Science.gov

Sample records for m-type barium hexaferrite

  1. Mössbauer and X-ray diffraction study of Co2+-Si4+ substituted M-type barium hexaferrite BaFe12-2хСохSiхO19±γ

    NASA Astrophysics Data System (ADS)

    Solovyova, E. D.; Pashkova, E. V.; Ivanitski, V. P.; V‧yunov, O. I.; Belous, A. G.

    2013-03-01

    Using X-ray powder diffractions, Mössbauer spectroscopy, and magnetic measurements, the effect of dopants (Co2++Si4+) on the fine structure and magnetic properties of M-type barium hexaferrite prepared by hydroxide and carbonate precipitations has been studied. It has been shown that the magnetic properties of M-type barium hexaferrite can be controlled by heterovalent substitution 2Fe3+→Со2++Sі4+.

  2. Could binary mixture of Nd-Ni ions control the electrical behavior of strontium-barium M-type hexaferrite nanoparticles?

    SciTech Connect

    Iqbal, Muhammad Javed; Farooq, Saima

    2011-05-15

    Research highlights: {yields} Strontium-barium hexaferrites (Sr{sub 0.5}Ba{sub 0.5}Fe{sub 12}O{sub 19}) in single magnetoplumbite phase solid structure are synthesized by the co-precipitation method. {yields} Structural and electrical properties of Nd-Ni substituted ferrites are investigated. {yields} These ferrite materials possess high electrical resistivity (108 {Omega} cm) that is essential to curb the eddy current loss, which is pre-requisite for surface mount devices. -- Abstract: Cationic substitution in M-type hexaferrites is considered to be an important tool for modification of their electrical properties. This work is part of our comprehensive study on the synthesis and characterization of Nd-Ni doped strontium-barium hexaferrite nanomaterials of nominal composition Sr{sub 0.5}Ba{sub 0.5-x}Nd{sub x}Fe{sub 12-y}Ni{sub y}O{sub 19} (x = 0.00-0.10; y = 0.00-1.00). Doping with this binary mixture modulates the physical and electrical properties of strontium-barium hexaferrite nanoparticles. Structural and electrical properties of the co-precipitated ferrites are investigated using state-of-the-art techniques. The results of X-ray diffraction analysis reveal that the lattice parameters and cell volume are inversely related to the dopant content. Temperature dependent DC-electrical resistivity measurements infer that resistivity of strontium-barium hexaferrites decreases from 1.8 x 10{sup 10} to 2.0 x 10{sup 8} {Omega} cm whereas the drift mobility, dielectric constant and dielectric loss tangent are directly related to the Nd-Ni content. The results of the study demonstrate a relationship between the modulation of electrical properties of substituted ferrites and nature of cations and their lattice site occupancy.

  3. Magnetic study of M-type doped barium hexaferrite nanocrystalline particles

    SciTech Connect

    Alsmadi, A. M.; Bsoul, I.; Mahmood, S. H.; Alnawashi, G.; Prokeš, K.; Siemensmeyer, K.; Klemke, B.; Nakotte, H.

    2013-12-28

    Co-Ti and Ru-Ti substituted barium ferrite nanocrystalline particles BaFe{sub 12−2x}Co{sub x}Ti{sub x}O{sub 19} with (0≤x≤1) and BaFe{sub 12−2x}Ru{sub x}Ti{sub x}O{sub 19} with (0≤x≤0.6) were prepared by ball milling method, and their magnetic properties and their temperature dependencies were studied. The zero-field-cooled (ZFC) and field-cooled (FC) processes were recorded at low magnetic fields and the ZFC curves displayed a broad peak at a temperature T{sub M}. In all samples under investigation, a clear irreversibility between the ZFC and FC curves was observed below room temperature, and this irreversibility disappeared above room temperature. These results were discussed within the framework of random particle assembly model and associated with the magnetic domain wall motion. The resistivity data showed some kind of a transition from insulator to perfect insulator around T{sub M}. At 2 K, the saturation magnetization slightly decreased and the coercivity dropped dramatically with increasing the Co-Ti concentration x. With Ru-Ti substitution, the saturation magnetization showed small variations, while the coercivity decreased monotonically, recording a reduction of about 73% at x = 0.6. These results were discussed in light of the single ion anisotropy model and the cationic distributions based on previously reported neutron diffraction data for the CoTi substituted system, and the results of our Mössbauer spectroscopy data for the RuTi substituted system.

  4. Structural and magnetic properties of Vanadium Doped M- Type Barium Hexaferrite (BaFe12-xVxO19)

    NASA Astrophysics Data System (ADS)

    Awadallah, Ahmad; Mahmood, Sami H.; Maswadeh, Yazan; Bsoul, Ibrahim; Aloqaily, Aynour

    2015-10-01

    Precursor powders of barium hexaferrite doped with vanadium, BaFe12-xVxO19 with (x = 0.1, 0.2, 0.3, 0.4, 0.5), were prepared using the ball milling technique and then sintered at different temperatures for 2 h. The structural properties of the prepared samples were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM), while the magnetic properties were examined by the vibrating sample magnetometry (VSM). XRD and SEM studies of the samples sintered at 1100° C indicated the presence of Ba3V2O8 and α-Fe2O3 non-magnetic oxide phases in addition to BaM hexaferrite phase. The fractions of the nonmagnetic oxide phases were found to increase with increasing x, and sintering the samples at temperatures higher than 1100° C was found to reduce the amounts of these non-magnetic phases only slightly. However, the addition of barium in excess of the stoichiometric ratio was found to remove the α-Fe2O3 oxide, and improve the saturation magnetization of the samples significantly. In addition, washing these samples with HCl was found to improve the saturation magnetization further. The effect of sintering the samples at higher temperatures was also found to reduce the coercivity due to growth of the particle size. However, the coercivity of all samples remained high enough for potential permanent magnet and magnetic recording applications.

  5. Synthesis of M-type hexaferrites from steel pickling liquors (ID 109)

    NASA Astrophysics Data System (ADS)

    Dufour, J.; Latorre, R.; Alcalá, E. M.; Negro, C.; Formoso, A.; López-Mateos, F.

    1996-05-01

    The recovery of steel pickling liquors is one of the main environmental aspects that the steelmaking industry must resolve. We propose the synthesis of barium M-type hexaferrite from these liquors as a recovery treatment. Two methods of synthesis have been studied: a variation of the ceramic method, and an oxicoprecipitation process. Products with excellent magnetic properties have been obtained.

  6. Designed microstructures in textured barium hexaferrite

    NASA Astrophysics Data System (ADS)

    Hovis, David Brian

    It is a fundamental principle of materials science that the microstructure of a material defines its properties and ultimately its performance for a given application. A prime example of this can be found in the large conch shell Strombus gigas, which has an intricate microstructure extending across five distinct length scales. This microstructure gives extraordinary damage tolerance to the shell. The structure of Strombus gigas cannot be replicated in a modern engineering ceramic with any existing processing technique, so new processing techniques must be developed to apply this structure to a model material. Barium hexaferrite was chosen as a model material to create microstructures reminiscent of Strombus gigas and evaluate its structure-property relations. This work describes novel processing methods to produce textured barium hexaferrite with no coupling between the sample geometry and the texture direction. This technique, combining magnetic field-assisted gelcasting with templated grain growth, also allows multilayer samples to be fabricated with different texture directions in adjacent layers. The effects of adding either B2O3 or excess BaCO 3 on the densification and grain growth of barium hexaferrite was studied. The texture produced using this technique was assessed using orientation imaging microscopy (OIM) at Oak Ridge National Laboratory. These measurements showed peak textures as high as 60 MRD and sharp interfaces between layers cast with different texture directions. The effect of oxygen on the quality of gelcasting is also discussed, and it is shown that with proper mold design, it is possible to gelcast multiple layers with differing texture directions without delamination. Monolithic and multilayer samples were produced and tested in four point bending to measure the strength and work of fracture. Modulus measurements, made with the ultrasonic pulse-echo technique, show clear signs of microcracking in both the isotropic and textured samples

  7. Effect of Mg-Zr substitution and microwave processing on magnetic properties of barium hexaferrite

    NASA Astrophysics Data System (ADS)

    Sharma, Manju; Kashyap, Subhash C.; Gupta, H. C.

    2014-09-01

    The effect of substitution of Mg-Zr for Fe in M-type barium hexaferrite (BHF) and of processing technique on the magnetic properties and microstructure has been reported in the present paper. Significant changes in magnetic properties have been observed on substituting Fe ions by Mg and Zr ions in M-type barium hexaferrite, i.e. BaFe12O19 as well as by single mode microwave processing. The single mode microwave processing of the undoped sample reduced the coercivity to nearly 25% of the value for the sintered sample along with the enhancement in magnetization, thereby making it suitable for memory devices. The improvement in magnetic properties is explained on the basis of microstructure. The addition of substituents, though assisted in the formation of single phase, it, however, degraded the magnetization besides decreasing the coercivity, possibly due to substitution at the octahedral sites.

  8. Spherical barium ferrite nanoparticles and hexaferrite single crystals for information data storage and RF devices

    NASA Astrophysics Data System (ADS)

    Jalli, Jeevan Prasad

    circulators and isolators. Traditional RF devices using spinel or garnets are disadvantageous in the millimeter range frequencies, since they require a strong external bias field provided by external permanent magnets. A promising approach to circumvent this problem is to use the high crystalline anisotropy field in the hexaferrites. Single crystals of M and Y-type hexaferrites show promising results with their low microwave losses and excellent magnetic and physical properties. In this dissertation efforts to grow, high-quality bulk M and Y-type single crystals with the aim to study and improve their magnetic and microwave properties with respect to different cation dopant elements is reported. Also, a liquid phase epitaxial technique was developed to grow thick barium ferrite films onto semiconductor substrates. Finally, magnetic domain patterns on bulk M-type single crystals was studied by using a magnetic force microscopy technique.

  9. Electromagnetic properties and microwave absorbing characteristics of doped barium hexaferrite

    NASA Astrophysics Data System (ADS)

    Ghasemi, A.; Hossienpour, A.; Morisako, A.; Saatchi, A.; Salehi, M.

    2006-07-01

    M-type barium hexaferrite BaFe 12-x(Mn 0.5Cu 0.5Ti) x/2O 19 ( x varying from 0 to 3 in steps of 1) have been synthesized by the usual ceramic sintering method. The ferrite powders possess hexagonal shape and are well separated from one another. The powder of these ferrites were mixed with polyvinylchloride plasticizer to be converted in to a microwave absorbing composite. X-ray diffraction (XRD), scanning electron microscope (SEM), ac susceptometer, vibrating sample magnetometer, and vector network analyzer were used to analyze its structure, electromagnetic and microwave absorption properties. The results showed that, the magnetoplumbite structures for all the samples have been formed. The sample having higher magnetic susceptibility and coercivity exhibits a larger microwave absorbing ability. Also, the present investigation demonstrates that microwave absorber using BaFe 12-x (Mn 0.5Cu 0.5Ti) x/2O 19 ( x=2 and 3)/polyvinylchloride can be fabricated for the applications over 15 GHz, with reflection loss more than -25 dB for specific frequencies, by controlling the molar ratio of the substituted ions.

  10. Fabrication of flexible magnetic papers based on bacterial cellulose and barium hexaferrite with improved mechanical properties

    NASA Astrophysics Data System (ADS)

    Lim, Guh-Hwan; Lee, Jooyoung; Kwon, Nayoung; Bok, Shingyu; Sim, Hwansu; Moon, Kyoung-Seok; Lee, Sang-Eui; Lim, Byungkwon

    2016-09-01

    We report on a simple approach to fabricate mechanically robust magnetic cellulose papers containing M-type barium hexaferrite (BaFe12O19) nanoplates. BaFe12O19 nanoplates were synthesized by a hydrothermal method and then chemically functionalized by using a silane coupling agent. The magnetic cellulose papers prepared with the silane-treated BaFe12O19 nanoplates exhibited improved mechanical properties with tensile strength of 58.5 MPa and Young's modulus of 2.95 GPa.

  11. Improvement of the thermal properties of a polystyrene via inclusion of barium hexaferrite particles

    NASA Astrophysics Data System (ADS)

    Hemeda, O. M.; El-Sayed, Adly H.; Tawfik, A.; Hamad, Mahmoud A.

    2016-07-01

    M-type barium hexaferrite (BaM) particles-polystyrene (PS) composite has been successfully synthesized. Fourier transform infrared spectra confirm the synthesis of the BaM-PS composite. Scanning electron microscopy shows that BaM particles are attached rather well to the PS matrix and have variable sizes and shapes. Differential and thermogravimetric analysis indicate that PS chains are well coupled within the BaM powder and the thermal stability of PS is enhanced by incorporating BaM in the PS matrix.

  12. Fabrication of flexible magnetic papers based on bacterial cellulose and barium hexaferrite with improved mechanical properties

    NASA Astrophysics Data System (ADS)

    Lim, Guh-Hwan; Lee, Jooyoung; Kwon, Nayoung; Bok, Shingyu; Sim, Hwansu; Moon, Kyoung-Seok; Lee, Sang-Eui; Lim, Byungkwon

    2016-08-01

    We report on a simple approach to fabricate mechanically robust magnetic cellulose papers containing M-type barium hexaferrite (BaFe12O19) nanoplates. BaFe12O19 nanoplates were synthesized by a hydrothermal method and then chemically functionalized by using a silane coupling agent. The magnetic cellulose papers prepared with the silane-treated BaFe12O19 nanoplates exhibited improved mechanical properties with tensile strength of 58.5 MPa and Young's modulus of 2.95 GPa. [Figure not available: see fulltext.

  13. Improvement of the thermal properties of a polystyrene via inclusion of barium hexaferrite particles

    NASA Astrophysics Data System (ADS)

    Hemeda, O. M.; El-Sayed, Adly H.; Tawfik, A.; Hamad, Mahmoud A.

    2016-07-01

    M-type barium hexaferrite (BaM) particles–polystyrene (PS) composite has been successfully synthesized. Fourier transform infrared spectra confirm the synthesis of the BaM–PS composite. Scanning electron microscopy shows that BaM particles are attached rather well to the PS matrix and have variable sizes and shapes. Differential and thermogravimetric analysis indicate that PS chains are well coupled within the BaM powder and the thermal stability of PS is enhanced by incorporating BaM in the PS matrix.

  14. The structural properties of barium cobalt hexaferrite powder prepared by a simple heat treatment method

    NASA Astrophysics Data System (ADS)

    Chauhan, Chetna; Jotania, Rajshree

    2016-05-01

    The W-type barium hexaferrite was prepared using a simple heat treatment method. The precursor was calcinated at 650°C for 3 hours and then slowly cooled to room temperature in order to obtain barium cobalt hexaferrite powder. The prepared powder was characterised by different experimental techniques like XRD, FTIR and SEM. The X-ray diffractogram of the sample shows W-and M phases. The particle size calculated by Debye Scherrer formula. The FTIR spectra of the sample was taken at room temperature by using KBr pallet method which confirms the formation of hexaferrite phase. The morphological study on the hexaferrite powder was carried out by SEM analysis.

  15. Brillouin function characteristics for La-Co substituted barium hexaferrites

    SciTech Connect

    Wu, Chuanjian E-mail: ksun@uestc.edu.cn; Yu, Zhong; Sun, Ke E-mail: ksun@uestc.edu.cn; Guo, Rongdi; Jiang, Xiaona; Lan, Zhongwen; Yang, Yan

    2015-09-14

    La-Co substituted barium hexaferrites with the chemical formula of Ba{sub 1−x}La{sub x}Fe{sub 12−x}Co{sub x}O{sub 19} (x = 0.0, 0.1, 0.3, and 0.5), prepared by a conventional ceramic method, were systematically investigated by Raman spectra, X-ray photoelectron spectroscopy, Rietveld refinement of X-ray diffraction patterns, and vibrating sample magnetometer. The result manifests that all the compounds are crystallized in magnetoplumbite hexagonal structure. Trivalent cobalt ions prevailingly occupy the 2a, 4f{sub 1}, and 12k sites. According to Néel model of collinear-spin ferrimagnetism, the molecular-field coefficients ω{sub bf2}, ω{sub kf1}, ω{sub af1}, ω{sub kf2}, and ω{sub bk} of La-Co substituted barium hexaferrites have been calculated using the nonlinear fitting method, and the magnetic moment of five sublattices (2a, 2b, 4f{sub 1}, 4f{sub 2}, and 12k) versus temperature T has been also investigated. The fitting results are coincided well with the experimental data. Moreover, with the increase of La-Co substitution amount x, the molecular-field coefficients ω{sub bf2} and ω{sub af1} decrease constantly, while the molecular-field coefficients ω{sub kf1}, ω{sub kf2}, and ω{sub bk} show a slight change.

  16. First observation of magnetoelectric effect in M-type hexaferrite thin films

    SciTech Connect

    Mohebbi, Marjan; Ebnabbasi, Khabat; Vittoria, Carmine

    2013-05-07

    The magnetoelectric (ME) effect in M-type hexaferrite thin films is reported. Prior to this work, the ME effect in hexaferrite materials was observed only in bulk polycrystalline materials. Thin films of SrCo{sub 2}Ti{sub 2}Fe{sub 8}O{sub 19} were grown on sapphire (0001) using pulsed laser deposition. The thin films were characterized by X-ray diffractometer, scanning electron microscope, energy-dispersive spectroscopy, vibrating sample magnetometer, and ferromagnetic resonance. We measured saturation magnetization of 1250 G, g-factor of 2.66, and coercive field of 20 Oe for these magnetoelectric M-type hexaferrite thin films. The magnetoelectric effect was confirmed by monitoring the change rate in remanence magnetization with the application of DC voltage at room temperature and it gave rise to changes in remanence in the order of 12.8% with the application of only 1 V (DC voltage). We deduced a magnetoelectric coupling, {alpha}, of 6.07 Multiplication-Sign 10{sup -9} s m{sup -1} in SrCo{sub 2}Ti{sub 2}Fe{sub 8}O{sub 19} thin films.

  17. The Effects of Different Precursor Milling Processes on the Phase Evolution of Nanocrystalline Barium Hexaferrite

    NASA Astrophysics Data System (ADS)

    Ataie, A.; Sheikhi-Moghaddam, K.; Kashani-Bozorg, S. F.; Sargheini, J.

    2010-03-01

    Nano-crystalline barium hexaferrite was synthesized using a coupled mechano-chemical processing (co-precipitation/mechanical milling); initially co-precipitated product prepared from aqueous solutions of iron and barium chlorides with a Fe/Ba molar ratio of 11 was mechanically milled employing two different milling processes (low energy jar mill and high energy planetary mill). The non-milled and milled co-precipitated materials were then annealed at various temperatures. The thermal properties, phase composition and morphology of samples were investigated. XRD and DTA/TGA results showed that formation of barium hexaferrite occurs at relatively low temperature using planetary milling technique. Also, no BaFe2O4 (intermediate non magnetic phase) was detected by XRD in the milled products. SEM studies exhibited that the mean particle size of barium hexaferrite dramatically increases with increasing annealing temperature from 700 to 1100° C.

  18. Effect of sintering temperature on structural property of X-type barium-zinc hexaferrites

    NASA Astrophysics Data System (ADS)

    Kagdi, Amrin; Solanki, Neha; Jotania, Rajshree B.

    2016-05-01

    X-type Barium-Zinc hexaferrite powder with chemical composition Ba2Zn2Fe28O46 has been prepared using citrate gel auto combustion technique. The combusted powder waspre-heated at 550 °C for 4 hours followed by final calcinations of 1100 °C and 1250 °C for 5 hoursrespectively. Prepared hexaferrite samples were characterizedusingdifferent instrumental techniques such as FTIR and XRD. XRD analysis of the sample calcined at 1250 °C revealed formation of mono phase of X-type hexaferrite; while the sample calcined at 1100 °C shows multiphases of M, W and X-type hexaferrites. FTIR spectra of both samples show stretching of metal-oxide bands.

  19. Structure and hard magnetic properties of barium hexaferrite with and without La 2O 3 prepared by ball milling

    NASA Astrophysics Data System (ADS)

    Babu, V.; Padaikathan, P.

    2002-03-01

    The barium hexaferrites have been prepared by ball milling of a BaO 2 and Fe 2O 3 mixture followed by thermal heat treatments. The structure and magnetic properties were investigated using X-ray diffraction, scanning electron microscopy and vibrating sample magnetometer techniques. The effect of grain refiner was also studied and it was found that the hard magnetic properties were improved significantly. The sintered product of barium hexaferrite powders prepared from ball milling has higher coercive force than that of other barium hexaferrite made from oxide/carbonate.

  20. Synthesis and magnetic properties of Co-Ti-Bi codoped M-type barium ferrite

    NASA Astrophysics Data System (ADS)

    Jia, Lijun; Zhang, Huaiwu; Yin, Shuiming; Bai, Feiming; Liu, Baoyuan; Wen, Qiye; Shen, Jian

    2011-04-01

    The effects of Co2+, Ti4+, and Bi3+ substitution on the microstructures and properties of low-temperature fired M-type barium hexaferrites have been studied in order to adapt the development of low-temperature cofired ferrites technology and produce gyromagnetic devices with a multilayer process. It is found that Bi3+ ions can enter into the 2a sublattice and consequently enhance the grain growth and densification due to the activation of the lattice, which in turn first lead to an increase and then a decrease of Ms. The substitution of Bi3+ ions is beneficial to forming the M phase and lowers the sintering temperature to about 900 °C, which is ideal for cofiring with silver paste. Scanning electron microscope and x-ray diffraction analysis have shown that the samples have excellent crystalline grains with a uniform size about 1-2 μm. Moreover, nonmagnetic Ti4+ ions prefer to enter the 4fVI octahedral sites, giving rise to the weakening of the strong 12k-4fVI superexchange path and thus the isotropic exchange energy approaches the other second-order terms on the magnetic Hamiltonian, such as the antisymmetric interaction or even the magnetocrystalline anisotropy. With increasing the substitution content, some Co2+ ions, which locate in octahedral 12k sites, give a strong planar contribution to the anisotropy. Therefore, Ms and Hc decrease with the Co-Ti-substitution.

  1. Site occupancy and magnetic properties of Al-substituted M-type strontium hexaferrite

    SciTech Connect

    Dixit, Vivek; Nandadasa, Chandani N.; Kim, Seong-Gon; Kim, Sungho; Park, Jihoon; Hong, Yang-Ki; Liyanage, Laalitha S. I.; Moitra, Amitava

    2015-06-28

    We use first-principles total-energy calculations based on density functional theory to study the site occupancy and magnetic properties of Al-substituted M-type strontium hexaferrite SrFe{sub 12−x}Al{sub x}O{sub 19} with x = 0.5 and x = 1.0. We find that the non-magnetic Al{sup 3+} ions preferentially replace Fe{sup 3+} ions at two of the majority spin sites, 2a and 12k, eliminating their positive contribution to the total magnetization causing the saturation magnetization M{sub s} to be reduced as Al concentration x is increased. Our formation probability analysis further provides the explanation for increased magnetic anisotropy field when the fraction of Al is increased. Although Al{sup 3+} ions preferentially occupy the 2a sites at a low temperature, the occupation probability of the 12k site increases with the rise of the temperature. At a typical annealing temperature (>700 °C) Al{sup 3+} ions are much more likely to occupy the 12k site than the 2a site. Although this causes the magnetocrystalline anisotropy K{sub 1} to be reduced slightly, the reduction in M{sub s} is much more significant. Their combined effect causes the anisotropy field H{sub a} to increase as the fraction of Al is increased, consistent with recent experimental measurements.

  2. Epitaxial growth of 100-μm thick M-type hexaferrite crystals on wide bandgap semiconductor GaN/Al{sub 2}O{sub 3} substrates

    SciTech Connect

    Hu, Bolin; Su, Zhijuan; Bennett, Steve; Chen, Yajie Harris, Vincent G.

    2014-05-07

    Thick barium hexaferrite BaFe{sub 12}O{sub 19} (BaM) films having thicknesses of ∼100 μm were epitaxially grown on GaN/Al{sub 2}O{sub 3} substrates from a molten-salt solution by vaporizing the solvent. X-ray diffraction measurement verified the growth of BaM (001) textured growth of thick films. Saturation magnetization, 4πM{sub s}, was measured for as-grown films to be 4.6 ± 0.2 kG and ferromagnetic resonance measurements revealed a microwave linewidth of ∼100 Oe at X-band. Scanning electron microscopy indicated clear hexagonal crystals distributed on the semiconductor substrate. These results demonstrate feasibility of growing M-type hexaferrite crystal films on wide bandgap semiconductor substrates by using a simple powder melting method. It also presents a potential pathway for the integration of ferrite microwave passive devices with active semiconductor circuit elements creating system-on-a-wafer architectures.

  3. Magnetic properties of La-Co substituted M-type strontium hexaferrites prepared by polymerizable complex method

    NASA Astrophysics Data System (ADS)

    Kikuchi, Takeyuki; Nakamura, Tatsuya; Yamasaki, Tohru; Nakanishi, Makoto; Fujii, Tatsuo; Takada, Jun; Ikeda, Yasunori

    2010-08-01

    Magnetic properties of La-Co substituted M-type strontium hexaferrites were studied. The samples were prepared by polymerizable complex method. Crystal structure of samples has been investigated by powder X-ray diffraction (XRD). Single-phase M-type strontium hexaferrites with chemical composition of Sr 1.05- xLa xFe 12- xCo xO 19 ( x=0-0.4) were formed by heating at 1173 K for 24 h in air. Magnetic properties were discussed by measurements of M- H curves with vibrating sample magnetometer (VSM). La-Co substituted M-type strontium hexaferrites prepared by polymerizable complex method showed typical magnetic hysteresis of hard ferrite. The coercive force increased significantly by La-Co substitution with polymerizable complex method. Maximum coercive force achieved in this study is 8.0 kOe (640 kA/m). Scanning electron microscopy revealed that the prepared ferrite particles have plate-like shape of diameter range between 20 and 500 nm.

  4. Magnetic Properties of a Highly Textured Barium Hexa-Ferrite Quasi-Single Crystal and Its Application in Low-Field Biased Circulators

    NASA Astrophysics Data System (ADS)

    Liu, Junliang; Zeng, Yanwei; Su, Zhijuan; Geiler, Michael; Chen, Yajie; Harris, Vincent G.

    2016-10-01

    A highly textured M-type barium hexa-ferrite (BaM) quasi-single crystal was fabricated by a magnetic forming plus liquid participation sintering technique. Its grain orientation degree was determined to be 97.3% with the tile angle no more that 5°. The magnetization behavior from its angular magnetic hysteresis loops was very similar to that of a BaM single crystal. Moreover, the feasibility of practical utilization of the as-fabricated BaM quasi-single crystal in low-field biased circulators was certificated by a simulation method.

  5. Properties of Cr-substituted M-type barium ferrites prepared by nitrate citrate gel-autocombustion process

    NASA Astrophysics Data System (ADS)

    Ounnunkad, S.; Winotai, P.

    2006-06-01

    The Cr-substituted M-type barium hexaferrites, BaFe 12-xCr xO 19, with x=0.0-0.8 have been successfully prepared by nitrate-citrate auto-combustion process using citric acid as a fuel/reductant and nitrates as oxidants. The resulting precursors were calcined at 1100 °C for 1 h and followed by sintering at 1200 °C for 12 h in oxygen atmosphere. The ferrites were systematically investigated by using powder X-ray diffractometer (XRD), magnetic hysteresis recorder, Mössbauer spectrometer, and scanning electron microscope (SEM). The XRD data show the formation of pure magnetoplumbite phase without any other impurity phases. Both a and c lattice parameters calculated by the Rietveld method systematically decrease with increasing Cr content. The effects of Cr 3+ ions on the barium ferrites were reported and discussed in detail. The site preference of Cr 3+ and magnetic properties of the ferrites have been studied using Mössbauer spectra and hystereses. The results show that the magnetic properties are closely related to the distributions of Cr 3+ ions on the five crystallographic sites. The saturation magnetization systematically decreases, however, the coercivity increases with Cr concentration. The magnetization and Mössbauer results indicate that the Cr 3+ ions preferentially occupy the 2a, 12k, and 4f VI sites. The average size of hexagonal platelets obtained by SEM photographs tends to decrease with respect to Cr content.

  6. Structural and magnetic properties of conventional and microwave treated Ni-Zr doped barium strontium hexaferrite

    SciTech Connect

    Kanagesan, S.; Jesurani, S.; Velmurugan, R.; Prabu, S.; Kalaivani, T.

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Saturation magnetization increases whereas the coercivity decreases. Black-Right-Pointing-Pointer The transition from hard phase to soft phase. Black-Right-Pointing-Pointer Therefore, it is used for high-density magnetic recording applications. -- Abstract: M-type hexaferrites of component B{sub 0.5}Sr{sub 0.5}Fe{sub 12-2x}Ni{sub x}Zr{sub x}O{sub 19} were investigated. The XRD patterns show single phase of the magnetoplumbite barium strontium ferrite and no other phases were present. Significant increase in line broadening of the XRD patterns was observed indicating a decrease of grain size. The samples exhibit well defined crystallization; all of them are hexagonal platelet grains. As the substitution level increased x = 0.2-0.8 mol%, the grains are agglomerated and the average diameter increased. The H{sub c} decreases remarkably with increasing Ni and Zr ions content. It was found that the particle size could be effectively decreased and coercivity H{sub c} could easily be controlled by varying the concentration (x) without significantly decreasing saturation magnetization. In particular, Ba{sub 0.5}Sr{sub 0.5}Fe{sub 12-2x}Ni{sub x}Zr{sub x}O{sub 19} with x = 0.2, 0.4, 0.6, 0.8 mol% has suitable magnetic characteristics with particle size small enough for high-density magnetic recording applications.

  7. Enhancement of Curie temperature of barium hexaferrite by dense electronic excitations

    SciTech Connect

    Sharma, Manju; Kashyap, Subhash C.; Gupta, Hem C.; Dimri, Mukesh C.; Asokan, K.

    2014-07-15

    Curie temperature of polycrystalline barium hexaferrite (BaFe{sub 12}O{sub 19}), prepared by conventional solid state technique, is anomalously and significantly enhanced (by nearly 15%) by energetic heavy ion irradiation (150 MeV, Ag{sup 12+}) at ambient temperature due to dense electronic excitations Moderate fluence (1 × 10{sup 12} ions/cm{sup 2}) induces structural defects giving rise to above enhancement. As established by X-ray diffraction, scanning electron microscopy and Raman studies, higher fluence (1 × 10{sup 13} ions/cm{sup 2}) has structurally transformed the sample to amorphous phase with marginal change in magnetization and Curie temperature.

  8. Effects of Heat-Treatment Temperature on the Microstructure, Electrical and Dielectric Properties of M-Type Hexaferrites

    NASA Astrophysics Data System (ADS)

    Ali, Ihsan; Islam, M. U.; Awan, M. S.; Ahmad, Mukhtar

    2014-02-01

    M-type hexaferrite BaCr x Ga x Fe12-2 x O19 ( x = 0.2) powders have been synthesized by use of a sol-gel autocombustion method. The powder samples were pressed into 12-mm-diameter pellets by cold isostatic pressing at 2000 bar then heat treated at 700°C, 800°C, 900°C, and 1000°C. X-ray diffraction patterns of the powder sample heat treated at 1000°C confirmed formation of the pure M-type hexaferrite phase. The electrical resistivity at room temperature was significantly enhanced by increasing the temperature of heat treatment and approached 5.84 × 109 Ω cm for the sample heat treated at 1000°C. Dielectric constant and dielectric loss tangent decreased whereas conductivity increased with increasing applied field frequency in the range 1 MHz-3 GHz. The dielectric properties and ac conductivity were explained on the basis of space charge polarization in accordance with the Maxwell-Wagner two-layer model and Koop's phenomenological theory. The single-phase synthesized materials may be useful for high-frequency applications, for example reduction of eddy current losses and radar absorbing waves.

  9. Barium hexaferrite/graphene oxide: controlled synthesis and characterization and investigation of its magnetic properties

    NASA Astrophysics Data System (ADS)

    Maddahfar, Mahnaz; Ramezani, Majid; Mostafa Hosseinpour-Mashkani, S.

    2016-08-01

    In the present study, barium hexaferrite nanocrystals (BaFe12O19) were successfully synthesized through the two-step sol-gel method in an aqueous solution in the presence of barium nitrate and iron (III) nitrate. Besides, the effect of the molar ratio of graphene oxide on the particle size and magnetic properties of final product was investigated. In this research, glucose plays a role as capping and chelating agent in the synthesis of BaFe12O19/graphene oxide. Moreover, it was found that the size, morphology, and magnetic properties of the final products could be greatly influenced by the molar ratio of graphene oxide. BaFe12O19/graphene oxide was characterized by using X-ray diffraction, scanning electron microscope, Fourier transform infrared spectroscopy, vibrating sample magnetometer, and energy-dispersive spectrometry.

  10. Influence of sintering temperature on structural, morphological and magnetic properties of barium hexaferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Shafqat, M. Burhan; Arif, Omer; Atiq, Shahid; Saleem, Murtaza; Ramay, Shahid M.; Mahmood, Asif; Naseem, Shahzad

    2016-07-01

    Barium hexaferrite nanoparticles are attractive for modern data storage and microwave devices due to their unique properties. Single phase synthesis of barium hexaferrite using sol-gel auto-combustion route was optimized by varying sintering temperature and time. X-ray diffraction confirmed single phase hexagonal crystal structure of the sample sintered at 1100∘C for 2 h. Crystallite size, as determined using Scherrer’s formula, was increased with the increase in sintering temperature while the porosity remained nearly unchanged. Field emission scanning electron microscope (FE-SEM) revealed that grain size was increased from nanometers to micrometers by rising the sintering temperature and the shape of particles was platelet-like hexagonal at 900∘C. Vibrating sample magnetometer (VSM) exhibited that saturation magnetization and coercivity increased with the increase of sintering temperature. Maximum saturation magnetization and coercivity values were 36.80 emu/g and 5365 Oe, respectively, for the sample sintered at 1100∘C for 2 h.

  11. Influence of sintering temperature on structural, morphological and magnetic properties of barium hexaferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Shafqat, M. Burhan; Arif, Omer; Atiq, Shahid; Saleem, Murtaza; Ramay, Shahid M.; Mahmood, Asif; Naseem, Shahzad

    2016-07-01

    Barium hexaferrite nanoparticles are attractive for modern data storage and microwave devices due to their unique properties. Single phase synthesis of barium hexaferrite using sol-gel auto-combustion route was optimized by varying sintering temperature and time. X-ray diffraction confirmed single phase hexagonal crystal structure of the sample sintered at 1100∘C for 2 h. Crystallite size, as determined using Scherrer’s formula, was increased with the increase in sintering temperature while the porosity remained nearly unchanged. Field emission scanning electron microscope (FE-SEM) revealed that grain size was increased from nanometers to micrometers by rising the sintering temperature and the shape of particles was platelet-like hexagonal at 900∘C. Vibrating sample magnetometer (VSM) exhibited that saturation magnetization and coercivity increased with the increase of sintering temperature. Maximum saturation magnetization and coercivity values were 36.80 emu/g and 5365 Oe, respectively, for the sample sintered at 1100∘C for 2 h.

  12. Monolithic Magneto-Optical Nanocomposites of Barium Hexaferrite Platelets in PMMA

    PubMed Central

    Ferk, Gregor; Krajnc, Peter; Hamler, Anton; Mertelj, Alenka; Cebollada, Federico; Drofenik, Miha; Lisjak, Darja

    2015-01-01

    The incorporation of magnetic barium hexaferrite nanoparticles in a transparent polymer matrix of poly(methyl methacrylate) (PMMA) is reported for the first time. The barium hexaferrite nanoplatelets doped with Sc3+, i.e., BaSc0.5Fe11.5O12 (BaHF), having diameters in the range 20 to 130 nm and thicknesses of approximately 5 nm, are synthesized hydrothermally and stabilized in 1-butanol with dodecylbenzenesulfonic acid. This method enables the preparation of monolithic nanocomposites by admixing the BaHF suspension into a liquid monomer, followed by in-situ, bulk free-radical polymerization. The PMMA retains its transparency for loadings of BaHF nanoparticles up to 0.27 wt.%, meaning that magnetically and optically anisotropic, monolithic nanocomposites can be synthesized when the polymerization is carried out in a magnetic field. The excellent dispersion of the magnetic nanoparticles, coupled with a reasonable control over the magnetic properties achieved in this investigation, is encouraging for the magneto-optical applications of these materials. PMID:26066069

  13. Calculation of exchange integrals and Curie temperature for La-substituted barium hexaferrites

    PubMed Central

    Wu, Chuanjian; Yu, Zhong; Sun, Ke; Nie, Jinlan; Guo, Rongdi; Liu, Hai; Jiang, Xiaona; Lan, Zhongwen

    2016-01-01

    As the macro behavior of the strength of exchange interaction, state of the art of Curie temperature Tc, which is directly proportional to the exchange integrals, makes sense to the high-frequency and high-reliability microwave devices. Challenge remains as finding a quantitative way to reveal the relationship between the Curie temperature and the exchange integrals for doped barium hexaferrites. Here in this report, for La-substituted barium hexaferrites, the electronic structure has been determined by the density functional theory (DFT) and generalized gradient approximation (GGA). By means of the comparison between the ground and relative state, thirteen exchange integrals have been calculated as a function of the effective value Ueff. Furthermore, based on the Heisenberg model, the molecular field approximation (MFA) and random phase approximation (RPA), which provide an upper and lower bound of the Curie temperature Tc, have been adopted to deduce the Curie temperature Tc. In addition, the Curie temperature Tc derived from the MFA are coincided well with the experimental data. Finally, the strength of superexchange interaction mainly depends on 2b-4f1, 4f2-12k, 2a-4f1, and 4f1-12k interactions. PMID:27796361

  14. Effect of aluminum substitution on microwave absorption properties of barium hexaferrite

    NASA Astrophysics Data System (ADS)

    Qiu, Jianxun; Zhang, Qiguo; Gu, Mingyuan; Shen, Haigen

    2005-11-01

    Aluminum substituted barium hexaferrites were prepared by the self-propagating combustion method and subsequent calcination at 850 °C. The crystalline structure, complex permittivity, complex permeability, and hyperfine parameters of BaFe12-xAlxO19 (x varies from 1.5 to 2.3 in steps of 0.2) were measured with x-ray diffraction (XRD), vector network analyzer and Mössbauer spectroscopy. The XRD results show that all Al3+ ions enter into the lattice of hexagonal barium ferrite. The substitution of Al3+ ions can greatly affect the complex permittivity and permeability of barium ferrite. With increasing substitution, the real part of complex permittivity increases gradually, and the peaks of the imaginary part of complex permeability shift into higher frequency band. When the substitution amount x is 1.9, the largest movement of the peaks is 1.95 GHz, which indicates that the ferromagnetic resonant frequency of barium ferrite increases by 1.95 GHz. The Al3+ ions preferentially occupy the 4f2, 2a, 4f1, and 12k sites in the subcrystalline structure up to x =1.9, and then the Al3+ ions mainly occupy 12k sites. This change also results in 2b sites with a large quadrupole splitting. These occupations lead to a variable magnetocrystalline anisotropy field.

  15. Structure refinement and dielectric relaxation of M-type Ba, Sr, Ba-Sr, and Ba-Pb hexaferrites

    NASA Astrophysics Data System (ADS)

    Ashima; Sanghi, Sujata; Agarwal, Ashish; Reetu; Ahlawat, Neetu; Monica

    2012-07-01

    M-type hexaferrites with compositions BaFe12O19 (BFO), SrFe12O19 (SFO), Ba0.5Sr0.5Fe12O19 (BSFO), and Ba0.5Pb0.5Fe12O19 (BPFO) were synthesized by commercial solid state reaction method. The Rietveld refinement of x-ray powder diffraction revealed a single hexagonal phase with space group P63/mmc for BFO, SFO, and BSFO samples, whereas BPFO sample contains hematite (α-Fe2O3) phase with space group R3c along with the M-type main phase. All the samples show dispersion in dielectric constant (ɛ') and dielectric loss (tan δ) values with frequency. The values of ɛ' and tan δ increase with increase in temperature due to increase in the number of charge carriers and their mobilities, which are thermally activated. The reciprocal temperature dependence of conductivity (σac) and the most probable relaxation time (τM″) satisfies the Arrhenius relation. A perfect overlapping of the normalized plots of modulus isotherms on a single "super curve" for all the studied temperatures reveals a temperature independence of dynamic processes involved in conduction and for relaxation. Further, the complex plots of M* (M″ vs M') indicate that dc conductivity dominates in the region below the M″max point. Above M″max, the variations follow Jonscher power law (σ = Aωs) implying that ac conductivity is dominating in this region. Among the prepared samples, SFO hexaferrite has lowest values of σac, ɛ', and tan δ making it suitable for use in microwave devices.

  16. Millimeter-Wave Absorption as a Quality Control Tool for M-Type Hexaferrite Nanopowders

    SciTech Connect

    McCloy, John S.; Korolev, Konstantin A.; Crum, Jarrod V.; Afsar, Mohammed N.

    2013-01-01

    Millimeter wave (MMW) absorption measurements have been conducted on commercial samples of large (micrometer-sized) and small (nanometer-sized) particles of BaFe12O19 and SrFe12O19 using a quasi-optical MMW spectrometer and a series of backwards wave oscillators encompassing the 30-120 GHz range. Effective anisotropy of the particles calculated from the resonant absorption frequency indicates lower overall anisotropy in the nano-particles. Due to their high magnetocrystalline anisotropy, both BaFe12O19 and SrFe12O19 are expected to have spin resonances in the 45-55 GHz range. Several of the sampled BaFe12O19 powders did not have MMW absorptions, so they were further investigated by DC magnetization and x-ray diffraction to assess magnetic behavior and structure. The samples with absent MMW absorption contained primarily iron oxides, suggesting that MMW absorption could be used for quality control in hexaferrite powder manufacture.

  17. Synthesis and magnetic properties of La-substituted M-type Sr hexaferrites

    NASA Astrophysics Data System (ADS)

    Seifert, D.; Töpfer, J.; Langenhorst, F.; Le Breton, J.-M.; Chiron, H.; Lechevallier, L.

    2009-12-01

    Single-phase M-type hexagonal ferrites Sr 1-xLa xFe 12O 19 (0≤ x≤1) were prepared by a ceramic route. The stability limits of the ferrite phases were determined with a combination of various microscopy techniques, electron-probe micro-analysis, powder X-ray diffraction and thermal analysis. SrFe 12O 19 ( x=0) is stable up to 1420 °C, whereas LaFe 12O 19 ( x=1) exists between 1360 and 1400 °C only. The lattice parameters of Sr 1-xLa xFe 12O 19 exhibit a linear variation with x, i.e. a0 slightly increases and c0 decreases with x, leading to a decrease of the unit cell volume with x. The saturation magnetization at T=5 K decreases with increasing La concentration. Room temperature Mössbauer analysis shows that the Fe 3+/Fe 2+ valence change occurs in the 2a sites for the whole composition range.

  18. Atomic scale study of magnetic phase transitions in (Co,Ti;Sc) substituted nanosize barium hexaferrite

    NASA Astrophysics Data System (ADS)

    Krezhov, Kiril

    BaFe12O19 and related isostructural (M-type) hexaferrites derived by single or double cation substitution for Fe3+ with preservation of the formal valence are a recognized group of oxides for their remarkable properties. The magnetic interactions may be tuned by suitable substitutions resulting in notable magnetic properties utilized extensively for permanent magnets, microwave devices and perpendicular recording media. We report on the magnetic structure evolution accompanying the magnetic anisotropy change, from a combined magnetic (SQUID), x-ray and neutron diffraction, and magnetic field dependent 57Fe Mössbauer study on BaFe12O19 at selected cation substitutions. The short and long range atomic and magnetic order in powder samples of nanosize particles prepared by soft chemistry routes were studied and compared with own and literature data for the parent BaFe12O19 compound prepared by solid state reaction. Refinements based on diffraction data show that the magnetic structures of BaFe12-xXxO19 (X=Co,Ti; Sc) hexaferrites are largely temperature and substitution dependent. Between 200 and 300K the (Co,Ti)-hexaferrites (x=0.4, 0.7, 0.8, 0.85) display ferrimagnetic structures where the canting of the magnetic moments depends on the substitution rate. When lowering the temperature the magnetic structure for x=0.45 remains ferrimagnetic down to 10 K, while for x=0.7 and x=0.8 a complex conical magnetic structures is finally established. For x=0.85 significant distortions in the local oxygen surrounding of ferric cation sites were established, while the grain-size effect on the structural parameters was considerably smaller. The thermal expansion coefficient exhibits a strong anisotropy. The refined magnetic moments are considerably lower than the theoretical spin only moments, especially for the 4e and 12k sites, indicating a local noncollinearity with short-range ordering. The five-cation sublattice collinear ferrimagnetic structure of uniaxial type known as

  19. Preparation of magnetic nano-composite: barium hexaferrite loaded in the ordered meso-porous silica matrix (MCM-41).

    PubMed

    Emamian, H R; Honarbakhsh-Raouf, A; Ataie, A

    2010-04-01

    In this work a magnetic nano-composite was synthesized by modified incorporation of iron-barium complex into ordered meso-porous silica (MCM-41) as a matrix. The MCM-41 was synthesized by silylation treatment which was accompanied by pH adjusting. Low angle XRD patterns of both annealed MCM-41 and resulted composite exhibited the characteristic reflection of high quality hexagonal meso-structures. TEM image of the composite material revealed that the hexagonal ordered meso-structure host material was not affected by wet impregnation and subsequent calcination in order to incorporate with barium hexaferrite. Also, TEM images accompanied by EDS analysis confirmed the formation of second phase consists of barium and iron ions inside the MCM-41 channels. The resulted composite material showed a super-paramagnetic nature at room temperature.

  20. Magnetic and Microwave Properties of Barium Hexaferrite Ceramics Doped with Gd and Nd

    NASA Astrophysics Data System (ADS)

    Jamalian, Majid; Ghasemi, Ali; Pourhosseini Asl, Mohammad Javad

    2015-08-01

    Substituted barium hexaferrite nanoparticles with the chemical formula BaFe12- x (GdNd) x/2O19 ( x = 0-2, in steps of 0.5) were prepared by a co-precipitation method. Phase identification and crystal structure of the nanoparticles were investigated by x-ray diffraction. The morphology of the nanopowders was investigated by field-emission scanning electron microscopy. Results from Fourier-transform infrared spectroscopy enabled identification of stretching and bending modes. Magnetic properties were measured by use of a vibrating sample magnetometer. The results revealed that saturation magnetization and coercivity decreased as x increased. Investigation of microwave-absorption properties, by use of a vector network analyzer, revealed that the maximum reflection loss of substituted Ba-ferrite of thickness 1.6 mm reached -41.8 dB at a frequency of 4.3 GHz and a bandwidth of 7.5 GHz, with reflection loss being >-20 dB. From these results it was concluded that the composites had good potential as absorbers in the gigahertz frequency range.

  1. Influence of the preparation methods on the structure and magnetic properties of nanosized Al-substituted barium hexaferrite powders

    NASA Astrophysics Data System (ADS)

    Peneva, P.; Koutzarova, T.; Kolev, S.; Ghelev, Ch.; Vertruyen, B.; Henrist, C.; Closet, R.; Cloots, R.; Zaleski, A.

    2016-03-01

    We report studies on the correlation between the method of preparation, microstructure and magnetic properties of nanosized monodomain Al-substituted barium hexaferrite (BaAlFe11O19) powders. The powders were obtained by the co-precipitation and single microemulsion methods. The particles in the samples had a size between 80 nm and 135 nm depending on the synthesis conditions. The value of the saturation magnetization Ms measured was very high, namely, 66.12 emu/g. The hysteresis loop was very narrow, with the coercivity Hc being 163 Oe, which indicated that the particles were in a near-superparamagnetic state.

  2. Growth and high rate reactive ion etching of epitaxially grown barium hexaferrite films on single crystal silicon carbide substrates

    NASA Astrophysics Data System (ADS)

    Chen, Zhaohui

    Ferrites are an invaluable group of insulating magnetic materials used for high frequency microwave applications in such passive electronic devices as isolators, phase shifters, and circulators. Because of their high permeability, non-reciprocal electromagnetic properties, and low eddy current losses, there are no other materials that serve such a broad range of applications. Until recently, they have been widely employed in bulk form, with little success in thin film-based applications in commercial or military microwave technologies. In today's technology, emerging electronic systems, such as high frequency, high power wireless and satellite communications (GPS, Bluetooth, WLAN, commercial radar, etc) thin film materials are in high demand. It is widely recognized that as high frequency devices shift to microwave frequencies the integration of passive devices with semiconductor electronics holds significant advantages in the realization of miniaturization, broader bandwidths, higher performance, speed, power and lower production costs. Thus, the primary objective of this thesis is to explore the integration of ferrite films with wide band gap semiconductor substrates for the realization of monolithic integrated circuits (MICs). This thesis focuses on two key steps for the integration of barium hexaferrite (Ba M-type or BaM) devices on semiconductor substrates. First, the development of high crystal quality ferrite film growth via pulsed laser deposition on wide band gap silicon carbide semiconductor substrates, and second, the effective patterning of BaM films using dry etching techniques. To address part one, BaM films were deposited on 6H silicon carbide (0001) substrates by Pulsed Laser Deposition. X-ray diffraction showed strong crystallographic alignment while pole figures exhibited reflections consistent with epitaxial growth. After optimized annealing, BaM films have a perpendicular magnetic anisotropy field of 16,900 Oe, magnetization (4piMs) of 4.4 k

  3. Extraordinary role of Ce-Ni elements on the electrical and magnetic properties of Sr-Ba M-type hexaferrites

    SciTech Connect

    Iqbal, Muhammad Javed; Farooq, Saima

    2009-11-15

    The structural, electrical and magnetic behavior of Sr{sub 0.5}Ba{sub 0.5-x}Ce{sub x}Fe{sub 12-y}Ni{sub y}O{sub 19} (where x = 0.00-0.10; y = 0.00-1.00) hexaferrite nanomaterials are reported in this paper. The structural analysis indicates that the Ce-Ni doped Sr-Ba M-type hexaferrite samples synthesized by the co-precipitation method are stoichiometric, single magnetoplumbite phase with crystallite sizes in the range of 35-48 nm. The dc-electrical resistivity of the pure Sr-Ba hexaferrite is enhanced to almost 10{sup 2} times by doping with Ce-Ni contents of x = 0.06; y = 0.60. The dielectric constant and dielectric loss tangent decrease to values {approx}14 and <0.2, respectively, by increasing the frequency up to 1 MHz. Small relaxation peaks at frequencies >10{sup 5} Hz are observed for the samples with Ce content of x > 0.06. The values of saturation magnetization increase from 66.32 to 84.33 emu/g and remanance magnetization from 42.64 to 56.01 emu/g but coercivity decreases from 2.85 to 1.59 kOe by substitution of Ce-Ni. Sharp ferri-paramagnetic transition is observed in the samples, which is confirmed by DSC results. Ce-Ni substitution acts to reduce the electron-hopping between Fe{sup 2+}/Fe{sup 3+} ions and also improves the magnetic properties. These characteristics are desirable for their possible use in microwave and chip devices.

  4. Rare-Earth-Free Permanent Magnets for Electrical Vehicle Motors and Wind Turbine Generators: Hexagonal Symmetry Based Materials Systems Mn-Bi and M-type Hexaferrite

    SciTech Connect

    Hong, Yang-Ki; Haskew, Timothy; Myryasov, Oleg; Jin, Sungho; Berkowitz, Ami

    2014-06-05

    The research we conducted focuses on the rare-earth (RE)-free permanent magnet by modeling, simulating, and synthesizing exchange coupled two-phase (hard/soft) RE-free core-shell nano-structured magnet. The RE-free magnets are made of magnetically hard core materials (high anisotropy materials including Mn-Bi-X and M-type hexaferrite) coated by soft shell materials (high magnetization materials including Fe-Co or Co). Therefore, our research helps understand the exchange coupling conditions of the core/shell magnets, interface exchange behavior between core and shell materials, formation mechanism of core/shell structures, stability conditions of core and shell materials, etc.

  5. Electromagnetic and microwave absorption properties of (Co2+-Si4+) substituted barium hexaferrites and its polymer composite

    NASA Astrophysics Data System (ADS)

    Abbas, S. M.; Chatterjee, R.; Dixit, A. K.; Kumar, A. V. R.; Goel, T. C.

    2007-04-01

    The electromagnetic (EM) and microwave absorption properties of (Co2+-Si4+) substituted barium hexaferrite compositions BaCox2+Fey+2Six+y4+Fe12-2x-2y+3O19 (x =0.9 and y =0.0, 0.05, and 0.2) and its polymer composites prepared from hexaferrite, polyaniline, and carbon powders dispersed in polyurethane matrix have been investigated at the microwave frequency range of the X band (8.2-12.4GHz). The hexaferrite compositions were synthesized by solid-state reaction technique, whereas polyaniline, by chemical route. The permeabilities of a ferrite are drastically reduced at higher gigahertz frequencies. The permittivities, however, can be enhanced by appropriate choice of composition and processing temperature. In the present ferrite composition, silicon content is taken in excess so as to convert some of the Fe3+ ions to Fe2+ ions. This conversion has been shown to enhance EM and absorption properties. Mössbauer spectroscopy on the samples establishes that addition of excess Si4+ converts some of the Fe3+ to Fe2+. The sintered ferrites have shown resonance phenomena, but the composites do not. The EM parameters ɛ', ɛ″, μ', and μ″ were measured using a vector network analyzer (Agilent, model PNA E8364B). These measured EM parameters were used to determine the absorption spectra at different sample thicknesses based on a model of a single layered plane wave absorber backed by a perfect conductor. The sintered ferrite composition (x =0.9 and y =0.05) showed the best absorption properties [a minimum reflection loss of -17.7to-14.3dB over the whole frequency range of the X band (8.2-12.4) for a sample thickness of just 0.8mm], and it is used in the composite absorbers in powder form along with other constituents. The optimized composite absorber has shown dielectric constant ɛ'˜11.5, dielectric loss ɛ″˜2.3, and a minimum reflection loss of -29dB at 10.97GHz with the -20dB bandwidth over the frequency range of 9.7-12.2GHz for a sample thickness of 2.0mm. The

  6. Synthesis of nanocrystalline barium-hexaferrite from nanocrystalline goethite using the hydrothermal method: Particle size evolution and magnetic properties

    SciTech Connect

    Penn, R.L.; Banfield, J.F.; Voigt, J.

    1997-03-01

    To characterize particle size/magnetic property relationships, 9 to 50 nm in diameter barium hexaferrite, BaFe{sub 12}O{sub 19} (BHF), particles were prepared using a new synthesis route. By replacing the conventional 50 to 100 nm particles of goethite with nanocrystalline goethite produced via the microwave anneal method of Knight and Sylva, nanocrystalline BHF was synthesized using the hydrothermal method. Evolution of particle size and morphology with respect to concentration and heat treatment time is reported. Hysteresis properties, including coercivity (0.2--1.0 kOe), magnetization saturation (0.1--33.4 emu/g), and magnetization remanence (0.004--22.5 emu/g) are discussed as a function of particle size. The magnetization saturation and remanence of the 7 nm particles is nearly zero, suggesting the superparamagnetic threshold size for BHF is around this size. In addition, the equilibrium morphology of BHF crystals was calculated to be truncated hexagonal prisms which was verified by experiment, and the isoelectric point, pH of 4.1, was measured for 18 nm BHF particles.

  7. Fabrication and characterization of magnetically tunable metal-semiconductor schottky diode using barium hexaferrite thin film on gold

    NASA Astrophysics Data System (ADS)

    Kaur, Jotinder; Sharma, Vinay; Sharma, Vipul; Veerakumar, V.; Kuanr, Bijoy K.

    2016-05-01

    Barium Hexaferrite (BaM) is an extensively studied magnetic material due to its potential device application. In this paper, we study Schottky junction diodes fabricated using gold and BaM and demonstrate the function of a spintronic device. Gold (50 nm)/silicon substrate was used to grow the BaM thin films (100-150 nm) using pulsed laser deposition. I-V characteristics were measured on the Au/BaM structure sweeping the voltage from ±5 volts. The forward and reverse bias current-voltage curves show diode like rectifying characteristics. The threshold voltage decreases while the output current increases with increase in the applied external magnetic field showing that the I-V characteristics of the BaM based Schottky junction diodes can be tuned by external magnetic field. It is also demonstrated that, the fabricated Schottky diode can be used as a half-wave rectifier, which could operate at high frequencies in the range of 1 MHz compared to the regular p-n junction diodes, which rectify below 10 kHz. In addition, it is found that above 1 MHz, Au/BaM diode can work as a rectifier as well as a capacitor filter, making the average (dc) voltage much larger.

  8. Low-temperature sintering of M-type barium ferrite with BaCu(B 2O 5) additive

    NASA Astrophysics Data System (ADS)

    Chen, Daming; Liu, Yingli; Li, Yuanxun; Zhong, Wenguo; Zhang, Huaiwu

    2012-02-01

    The aim of this work is to lower the sintered temperature of M-type barium ferrite (BaM) by BaCu(B2O5) (BCB) additives. The effects of BCB additives on the sintering behavior, structure and magnetic properties of BaM were also discussed. It was found that the sintered density, saturation magnetization and initial permeability of BaM are modified obviously as small amount of BCB (1-4 wt%) is added. Especially, when BaM with 3 wt% BCB was sintered at 900 °C, the single-phase BaM was obtained and showed excellent properties with sintered density of 4.88 g/cm3, saturation magnetization of 61.4 emu/g and initial permeability of 3.15. In addition, the SEM result revealed that the sample can be co-fired well with the Ag electrode at 900 °C. The reason for this was attributed to be the formation of the BCB liquid phase. It suggests that this M-type barium ferrite can be used as LTCC substrate for millimeter wave circulator, filter and other magnetic microwave devices.

  9. Cost-effective integrated strategy for the fabrication of hard-magnet barium hexaferrite powders from low-grade barite ore

    NASA Astrophysics Data System (ADS)

    Sanad, M. M. S.; Rashad, M. M.

    2016-09-01

    Ultrafine barium hexaferrite (BaFe12O19) powders were synthesized from the metallurgical extracts of low-grade Egyptian barite ore via a co-precipitation route. Hydrometallurgical treatment of barite ore was systematically studied to achieve the maximum dissolution efficiency of Fe (~99.7%) under the optimum conditions. The hexaferrite precursors were obtained by the co-precipitation of BaS produced by the reduction of barite ore with carbon at 1273 K and then dissolved in diluted HCl and FeCl3 solution at pH 10 using NaOH as a base; the product was then annealed at 1273 K in an open atmosphere. The effect of Fe3+/Ba2+ molar ratio and the addition of hydrogen peroxide (H2O2) on the phase structure, crystallite size, morphology, and magnetic properties were investigated by X-ray diffraction, scanning electron microscopy, and vibrating sample magnetometry. Single-phase BaFe12O19 powder was obtained at an Fe3+/Ba2+ molar ratio of 8.00. The formed powders exhibited a hexagonal platelet-like structure. Good maximum magnetization (48.3 A·m2·kg-1) was achieved in the material prepared at an Fe3+/Ba2+ molar ratio of 8.0 in the presence of 5% H2O2 as an oxidizer and at 1273 K because of the formation of a uniform, hexagonal-shaped structure.

  10. Effects of magnetic pre-alignment of nano-powders on formation of high textured barium hexa-ferrite quasi-single crystals via a magnetic forming and liquid participation sintering route

    NASA Astrophysics Data System (ADS)

    Liu, Junliang; Zeng, Yanwei; Zhang, Xingkai; Zhang, Ming

    2015-05-01

    Highly textured barium hexa-ferrite quasi-single crystal with narrow ferromagnetic resonance line-width is believed to be a potential gyromagnetic material for self-biased microwave devices. To fabricate barium hexa-ferrite quasi-single crystal with a high grain orientation degree, a magnetic forming and liquid participation sintering route has been developed. In this paper, the effects of the pre-alignment of the starting nano-powders on the formation of barium quasi-single crystal structures have been investigated. The results indicated that: the crystallites with large sizes and small specific surfaces were easily aligned for they got higher driving forces and lower resistances during magnetic forming. The average restricting magnetic field was about 4.647 kOe to overcome the average friction barrier between crystallites. The pre-aligned crystallites in magnetic forming acted as the "crystal seeds" for oriented growth of the un-aligned crystallites during liquid participation sintering to achieve a high grain orientation. To effectively promote the grain orientation degrees of the sintered pellets, the grain orientation degrees of the green compacts must be higher than a limited value of 15.0%. Barium hexa-ferrite quasi-single crystal with a high grain orientation degree of 98.6% was successfully fabricated after sintering the green compact with its grain orientation degree of 51.1%.

  11. Synthesis and magnetic properties of barium-calcium hexaferrite particles prepared by sol-gel and microemulsion techniques

    NASA Astrophysics Data System (ADS)

    Jotania, R. B.; Khomane, R. B.; Chauhan, C. C.; Menon, S. K.; Kulkarni, B. D.

    The preparation of W-type hexaferrite particles with the composition BaCa 2Fe 16O 27 by microemulsion and a stearic acid sol-gel method with and without surfactant has been investigated at various sintering temperatures. The structural and magnetic characteristics have been studied by X-ray diffraction (XRD), a vibrating sample magnetometer (VSM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetric (DSC) and Fourier transform infrared (FTIR) techniques. The effect of sintering temperature on the properties of BaCa 2Fe 16O 27 hexaferrites has been studied. The value of saturation magnetization ( Ms) depends on types of surfactant used. The sample prepared in the presence of polyoxyethylene (20) sorbitan monooleat (Tween 80) shows low saturation magnetization ( Ms=15.10 emu/g), whereas the other sample prepared in the presence of a surfactant cetyltrimethylammonium bromide (CTAB) exhibits high saturation magnetization ( Ms=24.60 emu/g) compared to the normal sample.

  12. Magnetic properties of in-plane oriented barium hexaferrite thin films prepared by direct current magnetron sputtering

    SciTech Connect

    Zhang, Xiaozhi; Yue, Zhenxing Meng, Siqin; Yuan, Lixin

    2014-12-28

    In-plane c-axis oriented Ba-hexaferrite (BaM) thin films were prepared on a-plane (112{sup ¯}0) sapphire (Al{sub 2}O{sub 3}) substrates by DC magnetron sputtering followed by ex-situ annealing. The DC magnetron sputtering was demonstrated to have obvious advantages over the traditionally used RF magnetron sputtering in sputtering rate and operation simplicity. The sputtering power had a remarkable influence on the Ba/Fe ratio, the hematite secondary phase, and the grain morphology of the as-prepared BaM films. Under 80 W of sputtering power, in-plane c-axis highly oriented BaM films were obtained. These films had strong magnetic anisotropy with high hysteresis loop squareness (M{sub r}/M{sub s} of 0.96) along the in-plane easy axis and low M{sub r}/M{sub s} of 0.03 along the in-plane hard axis. X-ray diffraction patterns and pole figures revealed that the oriented BaM films grew via an epitaxy-like growth process with the crystallographic relationship BaM (101{sup ¯}0)//α-Fe{sub 2}O{sub 3}(112{sup ¯}0)//Al{sub 2}O{sub 3}(112{sup ¯}0)

  13. LTCC processed CoTi substituted M-type barium ferrite composite with BBSZ glass powder additives for microwave device applications

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Liu, Yingli; Li, Jie; Liu, Qian; Zhang, Huaiwu; Harris, Vincent. G.

    2016-05-01

    Hexagonal magnetoplumbite ferrites typically have sintering temperatures above 1100∘C in order to stabilize a single phase compound, which is much higher than the melting point of silver leading to device fabrication challenges. Application of low temperature co-fired ceramics (LTCC) technologies may prove effective in decreasing the sintering temperature of hexagonal ferrites. Ferrite powders combined with glass frit powder is an effective pathway to lowering the sintering temperature. Here, hexagonal M-type barium ferrite (i.e., Ba(CoTi)1.5Fe9O19) ceramics, combined with BBSZ glass powder as a sintering aid were synthesized. Co and Ti ions where used to substitute for Fe cations in order to modify the magnetic anisotropy field. The density, microstructure, magnetic properties and complex permeability are reported. The BBSZ glass addition was shown to improve the densification and magnetic properties of the barium ferrite. The densification of the BaM ferrite Ba(CoTi)1.5Fe9O19 was further enhanced by the glass additive at low firing temperatures of below 900∘C because of the formation of a liquid phase. Complex permeability of ferrites sintered at 900∘C was also influenced by the BBSZ addition and the resonance frequency was shown to decrease with increased amounts of the glass modifier.

  14. Dramatic effect of rare earth ion on the electrical and magnetic properties of W-type barium hexaferrites

    NASA Astrophysics Data System (ADS)

    Ahmed, M. A.; Okasha, N.; Kershi, R. M.

    2010-08-01

    A series of W-type hexaferrite samples with composition Ba 1- yLa yZn 0.5Mg 0.5CoFe 16O 27; 0≤ y≤0.07 were prepared using the solid state reaction to investigate their magnetic properties, AC and DC electrical conductivity and thermoelectric power as a function of composition and temperature. The X-ray diffraction was studied to identify the formation of the sample properly. Increasing of (a) and decreasing of (c) lattice parameters leads to a constant volume. The data of ac conductivity showed an increase with both temperature and frequency, and it becomes slightly independent of frequency at higher temperature, also the conduction mechanism depends on an La concentration. The results of the charge carrier mobility suggested that the hopping conduction mechanism of holes due to replacement of La 3+ rare earth ions on the expense of Ba 2+ ions is the predominant one. The transition temperature decreases with increasing La content. The values of dc electrical conductivity σdc at room temperature ranged 4.85×10 -6-3.82×10 -6 (Ω -1 cm -1) and the values of the calculated activation energies Edc ranged 0.215-0.137 eV. The highest values of dielectric constant, electrical conductivity and Curie temperature, also the smallest value of porosity and effective magnetic moment are found at y=0.05. The thermoelectric power coefficient showed that the majority of charge carriers are P-type, except at y=0.03, 0.04 and 0.05 negative charge carriers (electrons) takes place at high temperature region.

  15. Dielectric and magnetic properties of Zn-substituted Co2Y barium hexaferrite prepared by sol-gel auto combustion method

    NASA Astrophysics Data System (ADS)

    Odeh, I.; El Ghanem, H. M.; Mahmood, S. H.; Azzam, S.; Bsoul, I.; Lehlooh, A.-F.

    2016-08-01

    This work describes the synthesis, structural, dielectric, and magnetic properties of Y-type Ba2Co2-xZnxFe12O22 hexaferrites prepared by the sol-gel n method. X-ray diffraction (XRD) results revealed a structure of the Zn-substituted samples consistent with the standard patterns for Y-type hexaferrites. The saturation magnetization at room temperature increased with Zn-substitution. Further, the coercive field for the sample with x=2.0 was found to have the lowest value. The results of the dielectric measurements indicated that all samples are insulators, and that the ac conductivity decreased with increasing zinc content. However, the ac conductivity increased with increasing dc bias. The effect of the dc bias was more pronounced on samples with low zinc content. The real part of the dielectric constant decreased markedly with increasing frequency at constant applied bias voltage. Further, the activation energy for the prepared samples depends strongly on the Zn concentration.

  16. Substantial enhancement in intrinsic coercivity on M-type strontium hexaferrite through the increase in magneto-crystalline anisotropy by co-doping of group-V and alkali elements

    SciTech Connect

    Ahn, Kyunghan Ryu, Byungki; Korolev, Dmitry; Jae Kang, Young

    2013-12-09

    The effect of d{sup 1} impurity doping in Sr-hexaferrite (SrM) on the magnetic anisotropy is investigated. First-principles calculations revealed that group-V elements (V, Nb) are stabilized with co-doping of alkali elements. Na{sup 1+}/K{sup 1+} doping at Sr{sup 2+}-site is found to be critical to form the d{sup 1} impurities at Fe-site. Experimentally, Na–V doped SrM shows the intrinsic coercivity of ∼5.4 kOe, which is ∼300% enhancement compared to undoped SrM and comparable value to La–Co co-doped SrM. Finally, the spin-orbit coupling from non-vanishing angular momentum of d{sup 1} impurity in SrM should be a main factor for such a substantial improvement of intrinsic coercivity.

  17. Effect of calcination temperature on microstructure, dielectric, magnetic and optical properties of Ba0.7La0.3Fe11.7Co0.3O19 hexaferrites

    NASA Astrophysics Data System (ADS)

    Kaur, Talwinder; Kaur, Barjinder; Bhat, Bilal H.; Kumar, Sachin; Srivastava, A. K.

    2015-01-01

    M-type barium hexaferrite Ba0.7La0.3Fe11.7Co0.3O19 (BaLCM) powder, synthesized using sol gel auto combustion method, heat treated at 700, 900, 1100 and 1200 °C. X ray diffraction (XRD) powder patterns of heat treated samples show the formation of pure phase of M-type hexaferrite after 700 °C. Thermo gravimetric analysis (TGA) reveals that the weight loss of BaLCM becomes constant after 680 °C. The presence of two prominent peaks, at 432 cm-1 and 586 cm-1 in Fourier Transform Infrared Spectroscopy (FT-IR) spectra, gives the idea of formation of M-type hexaferrites. The M-H curve obtained from Vibrating Sample Magnetometer (VSM) were used to calculate saturation magnetization (MS), retentivity (Mr), squareness ration (SR) and coercivity (Hc). The maximum value of coercivity (5602 Oe) is found at 900 °C. The band gap dependency on temperature was studied using UV-vis NIR spectroscopy. The dielectric constant has been found to be high at low frequency but it decreases with increase in frequency. Such kind of dielectric behavior is explained on the basis of Koop's phenomenological theory and Maxwell Wagner theory.

  18. Subterahertz excitations and magnetoelectric effects in hexaferrite-piezoelectric bilayers

    SciTech Connect

    Ustinov, Alexey B.; Srinivasan, G.

    2008-10-06

    A frequency-agile hexaferrite-piezoelectric composite for potential device applications at subterahertz frequencies is studied. The bilayer is composed of aluminum substituted barium hexagonal ferrite (BaAl{sub 2}Fe{sub 10}O{sub 19}) and lead zirconate titanate (PZT). A dc electric field applied to PZT results in mechanical deformation of the ferrite, leading to a frequency shift in ferromagnetic resonance. The bilayer demonstrates magnetoelectric interaction coefficient of about 0.37 Oe cm/kV.

