two-photon fluorescence microscopy clearly showed that interactions between the two organelles could be facilitated by high LD motility. These observations demonstrate CARS microscopy as a powerful noninvasive imaging tool for studying dynamic processes in living cells. PMID:16632501

  4. High-throughput imaging of heterogeneous cell organelles with an X-ray laser (CXIDB ID 25)

    SciTech Connect

    Hantke, Max, F.

    2014-11-17

    Preprocessed detector images that were used for the paper "High-throughput imaging of heterogeneous cell organelles with an X-ray laser". The CXI file contains the entire recorded data - including both hits and blanks. It also includes down-sampled images and LCLS machine parameters. Additionally, the Cheetah configuration file is attached that was used to create the pre-processed data.

  5. The dynamic behavior of storage organelles in developing cereal seeds and its impact on the production of recombinant proteins

    PubMed Central

    Arcalis, Elsa; Ibl, Verena; Peters, Jenny; Melnik, Stanislav; Stoger, Eva

    2014-01-01

    Cereal endosperm is a highly differentiated tissue containing specialized organelles for the accumulation of storage proteins, which are ultimately deposited either within protein bodies derived from the endoplasmic reticulum, or in protein storage vacuoles (PSVs). During seed maturation endosperm cells undergo a rapid sequence of developmental changes, including extensive reorganization and rearrangement of the endomembrane system and protein transport via several developmentally regulated trafficking routes. Storage organelles have been characterized in great detail by the histochemical analysis of fixed immature tissue samples. More recently, in vivo imaging and the use of tonoplast markers and fluorescent organelle tracers have provided further insight into the dynamic morphology of PSVs in different cell layers of the developing endosperm. This is relevant for biotechnological applications in the area of molecular farming because seed storage organelles in different cereal crops offer alternative subcellular destinations for the deposition of recombinant proteins that can reduce proteolytic degradation, allow control over glycan structures and increase the efficacy of oral delivery. We discuss how the specialized architecture and developmental changes of the endomembrane system in endosperm cells may influence the subcellular fate and post-translational modification of recombinant glycoproteins in different cereal species. PMID:25232360

  6. Leading-process actomyosin coordinates organelle positioning and adhesion receptor dynamics in radially migrating cerebellar granule neurons

    DOE PAGES

    Trivedi, Niraj; Ramahi, Joseph S.; Karakaya, Mahmut; ...

    2014-12-02

    During brain development, neurons migrate from germinal zones to their final positions to assemble neural circuits. A unique saltatory cadence involving cyclical organelle movement (e.g., centrosome motility) and leading-process actomyosin enrichment prior to nucleokinesis organizes neuronal migration. While functional evidence suggests that leading-process actomyosin is essential for centrosome motility, the role of the actin-enriched leading process in globally organizing organelle transport or traction forces remains unexplored. Our results show that myosin ii motors and F-actin dynamics are required for Golgi apparatus positioning before nucleokinesis in cerebellar granule neurons (CGNs) migrating along glial fibers. Moreover, we show that primary cilia aremore » motile organelles, localized to the leading-process F-actin-rich domain and immobilized by pharmacological inhibition of myosin ii and F-actin dynamics. Finally, leading process adhesion dynamics are dependent on myosin ii and F-actin. In conclusion, we propose that actomyosin coordinates the overall polarity of migrating CGNs by controlling asymmetric organelle positioning and cell-cell contacts as these cells move along their glial guides.« less

  7. Leading-process actomyosin coordinates organelle positioning and adhesion receptor dynamics in radially migrating cerebellar granule neurons

    SciTech Connect

    Trivedi, Niraj; Ramahi, Joseph S.; Karakaya, Mahmut; Howell, Danielle; Kerekes, Ryan A.; Solecki, David J.

    2014-12-02

    During brain development, neurons migrate from germinal zones to their final positions to assemble neural circuits. A unique saltatory cadence involving cyclical organelle movement (e.g., centrosome motility) and leading-process actomyosin enrichment prior to nucleokinesis organizes neuronal migration. While functional evidence suggests that leading-process actomyosin is essential for centrosome motility, the role of the actin-enriched leading process in globally organizing organelle transport or traction forces remains unexplored. Our results show that myosin ii motors and F-actin dynamics are required for Golgi apparatus positioning before nucleokinesis in cerebellar granule neurons (CGNs) migrating along glial fibers. Moreover, we show that primary cilia are motile organelles, localized to the leading-process F-actin-rich domain and immobilized by pharmacological inhibition of myosin ii and F-actin dynamics. Finally, leading process adhesion dynamics are dependent on myosin ii and F-actin. In conclusion, we propose that actomyosin coordinates the overall polarity of migrating CGNs by controlling asymmetric organelle positioning and cell-cell contacts as these cells move along their glial guides.

  8. Role of Mycoplasma genitalium MG218 and MG317 cytoskeletal proteins in terminal organelle organization, gliding motility and cytadherence.

    PubMed

    Pich, Oscar Q; Burgos, Raul; Ferrer-Navarro, Mario; Querol, Enrique; Piñol, Jaume

    2008-10-01

    The terminal organelle is a differentiated structure that plays a key role in mycoplasma cytadherence and locomotion. For this reason, the analysis of Mycoplasma genitalium mutants displaying anomalous terminal organelles could improve our knowledge regarding the structural elements required for proper locomotion. In this study, we isolated several M. genitalium mutants having transposon insertions within the mg218 or mg317 genes, which encode the orthologues of Mycoplasma pneumoniae HMW2 and HMW3 cytoskeletal proteins, respectively. As expected, mg218(-) and mg317(-) mutants exhibit a reduced gliding motility, although their ability to attach to solid surfaces was not completely abolished. Interestingly, most of the mg218(-) mutants expressed N-terminal MG218 derivatives and showed the presence of short terminal organelles retaining many of the functions displayed by this structure in the wild-type strain, suggesting that the N-terminal region of this protein is an essential element in the architecture of the terminal organelle. Separately, the analysis of mg317(-) mutants indicates that MG317 protein is involved in the formation of the terminal button and contributes to anchoring the electron-dense core to the cell membrane. The results presented here clearly show that MG218 and MG317 proteins are implicated in the maintenance of gliding motility and cytadherence in M. genitalium.

  9. A novel microtubule-based motor protein (KIF4) for organelle transports, whose expression is regulated developmentally

    PubMed Central

    1994-01-01

    To understand the mechanisms of transport for organelles in the axon, we isolated and sequenced the cDNA encoding KIF4 from murine brain, and characterized the molecule biochemically and immunocytochemically. Complete amino acid sequence analysis of KIF4 and ultrastructural studies of KIF4 molecules expressed in Sf9 cells revealed that the protein contains 1,231 amino acid residues (M(r) 139,550) and that the molecule (116-nm rod with globular heads and tail) consists of three domains: an NH2-terminal globular motor domain, a central alpha-helical stalk domain and a COOH-terminal tail domain. KIF4 protein has the property of nucleotide-dependent binding to microtubules, microtubule- activated ATPase activity, and microtubule plus-end-directed motility. Northern blot analysis and in situ hybridization demonstrated that KIF4 is strongly expressed in juvenile tissues including differentiated young neurons, while its expression is decreased considerably in adult mice except in spleen. Immunocytochemical studies revealed that KIF4 colocalized with membranous organelles both in growth cones of differentiated neurons and in the cytoplasm of cultured fibroblasts. During mitotic phase of cell cycle, KIF4 appears to colocalize with membranous organelles in the mitotic spindle. Hence we conclude that KIF4 is a novel microtubule-associated anterograde motor protein for membranous organelles, the expression of which is regulated developmentally. PMID:7929562

  10. Identification and Characterization of a Novel Microtubule-Based Motor Associated with Membranous Organelles in Tobacco Pollen Tubes

    PubMed Central

    Cai, Giampiero; Romagnoli, Silvia; Moscatelli, Alessandra; Ovidi, Elisa; Gambellini, Gabriella; Tiezzi, Antonio; Cresti, Mauro

    2000-01-01

    Pollen tube growth depends on the differential distribution of organelles and vesicles along the tube. The role of microtubules in organelle movement is uncertain, mainly because information at the molecular level is limited. In an effort to understand the molecular basis of microtubule-based movement, we isolated from tobacco pollen tubes polypeptides that cosediment with microtubules in an ATP-dependent manner. Major polypeptides released from microtubules by ATP (ATP-MAPs) had molecular masses of 90, 80, and 41 kD. Several findings indicate that the 90-kD ATP-MAP is a kinesin-related motor: binding of the polypeptide to microtubules was enhanced by the nonhydrolyzable ATP analog AMP-PNP; the 90-kD polypeptide reacted specifically with a peptide antibody directed against a highly conserved region in the motor domain of the kinesin superfamily; purified 90-kD ATP-MAP induced microtubules to glide in motility assays in vitro; and the 90-kD ATP-MAP cofractionated with microtubule-activated ATPase activity. Immunolocalization studies indicated that the 90-kD ATP-MAP binds to organelles associated with microtubules in the cortical region of the pollen tube. These findings suggest that the 90-kD ATP-MAP is a kinesin-related microtubule motor that moves organelles in the cortex of growing pollen tubes. PMID:11006343

  11. Not All the Organelles of Living Cells Are Equal! Or Are They? Engaging Students in Deep Learning and Conceptual Change

    ERIC Educational Resources Information Center

    Cherif, Abour H.; Siuda, JoElla Eaglin; Jedlicka, Dianne M.; Bondoc, Jasper Marc; Movahedzadeh, Farahnaz

    2016-01-01

    The cell is the fundamental basis for understanding biology much like the atom is the fundamental basis for understanding physics. Understanding biology requires the understanding of the fundamental functions performed by components within each cell. These components, or organelles, responsible for both maintenance and functioning of the cell…

  12. Structure-Guided Mutations in the Terminal Organelle Protein MG491 Cause Major Motility and Morphologic Alterations on Mycoplasma genitalium

    PubMed Central

    Querol, Enrique; Piñol, Jaume; Fita, Ignacio; Calisto, Bárbara M.

    2016-01-01

    The emergent human pathogen Mycoplasma genitalium, with one of the smallest genomes among cells capable of growing in axenic cultures, presents a flask-shaped morphology due to a protrusion of the cell membrane, known as the terminal organelle, that is involved in cell adhesion and motility and is an important virulence factor of this microorganism. The terminal organelle is supported by a cytoskeleton complex of about 300 nm in length that includes three substructures: the terminal button, the rod and the wheel complex. The crystal structure of the MG491 protein, a proposed component of the wheel complex, has been determined at ~3 Å resolution. MG491 subunits are composed of a 60-residue N-terminus, a central three-helix-bundle spanning about 150 residues and a C-terminal region that appears to be quite flexible and contains the region that interacts with MG200, another key protein of the terminal organelle. The MG491 molecule is a tetramer presenting a unique organization as a dimer of asymmetric pairs of subunits. The asymmetric arrangement results in two very different intersubunit interfaces between the central three-helix-bundle domains, which correlates with the formation of only ~50% of the intersubunit disulfide bridges of the single cysteine residue found in MG491 (Cys87). Moreover, M. genitalium cells with a point mutation in the MG491 gene causing the change of Cys87 to Ser present a drastic reduction in motility (as determined by microcinematography) and important alterations in morphology (as determined by electron microscopy), while preserving normal levels of the terminal organelle proteins. Other variants of MG491, designed also according to the structural information, altered significantly the motility and/or the cell morphology. Together, these results indicate that MG491 plays a key role in the functioning, organization and stabilization of the terminal organelle. PMID:27082435

  13. The Autophagoproteasome a Novel Cell Clearing Organelle in Baseline and Stimulated Conditions

    PubMed Central

    Lenzi, Paola; Lazzeri, Gloria; Biagioni, Francesca; Busceti, Carla L.; Gambardella, Stefano; Salvetti, Alessandra; Fornai, Francesco

    2016-01-01

    Protein clearing pathways named autophagy (ATG) and ubiquitin proteasome (UP) control homeostasis within eukaryotic cells, while their dysfunction produces neurodegeneration. These pathways are viewed as distinct biochemical cascades occurring within specific cytosolic compartments owing pathway-specific enzymatic activity. Recent data strongly challenged the concept of two morphologically distinct and functionally segregated compartments. In fact, preliminary evidence suggests the convergence of these pathways to form a novel organelle named autophagoproteasome. This is characterized in the present study by using a cell line where, mTOR activity is upregulated and autophagy is suppressed. This was reversed dose-dependently by administering the mTOR inhibitor rapamycin. Thus, we could study autophagoproteasomes when autophagy was either suppressed or stimulated. The occurrence of autophagoproteasome was shown also in non-human cell lines. Ultrastructural morphometry, based on the stochiometric binding of immunogold particles allowed the quantitative evaluation of ATG and UP component within autophagoproteasomes. The number of autophagoproteasomes increases following mTOR inhibition. Similarly, mTOR inhibition produces overexpression of both LC3 and P20S particles. This is confirmed by the fact that the ratio of free vs. autophagosome-bound LC3 is similar to that measured for P20S, both in baseline conditions and following mTOR inhibition. Remarkably, within autophagoproteasomes there is a slight prevalence of ATG compared with UP components for low rapamycin doses, whereas for higher rapamycin doses UP increases more than ATG. While LC3 is widely present within cytosol, UP is strongly polarized within autophagoproteasomes. These fine details were evident at electron microscopy but could not be deciphered by using confocal microscopy. Despite its morphological novelty autophagoproteasomes appear in the natural site where clearing pathways (once believed to be

  14. The Autophagoproteasome a Novel Cell Clearing Organelle in Baseline and Stimulated Conditions.

    PubMed

    Lenzi, Paola; Lazzeri, Gloria; Biagioni, Francesca; Busceti, Carla L; Gambardella, Stefano; Salvetti, Alessandra; Fornai, Francesco

    2016-01-01

    Protein clearing pathways named autophagy (ATG) and ubiquitin proteasome (UP) control homeostasis within eukaryotic cells, while their dysfunction produces neurodegeneration. These pathways are viewed as distinct biochemical cascades occurring within specific cytosolic compartments owing pathway-specific enzymatic activity. Recent data strongly challenged the concept of two morphologically distinct and functionally segregated compartments. In fact, preliminary evidence suggests the convergence of these pathways to form a novel organelle named autophagoproteasome. This is characterized in the present study by using a cell line where, mTOR activity is upregulated and autophagy is suppressed. This was reversed dose-dependently by administering the mTOR inhibitor rapamycin. Thus, we could study autophagoproteasomes when autophagy was either suppressed or stimulated. The occurrence of autophagoproteasome was shown also in non-human cell lines. Ultrastructural morphometry, based on the stochiometric binding of immunogold particles allowed the quantitative evaluation of ATG and UP component within autophagoproteasomes. The number of autophagoproteasomes increases following mTOR inhibition. Similarly, mTOR inhibition produces overexpression of both LC3 and P20S particles. This is confirmed by the fact that the ratio of free vs. autophagosome-bound LC3 is similar to that measured for P20S, both in baseline conditions and following mTOR inhibition. Remarkably, within autophagoproteasomes there is a slight prevalence of ATG compared with UP components for low rapamycin doses, whereas for higher rapamycin doses UP increases more than ATG. While LC3 is widely present within cytosol, UP is strongly polarized within autophagoproteasomes. These fine details were evident at electron microscopy but could not be deciphered by using confocal microscopy. Despite its morphological novelty autophagoproteasomes appear in the natural site where clearing pathways (once believed to be

  15. Mitochondria are the main target organelle for trivalent monomethylarsonous acid (MMA(III))-induced cytotoxicity.

    PubMed

    Naranmandura, Hua; Xu, Shi; Sawata, Takashi; Hao, Wen Hui; Liu, Huan; Bu, Na; Ogra, Yasumitsu; Lou, Yi Jia; Suzuki, Noriyuki

    2011-07-18

    Excessive generation of reactive oxygen species (ROS) is considered to play an important role in arsenic-induced carcinogenicity in the liver, lungs, and urinary bladder. However, little is known about the mechanism of ROS-based carcinogenicity, including where the ROS are generated, and which arsenic species are the most effective ROS inducers. In order to better understand the mechanism of arsenic toxicity, rat liver RLC-16 cells were exposed to arsenite (iAs(III)) and its intermediate metabolites [i.e., monomethylarsonous acid (MMA(III)) and dimethylarsinous acid (DMA(III))]. MMA(III) (IC(50) = 1 μM) was found to be the most toxic form, followed by DMA(III) (IC(50) = 2 μM) and iAs(III) (IC(50) = 18 μM). Following exposure to MMA(III), ROS were found to be generated primarily in the mitochondria. DMA(III) exposure resulted in ROS generation in other organelles, while no ROS generation was seen following exposures to low levels of iAs(III). This suggests the mechanisms of induction of ROS are different among the three arsenicals. The effects of iAs(III), MMA(III), and DMA(III) on activities of complexes I-IV in the electron transport chain (ETC) of rat liver submitochondrial particles and on the stimulation of ROS production in intact mitochondria were also studied. Activities of complexes II and IV were significantly inhibited by MMA(III), but only the activity of complexes II was inhibited by DMA(III). Incubation with iAs(III) had no inhibitory effects on any of the four complexes. Generation of ROS in intact mitochondria was significantly increased following incubation with MMA(III), while low levels of ROS generation were observed following incubation with DMA(III). ROS was not produced in mitochondria following exposure to iAs(III). The mechanism underlying cell death is different among As(III), MMA(III), and DMA(III), with mitochondria being one of the primary target organelles for MMA(III)-induced cytotoxicity.

  16. An organelle K+ channel is required for osmoregulation in Chlamydomonas reinhardtii.

    PubMed

    Xu, Feifei; Wu, Xiaoan; Jiang, Lin-Hua; Zhao, Hucheng; Pan, Junmin

    2016-08-01

    Fresh water protozoa and algae face hypotonic challenges in their living environment. Many of them employ a contractile vacuole system to uptake excessive water from the cytoplasm and expel it to the environment to achieve cellular homeostasis. K(+), a major osmolyte in contractile vacuole, is predicted to create higher osmolarity for water influx. Molecular mechanisms for K(+) permeation through the plasma membrane have been well studied. However, how K(+) permeates organelles such as the contractile vacuole is not clear. Here, we show that the six-transmembrane K(+) channel KCN11 in Chlamydomonas is exclusively localized to contractile vacuole. Ectopic expression of KCN11 in HEK293T cells results in voltage-gated K(+) channel activity. Disruption of the gene or mutation of key residues for K(+) permeability of the channel leads to dysfunction of cell osmoregulation in very hypotonic conditions. The contractile cycle is inhibited in the mutant cells with a slower rate of contractile vacuole swelling, leading to cell death. These data demonstrate a new role for six-transmembrane K(+) channels in contractile vacuole functioning and provide further insights into osmoregulation mediated by the contractile vacuole.

  17. Shifts in oxidation states of cerium oxide nanoparticles detected inside intact hydrated cells and organelles

    SciTech Connect

    Szymanski, Craig J.; Munusamy, Prabhakaran; Mihai, Cosmin; Xie, Yumei; Hu, Dehong; Gilles, Marry K.; Tyliszczak, T.; Thevuthasan, Suntharampillai; Baer, Donald R.; Orr, Galya

    2015-09-01

    Cerium oxide nanoparticles (CNPs) have been shown to induce diverse biological effects, ranging from toxic to beneficial. The beneficial effects have been attributed to the potential antioxidant activity of CNPs via certain redox reactions, depending on their oxidation state or Ce3+/Ce4+ ratio. However, this ratio is strongly dependent on the environment and age of the nanoparticles and it is unclear whether and how the complex intracellular environment impacts this ratio and the possible redox reactions of CNPs. To identify any changes in the oxidation state of CNPs in the intracellular environment and better understand their intracellular reactions, we directly quantified the oxidation states of CNPs outside and inside intact hydrated cells and organelles using correlated scanning transmission x-ray and super resolution fluorescence microscopies. By analyzing hundreds of small CNP aggregates, we detected a shift to a higher Ce3+/Ce4+ ratio in CNPs inside versus outside the cells, indicating a net reduction of CNPs in the intracellular environment. We further found a similar ratio in the cytoplasm and in the lysosomes, indicating that the net reduction occurs earlier in the internalization pathway. Together with oxidative stress and toxicity measurements, our observations identify a net reduction of CNPs in the intracellular environment, which is consistent with their involvement in potentially beneficial oxidation reactions, but also point to interactions that can negatively impact the health of cells.

  18. Assembly, Properties and Function of Synthetic Phase-Separated RNA/Protein Organelles

    NASA Astrophysics Data System (ADS)

    Taylor, Nicole; Elbaum, Shana; Stone, Howard; Brangwynne, Clifford

    2015-03-01

    Non-membrane bound RNA/protein (RNP) bodies play a key role in cellular RNA processing steps. Many RNA helicases, required for RNA processing, are key components of RNPs. Consistent with this, a purified RNA helicase, Laf-1, exhibits a salt and protein concentration dependent phase separation in vitro, resulting in liquid-like droplets. We use such synthetic RNPs to study the biophysics of RNP assembly, and to elucidate the link between their physical properties and function. To accomplish this, we are developing custom microfluidic devices to measure biophysical properties, nucleation and growth kinetics, and RNA processing function of droplets. We measure droplet viscosity by applying a shear stress to protein droplets that adhere to the channel wall; measurements are consistent with those taken using a particle microrheology approach. We also monitor and control protein droplet nucleation using oil/water emulsions. Our results provide a new platform for addressing how the cell regulates organelle assembly and properties through protein, RNA, and ATP concentration. We anticipate that these findings will offer insight into the contribution of RNPs in key RNA processing functions in the cell.

  19. Acute lymphoblastic leukaemia cells produce large extracellular vesicles containing organelles and an active cytoskeleton

    PubMed Central

    Johnson, Suzanne M.; Dempsey, Clare; Parker, Catriona; Mironov, Aleksandr; Bradley, Helen; Saha, Vaskar

    2017-01-01

    ABSTRACT Extracellular vesicles have been described in non-paracrine cellular interactions in cancer. We report a similar phenomenon in B-cell precursor (BCP) acute lymphoblastic leukaemia (ALL). Using advanced microscopy and high throughput screening, we further characterise a subset of large vesicles (LEVs) identified in cell lines, murine models of human BCP-ALL and clinical samples. Primary ALL blasts and cell lines released heterogeneous anucleate vesicles <6 micron into extracellular fluids. Larger LEVs were enclosed in continuous membranes, contained intact organelles and demonstrated an organised cytoskeleton. An excess of circulating CD19-positive LEVs were observed in diagnostic samples and isolated from mice engrafted with BCP-ALL primary cells. LEVs exhibited dynamic shape change in vitro and were internalised by other leukaemic cell lines leading to phenotypic transformation analogous to the cell of origin. In patient-derived xenografts, LEVs were released by primary ALL cells into extracellular spaces and internalised by murine mesenchymal cells in vivo. Collectively these data highlight the heterogeneity but accessibility of LEVs in clinical samples and their potential to provide a unique insight into the biology of the cell of origin and to their development as novel biomarkers to aid diagnosis and improve therapeutic outcomes. PMID:28386390

  20. The Structural Basis of Coenzyme A Recycling in a Bacterial Organelle

    PubMed Central

    Kerfeld, Cheryl A.

    2016-01-01

    Bacterial Microcompartments (BMCs) are proteinaceous organelles that encapsulate critical segments of autotrophic and heterotrophic metabolic pathways; they are functionally diverse and are found across 23 different phyla. The majority of catabolic BMCs (metabolosomes) compartmentalize a common core of enzymes to metabolize compounds via a toxic and/or volatile aldehyde intermediate. The core enzyme phosphotransacylase (PTAC) recycles Coenzyme A and generates an acyl phosphate that can serve as an energy source. The PTAC predominantly associated with metabolosomes (PduL) has no sequence homology to the PTAC ubiquitous among fermentative bacteria (Pta). Here, we report two high-resolution PduL crystal structures with bound substrates. The PduL fold is unrelated to that of Pta; it contains a dimetal active site involved in a catalytic mechanism distinct from that of the housekeeping PTAC. Accordingly, PduL and Pta exemplify functional, but not structural, convergent evolution. The PduL structure, in the context of the catalytic core, completes our understanding of the structural basis of cofactor recycling in the metabolosome lumen. PMID:26959993

  1. Dense granules: are they key organelles to help understand the parasitophorous vacuole of all apicomplexa parasites?

    PubMed

    Mercier, Corinne; Adjogble, Koku D Z; Däubener, Walter; Delauw, Marie-France-Cesbron

    2005-07-01

    Together with micronemes and rhoptries, dense granules are specialised secretory organelles of Apicomplexa parasites. Among Apicomplexa, Plasmodium represents a model of parasites propagated by way of an insect vector, whereas Toxoplasma is a model of food borne protozoa forming cysts. Through comparison of both models, this review summarises data accumulated over recent years on alternative strategies chosen by these parasites to develop within a parasitophorous vacuole and explores the role of dense granules in this process. One of the characteristics of the Plasmodium erythrocyte stages is to export numerous parasite proteins into both the host cell cytoplasm and/or plasma membrane via the vacuole used as a step trafficking compartment. Whether this feature can be correlated to few storage granules and a restricted number of dense granule proteins, is not yet clear. By contrast, the Toxoplasma developing vacuole is decorated by abundantly expressed dense granule proteins and is characterised by a network of membranous nanotubes. Although the exact function of most of these proteins remains currently unknown, recent data suggest that some of these dense granule proteins could be involved in building the intravacuolar membranous network. Conserved expression of the Toxoplasma dense granule proteins throughout most of the parasite stages suggests that they could also be key elements of the cyst formation.

  2. Shifts in oxidation states of cerium oxide nanoparticles detected inside intact hydrated cells and organelles

    PubMed Central

    Szymanski, Craig J.; Munusamy, Prabhakaran; Mihai, Cosmin; Xie, Yumei; Hu, Dehong; Gilles, Mary K.; Tyliszczak, Tolek; Thevuthasan, Suntharampillai; Baer, Donald R.; Orr, Galya

    2015-01-01

    Cerium oxide nanoparticles (CNPs) have been shown to induce diverse biological effects, ranging from toxic to beneficial. The beneficial effects have been attributed to the potential antioxidant activity of CNPs via certain redox reactions, depending on their oxidation state or Ce3+/Ce4+ ratio. However, this ratio is strongly dependent on the environment and age of the nanoparticles and it is unclear whether and how the complex intracellular environment impacts this ratio and the possible redox reactions of CNPs. To identify any changes in the oxidation state of CNPs in the intracellular environment and better understand their intracellular reactions, we directly quantified the oxidation states of CNPs outside and inside intact hydrated cells and organelles using correlated scanning transmission x-ray and super resolution fluorescence microscopies. By analyzing hundreds of small CNP aggregates, we detected a shift to a higher Ce3+/Ce4+ ratio in CNPs inside versus outside the cells, indicating a net reduction of CNPs in the intracellular environment. We further found a similar ratio in the cytoplasm and in the lysosomes, indicating that the net reduction occurs earlier in the internalization pathway. Together with oxidative stress and toxicity measurements, our observations identify a net reduction of CNPs in the intracellular environment, which is consistent with their involvement in potentially beneficial oxidation reactions, but also point to interactions that can negatively impact the health of cells. PMID:26056725

  3. Organelle-mimicking liposome dissociates G-quadruplexes and facilitates transcription

    PubMed Central

    Pramanik, Smritimoy; Tateishi-Karimata, Hisae; Sugimoto, Naoki

    2014-01-01

    Important biological reactions involving nucleic acids occur near the surface of membranes such as the nuclear membrane (NM) and rough endoplasmic reticulum (ER); however, the interactions between biomembranes and nucleic acids are poorly understood. We report here that transcription was facilitated in solution with liposomes, which mimic a biomembrane surface, relative to the reaction in a homogeneous aqueous solution when the template was able to form a G-quadruplex. The G-quadruplex is known to be an inhibitor of transcription, but the stability of the G-quadruplex was decreased at the liposome surface because of unfavourable enthalpy. The destabilization of the G-quadruplex was greater at the surface of NM- and ER-mimicking liposomes than at the surfaces of liposomes designed to mimic other organelles. Thermodynamic analyses revealed that the G-rich oligonucleotides adopted an extended structure at the liposome surface, whereas in solution the compact G-quadruplex was formed. Our data suggest that changes in structure and stability of nucleic acids regulate biological reactions at membrane surfaces. PMID:25336617

  4. Selective molecular transport through the protein shell of a bacterial microcompartment organelle

    DOE PAGES

    Chowdhury, Chiranjit; Chun, Sunny; Pang, Allan; ...

    2015-02-23

    Bacterial microcompartments are widespread prokaryotic organelles that have important and diverse roles ranging from carbon fixation to enteric pathogenesis. Current models for microcompartment function propose that their outer protein shell is selectively permeable to small molecules, but whether a protein shell can mediate selective permeability and how this occurs are unresolved questions. In this paper, biochemical and physiological studies of structure-guided mutants are used to show that the hexameric PduA shell protein of the 1,2-propanediol utilization (Pdu) microcompartment forms a selectively permeable pore tailored for the influx of 1,2-propanediol (the substrate of the Pdu microcompartment) while restricting the efflux ofmore » propionaldehyde, a toxic intermediate of 1,2-propanediol catabolism. Crystal structures of various PduA mutants provide a foundation for interpreting the observed biochemical and phenotypic data in terms of molecular diffusion across the shell. Finally and overall, these studies provide a basis for understanding a class of selectively permeable channels formed by nonmembrane proteins.« less

  5. How the Double Spherules of Infectious Bronchitis Virus Impact Our Understanding of RNA Virus Replicative Organelles

    PubMed Central

    Neuman, Benjamin W.

    2013-01-01

    ABSTRACT Powered by advances in electron tomography, recent studies have extended our understanding of how viruses construct “replication factories” inside infected cells. Their function, however, remains an area of speculation with important implications for human health. It is clear from these studies that whatever their purpose, organelle structure is dynamic (M. Ulasli, M. H. Verheije, C. A. de Haan, and F. Reggiori, Cell. Microbiol. 12:844-861, 2010) and intricate (K. Knoops, M. Kikkert, S. H. Worm, J. C. Zevenhoven-Dobbe, Y. van der Meer, et al., PLOS Biol. 6:e226, 2008). But by concentrating on medically important viruses, these studies have failed to take advantage of the genetic variation inherent in a family of viruses that is as diverse as the archaea, bacteria, and eukaryotes combined (C. Lauber, J. J. Goeman, M. del Carmen Parquet, P. T. Nga, E. J. Snijder, et al., PLOS Pathog. 9:e1003500, 2013). In this climate, Maier et al. (H. J. Maier, P. C. Hawes, E. M. Cottam, J. Mantell, P. Verkade, et al., mBio 4:e00801-13, 2013) explored the replicative structures formed by an avian coronavirus that appears to have diverged at an early point in coronavirus evolution and shed light on controversial aspects of viral biology. PMID:24345746

  6. Chloroplast envelope protein targeting fidelity is independent of cytosolic components in dual organelle assays

    PubMed Central

    Kriechbaumer, Verena; Abell, Ben M.

    2012-01-01

    The general mechanisms of intracellular protein targeting are well established, and depend on a targeting sequence in the protein, which is recognized by a targeting factor. Once a membrane protein is delivered to the correct organelle its targeting sequence can be recognized by receptors and a translocase, leading to membrane insertion. However, the relative contribution of each step for generating fidelity and efficiency of the overall process has not been systematically addressed. Here, we use tail-anchored (TA) membrane proteins in cell-free competitive targeting assays to chloroplasts to show that targeting can occur efficiently and with high fidelity in the absence of all cytosolic components, suggesting that chloroplast envelope protein targeting is primarily dependent on events at the outer envelope. Efficiency of targeting was increased by the addition of complete cytosol, and by Hsp70 or Hsp90, depending on the protein, but none of these cytosolic components influenced the fidelity of targeting. Our results suggest that the main role of targeting factors in chloroplast localization is to increase targeting efficiency by maintaining recognition competency at the outer envelope. PMID:22783268

  7. Structure and Mechanisms of a Protein-Based Organelle in Escherichia coli

    SciTech Connect

    Tanaka, Shiho; Sawaya, Michael R.; Yeates, Todd O.

    2010-08-18

    Many bacterial cells contain proteinaceous microcompartments that act as simple organelles by sequestering specific metabolic processes involving volatile or toxic metabolites. Here we report the three-dimensional (3D) crystal structures, with resolutions between 1.65 and 2.5 angstroms, of the four homologous proteins (EutS, EutL, EutK, and EutM) that are thought to be the major shell constituents of a functionally complex ethanolamine utilization (Eut) microcompartment. The Eut microcompartment is used to sequester the metabolism of ethanolamine in bacteria such as Escherichia coli and Salmonella enterica. The four Eut shell proteins share an overall similar 3D fold, but they have distinguishing structural features that help explain the specific roles they play in the microcompartment. For example, EutL undergoes a conformational change that is probably involved in gating molecular transport through shell protein pores, whereas structural evidence suggests that EutK might bind a nucleic acid component. Together these structures give mechanistic insight into bacterial microcompartments.

  8. Nitric oxide releases Cl− from acidic organelles in retinal amacrine cells

    PubMed Central

    Krishnan, Vijai; Gleason, Evanna

    2015-01-01

    Determining the factors regulating cytosolic Cl− in neurons is fundamental to our understanding of the function of GABA- and glycinergic synapses. This is because the Cl− distribution across the postsynaptic plasma membrane determines the sign and strength of postsynaptic voltage responses. We have previously demonstrated that nitric oxide (NO) releases Cl− into the cytosol from an internal compartment in both retinal amacrine cells and hippocampal neurons. Furthermore, we have shown that the increase in cytosolic Cl− is dependent upon a decrease in cytosolic pH. Here, our goals were to confirm the compartmental nature of the internal Cl− store and to test the hypothesis that Cl− is being released from acidic organelles (AO) such as the Golgi, endosomes or lysosomes. To achieve this, we made whole cell voltage clamp recordings from cultured chick retinal amacrine cells and used GABA-gated currents to track changes in cytosolic Cl−. Our results demonstrate that intact internal proton gradients are required for the NO-dependent release of internal Cl−. Furthermore, we demonstrate that increasing the pH of AO leads to release of Cl− into the cytosol. Intriguingly, the elevation of organellar pH results in a reversal in the effects of NO. These results demonstrate that cytosolic Cl− is closely linked to the regulation and maintenance of organellar pH and provide evidence that acidic compartments are the target of NO. PMID:26106295

  9. Shifts in oxidation states of cerium oxide nanoparticles detected inside intact hydrated cells and organelles.

    PubMed

    Szymanski, Craig J; Munusamy, Prabhakaran; Mihai, Cosmin; Xie, Yumei; Hu, Dehong; Gilles, Mary K; Tyliszczak, Tolek; Thevuthasan, Suntharampillai; Baer, Donald R; Orr, Galya

    2015-09-01

    Cerium oxide nanoparticles (CNPs) have been shown to induce diverse biological effects, ranging from toxic to beneficial. The beneficial effects have been attributed to the potential antioxidant activity of CNPs via certain redox reactions, depending on their oxidation state or Ce(3+)/Ce(4+) ratio. However, this ratio is strongly dependent on the environment and age of the nanoparticles and it is unclear whether and how the complex intracellular environment impacts this ratio and the possible redox reactions of CNPs. To identify any changes in the oxidation state of CNPs in the intracellular environment and better understand their intracellular reactions, we directly quantified the oxidation states of CNPs outside and inside intact hydrated cells and organelles using correlated scanning transmission x-ray and super resolution fluorescence microscopies. By analyzing hundreds of small CNP aggregates, we detected a shift to a higher Ce(3+)/Ce(4+) ratio in CNPs inside versus outside the cells, indicating a net reduction of CNPs in the intracellular environment. We further found a similar ratio in the cytoplasm and in the lysosomes, indicating that the net reduction occurs earlier in the internalization pathway. Together with oxidative stress and toxicity measurements, our observations identify a net reduction of CNPs in the intracellular environment, which is consistent with their involvement in potentially beneficial oxidation reactions, but also point to interactions that can negatively impact the health of the cells.

