Science.gov

Sample records for m2-f1 lifting body

  1. M2-F1 lifting body and Paresev 1B on ramp

    NASA Technical Reports Server (NTRS)

    1963-01-01

    In this photo of the M2-F1 lifting body and the Paresev 1B on the ramp, the viewer sees two vehicles representing different approaches to building a research craft to simulate a spacecraft able to land on the ground instead of splashing down in the ocean as the Mercury capsules did. The M2-F1 was a lifting body, a shape able to re-enter from orbit and land. The Paresev (Paraglider Research Vehicle) used a Rogallo wing that could be (but never was) used to replace a conventional parachute for landing a capsule-type spacecraft, allowing it to make a controlled landing on the ground. The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with the largest engine available. He took the car to Bill Straup's renowned hot-rod shop

  2. M2-F1 lifting body aircraft on a flatbed truck

    NASA Technical Reports Server (NTRS)

    1997-01-01

    After the grounding of the M2-F1 in 1966, it was kept in outside storage on the Dryden complex. After several years, its fabric and plywood structure was damaged by the sun and weather. Restoration of the vehicle began in February 1994 under the leadership of NASA retiree Dick Fischer, with other retirees who had originally worked on the M2-F1's construction and flight research three decades before also participating. The photo shows the now-restored M2-F1 returning to the site of its flight research, now called the Dryden Flight Research Center, on 22 August 1997. The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, NASA Flight Research Center (later Dryden Flight Research Center, Edwards, CA) management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with the largest engine available

  3. M2-F1 lifting body and Paresev 1B on ramp

    NASA Technical Reports Server (NTRS)

    1963-01-01

    In this photo of the M2-F1 lifting body and the Paresev 1B on the ramp, the viewer sees two vehicles representing different approaches to building a research craft to simulate a spacecraft able to land on the ground instead of splashing down in the ocean as the Mercury capsules did. The M2-F1 was a lifting body, a shape able to re-enter from orbit and land. The Paresev (Paraglider Research Vehicle) used a Rogallo wing that could be (but never was) used to replace a conventional parachute for landing a capsule-type spacecraft, allowing it to make a controlled landing on the ground. The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with the largest engine available. He took the car to Bill Straup's renowned hot-rod shop

  4. Proposed Ames M2-F1, M1-L half-cone, and Langley lenticular bodies.

    NASA Technical Reports Server (NTRS)

    1962-01-01

    Dale Reed, who inaugurated the lifting-body flight research at NASA's Flight Research Center (later, Dryden Flight Research Center, Edwards, CA), originally proposed that three wooden outer shells be built. These would then be attached to the single internal steel structure. The three shapes were (viewer's left to right) the M2-F1, the M1-L, and a lenticular shape. Milt Thompson, who supported Reed's advocacy for a lifting-body research project, recommended that only the M2-F1 shell be built, believing that the M1-L shape was 'too radical,' while the lenticular one was 'too exotic.' Although the lenticular shape was often likened to that of a flying saucer, Reed's wife Donna called it the 'powder puff.' The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey

  5. M2-F1 cockpit

    NASA Technical Reports Server (NTRS)

    1963-01-01

    This photo shows the cockpit configuration of the M2-F1 wingless lifting body. With a top speed of about 120 knots, the M2-F1 had a simple instrument panel. Besides the panel itself, the ribs of the wooden shell (left) and the control stick (center) are also visible. The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with the largest engine available. He took the car to Bill Straup's renowned hot-rod shop near Long Beach for modification. With a special gearbox and racing slicks, the Pontiac could tow the 1,000-pound M2-F1 110 miles per hour in 30 seconds. It proved adequate for the roughly 400 car tows that got the M2-F1 airborne to prove it could fly safely and to train pilots before they were towed behind a C-47

  6. M2-F1 in flight

    NASA Technical Reports Server (NTRS)

    1964-01-01

    The M2-F1 Lifting Body is seen here under tow by an unseen C-47 at the NASA Flight Research Center (later redesignated the Dryden Flight Research Center), Edwards, California. The low-cost vehicle was the first piloted lifting body to be test flown. The lifting-body concept originated in the mid-1950s at the National Advisory Committee for Aeronautics' Ames Aeronautical Laboratory, Mountain View California. By February 1962, a series of possible shapes had been developed, and R. Dale Reed was working to gain support for a research vehicle. The wingless, lifting body aircraft design was initially concieved as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. These initial tests produced enough flight data about the M2-F1 to proceed with flights behind a NASA C-47 tow plane at greater altitudes. The C-47 took the craft to an altitude of 12,000 where free flights back to Rogers Dry Lake began. Pilot for the first series of flights of the M2-F1 was NASA research pilot Milt Thompson. Typical glide flights with the M2-F1 lasted about two minutes and reached speeds of 110 to l20 mph. More than 400 ground tows and 77 aircraft tow flights were carried out with the M2-F1. The success of Dryden's M2-F1 program led to NASA's development and construction of two heavyweight lifting bodies based on studies at

  7. M2-F1 in flight

    NASA Technical Reports Server (NTRS)

    1965-01-01

    The M2-F1 Lifting Body is seen here under tow, high above Rogers Dry Lake near the Flight Research Center (later redesignated the Dryden Flight Research Center), Edwards, California. R. Dale Reed effectively advocated the project with the support of NASA research pilot Milt Thompson. Together, they gained the support of Flight Research Center Director Paul Bikle. After a six-month feasibility study, Bikle gave approval in the fall of 1962 for the M2-F1 to be built. The wingless, lifting body aircraft design was initially concieved as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Flight Research Center management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. These initial tests produced enough flight data about the M2-F1 to proceed with flights behind a NASA C-47 tow plane at greater altitudes. The C-47 took the craft to an altitude of 12,000 where free flights back to Rogers Dry Lake began. Pilot for the first series of flights of the M2-F1 was NASA research pilot Milt Thompson. Typical glide flights with the M2-F1 lasted about two minutes and reached speeds of 110 to l20 mph. More than 400 ground tows and 77 aircraft tow flights were carried out with the M2-F1. The success of Dryden's M2-F1 program led to NASA's development and construction of two heavyweight lifting bodies based on studies at NASA's Ames and Langley research centers--the M2-F2 and the HL

  8. M2-F1 simulator cockpit

    NASA Technical Reports Server (NTRS)

    1963-01-01

    This early simulator of the M2-F1 lifting body was used for pilot training, to test landing techniques before the first ground tow attempts, and to test new control configurations after the first tow attempts and wind-tunnel tests. The M2-F1 simulator was limited in some ways by its analog simulator. It had only limited visual display for the pilot, as well. The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with the largest engine available. He took the car to Bill Straup's renowned hot-rod shop near Long Beach for modification. With a special gearbox and racing slicks, the Pontiac could tow the 1,000-pound M2-F1 110 miles per hour in 30 seconds. It proved adequate for the roughly 400 car tows that got the M2-F1 airborne

  9. M2-F1 in flight

    NASA Technical Reports Server (NTRS)

    1963-01-01

    This 25-second clip shows Milt Thompson being towed in the M2-F1 behind a C-47 aircraft. The M2-F1 lifting body, dubbed the 'flying bathtub' by the media, was the precursor of a remarkable series of wingless flying vehicles that contributed data used in the Space Shuttles, the X-33 Advanced Technology Demonstrator for the next century's Reusable Launch Vehicle, and the X-38 Technology Demonstrator for crew return from the International Space Station. Based on the ideas and basic design of Alfred J. Eggers and others at the Ames Aeronautical Laboratory (now the Ames Research Center), Mountain View, California, in the mid-1950's, the M2-F1 was built in 1962-63 over a four-month period for a cost of only about $30,000, plus an additional $8,000-$10,000 for an ejection seat. Engineers and technicians at the NASA Flight Research Center (now NASA Dryden) kept costs low by designing and fabricating it partly in-house, with the plywood shell constructed by a local sailplane builder. Someone at the time estimated that it would have cost a major aircraft company $150,000 to build the same vehicle. Unlike the later lifting bodies, the M2-F1 was unpowered and was initially towed by a souped-up Pontiac convertible until it was airborne. Later a C-47 took over the towing duties. Flown by such famous research pilots as Milt Thompson, Bruce Peterson, Chuck Yeager, and Bill Dana, the lightweight flying bathtub demonstrated that a wingless vehicle shaped for reentry into the Earth's atmosphere from space could be flown and landed safely. Flown from 1963 to 1966, the lightweight M2-F1 paved the way for the heavyweight M2-F2, M2-F3, HL-10, X-24A, and X-24B lifting bodies that flew under rocket power after launch from a B-52 mothership. The heavyweights flew from 1966 to 1975, demonstrating the viability and versatility of the wingless configuration and the ability of a vehicle with low lift-over-drag characteristics to fly to high altitudes and then to land precisely with their rocket

  10. M2-F1 in flight on tow line

    NASA Technical Reports Server (NTRS)