  19. An investigation on the microstructures and magnetic properties of the Sr0.35-xBaxCa0.30La0.35Fe11.71Co0.29O19 hexaferrites

    NASA Astrophysics Data System (ADS)

    Yang, Yujie; Liu, Xiansong

    2014-11-01

    M-type hexaferrite Sr0.35-xBaxCa0.30La0.35Fe11.71Co0.29O19 (0≤x≤0.35) magnetic powders and magnets were prepared by the solid-state reaction. The phase compositions of the magnetic powders were investigated by X-ray diffraction. X-ray diffraction patterns show that the hexagonal single phase is obtained in all samples. The micrographs of the magnets were observed by a field emission scanning electron microscopy. All magnets have formed hexagonal structures and the particles are distributed evenly. Magnetic properties of the magnets were measured by a magnetic properties test instrument. The remanence, intrinsic coercivity, magnetic induction coercivity and maximum energy product of the magnets continuously decrease with increasing barium content (x).

  20. Barium enema

    MedlinePlus

    ... series; Colorectal cancer - lower GI series; Colorectal cancer - barium enema; Crohn disease - lower GI series; Crohn disease - barium enema; Intestinal blockage - lower GI series; Intestinal blockage - ...

  1. The Microscopic Magnetic Properties of W-type Hexaferrite Powder Prepared by A Sol-Gel Route

    SciTech Connect

    Jotania, Rajshree; Chauhan, Chetna; Sharma, Pooja

    2010-12-01

    Magnetic particles of W-type barium-calcium hexaferrite (BaCa{sub 2}Fe{sub 16}O{sub 27}) have been synthesized using a Stearic acid gel route. The gel precursors were dried at 100 deg. C for 2 hrs and then calcinated at 650 deg. C, 750 deg. C, 850 deg. C and 950 deg. C for 4 hrs in a furnace and slowly cooled to room temperature in order to obtain barium-calcium hexaferrite particles. The microscopic magnetic properties of prepared samples studying using Moessbauer spectroscopy. Moessbauer spectra of all samples were recorded at room temperature. Mossbauer parameters like Isomer shift, Quadruple splitting etc. were calculated with respect to iron foil. Barium calcium hexaferrite samples heated at 650 deg. C, 750 deg. C, 850 deg. C show relaxation type Moessbauer spectra along with paramagnetic doublet. The intensity of paramagnetic doublet increases with temperature confirm the presence of ferrous ions in the samples, where as sample calcinated at 950 deg. C confirm the presence of ferrimagnetic phase with partial super paramagnetic nature of prepared hexaferrite sample.

  2. Magnetic characterization of Ca substituted Ba and Sr hexaferrites

    NASA Astrophysics Data System (ADS)

    Asti, G.; Carbucicchio, M.; Deriu, A.; Lucchini, E.; Slokar, G.

    1980-04-01

    A magnetic characterization has been worked out for the solid solution from Ba and Sr hexaferrites (BaFe 1 2O 1 9, SrFe 1 2O 1 9) towards CaO- xFe 2O 3 (2 ⪕ x ⪕5.5). Measurements of Curie temperature, saturation magnetization, magnetic anisotropy, together with Mössbauer characterization indicate that the intrinsic properties of the studied compounds do not change appreciably with increasing Ca content. These results, together with the X-ray data, are consistent with the formation of an undistorted M-type cell with a low content of iron and oxygen vacancies.

  3. Hexaferrite particles by coprecipitation and lyophilization

    NASA Astrophysics Data System (ADS)

    Calleja, A.; Tijero, E.; Martínez, B.; Piñol, S.; Sandiumenge, F.; Obradors, X.

    1999-05-01

    Fine strontium hexaferrite particles were prepared by lyophilization (known as freeze-drying) and coprecipitation of nitrates and chloride salts, respectively. The resulting powders were calcined at different temperatures between 700°C and 1100°C. As concluded from the measured hysteresis loops at 300 K, the freeze-dried hexaferrite showed good magnetic characteristics, the coercivity being as high as 5690 Oe. However, coprecipitated hexaferrite displayed poor coercivity values, around 1300 Oe at best.

  4. Improved texture of polycrystalline hexaferrites using gluconic acid dispersant

    NASA Astrophysics Data System (ADS)

    Obi, O.; Burns, L.; Andalib, P.; Chang, H.; Chen, Y.; Harris, V. G.

    2014-05-01

    In this work, gluconic acid (GA), a low molecular weight, inexpensive and environmentally friendly solvent, was systematically investigated to determine its viability in enhancing the orientation of ferrite particles. Submicron-scale barium hexaferrite (BaM) powders were thoroughly dispersed via sonication for 30 min in various concentrations of GA (0, 2, 2.5, 5, 10, and 25 vol. %) in deionized water. An increase of ˜18% in squareness (SQ) and ˜69% in energy product ((BH)max) was observed with increase in GA concentration from 0 to 5 vol. %. However, further increase in GA concentration led to a decrease in SQ and (BH)max confirming that the effect of GA stems from an improved viscosity of the dispersant, which balances the freely rotating and stationary particles under dynamic compaction within a magnetic field.

  5. Synthesis and orientation of barium hexaferrite ceramics by magnetic alignment

    NASA Astrophysics Data System (ADS)

    Autissier, Denis

    1990-01-01

    Particles of Ba 2Mn xZn 2- xFe 12O 22 with planar structure were prepared by chemical precipitation. They were processed by sleep casting in presence of a magnetic field. The degree of alignment was improved by a special sintering treatment. By this procedure an alignment as high as 99.9% is obtained.

  6. Theory of magnetic enhancement in strontium hexaferrite through Zn-Sn pair substitution

    NASA Astrophysics Data System (ADS)

    Liyanage, Laalitha S. I.; Kim, Sungho; Hong, Yang-Ki; Park, Ji-Hoon; Erwin, Steven C.; Kim, Seong-Gon

    2013-12-01

    We study the site occupancy and magnetic properties of Zn-Sn substituted M-type Sr-hexaferrite SrFe12-x(Zn0.5Sn0.5)xO19 with x=1 using first-principles total-energy calculations. We find that in the lowest-energy configuration Zn2+ and Sn4+ ions preferentially occupy the 4f1 and 4f2 sites, respectively, in contrast to the model previously suggested by Ghasemi et al. [J. Appl. Phys, 107, 09A734 (2010)], where Zn2+ and Sn4+ ions occupy the 2b and 4f2 sites. Density-functional theory calculations show that our model has a lower total energy by more than 0.2 eV per unit cell compared to Ghasemi's model. More importantly, the latter does not show an increase in saturation magnetization (Ms) compared to the pure M-type Sr-hexaferrite, in disagreement with the experiment. On the other hand, our model correctly predicts a rapid increase in Ms as well as a decrease in magnetic anisotropy compared to the pure M-type Sr-hexaferrite, consistent with experimental measurements.

  7. Barium cyanide

    Integrated Risk Information System (IRIS)

    Barium cyanide ; CASRN 542 - 62 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  8. Magnetic and microwave absorption properties of BaMgx/2Mnx/2CoxTi2xFe12-4xO19 hexaferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Shams Alam, Reza; Moradi, Mahmood; Nikmanesh, Hossein; Ventura, Joao; Rostami, Mohammad

    2016-03-01

    Substituted barium hexaferrite nanoparticles with nominal composition of BaMgx/2Mnx/2CoxTi2xFe12-4xO19 (x=0-0.5) were synthesized by a co-precipitation method. Then, the structural, magnetic and microwave characteristics of the representative samples were examined by employing X-ray diffraction (XRD), Fourier transform infrared spectrometry (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM) and vector network analyzer (VNA). The XRD, along with FTIR evaluations confirmed the successful substitution of Mg, Mn, Co and Ti cations in the barium hexaferrite lattice. The microstructure evaluations also proved that the mean particle size decreases and typical morphologies are gradually varying from almost platelet (x=0) to irregular shapes (x=0.5) with increasing dopant concentration. Hysteresis loops revealed that the saturation magnetization increased up to substitution level of x=0.2, and then decreased abruptly. In addition, the coercivity exhibited a decreasing trend from 3669 Oe to 708 Oe with increasing amount of substitution. Finally, microwave measurement showed that the substituted barium hexaferrite sample with x=0.5 could be used as an efficient microwave absorption material with an appropriate absorption bandwidth of 6 GHz in the 10-16 GHz frequency range.

  9. First principles investigation of substituted strontium hexaferrite

    NASA Astrophysics Data System (ADS)

    Dixit, Vivek

    This dissertation investigates how the magnetic properties of strontium hexaferrite change upon the substitution of foreign atoms at the Fe sites. Strontium hexaferrite, SrFe12O19, is a commonly used hard magnetic material and is produced in large quantities (around 500,000 tons per year). For different applications of strontium hexaferrite, its magnetic properties can be tuned by a proper substitution of the foreign atoms. Experimental screening for a proper substitution is a cost-intensive and time-consuming process, whereas computationally it can be done more efficiently. We used the 'density functional theory' a first principles based method to study substituted strontium hexaferrite. The site occupancies of the substituted atoms were estimated by calculating the substitution energies of different configurations. The formation probabilities of configurations were used to calculate the magnetic properties of substituted strontium hexaferrite. In the first study, Al-substituted strontium hexaferrite, SrFe12-x AlxO19 with x=0.5 and x=1.0 were investigated. It was found that at the annealing temperature the non-magnetic Al +3 ions preferentially replace Fe+3 ions from the 12 k and 2a sites. We found that the magnetization decreases and the magnetic anisotropy field increases as the fraction, x of the Al atoms increases. In the second study, SrFe12-xGaxO19 and SrFe12-xInxO19 with x=0.5 and x=1.0 were investigated. In the case of SrFe12-xGaxO19, the sites where Ga+3 ions prefer to enter are: 12 k, 2a, and 4f1. For SrFe12-xInxO19, In+3 ions most likely to occupy the 12k, 4f1 , and 4f2 sites. In both cases the magnetization was found to decrease slightly as the fraction of substituted atom increases. The magnetic anisotropy field increased for SrFe12-xGaxO 19, and decreased for SrFe12-xInxO19 as the concentration of substituted atoms increased. In the third study, 23 elements (M) were screened for their possible substitution in strontium hexaferrite, SrFe12-xMxO 19

  10. Development of low loss hexaferrite materials for microwave applications

    NASA Astrophysics Data System (ADS)

    Su, Zhijuan

    Hexaferrites have been widely used in microwave and millimeter wave devices as permanent magnets and as gyromagnetic materials, e.g., in circulators, filters, isolators, inductors, and phase shifters. As a critical component in radar and modern wireless communication systems, it is the microwave circulator that has drawn much attention. Many efforts have been made to design light and miniature circulators with self-biased ferrite materials. We report the magnetic and structural properties of a series of W-type barium hexaferrites of composition BaZn2-xCoxFe16O27 where x=0.15, 0.20, and 0.25. The anisotropy field of these BaW ferrites decreased with the substitution of divalent Co ions, while, they maintained crystallographic c-axis texture. The measured anisotropy field was ~10 kOe, and a hysteresis loop squareness Mr/Ms=79% was obtained due to well-controlled grain size within the range of single domain scale. U-type barium hexaferrite thin films were deposited on (0001) sapphire substrates by pulsed laser deposition. The results indicate a measured anisotropy field of ~8 kOe, and the saturation magnetization (4piMs) of 3.6 kG. More interestingly, an optimal post-deposition annealing of the films results in a strong (0, 0, n) crystallographic texture and a high squareness (Mr/Ms= 92%) out of the film plane. Furthermore, the highly self-biased ferrite films exhibited low FMR linewidth of ~200 Oe. Improved performance and miniaturization are needed to meet the ever-increasing demands of devices used in ultra-high frequency (UHF), L-band, and S-band, which are of particular interest in a variety of commercial and defense related applications. Utilizing materials possessing high permeability and permittivity with low magnetic losses is a promising solution. As a critical component in radar and modern wireless communication systems, antenna elements with compact size are constantly sought. Ferrite composites of the nominal composition Ba3Co2+xIrxFe24-2xO41 were studied

  11. Innovative methodology for the synthesis of Ba-M hexaferrite BaFe{sub 12}O{sub 19} nanoparticles

    SciTech Connect

    Ahmed, M.A.; Helmy, N.; El-Dek, S.I.

    2013-09-01

    Graphical abstract: Transmission electron microscope images for the BaFe12O19. - Highlights: • BaFe{sub 12}O{sub 19}nanoparticles were prepared in single-phase from organometallic precursors. • BaFe{sub 12}O{sub 19} possesses small size 65 nm, H{sub C} = 3695 Oe and M{sub s} = 58 emu/g. • This method of preparation could be extended in the synthesis of other metal oxide nanoparticles. - Abstract: In this piece of work, high quality and homogeneity, barium hexaferrite (BaM) BaFe{sub 12}O{sub 19} nanoparticles were prepared from organometallic precursors for the 1st time. This method is based on the formation of supramolecular crystal structure of Ba[Fe(H{sub 3}NCH{sub 2}CH{sub 2}NH{sub 3})]Cl{sub 7}·8H{sub 2}O. The crystal structure, morphology and magnetic properties of BaFe{sub 12}O{sub 19} at two different annealing temperatures namely 1000 °C and 1200 °C were investigated using X-ray diffraction, transmission electron microscope TEM and vibrating sample magnetometry (VSM). The results show that monophasic nanoparticles of hexaferrites were obtained. Nanoparticles of crystallite size 40–50 nm distinguished by narrow distribution and excellent homogeneity were obtained with superior magnetic properties which suggested single-domain particles of Ba-M hexaferrite.

  12. Magnetic properties of Ni substituted Y-type barium ferrite

    SciTech Connect

    Won, Mi Hee; Kim, Chul Sung

    2014-05-07

    Y-type barium hexaferrite is attractive material for various applications, such as high frequency antennas and RF devices, because of its interesting magnetic properties. Especially, Ni substituted Y- type hexaferrites have higher magnetic ordering temperature than other Y-type. We have investigated macroscopic and microscopic properties of Y-type barium hexaferrite. Ba{sub 2}Co{sub 2−x}Ni{sub x}Fe{sub 12}O{sub 22} (x = 0, 0.5, 1.0, 1.5, and 2.0) samples are prepared by solid-state reaction method and studied by X-ray diffraction (XRD), vibrating sample magnetometer, and Mössbauer spectroscopy, as well as a network analyzer for high frequency characteristics. The XRD pattern is analyzed by Rietveld refinement method and confirms the hexagonal structure with R-3m. The hysteresis curve shows ferrimagnetic behavior. Saturation magnetization (M{sub s}) decreases with Ni contents. Ni{sup 2+}, which preferentially occupies the octahedral site with up-spin sub-lattice, has smaller spin value S of 1 than Co{sup 2+} having S = 3/2. The zero-field-cooled (ZFC) measurement of Ba{sub 2}Co{sub 1.5}Ni{sub 0.5}Fe{sub 12}O{sub 22} shows that Curie and spin transition temperatures are found to be 718 K and 209 K, respectively. The Curie temperature T{sub C} is increased with Ni contents, while T{sub S} is decreased with Ni. The Mössbauer spectra were measured at various temperatures and fitted by using a least-squares method with six sextet of six Lorentzian lines for Fe sites, corresponding to the 3b{sub VI}, 6c{sub IV}*, 6c{sub VI}, 18h{sub VI}, 6c{sub IV}, and 3a{sub IV} sites at below T{sub C}. From Mössbauer measurements, we confirmed the spin state of Fe ion to be Fe{sup 3+} and obtained the isomer shift (δ), magnetic hyperfine field (H{sub hf}), and the occupancy ratio of Fe ions at six sub-lattices. The complex permeability and permittivity are measured between 100 MHz and 4 GHz, suggesting that Y-type barium hexaferrite is promising for antenna

  13. Magnetoelectric sensor excitations in hexaferrite films

    NASA Astrophysics Data System (ADS)

    Zare, Saba; Rabinowitz, Jake; Izadkhah, Hessam; Somu, Sivasubramanian; Vittoria, Carmine

    2015-05-01

    We developed techniques for H- and E-field sensors utilizing single phase magnetoelectric (ME) hexaferrite thin films in the frequency range of 1 kHz to 10 MHz. The technique incorporating solenoid coils and multi-capacitors bank was developed to probe the physics and properties of ME hexaferrite film and explore ME effects for sensor detections and tunable device applications. For H-field sensing, we obtained sensitivity of 4 × 10-4 V/Gm and for E-field sensing the sensitivity was 10-3 Gm/V. Tunability of up to 6% was achieved for tunable inductor applications. The proposed fabrication designs lend themselves to significant (˜106) improvements in sensitivity and tunability.

  14. BARIUM RECOVERY PROCESS

    DOEpatents

    Blanco, R.E.

    1959-07-21

    A method of separating barium from nuclear fission products is described. In accordance with the invention, barium may be recovered from an acidic solution of neutron-irradiated fissionable material by carrying ihe barium cut of solution as a sulfate with lead as a carrier and then dissolving the barium-containing precipitate in an aqueous solution of an aliphatic diamine chelating reagent. The barium values together with certain other metallic values present in the diamine solution are then absorbed onto a cation exchange resin and the barium is selectively eluted from the resin bed with concentrated nitric acid.

  15. Barium enema (image)

    MedlinePlus

    The barium enema is a valuable diagnostic tool that helps detect abnormalities in the large intestine (colon). The barium enema, along with colonoscopy, remain standards in the diagnosis of colon cancer, ulcerative colitis, and other diseases of the colon.

  16. Barium enema (image)

    MedlinePlus

    A barium enema is performed to examine the walls of the colon. During the procedure, a well lubricated enema tube is inserted gently into the rectum. The barium, a radiopaque (shows up on X-ray) contrast ...

  17. Crystal structure refinement, dielectric and magnetic properties of Ca/Pb substituted SrFe12O19 hexaferrites

    NASA Astrophysics Data System (ADS)

    Hooda, Ashima; Sanghi, Sujata; Agarwal, Ashish; Dahiya, Reetu

    2015-08-01

    SrFe12O19 (SFO), Sr0.5Ca0.5Fe12O19 (SCFO) and Sr0.5Pb0.5Fe12O19 (SPFO) hexaferrites have been synthesized by a conventional solid state reaction technique. Powder X-ray diffraction and Rietveld refinement confirm the presence of M-type hexagonal phase in prepared samples. However in SCFO, secondary phase was also present with main phase. Analysis of Nyquist's plots of SFO hexaferrite revealed the contribution of many electrically active regions corresponding to bulk mechanism, distribution of grain boundaries and electrode processes also. Both conductivity and electric modulus formalisms have been employed to study the relaxation dynamics of charge carriers. A perfect overlapping of the normalized plots of modulus isotherms on a single 'super curve' for all the studied temperatures reveals a temperature independence of dynamic processes involved in conduction and for relaxation. In SPFO sample coercivity is reduced effectively but accompanied with increase in magnetization, which is requirement for hexaferrites to be used as magnetic recording media.

  18. Synthesis and magnetic characterization of Sr-based Ni{sub 2}X-type hexaferrite

    SciTech Connect

    Kamishima, K. Mashiko, T.; Kakizaki, K.; Sakai, M.; Watanabe, K.; Abe, H.

    2015-10-15

    We have investigated the synthesis conditions, and the magnetic properties of the Sr{sub 2}Ni{sub 2}X-type hexagonal ferrite, Sr{sub 2}Ni{sub 2}Fe{sub 28}O{sub 46}. The Sr{sub 2}Ni{sub 2}X-type hexaferrite was synthesized at 1240{sup ∘}C. The spontaneous magnetization at 5 K was 44.2 μ{sub B}/f.u., suggesting that most of the Ni{sup 2+} ions are at the up-spin octahedral sites in the spinel-structure blocks within the model of a Néel-type collinear ferrimagnetic structure. The Curie temperature of the Sr{sub 2}Ni{sub 2}X-type hexaferrite was estimated to be T{sub C}[Sr{sub 2}Ni{sub 2}X] = 472{sup ∘}C. This is consistent with the difference of the block stacking structures of SrM-type, Sr{sub 2}Ni{sub 2}X-type, SrNi{sub 2}W-type, and nickel spinel ferrites.

  19. Magnetoelectric hexaferrite thin film growth on oxide conductive layer for applications at low voltages

    NASA Astrophysics Data System (ADS)

    Zare, Saba; Izadkhah, Hessam; Vittoria, Carmine

    2016-08-01

    Magnetoelectric (ME) M-type hexaferrite thin films were deposited on conductive oxide layer of Indium-Tin Oxide (ITO) in order to lower applied voltages to observe ME effects at room temperature. The thin film of ME hexaferrites, SrCo2Ti2Fe8O19/ITO buffer layer, were deposited on sapphire substrate using Pulsed Laser Deposition (PLD) technique. The film exhibited ME effects as confirmed by vibrating sample magnetometer (VSM) in voltages as low as 0.5 V. Without the oxide conductive layer the required voltages to observe ME effects were typically 500 V and higher. The thin films were characterized by X-ray diffractometer, scanning electron microscope, energy-dispersive spectroscopy, vibrating sample magnetometer, and ferromagnetic resonance. We measured saturation magnetization of 1064 G, and coercive field of 20 Oe for these thin films. The change rate in remanence magnetization was measured with the application of DC voltage at room temperature and it gave rise to changes in remanence in the order of 15% with the application of only 0.5 V (DC voltage). We deduced a ME coupling, α, of 5×10-10 s m-1 in SrCo2Ti2Fe8O19 thin films.

  20. Tensor properties of the magnetoelectric coupling in hexaferrites

    NASA Astrophysics Data System (ADS)

    Vittoria, Carmine; Somu, Sivasubramanian; Widom, Allan

    2014-04-01

    Recent data reported on magnetoelectric coupling parameter α for hexaferrite materials are very high; hence, these materials are expected to potentially impact future technologies in a major way. At this juncture, it is imperative to address the fundamental question, "What does α depend on?" in order to advance the design of new hexaferrite materials with even higher α. A complete mathematical formulation of a microscopic model would be rather complicated, especially for complex crystal structures such as the Z-type hexaferrites. Herein we present a simple, yet elegant thermodynamic argument by which we derive a functional relationship between α and the material parameters. We show that α is best described as a tensor proportional to the product of magnetostriction and piezoelectric strain tensors. Using this relationship, quantitative values for α are estimated and compared to experimentally measured values for various hexaferrites, composites, and Cr2O3.

  1. Magnetoelectric sensor excitations in hexaferrite slabs

    NASA Astrophysics Data System (ADS)

    Zare, Saba; Izadkhah, Hessam; Somu, Sivasubramanian; Vittoria, Carmine

    2015-06-01

    We developed techniques for H- and E-field sensors utilizing single phase magnetoelectric (ME) hexaferrite slabs in the frequency range of 100 Hz to 10 MHz. Novel circuit designs incorporating both spiral and solenoid coils and single and multi-capacitor banks were developed to probe the physics and properties of ME hexaferrites and explore ME effects for sensor detections. Fundamental measurements of the anisotropic tensor elements of the magneto-electric coupling parameter were performed using these novel techniques. In addition, for H-field sensing experiments we measured sensitivity of about 3000 Vm-1/G using solenoid coils and 8000 Vm-1/G using spiral coils. For E-field, sensing the sensitivity was 10-4 G/Vm-1 and using single capacitor detector. Sensitivity for multi-capacitor detectors was measured to be in the order of 10-3 G/Vm-1 and frequency dependent exhibiting a maximum value at ˜1 MHz. Tunability of 0.1%-90% was achieved for tunable inductor applications using both single and multi-capacitors excitation. We believe that significant (˜106) improvements in sensitivity and tunability are feasible with simple modifications of the fabrication process.

  2. Structural, AC conductivity and dielectric properties of Sr-La hexaferrite

    NASA Astrophysics Data System (ADS)

    Singh, A.; Narang, S. B.; Singh, K.; Sharma, P.; Pandey, O. P.

    2006-03-01

    A series of M-type hexaferrite samples with composition Sr{1-x}La{x}Fe{12}O{19} (x = 0.00, 0.05, 0.15 and 0.25) were prepared by standard ceramic technique. AC electrical conductivity measurements were carried out at different frequencies (20 Hz 1 MHz) and at different temperatures. The dielectric constant and dielectric loss tangent were measured in the same range of frequencies. The experimental results indicate that AC electrical conductivity increases on increasing the frequency as well as the temperature, indicating magnetic semiconductor behavior of the samples. The increase in AC electrical conductivity with frequency and temperature has been explained on the basis of Koops Model whereas dielectric constant and dielectric loss tangent has been explained with the Maxwell Wagner type interfacial polarization in agreement with the Koops phenomenological theory.

  3. Magnetic and microwave properties of U-type hexaferrite films with high remanence and low ferromagnetic resonance linewidth

    SciTech Connect

    Su, Zhijuan; Bennett, Steven; Hu, Bolin; Chen, Yajie Harris, Vincent G.

    2014-05-07

    U-type barium hexaferrite films (Ba{sub 4}Ni{sub 1.4}Co{sub 0.6}Fe{sub 36}O{sub 60}) were deposited on (0001) sapphire substrates by pulsed laser deposition. Microstructure and magnetic properties of the films were characterized by X-ray diffraction, scanning electron microscopy and vibrating sample magnetometry. Ferromagnetic resonance (FMR) measurements were performed at X-band. The results indicate an anisotropy field of ∼8 kOe, and the saturation magnetization (4πM{sub s}) of ∼3.6 kG. An optimal post-deposition annealing of films results in a strong (0 0 n) crystallographic texture and a high hysteresis loop squareness (M{sub r}/M{sub s} = 92%) leading to self biased properties. Furthermore, the highly self-biased ferrite films exhibited an FMR linewidth of ∼200 Oe. The U-type hexaferrite films having low microwave loss, low magnetic anisotropy field, and high squareness are a suitable alternative to Sc or In doped BaM ferrites that have been the choice material for self-biased microwave devices at X-band frequencies.

  4. Barium periostitis: an intraoral complication following barium swallow.

    PubMed

    Stanton, David C; Seeger, Douglas; Robinson, Brian T

    2007-05-01

    Barium is used with great frequency for various gastrointestinal radiographic studies. Complications arising from the use of barium are uncommon and can range from peritonitis, pneumonitis, vascular intravasation, allergic reactions, and even "barium appendicitis." We report a case of an unusual complication, periostitis, from the use of barium in a 46-year-old male.

  5. Mechanism and microstructural evolution of polyol mediated synthesis of nanostructured M-type SrFe12O19

    NASA Astrophysics Data System (ADS)

    Tenorio Gonzalez, F. N.; Bolarín Miró, A. M.; Sánchez De Jesús, F.; Cortés Escobedo, C. A.; Ammar, S.

    2016-06-01

    The synthesis mechanism of nanostructured M-type strontium hexaferrite SrFe12O19 with high coercivity (5.7 kOe) obtained by a polyol process and annealing is proposed. The results show that the hexaferrite is synthesized through the formation of a complex with diethylene glycol during the hydrolysis and solvation stage, followed by the condensation of magnetite and strontium oxide. The results of the monitoring of the process by X-ray diffraction (XRD) of synthesized powders, magnetization hysteresis loops and micromorphology are presented and discussed. The proposed mechanism suggests the intermediate formation of the magnetite phase, which shows coercivity near zero at room temperature and confirms the nanoscale of the particles. Results of thermogravimetric and differential thermal analysis indicate that this phase is followed by the formation of the hematite phase after a heat treatment up to 543 °C in an oxidizing atmosphere. Finally, the hexagonal phase is obtained after application of annealing at 836 °C through the reaction between hematite and strontium oxide.

  6. Barium bright and heavy

    NASA Astrophysics Data System (ADS)

    Fromm, Katharina M.

    2013-02-01

    Katharina M. Fromm relates how barium and its ores went from a magical, glowing species that attracted witches and alchemists to components in a variety of compounds that are key parts of modern life.

  7. Magnetic and Dielectric Investigations of Mn-Doped Ba Hexaferrite Nanoparticles by Hydrothermal Approach

    NASA Astrophysics Data System (ADS)

    Adeela, N.; Khan, U.; Iqbal, M.; Riaz, S.; Ali, H.; Maaz, K.; Naseem, S.

    2016-11-01

    A hydrothermal method followed by heat treatment was used to synthesize Mn-substituted Ba2Co2- x Mn x Fe12O22 nanoparticles with a nominal chemical composition of 0 ≤ x < 1 and step gap of 0.3. In this study, the effect of Mn substitution on Co2Y-type barium hexaferrite is investigated after employing x-ray diffraction for crystal structure, field emission scanning electron microscopy for morphology, energy dispersive analysis of x-ray spectroscopy for elemental composition, Fourier transform infrared spectroscopy to confirm bond modes, and vibrating sample magnetometry for magnetic measurements. It was found that the sample at x = 0.9 is of particular interest due to its large coercivity and anisotropy. Later on, for x = 0.9, temperature-dependent magnetic analyses including hysteresis loops, zero-field-cooled, and field-cooled at a particular field of 100 Oe were performed. The decreasing trend in saturation magnetization with increase in temperature was estimated. On the other hand, first an increase and then decrease in coercivity values were observed. These loops also revealed dependence of coercivity on magneto-crystalline anisotropy and average crystallite size of nanoparticles. Dielectric measurements at x = 0.9 make it suitable for high frequency applications.

  8. Polarimetry of M-type asteroids

    NASA Astrophysics Data System (ADS)

    Gil-Hutton, R.

    2007-03-01

    Aims:Results of a polarimetric program at Complejo Astronómico El Leoncito (Casleo), San Juan, Argentina are presented. The aim of this campaign is to estimate the polarimetric properties of asteroids belonging to the X taxonomic class. In this paper results of the campaign for M-type objects are presented. Methods: The data have been obtained with Casprof and Torino polarimeters at the 2.15 m telescope. The Casprof polarimeter is a two-hole aperture polarimeter with rapid modulation and the Torino polarimeter is an instrument that allows simultaneous measurement of polarization in the U-, B-, V-, R-, and I-bands. Results: The campaign began in 2000, and data on a sample of 26 M-type asteroids were obtained. Most of these objects were polarimetricaly observed for the first time. Combining these data with those available in the literature, an estimate of the polarimetric parameters and albedo for 12 objects is presented. Furthermore, the data show that asteroids 21 Lutetia and 77 Frigga have a large inversion angle and 441 Bathilde a deep polarization minimum, implying a controversial taxonomic classification as M-type for these objects. Also, the polarimetric parameters estimated for the M-type asteroids showing in their spectra the 3 μm band and classified as W-type by Rivkin et al. (1995, Icarus, 117, 90; 2000, ApJ, 145, 351) could be different from those without that feature. Based on observations carried out at the Complejo Astronómico El Leoncito, operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, and the National Universities of La Plata, Córdoba and San Juan.

  9. The influence of Nd-Co substitution on the magnetic properties of non-stoichiometric strontium hexaferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Bercoff, P. G.; Herme, C.; Jacobo, S. E.

    2009-07-01

    Non-stoichiometric Nd-Co substituted hexaferrites of composition Sr 1-xNd xFe 12(1-x)Co xO 19 ( x=0-0.4) were prepared by the self-propagating combustion method and subsequent heat treatments. Structural characterization of samples showed that the M-type hexagonal structure can be maintained for substitutions x<0.4 without the segregation of secondary phases on samples calcined at 1100 °C. The crystallites sizes range between 50 and 70 nm. Mössbauer spectroscopy results indicate that the iron vacancies are not evenly distributed over the lattice and that Co/Fe substitution mainly takes place in site 4f2. Magnetic measurements reveal that values of saturation magnetization MS increased from 72 to 76 Am 2/kg ( x=0-0.2), while coercivity Hc increased from 26.40 to 58.70 A/m ( x=0-0.3). Nd-Co substitutions enhance magnetic properties in deficient iron Sr hexaferrites.

  10. Spectroscopic survey of M-type asteroids

    NASA Astrophysics Data System (ADS)

    Fornasier, S.; Clark, B. E.; Dotto, E.; Migliorini, A.; Ockert-Bell, M.; Barucci, M. A.

    2010-12-01

    M-type asteroids, as defined in the Tholen taxonomy (Tholen, D.J. [1984]. Asteroid Taxonomy from Cluster Analysis of Photometry. Ph.D. Dissertation, University of Arizona, Tucson), are medium albedo bodies supposed to have a metallic composition and to be the progenitors both of differentiated iron-nickel meteorites and enstatite chondrites. We carried out a spectroscopic survey in the visible and near infrared wavelength range (0.4-2.5 μm) of 30 asteroids chosen from the population of asteroids initially classified as Tholen M-types, aiming to investigate their surface composition. The data were obtained during several observing runs during the years 2004-2007 at the TNG, NTT, and IRTF telescopes. We computed the spectral slopes in several wavelength ranges for each observed asteroid, and we searched for diagnostic spectral features. We confirm a large variety of spectral behaviors for these objects as their spectra are extended into the near infrared, including the identification of weak absorption bands, mainly of the 0.9 μm band tentatively attributed to orthopyroxene, and of the 0.43 μm band that may be associated to chlorites and Mg-rich serpentines or pyroxene minerals such us pigeonite or augite. A comparison with previously published data indicates that the surfaces of several asteroids belonging to the M-class may vary significantly. We attempt to constrain the asteroid surface compositions of our sample by looking for meteorite spectral analogs in the RELAB database and by modeling with geographical mixtures of selected meteorites/minerals. We confirm that iron meteorites, pallasites, and enstatite chondrites are the best matches to most objects in our sample, as suggested for M-type asteroids. For 22 Kalliope, we demonstrate that a synthetic mixture obtained enriching a pallasite meteorite with small amounts (1-2%) of silicates well reproduce the spectral behavior including the observed 0.9 μm feature. The presence of subtle absorption features on

  11. Combinatorial bulk ceramic magnetoelectric composite libraries of strontium hexaferrite and barium titanate.

    PubMed

    Pullar, Robert C

    2012-07-01

    Bulk ceramic combinatorial libraries were produced via a novel, high-throughput (HT) process, in the form of polycrystalline strips with a gradient composition along the length of the library. Step gradient ceramic composite libraries with 10 mol % steps of SrFe12O19-BaTiO3 (SrM-BT) were made and characterized using HT methods, as a proof of principle of the combinatorial bulk ceramic process, and sintered via HT thermal processing. It was found that the SrM-BT libraries sintered at 1175 °C had the optimum morphology and density. The compositional, electrical and magnetic properties of this library were analyzed, and it was found that the SrM and BT phases did not react and remained discrete. The combinatorial synthesis method produced a relatively linear variation in composition. The magnetization of the library followed the measured compositions very well, as did the low frequency permittivity values of most compositions in the library. However, with high SrM content of ≥80 mol %, the samples became increasingly conductive, and no reliable dielectric measurements could be made. Such conductivity would also greatly inhibit any ferroelectricity and magnetoelectric coupling with these composites with high levels of the SrM hexagonal ferrite. PMID:22676556

  12. Structural and magnetic properties of Ca-substituted barium W-type hexagonal hexaferrites

    NASA Astrophysics Data System (ADS)

    Huang, Kai; Liu, Xiansong; Feng, Shuangjiu; Zhang, Zhanjun; Yu, Jiangying; Niu, Xiaofei; Lv, Farui; Huang, Xing

    2015-04-01

    A series of W-type hexagonal ferrites with the composition Ba1-xCaxCo2Fe16O27 (x=0, 0.1, 0.3, 0.4 and 0.5) were synthesized using a sol-gel method. The effects of doping on structural and magnetic properties are studied by X-ray diffraction, thermal analyzer, scanning electron microscopy, vibrating sample magnetometer and vector network analyzer, respectively. The X-ray diffraction analysis shows that the samples belong to the W-type hexagonal ferrite. The lattice constants a and c decreases as Ca contents increases. The grains exhibit well defined hexagonal shape. The saturation magnetization and the intrinsic coercive force increases with the increase of the Ca substitution amount. The real part of complex permittivity (ε‧) and imaginary part (ε″) increase with more addition of Ca2+ amount. The imaginary part of complex permittivity (μ‧) increases and the real part (μ‧‧) goes down after Ca2+ is doped. Furthermore, the Ca2+ ions doped in the ferrite improved microwave absorbency.

  13. Observed Barium Emission Rates

    NASA Technical Reports Server (NTRS)

    Stenbaek-Nielsen, H. C.; Wescott, E. M.; Hallinan, T. J.

    1993-01-01

    The barium releases from the CRRES satellite have provided an opportunity for verifying theoretically calculated barium ion and neutral emission rates. Spectra of the five Caribbean releases in the summer of 1991 were taken with a spectrograph on board a U.S. Air Force jet aircraft. Because the line of sight release densities are not known, only relative rates could be obtained. The observed relative rates agree well with the theoretically calculated rates and, together with other observations, confirm the earlier detailed theoretical emission rates. The calculated emission rates can thus with good accuracy be used with photometric observations. It has been postulated that charge exchange between neutral barium and oxygen ions represents a significant source for ionization. If so. it should be associated with emissions at 4957.15 A and 5013.00 A, but these emissions were not detected.

  14. Aspiration of Barium Contrast

    PubMed Central

    Fuentes Santos, Cristina; Steen, Bárbara

    2014-01-01

    The aspiration of barium contrast is a rare complication that may occur during studies of the digestive tract. Barium is an inert material that can cause anywhere from an asymptomatic mechanical obstruction to serious symptoms of respiratory distress that can result in patient death. We present the case of a 79-year-old male patient in whom we observed the presence of contrast medium residue in the lung parenchyma as an incidental finding during hospitalization. When the patient's medical file was reviewed, images were found of a barium swallow study that the patient had undergone months earlier, and we were able to observe the exact moment of the aspiration of the contrast material. The patient had been asymptomatic since the test. PMID:25309769

  15. Barium stone impaction in parkinsonism.

    PubMed

    Erhan, Y; Koyuncu, A; Osmanoglu, N

    1995-06-01

    Autonomic symptoms such as orthostatic hypotension, abnormal sweating and constipation occur frequently in Parkinson's disease. In our case, barium meal used for upper gastrointestinal study caused barium stone formation and a paralytic-ileus-like syndrome. Therefore, attention should be paid while using barium meal for diagnostic purpose in Parkinsonism. PMID:7474296

  16. Synthesis, characterization and magneto optical properties of BaBixLaxYxFe12-3xO19 (0.0≤x≤0.33) hexaferrites

    NASA Astrophysics Data System (ADS)

    Güner, S.; Auwal, I. A.; Baykal, A.; Sözeri, H.

    2016-10-01

    BaBixLaxYxFe12-3xO19 (0.0≤x≤0.33) hexaferrites were synthesized by sol-gel autocombustion method and the effects of Bi, La, Y substitutions on structural, magneto-optical properties of barium hexaferrite were investigated. X-ray diffraction (XRD), Scanning electron microscopy (SEM), Vibrating sample magnetometer (VSM), and Percent diffuse reflectance spectroscopy (DR %), were used to study the physical properties. XRD peaks showed pure single phase of hexagonal ferrites and the average crystallite size varies in a range of 42.35-49.90 nm. Room temperature (RT) specific magnetization (σ-H) data revealed the strong ferromagnetic nature of hexaferrite with remanant specific magnetization (σr) in the range of 29.9-34.6 Am2/kg and extrapolated specific saturation magnetization (σs) in the range 53.69-67.42 Am2/kg. The maximum coercive field (Hc) of 3.812×105 A/m (belongs to BaFe12O19) decreases to minimum 2.177×105 A/m with increasing ion substitution. Magnetic anisotropy was confirmed as uniaxial and effective anisotropy constant (Keff) takes values between 2.532×105 J/m3 and 3.105×105 J/m3. The anisotropy field (Ha) around 1.6 T revealed that all samples are magnetically hard materials. The Tauc graphs were plotted to estimate the direct optical energy band gap (Eg) of hexaferrite. The Eg values decreased from 1.88 eV to 1.69 eV with increasing Bi, La, Y compositions.

  17. Effects of Heat-Treatment Time on the Structural, Dielectric, Electrical, and Magnetic Properties of BaM Hexaferrite

    NASA Astrophysics Data System (ADS)

    Ali, Ihsan; Islam, M. U.; Awan, M. S.; Ahmad, Mukhtar

    2013-07-01

    M-type hexaferrite (BaFe12O19) powders have been synthesized by means of the sol-gel autocombustion technique and is heat treated at 1000 °C for different times ( t = 1, 2, 3, and 4 h). Differential scanning calorimetry and thermogravimetric analyses are carried out to observe the weight loss and transformation of different phases during heat treatment. X-Ray diffraction patterns of the sample heat treated for 4 h confirms the formation of single phase M-type hexaferrite. The dielectric parameters and ac conductivity (σac) are measured in the high frequency range 1 MHz-3 GHz. The dielectric properties and ac conductivity are based on the space charge polarization according to the Maxwell-Wagner two-layer model and the Koop's phenomenological theory. The dielectric constant (ɛ') and dielectric loss (tan δ) decrease, while ac conductivity enhances with the increase of frequency. The room temperature DC electrical resistivity of the sample heat treated for 2 h enhances up to 2.93 × 109 (Ω-cm) and attributed to the migration of Fe2+ ions to the neighboring tetrahedral sites and lowering the Fe3+ contents on the octahedral sites. The temperature-dependent DC resistivity of samples shows a normal semiconducting behavior. The saturation magnetization, magnetic moment, and coercivity of the samples are observed to enhance with the increase of heat-treatment time. Owing to these qualities, the synthesized materials may be considered useful for high frequency applications, recording media, and permanent magnets.

  18. Barium and Compounds

    Integrated Risk Information System (IRIS)

    Barium and Compounds ; CASRN 7440 - 39 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinog

  19. Structural properties of ultrafine Ba-hexaferrite nanoparticles

    SciTech Connect

    Makovec, Darko; Primc, Darinka; Sturm, Saso; Kodre, Alojz; Hanzel, Darko; Drofenik, Miha

    2012-12-15

    Crystal structure of ultrafine Ba-hexaferrite (BaFe{sub 12}O{sub 19}) nanoparticles was studied using X-ray diffractometry (XRD), high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDXS), X-ray absorption fine structure (XAFS), and Moessbauer spectroscopy (MS), to be compared to the structure of larger nanoparticles and the bulk. The nanoparticles were synthesized with hydrothermal treatment of an appropriate suspension of Ba and Fe hydroxides in the presence of a large excess of OH{sup -}. The ultrafine nanoparticles were formed in a discoid shape, {approx}10 nm wide and only {approx}3 nm thick, comparable to the size of the hexagonal unit cell in the c-direction. The HRTEM image analysis confirmed the hexaferrite structure, whereas EDXS showed the composition matching the BaFe{sub 12}O{sub 19} formula. XAFS and MS analyses showed considerable disorder of the structure, most probably responsible for the low magnetization. - Graphical abstract: Left: HREM image of an ultrafine Ba-hexaferrite nanoparticle (inset: TEM image of the nanoparticles); Right: the experimental HRTEM image is compared with calculated image and corresponding atomic model. Highlights: Black-Right-Pointing-Pointer Crystal structure of ultrafine Ba-hexaferrite (BaFe{sub 12}O{sub 19}) nanoparticles was compared to the structure of the bulk. Black-Right-Pointing-Pointer Thickness the discoid nanoparticles was comparable to the size of the hexagonal unit cell in the c-direction. Black-Right-Pointing-Pointer Considerable disorder of the nanoparticles' structure is most probably responsible for their low magnetization.

  20. Substitutional effect of magnetic behaviour in calcium hexaferrite

    NASA Astrophysics Data System (ADS)

    Prakash, C. S.; Nanoti, V. M.; Kulkarni, D. K.; Rao, G. M.

    1995-02-01

    Three hexaferrites CaFe 4Me 8O 19 (Me  Al, Cr, or Co) are prepared and found to have M-structure. The substitution of Al +3 or Cr +3 ions in the lattice reduces the magnetization, whereas Co +3 enhances it with higher Curie temperature. These differences are explained on the basis of exchange interactions within the sub-lattices. Static electrical resistivity of the samples is also studied and results show that they are semiconductors.

  1. Effects of Gd-Substitutions on the Microstructure, Electrical and Electromagnetic Behavior of M-Type Hexagonal Ferrites

    NASA Astrophysics Data System (ADS)

    Ahmad, Ishtiaq; Ahmad, Mahmood; Ali, Ihsan; Kanwal, M.; Awan, M. S.; Mustafa, Ghulam; Ahmad, Mukhtar

    2015-07-01

    A series of Gd-substituted Ba-Co-based (M-type) hexaferrites having the chemical compositions of Ba0.5Co0.5Gd x Fe12- x O19 ( x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) were prepared by co-precipitation method. The pellets formed by co-precipitated powder were calcined at a temperature of 1200°C for 20 h. Final sintering was done at 1320°C for 4 h. From the x-ray diffraction analysis, it was revealed that all the samples showed M-type hexagonal structure as a major phase. The scanning electron microscope was used to examine the morphology of the sintered ferrites. The average grain size estimated by the line intercept method was found to be in the range of 2.8-1.0 μm. The room temperature DC resistivity increases with increasing Gd-contents to make these ferrites useful for high frequency applications and microwave devices. Lower values of coercivity ( H c) and higher saturation magnetization ( M s) may be suitable to enhance the permeability of these ferrites, which is favorable for impedance matching in microwave absorption. In addition, reflection coefficients for a sample was also measured from a frequency of 1 MHz to 3 GHz and a reflection peak was observed at about 2.2 GHz.

  2. Barium Stars: Theoretical Interpretation

    NASA Astrophysics Data System (ADS)

    Husti, Laura; Gallino, Roberto; Bisterzo, Sara; Straniero, Oscar; Cristallo, Sergio

    2009-09-01

    Barium stars are extrinsic Asymptotic Giant Branch (AGB) stars. They present the s-enhancement characteristic for AGB and post-AGB stars, but are in an earlier evolutionary stage (main sequence dwarfs, subgiants, red giants). They are believed to form in binary systems, where a more massive companion evolved faster, produced the s-elements during its AGB phase, polluted the present barium star through stellar winds and became a white dwarf. The samples of barium stars of Allen & Barbuy (2006) and of Smiljanic et al. (2007) are analysed here. Spectra of both samples were obtained at high-resolution and high S/N. We compare these observations with AGB nucleosynthesis models using different initial masses and a spread of 13C-pocket efficiencies. Once a consistent solution is found for the whole elemental distribution of abundances, a proper dilution factor is applied. This dilution is explained by the fact that the s-rich material transferred from the AGB to the nowadays observed stars is mixed with the envelope of the accretor. We also analyse the mass transfer process, and obtain the wind velocity for giants and subgiants with known orbital period. We find evidence that thermohaline mixing is acting inside main sequence dwarfs and we present a method for estimating its depth.

  3. [Barium intoxication: a case report].

    PubMed

    Jan, I S; Jong, Y S; Lo, H M

    1991-09-01

    Barium intoxication, a rare cause of hypokalemia, can sometimes result in respiratory paralysis and ventricular tachyarrhythmia. Herein, we report one such case. A 29-year-old man swallowed barium-contaminated fried flour-coated sweet potatoes. Then, abdominal discomfort, vomiting, diarrhea, progressive muscular weakness, apnea and ventricular tachycardia developed and laboratory data revealed profound hypokalemia. He regained his health after mechanical ventilation, anti-arrhythmic agent and aggressive potassium chloride supplement. Analysis of blood, urine and contaminated flour showed the presence of barium carbonate. Barium intoxication is a medical emergency which requires rapid therapy to prevent mortality.

  4. Room temperature optical and dielectric properties of Ca and Ni doped barium ferrite

    NASA Astrophysics Data System (ADS)

    Agrawal, Shraddha; Parveen, Azra; Azam, Ameer

    2016-05-01

    The citrate sol gel combustion method has been used to synthesize (Ba0.9Ca0.1) (Fe0.8 Ni0.2)12O19 hexaferrites. Microstructural analyses were carried out by XRD and FTIR. Optical properties were studied by UV-visible technique in the range of 300-800 nm. The energy band gap was calculated with the help of Tauc relationship shows increases in band gap. Ca and Ni doped barium ferrite annealed at 850°C exhibit significant dispersion in complex permeability. The dispersion in complex dielectric constant can be explained on the basis of Koop's theory based on Maxwell-Wagner two layer models in studied nanoparticles.

  5. Crystal structure, magnetic properties and advances in hexaferrites: A brief review

    NASA Astrophysics Data System (ADS)

    Jotania, Rajshree

    2014-10-01

    Hexaferrites are hard magnetic materials and specifically ferri-magnetic oxides with hexagonal magnetoplumbite type crystallographic structure. Hexagonal ferrites are used as permanent magnets, high-density perpendicular and magneto-optical recording media, and microwave devices like resonance isolators, filters, circulators, phase shifters because of their high magnetic permeability, high electrical resistivity and moderable permittivity. In addition to these; hexagonal ferrites have excellent chemical stability, mechanical hardness and low eddy current loss at high frequencies. The preparation of hexaferrites is a complicated process. Various experimental techniques like standard ceramic techniques, solvent free synthesis route, co precipitation, salt-melt, ion exchange, sol-gel, citrate synthesis, hydrothermal synthesis, spray drying, water-in-oil microemulsion, reverse micelle etc are used to prepare hexaferrite materials. Structural, dielectric and magnetic properties, crystallite size of hexaferrites depend upon nature of substituted ions, method of preparation, sintering temperature and time. The recent interest is nanotechnology, the development of hexaferrite fibres and composites with carbon nano tubes (CNT). Magnetic properties of some doped and un-doped hexaferrites are discussed here. Recent advances in hexaferrites also highlighted in present paper.

  6. High quality Y-type hexaferrite thick films for microwave applications by an economical and environmentally benign crystal growth technique

    SciTech Connect

    Hu, Bolin; Chen, Yajie Gillette, Scott; Su, Zhijuan; Harris, Vincent G.; Wolf, Jason; McHenry, Michael E.

    2014-02-17

    Thick barium hexaferrite Ba{sub 2}Zn{sub 2}Fe{sub 12}O{sub 22} (i.e., Zn{sub 2}Y) films having thicknesses of ∼100 μm were epitaxially grown on MgO (111) substrates using an environmentally benign ferrite-salt mixture by vaporizing the salt. X-ray diffraction pole figure analyses showed (00l) crystallographic alignment with little in plane dispersion confirming epitaxial growth. Saturation magnetization, 4πM{sub s}, was measured for as-grown films to be 2.51 ± 0.1 kG with an out of plane magnetic anisotropy field H{sub A} of 8.9 ± 0.1 kOe. Ferromagnetic resonance linewidth, as the peak-to-peak power absorption derivative at 9.6 GHz, was measured to be 62 Oe. These properties demonstrate a rapid, convenient, cost-effective, and nontoxic method of growing high quality thick crystalline ferrite films which could be used widely for microwave device applications.

  7. Barium uranyl diphosphonates

    SciTech Connect

    Nelson, Anna-Gay D.; Alekseev, Evgeny V.; Ewing, Rodney C.; Albrecht-Schmitt, Thomas E.

    2012-08-15

    Three Ba{sup 2+}/UO{sub 2}{sup 2+} methylenediphosphonates have been prepared from mild hydrothermal treatment of uranium trioxide, methylendiphosphonic acid (C1P2) with barium hydroxide octahydrate, barium iodate monohydrate, and small aliquots of HF at 200 Degree-Sign C. These compounds, Ba[UO{sub 2}[CH{sub 2}(PO{sub 3}){sub 2}]{center_dot}1.4H{sub 2}O (Ba-1), Ba{sub 3}[(UO{sub 2}){sub 4}(CH{sub 2}(PO{sub 3}){sub 2}){sub 2}F{sub 6}]{center_dot}6H{sub 2}O (Ba-2), and Ba{sub 2}[(UO{sub 2}){sub 2}(CH{sub 2}(PO{sub 3}){sub 2})F{sub 4}]{center_dot}5.75H{sub 2}O (Ba-3) all adopt layered structures based upon linear uranyl groups and disphosphonate molecules. Ba-2 and Ba-3 are similar in that they both have UO{sub 5}F{sub 2} pentagonal bipyramids that are bridged and chelated by the diphosphonate moiety into a two-dimensional zigzag anionic sheet (Ba-2) and a one-dimensional ribbon anionic chain (Ba-3). Ba-1, has a single crystallographically unique uranium metal center where the C1P2 ligand solely bridges to form [UO{sub 2}[CH{sub 2}(PO{sub 3}){sub 2}]{sup 2-} sheets. The interlayer space of the structures is occupied by Ba{sup 2+}, which, along with the fluoride ion, mediates the structure formed and maintains overall charge balance. - Graphical abstract: Illustration of the stacking of the layers in Ba{sub 3}[(UO{sub 2}){sub 4}(CH{sub 2}(PO{sub 3}){sub 2}){sub 2})F{sub 6}]{center_dot}6H{sub 2}O viewed along the c-axis. The structure is constructed from UO{sub 7} pentagonal bipyramidal units, U(1)O{sub 7}=gray, U(2)O{sub 7}=yellow, barium=blue, phosphorus=magenta, fluorine=green, oxygen=red, carbon=black, and hydrogen=light peach. Highlights: Black-Right-Pointing-Pointer The polymerization of the UO{sub 2}{sup 2+} sites to form uranyl dimers leads to structural variations in compounds. Black-Right-Pointing-Pointer Barium cations stitch uranyl diphosphonate anionic layers together, and help mediate structure formation. Black-Right-Pointing-Pointer HF acts as both a

  8. Ferrimagnetic resonance and magnetoelastic excitations in magnetoelectric hexaferrites

    NASA Astrophysics Data System (ADS)

    Vittoria, Carmine

    2015-08-01

    Static field properties of magnetoelectric hexaferrites have been explored extensively in the past five years. In this paper, dynamic properties of magnetoelectric hexaferrites are being explored. In particular, effects of the linear magnetoelectric coupling (α ) on ferrimagnetic resonance (FMR) and magnetoelastic excitations are being investigated. A magnetoelastic free energy which includes Landau-Lifshitz mathematical description of a spin spiral configuration is proposed to calculate FMR and magnetoelastic excitations in magnetoelectric hexaferrites. It is predicted that the ordinary uniform precession FMR mode contains resonance frequency shifts that are proportional to magnetoelectric static and dynamic fields. The calculated FMR fields are in agreement with experiments. Furthermore, it is predicted at low frequencies (approximately megahertz ranges), near zero magnetic field FMR frequencies, there is an extra uniform precession FMR mode besides the ordinary FMR mode which can only be accounted by dynamic magnetoelectric fields. Whereas the FMR frequency shifts in the ordinary FMR mode due to the α coupling scale as α , the shifts in the new discovered FMR mode scale as α2. Also, magnetoelastic dispersions were calculated, and it is predicted that the effect of the α coupling are the following: (1) The strength of admixture of modes and splitting in energy between spin waves and transverse acoustic waves is proportional to α . (2) The degeneracy of the two transverse acoustic wave modes is lifted even for relatively low values of α . Interestingly, at low frequencies near zero field FMR frequencies, the surface spin wave mode branch flip-flops with the volume spin wave branch whereby one branch assumes real values of the propagation constant and the other purely imaginary upon the application of a static electric field.

  9. Magnetic and structural properties of Ba M-type ferrite-composite powders

    NASA Astrophysics Data System (ADS)

    Paul, K. B.

    2007-01-01

    The goal of the work is to study the interparticle interactions, magnetic and structural properties of the M-type barium ferrite-composite powders BaFe8(Ti0.5Mn0.5)4O19 and BaFe8.5(Ti0.5Mn0.5)3.5O19 with packing densities ∼75%, embedded in synthetic rubber. The physical properties of the materials are investigated in a wide temperature range for their characterization and device adaptation down to a cryogenic environment. The development of the macromagnetic parameters, such as remanence, coercitivity, and squareness of the hysteresis loops, is observed upon change of the Fe composition. The interparticle interactions are estimated based on DC magnetic measurements. The dynamic magnetic properties of these composites are correlated to the dynamic characteristics of some disordered spin-glass-like materials.

  10. Magnetoelectric excitations in hexaferrites utilizing solenoid coil for sensing applications

    NASA Astrophysics Data System (ADS)

    Zare, Saba; Izadkhah, Hessam; Somu, Sivasubramanian; Vittoria, Carmine

    2015-11-01

    We have developed techniques for H- and E-field sensors utilizing single phase magnetoelectric hexaferrite materials in the frequency range of 100 Hz to 10 MHz. Novel excitation method incorporating solenoid coils and single and multi-capacitor banks were developed and tested for sensor detections. For H-field sensing we obtained sensitivity of about 3000 V/mG and for E-field sensing the sensitivity was 10-4 G/Vm-1. Tunability of about 0.1% was achieved for tunable inductor applications. However, the proposed designs lend themselves to significant (~106) improvements in sensitivity and tunability.

  11. EBSD analysis of the microtexture of Ba-hexaferrite samples

    NASA Astrophysics Data System (ADS)

    Koblischka-Veneva, A.; Koblischka, M. R.; Schmauch, J.; Chen, Y.; Harris, V. G.

    2010-01-01

    The microtexture of differently prepared Ba-hexaferrite samples is investigated by means of electron backscatter diffraction (EBSD). Kikuchi patterns are obtained with a high image quality, enabling a spatial resolution of the EBSD maps of about 20 nm. The spatially highly resolved EBSD mappings provide additional information (individual grain orientation, misorientation angles, grain size distribution) as compared to the standard analysis techniques, which can contribute to an optimization of the growth process. Furthermore, as the crystallographic orientation of each grain is known, an exact analysis of the grain aspect ratio becomes possible which provides further insight to the microstructural dependence of the magnetic properties of ferrites.

  12. On Barium Oxide Solubility in Barium-Containing Chloride Melts

    NASA Astrophysics Data System (ADS)

    Nikolaeva, Elena V.; Zakiryanova, Irina D.; Bovet, Andrey L.; Korzun, Iraida V.

    2016-08-01

    Oxide solubility in chloride melts depends on temperature and composition of molten solvent. The solubility of barium oxide in the solvents with barium chloride content is essentially higher than that in molten alkali chlorides. Spectral data demonstrate the existence of oxychloride ionic groupings in such melts. This work presents the results of the BaO solubility in two molten BaCl2-NaCl systems with different barium chloride content. The received data together with earlier published results revealed the main regularities of BaO solubility in molten BaO-BaCl2-MCl systems.

  13. Synthesis, Structures, and Multiferroic Properties of Strontium Hexaferrite Ceramics

    NASA Astrophysics Data System (ADS)

    Tan, Guolong; Chen, Xiuna

    2013-05-01

    Simultaneous occurrence of large ferroelectricity and strong ferromagnetism has been observed in strontium hexaferrite (SrFe12O19) ceramics. Strontium hexaferrite powders with hexagonal crystal structures have been successfully synthesized through the co-precipitation precursor method using strontium nitrate and ferric nitrate as starting materials. The powders were pressed into pellets and then sintered into ceramics at a temperature range of at 1000°C to 1100°C for 1 h. The structure and morphology of the ceramics were determined using x-ray diffraction and field-emission scanning electron microscopy techniques. Clear ferroelectric hysteresis loops demonstrated large spontaneous polarization in the SrFe12O19 ceramics at room temperature. The maximum remnant polarization of the SrFe12O19 ceramic was estimated to be approximately 15 μC/cm2. The FeO6 octahedron in its perovskite-like hexagonal unit cell and the displacement of Fe3+ off the center of the octahedron are proposed to be the origin of electric polarization in SrFe12O19. In our experimental observations, the SrFe12O19 ceramic also revealed strong ferromagnetism at room temperature.

  14. Microstructure and magnetic properties of Ca-substituted M-type SrLaCo hexagonal ferrites

    NASA Astrophysics Data System (ADS)

    Huang, Xin; Liu, Xiansong; Yang, Yujie; Huang, Kai; Niu, Xiaofei; Jin, Dali; Gao, Shang; Ma, Yuqi; Huang, Feng; Lv, Farui; Feng, Shuangjiu

    2015-03-01

    M-type strontium hexaferrites with chemical composition of Sr0.80-xCaxLa0.20Fe11.85Co0.15O19 (x=0-0.15) were prepared by the ceramic process. The samples were sintered at temperatures of 1175, 1185 and 1195 °C for 2 h in air. Effects of the substituted amount x of Ca2+ on the ferrites microstructure and magnetic properties have been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and B-H hysteresis curve measurements. As a result, at x≤0.12, all samples are single phase after the Ca substitution. At x=0.15, another phase of hematite (α-Fe2O3) is present. In addition, the maximum values of the remanence (Br) and maximum energy product ((BH)max) for the magnets have been obtained at x=0.08 for sintering temperature=1185 °C. The maximum value of the intrinsic coercive force (Hcj) for the magnets has been obtained at x=0.12 when the magnets were sintered at 1185 °C.

  15. Barium light source method and apparatus

    NASA Technical Reports Server (NTRS)

    Curry, John J. (Inventor); MacDonagh-Dumler, Jeffrey (Inventor); Anderson, Heidi M. (Inventor); Lawler, James E. (Inventor)

    2002-01-01

    Visible light emission is obtained from a plasma containing elemental barium including neutral barium atoms and barium ion species. Neutral barium provides a strong green light emission in the center of the visible spectrum with a highly efficient conversion of electrical energy into visible light. By the selective excitation of barium ionic species, emission of visible light at longer and shorter wavelengths can be obtained simultaneously with the green emission from neutral barium, effectively providing light that is visually perceived as white. A discharge vessel contains the elemental barium and a buffer gas fill therein, and a discharge inducer is utilized to induce a desired discharge temperature and barium vapor pressure therein to produce from the barium vapor a visible light emission. The discharge can be induced utilizing a glow discharge between electrodes in the discharge vessel as well as by inductively or capacitively coupling RF energy into the plasma within the discharge vessel.

  16. Highly aluminium doped barium and strontium ferrite nanoparticles prepared by citrate auto-combustion synthesis

    SciTech Connect

    Shirtcliffe, Neil J. . E-mail: neil.shirtcliffe@ntu.ac.uk; Thompson, Simon; O'Keefe, Eoin S.; Appleton, Steve; Perry, Carole C. . E-mail: carole.perry@ntu.ac.uk

    2007-02-15

    Aluminium doped barium and strontium hexaferrite nanoparticles BaAl {sub x}Fe{sub (12-x)}O{sub 19} and SrAl {sub x}Fe{sub (12-x)}O{sub 19} were synthesised via a sol-gel route using citric acid to complex the ions followed by an auto-combustion reaction. This method shows promise for the synthesis of complex ferrite powders with small particle size. It was found that around half of the iron could be substituted for aluminium in the barium ferrite with structure retention, whereas strontium aluminium ferrites could be produced with any aluminium content including total substitution of the iron. All synthesised materials consisted of particles smaller than 1 {mu}m, which is the size of a single magnetic domain, and various doping levels were achieved with the final elemental composition being within the bounds of experimental error. The materials show structural and morphological changes as they move from iron to aluminium ferrites. Such materials may be promising for imaging applications.

  17. Rare-earth substitutions in Z-type hexaferrites

    NASA Astrophysics Data System (ADS)

    Jacquiod, Catherine; Autissier, Denis

    1992-02-01

    Z-type hexaferrite (Ba 3Co 2Fe 24O 41) presents a gyromagnetic permeability whose resonance frequency stands around 2 GHz. The damping coefficient α is less than 0.1. The influence on the damping coefficient of doping this ferrite by a rare-earth (La) has been studied. Powders have been synthesized by carbonate coprecipitation, dried and calcined at different temperatures. Different phases have been characterized by X-ray diffraction and magnetization measurements. Solubility in the range of weak concentrations has been verified. The synthesized powders were processed by slip casting in the presence of a magnetic field in order to align the particles. The microstructural and hyperfrequency characteristics have been evaluated. The influence of the substitution on anisotropy fields and damping are studied in comparison with pure Co 2Z, whose processing and properties have been optimized as a reference.

  18. Dielectric dispersion of Y-type hexaferrites at low frequencies

    NASA Astrophysics Data System (ADS)

    Abo El Ata, A. M.; Attia, S. M.

    2003-02-01

    A series of polycrystalline Y-type hexaferrites with composition Ba 2Ni 2- xZn xFe 12O 22 (where 0.0⩽ x⩽2.0) were prepared by the standard ceramic method to study the effect of the frequency, temperature and composition on their AC electrical conductivity σ' AC, and dielectric properties. It was found that, the AC conductivity shows dispersion at high frequencies. This dispersion was attributed to the interfacial polarization arising from the inhomogeneous structure of the material. At low frequencies the dielectric constant, ɛ', is abnormally high and decreases rapidly with increasing frequency. Dielectric relaxation peaks were observed on the tan δ( F) curves. The results of the dielectric constant and dielectric loss were explained on the basis of the assumption that the mechanism of dielectric polarization is similar to that of the conduction process.

  19. Uniaxial ferroelectric quantum criticality in multiferroic hexaferrites BaFe12O19 and SrFe12O19.

    PubMed

    Rowley, S E; Chai, Yi-Sheng; Shen, Shi-Peng; Sun, Young; Jones, A T; Watts, B E; Scott, J F

    2016-05-17

    BaFe12O19 is a popular M-type hexaferrite with a Néel temperature of 720 K and is of enormous commercial value ($3 billion/year). It is an incipient ferroelectric with an expected ferroelectric phase transition extrapolated to lie at 6 K but suppressed due to quantum fluctuations. The theory of quantum criticality for such uniaxial ferroelectrics predicts that the temperature dependence of the electric susceptibility χ diverges as 1/T(3), in contrast to the 1/T(2) dependence found in pseudo-cubic materials such as SrTiO3 or KTaO3. In this paper we present evidence of the susceptibility varying as 1/T(3), i.e. with a critical exponent γ = 3. In general γ = (d + z - 2)/z, where the dynamical exponent for a ferroelectric z = 1 and the dimension is increased by 1 from deff = 3 + z to deff = 4 + z due to the effect of long-range dipole interactions in uniaxial as opposed to multiaxial ferroelectrics. The electric susceptibility of the incipient ferroelectric SrFe12O19, which is slightly further from the quantum phase transition is also found to vary as 1/T(3).

  20. Uniaxial ferroelectric quantum criticality in multiferroic hexaferrites BaFe12O19 and SrFe12O19

    PubMed Central

    Rowley, S. E.; Chai, Yi-Sheng; Shen, Shi-Peng; Sun, Young; Jones, A. T.; Watts, B. E.; Scott, J. F.

    2016-01-01

    BaFe12O19 is a popular M-type hexaferrite with a Néel temperature of 720 K and is of enormous commercial value ($3 billion/year). It is an incipient ferroelectric with an expected ferroelectric phase transition extrapolated to lie at 6 K but suppressed due to quantum fluctuations. The theory of quantum criticality for such uniaxial ferroelectrics predicts that the temperature dependence of the electric susceptibility χ diverges as 1/T3, in contrast to the 1/T2 dependence found in pseudo-cubic materials such as SrTiO3 or KTaO3. In this paper we present evidence of the susceptibility varying as 1/T3, i.e. with a critical exponent γ = 3. In general γ = (d + z – 2)/z, where the dynamical exponent for a ferroelectric z = 1 and the dimension is increased by 1 from deff = 3 + z to deff = 4 + z due to the effect of long-range dipole interactions in uniaxial as opposed to multiaxial ferroelectrics. The electric susceptibility of the incipient ferroelectric SrFe12O19, which is slightly further from the quantum phase transition is also found to vary as 1/T3. PMID:27185343

  1. Uniaxial ferroelectric quantum criticality in multiferroic hexaferrites BaFe12O19 and SrFe12O19.

    PubMed

    Rowley, S E; Chai, Yi-Sheng; Shen, Shi-Peng; Sun, Young; Jones, A T; Watts, B E; Scott, J F

    2016-01-01

    BaFe12O19 is a popular M-type hexaferrite with a Néel temperature of 720 K and is of enormous commercial value ($3 billion/year). It is an incipient ferroelectric with an expected ferroelectric phase transition extrapolated to lie at 6 K but suppressed due to quantum fluctuations. The theory of quantum criticality for such uniaxial ferroelectrics predicts that the temperature dependence of the electric susceptibility χ diverges as 1/T(3), in contrast to the 1/T(2) dependence found in pseudo-cubic materials such as SrTiO3 or KTaO3. In this paper we present evidence of the susceptibility varying as 1/T(3), i.e. with a critical exponent γ = 3. In general γ = (d + z - 2)/z, where the dynamical exponent for a ferroelectric z = 1 and the dimension is increased by 1 from deff = 3 + z to deff = 4 + z due to the effect of long-range dipole interactions in uniaxial as opposed to multiaxial ferroelectrics. The electric susceptibility of the incipient ferroelectric SrFe12O19, which is slightly further from the quantum phase transition is also found to vary as 1/T(3). PMID:27185343

  2. Uniaxial ferroelectric quantum criticality in multiferroic hexaferrites BaFe12O19 and SrFe12O19

    NASA Astrophysics Data System (ADS)

    Rowley, S. E.; Chai, Yi-Sheng; Shen, Shi-Peng; Sun, Young; Jones, A. T.; Watts, B. E.; Scott, J. F.

    2016-05-01

    BaFe12O19 is a popular M-type hexaferrite with a Néel temperature of 720 K and is of enormous commercial value ($3 billion/year). It is an incipient ferroelectric with an expected ferroelectric phase transition extrapolated to lie at 6 K but suppressed due to quantum fluctuations. The theory of quantum criticality for such uniaxial ferroelectrics predicts that the temperature dependence of the electric susceptibility χ diverges as 1/T3, in contrast to the 1/T2 dependence found in pseudo-cubic materials such as SrTiO3 or KTaO3. In this paper we present evidence of the susceptibility varying as 1/T3, i.e. with a critical exponent γ = 3. In general γ = (d + z – 2)/z, where the dynamical exponent for a ferroelectric z = 1 and the dimension is increased by 1 from deff = 3 + z to deff = 4 + z due to the effect of long-range dipole interactions in uniaxial as opposed to multiaxial ferroelectrics. The electric susceptibility of the incipient ferroelectric SrFe12O19, which is slightly further from the quantum phase transition is also found to vary as 1/T3.

  3. Low-loss Z-type hexaferrite (Ba3Co2Fe24O41) for GHz antenna applications

    NASA Astrophysics Data System (ADS)

    Lee, Woncheol; Hong, Yang-Ki; Park, Jihoon; LaRochelle, Gatlin; Lee, Jaejin

    2016-09-01

    We report a low magnetic loss Ba3Co2Fe24O41 (Co2Z) hexaferrite for use in gigahertz (GHz) antennas. Acid-etching was very effective in removal of unwanted Y-type hexaferrite (Ba2Co2Fe12O22) from calcined Co2Z powder. It is found that the calcined and acid etched (AE) Co2Z hexaferrite shows a low magnetic loss tangent (tan δμ) of 0.012 and 0.037 at 1 and 2 GHz, respectively. These low tan δμ are attributed to removal of Y-type hexaferrite, which possesses a lower anisotropy field (Hk) than W-type hexaferrite (BaCo2Fe16O27). The figure of merit (FOM) of the AE Co2Z hexaferrite is 141.7 and 48.7 at 1 and 2 GHz, respectively. These FOM are much higher than the FOM of previously reported low-loss magnetic materials. Therefore, the AE Co2Z hexaferrite can be a good candidate for GHz antenna application in the ultra-high frequency (UHF) band.