  10. Organization of cytoskeletal elements and organelles preceding growth cone emergence from an identified neuron in situ

    PubMed Central

    1989-01-01

    The purpose of this study was to investigate the arrangement of cytoskeletal elements and organelles in an identified neuron in situ at the site of emergence of its growth cone just before and concurrent with the onset of axonogenesis. The Ti1 pioneer neurons are the first pair of afferent neurons to differentiate in embryonic grasshopper limbs. They arise at the distal tip of the limb bud epithelium, the daughter cells of a single precursor cell, the Pioneer Mother Cell (PMC). Using immunohistochemical markers, we characterized the organization of microtubules, centrosomes, Golgi apparatus, midbody, actin filaments, and chromatin from mitosis in the PMC through axonogenesis in the Tils. Just before and concurrent with the onset of axonogenesis, a characteristic arrangement of tubulin, actin filaments, and Golgi apparatus is localized at the proximal pole of the proximal pioneer neuron. The growth cone of the proximal cell stereotypically arises from this site. Although the distal cell's axon generally grows proximally, occasionally it arises from its distal pole; in such limbs, the axons from the sister cells extend from mirror symmetric locations on their somata. In the presence of cytochalasin D, the PMC undergoes nuclear division but not cytokinesis and although other neuronal phenotypes are expressed, axongenesis is inhibited. Our data suggest that intrinsic information determines the site of growth cone emergence of an identified neuron in situ. PMID:2654140

  11. Visualizing live dynamics and ultrastructure of intracellular organelles with preembedding correlative light-electron microscopy.

    PubMed

    Polishchuk, Roman S; Polishchuk, Elena V; Luini, Alberto

    2012-01-01

    One of the very effective methods to perform correlative light-electron microscopy (CLEM) is to combine video imaging of live cells with immuno-electron microscopy. This technique can thus provide detailed, high-resolution characterization of dynamic intracellular organelles. The use of green fluorescent protein (GFP)-tagged chimeras allows the movements and/or behavior of intracellular structures in a live cell to be followed, which can then be fixed at the moment of interest. The subsequent immuno-electron microscopy analysis reveals the three-dimensional (3D) architecture of the same structure, together with the precise identification of the GFP-labeled protein pattern. The process resembles taking a high-resolution snapshot of an interesting and/or rare live event. Conceptually, it consists of a switch of wavelengths, from that of photons to that of electrons, with the associated huge gain in resolution. In this respect, CLEM can be considered as the first, and probably one of the most powerful, super-resolution microscopy techniques. This switch, however, requires complex manipulations of the sample. Considering that CLEM is a very valuable but technically challenging and time-consuming method, accurate protocols are needed to simplify the efforts of researchers who are willing to apply this method for their own purposes. Here, we present a detailed description of the preembedding CLEM procedures that explains the know-how and the "tricks of the trade" that are involved in carrying out the crucial steps of CLEM.

  12. Unraveling the Secrets of Bacterial Adhesion Organelles Using Single-Molecule Force Spectroscopy

    NASA Astrophysics Data System (ADS)

    Axner, Ove; Björnham, Oscar; Castelain, Mickaël; Koutris, Efstratios; Schedin, Staffan; Fällman, Erik; Andersson, Magnus

    Many types of bacterium express micrometer-long attachment organelles (so-called pili) whose role is to mediate adhesion to host tissue. Until recently, little was known about their function in the adhesion process. Force-measuring optical tweezers (FMOT) have since then been used to unravel the biomechanical properties of various types of pili, primarily those from uropathogenic E. coli, in particular their force-vs.-elongation response, but lately also some properties of the adhesin are situated at the distal end of the pilus. This knowledge provides an understanding of how piliated bacteria can sustain external shear forces caused by rinsing processes, e.g., urine flow. It has been found that many types of pilus exhibit unique and complex force-vs.-elongation responses. It has been conjectured that their dissimilar properties impose significant differences in their ability to sustain external forces and that different types of pilus therefore have dissimilar predisposition to withstand different types of rinsing conditions. An understanding of these properties is of high importance since it can serve as a basis for finding new means to combat bacterial adhesion, including that caused by antibiotic-resistance bacteria. This work presents a review of the current status of the assessment of biophysical properties of individual pili on single bacteria exposed to strain/stress, primarily by the FMOT technique. It also addresses, for the first time, how the elongation and retraction properties of the rod couple to the adhesive properties of the tip adhesin.

  13. Calcium signatures and signaling in cytosol and organelles of tobacco cells induced by plant defense elicitors.

    PubMed

    Manzoor, Hamid; Chiltz, Annick; Madani, Siham; Vatsa, Parul; Schoefs, Benoît; Pugin, Alain; Garcia-Brugger, Angela

    2012-06-01

    Calcium signatures induced by two elicitors of plant defense reactions, namely cryptogein and oligogalacturonides, were monitored at the subcellular level, using apoaequorin-transformed Nicotiana tabacum var Xanthi cells, in which the apoaequorin calcium sensor was targeted either to cytosol, mitochondria or chloroplasts. Our study showed that both elicitors induced specific Ca(2+) signatures in each compartment, with the most striking difference relying on duration. Common properties also emerged from the analysis of Ca(2+) signatures: both elicitors induced a biphasic cytosolic [Ca(2+)] elevation together with a single mitochondrial [Ca(2+)] elevation concomitant with the first cytosolic [Ca(2+)] peak. In addition, both elicitors induced a chloroplastic [Ca(2+)] elevation peaking later in comparison to cytosolic [Ca(2+)] elevation. In cryptogein-treated cells, pharmacological studies indicated that IP(3) should play an important role in Ca(2+) signaling contrarily to cADPR or nitric oxide, which have limited or no effect on [Ca(2+)] variations. Our data also showed that, depending on [Ca(2+)] fluxes at the plasma membrane, cryptogein triggered a mitochondrial respiration increase and affected excess energy dissipation mechanisms in chloroplasts. Altogether the results indicate that cryptogein profoundly impacted cell functions at many levels, including organelles.

  14. Compartmentalization Approaches in Soft Matter Science: From Nanoreactor Development to Organelle Mimics.

    PubMed

    Schoonen, Lise; van Hest, Jan C M

    2016-02-10

    Compartmentalization is an essential feature found in living cells to ensure that biological processes occur without being affected by undesired external influences. Over the years many scientists have designed self-assembled soft matter structures that mimic these natural catalytic compartments. The rationale behind this research is threefold. First of all, compartmentalization leads to the creation of a secluded environment for the catalytic species, which solves compatibility issues and which can improve catalyst efficiency and selectivity. Secondly, nano- and micro-compartments are constructed with the aim to obtain microenvironments that more closely mimic the cellular architecture. These biomimetic platforms are used to attain a better understanding of how cellular processes are executed. Thirdly, natural design rules are applied to create biomolecular assemblies with unusual functionality, which for example are used as artificial organelles. Here, recent developments will be discussed regarding these compartmentalized catalytic systems, with a selected number of illustrative examples to demonstrate which strategies have been followed, and to show to what extent the ambitious goals of this field of science have been reached. The focus here is on the field of soft matter science, covering the wide spectrum from polymeric assemblies to protein nanocages.

  15. Increase number of mitochondrion-like organelle in symptomatic Blastocystis subtype 3 due to metronidazole treatment.

    PubMed

    Raman, Kalyani; Kumar, Suresh; Chye, Tan Tian

    2016-01-01

    Blastocystis sp., an intestinal organism is known to cause diarrhea with metronidazole regarded as the first line of treatment despite reports of its resistance. The conflicting reports of variation in drug treatment have been ascribed to subtype differences. The present study evaluated in vitro responses due to metronidazole on ST3 isolated from three symptomatic and asymptomatic patients, respectively. Symptomatic isolates were obtained from clinical patients who showed symptoms such as diarrhea and abdominal bloating. Asymptomatic isolates from a stool survey carried out in a rural area. These patients had no other pathogens other than Blastocystis. Ultrastructural studies using transmission electron microscopy (TEM) and scanning electron microscopy (SEM) revealed drug-treated ST3 from symptomatic patients were irregular and amoebic with surface showing high-convoluted folding when treated with metronidazole. These organisms had higher number of mitochondrion-like organelle (MLO) with prominent cristae. However, the drug-treated ST3 from asymptomatic persons remained spherical in shape. Asymptomatic ST3 showed increase in the size of its central body with the MLO located at the periphery.

  16. Advances and New Concepts in Alcohol-Induced Organelle Stress, Unfolded Protein Responses and Organ Damage

    PubMed Central

    Ji, Cheng

    2015-01-01

    Alcohol is a simple and consumable biomolecule yet its excessive consumption disturbs numerous biological pathways damaging nearly all organs of the human body. One of the essential biological processes affected by the harmful effects of alcohol is proteostasis, which regulates the balance between biogenesis and turnover of proteins within and outside the cell. A significant amount of published evidence indicates that alcohol and its metabolites directly or indirectly interfere with protein homeostasis in the endoplasmic reticulum (ER) causing an accumulation of unfolded or misfolded proteins, which triggers the unfolded protein response (UPR) leading to either restoration of homeostasis or cell death, inflammation and other pathologies under severe and chronic alcohol conditions. The UPR senses the abnormal protein accumulation and activates transcription factors that regulate nuclear transcription of genes related to ER function. Similarly, this kind of protein stress response can occur in other cellular organelles, which is an evolving field of interest. Here, I review recent advances in the alcohol-induced ER stress response as well as discuss new concepts on alcohol-induced mitochondrial, Golgi and lysosomal stress responses and injuries. PMID:26047032

  17. The ExPortal: an organelle dedicated to the biogenesis of secreted proteins in Streptococcus pyogenes.

    PubMed

    Rosch, Jason W; Caparon, Michael G

    2005-11-01

    The Gram-positive pathogen Streptococcus pyogenes secretes proteins through the ExPortal, a unique single microdomain of the cellular membrane specialized to contain the Sec translocons. It has been proposed that the ExPortal functions as an organelle to promote the biogenesis of secreted proteins by coordinating interactions between nascent unfolded secretory proteins and membrane-associated chaperones. In this study we provide evidence to support this model. It was found that HtrA (DegP), a surface anchored accessory factor required for maturation of the secreted SpeB cysteine protease, was localized exclusively to the ExPortal. Furthermore, the ATP synthase beta subunit was not localized to the ExPortal, suggesting that retention is likely restricted to a specific subset of exported proteins. Mutations that disrupted the anchoring, but not the protease activity, of HtrA, also altered the maturation kinetics of SpeB demonstrating that localization to the ExPortal was important for HtrA function. These data indicate that the ExPortal provides a mechanism by which Gram-positive bacteria can coordinate protein secretion and subsequent biogenesis in the absence of a specialized protein-folding compartment.

  18. Wiring through tunneling nanotubes--from electrical signals to organelle transfer.

    PubMed

    Abounit, Saïda; Zurzolo, Chiara

    2012-03-01

    Tunneling nanotubes (TNTs) represent a subset of F-actin-based transient tubular connections that allow direct communication between distant cells. Recent studies have provided new insights into the existence of TNTs in vivo, and this novel mechanism of intercellular communication is implicated in various essential processes, such as development, immunity, tissue regeneration and transmission of electrical signals. TNTs are versatile structures known to facilitate the transfer of various cargos, such as organelles, plasma membrane components, pathogens and Ca(2+). Recently, a new function of TNTs in the long-range transfer of electrical signals that involves gap junctions has been suggested. This indicates that different types of TNTs might exist, and supports the notion that TNTs might not be just passive open conduits but rather are regulated by gating mechanisms. Furthermore, TNTs have been found in different cell lines and are characterized by their diversity in terms of morphology. Here we discuss these novel findings in the context of the two models that have been proposed for TNT formation, and focus on putative proteins that could represent TNT specific markers. We also shed some light on the molecular mechanisms used by TNTs to transfer cargos, as well as chemical and electrical signals.

  19. Selective molecular transport through the protein shell of a bacterial microcompartment organelle

    SciTech Connect

    Chowdhury, Chiranjit; Chun, Sunny; Pang, Allan; Sawaya, Michael R.; Sinha, Sharmistha; Yeates, Todd O.; Bobik, Thomas A.

    2015-02-23

    Bacterial microcompartments are widespread prokaryotic organelles that have important and diverse roles ranging from carbon fixation to enteric pathogenesis. Current models for microcompartment function propose that their outer protein shell is selectively permeable to small molecules, but whether a protein shell can mediate selective permeability and how this occurs are unresolved questions. In this paper, biochemical and physiological studies of structure-guided mutants are used to show that the hexameric PduA shell protein of the 1,2-propanediol utilization (Pdu) microcompartment forms a selectively permeable pore tailored for the influx of 1,2-propanediol (the substrate of the Pdu microcompartment) while restricting the efflux of propionaldehyde, a toxic intermediate of 1,2-propanediol catabolism. Crystal structures of various PduA mutants provide a foundation for interpreting the observed biochemical and phenotypic data in terms of molecular diffusion across the shell. Finally and overall, these studies provide a basis for understanding a class of selectively permeable channels formed by nonmembrane proteins.

  20. Proteomic Analysis of the Acidocalcisome, an Organelle Conserved from Bacteria to Human Cells

    PubMed Central

    Huang, Guozhong; Ulrich, Paul N.; Storey, Melissa; Johnson, Darryl; Tischer, Julie; Tovar, Javier A.; Moreno, Silvia N. J.; Orlando, Ron; Docampo, Roberto

    2014-01-01

    Acidocalcisomes are acidic organelles present in a diverse range of organisms from bacteria to human cells. In this study acidocalcisomes were purified from the model organism Trypanosoma brucei, and their protein composition was determined by mass spectrometry. The results, along with those that we previously reported, show that acidocalcisomes are rich in pumps and transporters, involved in phosphate and cation homeostasis, and calcium signaling. We validated the acidocalcisome localization of seven new, putative, acidocalcisome proteins (phosphate transporter, vacuolar H+-ATPase subunits a and d, vacuolar iron transporter, zinc transporter, polyamine transporter, and acid phosphatase), confirmed the presence of six previously characterized acidocalcisome proteins, and validated the localization of five novel proteins to different subcellular compartments by expressing them fused to epitope tags in their endogenous loci or by immunofluorescence microscopy with specific antibodies. Knockdown of several newly identified acidocalcisome proteins by RNA interference (RNAi) revealed that they are essential for the survival of the parasites. These results provide a comprehensive insight into the unique composition of acidocalcisomes of T. brucei, an important eukaryotic pathogen, and direct evidence that acidocalcisomes are especially adapted for the accumulation of polyphosphate. PMID:25503798

  1. Doubly uniparental inheritance: two mitochondrial genomes, one precious model for organelle DNA inheritance and evolution.

    PubMed

    Passamonti, Marco; Ghiselli, Fabrizio

    2009-02-01

    Eukaryotes have exploited several mechanisms for organelle uniparental inheritance, so this feature arose and evolved independently many times in their history. Metazoans' mitochondria commonly experience strict maternal inheritance; that is, they are only transmitted by females. However, the most noteworthy exception comes from some bivalve mollusks, in which two mitochondrial lineages (together with their genomes) are inherited: one through females (F) and the other through males (M). M and F genomes show up to 30% sequence divergence. This inheritance mechanism is known as doubly uniparental inheritance (DUI), because both sexes inherit uniparentally their mitochondria. Here, we review what we know about this unusual system, and we propose a model for evolution of DUI that might account for its origin as sex determination mechanism. Moreover, we propose DUI as a choice model to address many aspects that should be of interest to a wide range of biological subfields, such as mitochondrial inheritance, mtDNA evolution and recombination, genomic conflicts, evolution of sex, and developmental biology. Actually, as research proceeds, mitochondria appear to have acquired a central role in many fundamental processes of life, which are not only in their metabolic activity as cellular power plants, such as cell signaling, fertilization, development, differentiation, ageing, apoptosis, and sex determination. A function of mitochondria in the origin and maintenance of sex has been also proposed.

  2. Differential expression of nuclear- and organelle-encoded genes during tomato fruit development.

    PubMed

    Piechulla, B

    1988-12-01

    Steady-state mRNA levels of nuclear-and organelle-encoded genes were determined during fruit development and ripening. Transcripts specific for subunits of the mitochondrial and chloroplast ATPase complexes appear simultaneously and reach high levels two to three weeks after anthesis, but follow a different expression pattern during the ripening period. While the chloroplast-specific mRNA levels continuously decrease to low levels in ripe tomato fruits, the transcripts specific for two mitochondrial ATPase subunits continue to be present at relative high levels in red fruits. Transcript levels for the fructose-1,6-bisphosphate aldolase increase significantly during ripening. Structural proteins such as the alpha-subunit of tubulin and the hydroxyproline-rich glycoprotein extensin are expressed during maximal fruit growth. In addition, comparisons of mRNA levels of different genes in several plant organs (leaf, fruit, stem, and root) show characteristic differences. The results presented in this paper demonstrate that changes at the transcriptional or post-transcriptional level during fruit development can be correlated with morphological and physiological alterations.

  3. Lipid Droplets: A Key Cellular Organelle Associated with Cancer Cell Survival under Normoxia and Hypoxia

    PubMed Central

    Koizume, Shiro; Miyagi, Yohei

    2016-01-01

    The Warburg effect describes the phenomenon by which cancer cells obtain energy from glycolysis even under normoxic (O2-sufficient) conditions. Tumor tissues are generally exposed to hypoxia owing to inefficient and aberrant vasculature. Cancer cells have multiple molecular mechanisms to adapt to such stress conditions by reprogramming the cellular metabolism. Hypoxia-inducible factors are major transcription factors induced in cancer cells in response to hypoxia that contribute to the metabolic changes. In addition, cancer cells within hypoxic tumor areas have reduced access to serum components such as nutrients and lipids. However, the effect of such serum factor deprivation on cancer cell biology in the context of tumor hypoxia is not fully understood. Cancer cells are lipid-rich under normoxia and hypoxia, leading to the increased generation of a cellular organelle, the lipid droplet (LD). In recent years, the LD-mediated stress response mechanisms of cancer cells have been revealed. This review focuses on the production and functions of LDs in various types of cancer cells in relation to the associated cellular environment factors including tissue oxygenation status and metabolic mechanisms. This information will contribute to the current understanding of how cancer cells adapt to diverse tumor environments to promote their survival. PMID:27589734

  4. Mitochondrial and plastid genomes of the colonial green alga Gonium pectorale give insights into the origins of organelle DNA architecture within the volvocales.

    PubMed

    Hamaji, Takashi; Smith, David R; Noguchi, Hideki; Toyoda, Atsushi; Suzuki, Masahiro; Kawai-Toyooka, Hiroko; Fujiyama, Asao; Nishii, Ichiro; Marriage, Tara; Olson, Bradley J S C; Nozaki, Hisayoshi

    2013-01-01

    Volvocalean green algae have among the most diverse mitochondrial and plastid DNAs (mtDNAs and ptDNAs) from the eukaryotic domain. However, nearly all of the organelle genome data from this group are restricted to unicellular species, like Chlamydomonas reinhardtii, and presently only one multicellular species, the ∼4,000-celled Volvox carteri, has had its organelle DNAs sequenced. The V. carteri organelle genomes are repeat rich, and the ptDNA is the largest plastome ever sequenced. Here, we present the complete mtDNA and ptDNA of the colonial volvocalean Gonium pectorale, which is comprised of ∼16 cells and occupies a phylogenetic position closer to that of V. carteri than C. reinhardtii within the volvocine line. The mtDNA and ptDNA of G. pectorale are circular-mapping AT-rich molecules with respective lengths and coding densities of 16 and 222.6 kilobases and 73 and 44%. They share some features with the organelle DNAs of V. carteri, including palindromic repeats within the plastid compartment, but show more similarities with those of C. reinhardtii, such as a compact mtDNA architecture and relatively low organelle DNA intron contents. Overall, the G. pectorale organelle genomes raise several interesting questions about the origin of linear mitochondrial chromosomes within the Volvocales and the relationship between multicellularity and organelle genome expansion.

  5. Organelle import of proteins with dual targeting properties into mitochondria and chloroplasts takes place by the general import pathways.

    PubMed

    Langner, Uwe; Baudisch, Bianca; Klösgen, Ralf Bernd

    2014-01-01

    As a consequence of the endosymbiotic gene transfer, most mitochondrial and chloroplastic proteins are nuclear encoded and synthesized in the cytosol as precursor proteins with transit peptides mediating transport to their subcellular destination. It is often assumed that these transit peptides are strictly monospecific for a single organelle. But in recent years more and more proteins have been identified which carry transit peptides that are capable of mediating transport into both mitochondria and chloroplasts. In a recent study we showed with a combination of in silico, in organello, and in vivo approaches that the frequency of such proteins is apparently much higher than usually anticipated.(1) Here we demonstrate with in organello competition experiments that the import of 2 of these dually targeted proteins (GrpE and EF-Tu) takes place by the same import pathways that are used by organelle proteins with "typical" monospecific targeting properties.

  6. Tomographic reconstruction reveals the morphology of a unique cellular organelle, the aggregated macrotubules (Macrotubuli aggregati) of human retinal horizontal cells.

    PubMed

    Jastrow, Holger; Yarwood, Andrew; Majorovits, Endre; Harris, J Robin

    2015-04-01

    Horizontal cells of the human retina contain unique tubular organelles that have a diameter which is about 10 times larger than that of microtubules (~230 nm). These macrotubuli in most cases form regular aggregates. Therefore we propose to introduce them as Macrotubuli aggregati in the Terminologia histologica. Tomographic investigation of the structures revealed that the walls of the tubules most probably consist of intermediate filaments running nearly parallel to each other and show somewhat regularly attached ribosomes on their inner and also outer surface. About 2% of the organelles exhibit double- to multiple layered walls and less than 1% resemble large scrolls. The tubules may extend 10 to over 20 μm in the cytoplasm and are also encountered in soma-near processes extending into the outer plexiform layer. It remains unclear why these structures are only present in humans and few other species and why almost only in horizontal cells. Speculations on possible functions are discussed.

  7. The abnormal isoform of the prion protein accumulates in late-endosome-like organelles in scrapie-infected mouse brain.

    PubMed

    Arnold, J E; Tipler, C; Laszlo, L; Hope, J; Landon, M; Mayer, R J

    1995-08-01

    The prion encephalopathies are characterized by accumulation in the brain of the abnormal form PrPsc of a normal host gene product PrPc. The mechanism and site of formation of PrPsc from PrPc are currently unknown. In this study, ME7 scrapie-infected mouse brain was used to show, both biochemically and by double-labelled immunogold electron microscopy, that proteinase K-resistant PrPsc is enriched in subcellular structures which contain the cation-independent mannose 6-phosphate receptor, ubiquitin-protein conjugates, beta-glucuronidase, and cathepsin B, termed late endosome-like organelles. The glycosylinositol phospholipid membrane-anchored PrPc will enter such compartment for normal degradation and the organelles may therefore act as chambers for the conversion of PrPc into infectious PrPsc in this murine model of scrapie.

  8. Dynamics of clathrin-mediated endocytosis and its requirement for organelle biogenesis in Dictyostelium.

    PubMed

    Macro, Laura; Jaiswal, Jyoti K; Simon, Sanford M

    2012-12-01

    The protein clathrin mediates one of the major pathways of endocytosis from the extracellular milieu and plasma membrane. In single-cell eukaryotes, such as Saccharomyces cerevisiae, the gene encoding clathrin is not an essential gene, raising the question of whether clathrin conveys specific advantages for multicellularity. Furthermore, in contrast to mammalian cells, endocytosis in S. cerevisiae is not dependent on either clathrin or adaptor protein 2 (AP2), an endocytic adaptor molecule. In this study, we investigated the requirement for components of clathrin-mediated endocytosis (CME) in another unicellular organism, the amoeba Dictyostelium. We identified a heterotetrameric AP2 complex in Dictyostelium that is similar to that which is found in higher eukaryotes. By simultaneously imaging fluorescently tagged clathrin and AP2, we found that, similar to higher eukaryotes, these proteins colocalized to membrane puncta that move into the cell together. In addition, the contractile vacuole marker protein, dajumin-green fluorescent protein (GFP), is trafficked via the cell membrane and internalized by CME in a clathrin-dependent, AP2-independent mechanism. This pathway is distinct from other endocytic mechanisms in Dictyostelium. Our finding that CME is required for the internalization of contractile vacuole proteins from the cell membrane explains the contractile vacuole biogenesis defect in Dictyostelium cells lacking clathrin. Our results also suggest that the machinery for CME and its role in organelle maintenance appeared early during eukaryotic evolution. We hypothesize that dependence of endocytosis on specific components of the CME pathway evolved later, as demonstrated by internalization independent of AP2 function.

  9. Ricinosomes: an organelle for developmentally regulated programmed cell death in senescing plant tissues

    NASA Astrophysics Data System (ADS)

    Gietl, C.; Schmid, M.

    2001-02-01

    This review describes aspects of programmed cell death (PCD). Present research maps the enzymes involved and explores the signal transduction pathways involved in their synthesis. A special organelle (the ricinosome) has been discovered in the senescing endosperm of germinating castor beans (Ricinus communis) that develops at the beginning of PCD and delivers large amounts of a papain-type cysteine endopeptidase (CysEP) in the final stages of cellular disintegration. Castor beans store oil and proteins in a living endosperm surrounding the cotyledons. These stores are mobilized during germination and transferred into the cotyledons. PCD is initiated after this transfer is complete. The CysEP is synthesized in the lumen of the endoplasmic reticulum (ER) where it is retained by its C-terminal KDEL peptide as a rather inactive pro-enzyme. Large number of ricinosomes bud from the ER at the same time as the nuclear DNA is characteristically fragmented during PCD. The mitochondria, glyoxysomes and ribosomes are degraded in autophagic vacuoles, while the endopeptidase is activated by removal of the propeptide and the KDEL tail and enters the cytosol. The endosperm dries and detaches from the cotyledons. A homologous KDEL-tailed cysteine endopeptidase has been found in several senescing tissues; it has been localized in ricinosomes of withering day-lily petals and dying seed coats. Three genes for a KDEL-tailed cysteine endopeptidase have been identified in Arabidopsis. One is expressed in senescing ovules, the second in the vascular vessels and the third in maturing siliques. These genes open the way to exploring PCD in plants.

  10. Ricinosomes: an organelle for developmentally regulated programmed cell death in senescing plant tissues.

    PubMed

    Gietl, C; Schmid, M

    2001-02-01

    This review describes aspects of programmed cell death (PCD). Present research maps the enzymes involved and explores the signal transduction pathways involved in their synthesis. A special organelle (the ricinosome) has been discovered in the senescing endosperm of germinating castor beans (Ricinus communis) that develops at the beginning of PCD and delivers large amounts of a papain-type cysteine endopeptidase (CysEP) in the final stages of cellular disintegration. Castor beans store oil and proteins in a living endosperm surrounding the cotyledons. These stores are mobilized during germination and transferred into the cotyledons. PCD is initiated after this transfer is complete. The CysEP is synthesized in the lumen of the endoplasmic reticulum (ER) where it is retained by its C-terminal KDEL peptide as a rather inactive pro-enzyme. Large number of ricinosomes bud from the ER at the same time as the nuclear DNA is characteristically fragmented during PCD. The mitochondria, glyoxysomes and ribosomes are degraded in autophagic vacuoles, while the endopeptidase is activated by removal of the propeptide and the KDEL tail and enters the cytosol. The endosperm dries and detaches from the cotyledons. A homologous KDEL-tailed cysteine endopeptidase has been found in several senescing tissues; it has been localized in ricinosomes of withering day-lily petals and dying seed coats. Three genes for a KDEL-tailed cysteine endopeptidase have been identified in Arabidopsis. One is expressed in senescing ovules, the second in the vascular vessels and the third in maturing siliques. These genes open the way to exploring PCD in plants.

  11. Biogenesis of actin-like bacterial cytoskeletal filaments destined for positioning prokaryotic magnetic organelles.

    PubMed

    Pradel, Nathalie; Santini, Claire-Lise; Bernadac, Alain; Fukumori, Yoshihiro; Wu, Long-Fei

    2006-11-14

    Magnetosomes comprise a magnetic nanocrystal surrounded by a lipid bilayer membrane. These unique prokaryotic organelles align inside magnetotactic bacterial cells and serve as an intracellular compass allowing the bacteria to navigate along the geomagnetic field in aquatic environments. Cryoelectron tomography of Magnetospirillum strains has revealed that the magnetosome chain is surrounded by a network of filaments that may be composed of MamK given that the filaments are absent in the mamK mutant cells. The process of the MamK filament assembly is unknown. Here we prove the authenticity of the MamK filaments and show that MamK exhibits linear distribution inside Magnetospirillum sp. cells even in the area without magnetosomes. The mamK gene alone is sufficient to direct the synthesis of straight filaments in Escherichia coli, and one extremity of the MamK filaments is located at the cellular pole. By using dual fluorescent labeling of MamK, we found that MamK nucleates at multiple sites and assembles into mosaic filaments. Time-lapse experiments reveal that the assembly of the MamK filaments is a highly dynamic and kinetically asymmetrical process. MamK bundles might initiate the formation of a new filament or associate to one preexistent filament. Our results demonstrate the mechanism of biogenesis of prokaryotic cytoskeletal filaments that are structurally and functionally distinct from the known MreB and ParM filaments. In addition to positioning magnetosomes, other hypothetical functions of the MamK filaments in magnetotaxis might include anchoring magnetosomes and being involved in magnetic reception.

  12. Involvement of Hevea latex organelle membrane proteins in the rubber biosynthesis activity and regulatory function.

    PubMed

    Wititsuwaannakul, Dhirayos; Rattanapittayaporn, Atiya; Koyama, Tanetoshi; Wititsuwaannakul, Rapepun

    2004-03-15

    Centrifugation of fresh Hevea rubber latex yields three distinct fractions. The sediment bottom fraction (BF) content of membrane-bound organelles is ca. 20 vol.-% of latex. Prolonged storage or delayed use of fresh latex will result in disintegration and loss of the bottom fraction. This is due to the osmotically sensitive BF rupture and its membrane debris being tightly bound to the top rubber particles (RP) phase. The BF membrane was found to be highly active for rubber biosynthesis (RB), in contrast to previous reports that describe RB only occurring on the RP surface. It was clearly shown that washed BF membrane (WBM) was much more active than fresh RP for RB activity. WBM was highly activated by SDS for RB in a biphasic manner, but SDS strongly inhibited the RP. Probably WBM micelle formation resulted in a highly increased active surface area for RB. C55-PP (UPP) was a very active allylic for WBM in RB function, but inactive for RP. Serial acetone extraction of WBM proteins showed a distinct profile of the fractions with different RB activity. WBM isolated proteins suspended in 2% sodium dodecyl sulfate (SDS) with an RB activity equal to that of intact WBM was with the 20% acetone protein fraction. The 60 and 80% fractions were inactive. Combining the 20 with 80% fractions showed a complete inhibition of RB activity. Complete RB loss was also found when WBM was mixed with the 80% fraction, indicating that WBM has both an enzyme system and a factor for regulation of the RB activity in a well controlled metabolic function for the latex RB process.

  13. Diisopropylfluorophosphate Impairs the Transport of Membrane-Bound Organelles in Rat Cortical Axons

    PubMed Central

    Gao, Jie; Naughton, Sean X.; Wulff, Heike; Singh, Vikrant; Beck, Wayne D.; Magrane, Jordi; Thomas, Bobby; Kaidery, Navneet Ammal; Hernandez, Caterina M.

    2016-01-01

    The extensive use of organophosphates (OPs) is an ongoing environmental health concern due to multiple reports of OP-related neurologic abnormalities. The mechanism of the acute toxicity of OPs has been attributed to inhibition of acetylcholinesterase (AChE), but there is growing evidence that this may not account for all the long-term neurotoxic effects of OPs. In previous experiments (using ex vivo and in vitro model systems) we observed that the insecticide OP chlorpyrifos impaired the movements of vesicles and mitochondria in axons. Here, using a time-lapse imaging technique, we evaluated the OP-nerve agent diisopropylfluorophosphate (DFP) across a wide range of concentrations (subnanomolar to micromolar) for effects on fast axonal transport of membrane-bound organelles (MBOs) that contain the amyloid precursor protein (APP) tagged with the fluorescent marker Dendra2 (APPDendra2). Both 1 and 24 hours of exposure to DFP and a positive control compound, colchicine, resulted in a decrease in the velocity of anterograde and retrograde movements of MBOs and an increase in the number of stationary MBOs. These effects occurred at picomolar (100 pM) to low nanomolar (0.1 nM) concentrations that were not associated with compromised cell viability or cytoskeletal damage. Moreover, the effects of DFP on axonal transport occurred at concentrations that did not inhibit AChE activity, and they were not blocked by cholinergic receptor antagonists. Given the fundamental importance of axonal transport to neuronal function, these observations may explain some of the long-term neurologic deficits that have been observed in humans who have been exposed to OPs. PMID:26718240

  14. Estimation of migration-time and mobility distributions in organelle capillary electrophoresis with statistical-overlap theory.

    PubMed

    Davis, Joe M; Arriaga, Edgar A

    2010-01-01

    The separation of organelles by capillary electrophoresis (CE) produces large numbers of narrow peaks, which commonly are assumed to originate from single particles. In this paper, we show this is not always true. Here, we use established methods to partition simulated and real organelle CEs into regions of constant peak density and then use statistical-overlap theory to calculate the number of peaks (single particles) in each region. The only required measurements are the number of observed peaks (maxima) and peak standard deviation in the regions and the durations of the regions. Theory is developed for the precision of the estimated peak number and the threshold saturation above which the calculation is not advisable due to fluctuation of peak numbers. Theory shows that the relative precision is good when the saturation lies between 0.2 and 1.0 and is optimal when the saturation is slightly greater than 0.5. It also shows the threshold saturation depends on the peak standard deviation divided by the region's duration. The accuracy and precision of peak numbers estimated in different regions of organelle CEs are verified by computer simulations having both constant and nonuniform peak densities. The estimates are accurate to 6%. The estimated peak numbers in different regions are used to calculate migration-time and electrophoretic-mobility distributions. These distributions are less biased by peak overlap than ones determined by counting maxima and provide more correct measures of the organelle properties. The procedure is applied to a mitochondrial CE, in which over 20% of peaks are hidden by peak overlap.