    1964-01-01

    The M2-F1 Lifting Body is seen here under tow at the Flight Research Center (later redesignated the Dryden Flight Research Center), Edwards, California. The wingless, lifting-body aircraft design was initially concieved as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Flight Research Center management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The M2-F1 project had limited goals. They were to show that a piloted lifting body could be built, that it could not only fly but be controlled in flight, and that it could make a successful landing. While the M2-F1 did prove the concept, with a wooden fuselage and fixed landing gear, it was far from an operational spacecraft. The next step in the lifting-body development was to build a heavyweight, rocket-powered vehicle that was more like an operational lifting body, albeit one without the thermal protection system that would be needed for reentry into the atmosphere from space at near-orbital speeds. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. These initial tests produced enough flight data about the M2-F1 to proceed with flights behind a NASA C-47 tow plane at greater altitudes. The C-47 took the craft to an altitude of 12,000 where free flights back to Rogers Dry Lake began. Pilot for the first series of flights of the M2-F1 was NASA research pilot Milt Thompson. Typical glide flights with the M2-F1 lasted about two minutes and reached speeds of 110 to

  11. M2-F1 on lakebed with pilot Milt Thompson

    NASA Technical Reports Server (NTRS)

    1963-01-01

    NASA Flight Research Pilot Milt Thompson, shown here on the lakebed with the M2-F1 lifting body, was an early backer of R. Dale Reed's lifting-body proposal. He urged Flight Research Center director Paul Bikle to approve the M2-F1's construction. Thompson also made the first glide flights in both the M2-F1 and its successor, the heavyweight M2-F2. The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, NASA Flight Research Center (later Dryden Flight Research Center, Edwards, CA) management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with the largest engine available. He took the car to Bill Straup's renowned hot-rod shop near Long Beach for modification. With a special gearbox and racing slicks, the Pontiac could tow the 1,000-pound M2-F1 110 miles per hour in 30 seconds. It proved

  12. M2-F1 in hangar with Pontiac tow vehicle

    NASA Technical Reports Server (NTRS)

    1963-01-01

    The M2-F1 Lifting Body is seen here in a hangar with its hotrod Pontiac convertible tow vehicle at the Flight Research Center (later the Dryden Flight Research Center), Edwards, California. The car was a 1963 Pontiac Catalina convertible, fitted with a 421-cubic-inch tripower engine like those being run at the Daytona 500 auto race. The vehicle also had a four-speed transmission and a heavy-duty suspension and cooling system. A roll bar was also added and the passenger seat turned around so an observer could watch the M2-F1 while it was being towed. The rear seat was removed and a second, side-facing seat installed. The lifting-body team used the Pontiac for all the ground-tow flights over the next three years. The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey

  13. M2-F1 ejection seat test at South Edwards

    NASA Technical Reports Server (NTRS)

    1963-01-01

    The M2-F1 was fitted with an ejection seat before the airtow flights began. The project selected the seat used in the T-37 as modified by the Weber Company to use a rocket rather than a ballistic charge for ejection. To test the ejection seat, the Flight Research Center's Dick Klein constructed a plywood mockup of the M2-F1's top deck and canopy. On the first firings, the test was unsuccessful, but on the final test the dummy in the seat landed safely. The M2-F1 ejection seat was later used in the two Lunar Landing Research Vehicles and the three Lunar Landing Training Vehicles. Three of them crashed, but in each case the pilot ejected from the vehicle successfully. The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with

  14. Internal steel structure of M2-F1

    NASA Technical Reports Server (NTRS)

    1963-01-01

    The internal steel structure for the M2-F1 was built at the Flight Research Center (predecessor of the Dryden Flight Research Center, Edwards, CA) in a section of the calibration hangar dubbed 'Wright Bicycle Shop.' Visible are the stick, rudder pedals, and ejection seat. The external wooden shell was attached to the steel structure. The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with the largest engine available. He took the car to Bill Straup's renowned hot-rod shop near Long Beach for modification. With a special gearbox and racing slicks, the Pontiac could tow the 1,000-pound M2-F1 110 miles per hour in 30 seconds. It proved adequate for the roughly 400 car tows that got the M2-F1 airborne to prove it could fly

  15. M2-F1 under tow across lakebed by car

    NASA Technical Reports Server (NTRS)

    1963-01-01

    This 20-second clip shows the M2-F1 being towed by the Pontiac across Rogers Dry Lakebed. The M2-F1 lifting body, dubbed the 'flying bathtub' by the media, was the precursor of a remarkable series of wingless flying vehicles that contributed data used in the Space Shuttles, the X-33 Advanced Technology Demonstrator for the next century's Reusable Launch Vehicle, and the X-38 Technology Demonstrator for crew return from the International Space Station. Based on the ideas and basic design of Alfred J. Eggers and others at the Ames Aeronautical Laboratory (now the Ames Research Center), Mountain View, California, in the mid-1950's, the M2-F1 was built in 1962-63 over a four-month period for a cost of only about $30,000, plus an additional $8,000-$10,000 for an ejection seat. Engineers and technicians at the NASA Flight Research Center (now NASA Dryden) kept costs low by designing and fabricating it partly in-house, with the plywood shell constructed by a local sailplane builder. Someone at the time estimated that it would have cost a major aircraft company $150,000 to build the same vehicle. Unlike the later lifting bodies, the M2-F1 was unpowered and was initially towed by a souped-up Pontiac convertible until it was airborne. Later a C-47 took over the towing duties. Flown by such famous research pilots as Milt Thompson, Bruce Peterson, Chuck Yeager, and Bill Dana, the lightweight flying bathtub demonstrated that a wingless vehicle shaped for reentry into the Earth's atmosphere from space could be flown and landed safely. Flown from 1963 to 1966, the lightweight M2-F1 paved the way for the heavyweight M2-F2, M2`F3, HL-10, X-24A, and X-24B lifting bodies that flew under rocket power after launch from a B-52 mothership. The heavyweights flew from 1966 to 1975, demonstrating the viability and versatility of the wingless configuration and the ability of a vehicle with low lift-over-drag characteristics to fly to high altitudes and then to land precisely with their

  16. M2-F1 in flight being towed by a C-47

    NASA Technical Reports Server (NTRS)

    1964-01-01

    The M2-F1 Lifting Body is seen here being towed behind a C-47 at the Flight Research Center (later redesignated the Dryden Flight Research Center), Edwards, California. In this rear view, the M2-F1 is flying above and to one side of the C-47. This was done to avoid wake turbulence from the towplane. Lacking wings, the M2-F1 used an unusual configuration for its control surfaces. It had two rudders on the fins, two elevons (called 'elephant ears') mounted on the outsides of the fins, and two body flaps on the upper rear fuselage. The wingless, lifting body aircraft design was initially concieved as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. These initial tests produced enough flight data about the M2-F1 to proceed with flights behind the C-47 tow plane at greater altitudes. The C-47 took the craft to an altitude of 12,000 where free flights back to Rogers Dry Lake began. Pilot for the first series of flights of the M2-F1 was NASA research pilot Milt Thompson. Typical glide flights with the M2-F1 lasted about two minutes and reached speeds of 110 to l20 mph. More than 400 ground tows and 77 aircraft tow flights were carried out with the M2-F1. The success of Dryden's M2-F1 program led to NASA's development and construction of two heavyweight lifting bodies based on studies at NASA's Ames and

  17. M2-F1 in flight over lakebed on tow line

    NASA Technical Reports Server (NTRS)

    1963-01-01

    Following the first M2-F1 airtow flight on 16 August 1963, the Flight Research Center used the vehicle for both research flights and to check out new lifting-body pilots. These included Bruce Peterson, Don Mallick, Fred Haise, and Bill Dana from NASA. Air Force pilots who flew the M2-F1 included Chuck Yeager, Jerry Gentry, Joe Engle, Jim Wood, and Don Sorlie, although Wood, Haise, and Engle only flew on car tows. In the three years between the first and last flights of the M2-F1, it made about 400 car tows and 77 air tows. The wingless, lifting body aircraft design was initially concieved as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with the largest engine available. He took the car to Bill Straup's renowned hot-rod shop near Long Beach for modification. With a special gearbox and

  18. M2-F1 on lakebed with Pontiac convertible tow vehicle

    NASA Technical Reports Server (NTRS)

    1963-01-01

    The M2-F1 lifting body, dubbed the 'flying bathtub' by the media, was the precursor of a remarkable series of wingless flying vehicles that contributed data used in the space shuttle and the X-38 Technology Demonstrator for crew return from the International Space Station. The early tow tests were done using the 1963 Pontiac Catalina convertible modified for the purpose. The first flight attempt occurred on 1 March 1963 but was unsuccessful due to control-system problems. It was not until 5 April 1963, after tests in the Ames Research Center wind tunnel, that Milt Thompson made the first M2-F1 tow flight. Based on the ideas and basic design of Alfred J. Eggers and others at the Ames Aeronautical Laboratory (now the Ames Research Center), Mountain View, Calif., in the mid-1950s, the M2-F1 came to be built over a four-month period in 1962-63 for a cost of only about $30,000 plus perhaps an additional $8,000-$10,000 for an ejection seat and $10,000 for solid-propellant rockets to add time to the landing flare. Engineers and technicians at the NASA Flight Research Center (now NASA Dryden) kept costs low by designing and fabricating it partly in-house, with the plywood shell constructed by a local sailplane builder. Someone at the time estimated that it would have cost a major aircraft company $150,000 to build the same vehicle. Unlike the later lifting bodies, the M2-F1 was unpowered and was initially towed until it was airborne by a souped-up Pontiac convertible. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina

  19. M2-F1 mounted in NASA Ames Research Center 40x80 foot wind tunnel

    NASA Technical Reports Server (NTRS)

    1962-01-01

    After the first attempted ground-tow tests of the M2-F1 in March 1963, the vehicle was taken to the Ames Research Center, Mountain View, CA, for wind-tunnel testing. During these tests, Milt Thompson and others were in the M2-F1 to position the control surfaces for each test. The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with the largest engine available. He took the car to Bill Straup's renowned hot-rod shop near Long Beach for modification. With a special gearbox and racing slicks, the Pontiac could tow the 1,000-pound M2-F1 110 miles per hour in 30 seconds. It proved adequate for the roughly 400 car tows that got the M2-F1 airborne to prove it could fly safely and to train pilots before they were towed behind a C

  20. Wooden shell of M2-F1 being assembled at El Mirage

    NASA Technical Reports Server (NTRS)

    1962-01-01

    Wooden shell of the M2-F1 being assembled at El Mirage, CA. While Flight Research Center technicians built the internal steel structure of the M2-F1, sailplane builder Gus Briegleb built the vehicle's outer wooden shell. Its skin was 3/32-inch mahogany plywood, with 1/8-inch mahogany rib sections reinforced with spruce. The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with the largest engine available. He took the car to Bill Straup's renowned hot-rod shop near Long Beach for modification. With a special gearbox and racing slicks, the Pontiac could tow the 1,000-pound M2-F1 110 miles per hour in 30 seconds. It proved adequate for the roughly 400 car tows that got the M2-F1 airborne to prove it could fly safely and to

  1. M2-F1 in flight over lakebed on tow line

    NASA Technical Reports Server (NTRS)

    1963-01-01

    After initial ground-tow flights of the M2-F1 using the Pontiac as a tow vehicle, the way was clear to make air tows behind a C-47. The first air tow took place on 16 August 1963. Pilot Milt Thompson found that the M2-F1 flew well, with good control. This first flight lasted less than two minutes from tow-line release to touchdown. The descent rate was 4,000 feet per minute. The wingless, lifting body aircraft design was initially concieved as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with the largest engine available. He took the car to Bill Straup's renowned hot-rod shop near Long Beach for modification. With a special gearbox and racing slicks, the Pontiac could tow the 1,000-pound M2-F1 110 miles per hour in 30 seconds. It proved adequate for the roughly 400 car tows that got

  2. M2-F1 in flight during low-speed car tow

    NASA Technical Reports Server (NTRS)

    1963-01-01

    The M2-F1 shown in flight during a low-speed car tow runs across the lakebed. Such tests allowed about two minutes to test the vehicle's handling in flight. NASA Flight Research Center (later redesignated the Dryden Flight Research Center) personnel conducted as many as 8 to 14 ground-tow flights in a single day either to test the vehicle in preparation for air tows or to train pilots to fly the vehicle before they undertook air tows. The wingless, lifting body aircraft design was initially concieved as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with the largest engine available. He took the car to Bill Straup's renowned hot-rod shop near Long Beach for modification. With a special gearbox and racing slicks, the Pontiac could tow the 1,000-pound M2-F1 110 miles per hour in 30

  3. M2-F1 fabrication by Grierson Hamilton, Bob Green, and Ed Browne

    NASA Technical Reports Server (NTRS)

    1962-01-01

    Flight Research Center discretionary funds paid for the M2-F-1's construction. NASA mechanics, sheet-metal smiths, and technicians did much of the work in a curtained-off area of a hangar called the 'Wright Bicycle Shop.' The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with the largest engine available. He took the car to Bill Straup's renowned hot-rod shop near Long Beach for modification. With a special gearbox and racing slicks, the Pontiac could tow the 1,000-pound M2-F1 110 miles per hour in 30 seconds. It proved adequate for the roughly 400 car tows that got the M2-F1 airborne to prove it could fly safely and to train pilots before they were towed behind a C-47 aircraft and released. These initial car-tow tests

  4. Dale Reed with model in front of M2-F1

    NASA Technical Reports Server (NTRS)

    1967-01-01

    Dale Reed with a model of the M2-F1 in front of the actual lifting body. Reed used the model to show the potential of the lifting bodies. He first flew it into tall grass to test stability and trim, then hand-launched it from buildings for longer flights. Finally, he towed the lifting-body model aloft using a powered model airplane known as the 'Mothership.' A timer released the model and it glided to a landing. Dale's wife Donna used a 9 mm. camera to film the flights of the model. Its stability as it glided--despite its lack of wings--convinced Milt Thompson and some Flight Research Center engineers including the center director, Paul Bikle, that a piloted lifting body was possible. The lifting body concept evolved in the mid-1950s as researchers considered alternatives to ballistic reentries of piloted space capsules. The designs for hypersonic, wingless vehicles were on the boards at NASA Ames and NASA Langley facilities, while the US Air Force was gearing up for its Dyna-Soar program, which defined the need for a spacecraft that would land like an airplane. Despite favorable research on lifting bodies, there was little support for a flight program. Dryden engineer R. Dale Reed was intrigued with the lifting body concept, and reasoned that some sort of flight demonstration was needed before wingless aircraft could be taken seriously. In February 1962, he built a model lifting body based upon the Ames M2 design, and air-launched it from a radio controlled 'mothership.' Home movies of these flights, plus the support of research pilot Milt Thompson, helped pursuade the facilities director, Paul Bikle, to give the go-ahead for the construction of a full-scale version, to be used as a wind-tunnel model and possibly flown as a glider. Comparing lifting bodies to space capsules, an unofficial motto of the project was, 'Don't be Rescued from Outer Space--Fly Back in Style.' The construction of the M2-F1 was a joint effort by Dryden and a local glider manufacturer, the

  5. M2-F1 on lakebed with pilots Milt Thompson, Chuck Yeager, Don Mallick, and Bruce Peterson

    NASA Technical Reports Server (NTRS)

    1963-01-01

    After the initial M2-F1 airtow flights, the NASA Flight Research Center used the vehicle to check out other pilots. Bruce Peterson was scheduled to take over as the M2-F1 project pilot from Milt Thompson, while Don Mallick was to be his backup. Col. (later Brig. Gen.) Charles (Chuck) Yeager, then commandant of the Air Force's Aerospace Research Pilots School, wanted to evaluate a possible lifting-body trainer for the school. This photo shows all of these distinguished pilots on or in the M2-F1, with Col. Yeager in the pilot's seat. The lifting body concept evolved in the mid-1950s as researchers considered alternatives to ballistic reentries of piloted space capsules. The designs for hypersonic, wingless vehicles were on the boards at NASA Ames and NASA Langley facilities, while the US Air Force was gearing up for its Dyna-Soar program, which defined the need for a spacecraft that would land like an airplane. Despite favorable research on lifting bodies, there was little support for a flight program. Dryden engineer R. Dale Reed was intrigued with the lifting body concept, and reasoned that some sort of flight demonstration was needed before wingless aircraft could be taken seriously. In February 1962, he built a model lifting body based upon the Ames M2 design, and air-launched it from a radio controlled 'mothership.' Home movies of these flights, plus the support of research pilot Milt Thompson, helped pursuade the facilities director, Paul Bikle, to give the go-ahead for the construction of a full-scale version, to be used as a wind-tunnel model and possibly flown as a glider. Comparing lifting bodies to space capsules, an unofficial motto of the project was, 'Don't be Rescued from Outer Space--Fly Back in Style.' The construction of the M2-F1 was a joint effort by Dryden and a local glider manufacturer, the Briegleb Glider Company. The budget was $30,000. NASA craftsmen and engineers built the tubular steel interior frame. Its mahogany plywood shell was hand

  6. Flight-Determined Subsonic Lift and Drag Characteristics of Seven Lifting-Body and Wing-Body Reentry Vehicle Configurations With Truncated Bases

    NASA Technical Reports Server (NTRS)

    Saltzman, Edwin J.; Wang, K. Charles; Iliff, Kenneth W.

    1999-01-01

    This paper examines flight-measured subsonic lift and drag characteristics of seven lifting-body and wing-body reentry vehicle configurations with truncated bases. The seven vehicles are the full-scale M2-F1, M2-F2, HL-10, X-24A, X-24B, and X-15 vehicles and the Space Shuttle prototype. Lift and drag data of the various vehicles are assembled under aerodynamic performance parameters and presented in several analytical and graphical formats. These formats unify the data and allow a greater understanding than studying the vehicles individually allows. Lift-curve slope data are studied with respect to aspect ratio and related to generic wind-tunnel model data and to theory for low-aspect-ratio planforms. The proper definition of reference area was critical for understanding and comparing the lift data. The drag components studied include minimum drag coefficient, lift-related drag, maximum lift-to-drag ratio, and, where available, base pressure coefficients. The effects of fineness ratio on forebody drag were also considered. The influence of forebody drag on afterbody (base) drag at low lift is shown to be related to Hoerner's compilation for body, airfoil, nacelle, and canopy drag. These analyses are intended to provide a useful analytical framework with which to compare and evaluate new vehicle configurations of the same generic family.