  4. Dielectric and impedance behavior of neodymium substituted strontium hexaferrite

    NASA Astrophysics Data System (ADS)

    Bhat, Bilal Hamid; Samad, Rubiya; Want, Basharat

    2016-09-01

    In this study, dielectric behavior and complex impedance of neodymium (Nd) substituted strontium hexaferrite system: Sr1- x Nd x Fe12O19 ( x = 0.0, 0.05, 0.1, 0.15, 0. 20), synthesized by citrate precursor technique, have been evaluated as a function of applied frequency and temperature. Variation of dielectric constant and dielectric loss with frequency shows the identical behavior for all the compositions. The value of dielectric constant increases with Nd doping. Relaxation process is observed in the composition x = 0.20, and the peaks in this composition shift toward the higher-frequency region as the temperature increases. The dielectric constants show temperature-independent behavior at low temperature, whereas at higher temperatures it increases for all the frequencies. The AC conductivity follows Jonscher's power law, showing that conduction mechanism is due to polaron hopping. Complex impedance as a function of composition and temperature is used to examine the role of grain and grain boundary in the prepared material. Cole-cole plot shows only one semicircle up to x = 0.15, while as for x = 0.20 two semicircles are observed. The conduction mechanism is explained on the basis of both grain and grain boundary.

  5. Improvement of high-frequency characteristics of Z-type hexaferrite by dysprosium doping

    SciTech Connect

    Mu Chunhong; Liu Yingli; Song Yuanqiang; Wang Liguo; Zhang Huaiwu

    2011-06-15

    Z-type hexaferrite has great potential applications as anti-EMI material for magnetic devices in the GHz region. In this work, Dy-doped Z-type hexaferrites with nominal stoichiometry of Ba{sub 3}Co{sub 2}Dy{sub x}Fe{sub 24-x}O{sub 41} (x 0.0, 0.05, 0.5, 1.0) were prepared by an improved solid-state reaction method. The effects of rare earth oxide (Dy{sub 2}O{sub 3}) addition on the phase composition, microstructure and electromagnetic properties of the ceramics were investigated. Structure and micromorphology characterizations indicate that certain content of Dy doping will cause the emergence of the second phase Dy{sub 3}Fe{sub 5}O{sub 12} at the grain boundaries of the majority phase Z-type hexaferrite, due to which the straightforward result is the grain refinement during the successive sintering process. Permeability spectra measurements show that the initial permeability reaches its maximum of 17 at 300 MHz with x = 0.5, while the cutoff frequency keeps above 800 MHz. The apparent specific anisotropy field H{sub K} of Dy-doped Z-type hexaferrites decreases with x increasing. The relationships among phase composition, grain size, permeability spectra, and anisotropy are theoretically investigated, and according to the analysis, Dy doping effects on its magnetic properties can be well explained and understood.

  6. Experimental results on V-M type pulse tube refrigerator

    NASA Astrophysics Data System (ADS)

    Dai, Wei; Matsubara, Yoichi; Kobayashi, Hisayasu

    2002-06-01

    This article mainly introduces experimental results on a new type pulse tube refrigerator named as V-M type pulse tube refrigerator. The main difference from Stirling type or G-M type pulse tube refrigerator is that thermal compressor similar to that of a V-M cryocooler is used instead of mechanical compressor. By using temperature difference between room temperature and liquid nitrogen, pressure wave with high to low pressure ratio around 1.2 is obtained. This pressure wave is used to generate cooling effect at the cold end. With a 20 K pre-cooler, this machine reaches lowest temperature 5.25 K by using helium 4 at 0.77 Hz, 19 bar charge pressure. DC flow plays an important role in our system. It not only influences the final obtainable lowest temperature, but also is used to increase cold end cool-down speed. Total volume of the V-M type pulse tube refrigerator is around 3.3 l. However, dead volume inside rotor housing occupies about 2.8 l and can be much reduced.

  7. The problem of the barium stars

    NASA Technical Reports Server (NTRS)

    Bohm-Vitense, E.; Nemec, J.; Proffitt, C.

    1984-01-01

    Ultraviolet observations of barium stars and other cool stars with peculiar element abundances are reported. Those observations attempted to find hot white dwarf companions. Among six real barium stars studied, only Zeta Cap was found to have a white dwarf companion. Among seven mild, or marginal, barium stars studied, at least three were found to have hot subluminous companions. It is likely that all of them have white dwarf companions.

  8. Magnetic property enhancement and characterization of nano-structured barium ferrite by mechano-thermal treatment

    SciTech Connect

    Molaei, M.J.; Ataie, A.; Raygan, S.; Rahimipour, M.R.; Picken, S.J.; Tichelaar, F.D.; Legarra, E.; Plazaola, F.

    2012-01-15

    In this research a mixture of barium ferrite and graphite powders was milled in a planetary ball mill and then heat treated in vacuum to produce BaFe{sub 12}O{sub 19}/Fe{sub 3}O{sub 4} and Fe/Fe{sub 3}O{sub 4} magnetic nano-composites. The effects of milling time and heat treatment temperature on the characteristics of powder mixture were investigated by X-ray diffraction analysis, vibrating sample magnetometer, transmission electron microscopy and Moessbauer spectroscopy. Phase analysis results showed that Fe{sub 2}O{sub 3} in barium ferrite partially reduced to Fe{sub 3}O{sub 4} during milling; hence, the reduced phase and remaining barium ferrite formed a nano-composite of BaFe{sub 12}O{sub 19}/Fe{sub 3}O{sub 4} after 20 h of milling. Heat treatment of the 40 h milled samples at 750-900 Degree-Sign C resulted in formation of Fe containing nano-composite. Magnetic measurements indicated that the coercivity of 267.92 Oe for 40 h milled sample decreased to 22.57 Oe by heat treatment at 900 Degree-Sign C, while its saturation magnetization increased from 31.56 to 169.43 emu/g due to the formation of Fe nano-crystallites. - Highlights: Black-Right-Pointing-Pointer Barium hexaferrite and graphite were treated mechano-thermally. Black-Right-Pointing-Pointer After 20 h milling, a nano-composite of BaFe{sub 12}O{sub 19}/Fe{sub 3}O{sub 4} formed. Black-Right-Pointing-Pointer Heat treatment of milled sample resulted in formation of Fe/Fe{sub 3}O{sub 4} composite. Black-Right-Pointing-Pointer Increasing heat treatment temperature results in higher saturation magnetization. Black-Right-Pointing-Pointer The milled and heat treated samples were nano-crystalline.

  9. Magnetoelectric Effects and Related Phenomena in Spin-spiral Hexaferrites

    NASA Astrophysics Data System (ADS)

    Kimura, Tsuyoshi

    2012-02-01

    Among various multiferroics, extensive studies of ferroelectrics originating from magnetic orders, i.e., magnetically-induced ferroelectrics in which the inversion simmetry breaking and resultant ferroelectricity are induced by complex magnetic orders, have been triggered almost a decade ago by the discovery of multiferroic nature in a perovskite-type rare-earh manganites TbMnO3. The magnetically-induced ferroelectrics often show giant magnetoelectric effects, remarkable changes in electric polarization in response to a magnetic field, since the origin of their ferroelectricity is driven by magnetism which sensitively responds to an applied magnetic field. Though a large number of new magnetically-induced ferroelectrics have been reported in the past decade, so far there has been no practical application employing the magnetoelectric effect of the magnetically-induced ferroelectrics. This is partly because none of the existing magnetically-induced ferroelectrics have combined large and robust electric and magnetic polarizations at room temperature until quite recently. The situation is changed by the discoveries of magnetoelectricity in hexagonal ferrites (hexaferrites) with spin-spiral structures.ootnotetextT. Kimura, G. Lawes, and A. P. Ramirez, Phys. Rev. Lett. 94, 137201 (2005).^,ootnotetextY. Kitagawa et al., Nature Mater. 9, 797 (2010).^,ootnotetextK. Okumura et al., Appl. Phys. Lett. 98, 212504 (2011). In this presentation, I show our recent studies on magnetoelectric effects and related phenomena in the new series of magnetically-induced ferroelectrics which are promising candidates for multiferroics operating at room temperature and low fields. This work has been done in collaboration with Y. Hiraoka, T. Ishikura, K. Okumura, Y. Kitagawa, H. Nakamura, Y. Wakabayashi, M. Soda, T. Asaka, and Y. Tanaka.

  10. Barium Depletion in Hollow Cathode Emitters

    NASA Technical Reports Server (NTRS)

    Polk, James E.; Capece, Angela M.; Mikellides, Ioannis G.; Katz, Ira

    2009-01-01

    The effect of tungsten erosion, transport and redeposition on the operation of dispenser hollow cathodes was investigated in detailed examinations of the discharge cathode inserts from an 8200 hour and a 30,352 hour ion engine wear test. Erosion and subsequent re-deposition of tungsten in the electron emission zone at the downstream end of the insert reduces the porosity of the tungsten matrix, preventing the ow of barium from the interior. This inhibits the interfacial reactions of the barium-calcium-aluminate impregnant with the tungsten in the pores. A numerical model of barium transport in the internal xenon discharge plasma shows that the barium required to reduce the work function in the emission zone can be supplied from upstream through the gas phase. Barium that flows out of the pores of the tungsten insert is rapidly ionized in the xenon discharge and pushed back to the emitter surface by the electric field and drag from the xenon ion flow. This barium ion flux is sufficient to maintain a barium surface coverage at the downstream end greater than 0.6, even if local barium production at that point is inhibited by tungsten deposits. The model also shows that the neutral barium pressure exceeds the equilibrium vapor pressure of the impregnant decomposition reaction over much of the insert length, so the reactions are suppressed. Only a small region upstream of the zone blocked by tungsten deposits is active and supplies the required barium. These results indicate that hollow cathode failure models based on barium depletion rates in vacuum dispenser cathodes are very conservative.

  11. Processing science of barium titanate

    NASA Astrophysics Data System (ADS)

    Aygun, Seymen Murat

    Barium titanate and barium strontium titanate thin films were deposited on base metal foils via chemical solution deposition and radio frequency magnetron sputtering. The films were processed at elevated temperatures for densification and crystallization. Two unifying research goals underpin all experiments: (1) To improve our fundamental understanding of complex oxide processing science, and (2) to translate those improvements into materials with superior structural and electrical properties. The relationships linking dielectric response, grain size, and thermal budget for sputtered barium strontium titanate were illustrated. (Ba 0.6Sr0.4)TiO3 films were sputtered on nickel foils at temperatures ranging between 100-400°C. After the top electrode deposition, the films were co-fired at 900°C for densification and crystallization. The dielectric properties were observed to improve with increasing sputter temperature reaching a permittivity of 1800, a tunability of 10:1, and a loss tangent of less than 0.015 for the sample sputtered at 400°C. The data can be understood using a brick wall model incorporating a high permittivity grain interior with low permittivity grain boundary. However, this high permittivity value was achieved at a grain size of 80 nm, which is typically associated with strong suppression of the dielectric response. These results clearly show that conventional models that parameterize permittivity with crystal diameter or film thickness alone are insufficiently sophisticated. Better models are needed that incorporate the influence of microstructure and crystal structure. This thesis next explores the ability to tune microstructure and properties of chemically solution deposited BaTiO3 thin films by modulation of heat treatment thermal profiles and firing atmosphere composition. Barium titanate films were deposited on copper foils using hybrid-chelate chemistries. An in-situ gas analysis process was developed to probe the organic removal and the

  12. Magnetic and atomic structure parameters of Sc-doped barium hexagonal ferrites

    NASA Astrophysics Data System (ADS)

    Yang, Aria; Chen, Yajie; Chen, Zhaohui; Vittoria, Carmine; Harris, V. G.

    2008-04-01

    Scandium-doped M-type barium hexagonal ferrites of the composition BaFe12-xScxO19 are well suited for low frequency microwave device applications such as isolators and circulators. A series of Sc-doped M-type barium hexagonal ferrite powders (x =0-1.2) were prepared by conventional ceramic processing techniques. The resulting powders were verified to be pure phase and maintain the nominal chemical stoichiometry by x-ray diffraction and energy dispersive x-ray spectroscopy, respectively. Static magnetic measurements indicated that both saturation magnetization and uniaxial magnetocrystalline anisotropy field decreased with increasing concentration of scandium. Extended x-ray absorption fine structure measurements were carried out to clarify the correlation between the magnetic and atomic structure properties. It is found that the substituted Sc has a strong preference for the bipyramidal site. Nevertheless, the substitution did not introduce additional atomic structural disorder into the barium hexagonal structure. The structural study provided important evidence to quantitatively explain the change in dc and microwave magnetic properties due to Sc ion doping.

  13. The thermal stability range and magnetic properties of U-type hexaferrites

    NASA Astrophysics Data System (ADS)

    Lisjak, Darja; Drofenik, Miha

    2004-05-01

    Single-phase polycrystalline U-hexaferrites with the composition Ba4A2Fe36O60 (A=Co, Ni, Zn) were prepared by solid-state reaction synthesis employing high-energy milling or topotactic reaction and calcination at 1200-1300°C. The Curie temperature and saturation magnetization of the samples were influenced by the composition, while the coercivity was more strongly influenced by the preparation conditions.

  14. Protocol for the synthesis of Ba-hexaferrites with prefixed coercivities

    NASA Astrophysics Data System (ADS)

    Dufour, J.; Latorre, R.; Negro, C.; Alcalá, E. M.; Formoso, A.; López-Mateos, F.

    1997-08-01

    The ferrite industry is one of the largest consumers of iron oxides, usually in the form of hematite from the roasting of steel pickling liquors or from mineral sources. In previous papers we have tested an oxidation process for obtaining magnetite and goethite from steel pickling liquors and two mathematical models have been proposed for synthesizing these two iron oxides. In this paper, the characteristics of magnetite and goethite are related with the coercivity of hexaferrites synthesized when the former are used as raw materials. Constant conditions were used for the ceramic method. Using goethite, Ba-hexaferrite is obtained only when the goethite is precipitated at the lowest oxidizer flow. When magnetite is used, a protocol with a statistically validated correlation is proposed for synthesizing hexaferrites with coercive fields between 230 and 450 kA/m. This correlation is valid for an oxidation process carried out at stirring speed of 1000 rev/min and with an air flow between 7.5 and 101/min. A second empirical correlation is proposed for obtaining final coercivities between 450 and 525 kA/m, for which it is necessary to increase the calcination time.

  15. Mössbauer and magnetic study of nanocrystalline strontium hexaferrite prepared by an ionic coordination reaction technique

    NASA Astrophysics Data System (ADS)

    de Araújo, J. H.; Soares, J. M.; Ginani, M. F.; Machado, F. L. A.; da Cunha, J. B. M.

    2013-10-01

    Hard-magnetic nanocrystalline strontium hexaferrites SrFe12O19 were synthesized using an ionic coordination reaction technique. In this sample preparation technique the biopolymer chitosan was used as a nanoreactor. The obtained precursor powders were calcined at temperatures in the range 600-900 °C. The samples were analyzed by X-ray diffraction, transmission electron microscopy, Mössbauer spectroscopy and vibrating sample magnetometry. A complementary study of X-ray Rietveld refinement and Mössbauer spectroscopy shown that the hexaferrite phase formation is accompanied by formation of maghemite and hematite as intermediate phases. It was found that hexaferrite is present in the samples calcined at and above 600 °C but it is fully developed at 900 °C. For this sample the average particle size was found to be 41.6 nm. Magnetization measurements yielded squared hysteresis loops with a magnetization ratio (Mr/Ms) of 0.58 and a coercive field of 6.48 kOe. The overall results indicated that the particles in these samples are in the single domain regime and that the magnetization reversal in these particles is mainly due to coherent rotation. Hard-magnetic hexaferrites were synthesized using an ionic reaction technique. The hexaferrite formation is accompanied by formation of maghemite and hematite. How much more absorption of the sites spin up time is higher net magnetic moment.

  16. Effect of annealing temperature on structural and magnetic properties of strontium hexaferrite nanoparticles synthesized by sol-gel auto-combustion method

    NASA Astrophysics Data System (ADS)

    Roohani, Ebrahim; Arabi, Hadi; Sarhaddi, Reza; Sudkhah, Saeedeh; Shabani, Ameneh

    2015-10-01

    In this paper, strontium hexaferrite nanoparticles were synthesized by the sol-gel auto-combustion method. Effect of annealing temperature on crystal structure, morphology and magnetic properties of nanoparticles was investigated by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). Also, the thermal decomposition of as-synthesized powdered samples has been studied by thermogravimetric analysis (TGA). The XRD patterns confirmed the formation of single phase M-type hexagonal crystal structure for powders annealed above 950∘C, whereas the presence of hematite (α-Fe2O3) as secondary phase was also observed for sample annealed at 900∘C. Furthermore, the crystallinity along with the crystallite size were augmented with annealing temperature. Comparison of the FT-IR spectra of the samples before and after annealing treatment showed the existence of metal-oxygen stretching modes after annealing. The thermogravimetric analysis confirmed the thermal decomposition of as-burnt powders happened in three-stage degradation process. The TEM images showed the nanoparticles like hexagonal-shaped platelets as the size of nanoparticles increases by increasing the annealing temperature. With increasing annealing temperature, the magnetic saturation and the coercivity were increased to the maximum value of 74.26 emu/g and 5.67 kOe for sample annealed at 1000∘C and then decreased.

  17. Effect of Substitution of Mn, Cu, and Zr on the Structural, Magnetic, and Ku-Band Microwave-Absorption Properties of Strontium Hexaferrite Nanoparticles

    NASA Astrophysics Data System (ADS)

    Rostami, Mohammad; Moradi, Mahmood; Alam, Reza Shams; Mardani, Reza

    2016-08-01

    The ferrites with the compositions of SrMn x Cu x Zr2 x Fe(12-4 x)O19 ( x = 0.0, 0.2, 0.3, 0.4, and 0.5) are synthesized by the coprecipitation method. The formation of M-type hexaferrite is confirmed by x-ray diffraction (XRD) and Fourier transform infrared (FTIR) analyses. The morphology of the samples is shown by field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) microscopy. Vibrating sample magnetometer (VSM) analysis has been used for the investigation of the magnetic properties, and the reason for the changes in the magnetic properties as a result of doping, are expressed. The values of coercivity decrease by increasing the amount of substitution, which could be related to the modification of anisotropy form the c-axis toward the c-plane. Finally, we have used vector network analysis to investigate the microwave absorption properties. We find that the samples with the composition of SrMn0.4Cu0.4Zr0.8Fe10.4O19 have the largest reflection loss and the widest bandwidth among these samples.

  18. Radium/Barium Waste Project

    SciTech Connect

    McDowell, Allen K.; Ellefson, Mark D.; McDonald, Kent M.

    2015-06-25

    The treatment, shipping, and disposal of a highly radioactive radium/barium waste stream have presented a complex set of challenges requiring several years of effort. The project illustrates the difficulty and high cost of managing even small quantities of highly radioactive Resource Conservation and Recovery Act (RCRA)-regulated waste. Pacific Northwest National Laboratory (PNNL) research activities produced a Type B quantity of radium chloride low-level mixed waste (LLMW) in a number of small vials in a facility hot cell. The resulting waste management project involved a mock-up RCRA stabilization treatment, a failed in-cell treatment, a second, alternative RCRA treatment approach, coordinated regulatory variances and authorizations, alternative transportation authorizations, additional disposal facility approvals, and a final radiological stabilization process.

  19. Barium Isotopes in Single Presolar Grains

    NASA Technical Reports Server (NTRS)

    Pellin, M. J.; Davis, A. M.; Savina, M. R.; Kashiv, Y.; Clayton, R. N.; Lewis, R. S.; Amari, S.

    2001-01-01

    Barium isotopic compositions of single presolar grains were measured by laser ablation laser resonant ionization mass spectrometry and the implications of the data for stellar processes are discussed. Additional information is contained in the original extended abstract.

  20. Small barium rail gun for plasma injection.

    PubMed

    Kiwamoto, Y

    1980-03-01

    A small rail gun with a barium electrode can be operated at higher than one shot per second to produce more than 2x10(16) barium ions with energy 10-20 eV. The operation of the gun takes advantage of the external magnetic field for cross-field plasma injection into a trap. Up to 7 kG of the magnetic field examined, the gun performance improves with the increased magnetic field strength.

  1. Absolute magnitudes and kinematics of barium stars.

    NASA Astrophysics Data System (ADS)

    Gomez, A. E.; Luri, X.; Grenier, S.; Prevot, L.; Mennessier, M. O.; Figueras, F.; Torra, J.

    1997-03-01

    The absolute magnitude of barium stars has been obtained from kinematical data using a new algorithm based on the maximum-likelihood principle. The method allows to separate a sample into groups characterized by different mean absolute magnitudes, kinematics and z-scale heights. It also takes into account, simultaneously, the censorship in the sample and the errors on the observables. The method has been applied to a sample of 318 barium stars. Four groups have been detected. Three of them show a kinematical behaviour corresponding to disk population stars. The fourth group contains stars with halo kinematics. The luminosities of the disk population groups spread a large range. The intrinsically brightest one (M_v_=-1.5mag, σ_M_=0.5mag) seems to be an inhomogeneous group containing barium binaries as well as AGB single stars. The most numerous group (about 150 stars) has a mean absolute magnitude corresponding to stars in the red giant branch (M_v_=0.9mag, σ_M_=0.8mag). The third group contains barium dwarfs, the obtained mean absolute magnitude is characteristic of stars on the main sequence or on the subgiant branch (M_v_=3.3mag, σ_M_=0.5mag). The obtained mean luminosities as well as the kinematical results are compatible with an evolutionary link between barium dwarfs and classical barium giants. The highly luminous group is not linked with these last two groups. More high-resolution spectroscopic data will be necessary in order to better discriminate between barium and non-barium stars.

  2. Small barium rail gun for plasma injection

    SciTech Connect

    Kiwamoto, Y.

    1980-03-01

    A small rail gun with a barium electrode can be operated at higher than one shot per second to produce more than 2 x 10/sup 16/ barium ions with energy 10--20 eV. The operation of the gun takes advantage of the external magnetic field for cross-field plasma injection into a trap. Up to 7 kG of the magnetic field examined, the gun performance improves with the increased magnetic field strength.

  3. Small barium rail gun for plasma injection.

    PubMed

    Kiwamoto, Y

    1980-03-01

    A small rail gun with a barium electrode can be operated at higher than one shot per second to produce more than 2x10(16) barium ions with energy 10-20 eV. The operation of the gun takes advantage of the external magnetic field for cross-field plasma injection into a trap. Up to 7 kG of the magnetic field examined, the gun performance improves with the increased magnetic field strength. PMID:18647050

  4. Formation of a magnetic composite by reduction of Co-Nd doped strontium hexaferrite in a hydrogen gas flow

    NASA Astrophysics Data System (ADS)

    Herme, C. A.; Bercoff, P. G.; Jacobo, S. E.

    2012-08-01

    Co-Nd strontium hexaferrite nanoparticles synthesized by the self-combustion method were treated in a hydrogen flow at different temperatures and times. The samples were characterized structurally by scanning electron microscopy and X-ray diffraction and magnetically with a vibrating sample magnetometer. Phase identification showed decomposition of the hexaferrite structure into Fe3O4 and different strontium mixed oxides. The sample treated at 500 °C for 30 minutes shows good magnetic properties due to the formation of a magnetite/hexaferrite composite. In this case magnetization is very close to the original sample while the coercivity slightly diminishes. The hexagonal phase is almost completely transformed into different oxides at a reducing temperature of 500 °C for 120 minutes. The obtained results are analyzed in terms of the phase composition and of the magnetic susceptibility of the studied samples.

  5. Barium compatibility of insulator material systems

    NASA Astrophysics Data System (ADS)

    Merrill, John M.; Zee, Ralph; Schuller, Michael

    1997-01-01

    The compatibility of insulator material systems in a barium environment was investigated. This work is part of an ongoing program to identify weaknesses in insulator/braze/refractory metal materials systems which provide electrical insulation in alkali-metal enhanced thermionic devices and other alkali-metal thermal-to-electric converters. Test articles consisting of alumina or sapphire insulators brazed to molybdenum via a nominal Cu-30% Ni braze, were exposed to barium vapor to ascertain possible reactions and/or failure mechanisms. The test matrix consisted of eight samples; 5 with a sapphire insulator, 3 with an alumina insulator. Each sample was exposed to a different combination of insulator/braze region temperature (1000 K or 1100 K) and partial pressure of barium (10-3 or 10-2 torr) for approximately 750 hours. Initial analysis indicated that the ceramic portions were free from corrosion and that the braze material was the weak link in the material system. Evidence of formation of a Cu-Ba intermetallic at the braze region was visible. Further analysis indicated that in some cases Al2O3 was being reduced by the Barium. The results of this research imply that use of Al2O3 based ceramics in a barium environment may be suspect to failures in the long term and that Cu-Ni brazes are not suitable for the barium environment.

  6. Thermochemical hydrogen production via a cycle using barium and sulfur - Reaction between barium sulfide and water

    NASA Technical Reports Server (NTRS)

    Ota, K.; Conger, W. L.

    1977-01-01

    The reaction between barium sulfide and water, a reaction found in several sulfur based thermochemical cycles, was investigated kinetically at 653-866 C. Gaseous products were hydrogen and hydrogen sulfide. The rate determining step for hydrogen formation was a surface reaction between barium sulfide and water. An expression was derived for the rate of hydrogen formation.

  7. Sulphate removal from sodium sulphate-rich brine and recovery of barium as a barium salt mixture.

    PubMed

    Vadapalli, Viswanath R K; Zvimba, John N; Mulopo, Jean; Motaung, Solly

    2013-01-01

    Sulphate removal from sodium sulphate-rich brine using barium hydroxide and recovery of the barium salts has been investigated. The sodium sulphate-rich brine treated with different dosages of barium hydroxide to precipitate barium sulphate showed sulphate removal from 13.5 g/L to less than 400 mg/L over 60 min using a barium to sulphate molar ratio of 1.1. The thermal conversion of precipitated barium sulphate to barium sulphide achieved a conversion yield of 85% using coal as both a reducing agent and an energy source. The recovery of a pure mixture of barium salts from barium sulphide, which involved dissolution of barium sulphide and reaction with ammonium hydroxide resulted in recovery of a mixture of barium carbonate (62%) and barium hydroxide (38%), which is a critical input raw material for barium salts based acid mine drainage (AMD) desalination technologies. Under alkaline conditions of this barium salt mixture recovery process, ammonia gas is given off, while hydrogen sulfide is retained in solution as bisulfide species, and this provides basis for ammonium hydroxide separation and recovery for reuse, with hydrogen sulfide also recoverable for further industrial applications such as sulfur production by subsequent stripping.

  8. Development of the barium shaped charge technique in Japan

    NASA Astrophysics Data System (ADS)

    Nakamura, J.

    1982-09-01

    In order to generate an artificial, barium luminescent cloud for the study of magnetic or electric field line configurations in the upper atmosphere, it is necessary to initiate a well collimated barium jet with an initial velocity of 8-12 km/sec by means of a shaped charge. Attention is presently given to recent developments in barium shaped charge techniques, including the molding of barium liners, the prevention of rust on the metallic barium charge, the production of a plane detonation wave, and a method for the ground testing of a barium ion jet.

  9. Chemical abundances and kinematics of barium stars

    NASA Astrophysics Data System (ADS)

    de Castro, D. B.; Pereira, C. B.; Roig, F.; Jilinski, E.; Drake, N. A.; Chavero, C.; Sales Silva, J. V.

    2016-07-01

    In this paper, we present an homogeneous analysis of photospheric abundances based on high-resolution spectroscopy of a sample of 182 barium stars and candidates. We determined atmospheric parameters, spectroscopic distances, stellar masses, ages, luminosities and scaleheight, radial velocities, abundances of the Na, Al, α-elements, iron-peak elements, and s-process elements Y, Zr, La, Ce, and Nd. We employed the local thermodynamic equilibrium model atmospheres of Kurucz and the spectral analysis code MOOG. We found that the metallicities, the temperatures and the surface gravities for barium stars cannot be represented by a single Gaussian distribution. The abundances of α-elements and iron peak elements are similar to those of field giants with the same metallicity. Sodium presents some degree of enrichment in more evolved stars that could be attributed to the NeNa cycle. As expected, the barium stars show overabundance of the elements created by the s-process. By measuring the mean heavy-element abundance pattern as given by the ratio [s/Fe], we found that the barium stars present several degrees of enrichment. We also obtained the [hs/ls] ratio by measuring the photospheric abundances of the Ba-peak and the Zr-peak elements. Our results indicated that the [s/Fe] and the [hs/ls] ratios are strongly anticorrelated with the metallicity. Our kinematical analysis showed that 90 per cent of the barium stars belong to the thin disc population. Based on their luminosities, none of the barium stars are luminous enough to be an asymptotic giant branch star, nor to become self-enriched in the s-process elements. Finally, we determined that the barium stars also follow an age-metallicity relation.

  10. Constraining the oceanic barium cycle with stable barium isotopes

    NASA Astrophysics Data System (ADS)

    Cao, Zhimian; Siebert, Christopher; Hathorne, Ed C.; Dai, Minhan; Frank, Martin

    2016-01-01

    The distribution of barium (Ba) concentrations in seawater resembles that of nutrients and Ba has been widely used as a proxy of paleoproductivity. However, the exact mechanisms controlling the nutrient-like behavior, and thus the fundamentals of Ba chemistry in the ocean, have not been fully resolved. Here we present a set of full water column dissolved Ba (DBa) isotope (δ137BaDBa) profiles from the South China Sea and the East China Sea that receives large freshwater inputs from the Changjiang (Yangtze River). We find pronounced and systematic horizontal and depth dependent δ137BaDBa gradients. Beyond the river influence characterized by generally light signatures (0.0 to + 0.3 ‰), the δ137BaDBa values in the upper water column are significantly higher (+ 0.9 ‰) than those in the deep waters (+ 0.5 ‰). Moreover, δ137BaDBa signatures are essentially constant in the entire upper 100 m, in which dissolved silicon isotopes are fractionated during diatom growth resulting in the heaviest isotopic compositions in the very surface waters. Combined with the decoupling of DBa concentrations and δ137BaDBa from the concentrations of nitrate and phosphate this implies that the apparent nutrient-like fractionation of Ba isotopes in seawater is primarily induced by preferential adsorption of the lighter isotopes onto biogenic particles rather than by biological utilization. The subsurface δ137BaDBa distribution is dominated by water mass mixing. The application of stable Ba isotopes as a proxy for nutrient cycling should therefore be considered with caution and both biological and physical processes need to be considered. Clearly, however, Ba isotopes show great potential as a new tracer for land-sea interactions and ocean mixing processes.

  11. Effects of aluminum substitution on the crystal structure and magnetic properties in Zn{sub 2}Y-type hexaferrites

    SciTech Connect

    Xu, Wenfei; Yang, Jing E-mail: xdtang@sist.ecnu.edu.cn; Bai, Wei; Zhang, Yuanyuan; Tang, Kai; Duan, Chun-gang; Chu, Junhao; Tang, Xiaodong E-mail: xdtang@sist.ecnu.edu.cn

    2015-05-07

    Crystal structure and magnetic properties of multiferroic Y-type hexaferrites Ba{sub 0.5}Sr{sub 1.5}Zn{sub 2}(Fe{sub 1−x}Al{sub x}){sub 12}O{sub 22} (x = 0, 0.04, 0.08, and 0.12) were investigated. The Z- and M-type impurity phases decrease with increasing Al content, and the pure phase samples can be obtained by modulating Al-doping. Lattice distortion exists in Al-doped samples due to the different radius of Al ion (0.535 Å) and Fe ion (0.645 Å). The microstructural morphologies show that the hexagonal shape grains can be observed in all the samples, and grain size decreases with increasing Al content. As for magnetic properties of Ba{sub 0.5}Sr{sub 1.5}Zn{sub 2}(Fe{sub 1−x}Al{sub x}){sub 12}O{sub 22}, there exist rich thermal- and field-driven magnetic phase transitions. Temperature dependence of zero-field cooling magnetization curves from 5 K to 800 K exhibit three magnetic phase transitions involving conical spin phase, proper-screw spin phase, ferromagnetic phase, and paramagnetic phase, which can be found in all the samples. Furthermore, the phase-transition temperatures can be modulated by varying Al content. In addition, four kinds of typical hysteresis loops are observed in pure phase sample at different temperatures, which reveal different magnetization processes of above-motioned magnetic spin structures. Typically, triple hysteresis loops in low magnetic field range from 0 to 0.5 T can be observed at 5 K, which suggests low-field driven magnetic phase transitions from conical spin order to proper-screw spin order and further to ferrimagnetic spin order occur. Furthermore, the coercive field (H{sub C}) and the saturation magnetization (M{sub S}) enhance with increasing Al content from x = 0 to 0.08, and drop rapidly at x = 0.12, which could be attribute to that in initial Al-doped process the pitch of spin helix increases and therefore magnetization enhances, but conical spin phase eventually collapses in higher

  12. Effects of aluminum substitution on the crystal structure and magnetic properties in Zn2Y-type hexaferrites

    NASA Astrophysics Data System (ADS)

    Xu, Wenfei; Yang, Jing; Bai, Wei; Zhang, Yuanyuan; Tang, Kai; Duan, Chun-gang; Tang, Xiaodong; Chu, Junhao

    2015-05-01

    Crystal structure and magnetic properties of multiferroic Y-type hexaferrites Ba0.5Sr1.5Zn2(Fe1-xAlx)12O22 (x = 0, 0.04, 0.08, and 0.12) were investigated. The Z- and M-type impurity phases decrease with increasing Al content, and the pure phase samples can be obtained by modulating Al-doping. Lattice distortion exists in Al-doped samples due to the different radius of Al ion (0.535 Å) and Fe ion (0.645 Å). The microstructural morphologies show that the hexagonal shape grains can be observed in all the samples, and grain size decreases with increasing Al content. As for magnetic properties of Ba0.5Sr1.5Zn2(Fe1-xAlx)12O22, there exist rich thermal- and field-driven magnetic phase transitions. Temperature dependence of zero-field cooling magnetization curves from 5 K to 800 K exhibit three magnetic phase transitions involving conical spin phase, proper-screw spin phase, ferromagnetic phase, and paramagnetic phase, which can be found in all the samples. Furthermore, the phase-transition temperatures can be modulated by varying Al content. In addition, four kinds of typical hysteresis loops are observed in pure phase sample at different temperatures, which reveal different magnetization processes of above-motioned magnetic spin structures. Typically, triple hysteresis loops in low magnetic field range from 0 to 0.5 T can be observed at 5 K, which suggests low-field driven magnetic phase transitions from conical spin order to proper-screw spin order and further to ferrimagnetic spin order occur. Furthermore, the coercive field (HC) and the saturation magnetization (MS) enhance with increasing Al content from x = 0 to 0.08, and drop rapidly at x = 0.12, which could be attribute to that in initial Al-doped process the pitch of spin helix increases and therefore magnetization enhances, but conical spin phase eventually collapses in higher-concentration Al-doping.

  13. Crystal growth of hexaferrite architecture for magnetoelectrically tunable microwave semiconductor integrated devices

    NASA Astrophysics Data System (ADS)

    Hu, Bolin

    Hexaferrites (i.e., hexagonal ferrites), discovered in 1950s, exist as any one of six crystallographic structural variants (i.e., M-, X-, Y-, W-, U-, and Z-type). Over the past six decades, the hexaferrites have received much attention owing to their important properties that lend use as permanent magnets, magnetic data storage materials, as well as components in electrical devices, particularly those operating at RF frequencies. Moreover, there has been increasing interest in hexaferrites for new fundamental and emerging applications. Among those, electronic components for mobile and wireless communications especially incorporated with semiconductor integrated circuits at microwave frequencies, electromagnetic wave absorbers for electromagnetic compatibility, random-access memory (RAM) and low observable technology, and as composite materials having low dimensions. However, of particular interest is the magnetoelectric (ME) effect discovered recently in the hexaferrites such as SrScxFe12-xO19 (SrScM), Ba2--xSrxZn 2Fe12O22 (Zn2Y), Sr4Co2Fe 36O60 (Co2U) and Sr3Co2Fe 24O41 (Co2Z), demonstrating ferroelectricity induced by the complex internal alignment of magnetic moments. Further, both Co 2Z and Co2U have revealed observable magnetoelectric effects at room temperature, representing a step toward practical applications using the ME effect. These materials hold great potential for applications, since strong magnetoelectric coupling allows switching of the FE polarization with a magnetic field (H) and vice versa. These features could lead to a new type of storage devices, such as an electric field-controlled magnetic memory. A nanoscale-driven crystal growth of magnetic hexaferrites was successfully demonstrated at low growth temperatures (25--40% lower than the temperatures required often for crystal growth). This outcome exhibits thermodynamic processes of crystal growth, allowing ease in fabrication of advanced multifunctional materials. Most importantly, the

  14. Magnetic and electrical properties of Z-type hexaferrites sintered in different atmospheres

    SciTech Connect

    Zhang, Xiaozhi; Yue, Zhenxing Meng, Siqin; Peng, Bin; Yuan, Lixin

    2015-05-15

    Graphical abstract: Oxygen atmosphere played an important role in inhibiting electrons hopping between Fe{sup 2+} and Fe{sup 3+} and reducing both of magnetic and dielectric losses of Ba{sub 3}Co{sub 2}Fe{sub 24}O{sub 41}, which is favorable in view of antenna substrate applications. - Highlights: • Co{sub 2}Z-type hexaferrites were sintered in different atmospheres. • The losses of the sample sintered in O{sub 2} were reduced effectively without additive. • A 3RC equivalent circuit model was put forward in the impedance analysis. - Abstract: Co{sub 2}Z-type hexaferrites with stoichiometric composition of Ba{sub 3}Co{sub 2}Fe{sub 24}O{sub 41} were fabricated by using a conventional solid–state reaction method. The influence of sintering atmosphere, namely air, O{sub 2} and N{sub 2}, on magnetic and electrical properties of the hexaferrites was systematically investigated. This work reveals that O{sub 2} played an important role in inhibiting the formation of Fe{sup 2+} and thus reducing magnetic and dielectric losses. The Co{sub 2}Z specimen sintered at 1300 °C in O{sub 2} atmosphere showed promising magneto-dielectric properties. Specifically, the magnetic and dielectric losses were less than 0.05 and 0.005 in the frequency range of 30–300 MHz, respectively. Impedance spectra were performed to reveal the underlying mechanisms for the different electrical properties of the Co{sub 2}Z ceramics sintered in different atmospheres.

  15. 40 CFR 721.10011 - Barium calcium manganese strontium oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Barium calcium manganese strontium... Specific Chemical Substances § 721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium...

  16. 40 CFR 721.10011 - Barium calcium manganese strontium oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Barium calcium manganese strontium... Specific Chemical Substances § 721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium...

  17. 40 CFR 721.10011 - Barium calcium manganese strontium oxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Barium calcium manganese strontium... Specific Chemical Substances § 721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium...

  18. Nanoscale-driven crystal growth of hexaferrite heterostructures for magnetoelectric tuning of microwave semiconductor integrated devices.

    PubMed

    Hu, Bolin; Chen, Zhaohui; Su, Zhijuan; Wang, Xian; Daigle, Andrew; Andalib, Parisa; Wolf, Jason; McHenry, Michael E; Chen, Yajie; Harris, Vincent G

    2014-11-25

    A nanoscale-driven crystal growth of magnetic hexaferrites was successfully demonstrated at low growth temperatures (25-40% lower than the temperatures required often for crystal growth). This outcome exhibits thermodynamic processes of crystal growth, allowing ease in fabrication of advanced multifunctional materials. Most importantly, the crystal growth technique is considered theoretically and experimentally to be universal and suitable for the growth of a wide range of diverse crystals. In the present experiment, the conical spin structure of Co2Y ferrite crystals was found to give rise to an intrinsic magnetoelectric effect. Our experiment reveals a remarkable increase in the conical phase transition temperature by ∼150 K for Co2Y ferrite, compared to 5-10 K of Zn2Y ferrites recently reported. The high quality Co2Y ferrite crystals, having low microwave loss and magnetoelectricity, were successfully grown on a wide bandgap semiconductor GaN. The demonstration of the nanostructure materials-based "system on a wafer" architecture is a critical milestone to next generation microwave integrated systems. It is also practical that future microwave integrated systems and their magnetic performances could be tuned by an electric field because of the magnetoelectricity of hexaferrites.

  19. Synthesis and characterization of nanostructured strontium hexaferrite thin films by the sol-gel method

    NASA Astrophysics Data System (ADS)

    Masoudpanah, S. M.; Seyyed Ebrahimi, S. A.

    2012-07-01

    Nanostructured single phase strontium hexaferrite, SrFe12O19, thin films have been synthesized on the (100) silicon substrate using a spin coating sol-gel process. The thin films with various Fe/Sr molar ratios of 8-12 were calcined at different temperatures from 500 to 900 °C. The composition, microstructure and magnetic properties of the SrFe12O19 thin films were characterized using Fourier transform infrared spectroscopy, differential thermal analysis, thermogravimetry, X-ray diffraction, electron microscopy and vibrating sample magnetometer. The results showed that the optimum molar ratio for Fe/Sr was 10 at which the lowest calcination temperature to obtain the single phase strontium hexaferrite thin film was 800 °C. The magnetic measurements revealed that the sample with Fe/Sr molar ratio of 10, exhibited higher saturation magnetization (267.5 emu/cm3) and coercivity (4290 Oe) in comparison with those synthesized under other Fe/Sr molar ratios.

  20. Structural, Magnetic, and Electrical Properties of Microwave-Sintered Cr3+-Doped Sr Hexaferrites

    NASA Astrophysics Data System (ADS)

    Praveena, K.; Bououdina, M.; Penchal Reddy, M.; Srinath, S.; Sandhya, R.; Katlakunta, Sadhana

    2015-01-01

    SrCr x Fe12- x O19 ( x = 0.0, 0.1, 0.3, 0.5, 0.7, 0.9) hexaferrites were prepared by a microwave-hydrothermal method and subsequently sintered at 950°C for 90 min using the microwave sintering method. The results show that, with increasing Cr3+ content, the lattice parameters changed anisotropically. The average grain sizes of sintered samples were in the range of 280 nm to 660 nm. The saturation magnetization systematically decreased with increasing Cr3+ doping, but the coercivity values increased. The electrical resistivity (log ρ) decreased linearly with increasing temperature up to a certain temperature known as the transition temperature ( T c), and T c decreased with further increase ( x > 0.5) of the Cr3+ content. This decrease in log ρ and the activation energy ( E g) is due to electron hopping and occupancy of doped ions at different lattice sites. We found that the dielectric constant and dielectric loss for all the samples decreased with the Cr3+ content. The structural, magnetic, and electrical properties of Cr3+-doped SrFe12O19 hexaferrites have thus been investigated.

  1. The Effect of High Energy Milling on the SR-HEXAFERRITE Nanocrystalline Powder Synthesized by a Sol-Gel Autocombustion Method

    NASA Astrophysics Data System (ADS)

    Sadeghi-Niaraki, S.; Seyyed Ebrahim, S. A.; Raygan, Sh.

    In this research SrFe12O19 nanocrystalline synthesized by sol-gel auto-combustion method and subsequent annealing at 1000°C for 1h subjected to mechanochemical treatment in a high-energy ball mill and then re-annealing. A planetary ball mill (Fritsch Pulveristte 6) was used to mill the strontium hexaferrite powder at 300 rpm in air for 10, 20 and 40 hours. The process was studied by X-ray diffraction technique and scanning electron microscopy. The X-ray study showed that SrFe12O19 phase was decomposed by milling. Strontium hexaferrite and α-Fe2O3 were obtained with 10 hours milling. There were α-Fe2O3 and strontium hexaferrite in XRD patterns of 20 hours milled sample. With increasing of the milling time to 40 hours, strontium hexaferrite was decomposed completely. The annealing of the 20 and 40 h milled powders at 900°C for 1h led to the formation of single phase strontium hexaferrite with smaller crystallite size compare to that of the hexaferrite powder before milling and subsequent annealing.

  2. 75 FR 20625 - Barium Chloride From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-20

    ... established a schedule for the conduct of this review (74 FR 62587, November 30, 2010). Subsequently, counsel... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Barium Chloride From China AGENCY: United States International Trade Commission. ACTION:...

  3. 75 FR 19657 - Barium Chloride From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-15

    ... Commission found that the domestic interested party group response to its notice of institution (74 FR 31757... COMMISSION Barium Chloride From China AGENCY: United States International Trade Commission. ACTION: Notice of... chloride from China. SUMMARY: The Commission hereby gives notice that it will proceed with a full...

  4. Preparation of strontium hexaferrite film by pulsed laser deposition with in situ heating and post annealing

    NASA Astrophysics Data System (ADS)

    Masoudpanah, S. M.; Seyyed Ebrahimi, S. A.; Ong, C. K.

    2012-09-01

    Strontium hexaferrite (SrFe12O19) films have been fabricated by pulsed laser deposition on Si(1 0 0) substrate with Pt(1 1 1) underlayer through in situ and post annealing heat treatments. C-axis perpendicular oriented SrFe12O19 films have been confirmed by X-ray diffraction patterns for both of the in situ heated and post annealed films. The cluster-like single domain structures are recognized by magnetic force microscopy. Higher coercivity in perpendicular direction than that for the in-plane direction shows that the films have perpendicular magnetic anisotropy. High perpendicular coercivity, around 3.8 kOe, has been achieved after post annealing at 500 °C. Higher coercivity of the post annealed SrFe12O19 films was found to be related to nanosized grain of about 50-80 nm.

  5. Magnetic properties of strontium hexaferrite films prepared by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Masoudpanah, S. M.; Seyyed Ebrahimi, S. A.; Ong, C. K.

    2012-08-01

    The magnetic properties of strontium hexaferrite (SrFe12O19) films fabricated by pulsed laser deposition on the Si(100) substrate with Pt(111) underlayer have been studied as a function of film thickness (50-700 nm). X-ray diffraction patterns confirm that the films have c-axis perpendicular orientation. The coercivities in perpendicular direction are higher than those for in-plane direction which indicates the films have perpendicular magnetic anisotropy. The coercivity was found to decrease with increasing of thickness, due to the increasing of the grain size and relaxation in lattice strain. The 200 nm thick film exhibits hexagonal shape grains of 150 nm and optimum magnetic properties of Ms=298 emu/cm3 and Hc=2540 Oe.

  6. Synthesis of coprecipitated strontium hexaferrite nanoparticles in the presence of polyvinyl alcohol

    NASA Astrophysics Data System (ADS)

    Davoodi, A.; Hashemi, B.; Yousefi, M. H.

    2011-12-01

    Strontium hexaferrite (SrFe12O19) nanoparticles were synthesized by the chemical coprecipitation method and using polyvinyl alcohol (PVA) as a protective agent. The synthesized samples were characterized by differential thermal analysis, X-ray diffraction, scanning and transmission electron microscopy, particle size analyzer, sedimentation test and vibrating sample magnetometer. In the presence of PVA, the single-phase SrFe12O19 nanoparticles were obtained at low temperature of 650 °C. The average particle size of SrFe12O19 precursor was 15 nm, which increased to 61 nm after calcination at 650 °C. The magnetic measurements indicated that PVA decreased coercivity from 4711 to 3216 Oe with particle size reduction. The results showed that PVA as a protective agent could be effective in decreasing the particle size, calcination temperature and coercivity of SrFe12O19 nanoparticles.

  7. The influence of microstructure on the microwave absorption of Co U hexaferrites

    NASA Astrophysics Data System (ADS)

    Lisjak, Darja; Bregar, Vladimir B.; Drofenik, Miha

    2007-03-01

    Co-U hexaferrites with the composition Ba 4Co 2Fe 36O 60 were prepared with high-energy milling or chemical co-precipitation followed by reaction sintering at 1250 °C. The preparation method significantly influenced the density of the ceramics, i.e., 4.2 g/cm 3 when prepared with high-energy milling, and 3.6 g/cm 3 when prepared with chemical co-precipitation. The absorption increased with the density of the sample, while at the same time the absorption range decreased. 90% absorption within a broad-frequency range was determined for the 2.5-mm thick absorbers.

  8. Magnetic and microwave absorption properties of ZnCo-substituted W-type strontium hexaferrite

    NASA Astrophysics Data System (ADS)

    Farhadizadeh, A. R.; Seyyed Ebrahimi, S. A.; Masoudpanah, S. M.

    2015-05-01

    Single phase ZnCo-substituted W-type strontium hexaferrite (SrZn2-xCoxFe16O27 with x=0-2.0) were prepared by ceramic conventional method. With the Co substitution, the saturation magnetization increases up to a maximum of 72.8 emu/g for SrZnCoFe16O27, and then decreases, while the coercivity decreases from 1000 Oe for x=0 to 430 Oe for x=1 and then increases up to 700 Oe for x=2. The microwave absorption measurements in the microwave frequency range of 8-12 GHz (X-band) exhibited the maximum absorption of -28 dB at 10.3 GHz with an absorption bandwidth of more than 2.1 GHz for x=1.

  9. Microwave-assisted synthesis of SrFe 12O 19 hexaferrites

    NASA Astrophysics Data System (ADS)

    Zhanyong, Wang; Liuming, Zhong; Jieli, Lv; Huichun, Qian; Yuli, Zheng; Yongzheng, Fang; Minglin, Jin; Jiayue, Xu

    2010-09-01

    Ultra-fine and homogeneous SrFe 12O 19 hexaferrites were synthesized by a microwave-assisted calcination route. The calcined precursors were prepared by a sol-gel auto-combustion method using Fe(NO 3) 3·9H 2O, Sr(NO 3) 2 and citric acid as starting materials. The structures, powder morphology and magnetic properties of the products were characterized by X-ray diffraction, scanning electron microscope and vibrating sample magnetometer. The results showed that microwaves are helpful to reduce the calcination temperature and shorten the calcination time. The ferrites with saturation magnetization, remanence and intrinsic coercivity of 54.80 emu/g, 29.52 emu/g and 5261 Oe, respectively, were obtained in samples calcined at 800 °C for 80 min.

  10. AES analysis of barium fluoride thin films

    NASA Astrophysics Data System (ADS)

    Kashin, G. N.; Makhnjuk, V. I.; Rumjantseva, S. M.; Shchekochihin, Ju. M.

    1993-06-01

    AES analysis of thin films of metal fluorides is a difficult problem due to charging and decomposition of such films under electron bombardment. We have developed a simple algorithm for a reliable quantitative AES analysis of metal fluoride thin films (BaF 2 in our work). The relative AES sensitivity factors for barium and fluorine were determined from BaF 2 single-crystal samples. We have investigated the dependence of composition and stability of barium fluoride films on the substrate temperature during film growth. We found that the instability of BaF 2 films grown on GaAs substrates at high temperatures (> 525°C) is due to a loss of fluorine. Our results show that, under the optimal electron exposure conditions, AES can be used for a quantitative analysis of metal fluoride thin films.

  11. Radioactive Barium Ion Trap Based on Metal-Organic Framework for Efficient and Irreversible Removal of Barium from Nuclear Wastewater.

    PubMed

    Peng, Yaguang; Huang, Hongliang; Liu, Dahuan; Zhong, Chongli

    2016-04-01

    Highly efficient and irreversible capture of radioactive barium from aqueous media remains a serious task for nuclear waste disposal and environmental protection. To address this task, here we propose a concept of barium ion trap based on metal-organic framework (MOF) with a strong barium-chelating group (sulfate and sulfonic acid group) in the pore structures of MOFs. The functionalized MOF-based ion traps can remove >90% of the barium within the first 5 min, and the removal efficiency reaches 99% after equilibrium. Remarkably, the sulfate-group-functionalized ion trap demonstrates a high barium uptake capacity of 131.1 mg g(-1), which surpasses most of the reported sorbents and can selectively capture barium from nuclear wastewater, whereas the sulfonic-acid-group-functionalized ion trap exhibits ultrafast kinetics with a kinetic rate constant k2 of 27.77 g mg(-1) min(-1), which is 1-3 orders of magnitude higher than existing sorbents. Both of the two MOF-based ion traps can capture barium irreversibly. Our work proposes a new strategy to design barium adsorbent materials and provides a new perspective for removing radioactive barium and other radionuclides from nuclear wastewater for environment remediation. Besides, the concrete mechanisms of barium-sorbent interactions are also demonstrated in this contribution.

  12. Substituted barium ferrites; sources of anisotropy

    NASA Astrophysics Data System (ADS)

    Morrish, A. H.; Zhou, X. Z.; Yang, Zheng; Zeng, Hua-Xian

    1994-12-01

    The substituted barium ferrites BaFe12-2 xCo x Sn x O19 (0 ≤ x ≤ 1.4) and BaFe1-2xCo x O19 (0 ≤ x ≤ 0.9) have been studied. The site occupancies, as determined from Mössbauer spectra, have been used to interpret the changes in the magnetization and in the crystalline anisotropy.

  13. Nanoparticles of barium induce apoptosis in human phagocytes

    PubMed Central

    Mores, Luana; França, Eduardo Luzia; Silva, Núbia Andrade; Suchara, Eliane Aparecida; Honorio-França, Adenilda Cristina

    2015-01-01

    Purpose Nutrients and immunological factors of breast milk are essential for newborn growth and the development of their immune system, but this secretion can contain organic and inorganic toxins such as barium. Colostrum contamination with barium is an important issue to investigate because this naturally occurring element is also associated with human activity and industrial pollution. The study evaluated the administration of barium nanoparticles to colostrum, assessing the viability and functional activity of colostral mononuclear phagocytes. Methods Colostrum was collected from 24 clinically healthy women (aged 18–35 years). Cell viability, superoxide release, intracellular Ca2+ release, and phagocyte apoptosis were analyzed in the samples. Results Treatment with barium lowered mononuclear phagocyte viability, increased superoxide release, and reduced intracellular calcium release. In addition, barium increased cell death by apoptosis. Conclusion These data suggest that nanoparticles of barium in colostrum are toxic to cells, showing the importance of avoiding exposure to this element. PMID:26451108

  14. The effect of precursor types on the magnetic properties of Y-type hexa-ferrite composite

    SciTech Connect

    Kim, Chin Mo; Na, Eunhye; Kim, Ingyu; An, Sung Yong; Seo, Jung-wook; Hur, Kangheon; Kim, Hakkwan

    2015-05-07

    With magnetic composite including uniform magnetic particles, we expect to realize good high-frequency soft magnetic properties. We produced needle-like (α-FeOOH) nanoparticles with nearly uniform diameter and length of 20 and 500 nm. Zn-doped Y-type hexa-ferrite samples were prepared by solid state reaction method using the uniform goethite and non-uniform hematite (Fe{sub 2}O{sub 3}) with size of <1 μm, respectively. The micrographs observed by scanning electron microscopy show that more uniform hexagonal plates are observed in ZYG-sample (Zn-doped Y-type hexa-ferrite prepared with non-uniform hematite) than in ZYH-sample (Zn-doped Y-type hexa-ferrite prepared with uniform goethite). The permeability (μ′) and loss tangent (δ) at 2 GHz are 2.31 and 0.07 in ZYG-sample and 2.0 and 0.07 in ZYH sample, respectively. We can observe that permeability and loss tangent are strongly related to the particle size and uniformity based on the nucleation, growth, and two magnetizing mechanisms: spin rotation and domain wall motion. The complex permeability spectra also can be numerically separated into spin rotational and domain wall resonance components.

  15. Rare-Earth-Free Nanostructure Magnets: Rare-Earth-Free Permanent Magnets for Electric Vehicle Motors and Wind Turbine Generators: Hexagonal Symmetry Based Materials Systems Mn-Bi and M-type Hexaferrite

    SciTech Connect

    2012-01-01

    REACT Project: The University of Alabama is developing new iron- and manganese-based composite materials for use in the electric motors of EVs and renewable power generators that will demonstrate magnetic properties superior to today’s best rare-earth-based magnets. Rare earths are difficult and expensive to refine. EVs and renewable power generators typically use rare earths to make their electric motors smaller and more powerful. The University of Alabama has the potential to improve upon the performance of current state-of-the-art rare-earth-based magnets using low-cost and more abundant materials such as manganese and iron. The ultimate goal of this project is to demonstrate improved performance in a full-size prototype magnet at reduced cost.

  16. Lanthanide doped strontium-barium cesium halide scintillators

    SciTech Connect

    Bizarri, Gregory; Bourret-Courchesne, Edith; Derenzo, Stephen E.; Borade, Ramesh B.; Gundiah, Gautam; Yan, Zewu; Hanrahan, Stephen M.; Chaudhry, Anurag; Canning, Andrew

    2015-06-09

    The present invention provides for a composition comprising an inorganic scintillator comprising an optionally lanthanide-doped strontium-barium, optionally cesium, halide, useful for detecting nuclear material.

  17. Creating unstable velocity-space distributions with barium injections

    NASA Technical Reports Server (NTRS)

    Pongratz, M. B.

    1983-01-01

    Ion velocity-space distributions resulting from barium injections from orbiting spacecraft and shaped charges are discussed. Active experiments confirm that anomalous ionization processes may operate, but photoionization accounts for the production of the bulk of the barium ions. Pitch-angle diffusion and/or velocity-space diffusion may occur, but observations of barium ions moving upwards against gravity suggests that the ions retain a significant enough fraction of their initial perpendicular velocity to provide a mirror force. The barium ion plasmas should have a range of Alfven Mach numbers and plasma betas. Because the initial conditions can be predicted these active experiments should permit testing plasma instability hypotheses.

  18. A catalog of M-type star candidates in the LAMOST data release 1

    NASA Astrophysics Data System (ADS)

    Zhong, Jing; Lépine, Sébastien; Li, Jing; Chen, Li; Hou, Jinliang

    2016-08-01

    In this work, we present a set of M-type star candidates selected from the LAMOST DR1. A discrimination method with the spectral index diagram is used to separate M giants and M dwarfs. Then, we have successfully assembled a set of M giants templates from M0 to M6, using the spectra identified from the LAMOST spectral database. After combining the M dwarf templates in Zhong et al. (2015a) and the new created M giant templates, we use the M-type spectral library to perform the template-fit method to classify and identify M-type stars in the LAMOST DR1. A catalog of M-type star candidates including 8639 M giants and 101690 M dwarfs/subdwarfs is provided. As an additional results, we also present other fundamental parameters like proper motion, photometry, radial velocity and spectroscopic distance.

  19. M-type asteroids in the mid-infrared: thermal inertias and emissivity spectra

    NASA Astrophysics Data System (ADS)

    Landsman, Zoe A.; Emery, Joshua P.; Campins, Humberto

    2016-10-01

    The M-type asteroid taxon has been inferred to contain metallic asteroids. This inference comes mainly from spectral analogy to iron meteorites and from the observation of high radar albedos among M-types. There is, nevertheless, evidence for significant compositional diversity within the M-type population. Spectral signatures of both high-temperature silicates (λ~0.9 μm) and hydrated minerals (λ~3 μm) are common in this group. The nature of the M-types is, therefore, still not well understood. In order to further test the hypothesis that many M-types are metallic, we have undertaken an observational study at mid-infrared wavelengths (5.2 – 38 μm). Our aim is to characterize the silicate composition and the thermal properties of a sample of M-type asteroids. If metallic, we expect relatively high thermal inertia and an absence of silicate emissivity features. The spectra we analyze were measured with the InfraRed Spectrograph (IRS) on the Spitzer Space Telescope. We present emissivity spectra and the initial results of thermophysical modeling, including derived thermal inertias. We chose our sample because these asteroids have also been observed at complementary wavelengths, such as visible, near-infrared and radar, which places further constraints on the interpretation of our results.

  20. Effect of Ni2+ Substitution on the Structural, Magnetic, and Dielectric Properties of Barium Hexagonal Ferrites (BaFe12O19)

    NASA Astrophysics Data System (ADS)

    Rafiq, Muhammad Asif; Waqar, Moaz; Mirza, Talha Ahmed; Farooq, Afifa; Zulfiqar, Aqif

    2016-09-01

    Polycrystalline barium hexaferrites BaFe12-x Ni x O19 (x = 0, 0.3 and 0.5) ceramics were synthesized by the conventional solid state route. X-ray diffraction and Fourier transform infrared spectroscopy studies confirmed the successful substitution of Ni in BaFe12O19 without the formation of any additional phase. Scanning electron microscopy images showed a platelet-like morphology of particles with an increase of average grain size by the increase in Ni content. A vibrating sample magnetometer revealed that the remnant magnetization M r and coercivity H c increased to a large extent, i.e., from 20.24 to 25.51 emu/g and from 1027.20 to 1971.60 Oe, respectively, with the increase in Ni from x = 0 to x = 0.5; however, saturation magnetization M s showed a minor variation. Dielectric studies were done using a precision impedance analyzer, which showed a decrease in dielectric loss with the increase in Ni content and very little variation in the conductivity of the samples.

  1. Binding and leakage of barium in alginate microbeads.

    PubMed

    Mørch, Yrr A; Qi, Meirigeng; Gundersen, Per Ole M; Formo, Kjetil; Lacik, Igor; Skjåk-Braek, Gudmund; Oberholzer, Jose; Strand, Berit L

    2012-11-01

    Microbeads of alginate crosslinked with Ca(2+) and/or Ba(2+) are popular matrices in cell-based therapy. The aim of this study was to quantify the binding of barium in alginate microbeads and its leakage under in vitro and accumulation under in vivo conditions. Low concentrations of barium (1 mM) in combination with calcium (50 mM) and high concentrations of barium (20 mM) in gelling solutions were used for preparation of microbeads made of high-G and high-M alginates. High-G microbeads accumulated barium from gelling solution and contained higher concentrations of divalent ions for both low- and high-Ba exposure compared with high-G microbeads exposed to calcium solely and to high-M microbeads for all gelling conditions. Although most of the unbound divalent ions were removed during the wash and culture steps, leakage of barium was still detected during storage. Barium accumulation in blood and femur bone of mice implanted with high-G beads was found to be dose-dependent. Estimated barium leakage relevant to transplantation to diabetic patients with islets in alginate microbeads showed that the leakage was 2.5 times lower than the tolerable intake value given by WHO for high-G microbeads made using low barium concentration. The similar estimate gave 1.5 times higher than is the tolerable intake value for the high-G microbeads made using high barium concentration. To reduce the risk of barium accumulation that may be of safety concern, the microbeads made of high-G alginate gelled with a combination of calcium and low concentration of barium ions is recommended for islet transplantation.

  2. Binding and Leakage of Barium in Alginate Microbeads

    PubMed Central

    Mørch, Yrr A.; Qi, Meirigeng; Gundersen, Per Ole M.; Formo, Kjetil; Lacik, Igor; Skjåk-Bræk, Gudmund; Oberholzer, Jose; Strand, Berit L.

    2013-01-01

    Microbeads of alginate cross-linked with Ca2+ and/or Ba2+ are popular matrices in cell-based therapy. The aim of this study was to quantify the binding of barium in alginate microbeads and its leakage under in vitro and accumulation under in vivo conditions. Low concentrations of barium (1 mM) in combination with calcium (50 mM) and high concentrations of barium (20 mM) in gelling solutions were used for preparation of microbeads made of high-G and high-M alginates. High-G microbeads accumulated barium from gelling solution and contained higher concentrations of divalent ions for both low- and high-Ba exposure compared to high-G microbeads exposed to calcium solely and to high-M microbeads for all gelling conditions. Although most of the unbound divalent ions were removed during the wash and culture steps, leakage of barium was still detected during storage. Barium accumulation in blood and femur bone of mice implanted with high-G beads was found to be dose-dependent. Estimated barium leakage relevant to transplantation to diabetic patients with islets in alginate microbeads showed that the leakage was 2.5 times lower than the tolerable intake value given by WHO for high-G microbeads made using low barium concentration. The similar estimate gave 1.5 times higher than is the tolerable intake value for the high-G microbeads made using high barium concentration. In order to reduce the risk of barium accumulation that may be of safety concern, the microbeads made of high-G alginate gelled with a combination of calcium and low concentration of barium ions is recommended for islet transplantation. PMID:22700168

  3. Europium-doped barium bromide iodide

    SciTech Connect

    Gundiah, Gautam; Hanrahan, Stephen M.; Hollander, Fredrick J.; Bourret-Courchesne, Edith D.

    2009-10-21

    Single crystals of Ba0.96Eu0.04BrI (barium europium bromide iodide) were grown by the Bridgman technique. The title compound adopts the ordered PbCl2 structure [Braekken (1932). Z. Kristallogr. 83, 222-282]. All atoms occupy the fourfold special positions (4c, site symmetry m) of the space group Pnma with a statistical distribution of Ba and Eu. They lie on the mirror planes, perpendicular to the b axis at y = +-0.25. Each cation is coordinated by nine anions in a tricapped trigonal prismatic arrangement.

  4. Short-cavity squeezing in barium

    NASA Technical Reports Server (NTRS)

    Hope, D. M.; Bachor, H-A.; Manson, P. J.; Mcclelland, D. E.

    1992-01-01

    Broadband phase sensitive noise and squeezing were experimentally observed in a system of barium atoms interacting with a single mode of a short optical cavity. Squeezing of 13 +/- 3 percent was observed. A maximum possible squeezing of 45 +/- 8 percent could be inferred for out experimental conditions, after correction for measured loss factors. Noise reductions below the quantum limit were found over a range of detection frequencies 60-170 MHz and were best for high cavity transmission and large optical depths. The amount of squeezing observed is consistent with theoretical predictions from a full quantum statistical model of the system.

  5. 40 CFR 721.10011 - Barium calcium manganese strontium oxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Specific Chemical Substances § 721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance... manganese strontium oxide (PMN P-00-1124; CAS No. 359427-90-0) is subject to reporting under this section... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Barium calcium manganese...

  6. 40 CFR 721.10011 - Barium calcium manganese strontium oxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Specific Chemical Substances § 721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance... manganese strontium oxide (PMN P-00-1124; CAS No. 359427-90-0) is subject to reporting under this section... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Barium calcium manganese...

  7. Barium appendicitis: A single institution review in Japan

    PubMed Central

    Katagiri, Hideki; Lefor, Alan Kawarai; Kubota, Tadao; Mizokami, Ken

    2016-01-01

    AIM To review clinical experience with barium appendicitis at a single institution. METHODS A retrospective review of patients admitted with a diagnosis of acute appendicitis, from January 1, 2013 to December 31, 2015 was performed. Age, gender, computed tomography (CT) scan findings if available, past history of barium studies, pathology, and the presence of perforation or the development of complications were reviewed. If the CT scan revealed high density material in the appendix, the maximum CT scan radiodensity of the material is measured in Hounsfield units (HU). Barium appendicitis is defined as: (1) patients diagnosed with acute appendicitis; (2) the patient has a history of a prior barium study; and (3) the CT scan shows high density material in the appendix. Patients who meet all three criteria are considered to have barium appendicitis. RESULTS In total, 396 patients were admitted with the diagnosis of acute appendicitis in the study period. Of these, 12 patients (3.0%) met the definition of barium appendicitis. Of these 12 patients, the median CT scan radiodensity of material in the appendix was 10000.8 HU, ranging from 3066 to 23423 HU (± 6288.2). In contrast, the median CT scan radiodensity of fecaliths in the appendix, excluding patients with barium appendicitis, was 393.1 HU, ranging from 98 to 2151 HU (± 382.0). The CT scan radiodensity of material in the appendices of patients with barium appendicitis was significantly higher than in patients with nonbarium fecaliths (P < 0.01). CONCLUSION Barium appendicitis is not rare in Japan. Measurement of the CT scan radiodensity of material in the appendix may differentiate barium appendicitis from routine appendicitis. PMID:27721929

  8. Barium sulfate aspiration: Severe chemical pneumonia induced by a massive reflux of contrast medium during small bowel barium enema.

    PubMed

    Zhang, Lin; Yang, Yi; Zhang, Ji; Zhou, Xiaowei; Dong, Hongmei; Zhou, Yiwu

    2015-08-01

    Barium contrast radiography is a conventional procedure aimed at revealing lesions of the alimentary tract using barium sulfate on X-ray irradiation. Although it is widely used in clinics, adverse effects and complications are observed, such as anaphylaxis, granuloma, fecalithes, abdomen-leaking, embolism, bacterial contamination, and aspiration. We report a case of death due to a massive barium sulfate aspiration resulted from an air-barium double contrast enema radiography. A 25-year-old female patient was hospitalized with symptoms of abdominal distention, nausea, vomiting and diarrhea for three days. A progressive respiratory distress presented only 1h after a small bowel air-barium double contrast enema. The patient died 11h later. The result of autopsy revealed the cause of death to be severe chemical pneumonitis induced by gastric fluid which was aspirated into her lungs. Barium sulfate is generally recognized to be chemically inert for the respiratory system, but a mixture of barium sulfate with gastric contents is fatal. Here we intend to suggest that, when determining the potential cause of death, medical examiners should consider a patient's status quo as well as the possible adverse effects and complications caused by the barium sulfate preparation during gastrointestinal radiography.

  9. Clonal diversity of Streptococcus pyogenes within some M-types revealed by multilocus enzyme electrophoresis.

    PubMed Central

    Haase, A. M.; Melder, A.; Mathews, J. D.; Kemp, D. J.; Adams, M.

    1994-01-01

    Twenty-two reference isolates and 30 local isolates of group A Streptococci were classified into 36 electrophoretic types (ET) on the basis of allozyme variation at 27 enzyme loci. Local isolates were characterized by a high frequency of M-non typable strains. M-type and ET were more closely associated in local isolates from an endemically-infected population; nevertheless, amongst the local isolates there were also strains of the same ET type with different M-types. A possible explanation is that genetic exchange between strains may introduce different M-types into strains of defined ET when these are exposed to strong selection in the presence of heavy loads of infection. In contrast to the reported clustering of strains associated with toxic shock-like syndrome into two closely related ET clones, we found no relationship of ET phenotype to acute poststreptococcal glomerulonephritis or rheumatic fever. PMID:7995355

  10. Magnetic structure in cool stars. XVI - Emissions from the outer atmosphere of M-type dwarfs

    NASA Technical Reports Server (NTRS)

    Rutten, R. G. M.; Zwaan, C.; Schrijver, C. J.; Duncan, D. K.; Mewe, R.