  15. Proteomic changes in bovine heart mitochondria with age: using a novel technique for organelle separation and enrichment.

    PubMed

    Kiri, Ajay N; Tran, Hung-Cuong; Drahos, Kate L; Lan, Wenkui; McRorie, Donald K; Horn, Marcus J

    2005-12-01

    Separation and enrichment of organelles from complex biological mixtures are important for proteomic analysis. Two widely used current standard techniques to isolate individual organelles include differential and density-gradient centrifugation. Although these techniques have proven useful for processing small volumes of sample, multiple rounds of centrifugation are required when performing a large-scale purification. In this report, we have introduced a novel technique: continuous-flow ultracentrifugation using a sucrose gradient to separate, accumulate, and highly enrich bovine heart mitochondria in one step. To demonstrate the advantage of the technique, mitochondrial proteins from two different bovine hearts (3-8 mo and 18-30 mo old) were examined. For each age group, 100 g of bovine heart tissue were homogenized by a blending procedure. After removal of the nuclei, the entire remaining homogenate was loaded onto a proteomics continuous-flow ultracentrifuge to separate and enrich the organelles. Fractions were collected and mitochondria-enriched fractions were identified by Western blot analysis. To study the protein profile changes with aging in the mitochondrial proteome, the mitochondria-enriched fractions were applied to two-dimensional gel electrophoresis. The resulting two-dimensional PAGE gels were subsequently analyzed by image analysis software to identify proteins unique to each age group and proteins with at least twofold differences in protein expression. These proteins were then digested with trypsin and identified by mass spectrometer. Significant differences in the protein profiles of the two differently aged mitochondria preparations were found. The continuous-flow ultracentrifugation technique was demonstrated to be a powerful tool for separation and enrichment of organelles and their sub-types.

  16. A morphometric analysis of the redistribution of organelles in columella cells of horizontally-oriented roots of Zea mays

    NASA Technical Reports Server (NTRS)

    Moore, R.

    1986-01-01

    In order to determine what structural changes in graviperceptive cells are associated with onset of root gravicurvature, the redistribution of organelles in columella cells of horizontally-oriented, graviresponding roots of Zea mays has been quantified. Root gravicurvature began by 15 min after reorientation, and did not involve significant changes in the (i) volume of individual columella cells or amyloplasts, (ii) relative volume of any cellular organelle, (iii) number of amyloplasts per columella cell, or (iv) surface area of cellular location of endoplasmic reticulum. Sedimentation of amyloplasts began within 1 to 2 min after reorientation, and was characterized by an intensely staining area of cytoplasm adjacent to the sedimenting amyloplasts. By 5 min after reorientation, amyloplasts were located in the lower distal corner of columella cells, and, by 15 min after reorientation, overlaid the entire length of the lower cell wall. No consistent contact between amyloplasts and any cellular structure was detected at any stage of gravicurvature. Centrally-located nuclei initially migrated upward in columella cells of horizontally-oriented roots, after which they moved to the proximal ends of the cells by 15 min after reorientation. No significant pattern of redistribution of vacuoles, mitochondria, dictyosomes, or hyaloplasm was detected that correlated with the onset of gravicurvature. These results indicate that amyloplasts and nuclei are the only organelles whose movements correlate positively with the onset of gravicurvature by primary roots of this cultivar of Zea mays.

  17. C9orf72 Dipeptide Repeats Impair the Assembly, Dynamics, and Function of Membrane-Less Organelles.

    PubMed

    Lee, Kyung-Ha; Zhang, Peipei; Kim, Hong Joo; Mitrea, Diana M; Sarkar, Mohona; Freibaum, Brian D; Cika, Jaclyn; Coughlin, Maura; Messing, James; Molliex, Amandine; Maxwell, Brian A; Kim, Nam Chul; Temirov, Jamshid; Moore, Jennifer; Kolaitis, Regina-Maria; Shaw, Timothy I; Bai, Bing; Peng, Junmin; Kriwacki, Richard W; Taylor, J Paul

    2016-10-20

    Expansion of a hexanucleotide repeat GGGGCC (G4C2) in C9ORF72 is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Transcripts carrying (G4C2) expansions undergo unconventional, non-ATG-dependent translation, generating toxic dipeptide repeat (DPR) proteins thought to contribute to disease. Here, we identify the interactome of all DPRs and find that arginine-containing DPRs, polyGly-Arg (GR) and polyPro-Arg (PR), interact with RNA-binding proteins and proteins with low complexity sequence domains (LCDs) that often mediate the assembly of membrane-less organelles. Indeed, most GR/PR interactors are components of membrane-less organelles such as nucleoli, the nuclear pore complex and stress granules. Genetic analysis in Drosophila demonstrated the functional relevance of these interactions to DPR toxicity. Furthermore, we show that GR and PR altered phase separation of LCD-containing proteins, insinuating into their liquid assemblies and changing their material properties, resulting in perturbed dynamics and/or functions of multiple membrane-less organelles.

  18. Fifty years of Weibel-Palade bodies: the discovery and early history of an enigmatic organelle of endothelial cells.

    PubMed

    Weibel, E R

    2012-06-01

    In 1962, a rod-shaped cytoplasmic organelle of endothelial cells, later called the Weibel-Palade body, was serendipitously discovered by electron microscopy. It contains a set of parallel tubules and is wrapped in a membrane. Subsequent studies in the following decades established the unique localization of this organelle in endothelial cells of all vertebrates studied, meaning that it could serve as a marker of endothelial cells in tissue cultures. However, these studies did not reveal its functional significance, except for an indication that it could be related to an undefined thromboplastic substance. Twenty years after its discovery as a structural entity, it was shown by others that it houses von Willebrand factor and is thus clearly related to the coagulation system. In this review, I provide a personal historical account of the discovery and the subsequent limited work that I carried out on the organelle, putting it in the perspective of the current state of knowledge after half a century of research by many scientists.

  19. Development and disintegration of tapetum-specific lipid-accumulating organelles, elaioplasts and tapetosomes, in Arabidopsis thaliana and Brassica napus.

    PubMed

    Suzuki, Toshiya; Tsunekawa, Sonomi; Koizuka, Chie; Yamamoto, Kanta; Imamura, Jun; Nakamura, Kenzo; Ishiguro, Sumie

    2013-06-01

    The pollen coat covering the surface of pollen grains has many important roles for pollination. In Brassicaceae plants, the pollen coat components are synthesized and temporarily accumulated in two tapetum-specific organelles, the elaioplast and the tapetosome. Although many biochemical and electron microscopic analyses have been attempted, the structure and biogenesis of these organelles have not been fully elucidated. To resolve this problem, we performed live imaging of these organelles using two markers, FIB1a-GFP and GRP17-GFP. FIB1a is an Arabidopsis fibrillin, a structural protein of elaioplast plastoglobules. In transgenic Arabidopsis, fluorescence of FIB1a-GFP appeared in young elaioplasts, in which small plastoglobules were developing. However, the fluorescence disappeared in later stages, while enlargement of plastoglobules continued. GRP17 is an Arabidopsis oleopollenin, an oleosin-like protein in tapetosomes. Fluorescence microscopy of GRP17-GFP expressed in Arabidopsis and Brassica napus revealed that tapetosomes do not contain oleopollenin-coated vesicles but have an outer envelope, indicating that the tapetosome structure is distinct from seed oil bodies. Visualization of GRP17-GFP also demonstrated that the tapetal cells become protoplasts and migrate into locules before pollen coat formation, and provided live imaging of the foot formation between pollen grains and stigmatic papilla cells.

  20. Toxoplasma DJ-1 Regulates Organelle Secretion by a Direct Interaction with Calcium-Dependent Protein Kinase 1.

    PubMed

    Child, Matthew A; Garland, Megan; Foe, Ian; Madzelan, Peter; Treeck, Moritz; van der Linden, Wouter A; Oresic Bender, Kristina; Weerapana, Eranthie; Wilson, Mark A; Boothroyd, John C; Reese, Michael L; Bogyo, Matthew

    2017-02-28

    Human DJ-1 is a highly conserved and yet functionally enigmatic protein associated with a heritable form of Parkinson's disease. It has been suggested to be a redox-dependent regulatory scaffold, binding to proteins to modulate their function. Here we present the X-ray crystal structure of the Toxoplasma orthologue Toxoplasma gondii DJ-1 (TgDJ-1) at 2.1-Å resolution and show that it directly associates with calcium-dependent protein kinase 1 (CDPK1). The TgDJ-1 structure identifies an orthologously conserved arginine dyad that acts as a phospho-gatekeeper motif to control complex formation. We determined that the binding of TgDJ-1 to CDPK1 is sensitive to oxidation and calcium, and that this interaction potentiates CDPK1 kinase activity. Finally, we show that genetic deletion of TgDJ-1 results in upregulation of CDPK1 expression and that disruption of the CDPK1/TgDJ-1 complex in vivo prevents normal exocytosis of parasite virulence-associated organelles called micronemes. Overall, our data suggest that TgDJ-1 functions as a noncanonical kinase-regulatory scaffold that integrates multiple intracellular signals to tune microneme exocytosis in T. gondiiIMPORTANCE Apicomplexan parasites such as Toxoplasma and Plasmodium are obligate intracellular parasites that require the protective environment of a host cell in order to replicate and survive within a host organism. These parasites secrete effector proteins from specialized apical organelles to select and invade a chosen host cell. The secretion of these organelles is a tightly regulated process coordinated by endogenous small molecules and calcium-dependent protein kinases. We previously identified the Toxoplasma orthologue of the highly conserved protein DJ-1 as a regulator of microneme secretion, but the molecular basis for this was not known. We have now identified the molecular mechanism for how TgDJ-1 regulates microneme secretion. TgDJ-1 interacts with the kinase responsible for the secretion of these

  1. Nonlinear electromagnetic responses of active membrane protein complexes in live cells and organelles

    NASA Astrophysics Data System (ADS)

    Nawarathna, Dharmakirthi

    observed, possibly due to the F0 domain of ATP synthase. Finally, harmonics generated by chloroplasts, the plant organelles responsible for photosynthesis, were measured, which are similar in structure and function to mitochondria, depend dramatically on incident light, and vanish in the absence of light. Using spinach chloroplasts, light sensitive peaks were detected in the range of 0--12 kHz, again suggesting that these harmonics are indicative of electron processes in the light harvesting complexes, reaction center, and/or photosynthetic electron transport chain.

  2. The GC-Rich Mitochondrial and Plastid Genomes of the Green Alga Coccomyxa Give Insight into the Evolution of Organelle DNA Nucleotide Landscape

    SciTech Connect

    Smith, David Roy; Burki, Fabien; Yamada, Takashi; Grimwood, Jane; Grigoriev, Igor V.; Van Etten, James L.; Keeling, Patrick J.

    2011-05-13

    Most of the available mitochondrial and plastid genome sequences are biased towards adenine and thymine (AT) over guanine and cytosine (GC). Examples of GC-rich organelle DNAs are limited to a small but eclectic list of species, including certain green algae. Here, to gain insight in the evolution of organelle nucleotide landscape, we present the GC-rich mitochondrial and plastid DNAs from the trebouxiophyte green alga Coccomyxa sp. C-169. We compare these sequences with other GC-rich organelle DNAs and argue that the forces biasing them towards G and C are nonadaptive and linked to the metabolic and/or life history features of this species. The Coccomyxa organelle genomes are also used for phylogenetic analyses, which highlight the complexities in trying to resolve the interrelationships among the core chlorophyte green algae, but ultimately favour a sister relationship between the Ulvophyceae and Chlorophyceae, with the Trebouxiophyceae branching at the base of the chlorophyte crown.

  3. Comparison of Golgi apparatus and endoplasmic reticulum proteins from livers of juvenile and aged rats using a novel technique for separation and enrichment of organelles.

    PubMed

    Drahos, Kate L; Tran, Hung-Cuong; Kiri, Ajay N; Lan, Wenkui; McRorie, Donald K; Horn, Marcus J

    2005-12-01

    The broad dynamic range of protein abundances, which can vary from about 10(6) for cells to 10(10) for tissues in complex proteomes, continues to challenge proteomics research. Proteome analysis, in particular organelle proteomics, using current approaches, requires extensive fractionation, separation, and enrichment. Over the years, organelle separation was achieved through the use of differential and density-gradient ultracentrifugation. However, the traditional fixed-volume process is a time-consuming and labor-intensive method, especially with large quantities of sample. Here, we present a novel tool for subcellular fractionation of biologically complex mixtures: continuous-flow ultracentrifugation of tissue homogenates to obtain both organelle separation and extensive organelle enrichment at the same time. In this study, rat liver tissues from two different age groups (3-8 wk and greater than 1 y old) were homogenized by blending. After removing nuclei, the resulting homogenates were further fractionated at the subcellular level by the use of sucrose gradient continuous-flow ultracentrifugation. Each organelle's enriched fractions were identified by Western blot analysis. To study the possible effects of aging on the endoplasmic reticulum and Golgi apparatus, we compared the organelle protein profiles of the two groups of rat liver tissues using two-dimensional gel electrophoresis, digitized imaging of two-dimensional gel electrophoresis, and mass spectrometry. Significant differences in the protein profiles of both organelles were observed between the two groups of rat tissues. The technique described here for fractionation and enrichment of organelles demonstrated a useful tool for proteomics research, including identification of low-abundance proteins and post-translational modifications.

  4. Low nucleotide diversity for the expanded organelle and nuclear genomes of Volvox carteri supports the mutational-hazard hypothesis.

    PubMed

    Smith, David Roy; Lee, Robert W

    2010-10-01

    The noncoding-DNA content of organelle and nuclear genomes can vary immensely. Both adaptive and nonadaptive explanations for this variation have been proposed. This study addresses a nonadaptive explanation called the mutational-hazard hypothesis and applies it to the mitochondrial, plastid, and nuclear genomes of the multicellular green alga Volvox carteri. Given the expanded architecture of the V. carteri organelle and nuclear genomes (60-85% noncoding DNA), the mutational-hazard hypothesis would predict them to have less silent-site nucleotide diversity (π(silent)) than their more compact counterparts from other eukaryotes-ultimately reflecting differences in 2N(g)μ (twice the effective number of genes per locus in the population times the mutation rate). The data presented here support this prediction: Analyses of mitochondrial, plastid, and nuclear DNAs from seven V. carteri forma nagariensis geographical isolates reveal low values of π(silent) (0.00038, 0.00065, and 0.00528, respectively), much lower values than those previously observed for the more compact organelle and nuclear DNAs of Chlamydomonas reinhardtii (a close relative of V. carteri). We conclude that the large noncoding-DNA content of the V. carteri genomes is best explained by the mutational-hazard hypothesis and speculate that the shift from unicellular to multicellular life in the ancestor that gave rise to V. carteri contributed to a low V. carteri population size and thus a reduced 2N(g)μ. Complete mitochondrial and plastid genome maps for V. carteri are also presented and compared with those of C. reinhardtii.

  5. Characterization of the bioluminescent organelles in Gonyaulax polyedra (dinoflagellates) after fast-freeze fixation and antiluciferase immunogold staining

    PubMed Central

    1987-01-01

    To characterize the microsources of bioluminescent activity in the dinoflagellate Gonyaulax polyedra, an immunogold labeling method using a polyclonal antiluciferase was combined with fast-freeze fixation and freeze substitution. The quality of the preservation and the specificity of the labeling were greatly improved compared to earlier results with chemical fixation. Two organelles were specifically labeled: cytoplasmic dense bodies with a finely vermiculate texture, and mature trichocysts, labeled in the space between the shaft and the membrane. The available evidence indicates that the dense bodies are the light-emitting microsources observed in vivo. The dense bodies appear to originate in the Golgi area as cytoplasmic densifications and, while migrating peripherally, come into contact with the vacuolar membrane. Mature organelles protrude and hang like drops in the vacuolar space, linked by narrow necks to the cytoplasm. These structural relationships, not previously apparent with glutaraldehyde fixation, suggest how bioluminescent flashes can be elicited by a proton influx from a triggering action potential propagated along the vacuolar membrane. Similar dense bodies were labeled in the active particulate biochemical fraction (the scintillons), where they were completely membrane bound, as expected if their necks were broken and resealed during extraction. The significance of the trichocyst reactivity remains enigmatic. Both organelles were labeled with affinity-purified antibody, which makes it unlikely that the trichocyst labeling is due to a second antibody of different specificity. But trichocysts are not bioluminescent; the cross-reacting material could be luciferase present in this compartment for some other reason, or a different protein carrying similar antigenic epitopes. PMID:2442172

  6. Evidence for lateral gene transfer (LGT) in the evolution of eubacteria-derived small GTPases in plant organelles.

    PubMed

    Suwastika, I Nengah; Denawa, Masatsugu; Yomogihara, Saki; Im, Chak Han; Bang, Woo Young; Ohniwa, Ryosuke L; Bahk, Jeong Dong; Takeyasu, Kunio; Shiina, Takashi

    2014-01-01

    The genomes of free-living bacteria frequently exchange genes via lateral gene transfer (LGT), which has played a major role in bacterial evolution. LGT also played a significant role in the acquisition of genes from non-cyanobacterial bacteria to the lineage of "primary" algae and land plants. Small GTPases are widely distributed among prokaryotes and eukaryotes. In this study, we inferred the evolutionary history of organelle-targeted small GTPases in plants. Arabidopsis thaliana contains at least one ortholog in seven subfamilies of OBG-HflX-like and TrmE-Era-EngA-YihA-Septin-like GTPase superfamilies (together referred to as Era-like GTPases). Subcellular localization analysis of all Era-like GTPases in Arabidopsis revealed that all 30 eubacteria-related GTPases are localized to chloroplasts and/or mitochondria, whereas archaea-related DRG and NOG1 are localized to the cytoplasm and nucleus, respectively, suggesting that chloroplast- and mitochondrion-localized GTPases are derived from the ancestral cyanobacterium and α-proteobacterium, respectively, through endosymbiotic gene transfer (EGT). However, phylogenetic analyses revealed that plant organelle GTPase evolution is rather complex. Among the eubacterium-related GTPases, only four localized to chloroplasts (including one dual targeting GTPase) and two localized to mitochondria were derived from cyanobacteria and α-proteobacteria, respectively. Three other chloroplast-targeted GTPases were related to α-proteobacterial proteins, rather than to cyanobacterial GTPases. Furthermore, we found that four other GTPases showed neither cyanobacterial nor α-proteobacterial affiliation. Instead, these GTPases were closely related to clades from other eubacteria, such as Bacteroides (Era1, EngB-1, and EngB-2) and green non-sulfur bacteria (HflX). This study thus provides novel evidence that LGT significantly contributed to the evolution of organelle-targeted Era-like GTPases in plants.

  7. Reconceptualizing the chlamydial inclusion as a pathogen-specified parasitic organelle: an expanded role for Inc proteins

    PubMed Central

    Moore, Elizabeth R.; Ouellette, Scot P.

    2014-01-01

    Chlamydia is an obligate intracellular pathogen that develops in the host cell in a vacuole termed the chlamydial inclusion. The prevailing concept of the chlamydial inclusion is of a parasitophorous vacuole. Here, the inclusion is the recipient of one-way host-pathogen interactions thus draining nutrients from the cell and negatively impacting it. While Chlamydia orchestrates some aspects of cell function, recent data indicate host cells remain healthy up until, and even after, chlamydial egress. Thus, while Chlamydia relies on the host cell for necessary metabolites, the overall function of the host cell, during chlamydial growth and development, is not grossly disturbed. This is consistent with the obligate intracellular organism's interest to maintain viability of its host. To this end, Chlamydia expresses inclusion membrane proteins, Incs, which serve as molecular markers for the inclusion membrane. Incs also contribute to the physical structure of the inclusion membrane and facilitate host-pathogen interactions across it. Given the function of Incs and the dynamic interactions that occur at the inclusion membrane, we propose that the inclusion behaves similarly to an organelle-albeit one that benefits the pathogen. We present the hypothesis that the chlamydial inclusion acts as a pathogen-specified parasitic organelle. This representation integrates the inclusion within existing subcellular trafficking pathways to divert a subset of host-derived metabolites thus maintaining host cell homeostasis. We review the known interactions of the chlamydial inclusion with the host cell and discuss the role of Inc proteins in the context of this model and how this perspective can impact the study of these proteins. Lessons learnt from the chlamydial pathogen-specified parasitic organelle can be applied to other intracellular pathogens. This will increase our understanding of how intracellular pathogens engage the host cell to establish their unique developmental niches

  8. Excited state dynamics in photosynthetic reaction center and light harvesting complex 1

    NASA Astrophysics Data System (ADS)

    Strümpfer, Johan; Schulten, Klaus

    2012-08-01

    Key to efficient harvesting of sunlight in photosynthesis is the first energy conversion process in which electronic excitation establishes a trans-membrane charge gradient. This conversion is accomplished by the photosynthetic reaction center (RC) that is, in case of the purple photosynthetic bacterium Rhodobacter sphaeroides studied here, surrounded by light harvesting complex 1 (LH1). The RC employs six pigment molecules to initiate the conversion: four bacteriochlorophylls and two bacteriopheophytins. The excited states of these pigments interact very strongly and are simultaneously influenced by the surrounding thermal protein environment. Likewise, LH1 employs 32 bacteriochlorophylls influenced in their excited state dynamics by strong interaction between the pigments and by interaction with the protein environment. Modeling the excited state dynamics in the RC as well as in LH1 requires theoretical methods, which account for both pigment-pigment interaction and pigment-environment interaction. In the present study we describe the excitation dynamics within a RC and excitation transfer between light harvesting complex 1 (LH1) and RC, employing the hierarchical equation of motion method. For this purpose a set of model parameters that reproduce RC as well as LH1 spectra and observed oscillatory excitation dynamics in the RC is suggested. We find that the environment has a significant effect on LH1-RC excitation transfer and that excitation transfers incoherently between LH1 and RC.

  9. Intracellular dynamics measurements with full field optical coherence tomography suggest hindering effect of actomyosin contractility on organelle transport

    PubMed Central

    Leroux, Charles-Edouard; Bertillot, Fabien; Thouvenin, Olivier; Boccara, Albert-Claude

    2016-01-01

    Intracellular motion can be quantitatively monitored in tissues using coherence-gated microscopic techniques. With full-field optical coherence tomography (FFOCT), the use of high numerical aperture microscope objectives provides a high resolution mapping of intracellular dynamics that are probed with subwavelength sensitivity. In the upper temporal bandwidth that we have used (1-6 Hz) the main contribution to the dynamic signal arises from the overall dynamical, optically heterogeneous cytoplasm. We propose a method to specifically study the impact of actomyosin contractility on the intracellular dynamic signal by performing high throughput, comparative measurements of multicellular aggregates with and without blebbistatin action, a selective inhibitor of class-II myosins that disrupts actomyosin contractile activity. Our results indicate a significant increase in the fraction of the signal that decorrelates within 1 second after inhibition of contractility. This observation mitigates the anticipated importance of actomyosin contractile forces to directly move organelles, but highlights their role in hindering organelle transport via their stiffening effect of the viscoelastic cytoplasm. PMID:27895991

  10. Clear Shot at Primary Aim: Susceptibility of Trypanosoma cruzi Organelles, Structures and Molecular Targets to Drug Treatment.

    PubMed

    Menna-Barreto, Rubem Figueiredo Sadok; de Castro, Solange Lisboa

    2016-10-25

    Chagas disease, caused by Trypanosoma cruzi, stands out due to its socio- economic effects on low-income tropical populations. This disease affects millions of people worldwide. The current chemotherapy for it is based on benznidazole (Bz) and nifurtimox (Nif) and is unsatisfactory. In this review, we will focus on the search for potential target organelles and molecules for the chemotherapy of Chagas disease. We consider as potential target organelles those that are absent or significantly different in host cells and present in the clinically relevant forms of the parasite (trypomastigotes and amastigotes), which are the mitochondrion, cytoskeletal- related structures, the acidocalcisomes/contractile vacuole complex and glycosomes. Most molecular targets are key enzymes involved in processes that are essential to parasite survival, such as sterol biosynthesis, antioxidant defences and bioenergetic pathways. Among the molecular targets, enzymes of the sterol pathway, particularly C14α-sterol demethylase, are still the most promising target, even if clinical trials with posaconazole and E1224 have failed to sustain efficacy. We believe that in the near future, the Chagas community will have a "clear shot" at new drug candidates for Chagas disease based on the accumulated knowledge about trypanosomatid biochemistry, preclinical studies, advances in screening technologies, the efforts of medicinal chemists in the synthesis of both azolic and non-azolic inhibitors, and the interest of pharmaceutical companies in the development of new antifungal agents, which form a critical mass of information.

  11. Magnetic nanoparticles to recover cellular organelles and study the time resolved nanoparticle-cell interactome throughout uptake.

    PubMed

    Bertoli, Filippo; Davies, Gemma-Louise; Monopoli, Marco P; Moloney, Micheal; Gun'ko, Yurii K; Salvati, Anna; Dawson, Kenneth A

    2014-08-27

    Nanoparticles in contact with cells and living organisms generate quite novel interactions at the interface between the nanoparticle surface and the surrounding biological environment. However, a detailed time resolved molecular level description of the evolving interactions as nanoparticles are internalized and trafficked within the cellular environment is still missing and will certainly be required for the emerging arena of nanoparticle-cell interactions to mature. In this paper promising methodologies to map out the time resolved nanoparticle-cell interactome for nanoparticle uptake are discussed. Thus silica coated magnetite nanoparticles are presented to cells and their magnetic properties used to isolate, in a time resolved manner, the organelles containing the nanoparticles. Characterization of the recovered fractions shows that different cell compartments are isolated at different times, in agreement with imaging results on nanoparticle intracellular location. Subsequently the internalized nanoparticles can be further isolated from the recovered organelles, allowing the study of the most tightly nanoparticle-bound biomolecules, analogous to the 'hard corona' that so far has mostly been characterized in extracellular environments. Preliminary data on the recovered nanoparticles suggest that significant portion of the original corona (derived from the serum in which particles are presented to the cells) is preserved as nanoparticles are trafficked through the cells.

  12. Patterns of organelle ontogeny through a cell cycle revealed by whole-cell reconstructions using 3D electron microscopy.

    PubMed

    Hughes, Louise; Borrett, Samantha; Towers, Katie; Starborg, Tobias; Vaughan, Sue

    2017-02-01

    The major mammalian bloodstream form of the African sleeping sickness parasite Trypanosoma brucei multiplies rapidly, and it is important to understand how these cells divide. Organelle inheritance involves complex spatiotemporal re-arrangements to ensure correct distribution to daughter cells. Here, serial block face scanning electron microscopy (SBF-SEM) was used to reconstruct whole individual cells at different stages of the cell cycle to give an unprecedented temporal, spatial and quantitative view of organelle division, inheritance and abscission in a eukaryotic cell. Extensive mitochondrial branching occurred only along the ventral surface of the parasite, but the mitochondria returned to a tubular form during cytokinesis. Fission of the mitochondrion occurred within the cytoplasmic bridge during the final stage of cell division, correlating with cell abscission. The nuclei were located underneath each flagellum at mitosis and the mitotic spindle was located along the ventral surface, further demonstrating the asymmetric arrangement of cell cleavage in trypanosomes. Finally, measurements demonstrated that multiple Golgi bodies were accurately positioned along the flagellum attachment zone, suggesting a mechanism for determining the location of Golgi bodies along each flagellum during the cell cycle.

  13. Isolation and characterization of multivesicular bodies from rat hepatocytes: an organelle distinct from secretory vesicles of the Golgi apparatus

    PubMed Central

    1985-01-01

    Hepatocytes of estradiol-treated rats, which express many low density lipoprotein receptors, rapidly accumulate intravenously injected low density lipoprotein in multivesicular bodies (MVBs). We have isolated MVBs and Golgi apparatus fractions from livers of estradiol-treated rats. MVB fractions were composed mainly of large vesicles, approximately 0.55 micron diam, filled with remnantlike very low density lipoproteins, known to be taken up into hepatocytes by receptor- mediated endocytosis. MVBs also contained numerous small vesicles, 0.05- 0.07 micron in diameter, and had two types of appendages: one fingerlike and electron dense and the other saclike and electron lucent. MVBs contained little galactosyltransferase or arylsulfatase activity, and content lipoproteins were largely intact. Very low density lipoproteins from Golgi fractions, which are derived to a large extent from secretory vesicles, were larger than those of MVB fractions and contained newly synthesized triglycerides. Membranes of MVBs contained much more cholesterol and less protein than did Golgi membranes. We conclude that two distinct lipoprotein-filled organelles are located in the bile canalicular pole of hepatocytes. MVBs, a major prelysosomal organelle of low density in the endocytic pathway, contain remnants of triglyceride-rich lipoproteins, whereas secretory vesicles of the Golgi apparatus contain nascent very low density lipoproteins. PMID:3988801

  14. Effects of Fcj1-Mos1 and mitochondrial division on aggregation of mitochondrial DNA nucleoids and organelle morphology.

    PubMed

    Itoh, Kie; Tamura, Yasushi; Iijima, Miho; Sesaki, Hiromi

    2013-06-01

    Mitochondrial DNA (mtDNA) is packaged into DNA-protein complexes called nucleoids, which are distributed as many small foci in mitochondria. Nucleoids are crucial for the biogenesis and function of mtDNA. Here, using a yeast genetic screen for components that control nucleoid distribution and size, we identify Fcj1 and Mos1, two evolutionarily conserved mitochondrial proteins that maintain the connection between the cristae and boundary membranes. These two proteins are also important for establishing tubular morphology of mitochondria, as mitochondria lacking Fcj1 and Mos1 form lamellar sheets. We find that nucleoids aggregate, increase in size, and decrease in number in fcj1 and mos1 cells. In addition, Fcj1 form punctate structures and localized adjacent to nucleoids. Moreover, connecting mitochondria by deleting the DNM1 gene required for organelle division enhances aggregation of mtDNA nucleoids in fcj1 and mos1 cells, whereas single deletion of DNM1 does not affect nucleoids. Conversely, deleting F1Fo-ATP synthase dimerization factors generates concentric ring-like cristae, restores tubular mitochondrial morphology, and suppresses nucleoid aggregation in these mutants. Our findings suggest an unexpected role of Fcj1-Mos1 and organelle division in maintaining the distribution and size of mtDNA nucleoids.

  15. Periodicity in Attachment Organelle Revealed by Electron Cryotomography Suggests Conformational Changes in Gliding Mechanism of Mycoplasma pneumoniae

    PubMed Central

    Kawamoto, Akihiro; Matsuo, Lisa; Kato, Takayuki; Yamamoto, Hiroki

    2016-01-01

    ABSTRACT Mycoplasma pneumoniae, a pathogenic bacterium, glides on host surfaces using a unique mechanism. It forms an attachment organelle at a cell pole as a protrusion comprised of knoblike surface structures and an internal core. Here, we analyzed the three-dimensional structure of the organelle in detail by electron cryotomography. On the surface, knoblike particles formed a two-dimensional array, albeit with limited regularity. Analyses using a nonbinding mutant and an antibody showed that the knoblike particles correspond to a naplike structure that has been observed by negative-staining electron microscopy and is likely to be formed as a complex of P1 adhesin, the key protein for binding and gliding. The paired thin and thick plates feature a rigid hexagonal lattice and striations with highly variable repeat distances, respectively. The combination of variable and invariant structures in the internal core and the P1 adhesin array on the surface suggest a model in which axial extension and compression of the thick plate along a rigid thin plate is coupled with attachment to and detachment from the substrate during gliding. PMID:27073090

  16. Coordinate synthesis and protein localization in a bacterial organelle by the action of a penicillin-binding-protein

    PubMed Central

    Hughes, H. Velocity; Lisher, John P.; Hardy, Gail G.; Kysela, David T.; Arnold, Randy J.; Giedroc, David P.; Brun, Yves V.

    2013-01-01

    SUMMARY Organelles with specialized form and function occur in diverse bacteria. Within the Alphaproteobacteria, several species extrude thin cellular appendages known as stalks, which function in nutrient uptake, buoyancy and reproduction. Consistent with their specialization, stalks maintain a unique molecular composition compared to the cell body, but how this is achieved remains to be fully elucidated. Here we dissect the mechanism of localization of StpX, a stalk-specific protein in Caulobacter crescentus. Using a forward genetics approach, we identify a penicillin-bindingprotein PbpC, which is required for the localization of StpX in the stalk. We show that PbpC acts at the stalked cell pole to anchor StpX to rigid components of the outer membrane of the elongating stalk, concurrent with stalk synthesis. Stalklocalized StpX in turn functions in cellular responses to copper and zinc, suggesting that the stalk may contribute to metal homeostasis in Caulobacter. Together, these results identify a novel role for a penicillin-binding-protein in compartmentalizing a bacterial organelle it itself helps create, raising the possibility that cell wallsynthetic enzymes may broadly serve not only to synthesize the diverse shapes of bacteria, but also to functionalize them at the molecular level. PMID:24118129

  17. Cell division ring, a new cell division protein and vertical inheritance of a bacterial organelle in anammox planctomycetes.

    PubMed

    van Niftrik, Laura; Geerts, Willie J C; van Donselaar, Elly G; Humbel, Bruno M; Webb, Richard I; Harhangi, Harry R; Camp, Huub J M Op den; Fuerst, John A; Verkleij, Arie J; Jetten, Mike S M; Strous, Marc

    2009-09-01

    Anammox bacteria are members of the phylum Planctomycetes that oxidize ammonium anaerobically and produce a significant part of the atmosphere's dinitrogen gas. They contain a unique bacterial organelle, the anammoxosome, which is the locus of anammox catabolism. While studying anammox cell and anammoxosome division with transmission electron microscopy including electron tomography, we observed a cell division ring in the outermost compartment of dividing anammox cells. In most Bacteria, GTP hydrolysis drives the tubulin-analogue FtsZ to assemble into a ring-like structure at the cell division site where it functions as a scaffold for the molecular machinery that performs cell division. However, the genome of the anammox bacterium 'Candidatus Kuenenia stuttgartiensis' does not encode ftsZ. Genomic analysis of open reading frames with potential GTPase activity indicated a possible novel cell division ring gene: kustd1438, which was unrelated to ftsZ. Immunogold localization specifically localized kustd1438 to the cell division ring. Genomic analyses of other members of the phyla Planctomycetes and Chlamydiae revealed no putative functional homologues of kustd1438, suggesting that it is specific to anammox bacteria. Electron tomography also revealed that the bacterial organelle was elongated along with the rest of the cell and divided equally among daughter cells during the cell division process.