  7. Aerodynamic Assessment of Flight-Determined Subsonic Lift and Drag Characteristics of Seven Lifting-Body and Wing-Body Reentry Vehicle Configurations

    NASA Technical Reports Server (NTRS)

    Saltzman, Edwin J.; Wang, K. Charles; Iliff, Kenneth W.

    2002-01-01

    This report examines subsonic flight-measured lift and drag characteristics of seven lifting-body and wing-body reentry vehicle configurations with truncated bases. The seven vehicles are the full-scale M2-F1, M2-F2, HL-10, X-24A, X-24B, and X-15 vehicles and the Space Shuttle Enterprise. Subsonic flight lift and drag data of the various vehicles are assembled under aerodynamic performance parameters and presented in several analytical and graphical formats. These formats are intended to unify the data and allow a greater understanding than individually studying the vehicles allows. Lift-curve slope data are studied with respect to aspect ratio and related to generic wind-tunnel model data and to theory for low-aspect-ratio platforms. The definition of reference area is critical for understanding and comparing the lift data. The drag components studied include minimum drag coefficient, lift-related drag, maximum lift-to drag ratio, and, where available, base pressure coefficients. The influence of forebody drag on afterbody and base drag at low lift is shown to be related to Hoerner's compilation for body, airfoil, nacelle, and canopy drag. This feature may result in a reduced need of surface smoothness for vehicles with a large ratio of base area to wetted area. These analyses are intended to provide a useful analytical framework with which to compare and evaluate new vehicle configurations of the same generic family.

  8. Aerodynamics of Supersonic Lifting Bodies

    DTIC Science & Technology

    1981-02-01

    verso of front cover. 19 Y WOROS (Continue on rt.’,;erso side i recessary and identily by block number) Theoretical Aerodynamics Lifting Bodies Wind ...waverider solution, developed from the supersonic wedge flow solution, is then i Fused to fashion vertLcal stabilizer-likh control surfaces. Wind ...served as Project Engineers ror thE wind tunnel work. Important contributions were also made bv: Mr. iis±ung Miin; Lee, -M. Beom-Soo Kim, Mtr. Martin Weeks

  9. Wingless Flight: The Lifting Body Story

    NASA Technical Reports Server (NTRS)

    Reed, R. Dale; Lister, Darlene (Editor); Huntley, J. D. (Editor)

    1997-01-01

    Wingless Flight tells the story of the most unusual flying machines ever flown, the lifting bodies. It is my story about my friends and colleagues who committed a significant part of their lives in the 1960s and 1970s to prove that the concept was a viable one for use in spacecraft of the future. This story, filled with drama and adventure, is about the twelve-year period from 1963 to 1975 in which eight different lifting-body configurations flew. It is appropriate for me to write the story, since I was the engineer who first presented the idea of flight-testing the concept to others at the NASA Flight Research Center. Over those twelve years, I experienced the story as it unfolded day by day at that remote NASA facility northeast of los Angeles in the bleak Mojave Desert. Benefits from this effort immediately influenced the design and operational concepts of the winged NASA Shuttle Orbiter. However, the full benefits would not be realized until the 1990s when new spacecraft such as the X-33 and X-38 would fully employ the lifting-body concept. A lifting body is basically a wingless vehicle that flies due to the lift generated by the shape of its fuselage. Although both a lifting reentry vehicle and a ballistic capsule had been considered as options during the early stages of NASA's space program, NASA initially opted to go with the capsule. A number of individuals were not content to close the book on the lifting-body concept. Researchers including Alfred Eggers at the NASA Ames Research Center conducted early wind-tunnel experiments, finding that half of a rounded nose-cone shape that was flat on top and rounded on the bottom could generate a lift-to-drag ratio of about 1.5 to 1. Eggers' preliminary design sketch later resembled the basic M2 lifting-body design. At the NASA Langley Research Center, other researchers toyed with their own lifting-body shapes. Meanwhile, some of us aircraft-oriented researchers at the, NASA Flight Research Center at Edwards Air

  10. NASA HL-20 PLS Lifting Body (Mockup)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    NASA HL-20 PLS Lifting Body (Mockup): The HL-20 came into use at Langley in October 1990 and is a full-scale non-flying mockup. This mockup was used for engineering studies of maintainability of the vehicle, as testing crew positions, pilot visibility and other human factors considerations.

  11. Development and flight testing of the HL-10 lifting body

    NASA Technical Reports Server (NTRS)

    Kempel, Robert W.; Painter, Weneth D.

    1993-01-01

    The Horizontal Lander 10 (HL-10) lifting body successfully completed 37 flights, achieved the highest Mach number and altitude of this class of vehicle, and contributed to the technology base used to develop the space shuttle and future generations of lifting bodies. Design, development, and flight testing of this low-speed, air-launched, rocket-powered, lifting body was part of an unprecedented effort by NASA and the Northrop Corporation. This paper describes the evolution of the HL-10 lifting body from theoretical design, through development, to selection as one of two low-speed flight vehicles chosen for fabrication and piloted flight testing. Interesting and unusual events which occurred during the program and flight tests, review of significant problems encountered during the first flight, and discussion of how these problems were solved are presented. In addition, impressions of the pilots who flew the HL-10 lifting body are given.

  12. Complications of Lower Body Lift Surgery in Postbariatric Patients

    PubMed Central

    van Dijk, Martine M.; Klein, Steven; Hoogbergen, Maarten M.

    2016-01-01

    Background: There is an exponential rise of patients with massive weight loss because of bariatric surgery or lifestyle changes. The result is an increase of patients with folds of redundant skin that may cause physical and psychological problems. The lower body lift is a procedure to correct deformities in the abdomen, mons, flanks, lateral thighs, and buttocks. Complication rates are quite high and could negatively affect the positive outcomes. The purpose of this study is to assess complication rates and to identify predictors of complications to optimize outcomes for patients after lower body lift surgery. Methods: A retrospective analysis of 100 patients who underwent a lower body lift procedure was performed. The patients were reviewed for complications, demographic data, comorbidities, smoking, highest lifetime body mass index, body mass index before lower body lift surgery, percentage of excess weight loss, and amount of tissue excised. Results: The overall complication rate was 78%. Twenty-two percent of the patients had major complications and 56% had minor complications. There is a linear relationship between body mass index before lower body lift surgery and complications (P = 0.03). The percentage of excess weight loss (odds ratio [OR] 0.97; 95% confidence interval [CI] 0.92–1.00), highest lifetime body mass index (OR 1.08; 95% CI 1.01–1.15), body mass index before lower body lift surgery (OR 1.17; 95% CI 1.02–1.33), and smoking (OR 7.74; CI 0.98–61.16) are significantly associated with the development of complications. Conclusions: This study emphasizes the importance of a good weight status before surgery and cessation of smoking to minimize the risk of complications. PMID:27757346

  13. Analysis of transonic flow about lifting wing-body configurations

    NASA Technical Reports Server (NTRS)

    Barnwell, R. W.

    1975-01-01

    An analytical solution was obtained for the perturbation velocity potential for transonic flow about lifting wing-body configurations with order-one span-length ratios and small reduced-span-length ratios and equivalent-thickness-length ratios. The analysis is performed with the method of matched asymptotic expansions. The angles of attack which are considered are small but are large enough to insure that the effects of lift in the region far from the configuration are either dominant or comparable with the effects of thickness. The modification to the equivalence rule which accounts for these lift effects is determined. An analysis of transonic flow about lifting wings with large aspect ratios is also presented.

  14. Aerodynamic development of a lifting body launch vehicle

    NASA Astrophysics Data System (ADS)

    Reaser, J. Scott

    1997-01-01

    The Lockheed Martin Reusable Launch Vehicle (RLV) and X-33 demonstrator vehicle incorporate a lifting body aerodynamic design. This design originated from the X-24, HL-20 and ACRV lifting body database. It evolved rapidly through successive wind tunnel tests using stereolithography generated plastic models and rapid data acquisition and analysis. The culmination of this work is a configuration that is close to meeting a goal of at least neutral stability about all axes throughout the operating Mach spectrum. The development process and aerodynamic evolution are described.

  15. Aerodynamic development of a lifting body launch vehicle

    SciTech Connect

    Reaser, J.S.

    1997-01-01

    The Lockheed Martin Reusable Launch Vehicle (RLV) and X-33 demonstrator vehicle incorporate a lifting body aerodynamic design. This design originated from the X-24, HL-20 and ACRV lifting body database. It evolved rapidly through successive wind tunnel tests using stereolithography generated plastic models and rapid data acquisition and analysis. The culmination of this work is a configuration that is close to meeting a goal of at least neutral stability about all axes throughout the operating Mach spectrum. The development process and aerodynamic evolution are described. {copyright} {ital 1997 American Institute of Physics.}

  16. Mid-L/D Lifting Body Entry Demise Analysis

    NASA Technical Reports Server (NTRS)

    Ling, Lisa

    2017-01-01

    The mid-lift-to-drag ratio (mid-L/D) lifting body is a fully autonomous spacecraft under design at NASA for enabling a rapid return of scientific payloads from the International Space Station (ISS). For contingency planning and risk assessment for the Earth-return trajectory, an entry demise analysis was performed to examine three potential failure scenarios: (1) nominal entry interface conditions with loss of control, (2) controlled entry at maximum flight path angle, and (3) controlled entry at minimum flight path angle. The objectives of the analysis were to predict the spacecraft breakup sequence and timeline, determine debris survival, and calculate the debris dispersion footprint. Sensitivity analysis was also performed to determine the effect of the initial pitch rate on the spacecraft stability and breakup during the entry. This report describes the mid-L/D lifting body and presents the results of the entry demise and sensitivity analyses.