    1989-01-01

    Consideration is given to emission from the outer atmospheres of M-type dwarfs in several spectral lines originating from the chromosphere, the transition-region, and the soft X-ray emission from the corona. It is shown that M-type dwarfs systematically deviate from relations between flux densities in soft X-rays and chromospheric and transition-region emission lines. The quantitative relation between the equivalent width of H-alpha and the Ca II, H, and K emission index is determined. It is suggested that the emission in the Balmer spectrum may result from back heating by coronal soft X-rays.

  11. Impedance spectroscopy and scaling behaviors of Sr3Co2Fe24O41 hexaferrite

    NASA Astrophysics Data System (ADS)

    Tang, Rujun; Jiang, Chen; Jian, Jie; Liang, Yan; Zhang, Xin; Wang, Haiyan; Yang, Hao

    2015-01-01

    The impedance spectroscopy of Z-type hexaferrite Sr3Co2Fe24O41 (SCFO) has been investigated as a function of temperature from 303 to 503 K. The frequency dependent impedance ( Z ″ ) and modulus ( M ″ ) spectra show that for the air annealed SCFO, the electrical responses of SCFO are thermal activated and there is a distribution of relaxation times. The scaling behaviors of Z ″ and M ″ spectra further suggest that the distribution of relaxation times is temperature independent. The Cole-Cole plots in impedance formalism show that the electrical response of SCFO originates from both the grain and the grain-boundaries. The activation energies for grain and grain boundary are 0.66 eV and 0.67 eV, respectively. The frequency dependent conductivity ( σ ' ) spectra follow the universal power law. The fitting results of σ ' spectra show that the small polaron hopping is the most probable conduction mechanism for SCFO. Moreover, the scaling behavior of σ ' spectra further confirms that the distribution of local electrical response times is temperature independent. The air plus O2 annealed SCFO shows thermally activated electrical responses and scaling behaviors as well. The above results show that although the electrical responses of SCFO are temperature dependent, the relaxation mechanism in SCFO is temperature independent.

  12. Magnetic Properties of Strontium Hexaferrite Nanostructures Measured with Magnetic Force Microscopy

    PubMed Central

    Li, Qiang; Song, Jie; Saura-Múzquiz, Matilde; Besenbacher, Flemming; Christensen, Mogens; Dong, Mingdong

    2016-01-01

    Magnetic property is one of the important properties of nanomaterials. Direct investigation of the magnetic property on the nanoscale is however challenging. Herein we present a quantitative measurement of the magnetic properties including the magnitude and the orientation of the magnetic moment of strontium hexaferrite (SrFe12O19) nanostructures using magnetic force microscopy (MFM) with nanoscale spatial resolution. The measured magnetic moments of the as-synthesized individual SrFe12O19 nanoplatelets are on the order of ~10−16 emu. The MFM measurements further confirm that the magnetic moment of SrFe12O19 nanoplatelets increases with increasing thickness of the nanoplatelet. In addition, the magnetization directions of nanoplatelets can be identified by the contrast of MFM frequency shift. Moreover, MFM frequency imaging clearly reveals the tiny magnetic structures of a compacted SrFe12O19 pellet. This work demonstrates the mesoscopic investigation of the intrinsic magnetic properties of materials has a potential in development of new magnetic nanomaterials in electrical and medical applications. PMID:27174466

  13. Synthesis, structure, morphology evolution and magnetic properties of single domain strontium hexaferrite particles

    NASA Astrophysics Data System (ADS)

    Chen, Deyang; Zeng, Dechang; Liu, Zhongwu

    2016-04-01

    Single domain strontium ferrite particles (SrFe12O19) with hexagonal morphology were synthesized by conventional ceramic process. Effects of Fe/Sr mole ratio and milling time on structure, morphology and magnetic properties of the strontium ferrite particles have been systematically studied. Single phase SrFe12O19 was successfully synthesized in a large composition range of Fe/Sr ratio (Fe/Sr = 9-11). The particle size refinement effect and the morphology change were observed with the increase of Fe/Sr ratio. It was also found that the change of Fe/Sr ratio had little effect on the magnetization curve. However, the magnetization process was significantly influenced with different milling time. The optimal magnetic properties obtained at Fe/Sr = 11 with 6 h milling are 68.2 emu g-1 and 5540 Oe for saturation magnetization (M S) and intrinsic coercivity (H C), respectively. The high performance single domain strontium hexaferrite particles obtained in this paper would greatly facilitate the application in the permanent magnet industry.

  14. Dielectric relaxation, resonance and scaling behaviors in Sr3Co2Fe24O41 hexaferrite.

    PubMed

    Tang, Rujun; Jiang, Chen; Qian, Wenhu; Jian, Jie; Zhang, Xin; Wang, Haiyan; Yang, Hao

    2015-08-28

    The dielectric properties of Z-type hexaferrite Sr3Co2Fe24O41 (SCFO) have been investigated as a function of temperature from 153 to 503 K between 1 and 2 GHz. The dielectric responses of SCFO are found to be frequency dependent and thermally activated. The relaxation-type dielectric behavior is observed to be dominating in the low frequency region and resonance-type dielectric behavior is found to be dominating above 10(8) Hz. This frequency dependence of dielectric behavior is explained by the damped harmonic oscillator model with temperature dependent coefficients. The imaginary part of impedance (Z″) and modulus (M″) spectra show that there is a distribution of relaxation times. The scaling behaviors of Z″ and M″ spectra further suggest that the distribution of relaxation times is temperature independent at low frequencies. The dielectric loss spectra at different temperatures have not shown a scaling behavior above 10(8) Hz. A comparison between the Z″ and the M″ spectra indicates that the short-range charges motion dominates at low temperatures and the long-range charges motion dominates at high temperatures. The above results indicate that the dielectric dispersion mechanism in SCFO is temperature independent at low frequencies and temperature dependent at high frequencies due to the domination of resonance behavior.

  15. Iron oxide nanocomposite magnets produced by partial reduction of strontium hexaferrite

    NASA Astrophysics Data System (ADS)

    Tikkanen, Jussi; Paturi, Petriina

    2014-07-01

    Isotropic bulk nanocomposite permanent magnets were produced with strontium hexaferrite, SrO·6Fe2O3, and magnetite, Fe3O4, as the magnetically hard and soft components. A novels synthesis scheme based on the partial reduction of SrO·6Fe2O3 was employed. In two parallel experiments, nano- and microcrystalline SrO·6Fe2O3 particles were compacted into pellets along with a controlled, understoichiometric amount of potato starch as a reducing agent. The pellets were then sintered in a passive atmosphere. Based on XRD and room temperature magnetic hysteresis measurements, it was concluded that a fraction of the SrO·6Fe2O3 input material had been reduced into Fe3O4. In comparison with pure SrO·6Fe2O3 control pellets, these composites exhibited maximum energy product increases in excess of 5 % due to remanence boosting. The improvement of magnetic properties was attributed to an efficient exchange spring coupling between the magnetic phases. Interestingly, as the synthesis scheme also worked for microcrystalline SrO·6Fe2O3 , the method could presumably be adapted to yield crystallographically oriented bulk nanocomposite magnets.

  16. Site preference and magnetic properties of Ga/In-substituted strontium hexaferrite: An ab initio study

    SciTech Connect

    Dixit, Vivek; Nandadasa, Chandani N.; Kim, Seong-Gon; Kim, Sungho; Park, Jihoon; Hong, Yang-Ki

    2015-11-28

    The first-principles density functional theory has been used to study Ga/In-substituted strontium hexaferrite (SrFe{sub 12}O{sub 19}). Based on the calculation of the substitution energy of Ga and In in SrFe{sub 12}O{sub 19} and the formation probability analysis, we conclude that in SrFe{sub 12−x}Ga{sub x}O{sub 19} the substituted Ga atoms prefer to occupy the 12k, 2a, and 4f{sub 1} sites, while In atoms in SrFe{sub 12−x}In{sub x}O{sub 19} occupy the 12k, 4f{sub 2}, and 4f{sub 1} sites. We used the site occupation probabilities to calculate the magnetic properties of the substituted SrFe{sub 12}O{sub 19}. It was found that as the fraction of Ga atoms in SrFe{sub 12−x}Ga{sub x}O{sub 19} increases, the saturation magnetization (M{sub s}) as well as magnetic anisotropy energy (MAE) decrease, while the anisotropy field (H{sub a}) increases. In the case of SrFe{sub 12−x}In{sub x}O{sub 19}, M{sub s}, MAE, and H{sub a} decrease with an increase of the concentration of In atoms.

  17. Strontium hexaferrite (SrFe12O19) based composites for hyperthermia applications

    NASA Astrophysics Data System (ADS)

    Rashid, Amin Ur; Southern, Paul; Darr, Jawwad A.; Awan, Saifullah; Manzoor, Sadia

    2013-10-01

    Mixed phase composites of SrFe12O19/MgFe2O4/ZrO2 were prepared via the citrate gel technique as potential candidate materials for magnetic hyperthermia. Structural and magnetic properties of the samples were studied using powder X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and a vibrating sample magnetometer. XRD and FE-SEM data confirm that magnesium ferrite and zirconium oxide phases increased with increasing Mg and Zr content in the precursors. Magnetization loops for the composites were measured at room temperature and showed significant variation of saturation magnetization, coercivity and remanence depending on the amount of the highly anisotropic Sr-hexaferrite phase. The sample with the highest Mg and Zr content had the lowest coercivity (80 Oe) and saturation magnetization (41 emu/g). The composite samples each were exposed to a 214 kHz alternating magnetic field of amplitude 22 Oe and a significant heating effect was observed in selected samples, which suggests potential for use in magnetic hyperthermia.

  18. Magnetic Properties of Strontium Hexaferrite Nanostructures Measured with Magnetic Force Microscopy.

    PubMed

    Li, Qiang; Song, Jie; Saura-Múzquiz, Matilde; Besenbacher, Flemming; Christensen, Mogens; Dong, Mingdong

    2016-01-01

    Magnetic property is one of the important properties of nanomaterials. Direct investigation of the magnetic property on the nanoscale is however challenging. Herein we present a quantitative measurement of the magnetic properties including the magnitude and the orientation of the magnetic moment of strontium hexaferrite (SrFe12O19) nanostructures using magnetic force microscopy (MFM) with nanoscale spatial resolution. The measured magnetic moments of the as-synthesized individual SrFe12O19 nanoplatelets are on the order of ~10(-16) emu. The MFM measurements further confirm that the magnetic moment of SrFe12O19 nanoplatelets increases with increasing thickness of the nanoplatelet. In addition, the magnetization directions of nanoplatelets can be identified by the contrast of MFM frequency shift. Moreover, MFM frequency imaging clearly reveals the tiny magnetic structures of a compacted SrFe12O19 pellet. This work demonstrates the mesoscopic investigation of the intrinsic magnetic properties of materials has a potential in development of new magnetic nanomaterials in electrical and medical applications. PMID:27174466

  19. Synthesis, structure, morphology evolution and magnetic properties of single domain strontium hexaferrite particles

    NASA Astrophysics Data System (ADS)

    Chen, Deyang; Zeng, Dechang; Liu, Zhongwu

    2016-04-01

    Single domain strontium ferrite particles (SrFe12O19) with hexagonal morphology were synthesized by conventional ceramic process. Effects of Fe/Sr mole ratio and milling time on structure, morphology and magnetic properties of the strontium ferrite particles have been systematically studied. Single phase SrFe12O19 was successfully synthesized in a large composition range of Fe/Sr ratio (Fe/Sr = 9–11). The particle size refinement effect and the morphology change were observed with the increase of Fe/Sr ratio. It was also found that the change of Fe/Sr ratio had little effect on the magnetization curve. However, the magnetization process was significantly influenced with different milling time. The optimal magnetic properties obtained at Fe/Sr = 11 with 6 h milling are 68.2 emu g‑1 and 5540 Oe for saturation magnetization (M S) and intrinsic coercivity (H C), respectively. The high performance single domain strontium hexaferrite particles obtained in this paper would greatly facilitate the application in the permanent magnet industry.

  20. Synthesis of strontium hexaferrite nanoparticles prepared using co-precipitation method and microemulsion processing

    NASA Astrophysics Data System (ADS)

    Drmota, A.; Žnidaršič, A.; Košak, A.

    2010-01-01

    Strontium hexaferrite (SrFe12O19) nanoparticles have been prepared with co-precipitation in aqueous solutions and precipitation in microemulsion system water/SDS/n-butanol/cyclohexane, using iron and strontium nitrates in different molar rations as a starting materials. The mixed Sr2+, Fe3+ hydroxide precursors obtained during the reaction between corresponding metal nitrates and tetramethylammonium hydroxide (TMAH), which served as a precipitating reagent, were calcined in a wide temperature range, from 350 °C to 1000 °C in a static air atmosphere. The influence of the Sr2+/Fe3+ molar ratio and the calcination temperature to the chemistry of the product formation, its crystallite size, morphology and magnetic properties were investigated. It was found that the formation of single phase SrFe12O19 with relatively high specific magnetization (54 Am2/kg) was achieved at the Sr2+/Fe3+ molar ration of 6.4 and calcination at 800 °C for 3h with heating/cooling rate 5 °C/min. The prepared powders were characterized using X-ray diffractometry (XRD) and specific surface area measurements (BET). The specific magnetization (DSM-10, magneto-susceptometer) of the prepared samples was measured.

  1. Magnetic Properties of Strontium Hexaferrite Nanostructures Measured with Magnetic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Song, Jie; Saura-Múzquiz, Matilde; Besenbacher, Flemming; Christensen, Mogens; Dong, Mingdong

    2016-05-01

    Magnetic property is one of the important properties of nanomaterials. Direct investigation of the magnetic property on the nanoscale is however challenging. Herein we present a quantitative measurement of the magnetic properties including the magnitude and the orientation of the magnetic moment of strontium hexaferrite (SrFe12O19) nanostructures using magnetic force microscopy (MFM) with nanoscale spatial resolution. The measured magnetic moments of the as-synthesized individual SrFe12O19 nanoplatelets are on the order of ~10-16 emu. The MFM measurements further confirm that the magnetic moment of SrFe12O19 nanoplatelets increases with increasing thickness of the nanoplatelet. In addition, the magnetization directions of nanoplatelets can be identified by the contrast of MFM frequency shift. Moreover, MFM frequency imaging clearly reveals the tiny magnetic structures of a compacted SrFe12O19 pellet. This work demonstrates the mesoscopic investigation of the intrinsic magnetic properties of materials has a potential in development of new magnetic nanomaterials in electrical and medical applications.

  2. Magnetic Properties of Strontium Hexaferrite Nanostructures Measured with Magnetic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Song, Jie; Saura-Múzquiz, Matilde; Besenbacher, Flemming; Christensen, Mogens; Dong, Mingdong

    2016-05-01

    Magnetic property is one of the important properties of nanomaterials. Direct investigation of the magnetic property on the nanoscale is however challenging. Herein we present a quantitative measurement of the magnetic properties including the magnitude and the orientation of the magnetic moment of strontium hexaferrite (SrFe12O19) nanostructures using magnetic force microscopy (MFM) with nanoscale spatial resolution. The measured magnetic moments of the as-synthesized individual SrFe12O19 nanoplatelets are on the order of ~10‑16 emu. The MFM measurements further confirm that the magnetic moment of SrFe12O19 nanoplatelets increases with increasing thickness of the nanoplatelet. In addition, the magnetization directions of nanoplatelets can be identified by the contrast of MFM frequency shift. Moreover, MFM frequency imaging clearly reveals the tiny magnetic structures of a compacted SrFe12O19 pellet. This work demonstrates the mesoscopic investigation of the intrinsic magnetic properties of materials has a potential in development of new magnetic nanomaterials in electrical and medical applications.

  3. Role of grain boundaries in the conduction of Eu-Ni substituted Y-type hexaferrites

    NASA Astrophysics Data System (ADS)

    Ali, Irshad; Islam, M. U.; Naeem Ashiq, Muhammad; Asif Iqbal, M.; Khan, Hasan M.; Murtaza, G.

    2014-08-01

    Single phase nanostructured (Eu-Ni) substituted Y-type hexaferrites with nominal composition of Sr2Co2-xNixEuyFe12-yO22 (x=0.0-1, y=0.0-0.1) were synthesized by the microemulsion method. Temperature dependent DC electrical conductivity and drift mobility were found in good agreement with each other, reflecting semiconducting behavior. The presence of Debye peaks in imaginary electric modulus curves confirmed the existence of relaxation phenomena in given frequency range. The AC conductivity follows power law, with exponent (n) value, ranges from 0.81-0.97, indicating that the mechanism is due to polaron hopping. In the present ferrite system, Cole-Cole plots were used to separate the grain and grain boundary effects. Eu-Ni substitution leads to a remarkable rise of grain boundary resistance as compared to the grain resistance. As both AC conductivity and Cole-Cole plots are the functions of concentration, they reveal the dominant contribution of grain boundaries in the conduction mechanism. It was also observed that the AC activation energy is lower than the DC activation energy. Appreciable improved values of quality factor suggested the possible use of these synthesized materials for power applications and high frequency multilayer chip inductors.

  4. Site preference and magnetic properties of Ga/In-substituted strontium hexaferrite: An ab initio study

    NASA Astrophysics Data System (ADS)

    Dixit, Vivek; Nandadasa, Chandani N.; Kim, Seong-Gon; Kim, Sungho; Park, Jihoon; Hong, Yang-Ki

    2015-11-01

    The first-principles density functional theory has been used to study Ga/In-substituted strontium hexaferrite (SrFe12O19). Based on the calculation of the substitution energy of Ga and In in SrFe12O19 and the formation probability analysis, we conclude that in SrFe12-xGaxO19 the substituted Ga atoms prefer to occupy the 12k, 2a, and 4f1 sites, while In atoms in SrFe12-xInxO19 occupy the 12k, 4f2, and 4f1 sites. We used the site occupation probabilities to calculate the magnetic properties of the substituted SrFe12O19. It was found that as the fraction of Ga atoms in SrFe12-xGaxO19 increases, the saturation magnetization (Ms) as well as magnetic anisotropy energy (MAE) decrease, while the anisotropy field (Ha) increases. In the case of SrFe12-xInxO19, Ms, MAE, and Ha decrease with an increase of the concentration of In atoms.

  5. Synthesis of Y-type hexaferrites via a soft mechanochemical route

    NASA Astrophysics Data System (ADS)

    Temuujin, J.; Aoyama, M.; Senna, M.; Masuko, T.; Ando, C.; Kishi, H.

    2004-11-01

    Y-type (Ba 2Co 2Fe 12O 22) hexaferrite precursors have been prepared via a soft mechanochemical route from mixtures comprising BaCO 3, Co(OH) 2 and α-FeOOH. The mixture was activated with a multi-ring type mill for varying duration. The chemical and structural changes during grinding were examined in detail by XRD, DTA-TG, SEM, XPS and FTIR. During grinding, extended crystallinity loss or lattice disturbance was observed without an emersion of any new crystalline phases. At the same time, electronic states were changed toward the final product, fully crystallized Y-phase ferrite. Mechanical activation for only 1 h was sufficient to obtain a precursor for phase pure Y-type by subsequent heating in air at temperatures as low as 1000 °C. Development of plate-like anisotropy by using a precursor with prolonged milling was also observed. Magnetic permeability, μ', was ca. 3 at 1 GHz, equivalent to the reported data, in spite of the lower firing temperature.

  6. Do all barium stars have a white dwarf companion?

    NASA Technical Reports Server (NTRS)

    Dominy, J. F.; Lambert, D. L.

    1983-01-01

    International Ultraviolet Explorer short-wavelength, low-dispersion spectra were analyzed for four barium, two mild barium, and one R-type carbon star in order to test the hypothesis that the barium and related giants are produced by mass transfer from a companion now present as a white dwarf. An earlier tentative identification of a white dwarf companion to the mild barium star Zeta Cyg is confirmed. For the other stars, no ultraviolet excess attributable to a white dwarf is seen. Limits are set on the bolometric magnitude and age of a possible white dwarf companion. Since the barium stars do not have obvious progenitors among main-sequence and subgiant stars, mass transfer must be presumed to occur when the mass-gaining star is already on the giant branch. This restriction, and the white dwarf's minimum age, which is greater than 8 x 10 to the 8th yr, determined for several stars, effectively eliminates the hypothesis that mass transfer from an asymptotic giant branch star creates a barium star. Speculations are presented on alternative methods of producing a barium star in a binary system.

  7. Moessbauer and magnetic study of Mn, Zr and Cd substituted W-type hexaferrites prepared by co-precipitation

    SciTech Connect

    Iqbal, Muhammad Javed; Khan, Rafaqat Ali; Mizukami, Shigemi; Miyazaki, Terunobu

    2011-11-15

    Highlights: {yields} Zr and Cd ions substitute tetrahedral 4e and 4f{sub IV} sites while Mn ions occupy octahedral 6g and 4f sites. {yields} Doping of W-type hexaferrites with Mn, Zr and Cd improves the values of M{sub s} and M{sub r}. {yields} The enhancement of magnetic characteristic togetherwith the formation of rice shaped W-type hexaferrites nanoparticles is promising for imaging and sensing devices. {yields} The synthesized materials are suitable for magnetic data storage with high density. -- Abstract: BaCo{sub 2-x}Mn{sub x}Fe{sub 16-2y}(Zr-Cd){sub y}O{sub 27} (x = 0-0.5 and y = 0-1.0) hexaferrite nanocrystallites of average sizes in the range of 33-42 nm are synthesized by the chemical co-precipitation method. The synthesized materials are characterized using different techniques including X-ray diffraction (XRD), energy dispersive X-ray florescence (ED-XRF), scanning electron microscope (SEM), Moessbauer spectrometer and vibrating-sample magnetometer (VSM). Based on analysis of the data obtained from Moessbauer spectral studies, doping is believed to have occurred preferably in the vicinity of 12k sub-lattice, i.e. f{sub IV} (4e, 4f{sub IV}), 2b (6g, 4f) and 2d site. Variations in the saturation magnetization (77.1-60.9 emu g{sup -1}), remanent magnetization (22.08-31.23 emu g{sup -1}) and coercivity (1570.1-674.7 Oe) exhibit tunable behavior with dopant content and therefore can be useful for application in various magnetic devices.

  8. Proton conductivity of potassium doped barium zirconates

    SciTech Connect

    Xu Xiaoxiang; Tao Shanwen; Irvine, John T.S.

    2010-01-15

    Potassium doped barium zirconates have been synthesized by solid state reactions. It was found that the solubility limit of potassium on A-sites is between 5% and 10%. Introducing extra potassium leads to the formation of second phase or YSZ impurities. The water uptake of barium zirconates was increased even with 5% doping of potassium at the A-site. The sintering conditions and conductivity can be improved significantly by adding 1 wt% ZnO during material synthesis. The maximum solubility for yttrium at B-sites is around 15 at% after introducing 1 wt% zinc. The conductivity of Ba{sub 0.95}K{sub 0.05}Zr{sub 0.85}Y{sub 0.11}Zn{sub 0.04}O{sub 3-{delta}} at 600 deg. C is 2.2x10{sup -3} S/cm in wet 5% H{sub 2}. The activation energies for bulk and grain boundary are 0.29(2), 0.79(2) eV in wet 5% H{sub 2} and 0.31(1), 0.74(3) eV in dry 5% H{sub 2}. A power density of 7.7 mW/cm{sup 2} at 718 deg. C was observed when a 1 mm thick Ba{sub 0.95}K{sub 0.05}Zr{sub 0.85}Y{sub 0.11}Zn{sub 0.04}O{sub 3-{delta}} pellet was used as electrolyte and platinum electrodes. - Graphical abstract: Potassium doped barium zirconates have been synthesized by solid state reactions. It was found that the solubility limit of potassium on A-sites is between 5% and 10 %. The sintering conditions and conductivity can be improved significantly by adding 1 wt% ZnO during material synthesis. Five percent doping of potassium at A-site can double the total conductivity.

  9. A new investigation of hydration in the M-type asteroids

    NASA Astrophysics Data System (ADS)

    Landsman, Zoe A.; Campins, Humberto; Pinilla-Alonso, Noemí; Hanuš, Josef; Lorenzi, Vania

    2015-05-01

    We obtained 2-4 μm spectra of six M-type asteroids using the SpeX spectrograph at NASA's Infrared Telescope Facility. We find evidence for hydrated minerals on all six asteroids, including two that were previously thought to be dry. One of our targets, (216) Kleopatra, shows rotational variability in the depth of its 3-μm feature. We also studied three of these asteroids in the 0.8-2.4 μm range using the NICS instrument at the Telescopio Nazionale Galileo (TNG) in La Palma, Spain. The discovery of spectral signatures of hydrated minerals on so many M-types is difficult to reconcile with a highly thermally evolved composition. It has been suggested that the hydrated minerals could have been delivered to M-types via impacts with primitive objects, or that the M-types may actually have primitive compositions that are not represented in meteorite collections. Understanding the origin and type of hydration on these asteroids will help determine which of these interpretations is correct.

  10. Metallurgical Properties and Phase Transformations of Barium-Strontium Modifier

    NASA Astrophysics Data System (ADS)

    Platonov, M. A.; Sulimova, I. S.; Rozhikhina, I. D.; Dmitrienko, V. I.; Horoshun, G. V.

    2016-04-01

    Metallurgical properties and phase transformations of barium-strontium modifier were tested in laboratory conditions resembling steel processing in furnace and ladle. When heating barium-strontium modifier start of melting, kinetics of decomposition, phase and structure transformation were studied. The concentrate under consideration has been revealed to be a complex mineral compound containing barytocalcite, calcite, calciostrontianite, dolomite and siderite. The reaction kinetics of decomposing mineral components of barium-strontium modifier to oxides does not considerably affect slag formation in conditions of out-of-furnace steel processing.

  11. A high-altitude barium radial injection experiment

    NASA Technical Reports Server (NTRS)

    Wescott, E. M.; Stenbaek-Nielsen, H. C.; Hallinan, T. J.; Deehr, C. S.; Romick, G. J.; Olson, J. V.; Roederer, J. G.; Sydora, R.

    1980-01-01

    A rocket launched from Poker Flat, Alaska, carried a new type of high-explosive barium shaped charge to 571 km, where detonation injected a thin disk of barium vapor with high velocity nearly perpendicular to the magnetic field. The TV images of the injection are spectacular, revealing three major regimes of expanding plasma which showed early instabilities in the neutral gas. The most unusual effect of the injection is a peculiar rayed barium-ion structure lying in the injection plane and centered on a 5 km 'black hole' surrounding the injection point. Preliminary electrostatic computer simulations show a similar rayed development.

  12. Phased surgical treatment of barium enema-induced rectal injury and retention of barium in the pelvic floor space

    PubMed Central

    Yang, Xuefei; Xia, Ligang; Huang, Jun; Wang, Jianping

    2014-01-01

    Iatrogenic injuries caused by barium enema are rarely reported. Following a phased surgical protocol for up to one year, we have successfully treated a patient with rectal injury and severe infection of the pelvic floor space complicated with retention of large amounts of barium and vaginal fistula. In this article, the phased surgery planning for the treatment of rectal injury complicated with vaginal fistula is discussed in terms of the pros and cons, and the observed effect and evolution of barium retained in the pelvic floor space are described. PMID:25405155

  13. Electric characterization of (Sr, Sr-Ba, Ba) M-type ferrites by AC measurements[Alternating Current

    SciTech Connect

    Huanosta-Tera, A.; Lira-Hueso, R. de; Perez-Orta, O.; Palomares-Sanchez, S.A.; Ponce-Castaneda, S.; Mirabal-Garcia, M.

    2000-02-01

    Considering the electrical conductivity in ceramics, necessary reference should be given to dynamic processes occurring as a function of frequency and temperature. Although the most immediate interest in ferrites lies in their magnetic properties, technological applications require a wider knowledge of general physical properties as well. This is especially applicable when the materials are studied as a function of composition or when adding different modifiers. In this report, the authors present results of the ac and dc electric characteristics of a family of magneto-plumbite-type hexaferrites, where Ba gradually substitutes Sr in the Ba{sub x}Sr{sub 1{minus}x}Fe{sub 12}O{sub 19} compound (0 {le} x {le} 1). The results were determined over a wide range of frequencies and temperatures.

  14. An Investigation of the 3-μm Feature in M-Type Asteroids

    NASA Astrophysics Data System (ADS)

    Landsman, Zoe A.; Campins, H.; Hargrove, K.; Pinilla-Alonso, N.; Emery, J.; Ziffer, J.

    2013-10-01

    The M-type asteroids had originally been interpreted as the disrupted iron cores of differentiated bodies by spectral analogy with the NiFe meteorites. More detailed studies have since indicated a range of compositions. In particular, the presence of a 3-µm feature, diagnostic of hydration, detected in more than 35% of surveyed M-type asteroids (Jones et al. 1990, Rivkin et al. 1995, 2000) has challenged the notion that these bodies are all metallic. Spectroscopy in the 0.8 - 2.5 µm region has revealed absorption features due to mafic silicates and hydroxides or phyllosilicates (Fornasier et al. 2010, Hardersen et al. 2006, 2010, Ockert-Bell et al. 2010). Radar studies have shown that most M-types are not likely to be iron cores, but they typically have a higher metal content than average (Shepard et al. 2010). Taken together, these results paint a fairly confounding picture of the M-type asteroids. While several interpretations have been suggested, more work is needed to clarify the mineralogy of these bodies. We have started a new spectroscopic study of the M asteroids in the 2 - 4 µm region. We seek to characterize the shape, band center, and band depth of the 3-µm feature where it is present, as these measures are indicative of the type and extent of hydration present on asteroids (Lebofsky et al. 1985, Rivkin et al. 2002, Takir & Emery 2012, Volguardsen et al. 2007). With this work, we hope to shed new light on the origin of hydration on M asteroids and its context within their mineralogy and thermal evolution. In July 2013, we obtained 2 - 4 µm spectra for 69 Hesperia, 136 Austria, and 261 Prymno with the SpeX at NASA’s IRTF, and are in the process of reducing the data. We have also obtained 0.8 - 2.0 µm data for 261 Prymno using the NICS at the TNG in February 2013. We report the presence of an absorption feature near 0.9 µm in Prymno’s spectrum, indicating a partially silicate composition. Based on spectral, physical and orbital similarities to

  15. Calculated emission rates for barium releases in space

    NASA Technical Reports Server (NTRS)

    Stenbaek-Nielsen, H. C.

    1989-01-01

    The optical emissions from barium releases in space are caused by resonance and fluorescent scattering of sunlight. Emission rates for the dominant ion and neutral lines are calculated assuming the release to be optically thin and the barium to be in radiative equilibrium with the solar radiation. The solar spectrum has deep Fraunhofer absorption lines at the primary barium ion resonances. A velocity component toward or away from the sun will Doppler shift the emission lines relative to the absorption lines and the emission rates will increase many-fold over the rest value. The Doppler brightening is important in shaped charge or satellite releases where the barium is injected at high velocities. Emission rates as a function of velocity are calculated for the 4554, 4934, 5854, 6142 and 6497 A ion emission lines and the dominant neutral line at 5535 A. Results are presented for injection parallel to the ambient magnetic field, B, and for injection at an angle to B.

  16. Study of the photovoltaic effect in thin film barium titanate

    NASA Technical Reports Server (NTRS)

    Grannemann, W. W.; Dharmadhikari, V. S.

    1983-01-01

    The feasibility of making non-volatile digital memory devices of barium titanate, BaTiO3, that are integrated onto a silicon substrate with the required ferroelectric film produced by processing, compatible with silicon technology was examined.

  17. Barium stalactites: observations on their nature and significance.

    PubMed

    Aronchick, J; Laufer, I; Glick, S

    1983-11-01

    Stalactites--droplets of barium hanging from protrusions on the nondependent mucosal surface of the stomach and seen on double contrast studies--are described. Their importance in the diagnosis of polypoid lesions is shown.

  18. Synthesis, photoluminescence and magnetic properties of barium vanadate nanoflowers

    SciTech Connect

    Xu, Jing; Hu, Chenguo; Xi, Yi; Peng, Chen; Wan, Buyong; He, Xiaoshan

    2011-06-15

    Graphical abstract: The flower-shaped barium vanadate was obtained for the first time. The photoluminescence and magnetic properties of the barium vanadate nanoflowers were investigated at room temperature. Research highlights: {yields} In the paper, the flower-shaped barium vanadate were obtained for the first time. The CHM method used here is new and simple for preparation of barium vanadate. {yields} The photoluminescence and magnetic properties of the barium vanadate nanoflowers were investigated at room temperature. The strong bluish-green emission was observed. {yields} The ferromagnetic behavior of the barium vanadate nanoflowers was found with saturation magnetization of about 83.50 x 10{sup -3} emu/g, coercivity of 18.89 Oe and remnant magnetization of 4.63 x 10{sup -3} emu/g. {yields} The mechanisms of PL and magnetic property of barium vanadate nanoflowers have been discussed. -- Abstract: The flower-shaped barium vanadate has been obtained by the composite hydroxide mediated (CHM) method from V{sub 2}O{sub 5} and BaCl{sub 2} at 200 {sup o}C for 13 h. XRD and XPS spectrum of the as-synthesized sample indicate it is hexagonal Ba{sub 3}V{sub 2}O{sub 8} with small amount of Ba{sub 3}VO{sub 4.8} coexistence. Scan electron microscope and transmission electron microscope display that the flower-shaped crystals are composed of nanosheets with thickness of {approx}20 nm. The UV-visible spectrum shows that the barium vanadate sample has two optical gaps (3.85 eV and 3.12 eV). Photoluminescence spectrum of the barium vanadate flowers exhibits a visible light emission centered at 492 and 525 nm which might be attributed to VO{sub 4} tetrahedron with T{sub d} symmetry in Ba{sub 3}V{sub 2}O{sub 8}. The ferromagnetic behavior of the barium vanadate nanoflowers has been found with saturation magnetization of about 83.50 x 10{sup -3} emu/g, coercivity of 18.89 Oe and remnant magnetization of 4.63 x 10{sup -3} emu/g, which is mainly due to the presence of a non

  19. A search for technetium (Tc II) in barium stars

    NASA Technical Reports Server (NTRS)

    Little-Marenin, Irene R.; Little, Stephen J.

    1987-01-01

    The authors searched without success for the lines of Tc II at 2647.02, 2610.00 and 2543.24 A in IUE spectra of the barium stars HR 5058, Omicron Vir, and Zeta Cap. The lack of Tc II implies that the observed s-process enhancements were produced more than half a million years ago and supports the suggestion that the spectral peculiarities of barium stars are probably related to the binary nature of the stars.

  20. 'Skidding' of the CRRES G-9 barium release

    NASA Technical Reports Server (NTRS)

    Huba, J. D.; Mitchell, H. G.; Fedder, J. A.; Bernhardt, P. A.

    1992-01-01

    A simulation study and experimental data of the CRRES G-9 ionospheric barium release are presented. The simulation study is based on a 2D electrostatic code that incorporates time-dependent coupling to the background plasma. It is shown that the densest portion of the barium ion cloud 'skids' about 15 km within the first three seconds following the release, consistent with the optical data analyses.

  1. Microwave absorption studies of Cr-doped Co-U type hexaferrites over 2-18 GHz frequency range

    NASA Astrophysics Data System (ADS)

    Kumar, Sandeep; Meena, Ram Swaroop; Chatterjee, Ratnamala

    2016-11-01

    The effect of Cr3+ ions doping on the electromagnetic (EM) properties of polycrystalline U-type hexaferrite samples: Ba4Co2-3xCr2xFe36O60 (0.0≤x≤0.60, in steps of 0.15) have been studied. The X-ray diffraction (XRD) studies confirmed the formation of single U-type hexaferrite phase in all the prepared samples. Le Bail refinement of XRD patterns was used to calculate the lattice parameters 'a' and 'c'. The room temperature M-H studies indicate that the saturation magnetization (Ms) decreases and coercivity (Hc) increases with increasing Cr3+ ions concentration. The complex permittivity (ε* = ε ‧ - i ε ″) and permeability (μ* = μ ‧ - i μ ″) measurement were carried out using vector network analyser (VNA) over 2-18 GHz frequency range. The complex permeability (μ* = μ ‧ - μ ″) spectra clearly observed the ferromagnetic resonance (FMR) phenomenon in all the prepared samples. The maximum microwave absorption (MWA) of 99.97% (or minimum reflection loss RLmin=-34.90 dB) was observed for Ba4Co1.1Cr0.6Fe36O60 sample at 8.2 GHz frequency with 1.7 mm absorber thickness. The RLmin peak was found to shift towards higher microwave (MW) frequency with increase in Cr3+ ions concentration.

  2. Sol–gel hydrothermal synthesis of strontium hexaferrite nanoparticles and the relation between their crystal structure and high coercivity properties

    NASA Astrophysics Data System (ADS)

    Hue Dang, Thi Minh; Dung Trinh, Viet; Huan Bui, Doan; Huong Phan, Manh; Chinh Huynh, Dang

    2012-06-01

    Hard magnetic strontium hexaferrite SrFe12O19 nanoparticles were synthesized by the sol–gel hydrothermal method. The factors affecting the synthesized process, such as the mole proportion of the reactants, pH, temperature, the hydrothermal conditions and the calcination process, have been investigated. The crystal structures of these materials were refined by Rietveld method. The obtained materials have single crystal phase, equal nano-size, plate shape and high anisotropy. The high magnetic coercivity of 6.3 kOe with the magnetization at 11.1 kOe of 66 emu g‑1 at room temperature was observed for the strontium hexaferrite nanoparticles. For other nanoparticles (SrLnxFe12-xO19 and SrFe12O19/CoFe2O4) synthesized on the basis of SrFe12O19 the complex completion of the crystal structure distortion and the interaction between magnetic phases were observed.

  3. AC Dielectric Properties and Positron Annihilation Study on Co and Ti Substitution Effect on Ca-Sr M-Hexaferrites

    NASA Astrophysics Data System (ADS)

    Mahmoud, K. R.; Eraky, M. R.

    2016-06-01

    The dependence of AC conductivity σ AC, dielectric constant έ, and dielectric loss tangent tan δ on frequency and composition have been investigated at room temperature for polycrystalline Ca0.5Sr0.5Co x Ti x Fe12 - 2 x O19 (where 0.0 ≤ x ≤ 0.8) hexaferrites. It was found that the parameters σ AC, ɛ ', and tan δ have maximum values at x = 0.4 of the Co and Ti substitution. The behavior of σ AC, ɛ ', and tan δ with frequency and composition was explained on the basis of the hopping conduction mechanism and the Koops model. Positron annihilation lifetime spectroscopy (PALS) was used to investigate the defects and changes in electron density for hexaferrite samples. The PAL parameters ( τ 1, I 1, τ 2, I 2, and mean lifetime) show that altering the doping percentage of the Co and Ti ions affects the size and concentration of defects. The results reveal that there are some large voids in the studied samples. The obtained results indicate the high sensitivity of the PALS technique to the enhanced structure changes with changing composition of the investigated samples and correlate the results with the measured electrical parameters.

  4. Fatal barium chloride poisoning: four cases report and literature review.

    PubMed

    Ananda, Sunnassee; Shaohua, Zhu; Liang, Liu

    2013-06-01

    Barium is an alkaline earth metal which has a variety of uses including in the manufacturing industry and in medicine. However, adverse health effects and fatalities occur due to absorption of soluble barium compounds, notably the chloride, nitrate, and hydroxide, which are toxic to humans. Although rare, accidental and suicidal modes of poisoning are sporadically reported in the literature.We describe 4 cases of poisoning due to barium chloride in China. In witnessed cases, severe gastrointestinal symptoms, hypokalemia leading to muscle weakness, cardiac arrhythmias, and respiratory failure were noted. Autopsy showed some nonspecific but common findings, such as subendocardial hemorrhage in the ventricles, visceral petechiae, and fatty changes in the liver. Interestingly, microscopic examination showed degenerative changes and amorphous, flocculent foamy materials in the renal tubules. Toxicology was relevant for barium in blood and tissues. Three of the cases were accidental and 1 homicidal in nature. A round-up of relevant literature on fatal barium compounds poisoning is also provided. Forensic pathologists should be aware of the clinical presentations of barium compound poisoning and especially look for any evidence of hypokalemia. Still, postmortem toxicological and histological studies are essential for an accurate identification of the cause of death.

  5. M-type channels selectively control bursting in rat dopaminergic neurons

    PubMed Central

    Drion, Guillaume; Bonjean, Maxime; Waroux, Olivier; Scuvée-Moreau, Jacqueline; Liégeois, Jean-François; Sejnowski, Terrence J; Sepulchre, Rodolphe; Seutin, Vincent

    2010-01-01

    Midbrain dopaminergic neurons in the substantia nigra, pars compacta and ventral tegmental area are critically important in many physiological functions. These neurons exhibit firing patterns that include tonic slow pacemaking, irregular firing and bursting, and the amount of dopamine that is present in the synaptic cleft is much increased during bursting. The mechanisms responsible for the switch between these spiking patterns remain unclear. Using both in-vivo recordings combined with microiontophoretic or intraperitoneal drug applications and in-vitro experiments, we have found that M-type channels, which are present in midbrain dopaminergic cells, modulate the firing during bursting without affecting the background low-frequency pacemaker firing. Thus, a selective blocker of these channels, 10,10-bis(4-pyridinylmethyl)-9(10H)-anthracenone dihydrochloride, specifically potentiated burst firing. Computer modeling of the dopamine neuron confirmed the possibility of a differential influence of M-type channels on excitability during various firing patterns. Therefore, these channels may provide a novel target for the treatment of dopamine-related diseases, including Parkinson’s disease and drug addiction. Moreover, our results demonstrate that the influence of M-type channels on the excitability of these slow pacemaker neurons is conditional upon their firing pattern. PMID:20180842

  6. Co/Ti-substituted M-type hexagonal ferrites for high-frequency multilayer inductors

    NASA Astrophysics Data System (ADS)

    Bierlich, S.; Reimann, T.; Bartsch, H.; Töpfer, J.

    2015-06-01

    The sintering behavior, microstructure and permeability of Co/Ti-substituted M-type hexagonal ferrites BaCoxTixFe12-2xO19 (1.0≤x≤1.4) was studied for applications as multilayer inductors in the high-frequency range up to 2 GHz. Single-phase M-type ferrites were obtained after calcination at 1000 °C. The saturation magnetization and coercivity decrease with x and hysteresis measurements illustrate a gradual transition of the anisotropy from uniaxial to planar. Addition of 5 wt% of a BBSZ glass allows densification at 900 °C through liquid-phase sintering. The permeability of samples sintered at 900 °C increases with the Co/Ti substitution and reaches its maximum of μ‧=16 at 1 MHz at x=1.3 with a resonance frequency fr≥1 GHz. Monolithic ferrite multilayer inductors were fabricated with printed Ag coil patterns by co-firing at 900 °C. It is shown that Co/Ti-substituted hexagonal M-type ferrite is an excellent material for the high-frequency multilayer inductors.

  7. Anastomotic stenosis of the descending colon caused by barium granuloma formation following barium peritonitis: report of a case.

    PubMed

    Kitajima, Toshihiro; Tomizawa, Kenji; Hanaoka, Yutaka; Toda, Shigeo; Matoba, Shuichiro; Kuroyanagi, Hiroya; Oota, Yasunori

    2014-11-01

    Anastomotic stricture reportedly often recurs following barium peritonitis, regardless of whether the anastomotic diameter is initially sufficient. However, the causes of repetitive stricture have not been clarified. We report a case that suggests the pathophysiology of recurrent anastomotic strictures following barium peritonitis. The patient was a 39-year-old Japanese man with idiopathic perforation of the descending colon after undergoing an upper gastrointestinal barium contrast study. After emergency peritoneal lavage and diverting colostomy, created using the perforated region, the patient recovered uneventfully and 3 months later, the colostomy was closed and the perforated colon was resected. However, 7 months after colostomy closure, abdominal distention gradually developed, and colonoscopy revealed an anastomotic stricture. The patient was referred to our hospital where he underwent resection of the anastomotic stricture. The surgical specimen exhibited barium granulomas not only in the subserosa of the entire specimen, but also in the submucosa and lamina propria localized in the anastomotic site. These findings suggest that barium was embedded in the submucosa and lamina propria with manipulation of the stapled anastomosis and that the barium trapped in the anastomotic site caused persistent inflammation, resulting in an anastomotic stricture.

  8. Barium determination in gastric contents, blood and urine by inductively coupled plasma mass spectrometry in the case of oral barium chloride poisoning.

    PubMed

    Łukasik-Głębocka, Magdalena; Sommerfeld, Karina; Hanć, Anetta; Grzegorowski, Adam; Barałkiewicz, Danuta; Gaca, Michał; Zielińska-Psuja, Barbara

    2014-01-01

    A serious case of barium intoxication from suicidal ingestion is reported. Oral barium chloride poisoning with hypokalemia, neuromuscular and cardiac toxicity, treated with intravenous potassium supplementation and hemodialysis, was confirmed by the determination of barium concentrations in gastric contents, blood, serum and urine using the inductively coupled plasma mass spectrometry method. Barium concentrations in the analyzed specimens were 20.45 µg/L in serum, 150 µg/L in blood, 10,500 µg/L in urine and 63,500 µg/L in gastric contents. Results were compared with barium levels obtained from a non-intoxicated person.

  9. Development of advanced barium ferrite tape media

    NASA Astrophysics Data System (ADS)

    Shimizu, Osamu; Oyanagi, Masahito; Morooka, Atsushi; Mori, Masahiko; Kurihashi, Yuich; Tada, Toshio; Suzuki, Hiroyuki; Harasawa, Takeshi

    2016-02-01

    We developed an advanced particulate magnetic tape using fine barium ferrite (BaFe) particles for magnetic-tape storage systems. The new tape showed a signal-to-noise ratio (SNR) that was 3.5 dB higher than that of the commercially available BaFe tape used for the Linear Tape Open generation 6 tape-storage system, at a linear density of 300 kfci measured with a giant magnetoresistive head with a reader width of 0.45 μm. Such significant increase in SNR was achieved by reducing the magnetic particle volume from 1950 to 1350 nm3, while maintaining a sufficiently high thermal stability, improving the perpendicular squareness ratio from 0.66 to 0.83, and improving the surface roughness from 2.5 to 2.0 nm when measured by atomic force microscopy and from 2.4 to 0.9 nm when measured by optical interferometry. This paper describes the characteristics of the new BaFe particles and media, which are expected to be employed for future high-capacity linear-tape systems.

  10. Prospects for Barium Tagging in Gaseous Xenon

    SciTech Connect

    Sinclair, D.; Rollin, E.; Smith, J.; Mommers, A.; Ackerman, N.; Aharmim, B.; Auger, M.; Barbeau, P.S.; Benitez-Medina, C.; Breidenbach, M.; Burenkov, A.; Cook, S.; Coppens, A.; Daniels, T.; DeVoe, R.; Dobi, A.; Dolinski, M.J.; Donato, K.; Fairbank, W., Jr.; Farine, J.; Giroux, G.; /Bern U., LHEP /Carleton U. /Stanford U., Phys. Dept. /Carleton U. /Laurentian U. /Carleton U. /SLAC /Indiana U. /Indiana U., CEEM /Korea U. /Stanford U., Phys. Dept. /SLAC /Alabama U. /Colorado State U. /Stanford U., Phys. Dept. /Alabama U. /SLAC /Stanford U., Phys. Dept. /Alabama U. /Massachusetts U., Amherst /SLAC /Alabama U. /SLAC /Maryland U. /Moscow, ITEP /Stanford U., Phys. Dept. /Maryland U. /Bern U., LHEP /Laurentian U. /SLAC /Maryland U.

    2012-05-03

    Tagging events with the coincident detection of a barium ion would greatly reduce the background for a neutrino-less double beta decay search in xenon. This paper describes progress towards realizing this goal. It outlines a source that can produce large quantities of Ba++ in gas, shows that this can be extracted to vacuum, and demonstrates a mechanism by which the Ba++ can be efficiently converted to Ba+ as required for laser identification. It is clear from this study that electrospray is a convenient mechanism for producing Ba++ is gas at atmospheric pressure. It is likely that the source will perform just as effectively at higher pressures. Even though the source region has water vapour and methanol vapour at the 0.3% level, there is no evidence for molecular formation. The use of TEA offers an effective method to achieve the charge state conversion. The overall design of the ion extraction from high pressure to vacuum is very similar to the scheme proposed for the final detector and this appears to work well although the efficiency is not yet determined.

  11. Coherent control of photoionization of atomic barium

    NASA Astrophysics Data System (ADS)

    Yamazaki, Rekishu

    We present the results of our study on coherent control of photoionization of atomic barium. Our study focused on the understanding of the controllability, especially due to the effect of the coherent interaction between the atomic system and the laser field. The first half of the study investigates the mechanisms of the control behind the previously observed laser phase-insensitive product state control. The controllability of this excitation scheme, two-color two-photon resonantly enhanced excitation, was analyzed from two aspects, the role of ac Stark shift introduced by the strong laser field and the multi-pathway quantum mechanical interferences. We have analyzed the excitation scheme from the analysis of the photoelectron angular distribution measured using the excitation scheme and the monitoring of the intermediate state population. Analysis of the data as well as the numerical simulation showed clear understanding of the role of two mechanisms in the product state control reported. We also investigated the control of the phase lag during the product state control. We conducted the control of the phase lag in the study of asymmetric photoelectron angular distribution, which arises from the concurrent even-odd parity outgoing electron wave excitation. The phase lag was controlled in full range, 2pi, and the results were analyzed in terms of the role of autoionizing resonance structures as well as the nature of outgoing electron waves at different locations of the autoionizing resonances.

  12. Mononuclear barium diketonate polyamine adducts. Synthesis, structures, and use in MOCVD of barium titanate

    SciTech Connect

    Gardiner, R.A.; Gordon, D.C.; Stauf, G.T.; Vaartstra, B.A.; Ostrander, R.L.; Rheingold, A.L.

    1994-11-01

    Mononuclear barium {beta}-diketonate Lewis base adducts have been synthesized by reaction of Ba(thd){sub 2} (thd = 2,2,6,6-tetramethyl-3,5-heptanedionate) with polyamines 1,1,4,7,7-pentamethyldiethylenetriamine (pmdt) and 1,1,4,7,10,10-hexamethyltriethylenetetramine (hmtt). The adducts [Ba(thd){sub 2}(pmdt)] (I) and [Ba(thd){sub 2}(hmtt)] (II) have been characterized by NMR spectroscopy, elemental analyses and single-crystal X-ray diffraction. Compound I crystallizes in the space group P2{sub 1}/c with a = 10.577(3) {angstrom}, b = 23.547(7) {angstrom}, c = 15.963(5) {angstrom}, {beta} = 105.21(2){degrees}, and Z = 4. Compound II crystallizes in the space group P2{sub 1}/c with a = 10.833(6) {angstrom}, b = 20.442(12) {angstrom}, c = 19.404(9) {angstrom}, {beta} = 104.35(4){degrees}, and Z = 4. The adducts are seven- and eight-coordinate, respectively, with all nitrogen atoms of the polyamine bound to a single barium center. Compound I has been used for thin-film growth of BaTiO{sub 3} which has revealed that, compared to Ba(thd){sub 2}(tetraglyme), the polyamine adduct allows a larger temperature window for effective vapor transport. 10 refs., 2 figs., 2 tabs.

  13. PALISA-Observation and Sample Return Mission to the M-Type Asteroid (216) Kleopatra

    NASA Astrophysics Data System (ADS)

    Le Gac, Y.; Ammon, K.; Gortsas, N.

    2009-04-01

    During the Alpbach Summer School 2008, entitled "Sample Return from the Moon, Asteroids and Comets", our team proposed a mission to the M-Type asteroid Kleopatra. The PALISA mission would be a pioneering approach to trace back the evolution of the solar system and planetary bodies. Observing and sampling an M-Type asteroid will give a unique insight into the metallic core of a planetary body. The advantage of the PALISA mission is the obvious multiplying effect of the observations. For example, a sample return is the only way to accurately classify M-Type objects and link them to iron meteorites. Knowing the geological context of iron meteorites will significantly advance the understanding of the formation and structure of planetary cores. Determining the formation age of the asteroid and its exposure age would give an insight into the evolution and dynamics of the asteroid belt. Furthermore, a sample return is crucial to calibrate the ground observation instruments enabling M-type asteroids to be precisely mapped. This mission may also clarify if asteroids have been able to retain a magnetic field. Since the strength of the magnetic field decreases over time after the crystallization of the core, it is crucial to return a sample to measure the natural remnant magnetization. Following the launch of a two-part spacecraft (orbiter/landing-return module) with an Ariane 5ECA launcher, low-thrust electric propulsion is used to reach Kleopatra within 4 years. With no detailed gravitational models available, a two-year observation period in a 5000 km orbit is foreseen before the orbiter/lander can descend to lower orbit and separate. The landing-return module will land, while the orbiter ascends to a safe orbit to ensure communication and provide further observations. The landing procedure is fully autonomous and two harpoons ensure a safe stay during the drilling procedure. Due to uncertain surface characteristics an ultrasonic drill core will be used. The drilling power

  14. Acceleration of barium ions near 8000 km above an aurora

    NASA Technical Reports Server (NTRS)

    Stenbaek-Nielsen, H. C.; Hallinan, T. J.; Wescott, E. M.; Foeppl, H.

    1984-01-01

    A barium shaped charge, named Limerick, was released from a rocket launched from Poker Flat Research Range, Alaska, on March 30, 1982, at 1033 UT. The release took place in a small auroral breakup. The jet of ionized barium reached an altitude of 8100 km 14.5 min after release, indicating that there were no parallel electric fields below this altitude. At 8100 km the jet appeared to stop. Analysis shows that the barium at this altitude was effectively removed from the tip. It is concluded that the barium was actually accelerated upward, resulting in a large decrease in the line-of-sight density and hence the optical intensity. The parallel electric potential in the acceleration region must have been greater than 1 kV over an altitude interval of less than 200 km. The acceleration region, although presumably auroral in origin, did not seem to be related to individual auroral structures, but appeared to be a large-scale horizontal structure. The perpendicular electric field below, as deduced from the drift of the barium, was temporally and spatially very uniform and showed no variation related to individual auroral structures passing through.

  15. Winds of M-type AGB stars driven by micron-sized grains

    NASA Astrophysics Data System (ADS)

    Höfner, S.

    2008-11-01

    Context: In view of the recent problem regarding the dynamical modelling of winds of M-type AGB stars (insufficient radiation pressure on silicate grains), some of the basic assumptions of these models need to be re-evaluated critically. Aims: Accepting the conclusion that non-grey effects will force silicate grains to be virtually Fe-free, the viability of driving winds with micron-sized Fe-free silicates, instead of small particles, is examined. Methods: Using both simple estimates and detailed dynamical atmosphere and wind models, it is demonstrated that radiation pressure on Fe-free silicate grains is sufficient to drive outflows if the restriction to the small particle limit is relaxed, and prevailing thermodynamic conditions allow grains to grow to sizes in the micrometer range. Results: The predicted wind properties, such as mass loss rates and outflow velocities, are in good agreement with observations of M-type AGB stars. Due to a self-regulating feedback between dust condensation and wind acceleration, grain growth naturally comes to a halt at particle diameters of about 1~μm. Conclusions: The most efficient grain sizes to drive winds are in a rather narrow interval around 1~μm. These values are set by the wavelength range corresponding to the flux maximum in typical AGB stars, and are very similar to interstellar grains.

  16. Studies of hexacelsian and celsian barium aluminosilicates

    NASA Astrophysics Data System (ADS)

    Lee, Kuo-Tong

    1998-09-01

    The first part of this work (chapter 3) describes the reaction paths leading to the formation of BaAlsb2Sisb2Osb8 (BAS) from a mixture of gamma-BaCOsb3,\\ alpha-Alsb2Osb3, and amorphous SiOsb2 powders. Heat treatments conducted from 600 to 1200sp°C in air were used to transform the powder mixtures into hexacelsian BAS. The phase evolution to BAS was examined by x-ray diffraction. Several experiments were designed to microscopically reproduce the solid-solid interfaces expected during the synthesis of BAS and enabled the author to describe the different stages of the reaction. There exist two reaction paths in formation of BAS in this study: (1) formation of a series of barium silicates leading to BaO*2SiOsb2 (BSsb2) which then reacts with Alsb2Osb3 to form BAS and (2) formation of BaO*Alsb2Osb3 (BA) which then reacts with SiOsb2 to form BAS. The kinetics of the latter is slower than that of the former because the reaction between BaO*Alsb2Osb3 and SiOsb2 to form BAS includes a bond breaking process. The second part (chapter 4) of this research was undertaken to study the role of additives on the kinetics of the transformation of hexacelsian to celsian. Pre-synthesized hexacelsian powders doped with various additives were heated at temperatures ranging from 850 to 1400sp°C for 4 hrs. Semi-quantitative analysis of XRD was used to determine the extent of the hexacelsian-to-celsian transformation. This work was extended further to investigate the mechanisms involved in the transformation. Defect structures developed in the additive-containing celsian provide insights about the sites occupied by the cations added. Experimental results indicate that the doping of ˜0.99A cations in promoting the conversion of hexacelsian to celsian is by forming an interstitial solid solution in hexacelsian and ˜0.66A cations form a substitutional solid solution. In a kinetic study on the CaO- or MgO-enhanced transformation, values of rate constant, k, and Avlami constant, n, at

  17. Nanopatterned barium titanate on block copolymers

    NASA Astrophysics Data System (ADS)

    Lee, Tu

    This dissertation describes the synthesis, the characterization and the modeling of a triblock copolymer of polystyrene(PS)-polybutadiene(PB)-polystyrene(PS) monolayer thin film patterned with nanometer sized cubic BaTiO3 crystals, with a focus on the influence of length scales and the hierarchical structure on the ferroelectric properties of BaTiO3. BaTiO3, a dielectric and a ferroelectric, is used extensively in multilayer capacitors, thermistors and electrooptic devices. Its ferroelectric properties are known to be size dependent in the nanometer scale. To gain further insight into the fundamental characteristics of BaTiO3 in the nanometer scale, BaTiO3 is crystallized, for the first time, in a confined environment hosted by a PS-PB-PS triblock copolymer monolayer thin film with nanodomains of tunable geometry and size. The engineering of the PS-PB-PS triblock copolymer monolayer thin film includes fractionation, elimination of interfacial interaction, control of film thickness and minimization of pinholes. The resulting monolayer contains cylindrical PS nanodomains embedded in a PB matrix. The film thickness, the diameter of the PS domain and the domain center-to-domain center distance are 31 nm, 15 nm and 31 nm respectively. Cubic BaTiO3 nanoparticles having a narrow size distribution of 10 nm are formed and located predominantly within the PB matrices by three steps: epoxidation-hydroxylation, barium titanation and vapor-phase hydrothermal process. The volume fraction of BaTiO3 phase is 0.0113. The effective dielectric constant of the BaTiO3/PS-PB-PS composite monolayer is 5.5 +/- 2.5. With the assistance of dielectric mixing rules, the dielectric constant of the cubic BaTiO3 phase is determined to be 160. The relative low dielectric constant of the BaTiO3 phase is usually explained by the critical size above which BaTiO3 particles are tetragonal and ferroelectric and below which particles are cubic and non-ferroelectric. But, the inconsistency of the

  18. Rocket having barium release system to create ion clouds in the upper atmosphere

    NASA Technical Reports Server (NTRS)

    Lewis, B. W.; Stokes, C. S.; Smith, E. W.; Murphy, W. J. (Inventor)

    1974-01-01

    A chemical system for releasing a good yield of free barium atoms and barium ions to create ion clouds in the upper atmosphere and interplanetary space for the study of the geophysical properties of the medium is presented.

  19. Barium Depletion in the NSTAR Discharge Cathode After 30,000 Hours of Operation

    NASA Technical Reports Server (NTRS)

    Polk, James E.; Capece, Angela M.; Mikellides, Ioannis G.; Katz, Ira

    2010-01-01

    Dispenser hollow cathodes rely on a consumable supply of barium released by impregnant materials in the pores of a tungsten matrix to maintain a low work function surface. Examinations of cathode inserts from long duration ion engine tests show deposits of tungsten at the downstream end that appear to block the flow of barium from the interior. In addition, a numerical model of barium transport in the insert plasma indicates that the barium partial pressure in the insert may exceed the equilibrium vapor pressure of the dominant barium-producing reaction, and it was postulated previously that this would suppress barium loss in the upstream part of the insert. New measurements of the depth of barium depletion from a cathode insert operated for 30,352 hours reveal that barium loss is confined to a narrow region near the downstream end, confirming this hypothesis.

  20. Selectivity in biomineralization of barium and strontium.

    PubMed

    Krejci, Minna R; Wasserman, Brian; Finney, Lydia; McNulty, Ian; Legnini, Daniel; Vogt, Stefan; Joester, Derk

    2011-11-01

    The desmid green alga Closterium moniliferum belongs to a small number of organisms that form barite (BaSO(4)) or celestite (SrSO(4)) biominerals. The ability to sequester Sr in the presence of an excess of Ca is of considerable interest for the remediation of (90)Sr from the environment and nuclear waste. While most cells dynamically regulate the concentration of the second messenger Ca(2+) in the cytosol and various organelles, transport proteins rarely discriminate strongly between Ca, Sr, and Ba. Herein, we investigate how these ions are trafficked in C. moniliferum and how precipitation of (Ba,Sr)SO(4) crystals occurs in the terminal vacuoles. Towards this goal, we simultaneously visualize intracellular dynamics of multiple elements using X-ray fluorescence microscopy (XFM) of cryo-fixed/freeze-dried samples. We correlate the resulting elemental maps with ultrastructural information gleaned from freeze-fracture cryo-SEM of frozen-hydrated cells and use micro X-ray absorption near edge structure (micro-XANES) to determine sulfur speciation. We find that the kinetics of Sr uptake and efflux depend on external Ca concentrations, and Sr, Ba, and Ca show similar intracellular localization. A highly ion-selective cross-membrane transport step is not evident. Based on elevated levels of sulfate detected in the terminal vacuoles, we propose a "sulfate trap" model, where the presence of dissolved barium leads to preferential precipitation of (Ba,Sr)SO(4) due to its low solubility relative to SrSO(4) and CaSO(4). Engineering the sulfate concentration in the vacuole may thus be the most direct way to increase the Sr sequestered per cell, an important consideration in using desmids for phytoremediation of (90)Sr.

  1. Barium Levels in Soils and Centella asiatica

    PubMed Central

    Ong, Ghim Hock; Yap, Chee Kong; Mahmood, Maziah; Tan, Soon Guan; Hamzah, Suhaimi

    2013-01-01

    In this study, Centella asiatica and surface soils were collected from 12 sampling sites in Peninsular Malaysia, and the barium (Ba) concentrations were determined. The Ba concentration [μg/g dry weight (dw)] was 63.72 to 382.01 μg/g in soils while in C. asiatica, Ba concentrations ranged from 5.05 to 21.88 μg/g for roots, 3.31 to 11.22 μg/g for leaves and 2.37 to 6.14 μg/g for stems. In C. asiatica, Ba accumulation was found to be the highest in roots followed by leaves and stems. The correlation coefficients (r) of Ba between plants and soils were found to be significantly positively correlated, with the highest correlation being between roots-soils (r=0.922, p<005), followed by leaves-soils (r=0.890, p<005) and stems-soils (r=0.848, p<005). This indicates that these three parts of C. asiatica are good biomonitors of Ba pollution. For the transplantation study, four sites were selected as unpolluted [(Universiti Putra Malaysia (UPM)], semi-polluted (Seri Kembangan and Balakong) and polluted sites (Juru). Based on the transplantation study under experimental field and laboratory conditions, Ba concentrations in C. asiatica were significantly (p<0.05) higher after three weeks of exposure at Seri Kembangan, Balakong and Juru. Thus, these experimental findings confirm that the leaves, stems and roots of C. asiatica can reflect the Ba levels in the soils where this plant is found. Three weeks after back transplantation to clean soils, the Ba levels in C. asiatica were still higher than the initial Ba level even though Ba elimination occurred. In conclusion, the leaves, stems and roots of C. asiatica are good biomonitors of Ba pollution. PMID:24575242

  2. Emission spectrographic determination of barium in sea water using a cation exchange concentration procedure

    USGS Publications Warehouse

    Szabo, B. J.; Joensuu, O.

    1967-01-01

    A concentration technique employing Dowex 50W cation exchange resin is described for the determination of barium in sea water. The separated barium is precipitated as fluoride together with calcium and strontium and measured by emission spectrographic analysis. The vertical distribution of barium in sea water has been measured in the Caribbean Sea and the Atlantic Ocean. The barium content varied between 7 and 23 ??g. per liter; in two profiles, the lowest concentrations were at a depth of about 1000 meters.

  3. Magnetoelectric memory effect in the Y-type hexaferrite BaSrZnMgFe12O22

    NASA Astrophysics Data System (ADS)

    Wang, Fen; Shen, Shi-Peng; Sun, Young

    2016-08-01

    We report on the magnetic and magnetoelectric properties of the Y-type hexaferrite BaSrZnMgFe12O22, which undergoes transitions from a collinear ferrimagnetic phase to a proper screw phase at 310 K and to a longitudinal conical phase at 45 K. Magnetic and electric measurements revealed that the magnetic structure with spiral spin order can be modified by applying a magnetic field, resulting in magnetically controllable electric polarization.It was observed that BaSrZnMgFe12O22 exhibits an anomalous magnetoelectric memory effect: the ferroelectric state can be partially recovered from the paraelectric phase with collinear spin structure by reducing magnetic field at 20 K. We ascribe this memory effect to the pinning of multiferroic domain walls, where spin chirality and structure are preserved even in the nonpolar collinear spin state. Project supported by the National Natural Science Foundation of China (Grant Nos. 11534015 and 51371193).

  4. White dwarf kicks and implications for barium stars

    NASA Astrophysics Data System (ADS)

    Izzard, R. G.; Church, R. P.; Dermine, T.

    The barium stars have caused much grief in the field of binary stellar evolution. They are often eccentric when they should be circular and are not found to have periods longer than 104 days even though wind accretion should still be efficient at such separations. We address both these problems by introducing a kick to white dwarfs when they are born, thus solving the eccentricity problem, and imposing strong orbital angular momentum loss to shrink barium-star binaries down to the observed periods. Whilst our angular momentum prescription is hard to justify for the barium stars it shows that strong angular momentum loss is necessary to reproduce the observed period-eccentricity distribution. We are investigating whether this can be obtained from a circumbinary disc.

  5. Prompt ionization in the CRIT II barium releases

    NASA Astrophysics Data System (ADS)

    Torbert, R. B.; Kletzing, C. A.; Liou, K.; Rau, D.

    1992-05-01

    Observations of electron and ion distributions inside a fast neutral barium jet in the ionosphere show significant fluxes within 4 km of release, presumably related to beam plasma instability processes involved in the Critical Ionization Velocity (CIV) effect. Electron fluxes exceeding 5 x 10 exp 12/sq cm-str-sec-keV were responsible for ionizing both the streaming barium and ambient oxygen. Resulting ion fluxes seem to be consistent with 1-2 percent ionization of the fast barium, as reported by optical observations, although the extended spatial distribution of the optically observed ions is difficult to reconcile with the in situ observations. When the perpendicular velocity of the neutrals falls below critical values, these processes shut off. Although these observations resemble the earlier Porcupine experimental results (Haerendel, 1982), theoretical understanding of the differences between these data and that of earlier negative experiments is still lacking.

  6. Multiphoton laser ionization for energy conversion in barium vapor

    NASA Astrophysics Data System (ADS)

    Makdisi, Y.; Kokaj, J.; Afrousheh, K.; Mathew, J.; Nair, R.; Pichler, G.

    2013-03-01

    We have studied the ion detection of barium atoms in special heated ovens with a tungsten rod in the middle of the stainless steel tube. The tungsten rod was heated indirectly by the oven body heaters. A bias voltage between the cell body and the tungsten rod of 9 V was used to collect electrons, after the barium ions had been created. However, we could collect the electrons even without the bias voltage, although with ten times less efficiency. We studied the conditions for the successful bias-less thermionic signal detection using excimer/dye laser two-photon excitation of Rydberg states below and above the first ionization limit (two-photon wavelength at 475.79 nm). We employed a hot-pipe oven and heat-pipe oven (with inserted mesh) in order to generate different barium vapor distributions inside the oven. The thermionic signal increased by a factor of two under heat-pipe oven conditions.