  18. Vacuole Membrane Protein 1 Is an Endoplasmic Reticulum Protein Required for Organelle Biogenesis, Protein Secretion, and Development

    PubMed Central

    Calvo-Garrido, Javier; Carilla-Latorre, Sergio; Lázaro-Diéguez, Francisco; Egea, Gustavo

    2008-01-01

    Vacuole membrane protein 1 (Vmp1) is membrane protein of unknown molecular function that has been associated with pancreatitis and cancer. The social amoeba Dictyostelium discoideum has a vmp1-related gene that we identified previously in a functional genomic study. Loss-of-function of this gene leads to a severe phenotype that compromises Dictyostelium growth and development. The expression of mammalian Vmp1 in a vmp1− Dictyostelium mutant complemented the phenotype, suggesting a functional conservation of the protein among evolutionarily distant species and highlights Dictyostelium as a valid experimental system to address the function of this gene. Dictyostelium Vmp1 is an endoplasmic reticulum protein necessary for the integrity of this organelle. Cells deficient in Vmp1 display pleiotropic defects in the secretory pathway and organelle biogenesis. The contractile vacuole, which is necessary to survive under hypoosmotic conditions, is not functional in the mutant. The structure of the Golgi apparatus, the function of the endocytic pathway and conventional protein secretion are also affected in these cells. Transmission electron microscopy of vmp1− cells showed the accumulation of autophagic features that suggests a role of Vmp1 in macroautophagy. In addition to these defects observed at the vegetative stage, the onset of multicellular development and early developmental gene expression are also compromised. PMID:18550798

  19. Self-assembling, protein-based intracellular bacterial organelles: emerging vehicles for encapsulating, targeting and delivering therapeutical cargoes

    PubMed Central

    2011-01-01

    Many bacterial species contain intracellular nano- and micro-compartments consisting of self-assembling proteins that form protein-only shells. These structures are built up by combinations of a reduced number of repeated elements, from 60 repeated copies of one unique structural element self-assembled in encapsulins of 24 nm to 10,000-20,000 copies of a few protein species assembled in a organelle of around 100-150 nm in cross-section. However, this apparent simplicity does not correspond to the structural and functional sophistication of some of these organelles. They package, by not yet definitely solved mechanisms, one or more enzymes involved in specific metabolic pathways, confining such reactions and sequestering or increasing the inner concentration of unstable, toxics or volatile intermediate metabolites. From a biotechnological point of view, we can use the self assembling properties of these particles for directing shell assembling and enzyme packaging, mimicking nature to design new applications in biotechnology. Upon appropriate engineering of the building blocks, they could act as a new family of self-assembled, protein-based vehicles in Nanomedicine to encapsulate, target and deliver therapeutic cargoes to specific cell types and/or tissues. This would provide a new, intriguing platform of microbial origin for drug delivery. PMID:22046962

  20. Imaging of fine structures of cellular organelles in hydrated biological cells by a soft x-ray microscope combined with a fluorescence microscope

    NASA Astrophysics Data System (ADS)

    Kado, Masataka; Kishimoto, Maki; Tamotsu, Satoshi; Yasuda, Keiko; Aoyama, Masato; Shinohara, Kunio

    2013-09-01

    We have proposed and developed a new hybrid microscopy system using a soft x-ray microscope and a fluorescence microscope imaging the same biological cells at the nearly same time. Combining the powerful advantages such as high spatial resolution of the soft x-ray microscope and the accurate organelle identification of the fluorescence microscope, we can observe fine structures of the cellular organelles in live hydrated biological cells in situ. Staining the cells with several fluorescent dyes such as Mito-tracker, Phalloidin, and DAPI, the soft x-ray images of the cells have been directly compared with the fluorescent images and the cellular organelles such as mitochondria, actin filaments, and chromosomes in the soft x-ray images have been clearly identified. Since the soft x-ray microscope has higher spatial resolution than that of the fluorescence microscope, not only shape of the cellular organelles but also the fine structures of the cellular organelles of the live biological cells have been clearly observed for the first time.

  1. A set of GFP-based organelle marker lines combined with DsRed-based gateway vectors for subcellular localization study in rice (Oryza sativa L.).

    PubMed

    Wu, Tsung-Meng; Lin, Ke-Chun; Liau, Wei-Shiang; Chao, Yun-Yang; Yang, Ling-Hung; Chen, Szu-Yun; Lu, Chung-An; Hong, Chwan-Yang

    2016-01-01

    In the post-genomic era, many useful tools have been developed to accelerate the investigation of gene functions. Fluorescent proteins have been widely used as protein tags for studying the subcellular localization of proteins in plants. Several fluorescent organelle marker lines have been generated in dicot plants; however, useful and reliable fluorescent organelle marker lines are lacking in the monocot model rice. Here, we developed eight different GFP-based organelle markers in transgenic rice and created a set of DsRed-based gateway vectors for combining with the marker lines. Two mitochondrial-localized rice ascorbate peroxidase genes fused to DsRed and successfully co-localized with mitochondrial-targeted marker lines verified the practical use of this system. The co-localization of GFP-fusion marker lines and DsRed-fusion proteins provide a convenient platform for in vivo or in vitro analysis of subcellular localization of rice proteins.

  2. Characterization of toposomes from sea urchin blastula cells: a cell organelle mediating cell adhesion and expressing positional information.

    PubMed Central

    Noll, H; Matranga, V; Cervello, M; Humphreys, T; Kuwasaki, B; Adelson, D

    1985-01-01

    Cell adhesion in the sea urchin blastula is mediated by a 22S genus-specific glycoprotein complex consisting initially of six 160-kDa subunits that are processed proteolytically as development proceeds. Noncytolytic removal of the 22S particle from the surface with either 2.5% butanol or trypsin renders dissociated cells reaggregation incompetent, and addition restores reaggregation and development. Polyclonal antibodies against the 22S complex prevent reaggregation in a genus-specific manner while monoclonal antibodies stain cell surface structures in a pattern consistent with a code that specifies the position of a cell in the embryo by a unique combination of subunits in its cell adhesion particles. The existence of similar particles in Drosophila and amphibian embryos suggests that these glycoprotein complexes are a general class of organelles, the toposomes, that in the embryo mediate cell adhesion and express positional information. Images PMID:3865216

  3. A centrosome interactome provides insight into organelle assembly and reveals a non-duplication role for Plk4

    PubMed Central

    Galletta, Brian J.; Fagerstrom, Carey J.; Schoborg, Todd A.; McLamarrah, Tiffany A.; Ryniawec, John M.; Buster, Daniel W.; Slep, Kevin C.; Rogers, Gregory C.; Rusan, Nasser M.

    2016-01-01

    The centrosome is the major microtubule-organizing centre of many cells, best known for its role in mitotic spindle organization. How the proteins of the centrosome are accurately assembled to carry out its many functions remains poorly understood. The non-membrane-bound nature of the centrosome dictates that protein–protein interactions drive its assembly and functions. To investigate this massive macromolecular organelle, we generated a ‘domain-level' centrosome interactome using direct protein–protein interaction data from a focused yeast two-hybrid screen. We then used biochemistry, cell biology and the model organism Drosophila to provide insight into the protein organization and kinase regulatory machinery required for centrosome assembly. Finally, we identified a novel role for Plk4, the master regulator of centriole duplication. We show that Plk4 phosphorylates Cep135 to properly position the essential centriole component Asterless. This interaction landscape affords a critical framework for research of normal and aberrant centrosomes. PMID:27558293

  4. Evaluation of a Bio Nano-Sensing Probe Fabricated by Focused-Ion-Beam Chemical Vapor Deposition for Single Organelle Analyses

    NASA Astrophysics Data System (ADS)

    Kometani, Reo; Koike, Hiroyuki; Kanda, Kazuhiro; Haruyama, Yuichi; Kaito, Takashi; Matsui, Shinji

    2007-12-01

    It is necessary to manipulate and analyze single cells and organelles with high accuracy for a deeper understanding of their biological phenomena. For this purpose, bio nano-tools are very useful. We fabricated a bio nano-sensing probe by using focused-ion-beam chemical vapor deposition (FIB-CVD) and evaluated it using a cell of an Egeria densa leaf. We found that the probe functions as a measurement electrode. This indicates that the bio nano-sensing probe is useful for single organelle analyses.

  5. Ca(2+) and H+ homeostasis in fission yeast: a role of Ca(2+)/H+ exchange and distinct V-H+-ATPases of the secretory pathway organelles.

    PubMed

    Okorokov, L A; Silva, F E; Okorokova Façanha, A L

    2001-09-14

    We determined the H+ and Ca(2+) uptake by fission yeast membranes separated on sucrose gradient and found that (i) Ca(2+) sequestering is due to Ca(2+)/H+ antiporter(s) localized to secretory pathway organelles while Ca(2+)-ATPase activity is not detectable in their membranes; (ii) immunochemically distinct V-H+-ATPases acidify the lumen of the secretory pathway organelles. The data indicate that the endoplasmic reticulum, Golgi and vacuole form a network of Ca(2+) and H+ stores in the single cell, providing favorable conditions for such key processes as protein folding/sorting, membrane fusion, ion homeostasis and Ca(2+) signaling in a differential and local manner.

  6. Organelles Contribute Differentially to Reactive Oxygen Species-Related Events during Extended Darkness1[C][W][OA

    PubMed Central

    Rosenwasser, Shilo; Rot, Ilona; Sollner, Evelyn; Meyer, Andreas J.; Smith, Yoav; Leviatan, Noam; Fluhr, Robert; Friedman, Haya

    2011-01-01

    Treatment of Arabidopsis (Arabidopsis thaliana) leaves by extended darkness generates a genetically activated senescence program that culminates in cell death. The transcriptome of leaves subjected to extended darkness was found to contain a variety of reactive oxygen species (ROS)-specific signatures. The levels of transcripts constituting the transcriptome footprints of chloroplasts and cytoplasm ROS stresses decreased in leaves, as early as the second day of darkness. In contrast, an increase was detected in transcripts associated with mitochondrial and peroxisomal ROS stresses. The sequential changes in the redox state of the organelles during darkness were examined by redox-sensitive green fluorescent protein probes (roGFP) that were targeted to specific organelles. In plastids, roGFP showed a decreased level of oxidation as early as the first day of darkness, followed by a gradual increase to starting levels. However, in mitochondria, the level of oxidation of roGFP rapidly increased as early as the first day of darkness, followed by an increase in the peroxisomal level of oxidation of roGFP on the second day. No changes in the probe oxidation were observed in the cytoplasm until the third day. The increase in mitochondrial roGFP degree of oxidation was abolished by sucrose treatment, implying that oxidation is caused by energy deprivation. The dynamic redox state visualized by roGFP probes and the analysis of microarray results are consistent with a scenario in which ROS stresses emanating from the mitochondria and peroxisomes occur early during darkness at a presymptomatic stage and jointly contribute to the senescence program. PMID:21372201

  7. Ca2+ accumulation into acidic organelles mediated by Ca2+- and vacuolar H+-ATPases in human platelets

    PubMed Central

    2005-01-01

    Most physiological agonists increase cytosolic free [Ca2+]c (cytosolic free Ca2+ concentration) to regulate a variety of cellular processes. How different stimuli evoke distinct spatiotemporal Ca2+ responses remains unclear, and the presence of separate intracellular Ca2+ stores might be of great functional relevance. Ca2+ accumulation into intracellular compartments mainly depends on the activity of Ca2+- and H+-ATPases. Platelets present two separate Ca2+ stores differentiated by the distinct sensitivity to thapsigargin and TBHQ [2,5-di-(t-butyl)-1,4-hydroquinone]. Although one store has long been identified as the dense tubular system, the nature of the TBHQ-sensitive store remains uncertain. Treatment of platelets with GPN (glycylphenylalanine-2-naphthylamide) impaired Ca2+ release by TBHQ and reduced that evoked by thrombin. In contrast, GPN did not modify Ca2+ mobilization stimulated by ADP or AVP ([arginine]vasopressin). Treatment with nigericin, a proton carrier, and bafilomycin A1, an inhibitor of the vacuolar H+-ATPase, to dissipate the proton gradient into acidic organelles induces a transient increase in [Ca2+]c that was abolished by previous treatment with the SERCA (sarcoplasmic/endoplasmic-reticulum Ca2+-ATPase) 3 inhibitor TBHQ. Depleted acidic stores after nigericin or bafilomycin A1 were refilled by SERCA 3. Thrombin, but not ADP or AVP, reduces the rise in [Ca2+]c evoked by nigericin and bafilomycin A1. Our results indicate that the TBHQ-sensitive store in human platelets is an acidic organelle whose Ca2+ accumulation is regulated by both Ca2+- and vacuolar H+-ATPases. PMID:15847604

  8. Sensitive imaging of organelles in label-free cells by surface plasmon resonance in deep-ultraviolet region (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kawata, Yoshimasa; Kikawada, Masakazu; Ono, Atsushi; Inami, Wataru

    2016-09-01

    In this research, we demonstrate the enhanced autofluorescence and high-sensitivity bioimaging of intracellular organelles using DUV-SPR. The Kretschmann configuration is used for excitation of DUV-SPR. We used an aluminum thickness of 24 nm. The alumina surface was estimated to be 6 nm by comparison between the experimental and calculated results. Reflectance after culturing of cells was measured. DUV-SPR is excited at an incident angle of 52° after the biological samples are cultured. MC3T3-E1 cells as Label-free cells are directly cultured on an aluminum and glass surfaces, and they were cultured on the both substrates in an incubator. Autofluorescence spectra excited of the label-free MC3T3-E1 cells was measured by 266-nm exictation. The autofluorescence intensity for the aluminum is higher than that for the glass. In the autofluorescence spectra, MC3T3-E1 cells exhibited two fluorescence peaks, which were located around 330 and 500 nm. These 330 and 500 nm emissions indicate aromatic amino acid and mitochondria, respectively. Both of the ehnahcement factors were 8 times. We also observed autofluorescence of aromatic amino acid and mitochondrial NADH in the label-free MC3T3-E1 cells cultured on the aluminum and glass surfaces. In the autofluorescence image with DUV-SPR, organelles can be clearly observed in the MC3T3-E1 cells. On the other hand, the autofluorescence intensity is very weak in the image without DUV-SPR. Accordingly, DUV-SPR can facilitate the observation of proteins, DNA in nucleus, and other structures that cannot be excited by visible light. DUV-SPR is shown to be a powerful technique for acquiring high-sensitivity label-free observation of biological samples.

  9. Reciprocal Regulation of Target of Rapamycin Complex 1 and Potassium Accumulation.

    PubMed

    Primo, Cecilia; Ferri-Blázquez, Alba; Loewith, Robbie; Yenush, Lynne

    2017-01-13

    The proper maintenance of potassium homeostasis is crucial for cell viability. Among the major determinants of potassium uptake in the model organism Saccharomyces cerevisiae are the Trk1 high affinity potassium transporter and the functionally redundant Hal4 (Sat4) and Hal5 protein kinases. These kinases are required for the plasma membrane accumulation of not only Trk1 but also several nutrient permeases. Here, we show that overexpression of the target of rapamycin complex 1 (TORC1) effector NPR1 improves hal4 hal5 growth defects by stabilizing nutrient permeases at the plasma membrane. We subsequently found that internal potassium levels and TORC1 activity are linked. Specifically, growth under limiting potassium alters the activities of Npr1 and another TORC1 effector kinase, Sch9; hal4 hal5 and trk1 trk2 mutants display hypersensitivity to rapamycin, and reciprocally, TORC1 inhibition reduces potassium accumulation. Our results demonstrate that in addition to carbon and nitrogen, TORC1 also responds to and regulates potassium fluxes.

  10. Phospholipase D Mediates Nutrient Input to Mammalian Target of Rapamycin Complex 1 (mTORC1)*

    PubMed Central

    Xu, Limei; Salloum, Darin; Medlin, Phil S.; Saqcena, Mahesh; Yellen, Paige; Perrella, Benjamin; Foster, David A.

    2011-01-01

    The mammalian target of rapamycin (mTOR) is a critical sensor of nutritional sufficiency. Although much is known about the regulation of mTOR in response to growth factors, much less is known about the regulation of mTOR in response to nutrients. Amino acids have no impact on the signals that regulate Rheb, a GTPase required for the activation of mTOR complex 1 (mTORC1). Phospholipase D (PLD) generates a metabolite, phosphatidic acid, that facilitates association between mTOR and the mTORC1 co-factor Raptor. We report here that elevated PLD activity in human cancer cells is dependent on both amino acids and glucose and that amino acid- and glucose-induced increases in mTORC1 activity are dependent on PLD. Amino acid- and glucose-induced PLD and mTORC1 activity were also dependent on the GTPases RalA and ARF6 and the type III phosphatidylinositol-3-kinase hVps34. Thus, a key stimulatory event for mTORC1 activation in response to nutrients is the generation of phosphatidic acid by PLD. PMID:21622984

  11. mTOR complex 1: a key player in neuroadaptations induced by drugs of abuse.

    PubMed

    Neasta, Jeremie; Barak, Segev; Hamida, Sami Ben; Ron, Dorit

    2014-07-01

    The mammalian (or mechanistic) target of rapamycin (mTOR) complex 1 (mTORC1) is a serine and threonine kinase that regulates cell growth, survival, and proliferation. mTORC1 is a master controller of the translation of a subset of mRNAs. In the central nervous system mTORC1 plays a crucial role in mechanisms underlying learning and memory by controlling synaptic protein synthesis. Here, we review recent evidence suggesting that the mTORC1 signaling pathway promotes neuroadaptations following exposure to a diverse group of drugs of abuse including stimulants, cannabinoids, opiates, and alcohol. We further describe potential molecular mechanisms by which drug-induced mTORC1 activation may alter brain functions. Finally, we propose that mTORC1 is a focal point shared by drugs of abuse to mediate drug-related behaviors such as reward seeking and excessive drug intake, and offer future directions to decipher the contribution of the kinase to mechanisms underlying addiction. Recent studies suggesting that exposure to diverse classes of drugs of abuse as well as exposure to drug-associated memories lead to mTORC1 kinase activation in the limbic system. In turn, mTORC1 controls the onset and the maintenance of pathological neuroadaptions that underlie several features of drug addiction such as drug seeking and relapse. Therefore, we propose that targeting mTORC1 and its effectors is a promising strategy to treat drug disorders.

  12. A cellular chemical probe targeting the chromodomains of Polycomb Repressive Complex 1

    PubMed Central

    Stuckey, Jacob I; Dickson, Bradley M; Cheng, Nancy; Liu, Yanli; Norris, Jacqueline L; Cholensky, Stephanie H; Tempel, Wolfram; Qin, Su; Huber, Katherine G; Sagum, Cari; Black, Karynne; Li, Fengling; Huang, Xi-Ping; Roth, Bryan L; Baughman, Brandi M; Senisterra, Guillermo; Pattenden, Samantha G; Vedadi, Masoud; Brown, Peter J; Bedford, Mark T; Min, Jinrong; Arrowsmith, Cheryl H

    2015-01-01

    We report the design and characterization of UNC3866, a potent antagonist of the methyl-lysine (Kme) reading function of the Polycomb CBX and CDY families of chromodomains. Polycomb CBX proteins regulate gene expression by targeting Polycomb Repressive Complex 1 to sites of H3K27me3 via their chromodomains. UNC3866 binds the chromodomains of CBX4 and CBX7 most potently with a Kd of ∼100 nM for each, and is 6- to 18-fold selective versus seven other CBX and CDY chromodomains while being highly selective versus >250 other protein targets. X-ray crystallography revealed that UNC3866 closely mimics the interactions of the methylated H3 tail with these chromodomains. UNC4195, a biotinylated derivative of UNC3866, was used to demonstrate that UNC3866 engages intact PRC1 and that EED incorporation into PRC1 is isoform-dependent in PC3 prostate cancer cells. Finally, UNC3866 inhibits PC3 cell proliferation, a known CBX7 phenotype, while UNC4219, a methylated negative control compound, has negligible effects. PMID:26807715

  13. Mammalian target of rapamycin complex 1 is involved in differentiation of regenerating myofibers in vivo.

    PubMed

    Miyabara, Elen H; Conte, Talita C; Silva, Meiricris T; Baptista, Igor L; Bueno, Carlos; Fiamoncini, Jarlei; Lambertucci, Rafael H; Serra, Carmen S; Brum, Patricia C; Pithon-Curi, Tania; Curi, Rui; Aoki, Marcelo S; Oliveira, Antonio C; Moriscot, Anselmo S

    2010-11-01

    This work was undertaken to provide further insight into the role of mammalian target of rapamycin complex 1 (mTORC1) in skeletal muscle regeneration, focusing on myofiber size recovery. Rats were treated or not with rapamycin, an mTORC1 inhibitor. Soleus muscles were then subjected to cryolesion and analyzed 1, 10, and 21 days later. A decrease in soleus myofiber cross-section area on post-cryolesion days 10 and 21 was accentuated by rapamycin, which was also effective in reducing protein synthesis in these freeze-injured muscles. The incidence of proliferating satellite cells during regeneration was unaltered by rapamycin, although immunolabeling for neonatal myosin heavy chain (MHC) was weaker in cryolesion+rapamycin muscles than in cryolesion-only muscles. In addition, the decline in tetanic contraction of freeze-injured muscles was accentuated by rapamycin. This study indicates that mTORC1 plays a key role in the recovery of muscle mass and the differentiation of regenerating myofibers, independently of necrosis and satellite cell proliferation mechanisms.

  14. Genetics Home Reference: Hermansky-Pudlak syndrome

    MedlinePlus

    ... play a role in the formation and movement (trafficking) of a group of cell structures called lysosome- ... with Rab38 and Rab32 proteins to mediate protein trafficking to lysosome-related organelles. J Biol Chem. 2012 ...

  15. The GC-rich mitochondrial and plastid genomes of the green alga Coccomyxa give insight into the evolution of organelle DNA nucleotide landscape

    DOE PAGES

    Smith, David Roy; Burki, Fabien; Yamada, Takashi; ...

    2011-08-26

    Here, most of the available mitochondrial and plastid genome sequences are biased towards adenine and thymine (AT) over guanine and cytosine (GC). Examples of GC-rich organelle DNAs are limited to a small but eclectic list of species, including certain green algae. Here, to gain insight in the evolution of organelle nucleotide landscape, we present the GC-rich mitochondrial and plastid DNAs from the trebouxiophyte green alga Coccomyxa sp. C-169. We compare these sequences with other GC-rich organelle DNAs and argue that the forces biasing them towards G and C are nonadaptive and linked to the metabolic and/or life history features ofmore » this species. The Coccomyxa organelle genomes are also used for phylogenetic analyses, which highlight the complexities in trying to resolve the interrelationships among the core chlorophyte green algae, but ultimately favour a sister relationship between the Ulvophyceae and Chlorophyceae, with the Trebouxiophyceae branching at the base of the chlorophyte crown.« less

  16. The role of intraorganellar Ca(2+) in late endosome-lysosome heterotypic fusion and in the reformation of lysosomes from hybrid organelles.

    PubMed

    Pryor, P R; Mullock, B M; Bright, N A; Gray, S R; Luzio, J P

    2000-05-29

    We have investigated the requirement for Ca(2+) in the fusion and content mixing of rat hepatocyte late endosomes and lysosomes in a cell-free system. Fusion to form hybrid organelles was inhibited by 1,2-bis(2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid (BAPTA), but not by EGTA, and this inhibition was reversed by adding additional Ca(2+). Fusion was also inhibited by methyl ester of EGTA (EGTA-AM), a membrane permeable, hydrolyzable ester of EGTA, and pretreatment of organelles with EGTA-AM showed that the chelation of lumenal Ca(2+) reduced the amount of fusion. The requirement for Ca(2+) for fusion was a later event than the requirement for a rab protein since the system became resistant to inhibition by GDP dissociation inhibitor at earlier times than it became resistant to BAPTA. We have developed a cell-free assay to study the reformation of lysosomes from late endosome-lysosome hybrid organelles that were isolated from the rat liver. The recovery of electron dense lysosomes was shown to require ATP and was inhibited by bafilomycin and EGTA-AM. The data support a model in which endocytosed Ca(2+) plays a role in the fusion of late endosomes and lysosomes, the reformation of lysosomes, and the dynamic equilibrium of organelles in the late endocytic pathway.

  17. Biochemical Characterization of the Bi-lobe Reveals a Continuous Structural Network Linking the Bi-lobe to Other Single-copied Organelles in Trypanosoma brucei*

    PubMed Central

    Gheiratmand, Ladan; Brasseur, Anais; Zhou, Qing; He, Cynthia Y.

    2013-01-01

    Trypanosoma brucei, a unicellular parasite, contains several single-copied organelles that duplicate and segregate in a highly coordinated fashion during the cell cycle. In the procyclic stage, a bi-lobed structure is found adjacent to the single ER exit site and Golgi apparatus, forming both stable and dynamic association with other cytoskeletal components including the basal bodies that seed the flagellum and the flagellar pocket collar that is critical for flagellar pocket biogenesis. To further understand the bi-lobe and its association with adjacent organelles, we performed proteomic analyses on the immunoisolated bi-lobe complex. Candidate proteins were localized to the flagellar pocket, the basal bodies, a tripartite attachment complex linking the basal bodies to the kinetoplast, and a segment of microtubule quartet linking the flagellar pocket collar and bi-lobe to the basal bodies. These results supported an extensive connection among the single-copied organelles in T. brucei, a strategy employed by the parasite for orderly organelle assembly and inheritance during the cell cycle. PMID:23235159

  18. The GC-rich mitochondrial and plastid genomes of the green alga Coccomyxa give insight into the evolution of organelle DNA nucleotide landscape

    SciTech Connect

    Smith, David Roy; Burki, Fabien; Yamada, Takashi; Grimwood, Jane; Grigoriev, Igor V.; Van Etten, James L.; Keeling, Patrick J.; Kroymann, Juergen

    2011-08-26

    Here, most of the available mitochondrial and plastid genome sequences are biased towards adenine and thymine (AT) over guanine and cytosine (GC). Examples of GC-rich organelle DNAs are limited to a small but eclectic list of species, including certain green algae. Here, to gain insight in the evolution of organelle nucleotide landscape, we present the GC-rich mitochondrial and plastid DNAs from the trebouxiophyte green alga Coccomyxa sp. C-169. We compare these sequences with other GC-rich organelle DNAs and argue that the forces biasing them towards G and C are nonadaptive and linked to the metabolic and/or life history features of this species. The Coccomyxa organelle genomes are also used for phylogenetic analyses, which highlight the complexities in trying to resolve the interrelationships among the core chlorophyte green algae, but ultimately favour a sister relationship between the Ulvophyceae and Chlorophyceae, with the Trebouxiophyceae branching at the base of the chlorophyte crown.

  19. The dynein inhibitor Ciliobrevin D inhibits the bidirectional transport of organelles along sensory axons and impairs NGF-mediated regulation of growth cones and axon branches.

    PubMed

    Sainath, Rajiv; Gallo, Gianluca

    2015-07-01

    The axonal transport of organelles is critical for the development, maintenance, and survival of neurons, and its dysfunction has been implicated in several neurodegenerative diseases. Retrograde axon transport is mediated by the motor protein dynein. In this study, using embryonic chicken dorsal root ganglion neurons, we investigate the effects of Ciliobrevin D, a pharmacological dynein inhibitor, on the transport of axonal organelles, axon extension, nerve growth factor (NGF)-induced branching and growth cone expansion, and axon thinning in response to actin filament depolymerization. Live imaging of mitochondria, lysosomes, and Golgi-derived vesicles in axons revealed that both the retrograde and anterograde transport of these organelles was inhibited by treatment with Ciliobrevin D. Treatment with Ciliobrevin D reversibly inhibits axon extension and transport, with effects detectable within the first 20 min of treatment. NGF induces growth cone expansion, axonal filopodia formation and branching. Ciliobrevin D prevented NGF-induced formation of axonal filopodia and branching but not growth cone expansion. Finally, we report that the retrograde reorganization of the axonal cytoplasm which occurs on actin filament depolymerization is inhibited by treatment with Ciliobrevin D, indicating a role for microtubule based transport in this process, as well as Ciliobrevin D accelerating Wallerian degeneration. This study identifies Ciliobrevin D as an inhibitor of the bidirectional transport of multiple axonal organelles, indicating this drug may be a valuable tool for both the study of dynein function and a first pass analysis of the role of axonal transport.

  20. PLK1 (polo like kinase 1) inhibits MTOR complex 1 and promotes autophagy.

    PubMed

    Ruf, Stefanie; Heberle, Alexander Martin; Langelaar-Makkinje, Miriam; Gelino, Sara; Wilkinson, Deepti; Gerbeth, Carolin; Schwarz, Jennifer Jasmin; Holzwarth, Birgit; Warscheid, Bettina; Meisinger, Chris; van Vugt, Marcel A T M; Baumeister, Ralf; Hansen, Malene; Thedieck, Kathrin

    2017-01-19

    Mechanistic target of rapamycin complex 1 (MTORC1) and PLK1 (polo like kinase 1) are major drivers of cancer cell growth and proliferation, and inhibitors of both protein kinases are currently being investigated in clinical studies. To date, MTORC1's and PLK1's functions are mostly studied separately, and reports on their mutual crosstalk are scarce. Here, we identify PLK1 as a physical MTORC1 interactor in human cancer cells. PLK1 inhibition enhances MTORC1 activity under nutrient sufficiency and in starved cells, and PLK1 directly phosphorylates the MTORC1 component RPTOR/RAPTOR in vitro. PLK1 and MTORC1 reside together at lysosomes, the subcellular site where MTORC1 is active. Consistent with an inhibitory role of PLK1 toward MTORC1, PLK1 overexpression inhibits lysosomal association of the PLK1-MTORC1 complex, whereas PLK1 inhibition promotes lysosomal localization of MTOR. PLK1-MTORC1 binding is enhanced by amino acid starvation, a condition known to increase autophagy. MTORC1 inhibition is an important step in autophagy activation. Consistently, PLK1 inhibition mitigates autophagy in cancer cells both under nutrient starvation and sufficiency, and a role of PLK1 in autophagy is also observed in the invertebrate model organism Caenorhabditis elegans. In summary, PLK1 inhibits MTORC1 and thereby positively contributes to autophagy. Since autophagy is increasingly recognized to contribute to tumor cell survival and growth, we propose that cautious monitoring of MTORC1 and autophagy readouts in clinical trials with PLK1 inhibitors is needed to develop strategies for optimized (combinatorial) cancer therapies targeting MTORC1, PLK1, and autophagy.

  1. Inhibition of the mammalian target of rapamycin complex 1 signaling pathway reduces itch behaviour in mice.

    PubMed

    Obara, Ilona; Medrano, Maria C; Signoret-Genest, Jérémy; Jiménez-Díaz, Lydia; Géranton, Sandrine M; Hunt, Stephen P

    2015-08-01

    Activated mammalian target of rapamycin (P-mTOR) has been shown to maintain the sensitivity of subsets of small-diameter primary afferent A-nociceptors. Local or systemic inhibition of the mTOR complex 1 (mTORC1) pathway reduced punctate mechanical and cold sensitivity in neuropathic pain and therefore offered a new approach to chronic pain control. In this study, we have investigated the effects of the rapamycin analog temsirolimus (CCI-779) on itch. Bouts of scratching induced by the histamine-dependent pruritogenic compound 48/80 and histamine-independent pruritogens, chloroquine and SLIGRL-NH2, injected intradermally were significantly reduced by local (intradermal) or systemic (intraperitoneal, i.p.) pretreatment with CCI-779. We also investigated the action of metformin, a drug taken to control type 2 diabetes and recently shown to inhibit mTORC1 in vivo. Although the response to nonhistaminergic stimuli was reduced at all of the time points tested, scratching to compound 48/80 was modified by metformin only when the drug was injected 24 hours before this pruritogen. We also examined the colocalization of P-mTOR with gastrin-releasing peptide, a putative marker for some itch-sensitive primary afferents, and found that P-mTOR was coexpressed in less than 5% of gastrin-releasing peptide-positive fibers in the mouse skin. Taken together, the data highlight the role that P-mTOR-positive A-fibers play in itch signaling and underline the importance of the mTORC1 pathway in the regulation of homeostatic primary afferent functions such as pain and itch. The actions of the antidiabetic drug metformin in ameliorating nonhistamine-mediated itch also suggest a new therapeutic route for the control of this category of pruritus.

  2. Deregulation of polycomb repressor complex 1 modifier AUTS2 in T-cell leukemia

    PubMed Central

    Nagel, Stefan; Pommerenke, Claudia; Meyer, Corinna; Kaufmann, Maren; Drexler, Hans G.; MacLeod, Roderick A.F.

    2016-01-01

    Recently, we identified deregulated expression of the B-cell specific transcription factor MEF2C in T-cell acute lymphoid leukemia (T-ALL). Here, we performed sequence analysis of a regulatory upstream section of MEF2C in T-ALL cell lines which, however, proved devoid of mutations. Unexpectedly, we found strong conservation between the regulatory upstream region of MEF2C (located at chromosomal band 5q14) and an intergenic stretch at 7q11 located between STAG3L4 and AUTS2, covering nearly 20 kb. While the non-coding gene STAG3L4 was inconspicuously expressed, AUTS2 was aberrantly upregulated in 6% of T-ALL patients (public dataset GSE42038) and in 3/24 T-ALL cell lines, two of which represented very immature differentiation stages. AUTS2 expression was higher in normal B-cells than in T-cells, indicating lineage-specific activity in lymphopoiesis. While excluding chromosomal aberrations, examinations of AUTS2 transcriptional regulation in T-ALL cells revealed activation by IL7-IL7R-STAT5-signalling and MEF2C. AUTS2 protein has been shown to interact with polycomb repressor complex 1 subtype 5 (PRC1.5), transforming this particular complex into an activator. Accordingly, expression profiling and functional analyses demonstrated that AUTS2 activated while PCGF5 repressed transcription of NKL homeobox gene MSX1 in T-ALL cells. Forced expression and pharmacological inhibition of EZH2 in addition to H3K27me3 analysis indicated that PRC2 repressed MSX1 as well. Taken together, we found that AUTS2 and MEF2C, despite lying on different chromosomes, share strikingly similar regulatory upstream regions and aberrant expression in T-ALL subsets. Our data implicate chromatin complexes PRC1/AUTS2 and PRC2 in a gene network in T-ALL regulating early lymphoid differentiation. PMID:27322685

  3. PLK1 (polo like kinase 1) inhibits MTOR complex 1 and promotes autophagy

    PubMed Central

    Ruf, Stefanie; Heberle, Alexander Martin; Langelaar-Makkinje, Miriam; Gelino, Sara; Wilkinson, Deepti; Gerbeth, Carolin; Schwarz, Jennifer Jasmin; Holzwarth, Birgit; Warscheid, Bettina; Meisinger, Chris; van Vugt, Marcel A. T. M.; Baumeister, Ralf; Hansen, Malene; Thedieck, Kathrin

    2017-01-01

    ABSTRACT Mechanistic target of rapamycin complex 1 (MTORC1) and polo like kinase 1 (PLK1) are major drivers of cancer cell growth and proliferation, and inhibitors of both protein kinases are currently being investigated in clinical studies. To date, MTORC1′s and PLK1′s functions are mostly studied separately, and reports on their mutual crosstalk are scarce. Here, we identify PLK1 as a physical MTORC1 interactor in human cancer cells. PLK1 inhibition enhances MTORC1 activity under nutrient sufficiency and in starved cells, and PLK1 directly phosphorylates the MTORC1 component RPTOR/RAPTOR in vitro. PLK1 and MTORC1 reside together at lysosomes, the subcellular site where MTORC1 is active. Consistent with an inhibitory role of PLK1 toward MTORC1, PLK1 overexpression inhibits lysosomal association of the PLK1-MTORC1 complex, whereas PLK1 inhibition promotes lysosomal localization of MTOR. PLK1-MTORC1 binding is enhanced by amino acid starvation, a condition known to increase autophagy. MTORC1 inhibition is an important step in autophagy activation. Consistently, PLK1 inhibition mitigates autophagy in cancer cells both under nutrient starvation and sufficiency, and a role of PLK1 in autophagy is also observed in the invertebrate model organism Caenorhabditis elegans. In summary, PLK1 inhibits MTORC1 and thereby positively contributes to autophagy. Since autophagy is increasingly recognized to contribute to tumor cell survival and growth, we propose that cautious monitoring of MTORC1 and autophagy readouts in clinical trials with PLK1 inhibitors is needed to develop strategies for optimized (combinatorial) cancer therapies targeting MTORC1, PLK1, and autophagy. PMID:28102733

  4. [Inheritance of organelle genomes of the somatic hybrid between Cleopatra mandarin (Citrus reticulata) and flying dragon (Poncirus trifoliata)].