  17. Piloted simulator studies of the HL-20 Lifting Body

    NASA Technical Reports Server (NTRS)

    Rivers, Robert A.; Jackson, E. B.; Ragsdale, W. A.

    1991-01-01

    An overview is presented of the concept, design and development of the NASA Langley Lifting Body, and the flight simulator studies that have been performed. Attention is given to the aerodynamic shape of the HL-20, vehicle and simulator/cockpit description, and evolution of the HL-20 aerodynamic model. The flight simulation studies have demonstrated the HL-20 to be a viable design for accomplishing precise, unpowered, horizontal landings.

  18. Piloted simulator studies of the HL-20 Lifting Body

    NASA Astrophysics Data System (ADS)

    Rivers, Robert A.; Jackson, E. B.; Ragsdale, W. A.

    An overview is presented of the concept, design and development of the NASA Langley Lifting Body, and the flight simulator studies that have been performed. Attention is given to the aerodynamic shape of the HL-20, vehicle and simulator/cockpit description, and evolution of the HL-20 aerodynamic model. The flight simulation studies have demonstrated the HL-20 to be a viable design for accomplishing precise, unpowered, horizontal landings.

  19. The Personnel Launch System - A lifting body approach

    NASA Technical Reports Server (NTRS)

    Talay, Theodore A.; Stone, Howard W.

    1991-01-01

    A lifting-body approach to the sign of a Personnel Launch System spacecraft for Space Station crew missions is defined. This paper reviews the characteristics and capabilities of this spacecraft the HL-20. Launch vehicle options are examined and recent findings from wind tunnel tests, tests of landing dynamics and handling qualities, and human factors research using a full-scale research model are reviewed.

  20. Maximizing aesthetics in lateral-tension abdominoplasty and body lifts.

    PubMed

    Lockwood, Ted E

    2004-10-01

    The high-lateral-tension abdominoplasty addresses the practical and theoretic faults of standard abdominoplasty design. Key features include limited direct undermining, increased lateral skin resection with highest-tension wound closure along lateral limbs, two-layer superficial fascial system repair, and significant truncal liposuction when needed. The high-lateral-tension design limits the unfavorable features of standard abdominoplasty and produces balanced natural aesthetic contours. The high-lateral-tension abdominoplasty is the foundation for treatment of more generalized relaxation problems in the circumferential trunk and thighs. For more significant thigh laxity and buttock ptosis, the lateral-tension abdominoplasty is combined with the transverse thigh/buttock lift to produce the lower body lift #2.

  1. The HL-20 lifting-body personnel launch system

    NASA Technical Reports Server (NTRS)

    Stone, Howard W.; Piland, William M.

    1991-01-01

    The HL-20 early lifting-body personnel launch system (PSL) research, expected PSL mission requirements, the HL-20 concept design status, and those features which enhance aerodynamic and aerothermodynamic performance, operation, efficiency, maintainability, reliability, and crew safety are described. Results of the HL-20 PLS research to date show that the concept has definite advantages for efficiently satisfying future needs for assured manned access to space. The vehicle is designed with operational efficiency, low life-cycle costs, reliability, and safety as the primary criteria. It is shown that the HL-20 PLS can be developed and put into operation in the same timeframe that the Space Station Freedom is deployed.

  2. Preliminary piloted simulation studies of the HL-20 lifting body

    NASA Astrophysics Data System (ADS)

    Rivers, Robert A.; Jackson, E. Bruce; Ragsdale, W. A.

    1994-05-01

    NASA Langley Research Center is developing a lifting body vehicle, designated the HL-20, as one option of the proposed Personnel Launch System for NASA's future manned access to space requirements. Data derived from wind-tunnel and computational fluid dynamics analyses of the conceptual design led to the derivation of a flight simulator model to investigate the potential flight characteristics of the HL-20. A simulation investigation was initiated to determine if satisfactory unpowered horizontal landings could be accomplished. Control law design and trajectory development were directed toward this end. The study uncovered several deficiencies subsequently corrected through design changes, and it validated the predicted subsonic aerodynamic properties. Expanding the investigation to the Mach 4 to Mach 1 regime revealed flight characteristics necessitating the development of innovative control techniques. This article will present the significant results uncovered to date by flight simulator evaluations of a lifting body class of vehicle, and will demonstrate the effectiveness of flight simulation as an integrated part of the conceptual design phase.

  3. Lifting Entry & Atmospheric Flight (LEAF) Applications at Solar System Bodies.

    NASA Astrophysics Data System (ADS)

    Lee, G.; Sen, B.; Polidan, R. S.

    2015-12-01

    Introduction: Northrop Grumman and L'Garde have continued the development of a hypersonic entry, maneuverable platform capable of performing long-duration (months to a year) in situ and remote measurements at any solar system body that possesses an atmosphere. The Lifting Entry & Atmospheric Flight (LEAF) family of vehicles achieve this capability by using a semi-buoyant, ultra-low ballistic coefficient vehicle whose lifting entry allows it to enter the atmosphere without an aeroshell. In this presentation, we discuss the application of the LEAF system at various solar system bodies: Venus, Titan, Mars, and Earth. We present the key differences in platform design as well as operational differences required by the various target environments. The Venus implementation includes propulsive capability to reach higher altitudes during the day and achieves full buoyancy in the "habitable layers" of Venus' atmosphere at night. Titan also offers an attractive operating environment, allowing LEAF designs that can target low, medium, or high altitude operations, also with propulsive capabilities to roam within each altitude regime. The Mars version is a glider that descends gradually, allowing targeted delivery of payloads to the surface. Finally, an Earth version could remain in orbit in a stowed state until activated, allowing rapid response type deployments to any region of the globe.

  4. Thermal Management Design for the X-33 Lifting Body

    NASA Technical Reports Server (NTRS)

    Bouslog, S.; Mammano, J.; Strauss, B.

    1998-01-01

    The X-33 Advantage Technology Demonstrator offers a rare and exciting opportunity in Thermal Protection System development. The experimental program incorporates the latest design innovation in re-useable, low life cycle cost, and highly dependable Thermal Protection materials and constructions into both ground based and flight test vehicle validations. The unique attributes of the X-33 demonstrator for design application validation for the full scale Reusable Launch Vehicle, (RLV), are represented by both the configuration of the stand-off aeroshell, and the extreme exposures of sub-orbital hypersonic re-entry simulation. There are several challenges of producing a sub-orbital prototype demonstrator of Single Stage to Orbit/Reusable Launch Vehicle (SSTO/RLV) operations. An aggressive schedule with budgetary constraints precludes the opportunity for an extensive verification and qualification program of vehicle flight hardware. However, taking advantage of off the shelf components with proven technologies reduces some of the requirements for additional testing. The effects of scale on thermal heating rates must also be taken into account during trajectory design and analysis. Described in this document are the unique Thermal Protection System (TPS) design opportunities that are available with the lifting body configuration of the X-33. The two principal objectives for the TPS are to shield the primary airframe structure from excessive thermal loads and to provide an aerodynamic mold line surface. With the relatively benign aeroheating capability of the lifting body, an integrated stand-off aeroshell design with minimal weight and reduced procurement and operational costs is allowed. This paper summarizes the design objectives of the X-33 TPS, the flight test requirements driven configuration, and design benefits. Comparisons are made of the X-33 flight profiles and Space Shuttle Orbiter, and lifting body Reusable Launch Vehicle aerothermal environments. The X-33

  5. Launch pad abort of the HL-20 lifting body

    NASA Astrophysics Data System (ADS)

    Jackson, E. Bruce; Rivers, Robert A.; Chowdhry, Rajiv S.; Ragsdale, W. A.; Geyer, David W.

    1994-11-01

    The capability of the HL-20 lifting-body spacecraft to perform an abort maneuver from the launch pad to a horizontal landing was studied. This study involved both piloted and batch simulation models of the vehicle. A point-mass model of the vehicle was used for trajectory optimization studies. The piloted simulation was performed in a fixed-base simulator. A candidate maneuver was developed and refined for the worst-case launch-pad-to-landing-site geometry using an iterative procedure of off-line maneuver analysis followed by piloted evaluations and heuristic improvements to the candidate maneuver. The resulting maneuver demonstrates the launch site abort capability of the HL-20 and dictates requirements for nominal abort motor performance. The sensitivity of the maneuver to variations in several design parameters was documented.

  6. Lift-Drag Ratios for an Arrow Wing With Bodies at Mach Number 3

    NASA Technical Reports Server (NTRS)

    Jorgensen, Leland H.