  7. Compact pulse forming line using barium titanate ceramic material.

    PubMed

    Kumar Sharma, Surender; Deb, P; Shukla, R; Prabaharan, T; Shyam, A

    2011-11-01

    Ceramic material has very high relative permittivity, so compact pulse forming line can be made using these materials. Barium titanate (BaTiO(3)) has a relative permittivity of 1200 so it is used for making compact pulse forming line (PFL). Barium titanate also has piezoelectric effects so it cracks during high voltages discharges due to stresses developed in it. Barium titanate is mixed with rubber which absorbs the piezoelectric stresses when the PFL is charged and regain its original shape after the discharge. A composite mixture of barium titanate with the neoprene rubber is prepared. The relative permittivity of the composite mixture is measured to be 85. A coaxial pulse forming line of inner diameter 120 mm, outer diameter 240 mm, and length 350 mm is made and the composite mixture of barium titanate and neoprene rubber is filled between the inner and outer cylinders. The PFL is charged up to 120 kV and discharged into 5 Ω load. The voltage pulse of 70 kV, 21 ns is measured across the load. The conventional PFL is made up of oil or plastics dielectrics with the relative permittivity of 2-10 [D. R. Linde, CRC Handbook of Chemistry and Physics, 90th ed. (CRC, 2009); Xia et al., Rev. Sci. Instrum. 79, 086113 (2008); Yang et al., Rev. Sci. Instrum. 81, 43303 (2010)], which increases the length of PFL. We have reported the compactness in length achieved due to increase in relative permittivity of composite mixture by adding barium titanate in neoprene rubber. PMID:22129008

  8. DIAGNOSTIC ACCURACY OF BARIUM ENEMA FINDINGS IN HIRSCHSPRUNG'S DISEASE

    PubMed Central

    PEYVASTEH, Mehran; ASKARPOUR, Shahnam; OSTADIAN, Nasrollah; MOGHIMI, Mohammad-Reza; JAVAHERIZADEH, Hazhir

    2016-01-01

    ABSTRACT Background: Hirschsprung's disease is the most common cause of pediatric intestinal obstruction. Contrast enema is used for evaluation of the patients with its diagnosis. Aim: To evaluate sensitivity, specificity, positive predictive value, and negative predictive value of radiologic findings for diagnosis of Hirschsprung in patients underwent barium enema. Methods: This cross sectional study was carried out in Imam Khomeini Hospital for one year starting from 2012, April. Sixty patients were enrolled. Inclusion criteria were: neonates with failure to pass meconium, abdominal distention, and refractory constipation who failed to respond with medical treatment. Transitional zone, delay in barium evacuation after 24 h, rectosigmoid index (maximum with of the rectum divided by maximum with of the sigmoid; abnormal if <1), and irregularity of mucosa (jejunization) were evaluated in barium enema. Biopsy was obtained at three locations apart above dentate line. PPV, NPV, specificity , and sensitivity was calculated for each finding. Results: Mean age of the cases with Hirschsprung's disease and without was 17.90±18.29 months and 17.8±18.34 months respectively (p=0.983). It was confirmed in 30 (M=20, F=10) of cases. Failure to pass meconium was found in 21(70%) cases. Sensitivity, specificity, PPV, and NPV were 90%, 80%, 81.8% and 88.8% respectively for transitional zone in barium enema. Sensitivity, specificity, PPV, and NPV were 76.7%, 83.3%, 78.1% and 82.1% respectively for rectosigmoid index .Sensitivity, specificity, PPV, and NPV were 46.7%, 100%, 100% and 65.2% respectively for irregular contraction detected in barium enema. Sensitivity, specificity, PPV, and NPV were 23.3%, 100%, 100% and 56.6% respectively for mucosal irregularity in barium enema. Conclusion: The most sensitive finding was transitional zone. The most specific findings were irregular contraction, mucosal irregularity, and followed by cobblestone appearance. PMID:27759777

  9. Compact pulse forming line using barium titanate ceramic material.

    PubMed

    Kumar Sharma, Surender; Deb, P; Shukla, R; Prabaharan, T; Shyam, A

    2011-11-01

    Ceramic material has very high relative permittivity, so compact pulse forming line can be made using these materials. Barium titanate (BaTiO(3)) has a relative permittivity of 1200 so it is used for making compact pulse forming line (PFL). Barium titanate also has piezoelectric effects so it cracks during high voltages discharges due to stresses developed in it. Barium titanate is mixed with rubber which absorbs the piezoelectric stresses when the PFL is charged and regain its original shape after the discharge. A composite mixture of barium titanate with the neoprene rubber is prepared. The relative permittivity of the composite mixture is measured to be 85. A coaxial pulse forming line of inner diameter 120 mm, outer diameter 240 mm, and length 350 mm is made and the composite mixture of barium titanate and neoprene rubber is filled between the inner and outer cylinders. The PFL is charged up to 120 kV and discharged into 5 Ω load. The voltage pulse of 70 kV, 21 ns is measured across the load. The conventional PFL is made up of oil or plastics dielectrics with the relative permittivity of 2-10 [D. R. Linde, CRC Handbook of Chemistry and Physics, 90th ed. (CRC, 2009); Xia et al., Rev. Sci. Instrum. 79, 086113 (2008); Yang et al., Rev. Sci. Instrum. 81, 43303 (2010)], which increases the length of PFL. We have reported the compactness in length achieved due to increase in relative permittivity of composite mixture by adding barium titanate in neoprene rubber.

  10. 49 CFR 173.182 - Barium azide-50 percent or more water wet.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Barium azide-50 percent or more water wet. 173.182 Section 173.182 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS... Class 1 and Class 7 § 173.182 Barium azide—50 percent or more water wet. Barium azide—50 percent or...

  11. 49 CFR 173.182 - Barium azide-50 percent or more water wet.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Barium azide-50 percent or more water wet. 173.182 Section 173.182 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS... Class 1 and Class 7 § 173.182 Barium azide—50 percent or more water wet. Barium azide—50 percent or...

  12. 49 CFR 173.182 - Barium azide-50 percent or more water wet.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Barium azide-50 percent or more water wet. 173.182 Section 173.182 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS... Class 1 and Class 7 § 173.182 Barium azide—50 percent or more water wet. Barium azide—50 percent or...

  13. 40 CFR 721.10010 - Barium manganese oxide (BaMnO3).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Barium manganese oxide (BaMnO3). 721... Substances § 721.10010 Barium manganese oxide (BaMnO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium manganese oxide (BaMnO3) (PMN...

  14. 40 CFR 721.10010 - Barium manganese oxide (BaMnO3).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Barium manganese oxide (BaMnO3). 721... Substances § 721.10010 Barium manganese oxide (BaMnO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium manganese oxide (BaMnO3) (PMN...

  15. 40 CFR 721.10010 - Barium manganese oxide (BaMnO3).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Barium manganese oxide (BaMnO3). 721... Substances § 721.10010 Barium manganese oxide (BaMnO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium manganese oxide (BaMnO3) (PMN...

  16. 40 CFR 721.10010 - Barium manganese oxide (BaMnO3).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Barium manganese oxide (BaMnO3). 721... Substances § 721.10010 Barium manganese oxide (BaMnO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium manganese oxide (BaMnO3) (PMN...

  17. 40 CFR 721.10010 - Barium manganese oxide (BaMnO3).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Barium manganese oxide (BaMnO3). 721... Substances § 721.10010 Barium manganese oxide (BaMnO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium manganese oxide (BaMnO3) (PMN...

  18. Methods for producing monodispersed particles of barium titanate

    DOEpatents

    Hu, Zhong-Cheng

    2001-01-01

    The present invention is a low-temperature controlled method for producing high-quality, ultrafine monodispersed nanocrystalline microsphere powders of barium titanate and other pure or composite oxide materials having particles ranging from nanosized to micronsized particles. The method of the subject invention comprises a two-stage process. The first stage produces high quality monodispersed hydrous titania microsphere particles prepared by homogeneous precipitation via dielectric tuning in alcohol-water mixed solutions of inorganic salts. Titanium tetrachloride is used as an inorganic salt precursor material. The second stage converts the pure hydrous titania microsphere particles into crystalline barium titanate microsphere powders via low-temperature, hydrothermal reactions.

  19. Ionization and expansion of barium clouds in the ionosphere

    NASA Technical Reports Server (NTRS)

    Ma, T.-Z.; Schunk, R. W.

    1993-01-01

    A recently envelope 3D model is used here to study the motion of the barium clouds released in the ionosphere, including the ionization stage. The ionization and the expansion of the barium clouds and the interaction between the clouds and the background ions are investigated using three simulations: a cloud without a directional velocity, a cloud with an initial velocity of 5 km/s across the B field, and a cloud with initial velocity components of 2 km/s both along and across the B field.

  20. Barium and antimony distributions on the hands of nonshooters.

    PubMed

    Havakost, D G; Peters, C A; Koons, R D

    1990-09-01

    Barium and antimony levels from selected areas of the left and right hands of 269 nonshooters provide a database for interpretation of gunshot residue swab analysis results. The database represents a variety of activities of individuals sampled by collectors throughout the United States. Nonshooting exposure to barium and antimony can generally be distinguished from firearms-associated exposure by considering the relative levels of the elements, location on the hands, and condition of the swabs. Consistent definition of sampling procedures and accurate analytical results make this database applicable for interpretation of data generated by most gunshot residue swab examiners. PMID:2230685

  1. Comparison of endoscopy and barium swallow with marshmallow in dysphagia.

    PubMed

    Somers, S; Stevenson, G W; Thompson, G

    1986-06-01

    Forty-four patients with dysphagia were examined both by endoscopy and by barium swallow with a marshmallow bolus. In these patients 36 stenoses were found: 34 by radiology and 30 by endoscopy. The radiologic criteria for stenosis included arrest of the marshmallow in a manner to support a column of barium and reproduction of the patient's symptoms at the time this occurred. Radiologic false negative findings were partly due to an inability by patients to swallow an adequate marshmallow bolus; endoscopic failures were associated with small endoscopes and mild stenoses.

  2. Study of the photovoltaic effect in thin film barium titanate

    NASA Technical Reports Server (NTRS)

    Grannemann, W. W.; Dharmadhikari, V. S.

    1981-01-01

    The photoelectric effect in structures consisting of metal deposited barium titanate film silicon is described. A radio frequency sputtering technique is used to deposit ferroelectric barium titantate films on silicon and quartz. Film properties are measured and correlated with the photoelectric effect characteristics of the films. It was found that to obtain good quality pin hole free films, it is necessary to reduce the substrate temperature during the last part of the deposition. The switching ability of the device with internal applied voltage is improved when applied with a ferroelectric memory device.

  3. Magneto-optical properties BaBixLaxFe12-2xO19 (0.0≤x≤0.5) hexaferrites

    NASA Astrophysics Data System (ADS)

    Auwal, I. A.; Baykal, A.; Güner, S.; Sertkol, M.; Sözeri, H.

    2016-07-01

    BaBixLaxFe(12-2x)O19 (0.0≤x≤0.5) hexaferrites were synthesized by solid state synthesis route and the effects of Bi, La substitutions on structural, magnetic and optical properties were investigated. X-ray powder diffraction, Scanning electron microscopy, Vibrating sample magnetometer, and Percent diffuse reflectance spectroscopy were used to study the physical properties. Room temperature specific magnetization (M-H) curves revealed the ferromagnetic nature of all products. The increasing Bi, La compositions increased the magnetic properties at different magnitudes with respect to undoped BaFe12O19 sample. The maximum values of remnant specific magnetization (Mr=30.3 emu/g), extrapolated specific saturation magnetization (Ms=62.12 emu/g), and magneton number (nB=16.27) were recorded from BaBi0.2La0.2Fe11.4O19 hexaferrite. The average crystallite size varies in a range of (37.35-51.36) nm. The coercive field (Hc) of undoped hexaferrites is 1180 Oe and increased to maximum 2320 Oe belonging to BaBi0.4La0.4Fe11.2O19. Magnetic anisotropy was confirmed as uniaxial and calculated effective anisotropy constants (Keff) are between 4.27×105 Ergs/g and 5.05×105 Ergs/g. The high magnitudes of magnetocrystalline anisotropy (Ha) above than 16,200 Oe revealed that all samples are magnetically hard materials. The Tauc plots were drawn to extrapolate the direct optical energy band gap (Eg) of hexaferrites. The Eg values decreased from 1.76 eV to 1.47 eV with increasing Bi, La compositions.

  4. Antibodies to m-type phospholipase A2 receptor in children with idiopathic membranous nephropathy.

    PubMed

    Kumar, Vinod; Ramachandran, Raja; Kumar, Ashwani; Nada, Ritambhra; Suri, Deepti; Gupta, Anju; Kohli, Harbir Singh; Gupta, Krishan Lal; Jha, Vivekanand

    2015-08-01

    Idiopathic membranous nephropathy (IMN), the commonest cause of adult nephrotic syndrome (NS), accounts for only a minority of paediatric NS. Antibodies to m-type phospholipase A2 receptor (PLA2R) are seen in two-thirds of adult IMN cases. PLA2R staining in glomerular deposits is observed in 74% and 45% of adult and paediatric IMN cases, respectively. However, there are no reports of anti-PLA2R in paediatric IMN. We evaluated anti-PLA2R levels and PLA2R in gloemrular deposits in paediatric IMN seen at our center. Five cases were enrolled, all the cases stained for PLA2R in glomeruli and three (60%) had antibodies to PLA2R antigen. There was a parellel reduction in proteinuria and anti-PLA2R titer. The present report suggests that PLA2R has a contributory role in the pathogenesis of paediatric IMN.

  5. Ferroelastic domains in lead-free barium zirconate titanate - barium calcium titanate piezoceramics

    NASA Astrophysics Data System (ADS)

    Ehmke, Matthias Claudius

    Piezoelectricity was first discovered by Pierre and Jaque Curie in the year 1880. Nowadays, piezoelectric materials are used in many application such as high voltage generation in gas igniters, actuation in micro-positioning devices, generation and detection of acoustic waves, emitters and receivers for sonar technology, ultrasonic cleaning, ultrasound medical therapy, and micropumps for ink-jet printers. The most commonly used piezoelectric material since the 1950's is the solid solution system lead zirconate titanate (PZT) that offers high piezoelectric performance under a large range of operating conditions. However, the toxicity of lead requires the replacement of PZT. The studied lead-free alternatives are commonly based on potassium sodium niobate (KNN) and bismuth sodium titanate (BNT), and more recently zirconium and calcium substituted barium titanate (BZT-BCT). The BZT-BCT system exhibits large piezoelectric coefficients that can exceed even those of most PZT compositions under certain conditions. Piezoelectricity was first discovered by Pierre and Jaque Curie in the year 1880. Nowadays, piezoelectric materials are used in many application such as high voltage generation in gas igniters, actuation in micro-positioning devices, generation and detection of acoustic waves, emitters and receivers for sonar technology, ultrasonic cleaning, ultrasound medical therapy, and micropumps for ink-jet printers. The most commonly used piezoelectric material since the 1950's is the solid solution system lead zirconate titanate (PZT) that offers high piezoelectric performance under a large range of operating conditions. However, the toxicity of lead requires the replacement of PZT. The studied lead-free alternatives are commonly based on potassium sodium niobate (KNN) and bismuth sodium titanate (BNT), and more recently zirconium and calcium substituted barium titanate (BZT-BCT). The BZT-BCT system exhibits large piezoelectric coefficients that can exceed even those of

  6. Chemical abundance analysis of 19 barium stars

    NASA Astrophysics Data System (ADS)

    Yang, Guo-Chao; Liang, Yan-Chun; Spite, Monique; Chen, Yu-Qin; Zhao, Gang; Zhang, Bo; Liu, Guo-Qing; Liu, Yu-Juan; Liu, Nian; Deng, Li-Cai; Spite, Francois; Hill, Vanessa; Zhang, Cai-Xia

    2016-01-01

    We aim at deriving accurate atmospheric parameters and chemical abundances of 19 barium (Ba) stars, including both strong and mild Ba stars, based on the high signal-to-noise ratio and high resolution Echelle spectra obtained from the 2.16 m telescope at Xinglong station of National Astronomical Observatories, Chinese Academy of Sciences. The chemical abundances of the sample stars were obtained from an LTE, plane-parallel and line-blanketed atmospheric model by inputting the atmospheric parameters (effective temperatures Teff, surface gravities log g, metallicity [Fe/H] and microturbulence velocity ξt) and equivalent widths of stellar absorption lines. These samples of Ba stars are giants as indicated by atmospheric parameters, metallicities and kinematic analysis about UVW velocity. Chemical abundances of 17 elements were obtained for these Ba stars. Their Na, Al, α- and iron-peak elements (O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Ni) are similar to the solar abundances. Our samples of Ba stars show obvious overabundances of neutron-capture (n-capture) process elements relative to the Sun. Their median abundances of [Ba/Fe], [La/Fe] and [Eu/Fe] are 0.54, 0.65 and 0.40, respectively. The Y I and Zr I abundances are lower than Ba, La and Eu, but higher than the α- and iron-peak elements for the strong Ba stars and similar to the iron-peak elements for the mild stars. There exists a positive correlation between Ba intensity and [Ba/Fe]. For the n-capture elements (Y, Zr, Ba, La), there is an anti-correlation between their [X/Fe] and [Fe/H]. We identify nine of our sample stars as strong Ba stars with [Ba/Fe] >0.6 where seven of them have Ba intensity Ba=2-5, one has Ba=1.5 and another one has Ba=1.0. The remaining ten stars are classified as mild Ba stars with 0.17<[Ba/Fe] <0.54.

  7. Effects of KCNQ channel modulators on the M-type potassium current in primate retinal pigment epithelium.

    PubMed

    Pattnaik, Bikash R; Hughes, Bret A

    2012-03-01

    Recently, we demonstrated the expression of KCNQ1, KCNQ4, and KCNQ5 transcripts in monkey retinal pigment epithelium (RPE) and showed that the M-type current in RPE cells is blocked by the specific KCNQ channel blocker XE991. Using patch-clamp electrophysiology, we investigated the pharmacological sensitivity of the M-type current in isolated monkey RPE cells to elucidate the subunit composition of the channel. Most RPE cells exhibited an M-type current with a voltage for half-maximal activation of approximately -35 mV. The M-type current activation followed a double-exponential time course and was essentially complete within 1 s. The M-type current was inhibited by micromolar concentrations of the nonselective KCNQ channel blockers linopirdine and XE991 but was relatively insensitive to block by 10 μM chromanol 293B or 135 mM tetraethylammonium (TEA), two KCNQ1 channel blockers. The M-type current was activated by 1) 10 μM retigabine, an opener of all KCNQ channels except KCNQ1, 2) 10 μM zinc pyrithione, which augments all KCNQ channels except KCNQ3, and 3) 50 μM N-ethylmaleimide, which activates KCNQ2, KCNQ4, and KCNQ5, but not KCNQ1 or KCNQ3, channels. Application of cAMP, which activates KCNQ1 and KCNQ4 channels, had no significant effect on the M-type current. Finally, diclofenac, which activates KCNQ2/3 and KCNQ4 channels but inhibits KCNQ5 channels, inhibited the M-type current in the majority of RPE cells but activated it in others. The results indicate that the M-type current in monkey RPE is likely mediated by channels encoded by KCNQ4 and KCNQ5 subunits. PMID:22135213

  8. PROPOSED ORAL REFERENCE DOSE (RFD) FOR BARIUM AND COMPOUNDS

    EPA Science Inventory

    The Integrated Risk Information System (IRIS) is a database of EPA's consensus opinion of the human health effects that may result from exposure to various substances found in the environment. A Toxicological Review and IRIS Summary were prepared for barium and compounds in 1998 ...

  9. Dynamics of a barium release in the magnetospheric tail

    NASA Technical Reports Server (NTRS)

    Mende, S. B.; Swenson, G. R.; Geller, S. P.; Doolittle, J. H.; Haerendel, G.

    1989-01-01

    The late time behavior of the May 13, 1985 magnetotail barium cloud is examined. The bulk dynamics of the cloud are studied based on triangulated data and data from Fabry-Perot Doppler velocity measurements. The changes in cloud morphology in relation to the in situ measurements made by the Ion Release Module satellite are discussed.

  10. Effects of light exposure on irradiated barium fluoride crystals

    SciTech Connect

    Wuest, C.R.; Mauger, G.J.

    1993-04-20

    Small barium fluoride crystals have been irradiated using cobalt-60 gamma rays under various illumination conditions to establish the effect of photo-bleaching of the radiation-induced color centers. This paper describes results of a few different experiments conducted at LLNL over the past few weeks.

  11. Synthesis of phase pure praseodymium barium copper iron oxide.

    PubMed

    Konne, Joshua L; Davis, Sean A; Glatzel, Stefan; Hall, Simon R

    2013-06-18

    The control of crystallization of praseodymium barium copper iron oxide, an intermediate temperature solid oxide fuel cell cathode material, has been demonstrated for the first time using a biotemplated sol-gel synthesis technique. The results obtained showed significant improvement in purity, synthesis time, surface area and simplicity over that previously reported.

  12. Noncollinear Optical Frequency Doubling in Strontium Barium Niobate

    NASA Astrophysics Data System (ADS)

    Tunyagi, Arthur R.; Ulex, Michael; Betzler, Klaus

    2003-06-01

    The observation of a novel noncollinear optical second-harmonic generation mechanism is reported. In strontium barium niobate crystals, a circular cone of second-harmonic light is generated when a fundamental beam of intensive laser light is directed along the crystallographic c axis. It can be shown that the effect is caused by the nonlinear polarization of antiparallel ordered ferroelectric microdomains.

  13. SEPARATION OF BARIUM VALUES FROM URANYL NITRATE SOLUTIONS

    DOEpatents

    Tompkins, E.R.

    1959-02-24

    The separation of radioactive barium values from a uranyl nitrate solution of neutron-irradiated uranium is described. The 10 to 20% uranyl nitrate solution is passed through a flrst column of a cation exchange resin under conditions favoring the adsorption of barium and certain other cations. The loaded resin is first washed with dilute sulfuric acid to remove a portion of the other cations, and then wash with a citric acid solution at pH of 5 to 7 to recover the barium along with a lesser amount of the other cations. The PH of the resulting eluate is adjusted to about 2.3 to 3.5 and diluted prior to passing through a smaller second column of exchange resin. The loaded resin is first washed with a citric acid solution at a pH of 3 to elute undesired cations and then with citric acid solution at a pH of 6 to eluts the barium, which is substantially free of undesired cations.

  14. Ultra-low temperature processing of barium tellurate dielectrics

    NASA Astrophysics Data System (ADS)

    Kwon, Do-Kyun

    Ceramics, metals and polymers have unique electrical properties that are combined for electronic devices and systems. It necessitates lower processing temperatures for ceramics to be compatible with metal and polymer systems. In this thesis, the synthesis, crystal structure, and dielectric properties of barium tellurate are studied for temperatures between 500 and 900°C. Barium tellurate dielectric ceramics (BaTe4O9, BaTe 2O5, BaTe2O6, BaTeO3, BaTeO 4, and Ba2TeO5) are extensively investigated as new LTCC (Low-Temperature Cofired Ceramics) dielectric systems integrated with low resistivity metal electrodes such as silver and aluminum for microwave application. Studies on the phase formation and crystal structure through thermal analyses (Differential Scanning Calorimetry and Thermogravimetric Analysis, DSC-TGA) and X-ray diffraction phase analysis attest that barium tellurates are formed in the temperature range of 500 ˜ 900°C, through the sequential phase formations from Te-rich to Ba-rich phases. The oxygen coordination of the tellurium ion progresses from TeO4 to TeO6 via TeO 3+1 and TeO3 with increasing barium content as confirmed by structural analysis using infrared spectroscopy. High density barium tellurate ceramics are achieved at temperatures as low as 550°C, which provides the potential to be co-fired with low-melting aluminum metal electrodes in LTCC processing. Dielectric permittivity, loss, and temperature stability of barium tellurate dielectric ceramics were measured from 100 Hz to 13 GHz. Barium tellurate ceramics exhibit excellent microwave dielectric properties with intermediate dielectric permittivities and high quality factors (Q). The dielectric properties at microwave frequencies are epsilonr = 17.5, Qxf = 54700 GHz, TCf = -90 ppm/°C for BaTe4O9, epsilonr = 21, Qxf = 50300 GHz, TCf = -51 ppm/°C for BaTe2O6, epsilonr = 10, Qxf = 34000 GHz, TCf = -54 ppm/°C for BaTeO3, and epsilonr = 17, Qx f = 49600 GHz, TCf = -124 ppm/°C for Ba 2TeO5

  15. Preliminary study of the CRRES magnetospheric barium releases

    NASA Technical Reports Server (NTRS)

    Huba, J. D.; Bernhardt, P. A.; Lyon, J. G.

    1992-01-01

    Preliminary theoretical and computational analyses of the Combined Release and Radiation Effects Satellite (CRRES) magnetospheric barium releases are presented. The focus of the studies is on the evolution of the diamagnetic cavity which is formed by the barium ions as they expand outward, and on the structuring of the density and magnetic field during the expansion phase of the releases. Two sets of simulation studies are discussed. The first set is based upon a 2D ideal MHD code and provides estimates of the time and length scales associated with the formation and collapse of the diamagnetic cavity. The second set uses a nonideal MHD code; specifically, the Hall term is included. This additional term is critical to the dynamics of sub-Alfvenic plasma expansions, such as the CRRES barium releases, because it leads to instability of the expanding plasma. Detailed simulations of the G4 and G10 releases were performed. In both cases the expanding plasma rapidly structured: the G4 release structured at time t less than about 3 s and developed scale sizes of about 1-2 km, while the G10 release structured at time t less than about 22 s and developed scale sizes of about 10-15 km. It is also found that the diamagnetic cavity size is reduced from those obtained from the ideal MHD results because of the structure. On the other hand, the structuring allows the formation of plasma blobs which appear to free stream across the magnetic field; thus, the barium plasma can propagate to larger distances traverse to the magnetic field than the case where no structuring occurs. Finally, a new normal mode of the system was discovered which may be excited at the leading edge of the expanding barium plasma.

  16. THE NEAR-ULTRAVIOLET LUMINOSITY FUNCTION OF YOUNG, EARLY M-TYPE DWARF STARS

    SciTech Connect

    Ansdell, Megan; Baranec, Christoph; Gaidos, Eric; Mann, Andrew W.; Lépine, Sebastien; James, David; Buccino, Andrea; Mauas, Pablo; Petrucci, Romina; Law, Nicholas M.; Riddle, Reed

    2015-01-01

    Planets orbiting within the close-in habitable zones of M dwarf stars will be exposed to elevated high-energy radiation driven by strong magnetohydrodynamic dynamos during stellar youth. Near-ultraviolet (NUV) irradiation can erode and alter the chemistry of planetary atmospheres, and a quantitative description of the evolution of NUV emission from M dwarfs is needed when modeling these effects. We investigated the NUV luminosity evolution of early M-type dwarfs by cross-correlating the Lépine and Gaidos catalog of bright M dwarfs with the Galaxy Evolution Explorer (GALEX) catalog of NUV (1771-2831 Å) sources. Of the 4805 sources with GALEX counterparts, 797 have NUV emission significantly (>2.5σ) in excess of an empirical basal level. We inspected these candidate active stars using visible-wavelength spectra, high-resolution adaptive optics imaging, time-series photometry, and literature searches to identify cases where the elevated NUV emission is due to unresolved background sources or stellar companions; we estimated the overall occurrence of these ''false positives'' (FPs) as ∼16%. We constructed an NUV luminosity function that accounted for FPs, detection biases of the source catalogs, and GALEX upper limits. We found the NUV luminosity function to be inconsistent with predictions from a constant star-formation rate and simplified age-activity relation defined by a two-parameter power law.

  17. Superflare occurrence and energies on G-, K-, and M-type dwarfs

    SciTech Connect

    Candelaresi, S.; Hillier, A.; Maehara, H.; Shibata, K.; Brandenburg, A.

    2014-09-01

    Kepler data from G-, K-, and M-type stars are used to study conditions that lead to superflares with energies above 10{sup 34} erg. From the 117,661 stars included, 380 show superflares with a total of 1690 such events. We study whether parameters, like effective temperature or rotation rate, have any effect on the superflare occurrence rate or energy. With increasing effective temperature we observe a decrease in the superflare rate, which is analogous to the previous findings of a decrease in dynamo activity with increasing effective temperature. For slowly rotating stars, we find a quadratic increase of the mean occurrence rate with the rotation rate up to a critical point, after which the rate decreases linearly. Motivated by standard dynamo theory, we study the behavior of the relative starspot coverage, approximated as the relative brightness variation. For faster rotating stars, an increased fraction of stars shows higher spot coverage, which leads to higher superflare rates. A turbulent dynamo is used to study the dependence of the Ohmic dissipation as a proxy of the flare energy on the differential rotation or shear rate. The resulting statistics of the dissipation energy as a function of dynamo number is similar to the observed flare statistics as a function of the inverse Rossby number and shows similarly strong fluctuations. This supports the idea that superflares might well be possible for solar-type G stars.

  18. The M-type receptor PLA2R regulates senescence through the p53 pathway.

    PubMed

    Augert, Arnaud; Payré, Christine; de Launoit, Yvan; Gil, Jesus; Lambeau, Gérard; Bernard, David

    2009-03-01

    Senescence is a stable proliferative arrest induced by various stresses such as telomere erosion, oncogenic or oxidative stress. Compelling evidence suggests that it acts as a barrier against tumour development. Describing new mechanisms that favour an escape from senescence can thus reveal new insights into tumorigenesis. To identify new genes controlling the senescence programme, we performed a loss-of-function genetic screen in primary human fibroblasts. We report that knockdown of the M-type receptor PLA2R (phospholipase A2 receptor) prevents the onset of replicative senescence and diminishes stress-induced senescence. Interestingly, expression of PLA2R increases during replicative senescence, and its ectopic expression results in premature senescence. We show that PLA2R regulates senescence in a reactive oxygen species-DNA damage-p53-dependent manner. Taken together, our study identifies PLA2R as a potential new tumour suppressor gene crucial in the induction of cellular senescence through the activation of the p53 pathway.

  19. The M-type receptor PLA2R regulates senescence through the p53 pathway

    PubMed Central

    Augert, Arnaud; Payré, Christine; de Launoit, Yvan; Gil, Jesus; Lambeau, Gérard; Bernard, David

    2009-01-01

    Senescence is a stable proliferative arrest induced by various stresses such as telomere erosion, oncogenic or oxidative stress. Compelling evidence suggests that it acts as a barrier against tumour development. Describing new mechanisms that favour an escape from senescence can thus reveal new insights into tumorigenesis. To identify new genes controlling the senescence programme, we performed a loss-of-function genetic screen in primary human fibroblasts. We report that knockdown of the M-type receptor PLA2R (phospholipase A2 receptor) prevents the onset of replicative senescence and diminishes stress-induced senescence. Interestingly, expression of PLA2R increases during replicative senescence, and its ectopic expression results in premature senescence. We show that PLA2R regulates senescence in a reactive oxygen species–DNA damage–p53-dependent manner. Taken together, our study identifies PLA2R as a potential new tumour suppressor gene crucial in the induction of cellular senescence through the activation of the p53 pathway. PMID:19197340

  20. Synthesis and the magnetic characterization of iridium cobalt substituted calcium hexaferrites

    NASA Astrophysics Data System (ADS)

    Rewatkar, K. G.; Patil, N. M.; Jaykumar, S.; Bhowmick, D. S.; Giriya, M. N.; Khobragade, C. L.

    2007-09-01

    M-type hexagonal ferrite powder with partial substitution lr 4++Co 2+ has been synthesized by chemical-coprecipitation technique. The saturation magnetization Ms decreases linearly from 69.8 to 40.3 emu/g with increasing doping content from 0.5 to 1. The Coerecivity sharply drops for x=0.5, which can be explained by the decrease of the anisotropy constant K1 Curie temperature Tc decreases linearly with increasing ' x'. Crystallographic studies were explained on the cation distribution consistent with Gorter spin model of parallel alignment.

  1. M-type Phospholipase A2 Receptor Autoantibodies and Renal Function in Patients with Primary Membranous Nephropathy

    PubMed Central

    Hoxha, Elion; Harendza, Sigrid; Pinnschmidt, Hans; Panzer, Ulf

    2014-01-01

    Background and objectives Loss of renal function in patients with primary membranous nephropathy cannot be reliably predicted by laboratory or clinical markers at the time of diagnosis. M-type phospholipase A2 receptor autoantibodies have been shown to be associated with changes in proteinuria. Their eventual effect on renal function, however, is unclear. Design, setting, participants, & measurements In this prospective, open, multicenter study, the potential role of M-type phospholipase A2 receptor autoantibodies levels on the increase of serum creatinine in 118 consecutive patients with membranous nephropathy and positivity for serum M-type phospholipase A2 receptor autoantibodies was analyzed. Patients were included in the study between April of 2010 and December of 2012 and observed until December of 2013. The clinical end point was defined as an increase of serum creatinine by ≥25% and serum creatinine reaching ≥1.3 mg/dl. Results Patients were divided into tertiles according to their M-type phospholipase A2 receptor autoantibody levels at the time of inclusion in the study: tertile 1 levels=20–86 units/ml (low), tertile 2 levels=87–201 units/ml (medium), and tertile 3 levels ≥202 units/ml (high). The median follow-up time of all patients in the study was 27 months (interquartile range=18–33 months). The clinical end point was reached in 69% of patients with high M-type phospholipase A2 receptor autoantibodies levels (tertile 3) but only 25% of patients with low M-type phospholipase A2 receptor autoantibodies levels. The average time to reach the study end point was 17.7 months in patients with high M-type phospholipase A2 receptor autoantibodies levels and 30.9 months in patients with low M-type phospholipase A2 receptor autoantibodies levels. A multivariate Cox regression analysis showed that high M-type phospholipase A2 receptor autoantibodies levels—in addition to men and older age—are an independent predictor for progressive loss of renal

  2. Sulphur molecules in the circumstellar envelopes of M-type AGB stars

    NASA Astrophysics Data System (ADS)

    Danilovich, T.; De Beck, E.; Black, J. H.; Olofsson, H.; Justtanont, K.

    2016-04-01

    Aims: The sulphur compounds SO and SO2 have not been widely studied in the circumstellar envelopes of asymptotic giant branch (AGB) stars. By presenting and modelling a large number of SO and SO2 lines in the low mass-loss rate M-type AGB star R Dor, and modelling the available lines of those molecules in a further four M-type AGB stars, we aim to determine their circumstellar abundances and distributions. Methods: We use a detailed radiative transfer analysis based on the accelerated lambda iteration method to model circumstellar SO and SO2 line emission. We use molecular data files for both SO and SO2 that are more extensive than those previously available. Results: Using 17 SO lines and 98 SO2 lines to constrain our models for R Dor, we find an SO abundance of (6.7 ± 0.9) × 10-6 and an SO2 abundance of 5 × 10-6 with both species having high abundances close to the star. We also modelled 34SO and found an abundance of (3.1 ± 0.8) × 10-7, giving an 32SO/34SO ratio of 21.6 ± 8.5. We derive similar results for the circumstellar SO and SO2 abundances and their distributions for the low mass-loss rate object W Hya. For the higher mass-loss rate stars, we find shell-like SO distributions with peak abundances that decrease and peak abundance radii that increase with increasing mass-loss rate. The positions of the peak SO abundance agree very well with the photodissociation radii of H2O. We also modelled SO2 in two higher mass-loss rate stars but our models for these were less conclusive. Conclusions: We conclude that for the low mass-loss rate stars, the circumstellar SO and SO2 abundances are much higher than predicted by chemical models of the extended stellar atmosphere. These two species may also account for all the available sulphur. For the higher mass-loss rate stars we find evidence that SO is most efficiently formed in the circumstellar envelope, most likely through the photodissociation of H2O and the subsequent reaction between S and OH. The S

  3. M-Type Phospholipase A2 Receptor as Target Antigen in Idiopathic Membranous Nephropathy

    PubMed Central

    Beck, Laurence H.; Bonegio, Ramon G.B.; Lambeau, Gérard; Beck, David M.; Powell, David W.; Cummins, Timothy D.; Klein, Jon B.; Salant, David J.

    2009-01-01

    BACKGROUND Idiopathic membranous nephropathy, a common form of the nephrotic syndrome, is an antibody-mediated autoimmune glomerular disease. Serologic diagnosis has been elusive because the target antigen is unknown. METHODS We performed Western blotting of protein extracts from normal human glomeruli with serum samples from patients with idiopathic or secondary membranous nephropathy or other proteinuric or autoimmune diseases and from normal controls. We used mass spectrometry to analyze the reactive protein bands and confirmed the identity and location of the target antigen with a monospecific antibody. RESULTS Serum samples from 26 of 37 patients (70%) with idiopathic but not secondary membranous nephropathy specifically identified a 185-kD glycoprotein in non-reduced glomerular extract. Mass spectrometry of the reactive protein band detected the M-type phospholipase A2 receptor (PLA2R). Reactive serum specimens recognized recombinant PLA2R and bound the same 185-kD glomerular protein as did the monospecific anti-PLA2R antibody. Anti-PLA2R autoantibodies in serum samples from patients with membranous nephropathy were mainly IgG4, the predominant immunoglobulin subclass in glomerular deposits. PLA2R was expressed in podocytes in normal human glomeruli and colocalized with IgG4 in immune deposits in glomeruli of patients with membranous nephropathy. IgG eluted from such deposits in patients with idiopathic membranous nephropathy, but not in those with lupus membranous or IgA nephropathy, recognized PLA2R. CONCLUSIONS A majority of patients with idiopathic membranous nephropathy have antibodies against a conformation-dependent epitope in PLA2R. PLA2R is present in normal podocytes and in immune deposits in patients with idiopathic membranous nephropathy, indicating that PLA2R is a major antigen in this disease. PMID:19571279

  4. Design, testing, fabrication and launch support of a liquid chemical barium release payload (utilizing the liquid fluorine-barium salt/hydrazine system)

    NASA Technical Reports Server (NTRS)

    Stokes, C. S.; Smith, E. W.; Murphy, W. J.

    1972-01-01

    A payload was designed which included a cryogenic oxidizer tank, a fuel tank, and burner section. Release of 30 lb of chemicals was planned to occur in 2 seconds at the optimum oxidizer to fuel ratio. The chemicals consisted of 17 lb of liquid fluorine oxidizer and 13 lb of hydrazine-barium salt fuel mixture. The fuel mixture was 17% barium chloride, 16% barium nitrate, and 67% hydrazine, and contained 2.6 lb of available barium. Two significant problem areas were resolved during the program: explosive valve development and burner operation. The release payload was flight tested, from Wallops Island, Virginia. The release took place at an altitude of approximately 260 km. The release produced a luminous cloud which expanded very rapidly, disappearing to the human eye in about 20 seconds. Barium ion concentration slowly increased over a wide area of sky until measurements were discontinued at sunrise (about 30 minutes).

  5. Surface studies of barium and barium oxide on tungsten and its application to understanding the mechanism of operation of an impregnated tungsten cathode

    NASA Technical Reports Server (NTRS)

    Forman, R.

    1976-01-01

    Surface studies have been made of multilayer and monolayer films of barium and barium oxide on a tungsten substrate. The purpose of the investigation was to synthesize the surface conditions that exist on an activated impregnated tungsten cathode and obtain a better understanding of the mechanism of operation of such cathodes. The techniques employed in these measurements were Auger spectroscopy and work-function measurements. The results of this study show that the surface of an impregnated cathode is identical to that observed for a synthesized monolayer or partial monolayer of barium on oxidized tungsten by evaluating Auger spectra and work-function measurements. Data obtained from desorption studies of barium monolayers on a tungsten substrate in conjunction with Auger and work-function results have been interpreted to show that throughout most of its life an impreganated cathode has a partial monolayer, rather than a monolayer, of barium on its surface.

  6. Observations and theory of the AMPTE magnetotail barium releases

    NASA Technical Reports Server (NTRS)

    Bernhardt, P. A.; Roussel-Dupre, R. A.; Pongratz, M. B.; Haerendel, G.; Valenzuela, A.

    1987-01-01

    The barium releases in the magnetotail during the Active Magnetospheric Particle Tracer Explorers (AMPTE) operation were monitored by ground-based imagers and by instruments on the Ion Release Module. After each release, the data show the formation of a structured diamagnetic cavity. The cavity grows until the dynamic pressure of the expanding ions balances the magnetic pressure on its surface. The magnetic field inside the cavity is zero. The barium ions collect on the surface of the cavity, producing a shell. Plasma irregularities form along magnetic field lines draped over the surface of the cavity. The scale size of the irregularities is nearly equal to the thickness of the shell. The evolution and structuring of the diamagnetic cavity are modeled using magnetohydrodynamics theory.

  7. Relationship of pheasant occurrence to barium in Illinois soils.

    PubMed

    Jones, R L

    1992-04-01

    Distribution of the ring-necked pheasant (Phasianus colchicus) is nearly co-extensive with the boundary of Wisconsinan glaciation; this is an area of base-rich soils that are mostly developed in calcareous tills. Anderson and Stewart (1973) speculated that barium in the diet might be a factor limiting the pheasant establishment in habitats adjacent to areas of long-term sustaining populations in Illinois. Total Ba was calculated for soils of 74 conterminous counties for which there were pheasant population data. Barium over the range of about 480 to 700 mg kg(-1) soil was unrelated to pheasant occurrence or to population indeces. The selective eating of iron-manganese concretions that are enriched in Ba might present a unique pathway for Ba loading.

  8. Barium titanate nanoparticles: promising multitasking vectors in nanomedicine.

    PubMed

    Genchi, Giada Graziana; Marino, Attilio; Rocca, Antonella; Mattoli, Virgilio; Ciofani, Gianni

    2016-06-10

    Ceramic materials based on perovskite-like oxides have traditionally been the object of intense interest for their applicability in electrical and electronic devices. Due to its high dielectric constant and piezoelectric features, barium titanate (BaTiO3) is probably one of the most studied compounds of this family. Recently, an increasing number of studies have been focused on the exploitation of barium titanate nanoparticles (BTNPs) in the biomedical field, owing to the high biocompatibility of BTNPs and their peculiar non-linear optical properties that have encouraged their use as nanocarriers for drug delivery and as label-free imaging probes. In this review, we summarize all the recent findings about these 'smart' nanoparticles, including the latest, most promising potential as nanotransducers for cell stimulation.

  9. Barium titanate nanoparticles: promising multitasking vectors in nanomedicine

    NASA Astrophysics Data System (ADS)

    Graziana Genchi, Giada; Marino, Attilio; Rocca, Antonella; Mattoli, Virgilio; Ciofani, Gianni

    2016-06-01

    Ceramic materials based on perovskite-like oxides have traditionally been the object of intense interest for their applicability in electrical and electronic devices. Due to its high dielectric constant and piezoelectric features, barium titanate (BaTiO3) is probably one of the most studied compounds of this family. Recently, an increasing number of studies have been focused on the exploitation of barium titanate nanoparticles (BTNPs) in the biomedical field, owing to the high biocompatibility of BTNPs and their peculiar non-linear optical properties that have encouraged their use as nanocarriers for drug delivery and as label-free imaging probes. In this review, we summarize all the recent findings about these ‘smart’ nanoparticles, including the latest, most promising potential as nanotransducers for cell stimulation.

  10. Study of the photovoltaic effect in thin film barium titanate

    NASA Technical Reports Server (NTRS)

    Grannemann, W. W.; Dharmadhikari, V. S.

    1982-01-01

    Ferroelectric films of barium titanate were synthesized on silicon and quartz substrates, and the photoelectric effect in the structure consisting of metal deposited ferroelectric barium titanate film silicon was studied. A photovoltage with polarity that depends on the direction of the remanent polarization was observed. The deposition of BaTiO3 on silicon and fused quartz substrates was accomplished by an rf sputtering technique. A series of experiments to study the growth of ferroelectric BaTiO3 films on single crystal silicon and fused quartz substrates were conducted. The ferroelectric character in these films was found on the basis of evidence from the polarization electric field hysteresis loops, capacitance voltage and capacitance temperature techniques and from X-ray diffraction studies.

  11. NASA/Max Planck Institute Barium Ion Cloud Project.

    NASA Technical Reports Server (NTRS)

    Brence, W. A.; Carr, R. E.; Gerlach, J. C.; Neuss, H.

    1973-01-01

    NASA and the Max Planck Institute for Extraterrestrial Physics (MPE), Munich, Germany, conducted a cooperative experiment involving the release and study of a barium cloud at 31,500 km altitude near the equatorial plane. The release was made near local magnetic midnight on Sept. 21, 1971. The MPE-built spacecraft contained a canister of 16 kg of Ba CuO mixture, a two-axis magnetometer, and other payload instrumentation. The objectives of the experiment were to investigate the interaction of the ionized barium cloud with the ambient medium and to deduce the properties of electric fields in the proximity of the release. An overview of the project is given to briefly summarize the organization, responsibilities, objectives, instrumentation, and operational aspects of the project.

  12. Barium titanate nanoparticles: promising multitasking vectors in nanomedicine.

    PubMed

    Genchi, Giada Graziana; Marino, Attilio; Rocca, Antonella; Mattoli, Virgilio; Ciofani, Gianni

    2016-06-10

    Ceramic materials based on perovskite-like oxides have traditionally been the object of intense interest for their applicability in electrical and electronic devices. Due to its high dielectric constant and piezoelectric features, barium titanate (BaTiO3) is probably one of the most studied compounds of this family. Recently, an increasing number of studies have been focused on the exploitation of barium titanate nanoparticles (BTNPs) in the biomedical field, owing to the high biocompatibility of BTNPs and their peculiar non-linear optical properties that have encouraged their use as nanocarriers for drug delivery and as label-free imaging probes. In this review, we summarize all the recent findings about these 'smart' nanoparticles, including the latest, most promising potential as nanotransducers for cell stimulation. PMID:27145888

  13. The Skylab barium plasma injection experiments. I - Convection observations

    NASA Technical Reports Server (NTRS)

    Wescott, E. M.; Stenbaek-Nielsen, H. C.; Davis, T. N.; Peek, H. M.

    1976-01-01

    Two barium-plasma injection experiments were carried out during magnetically active periods in conjunction with the Skylab 3 mission. The high-explosive shaped charges were launched near dawn on November 27 and December 4, 1973, UT. In both cases, the AE index was near 400 gammas, and extensive pulsating auroras covered the sky. The first experiment, Skylab Alpha, occurred in the waning phase of a 1000-gamma substorm, and the second, Skylab Beta, occurred in the expansive phase of an 800-gamma substorm. In both, the convection was generally magnetically eastward, with 100-km-level electric fields near 40 mV/m. However, in the Alpha experiment the observed orientation of the barium flux tube fit theoretical field lines having no parallel current, but the Beta flux-tube orientation indicated a substantial upward parallel sheet current.

  14. Numerical simulation of a radially injected barium cloud

    NASA Technical Reports Server (NTRS)

    Swift, D. W.; Wescott, E. M.

    1981-01-01

    Electrostatic two-dimensional numerical simulations of a radially symmetric barium injection experiment demonstrate that ions created by solar UV irradiation are electrostatically bound to the electrons which remain tied to the field lines on which they are created. Two possible instabilities are identified, but neither of them causes the barium plasma cloud to polarize in a way that would permit the plasma to keep up with the neutrals. In a second model, the velocity of the neutrals is allowed to be a function of the azimuthal angle. Here, a portion of the cloud does polarize in a way that allows a portion of the plasma to detach and move outward at the approximate speed of the neutrals. No rapid detachment is found when only the density of the neutrals is given an azimuthal asymmetry.

  15. Barium borohydride chlorides: synthesis, crystal structures and thermal properties.

    PubMed

    Grube, Elisabeth; Olesen, Cathrine H; Ravnsbæk, Dorthe B; Jensen, Torben R

    2016-05-10

    Here we report the synthesis, mechanism of formation, characterization and thermal decomposition of new barium borohydride chlorides prepared by mechanochemistry and thermal treatment of MBH4-BaCl2, M = Li, Na or K in ratios 1 : 1 and 1 : 2. Initially, orthorhombic barium chloride, o-BaCl2 transforms into o-Ba(BH4)xCl2-x, x ∼ 0.15. Excess LiBH4 leads to continued anion substitution and a phase transformation into hexagonal barium borohydride chloride h-Ba(BH4)xCl2-x, which accommodates higher amounts of borohydride, possibly x ∼ 0.85 and resembles h-BaCl2. Thus, two solid solutions are in equilibrium during mechano-chemical treatment of LiBH4-BaCl2 (1 : 1) whereas LiBH4-BaCl2 (2 : 1) converts to h-Ba(BH4)0.85Cl1.15. Upon thermal treatment at T > ∼200 °C, h-Ba(BH4)0.85Cl1.15 transforms into another orthorhombic barium borohydride chloride compound, o-Ba(BH4)0.85Cl1.15, which is structurally similar to o-BaBr2. The samples with M = Na and K have lower reactivity and form o-Ba(BH4)xCl2-x, x ∼ 0.1 and a solid solution of sodium chloride dissolved in solid sodium borohydride, Na(BH4)1-xClx, x = 0.07. The new compounds and reaction mechanisms are investigated by in situ synchrotron radiation powder X-ray diffraction (SR-PXD), Fourier transform infrared spectroscopy (FT-IR) and simultaneous thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), mass spectroscopy (MS) and temperature programmed photographic analysis (TPPA).

  16. Synthesis and characterization of barium ferrite–silica nanocomposites

    SciTech Connect

    Aguilar-González, M.A.; Mendoza-Suárez, G.; Padmasree, K.P.

    2013-10-15

    In this work, we prepared barium ferrite-silica (BaM-SiO{sub 2}) nanocomposites of different molar ratios by high-energy ball milling, followed by heat-treatment at different temperatures. The microstructure, morphology and magnetic properties were characterized for different synthesis conditions by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometry (VSM). The results indicate that 15 h of milling was enough to avoid the generation of hematite phase and to get a good dispersion of barium ferrite particles in the ceramic matrix. For milling periods beyond 15 h and heat treatment above 900 °C, the XRD patterns showed the presence of hematite phase caused by the decomposition of BaM. The agglomerate size observed through SEM analysis was around 150 nm with a good BaM dispersion into the SiO{sub 2} matrix. The highest saturation magnetization (Ms) value obtained was 43 emu/g and the corresponding coercivity (Hc) value of 3.4 kOe for the composition 60BaM-40SiO{sub 2} milled for 15 h and heat treated at 900 °C. This coercivity value is acceptable for the application in magnetic recording media. Highlights: • Barium ferrite–silica nanocomposites were prepared by high energy ball milling. • Optimal processing time is 15 h milling and heat treatment at 900 °C. • This is enough to avoid the generation of hematite phase. • Obtain good dispersion of barium ferrite particles in the ceramic matrix • Above this processing time shows the presence of increased amount of hematite.

  17. A strong magneto-optical activity in rare-earth La{sup 3+} substituted M-type strontium ferrites

    SciTech Connect

    Hu Feng; Liu Xiansong; Zhu Deru; Fernandez-Garcia, Lucia; Suarez, Marta; Luis Menendez, Jose

    2011-06-01

    M-type strontium ferrites with substitution of Sr{sup 2+} by rare-earth La{sup 3+} were prepared by conventional ceramic technology. The structure, magnetic properties, and magneto-optical Kerr activity of Sr{sub 1-x}La{sub x}Fe{sub 12}O{sub 19} (x = 0, 0.05, 0.10, 0.15, 0.20) were investigated by x-ray diffraction (XRD), vibrating sample magnetometer (VSM), and magneto-optical ellipsometry, respectively. X-ray diffraction showed that the samples sintered at 1290 deg. C for 3 h were single M-type hexagonal ferrites. The magnetic properties were remarkably changed due to the valence change of Fe ions induced by the substitution of La ions. Most significantly, an important magneto-optical activity was induced in the La{sup 3+} substituted M-type strontium ferrites around 3 eV.

  18. Barium thiolates and selenolates: syntheses and structural principles.

    PubMed

    Ruhlandt-Senge, K; Englich, U

    2000-11-17

    The synthesis and structural characterization of a family of barium thiolates and selenolates is described. The thiolates were synthesized by metallation of thiols, the selenolates by reductive insertion of the metal into the selenium-selenium bond of diorganodiselenides. Both reaction sequences were carried out by using barium metal dissolved in ammonia; this afforded barium thiolates and selenolates in good yield and purity. The structural principles displayed in the target compounds span a wide range of solid-state formulations, including monomeric and dimeric species, and separated ion triples, namely [Ba(thf)4(SMes*)2] (1; Mes* = 2,4,6-tBU3C6H2), [Ba(thf)4(SeMes*)2] (2), [Ba([18]crown-6)(hmpa)2][(SeMes*)2] (3), the dimeric [(Ba(py)3(thf)(SeTrip)2)2] (4; py = pyridine, Trip = 2,4.6-iPr3C6H2), and [Ba([18]crown-6)(SeTrip)2] (5). The full range of association modes is completed by [Ba([18]crown-6)(hmpa)SMes*][SMes*] (6) communicated earlier by this group. In the solid state, this compound displays an intermediate ion coordination mode: one anion is bound to the metal, while the second one is unassociated. Together these compounds provide structural information about all three different association modes for alkaline earth metal derivatives. This collection of structural data allows important conclusions about the influence of solvation and ligation on structural trends.

  19. The Tordo 1 polar cusp barium plasma injection experiment

    NASA Technical Reports Server (NTRS)

    Wescott, E. M.; Stenbaek-Nielsen, H. C.; Davis, T. N.; Jeffries, R. A.; Roach, W. H.

    1978-01-01

    In January 1975, two barium plasma injection experiments were carried out with rockets launched into the upper atmosphere where field lines from the dayside cusp region intersect the ionosphere. The Tordo 1 experiment took place near the beginning of a worldwide magnetic storm. It became a polar cap experiment almost immediately as convection perpendicular to the magnetic field moved the fluorescent plasma jet away from the cusp across the polar cap in an antisunward direction. Convection across the polar cap with an average velocity of more than 1 km/s was observed for nearly 40 min until the barium flux tubes encountered large electron fields associated with a poleward bulge of the auroral oval near Greenland. Prior to the encounter with the aurora near Greenland there is evidence of upward acceleration of the barium ions while they were in the polar cap. The three-dimensional observations of the plasma orientation and motion give an insight into convection from the cusp region across the polar cap, the orientation of the polar cap magnetic field lines out to several earth radii, the causes of polar cap magnetic perturbations, and parallel acceleration processes.

  20. Life Model of Hollow Cathodes Using a Barium Calcium Aluminate Impregnated Tungsten Emitter

    NASA Technical Reports Server (NTRS)

    Kovaleski, S. D.; Burke, Tom (Technical Monitor)

    2001-01-01

    Hollow cathodes with barium calcium aluminate impregnated tungsten emitters for thermionic emission are widely used in electric propulsion. These high current, low power cathodes are employed in ion thrusters, Hall thrusters, and on the International Space Station in plasma contactors. The requirements on hollow cathode life are growing more stringent with the increasing use of electric propulsion technology. The life limiting mechanism that determines the entitlement lifetime of a barium impregnated thermionic emission cathode is the evolution and transport of barium away from the emitter surface. A model is being developed to study the process of barium transport and loss from the emitter insert in hollow cathodes. The model accounts for the production of barium through analysis of the relevant impregnate chemistry. Transport of barium through the approximately static gas is also being treated. Finally, the effect of temperature gradients within the cathode are considered.

  1. Effect of thermal treatment on magnetic and dielectric response of SrM hexaferrites obtained by hydrothermal synthesis

    NASA Astrophysics Data System (ADS)

    Hilczer, Andrzej; Andrzejewski, Bartłomiej; Markiewicz, Ewa; Kowalska, Katarzyna; Pietraszko, Adam

    2014-11-01

    Electric, dielectric and magnetic properties of SrFe12O19 hexaferrite ceramics obtained from hydrothermally synthesized single-phase nanopowders were studied in wide temperature range. The effect of space charge polarization, related to highly conducting grains with poor conducting grain boundaries, was found to be apparent at high temperatures and at low frequencies. The activation energy of relaxation of the (Fe3+-Fe2+) dipoles in low conducting grain boundary regions was found to amount to 0.20 eV for non-annealed ceramics and to increase to 0.32 eV after thermal treatment. The temperature and frequency dependences of the dielectric permittivity for non-annealed and annealed SrFe12O19 ceramics were found to be correlated with respective dependences of the electric conductivity. We relate the observed increase in the saturation magnetization after annealing to an increase in coherent spin rotation in greater grains, which are however still below the critical single-domain size.

  2. Microstructure and magnetic properties of La-Co substituted strontium hexaferrite films prepared by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Masoudpanah, S. M.; Ebrahimi, S. A. Seyyed; Ong, C. K.

    2013-09-01

    Microstructure and magnetic properties of La-Co substituted strontium hexaferrite films (Sr1-xLaxFe12-xCoxO19) fabricated by pulsed laser deposition on Si(100)/Pt(111) substrate were investigated. The coercivities of the films in perpendicular direction were higher than those in in-plane direction which confirms the perpendicular magnetic anisotropy of the films. Atomic force microscopy images of the films revealed decreasing of the plate-like grains size, from 300 to 110 nm with increasing the La-Co contents. The saturation magnetization increased slightly till x=0.2 and then decreased from x=0.2 to x=0.4. However, the coercivity increased from 2.3 kOe for the SrFe12O19 film to 4.1 kOe for the Sr0.6La0.4Fe11.6Co0.4O19 film, because of the decrease of the grain size and increase of the magnetic anisotropy field.

  3. Novel approach for designing a thin and broadband microwave absorber in Ku band based on substituted M-hexaferrites

    NASA Astrophysics Data System (ADS)

    Afghahi, Seyyed Salman Seyyed; Jafarian, Mojtaba; Atassi, Yomen

    2016-12-01

    The design of novel microwave absorbers in the Ku band is still challenging. The aim of this work is to report the design of a new Ku absorber based on the combination of three M-hexaferrites with the formula of BaX0.3Y0.3Cr0.3Fe11.1O19 (XY=Co2+Zr4+, Zn2+Ti4+, Mn2+Ce4+), 15 wt% of each in epoxy matrix. The results indicate the formation of a broadband absorber with a reflection loss (RL) lower than -10 dB over the whole bandwidth 13.75-18 GHz. It has three matching frequencies (14.2, 15.3 and 16.8 GHz) with RL (-29.2, -21.5 and -24.7 dB, respectively) at a matching thickness of only 2.5 mm. This is to be compared with the RL of the absorbers based on 45 wt% of each ferrite alone in epoxy matrix are (-15, -28.8 and -20 dB, respectively) at matching frequency of (14.15, 13.55 and 16.5 GHz) and a matching thickness of 4 mm. This favorable performance resulting from combining the three ferrites within the absorber may be attributed to the enhanced exchange coupling interactions between the three powders of distinct magnetic characteristics.

  4. Tailoring the magnetoelectric coupling in the Co2Y type hexaferrite single crystals by systematic doping control

    NASA Astrophysics Data System (ADS)

    Shin, Kwangwoo; Park, Chang Bae; Chun, Sae Hwan; Kim, Kee Hoon

    2015-03-01

    Hexagonal ferrites have shown gigantic magnetoelectric (ME) coupling in a broad temperature range including room temperature, which draws great interests due to their rich physics and various application potential. Here, we report the variations of the ME coupling and electrical phase boundary in the Sr and Al doped Co2Y type single crystal. As the doping ratio of Sr and Al ions increased, not only the transition temperature of the heliconical spin ordering increased up to 430 K, but also the ferroelectric phase boundary became closer to the zero magnetic field. These two main effects lead us to observe the large direct and converse ME effects at room temperature and near zero magnetic field. In particular, in an optimally doped sample, the ME susceptibility reaches to 28,000 ps/m at 10 K and the magnetization direction could be reversed by an external electric field even at 250 K without any bias magnetic field. These results clearly show that the Co2Y type hexaferrite is a promising material system that might realize the magnetization reversal even at room temperature.

  5. An improved SELEX technique for selection of DNA aptamers binding to M-type 11 of Streptococcus pyogenes.

    PubMed

    Hamula, Camille L A; Peng, Hanyong; Wang, Zhixin; Tyrrell, Gregory J; Li, Xing-Fang; Le, X Chris

    2016-03-15

    Streptococcus pyogenes is a clinically important pathogen consisting of various serotypes determined by different M proteins expressed on the cell surface. The M type is therefore a useful marker to monitor the spread of invasive S. pyogenes in a population. Serotyping and nucleic acid amplification/sequencing methods for the identification of M types are laborious, inconsistent, and usually confined to reference laboratories. The primary objective of this work is to develop a technique that enables generation of aptamers binding to specific M-types of S. pyogenes. We describe here an in vitro technique that directly used live bacterial cells and the Systematic Evolution of Ligands by Exponential Enrichment (SELEX) strategy. Live S. pyogenes cells were incubated with DNA libraries consisting of 40-nucleotides randomized sequences. Those sequences that bound to the cells were separated, amplified using polymerase chain reaction (PCR), purified using gel electrophoresis, and served as the input DNA pool for the next round of SELEX selection. A specially designed forward primer containing extended polyA20/5Sp9 facilitated gel electrophoresis purification of ssDNA after PCR amplification. A counter-selection step using non-target cells was introduced to improve selectivity. DNA libraries of different starting sequence diversity (10(16) and 10(14)) were compared. Aptamer pools from each round of selection were tested for their binding to the target and non-target cells using flow cytometry. Selected aptamer pools were then cloned and sequenced. Individual aptamer sequences were screened on the basis of their binding to the 10 M-types that were used as targets. Aptamer pools obtained from SELEX rounds 5-8 showed high affinity to the target S. pyogenes cells. Tests against non-target Streptococcus bovis, Streptococcus pneumoniae, and Enterococcus species demonstrated selectivity of these aptamers for binding to S. pyogenes. Several aptamer sequences were found to bind

  6. Carriage of Escherichia coli Producing CTX-M-Type Extended-Spectrum β-Lactamase in Healthy Vietnamese Individuals

    PubMed Central

    Ueda, Shuhei; Bui, Thi Kim Ngan; Hamamoto, Kouta; Toyosato, Takehiko; Le, Danh Tuyen; Yamamoto, Yoshimasa

    2015-01-01

    Healthy carriage of CTX-M-type extended-spectrum β-lactamase (ESBL)-producing Escherichia coli was examined by thrice collecting fecal samples from the same 199 healthy Vietnamese subjects every 6 months. Using pulsed-field gel electrophoresis (PFGE), identical PFGE patterns throughout the three samplings were not observed, although prevalence of E. coli in the subjects was around 50% in the three samplings. Our results suggested a short carriage period of the CTX-M-type ESBL-producing E. coli in healthy Vietnamese subjects. PMID:26195526

  7. Carriage of Escherichia coli Producing CTX-M-Type Extended-Spectrum β-Lactamase in Healthy Vietnamese Individuals.

    PubMed

    Bui, Thi Mai Huong; Hirai, Itaru; Ueda, Shuhei; Bui, Thi Kim Ngan; Hamamoto, Kouta; Toyosato, Takehiko; Le, Danh Tuyen; Yamamoto, Yoshimasa

    2015-10-01

    Healthy carriage of CTX-M-type extended-spectrum β-lactamase (ESBL)-producing Escherichia coli was examined by thrice collecting fecal samples from the same 199 healthy Vietnamese subjects every 6 months. Using pulsed-field gel electrophoresis (PFGE), identical PFGE patterns throughout the three samplings were not observed, although prevalence of E. coli in the subjects was around 50% in the three samplings. Our results suggested a short carriage period of the CTX-M-type ESBL-producing E. coli in healthy Vietnamese subjects. PMID:26195526

  8. An improved SELEX technique for selection of DNA aptamers binding to M-type 11 of Streptococcus pyogenes.

    PubMed

    Hamula, Camille L A; Peng, Hanyong; Wang, Zhixin; Tyrrell, Gregory J; Li, Xing-Fang; Le, X Chris

    2016-03-15

    Streptococcus pyogenes is a clinically important pathogen consisting of various serotypes determined by different M proteins expressed on the cell surface. The M type is therefore a useful marker to monitor the spread of invasive S. pyogenes in a population. Serotyping and nucleic acid amplification/sequencing methods for the identification of M types are laborious, inconsistent, and usually confined to reference laboratories. The primary objective of this work is to develop a technique that enables generation of aptamers binding to specific M-types of S. pyogenes. We describe here an in vitro technique that directly used live bacterial cells and the Systematic Evolution of Ligands by Exponential Enrichment (SELEX) strategy. Live S. pyogenes cells were incubated with DNA libraries consisting of 40-nucleotides randomized sequences. Those sequences that bound to the cells were separated, amplified using polymerase chain reaction (PCR), purified using gel electrophoresis, and served as the input DNA pool for the next round of SELEX selection. A specially designed forward primer containing extended polyA20/5Sp9 facilitated gel electrophoresis purification of ssDNA after PCR amplification. A counter-selection step using non-target cells was introduced to improve selectivity. DNA libraries of different starting sequence diversity (10(16) and 10(14)) were compared. Aptamer pools from each round of selection were tested for their binding to the target and non-target cells using flow cytometry. Selected aptamer pools were then cloned and sequenced. Individual aptamer sequences were screened on the basis of their binding to the 10 M-types that were used as targets. Aptamer pools obtained from SELEX rounds 5-8 showed high affinity to the target S. pyogenes cells. Tests against non-target Streptococcus bovis, Streptococcus pneumoniae, and Enterococcus species demonstrated selectivity of these aptamers for binding to S. pyogenes. Several aptamer sequences were found to bind

  9. Giant magnetoresistance due to magnetoelectric currents in Sr{sub 3}Co{sub 2}Fe{sub 24}O{sub 41} hexaferrites

    SciTech Connect

    Wang, Xian; Su, Zhijuan; Sokolov, Alexander; Hu, Bolin; Andalib, Parisa; Chen, Yajie Harris, Vincent G.

    2014-09-15

    The giant magnetoresistance and magnetoelectric (ME) effects of Z-type hexaferrite Sr{sub 3}Co{sub 2}Fe{sub 24}O{sub 41} were investigated. The present experiments indicated that an induced magnetoelectric current in a transverse conical spin structure not only presented a nonlinear behavior with magnetic field and electric field but also depended upon a sweep rate of the applied magnetic field. More interestingly, the ME current induced magnetoresistance was measured, yielding a giant room temperature magnetoresistance of 32.2% measured at low magnetic fields (∼125 Oe). These results reveal great potential for emerging applications of multifunctional magnetoelectric ferrite materials.

  10. BARIUM SULPHATE ABSORPTION AND THE SERUM DIAGNOSIS OF SYPHILIS.

    PubMed

    Noguchi, H; Bronfenbrenner, J

    1911-02-01

    The so-called syphilitic antibodies can be removed from a serum by means of absorption with barium sulphate. The removal is due either to an adsorption or a mechanical absorption. The activity of the syphilitic antibodies is thereby unimpaired. The readiness with which the absorption is accomplished with barium sulphate varies considerably with different syphilitic sera. That barium sulphate exerts the same absorbing effect upon non-syphilitic serum components is made evident by the interfering property which the latter manifest in the absorption experiment of the syphilitic antibodies. The selective removal of the serum components, other than the syphilitic antibodies, by means of barium sulphate absorption is, therefore, impossible. On the other hand, a partial removal of these components, with but little removal of the syphilitic antibodies, may be effected when the content of a given serum is poor in syphilitic antibodies and comparatively rich in the indifferent serum components. But this is impossible if the conditions are reversed. The main reasons why some negative syphilitic sera may be so modified by the barium sulphate treatment as to give positive reactions, are explained below, but these apply only to those methods in which inactivated serum is employed. The inactivation reduces the antibody content to about one-fourth to one-fifth of the original. When the serum is very rich in antibodies, this does not affect the result of the fixation test. But when the amount of the antibodies is small, the process of inactivation creates conditions quite unexpected. It may produce such a condition that a given amount of the serum contains, after inactivation, only one or two antibody units, while the other serum components remain undiminished. Here one must not lose sight of the vital fact that these apparently indifferent serum constituents are not at all indifferent in the fixation processes. They may possess affinities which are similar to those of complement

  11. A review of the health impacts of barium from natural and anthropogenic exposure.

    PubMed

    Kravchenko, Julia; Darrah, Thomas H; Miller, Richard K; Lyerly, H Kim; Vengosh, Avner

    2014-08-01

    There is an increasing public awareness of the relatively new and expanded industrial barium uses which are potential sources of human exposure (e.g., a shale gas development that causes an increased awareness of environmental exposures to barium). However, absorption of barium in exposed humans and a full spectrum of its health effects, especially among chronically exposed to moderate and low doses of barium populations, remain unclear. We suggest a systematic literature review (from 1875 to 2014) on environmental distribution of barium, its bioaccumulation, and potential and proven health impacts (in animal models and humans) to provide the information that can be used for optimization of future experimental and epidemiological studies and developing of mitigative and preventive strategies to minimize negative health effects in exposed populations. The potential health effects of barium exposure are largely based on animal studies, while epidemiological data for humans, specifically for chronic low-level exposures, are sparse. The reported health effects include cardiovascular and kidney diseases, metabolic, neurological, and mental disorders. Age, race, dietary patterns, behavioral risks (e.g., smoking), use of medications (those that interfere with absorbed barium in human organism), and specific physiological status (e.g., pregnancy) can modify barium effects on human health. Identifying, evaluating, and predicting the health effects of chronic low-level and moderate-level barium exposures in humans is challenging: Future research is needed to develop an understanding of barium bioaccumulation in order to mitigate its potential health impacts in various exposured populations. Further, while occupationally exposed at-risk populations exist, it is also important to identify potentially vulnerable subgroups among non-occupationally exposed populations (e.g., elderly, pregnant women, children) who are at higher risk of barium exposure from drinking water and food.

  12. Electrical conductivity of cobalt-titanium substituted SrCaM hexaferrites

    NASA Astrophysics Data System (ADS)

    Eraky, M. R.

    2012-03-01

    A series of polycrystalline M-type hexagonal ferrites with the composition Sr0.5Ca0.5CoxTixFe12-2xO19 (where x=0.0-0.8) were prepared by the conventional ceramic technique. The electrical conductivity has been measured from 300 to 590 K. The dc conductivity, σdc, exhibited a semiconductor behavior. The negative sign of thermoelectric power coefficient S reveals that all samples are n-type semiconductors. Both σdc and mobility, μd, increases with the substitution of Co2+ and Ti4+ ions, reach maximum at x=0.4 and start decreasing at x>0.4. Many conduction mechanisms were discussed to explain the electric conduction in the system. It was found that the hopping conduction is the predominant conduction mechanism. For samples with compositional parameter x=0.0 and 0.8, the band conduction mechanism shares in electric conduction beside the hopping process.

  13. Study of the magnetic and structural properties of Al-Cr codoped Y-type hexaferrite prepared via sol-gel auto-combustion method

    NASA Astrophysics Data System (ADS)

    Mirzaee, O.; Mohamady, R.; Ghasemi, A.; Farzin, Y. Alizad

    2015-04-01

    Nanostructure of Y-type hexaferrite with composition of Sr2Ni2Alx/2Crx/2Fe12-xO22 (where x are 0, 0.6, 1.2, 1.8, 2.4 and 3) were prepared by sol-gel auto-combustion method. The influence of Al and Cr doping on the structural and magnetic properties has been investigated. The X-ray diffraction (XRD) patterns confirm phase formation of Y-type hexaferrite. The microstructure and morphology of prepared samples were studied by high resolution field emission scanning electron microscope (FESEM) which shows the hexagonal shape for all of the samples. Magnetic properties were characterized using vibrating sample magnetometer (VSM). The magnetic results revealed that by increasing the Al and Cr to the structure, the coercivity was also increased from 840 Oe to 1160 Oe. Moreover it has been shown that with addition of dopants, saturation magnetization (Ms) and remnant magnetization (Mr) were decreased from 39.61 emu/g to 30.11 emu/g and from 17.51 emu/g to 14.62 emu/g, respectively, due to the entrance of nonmagnetic ions into Fe3+ sites.

  14. Effect of oxygen pressure on microstructure and magnetic properties of strontium hexaferrite (SrFe 12O 19) film prepared by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Masoudpanah, S. M.; Seyyed Ebrahimi, S. A.; Ong, C. K.

    2012-04-01

    The effects of oxygen pressure during deposition on microstructure and magnetic properties of strontium hexaferrite (SrFe12O19) films grown on Si (100) substrate with Pt (111) underlayer by pulsed laser deposition have been investigated. X-ray diffraction pattern confirms that the films have c-axis perpendicular orientation. The c-axis dispersion (Δθ50) increases and c-axis lattice parameter decreases with increasing oxygen pressure. The films have hexagonal shape grains with diameter of 150-250 nm as determined by atomic force microscopy. The coercivities in perpendicular direction are higher than those in in-plane direction, which shows the films have perpendicular magnetic anisotropy. The saturation magnetization and anisotropy field for the film deposited in oxygen pressure of 0.13 mbar are comparable to those of the bulk strontium hexaferrite. Higher oxygen pressure leads to the films having higher coercivity and squareness. The coercivity in perpendicular and in-plane directions of the film deposited in oxygen pressure of 0.13 mbar are 2520 Oe and 870 Oe, respectively.