    PubMed

    Cheng, Yun-Jiang; Guo, Wen-Wu; Deng, Xiu-Xin

    2002-04-01

    Cleaved Amplified Polymorphic Sequence (CAPS) was successfully applied to analyze the organelle composition of three eight-year-old trees of the somatic hybrid between Cleopatra mandarin (Citrus reticulata) and Flying Dragon (Poncirus trifoliata). Five chloroplast and five mitochondrial universal primer pairs were used. All chloroplast primer pairs (rbcL-rbcL, rbcL-PSA I, TrnH-Trnk, TrnD-TrnT, TrnK-TrnK) and three (nad 1 exon B-nad 1 exon C, 18S rRNA-5S rRNA, nad 4 exon 1-nad 4 exon 2) of the five mitochondrial primer pairs, were efficiently amplified, but no polymorphism was detected, when the PCR products were digested by eleven restriction endonucleases, including, Hin6 I, Bus RI, Taq I, Msp I, HinfI, AluI, Dra I, EcoR I, Hind III, BamH I and Pst I respectively, three polymorphic cpDNA-CAPS markers (rbcL-rbcL/Hin 6 I, TrnD-TrnT/BusR I, TrnD-TrnT/Taq I) and one mtDNA-CAPS marker (nad 1-nad1/Msp I) were found. The results showed that cpDNA in the somatic hybrid plants came from Flying Dragon, the mesophyll parent, and mtDNA from Cleopatra mandarin, the embryogenic suspension parent uniformly. In order to prove the reliability of CAPS results, and to get more detailed information about the mtDNA inheritance, RFLP analyses was conducted. Genomic DNA of the somatic hybrids and their corresponding parents were digested by five restriction endonucleases (Dra I, EcoR I, Hind III, BamH I and Pst I), and hybridized with five mitochondrial probes (Cob, Pro 2, Pro I, atp 6, 26S rRNA) as well as one chloroplast probe, i.e. the PCR product of Flying Dragon with the primer pair of trnd 1-trnt 1. The results were in line with those of CAPS, and no novel bands were detected, which indicated that no organelle DNA recombination or rearrangement have been detected in the hybrid plants. The research showed that novel pattern of nuclear-mitochondria-chloroplast interaction could be reached via protoplast fusion.

  5. The endoplasmic reticulum is a target organelle for trivalent dimethylarsinic acid (DMA{sup III})-induced cytotoxicity

    SciTech Connect

    Naranmandura, Hua; Xu, Shi; Koike, Shota; Pan, Li Qiang; Chen, Bin; Wang, Yan Wei; Rehman, Kanwal; Wu, Bin; Chen, Zhe; Suzuki, Noriyuki

    2012-05-01

    The purpose of present study was to characterize the endoplasmic reticulum stress and generation of ROS in rat liver RLC-16 cells by exposing to trivalent dimethylarsinous acid (DMA{sup III}) and compared with that of trivalent arsenite (iAs{sup III}) and monomethylarsonous acid (MMA{sup III}). Protein kinase-like endoplasmic reticulum kinase (PERK) phosphorylation was significantly induced in cells exposed to DMA{sup III}, while there was no change in phosphorylated PERK (P-PERK) detected in cells after exposure to iAs{sup III} or MMA{sup III}. The generation of reactive oxygen species (ROS) after DMA{sup III} exposure was found to take place specifically in the endoplasmic reticulum (ER), while previous reports showed that ROS was generated in mitochondria following exposure to MMA{sup III}. Meanwhile, cycloheximide (CHX) which is an inhibitor of protein biosynthesis strongly inhibited the DMA{sup III}-induced intracellular ROS generation in the ER and the phosphorylation of PERK, suggesting the induction of ER stress probably occurs through the inhibition of the protein folding process. Activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP) mRNA were induced by all three arsenic species, however, evidence suggested that they might be induced by different pathways in the case of iAs{sup III} and MMA{sup III}. In addition, ER resident molecular chaperone glucose-regulated protein78 (GRP78) was not affected by trivalent arsenicals, while it was induced in positive control only at high concentration (Thapsigargin;Tg), suggesting the GRP78 is less sensitive to low levels of ER stress. In summary, our findings demonstrate that the endoplasmic reticulum is a target organelle for DMA{sup III}-induced cytotoxicity. Highlights: ►ER is a target organelle for trivalent DMA{sup III}-induced cytotoxicity. ►Generation of ROS in ER can be induced specially by trivalent DMA{sup III}. ►ER-stress and generation of ROS are caused by the increase in

  6. Neuronal transport of acid hydrolases and peroxidase within the lysosomal system or organelles: involvement of agranular reticulum-like cisterns.

    PubMed

    Broadwell, R D; Oliver, C; Brightman, M W

    1980-04-01

    Neurosecretory neurons of the hyperosmotically stressed hypothalamo-neurohypophysial system have been a useful model with which to demonstrate interrelationships among perikaryal lysosomes, agranular reticulum-like cisterns, endocytotic vacuoles, and the axoplasmic transport of acid hydrolases and horseradish peroxidase. Supraoptic neurons from normal mice and mice given 2% salt water to drink for 5--8 days have been studied using enzyme cytochemical techniques for peroxidase and lysosomal acid hydrolases. Peroxidase-labeling of these neurons was accomplished by intravenous injection or cerebral ventriculocisternal perfusion of the protein as previously reported (Broadwell and Brightman, '79). Compared to normal controls, supraoptic cell bodies from hyperosmotically stimulated mice contained elevated concentrations of peroxidase-labeled dense bodies demonstrated to be secondary lysosomes and acid hydrolase-positive and peroxidase-positive cisterns either attached or unattached to secondary lysosomes. These cisterns were smooth-surfaced and 400--1,000 A wide. Their morphology was similar to that of the agranular reticulum. Some of the cisterns contained both peroxidase and acid hydrolase activities. The cisterns probably represent an elongated form of lysosome and, therefore, are not elements of the agranular reticulum per se. By virtue of their direct connections with perikaryal secondary lysosomes, these cisterns may provide the route by which acid hydrolases and exogenous macromolecules can leave perikaryal secondary lysosomes for anterograde flow down the axon. Very few smooth-surfaced cisterns were involved in the retrograde transport of peroxidase within pituitary stalk axons from normal and salt-treated mice injected intravenously with peroxidase. Peroxidase undergoing retrograde transport was predominantly in endocytotic structures such as vacuoles and cup-shaped organelles, which deliver this exogenous macromolecule directly to secondary lysosomes for

  7. Maurer's clefts of Plasmodium falciparum are secretory organelles that concentrate virulence protein reporters for delivery to the host erythrocyte

    PubMed Central

    Bhattacharjee, Souvik; van Ooij, Christiaan; Balu, Bharath; Adams, John H.

    2008-01-01

    In blood-stage infection by the human malaria parasite Plasmodium falciparum, export of proteins from the intracellular parasite to the erythrocyte is key to virulence. This export is mediated by a host-targeting (HT) signal present on a “secretome” of hundreds of parasite proteins engaged in remodeling the erythrocyte. However, the route of HT-mediated export is poorly understood. Here we show that minimal soluble and membrane protein reporters that contain the HT motif and mimic export of endogenous P falciparum proteins are detected in the lumen of “cleft” structures synthesized by the pathogen. Clefts are efficiently targeted by the HT signal. Furthermore, the HT signal does not directly translocate across the parasitophorous vacuolar membrane (PVM) surrounding the parasite to deliver protein to the erythrocyte cytoplasm, as suggested by current models of parasite protein trafficking to the erythrocyte. Rather, it is a lumenal signal that sorts protein into clefts, which then are exported beyond the PVM. These data suggest that Maurer's clefts, which are unique to the virulent P falciparum species, are pathogen-induced secretory organelles that concentrate HT-containing soluble and membrane parasite proteins in their lumen for delivery to the host erythrocyte. PMID:18057226

  8. Rediscovery of the nucleolinus, a dynamic RNA-rich organelle associated with the nucleolus, spindle, and centrosomes

    PubMed Central

    Alliegro, Mary Anne; Henry, Jonathan J.; Alliegro, Mark C.

    2010-01-01

    The nucleolinus is an RNA-rich compartment, closely apposed to or embedded within the nucleolus. Discovered over 150 y ago, fewer than two dozen articles have been published on the nucleolinus, probably because complex histochemical stains are required for its visualization in the great majority of cells. The nucleolinus has been reported in invertebrate oocytes, mammalian and amphibian epithelial cells, neurons, and several transformed cell lines. A prominent nucleolinus, clearly visible with transmitted light microscopes at 10× magnification, is present in each oocyte of the surf clam, Spisula solidissima. We observed a consistent relationship between the nucleolinus and the developing meiotic apparatus following Spisula oocyte activation. Through sonication and sucrose gradient fractionation of purified oocyte nuclei, we isolated nucleolini, extracted their RNA, and prepared an in situ riboprobe (NLi-1), which is associated specifically with the nucleolinus, confirming its unique composition. Other in situ observations revealed a NLi-1 and nucleolinar association with the developing spindle and centrosomes. Laser microsurgery that targeted the nucleolinus resulted in failed meiotic cell division in parthenogenetically activated oocytes and failed mitosis in fertilized oocytes. Although the nucleolinus may be a forgotten organelle, its demonstrated role in spindle formation suggests it deserves renewed attention. PMID:20643950

  9. Cell organelles from crassulacean acid metabolism (CAM) plants : II. Compartmentation of enzymes of the crassulacean acid metabolism.

    PubMed

    Schnarrenberger, C; Groß, D; Burkhard, C; Herbert, M

    1980-02-01

    The intracellular distribution of enzymes involved in the Crassulacean acid metabolism (CAM) has been studied in Bryophyllum calycinum Salisb. and Crassula lycopodioides Lam. After separation of cell organelles by isopycnic centrifugation, enzymes of the Crassulacean acid metabolism were found in the following cell fractions: Phosphoenolpyruvate carboxylase in the chloroplasts; NAD-dependent malate dehydrogenase in the mitochondria and in the supernatant; NADP-dependent malate dehydrogenase and phosphoenolpyruvate carboxykinase in the chloroplasts; NADP-dependent malic enzyme in the supernatant and to a minor extent in the chloroplasts; NAD-dependent malic enzyme in the supernatant and to some degree in the mitochondria; and pyruvate; orthophosphate dikinase in the chloroplasts. The activity of the NAD-dependent malate dehydrogenase was due to three isoenzymes separated by (NH4)2SO4 gradient solubilization. These isoenzymes represented 17, 78, and 5% of the activity recovered, respectively, in the order of elution. The isoenzyme eluting first was associated with the mitochondria and the second isoenzyme was of cytosolic origin, while the intracellular location of the third isoenzyme was probably the peroxisome. Based on these findings, the metabolic path of Crassulacean acid metabolism within cells of CAM plants is discussed.

  10. Desulfovibrio magneticus RS-1 contains an iron- and phosphorus-rich organelle distinct from its bullet-shaped magnetosomes

    PubMed Central

    Byrne, Meghan E.; Ball, David A.; Guerquin-Kern, Jean-Luc; Rouiller, Isabelle; Wu, Ting-Di; Downing, Kenneth H.; Vali, Hojatollah; Komeili, Arash

    2010-01-01

    Intracellular magnetite crystal formation by magnetotactic bacteria has emerged as a powerful model for investigating the cellular and molecular mechanisms of biomineralization, a process common to all branches of life. Although magnetotactic bacteria are phylogenetically diverse and their crystals morphologically diverse, studies to date have focused on a few, closely related species with similar crystal habits. Here, we investigate the process of magnetite biomineralization in Desulfovibrio magneticus sp. RS-1, the only reported species of cultured magnetotactic bacteria that is outside of the α-Proteobacteria and that forms bullet-shaped crystals. Using a variety of high-resolution imaging and analytical tools, we show that RS-1 cells form amorphous, noncrystalline granules containing iron and phosphorus before forming magnetite crystals. Using NanoSIMS (dynamic secondary ion mass spectroscopy), we show that the iron-phosphorus granules and the magnetite crystals are likely formed through separate cellular processes. Analysis of the cellular ultrastructure of RS-1 using cryo-ultramicrotomy, cryo-electron tomography, and tomography of ultrathin sections reveals that the magnetite crystals are not surrounded by membranes but that the iron-phosphorus granules are surrounded by membranous compartments. The varied cellular paths for the formation of these two minerals lead us to suggest that the iron-phosphorus granules constitute a distinct bacterial organelle. PMID:20566879

  11. Flagella of Pyrococcus furiosus: multifunctional organelles, made for swimming, adhesion to various surfaces, and cell-cell contacts.

    PubMed

    Näther, Daniela J; Rachel, Reinhard; Wanner, Gerhard; Wirth, Reinhard

    2006-10-01

    Pyrococcus furiosus ("rushing fireball") was named for the ability of this archaeal coccus to rapidly swim at its optimal growth temperature, around 100 degrees C. Early electron microscopic studies identified up to 50 cell surface appendages originating from one pole of the coccus, which have been called flagella. We have analyzed these putative motility organelles and found them to be composed primarily (>95%) of a glycoprotein that is homologous to flagellins from other archaea. Using various electron microscopic techniques, we found that these flagella can aggregate into cable-like structures, forming cell-cell connections between ca. 5% of all cells during stationary growth phase. P. furiosus cells could adhere via their flagella to carbon-coated gold grids used for electron microscopic analyses, to sand grains collected from the original habitat (Porto di Levante, Vulcano, Italy), and to various other surfaces. P. furiosus grew on surfaces in biofilm-like structures, forming microcolonies with cells interconnected by flagella and adhering to the solid supports. Therefore, we concluded that P. furiosus probably uses flagella for swimming but that the cell surface appendages also enable this archaeon to form cable-like cell-cell connections and to adhere to solid surfaces.

  12. The pollen organelle membrane proteome reveals highly spatial-temporal dynamics during germination and tube growth of lily pollen.

    PubMed

    Pertl, Heidi; Schulze, Waltraud X; Obermeyer, Gerhard

    2009-11-01

    As a first step in understanding the membrane-related dynamics during pollen grain germination and subsequent tube growth, the changes in protein abundance of membrane and membrane-associated proteins of 5 different membrane/organelle fractions were studied at physiologically important stages (0, 10, 30, 60, and 240 min) of Lilium longiflorum pollen in vitro culture. Proteins of each fraction and time point were identified by 'shot-gun' proteomics (LC-MS/MS). Analysis of more than 270 identified proteins revealed an increase in the abundance of proteins involved in cytoskeleton, carbohydrate and energy metabolism, as well as ion transport before pollen grain germination (10-30 min), whereas proteins involved in membrane/protein trafficking, signal transduction, stress response and protein biosynthesis decreased in abundance during this time. Proteins of amino acids and lipids/steroids metabolism, proteolysis, transcription, cell wall biosynthesis as well as nutrient transport showed a time-independent abundance profile. These spatiotemporal patterns were confirmed by immunodetection of specific proteins of the cellular processes membrane/protein trafficking and ion transport. Our results reveal major protein rearrangements at endomembranes and the plasma membrane before and as the pollen grains start tube growth. The spatiotemporal protein abundance changes correlate with the underlying developmental and physiological processes of the germinating pollen grain.

  13. Effect of fluoride on the cell viability, cell organelle potential, and photosynthetic capacity of freshwater and soil algae.

    PubMed

    Chae, Yooeun; Kim, Dokyung; An, Youn-Joo

    2016-12-01

    Although fluoride occurs naturally in the environment, excessive amounts of fluoride in freshwater and terrestrial ecosystems can be harmful. We evaluated the toxicity of fluoride compounds on the growth, viability, and photosynthetic capacity of freshwater (Chlamydomonas reinhardtii and Pseudokirchneriella subcapitata) and terrestrial (Chlorococcum infusionum) algae. To measure algal growth inhibition, a flow cytometric method was adopted (i.e., cell size, granularity, and auto-fluorescence measurements), and algal yield was calculated to assess cell viability. Rhodamine123 and fluorescein diacetate were used to evaluate mitochondrial membrane potential (MMA, ΔΨm) and cell permeability. Nine parameters related to the photosynthetic capacity of algae were also evaluated. The results indicated that high concentrations of fluoride compounds affected cell viability, cell organelle potential, and photosynthetic functions. The cell viability measurements of the three algal species decreased, but apoptosis was only observed in C. infusionum. The MMA (ΔΨm) of cells exposed to fluoride varied among species, and the cell permeability of the three species generally decreased. The decrease in the photosynthetic activity of algae may be attributable to the combination of fluoride ions (F(-)) with magnesium ions (Mg(2+)) in chlorophyll. Our results therefore provide strong evidence for the potential risks of fluoride compounds to microflora and microfauna in freshwater and terrestrial ecosystems.

  14. Network dynamics: quantitative analysis of complex behavior in metabolism, organelles, and cells, from experiments to models and back.

    PubMed

    Kurz, Felix T; Kembro, Jackelyn M; Flesia, Ana G; Armoundas, Antonis A; Cortassa, Sonia; Aon, Miguel A; Lloyd, David

    2017-01-01

    Advancing from two core traits of biological systems: multilevel network organization and nonlinearity, we review a host of novel and readily available techniques to explore and analyze their complex dynamic behavior within the framework of experimental-computational synergy. In the context of concrete biological examples, analytical methods such as wavelet, power spectra, and metabolomics-fluxomics analyses, are presented, discussed, and their strengths and limitations highlighted. Further shown is how time series from stationary and nonstationary biological variables and signals, such as membrane potential, high-throughput metabolomics, O2 and CO2 levels, bird locomotion, at the molecular, (sub)cellular, tissue, and whole organ and animal levels, can reveal important information on the properties of the underlying biological networks. Systems biology-inspired computational methods start to pave the way for addressing the integrated functional dynamics of metabolic, organelle and organ networks. As our capacity to unravel the control and regulatory properties of these networks and their dynamics under normal or pathological conditions broadens, so is our ability to address endogenous rhythms and clocks to improve health-span in human aging, and to manage complex metabolic disorders, neurodegeneration, and cancer. WIREs Syst Biol Med 2017, 9:e1352. doi: 10.1002/wsbm.1352 For further resources related to this article, please visit the WIREs website.

  15. Mitochondrial motility in axons: membranous organelles may interact with the force generating system through multiple surface binding sites.

    PubMed

    Martz, D; Lasek, R J; Brady, S T; Allen, R D

    1984-01-01

    In living tissue, membrane-bound organelles, including mitochondria, move along parallel cytoplasmic pathways. Motion is directed and tends to be confined to a single path. Deviations from this single path motion are rare. When present, however, they tend to occur at points of intersection of cytoskeletal linear elements (LE). Such intersections are relatively uncommon in intact axons and extruded axoplasm. However, we have found that such intersections can be produced in extruded preparations by shear forces directed tangential to the axoplasmic surface. We have studied the detailed behavior of mitochondria in extruded squid axoplasm. Special attention was directed to the relationship between mitochondrial shape changes and orientation of cytoskeletal LE. The most striking of these changes in shape is branching. In this process, the mitochondrion transiently assumes a triradial (three-ended) shape. This appearance may be maintained for seconds to minutes before the normal cylindrical shape is resumed by absorption of either the newly formed end or, more commonly, one of the original ends. The frequency of branching appears to be dependent on the degree of cytoskeletal organization. It becomes more common as the number of apparent intersections between cytoskeletal LE increases. Further, the formation of new ends seems to occur along paths defined by cytoskeletal elements. These observations suggest that the mitochondrial membrane is multivalent. That is, it contains multiple sites capable of interacting with the axonal force generation apparatus. Furthermore, LE in the cytoskeleton may indicate the paths along which these interactions are permissible.

  16. Toxoplasma DJ-1 Regulates Organelle Secretion by a Direct Interaction with Calcium-Dependent Protein Kinase 1

    PubMed Central

    Child, Matthew A.; Garland, Megan; Foe, Ian; Madzelan, Peter; Treeck, Moritz; van der Linden, Wouter A.; Oresic Bender, Kristina; Weerapana, Eranthie; Wilson, Mark A.; Boothroyd, John C.; Reese, Michael L.

    2017-01-01

    ABSTRACT Human DJ-1 is a highly conserved and yet functionally enigmatic protein associated with a heritable form of Parkinson’s disease. It has been suggested to be a redox-dependent regulatory scaffold, binding to proteins to modulate their function. Here we present the X-ray crystal structure of the Toxoplasma orthologue Toxoplasma gondii DJ-1 (TgDJ-1) at 2.1-Å resolution and show that it directly associates with calcium-dependent protein kinase 1 (CDPK1). The TgDJ-1 structure identifies an orthologously conserved arginine dyad that acts as a phospho-gatekeeper motif to control complex formation. We determined that the binding of TgDJ-1 to CDPK1 is sensitive to oxidation and calcium, and that this interaction potentiates CDPK1 kinase activity. Finally, we show that genetic deletion of TgDJ-1 results in upregulation of CDPK1 expression and that disruption of the CDPK1/TgDJ-1 complex in vivo prevents normal exocytosis of parasite virulence-associated organelles called micronemes. Overall, our data suggest that TgDJ-1 functions as a noncanonical kinase-regulatory scaffold that integrates multiple intracellular signals to tune microneme exocytosis in T. gondii. PMID:28246362

  17. An Organelle Correlation-Guided Feature Selection Approach for Classifying Multi-Label Subcellular Bio-images.

    PubMed

    Shao, Wei; Liu, Mingxia; Xu, Ying-Ying; Shen, Hong-Bin; Zhang, Daoqiang

    2017-03-03

    Nowadays, with the advances in microscopic imaging, accurate classification of bioimage-based protein subcellular location pattern has attracted as much attention as ever. One of the basic challenging problems is how to select the useful feature components among thousands of potential features to describe the images. This is not an easy task especially considering there is a high ratio of multi-location proteins. Existing feature selection methods seldom take the correlation among different cellular compartments into consideration, and thus may miss some features that will be co-important for several subcellular locations. To deal with this problem, we make use of the important structural correlation among different cellular compartments and propose an organelle structural correlation regularized feature selection method CSF (Common-Sets of Features) in this paper. We formulate the multi-label classification problem by adopting a group-sparsity regularizer to select common subsets of relevant features from different cellular compartments. In addition, we also add a cell structural correlation regularized Laplacian term, which utilizes the prior biological structural information to capture the intrinsic dependency among different cellular compartments. The CSF provides a new feature selection strategy for multi-label bio-image subcellular pattern classifications, and the experimental results also show its superiority when comparing with several existing algorithms.

  18. Flagella of Pyrococcus furiosus: Multifunctional Organelles, Made for Swimming, Adhesion to Various Surfaces, and Cell-Cell Contacts†

    PubMed Central

    Näther, Daniela J.; Rachel, Reinhard; Wanner, Gerhard; Wirth, Reinhard

    2006-01-01

    Pyrococcus furiosus (“rushing fireball”) was named for the ability of this archaeal coccus to rapidly swim at its optimal growth temperature, around 100°C. Early electron microscopic studies identified up to 50 cell surface appendages originating from one pole of the coccus, which have been called flagella. We have analyzed these putative motility organelles and found them to be composed primarily (>95%) of a glycoprotein that is homologous to flagellins from other archaea. Using various electron microscopic techniques, we found that these flagella can aggregate into cable-like structures, forming cell-cell connections between ca. 5% of all cells during stationary growth phase. P. furiosus cells could adhere via their flagella to carbon-coated gold grids used for electron microscopic analyses, to sand grains collected from the original habitat (Porto di Levante, Vulcano, Italy), and to various other surfaces. P. furiosus grew on surfaces in biofilm-like structures, forming microcolonies with cells interconnected by flagella and adhering to the solid supports. Therefore, we concluded that P. furiosus probably uses flagella for swimming but that the cell surface appendages also enable this archaeon to form cable-like cell-cell connections and to adhere to solid surfaces. PMID:16980494

  19. A novel EspA-associated surface organelle of enteropathogenic Escherichia coli involved in protein translocation into epithelial cells.

    PubMed Central

    Knutton, S; Rosenshine, I; Pallen, M J; Nisan, I; Neves, B C; Bain, C; Wolff, C; Dougan, G; Frankel, G

    1998-01-01

    Enteropathogenic Escherichia coli (EPEC), like many bacterial pathogens, employ a type III secretion system to deliver effector proteins across the bacterial cell. In EPEC, four proteins are known to be exported by a type III secretion system_EspA, EspB and EspD required for subversion of host cell signal transduction pathways and a translocated intimin receptor (Tir) protein (formerly Hp90) which is tyrosine-phosphorylated following transfer to the host cell to become a receptor for intimin-mediated intimate attachment and 'attaching and effacing' (A/E) lesion formation. The structural basis for protein translocation has yet to be fully elucidated for any type III secretion system. Here, we describe a novel EspA-containing filamentous organelle that is present on the bacterial surface during the early stage of A/E lesion formation, forms a physical bridge between the bacterium and the infected eukaryotic cell surface and is required for the translocation of EspB into infected epithelial cells. PMID:9545230

  20. Distribution of cytoskeletal structures and organelles of the host cell during evolution of the intracellular parasitism by Trypanosoma cruzi.

    PubMed

    Carvalho, T M; Ferreira, A G; Coimbra, E S; Rosestolato, C T; De Souza, W

    1999-07-01

    The distribution of microtubules, microfilaments, mitochondria, Golgi complex and endosomes/lysosomes was analyzed in Vero cells allowed to interact for different periods of time with the pathogenic protozoan Trypanosoma cruzi and observed by confocal laser scanning microscopy. Microtubules were revealed using a mouse monoclonal anti-alpha-tubulin antibody. Actin filaments were revealed using phalloidin-rhodamine. To identify mitochondria, endosomes/lysosomes and the Golgi complex the cells were labelled with Rhodamine 123, Lucifer yellow and C6-NBD-ceramide, respectively. During cell invasion actin filaments concentrate at the site of parasite penetration in some, but not in all cells, probably depending upon the mechanism used by the trypomastigote form to penetrate into the host cells. Following internalization the trypomastigote form gradually changes into the amastigote form, disruption of the parasitophorous vacuole membrane takes place and the amastigote form enters in direct contact with host cell structures and organelles, and starts to divide. The presence of the parasite in the cytoplasm of the host cell did not induce significant changes in the distribution of actin filaments, microtubules, the Golgi complex, mitochondria and endosomes/lysosomes during the first 48 h of infection. Amastigote forms were seen close to the microtubules. After 72 h of interaction, the number of microtubules and microfilaments around the parasites was reduced and lysosomes and mitochondria were seen in between the parasites.

  1. Streamlined Construction of the Cyanobacterial CO2-Fixing Organelle via Protein Domain Fusions for Use in Plant Synthetic Biology.

    PubMed

    Gonzalez-Esquer, C Raul; Shubitowski, Tyler B; Kerfeld, Cheryl A

    2015-09-01

    Bacterial microcompartments (BMCs) are self-assembling organelles that sequester segments of biochemical pathways within a protein shell. Given their functional diversity, BMCs constitute a rich source of metabolic modules for applications in synthetic biology. The carboxysome, the cyanobacterial BMC for CO(2) fixation, has attracted significant attention as a target for installation into chloroplasts and serves as the foundation for introducing other types of BMCs into plants. Carboxysome assembly involves a series of protein-protein interactions among at least six gene products to form a metabolic core, around which the shell assembles. This complexity creates significant challenges for the transfer, regulation, and assembly of carboxysomes, or any of the myriad of functionally distinct BMCs, into heterologous systems. To overcome this bottleneck, we constructed a chimeric protein in the cyanobacterium Synechococcus elongatus that structurally and functionally replaces four gene products required for carboxysome formation. The protein was designed based on protein domain interactions in the carboxysome core. The resulting streamlined carboxysomes support photosynthesis. This strategy obviates the need to regulate multiple genes and decreases the genetic load required for carboxysome assembly in heterologous systems. More broadly, the reengineered carboxysomes represent a proof of concept for a domain fusion approach to building multifunctional enzymatic cores that should be generally applicable to the engineering of BMCs for new functions and cellular contexts.

  2. Coexistence of both oleosin isoforms on the surface of seed oil bodies and their individual stabilization to the organelles.

    PubMed

    Tzen, J T; Chuang, R L; Chen, J C; Wu, L S

    1998-02-01

    The oil bodies of plant seeds contain a triacylglycerol matrix surrounded by a monolayer of phospholipids embedded with alkaline proteins termed oleosins. Two distinct oleosin isoforms with molecular masses of 18 and 16 kDa are present in rice oil bodies. Chicken antibodies raised against oleosin 18 kDa and rabbit antibodies raised against oleosin 16 kDa did not cross-recognize these two homologous isoforms. This peculiar non-cross recognition was used to locate the two oleosin isoforms on the surface of oil bodies via immunofluorescence detection using anti-chicken IgG conjugated with FITC (fluorescein isothiocyanate) and anti-rabbit IgG conjugated with Texas-Red. The results revealed that both oleosin isoforms resided on each oil body in vivo and in vitro. Artificial oil bodies were reconstituted via sonication using triacylglycerol, phospholipid, and oleosins. The results indicated that the two rice oleosin isoforms could stabilize artificial oil bodies individually whereas oleosin 16 kDa provided better stability to the organelles than oleosin 18 kDa.

  3. Involvement of sulphur nutrition in modulating iron deficiency responses in photosynthetic organelles of oilseed rape (Brassica napus L.).

    PubMed

    Muneer, Sowbiya; Lee, Bok-Rye; Kim, Kil-Yong; Park, Sang-Hyun; Zhang, Qian; Kim, Tae-Hwan

    2014-03-01

    The aim of this study was to characterize the roles of sulphur (S) nutrition in modulating the responses to iron (Fe) deficiency in the photosynthetic organelles of oilseed rape. Eight-week-old plants grown hydroponically were fed with S-sufficient or S-deprived solution with or without Fe(III)-EDTA. Responses to four S and Fe combined treatments were analysed after 5 and 10 days. Leaf chlorosis was generated by either S- or Fe-deprivation, with a decrease in chlorophyll and carotenoid content. These negative effects were more severe in the absence of S. The expression of Fe²⁺ transporter (IRT1) and Fe(III) chelate reductase (FRO1) gene was induced for the first 5 days and decreased after 10 days in the S-deprived roots, but largely improved by S supply even in the absence of Fe. Lack of ferric chelate reducing activity in the Fe-deprived roots in the absence of S was largely improved by S supply. The activity of photosynthesis, RuBisCO and sucrose synthase was closely related to S status in leaves. Electron microscopic observation showed that the Fe-deficiency in the absence of S greatly resulted in a severe disorganisation of thylakoid lamellae with loss of grana. However, these impacts of Fe-deficiency were largely restored in the presence of S. The present results indicate that S nutrition has significant role in ameliorating the damages in photosynthetic apparatus caused by Fe-deficiency.

  4. Roles of BLOC-1 and Adaptor Protein-3 Complexes in Cargo Sorting to Synaptic Vesicles

    PubMed Central

    Newell-Litwa, Karen; Salazar, Gloria; Smith, Yoland

    2009-01-01

    Neuronal lysosomes and their biogenesis mechanisms are primarily thought to clear metabolites and proteins whose abnormal accumulation leads to neurodegenerative disease pathology. However, it remains unknown whether lysosomal sorting mechanisms regulate the levels of membrane proteins within synaptic vesicles. Using high-resolution deconvolution microscopy, we identified early endosomal compartments where both selected synaptic vesicle and lysosomal membrane proteins coexist with the adaptor protein complex 3 (AP-3) in neuronal cells. From these early endosomes, both synaptic vesicle membrane proteins and characteristic AP-3 lysosomal cargoes can be similarly sorted to brain synaptic vesicles and PC12 synaptic-like microvesicles. Mouse knockouts for two Hermansky–Pudlak complexes involved in lysosomal biogenesis from early endosomes, the ubiquitous isoform of AP-3 (Ap3b1−/−) and muted, defective in the biogenesis of lysosome-related organelles complex 1 (BLOC-1), increased the content of characteristic synaptic vesicle proteins and known AP-3 lysosomal proteins in isolated synaptic vesicle fractions. These phenotypes contrast with those of the mouse knockout for the neuronal AP-3 isoform involved in synaptic vesicle biogenesis (Ap3b2−/−), in which the content of select proteins was reduced in synaptic vesicles. Our results demonstrate that lysosomal and lysosome-related organelle biogenesis mechanisms regulate steady-state synaptic vesicle protein composition from shared early endosomes. PMID:19144828

  5. A BLOC-1 Mutation Screen Reveals a Novel BLOC1S3 Mutation in Hermansky-Pudlak Syndrome Type 8 (HPS-8)

    PubMed Central

    Cullinane, Andrew R; Curry, James A; Golas, Gretchen; Pan, James; Carmona-Rivera, Carmelo; Hess, Richard A; White, James G; Huizing, Marjan; Gahl, William A

    2012-01-01

    Summary Hermansky-Pudlak Syndrome (HPS) is a genetically heterogeneous disorder of lysosome-related organelle biogenesis and is characterized by oculocutaneous albinism and a bleeding diathesis. Over the past decade, we screened 250 patients with HPS-like symptoms for mutations in the genes responsible for HPS subtypes 1–6. We identified 38 individuals with no functional mutations, and therefore, we analyzed all 8 genes encoding the Biogenesis of Lysosome-related Organelles Complex-1 (BLOC-1) proteins in these individuals. Here we describe the identification of a novel nonsense mutation in BLOC1S3 (HPS-8) in a 6 year-old Iranian boy. This mutation caused nonsense mediated decay of BLOC1S3 mRNA and destabilized the BLOC-1 complex. Our patient’s melanocytes showed aberrant localization of TYRP1, with increased plasma-membrane trafficking. These findings confirm a common cellular defect for HPS patients with defects in BLOC-1 subunits. We identified only 2 patients with BLOC-1 defects in our cohort, suggesting that other HPS genes remain to be identified. PMID:22709368

  6. The mitochondrial disease associated protein Ndufaf2 is dispensable for Complex-1 assembly but critical for the regulation of oxidative stress

    PubMed Central

    Schlehe, Julia S.; Journel, Marion S.M.; Taylor, Kelsey P.; Amodeo, Katherine D.