    1959-01-01

    Force and moment characteristics, including lift-drag ratios, have been measured for bodies of circular and elliptic cross section alone and combined with a warped arrow wing. The test Mach number was 2.94, and the Reynolds number was 3.5 x 10(exp 6) (based on wing mean aerodynamic chord). The experimental results show that for equal volume the use of an elliptical body can result in a noticeably higher maximum lift-drag ratio than that obtained through use of a circular body. Methods for estimating the aerodynamic characteristics have been assessed by comparing computed with experimental results. Because of good agreement of the predictions with experiment, maximum lift-drag ratios have been computed for the arrow wing in combination with bodies of various sizes. These calculations have shown that, for an efficient wing-body combination, little loss in maximum lift-drag ratio results from considerable extension of afterbody length. For example, for a wing-body configuration having a maximum lift-drag ratio of about 7.1, a loss in maximum lift-drag ratio of less than 0.2 results from a 40-percent increase in body volume by extension of afterbody length. It also appears that with body length fixed, maximum lift-drag ratio decreases almost linearly with increase in body diameter. For a wing- body combination employing a body of circular cross section, a decrease in maximum lift-drag ratio from about 9.1 for zero body diameter to about 4.6 for a body diameter of 13.5 percent of the body length was computed.

  7. Exploring the effects of seated whole body vibration exposure on repetitive asymmetric lifting tasks.

    PubMed

    Mehta, Jay P; Lavender, Steven A; Jagacinski, Richard J; Sommerich, Carolyn M

    2015-01-01

    This study investigated changes in the physiological and behavioral responses to repetitive asymmetric lifting activity after exposure to whole body vibrations. Seventeen healthy volunteers repeatedly lifted a box (15% of lifter's capacity) positioned in front of them at ankle level to a location on their left side at waist level at the rate of 10 lifts/min for a period of 60 minutes. Prior to lifting, participants were seated on a vibrating platform for 60 minutes; in one of the two sessions the platform did not vibrate. Overall, the physiological responses assessed using near-infrared spectroscopy signals for the erector spinae muscles decreased significantly over time during the seating and the lifting tasks (p < 0.001). During repetitive asymmetric lifting, behavioral changes included increases in peak forward bending motion, twisting movement, and three-dimensional movement velocities of the spine. The lateral bending movement of the spine and the duration of each lift decreased significantly over the 60 minutes of repetitive lifting. With exposure to whole body vibration, participants twisted farther (p = 0.046) and twisted faster (p = 0.025). These behavioral changes would suggest an increase in back injury risk when repetitive lifting tasks are preceded by whole body vibration exposure.

  8. Effect of lift-to-drag ratio upon pilot rating for a preliminary version of the HL-20 lifting body

    NASA Technical Reports Server (NTRS)

    Jackson, E. B.; Rivers, Robert A.; Bailey, Melvin L.

    1991-01-01

    A man-in-the-loop simulation study of the handling qualities of the HL-20 lifting body vehicle has been performed in a fixed-base simulation cockpit. The study was aimed at identifying opportunities to improve the original design of the vehicle from a handling qualities and landing performance perspective. A subsonic aerodynamic model of the HL-20 was used as a baseline, and visual approaches and landings were made at various vehicle lift-to-drag (L/D) ratios. It is concluded that there is a high degree of correlation between maximum L/D ratio and pilot rating. Using the pilot ratings Level 1, flying qualities were found to be possible for configurations with a maximum L/D ratio of 3.8 or higher.

  9. Personnel launch system (PLS) lifting body and low lift-to-drag (L/D)

    NASA Technical Reports Server (NTRS)

    Erwin, Harry O.

    1990-01-01

    The Personnel Launch System (PLS) is a small transportation system designed to transport people, but no cargo, to and from low-earth orbit. The PLS is being considered as an addition to the manned launch capability of the United States for three main reasons: (1) to assure manned access to space, (2) to achieve a first-stage abort ability, and (3) to reduce operations costs. To those ends, two designs are being considered for the PLS that differ in their lift-to-drag (L/D) ratio. The Lyndon B. Johnson Space Center was assigned the task of examining low L/D capsules with no wings and a parachute landing capability. The Langley Research Center is studying a higher L/D PLS with wings and runway landings. Whichever design is selected, the PLS will act as a complement to the Space Shuttle fleet and will enhance the ability of our Nation to achieve reliable, safe, and cost-effective access to space flight, thus furthering the goals of the U.S. space program and increasing the safety of the human crews manning a future space station.

  10. Investigation of Body-involved Lift Enhancement in Bio-inspired Flapping Flight

    NASA Astrophysics Data System (ADS)

    Wang, Junshi; Liu, Geng; Ren, Yan; Dong, Haibo

    2016-11-01

    Previous studies found that insects and birds are capable of using many unsteady aerodynamic mechanisms to augment the lift production. These include leading edge vortices, delayed stall, wake capture, clap-and-fling, etc. Yet the body-involved lift augmentation has not been paid enough attention. In this work, the aerodynamic effects of the wing-body interaction on the lift production in cicada and hummingbird forward flight are computationally investigated. 3D wing-body systems and wing flapping kinematics are reconstructed from the high-speed videos or literatures to keep their complexity. Vortex structures and associated aerodynamic performance are numerically studied by an in-house immersed-boundary-method-based flow solver. The results show that the wing-body interaction enhances the overall lift production by about 20% in the cicada flight and about 28% in the hummingbird flight, respectively. Further investigation on the vortex dynamics has shown that this enhancement is attributed to the interactions between the body-generated vortices and the flapping wings. The output from this work has revealed a new lift enhancement mechanism in the flapping flight. This work is supported by NSF CBET-1313217 and AFOSR FA9550-12-1-0071.

  11. In-Flight Subsonic Lift and Drag Characteristics Unique to Blunt-Based Lifting Reentry Vehicles

    NASA Technical Reports Server (NTRS)

    Saltzman, Edwin J.; Wang, K. Charles; Iliff, Kenneth W.

    2007-01-01

    Lift and drag measurements have been analyzed for subsonic flight conditions for seven blunt-based reentry-type vehicles. Five of the vehicles are lifting bodies (M2-F1, M2-F2, HL-10, X-24A, and X-24B) and two are wing-body configurations (the X-15 and the Space Shuttle Enterprise). Base pressure measurements indicate that the base drag for full-scale vehicles is approximately three times greater than predicted by Hoerner's equation for three-dimensional bodies. Base drag and forebody drag combine to provide an optimal overall minimum drag (a drag "bucket") for a given configuration. The magnitude of this optimal drag, as well as the associated forebody drag, is dependent on the ratio of base area to vehicle wetted area. Counter-intuitively, the flight-determined optimal minimum drag does not occur at the point of minimum forebody drag, but at a higher forebody drag value. It was also found that the chosen definition for reference area for lift parameters should include the projection of planform area ahead of the wing trailing edge (i.e., forebody plus wing). Results are assembled collectively to provide a greater understanding of this class of vehicles than would occur by considering them individually.

  12. A field evaluation method for assessing whole body biomechanical joint stress in manual lifting tasks.

    PubMed

    Lin, Chiuhsiang J; Wang, Shun J; Chen, Hung J

    2006-10-01

    Work-related musculoskeletal injuries are often associated with overexertion of the body at work. The manual materials handling activity of lifting is a major source of work-related musculoskeletal disorders. Biomechanical evaluation offers useful information about the physical stress imposed on the worker's body joints; however, biomechanical analysis is usually tedious and complex. For evaluation purpose, the biomechanical method needs to be easy to apply in a field environment. Manual lifting occurs as one of the most common manual materials handling tasks in the workplace. A biomechanical evaluation method was developed based on the ratio of joint moment to joint capacity. The method was applied to evaluate the physical stress of manual lifting in truck loading jobs using a nine-link whole body joint model. Thirty eight industrial tasks were evaluated using the developed joint moment ratio. The moment ratio was compared with subjectively rated body discomfort, overall workload, and the NIOSH lifting index. The moment ratio was found to have a high correlation with the NIOSH lifting index. The biomechanical method can be used with relatively simple equipment and procedure which may be suitable for on-site ergonomic evaluation.

  13. Aero-thermal analysis of lifting body configurations in hypersonic flow

    NASA Astrophysics Data System (ADS)

    Kumar, Sachin; Mahulikar, Shripad P.

    2016-09-01

    The aero-thermal analysis of a hypersonic vehicle is of fundamental interest for designing its thermal protection system. The aero-thermal environment predictions over several critical regions of the hypothesized lifting body vehicle, including the stagnation region of the nose-cap, cylindrically swept leading edges, fuselage-upper, and fuselage-lower surfaces, are discussed. The drag (Λ=70°) and temperature (Λ=80°) minimized sweepback angles are considered in the configuration design of the two hypothesized lifting body shape hypersonic vehicles. The main aim of the present study is to analyze and compare the aero-thermal characteristics of these two lifting body configurations at same heat capacity. Accordingly, a Computational Fluid Dynamics simulation has been carried out at Mach number (M∞=7), H=35 km altitude with zero Angle of Attack. Finally, the material selection for thermal protection system based on these predictions and current methodology is described.