  15. Strain engineered barium strontium titanate for tunable thin film resonators

    SciTech Connect

    Khassaf, H.; Khakpash, N.; Sun, F.; Sbrockey, N. M.; Tompa, G. S.; Kalkur, T. S.; Alpay, S. P.

    2014-05-19

    Piezoelectric properties of epitaxial (001) barium strontium titanate (BST) films are computed as functions of composition, misfit strain, and temperature using a non-linear thermodynamic model. Results show that through adjusting in-plane strains, a highly adaptive rhombohedral ferroelectric phase can be stabilized at room temperature with outstanding piezoelectric response exceeding those of lead based piezoceramics. Furthermore, by adjusting the composition and the in-plane misfit, an electrically tunable piezoelectric response can be obtained in the paraelectric state. These findings indicate that strain engineered BST films can be utilized in the development of electrically tunable and switchable surface and bulk acoustic wave resonators.

  16. Enhanced flexoelectricity through residual ferroelectricity in barium strontium titanate

    SciTech Connect

    Garten, Lauren M. Trolier-McKinstry, Susan

    2015-03-07

    Residual ferroelectricity is observed in barium strontium titanate ceramics over 30 °C above the global phase transition temperature, in the same temperature range in which anomalously large flexoelectric coefficients are reported. The application of a strain gradient leads to strain gradient-induced poling or flexoelectric poling. This was observed by the development of a remanent polarization in flexoelectric measurements, an induced d{sub 33} piezoelectric response even after the strain gradient was removed, and the production of an internal bias of 9 kV m{sup −1}. It is concluded that residual ferroelectric response considerably enhances the observed flexoelectric response.

  17. Ferroelectric phase transition of individual barium titanate nanowires

    NASA Astrophysics Data System (ADS)

    Spanier, Jonathan E.; Urban, Jeffrey J.; Yun, Wan Soo; Park, Hongkun

    2003-03-01

    Ferroelectric phase transition temperatures (T_c) of individual, single-crystalline barium titanate (BaTiO_3) nanowires are measured as a function of nanowire diameter, and the results are analyzed using a theoretical model based on the Landau-Ginzburg-Devonshire theory. The measurements show that Tc is depressed as the nanowire diameter gets smaller, approaching room temperature when the diameter reaches 3 nm. The theoretical analysis reproduces the scaling relation between the Tc depression and nanowire diameter and provides information about the stability difference between the surface and bulk polarization. This work is supported by NSF.

  18. The barium ion jet experiments of the Porcupine project

    NASA Astrophysics Data System (ADS)

    Haerendel, G.

    1980-06-01

    The injection of a barium plasma from a sounding rocket by the shaped charge technique offers several possibilities that cannot be achieved by conventional releases. This is due to high initial velocities of the atoms of up to 14 km/sec. Most of the the applications are related to the great heights that the ions can reach, but some depend directly on the initial momentum. Typical applications are: tracing at high altitudes, modifications, and alternate Ionization processes. Project Porcupine contributions in this field are summarized.

  19. Nanodielectric system for cryogenic applications: Barium titanate filled polyvinyl alcohol

    SciTech Connect

    Tuncer, Enis; Sauers, Isidor; James, David Randy; Ellis, Alvin R; Duckworth, Robert C

    2008-01-01

    In the current study the focus is on dielectric properties (as a function of frequency and temperature) of a polymeric composite system composed of polyvinyl alcohol and barium titanate nano powder. In the investigations, the temperature range is between 50-295 K, and the frequency range is between $20\\ \\hertz-1\\ \\mega\\hertz$. Polarization and conduction processes are investigated in the linear regime. Dielectric breakdown strengths of samples are also reported. The materials presented have potential to be implemented in cryogenic capacitor or field grading applications.

  20. Radium and barium in the Amazon River system

    SciTech Connect

    Moore, W.S.; Edmond, J.M.

    1984-03-20

    Data for /sup 226/Ra and /sup 228/Ra in the Amazon River system show that the activity of each radium isotope is strongly correlated with barium concentrations. Two trends are apparent, one for rivers which drain shield areas and another for all other rivers. These data suggest that there has been extensive fractionation of U, Th, and Ba during weathering in the Amazon basin. The /sup 226/Ra data fit a flux model for the major ions indicating that /sup 226/Ra behaves conservatively along the main channel of the Amazon River.

  1. CNO and F abundances in the barium star HD 123396

    NASA Astrophysics Data System (ADS)

    Alves-Brito, A.; Karakas, A. I.; Yong, D.; Meléndez, J.; Vásquez, S.

    2011-12-01

    Context. Barium stars are moderately rare, chemically peculiar objects, which are believed to be the result of the pollution of an otherwise normal star by material from an evolved companion on the asymptotic giant branch (AGB). Aims: We aim to derive carbon, nitrogen, oxygen, and fluorine abundances for the first time from the infrared spectra of the barium red giant star HD 123396 to quantitatively test AGB nucleosynthesis models for producing barium stars via mass accretion. Methods: High-resolution and high S/N infrared spectra were obtained using the Phoenix spectrograph mounted at the Gemini South telescope. The abundances were obtained through spectrum synthesis of individual atomic and molecular lines, using the MOOG stellar line analysis program, together with Kurucz's stellar atmosphere models. The analysis was classical, using 1D stellar models and spectral synthesis under the assumption of local thermodynamic equilibrium. Results: We confirm that HD 123396 is a metal-deficient barium star ([Fe/H] = -1.05), with A(C) = 7.88, A(N) = 6.65, A(O) = 7.93, and A(Na) = 5.28 on a logarithmic scale where A(H) = 12, leading to [(C+N)/Fe] ≈ 0.5. The A(CNO) group, as well as the A(Na) abundances, is in excellent agreement with those previously derived for this star using high-resolution optical data. We also found A(F) = 4.16, which implies [F/O] = 0.39, a value that is substantially higher than the F abundances measured in globular clusters of a similar metallicity, noting that there are no F measurements in field stars of comparable metallicity. Conclusions: The observed abundance pattern of the light elements (CNO, F, and Na) recovered here as well as the heavy elements (s-process) studied elsewhere suggest that the surface composition of HD 123396 is well fitted by the predicted abundance pattern of a 1.5 M⊙ AGB model star with Z = 0.001. Thus, the AGB mass transfer hypothesis offers a quantitatively viable framework.

  2. Growth of strontium barium niobate: the liquidus solidus phase diagram

    NASA Astrophysics Data System (ADS)

    Ulex, Michael; Pankrath, Rainer; Betzler, Klaus

    2004-10-01

    The liquidus-solidus phase diagram of strontium barium niobate, Sr xBa 1Nb 2O 6, is determined over the whole existence region of the tetragonal phase. For this purpose, single crystals of various compositions within this range were grown. The compositions of the melts and the grown crystals as well as the corresponding liquidus temperatures were accurately determined. The tetragonal phase was found to exist from a lower limit with the crystal composition x=0.26 to an upper limit of x=0.87. The respective liquidus temperatures vary between 1452 and 1492C.

  3. The effect of barium on perceptions of taste intensity and palatability

    PubMed Central

    Dietsch, Angela M.; Solomon, Nancy Pearl; Steele, Catriona M.; Pelletier, Cathy A.

    2015-01-01

    Purpose Barium may affect the perception of taste intensity and palatability. Such differences are important considerations in the selection of dysphagia assessment strategies and interpretation of results. Methods Eighty healthy women grouped by age (younger, older) and genetic taste status (supertaster, non-taster) rated intensity and palatability for seven tastants prepared in deionized water with and without 40% w/v barium: non-carbonated and carbonated water, diluted ethanol, and high concentrations of citric acid (sour), sodium chloride (salty), caffeine (bitter) and sucrose (sweet). Mixed model analyses explored the effects of barium, taster status, and age on perceived taste intensity and acceptability of stimuli. Results Barium was associated with lower taste intensity ratings for sweet, salty, and bitter tastants, higher taste intensity in carbonated water, and lower palatability in water, sweet, sour, and carbonated water. Older subjects reported lower palatability (all barium samples, sour) and higher taste intensity scores (ethanol, sweet, sour) compared to younger subjects. Supertasters reported higher taste intensity (ethanol, sweet, sour, salty, bitter) and lower palatability (ethanol, salty, bitter) than non-tasters. Refusal rates were highest for younger subjects and supertasters, and for barium (regardless of tastant), bitter, and ethanol. Conclusions Barium suppressed the perceived intensity of some tastes and reduced palatability. These effects are more pronounced in older subjects and supertasters, but younger supertasters are least likely to tolerate trials of barium and strong tastant solutions. PMID:24037100

  4. 75 FR 36629 - Barium Chloride From the People's Republic of China: Continuation of Antidumping Duty Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-28

    ... Five-year (``Sunset'') Review, 74 FR 31412 (July 1, 2009). As a result of its review, the Department... Barium Chloride From China, 75 FR 33824 (June 15, 2010), and Barium Chloride from China (Inv. No. 731-TA... Commerce. DATES: Effective Date: June 28, 2010. SUMMARY: As a result of the determinations by...

  5. The effect of barium on perceptions of taste intensity and palatability.

    PubMed

    Dietsch, Angela M; Solomon, Nancy Pearl; Steele, Catriona M; Pelletier, Cathy A

    2014-02-01

    Barium may affect the perception of taste intensity and palatability. Such differences are important considerations in the selection of dysphagia assessment strategies and interpretation of results. Eighty healthy women grouped by age (younger, older) and genetic taste status (supertaster, nontaster) rated intensity and palatability for seven tastants prepared in deionized water with and without 40 % w/v barium: noncarbonated and carbonated water, diluted ethanol, and high concentrations of citric acid (sour), sodium chloride (salty), caffeine (bitter), and sucrose (sweet). Mixed-model analyses explored the effects of barium, taster status, and age on perceived taste intensity and acceptability of stimuli. Barium was associated with lower taste intensity ratings for sweet, salty, and bitter tastants, higher taste intensity in carbonated water, and lower palatability in water, sweet, sour, and carbonated water. Older subjects reported lower palatability (all barium samples, sour) and higher taste intensity scores (ethanol, sweet, sour) compared to younger subjects. Supertasters reported higher taste intensity (ethanol, sweet, sour, salty, bitter) and lower palatability (ethanol, salty, bitter) than nontasters. Refusal rates were highest for younger subjects and supertasters, and for barium (regardless of tastant), bitter, and ethanol. Barium suppressed the perceived intensity of some tastes and reduced palatability. These effects are more pronounced in older subjects and supertasters, but younger supertasters are least likely to tolerate trials of barium and strong tastant solutions. PMID:24037100

  6. Electrical Behavior of Tb-Mn Substituted Y-Type Hexa-ferrites for High-Frequency Applications

    NASA Astrophysics Data System (ADS)

    Ali, Irshad; Islam, M. U.; Ashiq, Muhammad Naeem; Sadiq, Imran; Khan, M. Azhar; Karamat, Nazia; Ishaque, M.; Murtaza, G.; Shakir, Imran; Ahmad, Zahoor

    2015-04-01

    Single phase nanostructured Tb-Mn substituted Y-type hexaferrites with composition Sr2Co2 -x Mn x Tb y Fe12- y O22 ( x = 0.0-1, y = 0.0-0.1) have been synthesized by the normal microemulsion technique. X-ray diffraction patterns reveal the formation of Y-type hexagonal single phase. The crystallite size, calculated by Scherer's formula, is found in the range of 30-48 nm, which is well suitable for obtaining good signal-to-noise ratio in high density recording media. The enhancement in direct current resistivity has been attributed to the reduction in Fe3+ ions at octahedral sites. The Arrhenius plots show that there are two conduction mechanisms operating in the synthesized materials: in the ferri-region, the conduction is due to electrons, whereas in the para-region, it is due to polaron hopping phenomena. The calculated values of activation energy in the para-region are greater than 0.40 eV, which clearly suggests that the conduction phenomenon is due to hopping of polarons. Variation of dielectric constant with frequency depicts that the dielectric constant initially decreases with increase in frequency, while at higher frequency it decreases slowly. The dielectric results are in agreement with the Maxwell-Wagner model. Both the resonance and relaxation peaks at high frequency have been observed in dielectric loss and tan δ data. It has been noted that such types of peaks appear when hopping frequency becomes equal to that of the external applied field. The high values of resistivity and low dielectric loss make these materials best candidates for high frequency applications.

  7. Semiconductivity in Ba 2Ni 2- xZn xFe 12O 22 Y-type hexaferrites

    NASA Astrophysics Data System (ADS)

    El Hiti, M. A.; Abo El Ata, A. M.

    1999-06-01

    The electric, thermoelectric and magnetic properties were studied as a function of temperature and composition for a series of Ba 2Ni 2- xZn xFe 12O 22 Y-type hexaferrite samples (with x=0, 0.4, 0.8, 1.2, 1.6 and 2) prepared using the usual ceramic technique. The experimental results indicated that the DC electrical conductivity σDC, thermoelectric power α, diff mobility μd, carrier concentration n and initial magnetic permeability μi increase whereas the Fermi energy EF decreases as the temperature increases. α has a negative sign for all samples indicating that the majority of electric charge carriers are electrons. The study of initial magnetic permeability showed two peaks on μi- T curves. The first peak nearly appears at Curie temperature Tc for all samples except for the sample with x=2 while the second peak Ts appears below room temperature for all samples. Tc decreases due to the replacement of non-magnetic Zn 2+ ions to magnetic Ni 2+ ions. μi, activation energies for hopping EH, for carrier generation Eg and for electric conduction ( E 1, E 2 and E3 in regions I, II and III) decreases to reach minimum at x=1.2 and start to increase for x>1.2. Each of σDC, α, n, μd and energy at donor level ED increase as the substitution of non-magnetic Zn 2+ ions to magnetic Ni 2+ ions increase reaching maximum at x=1.2 and start to decreases for x>1.2. The small values of μd and its strong temperature-dependence (exponential relation) indicate that the hopping conduction mechanism is predominant at high temperatures in region III. In region II, the band conduction mechanism shares in electric conduction process beside the hopping conduction mechanism. The band conduction mechanism is predominant in region I.

  8. Evidence against barium in the mushroom Trogia venenata as a cause of sudden unexpected deaths in Yunnan, China.

    PubMed

    Zhang, Ying; Li, Yanchun; Wu, Gang; Feng, Bang; Yoell, Shanze; Yu, Zefen; Zhang, Keqin; Xu, Jianping

    2012-12-01

    This study examined barium concentrations in the mushroom Trogia venenata, the leading culprit for sudden unexpected deaths in Yunnan, southwest China. We found that barium concentrations in T. venenata from Yunnan were low and comparable to other foods, inconsistent with barium concentrations in this mushroom as a significant contributor to these deaths.

  9. Occultation of the ATS-3 satellite by the AVEFRIA barium ion cloud

    SciTech Connect

    Fitzgerald, T.J.; Simons, D.J.; Pongratz, M.B.; Clynch, J.R.

    1981-01-01

    During the AVEFRIA DOS barium release experiment, sponsored by the Los Alamos National Laboratory and the Defense Nuclear Agency in May 1978, the line of sight from one of the ground observation stations to the ATS-3 satellite was occulted by the barium ion cloud for a period of approximately five minutes. Optical measurements of the structured barium ion cloud were made with intensified cameras using the 455.4-nm wavelength fluorescent ion line. These measurements have been related to barium ion column density. During the occultation, the amplitude scintillations of the 136.47-MHz signal from the ATS-3 satellite were monitored. The optical measurements have been used to correlate the barium column density with the total electron content measurements and to calculate the scintillation index, S/sub 4/, and the two dimensional intensity pattern for comparison with the measured amplitude scintillations.

  10. Centrifugal Jet Spinning for Highly Efficient and Large-scale Fabrication of Barium Titanate Nanofibers

    PubMed Central

    Ren, Liyun; Kotha, Shiva P.

    2014-01-01

    The centrifugal jet spinning (CJS) method has been developed to enable large-scale synthesis of barium titanate nanofibers. Barium titanate nanofibers with fiber diameters down to 50 nm and grain sizes around 25 nm were prepared with CJS by spinning a sol-gel solution of barium titanate and poly(vinylpyrrolidone) with subsequent heat treatment at 850 °C. XRD and FTIR analysis demonstrated high purity and tetragonal perovskite structured barium titanate nanofibers. SEM and TEM images confirm the continuous high aspect ratio structure of barium titanate nanofibers after heat treatment. It is demonstrated that the CJS technique offers a highly efficient method for large-scale fabrication of ceramic nanofibers at production rates of up to 0.3 gram/minute. PMID:24563566

  11. Setting process of lime-based conservation mortars with barium hydroxide

    SciTech Connect

    Karatasios, Ioannis . E-mail: ikarat@ims.demokritos.gr; Kilikoglou, Vassilis; Colston, Belinda; Theoulakis, Panagiotis; Watt, David

    2007-06-15

    This paper presents the effect of barium hydroxide on the setting mechanism of lime-based conservation mortars, when used as an additive material. The study focuses on the monitoring of the setting process and the identification of the mineral phases formed, which are essential for furthering the study of the durability of barium mixtures against chemical degradation. X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and thermal analysis (DTA-TG) were used to monitor the setting processes of these mixtures and identify new phases formed. The results suggest that barium hydroxide is evenly distributed within the lime and produces a homogeneous binding material, consisting of calcite (CaCO{sub 3}), witherite (BaCO{sub 3}) and barium-calcium carbonate [BaCa(CO{sub 3}){sub 2}]. Finally, it was found that barium carbonate can be directly bonded to calcitic aggregates and therefore increases its chemical compatibility with the binding material.

  12. Resistance and Protective Immunity in Redfish Lake Sockeye Salmon Exposed to M Type Infectious Hematopoietic Necrosis Virus (IHNV)

    USGS Publications Warehouse

    Kurath, Gael; Garver, Kyle; Purcell, Maureen K.; LaPatra, Scott E.

    2010-01-01

    Differential virulence of infectious hematopoietic necrosis virus (IHNV) isolates from the U and M phylogenetic subgroups is clearly evident in the Redfish Lake (RFL) strain of sockeye salmon Oncorhynchus nerka. In these fish, experimental immersion challenges with U isolates cause extremely high mortality and M isolates cause low or no mortality. When survivors of M virus immersion challenges were exposed to a secondary challenge with virulent U type virus they experienced high mortality, indicating that the primary M challenge did not elicit protective immunity. Delivery of a moderate dose (2 × 104 plaque-forming units [PFU]/fish) of virus by intraperitoneal injection challenge did not overcome RFL sockeye salmon resistance to M type IHNV. Injection challenge with a high dose (5 × 106 PFU/fish) of M type virus caused 10% mortality, and in this case survivors did develop protective immunity against a secondary U type virus challenge. Thus, although it is possible for M type IHNV to elicit cross-protective immunity in this disease model, it does not develop after immersion challenge despite entry, transient replication of M virus to low levels, stimulation of innate immune genes, and development of neutralizing antibodies in some fish.

  13. Hexagonal ferrites of X-, W-, and M-type in the system Sr-Fe-O: A comparative study

    NASA Astrophysics Data System (ADS)

    Töpfer, Jörg; Seifert, Daniela; Le Breton, Jean-Marie; Langenhorst, Falko; Chlan, Vojtech; Kouřil, Karel; Štěpánková, Helena

    2015-03-01

    Three hexagonal ferrites from the Fe-rich part of the pseudo-binary system SrO-Fe2O3 were investigated. Besides the well-known M-type SrFe12O19 two other ferrites were found to exist at high temperatures: W-type SrFe22 + Fe163 + O27 and X-type Sr2 Fe22 + Fe283 + O46 ferrites. A detailed characterization of the X-type Sr-ferrite is reported here for the first time using XRD, HRTEM, magnetization measurements, Mössbauer and 57Fe NMR spectroscopies and ab initio calculations of the electronic structure. The results are compared to those of W- and M-type Sr ferrites. Mössbauer spectra were analyzed with six Fe contributions in the case of the X-type, seven Fe-sites for the W-type and five Fe sites for the M-type in agreement with crystal structure arrangements. Based on a detailed analysis of the NMR spectra in comparison with ab initio calculations the NMR lines were assigned to individual crystal sites. A preferential occupation of ferrous ions in the S blocks of the X- and W-type ferrites was elucidated from Mössbauer and NMR data as well as ab initio calculations.

  14. Tungsten and Barium Transport in the Internal Plasma of Hollow Cathodes

    NASA Technical Reports Server (NTRS)

    Polk, James E.; Mikellides, Ioannis G.; Katz, Ira; Capece, Angela M.

    2008-01-01

    The effect of tungsten erosion, transport and redeposition on the operation of dispenser hollow cathodes was investigated in detailed examinations of the discharge cathode inserts from an 8200 hour and a 30,352 hour ion engine wear test. Erosion and subsequent re-deposition of tungsten in the electron emission zone at the downstream end of the insert reduces the porosity of the tungsten matrix, preventing the flow of barium from the interior. This inhibits the interfacial reactions of the barium-calcium-aluminate impregnant with the tungsten in the pores. A numerical model of barium transport in the internal xenon discharge plasma shows that the barium required to reduce the work function in the emission zone can be supplied from upstream through the gas phase. Barium that flows out of the pores of the tungsten insert is rapidly ionized in the xenon discharge and pushedback to the emitter surface by the electric field and drag from the xenon ion flow. Thisbarium ion flux is sufficient to maintain a barium surface coverage at the downstream endgreater than 0.6, even if local barium production at that point is inhibited by tungsten deposits. The model also shows that the neutral barium pressure exceeds the equilibrium vapor pressure of the impregnant decomposition reaction over much of the insert length,so the reactions are suppressed. Only a small region upstream of the zone blocked by tungsten deposits is active and supplies the required barium. These results indicate that hollowcathode failure models based on barium depletion rates in vacuum dispenser cathodes are very conservative.

  15. Dissolution of Barium from Barite in Sewage Sludges and Cultures of Desulfovibrio desulfuricans

    PubMed Central

    Baldi, F.; Pepi, M.; Burrini, D.; Kniewald, G.; Scali, D.; Lanciotti, E.

    1996-01-01

    High concentrations of total barium, ranging from 0.42 to 1.58 mg(middot)g(sup-1) (dry weight) were found in sludges of two sewage treatment plants near Florence, Italy. Barium concentrations in the suspended matter decreased as redox potential values changed from negative to positive. An anoxic sewage sludge sample was aerated, and 30% of the total barium was removed in 24 h. To demonstrate that barium was solubilized from barite by sulfate-reducing bacteria, a strain of Desulfovibrio desulfuricans was used to study the solubilization of barium from barite under laboratory conditions. During cell growth with different concentrations of barite from 0.01 to 0.3 g(middot)liter(sup-1) (the latter is the MIC) as the only source of sulfates in the cultures, the D. desulfuricans strain accumulated barium up to 0.58 (mu)g(middot)mg(sup-1) (dry weight). Three times the quantity of barium was dissolved by bacteria than in the uninoculated medium (control). The unexpectedly low concentration of soluble barium (1.2 mg of Ba(middot)liter(sup-1)) with respect to the quantity expected (109 mg of Ba(middot)liter(sup-1)), calculated on the basis of the free H(inf2)S evolved from the dissimilatory reduction of sulfate from barite, was probably due to the formation of other barium compounds, such as witherite (BaCO(inf3)) and the transient species barium sulfide (BaS). The D. desulfuricans strain, growing on barite, formed visible aggregates. Confocal microscopy analysis showed that aggregates consisted of bacteria and barite. After 3 days of incubation, several autofluorescent crystals surrounded by a dissolution halo were observed. The crystals were identified as BaS by comparison with the commercial compound. PMID:16535353

  16. Growth of nanofibrous barium carbonate on calcium carbonate seeds

    NASA Astrophysics Data System (ADS)

    Homeijer, Sara J.; Olszta, Matthew J.; Barrett, Richard A.; Gower, Laurie B.

    2008-05-01

    Fibrous barium carbonate (BaCO 3/witherite) crystals 50-100 nm in diameter and several microns in length were grown on calcium carbonate (CaCO 3) seeds at temperatures as low as 4 °C. The BaCO 3 fibers were deposited onto calcite rhombs or CaCO 3 films using the polymer-induced liquid-precursor (PILP) process, which was induced with the sodium salt of polyacrylic acid (PAA). The structure and morphology of the resultant fibers were investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected-area electron diffraction (SAED), and polarized light microscopy (PLM). Fibers were successfully grown on calcite seeds of various morphologies, with a range of barium concentrations, and PAA molecular weight and concentration. Two categories of fibers were grown: straight and twisted. Both types of fibers displayed single-crystalline SAED diffraction patterns, but after examining high-resolution TEM lattice images, it was revealed that the fibers were in fact made up of nanocrystalline domains. We postulate that these nanocrystalline domains are well aligned due to a singular nucleation event (i.e., each fiber propagates from a single nucleation event on the seed crystal) with the nanocrystalline domains resulting from stresses caused by dehydration during crystallization of the highly hydrated precursor phase. These BaCO 3 fibers grown on calcite substrates further illustrate the robustness and non-specificity of the PILP process.

  17. Plasma waves associated with the first AMPTE magnetotail barium release

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Anderson, R. R.; Bernhardt, P. A.; Luehr, H.; Haerendel, G.

    1986-01-01

    Plasma waves observed during the March 21, 1985, AMPTE magnetotail barium release are described. Electron plasma oscillations provided local measurements of the plasma density during both the expansion and decay phases. Immediately after the explosion, the electron density reached a peak of about 400,000/cu cm, and then started decreasing approximately as t to the -2.4 as the cloud expanded. About 6 minutes after the explosion, the electron density suddenly began to increase, reached a secondary peak of about 240/cu cm, and then slowly decayed down to the preevent level over a period of about 15 minutes. The density increase is believed to be caused by the collapse of the ion cloud into the diamagnetic cavity created by the initial expansion. The plasma wave intensities observed during the entire event were quite low. In the diamagnetic cavity, electrostatic emissions were observed near the barium ion plasma frequency, and in another band at lower frequencies. A broadband burst of electrostatic noise was also observed at the boundary of the diamagnetic cavity. Except for electron plasma oscillations, no significant wave activity was observed outside of the diamagnetic cavity.

  18. Results of magnetospheric barium ion cloud experiment of 1971

    NASA Technical Reports Server (NTRS)

    Adamson, D.; Fricke, C. L.; Long, S. A. T.

    1975-01-01

    The barium ion cloud experiment involved the release of about 2 kg of barium at an altitude of 31 482 km, a latitude of 6.926 N., and a longitude of 74.395 W. Significant erosion of plasma from the main ion core occurred during the initial phase of the ion cloud expansion. From the motion of the outermost striational filaments, the electric field components were determined to be 0.19 mV/m in the westerly direction and 0.68 mV/m in the inward direction. The differences between these components and those measured from balloons flown in the proximity of the extremity of the field line through the release point implied the existence of potential gradients along the magnetic field lines. The deceleration of the main core was greater than theoretically predicted. This was attributed to the formation of a polarization wake, resulting in an increase of the area of interaction and resistive dissipation at ionospheric levels. The actual orientation of the magnetic field line through the release point differed by about 10.5 deg from that predicted by magnetic field models that did not include the effect of ring current.

  19. Proton trapping in yttrium-doped barium zirconate.

    PubMed

    Yamazaki, Yoshihiro; Blanc, Frédéric; Okuyama, Yuji; Buannic, Lucienne; Lucio-Vega, Juan C; Grey, Clare P; Haile, Sossina M

    2013-07-01

    The environmental benefits of fuel cells have been increasingly appreciated in recent years. Among candidate electrolytes for solid-oxide fuel cells, yttrium-doped barium zirconate has garnered attention because of its high proton conductivity, particularly in the intermediate-temperature region targeted for cost-effective solid-oxide fuel cell operation, and its excellent chemical stability. However, fundamental questions surrounding the defect chemistry and macroscopic proton transport mechanism of this material remain, especially in regard to the possible role of proton trapping. Here we show, through a combined thermogravimetric and a.c. impedance study, that macroscopic proton transport in yttrium-doped barium zirconate is limited by proton-dopant association (proton trapping). Protons must overcome the association energy, 29 kJ mol(-1), as well as the general activation energy, 16 kJ mol(-1), to achieve long-range transport. Proton nuclear magnetic resonance studies show the presence of two types of proton environment above room temperature, reflecting differences in proton-dopant configurations. This insight motivates efforts to identify suitable alternative dopants with reduced association energies as a route to higher conductivities. PMID:23666383

  20. Proton trapping in yttrium-doped barium zirconate

    NASA Astrophysics Data System (ADS)

    Yamazaki, Yoshihiro; Blanc, Frédéric; Okuyama, Yuji; Buannic, Lucienne; Lucio-Vega, Juan C.; Grey, Clare P.; Haile, Sossina M.

    2013-07-01

    The environmental benefits of fuel cells have been increasingly appreciated in recent years. Among candidate electrolytes for solid-oxide fuel cells, yttrium-doped barium zirconate has garnered attention because of its high proton conductivity, particularly in the intermediate-temperature region targeted for cost-effective solid-oxide fuel cell operation, and its excellent chemical stability. However, fundamental questions surrounding the defect chemistry and macroscopic proton transport mechanism of this material remain, especially in regard to the possible role of proton trapping. Here we show, through a combined thermogravimetric and a.c. impedance study, that macroscopic proton transport in yttrium-doped barium zirconate is limited by proton-dopant association (proton trapping). Protons must overcome the association energy, 29 kJ mol-1, as well as the general activation energy, 16 kJ mol-1, to achieve long-range transport. Proton nuclear magnetic resonance studies show the presence of two types of proton environment above room temperature, reflecting differences in proton-dopant configurations. This insight motivates efforts to identify suitable alternative dopants with reduced association energies as a route to higher conductivities.

  1. Barium titanate core – gold shell nanoparticles for hyperthermia treatments

    PubMed Central

    FarrokhTakin, Elmira; Ciofani, Gianni; Puleo, Gian Luigi; de Vito, Giuseppe; Filippeschi, Carlo; Mazzolai, Barbara; Piazza, Vincenzo; Mattoli, Virgilio

    2013-01-01

    The development of new tools and devices to aid in treating cancer is a hot topic in biomedical research. The practice of using heat (hyperthermia) to treat cancerous lesions has a long history dating back to ancient Greece. With deeper knowledge of the factors that cause cancer and the transmissive window of cells and tissues in the near-infrared region of the electromagnetic spectrum, hyperthermia applications have been able to incorporate the use of lasers. Photothermal therapy has been introduced as a selective and noninvasive treatment for cancer, in which exogenous photothermal agents are exploited to achieve the selective destruction of cancer cells. In this manuscript, we propose applications of barium titanate core–gold shell nanoparticles for hyperthermia treatment against cancer cells. We explored the effect of increasing concentrations of these nanoshells (0–100 μg/mL) on human neuroblastoma SH-SY5Y cells, testing the internalization and intrinsic toxicity and validating the hyperthermic functionality of the particles through near infrared (NIR) laser-induced thermoablation experiments. No significant changes were observed in cell viability up to nanoparticle concentrations of 50 μg/mL. Experiments upon stimulation with an NIR laser revealed the ability of the nanoshells to destroy human neuroblastoma cells. On the basis of these findings, barium titanate core–gold shell nanoparticles resulted in being suitable for hyperthermia treatment, and our results represent a promising first step for subsequent investigations on their applicability in clinical practice. PMID:23847415

  2. Liquid-Phase Processing of Barium Titanate Thin Films

    NASA Astrophysics Data System (ADS)

    Harris, David Thomas

    Processing of thin films introduces strict limits on the thermal budget due to substrate stability and thermal expansion mismatch stresses. Barium titanate serves as a model system for the difficulty in producing high quality thin films because of sensitivity to stress, scale, and crystal quality. Thermal budget restriction leads to reduced crystal quality, density, and grain growth, depressing ferroelectric and nonlinear dielectric properties. Processing of barium titanate is typically performed at temperatures hundreds of degrees above compatibility with metalized substrates. In particular integration with silicon and other low thermal expansion substrates is desirable for reductions in costs and wider availability of technologies. In bulk metal and ceramic systems, sintering behavior has been encouraged by the addition of a liquid forming second phase, improving kinetics and promoting densification and grain growth at lower temperatures. This approach is also widespread in the multilayer ceramic capacitor industry. However only limited exploration of flux processing with refractory thin films has been performed despite offering improved dielectric properties for barium titanate films at lower temperatures. This dissertation explores physical vapor deposition of barium titanate thin films with addition of liquid forming fluxes. Flux systems studied include BaO-B2O3, Bi2O3-BaB2O 4, BaO-V2O5, CuO-BaO-B2O3, and BaO-B2O3 modified by Al, Si, V, and Li. Additions of BaO-B2O3 leads to densification and an increase in average grain size from 50 nm to over 300 nm after annealing at 900 °C. The ability to tune permittivity of the material improved from 20% to 70%. Development of high quality films enables engineering of ferroelectric phase stability using residual thermal expansion mismatch in polycrystalline films. The observed shifts to TC match thermodynamic calculations, expected strain from the thermal expansion coefficients, as well as x-ray diffract measurements

  3. Bio-based barium alginate film: Preparation, flame retardancy and thermal degradation behavior.

    PubMed

    Liu, Yun; Zhang, Chuan-Jie; Zhao, Jin-Chao; Guo, Yi; Zhu, Ping; Wang, De-Yi

    2016-03-30

    A bio-based barium alginate film was prepared via a facile ionic exchange and casting approach. Its flammability, thermal degradation and pyrolysis behaviors, thermal degradation mechanism were studied systemically by limiting oxygen index (LOI), vertical burning (UL-94), microscale combustion calorimetry (MCC), thermogravimetric analysis (TGA) coupled with Fourier transform infrared analysis (FTIR) and pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS). It showed that barium alginate film had much higher LOI value (52.0%) than that of sodium alginate film (24.5%). Moreover, barium alginate film passed the UL-94 V-0 rating, while the sodium alginate film showed no classification. Importantly, peak of heat release rate (PHRR) of barium alginate film in MCC test was much lower than that of sodium alginate film, suggested that introduction of barium ion into alginate film significantly decreased release of combustible gases. TG-FTIR and Py-GC-MS results indicated that barium alginate produced much less flammable products than that of sodium alginate in whole thermal degradation procedure. Finally, a possible degradation mechanism of barium alginate had been proposed.

  4. Bio-based barium alginate film: Preparation, flame retardancy and thermal degradation behavior.

    PubMed

    Liu, Yun; Zhang, Chuan-Jie; Zhao, Jin-Chao; Guo, Yi; Zhu, Ping; Wang, De-Yi

    2016-03-30

    A bio-based barium alginate film was prepared via a facile ionic exchange and casting approach. Its flammability, thermal degradation and pyrolysis behaviors, thermal degradation mechanism were studied systemically by limiting oxygen index (LOI), vertical burning (UL-94), microscale combustion calorimetry (MCC), thermogravimetric analysis (TGA) coupled with Fourier transform infrared analysis (FTIR) and pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS). It showed that barium alginate film had much higher LOI value (52.0%) than that of sodium alginate film (24.5%). Moreover, barium alginate film passed the UL-94 V-0 rating, while the sodium alginate film showed no classification. Importantly, peak of heat release rate (PHRR) of barium alginate film in MCC test was much lower than that of sodium alginate film, suggested that introduction of barium ion into alginate film significantly decreased release of combustible gases. TG-FTIR and Py-GC-MS results indicated that barium alginate produced much less flammable products than that of sodium alginate in whole thermal degradation procedure. Finally, a possible degradation mechanism of barium alginate had been proposed. PMID:26794953

  5. Fabrication and characterization of cerium-doped barium titanate inverse opal by sol-gel method

    SciTech Connect

    Jin Yi; Zhu Yihua Yang Xiaoling; Li Chunzhong; Zhou Jinghong

    2007-01-15

    Cerium-doped barium titanate inverted opal was synthesized from barium acetate contained cerous acetate and tetrabutyl titanate in the interstitial spaces of a polystyrene (PS) opal. This procedure involves infiltration of precursors into the interstices of the PS opal template followed by hydrolytic polycondensation of the precursors to amorphous barium titanate and removal of the PS opal by calcination. The morphologies of opal and inverse opal were characterized by scanning electron microscope (SEM). The pores were characterized by mercury intrusion porosimetry (MIP). X-ray photoelectron spectroscopy (XPS) investigation showed the doping structure of cerium, barium and titanium. And powder X-ray diffraction allows one to observe the influence of doping degree on the grain size. The lattice parameters, crystal size and lattice strain were calculated by the Rietveld refinement method. The synthesis of cerium-doped barium titanate inverted opals provides an opportunity to electrically and optically engineer the photonic band structure and the possibility of developing tunable three-dimensional photonic crystal devices. - Graphical abstract: Cerium-doped barium titanate inverted opal was synthesized from barium acetate acid contained cerous acetate and tetrabutyl titanate in the interstitial spaces of a PS opal, which involves infiltration of precursors into the interstices of the PS opal template and removal of the PS opal by calcination.

  6. The Evolving Mixture of Barium Isotopes in Milky Way Halo Stars

    NASA Astrophysics Data System (ADS)

    Choudhury, Zareen; Kirby, E. N.; Guhathakurta, P.

    2014-01-01

    Heavy metals in stars form through one of two types of neutron capture processes: the rapid r-process or slower s-process. The fraction of odd and even barium isotopes in stars can indicate which process predominantly contributed to a star’s heavy metals, since odd barium isotopes predominantly form through the r-process and even barium isotopes through the s-process. The “stellar model” predicts that older stars contain comparable amounts of odd and even barium isotopes, while the “classical model” states that they almost exclusively contain odd isotopes. This study investigated these competing models by analyzing high-resolution spectra of twelve Milky Way stars. These spectra were analyzed for the first time in this study. To quantify r- and s-process enrichment, we measured the odd barium isotope fraction in the stars by fitting models to the stars’ spectra. Generating models involved measuring the stars’ Doppler shift, resolution, and barium abundance. To reduce error margins we optimized resolution and barium abundance measurements by enhancing existing techniques through several rounds of revisions. Our results support the stellar model of heavy metal enrichment, and our proposed optimizations will enable future researchers to obtain a deeper understanding of chemical enrichment in the Universe. This research was supported by the Science Internship Program at the University of California Santa Cruz, Lick Observatory, and the National Science Foundation.

  7. Weldability of corrosion-resistant high-nitrogen austenitic Kh22AG16N8M-type steels

    NASA Astrophysics Data System (ADS)

    Bannykh, O. A.; Blinov, V. M.; Kostina, M. V.; Blinov, E. V.; Zvereva, T. N.

    2007-10-01

    The influence of thermal treatment on the structures and mechanical properties of welds of corrosion-resistant high-nitrogen austenitic 05Kh22AG16N8M-type steels is studied. In these steels, austenite is found to be highly resistant to discontinuous precipitation and the formation of σ phase and δ ferrite upon cooling regardless of the temperature of heating for quenching (from 900 to 1250°C) and the cooling conditions (water, air, furnace). Welding of these steels can produce high-strength welds with an enhanced impact toughness.

  8. Structural and magnetic properties of La–Co substituted Sr–Ca hexaferrites synthesized by the solid state reaction method

    SciTech Connect

    Yang, Yujie; Liu, Xiansong Jin, Dali; Ma, Yuqi

    2014-11-15

    Graphical abstract: The change of the remanence (B{sub r}) and intrinsic coercivity (H{sub cj}) with La content (x) and Co content (y) of hexagonal ferrite Sr{sub 0.7−x}Ca{sub 0.3}La{sub x}Fe{sub 12−y}Co{sub y}O{sub 19} magnets. - Highlights: • Sr{sub 0.7−x}Ca{sub 0.3}La{sub x}Fe{sub 12−y}Co{sub y}O{sub 19} hexaferrites were synthesized by the solid state reaction method. • B{sub r} continuously increases with increasing dopant contents. • H{sub cb}, H{sub cj} and (BH){sub max} for the magnets first increases and then decreases with an increase in the La–Co contents. - Abstract: Hexagonal ferrite Sr{sub 0.7−x}Ca{sub 0.3}La{sub x}Fe{sub 12−y}Co{sub y}O{sub 19} (x = 0.05–0.50; y = 0.04–0.40) magnetic powders and magnets were synthesized by the solid state reaction method. X-ray diffraction was employed to determine the phase compositions of the magnetic powders. There is a single magnetoplumbite phase in the magnetic powders with the substitution of La (0.05 ≤ x ≤ 0.15) and Co (0.04 ≤ y ≤ 0.12) contents. For the magnetic powders containing La (x ≥ 0.20) and Co (y ≥ 0.16), magnetic impurities begin to appear in the structure. A field emission scanning electron microscope was used to characterize the micrographs of the magnets. The magnets have formed hexagonal structures. Magnetic properties of the magnets were measured by a magnetic properties test instrument. The remanence continuously increases with increasing dopant contents. Whereas, the magnetic induction coercivity, intrinsic coercivity and maximum energy product for the magnets first increases and then decreases with an increase in the La–Co contents.

  9. Imaging diagnosis--duodenobiliary reflux of barium sulfate during esophagogastrography in a dog.

    PubMed

    Shaikh, Layla; Sharma, Ajay; Secrest, Scott

    2015-01-01

    A 4-year-old Australian cattle dog presented for regurgitation, 2 months after duodenal resection and anastomosis for a perforated duodenal ulcer. Duodenobiliary reflux of barium sulfate suspension was detected during fluoroscopic esophagogastrography. Follow-up radiography 2 hours later demonstrated persistence of the barium in the gallbladder and biliary tree. Ultrasonography showed an open sphincter of Oddi but no other morphological abnormalities with the gallbladder or biliary system. No side effects or bloodwork abnormalities were noted. This is the first case report of duodenobiliary reflux of barium in a dog. The pathophysiology of this phenomenon and its incidence and significance in human medicine are discussed.

  10. Using Barium Ions for Heavy-Atom Derivatization and Phasing of Xylanse ll from Trichoderma longibrachiatum

    SciTech Connect

    Moiseeva,N.; Allaire, M.

    2007-01-01

    This paper describes the use of barium chloride to produce a heavy-atom derivative of xylanase II crystals from Trichoderma longibrachiatum, which was obtained either by cocrystallization or soaking. SAD phasing led to interpretable electron-density maps that allowed unambiguous chain tracing. In the best case, with a data set collected at 9.5 keV, 88% of the residues were built, with 83% of the side chains assigned. The barium ions are found to mainly interact with main-chain carbonyl groups and water molecules. It is suggested that barium ions could also be used as a potential anomalous scatterer in the quick cryosoaking procedure for phasing.

  11. Optical-induced absorption tunability of Barium Strontium Titanate film

    NASA Astrophysics Data System (ADS)

    Luo, Chunya; Ji, Jie; Yue, Jin; Rao, Yunkun; Yao, Gang; Li, Dan; Zeng, Ying; Li, Renkui; Xiao, Longsheng; Liu, Xinxing; Yao, Jianquan; Ling, Furi

    2016-10-01

    The absorption tunability of 100 nm thickness of ferroelectric Barium Strontium Titanate (Ba0.5Sr0.5TiO3) thin films with different densities of pumped optical field is measured by terahertz time-domain spectroscopy in the range of 0.2 THz - 1.2 THz at 19 °C. Experimental results show that the absorption coefficient of BST film is approximately at 5000 cm-1-20000 cm-1 in the range of 0.2 THz - 1.2 THz and the absorption coefficient reached up to 16% when we applied the optical field up to 600 mW. The theoretical calculations reveal that increasing photoexcitation fluences is responsible for the increasing of transmission change in the conduction current density cause the absorption coefficient varied.

  12. Impact of vanadium ions in barium borate glass.

    PubMed

    Abdelghany, A M; Hammad, Ahmed H

    2015-02-25

    Combined optical and infrared spectral measurements of prepared barium borate glasses containing different concentrations of V2O5 were carried out. Vanadium containing glasses exhibit extended UV-visible (UV/Vis.) bands when compared with base binary borate glass. UV/Vis. spectrum shows the presence of an unsymmetrical strong UV broad band centered at 214 nm attributed to the presence of unavoidable trace iron impurities within the raw materials used for the preparation of such glass. The calculated direct and indirect optical band gaps are found to decrease with increasing the vanadium content (2.9:137 for indirect and 3.99:2.01 for direct transition). This change was discussed in terms of structural changes in the glass network. Infrared absorption spectra of the glasses reveal the appearance of both triangular and tetrahedral borate units. Electron spin resonance analyses indicate the presence of unpaired species in sufficient quantity to be identified and to confirm the spectral data.

  13. Dielectric behavior of barium modified strontium bismuth titanate ceramic

    SciTech Connect

    Nayak, P.; Badapanda, T.; Anwar, S.; Panigrahi, S.

    2014-04-24

    Barium Modified Strontium Bismuth Titanate(SBT) ceramic with general formula Sr1−xBaxBi4Ti4O15 is prepared by solid state reaction route. The structural analysis of the ceramics was done by X-ray diffraction technique. The X-ray patterns show that all the compositions are of single phase with orthorhombic structure. The temperature dependent dielectric behavior shows that the transition temperature decreases with Ba content but the maximum dielectric constant increases. The decreases of the transition with increase in Ba{sup 2+} ion, may be due to the decrease of orthorhombicity by the incorporation of Ba{sup 2+} ion in SBT lattice.

  14. Dynamics of the CRRES barium releases in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Fuselier, S. A.; Mende, S. B.; Geller, S. P.; Miller, M.; Hoffman, R. A.; Wygant, J. R.; Pongratz, M.; Meredith, N. P.; Anderson, R. R.

    1994-01-01

    The Combined Release and Radiation Effects Satellite (CRRES) G-2, G-3, and G-4 ionized and neutral barium cloud positions are triangulated from ground-based optical data. From the time history of the ionized cloud motion perpendicular to the magnetic field, the late time coupling of the ionized cloud with the collisionless ambient plasma in the magnetosphere is investigated for each of the releases. The coupling of the ionized clouds with the ambient medium is quantitatively consistent with predictions from theory in that the coupling time increases with increasing distance from the Earth. Quantitative comparison with simple theory for the couping time also yields reasonable agreement. Other effects not predicted by the theory are discussed in the context of the observations.

  15. Study on a flexoelectric microphone using barium strontium titanate

    NASA Astrophysics Data System (ADS)

    Kwon, S. R.; Huang, W. B.; Zhang, S. J.; Yuan, F. G.; Jiang, X. N.

    2016-04-01

    In this study, a flexoelectric microphone was, for the first time, designed and fabricated in a bridge structure using barium strontium titanate (Ba0.65Sr0.35TiO3) ceramic and tested afterwards. The prototyped flexoelectric microphone consists of a 1.5 mm  ×  768 μm  ×  50 μm BST bridge structure and a silicon substrate with a cavity. The sensitivity and resonance frequency were designed to be 0.92 pC/Pa and 98.67 kHz, respectively. The signal to noise ratio was measured to be 74 dB. The results demonstrate that the flexoelectric microphone possesses high sensitivity and a wide working frequency range simultaneously, suggesting that flexoelectricity could be an excellent alternative sensing mechanism for microphone applications.

  16. Synthesis, microstructure and dielectric properties of zirconium doped barium titanate

    NASA Astrophysics Data System (ADS)

    Kumar, Rohtash; Asokan, K.; Patnaik, S.; Birajdar, Balaji

    2016-05-01

    We report on synthesis, microstructural and relaxor ferroelectric properties of Zirconium(Zr) doped Barium Titanate (BT) samples with general formula Ba(Ti1-xZrx)O3 (x=0.20, 0.35). These lead-free ceramics were prepared by solid state reaction route. The phase transition behavior and temperature dependent dielectric properties and composition dependent ferroelectric properties were investigated. XRD analysis at room temperature confirms phase purity of the samples. SEM observations revealed retarded grain growth with increasing Zr mole fraction. Dielectric properties of BZT ceramics is influenced significantly by small addition of Zr mole fraction. With increasing Zr mole fraction, dielectric constant decreases while FWHM and frequency dispersion increases. Polarization vs electric field hysteresis measurements reveal ferroelectric relaxor phase at room temperature. The advantages of such substitution maneuvering towards optimizing ferroelectric properties of BaTiO3 are discussed.

  17. Synthesis and optical study of barium magnesium aluminate blue phosphors

    SciTech Connect

    Jeet, Suninder Pandey, O. P.; Sharma, Manoj

    2015-05-15

    Europium doped barium magnesium aluminate (BaMgAl{sub 10}O{sub 17}:Eu{sup 2+}) phosphor was prepared via solution combustion method at 550°C using urea as a fuel. Morphological and optical properties of the prepared sample was studied by X-ray diffraction (XRD), Transmission electron microscopy (TEM) and Photoluminescence spectroscopy (PL). XRD result showed the formation of pure phase BaMgAl{sub 10}O{sub 17}(JCPDS 26-0163) along with an additional phase BaAl{sub 2}O{sub 4}(JCPDS 01-082-1350). TEM image indicated the formation of faceted particles with average particle size 40 nm. From PL spectra, a broad emission band obtained at about 450 nm attributes to 4f{sup 6} 5d → 4f{sup 7} transition of Eu{sup 2+} which lies in the blue region of the visible spectrum.

  18. Barium titanate nanocomposite capacitor FY09 year end report.

    SciTech Connect

    Stevens, Tyler E.; DiAntonio, Christopher Brian; Yang, Pin; Chavez, Tom P.; Winter, Michael R.; Monson, Todd C.; Roesler, Alexander William; Fellows, Benjamin D.

    2009-11-01

    This late start RTBF project started the development of barium titanate (BTO)/glass nanocomposite capacitors for future and emerging energy storage applications. The long term goal of this work is to decrease the size, weight, and cost of ceramic capacitors while increasing their reliability. Ceramic-based nanocomposites have the potential to yield materials with enhanced permittivity, breakdown strength (BDS), and reduced strain, which can increase the energy density of capacitors and increase their shot life. Composites of BTO in glass will limit grain growth during device fabrication (preserving nanoparticle grain size and enhanced properties), resulting in devices with improved density, permittivity, BDS, and shot life. BTO will eliminate the issues associated with Pb toxicity and volatility as well as the variation in energy storage vs. temperature of PZT based devices. During the last six months of FY09 this work focused on developing syntheses for BTO nanoparticles and firing profiles for sintering BTO/glass composite capacitors.

  19. Nonlinear optical properties of calcium barium niobate epitaxial thin films.

    PubMed

    Bancelin, Stéphane; Vigne, Sébastien; Hossain, Nadir; Chaker, Mohammed; Légaré, François

    2016-07-25

    We investigate the potential of epitaxial calcium barium niobate (CBN) thin film grown by pulsed laser deposition for optical frequency conversion. Using second harmonic generation (SHG), we analyze the polarization response of the generated signal to determine the ratios d15 / d32 and d33 / d32 of the three independent components of the second-order nonlinear susceptibility tensor in CBN thin film. In addition, a detailed comparison to the signal intensity obtained in a y-cut quartz allows us to measure the absolute value of these components in CBN thin film: d15 = 5 ± 2 pm / V, d32 = 3.1 ± 0.6 pm / V and d33 = 9 ± 2 pm / V.

  20. A buffer gas cooled beam of barium monohydride

    NASA Astrophysics Data System (ADS)

    Iwata, Geoffrey; Tarallo, Marco; Zelevinsky, Tanya

    2016-05-01

    Significant advances in direct laser cooling of diatomic molecules have opened up a wide array of molecular species to precision studies spanning many-body physics, quantum collisions and ultracold dissociation. We present a cryogenic beam source of barium monohydride (BaH), and study laser ablation of solid precursor targets as well as helium buffer gas cooling dynamics. Additionally, we cover progress towards a molecular magneto-optical trap, with spectroscopic studies of relevant cooling transitions in the B2 Σ <--X2 Σ manifold in laser ablated molecules, including resolution of hyperfine structure and precision measurements of the vibrational Frank-Condon factors. Finally, we examine the feasibility of photo dissociation of trapped BaH molecules to yield optically accessible samples of ultracold hydrogen.

  1. Analysis of barium hydroxide and calcium hydroxide slurry carbonation reactors

    SciTech Connect

    Patch, K.D.; Hart, R.P.; Schumacher, W.A.

    1980-05-01

    The removal of CO/sub 2/ from air was investigated by using a continuous-agitated-slurry carbonation reactor containing either barium hydroxide (Ba(OH)/sub 2/) or calcium hydroxide (Ca(OH)/sub 2/). Such a process would be applied to scrub /sup 14/CO/sub 2/ from stack gases at nuclear-fuel reprocessing plants. Decontamination factors were characterized for reactor conditions which could alter hydrodynamic behavior. An attempt was made to characterize reactor performance with models assuming both plug flow and various degrees of backmixing in the gas phase. The Ba(OH)/sub 2/ slurry enabled increased conversion, but apparently the process was controlled under some conditions by phenomena differing from those observed for carbonation by Ca(OH)/sub 2/. Overall reaction mechanisms are postulated.

  2. Gamma radiation induced darkening in barium gallo-germanate glass.

    PubMed

    Chen, Xiaodong; Heng, Xiaobo; Tang, Guowu; Zhu, Tingting; Sun, Min; Shan, Xiujie; Wen, Xin; Guo, Jingyuan; Qian, Qi; Yang, Zhongmin

    2016-05-01

    Barium gallo-germanate (BGG) glass is an important glass matrix material used for mid-infrared transmission and mid-infrared fiber laser. In this study, we investigated the γ-ray irradiation induced darkening effect of BGG glass. Optical transmittance spectra, electron paramagnetic resonance (EPR) and thermoluminescence (TL) spectra were employed to investigate the γ-ray irradiation induced defects. Two kinds of Ge-related defects in the irradiated BGG glass, named Ge-related non-bridging oxygen hole center (Ge-NBOHC) and Ge-related electron centers (GEC), were verified. In addition, the absorption bands of the two defects have been separated and the peak absorptivity of Ge-NBOHC and GEC defects is at 375 nm and 315 nm, respectively. PMID:27137531

  3. Nonlinear optical properties of calcium barium niobate epitaxial thin films.

    PubMed

    Bancelin, Stéphane; Vigne, Sébastien; Hossain, Nadir; Chaker, Mohammed; Légaré, François

    2016-07-25

    We investigate the potential of epitaxial calcium barium niobate (CBN) thin film grown by pulsed laser deposition for optical frequency conversion. Using second harmonic generation (SHG), we analyze the polarization response of the generated signal to determine the ratios d15 / d32 and d33 / d32 of the three independent components of the second-order nonlinear susceptibility tensor in CBN thin film. In addition, a detailed comparison to the signal intensity obtained in a y-cut quartz allows us to measure the absolute value of these components in CBN thin film: d15 = 5 ± 2 pm / V, d32 = 3.1 ± 0.6 pm / V and d33 = 9 ± 2 pm / V. PMID:27464195

  4. Pulsating aurora induced by upper atmospheric barium releases

    NASA Technical Reports Server (NTRS)

    Deehr, C.; Romick, G.

    1977-01-01

    The paper reports the apparent generation of pulsating aurora by explosive releases of barium vapor near 250 km altitude. This effect occurred only when the explosions were in the path of precipitating electrons associated with the visible aurora. Each explosive charge was a standard 1.5 kg thermite mixture of Ba and CuO with an excess of Ba metal which was vaporized and dispersed by the thermite explosion. Traces of Sr, Na, and Li were added to some of the charges, and monitoring was achieved by ground-based spectrophotometric observations. On March 28, 1976, an increase in emission at 5577 A and at 4278 A was observed in association with the first two bursts, these emissions pulsating with roughly a 10 sec period for approximately 60 to 100 sec after the burst.

  5. Semiclassical analysis of perturbed two-electron states in barium

    NASA Astrophysics Data System (ADS)

    Bates, Kenneth A.

    Recent semiclassical studies of atomic spectra allow new insight into their electron dynamics. The semiclassical closed orbit theory demonstrates the influence of classical orbits in atomic photoabsorption spectra, and has been successfully used for one-electron alkali atoms. Atomic states with one highly-excited electron are known as Rydberg states. If an atom has two valence electrons, and the electrons are treated as independent of each other, then the atom will also have states with two excited electrons. The electrons are not actually independent, so these two different configurations will interact in an atom. If some of the "singly-excited" states occur near the energy of a "doubly-excited" state, then the resulting "perturbed states" are shifted from their hydrogenic positions and have several unusual properties not accounted for by closed orbit theory. We report the first use of closed orbit theory to describe the photoabsorption of perturbed two-electron atomic states. The experimental photoabsorption for two series of perturbed states in barium were measured as a function of electric field. A new extension of semiclassical closed orbit theory was found for perturbed states, using an energy-dependent quantum defect to account for the second valence electron. Scaled energy spectroscopy measurements, a successful analysis technique for one-electron atoms, proved unhelpful when studying perturbed barium states. This demonstrated that perturbed atoms have an important electron-electron interaction term in their Hamiltonian with non-alkali scaling. Our photoabsorption calculations for hydrogen, sodium and cesium verified our experimental calibration and our analysis of atomic core effects. We also show the mathematical equivalence of closed orbit theory and quantum defect theory for modeling the photoabsorption of perturbed atomic states in a field-free environment.

  6. Detection of the White Dwarf Companions of Barium Dwarfs

    NASA Astrophysics Data System (ADS)

    Gray, Richard O.; Corbally, C. J.; Griffin, E.; McGahee, C. E.

    2010-01-01

    The Barium dwarfs are chemically peculiar F- and G-type stars that show enhanced abundances of s-process elements such as strontium and barium. They are believed to have derived their chemical peculiarities via mass transfer from a former AGB companion, now a white dwarf. These WD companions should be detectable in the far-ultraviolet if their effective temperatures exceed 10,000K. However, despite dedicated IUE searches, no WD companion has been directly detected. We have observed 4 Ba dwarfs with the GALEX ultraviolet space telescope (2 newly discovered Ba dwarfs have archival observations), and report here on the first unequivocal direct detection of a WD companion of a Ba dwarf, HD 15306, the hottest Ba dwarf known (F4 V). This WD companion is detected through a clear far-ultraviolet excess. Detection of the putative WD companions of the other observed Ba dwarfs is somewhat more problematical, as those stars have cooler effective temperatures and chromospheric activity can significantly affect their FUV fluxes. The disentanglement of WD FUV fluxes from FUV emission due to chromospheric activity requires comparison of the observed Ba dwarfs with F- and G-type dwarfs with archival GALEX photometry. We have selected a set of 68 F- and G-type dwarfs from the NStars program (Gray et al. 2003, 2006) that have good quality archival GALEX photometry and show a wide range of chromospheric activity. A comparison of these stars with the 5 remaining GALEX-observed Ba dwarfs suggests that one and perhaps two of these Ba dwarfs have detectable WD companions.

  7. Barium and carbon fluxes in the Canadian Arctic Archipelago

    NASA Astrophysics Data System (ADS)

    Thomas, Helmuth; Shadwick, Elizabeth; Dehairs, Frank; Lansard, Bruno; Mucci, Alfonso; Navez, Jacques; Gratton, Yves; Prowe, Friederike; Chierici, Melissa; Fransson, Agneta; Papakyriakou, Tim N.; Sternberg, Erika; Miller, Lisa A.; Tremblay, Jean-ÉRic; Monnin, Christophe

    2011-09-01

    The seasonal and spatial variability of dissolved Barium (Ba) in the Amundsen Gulf, southeastern Beaufort Sea, was monitored over a full year from September 2007 to September 2008. Dissolved Ba displays a nutrient-type behavior: the maximum water column concentration is located below the surface layer. The highest Ba concentrations are typically observed at river mouths, the lowest concentrations are found in water masses of Atlantic origin. Barium concentrations decrease eastward through the Canadian Arctic Archipelago. Barite (BaSO4) saturation is reached at the maximum dissolved Ba concentrations in the subsurface layer, whereas the rest of the water column is undersaturated. A three end-member mixing model comprising freshwater from sea-ice melt and rivers, as well as upper halocline water, is used to establish their relative contributions to the Ba concentrations in the upper water column of the Amundsen Gulf. Based on water column and riverine Ba contributions, we assess the depletion of dissolved Ba by formation and sinking of biologically bound Ba (bio-Ba), from which we derive an estimate of the carbon export production. In the upper 50 m of the water column of the Amundsen Gulf, riverine Ba accounts for up to 15% of the available dissolved Ba inventory, of which up to 20% is depleted by bio-Ba formation and export. Since riverine inputs and Ba export occur concurrently, the seasonal variability of dissolved Ba in the upper water column is moderate. Assuming a fixed organic carbon to bio-Ba flux ratio, carbon export out of the surface layer is estimated at 1.8 ± 0.45 mol C m-2 yr-1. Finally, we propose a climatological carbon budget for the Amundsen Gulf based on recent literature data and our findings, the latter bridging the surface and subsurface water carbon cycles.

  8. Barium and Carbon fluxes in the Canadian Arctic Archipelago

    NASA Astrophysics Data System (ADS)

    Thomas, H.; Shadwick, E. H.; Woule Ebongue, V.; Lansard, B.; Navez, J.; Gratton, Y.; Prowe, F.; Mucci, A.; Chierici, M.; Fransson, A.; Papakyriakou, T. N.; Sternberg, E.; Miller, L. A.

    2010-12-01

    The seasonal and spatial variability of dissolved Barium (Ba) in the Amundsen Gulf, southeastern Beaufort Sea, was monitored over a full year from September 2007 to September 2008. Barium displays a nutrient-type behavior with the highest concentrations observed at river mouths. The water column maximum is located at the base of the surface layer with lower concentrations above and below. The lowest concentrations are found in water masses of Atlantic origin, and Ba concentrations decrease eastward through the Canadian Arctic Archipelago. A three end-member mixing model comprising fresh water from sea-ice melt and rivers, as well as upper halocline water, was used to establish their relative contributions to the surface waters of the Amundsen Gulf. Based on water column and riverine Ba contributions, we assess the Ba depletion by particle sinking and subsequently estimate the carbon export production. In the upper 50 m of the water column of Amundsen Gulf, riverine Ba accounts for up to 15% of the dissolved Ba inventory, whereas up to 20% of the dissolved Ba inventory is depleted by barite (BaSO4) formation and export. Since riverine inputs and Ba export occur concurrently, the seasonal variability of dissolved Ba is moderate. Assuming a fixed organic carbon to barite flux ratio, carbon export out of the surface layer is estimated at 2 mol C m-2 yr-1. Finally, we propose a climatological carbon budget for the Amundsen Gulf based on recent literature data and our findings, the latter bridging the surface and subsurface water carbon cycles. This work is a contribution to the Canadian IPY programs CFL and GEOTRACES, to ArcticNet as well as to the IGBP/IHDP core project LOICZ.

  9. Evolution of CTX-M-type beta-lactamases in isolates of Escherichia coli infecting hospital and community patients.

    PubMed

    Brigante, Gioconda; Luzzaro, Francesco; Perilli, Mariagrazia; Lombardi, Gianluigi; Colì, Alessandra; Rossolini, Gian Maria; Amicosante, Gianfranco; Toniolo, Antonio

    2005-02-01

    Escherichia coli isolates collected at our Institution from 1999 to 2003 (n=20,258) were studied to evaluate the production of CTX-M-type extended-spectrum beta-lactamases (ESBL). Isolates suspected of producing CTX-M enzymes were analyzed by the double-disk synergy test, hybridization with specific probes, PCR and direct DNA sequencing. Overall, 53 ESBL-positive isolates were found to carry CTX-M-type genes (blaCTX-M-1, n=51; blaCTX-M-15, n=2). The isolation of CTX-M-positive strains increased from 1 per year (1999) to 26 per year (2003). The first isolate carrying the blaCTX-M-15 gene appeared in 2003 and was obtained from a patient previously treated with ceftazidime. CTX-M-positive isolates were characterized by multi-drug resistance and were obtained both from inpatients (n=29) and outpatients (n=24). Most patients were over 60-year-old (n=45), had underlying chronic diseases (n=32), and had been hospitalized more than once (n=33). Strains were frequently isolated from the urinary tract, often after recurrent infections. Our study demonstrates that CTX-M-producing isolates are increasing among E. coli strains. Adequate laboratory detection may help in choosing appropriate treatment and in limiting the spread of this resistance trait.

  10. SrFeO amorphous underlayer for fabrication of c-axis perpendicularly orientated strontium hexaferrite films by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Masoudpanah, S. M.; Ong, C. K.

    2013-09-01

    A thin amorphous SrFeO underlayer on Si(100) substrate was pulse laser deposited as an underlayer for the growth of c-axis perpendicularly oriented strontium hexaferrite (SrFe12O19) films. The amorphous SrFeO underlayer was deposited at different temperatures in the range from room temperature to 700 °C, while the SrFe12O19 film was deposited at 700 °C. The SrFe12O19 films exhibited slightly perpendicular magnetic anisotropy by the rather higher coercivities in perpendicular direction (Hc⊥) than those for the in-plane direction (Hc||), due to the c-axis perpendicular orientation. The magnetization and coercivities of the SrFe12O19 film increase, but the magnetic anisotropy (ΔHc=Hc⊥-Hc||) increases firstly and then decreases, as the SrFeO underlayer deposition temperature increases.

  11. Severe acute cholangitis after endoscopic sphincterotomy induced by barium examination: A case report.

    PubMed

    Zhang, Zhen-Hai; Wu, Ya-Guang; Qin, Cheng-Kun; Su, Zhong-Xue; Xu, Jian; Xian, Guo-Zhe; Wu, Shuo-Dong

    2012-10-21

    Endoscopic sphincterotomy (EST) is considered as a possible etiological factor for severe cholangitis. We herein report a case of severe cholangitis after endoscopic sphincterotomy induced by barium examination. An adult male patient presented with epigastric pain was diagnosed as having choledocholithiasis by ultrasonography. EST was performed and the stone was completely cleaned. Barium examination was done 3 d after EST and severe cholangitis appeared 4 h later. The patient was recovered after treated with tienam for 4 d. Barium examination may induce severe cholangitis in patients after EST, although rare, barium examination should be chosen cautiously. Cautions should be also used when EST is performed in patients younger than 50 years to avoid the damage to the sphincter of Oddi.

  12. Numberical simulation of the effects of radially injected barium plasma in the ionosphere

    NASA Technical Reports Server (NTRS)

    Swift, D. W.

    1985-01-01

    The morphology of the ion cloud in the radial shaped charge barium injection was studied. The shape of the ion cloud that remains after the explosive products and neutral barium clears away was examined. The ion cloud which has the configuration of a rimless wagon wheel is shown. The major features are the 2.5 km radius black hole in the center of the cloud, the surrounding ring of barium ion and the spokes of barium ionization radiating away from the center. The cloud shows no evolution after it emerges from the neutral debris and it is concluded that it is formed within 5 seconds of the event. A numerical model is used to calculate the motion of ions and electrons subject to the electrostatic and lorenz forces.

  13. Monte Carlo simulations of the orbital elements and abundances of barium stars

    NASA Astrophysics Data System (ADS)

    Shi, Wei-Bin; Niu, Ping; Zhang, Bo; Liu, Jun-Hong; Peng, Qiu-He

    2003-07-01

    We have carried out a series of Monte Carlo simulations to study the distributions of the orbital elements of normal red giant binary systems and barium stars with the wind accretion model under the condition of total angular momentum conservation. Since barium star systems have evolved from normal red giant binary systems, their distributions of orbital eccentricities and periods exhibit the characteristics of the final orbits of binaries after mass accretion. Our calculations show that in the process of wind accretion and in the mass-losing stage, the system gets bigger, and its orbital period increases, while the orbital eccentricity does not vary much. This can explain the various features in the distributions of the orbital elements of normal red giant binary systems and barium stars, as well as features in the distribution of the heavy-element abundances of barium stars.

  14. 21 CFR 201.304 - Tannic acid and barium enema preparations.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... added to barium enemas to improve X-ray pictures. Tannic acid is capable of causing diminished liver... use in enemas. Tannic acid for rectal use to enhance X-ray visualization is regarded as a new...

  15. 21 CFR 201.304 - Tannic acid and barium enema preparations.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... added to barium enemas to improve X-ray pictures. Tannic acid is capable of causing diminished liver... use in enemas. Tannic acid for rectal use to enhance X-ray visualization is regarded as a new...

  16. 21 CFR 201.304 - Tannic acid and barium enema preparations.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... added to barium enemas to improve X-ray pictures. Tannic acid is capable of causing diminished liver... use in enemas. Tannic acid for rectal use to enhance X-ray visualization is regarded as a new...

  17. 21 CFR 201.304 - Tannic acid and barium enema preparations.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... added to barium enemas to improve X-ray pictures. Tannic acid is capable of causing diminished liver... use in enemas. Tannic acid for rectal use to enhance X-ray visualization is regarded as a new...

  18. 21 CFR 201.304 - Tannic acid and barium enema preparations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... added to barium enemas to improve X-ray pictures. Tannic acid is capable of causing diminished liver... use in enemas. Tannic acid for rectal use to enhance X-ray visualization is regarded as a new...

  19. The value of the preoperative barium-enema examination in the assessment of pelvic masses

    SciTech Connect

    Gedgaudas, R.K.; Kelvin, F.M.; Thompson, W.M.; Rice, R.P.

    1983-03-01

    The value of the barium-enema examination in the assessment of pelvic masses was studied in 44 patients. Findings from those barium-enema examinations and from pathological specimens from 37 patients who had malignant tumors and seven patients who had endometriosis were retrospectively analyzed to determine if the barium-enema examination is useful in differentiating extrinsic lesions with and without invasion of the colon. None of the 12 patients who had extrinsic lesions had any of the criteria that indicated bowel-wall invasion. These criteria included fixation and serrations of the bowel wall in all patients with invasion, and ulceration and fistulizaton in those patients who had complete transmural invasion. In patients with pelvic masses, the preoperative barium-enema examination may be useful to the surgeon in planning surgery and in preparing the patient for the possibility of partial colectomy or colostomy.

  20. A review of environmental characteristics and health effects of barium in public water supplies.

    PubMed

    Kojola, W H; Brenniman, G R; Carnow, B W

    1979-01-01

    A comprehensive review is made of sources, occurrence, removal, health effects and water quality standard of barium in public drinking water supplies. The primary source of naturally occurring barium in drinking water results from the leaching and eroding of this metal from sedimentary rocks into the aquifers of ground water. It is a localized problem in several areas of the United States. The removal of barium from drinking water appears to be most efficiently accomplished utilizing ion exchange softening. Health effects studies are based primarily on animal experimentation. Such effects include stimulation of smooth, striated, and cardiac muscle, elevation of blood pressure, initiation of catecholamine release, rapid and preferential deposition in bone, and excretion principally in the feces. Humans over 60 years of age appear to be at high risk to developing cardiac arrhythmias following the barium enema. The current United States drinking water standard of 1.0 mg/l is based on several faulty assumptions and should be critically reevaluated.