    2013-01-01

    Deficiency in human mitochondrial Complex-1 has been linked to a wide variety of neurological disorders. Homozygous deletion of the Complex-1 associated protein, Ndufaf2, leads to a severe juvenile onset encephalopathy involving degeneration of the substantia nigra and other sub-cortical regions resulting in adolescent lethality. To understand the precise role of Ndufaf2 in Complex-1 function and its links to neurologic disease, we studied the effects on Complex-1 assembly and function, as well as pathological consequences at the cellular level, in multiple in vitro models of Ndufaf2 deficiency. Using both Ndufaf2-deficient human neuroblastoma cells and primary fibroblasts cultured from Ndufaf2 knock-out mice we found that Ndufaf2-deficiency selectively reduces Complex-1 activity. While Ndufaf2 is traditionally referred to as an assembly factor of Complex-1, surprisingly, however, Ndufaf2-deficient cells were able to assemble a fully mature Complex-1 enzyme, albeit with reduced kinetics. Importantly, no evidence of intermediate or incomplete assembly was observed. Ndufaf2 deficiency resulted in significant increases in oxidative stress and mitochondrial DNA deletion, consistent with contemporary hypotheses regarding the pathophysiology of inherited mutations in Complex-1 disorders. These data suggest that Ndufaf2, unlike other Complex-1 assembly factors, may be more accurately described as a chaperone involved in proper folding during Complex-1 assembly, since it is dispensable for Complex-1 maturation but not its proper function. PMID:23702311

  7. Novel computer vision algorithm for the reliable analysis of organelle morphology in whole cell 3D images--A pilot study for the quantitative evaluation of mitochondrial fragmentation in amyotrophic lateral sclerosis.

    PubMed

    Lautenschläger, Janin; Lautenschläger, Christian; Tadic, Vedrana; Süße, Herbert; Ortmann, Wolfgang; Denzler, Joachim; Stallmach, Andreas; Witte, Otto W; Grosskreutz, Julian

    2015-11-01

    The function of intact organelles, whether mitochondria, Golgi apparatus or endoplasmic reticulum (ER), relies on their proper morphological organization. It is recognized that disturbances of organelle morphology are early events in disease manifestation, but reliable and quantitative detection of organelle morphology is difficult and time-consuming. Here we present a novel computer vision algorithm for the assessment of organelle morphology in whole cell 3D images. The algorithm allows the numerical and quantitative description of organelle structures, including total number and length of segments, cell and nucleus area/volume as well as novel texture parameters like lacunarity and fractal dimension. Applying the algorithm we performed a pilot study in cultured motor neurons from transgenic G93A hSOD1 mice, a model of human familial amyotrophic lateral sclerosis. In the presence of the mutated SOD1 and upon excitotoxic treatment with kainate we demonstrate a clear fragmentation of the mitochondrial network, with an increase in the number of mitochondrial segments and a reduction in the length of mitochondria. Histogram analyses show a reduced number of tubular mitochondria and an increased number of small mitochondrial segments. The computer vision algorithm for the evaluation of organelle morphology allows an objective assessment of disease-related organelle phenotypes with greatly reduced examiner bias and will aid the evaluation of novel therapeutic strategies on a cellular level.

  8. Color-Coded Organelles.

    ERIC Educational Resources Information Center

    McLaughlin, Esther; And Others

    1994-01-01

    Describes how red beets can be used to demonstrate a variety of membrane phenomena. Some of the activities include observation of vacuoles; vacuoles in intact cells; isolation of vacuoles in physiological studies; demonstration of membrane integrity; and demonstration of ion diffusion and active transport with purified vacuoles. (ZWH)

  9. Symbiosomes: temporary moonlighting organelles.

    PubMed

    Emerich, David W; Krishnan, Hari B

    2014-05-15

    Symbiosomes are a unique structural entity that performs the role of biological nitrogen fixation, an energy-demanding process that is the primary entryway of fixed nitrogen into the biosphere. Symbiosomes result from the infection of specific rhizobial strains into the roots of an appropriate leguminous host plant forming an organ referred to as a nodule. Within the infected plant cells of the nodule, the rhizobia are encased within membrane-bounded structures that develop into symbiosomes. Mature symbiosomes create an environment that allows the rhizobia to differentiate into a nitrogen-fixing form called bacteroids. The bacteroids are surrounded by the symbiosome space, which is populated by proteins from both eukaryotic and prokaryotic symbionts, suggesting this space is the quintessential component of symbiosis: an inter-kingdom environment with the single purpose of symbiotic nitrogen fixation. Proteins associated with the symbiosome membrane are largely plant-derived proteins and are non-metabolic in nature. The proteins of the symbiosome space are mostly derived from the bacteroid with annotated functions of carbon metabolism, whereas relatively few are involved in nitrogen metabolism. An appreciable portion of both the eukaryotic and prokaryotic proteins in the symbiosome are also 'moonlighting' proteins, which are defined as proteins that perform roles unrelated to their annotated activities when found in an unexpected physiological environment. The essential functions of symbiotic nitrogen fixation of the symbiosome are performed by co-operative interactions of proteins from both symbionts some of which may be performing unexpected roles.

  10. Symbiosomes: temporary moonlighting organelles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen fixation is the most important biological process on earth, second only to photosynthesis. The enzyme, nitrogenase, which catalyzes the reduction of atmospheric dinitrogen to ammonium, is encoded into the genomes of a few members of the a-, ß-and '-proteobacteria. The primary route of fixe...

  11. An Organelle RNA Recognition Motif Protein Is Required for Photosystem II Subunit psbF Transcript Editing.

    PubMed

    Hackett, Justin B; Shi, Xiaowen; Kobylarz, Amy T; Lucas, Meriah K; Wessendorf, Ryan L; Hines, Kevin M; Bentolila, Stephane; Hanson, Maureen R; Lu, Yan

    2017-04-01

    Loss-of-function mutations in ORGANELLE RNA RECOGNITION MOTIF PROTEIN6 (ORRM6) result in the near absence of RNA editing of psbF-C77 and the reduction in accD-C794 editing in Arabidopsis (Arabidopsis thaliana). The orrm6 mutants have decreased levels of photosystem II (PSII) proteins, especially PsbF, lower PSII activity, pale green pigmentation, smaller leaf and plant sizes, and retarded growth. Stable expression of ORRM6 rescues the orrm6 editing defects and mutant phenotype. Unlike ORRM1, the other known ORRM plastid editing factor, ORRM6, does not contain RNA editing interacting protein/multiple organellar RNA editing factor (RIP/MORF) boxes, which are required for ORRM1 to interact with site-specific pentatricopeptide repeat protein editing factors. ORRM6 interacts with RIP1/MORF8, RIP2/MORF2, and RIP9/MORF9, known components of RNA editosomes. While some plastid RRM proteins are involved in other forms of RNA processing and translation, the primary function of ORRM6 is evidently to mediate psbF-C77 editing, like the essential site-specific pentatricopeptide repeat protein LOW PSII ACCUMULATION66. Stable expression in the orrm6 mutants of a nucleus-encoded, plastid-targeted PsbF protein from a psbF gene carrying a T at nucleotide 77 significantly increases leaf and plant sizes, chlorophyll content, and PSII activity. These transformants demonstrate that plastid RNA editing can be bypassed through the expression of nucleus-encoded, edited forms of plastid genes.

  12. Direct Imaging of Protein Organization in an Intact Bacterial Organelle Using High-Resolution Atomic Force Microscopy

    PubMed Central

    2016-01-01

    The function of bioenergetic membranes is strongly influenced by the spatial arrangement of their constituent membrane proteins. Atomic force microscopy (AFM) can be used to probe protein organization at high resolution, allowing individual proteins to be identified. However, previous AFM studies of biological membranes have typically required that curved membranes are ruptured and flattened during sample preparation, with the possibility of disruption of the native protein arrangement or loss of proteins. Imaging native, curved membranes requires minimal tip–sample interaction in both lateral and vertical directions. Here, long-range tip–sample interactions are reduced by optimizing the imaging buffer. Tapping mode AFM with high-resonance-frequency small and soft cantilevers, in combination with a high-speed AFM, reduces the forces due to feedback error and enables application of an average imaging force of tens of piconewtons. Using this approach, we have imaged the membrane organization of intact vesicular bacterial photosynthetic “organelles”, chromatophores. Despite the highly curved nature of the chromatophore membrane and lack of direct support, the resolution was sufficient to identify the photosystem complexes and quantify their arrangement in the native state. Successive imaging showed the proteins remain surprisingly static, with minimal rotation or translation over several-minute time scales. High-order assemblies of RC-LH1-PufX complexes are observed, and intact ATPases are successfully imaged. The methods developed here are likely to be applicable to a broad range of protein-rich vesicles or curved membrane systems, which are an almost ubiquitous feature of native organelles. PMID:28114766

  13. An Organelle RNA Recognition Motif Protein Is Required for Photosystem II Subunit psbF Transcript Editing1[OPEN

    PubMed Central

    Lucas, Meriah K.

    2017-01-01

    Loss-of-function mutations in ORGANELLE RNA RECOGNITION MOTIF PROTEIN6 (ORRM6) result in the near absence of RNA editing of psbF-C77 and the reduction in accD-C794 editing in Arabidopsis (Arabidopsis thaliana). The orrm6 mutants have decreased levels of photosystem II (PSII) proteins, especially PsbF, lower PSII activity, pale green pigmentation, smaller leaf and plant sizes, and retarded growth. Stable expression of ORRM6 rescues the orrm6 editing defects and mutant phenotype. Unlike ORRM1, the other known ORRM plastid editing factor, ORRM6, does not contain RNA editing interacting protein/multiple organellar RNA editing factor (RIP/MORF) boxes, which are required for ORRM1 to interact with site-specific pentatricopeptide repeat protein editing factors. ORRM6 interacts with RIP1/MORF8, RIP2/MORF2, and RIP9/MORF9, known components of RNA editosomes. While some plastid RRM proteins are involved in other forms of RNA processing and translation, the primary function of ORRM6 is evidently to mediate psbF-C77 editing, like the essential site-specific pentatricopeptide repeat protein LOW PSII ACCUMULATION66. Stable expression in the orrm6 mutants of a nucleus-encoded, plastid-targeted PsbF protein from a psbF gene carrying a T at nucleotide 77 significantly increases leaf and plant sizes, chlorophyll content, and PSII activity. These transformants demonstrate that plastid RNA editing can be bypassed through the expression of nucleus-encoded, edited forms of plastid genes. PMID:28213559

  14. Exploring Bacterial Organelle Interactomes: A Model of the Protein-Protein Interaction Network in the Pdu Microcompartment

    PubMed Central

    Jorda, Julien; Liu, Yu; Bobik, Thomas A.; Yeates, Todd O.

    2015-01-01

    Bacterial microcompartments (MCPs) are protein-bound organelles that carry out diverse metabolic pathways in a wide range of bacteria. These supramolecular assemblies consist of a thin outer protein shell, reminiscent of a viral capsid, which encapsulates sequentially acting enzymes. The most complex MCP elucidated so far is the propanediol utilizing (Pdu) microcompartment. It contains the reactions for degrading 1,2-propanediol. While several experimental studies on the Pdu system have provided hints about its organization, a clear picture of how all the individual components interact has not emerged yet. Here we use co-evolution-based methods, involving pairwise comparisons of protein phylogenetic trees, to predict the protein-protein interaction (PPI) network governing the assembly of the Pdu MCP. We propose a model of the Pdu interactome, from which selected PPIs are further inspected via computational docking simulations. We find that shell protein PduA is able to serve as a “universal hub” for targeting an array of enzymes presenting special N-terminal extensions, namely PduC, D, E, L and P. The varied N-terminal peptides are predicted to bind in the same cleft on the presumptive luminal face of the PduA hexamer. We also propose that PduV, a protein of unknown function with remote homology to the Ras-like GTPase superfamily, is likely to localize outside the MCP, interacting with the protruding β-barrel of the hexameric PduU shell protein. Preliminary experiments involving a bacterial two-hybrid assay are presented that corroborate the existence of a PduU-PduV interaction. This first systematic computational study aimed at characterizing the interactome of a bacterial microcompartment provides fresh insight into the organization of the Pdu MCP. PMID:25646976

  15. Intracellular control of axial shape in non-uniform neurites: a serial electron microscopic analysis of organelles and microtubules in AI and AII retinal amacrine neurites

    PubMed Central

    1984-01-01

    AI and AII cat retinal amacrine cells have highly varicose non-uniform, neuritic processes. Processes of both types were reconstructed via a computer system using serial electron micrographs. These reconstructions were analyzed for (a) varicosity volume, surface area, and length, (b) "neck" volume, surface area, and length, (c) number of microtubules within the varicosity, (d) number of microtubules within the "neck," and (e) volume and surface area of mitochondria and smooth endoplasmic reticulum and large smooth vesicular bodies within the processes. Correlation of these parameters revealed a linear relationship between the number of microtubules in the necks and mean neck cross-sectional area (rs = 0.780, P less than 0.001), while microtubule number within the varicosities showed no correlation with varicosity volume (rs = 0.239, P greater than 0.2). Varicosity volume did, however, correlate strongly with the summed volume of mitochondria and smooth vesicular bodies contained within the varicosity for both cell types examined. The ratio between membranous organelle volume and varicosity volume for AI amacrine processes of 1:6.97 (rs = 0.927), differed from the ratio of 1:1.80 for the AII amacrine processes (rs = 0.987). Similar relationships were observed in other nonvaricose neurites such as optic tract axons. Membranous organelles appear to contribute an additional obligatory volume to the cytosol that can be as much as seven times the organelles' direct volume. These observations suggest that both the cytoskeletal components, and the membrane organelles play a direct role in determining neurite shape. PMID:6538879

  16. UNC-16 (JIP3) Acts Through Synapse-Assembly Proteins to Inhibit the Active Transport of Cell Soma Organelles to Caenorhabditis elegans Motor Neuron Axons.

    PubMed

    Edwards, Stacey L; Morrison, Logan M; Yorks, Rosalina M; Hoover, Christopher M; Boominathan, Soorajnath; Miller, Kenneth G

    2015-09-01

    The conserved protein UNC-16 (JIP3) inhibits the active transport of some cell soma organelles, such as lysosomes, early endosomes, and Golgi, to the synaptic region of axons. However, little is known about UNC-16's organelle transport regulatory function, which is distinct from its Kinesin-1 adaptor function. We used an unc-16 suppressor screen in Caenorhabditis elegans to discover that UNC-16 acts through CDK-5 (Cdk5) and two conserved synapse assembly proteins: SAD-1 (SAD-A Kinase), and SYD-2 (Liprin-α). Genetic analysis of all combinations of double and triple mutants in unc-16(+) and unc-16(-) backgrounds showed that the three proteins (CDK-5, SAD-1, and SYD-2) are all part of the same organelle transport regulatory system, which we named the CSS system based on its founder proteins. Further genetic analysis revealed roles for SYD-1 (another synapse assembly protein) and STRADα (a SAD-1-interacting protein) in the CSS system. In an unc-16(-) background, loss of the CSS system improved the sluggish locomotion of unc-16 mutants, inhibited axonal lysosome accumulation, and led to the dynein-dependent accumulation of lysosomes in dendrites. Time-lapse imaging of lysosomes in CSS system mutants in unc-16(+) and unc-16(-) backgrounds revealed active transport defects consistent with the steady-state distributions of lysosomes. UNC-16 also uses the CSS system to regulate the distribution of early endosomes in neurons and, to a lesser extent, Golgi. The data reveal a new and unprecedented role for synapse assembly proteins, acting as part of the newly defined CSS system, in mediating UNC-16's organelle transport regulatory function.

  17. The force induced by organelles' weight in the microfilament is in the range of 0.1-1 pN

    NASA Astrophysics Data System (ADS)

    Yang, Chun; Wei, Dong; Zhuang, Feng Y.

    It has been well documented that a microgravity environment can bring about many changes in cell metabolism. Can mammalian cells feel the gravity directly? At present, arguments surrounding the problem are difficult to be answered through experiments. However, using finite element simulation to estimate the force exerted on the microfilament meshwork model, we demonstrated a possible way through which gravity acts on the cytoskeleton system. This system, which includes microfilaments, microtubules, and intermediate filaments, is responsible for the retention of cell shape and plays a role in many aspects related to cell proliferation and function. Many organelles, such as ribosomes and nucleus, are deposited, hinged, or attached on the cytoskeleton system. The weight of organelles can deform the cytoskeleton system and can induce force in it. Simulation results showed that the force induced by organelles' weight in the microfilament is in the range of 0.1-1 pN. The magnitude of the force is near the single Van der Waals bond force between the proteins, which is large enough to influence the hinge motion of proteins.

  18. PREPACT 2.0: Predicting C-to-U and U-to-C RNA Editing in Organelle Genome Sequences with Multiple References and Curated RNA Editing Annotation

    PubMed Central

    Lenz, Henning; Knoop, Volker

    2013-01-01

    RNA editing is vast in some genetic systems, with up to thousands of targeted C-to-U and U-to-C substitutions in mitochondria and chloroplasts of certain plants. Efficient prognoses of RNA editing in organelle genomes will help to reveal overlooked cases of editing. We present PREPACT 2.0 (http://www.prepact.de) with numerous enhancements of our previously developed Plant RNA Editing Prediction & Analysis Computer Tool. Reference organelle transcriptomes for editing prediction have been extended and reorganized to include 19 curated mitochondrial and 13 chloroplast genomes, now allowing to distinguish RNA editing sites from “pre-edited” sites. Queries may be run against multiple references and a new “commons” function identifies and highlights orthologous candidate editing sites congruently predicted by multiple references. Enhancements to the BLASTX mode in PREPACT 2.0 allow querying of complete novel organelle genomes within a few minutes, identifying protein genes and candidate RNA editing sites simultaneously without prior user analyses. PMID:23362369

  19. The ROS production induced by a reverse-electron flux at respiratory-chain complex 1 is hampered by metformin.

    PubMed

    Batandier, Cécile; Guigas, Bruno; Detaille, Dominique; El-Mir, M-Yehia; Fontaine, Eric; Rigoulet, M; Leverve, Xavier M

    2006-02-01

    Mitochondrial reactive oxygen species (ROS) production was investigated in mitochondria extracted from liver of rats treated with or without metformin, a mild inhibitor of respiratory chain complex 1 used in type 2 diabetes. A high rate of ROS production, fully suppressed by rotenone, was evidenced in non-phosphorylating mitochondria in the presence of succinate as a single complex 2 substrate. This ROS production was substantially lowered by metformin pretreatment and by any decrease in membrane potential (Delta Phi(m)), redox potential (NADH/NAD), or phosphate potential, as induced by malonate, 2,4-dinitrophenol, or ATP synthesis, respectively. ROS production in the presence of glutamate-malate plus succinate was lower than in the presence of succinate alone, but higher than in the presence of glutamate-malate. Moreover, while rotenone both increased and decreased ROS production at complex 1 depending on forward (glutamate-malate) or reverse (succinate) electron flux, no ROS overproduction was evidenced in the forward direction with metformin. Therefore, we propose that reverse electron flux through complex 1 is an alternative pathway, which leads to a specific metformin-sensitive ROS production.

  20. [The subcellular organelles of peroxisome, realization of biologic functions of trophology, homeostasis, endoecology and functional bond with mitochondrion: the lecture].

    PubMed

    Titov, V N; Shiriaeva, Iu K; Kaba, S I

    2012-06-01

    The biologic role of peroxisomes in cells is that the organelles in respect to fatty acids, lipids and substrates synthesized from acetate implement the same fimnctions as the lysosomes exercise to proteins and polypeptides. The biologic role of peroxisomes is to optimize in vivo the exogenous fatty acids in hepatocytes under the realization of biologic functions of trophology, homeostasis, endoecology. About 800 individual fatty acids can penetrate into organism with food. At that, no more than thirty of them undergo the metabolic transformation in vivo. The rest hundreds of fatty acids are aphysiologic and have to be oxidized into peroxisomes under isochronic activation of alpha-, beta- and omega-oxydases without ATP formation. If in peroxisomes are formed fatty acids that can oxidize mitochondrions by beta-oxidation then the proteins of cytosol transfer fatty acids from peroxisomes to mitochondrions. The mitochondrions oxidize fatty acids in the Krebs cycle to form ATP. The oxidation in peroxisomes concerns the fatty acids with odd numbers of carbon atoms, the transforms of unsaturated fatty acids, the very long chain fatty acids, the fatty acids with carbon atoms side-chains, the dicarboxylic fatty acids, the fatty acids with benzene or indole rings in carbon atoms chains. The peroxisomes oxidize the surplus amount of exogenous palmitic saturated fatty acid too. The peroxisomes implement the biologic.function of endoecology on autocrine level supporting the "purity" of cells cytosol and interact functionally with mitochondrions. In the intercellular medium of paracrine cells coens the fimctions of endoecology are realized by the Toll-similar receptors by the "our-not our" principle concerning phospholipids, positional aphysiologic triglycerides and proteolipids. In the peroxisomes, under the simultaneous oxidation of very long chain fatty acids, the synthesis by primate cells is possible of some amount of essential unsaturated and polyene fatty acids. The

  1. Differential Regulation of Genes Coding for Organelle and Cytosolic ClpATPases under Biotic and Abiotic Stresses in Wheat

    PubMed Central

    Muthusamy, Senthilkumar K.; Dalal, Monika; Chinnusamy, Viswanathan; Bansal, Kailash C.

    2016-01-01

    A sub-group of class I Caseinolytic proteases (Clps) function as molecular chaperone and confer thermotolerance to plants. We identified class I Clp family consisting of five ClpB/HSP100, two ClpC, and two ClpD genes from bread wheat. Phylogenetic analysis showed that these genes were highly conserved across grass genomes. Subcellular localization prediction revealed that TaClpC and TaClpD subgroup proteins and TaClpB1 proteins are potentially targeted to chloroplast, while TaClpB5 to mitochondria, and TaClpB2, TaClpB3, and TaClpB4 to cytoplasm. Spatio-temporal expression pattern analysis revealed that four TaClpB and TaClpD2 genes are expressed in majority of all tissues and developmental stages of wheat. Real-time RT-PCR analysis of expression levels of Clp genes in seven wheat genotypes under different abiotic stresses revealed that genes coding for the cytosolic Clps namely TaClpB2 and TaClpB3 were upregulated under heat, salt and oxidative stress but were downregulated by cold stress in most genotypes. In contrast, genes coding for the chloroplastic Clps TaClpC1, TaClpC2, and TaClpD1 genes were significantly upregulated by mainly by cold stress in most genotypes, while TaClpD2 gene was upregulated >2 fold by salt stress in DBW16. The TaClpB5 gene coding for mitochondrial Clp was upregulated in all genotypes under heat, salt and oxidative stresses. In addition, we found that biotic stresses also upregulated TaClpB4 and TaClpD1. Among biotic stresses, Tilletia caries induced TaClpB2, TaClpB3, TaClpC1, and TaClpD1. Differential expression pattern under different abiotic and biotic stresses and predicted differential cellular localization of Clps suggest their non-redundant organelle and stress-specific roles. Our results also suggest the potential role of Clps in cold, salt and biotic stress responses in addition to the previously established role in thermotolerance of wheat. PMID:27446158

  2. Complex-1 activity and 18F-DOPA uptake in genetically engineered mouse model of Parkinson's disease and the neuroprotective role of coenzyme Q10.

    PubMed

    Sharma, Sushil K; El Refaey, Hesham; Ebadi, Manuchair

    2006-06-15

    Regional distribution of coenzyme Q10 and mitochondrial complex-1 activity were estimated in the brains of control-(C57BL/6), metallothionein knock out-, metallothionein transgenic-, and homozygous weaver mutant mice; and human dopaminergic (SK-N-SH) cells with a primary objective to determine the neuroprotective potential of coenzyme Q10 in Parkinson's disease. Complex-1 activity as well as coenzyme Q10 were significantly higher in the cerebral cortex as compared to the striatum in all the genotypes examined. Complex-1 activity and coenzyme Q10 were significantly reduced in weaver mutant mice and metallothionein knock out mice, but were significantly increased in metallothionein transgenic mice. The reduced complex-1 activity and 18F-DOPA uptake occurred concomitantly with negligible differences in the coenzyme Q10 between in the cerebral cortex and striatum of weaver mutant mice. Administration of coenzyme Q10 increased complex-1 activity and partially improved motoric performance in weaver mutant mice. Direct exposure of rotenone also reduced coenzyme Q10, complex-1 activity, and mitochondrial membrane potential in SK-N-SH cells. Rotenone-induced down-regulation of complex-1 activity was attenuated by coenzyme Q10 treatment, suggesting that complex-1 may be down regulated due to depletion of coenzyme Q10 in the brain. Therefore, metallothionein-induced coenzyme Q10 synthesis may provide neuroprotection by augmenting mitochondrial complex-1 activity in Parkinson's disease.

  3. Propeptides are sufficient to regulate organelle-specific pH-dependent activation of furin and proprotein convertase 1/3.

    PubMed

    Dillon, Stephanie L; Williamson, Danielle M; Elferich, Johannes; Radler, David; Joshi, Rajendra; Thomas, Gary; Shinde, Ujwal

    2012-10-12

    The proprotein convertases (PCs) furin and proprotein convertase 1/3 (PC1) cleave substrates at dibasic residues along the eukaryotic secretory/endocytic pathway. PCs are evolutionarily related to bacterial subtilisin and are synthesized as zymogens. They contain N-terminal propeptides (PRO) that function as dedicated catalysts that facilitate folding and regulate activation of cognate proteases through multiple-ordered cleavages. Previous studies identified a histidine residue (His69) that functions as a pH sensor in the propeptide of furin (PRO(FUR)), which regulates furin activation at pH~6.5 within the trans-Golgi network. Although this residue is conserved in the PC1 propeptide (PRO(PC1)), PC1 nonetheless activates at pH~5.5 within the dense core secretory granules. Here, we analyze the mechanism by which PRO(FUR) regulates furin activation and examine why PRO(FUR) and PRO(PC1) differ in their pH-dependent activation. Sequence analyses establish that while both PRO(FUR) and PRO(PC1) are enriched in histidines when compared with cognate catalytic domains and prokaryotic orthologs, histidine content in PRO(FUR) is ~2-fold greater than that in PRO(PC1), which may augment its pH sensitivity. Spectroscopy and molecular dynamics establish that histidine protonation significantly unfolds PRO(FUR) when compared to PRO(PC1) to enhance autoproteolysis. We further demonstrate that PRO(FUR) and PRO(PC1) are sufficient to confer organelle sensing on folding and activation of their cognate proteases. Swapping propeptides between furin and PC1 transfers pH-dependent protease activation in a propeptide-dictated manner in vitro and in cells. Since prokaryotes lack organelles and eukaryotic PCs evolved from propeptide-dependent, not propeptide-independent prokaryotic subtilases, our results suggest that histidine enrichment may have enabled propeptides to evolve to exploit pH gradients to activate within specific organelles.

  4. Increased long chain acyl-Coa synthetase activity and fatty acid import is linked to membrane synthesis for development of picornavirus replication organelles.

    PubMed

    Nchoutmboube, Jules A; Viktorova, Ekaterina G; Scott, Alison J; Ford, Lauren A; Pei, Zhengtong; Watkins, Paul A; Ernst, Robert K; Belov, George A

    2013-01-01

    All positive strand (+RNA) viruses of eukaryotes replicate their genomes in association with membranes. The mechanisms of membrane remodeling in infected cells represent attractive targets for designing future therapeutics, but our understanding of this process is very limited. Elements of autophagy and/or the secretory pathway were proposed to be hijacked for building of picornavirus replication organelles. However, even closely related viruses differ significantly in their requirements for components of these pathways. We demonstrate here that infection with diverse picornaviruses rapidly activates import of long chain fatty acids. While in non-infected cells the imported fatty acids are channeled to lipid droplets, in infected cells the synthesis of neutral lipids is shut down and the fatty acids are utilized in highly up-regulated phosphatidylcholine synthesis. Thus the replication organelles are likely built from de novo synthesized membrane material, rather than from the remodeled pre-existing membranes. We show that activation of fatty acid import is linked to the up-regulation of cellular long chain acyl-CoA synthetase activity and identify the long chain acyl-CoA syntheatse3 (Acsl3) as a novel host factor required for polio replication. Poliovirus protein 2A is required to trigger the activation of import of fatty acids independent of its protease activity. Shift in fatty acid import preferences by infected cells results in synthesis of phosphatidylcholines different from those in uninfected cells, arguing that the viral replication organelles possess unique properties compared to the pre-existing membranes. Our data show how poliovirus can change the overall cellular membrane homeostasis by targeting one critical process. They explain earlier observations of increased phospholipid synthesis in infected cells and suggest a simple model of the structural development of the membranous scaffold of replication complexes of picorna-like viruses, that may be

  5. Arabidopsis myosin XI sub-domains homologous to the yeast myo2p organelle inheritance sub-domain target subcellular structures in plant cells

    PubMed Central

    Sattarzadeh, Amirali; Schmelzer, Elmon; Hanson, Maureen R.

    2013-01-01

    Myosin XI motor proteins transport plant organelles on the actin cytoskeleton. The Arabidopsis gene family that encodes myosin XI has 13 members, 12 of which have sub-domains within the tail region that are homologous to well-characterized cargo-binding domains in the yeast myosin V myo2p. Little is presently known about the cargo-binding domains of plant myosin XIs. Prior experiments in which most or all of the tail regions of myosin XIs have been fused to yellow fluorescent protein (YFP) and transiently expressed have often not resulted in fluorescent labeling of plant organelles. We identified 42 amino-acid regions within 12 Arabidopsis myosin XIs that are homologous to the yeast myo2p tail region known to be essential for vacuole and mitochondrial inheritance. A YFP fusion of the yeast region expressed in plants did not label tonoplasts or mitochondria. We investigated whether the homologous Arabidopsis regions, termed by us the “PAL” sub-domain, could associate with subcellular structures following transient expression of fusions with YFP in Nicotiana benthamiana. Seven YFP::PAL sub-domain fusions decorated Golgi and six were localized to mitochondria. In general, the myosin XI PAL sub-domains labeled organelles whose motility had previously been observed to be affected by mutagenesis or dominant negative assays with the respective myosins. Simultaneous transient expression of the PAL sub-domains of myosin XI-H, XI-I, and XI-K resulted in inhibition of movement of mitochondria and Golgi. PMID:24187546

  6. Evaluation of Organelle Changes in Promastigotes of Unresponsive Leishmania Tropica to Meglumine Antimoniate in Comparison with Sensitive and Standard Isolates by Electron Microscopy

    PubMed Central

    Bahreini, Mitra; Bolorizadeh, Mehdi; Dabiri, Shahriar; Sharifi, Iraj

    2015-01-01

    Background: The control of leishmaniasis faces serious challenges because of resistance to the first-line antimonial drugs. We aimed to evaluate the differences in organelle changes of cultivated promastigotes obtained from skin lesions of sensitive and unresponsive isolates to meglumine antimoniate (Glucantime) by electron microscopy. Material and Methods: This study was done in Bam city, southeastern Iran, in which the incidence of disease has sharply increased since the earthquake in 2003. The samples were taken from 66 patients who were referred to the cutaneous leishmaniasis (CL) treatment center in Bam. A questionnaire was completed for each individual, recording their demographic characteristics and CL status. The scraping smears provided from the edge of active lesions with sterile blades were fixed with methanol, stained by Giemsa, and examined under a compound light microscope for amastigote form simultaneously. To prepare the specimens for transmission electron imaging, promastigotes were centrifuged and resuspened. Results: Transmission electron microscopic study of the cultivated promastigotes revealed that there were alterations in the organelles and structures of sensitive isolates compared with unresponsive and standard ones. Organelles and structures such as mitochondria, kinetoplast, microtubules, cytoplasmic vacuoles, plasma membrane and vesicles were studied. The alterations such as disintegration of kinetoplast into thin filaments and condensation of kinetoplast DNA core, changes in size, number and location of vesicles and microtubules were observed. We noted intense cytoplasmic vacuolization, and considerable swelling of mitochondria. Conclusion: The significance and relevance of these changes might help understand drug resistance patterns and help localize the best target site for inactivating the organism. PMID:26120175

  7. mTOR complex 1 signalling regulates the balance between lipid synthesis and oxidation in hypoxia lymphocytes

    PubMed Central

    Yin, Geng; Liang, Yan; Wang, Ying; Yang, Yuan; Yang, Min; Cen, Xiao-min

    2017-01-01

    Mammalian cells adapt to different environmental conditions and alter cellular metabolic pathways to meet the energy demand for survival. Thus, the metabolic regulation of cells under special conditions, such as hypoxia, should be precisely regulated. During the metabolic regulation, mammalian target of rapamycin (mTOR) plays a vital role in the sensing of extracellular stimulations and regulating intracellular adaptations. Here, we report that mTOR complex 1 (mTORC1) signalling is a central regulator of lipid homoeostasis in lymphocytes. In hypoxia, mTORC1 activity is reduced and shifts lipid synthesis to lipid oxidation. Moreover, knockdown tuberous sclerosis complex 1 (TSC1) constitutively activates mTORC1 activity and impairs the hypoxia-induced metabolic shift. Therefore, TSC1 knockdown enhances hypoxia-induced cell death. Re-inactivation of mTORC1 activity via rapamycin may resist hypoxia-induced cell death in TSC1 knockdown lymphocytes. Our findings provide a deep insight into mTORC1 in the metabolic balance of lipid synthesis and oxidation, and imply that mTORC1 activity should be precisely regulated for the lipid homoeostasis in lymphocytes. PMID:28057888

  8. mTOR complex 1 signalling regulates the balance between lipid synthesis and oxidation in hypoxia lymphocytes.

    PubMed

    Yin, Geng; Liang, Yan; Wang, Ying; Yang, Yuan; Yang, Min; Cen, Xiao-Min; Xie, Qi-Bing

    2017-02-28

    Mammalian cells adapt to different environmental conditions and alter cellular metabolic pathways to meet the energy demand for survival. Thus, the metabolic regulation of cells under special conditions, such as hypoxia, should be precisely regulated. During the metabolic regulation, mammalian target of rapamycin (mTOR) plays a vital role in the sensing of extracellular stimulations and regulating intracellular adaptations. Here, we report that mTOR complex 1 (mTORC1) signalling is a central regulator of lipid homoeostasis in lymphocytes. In hypoxia, mTORC1 activity is reduced and shifts lipid synthesis to lipid oxidation. Moreover, knockdown tuberous sclerosis complex 1 (TSC1) constitutively activates mTORC1 activity and impairs the hypoxia-induced metabolic shift. Therefore, TSC1 knockdown enhances hypoxia-induced cell death. Re-inactivation of mTORC1 activity via rapamycin may resist hypoxia-induced cell death in TSC1 knockdown lymphocytes. Our findings provide a deep insight into mTORC1 in the metabolic balance of lipid synthesis and oxidation, and imply that mTORC1 activity should be precisely regulated for the lipid homoeostasis in lymphocytes.