  14. Pilot Milt Thompson and the M2-F2 Lifting Body

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Jay L. King, Joseph D. Huxman and Orion D. Billeter assist NASA research pilot Milt Thompson (on the ladder) into the cockpit of the M2-F2 lifting body research aircraft at the NASA Flight Research Center (now the Dryden Flight Research Center). The M2-F2 is attached to a wing pylon under the wing of NASA's B-52 mothership.

  15. Measurements of the flow around a lifting-wing/body junction

    NASA Technical Reports Server (NTRS)

    Wood, D. H.; Westphal, R. V.

    1992-01-01

    Detailed measurements of all three mean velocity components and five of the six Reynolds stresses have been made around a model of a lifting-wing/body junction. The body was the flat working section floor of a small blower wind tunnel. Measurements of the surface pressure distribution on the NACA 0012 wing showed that the lift coefficient at the body surface was reduced by only 16 percent from the freestream value. It is shown that the near constancy of the bound vorticity requires the formation of aixal vorticity within the body boundary layer. This vorticity was concentrated in the two legs of the necklace vortex formed near the leading edge of the wing. The magnitude of the vorticity was always greater in the leg that developed on the suction surface. By four chord lengths downstream of the trailing edge, the turbulence structure of the suction leg was qualitatively similar to that of a single vortex imbedded in a turbulent boundary layer.

  16. Developing and flight testing the HL-10 lifting body: A precursor to the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Kempel, Robert W.; Painter, Weneth D.; Thompson, Milton O.

    1994-01-01

    The origins of the lifting-body idea are traced back to the mid-1950's, when the concept of a manned satellite reentering the Earth's atmosphere in the form of a wingless lifting body was first proposed. The advantages of low reentry deceleration loads, range capability, and horizontal landing of a lifting reentry vehicle (as compared with the high deceleration loads and parachute landing of a capsule) are presented. The evolution of the hypersonic HL-10 lifting body is reviewed from the theoretical design and development process to its selection as one of two low-speed flight vehicles for fabrication and piloted flight testing. The design, development, and flight testing of the low-speed, air-launched, rocket-powered HL-10 was part of an unprecedented NASA and contractor effort. NASA Langley Research Center conceived and developed the vehicle shape and conducted numerous theoretical, experimental, and wind-tunnel studies. NASA Flight Research Center (now NASA Dryden Flight Research Center) was responsible for final low-speed (Mach numbers less than 2.0) aerodynamic analysis, piloted simulation, control law development, and flight tests. The prime contractor, Northrop Corp., was responsible for hardware design, fabrication, and integration. Interesting and unusual events in the flight testing are presented with a review of significant problems encountered in the first flight and how they were solved. Impressions by the pilots who flew the HL-10 are included. The HL-10 completed a successful 37-flight program, achieved the highest Mach number and altitude of this class vehicle, and contributed to the technology base used to develop the space shuttle and future generations of lifting bodies.

  17. Flight-Simulated Launch-Pad-Abort-to-Landing Maneuvers for a Lifting Body

    NASA Technical Reports Server (NTRS)

    Jackson, E. Bruce; Rivers, Robert A.

    1998-01-01

    The results of an in-flight investigation of the feasibility of conducting a successful landing following a launch-pad abort of a vertically-launched lifting body are presented. The study attempted to duplicate the abort-to-land-ing trajectory from the point of apogee through final flare and included the steep glide and a required high-speed, low-altitude turn to the runway heading. The steep glide was flown by reference to ground-provided guidance. The low-altitude turn was flown visually with a reduced field- of-view duplicating that of the simulated lifting body. Results from the in-flight experiment are shown to agree with ground-based simulation results; however, these tests should not be regarded as a definitive due to performance and control law dissimilarities between the two vehicles.

  18. Aft-End Flow of a Large-Scale Lifting Body During Free-Flight Tests

    NASA Technical Reports Server (NTRS)

    Banks, Daniel W.; Fisher, David F.

    2006-01-01

    Free-flight tests of a large-scale lifting-body configuration, the X-38 aircraft, were conducted using tufts to characterize the flow on the aft end, specifically in the inboard region of the vertical fins. Pressure data was collected on the fins and base. Flow direction and movement were correlated with surface pressure and flight condition. The X-38 was conceived to be a rescue vehicle for the International Space Station. The vehicle shape was derived from the U.S. Air Force X-24 lifting body. Free-flight tests of the X-38 configuration were conducted at the NASA Dryden Flight Research Center at Edwards Air Force Base, California from 1997 to 2001.

  19. Human Factors Lessons Learned from Flight Testing Wingless Lifting Body Vehicles

    NASA Technical Reports Server (NTRS)

    Merlin, Peter William

    2014-01-01

    Since the 1960s, NASA, the Air Force, and now private industry have attempted to develop an operational human crewed reusable spacecraft with a wingless, lifting body configuration. This type of vehicle offers increased mission flexibility and greater reentry cross range than capsule type craft, and is particularly attractive due to the capability to land on a runway. That capability, however, adds complexity to the human factors engineering requirements of developing such aircraft.

  20. Body Estimation and Physical Performance: Estimation of Lifting and Carrying from Fat-Free Mass.

    DTIC Science & Technology

    2007-11-02

    success. However, the Services do not generally measure strength as part of their physical fitness testing, because of issues of safety, and desires to...10 Figure 3. Relationships between lifting capacity to knuckle height and elbow height and ILM, FFM and body m ass...of the Department of Defense (DoD) is "that individual Service members possess the cardiorespiratory endurance, muscular strength and endurance, and

  1. Subsonic aerodynamic characteristics of the HL-20 lifting-body configuration

    NASA Technical Reports Server (NTRS)

    Ware, George M.; Cruz, Christopher I.

    1993-01-01

    The HL-20 is proposed as a possible future manned spacecraft. The configuration consists of a low-aspect-ratio body with a flat undersurface. Three fins (a small centerline fin and two outboard (tip) fins set at a dihedral angle of 50 deg) are mounted on the aft body. The control system consists of elevon surfaces on the outboard fins, a set of four body flaps on the upper and lower aft body, and an all-movable center fin. Both the elevons and body flaps were capable of trimming the model to angles of attack from -2 deg to above 20 deg. The maximum trimmed lift-drag ratio was 3.6. Replacing the flat-plate tip fins with airfoil tip fins increased the maximum trimmed lift-drag ratio to 4.2. The elevons were effective as a roll control, but they produced about as much yawing moment as rolling moment because of the tip-fin dihedral angle. The body flaps produced less rolling moment than the elevons and only small values of yawing moment. A limited investigation of the effect of varying tip-fin dihedral angle indicated that a dihedral angle of 50 deg was a reasonable compromise for longitudinal and lateral stability, longitudinal trim, and performance at subsonic speeds.

  2. Generic multi-body formulation of heavy lift airship equations of motion

    NASA Technical Reports Server (NTRS)

    Ringland, R. F.; Tischler, M. B.; Ashkenas, I. L.; Jex, H. R.

    1980-01-01

    This paper describes the formulation of a comprehensive set of equations which describe the dynamic behavior of a generic heavy lift airship (HLA). They are being used in a digital computer simulation to investigate the response dynamics and flying qualities of HLAs operating with various payloads in a variety of operational environments. A key feature is the separate treatment of each component body making up the HLA. This allows the analyst to vary the configuration (e.g., number of lift-propulsion units, presence or absence of slung payload, etc.) without rewriting the equations. It further provides measures of key structural and control loads acting on the HLA and eases the task of modeling wind disturbances.

  3. Lift and center of pressure of wing-body-tail combinations at subsonic, transonic, and supersonic speeds

    NASA Technical Reports Server (NTRS)

    Pitts, William C; Nielsen, Jack N; Kaattari, George E

    1957-01-01

    A method is presented for calculating the lift and centers of pressure of wing-body and wing-body-tail combinations at subsonic, transonic, and supersonic speeds. A set of design charts and a computing table are presented which reduce the computations to routine operations. Comparison between the estimated and experimental characteristics for a number of wing-body and wing-body-tail combinations shows correlation to within + or - 10 percent on lift and to within about + or - 0.02 of the body length on center of pressure.

  4. Statistical analysis of landing contact conditions for three lifting body research vehicles

    NASA Technical Reports Server (NTRS)

    Larson, R. R.

    1972-01-01

    The landing contact conditions for the HL-10, M2-F2/F3, and the X-24A lifting body vehicles are analyzed statistically for 81 landings. The landing contact parameters analyzed are true airspeed, peak normal acceleration at the center of gravity, roll angle, and roll velocity. Ground measurement parameters analyzed are lateral and longitudinal distance from intended touchdown, lateral distance from touchdown to full stop, and rollout distance. The results are presented in the form of histograms for frequency distributions and cumulative frequency distribution probability curves with a Pearson Type 3 curve fit for extrapolation purposes.

  5. A Study of a Lifting Body as a Space Station Crew Exigency Return Vehicle (CERV)

    NASA Technical Reports Server (NTRS)

    MacConochie, Ian O.

    2000-01-01

    A lifting body is described for use as a return vehicle for crews from a space station. Reentry trajectories, subsystem weights and performance, and costs are included. The baseline vehicle is sized for a crew of eight. An alternate configuration is shown in which only four crew are carried with the extra volume reserved for logistics cargo. A water parachute recovery system is shown as an emergency alternative to a runway landing. Primary reaction control thrusters from the Shuttle program are used for orbital maneuvering while the Shuttle verniers are used for all attitude control maneuvers.