  1. Elevated Z line: a new sign of Barrett's esophagus on double-contrast barium esophagograms.

    PubMed

    Levine, Marc S; Ahmad, Nuzhat A; Rubesin, Stephen E

    2015-01-01

    We describe an elevated Z line as a new radiographic sign of Barrett's esophagus characterized by a transversely oriented, zigzagging, barium-etched line extending completely across the circumference of the midesophagus. An elevated Z line is rarely seen in other patients, so this finding should be highly suggestive of Barrett's esophagus on double-contrast barium esophagograms. If the patient is a potential candidate for surveillance, endoscopy and biopsy should be performed to confirm the presence of Barrett's esophagus.

  2. Photoemission studies with barium and LaB6 photocathodes and polarized laser light

    NASA Astrophysics Data System (ADS)

    Conde, M. E.; Kwon, S. I.; Young, A. T.; Leung, K. N.; Kim, K.-J.

    1994-11-01

    In this paper, presented is a work on the optimization of the performance of barium photocathodes. Studies on the dependence of the quantum yield on the polarization and angle of incidence of the laser beam are conducted. Moreover, studies on single crystal LaB6 photocathodes are reported. This material possesses a lower quantum yield than barium, but chemically it is much less reactive and have a very good thermionic emission characteristics.

  3. Calculations of energy levels and lifetimes of low-lying states of barium and radium

    SciTech Connect

    Dzuba, V. A.; Ginges, J. S. M.

    2006-03-15

    We use the configuration-interaction method and many-body perturbation theory to perform accurate calculations of energy levels, transition amplitudes, and lifetimes of low-lying states of barium and radium. Calculations for radium are needed for the planning of measurements of parity- and time-invariance-violating effects which are strongly enhanced in this atom. Calculations for barium are used to control the accuracy of the calculations.

  4. Barium isotopes in Allende meteorite: evidence against an extinct superheavy element

    SciTech Connect

    Lewis, R.S.; Anders, E.; Shimamura, T.; Lugmair, G.W.

    1983-12-02

    Carbon and chromite fractions from the Allende meteorite that contain isotopically anomalous xenon-131 to xenon-136 (carbonaceous chondrite fission or CCF xenon) at up to 5 x 10/sup 11/ atoms per gram show no detectable isotopic anomalies in barium-130 to barium-138. This rules out the possibility that the CCF xenon was formed by in situ fission of an extinct superheavy element. Apparently the CCF xenon and its carbonaceous carrier are relics from stellar nucleosynthesis.

  5. Barium isotopes in allende meteorite: evidence against an extinct superheavy element.

    PubMed

    Lewis, R S; Anders, E; Shimamura, T; Lugmair, G W

    1983-12-01

    Carbon and chromite fractions from the Allende meteorite that contain isotopically anomalous xenon-131 to xenon-136 (carbonaceous chondrite fission or CCF xenon) at up to 5 x 10(11) atoms per gram show no detectable isotopic anomalies in barium-130 to barium-138. This rules out the possibility that the CCF xenon was formed by in situ fission of an extinct superheavy element. Apparently the CCF xenon and its carbonaceous carrier are relics from stellar nucleosynthesis.

  6. Comparison of the reflectance characteristics of polytetrafluoroethylene and barium sulfate paints

    NASA Technical Reports Server (NTRS)

    Butner, C. L.; Schutt, J. B.; Shai, M. C.

    1984-01-01

    Preliminary results are presented of the directional reflectance measurements taken on two tetrafluorethylene (TFE) paints formulated with silicone binders. Both paints are found to be more Lambertian than barium sulfate paint and pressed powder, although the pigment to binder ratios for barium sulfate and TFE paints are about 133 and 3.3 to 1, respectively. The TFE paints exhibit total visible reflectances above 90 percent and offer surfaces that are not significantly affected by water.

  7. Barium isotopes in Allende meteorite - Evidence against an extinct superheavy element

    NASA Technical Reports Server (NTRS)

    Lewis, R. S.; Anders, E.; Shimamura, T.; Lugmair, G. W.

    1983-01-01

    Carbon and chromite fractions from the Allende meteorite that contain isotopically anomalous xenon-131 to xenon-136 (carbonaceous chondrite fission or CCF xenon) at up to 5 x 10 to the 11th atoms per gram show no detectable isotopic anomalies in barium-130 to barium-138. This rules out the possibility that the CCF xenon was formed by in situ fission of an extinct superheavy element. Apparently the CCF xenon and its carbonaceous carrier are relics from stellar nucleosynthesis.

  8. Comparison of Calcium and Barium Microcapsules as Scaffolds in the Development of Artificial Dermal Papillae.

    PubMed

    Liu, Yang; Lin, Changmin; Zeng, Yang; Li, Haihong; Cai, Bozhi; Huang, Keng; Yuan, Yanping; Li, Yu

    2016-01-01

    This study aimed to develop and evaluate barium and calcium microcapsules as candidates for scaffolding in artificial dermal papilla. Dermal papilla cells (DPCs) were isolated and cultured by one-step collagenase treatment. The DPC-Ba and DPC-Ca microcapsules were prepared by using a specially designed, high-voltage, electric-field droplet generator. Selected microcapsules were assessed for long-term inductive properties with xenotransplantation into Sprague-Dawley rat ears. Both barium and calcium microcapsules maintained xenogenic dermal papilla cells in an immunoisolated environment and induced the formation of hair follicle structures. Calcium microcapsules showed better biocompatibility, permeability, and cell viability in comparison with barium microcapsules. Before 18 weeks, calcium microcapsules gathered together, with no substantial immune response. After 32 weeks, some microcapsules were near inflammatory cells and wrapped with fiber. A few large hair follicles were found. Control samples showed no marked changes at the implantation site. Barium microcapsules were superior to calcium microcapsules in structural and mechanical stability. The cells encapsulated in hydrogel barium microcapsules exhibited higher short-term viability. This study established a model to culture DPCs in 3D culture conditions. Barium microcapsules may be useful in short-term transplantation study. Calcium microcapsules may provide an effective scaffold for the development of artificial dermal papilla.

  9. Comparison of Calcium and Barium Microcapsules as Scaffolds in the Development of Artificial Dermal Papillae

    PubMed Central

    Liu, Yang; Lin, Changmin; Zeng, Yang; Li, Haihong; Cai, Bozhi; Huang, Keng; Yuan, Yanping; Li, Yu

    2016-01-01

    This study aimed to develop and evaluate barium and calcium microcapsules as candidates for scaffolding in artificial dermal papilla. Dermal papilla cells (DPCs) were isolated and cultured by one-step collagenase treatment. The DPC-Ba and DPC-Ca microcapsules were prepared by using a specially designed, high-voltage, electric-field droplet generator. Selected microcapsules were assessed for long-term inductive properties with xenotransplantation into Sprague-Dawley rat ears. Both barium and calcium microcapsules maintained xenogenic dermal papilla cells in an immunoisolated environment and induced the formation of hair follicle structures. Calcium microcapsules showed better biocompatibility, permeability, and cell viability in comparison with barium microcapsules. Before 18 weeks, calcium microcapsules gathered together, with no substantial immune response. After 32 weeks, some microcapsules were near inflammatory cells and wrapped with fiber. A few large hair follicles were found. Control samples showed no marked changes at the implantation site. Barium microcapsules were superior to calcium microcapsules in structural and mechanical stability. The cells encapsulated in hydrogel barium microcapsules exhibited higher short-term viability. This study established a model to culture DPCs in 3D culture conditions. Barium microcapsules may be useful in short-term transplantation study. Calcium microcapsules may provide an effective scaffold for the development of artificial dermal papilla. PMID:27123456

  10. Comparison of Calcium and Barium Microcapsules as Scaffolds in the Development of Artificial Dermal Papillae.

    PubMed

    Liu, Yang; Lin, Changmin; Zeng, Yang; Li, Haihong; Cai, Bozhi; Huang, Keng; Yuan, Yanping; Li, Yu

    2016-01-01

    This study aimed to develop and evaluate barium and calcium microcapsules as candidates for scaffolding in artificial dermal papilla. Dermal papilla cells (DPCs) were isolated and cultured by one-step collagenase treatment. The DPC-Ba and DPC-Ca microcapsules were prepared by using a specially designed, high-voltage, electric-field droplet generator. Selected microcapsules were assessed for long-term inductive properties with xenotransplantation into Sprague-Dawley rat ears. Both barium and calcium microcapsules maintained xenogenic dermal papilla cells in an immunoisolated environment and induced the formation of hair follicle structures. Calcium microcapsules showed better biocompatibility, permeability, and cell viability in comparison with barium microcapsules. Before 18 weeks, calcium microcapsules gathered together, with no substantial immune response. After 32 weeks, some microcapsules were near inflammatory cells and wrapped with fiber. A few large hair follicles were found. Control samples showed no marked changes at the implantation site. Barium microcapsules were superior to calcium microcapsules in structural and mechanical stability. The cells encapsulated in hydrogel barium microcapsules exhibited higher short-term viability. This study established a model to culture DPCs in 3D culture conditions. Barium microcapsules may be useful in short-term transplantation study. Calcium microcapsules may provide an effective scaffold for the development of artificial dermal papilla. PMID:27123456

  11. Barium swallow study in routine clinical practice: a prospective study in patients with chronic cough*,**

    PubMed Central

    Nin, Carlos Shuler; Marchiori, Edson; Irion, Klaus Loureiro; Paludo, Artur de Oliveira; Alves, Giordano Rafael Tronco; Hochhegger, Daniela Reis; Hochhegger, Bruno

    2013-01-01

    OBJECTIVE: To assess the routine use of barium swallow study in patients with chronic cough. METHODS: Between October of 2011 and March of 2012, 95 consecutive patients submitted to chest X-ray due to chronic cough (duration > 8 weeks) were included in the study. For study purposes, additional images were obtained immediately after the oral administration of 5 mL of a 5% barium sulfate suspension. Two radiologists systematically evaluated all of the images in order to identify any pathological changes. Fisher's exact test and the chi-square test for categorical data were used in the comparisons. RESULTS: The images taken immediately after barium swallow revealed significant pathological conditions that were potentially related to chronic cough in 12 (12.6%) of the 95 patients. These conditions, which included diaphragmatic hiatal hernia, esophageal neoplasm, achalasia, esophageal diverticulum, and abnormal esophageal dilatation, were not detected on the images taken without contrast. After appropriate treatment, the symptoms disappeared in 11 (91.6%) of the patients, whereas the treatment was ineffective in 1 (8.4%). We observed no complications related to barium swallow, such as contrast aspiration. CONCLUSIONS: Barium swallow improved the detection of significant radiographic findings related to chronic cough in 11.5% of patients. These initial findings suggest that the routine use of barium swallow can significantly increase the sensitivity of chest X-rays in the detection of chronic cough-related etiologies. PMID:24473762

  12. Characterization of CTX-M-Type Extend-Spectrum β-Lactamase Producing Klebsiella spp. in Kashan, Iran

    PubMed Central

    Afzali, Hasan; Firoozeh, Farzaneh; Amiri, Atena; Moniri, Rezvan; Zibaei, Mohammad

    2015-01-01

    Context: The CTX-M family consists of more than 50 β-lactamases, which are grouped on the basis of sequences into five subtypes including CTX-M-1, CTX-M-2, CTX-M-8, CTX-M-9 and CTX-M-25. Objectives: The current study aimed to detect subtypes of CTX-M extended-spectrum β-lactamases (ESBLs) among ESBL positive Klebsiella isolates from patients in Kashan, Iran. Materials and Methods: A total of 100 clinical isolates of Klebsiella were collected and the isolates, which showed resistance or reduced susceptibility to cefotaxime, ceftazidime and/or aztreonam by the disk diffusion method were selected. These isolates were identified as ESBL-producing isolates by double disk synergy tests using clavulanic acid, cefotaxime, ceftazidime and aztreonam. The blaCTX-M type determinants were identified by the Polymerase Chain Reaction (PCR) method followed by DNA sequencing. Results: Of the 100 Klebsiella isolates, 41 (41%) demonstrated resistance or reduced susceptibility to ceftazidime and/or aztreonam and 35% (n = 35) were ESBL-producers. Twenty-eight (8o%) of the ESBL-producing isolates carried the blaCTX-M type genes. Based on PCR assays and sequencing of blaCTX-M genes, CTX-M-1, CTX-M-2 and CTX-M-9 were identified in 21 (60%), 15 (42%) and nine (34%) of these isolates, respectively (GenBank accession numbers KJ803828-KJ803829). Conclusions: Our study showed that the frequency of blaCTX-M genes among Klebsiella isolates in our region is at an alarming rate. Also, we found a high prevalence of blaCTX-M-1 β-lactamase in Klebsiella isolates in Kashan. PMID:26587221

  13. Supramolecular curcumin-barium prodrugs for formulating with ceramic particles.

    PubMed

    Kamalasanan, Kaladhar; Anupriya; Deepa, M K; Sharma, Chandra P

    2014-10-01

    A simple and stable curcumin-ceramic combined formulation was developed with an aim to improve curcumin stability and release profile in the presence of reactive ceramic particles for potential dental and orthopedic applications. For that, curcumin was complexed with barium (Ba(2+)) to prepare curcumin-barium (BaCur) complex. Upon removal of the unbound curcumin and Ba(2+) by dialysis, a water-soluble BaCur complex was obtained. The complex was showing [M+1](+) peak at 10,000-20,000 with multiple fractionation peaks of MALDI-TOF-MS studies, showed that the complex was a supramolecular multimer. The (1)H NMR and FTIR studies revealed that, divalent Ba(2+) interacted predominantly through di-phenolic groups of curcumin to form an end-to-end complex resulted in supramolecular multimer. The overall crystallinity of the BaCur was lower than curcumin as per XRD analysis. The complexation of Ba(2+) to curcumin did not degrade curcumin as per HPLC studies. The fluorescence spectrum was blue shifted upon Ba(2+) complexation with curcumin. Monodisperse nanoparticles with size less than 200dnm was formed, out of the supramolecular complex upon dialysis, as per DLS, and upon loading into pluronic micelles the size was remaining in similar order of magnitude as per DLS and AFM studies. Stability of the curcumin was improved greater than 50% after complexation with Ba(2+) as per UV/Vis spectroscopy. Loading of the supramloecular nanoparticles into pluronic micelles had further improved the stability of curcumin to approx. 70% in water. These BaCur supramolecule nanoparticles can be considered as a new class of prodrugs with improved solubility and stability. Subsequently, ceramic nanoparticles with varying chemical composition were prepared for changing the material surface reactivity in terms of the increase in, degradability, surface pH and protein adsorption. Further, these ceramic particles were combined with curcumin prodrug formulations and optimized the curcumin release

  14. Defect Chemistry and Microstructure of Complex Perovskite Barium Zinc Niobate

    NASA Astrophysics Data System (ADS)

    Peng, Ping

    1991-02-01

    This dissertation presents a systematic study of the characterization of the phase transitions, microstructures, defects and transport properties of undoped and doped complex perovskite barium zinc niobate (BZN). Complex perovskite BZN is a paraelectric material while its parent material barium titanate is ferroelectric. With codoping of (Zn + 2Nb) into Ti site, BaTiO_3 shows three distinguished features. First, the Curie temperature is lowered; second, the three phase transitions (cubic-tetragonal-orthorhombic-rhombohedral) coalesce; and lastly, the transition becomes diffuse showing a typical 2nd order phase transition compared with 1st order in undoped BaTiO_3. Complex microchemical ordering is another characteristic of BZN. Stoichiometric BZN shows a mixture of two types of ordering schemes. 1:1, 1:2 ordered microdomains and the disordered matrix co-exist. The 1:1 type ordering involves an internal charge imbalance which inhibits the growth of 1:1 type of ordered microdomains. The 1:2 type ordering is consistent with the chemical composition of BZN. These ordering patterns can be modified by either adjustment of the Zn/Nb ratio or by doping. The defect structure of the stoichiometric BZN is closely related to that of BaTiO_3. Stoichiometric BZN is an insulator with wide band gap (~ 3.70 eV). Undoped BZN has a high oxygen vacancy concentration which comes from three possible sources, such as unavoidable acceptor impurities, due to their natural abundance, Zn/Nb ratio uncertainty due to processing limitations, and high temperature ZnO loss due to sintering process. The oxygen vacancy concentration for undoped BZN lays in the neighborhood of 1500 ppm (atm.). The compensation defects for various dopants have also been identified. Both electrons and holes conduct by a small polaron mechanism. Various thermodynamic parameters, such as enthalpies of oxidation and reduction, mass action constants for intrinsic electronic disorder, oxidation and reduction have been

  15. Active experiments in space in conjunction with Skylab. [barium plasma injection experiment and magnetic storm of March 7, 1972

    NASA Technical Reports Server (NTRS)

    Wescott, E. M.

    1974-01-01

    Two papers are presented which relate to the Skylab barium shaped charge experiments. The first describes the L=6.6 OOSIK barium plasma injection experiment and magnetic storm of March 7, 1972. Rocket payload, instrumentation, data reduction methods, geophysical environment at the time of the experiment, and results are given. The second paper presents the observation of an auroral Birkeland current which developed from the distortion of a barium plasma jet during the above experiment.

  16. Barium oxide, calcium oxide, magnesia, and alkali oxide free glass

    DOEpatents

    Lu, Peizhen Kathy; Mahapatra, Manoj Kumar

    2013-09-24

    A glass composition consisting essentially of about 10-45 mole percent of SrO; about 35-75 mole percent SiO.sub.2; one or more compounds from the group of compounds consisting of La.sub.2O.sub.3, Al.sub.2O.sub.3, B.sub.2O.sub.3, and Ni; the La.sub.2O.sub.3 less than about 20 mole percent; the Al.sub.2O.sub.3 less than about 25 mole percent; the B.sub.2O.sub.3 less than about 15 mole percent; and the Ni less than about 5 mole percent. Preferably, the glass is substantially free of barium oxide, calcium oxide, magnesia, and alkali oxide. Preferably, the glass is used as a seal in a solid oxide fuel/electrolyzer cell (SOFC) stack. The SOFC stack comprises a plurality of SOFCs connected by one or more interconnect and manifold materials and sealed by the glass. Preferably, each SOFC comprises an anode, a cathode, and a solid electrolyte.

  17. Barium from a mini r-process in supernovae

    NASA Astrophysics Data System (ADS)

    Heymann, D.

    1983-04-01

    McCulloch and Wasserburg (1978) have reported nonlinear isotopic anomalies in barium for two Ca-Al-rich inclusions of the Allende carbonaceous chondrite, known as EK-1-4-1 and C-1. In an attempt to account for these anomalies, it has been proposed that Ba from an r-process of nucleosynthesis, containing Ba-135 and Ba-137, was injected into the primeval color system but was not totally homogenized. Questions arise in connection with the relations of Xe isotopes in carbonaceous chondrites. This has prompted Heymann and Dziczkaniec (1979, 1980, 1981) to study the formation of r-Xe, r-Kr, and r-Te by the mini r-process which is thought to occur in the O, Ne-rich shells of Type II supernovae. Lee et al. (1979) have studied the formation of r-Ba, r-Nd, and r-Sm by the same process. Certain differences regarding the approaches used by Lee et al. and by Heymann and Dziczkaniec make it necessary to restudy the work of Lee et al. Attention is given to the survival probabilities of nuclear species of interest, taking into accounts the elements Cs, Ba, I, and Xe.

  18. Barium from a mini r-process in supernovae

    NASA Technical Reports Server (NTRS)

    Heymann, D.

    1983-01-01

    McCulloch and Wasserburg (1978) have reported nonlinear isotopic anomalies in barium for two Ca-Al-rich inclusions of the Allende carbonaceous chondrite, known as EK-1-4-1 and C-1. In an attempt to account for these anomalies, it has been proposed that Ba from an r-process of nucleosynthesis, containing Ba-135 and Ba-137, was injected into the primeval color system but was not totally homogenized. Questions arise in connection with the relations of Xe isotopes in carbonaceous chondrites. This has prompted Heymann and Dziczkaniec (1979, 1980, 1981) to study the formation of r-Xe, r-Kr, and r-Te by the mini r-process which is thought to occur in the O, Ne-rich shells of Type II supernovae. Lee et al. (1979) have studied the formation of r-Ba, r-Nd, and r-Sm by the same process. Certain differences regarding the approaches used by Lee et al. and by Heymann and Dziczkaniec make it necessary to restudy the work of Lee et al. Attention is given to the survival probabilities of nuclear species of interest, taking into accounts the elements Cs, Ba, I, and Xe.

  19. Thin film barium strontium titanate ferroelectric varactors for microwave applications

    NASA Astrophysics Data System (ADS)

    Yue, Hailing; Spatz, Devin; Wang, Shu; Shin, Eunsung; Subramanyam, Guru

    2015-11-01

    Analog phase shifters are investigated with a periodic structure that includes Barium Strontium Titanate ferroelectric thin film varactors in shunt or serial connection to the coplanar waveguide transmission line. The phase shift is achieved by applying a DC bias to the varactors and changing the reactance in the circuit. The goal of this paper is to characterize the shunt capacitive varactors regarding the voltage dependence of the capacitance, loss tangent, and insertion losses at different bias voltages. Quality factor analysis is also conducted taking the parasitic effects into account. Repeated measurements show that the capacitance of a single cell is tuned from 0.8pF to 0.2pF under a DC bias of 0-10V while the loss tangent is kept under 0.01 in the frequency range of 0-40GHz. Insertion loss is tuned from -4dB to less than -0.6dB from 0 to 10V with a Figure of Merit of 14 degrees/dB at 10GHz and the total quality factor of the unit cell is around 6.7 to 10 at 10GHz with matched port impedance. By cascading 10-25 single unit cells, the phase shift is expected to reach 360 degrees with minimum insertion loss.

  20. Two new barium sulfonates with pillared layered structures

    NASA Astrophysics Data System (ADS)

    Yang, Jin; Li, Li; Ma, Jian-Fang; Liu, Ying-Ying; Ma, Ji-Cheng

    2006-05-01

    The reactions of BaCl 2·2H 2O with NaHL a and K 3L b (H 2L a=4-hydroxybenzenesulfonic acid, H 3L b=4-hydroxy-5-nitro-1,3-benzenedisulfonic acid) gave two pillared layered coordination polymers: Ba(HL a)(Cl) 1 and KBaL b(H 2O) 32, respectively. The crystal structures were determined by X-ray diffraction method and refined by full-matrix least-squares methods to R=0.0509 and wR=0.1216 using 1455 reflections with I>2 σ( I) for 1; and R=0.0288 and wR=0.0727 using 2661 reflections with I>2 σ( I) for 2. The interesting feature of compound 1 is the coordination actions of chloride anions, which help to form the polymeric layers by bridging barium cations. In compound 2 the Lb3- anion acts as an unusual dodecadente ligand to form a coordination polymer with pillared layered structure.

  1. Two new barium sulfonates with pillared layered structures

    NASA Astrophysics Data System (ADS)

    Yang, Jin; Li, Li; Ma, Jian-Fang; Liu, Ying-Ying; Ma, Ji-Cheng

    2006-08-01

    The reactions of BaCl 2·2H 2O with NaHL a and K 3L b (H 2L a=4-hydroxybenzenesulfonic acid, H 3L b=4-hydroxy-5-nitro-1,3-benzenedisulfonic acid) gave two pillared layered coordination polymers: Ba(HL a)(Cl) 1 and KBaL b(H 2O) 32, respectively. The crystal structures were determined by X-ray diffraction method and refined by full-matrix least-squares methods to R=0.0509 and wR=0.1216 using 1455 reflections with I>2 σ( I) for 1; and R=0.0288 and wR=0.0727 using 2661 reflections with I>2 σ( I) for 2. The interesting feature of compound 1 is the coordination actions of chloride anions, which help to form the polymeric layers by bridging barium cations. In compound 2 the Lb3- anion acts as an unusual dodecadente ligand to form a coordination polymer with pillared layered structure.

  2. Electrical properties of lanthanum doped barium titanate ceramics

    SciTech Connect

    Vijatovic Petrovic, M.M.; Bobic, J.D.; Ramoska, T.; Banys, J.; Stojanovic, B.D.

    2011-10-15

    Pure and lanthanum doped barium titanate (BT) ceramics were prepared by sintering pellets at 1300 deg. C for 8 h, obtained from nanopowders synthesized by the polymeric precursor method. XRD results showed formation of a tetragonal structure. The presence of dopants changed the tetragonal structure to pseudo-cubic. The polygonal grain size was reduced up to 300 nm with addition of lanthanum as a donor dopant. Determined dielectric properties revealed that lanthanum modified BT ceramics possessed a diffused ferroelectric character in comparison with pure BT that is a classical ferroelectric material. In doped BT phase transition temperatures were shifted to lower temperatures and dielectric constant values were much higher than in pure BT. A modified Currie Weiss law was used to explore the connection between the doping level and degree of diffuseness of phase transitions. Impedance spectroscopy measurements were carried out at different temperatures in order to investigate electrical resistivity of materials and appearance of a PTCR effect. - Highlights: {yields} Pure and lanthanum doped BaTiO{sub 3} were prepared by polymeric precursors method. {yields} Change of structure from tetragonal to pseudo-cubic. {yields} Lanthanum as a donor dopant influenced on change of ferro-para phase transition. {yields} The diffuseness factor indicated the formation of diffuse ferroelectric material. {yields} Lanthanum affected on PTCR effect appearance in BT ceramics.

  3. Thermoelectric Properties of Barium Plumbate Doped by Alkaline Earth Oxides

    NASA Astrophysics Data System (ADS)

    Eufrasio, Andreza; Bhatta, Rudra; Pegg, Ian; Dutta, Biprodas

    Ceramic oxides are now being considered as a new class of thermoelectric materials because of their high stability at elevated temperatures. Such materials are especially suitable for use as prospective thermoelectric power generators because high temperatures are encountered in such operations. The present investigation uses barium plumbate (BaPbO3) as the starting material, the thermoelectric properties of which have been altered by judicious cation substitutions. BaPbO3 is known to exhibit metallic properties which may turn semiconducting as a result of compositional changes without precipitating a separate phase and/or altering the basic perovskite crystal structure. Perovskite structures are noted for their large interstitial spaces which can accommodate a large variety of ``impurity'' ions. As BaPbO3 has high electrical conductivity, σ = 2.43x105Ω-1 m-1 at room temperature, its thermopower, S, is relatively low, 23 μV/K, as expected. With a thermal conductivity, k, of 4.83Wm-1K-1, the figure of merit (ZT =S2 σ Tk-1) of BaPbO3 is only 0.01 at T = 300K. The objective of this investigation is to study the variation of thermoelectric properties of BaPbO3 as Ba and Pb ions are systematically substituted by alkaline earth ions.

  4. Properties of barium strontium titanate at millimeter wave frequencies

    SciTech Connect

    Osman, Nurul; Free, Charles

    2015-04-24

    The trend towards using higher millimetre-wave frequencies for communication systems has created a need for accurate characterization of materials to be used at these frequencies. Barium Strontium Titanate (BST) is a ferroelectric material whose permittivity is known to change as a function of applied electric field and have found varieties of application in electronic and communication field. In this work, new data on the properties of BST characterize using the free space technique at frequencies between 145 GHz and 155 GHz for both thick film and bulk samples are presented. The measurement data provided useful information on effective permittivity and loss tangent for all the BST samples. Data on the material transmission, reflection properties as well as loss will also be presented. The outcome of the work shows through practical measurement, that BST has a high permittivity with moderate losses and the results also shows that BST has suitable properties to be used as RAM for high frequency application.

  5. Review on dielectric properties of rare earth doped barium titanate

    NASA Astrophysics Data System (ADS)

    Ismail, Fatin Adila; Osman, Rozana Aina Maulat; Idris, Mohd Sobri

    2016-07-01

    Rare earth doped Barium Titanate (BaTiO3) were studied due to high permittivity, excellent electrical properties and have wide usage in various applications. This paper reviewed on the electrical properties of RE doped BaTiO3 (RE: Lanthanum (La), Erbium (Er), Samarium (Sm), Neodymium (Nd), Cerium (Ce)), processing method, phase transition occurred and solid solution range for complete study. Most of the RE doped BaTiO3 downshifted the Curie temperature (TC). Transition temperature also known as Curie temperature, TC where the ceramics had a transition from ferroelectric to a paraelectric phase. In this review, the dielectric constant of La-doped BaTiO3, Er-doped BaTiO3, Sm-doped BaTiO3, Nd-doped BaTiO3 and Ce-doped BaTiO3 had been proved to increase and the transition temperature or also known as TC also lowered down to room temperature as for all the RE doped BaTiO3 except for Er-doped BaTiO3.

  6. Growth of spherulites of strontium and barium sulfites

    NASA Astrophysics Data System (ADS)

    Matsuno, T.; Koishi, M.

    1989-03-01

    The spherulites of SrSO 3 and BaSO 3 were synthesized in agar-agar gels (0-40°C). The reactants are sodium sulfite and the chloride of the respective metals. Each spherulite consists of fibrous crystals which are arranged minutely in a radial manner from the center. A linear relation was recognized between (mean diameter) 2 and reaction time in the same manner as the CaSO 3 · 0.5H 2O spherulite reported in our previous paper. The slopes of the lines, namely the growth rates of the spherulites, were greater in the order of calcium sulfite > strontium sulfite > barium sulfite. The ratio of (mean diameter) 2/time was dependent upon the concentration of the agar-agar gel (0.5%-2.0%) and the reaction temperature (0-40°C); the ratios decreased linearly with an increase of the gel concentration and increased with an increase of temperature.

  7. Hydrogen diffusion in lead zirconate titanate and barium titanate

    NASA Astrophysics Data System (ADS)

    Alvine, K. J.; Vijayakumar, M.; Bowden, M. E.; Schemer-Kohrn, A. L.; Pitman, S. G.

    2012-08-01

    Hydrogen is a potential clean-burning, next-generation fuel for vehicle and stationary power. Unfortunately, hydrogen is also well known to have serious materials compatibility issues in metals, polymers, and ceramics. Piezoelectric actuator materials proposed for low-cost, high efficiency high-pressure hydrogen internal combustion engines (HICE) are known to degrade rapidly in hydrogen. This limits their potential use and poses challenges for HICE. Hydrogen-induced degradation of piezoelectrics is also an issue for low-pressure hydrogen passivation in ferroelectric random access memory. Currently, there is a lack of data in the literature on hydrogen species diffusion in piezoelectrics in the temperature range appropriate for the HICE as charged via a gaseous route. We present 1HNMR quantification of the local hydrogen species diffusion within lead zirconate titanate and barium titanate on samples charged by exposure to high-pressure gaseous hydrogen ˜32 MPa. Results are discussed in context of theoretically predicted interstitial hydrogen lattice sites and aqueous charging experiments from existing literature.

  8. Nanoscale inhomogeneities in yttrium-barium-copper-oxide (YBCO) superconductors

    NASA Astrophysics Data System (ADS)

    Islam, Zahirul; Sinha, S. K.; Lang, J. C.; Liu, X.; Haskel, D.; Moss, S. C.; Srajer, G.; Veal, B. W.; Wermeille, D.; Lee, D. R.; Haeffner, D. R.; Welp, U.; Wochner, P.

    2004-03-01

    X-ray diffraction studies at the Advanced Photon Source reveal that nanoscale inhomogeneities, electronic or structural in origin, form in yttrium-barium-copper-oxide (YBa_2Cu_3O_6+x) superconductors and coexist with the superconducting (SC) state. Diffuse scattering from these inhomogeneous superstructures is due to atomic displacements with respect to equilibrium lattice sites (Z. Islam et al. Phys. Rev. B 66, 92501 (2002)), that are characterized by a wavevector of the form q=(q_x,0,0), where qx varies with hole doping from 2 unit cells (along shorter Cu-O-Cu direction) for very low doping to 4 unit cells at optimal doping. Interestingly, while these superstructures are 3-dimensionally ordered when the SC state is weakened (e.g., at x=0.4), as the doping increases, they become quasi 1D with correlation lengths comparable to SC coherence lengths in these cuprates. Recent first-principles calculations (D. de Fontaine et al., to be published) for the x=0.63 compound show that atomic displacements consistent with experimental data can be the result of ordering of O vacancies in YBCO. Models for various superstructures and their role in the phase diagram will be discussed.

  9. Abundance analysis of s-process enhanced barium stars

    NASA Astrophysics Data System (ADS)

    Mahanta, Upakul; Karinkuzhi, Drisya; Goswami, Aruna; Duorah, Kalpana

    2016-08-01

    Detailed chemical composition studies of stars with enhanced abundances of neutron-capture elements can provide observational constraints for neutron-capture nucleosynthesis studies and clues for understanding their contribution to the Galactic chemical enrichment. We present abundance results from high-resolution spectral analyses of a sample of four chemically peculiar stars characterized by s-process enhancement. High-Resolution spectra (R ˜42000) of these objects spanning a wavelength range from 4000 to 6800 Å, are taken from the ELODIE archive. We have estimated the stellar atmospheric parameters, the effective temperature Teff, the surface gravity log g, and metallicity [Fe/H] from local thermodynamic equilibrium analysis using model atmospheres. We report estimates of elemental abundances for several neutron-capture elements, Sr, Y, Zr, Ba, La, Ce, Pr, Nd, Sm, Eu and Dy. While HD 49641 and HD 58368 show [Ba/Fe] ≥ 1.16 the other two objects HD 119650 and HD 191010 are found to be mild barium stars with [Ba/Fe] ˜ 0.4. The derived abundances of the elements are interpreted on the basis of existing theories for understanding their origin and evolution.

  10. Hydrogen diffusion in lead zirconate titanate and barium titanate

    SciTech Connect

    Alvine, K. J.; Vijayakumar, M.; Bowden, M. E.; Schemer-Kohrn, A. L.; Pitman, S. G.

    2012-08-28

    Hydrogen is a potential clean-burning, next-generation fuel for vehicle and stationary power. Unfortunately, hydrogen is also well known to have serious materials compatibility issues in metals, polymers, and ceramics. Piezoelectric actuator materials proposed for low-cost, high efficiency high-pressure hydrogen internal combustion engines (HICE) are known to degrade rapidly in hydrogen. This limits their potential use and poses challenges for HICE. Hydrogen-induced degradation of piezoelectrics is also an issue for low-pressure hydrogen passivation in ferroelectric random access memory. Currently, there is a lack of data in the literature on hydrogen species diffusion in piezoelectrics in the temperature range appropriate for the HICE as charged via a gaseous route. We present 1HNMR quantification of the local hydrogen species diffusion within lead zirconate titanate and barium titanate on samples charged by exposure to high-pressure gaseous hydrogen ~32 MPa. We discuss results in the context of theoretically predicted interstitial hydrogen lattice sites and aqueous charging experiments from existing literature.

  11. Barium in landscape components of the western Transbaikal region

    NASA Astrophysics Data System (ADS)

    Kashin, V. K.

    2015-10-01

    Barium concentrations in parent materials, soils, and plants of the forest-steppe, steppe, and dry steppe landscapes of the Transbaikal region have been studied. The average concentration of this element in rocks and soils of this region exceeds its clarke by 1.8-2.1 times. A positive correlation between the contents of Ba in soils, soil-forming rocks, and plants has been found. The concentration of Ba in soils does not correlate with the soil pH and humus content. Distribution patterns of Ba in the soil profiles have been characterized. With respect to the coefficient of the biological uptake by plants, Ba is assigned to the group of low accumulation (0.55-0.65) for mineral soils and of strong accumulation (6.0) for alluvial bog soils. Average concentrations of Ba in the steppe, meadow, and cultivated vegetation of the region are 1.9-2.3 times higher in comparison with the average concentration of this element in plants of the continents. The biological migration of Ba is most active in meadow landscapes, whereas steppe landscapes are characterized by the least active biological migration of this element.

  12. Barium inhibits arsenic-mediated apoptotic cell death in human squamous cell carcinoma cells.

    PubMed

    Yajima, Ichiro; Uemura, Noriyuki; Nizam, Saika; Khalequzzaman, Md; Thang, Nguyen D; Kumasaka, Mayuko Y; Akhand, Anwarul A; Shekhar, Hossain U; Nakajima, Tamie; Kato, Masashi

    2012-06-01

    Our fieldwork showed more than 1 μM (145.1 μg/L) barium in about 3 μM (210.7 μg/L) arsenic-polluted drinking well water (n = 72) in cancer-prone areas in Bangladesh, while the mean concentrations of nine other elements in the water were less than 3 μg/L. The types of cancer include squamous cell carcinomas (SCC). We hypothesized that barium modulates arsenic-mediated biological effects, and we examined the effect of barium (1 μM) on arsenic (3 μM)-mediated apoptotic cell death of human HSC-5 and A431 SCC cells in vitro. Arsenic promoted SCC apoptosis with increased reactive oxygen species (ROS) production and JNK1/2 and caspase-3 activation (apoptotic pathway). In contrast, arsenic also inhibited SCC apoptosis with increased NF-κB activity and X-linked inhibitor of apoptosis protein (XIAP) expression level and decreased JNK activity (antiapoptotic pathway). These results suggest that arsenic bidirectionally promotes apoptotic and antiapoptotic pathways in SCC cells. Interestingly, barium in the presence of arsenic increased NF-κB activity and XIAP expression and decreased JNK activity without affecting ROS production, resulting in the inhibition of the arsenic-mediated apoptotic pathway. Since the anticancer effect of arsenic is mainly dependent on cancer apoptosis, barium-mediated inhibition of arsenic-induced apoptosis may promote progression of SCC in patients in Bangladesh who keep drinking barium and arsenic-polluted water after the development of cancer. Thus, we newly showed that barium in the presence of arsenic might inhibit arsenic-mediated cancer apoptosis with the modulation of the balance between arsenic-mediated promotive and suppressive apoptotic pathways.

  13. Microstructure and magnetic properties of low-temperature sintered CoTi-substituted barium ferrite for LTCC application

    NASA Astrophysics Data System (ADS)

    Chen, Daming; Liu, Yingli; Li, Yuanxun; Zhong, Wenguo; Zhang, Huaiwu

    2011-11-01

    In this article, the influences of the BaCu(B 2O 5) (BCB) additive on sintering behavior, structure and magnetic properties of iron deficient M-type barium ferrite Ba(CoTi) xFe 11.8-2 xO 19 (BaM) have been investigated. It is found that the maximum sintered densities of BaM change from 86% to 94% as the BCB content varies from 1 to 4 wt%. Single-phase BaM can be detected by the XRD analysis in the sample with 3 wt% BCB sintered at 900 °C, and the microstructure is hexagonal platelets with few intragranular pores. This is attributed to the formation of the BCB liquid phase. Meanwhile, the experimental results illuminate that the CoTi ions prefer to occupy the 4f2 and 2b sites and the magnetic properties depend on the amount of CoTi-substitution. In addition, the chemical compatibility between BaM and silver paste is also investigated; it can be seen that BaM is co-fired well with the silver paste and no other second phase is observed. Especially, the 3 wt% BCB-added Ba(CoTi) 0.9Fe 11O 19 sintered at 900 °C has good properties with the sintered density of 4.9 g/cm 3, saturation magnetization of 49.7 emu/g and coercivity of 656.6 Oe. These results indicate that it is cost effective in the production of Low Temperature Co-fired Ceramics (LTCC) multilayer devices.

  14. High pressure–low temperature phase diagram of barium: Simplicity versus complexity

    SciTech Connect

    Desgreniers, Serge; Tse, John S.; Matsuoka, Takahiro; Ohishi, Yasuo

    2015-11-30

    Barium holds a distinctive position among all elements studied upon densification. Indeed, it was the first example shown to violate the long-standing notion that high compression of simple metals should preserve or yield close-packed structures. From modest pressure conditions at room temperature, barium transforms at higher pressures from its simple structures to the extraordinarily complex atomic arrangements of the incommensurate and self-hosting Ba-IV phases. By a detailed mapping of the pressure/temperature structures of barium, we demonstrate the existence of another crystalline arrangement of barium, Ba-VI, at low temperature and high pressure. The simple structure of Ba-VI is unlike that of complex Ba-IV, the phase encountered in a similar pressure range at room temperature. First-principles calculations predict Ba-VI to be stable at high pressure and superconductive. The results illustrate the complexity of the low temperature-high pressure phase diagram of barium and the significant effect of temperature on structural phase transformations.

  15. Fabrication of barium/strontium carbonate coated amorphous carbon nanotubes as an improved field emitter

    NASA Astrophysics Data System (ADS)

    Maity, S.; Jha, A.; Das, N. S.; Chattopadhyay, K. K.

    2013-02-01

    Amorphous carbon nanotubes (aCNTs) were synthesized by a chemical reaction between ferrocene and ammonium chloride at a temperature ˜250 ∘C in an air furnace. As-synthesized aCNTs were coated with the barium/strontium carbonate through a simple chemical process. The coating of barium/strontium carbonate was confirmed by a high resolution transmission electron microscopy, X-ray diffraction, and Fourier transformed infrared spectroscopy. Morphology of the as-prepared samples was studied by field emission scanning electron microscopy. Thermal gravimetric analysis showed that barium/strontium carbonate coated aCNTs are more stable than the pristine aCNTs. As-prepared barium/strontium carbonate coated aCNTs showed significantly improved field emission properties with a turn-on field as low as 2.5 V/μm. The variation of field emission characteristics of the barium/strontium carbonate coated aCNTs with interelectrode distances was also studied.

  16. Chromospherically active stars. 11: Giant with compact hot companions and the barium star scenario

    NASA Technical Reports Server (NTRS)

    Fekel, Francis C.; Henry, Gregory W.; Busby, Michael R.; Eitter, Joseph J.

    1993-01-01

    We have determined spectroscopic orbits for three chromsopherically active giants that have hot compact companions. They are HD 160538 (KO III + wd, P = 904 days), HD 165141 (G8 III + wd, P approximately 5200 days), and HD 185510 (KO III + sdB, P = 20.6619 days). By fitting an IUE spectrum with theoretical models, we find the white dwarf companion of HD 165141 has a temperature of about 35,000 K. Spectral types and rotational velocities have been determined for the three giants and distances have been estimated. These three systems and 39 Ceti are compared with the barium star mass-transfer scenario. The long-period mild barium giant HD 165141 as well as HD 185510 and 39 Ceti, which have relatively short periods and normal abundance giants, appear to be consistent with this scenario. The last binary, HD 160538, a system with apparently near solar abundances, a white dwarf companion, and orbital characteristics similar to many barium stars, demonstrates that the existence of a white dwarf companion is insufficient to produce a barium star. The paucity of systems with confirmed white dwarf companions makes abundance analyses of HD 160538 and HD 165141 of great value in examining the role of metallicity in barium star formation.

  17. Chromospherically active stars. 6: Giants with compact hot companions and the barium star scenario

    NASA Technical Reports Server (NTRS)

    Fekel, Francis C.; Henry, Gregory W.; Busby, Michael R.; Eitter, Joseph J.

    1993-01-01

    We have determined spectroscopic orbits for three chromospherically active giants that have hot compact companions. They are HD 160538 (K0 III + wd, P = 904 days), HD 165141 (G8 III + wd, P approximately 5200 days), and HD 185510 (K0 III + sdB, P = 20.6619 days). By fitting an IUE spectrum with theoretical models, we find the white dwarf companion of HD 165141 has a temperature of about 35000 K. Spectral types and rotational velocities have been determined for the three giants and distances have been estimated. These three systems and 39 Ceti are compared with the barium star mass-transfer scenario. The long-period mild barium giant HD 165141 as well as HD 185510 and 39 Ceti, which have relatively short periods and normal abundance giants, appear to be consistent with this scenario. The last binary, HD 160538, a system with apparently near solar abundances, a white dwarf companion, and orbital characteristics similar to many barium stars, demonstrates that the existence of a white-dwarf companion is insufficient to produce a barium star. The paucity of systems with confirmed white-dwarf companions makes abundance analyses of HD 160538 and HD 165141 of great value in examining the role of metallicity in barium star formation.

  18. The essential role of a poison center in handling an outbreak of barium carbonate poisoning.

    PubMed

    Deng, J F; Jan, I S; Cheng, H S

    1991-04-01

    Acute barium salt poisoning may cause acute hypokalemia and result in respiratory paralysis and ventricular tachyarrhythmias. The early nonspecific gastrointestinal symptoms of barium poisoning due to food contamination could be confused with other benign food poisonings. Early diagnosis and initiation of intensive supportive care is essential. We report an outbreak of acute barium carbonate poisoning, occurring at a family reunion party, which resulted in 9 hospital admissions. All of the victims initially developed nausea, vomiting, abdominal colic, dizziness and watery diarrhea followed by numbness of the face and distal extremities 1-2 h after ingesting fried flour-coated sweet potatoes. The flour was later confirmed to be contaminated with barium carbonate. One person died in the emergency room with a serum potassium level of 0.8 mEq/L. Two other victims developed ventricular tachycardia and respiratory paralysis but completely recovered with the treatment advice provided by the poison center. The poison center was successful in helping to make the correct diagnosis in a timely manner, immediately distribute the treatment protocol, and coordinate the laboratory confirmation of barium carbonate poisoning.

  19. Analysis of flares in the chromosphere and corona of main- and pre-main-sequence M-type stars

    NASA Astrophysics Data System (ADS)

    Crespo-Chacón, I.

    2015-11-01

    This Ph.D. Thesis revolves around flares on main- and pre-main-sequence M-type stars. We use observations in different wavelength ranges with the aim of analysing the effects of flares at different layers of stellar atmospheres. In particular, optical and X-ray observations are used so that we can study how flares affect, respectively, the chromosphere and the corona of stars. In the optical range we carry out a high temporal resolution spectroscopic monitoring of UV Ceti-type stars aimed at detecting non-white-light flares (the most typical kind of solar flares) in stars other than the Sun. With these data we confirm that non-white-light flares are a frequent phenomenon in UV Ceti-type stars, as observed in the Sun. We study and interpret the behaviour of different chromospheric lines during the flares detected on AD Leo. By using a simplified slab model of flares (Jevremović et al. 1998), we are able to determine the physical parameters of the chromospheric flaring plasma (electron density and electron temperature), the temperature of the underlying source, and the surface area covered by the flaring plasma. We also search for possible relationships between the physical parameters of the flaring plasma and other properties such as the flare duration, area, maximum flux and released energy. This work considerably extends the existing sample of stellar flares analysed with good quality spectroscopy in the optical range. In X-rays we take advantage of the great sensitivity, wide energy range, high energy resolution, and continuous time coverage of the EPIC detectors - on-board the XMMNewton satellite - in order to perform time-resolved spectral analysis of coronal flares. In particular, in the UV Ceti-type star CC Eri we study two flares that are weaker than those typically reported in the literature (allowing us to speculate about the role of flares as heating agents of stellar atmospheres); while in the pre-main-sequence M-type star TWA 11B (with no signatures of

  20. Evaluation of antibacterial properties of Barium Zirconate Titanate (BZT) nanoparticle

    PubMed Central

    Mohseni, Simin; Aghayan, Mahdi; Ghorani-Azam, Adel; Behdani, Mohammad; Asoodeh, Ahmad

    2014-01-01

    So far, the antibacterial activity of some organic and inorganic compounds has been studied. Barium zirconate titanate [Ba(ZrxTi1-x)O3] (x = 0.05) nanoparticle is an example of inorganic materials. In vitro studies have provided evidence for the antibacterial activity of this nanoparticle. In the current study, the nano-powder was synthesized by sol-gel method. X-ray diffraction showed that the powder was single-phase and had a perovskite structure at the calcination temperature of 1000 °C. Antibacterial activity of the desired nanoparticle was assessed on two gram-positive (Staphylococcus aureus PTCC1431 and Micrococcus luteus PTCC1625) and two gram-negative (Escherichia coli HP101BA 7601c and clinically isolated Klebsiella pneumoniae) bacteria according to Radial Diffusion Assay (RDA). The results showed that the antibacterial activity of BZT nano-powder on both gram-positive and gram-negative bacteria was acceptable. The minimum inhibitory concentration of this nano-powder was determined. The results showed that MIC values for E. coli, K. pneumoniae, M. luteus and S. aureus were about 2.3 μg/mL, 7.3 μg/mL, 3 μg/mL and 12 μg/mL, respectively. Minimum bactericidal concentration (MBC) was also evaluated and showed that the growth of E. coli, K. pneumoniae, M. luteus and S. aureus could be decreased at 2.3, 14, 3 and 18 μg/mL of BZT. Average log reduction in viable bacteria count in time-kill assay ranged between 6 Log10 cfu/mL to zero after 24 h of incubation with BZT nanoparticle. PMID:25763046

  1. Evaluation of antibacterial properties of Barium Zirconate Titanate (BZT) nanoparticle.

    PubMed

    Mohseni, Simin; Aghayan, Mahdi; Ghorani-Azam, Adel; Behdani, Mohammad; Asoodeh, Ahmad

    2014-01-01

    So far, the antibacterial activity of some organic and inorganic compounds has been studied. Barium zirconate titanate [Ba(ZrxTi₁-x)O₃] (x = 0.05) nanoparticle is an example of inorganic materials. In vitro studies have provided evidence for the antibacterial activity of this nanoparticle. In the current study, the nano-powder was synthesized by sol-gel method. X-ray diffraction showed that the powder was single-phase and had a perovskite structure at the calcination temperature of 1000 °C. Antibacterial activity of the desired nanoparticle was assessed on two gram-positive (Staphylococcus aureus PTCC1431 and Micrococcus luteus PTCC1625) and two gram-negative (Escherichia coli HP101BA 7601c and clinically isolated Klebsiella pneumoniae) bacteria according to Radial Diffusion Assay (RDA). The results showed that the antibacterial activity of BZT nano-powder on both gram-positive and gram-negative bacteria was acceptable. The minimum inhibitory concentration of this nano-powder was determined. The results showed that MIC values for E. coli, K. pneumoniae, M. luteus and S. aureus were about 2.3 μg/mL, 7.3 μg/mL, 3 μg/mL and 12 μg/mL, respectively. Minimum bactericidal concentration (MBC) was also evaluated and showed that the growth of E. coli, K. pneumoniae, M. luteus and S. aureus could be decreased at 2.3, 14, 3 and 18 μg/mL of BZT. Average log reduction in viable bacteria count in time-kill assay ranged between 6 Log₁₀ cfu/mL to zero after 24 h of incubation with BZT nanoparticle.

  2. TWO BARIUM STARS IN THE OPEN CLUSTER NGC 5822

    SciTech Connect

    Katime Santrich, O. J.; Pereira, C. B.; De Castro, D. B. E-mail: claudio@on.br

    2013-08-01

    Open clusters are very useful examples to explain the constraint of the nucleosynthesis process with the luminosities of stars because the distances of the clusters are better known than those of field stars. We carried out a detailed spectroscopic analysis to derive the chemical composition of two red giants in the young open cluster NGC 5822, NGC 5822-2, and NGC 5822-201. We obtained abundances of C, N, O, Na, Mg, Al, Ca, Si, Ti, Ni, Cr, Y, Zr, La, Ce, and Nd. The atmospheric parameters of the studied stars and their chemical abundances were determined using high-resolution optical spectroscopy. We employed the local thermodynamic equilibrium model atmospheres of Kurucz and the spectral analysis code MOOG. The abundances of the light elements were derived using the spectral synthesis technique. We found that NGC 5822-2 and -201 have, respectively, a mean overabundance of the elements created by the s-process, ''s'', with the notation [s/Fe] of 0.77 {+-} 0.12 and 0.83 {+-} 0.05. These values are higher than those for field giants of similar metallicity. We also found that NGC 5822-2 and -201 have, respectively, luminosities of 140 L{sub Sun} and 76 L{sub Sun }, which are much lower than the luminosity of an asymptotic giant branch star. We conclude that NGC 5822-2 and NGC 5822-201 are two new barium stars first identified in the open cluster NGC 5822. The mass transfer hypothesis is the best scenario to explain the observed overabundances.

  3. Wideband and Narrowband Microwave Characteristics of Co/Ti-Substituted M-Type Ca-Hexagonal Ferrite

    NASA Astrophysics Data System (ADS)

    Singh, Charanjeet; Bindra Narang, S.

    2016-10-01

    Polycrystalline M-type CaCo x Ti x Fe(12-2x)O19 (x = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6) hexagonal ferrite compositions, with substitution of Co2+ and Ti4+ ions, have been synthesized by a two-route ceramic method. Vector network analysis was used to measure various microwave and electromagnetic parameters from 8.2 GHz to 12.4 GHz. The microwave shielding effectiveness (SE) due to absorption (SEA) and reflection (SER) was investigated based on S-parameters for the near field, and intrinsic parameters, accompanied by AC conductivity and skin depth, for the far field. The shielding effectiveness was primarily governed by absorption (SEA), and substitution of Co2+ and Ti4+ ions resulted in near- and far-field SEA of 54.85 dB at 10.49 GHz and 63.43 dB at 1.15 (Ω m)-0.5, respectively, for the composition with x = 0.6. The AC conductivity exhibited a monotonic increase with frequency, whereas the skin depth decreased with frequency for all the compositions. The composition with x = 0.6 exhibited a 20-dB wide absorption bandwidth (WAB) of 3.67 GHz and 3.66 GHz for near and far field, respectively. The composition with x = 0.3 showed a 10-dB narrow absorption bandwidth (NAB) of 80 MHz for the far field.

  4. sPLA2 IB induces human podocyte apoptosis via the M-type phospholipase A2 receptor

    PubMed Central

    Pan, Yangbin; Wan, Jianxin; Liu, Yipeng; Yang, Qian; Liang, Wei; Singhal, Pravin C.; Saleem, Moin A.; Ding, Guohua

    2014-01-01

    The M-type phospholipase A2 receptor (PLA2R) is expressed in podocytes in human glomeruli. Group IB secretory phospholipase A2 (sPLA2 IB), which is one of the ligands of the PLA2R, is more highly expressed in chronic renal failure patients than in controls. However, the roles of the PLA2R and sPLA2 IB in the pathogenesis of glomerular diseases are unknown. In the present study, we found that more podocyte apoptosis occurs in the kidneys of patients with higher PLA2R and serum sPLA2 IB levels. In vitro, we demonstrated that human podocyte cells expressed the PLA2R in the cell membrane. After binding with the PLA2R, sPLA2 IB induced podocyte apoptosis in a time- and concentration-dependent manner. sPLA2 IB-induced podocyte PLA2R upregulation was not only associated with increased ERK1/2 and cPLA2α phosphorylation but also displayed enhanced apoptosis. In contrast, PLA2R-silenced human podocytes displayed attenuated apoptosis. sPLA2 IB enhanced podocyte arachidonic acid (AA) content in a dose-dependent manner. These data indicate that sPLA2 IB has the potential to induce human podocyte apoptosis via binding to the PLA2R. The sPLA2 IB-PLA2R interaction stimulated podocyte apoptosis through activating ERK1/2 and cPLA2α and through increasing the podocyte AA content. PMID:25335547

  5. sPLA2 IB induces human podocyte apoptosis via the M-type phospholipase A2 receptor.

    PubMed

    Pan, Yangbin; Wan, Jianxin; Liu, Yipeng; Yang, Qian; Liang, Wei; Singhal, Pravin C; Saleem, Moin A; Ding, Guohua

    2014-01-01

    The M-type phospholipase A2 receptor (PLA2R) is expressed in podocytes in human glomeruli. Group IB secretory phospholipase A2 (sPLA2 IB), which is one of the ligands of the PLA2R, is more highly expressed in chronic renal failure patients than in controls. However, the roles of the PLA2R and sPLA2 IB in the pathogenesis of glomerular diseases are unknown. In the present study, we found that more podocyte apoptosis occurs in the kidneys of patients with higher PLA2R and serum sPLA2 IB levels. In vitro, we demonstrated that human podocyte cells expressed the PLA2R in the cell membrane. After binding with the PLA2R, sPLA2 IB induced podocyte apoptosis in a time- and concentration-dependent manner. sPLA2 IB-induced podocyte PLA2R upregulation was not only associated with increased ERK1/2 and cPLA2α phosphorylation but also displayed enhanced apoptosis. In contrast, PLA2R-silenced human podocytes displayed attenuated apoptosis. sPLA2 IB enhanced podocyte arachidonic acid (AA) content in a dose-dependent manner. These data indicate that sPLA2 IB has the potential to induce human podocyte apoptosis via binding to the PLA2R. The sPLA2 IB-PLA2R interaction stimulated podocyte apoptosis through activating ERK1/2 and cPLA2α and through increasing the podocyte AA content.

  6. Thermomagnetic stability of M-type strontium ferrite (SrFe12O19) particles with different shapes

    NASA Astrophysics Data System (ADS)

    Park, Jihoon; Hong, Yang-Ki; Lee, Woncheol; Kim, Chin-Mo; Choi, Kang-Ryong; An, Sung-Yong; Seo, Jung-Wook; Hur, Kang-Heon

    2016-01-01

    M-type strontium ferrite (SrFe12O19: SrM) with two different shapes were synthesized by a simple and benign process. One is peanut-like shape, and the other is hexagonal platelet. These shapes were controlled by the shape and size of precursor Fe3O4 particles. A mixture of submicron- or nanometer-sized Fe3O4 particles and SrCO3 nanoparticles was calcined to transform to SrM, followed by acid-washing to remove secondary phase from SrM particles. Static magnetic properties, magnetic interactions, and thermomagnetic stability of the SrM particles were studied. The measured saturation magnetization and intrinsic coercivity are 74.2 emu/g and 4431 Oe, respectively, for the peanut-like SrM particles and 73.6 emu/g and 5360 Oe for the hexagonal SrM platelets. The saturation magnetization is close to the theoretical value of 76 emu/g. Both types of SrM show dipolar interactions and good thermomagnetic stability, i.e. α = Δ σ s / σ s = -0.16%/K and β = Δ H ci/ H ci = 0.15%/K for the peanut-like SrM particles and α = -0.12%/K and β = 0.12%/K for the hexagonal SrM platelets. The temperature coefficient of intrinsic coercivity ( β) is positive and magnetization still remains high at 400 K; 60 emu/g for the hexagonal SrM platelets and 50 emu/g for the peanut-like SrM particles. [Figure not available: see fulltext.

  7. Changes in the Small Intestine of a Cat Associated with Barium Sulphate Following Contrast Radiography.

    PubMed

    Igarashi, H; Oishi, M; Ohno, K; Tsuboi, M; Irie, N; Uchida, K; Tsujimoto, H

    2016-01-01

    A 7-year-old neutered male domestic short-haired cat that had undergone contrast radiography of the bowel with barium sulphate after acute episodes of vomiting 2 months previously, was presented with chronic vomiting, anorexia and weight loss. Abdominal radiography and ultrasonography revealed residual contrast enhancement and an obstruction of the small intestine. A contracted and stenosed ileum and distal jejunum were identified by exploratory laparotomy and surgically resected; subsequently, the clinical signs resolved. Histopathological examination of the ileum revealed mucosal ulceration with severe submucosal granulation tissue formation associated with scattered foreign crystalline material. Energy-dispersive X-ray spectroscopy revealed that the crystals contained barium sulphate. This is the first report in animals of the rare complication of barium sulphate incorporation into the gastrointestinal mucosa after contrast radiography.

  8. The review of various synthesis methods of barium titanate with the enhanced dielectric properties

    NASA Astrophysics Data System (ADS)

    More, S. P.; Topare, R. J.

    2016-05-01

    The Barium Titanate is a very well known dielectric ceramic belongs to perovskite structure. It has very wide applications in the field of electronic, electro ceramic, electromechanical and electro-optical applications. Barium Titanate has very high dielectric constant as well as low dielectric loss. Substituted dielectrics are one of the most important technological compounds in modern electro ceramics. Its electrical properties can be tuned flexibly by a simple substitution technique. This has encouraged researchers to select a typical cation to be substituted at cationic sites. In the present paper, the review of various synthesis methods of Barium Titanate compound with the effect of different dopants, the grain size on the dielectric properties at various temperatures is discussed.

  9. Phase transition studies in barium and strontium titanates at microwave frequencies

    NASA Technical Reports Server (NTRS)

    Dahiya, Jai N.

    1993-01-01

    The objectives were the following: to understand the phase transformations in barium and strontium titanates as the crystals go from one temperature to the other; and to study the dielectric behavior of barium and strontium titanate crystals at a microwave frequency of 9.12 GHz and as a function of temperature. Phase transition studies in barium and strontium titanate are conducted using a cylindrical microwave resonant cavity as a probe. The cavity technique is quite successful in establishing the phase changes in these crystals. It appears that dipole relaxation plays an important role in the behavior of the dielectric response of the medium loading the cavity as phase change takes place within the sample. The method of a loaded resonant microwave cavity as applied in this work has proven to be sensitive enough to monitor small phase changes of the cavity medium.

  10. Prompt ionization in the CRIT II barium releases. [Critical Ionization Tests

    NASA Technical Reports Server (NTRS)

    Torbert, R. B.; Kletzing, C. A.; Liou, K.; Rau, D.

    1992-01-01

    Observations of electron and ion distributions inside a fast neutral barium jet in the ionosphere show significant fluxes within 4 km of release, presumably related to beam plasma instability processes involved in the Critical Ionization Velocity (CIV) effect. Electron fluxes exceeding 5 x 10 exp 12/sq cm-str-sec-keV were responsible for ionizing both the streaming barium and ambient oxygen. Resulting ion fluxes seem to be consistent with 1-2 percent ionization of the fast barium, as reported by optical observations, although the extended spatial distribution of the optically observed ions is difficult to reconcile with the in situ observations. When the perpendicular velocity of the neutrals falls below critical values, these processes shut off. Although these observations resemble the earlier Porcupine experimental results (Haerendel, 1982), theoretical understanding of the differences between these data and that of earlier negative experiments is still lacking.

  11. Plasma irregularities caused by cycloid bunching of the CRRES G-2 barium release

    NASA Technical Reports Server (NTRS)

    Bernhardt, P. A.; Huba, J. D.; Pongratz, M. B.; Simons, D. J.; Wolcott, J. H.

    1993-01-01

    The Combined Release and Radiation Effects Satellite (CRRES) spacecraft carried a number of barium thermite canisters for release into the upper atmosphere. The barium release labeled G-2 showed evidence of curved irregularities not aligned with the ambient magnetic field B. The newly discovered curved structures can be explained by a process called cycloid bunching. Cycloid bunching occurs when plasma is created by photoionization of a neutral cloud injected at high velocity perpendicular to B. If the injection velocity is much larger than the expansion speed of the cloud, the ion trail will form a cycloid that has irregularities spaced by the product of the perpendicular injection speed and the ion gyroperiod, Images of the solar-illuminated barium ions are compared with the results of a three-dimensional kinetic simulation. Cycloid bunching is shown to be responsible for the rapid generation of both curved and field-aligned irregularities in the CRRES G-2 experiment.

  12. Observation and theory of the barium releases from the CRRES satellite

    NASA Technical Reports Server (NTRS)

    Bernhardt, P. A.; Huba, J. D.; Scales, W. A.; Wescott, E. M.; Stenbaek-Nielsen, H. C.

    1992-01-01

    The relationship between releases of barium from the NASA Combined Release and Radiation Effects Satellite (CRRES) and enhanced auroral activity is discussed with reference to observational data. Barium releases were conducted at a variety of altitudes and injection velocities, and plasma irregularities are reported as a result of the interactions. Auroral activity increased within 5 min of each release, and references are made to the effects on diamagnetic cavities, bulk ion motion, and stimulated electron and ion precipitation. Artificially created structured diamagnetic cavities are noted for each release, plasma waves are generated by the high-speed ion clouds, and enhanced ionization is found in the critical ionization-velocity process. Barium releases are effective in stimulating electron precipitation, and the observed irregularities are related to cycloid bunching of the initial ion distributions.

  13. Measurements of barium photocathode quantum yields at four excimer laser wavelengths

    SciTech Connect

    Van Loy, M.D.; Young, A.T.; Leung, K.N.

    1992-06-01

    The electron quantum yields from barium cathodes excited by excimer laser radiation at 193, 248, 308, and 351 nm have been determined. Experiments with different cathode surface preparation techniques reveal that deposition of barium film a few microns thick on a clean copper surface under moderate vacuum conditions achieves relatively high quantum efficiencies. Quantum yields measured from surfaces prepared in this manner are 2.3 x 10{sup -3} at 193 nm, 7.6 x 10{sup - 4} at 248 nm, 6.1 x 10{sup -4} at 308 nm, and 4.0 x 10{sup -4} at 351 nm. Other preparation techniques, such as laser cleaning of a solid barium surface, produced quantum yields that were at least an order of magnitude lower than these values.

  14. The L equals 6.7 quiet time barium shaped charge injection experiment 'Chachalaca'

    NASA Technical Reports Server (NTRS)

    Wescott, E. M.; Stenbaek-Nielsen, H. C.; Davis, T. N.; Rieger, E. P.; Peek, H. M.; Bottoms, P. J.

    1975-01-01

    Near dawn on October 9, 1972, UT, a barium plasma injection experiment was carried out from Poker Flat, Alaska, during quiet magnetic conditions (Kp equals 1+). The visible plasma flux tube produced was more diffuse than the flux tubes in previous experiments, but it could be tracked for 30 min out to an altitude of 2.5 earth radii. The flux tube remained integral for about 20 min, when a single striation separated from the main streak. Comparisons of the observed flux tube orientation with theoretical field models show no significant deviations ascribable to field-aligned currents. Cross-field drift rates of the foot of the flux tube indicate an E field of approximately 7 mV/m at 200-km altitude. Although an attempt was made via a jet aircraft flight, barium ions were not detected in the southern conjugate region. No energetic particle precipitation phenomena were observed which could be ascribed to the barium plasma injection.

  15. Highly aligned arrays of high aspect ratio barium titanate nanowires via hydrothermal synthesis

    SciTech Connect

    Bowland, Christopher C.; Zhou, Zhi; Malakooti, Mohammad H.; Sodano, Henry A.

    2015-06-01

    We report on the development of a hydrothermal synthesis procedure that results in the growth of highly aligned arrays of high aspect ratio barium titanate nanowires. Using a multiple step, scalable hydrothermal reaction, a textured titanium dioxide film is deposited on titanium foil upon which highly aligned nanowires are grown via homoepitaxy and converted to barium titanate. Scanning electron microscope images clearly illustrate the effect the textured film has on the degree of orientation of the nanowires. The alignment of nanowires is quantified by calculating the Herman's Orientation Factor, which reveals a 58% improvement in orientation as compared to growth in the absence of the textured film. The ferroelectric properties of barium titanate combined with the development of this scalable growth procedure provide a powerful route towards increasing the efficiency and performance of nanowire-based devices in future real-world applications such as sensing and power harvesting.

  16. Barium isotopes in individual presolar silicon carbide grains from the Murchison meteorite.

    SciTech Connect

    Savina, M. R.; Davis, A. M.; Tripa, C. E.; Pellin, M. J.; Clayton, R. N.; Lewis, R. S.; Amari, S.; Gallino, R.; Lugaro, M.; Univ. of Chicago; Washington Univ.; Univ. di Torino; Cambridge Univ.

    2003-09-01

    Barium isotopic compositions of single 2.3-5.3 {mu}m presolar SiC grains from the Murchison meteorite were measured by resonant ionization mass spectrometry. Mainstream SiC grains are enriched in s-process barium and show a spread in isotopic composition from solar to dominantly s-process. In the relatively coarse grain size fraction analyzed, there are large grain-to-grain variations of barium isotopic composition. Comparison of single grain data with models of nucleosynthesis in asymptotic giant branch (AGB) stars indicates that the grains most likely come from low mass carbon-rich AGB stars (1.5 to 3 solar masses) of about solar metallicity and with approximately solar initial proportions of r- and s-process isotopes. Measurements of single grains imply a wide variety of neutron-to-seed ratios, in agreement with previous measurements of strontium, zirconium and molybdenum isotopic compositions of single presolar SiC grains.

  17. Individual-specific transgenerational marking of fish populations based on a barium dual-isotope procedure.

    PubMed

    Huelga-Suarez, Gonzalo; Moldovan, Mariella; Garcia-Valiente, America; Garcia-Vazquez, Eva; Alonso, J Ignacio Garcia

    2012-01-01

    The present study focuses on the development and evaluation of an individual-specific transgenerational marking procedure using two enriched barium isotopes, (135)Ba and (137)Ba, mixed at a given and selectable molar ratio. The method is based on the deconvolution of the isotope patterns found in the sample into four molar contribution factors: natural xenon (Xe nat), natural barium (Ba nat), Ba135, and Ba137. The ratio of molar contributions between Ba137 and Ba135 is constant and independent of the contribution of natural barium in the sample. This procedure was tested in brown trout ( Salmo trutta ) kept in captivity. Trout were injected with three different Ba137/Ba135 isotopic signatures ca. 7 months and 7 days before spawning to compare the efficiency of the marking procedure at long and short term, respectively. The barium isotopic profiles were measured in the offspring by means of inductively coupled plasma mass spectrometry. Each of the three different isotopic signatures was unequivocally identified in the offspring in both whole eggs and larvae. For 9 month old offspring, the characteristic barium isotope signatures could also be detected in the otoliths even in the presence of a high and variable amount of barium of natural isotope abundance. In conclusion, it can be stated that the proposed dual-isotope marking is inheritable and can be detected after both long-term and short-term marking. Furthermore, the dual-isotope marking can be made individual-specific, so that it allows identification of offspring from a single individual or a group of individuals within a given fish group.

  18. Barium hydrogen phosphate/gelatin composites versus gelatin-free barium hydrogen phosphate: synthesis and characterization of properties.

    PubMed

    Gashti, Mazeyar Parvinzadeh; Burgener, Matthias; Stir, Manuela; Hulliger, Jürg

    2014-10-01

    Recently, attention has been spent on crystal growth of phosphate compounds in gels for studying the mechanism of in vitro crystallization processes. Here, we present a gel-based approach for the synthesis of barium hydrogen phosphate (BHP) crystals using single and double diffusion techniques in gelatin. The composite crystals were compared with analytical grade BHP powder, single and polycrystalline BHP materials using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), scanning pyroelectric microscopy (SPEM), optical microscopy (OM), thermal gravimetric analysis (TGA) and X-ray diffraction (XRD). FTIR spectra showed surface adsorption of gelatin molecules by using BHP stacked sheets due to CH2 stretching, CH2 bending and amide I vibrations are found in a gelatin content of about 2% determined by dissolution. SEM shows various crystal morphologies of the BHP/gelatin composites forming bundled micro-flakes to irregular bundled needles and spheres different from gel-free crystals. The variety in morphology depends on the ion concentration, pH of gel as well as the method of crystal growth. SPEM investigation of BHP/gelatin aggregates revealed polar domains showing alteration of the polarization. Moreover, BHP/gelatin composite crystals showed a higher thermal stability in comparison with analytical grade BHP or/and BHP single crystals due to strong interactions between gelatin and BHP. The XRD diffraction analysis demonstrated that the single and double diffusion techniques in gelatin led to the formation of orthorhombic BHP. This study demonstrates that gelatin is a useful high molecular weight biomacromolecule for controlling the crystallization of a composite material by producing a variety of morphological forms. PMID:24996024

  19. Histopathological and microanalytical study of zirconium dioxide and barium sulphate in bone cement.

    PubMed Central

    Keen, C. E.; Philip, G.; Brady, K.; Spencer, J. D.; Levison, D. A.