  9. Flash imaging of fine structures of cellular organelles by contact x-ray microscopy with a high intensity laser plasma x-ray source

    NASA Astrophysics Data System (ADS)

    Kado, Masataka; Ishino, Masahiko; Kishimoto, Maki; Tamotsu, Satoshi; Yasuda, Keiko; Kinjo, Yasuhito; Shinohara, Kunio

    2011-09-01

    X-ray flash imaging by contact microscopy with a highly intense laser-plasma x-ray source was achieved for the observation of wet biological cells. The exposure time to obtain a single x-ray image was about 600 ps as determined by the pulse duration of the driving laser pulse. The x-ray flash imaging makes it possible to capture an x-ray image of living biological cells without any artificial treatment such as staining, fixation, freezing, and so on. The biological cells were cultivated directly on the surface of the silicon nitride membranes, which are used for the x-ray microscope. Before exposing the cells to x-rays they were observed by a conventional fluorescent microscope as reference, since the fluorescent microscopes can visualize specific organelles stained with fluorescent dye. Comparing the x-ray images with the fluorescent images of the exact same cells, each cellular organelle observed in the x-ray images was identified one by one and actin filaments and mitochondria were clearly identified in the x-ray images.

  10. Identification of regions within the Legionella pneumophila VipA effector protein involved in actin binding and polymerization and in interference with eukaryotic organelle trafficking.

    PubMed

    Bugalhão, Joana N; Mota, Luís Jaime; Franco, Irina S

    2016-02-01

    The Legionella pneumophila effector protein VipA is an actin nucleator that co-localizes with actin filaments and early endosomes in infected macrophages and which interferes with organelle trafficking when expressed in yeast. To identify the regions of VipA involved in its subcellular localization and functions, we ectopically expressed specific VipA mutant proteins in eukaryotic cells. This indicated that the characteristic punctate distribution of VipA depends on its NH2 -terminal (amino acid residues 1-133) and central coiled-coil (amino acid residues 133-206) regions, and suggested a role for the COOH-terminal (amino acid residues 206-339) region in association with actin filaments and for the NH2 -terminal in co-localization with early endosomes. Co-immunoprecipitation and in vitro assays showed that the COOH-terminal region of VipA is necessary and sufficient to mediate actin binding, and is essential but insufficient to induce microfilament formation. Assays in yeast revealed that the NH2 and the COOH-terminal regions, and possibly an NPY motif within the NH2 region of VipA, are necessary for interference with organelle trafficking. Overall, this suggests that subversion of eukaryotic vesicular trafficking by VipA involves both its ability to associate with early endosomes via its NH2 -terminal region and its capacity to bind and polymerize actin through its COOH-terminal region.

  11. Eukaryotic behaviour of a prokaryotic energy-transducing membrane: fully detached vesicular organelles arise by budding from the Rhodobacter sphaeroides intracytoplasmic photosynthetic membrane.

    PubMed

    Niederman, Robert A

    2010-05-01

    A major feature that distinguishes prokaryotic organisms from eukaryotes is their less complex internal structure, in which all membrane-associated functions are thought to be present within a continuous lipid-protein bilayer, rather than with distinct organelles. Contrary to this notion, as described by Tucker and co-workers in this issue of Molecular Microbiology, the application of cryo-electron tomography to the purple bacterium Rhodobacter sphaeroides has demonstrated a heretofore unrecognized ultrastructural complexity within the intracytoplasmic membrane (ICM) housing the photosynthetic apparatus. In addition to distinguishing invaginations of the cytoplasmic membrane (CM) and interconnected vesicular structures still attached to the CM, a eukaryote-like ICM budding process was revealed, which results in the formation of fully detached vesicular structures. These bacterial organelles are able to carry out both the light-harvesting and light-driven energy transduction activities necessary for the cells to assume a photosynthetic lifestyle. Their formation is shown to represent the final stage in a membrane invagination and growth process, originating with small CM indentations, which after cell disruption give rise to a membrane fraction that can be separated from mature ICM vesicles by rate-zone sedimentation.

  12. A Ribbon-like Structure in the Ejective Organelle of the Green Microalga Pyramimonas parkeae (Prasinophyceae) Consists of Core Histones and Polymers Containing N-acetyl-glucosamine.

    PubMed

    Yamagishi, Takahiro; Kurihara, Akira; Kawai, Hiroshi

    2015-11-01

    The green microalga, Pyramimonas parkeae (Prasinophyceae) has an ejective organelle containing a coiled ribbon structure resembling the ejectisome in Cryptophyta. This structure is discharged from the cell by a stimulus and extends to form a tube-like structure, but the molecular components of the structure have not been identified. Tricine-SDS-PAGE analysis indicated that the ribbon-like structure of P. parkeae contains some proteins and low molecular acidic polymers. Edman degradation, LC/MS/MS analyses and immunological studies demonstrated that their proteins are core histones (H3, H2A, H2B and H4). In addition, monosaccharide composition analysis of the ribbon-like structures and degradation by lysozyme strongly indicated that the ribbon-like structure consist of β (1-4) linked polymers containing N-acetyl-glucosamine. Purified polymers and recombinant histones formed glob-like or filamentous structures. Therefore we conclude that the ribbon-like structure of P. parkeae mainly consists of a complex of core histones (H3, H2A, H2B and H4) and polymers containing N-acetyl-glucosamine, and suggest to name the ejective organelle in P. parkeae the "histrosome" to distinguish it from the ejectisome in Cryptophyta.

  13. The BLOC-1 Subunit Pallidin Facilitates Activity-Dependent Synaptic Vesicle Recycling

    PubMed Central

    Ma, Wenpei; Zhang, Shixing; Paluch, Jeremy; Guo, Wanlin

    2017-01-01

    Abstract Membrane trafficking pathways must be exquisitely coordinated at synaptic terminals to maintain functionality, particularly during conditions of high activity. We have generated null mutations in the Drosophila homolog of pallidin, a central subunit of the biogenesis of lysosome-related organelles complex-1 (BLOC-1), to determine its role in synaptic development and physiology. We find that Pallidin localizes to presynaptic microtubules and cytoskeletal structures, and that the stability of Pallidin protein is highly dependent on the BLOC-1 components Dysbindin and Blos1. We demonstrate that the rapidly recycling vesicle pool is not sustained during high synaptic activity in pallidin mutants, leading to accelerated rundown and slowed recovery. Following intense activity, we observe a loss of early endosomes and a concomitant increase in tubular endosomal structures in synapses without Pallidin. Together, our data reveal that Pallidin subserves a key role in promoting efficient synaptic vesicle recycling and re-formation through early endosomes during sustained activity. PMID:28317021

  14. Tuberous sclerosis complex 1: an epithelial tumor suppressor essential to prevent spontaneous prostate cancer in aged mice.

    PubMed

    Kladney, Raleigh D; Cardiff, Robert D; Kwiatkowski, David J; Chiang, Gary G; Weber, Jason D; Arbeit, Jeffrey M; Lu, Zhi Hong

    2010-11-01

    The phosphoinositide 3-kinase (PI3K) pathway regulates mammalian cell growth, survival, and motility and plays a major pathogenetic role in human prostate cancer (PCa). However, the oncogenic contributions downstream of the PI3K pathway made by mammalian target of rapamycin complex 1 (mTORC1)-mediated cell growth signal transduction in PCa have yet to be elucidated in detail. Here, we engineered constitutive mTORC1 activation in prostate epithelium by a conditional genetic deletion of tuberous sclerosis complex 1 (Tsc1), a potent negative regulator of mTORC1 signaling. Epithelial inactivation was not immediately tumorigenic, but Tsc1-deficient mice developed prostatic intraepithelial neoplasia (mPIN) in lateral and anterior prostates by 6 months of age, with increasing disease penetrance over time. Lateral prostate lesions in 16- to 22-month-old mutant mice progressed to two types of more advanced lesions, adenomatous gland forming lesion (Type 1) and atypical glands embedded in massively expanded reactive stroma (Type 2). Both Type 1 and Type 2 lesions contained multiple foci of microinvasive carcinoma. Epithelial neoplastic and atypical stromal lesions persisted despite 4 weeks of RAD001 chemotherapy. Rapalogue resistance was not due to AKT or extracellular signal-regulated kinase 1/2 activation. Expression of the homeobox gene Nkx3.1 was lost in Tsc1-deficient mPIN, and it cooperated with TSC1 loss in mPIN initiation in doubly mutant Tsc1:Nkx3.1 prostatic epithelial knockout mice. Thus, TSC1 inactivation distal to PI3K and AKT activation is sufficient to activate a molecular signaling cascade producing prostatic neoplasia and focal carcinogenesis.

  15. New application of a subcellular fractionation method to kidney and testis for the determination of conjugated linoleic acid in selected cell organelles of healthy and cancerous human tissues.

    PubMed

    Hoffmann, Kristina; Blaudszun, Jörg; Brunken, Claus; Höpker, Wilhelm-Wolfgang; Tauber, Roland; Steinhart, Hans

    2005-03-01

    To clarify the mechanism of the anticarcinogenic effect of conjugated linoleic acid (CLA), its intracellular distribution needs to be determined. Subcellular fractionation using centrifugation techniques is a method that is frequently used for isolation of cell organelles from different tissues. But as the size and density of the organelles differ, the method needs to be optimised for every type of tissue. The novelty of this study is the application of a subcellular fractionation method to human healthy and cancerous renal and testicular tissue. Separation of total tissue homogenate into nuclei, cytosol, and a mixture of mitochondria and plasma membranes was achieved by differential centrifugation. As mitochondria and plasma membranes seemed to be too similar in size and weight to be separated by differential centrifugation, discontinuous density-gradient centrifugation was carried out successfully. The purity of the subcellular fractions was checked by measuring the activity of marker enzymes. All fractions were highly enriched in their corresponding marker enzyme. However, the nuclear fractions of kidney and renal cell carcinoma were slightly contaminated with mitochondria and plasma membrane fractions of all tissues with lysosomes. The fraction designated the cytosolic fraction contained not only cytosol, but also microsomes and lysosomes. The CLA contents of the subcellular fractions were in the range 0.13-0.37% of total fatty acids and were lowest in the plasma membrane fractions of all types of tissue studied. C16:0, C18:0, C18:1 c9, C18:2 n-6, and C20:4 n-6 were found to be the major fatty acids in all the subcellular fractions studied. However, marked variations in fatty acid content between subcellular fractions and between types of tissue were detectable. Because of these differences between tissues, no general statement on characteristic fatty acid profiles of single subcellular fractions is possible.

  16. Fast-suppressor screening for new components in protein trafficking, organelle biogenesis and silencing pathway in Arabidopsis thaliana using DEX-inducible FREE1-RNAi plants.

    PubMed

    Zhao, Qiong; Gao, Caiji; Lee, PoShing; Liu, Lin; Li, Shaofang; Hu, Tangjin; Shen, Jinbo; Pan, Shuying; Ye, Hao; Chen, Yunru; Cao, Wenhan; Cui, Yong; Zeng, Peng; Yu, Sheng; Gao, Yangbin; Chen, Liang; Mo, Beixin; Liu, Xin; Xiao, Shi; Zhao, Yunde; Zhong, Silin; Chen, Xuemei; Jiang, Liwen

    2015-06-20

    Membrane trafficking is essential for plant growth and responses to external signals. The plant unique FYVE domain-containing protein FREE1 is a component of the ESCRT complex (endosomal sorting complex required for transport). FREE1 plays multiple roles in regulating protein trafficking and organelle biogenesis including the formation of intraluminal vesicles of multivesicular body (MVB), vacuolar protein transport and vacuole biogenesis, and autophagic degradation. FREE1 knockout plants show defective MVB formation, abnormal vacuolar transport, fragmented vacuoles, accumulated autophagosomes, and seedling lethality. To further uncover the underlying mechanisms of FREE1 function in plants, we performed a forward genetic screen for mutants that suppressed the seedling lethal phenotype of FREE1-RNAi transgenic plants. The obtained mutants are termed as suppressors of free1 (sof). To date, 229 putative sof mutants have been identified. Barely detecting of FREE1 protein with M3 plants further identified 84 FREE1-related suppressors. Also 145 mutants showing no reduction of FREE1 protein were termed as RNAi-related mutants. Through next-generation sequencing (NGS) of bulked DNA from F2 mapping population of two RNAi-related sof mutants, FREE1-RNAi T-DNA inserted on chromosome 1 was identified and the causal mutation of putative sof mutant is being identified similarly. These FREE1- and RNAi-related sof mutants will be useful tools and resources for illustrating the underlying mechanisms of FREE1 function in intracellular trafficking and organelle biogenesis, as well as for uncovering the new components involved in the regulation of silencing pathways in plants.

  17. Overexpression of Plasmodium berghei ATG8 by Liver Forms Leads to Cumulative Defects in Organelle Dynamics and to Generation of Noninfectious Merozoites

    PubMed Central

    Voss, Christiane; Ehrenman, Karen; Mlambo, Godfree; Mishra, Satish; Kumar, Kota Arun; Sacci, John B.; Sinnis, Photini

    2016-01-01

    ABSTRACT Plasmodium parasites undergo continuous cellular renovation to adapt to various environments in the vertebrate host and insect vector. In hepatocytes, Plasmodium berghei discards unneeded organelles for replication, such as micronemes involved in invasion. Concomitantly, intrahepatic parasites expand organelles such as the apicoplast that produce essential metabolites. We previously showed that the ATG8 conjugation system is upregulated in P. berghei liver forms and that P. berghei ATG8 (PbATG8) localizes to the membranes of the apicoplast and cytoplasmic vesicles. Here, we focus on the contribution of PbATG8 to the organellar changes that occur in intrahepatic parasites. We illustrated that micronemes colocalize with PbATG8-containing structures before expulsion from the parasite. Interference with PbATG8 function by overexpression results in poor development into late liver stages and production of small merosomes that contain immature merozoites unable to initiate a blood infection. At the cellular level, PbATG8-overexpressing P. berghei exhibits a delay in microneme compartmentalization into PbATG8-containing autophagosomes and elimination compared to parasites from the parental strain. The apicoplast, identifiable by immunostaining of the acyl carrier protein (ACP), undergoes an abnormally fast proliferation in mutant parasites. Over time, the ACP staining becomes diffuse in merosomes, indicating a collapse of the apicoplast. PbATG8 is not incorporated into the progeny of mutant parasites, in contrast to parental merozoites in which PbATG8 and ACP localize to the apicoplast. These observations reveal that Plasmodium ATG8 is a key effector in the development of merozoites by controlling microneme clearance and apicoplast proliferation and that dysregulation in ATG8 levels is detrimental for malaria infectivity. PMID:27353755

  18. Interplay between Two Bacterial Actin Homologs, MamK and MamK-Like, Is Required for the Alignment of Magnetosome Organelles in Magnetospirillum magneticum AMB-1

    PubMed Central

    Abreu, Nicole; Mannoubi, Soumaya; Ozyamak, Ertan; Pignol, David; Ginet, Nicolas

    2014-01-01

    Many bacterial species contain multiple actin-like proteins tasked with the execution of crucial cell biological functions. MamK, an actin-like protein found in magnetotactic bacteria, is important in organizing magnetosome organelles into chains that are used for navigation along geomagnetic fields. MamK and numerous other magnetosome formation factors are encoded by a genetic island termed the magnetosome island. Unlike most magnetotactic bacteria, Magnetospirillum magneticum AMB-1 (AMB-1) contains a second island of magnetosome-related genes that was named the magnetosome islet. A homologous copy of mamK, mamK-like, resides within this islet and encodes a protein capable of filament formation in vitro. Previous work had shown that mamK-like is expressed in vivo, but its function, if any, had remained unknown. Though MamK-like is highly similar to MamK, it contains a mutation that in MamK and other actins blocks ATPase activity in vitro and filament dynamics in vivo. Here, using genetic analysis, we demonstrate that mamK-like has an in vivo role in assisting organelle alignment. In addition, MamK-like forms filaments in vivo in a manner that is dependent on the presence of MamK and the two proteins interact in a yeast two-hybrid assay. Surprisingly, despite the ATPase active-site mutation, MamK-like is capable of ATP hydrolysis in vitro and promotes MamK filament turnover in vivo. Taken together, these experiments suggest that direct interactions between MamK and MamK-like contribute to magnetosome alignment in AMB-1. PMID:24957623

  19. Expedited Approaches to Whole Cell Electron Tomography and Organelle Mark-Up in Situ in High-Pressure Frozen Pancreatic Islets

    PubMed Central

    Noske, Andrew B.; Costin, Adam J.; Morgan, Garry P.; Marsh, Brad J.

    2008-01-01

    We have developed a simplified, efficient approach for the 3D reconstruction and analysis of mammalian cells in toto by electron microscope tomography (ET), to provide quantitative information regarding ‘global’ cellular organization at ~15–20 nm resolution. Two insulin-secreting beta cells - deemed ‘functionally equivalent’ by virtue of their location at the periphery of the same pancreatic islet - were reconstructed in their entirety in 3D after fast-freezing/freeze-substitution/plastic embedment in situ within a glucose-stimulated islet of Langerhans isolated intact from mouse pancreata. These cellular reconstructions have afforded several unique insights into fundamental structure-function relationships among key organelles involved in the biosynthesis and release of the crucial metabolic hormone, insulin, that could not be provided by other methods. The Golgi ribbon, mitochondria and insulin secretory granules in each cell were segmented for comparative analysis. We propose that relative differences between the two cells in terms of the number, dimensions and spatial distribution (and for mitochondria, also the extent of branching) of these organelles per cubic micron of cellular volume reflects differences in the two cells’ individual capacity (and/or readiness) to respond to secretagogue stimulation, reflected by an apparent inverse relationship between the number/size of insulin secretory granules versus the number/size of mitochondria and the Golgi ribbon. We discuss the advantages of this approach for quantitative cellular ET of mammalian cells, briefly discuss its application relevant to other complementary techniques, and summarize future strategies for overcoming some of its current limitations. PMID:18069000

  20. Deciphering the Role of POLYCOMB REPRESSIVE COMPLEX1 Variants in Regulating the Acquisition of Flowering Competence in Arabidopsis.

    PubMed

    Picó, Sara; Ortiz-Marchena, M Isabel; Merini, Wiam; Calonje, Myriam

    2015-08-01

    Polycomb group (PcG) proteins play important roles in regulating developmental phase transitions in plants; however, little is known about the role of the PcG machinery in regulating the transition from juvenile to adult phase. Here, we show that Arabidopsis (Arabidopsis thaliana) B lymphoma Moloney murine leukemia virus insertion region1 homolog (BMI1) POLYCOMB REPRESSIVE COMPLEX1 (PRC1) components participate in the repression of microRNA156 (miR156). Loss of AtBMI1 function leads to the up-regulation of the primary transcript of MIR156A and MIR156C at the time the levels of miR156 should decline, resulting in an extended juvenile phase and delayed flowering. Conversely, the PRC1 component EMBRYONIC FLOWER (EMF1) participates in the regulation of SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE and MIR172 genes. Accordingly, plants impaired in EMF1 function displayed misexpression of these genes early in development, which contributes to a CONSTANS-independent up-regulation of FLOWERING LOCUS T (FT) leading to the earliest flowering phenotype described in Arabidopsis. Our findings show how the different regulatory roles of two functional PRC1 variants coordinate the acquisition of flowering competence and help to reach the threshold of FT necessary to flower. Furthermore, we show how two central regulatory mechanisms, such as PcG and microRNA, assemble to achieve a developmental outcome.

  1. Rapamycin, a specific inhibitor of the target of rapamycin complex 1, disrupts intestinal barrier integrity in broiler chicks.

    PubMed

    Liu, S Q; Zhao, J P; Fan, X X; Liu, G H; Jiao, H C; Wang, X J; Sun, S H; Lin, H

    2016-04-01

    To uncover the molecular mechanisms underlying the intestinal barrier integrity, this study determined whether the rapamycin (RAPA)-sensitive target of rapamycin complex 1 (TORC1) pathway was involved in this process. Three groups of 4-day-old male chicks were randomly subjected to one of the following treatments for 6 days: high-dose RAPA [a specific inhibitor of TORC1; an intraperitoneal injection of 1.0 mg/kg body weight (BW), once daily at 09:00 hours], low-dose RAPA (0.4 mg/kg BW) and RAPA vehicle (control). Results showed that the RAPA treatment increased mortality, while decreasing villus height (p < 0.01), claudin 1 expression, content of immunoglobulin A (IgA), extent of TORC1 phosphorylation (p < 0.05), ratio of villus height to crypt depth (p < 0.01), and population of IgA-positive B cells in intestinal mucosa, particularly for the jejunum. Some aspects of these responses were dose dependent and appeared to result from weight loss. Together, RAPA exerts the expected inhibition of small intestinal development and IgA production in birds, suggesting the important role of TORC1 in gut barrier integrity.

  2. Coupling nutrient sensing to metabolic homoeostasis: the role of the mammalian target of rapamycin complex 1 pathway.

    PubMed

    André, Caroline; Cota, Daniela

    2012-11-01

    The mammalian target of rapamycin complex 1 (mTORC1) pathway is known to couple different environmental cues to the regulation of several energy-demanding functions within the cell, spanning from protein translation to mitochondrial activity. As a result, at the organism level, mTORC1 activity affects energy balance and general metabolic homoeostasis by modulating both the activity of neuronal populations that play key roles in the control of food intake and body weight, as well as by determining storage and use of fuel substrates in peripheral tissues. This review focuses on recent advances made in understanding the role of the mTORC1 pathway in the regulation of energy balance. More particularly, it aims at providing an overview of the status of knowledge regarding the mechanisms underlying the ability of certain amino acids, glucose and fatty acids, to affect mTORC1 activity and in turn illustrates how the mTORC1 pathway couples nutrient sensing to the hypothalamic regulation of the organisms' energy homoeostasis and to the control of intracellular metabolic processes, such as glucose uptake, protein and lipid biosynthesis. The evidence reviewed pinpoints the mTORC1 pathway as an integrator of the actions of nutrients on metabolic health and provides insight into the relevance of this intracellular pathway as a potential target for the therapy of metabolic diseases such as obesity and type-2 diabetes.

  3. The Polycomb Repressive Complex 1 Protein BMI1 Is Required for Constitutive Heterochromatin Formation and Silencing in Mammalian Somatic Cells*

    PubMed Central

    Abdouh, Mohamed; Hanna, Roy; El Hajjar, Jida; Flamier, Anthony; Bernier, Gilbert

    2016-01-01

    The polycomb repressive complex 1 (PRC1), containing the core BMI1 and RING1A/B proteins, mono-ubiquitinylates histone H2A (H2Aub) and is associated with silenced developmental genes at facultative heterochromatin. It is, however, assumed that the PRC1 is excluded from constitutive heterochromatin in somatic cells based on work performed on mouse embryonic stem cells and oocytes. We show here that BMI1 is required for constitutive heterochromatin formation and silencing in human and mouse somatic cells. BMI1 was highly enriched at intergenic and pericentric heterochromatin, co-immunoprecipitated with the architectural heterochromatin proteins HP1, DEK1, and ATRx, and was required for their localization. In contrast, BRCA1 localization was BMI1-independent and partially redundant with that of BMI1 for H2Aub deposition, constitutive heterochromatin formation, and silencing. These observations suggest a dynamic and developmentally regulated model of PRC1 occupancy at constitutive heterochromatin, and where BMI1 function in somatic cells is to stabilize the repetitive genome. PMID:26468281

  4. Polycomb repressive complex 1 provides a molecular explanation for repeat copy number dependency in FSHD muscular dystrophy.

    PubMed

    Casa, Valentina; Runfola, Valeria; Micheloni, Stefano; Aziz, Arif; Dilworth, F Jeffrey; Gabellini, Davide

    2016-12-30

    Repression of repetitive elements is crucial to preserve genome integrity and has been traditionally ascribed to constitutive heterochromatin pathways. FacioScapuloHumeral Muscular Dystrophy (FSHD), one of the most common myopathies, is characterized by a complex interplay of genetic and epigenetic events. The main FSHD form is linked to a reduced copy number of the D4Z4 macrosatellite repeat on 4q35, causing loss of silencing and aberrant expression of the D4Z4-embedded DUX4 gene leading to disease. By an unknown mechanism, D4Z4 copy-number correlates with FSHD phenotype. Here we show that the DUX4 proximal promoter (DUX4p) is sufficient to nucleate the enrichment of both constitutive and facultative heterochromatin components and to mediate a copy-number dependent gene silencing. We found that both the CpG/GC dense DNA content and the repetitive nature of DUX4p arrays are important for their repressive ability. We showed that DUX4p mediates a copy number-dependent Polycomb Repressive Complex 1 (PRC1) recruitment, which is responsible for the copy-number dependent gene repression. Overall, we directly link genetic and epigenetic defects in FSHD by proposing a novel molecular explanation for the copy number-dependency in FSHD pathogenesis, and offer insight into the molecular functions of repeats in chromatin regulation.

  5. Deciphering the Role of POLYCOMB REPRESSIVE COMPLEX1 Variants in Regulating the Acquisition of Flowering Competence in Arabidopsis1

    PubMed Central

    Picó, Sara; Merini, Wiam

    2015-01-01

    Polycomb group (PcG) proteins play important roles in regulating developmental phase transitions in plants; however, little is known about the role of the PcG machinery in regulating the transition from juvenile to adult phase. Here, we show that Arabidopsis (Arabidopsis thaliana) B lymphoma Moloney murine leukemia virus insertion region1 homolog (BMI1) POLYCOMB REPRESSIVE COMPLEX1 (PRC1) components participate in the repression of microRNA156 (miR156). Loss of AtBMI1 function leads to the up-regulation of the primary transcript of MIR156A and MIR156C at the time the levels of miR156 should decline, resulting in an extended juvenile phase and delayed flowering. Conversely, the PRC1 component EMBRYONIC FLOWER (EMF1) participates in the regulation of SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE and MIR172 genes. Accordingly, plants impaired in EMF1 function displayed misexpression of these genes early in development, which contributes to a CONSTANS-independent up-regulation of FLOWERING LOCUS T (FT) leading to the earliest flowering phenotype described in Arabidopsis. Our findings show how the different regulatory roles of two functional PRC1 variants coordinate the acquisition of flowering competence and help to reach the threshold of FT necessary to flower. Furthermore, we show how two central regulatory mechanisms, such as PcG and microRNA, assemble to achieve a developmental outcome. PMID:25897002

  6. The Polycomb Repressive Complex 1 Protein BMI1 Is Required for Constitutive Heterochromatin Formation and Silencing in Mammalian Somatic Cells.

    PubMed

    Abdouh, Mohamed; Hanna, Roy; El Hajjar, Jida; Flamier, Anthony; Bernier, Gilbert

    2016-01-01

    The polycomb repressive complex 1 (PRC1), containing the core BMI1 and RING1A/B proteins, mono-ubiquitinylates histone H2A (H2A(ub)) and is associated with silenced developmental genes at facultative heterochromatin. It is, however, assumed that the PRC1 is excluded from constitutive heterochromatin in somatic cells based on work performed on mouse embryonic stem cells and oocytes. We show here that BMI1 is required for constitutive heterochromatin formation and silencing in human and mouse somatic cells. BMI1 was highly enriched at intergenic and pericentric heterochromatin, co-immunoprecipitated with the architectural heterochromatin proteins HP1, DEK1, and ATRx, and was required for their localization. In contrast, BRCA1 localization was BMI1-independent and partially redundant with that of BMI1 for H2A(ub) deposition, constitutive heterochromatin formation, and silencing. These observations suggest a dynamic and developmentally regulated model of PRC1 occupancy at constitutive heterochromatin, and where BMI1 function in somatic cells is to stabilize the repetitive genome.

  7. Nitrogen Source Activates TOR (Target of Rapamycin) Complex 1 via Glutamine and Independently of Gtr/Rag Proteins*

    PubMed Central

    Stracka, Daniele; Jozefczuk, Szymon; Rudroff, Florian; Sauer, Uwe; Hall, Michael N.

    2014-01-01

    The evolutionary conserved TOR complex 1 (TORC1) activates cell growth in response to nutrients. In yeast, TORC1 responds to the nitrogen source via a poorly understood mechanism. Leucine, and perhaps other amino acids, activates TORC1 via the small GTPases Gtr1 and Gtr2, orthologs of the mammalian Rag GTPases. Here we investigate the activation of TORC1 by the nitrogen source and how this might be related to TORC1 activation by Gtr/Rag. The quality of the nitrogen source, as defined by its ability to promote growth and glutamine accumulation, directly correlates with its ability to activate TORC1 as measured by Sch9 phosphorylation. Preferred nitrogen sources stimulate rapid, sustained Sch9 phosphorylation and glutamine accumulation. Inhibition of glutamine synthesis reduces TORC1 activity and growth. Poor nitrogen sources stimulate rapid but transient Sch9 phosphorylation. A Gtr1 deficiency prevents the transient stimulation of TORC1 but does not affect the sustained TORC1 activity in response to good nitrogen sources. These findings suggest that the nitrogen source must be converted to glutamine, the preferred nitrogen source in yeast, to sustain TORC1 activity. Furthermore, sustained TORC1 activity is independent of Gtr/Rag. Thus, the nitrogen source and Gtr/Rag activate TORC1 via different mechanisms. PMID:25063813

  8. Ubiquilin-mediated Small Molecule Inhibition of Mammalian Target of Rapamycin Complex 1 (mTORC1) Signaling*

    PubMed Central

    Coffey, Rory T.; Shi, Yuntao; Long, Marcus J. C.; Marr, Michael T.; Hedstrom, Lizbeth

    2016-01-01

    Mammalian target of rapamycin complex 1 (mTORC1) is a master regulator of cellular metabolism, growth, and proliferation. mTORC1 has been implicated in many diseases such as cancer, diabetes, and neurodegeneration, and is a target to prolong lifespan. Here we report a small molecule inhibitor (Cbz-B3A) of mTORC1 signaling. Cbz-B3A inhibits the phosphorylation of eIF4E-binding protein 1 (4EBP1) and blocks 68% of translation. In contrast, rapamycin preferentially inhibits the phosphorylation of p70S6k and blocks 35% of translation. Cbz-B3A does not appear to bind directly to mTORC1, but instead binds to ubiquilins 1, 2, and 4. Knockdown of ubiquilin 2, but not ubiquilins 1 and 4, decreases the phosphorylation of 4EBP1, suggesting that ubiquilin 2 activates mTORC1. The knockdown of ubiquilins 2 and 4 decreases the effect of Cbz-B3A on 4EBP1 phosphorylation. Cbz-B3A slows cellular growth of some human leukemia cell lines, but is not cytotoxic. Thus Cbz-B3A exemplifies a novel strategy to inhibit mTORC1 signaling that might be exploited for treating many human diseases. We propose that Cbz-B3A reveals a previously unappreciated regulatory pathway coordinating cytosolic protein quality control and mTORC1 signaling. PMID:26740621

  9. Cell-specific ATP7A transport sustains copper-dependent tyrosinase activity in melanosomes.

    PubMed

    Setty, Subba Rao Gangi; Tenza, Danièle; Sviderskaya, Elena V; Bennett, Dorothy C; Raposo, Graça; Marks, Michael S

    2008-08-28

    Copper is a cofactor for many cellular enzymes and transporters. It can be loaded onto secreted and endomembrane cuproproteins by translocation from the cytosol into membrane-bound organelles by ATP7A or ATP7B transporters, the genes for which are mutated in the copper imbalance syndromes Menkes disease and Wilson disease, respectively. Endomembrane cuproproteins are thought to incorporate copper stably on transit through the trans-Golgi network, in which ATP7A accumulates by dynamic cycling through early endocytic compartments. Here we show that the pigment-cell-specific cuproenzyme tyrosinase acquires copper only transiently and inefficiently within the trans-Golgi network of mouse melanocytes. To catalyse melanin synthesis, tyrosinase is subsequently reloaded with copper within specialized organelles called melanosomes. Copper is supplied to melanosomes by ATP7A, a cohort of which localizes to melanosomes in a biogenesis of lysosome-related organelles complex-1 (BLOC-1)-dependent manner. These results indicate that cell-type-specific localization of a metal transporter is required to sustain metallation of an endomembrane cuproenzyme, providing a mechanism for exquisite spatial control of metalloenzyme activity. Moreover, because BLOC-1 subunits are mutated in subtypes of the genetic disease Hermansky-Pudlak syndrome, these results also show that defects in copper transporter localization contribute to hypopigmentation, and hence perhaps other systemic defects, in Hermansky-Pudlak syndrome.

  10. Cell-specific ATP7A transport sustains copper-dependent tyrosinase activity in melanosomes

    PubMed Central

    Gangi Setty, Subba Rao; Tenza, Danièle; Sviderskaya, Elena V.; Bennett, Dorothy C.; Raposo, Graça; Marks, Michael S.

    2009-01-01

    SUMMARY Copper is a cofactor for many cellular enzymes and transporters1. To load onto secreted and endomembrane cuproproteins, copper is translocated from the cytosol into membrane-bound organelles by ATP7A or ATP7B transporters, the genes for which are mutated in the copper imbalance syndromes, Menkes and Wilson disease, respectively2. Endomembrane cuproproteins are thought to stably incorporate copper upon transit through the trans Golgi network (TGN), within which ATP7A3 accumulates by dynamic cycling through early endocytic compartments4. Here we show that the pigment cell-specific cuproenzyme tyrosinase acquires copper only transiently and inefficiently within the TGN of melanocytes. To catalyze melanin synthesis, tyrosinase is subsequently reloaded with copper within specialized organelles called melanosomes. Copper is supplied to melanosomes by ATP7A, a cohort of which localizes to melanosomes in a Biogenesis of Lysosome-related Organelles Complex-1 (BLOC-1)-dependent manner. These results indicate that cell type-specific localization of a metal transporter is required to sustain metallation of an endomembrane cuproenzyme, providing a mechanism for exquisite spatial control of metalloenzyme activity. Moreover, as BLOC-1 subunits are mutated in subtypes of the genetic disease, Hermansky-Pudlak syndrome (HPS), these results also show that defects in copper transporter localization contribute to hypopigmentation, and hence perhaps other systemic defects, in HPS. PMID:18650808

  11. Complex regulation of mammalian target of rapamycin complex 1 in the basomedial hypothalamus by leptin and nutritional status.

    PubMed

    Villanueva, Eneida C; Münzberg, Heike; Cota, Daniela; Leshan, Rebecca L; Kopp, Keely; Ishida-Takahashi, Ryoko; Jones, Justin C; Fingar, Diane C; Seeley, Randy J; Myers, Martin G

    2009-10-01

    The medial basal hypothalamus, including the arcuate nucleus (ARC) and the ventromedial hypothalamic nucleus (VMH), integrates signals of energy status to modulate metabolism and energy balance. Leptin and feeding regulate the mammalian target of rapamycin complex 1 (mTORC1) in the hypothalamus, and hypothalamic mTORC1 contributes to the control of feeding and energy balance. To determine the mechanisms by which leptin modulates mTORC1 in specific hypothalamic neurons, we immunohistochemically assessed the mTORC1-dependent phosphorylation of ribosomal protein S6 (pS6). In addition to confirming the modulation of ARC mTORC1 activity by acute leptin treatment, this analysis revealed the robust activation of mTORC1-dependent ARC pS6 in response to fasting and leptin deficiency in leptin receptor-expressing Agouti-related protein neurons. In contrast, fasting and leptin deficiency suppress VMH mTORC1 signaling. The appropriate regulation of ARC mTORC1 by mutant leptin receptor isoforms correlated with their ability to suppress the activity of Agouti-related protein neurons, suggesting the potential stimulation of mTORC1 by the neuronal activity. Indeed, fasting- and leptin deficiency-induced pS6-immunoreactivity (IR) extensively colocalized with c-Fos-IR in ARC and VMH neurons. Furthermore, ghrelin, which activates orexigenic ARC neurons, increased ARC mTORC1 activity and induced colocalized pS6- and c-Fos-IR. Thus, neuronal activity promotes mTORC1/pS6 in response to signals of energy deficit. In contrast, insulin, which activates mTORC1 via the phosphatidylinositol 3-kinase pathway, increased ARC and VMH pS6-IR in the absence of neuronal activation. The regulation of mTORC1 in the basomedial hypothalamus thus varies by cell and stimulus type, as opposed to responding in a uniform manner to nutritional and hormonal perturbations.