    1992-01-01

    AIMS: To report the appearances of zirconium dioxide and barium sulphate in interface membranes, synovium, and other tissues around joint prostheses. METHODS: Histological sections from 23 specimens were reviewed by light microscopy and polarisation. Scanning electron microscopy and x ray microanalysis were performed on routinely processed paraffin wax sections. RESULTS: Polyethylene, metals, and polymethylmethacrylate cement debris were easily recognisable. Almost all the cement remnants contained either zirconium dioxide or barium sulphate, confirmed by microanalysis. The contrast media had characteristic light microscopic appearances. Zirconium was identified in macrophages away from cement remnants. CONCLUSION: The presence of radiographic contrast media in tissues around prosthetic joints is common but not widely recognised. Images PMID:1452794

  20. ION-EXCHANGE METHOD FOR SEPARATING RADIUM FROM RADIUM-BARIUM MIXTURES

    DOEpatents

    Fuentevilla, M.E.

    1959-06-30

    An improved process is presented for separating radium from an aqueous feed solution containing radium and barium values and a complexing agent for these metals. In this process a feed solutlon containing radium and barium ions and a complexing agent for said ions ls cycled through an exchange zone in resins. The radiumenriched resin is then stripped of radium values to form a regeneration liquid, a portion of which is collected as an enriched product, the remaining portion being recycled to the exchange zone to further enrich the ion exchange resin in radium.

  1. Physical states and properties of barium titanate films in a plane electric field

    NASA Astrophysics Data System (ADS)

    Shirokov, V. B.; Kalinchuk, V. V.; Shakhovoi, R. A.; Yuzyuk, Yu. I.

    2016-07-01

    The influence of a plane electric field on the phase states of barium titanate thin films under the conditions of forced deformation has been studied. The field dependence of a complete set of material constants has been taken in the region of the c-phase, where polarization losses are absent. The material constants are calculated using equations of the piezoelectric effect derived by linearizing the nonlinear equations of state from the phenomenological; theory for barium titanate. It has been shown that there is a critical value of the field at which the electromechanical coupling coefficient reaches a maximum.

  2. Electron quantum yields from a barium photocathode illuminated with polarized light

    SciTech Connect

    Conde, M.E.; Chattopadhyay, S.; Kim, K.J.; Kwon, S.I.; Leung, K.N.; Young, A.T.

    1993-05-01

    Photoemission measurements with a barium photo-cathode and a nitrogen laser are reported. The cathode is prepared by evaporating barium onto a copper disc. Radiation from a nitrogen laser (337 nm, 10 ns) is polarized and strikes the cathode surface at variable angles. An electron quantum yield as high as 1 {times} 10{sup {minus}3} is observed. The dependence of the quantum yield on the beam polarization and angle of incidence is investigated. The results indicate that higher quantum yields are achieved when the laser beam is incident at an angle of {approximately}55{degree} and is polarized perpendicular to the plane of incidence.

  3. Photocurrent Characteristics of Mn-Doped Barium Titanate Ferroelectric Single Crystals

    NASA Astrophysics Data System (ADS)

    Inoue, Ryotaro; Ishikawa, Shotaro; Kitanaka, Yuuki; Oguchi, Takeshi; Noguchi, Yuji; Miyayama, Masaru

    2013-09-01

    We investigated the photocurrent characteristics of ferroelectric single crystals of nondoped barium titanate (BT) and Mn-doped barium titanate (Mn-BT). The introduction of 90° domain structures into the BT crystals markedly increased the photocurrent, which suggests that the separation of photoinduced carriers is significantly enhanced around 90° domain walls (DWs). The Mn doping led to a drastic increase in photocurrent, with a photon energy less than the band gap. Density functional theory calculations show that the large photocurrent observed for the Mn-BT crystals originates from the electron excitation from the O 2p valence band to the Mn eg defect level followed by carrier (hole) injection.

  4. Calcium barium niobate as a functional material for broadband optical frequency conversion.

    PubMed

    Sheng, Yan; Chen, Xin; Lukasiewicz, Tadeusz; Swirkowicz, Marek; Koynov, Kaloian; Krolikowski, Wieslaw

    2014-03-15

    We demonstrate the application of as-grown calcium barium niobate (CBN) crystal with random-sized ferroelectric domains as a broadband frequency converter. The frequency conversion process is similar to broadband harmonic generation in commonly used strontium barium niobate (SBN) crystal, but results in higher conversion efficiency reflecting a larger effective nonlinear coefficient of the CBN crystal. We also analyzed the polarization properties of the emitted radiation and determined the ratio of d32 and d33 components of the second-order susceptibility tensor of the CBN crystal.

  5. Meteorological support to the West German-United States Barium Ion Cloud Project.

    NASA Technical Reports Server (NTRS)

    Westfall, R. R.; Chamberlain, L. W.

    1972-01-01

    The objective of the Barium Ion Cloud Project was to study a barium ionized cloud released at an altitude of 5 earth radii. Accurate forecasting of weather conditions to prevail during the experiment period was critical to the project success. Good seeing conditions were required at all optical sites during the experiment. All meteorological support was the responsibility of the National Weather Service at Wallops Station, Virginia. Preliminary results confirm the scientists' theories of the magnetic fields and the existence of electric fields in the magnetosphere.

  6. Influence of erbium doping on phase transition and optical properties of strontium barium niobate

    NASA Astrophysics Data System (ADS)

    Oprea, Isabella-Ioana; Voelker, Uwe; Niemer, Alexander; Pankrath, Rainer; Podlozhenov, Sergey; Betzler, Klaus

    2009-11-01

    The optical properties of erbium impurities in strontium barium niobate are investigated measuring optical absorption and emission in the visible and near infrared spectral region. For the main fluorescence band at 1.55 μm, an anomalous dependence of the fluorescence decay time on dopant concentration is found which, however, can be consistently explained by reabsorption effects. A Judd-Ofelt analysis of the absorption spectra together with an appropriate analysis of the reabsorption yields a radiative quantum efficiency of approximately 60%. In addition, erbium dopants are shown to efficiently influence the phase transition temperature of strontium barium niobate.

  7. Structural, electrical, dielectric and magnetic properties of Gd-Sn substituted Sr-hexaferrite synthesized by sol-gel combustion method

    NASA Astrophysics Data System (ADS)

    Ashiq, Muhammad Naeem; Shakoor, Sajeela; Najam-ul-Haq, Muhammad; Warsi, Muhammad Farooq; Ali, Irshad; Shakir, Imran

    2015-01-01

    The effect of Gd-Sn substitution on the structural, electrical and magnetic properties of Sr1-xGdx Fe12-ySny O19 (where x=0.00, 0.025, 0.05, 0.075, 0.1) and (y=0.00, 0.25, 0.5, 0.75, 1) prepared by the sol-gel combustion method has been investigated. The XRD analysis shows the presence of Fe2O3 phase at higher substitution. The average crystallite size obtained lies between 19-42 nm which is beneficial in obtaining suitable signal-to-noise ratio in high density recording media. The FTIR spectra of annealed samples of SrFe12O19, Sr0.95Gd0.05 Fe11.5Sn0.5O19 show that strontium hexaferrite nanoparticles have been synthesized successfully. DC electrical resistivity shows metal-to-semiconductor transition with temperature. The value of transition temperature increases with dopant content. Room temperature dc resistivity and energy of activation decreases while drift mobility increases on increasing the dopant concentration. The magnetic properties such as saturation magnetization (Ms), remanence (Mr) and coercivity (Hc) decreases with increasing the dopant concentration.

  8. Synthesis, magnetic and dielectric properties of Er-Ni doped Sr-hexaferrite nanomaterials for applications in High density recording media and microwave devices

    NASA Astrophysics Data System (ADS)

    Ashiq, Muhammad Naeem; Iqbal, Muhammad Javed; Najam-ul-Haq, Muhammad; Hernandez Gomez, Pablo; Qureshi, Ashfaq Mahmood

    2012-01-01

    A sol-gel combustion method has been successfully employed for the synthesis of Sr-hexaferrite nanomaterials doped with Er3+ and Ni2+ at strontium and iron sites, respectively. The X-ray diffraction analysis confirmed the single magnetoplumbite phase and the crystallite size was found to be in the range of 14-16 nm, suitable for obtaining signal-to-noise ratio in the high density recording media. The magnetic properties such as saturation magnetization (Ms), remanence (Mr) and coercivity (Hc) were calculated from hysteresis loops. Ms, Mr and Hc are observed to increase with the Er-Ni content. The dielectric constant (ε´) and dielectric loss (tan δ) is found to decrease with the increase in frequency and is explained on the basis of Maxwell-Wagner and Koops theory. The decrease in dielectric constant and dielectric loss but increase in saturation magnetization and remanence with Er-Ni content suggests that the materials are suitable for applications in microwave devices and high density recording media .

  9. BaCO3 mediated modifications in structural and magnetic properties of natural nanoferrites

    NASA Astrophysics Data System (ADS)

    Widanarto, W.; Jandra, M.; Ghoshal, S. K.; Effendi, M.; Cahyanto, W. T.

    2015-04-01

    Preparing M-type barium hexaferrite and improving the magnetic response of natural ferrites by incorporating barium carbonate (BaCO3) is ever-demanding. Series of barium carbonate doped ferrites with composition (100-x)Fe3O4·xBaCO3 (x=0, 10, 20, 30 wt%) are prepared through solid state reaction method and sintered gradually at temperatures of 800 and 1000 °C. Nanoparticles of natural ferrite and commercial BaCO3 are used as raw materials. Impacts of BaCO3 on structural and magnetic properties of these synthesized ferrites are inspected. The obtained ferrites are characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD) and vibrating sample magnetometer (VSM) at room temperature. Uniform barium hexaferrite particles in terms of both morphology and size are not achieved. The average crystallite size of BaFe12O19 is observed to be within 30-600 nm. The sintering process results phase transformation from Fe3O4 (magnetite) to α-Fe2O3 (hematite) and the formation of hexagonal barium ferrite crystals. The occurrence of barium crystal is found to enhance with the increase of BaCO3 concentrations up to 20 wt% and suddenly drop at 30 wt%. Saturation and remanent magnetization of the doped ferrites are significantly augmented up to 16.37 and 8.92 emu g-1, respectively compared to their pure counterpart. Furthermore, the coercivity field is slightly decreased as BaCO3 concentrations are increased. BaCO3 mediated improvements in the magnetic response of natural ferrites are demonstrated.

  10. Growth rate controlled barium partitioning in calcite and aragonite

    NASA Astrophysics Data System (ADS)

    Goetschl, Katja Elisabeth; Mavromatis, Vasileios; Baldermann, Andre; Purgstaller, Bettina; Dietzel, Martin

    2016-04-01

    The barium (Ba) content and the Ba/Ca molar ratios in biogenic and abiotic carbonates have been widely used from the scientific community as a geochemical proxy especially in marine and early diagenetic settings. The Ba content of carbonate minerals has been earlier associated to changes in oceanic circulation that may have been caused by upwelling, changes in weathering regimes and river-runoff as well as melt water discharge. The physicochemical controls of Ba ion incorporation in the two most abundant CaCO3 polymorphs found in Earth's surface environments, i.e. calcite and aragonite, have adequately been studied only for calcite. These earlier studies (i.e. [1]) suggest that at increasing growth rate, Ba partitioning in calcite is increasing as well. In contrast, to date the effect of growth rate on the partitioning of Ba in aragonite remains questionable, despite the fact that this mineral phase is the predominant carbonate-forming polymorph in shallow marine environments. To shed light on the mechanisms controlling Ba ion uptake in carbonates in this study we performed steady-state Ba co-precipitation experiments with calcite and aragonite at 25°C. The obtained results for the partitioning of Ba in calcite are in good agreement with those reported earlier by [1], whereas those for aragonite indicate a reduction of Ba partitioning at elevated aragonite growth rates, with the partitioning coefficient value between solid and fluid to be approaching the unity. This finding is good agreement with the formation of a solid solution in the aragonite-witherite system, owing to the isostructural crystallography of the two mineral phases. Moreover, our data set provides new insights that are required for reconstructing the evolution of the Ba content of pristine marine versus diagenetically altered carbonate minerals commonly occurring in marine subfloor settings, as the thermodynamically less stable aragonite will transform to calcite enriched in Ba, whilst affecting

  11. Rapid ray motions in barium plasma clouds and auroras

    SciTech Connect

    Wescott, E.M.; Hallinan, T.J.; Stenbaek-Nielsen, H.C.; Swift, D.W.; Wallis, D.D. )

    1993-03-01

    Barium plasma clouds released at high latitudes characteristically become striated with many field-aligned rays. The rays which often resemble auroral features usually drift as a whole with the E [times] B/B[sup 2] drift of the cloud and alter position only slowly (order or tens of seconds). On two evenings in 1968, in releases from Andoya, Norway, anomalous field-aligned brightenings or emission enhancements of up to 3X were observed to move rapidly (10-20 km/s) through three different Ba[sup +] clouds. Similar effects were observed in Ba[sup +] clouds released from rockets launched from Poker Flat, Alaska: On March 21, 1973, in two Ba thermite releases and on March 22, 1980, in the Ba-shaped charge experiment Miss Peggy.' On these occasions, auroras on or near the Ba[sup +] L shell, also exhibited active rapid ray motions. This leads to the assumption that the two phenomena are related and the expectation that an explanation of the rapid ray motions in the Ba[sup +] clouds would lead to a better understanding of the physics of auroral ray motions and the auroral ionosphere. Seven possible mechanisms to produce the observed moving emission enhancements are discussed. Direct motion of an isolated Ba[sup +] ray past the other rays by E [times] B/B[sup 2] motion seems very unlikely due to the observed variations in the enhancements and the large E field required (> 500 mV/m). Compressional waves do not seem to be of sufficient amplitude or velocity. Absorption or radiation of Doppler shifted Ba[sup +] emissions by ions gyrating or moving at a few kilometers per second seems to be the most promising mechanism for producing the enhancements. The observations provide compelling evidence for the existence of transient electric fields of order 100 mV/m at altitudes as low as 200 km during active aurora with rapid ray motions. The affected regions have dimensions of order a few kilometers across B and move eastward at 10-20 km/s. 36 refs., 10 figs., 1 tab.

  12. The size and shape of the Milky Way disc and halo from M-type brown dwarfs in the BoRG survey

    NASA Astrophysics Data System (ADS)

    van Vledder, Isabel; van der Vlugt, Dieuwertje; Holwerda, B. W.; Kenworthy, M. A.; Bouwens, R. J.; Trenti, M.

    2016-05-01

    We have identified 274 M-type brown dwarfs in the Hubble Space Telescope's Wide Field Camera 3 pure parallel fields from the Brightest of Reionizing Galaxies (BoRG) survey for high-redshift galaxies. These are near-infrared observations with multiple lines of sight out of our Milky Way. Using these observed M-type brown dwarfs, we fitted a Galactic disc and halo model with a Markov chain Monte Carlo analysis. This model worked best with the scalelength of the disc fixed at h = 2.6 kpc. For the scaleheight of the disc, we found z_0 = 0.29^{+0.02}_{-0.019} kpc and for the central number density, ρ _0 = 0.29^{+0.20}_{-0.13} # pc-3. For the halo, we derived a flattening parameter κ = 0.45 ± 0.04 and a power-law index p = 2.4 ± 0.07. We found the fraction of M-type brown dwarfs in the local density that belong to the halo to be fh = 0.0075^{+0.0025}_{-0.0019}. We found no correlation between subtype of M-dwarf and any model parameters. The total number of M-type brown dwarfs in the disc and halo was determined to be 58.2^{+9.81}_{-6.70} × 109. We found an upper limit for the fraction of M-type brown dwarfs in the halo of 7^{+5}_{-4} per cent. The upper limit for the total Galactic disc mass in M-dwarfs is 4.34^{+0.73}_{-0.5}× 109 M⊙, assuming all M-type brown dwarfs have a mass of 80 MJ.

  13. Regeneration of barium carbonate from barium sulphide in a pilot-scale bubbling column reactor and utilization for acid mine drainage.

    PubMed

    Mulopo, J; Zvimba, J N; Swanepoel, H; Bologo, L T; Maree, J

    2012-01-01

    Batch regeneration of barium carbonate (BaCO(3)) from barium sulphide (BaS) slurries by passing CO(2) gas into a pilot-scale bubbling column reactor under ambient conditions was used to assess the technical feasibility of BaCO(3) recovery in the Alkali Barium Calcium (ABC) desalination process and its use for sulphate removal from high sulphate Acid Mine Drainage (AMD). The effect of key process parameters, such as BaS slurry concentration and CO(2) flow rate on the carbonation, as well as the extent of sulphate removal from AMD using the recovered BaCO(3) were investigated. It was observed that the carbonation reaction rate for BaCO(3) regeneration in a bubbling column reactor significantly increased with increase in carbon dioxide (CO(2)) flow rate whereas the BaS slurry content within the range 5-10% slurry content did not significantly affect the carbonation rate. The CO(2) flow rate also had an impact on the BaCO(3) morphology. The BaCO(3) recovered from the pilot-scale bubbling column reactor demonstrated effective sulphate removal ability during AMD treatment compared with commercial BaCO(3).

  14. Magnetic and Microwave Absorbing Properties of Electrospun Ba (1- x) La xFe 12O 19 Nanofibers

    NASA Astrophysics Data System (ADS)

    Li, Cong-Ju; Wang, Bin; Wang, Jiao-Na

    2012-04-01

    Ba(1-x)LaxFe12O19 (0.00≤x≤0.10) nanofibers were fabricated via the electrospinning technique followed by heat treatment at different temperatures for 2 h. Various characterization methods including scanning electron microscopy (SEM), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and microwave vector network analyzer were employed to investigate the morphologies, crystalline phases, magnetic properties, and complex electromagnetic parameters of nanofibers. The SEM images indicate that samples with various values of x are of a continuous fiber-like morphology with an average diameter of 110±20 nm. The XRD patterns show that the main phase is M-type barium hexaferrite without other impurity phases when calcined at 1100 °C. The VSM results show that coercive force (Hc) decreases first and then increases, while saturation magnetization (Ms) reveals an increase at first and then decreases with La3+ ions content increase. Both the magnetic and dielectric losses are significantly enhanced by partial substitution of La3+ for Ba2+ in the M-type barium hexaferrites. The microwave absorption performance of Ba0.95La0.05Fe12O19 nanofibers gets significant improvement: The bandwidth below -10 dB expands from 0 GHz to 12.6 GHz, and the peak value of reflection loss decreases from -9.65 dB to -23.02 dB with the layer thickness of 2.0 mm.

  15. Dietary intake of barium, bismuth, chromium, lithium, and strontium in a Spanish population (Canary Islands, Spain).

    PubMed

    González-Weller, Dailos; Rubio, Carmen; Gutiérrez, Ángel José; González, Gara Luis; Caballero Mesa, José María; Revert Gironés, Consuelo; Burgos Ojeda, Antonio; Hardisson, Arturo

    2013-12-01

    The aim of this study was to analyze barium, bismuth, chromium, lithium, and strontium contents in food and beverages consumed by the population of the Canary Islands (Spain) as well as determine dietary intake of these metals in the archipelago as a whole and in its individual islands. To this end, 440 samples were analyzed by ICP-OES and GFAAS. Barium concentrations ranged from 5.210 ± 2.117 mg/kg in nuts to 0.035 ± 0.043 mg/L in water. Viscera exhibited the highest levels of bismuth (38.07 ± 36.80 mg/kg). The cold meat and sausages group stood out for its high chromium concentrations (0.494 ± 0.257 mg/kg). The highest concentration of lithium and strontium came out in nuts (8.761 ± 5.368 mg/kg and 9.759 ± 5.181 mg/kg, respectively). The total intakes of barium, bismuth, chromium, lithium, and strontium were 0.685, 1.274, 0.087, 3.674, and 1.923 mg/day, respectively. Cereals turned out to contribute most to the dietary intake of barium, bismuth, chromium, and lithium in the Canary Islands, while fruit contributes most to the strontium intake. We also performed a metal intake study by age and sex of the population and compared the outcome with data from other regions, both national and international.

  16. Assessment of Barium Sulphate Formation and Inhibition at Surfaces with Synchrotron X-ray Diffraction (SXRD)

    SciTech Connect

    E Mavredaki; A Neville; K Sorbie

    2011-12-31

    The precipitation of barium sulphate from aqueous supersaturated solutions is a well-known problem in the oil industry often referred to as 'scaling'. The formation and growth of barite on surfaces during the oil extraction process can result in malfunctions within the oil facilities and serious damage to the equipment. The formation of barium sulphate at surfaces remains an important topic of research with the focus being on understanding the mechanisms of formation and means of control. In situ synchrotron X-ray diffraction (SXRD) was used to investigate the formation of barium sulphate on a stainless steel surface. The effect of Poly-phosphinocarboxylic acid (PPCA) and Diethylenetriamine-penta-methylenephosphonic acid (DETPMP) which are two commercial inhibitors for barium sulphate was examined. The in situ SXRD measurements allowed the identification of the crystal faces of the deposited barite in the absence and presence of the two inhibitors. The preferential effect of the inhibitors on some crystal planes is reported and the practical significance discussed.

  17. Thermochemical process for the production of hydrogen using chromium and barium compound

    DOEpatents

    Bamberger, Carlos E.; Richardson, Donald M.

    1977-01-25

    Hydrogen is produced by a closed cyclic process involving the reduction and oxidation of chromium compounds by barium hydroxide and the hydrolytic disproportionation of Ba.sub.2 CrO.sub.4 and Ba.sub.3 (CrO.sub.4).sub.2.

  18. Low temperature phase barium borate: A new optical limiter in continuous wave and nano pulsed regime

    NASA Astrophysics Data System (ADS)

    Babeela, C.; Girisun, T. C. Sabari

    2015-11-01

    Low temperature phase barium borate was synthesized by hydrothermal method. XRD analysis confirms the formation of γ-BBO or hydrated barium polyborate (Ba3B6O9(OH)6) which crystallizes in monoclinic system in the P2/c space group. The molecular structure analysis shows the presence of dominant BO4 unit and the hydrated nature of material. γ-BBO exhibits sharp absorption edge at 202 nm and highly transparency in the UV-Visible-NIR region. The peak at 347 nm in the emission spectrum is due to the presence of self-trapped exciton. The third order nonlinear optical properties and limiting behavior of low temperature barium borate in both pulsed and continuous wave regime were studied. The effective 2PA absorption coefficient of γ-BBO under ns pulse excitation is estimated to be 0.38 × 10-10 m/W. The nonlinear absorption coefficient, refractive index and optical susceptibility of the material in cw regime were found to be in the order of 10-5 m W-1, 10-12 m2 W-1, 10-6 esu respectively. In both regimes, low temperature phase barium borate exhibits better optical limiting properties than high temperature phase β-BBO.

  19. Barium versus Nonbarium Stimuli: Differences in Taste Intensity, Chemesthesis, and Swallowing Behavior in Healthy Adult Women

    ERIC Educational Resources Information Center

    Nagy, Ahmed; Steele, Catriona M.; Pelletier, Cathy A.

    2014-01-01

    Purpose: The authors examined the impact of barium on the perceived taste intensity of 7 different liquid tastant stimuli and the modulatory effect that these differences in perceived taste intensity have on swallowing behaviors. Method: Participants were 80 healthy women, stratified by age group (<40; >60) and genetic taste status…

  20. Periodate salts as pyrotechnic oxidizers: development of barium- and perchlorate-free incendiary formulations.

    PubMed

    Moretti, Jared D; Sabatini, Jesse J; Chen, Gary

    2012-07-01

    In a flash: pyrotechnic incendiary formulations with good stabilities toward various ignition stimuli have been developed without the need for barium or perchlorate oxidizers. KIO(4) and NaIO(4) were introduced as pyrotechnic oxidizers and exhibited excellent pyrotechnic performance. The periodate salts may garner widespread use in military and civilian fireworks because of their low hygroscopicities and high chemical reactivities.

  1. Periodate salts as pyrotechnic oxidizers: development of barium- and perchlorate-free incendiary formulations.

    PubMed

    Moretti, Jared D; Sabatini, Jesse J; Chen, Gary

    2012-07-01

    In a flash: pyrotechnic incendiary formulations with good stabilities toward various ignition stimuli have been developed without the need for barium or perchlorate oxidizers. KIO(4) and NaIO(4) were introduced as pyrotechnic oxidizers and exhibited excellent pyrotechnic performance. The periodate salts may garner widespread use in military and civilian fireworks because of their low hygroscopicities and high chemical reactivities. PMID:22639415

  2. The efficiency of a DTPA-based solvent in the dissolution of barium sulfate scale deposits

    SciTech Connect

    Putnis, A.; Putnis, C.V.; Paul, J.M.

    1995-11-01

    This paper describes kinetic experiments to determine the rate at which Ba ions are mobilized from crystalline barium sulfate into aqueous solution by a solvent in which the active ingredient is a strong chelating agent for Ba ions (DTPA -- diethylene triamine pentaacetic acid). The experiments define the temperature dependence and hence the activation energy of the dissolution process, the surface area dependence and most importantly the dependence on the concentration of the DTPA in solution. In a 0.05M DTPA solution the dissolution rate of barium sulfate is highly temperature dependent with an activation energy of {approximately}45 kJ/mol. This value suggests that the rate is controlled by the desorption of a BA-DTPA surface complex. Surface complexation is further identified as the key to barium sulfate dissolution by the observation that over the concentration range 0.5M to 0.05M DTPA the initial dissolution rate is inversely related to the DTPA concentration. The activation energy remains unaltered but the absolute dissolution rate is increased. In other words, a 0.05M DTPA solution is more efficient as a solvent than a 0.5M solution. This unexpected result is interpreted in terms of a passivation of the barium sulfate surface by the formation of a surface complex layer at high DTPA concentrations.

  3. Effects of barium and cadmium on the population development of the marine nematode Rhabditis (Pellioditis) marina.

    PubMed

    Lira, V F; Santos, G A P; Derycke, S; Larrazabal, M E L; Fonsêca-Genevois, V G; Moens, T

    2011-10-01

    Offshore oil and gas drilling often involves the use of fluids containing barium and traces of other heavy metals. These may affect the environment, but information on their toxicity to benthic biota remains scant. Here, we present results of a 10-day bioassay with the marine nematode Rhabditis (Pellioditis) marina at different loads of barium (0-10 ,000 ppm nominal concentrations) and cadmium (0-12 ppm) in the range of concentrations reported from drilling-impacted sediments. Barium did not affect the fitness and population development of R. (P.) marina at concentrations up to 300 ppm, but did cause a decrease in population abundance and an increase in development time from concentrations of 400-2000 ppm onwards. Increased mortality occurred at 4800 ppm Ba. For cadmium, LOEC and EC₅₀ values for total population abundance were 2.95 and 8.82 ppm, respectively. Cd concentrations as low as 2.40 to 2.68 caused a decrease in the abundance of adult nematodes, indicating that assays covering more generations would likely demonstrate yet more pronounced population-level effects. Our results indicate that oil and gas drilling activities may potentially have important implications for the meiobenthos through the toxicity of barium and associated metals like cadmium.

  4. New volatile strontium and barium imidazolate complexes for the deposition of group 2 metal oxides.

    PubMed

    Norman, John A T; Perez, Melanie; Kim, M S; Lei, Xinjian; Ivanov, Sergei; Derecskei-Kovacs, Agnes; Matz, Laura; Buchanan, Iain; Rheingold, Arnold L

    2011-12-19

    We report the synthesis, characterization, and experimental density function theory-derived properties of new volatile strontium and barium imidazolate complexes, which under atomic layer deposition conditions using ozone as a reagent can deposit crystalline strontium oxide at 375 °C.

  5. Distribution and source of barium in ground water at Cattaraugus Indian Reservation, southwestern New York

    USGS Publications Warehouse

    Moore, R.B.; Staubitz, W.W.

    1984-01-01

    High concentrations of dissolved barium have been found in ground water from bedrock wells on the Seneca Nation of Indians Reservation on Cattaraugus Creek in southwestern New York. Concentrations in 1982 were as high as 23.0 milligrams per liter , the highest found reported from any natural ground-water system in the world. The highest concentrations are in a bedrock aquifer and in small lenses of saturated gravel between bedrock and the overlying till. The bedrock aquifer is partly confined by silt, clay, and till. The high barium concentrations are attributed to dissolution of the mineral barite (BaSO4), which is present in the bedrock and possibly in overlying silt, clay, or till. The dissolution of barite seems to be controlled by action of sulfate-reducing bacteria, which alter the BaSO4 equilibrium by removing sulfate ions and permitting additional barite to dissolve. Ground water from the surficial, unconsolidated deposits and surface water in streams contain little or no barium. Because barium is chemically similar to calcium, it probably could be removed by cation exchange or treatments similar to those used for water softening. (USGS)

  6. Effects of barium and cadmium on the population development of the marine nematode Rhabditis (Pellioditis) marina.

    PubMed

    Lira, V F; Santos, G A P; Derycke, S; Larrazabal, M E L; Fonsêca-Genevois, V G; Moens, T

    2011-10-01

    Offshore oil and gas drilling often involves the use of fluids containing barium and traces of other heavy metals. These may affect the environment, but information on their toxicity to benthic biota remains scant. Here, we present results of a 10-day bioassay with the marine nematode Rhabditis (Pellioditis) marina at different loads of barium (0-10 ,000 ppm nominal concentrations) and cadmium (0-12 ppm) in the range of concentrations reported from drilling-impacted sediments. Barium did not affect the fitness and population development of R. (P.) marina at concentrations up to 300 ppm, but did cause a decrease in population abundance and an increase in development time from concentrations of 400-2000 ppm onwards. Increased mortality occurred at 4800 ppm Ba. For cadmium, LOEC and EC₅₀ values for total population abundance were 2.95 and 8.82 ppm, respectively. Cd concentrations as low as 2.40 to 2.68 caused a decrease in the abundance of adult nematodes, indicating that assays covering more generations would likely demonstrate yet more pronounced population-level effects. Our results indicate that oil and gas drilling activities may potentially have important implications for the meiobenthos through the toxicity of barium and associated metals like cadmium. PMID:21855994

  7. Model NSR catalysts: Fabrication and reactivity of barium oxide layers on Cu(1 1 1)

    NASA Astrophysics Data System (ADS)

    Tsami, A.; Grillo, F.; Bowker, M.; Nix, R. M.

    2006-09-01

    The growth of barium oxide on a Cu(1 1 1) substrate, formed by the deposition of barium and its subsequent oxidation, yields stable BaO films which expose predominantly the BaO(1 0 0) surface. The interaction of the oxide films with common components of motor-vehicle exhaust gases (CO 2, H 2O, NO x) has been studied using surface analytical techniques, including X-ray photoelectron spectroscopy (XPS), temperature programmed desorption (TPD) and reflection IR spectroscopy (RAIRS). The spectroscopic identification of Ba(OH) 2, BaCO 3 and Ba(NO 2) 2 phases is discussed, and the relative stabilities and decomposition mechanisms of these materials when supported on Cu(1 1 1) is revealed by a combination of TPD and XPS. BaO is shown to be resistant to reaction with pure NO and NO/O 2 mixtures, but exposure to NO 2 leads to the rapid formation of barium nitrite. The formation of the nitrite is proposed to be the first-step in the production of barium nitrate, which has previously been shown to be the main phase involved in NO x storage and reduction (NSR) catalysis.

  8. 49 CFR 173.182 - Barium azide-50 percent or more water wet.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Barium azide-50 percent or more water wet. 173.182 Section 173.182 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS...

  9. 49 CFR 173.182 - Barium azide-50 percent or more water wet.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Barium azide-50 percent or more water wet. 173.182 Section 173.182 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS...

  10. Possible discovery of the r-process characteristics in the abundances of metal-rich barium stars

    NASA Astrophysics Data System (ADS)

    Cui, W. Y.; Zhang, B.; Shi, J. R.; Zhao, G.; Wang, W. J.; Niu, P.

    2014-06-01

    Aims: We study the abundance distributions of a sample of metal-rich barium stars provided by Pereira et al. (2011, A&A, 533, A51) to investigate the s- and r-process nucleosynthesis in the metal-rich environment. Methods: We compared the theoretical results predicted by a parametric model with the observed abundances of the metal-rich barium stars. Results: We found that six barium stars have a significant r-process characteristic, and we divided the barium stars into two groups: r-rich barium stars (Cr > 5.0, [La/Nd] < 0) and normal barium stars. The behavior of the r-rich barium stars seems more like that of the metal-poor r-rich and CEMP-r/s stars. We suggest that the most possible formation mechanism for these stars is the s-process pollution, although their abundance patterns can be fitted very well when the pre-enrichment hypothesis is included. That we cannot explain them well using the s-process nucleosynthesis alone may be due to our incomplete knowledge on the production of Nd, Eu, and other relevant elements by the s-process in metal-rich and super metal-rich environments (see details in Pereira et al. 2011).

  11. Evolutionary generation of high order Runge - Kutta - Nyström type pairs for solving y(4) = f (x,y)

    NASA Astrophysics Data System (ADS)

    Famelis, I. Th.; Tsitmidelis, S.; Tsitouras, Ch.

    2016-06-01

    We present a new Runge - Kutta - Nyström type pair of orders 8(6) for the solution of a special fourth order initial value problem. To achieve this, a set of non - linear equations is solved using differential evolution technique.

  12. Cathodic arc deposition of barium oxide for oxide-coated cathodes

    SciTech Connect

    Umstattd, R.; Pi, T.; Luhmann, N. Jr.; Scheitrum, G.; Monteiro, O.; Brown, I.

    1998-12-31

    Cathodic arc deposition is used to create a barium oxide plasma which is then deposited/implanted onto a cathode nickel substrate. The primary motivation for this work is the critical need for a reliable, repeatable thermionic cathode for the production of high power, microsecond duration microwave pulses. The deposition is performed by generating a cathodic arc discharge at the surface of a barium of barium-strontium alloy rod. The metal plasma thus created is deposited onto the target in the presence of small amounts of oxygen. Difficulties in handling the highly hygroscopic barium and strontium sources were addressed by encapsulating the source rods in thin nickel sleeves (nickel being the major constituent of the deposition target). Both filtered and unfiltered depositions were performed; the former in the interest of improving film quality and the latter in an effort to improve deposition rate. The plasma deposition is monitored via a rate thickness monitor, an optical emission spectrometer for plasma composition information, and an electrostatic probe for the density and temperature profile of the plasma. Good film adhesion is critical for oxide cathodes since they are continually cycled, this, substrates are pulse biased during deposition to encourage implantation. An initial test was performed in which a film of barium oxide approximately one micron in thickness was deposited onto a small section of a 1 in. diameter nickel cathode with better than expected mission results. These preliminary results will be presented together with the results from follow-up experiments done to improve overall coating quality and emission performance.

  13. Modeling of compositionally graded barium strontium titanate from first principles

    NASA Astrophysics Data System (ADS)

    Walizer, Laura Elizabeth

    Barium Strontium Titanate (BaxSr1-xTiO 3 or BST) is a Perovskite alloy of interest for both technological and intellectual reasons. Its ferroelectric and piezoelectric properties make it useful in a variety of electric components such as transducers and actuators, and BST in particular is a material of interest for the development of a ferroelectric RAM for computers.(1) The inclusion of SrTiO3, an incipient ferroelectric, and the fact that the properties of a BST system depend strongly on its relative composition of BaTiO3 (BT) and SrTiO3 (ST), make also this a material of high interest. (2) Compositionally graded systems are of further interest (see e.g., Refs. (3), (4), (5) and references therein), partly because their compositional grading leads to a built-in polarization gradient. Due to this, these systems could act as transcapacitors, devices which act as charge amplifiers in much the same way that transistors act as current amplifiers.(3), (4) Here, compositionally graded BST systems were modeled using a first-principles derived effective Hamiltonian method within Monte-Carlo simulation. (6) The graded systems under consideration had an average Ba composition of 70%. These systems were modeled under stress-free conditions, as well as, under epitaxial strain due to a SrTiO3 substrate. Both the degree of grading and the thickness of the layers were varied. The investigation revealed that graded BST systems behaved differently from bulk BST systems in several ways. First, some graded BST systems possessed both monodomain states qualitatively similar to those found in bulk systems (except that the polarization exhibited a "wave" behavior inside the graded systems), and also states with domain striping. Where this occurred, the monodomain state was lower in energy, and was therefore the ground-state, but the striped domain state was found to be metastable, representing a local energy minimum. Analyzing unstrained compositionally graded systems layer by layer

  14. [Preparation and Performances of the M'-Type LuTaO4:Eu³⁺ Transparent Scintillator Films].

    PubMed

    QIU, Zhi-che; GU, Mu; LIU, Xiao-lin; Liu, Bo; Huang, Shi-ming; Ni, Chen

    2016-02-01

    X-ray imaging has a very important role in life sciences and material microstructure analysis and other applications. One of the core components of X-ray imaging equipment is the X-rays-visible light conversion screen. Flashing transparent film is an effective way to achieve high spatial resolution X-ray imaging. M'-type LuTaO₄: Eu³+ is an excellent scintillation material. It has high light yield, high density, good radiation hardness and good chemical stability. Therefore, to research and develop the transparent conversion screen with M'-type LuTaO⁴: Eu+ is very important for the application of X-ray detector in high spatial resolution X-ray imaging. In this paper, the M'-type LuTaO₄:Eu³+ transparent scintillator films were successfully prepared from the inorganic salt and 2-methoxyethanol solution containing polyvinylpyrrolidone (PVP) via sol-gel technique, and transmittance, photoluminescence, X-ray excitation emission spectral and spatial resolution, and a series of film properties were characterized. A film thickness of about 2.1 µm was achieved after 8 coatings. The thick film was homogeneous and crack free, and the transmittance was approximately 70% in its emission region. The spatial resolution of the thick film was 1.5 µm, which measured by the standard spatial resolution panels. An X-ray imageof fruit fly was obtained by using this thick film. Additionally, thesol-gel derived M'-type LuTaO₄:Eu³+ thick film revealed excellent photoluminescence and X-ray excited luminescence per- formances. All results indicated that the M'-type LuTaO⁴:Eu³+ thick films have satisfied the essential requirements for applications in high-spatial-resolution X-ray imaging. PMID:27209726

  15. Prevalence of CTX-M-Type and PER Extended-Spectrum β-Lactamases Among Klebsiella spp. Isolated From Clinical Specimens in the Teaching Hospital of Kashan, Iran

    PubMed Central

    Amiri, Atena; Firoozeh, Farzaneh; Moniri, Rezvan; Zibaei, Mohammad

    2016-01-01

    Background: Extended-spectrum β-lactamases (ESBLs) is one of the most important mechanisms of resistance to β-lactams especially among Enterobacteriaceae family including Klebsiella spp. Different types of extended-spectrum β-lactamases including CTX-M-type and PER enzymes are identified among gram negative bacteria. Objectives: The current study aimed to determine the prevalence of CTX-M-type and PER extended-spectrum β-lactamases among Klebsiella spp. isolated from clinical specimens in the teaching hospital of Kashan, Iran. Patients and Methods: One hundred Klebsiella spp. were isolated from clinical specimens of hospitalized patients at Shahid-Beheshti hospital from December 2012 to November 2013. Disk diffusion method was used to determine the susceptibility of these isolates to 14 different antimicrobial agents; disks were purchased from MAST company (United Kingdom). The phenotypic double disk synergy confirmatory test was used to screen the isolates to produce extended-spectrum β-lactamase. DNAs of isolates were extracted using boiling method and PCR assay was used to characterize the blaCTX-M type and blaPER genes. The purified PCR products were sent to Macrogen research company (Korea) for sequencing. Results: Of the total 100 Klebsiella isolates, %93 was susceptible to imipenem. Resistance to ampicillin, ceftazidime, ceftriaxone, aztreonam and cefotaxime was (92%), (67%), (65%), (64%) and (59%), respectively. The phenotypic confirmatory test (PCT) confirmed that 35% (n = 35) of the isolates were ESBL-producing Klebsiella strains. The prevalence of blaCTX-M type and blaRER genes among Klebsiella isolates were 28% (n = 28) and 9% (n = 9), respectively. Conclusions: The prevalence of ESBL-producing Klebsiella strains in Shahid-Beheshti hospital in Kashan has increased. The study concluded that there was a high prevalence of the blaCTX-M type gene among ESBL positive isolates. PMID:27247786

  16. Influence of Mg and Ni substitution on structural, microstructural and magnetic properties of Sr2Co2-xMgx/2Nix/2Fe12O22 (Co2Y) hexaferrite

    NASA Astrophysics Data System (ADS)

    Alizad Farzin, Y.; Mirzaee, O.; Ghasemi, A.

    2014-12-01

    In this study, Mg and Ni substituted Y-type hexaferrite particles with narrow size distribution have been prepared by using a sol-gel auto combustion method. The effects on structural, microstructure and magnetic properties have been investigated by substituting Mg2+ and Ni2+ at Co2+ sites. XRD patterns showed that Y-type hexaferrite phase formation has not been affected by substituting magnesium and nickel with cobalt in the range of 0.0≤x≤0.75. Various parameters such as lattice constants, cell volume and crystallite size have been calculated based on XRD data. The morphology and size distribution of the particles have been studied using high resolution field emission scanning electron microscopy (FESEM). It was also understood that the average crystallite size of particles increased from 45 to 63 nm with an increase of x content at Co2Y compound. Magnetic properties were determined using a vibrating sample magnetometer (VSM). The magnetic results revealed that by increasing the Mg and Ni in octahedral and tetrahedral sites, the coercivity was also increased from 949 to 1066 Oe, whereas saturation magnetization and Remnant magnetization were decreased from 47.98 to 40.78 emu/g and 23.05 to 20.99 emu/g, respectively.

  17. Microstructure-processing-property relations in chemical solution deposited barium titanate films

    NASA Astrophysics Data System (ADS)

    Dechakupt, Tanawadee

    This thesis explored the microstructure-processing-property relationships in chemical solution deposited BaTiO3 films on Ni foils as model thin film capacitors. Different techniques, including X-ray diffraction, transmission electron microscopy and spectroscopic ellipsometry were combined to provide better understanding of microstructure and interface quality of BaTiO3 thin films on Ni foil. It was found that high quality thin films could be prepared using rapid thermal annealing 750°C in N2 to crystallize the film without building up significant levels of NiO on the substrate. After building up the desired dielectric thickness, the films were heat-treated at 1000°C and later re-oxidized under controlled oxygen partial pressure conditions. The resulting films have dielectric constants of 1000-1300 which are stable as a function of temperature with loss tangents less than 2%. Furnace annealed barium titanate films on Ni foil were characterized by X-ray diffraction and transmission electron microscopy (TEM). X-ray diffraction shows a well-crystallized polycrystalline perovskite phase in furnace annealed films with a high intensity of the 100 and 200 peaks. The films show equiaxed grains with average grain size of 42 nm. There are 5-6 grains across a 200 nm thick film, suggesting that it should be possible to use grain boundaries in films in order to control the capacitor reliability, as is done with bulk capacitors. NiO was detected by X-ray diffraction, but not by transmission electron microscopy, suggesting that the oxide is not a continuous barrier layer, but is distributed inhomogeneously over the surface. Electron energy loss microscopy shows the existence of C in barium titanate grains. In addition, high resolution transmission electron microscopy and electron energy loss spectroscopy showed that an interfacial Ni-Ba alloy develops at the interface between the BaTiO3 film and the Ni foil. This would be consistent with very reducing partial pressures locally

  18. Upregulation of group IB secreted phospholipase A(2) and its M-type receptor in rat ANTI-THY-1 glomerulonephritis.

    PubMed

    Beck, S; Beck, G; Ostendorf, T; Floege, J; Lambeau, G; Nevalainen, T; Radeke, H H; Gurrieri, S; Haas, U; Thorwart, B; Pfeilschifter, J; Kaszkin, M

    2006-10-01

    Treatment of rat glomerular mesangial cell (GMC) cultures with pancreatic secreted phospholipase A(2) (sPLA(2)-IB) results in an enhanced expression of sPLA(2)-IIA and COX-2, possibly via binding to its specific M-type sPLA(2) receptor. In the current study, we have investigated the expression and regulation of sPLA(2)-IB and its receptor during glomerulonephritis (GN). In vivo we used the well-established rat model of anti-Thy 1.1 GN (anti-Thy 1.1-GN) to study the expression of sPLA(2)-IB and the M-type sPLA(2) receptor by immunohistochemistry. In addition, in vitro we determined the interkeukin (IL)-1beta-regulated mRNA and protein expression in primary rat glomerular mesangial and endothelial cells as well as in rat peripheral blood leukocytes (PBLs). Shortly after induction of anti-Thy 1.1-GN, sPLA(2)-IB expression was markedly upregulated in the kidney at 6-24 h. Within glomeruli, the strongest sPLA(2)-IB protein expression was detected on infiltrated granulocytes and monocytes. However, at the same time, the M-type receptor was also markedly upregulated on resident glomerular cells. In vitro, the most prominent cytokine-stimulated secretion of sPLA(2)-IB was observed in monocytes isolated from rat PBLs. Treating glomerular endothelial cells (GECs) with cytokines elicited only weak sPLA(2)-IB expression, but treatment of these cells with exogenous sPLA(2)-IB resulted in a marked expression of the endogenous sPLA(2)-IB. Mesangial cells did not express sPLA(2)-IB at all. The M-type sPLA(2) receptor protein was markedly upregulated on cytokine-stimulated mesangial and endothelial cells as well as on lymphocytes and granulocytes. During anti-Thy 1.1 rat GN, sPLA(2)-IB and the M-type sPLA(2) receptor are induced as primary downstream genes stimulated by inflammatory cytokines. Subsequently, both sPLA(2)-IB and the M-type sPLA(2) receptor are involved in the autocrine and paracrine amplification of the inflammatory process in different resident and infiltrating

  19. Barium Cycling During the Paleocene-Eocene Thermal Maximum: Evidence From Ba/Ca in Foraminifera

    NASA Astrophysics Data System (ADS)

    Hall, J. M.; Zachos, J. C.; Turekian, K. K.

    2004-12-01

    The Paleocene-Eocene thermal maximum (PETM) around 55 Ma reflects short-term, rapid climate change during a period of intense greenhouse climate. This interval is characterized by a negative carbon isotopic shift, interpreted as a release of methane from seafloor gas hydrate reservoirs. This perturbation of the carbon cycle is accompanied by significantly greater rates of euhedral barite accumulation in deep sea sediment commonly believed to be a reflection of elevated primary productivity in surface waters. An interpretation of higher productivity during the PETM, however, is contrary to microfossil assemblage data which indicates a decrease in primary productivity. It has also been suggested that the increase in barite accumulation during the PETM may have been the result of an increase in dissolved barium concentrations in the deep ocean coeval with methane release. This supposition has support from the fact that modern gas hydrate reservoirs are surrounded by pore waters with dissolved barium concentrations considerably higher than that of seawater. This investigation utilizes the barium content of foraminifera as a proxy to reconstruct changes in the barium concentration of the ocean. At 55 Ma, Ba/Ca decreases between 25 to 28% in the planktic foraminifer \\textit{Morozovella velascoensis}, indicating a decrease in the barium concentration of the surface ocean. These results bolster the theory that there was increased biogenic barite precipitation during the PETM. Changes in surface water temperature and pH may have altered species assemblages such that celestite (SrSO4) precipitating organisms enriched in barium as BaSO4 (possibly acantharia) were dominant, modifying the barite precipitation pathways, which affected water column barite cycling. Ba/Ca and Cd/Ca measurements on benthic foraminifera show a positive correlation with Mn/Ca, indicating contamination of manganese oxide coatings. This contamination is in part due to the greater surface to volume

  20. Detection of blaCTX-M-type genes in complex class 1 integrons carried by Enterobacteriaceae isolated from retail chicken meat in Brazil.

    PubMed

    Casella, Tiago; Rodríguez, María Margarita; Takahashi, Juliana Tiemi; Ghiglione, Barbara; Dropa, Milena; Assunção, Ednei; Nogueira, Maurício Lacerda; Lincopan, Nilton; Gutkind, Gabriel; Nogueira, Mara Corrêa Lelles

    2015-03-16

    CTX-M-type extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae have been increasingly identified in humans and animals, and their potential transmission by contaminated food has been highlighted. In this study, we report for the first time the isolation of multidrug-resistant (MDR) Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis strains harboring blaCTXM-2 or blaCTXM-8 gene variants in chicken meat sold in markets in southeast Brazil. In this regard, the genetic environment of the blaCTX-M-2 gene is composed of a complex class 1 integron and an ISCR1-associated sequence with dfr and/or aadA gene cassettes located within the variable region. In summary, chicken meat may be a reservoir of MDR Enterobacteriaceae harboring blaCTX-M-type genes, which is a public health concern.

  1. Detection of blaCTX-M-type genes in complex class 1 integrons carried by Enterobacteriaceae isolated from retail chicken meat in Brazil.

    PubMed

    Casella, Tiago; Rodríguez, María Margarita; Takahashi, Juliana Tiemi; Ghiglione, Barbara; Dropa, Milena; Assunção, Ednei; Nogueira, Maurício Lacerda; Lincopan, Nilton; Gutkind, Gabriel; Nogueira, Mara Corrêa Lelles

    2015-03-16

    CTX-M-type extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae have been increasingly identified in humans and animals, and their potential transmission by contaminated food has been highlighted. In this study, we report for the first time the isolation of multidrug-resistant (MDR) Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis strains harboring blaCTXM-2 or blaCTXM-8 gene variants in chicken meat sold in markets in southeast Brazil. In this regard, the genetic environment of the blaCTX-M-2 gene is composed of a complex class 1 integron and an ISCR1-associated sequence with dfr and/or aadA gene cassettes located within the variable region. In summary, chicken meat may be a reservoir of MDR Enterobacteriaceae harboring blaCTX-M-type genes, which is a public health concern. PMID:25576985

  2. Enhanced constitutive invasion activity in human nontumorigenic keratinocytes exposed to a low level of barium for a long time.

    PubMed

    Thang, Nguyen D; Yajima, Ichiro; Ohnuma, Shoko; Ohgami, Nobutaka; Kumasaka, Mayuko Y; Ichihara, Gaku; Kato, Masashi

    2015-02-01

    We have recently demonstrated that exposure to barium for a short time (≤4 days) and at a low level (5 µM = 687 µg/L) promotes invasion of human nontumorigenic HaCaT cells, which have characteristics similar to those of normal keratinocytes, suggesting that exposure to barium for a short time enhances malignant characteristics. Here we examined the effect of exposure to low level of barium for a long time, a condition mimicking the exposure to barium through well water, on malignant characteristics of HaCaT keratinocytes. Constitutive invasion activity, focal adhesion kinase (FAK) protein expression and activity, and matrix metalloproteinase 14 (MMP14) protein expression in primary cultured normal human epidermal keratinocytes, HaCaT keratinocytes, and HSC5 and A431 human squamous cell carcinoma cells were augmented following an increase in malignancy grade of the cells. Constitutive invasion activity, FAK phosphorylation, and MMP14 expression levels of HaCaT keratinocytes after treatment with 5 µM barium for 4 months were significantly higher than those of control untreated HaCaT keratinocytes. Taken together, our results suggest that exposure to a low level of barium for a long time enhances constitutive malignant characteristics of HaCaT keratinocytes via regulatory molecules (FAK and MMP14) for invasion.

  3. Follow-up barium study after a negative water-soluble contrast examination for suspected esophageal leak: is it necessary?

    PubMed

    Sanchez, Thomas R; Holz, Grant S; Corwin, Michael T; Wood, Robert J; Wootton-Gorges, Sandra L

    2015-10-01

    The purpose of this study was to determine the value of follow-up barium esophogram in diagnosing esophageal injury or leak if the initial water-soluble contrast examination of the esophagus is normal. An institutional review board (IRB)-approved retrospective review of all pediatric patients less than 18 years old referred to the radiology department for evaluation of esophageal injury or leak was performed for a 9-year period from 2005 to 2014. The majority of patients had unexplained pneumomediastinum, chest trauma (gunshot or puncture wound), or foreign body ingestion as the reason for the referral. Forty-nine patients (age range 10 days to 17 years) underwent an initial water-soluble esophogram immediately followed by a barium esophogram. Forty-six studies were negative on both water-soluble contrast and barium studies. Two studies were both positive on the initial water-soluble contrast and subsequent barium studies. A single study showed the esophageal leak only in the water-soluble study, with the follow-up barium exam being normal. The result of this study indicates that a single-contrast water-soluble esophogram alone is sensitive in the diagnosis of esophageal injury or leak. It has a 100 % sensitivity and negative predictive value. A follow-up barium esophogram only increases the study time and radiation dose to the patient.

  4. Salmonella colitis: assessment with double-contrast barium enema examination in seven patients.

    PubMed

    Nakamura, S; Iida, M; Tominaga, M; Yao, T; Hirata, N; Fujishima, M

    1992-08-01

    To completely rule out the possibility of ulcerative colitis, Crohn disease, and other diseases, the authors analyzed the radiographic findings at double-contrast barium enema examination performed in seven patients with colitis caused by Salmonella organisms. In all patients, bacteriologic confirmation of nontyphoid Salmonella infection and radiographs of the upper gastrointestinal tract were obtained. Total colonoscopy was performed in five patients and sigmoidoscopy in one patient. In all patients, the radiographic findings were retrospectively analyzed. The descending colon and sigmoid colon were affected in six patients, whereas the rectum was affected in none. The findings included fine mucosal granularity (seven patients), loss of haustration (six patients), many fine ulcerations (five patients), and multiple ulcers (two patients). The radiographic features simulated those of ulcerative colitis, except for absence of rectal abnormality. It is concluded that double-contrast barium enema examination is useful for detection of fine mucosal changes. PMID:1620861

  5. Effect of CaF{sub 2} addition on optical properties of barium phosphate glasses

    SciTech Connect

    Kumar, N. Manoj Rao, G. Venkateswara Akhila, B. E. Shashikala, H. D.

    2014-04-24

    Ternary barium phosphate glasses, (50−X)BaO−XCaF{sub 2}−50P{sub 2}O{sub 5} have been prepared by adding 0-10 mol% of CaF{sub 2} to binary barium phosphate glasses. The amorphous nature of the prepared glasses was confirmed by X-ray diffraction technique. The UV-Visible absorption spectra have been recorded, optical band gap energy Eopt and Urbach energy Etail were determined. Shift in Eopt and Etail with increase in concentration of CaF{sub 2} is noted. FTIR analysis was carried out to investigate the short and intermediate-range orders in glasses. Shift of (P-O-P) band to higher wave number with the substitution of BaO with CaF{sub 2} shows the shortening of the phosphate chains. Hardness and density of glass samples were measured and correlated with the composition of glasses.

  6. Effect of CaF2 addition on optical properties of barium phosphate glasses

    NASA Astrophysics Data System (ADS)

    Kumar, N. Manoj; Rao, G. Venkateswara; Akhila, B. E.; Shashikala, H. D.

    2014-04-01

    Ternary barium phosphate glasses, (50-X)BaO-XCaF2-50P2O5 have been prepared by adding 0-10 mol% of CaF2 to binary barium phosphate glasses. The amorphous nature of the prepared glasses was confirmed by X-ray diffraction technique. The UV-Visible absorption spectra have been recorded, optical band gap energy Eopt and Urbach energy Etail were determined. Shift in Eopt and Etail with increase in concentration of CaF2 is noted. FTIR analysis was carried out to investigate the short and intermediate-range orders in glasses. Shift of (P-O-P) band to higher wave number with the substitution of BaO with CaF2 shows the shortening of the phosphate chains. Hardness and density of glass samples were measured and correlated with the composition of glasses.

  7. CORRELATED STRONTIUM AND BARIUM ISOTOPIC COMPOSITIONS OF ACID-CLEANED SINGLE MAINSTREAM SILICON CARBIDES FROM MURCHISON

    SciTech Connect

    Liu, Nan; Davis, Andrew M.; Dauphas, Nicolas; Pellin, Michael J.; Savina, Michael R.; Gallino, Roberto; Bisterzo, Sara; Gyngard, Frank; Käppeler, Franz; Cristallo, Sergio; Dillmann, Iris

    2015-04-10

    We present strontium, barium, carbon, and silicon isotopic compositions of 61 acid-cleaned presolar SiC grains from Murchison. Comparison with previous data shows that acid washing is highly effective in removing both strontium and barium contamination. For the first time, by using correlated {sup 88}Sr/{sup 86}Sr and {sup 138}Ba/{sup 136}Ba ratios in mainstream SiC grains, we are able to resolve the effect of {sup 13}C concentration from that of {sup 13}C-pocket mass on s-process nucleosynthesis, which points toward the existence of large {sup 13}C pockets with low {sup 13}C concentrations in asymptotic giant branch stars. The presence of such large {sup 13}C pockets with a variety of relatively low {sup 13}C concentrations seems to require multiple mixing processes in parent asymptotic giant branch stars of mainstream SiC grains.

  8. Self-assembly of a tetrahedral 58-nuclear barium vanadium oxide cluster.

    PubMed

    Kastner, Katharina; Puscher, Bianka; Streb, Carsten

    2013-01-01

    We report the synthesis and characterization of a molecular barium vanadium oxide cluster featuring high nuclearity and high symmetry. The tetrameric, 2.3 nm cluster H(5)[Ba(10)(NMP)(14)(H(2)O)(8)[V(12)O(33)](4)Br] is based on a bromide-centred, octahedral barium scaffold which is capped by four previously unknown [V(12)O(33)](6-) clusters in a tetrahedral fashion. The compound represents the largest polyoxovanadate-based heterometallic cluster known to date. The cluster is formed in organic solution and it is suggested that the bulky N-methyl-2-pyrrolidone (NMP) solvent ligands allow the isolation of this giant molecule and prevent further condensation to a solid-state metal oxide. The cluster is fully characterized using single-crystal XRD, elemental analysis, ESI mass spectrometry and other spectroscopic techniques.

  9. Magnetic and dielectric properties of 3Y-TZP/strontium doped barium ferrite composite

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Wang, Shan-Shan; Guo, Rui-Song; Cai, Guang-Lan; Guo, Wei-Na; Wu, Chen

    2015-02-01

    Magnetic and dielectric properties of 3Y-TZP/20 wt.% Ba1-xSrxFe12O19 (x = 0, 0.25, 0.5, 0.75) composites prepared by solid state reaction method are investigated. The magnetic properties are improved in the composites with the strontium doped barium ferrite. When x = 0.25, the saturation magnetization of the ferrite reaches the maximum. This is due to the migration of Fe3+ induced by the Sr2+ doping. The dielectric properties are also improved in the composite with the strontium doped barium ferrite. When x = 0.5, the dielectric constant and dielectric loss possess the maximum. This is caused by the lattice distortion resulting from the Sr2+ doping. The dielectric properties are analyzed by the universal relaxation law.

  10. Correlated Strontium and Barium Isotopic Compositions of Acid-cleaned Single Mainstream Silicon Carbides from Murchison

    NASA Astrophysics Data System (ADS)

    Liu, Nan; Savina, Michael R.; Gallino, Roberto; Davis, Andrew M.; Bisterzo, Sara; Gyngard, Frank; Käppeler, Franz; Cristallo, Sergio; Dauphas, Nicolas; Pellin, Michael J.; Dillmann, Iris

    2015-04-01

    We present strontium, barium, carbon, and silicon isotopic compositions of 61 acid-cleaned presolar SiC grains from Murchison. Comparison with previous data shows that acid washing is highly effective in removing both strontium and barium contamination. For the first time, by using correlated 88Sr/86Sr and 138Ba/136Ba ratios in mainstream SiC grains, we are able to resolve the effect of 13C concentration from that of 13C-pocket mass on s-process nucleosynthesis, which points toward the existence of large 13C pockets with low 13C concentrations in asymptotic giant branch stars. The presence of such large 13C pockets with a variety of relatively low 13C concentrations seems to require multiple mixing processes in parent asymptotic giant branch stars of mainstream SiC grains.

  11. Characterization of individual barium titanate nanorods and their assessment as building blocks of new circuit architectures.

    PubMed

    Zagar, Kristina; Hernandez-Ramirez, Francisco; Prades, Joan Daniel; Morante, Joan Ramon; Rečnik, Aleksander; Ceh, Miran

    2011-09-23

    In this work, we report on the integration of individual BaTiO(3) nanorods into simple circuit architectures. Polycrystalline BaTiO(3) nanorods were synthesized by electrophoretic deposition (EPD) of barium titanate sol into aluminium oxide (AAO) templates and subsequent annealing. Transmission electron microscopy (TEM) observations revealed the presence of slabs of hexagonal polymorphs intergrown within cubic grains, resulting from the local reducing atmosphere during the thermal treatment. Electrical measurements performed on individual BaTiO(3) nanorods revealed resistivity values between 10 and 100 Ω cm, which is in good agreement with typical values reported in the past for oxygen-deficient barium titanate films. Consequently the presence of oxygen vacancies in their structure was indirectly validated. Some of these nanorods were tested as proof-of-concept humidity sensors. They showed reproducible responses towards different moisture concentrations, demonstrating that individual BaTiO(3) nanorods may be integrated in complex circuit architectures with functional capacities.

  12. Inhibition of barium sulfate deposition by polycarboxylates of various molecular structures

    SciTech Connect

    van der Leeden, M.C.; van Rosmalen, G.M. )

    1990-02-01

    To establish a relationship between the molecular structure of polycarboxylates and their growth-retarding influence on barium sulfate, seeded-suspension-growth experiments were performed at various inhibitor concentrations and pH values. Two types of polycarboxylates with a molecular structure based on their polyacrylic or maleic acid were studied. The molecular structure of these compounds were varied by particle substitution with monomers containing hydroxyl, amide, and sulfonic acid, as well as hydrophobic groups. Hydrophobic groups are detrimental to good inhibitor performance, whereas the introduction of OH, NH {sub 2}, or SO {sub 3} H groups presents opportunities to enhance the inhibitor effectiveness. The sequence in performance of the compounds on barium sulfate was compared with the sequence formerly obtained for calcium sulfate dihydrate.

  13. Surface-initiated polymerization from barium titanate nanoparticles for hybrid dielectric capacitors.

    PubMed

    Paniagua, Sergio A; Kim, Yunsang; Henry, Katherine; Kumar, Ritesh; Perry, Joseph W; Marder, Seth R

    2014-03-12

    A phosphonic acid is used as a surface initiator for the growth of polystyrene and polymethylmethacrylate (PMMA) from barium titanate (BTO) nanoparticles through atom transfer radical polymerization with activators regenerated by electron transfer. This results in the barium titanate cores embedded in the grafted polymer. The one-component system, PMMA-grafted-BTO, achieves a maximum extractable energy density of 2 J/cm(3) at a field strength of ∼220 V/μm, which exhibits a 2-fold increase compared to that of the composite without covalent attachment or the neat polymer. Such materials have potential applications in hybrid capacitors due to the high permittivity of the nanoparticles and the high breakdown strength, mechanical flexibility, and ease of processability due to the organic polymer. The synthesis, processing, characterization, and testing of the materials in capacitors are discussed.

  14. Microwave assisted synthesis and characterization of barium titanate nanoparticles for multi layered ceramic capacitor applications.

    PubMed

    Thirumalai, Sundararajan; Shanmugavel, Balasivanandha Prabu

    2011-01-01

    Barium titanate is a common ferroelectric electro-ceramic material having high dielectric constant, with photorefractive effect and piezoelectric properties. In this research work, nano-scale barium titanate powders were synthesized by microwave assisted mechano-chemical route. Suitable precursors were ball milled for 20 hours. TGA studies were performed to study the thermal stability of the powders. The powders were characterized by XRD, SEM and EDX Analysis. Microwave and Conventional heating were performed at 1000 degrees C. The overall heating schedule was reduced by 8 hours in microwave heating thereby reducing the energy and time requirement. The nano-scale, impurity-free and defect-free microstructure was clearly evident from the SEM micrograph and EDX patterns. LCR meter was used to measure the dielectric constant and dielectric loss values at various frequencies. Microwave heated powders showed superior dielectric constant value with low dielectric loss which is highly essential for the fabrication of Multi Layered Ceramic Capacitors. PMID:24427875

  15. A critical velocity interaction between fast barium and strontium atoms and the terrestial ionospheric plasma

    NASA Technical Reports Server (NTRS)

    Deehr, C. S.; Wescott, E. M.; Stenbaek-Nielsen, H.; Romick, G. J.; Hallinan, T. J.; Foeppl, H.

    1982-01-01

    A disk of barium and strontium vapor traveling radially outward, perpendicular to the geomagnetic field lines, may be created by the detonation of a high-explosive, radially shaped charge with a liner composed of the two metals in the upper atmosphere. Because of solar radiation resonance, both the barium and the strontium may be optically tracked. Observations indicate the early formation of the metal ions thus evolved into a disk-shaped, stellate structure with a dark hole at the center of a radial structure. The results of these experiments indicate that the process could occur on a cosmic scale, and that unconfirmed aspects of the theory relating to this process could be determined through variation of the parameters in future radial rocket experiments.

  16. The electric field structure of auroral arcs as determined from barium plasma injection experiments

    NASA Technical Reports Server (NTRS)

    Wescott, E. M.

    1981-01-01

    Barium plasma injection experiments have revealed a number of features of electric fields in and near auroral forms extending from a few hundred to many thousands of km in altitude. There is evidence for V-type potential structures over some auroras, but not in others. For some auroral arcs, large E fields are found at ionospheric altitudes outside the arc but the E field inside the arc is near zero. In a few other auroras, most recently one investigated in an experiment conducted from Poker Flat on March 22, 1980, large, rapidly fluctuating E fields were detected by barium plasma near 600 km altitude. These E fields suggest that the motion of auroral rays can be an effect of low-altitude electric fields, or that V-type potential structures may be found at low altitudes.

  17. The CAMEO barium release - E/parallel/ fields over the polar cap

    NASA Technical Reports Server (NTRS)

    Heppner, J. P.; Miller, M. L.; Pongratz, M. B.; Smith, G. M.; Smith, L. L.; Mende, S. B.; Nath, N. R.

    1981-01-01

    Four successive thermite barium releases at an altitude of 965 km over polar cap invariant latitudes 84 to 76 deg near magnetic midnight were conducted from the orbiting second stage of the vehicle that launched Nimbus 7; the releases were made as part of the CAMEO (Chemically Active Material Ejected in Orbit) program. This was the first opportunity to observe the behavior of conventional barium release when conducted at orbital velocity in the near-earth magnetic field. The principal unexpected characteristic in the release dynamics was the high, 1.4 to 2.6 km/s, initial Ba(+) expansion velocity relative to an expected velocity of 0.9 km/s. Attention is also given to neutral cloud expansion, initial ion cloud expansion, convective motion, and the characteristics of field-aligned motion. The possibility of measuring parallel electric fields over the polar cap by observing perturbations in the motion of the visible ions is assessed.

  18. Concomitant axial cineangiography and barium esophagography in the evaluation of vascular rings.

    PubMed

    Tonkin, I L; Elliott, L P; Bargeron, L M

    1980-04-01

    Six vascular rings were evaluated using axial biplane cineangiography and concomitant barium esophagography. Three patients had a double aortic arch, two had a right aortic arch and aberrant left subclavian artery with a foreshortened left ligamentum arteriosum, and one had a pulmonary vascular sling. Barium was administered in the esophagus of the anesthetized patient followed by cineangiography. Five patients were evaluated using both the standard and four-chamber projection, while the sixth patient with the pulmonary sling was evaluated in the standard and sitting projection. With the four-chamber view, vascular rings were exposed and atypical features such as a small right aortic arch component and branch stenoses of the brachiocephalic arteries were revealed. Axial views with an esophagogram allow easier morphologic analysis and more precise definition of the vascular abnormality than conventional views. PMID:7360983

  19. The effect of cathode geometry on barium transport in hollow cathode plasmas

    SciTech Connect

    Polk, James E. Mikellides, Ioannis G.; Katz, Ira; Capece, Angela M.

    2014-05-14

    The effect of barium transport on the operation of dispenser hollow cathodes was investigated in numerical modeling of a cathode with two different orifice sizes. Despite large differences in cathode emitter temperature, emitted electron current density, internal xenon neutral and plasma densities, and size of the plasma-surface interaction region, the barium transport in the two geometries is qualitatively very similar. Barium is produced in the insert and flows to the surface through the porous structure. A buildup of neutral Ba pressure in the plasma over the emitter surface can suppress the reactions supplying the Ba, restricting the net production rate. Neutral Ba flows into the dense Xe plasma and has a high probability of being ionized at the periphery of this zone. The steady state neutral Ba density distribution is determined by a balance between pressure gradient forces and the drag force associated with collisions between neutral Ba and neutral Xe atoms. A small fraction of the neutral Ba is lost upstream. The majority of the neutral Ba is ionized in the high temperature Xe plasma and is pushed back to the emitter surface by the electric field. The steady state Ba{sup +} ion density distribution results from a balance between electrostatic and pressure forces, neutral Xe drag and Xe{sup +} ion drag with the dominant forces dependent on location in the discharge. These results indicate that hollow cathodes are very effective at recycling Ba within the discharge and therefore maintain a high coverage of Ba on the emitter surface, which reduces the work function and sustains high electron emission current densities at moderate temperatures. Barium recycling is more effective in the cathode with the smaller orifice because the Ba is ionized in the dense Xe plasma concentrated just upstream of the orifice and pushed back into the hollow cathode. Despite a lower emitter temperature, the large orifice cathode has a higher Ba loss rate through the orifice

  20. Preliminary experiments on phase conjugation for flow visualization. [barium titanate single crystals

    NASA Technical Reports Server (NTRS)

    Weimer, D.; Howes, W. L.

    1984-01-01

    Barium titanate single crystals are discussed in the context of: the procedure for polarizing a crystal; a test for phase conjugation; transients in the production of phase conjugation; real time readout by a separate laser of a hologram induced within the crystal, including conjugation response times to on-off switching of each beam; and a demonstration of a Twyman-Green interferometer utilizing phase conjugation.