  12. Anticancer peptidylarginine deiminase (PAD) inhibitors regulate the autophagy flux and the mammalian target of rapamycin complex 1 activity.

    PubMed

    Wang, Yuji; Li, Pingxin; Wang, Shu; Hu, Jing; Chen, Xiangyun Amy; Wu, Jianhui; Fisher, Megan; Oshaben, Kira; Zhao, Na; Gu, Ying; Wang, Dong; Chen, Gong; Wang, Yanming

    2012-07-27

    Tumor suppressor genes are frequently silenced in cancer cells by enzymes catalyzing epigenetic histone modifications. The peptidylarginine deiminase family member PAD4 (also called PADI4) is markedly overexpressed in a majority of human cancers, suggesting that PAD4 is a putative target for cancer treatment. Here, we have generated novel PAD inhibitors with low micromolar IC(50) in PAD activity and cancer cell growth inhibition. The lead compound YW3-56 alters the expression of genes controlling the cell cycle and cell death, including SESN2 that encodes an upstream inhibitor of the mammalian target of rapamycin complex 1 (mTORC1) signaling pathway. Guided by the gene expression profile analyses with YW3-56, we found that PAD4 functions as a corepressor of p53 to regulate SESN2 expression by histone citrullination in cancer cells. Consistent with the mTORC1 inhibition by SESN2, the phosphorylation of its substrates including p70S6 kinase (p70S6K) and 4E-BP1 was decreased. Furthermore, macroautophagy is perturbed after YW3-56 treatment in cancer cells. In a mouse xenograft model, YW3-56 demonstrates cancer growth inhibition activity with little if any detectable adverse effect to vital organs, whereas a combination of PAD4 and histone deacetylase inhibitors further decreases tumor growth. Taken together, our work found that PAD4 regulates the mTORC1 signaling pathway and that PAD inhibitors are potential anticancer reagents that activate tumor suppressor gene expression alone or in combination with histone deacetylase inhibitors.

  13. Induction of biogenic magnetization and redox control by a component of the target of rapamycin complex 1 signaling pathway.

    PubMed

    Nishida, Keiji; Silver, Pamela A

    2012-01-01

    Most organisms are simply diamagnetic, while magnetotactic bacteria and migratory animals are among organisms that exploit magnetism. Biogenic magnetization not only is of fundamental interest, but also has industrial potential. However, the key factor(s) that enable biogenic magnetization in coordination with other cellular functions and metabolism remain unknown. To address the requirements for induction and the application of synthetic bio-magnetism, we explored the creation of magnetism in a simple model organism. Cell magnetization was first observed by attraction towards a magnet when normally diamagnetic yeast Saccharomyces cerevisiae were grown with ferric citrate. The magnetization was further enhanced by genetic modification of iron homeostasis and introduction of ferritin. The acquired magnetizable properties enabled the cells to be attracted to a magnet, and be trapped by a magnetic column. Superconducting quantum interference device (SQUID) magnetometry confirmed and quantitatively characterized the acquired paramagnetism. Electron microscopy and energy-dispersive X-ray spectroscopy showed electron-dense iron-containing aggregates within the magnetized cells. Magnetization-based screening of gene knockouts identified Tco89p, a component of TORC1 (Target of rapamycin complex 1), as important for magnetization; loss of TCO89 and treatment with rapamycin reduced magnetization in a TCO89-dependent manner. The TCO89 expression level positively correlated with magnetization, enabling inducible magnetization. Several carbon metabolism genes were also shown to affect magnetization. Redox mediators indicated that TCO89 alters the intracellular redox to an oxidized state in a dose-dependent manner. Taken together, we demonstrated that synthetic induction of magnetization is possible and that the key factors are local redox control through carbon metabolism and iron supply.

  14. The mechanism of insulin-stimulated 4E-BP protein binding to mammalian target of rapamycin (mTOR) complex 1 and its contribution to mTOR complex 1 signaling.

    PubMed

    Rapley, Joseph; Oshiro, Noriko; Ortiz-Vega, Sara; Avruch, Joseph

    2011-11-04

    Insulin activation of mTOR complex 1 is accompanied by enhanced binding of substrates. We examined the mechanism and contribution of this enhancement to insulin activation of mTORC1 signaling in 293E and HeLa cells. In 293E, insulin increased the amount of mTORC1 retrieved by the transiently expressed nonphosphorylatable 4E-BP[5A] to an extent that varied inversely with the amount of PRAS40 bound to mTORC1. RNAi depletion of PRAS40 enhanced 4E-BP[5A] binding to ∼70% the extent of maximal insulin, and PRAS40 RNAi and insulin together did not increase 4E-BP[5A] binding beyond insulin alone, suggesting that removal of PRAS40 from mTORC1 is the predominant mechanism of an insulin-induced increase in substrate access. As regards the role of increased substrate access in mTORC1 signaling, RNAi depletion of PRAS40, although increasing 4E-BP[5A] binding, did not stimulate phosphorylation of endogenous mTORC1 substrates S6K1(Thr(389)) or 4E-BP (Thr(37)/Thr(46)), the latter already ∼70% of maximal in amino acid replete, serum-deprived 293E cells. In HeLa cells, insulin and PRAS40 RNAi also both enhanced the binding of 4E-BP[5A] to raptor but only insulin stimulated S6K1 and 4E-BP phosphorylation. Furthermore, Rheb overexpression in 293E activated mTORC1 signaling completely without causing PRAS40 release. In the presence of Rheb and insulin, PRAS40 release is abolished by Akt inhibition without diminishing mTORC1 signaling. In conclusion, dissociation of PRAS40 from mTORC1 and enhanced mTORC1 substrate binding results from Akt and mTORC1 activation and makes little or no contribution to mTORC1 signaling, which rather is determined by Rheb activation of mTOR catalytic activity, through mechanisms that remain to be fully elucidated.

  15. The Novel mTOR Complex 1/2 Inhibitor P529 Inhibits Human Lung Myofibroblast Differentiation.

    PubMed

    Ferguson, Keith T; Torr, Elizabeth E; Bernau, Ksenija; Leet, Jonathan; Sherris, David; Sandbo, Nathan

    2017-01-11

    Idiopathic pulmonary fibrosis is a progressive and deadly disorder with very few therapeutic options. Palomid 529 (8-(1-hydroxyethyl)-2-methoxy-3-(4-methoxybenzyloxy)-benzo[c]chromen-6-one; P529) is a novel dual inhibitor of mechanistic target of rapamycin complex 1/2 (mTORC1/2). In these studies, we investigated the effect of P529 on TGF-β-dependent signaling and myofibroblast differentiation. TGF-β-induced phosphorylation of the mTORC1 targets, p70 S6 kinase 1 (S6K1) and eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1), were both dose dependently inhibited by P529 in human lung fibroblasts with maximal inhibition occurring between 10-20 µM. mTORC2-mediated phosphorylation of Akt at the S473 site was partially inhibited with a similar dose dependency, as was TGF-β-induced myofibroblast differentiation. Protein levels of TGF-β-induced fibronectin and collagen were similarly decreased by P529. At this dose, there was also inhibition of mRNA transcript levels for Col1 and α-SMA, suggesting inhibition of transcriptional activation. However, there was no effect of P529 on canonical TGF-β-induced Smad signaling, as assessed by receptor-associated Smad2/3 phosphorylation, Smad2/3/4 translocation, or Smad-driven gene expression, as assessed by Smad-binding element driven luciferase. Conversely, activation of mTORC1/2 signaling was dependent on TGF-β type I receptor (ALK5) signaling and on Smad2/3 expression. P529 treatment disrupted TGF-β-induced actin stress fiber formation during myofibroblast differentiation, the deposition of new extracellular fibronectin matrix, and linear wound closure by fibroblasts. Likewise, mTOR knockdown inhibited TGF-β-induced myofibroblast differentiation. In conclusion, P529 inhibits TGF-β-induced myofibroblast differentiation, actin stress fiber formation, and matrix protein expression and deposition. Inhibition of mTORC1/2 by P529 may be a promising approach to inhibit in vivo fibrosis. This article is

  16. Alternative Splicing in CaV2.2 Regulates Neuronal Trafficking via Adaptor Protein Complex-1 Adaptor Protein Motifs

    PubMed Central

    Macabuag, Natsuko

    2015-01-01

    N-type voltage-gated calcium (CaV2.2) channels are expressed in neurons and targeted to the plasma membrane of presynaptic terminals, facilitating neurotransmitter release. Here, we find that the adaptor protein complex-1 (AP-1) mediates trafficking of CaV2.2 from the trans-Golgi network to the cell surface. Examination of splice variants of CaV2.2, containing either exon 37a (selectively expressed in nociceptors) or 37b in the proximal C terminus, reveal that canonical AP-1 binding motifs, YxxΦ and [DE]xxxL[LI], present only in exon 37a, enhance intracellular trafficking of exon 37a-containing CaV2.2 to the axons and plasma membrane of rat DRG neurons. Finally, we identify differential effects of dopamine-2 receptor (D2R) and its agonist-induced activation on trafficking of CaV2.2 isoforms. D2R slowed the endocytosis of CaV2.2 containing exon 37b, but not exon 37a, and activation by the agonist quinpirole reversed the effect of the D2R. Our work thus reveals key mechanisms involved in the trafficking of N-type calcium channels. SIGNIFICANCE STATEMENT CaV2.2 channels are important for neurotransmitter release, but how they are trafficked is still poorly understood. Here, we describe a novel mechanism for trafficking of CaV2.2 from the trans-Golgi network to the cell surface which is mediated by the adaptor protein AP-1. Alternative splicing of exon 37 produces CaV2.2-exon 37a, selectively expressed in nociceptors, or CaV2.2-exon 37b, which is the major splice isoform. Our study reveals that canonical AP-1 binding motifs (YxxΦ and [DE]xxxL[LI]), present in exon 37a, but not 37b, enhance intracellular trafficking of exon 37a-containing CaV2.2 to axons and plasma membrane of DRG neurons. Interaction of APs with CaV2.2 channels may also be key underlying mechanisms for differential effects of the dopamine D2 receptor on trafficking of CaV2.2 splice variants. PMID:26511252

  17. The hydrophobic amino acids involved in the interdomain association of phospholipase D1 regulate the shuttling of phospholipase D1 from vesicular organelles into the nucleus.

    PubMed

    Jang, Young Hoon; Min, Do Sik

    2012-10-31

    Phospholipase D (PLD) catalyzes the hydrolysis of phosphatidylcholine to generate the lipid second messenger, phosphatidic acid. PLD is localized in most cellular organelles, where it is likely to play different roles in signal transduction. PLD1 is primarily localized in vesicular structures such as endosomes, lysosomes and autophagosomes. However, the factors defining its localization are less clear. In this study, we found that four hydrophobic residues present in the N-terminal HKD catalytic motif of PLD1, which is involved in intramolecular association, are responsible for vesicular localization. Site-directed mutagenesis of the residues dramatically disrupted vesicular localization of PLD1. Interestingly, the hydrophobic residues of PLD1 are also involved in the interruption of its nuclear localization. Mutation of the residues increased the association of PLD1 with importin-β, which is known to mediate nuclear importation, and induced the localization of PLD1 from vesicles into the nucleus. Taken together, these data suggest that the hydrophobic amino acids involved in the interdomain association of PLD1 are required for vesicular localization and disturbance of its nuclear localization.

  18. Chromophore-assisted laser inactivation--towards a spatiotemporal-functional analysis of proteins, and the ablation of chromatin, organelle and cell function.

    PubMed

    Sano, Yukimi; Watanabe, Wataru; Matsunaga, Sachihiro

    2014-04-15

    Chromophore-assisted laser or light inactivation (CALI) has been employed as a promising technique to achieve spatiotemporal knockdown or loss-of-function of target molecules in situ. CALI is performed using photosensitizers as generators of reactive oxygen species (ROS). There are two CALI approaches that use either transgenic tags with chemical photosensitizers, or genetically encoded fluorescent protein fusions. Using spatially restricted microscopy illumination, CALI can address questions regarding, for example, protein isoforms, subcellular localization or phase-specific analyses of multifunctional proteins that other knockdown approaches, such as RNA interference or treatment with chemicals, cannot. Furthermore, rescue experiments can clarify the phenotypic capabilities of CALI after the depletion of endogenous targets. CALI can also provide information about individual events that are involved in the function of a target protein and highlight them in multifactorial events. Beyond functional analysis of proteins, CALI of nuclear proteins can be performed to induce cell cycle arrest, chromatin- or locus-specific DNA damage. Even at organelle level - such as in mitochondria, the plasma membrane or lysosomes - CALI can trigger cell death. Moreover, CALI has emerged as an optogenetic tool to switch off signaling pathways, including the optical depletion of individual neurons. In this Commentary, we review recent applications of CALI and discuss the utility and effective use of CALI to address open questions in cell biology.

  19. Euglena gracilis chloroplast ribosomal protein operon: a new chloroplast gene for ribosomal protein L5 and description of a novel organelle intron category designated group III.

    PubMed Central

    Christopher, D A; Hallick, R B

    1989-01-01

    We describe the structure (3840 bp) of a novel Euglena gracilis chloroplast ribosomal protein operon that encodes the five genes rpl16-rpl14-rpl5-rps8-rpl36. The gene organization resembles the spc and the 3'-end of the S10 ribosomal protein operons of E. coli. The rpl5 is a new chloroplast gene not previously reported for any chloroplast genome to date and also not described as a nuclear-encoded, chloroplast protein gene. The operon contains at least 7 introns. We present evidence from primer extension analysis of chloroplast RNA for the correct in vivo splicing of five of the introns. Two of the introns within the rps8 gene flank an 8 bp exon, the smallest exon yet characterized in a chloroplast gene. Three introns resemble the classical group II introns of organelle genomes. The remaining 4 introns appear to be unique to the Euglena chloroplast DNA. They are uniform in size (95-109 nt), share common features with each other and are distinct from both group I and group II introns. We designate this new intron category as 'group III'. Images PMID:2477800

  20. Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors: a potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis.

    PubMed Central

    Virbasius, J V; Scarpulla, R C

    1994-01-01

    Mitochondrial transcription factor A (mtTFA), the product of a nuclear gene, stimulates transcription from the two divergent mitochondrial promoters and is likely the principal activator of mitochondrial gene expression in vertebrates. Here we establish that the proximal promoter of the human mtTFA gene is highly dependent upon recognition sites for the nuclear respiratory factors, NRF-1 and NRF-2, for activity. These factors have been previously implicated in the activation of numerous nuclear genes that contribute to mitochondrial respiratory function. The affinity-purified factors from HeLa cells specifically bind to the mtTFA NRF-1 and NRF-2 sites through guanine nucleotide contacts that are characteristic for each site. Mutations in these contacts eliminate NRF-1 and NRF-2 binding and also dramatically reduce promoter activity in transfected cells. Although both factors contribute, NRF-1 binding appears to be the major determinant of promoter function. This dependence on NRF-1 activation is confirmed by in vitro transcription using highly purified recombinant proteins that display the same binding specificities as the HeLa cell factors. The activation of the mtTFA promoter by both NRF-1 and NRF-2 therefore provides a link between the expression of nuclear and mitochondrial genes and suggests a mechanism for their coordinate regulation during organelle biogenesis. Images PMID:8108407

  1. An organelle-free assay for pea chloroplast Mg-chelatase: Resolution of the activity into soluble and membrane bound fractions

    SciTech Connect

    Walker, C.J.; Weinstein, J.D. )

    1991-05-01

    Mg-chelatase, which catalyzes the insertion of magnesium into protoporphyrin, lies at the branchpoint of heme and chlorophyll biosynthesis in chloroplasts. Since magnesium chelation is the first step unique to chlorophyll synthesis, one would expect this step to be highly regulated. However, to date little is known about the enzymology or regulation of Mg-chelatase due mostly to an inability to assay it's activity outside of the intact plastid. Here the authors report the first truly in vitro i.e. organelle-free, assay for Mg-chelatase. Mg-chelatase activity in intact pea chloroplasts which is 3 to 4 fold higher than in cucumber chloroplasts, survived chloroplast lysis and could be fractionated, by centrifugation, into supernatant and pellet components. Both of these fractions were required to reconstitute Mg-chelatase activity and both were inactivated by boiling; indicating that the enzyme is composed of soluble and membrane bound protein(s). The specific activity of the reconstituted system was typically 1 nmol Mg-Deuteroporphyrin/h/mg protein and activity was linear for at least 60 min under our assay conditions. ATP and magnesium were required for Mg-chelatase activity. The soluble component could be fractionated with ammonium sulfate. The product of the reaction was confirmed fluorometrically as the magnesium chelate of the porphyrin substrate. Crude separation of chloroplast membranes into thylakoids and envelopes, suggested that the membrane-bound component of Mg-chelatase is probably located in the envelope.

  2. Specimen preparation for cryogenic coherent X-ray diffraction imaging of biological cells and cellular organelles by using the X-ray free-electron laser at SACLA

    PubMed Central

    Kobayashi, Amane; Sekiguchi, Yuki; Oroguchi, Tomotaka; Okajima, Koji; Fukuda, Asahi; Oide, Mao; Yamamoto, Masaki; Nakasako, Masayoshi

    2016-01-01

    Coherent X-ray diffraction imaging (CXDI) allows internal structures of biological cells and cellular organelles to be analyzed. CXDI experiments have been conducted at 66 K for frozen-hydrated biological specimens at the SPring-8 Angstrom Compact Free-Electron Laser facility (SACLA). In these cryogenic CXDI experiments using X-ray free-electron laser (XFEL) pulses, specimen particles dispersed on thin membranes of specimen disks are transferred into the vacuum chamber of a diffraction apparatus. Because focused single XFEL pulses destroy specimen particles at the atomic level, diffraction patterns are collected through raster scanning the specimen disks to provide fresh specimen particles in the irradiation area. The efficiency of diffraction data collection in cryogenic experiments depends on the quality of the prepared specimens. Here, detailed procedures for preparing frozen-hydrated biological specimens, particularly thin membranes and devices developed in our laboratory, are reported. In addition, the quality of the frozen-hydrated specimens are evaluated by analyzing the characteristics of the collected diffraction patterns. Based on the experimental results, the internal structures of the frozen-hydrated specimens and the future development for efficient diffraction data collection are discussed. PMID:27359147

  3. Correlative Light and Scanning Electron Microscopy for Observing the Three-Dimensional Ultrastructure of Membranous Cell Organelles in Relation to Their Molecular Components.

    PubMed

    Koga, Daisuke; Kusumi, Satoshi; Bochimoto, Hiroki; Watanabe, Tsuyoshi; Ushiki, Tatsuo

    2015-12-01

    Although the osmium maceration method has been used to observe three-dimensional (3D) structures of membranous cell organelles with scanning electron microscopy (SEM), the use of osmium tetroxide for membrane fixation and the removal of cytosolic soluble proteins largely impairs the antigenicity of molecules in the specimens. In the present study, we developed a novel method to combine cryosectioning with the maceration method for correlative immunocytochemical analysis. We first immunocytochemically stained a semi-thin cryosection cut from a pituitary tissue block with a cryo-ultramicrotome, according to the Tokuyasu method, before preparing an osmium-macerated specimen from the remaining tissue block. Correlative microscopy was performed by observing the same area between the immunostained section and the adjacent face of the tissue block. Using this correlative method, we could accurately identify the gonadotropes of pituitary glands in various experimental conditions with SEM. At 4 weeks after castration, dilated cisternae of rough endoplasmic reticulum (RER) were distributed throughout the cytoplasm. On the other hand, an extremely dilated cisterna of the RER occupied the large region of the cytoplasm at 12 weeks after castration. This novel method has the potential to analyze the relationship between the distribution of functional molecules and the 3D ultrastructure in different composite tissues.

  4. A major determinant for gliding motility in Mycoplasma genitalium: the interaction between the terminal organelle proteins MG200 and MG491.

    PubMed

    Martinelli, Luca; Lalli, Daniela; García-Morales, Luis; Ratera, Mercè; Querol, Enrique; Piñol, Jaume; Fita, Ignacio; Calisto, Bárbara M

    2015-01-16

    Several mycoplasmas, such as the emergent human pathogen Mycoplasma genitalium, developed a complex polar structure, known as the terminal organelle (TO), responsible for a new type of cellular motility, which is involved in a variety of cell functions: cell division, adherence to host cells, and virulence. The TO cytoskeleton is organized as a multisubunit dynamic motor, including three main ultrastructures: the terminal button, the electrodense core, and the wheel complex. Here, we describe the interaction between MG200 and MG491, two of the main components of the TO wheel complex that connects the TO with the cell body and the cell membrane. The interaction between MG200 and MG491 has a KD in the 80 nm range, as determined by surface plasmon resonance. The interface between the two partners was confined to the "enriched in aromatic and glycine residues" (EAGR) box of MG200, previously described as a protein-protein interaction domain, and to a 25-residue-long peptide from the C-terminal region of MG491 by surface plasmon resonance and NMR spectroscopy studies. An atomic description of the MG200 EAGR box binding surface was also provided by solution NMR. An M. genitalium mutant lacking the MG491 segment corresponding to the peptide reveals specific alterations in cell motility and cell morphology indicating that the MG200-MG491 interaction plays a key role in the stability and functioning of the TO.

  5. Specimen preparation for cryogenic coherent X-ray diffraction imaging of biological cells and cellular organelles by using the X-ray free-electron laser at SACLA.

    PubMed

    Kobayashi, Amane; Sekiguchi, Yuki; Oroguchi, Tomotaka; Okajima, Koji; Fukuda, Asahi; Oide, Mao; Yamamoto, Masaki; Nakasako, Masayoshi

    2016-07-01

    Coherent X-ray diffraction imaging (CXDI) allows internal structures of biological cells and cellular organelles to be analyzed. CXDI experiments have been conducted at 66 K for frozen-hydrated biological specimens at the SPring-8 Angstrom Compact Free-Electron Laser facility (SACLA). In these cryogenic CXDI experiments using X-ray free-electron laser (XFEL) pulses, specimen particles dispersed on thin membranes of specimen disks are transferred into the vacuum chamber of a diffraction apparatus. Because focused single XFEL pulses destroy specimen particles at the atomic level, diffraction patterns are collected through raster scanning the specimen disks to provide fresh specimen particles in the irradiation area. The efficiency of diffraction data collection in cryogenic experiments depends on the quality of the prepared specimens. Here, detailed procedures for preparing frozen-hydrated biological specimens, particularly thin membranes and devices developed in our laboratory, are reported. In addition, the quality of the frozen-hydrated specimens are evaluated by analyzing the characteristics of the collected diffraction patterns. Based on the experimental results, the internal structures of the frozen-hydrated specimens and the future development for efficient diffraction data collection are discussed.

  6. Comparative analysis of isolated cellular organelles by means of soft X-ray contact microscopy with laser-plasma source and transmission electron microscopy.

    PubMed

    Limongi, T; Palladino, L; Tomassetti, G; Reale, L; Cesare, P; Flora, F; Aimola, P; Ragnelli, A M

    2004-04-01

    Soft X-ray contact microscopy (SXCM) is, at present, a useful tool for the examination at submicrometre resolution of biological systems maintained in their natural hydrated conditions. Among current X-ray-generating devices, laser-plasma sources are now easily available and, owing to their pulse nature, offer the opportunity to observe living biological samples before radiation damage occurs, even if the resolution achievable is not as high as with synchrotron-produced X-rays. To assess the potential of laser-plasma source SXCM in the study of cellular organelles, we applied it for the analysis of chloroplasts extracted from spinach leaves and mitochondria isolated from bovine heart and liver. X-ray radiation was generated by a nanosecond laser-plasma source, produced by a single shot excimer XeCl laser focused onto an yttrium target. The images obtained with SXCM were then compared with those produced by transmission electron microscopy observation of the same samples prepared with negative staining, a technique requiring no chemical fixation, in order to facilitate their interpretation and test the applicability of SXCM imaging.

  7. Characterization of two malaria parasite organelle translation elongation factor G proteins: the likely targets of the anti-malarial fusidic acid.

    PubMed

    Johnson, Russell A; McFadden, Geoffrey I; Goodman, Christopher D

    2011-01-01

    Malaria parasites harbour two organelles with bacteria-like metabolic processes that are the targets of many anti-bacterial drugs. One such drug is fusidic acid, which inhibits the translation component elongation factor G. The response of P. falciparum to fusidic acid was characterised using extended SYBR-Green based drug trials. This revealed that fusidic acid kills in vitro cultured P. falciparum parasites by immediately blocking parasite development. Two bacterial-type protein translation elongation factor G genes are identified as likely targets of fusidic acid. Sequence analysis suggests that these proteins function in the mitochondria and apicoplast and both should be sensitive to fusidic acid. Microscopic examination of protein-reporter fusions confirm the prediction that one elongation factor G is a component of parasite mitochondria whereas the second is a component of the relict plastid or apicoplast. The presence of two putative targets for a single inhibitory compound emphasizes the potential of elongation factor G as a drug target in malaria.

  8. The human macrophage sodium channel NaV1.5 regulates mycobacteria processing through organelle polarization and localized calcium oscillations.

    PubMed

    Carrithers, Lisette M; Hulseberg, Paul; Sandor, Matyas; Carrithers, Michael D

    2011-12-01

    Phagocytosis and intracellular processing of mycobacteria by macrophages are complex cellular processes that require spatial and temporal coordination of particle uptake, organelle movement, activation of signaling pathways, and channel-mediated ionic flux. Recent work demonstrated that human macrophage NaV1.5, an intracellular voltage-gated sodium channel expressed on late endosomes, enhances endosomal acidification and phagocytosis. Here, using bacillus Camille-Guerin (BCG) as a model of mycobacterial infection, we examined how this channel regulates phagocytosis and phagosome maturation in human macrophages. Knockdown of NaV1.5 reduced high capacity uptake of labeled BCG. BCG-containing, NaV1.5-expressing cells demonstrated localization of NaV1.5 and Rab-7 positive endosomes and mitochondria to periphagosome regions that was not observed in NaV1.5-deficient cells. Knockdown of the channel reduced the initial calcium response following bacterial challenge and prevented the generation of prolonged and localized calcium oscillations during phagosome maturation. Inhibition of the mitochondrial Na(+) /Ca(2+) exchanger also prevented prolonged calcium oscillations during phagosome maturation. These results suggest that NaV1.5 and mitochondrial-dependent calcium signaling regulate mycobacteria phagocytosis and phagosome maturation in human macrophages through spatial-temporal coordination of calcium signaling within a unique subcellular region.

  9. The Electronic Cell Organelle Detector.

    ERIC Educational Resources Information Center

    Litman, Sheila

    1997-01-01

    Presents an activity that reinforces concepts about plant and animal cells. Also gives students the opportunity to see how a battery works and how a series circuit operates. Allows students to be creative and makes them more receptive to learning about electricity. (JRH)

  10. Class XI Myosins Move Specific Organelles in Pollen Tubes and Are Required for Normal Fertility and Pollen Tube Growth in Arabidopsis1[OPEN

    PubMed Central

    Madison, Stephanie L.; Buchanan, Matthew L.; Glass, Jeremiah D.; McClain, Tarah F.; Park, Eunsook; Nebenführ, Andreas

    2015-01-01

    Pollen tube growth is an essential aspect of plant reproduction because it is the mechanism through which nonmotile sperm cells are delivered to ovules, thus allowing fertilization to occur. A pollen tube is a single cell that only grows at the tip, and this tip growth has been shown to depend on actin filaments. It is generally assumed that myosin-driven movements along these actin filaments are required to sustain the high growth rates of pollen tubes. We tested this conjecture by examining seed set, pollen fitness, and pollen tube growth for knockout mutants of five of the six myosin XI genes expressed in pollen of Arabidopsis (Arabidopsis thaliana). Single mutants had little or no reduction in overall fertility, whereas double mutants of highly similar pollen myosins had greater defects in pollen tube growth. In particular, myo11c1 myo11c2 pollen tubes grew more slowly than wild-type pollen tubes, which resulted in reduced fitness compared with the wild type and a drastic reduction in seed set. Golgi stack and peroxisome movements were also significantly reduced, and actin filaments were less organized in myo11c1 myo11c2 pollen tubes. Interestingly, the movement of yellow fluorescent protein-RabA4d-labeled vesicles and their accumulation at pollen tube tips were not affected in the myo11c1 myo11c2 double mutant, demonstrating functional specialization among myosin isoforms. We conclude that class XI myosins are required for organelle motility, actin organization, and optimal growth of pollen tubes. PMID:26358416

  11. Impact of light intensity and quality on chromatophore and nuclear gene expression in Paulinella chromatophora, an amoeba with nascent photosynthetic organelles.

    PubMed

    Zhang, Ru; Nowack, Eva C M; Price, Dana C; Bhattacharya, Debashish; Grossman, Arthur R

    2017-04-01

    Plastid evolution has been attributed to a single primary endosymbiotic event that occurred about 1.6 billion years ago (BYA) in which a cyanobacterium was engulfed and retained by a eukaryotic cell, although early steps in plastid integration are poorly understood. The photosynthetic amoeba Paulinella chromatophora represents a unique model for the study of plastid evolution because it contains cyanobacterium-derived photosynthetic organelles termed 'chromatophores' that originated relatively recently (0.09-0.14 BYA). The chromatophore genome is about a third the size of the genome of closely related cyanobacteria, but 10-fold larger than most plastid genomes. Several genes have been transferred from the chromatophore genome to the host nuclear genome through endosymbiotic gene transfer (EGT). Some EGT-derived proteins could be imported into chromatophores for function. Two photosynthesis-related genes (psaI and csos4A) are encoded by both the nuclear and chromatophore genomes, suggesting that EGT in Paulinella chromatophora is ongoing. Many EGT-derived genes encode proteins that function in photosynthesis and photoprotection, including an expanded family of high-light-inducible (ncHLI) proteins. Cyanobacterial hli genes are high-light induced and required for cell viability under excess light. We examined the impact of light on Paulinella chromatophora and found that this organism is light sensitive and lacks light-induced transcriptional regulation of chromatophore genes and most EGT-derived nuclear genes. However, several ncHLI genes have reestablished light-dependent regulation, which appears analogous to what is observed in cyanobacteria. We postulate that expansion of the ncHLI gene family and its regulation may reflect the light/oxidative stress experienced by Paulinella chromatophora as a consequence of the as yet incomplete integration of host and chromatophore metabolisms.

  12. C3–C4 intermediacy in grasses: organelle enrichment and distribution, glycine decarboxylase expression, and the rise of C2 photosynthesis

    PubMed Central

    Khoshravesh, Roxana; Stinson, Corey R.; Stata, Matt; Busch, Florian A.; Sage, Rowan F.; Ludwig, Martha; Sage, Tammy L.

    2016-01-01

    Photorespiratory glycine shuttling and decarboxylation in bundle sheath (BS) cells exhibited by C2 species is proposed to be the evolutionary bridge to C4 photosynthesis in eudicots. To evaluate this in grasses, we compare anatomy, cellular localization of glycine decarboxylase (GDC), and photosynthetic physiology of a suspected C2 grass, Homolepis aturensis, with these traits in known C2 grasses, Neurachne minor and Steinchisma hians, and C3 S. laxum that is sister to S. hians. We also use publicly available genome and RNA-sequencing data to examine the evolution of GDC subunits and enhance our understanding of the evolution of BS-specific GDC expression in C2 and C4 grasses. Our results confirm the identity of H. aturensis as a C2 species; GDC is confined predominantly to the organelle-enriched BS cells in H. aturensis and S. hians and to mestome sheath cells of N. minor. Phylogenetic analyses and data obtained from immunodetection of the P-subunit of GDC are consistent with the hypothesis that the BS dominant levels of GDC in C2 and C4 species are due to changes in expression of a single GLDP gene in M and BS cells. All BS mitochondria and peroxisomes and most chloroplasts in H. aturensis and S. hians are situated centripetally in a pattern identical to C2 eudicots. In S. laxum, which has C3-like gas exchange patterns, mitochondria and peroxisomes are positioned centripetally as they are in S. hians. This subcellular phenotype, also present in eudicots, is posited to initiate a facilitation cascade leading to C2 and C4 photosynthesis. PMID:27073202

  13. Antigen-processing organelles from DRB1*1101 and DRB1*1104 B cell lines display a differential degradation activity.

    PubMed

    Barbey, C; Watts, C; Corradin, G

    1995-01-01

    We have developed an in vitro assay for tetanus toxin (tt) C fragment (C-fr) degradation. Purified endosomes (abbreviated endosomes 1101 or 1104) and lysosomes (abbreviated lysosomes 1101 or 1104) from the DRB1*1101 (Gly 86) and DRB1*1104 (Val 86) B cell lines were used to degrade 125I-labeled C-fr in vitro. Using three distinct methods of analysis, we show that the capacity of endosomes and lysosomes to degrade the tt C-fr or tt synthetic Y-P30 peptide differed. Using sodium dodecylsulfate-polyacrylamide gel electrophoresis, 125I-labeled C-fr degradation patterns observed either with endosomes 1101/1104 or lysosomes 1101/1104 are distinct both in terms of the number of fragments and the kinetics of generation of the fragments. These results were confirmed by high-performance liquid chromatography analysis, where we observed that the elution profiles of the 125I-labeled Y-P30 peptide digested by endosomes 1101/1104 were different compared to those obtained with lysosomes 1101/1104. Furthermore, the kinetics of degradation of 125I-labeled Y-P30 were faster with lysosomes 1104 than with lysosomes 1101. This difference in activity of the 1101 and 1104 organelles was also found in a functional assay where we showed that the activation capacity of the P30 peptide was diminished when digested by lysosome 1104, regardless of the antigen-presenting cell (APC) used, whereas endosomes 1101 or lysosomes 1101 modified P30 peptide in a form that discriminated between presentation by 1101 or 1104 APC. Taken together, these results suggest that the differential processing and presentation displayed by the DRB1*1101 and DRB1*1104 APC is due partly to a different enzymatic content and partly to the dimorphism at position DR beta 86.

  14. C3-C4 intermediacy in grasses: organelle enrichment and distribution, glycine decarboxylase expression, and the rise of C2 photosynthesis.

    PubMed

    Khoshravesh, Roxana; Stinson, Corey R; Stata, Matt; Busch, Florian A; Sage, Rowan F; Ludwig, Martha; Sage, Tammy L

    2016-05-01

    Photorespiratory glycine shuttling and decarboxylation in bundle sheath (BS) cells exhibited by C2 species is proposed to be the evolutionary bridge to C4 photosynthesis in eudicots. To evaluate this in grasses, we compare anatomy, cellular localization of glycine decarboxylase (GDC), and photosynthetic physiology of a suspected C2 grass, Homolepis aturensis, with these traits in known C