  6. Predicted aerodynamic characteristics for HL-20 lifting-body using the aerodynamic preliminary analysis system (APAS)

    NASA Technical Reports Server (NTRS)

    Cruz, Christopher I.; Ware, George M.

    1992-01-01

    The aerodynamic characteristics of the HL-20 lifting body configuraiton obtained through the APAS and from wind-tunnel tests have been compared. The APAS is considered to be an easy-to-use, relatively simple tool for quick preliminary estimation of vehicle aerodynamics. The APAS estimates are found to be in good agreement with experimental results to be used for preliminary evaluation of the HL-20. The APAS accuracy in predicting aerodynamics of the HL-20 varied over the Mach range. The speed ranges of best agreement were subsonic and hypersonic, while least agreement was in the Mach range from 1.2 to about 2,5.

  7. Lifting Entry & Atmospheric Flight (LEAF) System Concept Applications at Solar System Bodies With an Atmosphere

    NASA Astrophysics Data System (ADS)

    Lee, Greg; Polidan, Ronald; Ross, Floyd; Sokol, Daniel; Warwick, Steve

    2015-11-01

    Northrop Grumman and L’Garde have continued the development of a hypersonic entry, semi-buoyant, maneuverable platform capable of performing long-duration (months to a year) in situ and remote measurements at any solar system body that possesses an atmosphere.The Lifting Entry & Atmospheric Flight (LEAF) family of vehicles achieves this capability by using a semi-buoyant, ultra-low ballistic coefficient vehicle whose lifting entry allows it to enter the atmosphere without an aeroshell. The mass savings realized by eliminating the heavy aeroshell allows significantly more payload to be accommodated by the platform for additional science collection and return.In this presentation, we discuss the application of the LEAF system at various solar system bodies: Venus, Titan, Mars, and Earth. We present the key differences in platform design as well as operational differences required by the various target environments. The Venus implementation includes propulsive capability to reach higher altitudes during the day and achieves full buoyancy in the mid-cloud layer of Venus’ atmosphere at night.Titan also offers an attractive operating environment, allowing LEAF designs that can target low or medium altitude operations, also with propulsive capabilities to roam within each altitude regime. The Mars version is a glider that descends gradually, allowing targeted delivery of payloads to the surface or high resolution surface imaging. Finally, an Earth version could remain in orbit in a stowed state until activated, allowing rapid response type deployments to any region of the globe.

  8. A Multidisciplinary Performance Analysis of a Lifting-Body Single-Stage-to-Orbit Vehicle

    NASA Technical Reports Server (NTRS)

    Tartabini, Paul V.; Lepsch, Roger A.; Korte, J. J.; Wurster, Kathryn E.

    2000-01-01

    Lockheed Martin Skunk Works (LMSW) is currently developing a single-stage-to-orbit reusable launch vehicle called VentureStar(TM) A team at NASA Langley Research Center participated with LMSW in the screening and evaluation of a number of early VentureStar(TM) configurations. The performance analyses that supported these initial studies were conducted to assess the effect of a lifting body shape, linear aerospike engine and metallic thermal protection system (TPS) on the weight and performance of the vehicle. These performance studies were performed in a multidisciplinary fashion that indirectly linked the trajectory optimization with weight estimation and aerothermal analysis tools. This approach was necessary to develop optimized ascent and entry trajectories that met all vehicle design constraints. Significant improvements in ascent performance were achieved when the vehicle flew a lifting trajectory and varied the engine mixture ratio during flight. Also, a considerable reduction in empty weight was possible by adjusting the total oxidizer-to-fuel and liftoff thrust-to-weight ratios. However, the optimal ascent flight profile had to be altered to ensure that the vehicle could be trimmed in pitch using only the flow diverting capability of the aerospike engine. Likewise, the optimal entry trajectory had to be tailored to meet TPS heating rate and transition constraints while satisfying a crossrange requirement.

  9. Investigation of the launch pad abort capabilities of the HL-20 lifting body

    NASA Astrophysics Data System (ADS)

    Jackson, E. B.; Rivers, Robert A.; Chowdhry, Rajiv S.; Ragsdale, W. A.; Geyer, David W.

    1993-08-01

    The capability of the HL-20 lifting body spacecraft to perform an abort maneuver from the launch pad to a horizontal landing was studied at NASA Langley Research Center. This study involved both piloted and batch simulation models of the vehicle. A point-mass model of the vehicle was used for trajectory optimization studies. The piloted simulation was performed in the Visual Motion Simulator in fixed-base mode. A candidate maneuver was developed and refined for the worst-case launch-pad-to-landing-site geometry using an iterative procedure of off-line maneuver analysis followed by piloted evaluations and heuristic improvements to the candidate maneuver. The resulting maneuver demonstrates the launch site abort capability of the HL-20 and dictates requirements for nominal abort motor performance. The sensitivity of the maneuver to variations in several design parameters was documented.

  10. Real-time simulation model of the HL-20 lifting body

    NASA Astrophysics Data System (ADS)

    Jackson, E. Bruce; Cruz, Christopher I.; Ragsdale, W. A.

    1992-07-01

    A proposed manned spacecraft design, designated the HL-20, has been under investigation at Langley Research Center. Included in that investigation are flight control design and flying qualities studies utilizing a man-in-the-loop real-time simulator. This report documents the current real-time simulation model of the HL-20 lifting body vehicle, known as version 2.0, presently in use at NASA Langley Research Center. Included are data on vehicle aerodynamics, inertias, geometries, guidance and control laws, and cockpit displays and controllers. In addition, trim case and dynamic check case data is provided. The intent of this document is to provide the reader with sufficient information to develop and validate an equivalent simulation of the HL-20 for use in real-time or analytical studies.

  11. Launch-pad abort capabilities of the HL-20 lifting body

    NASA Technical Reports Server (NTRS)

    Jackson, E. Bruce; Rivers, Robert A.; Chowdhry, Rajiv S.; Ragsdale, W. A.; Geyer, David W.

    1994-01-01

    The capability of the HL-20 lifting body to perform an abort maneuver from the launch pad to a horizontal landing was studied. The study involved both piloted and batch simulation models of the vehicle. A point-mass model of the vehicle was used for trajectory optimization studies. The piloted simulation was performed in the Langley Visual/Motion Simulator in the fixed-base mode. A candidate maneuver was developed and refined for the worst-case launch-pad-to-landing-site geometry with an iterative procedure of off-line maneuver analysis followed by piloted evaluations and heuristic improvements to the candidate maneuver. The resulting maneuver demonstrates the launch-site abort capability of the HL-20 and dictates requirements for nominal abort-motor performance. The sensitivity of the maneuver to variations in several design parameters was documented.

  12. Investigation of the launch pad abort capabilities of the HL-20 lifting body

    NASA Technical Reports Server (NTRS)

    Jackson, E. B.; Rivers, Robert A.; Chowdhry, Rajiv S.; Ragsdale, W. A.; Geyer, David W.

    1993-01-01

    The capability of the HL-20 lifting body spacecraft to perform an abort maneuver from the launch pad to a horizontal landing was studied at NASA Langley Research Center. This study involved both piloted and batch simulation models of the vehicle. A point-mass model of the vehicle was used for trajectory optimization studies. The piloted simulation was performed in the Visual Motion Simulator in fixed-base mode. A candidate maneuver was developed and refined for the worst-case launch-pad-to-landing-site geometry using an iterative procedure of off-line maneuver analysis followed by piloted evaluations and heuristic improvements to the candidate maneuver. The resulting maneuver demonstrates the launch site abort capability of the HL-20 and dictates requirements for nominal abort motor performance. The sensitivity of the maneuver to variations in several design parameters was documented.

  13. Real-time simulation model of the HL-20 lifting body

    NASA Technical Reports Server (NTRS)

    Jackson, E. Bruce; Cruz, Christopher I.; Ragsdale, W. A.

    1992-01-01

    A proposed manned spacecraft design, designated the HL-20, has been under investigation at Langley Research Center. Included in that investigation are flight control design and flying qualities studies utilizing a man-in-the-loop real-time simulator. This report documents the current real-time simulation model of the HL-20 lifting body vehicle, known as version 2.0, presently in use at NASA Langley Research Center. Included are data on vehicle aerodynamics, inertias, geometries, guidance and control laws, and cockpit displays and controllers. In addition, trim case and dynamic check case data is provided. The intent of this document is to provide the reader with sufficient information to develop and validate an equivalent simulation of the HL-20 for use in real-time or analytical studies.

  14. Calculation of water drop trajectories to and about arbitrary three-dimensional lifting and nonlifting bodies in potential airflow

    NASA Technical Reports Server (NTRS)

    Norment, H. G.

    1985-01-01

    Subsonic, external flow about nonlifting bodies, lifting bodies or combinations of lifting and nonlifting bodies is calculated by a modified version of the Hess lifting code. Trajectory calculations can be performed for any atmospheric conditions and for all water drop sizes, from the smallest cloud droplet to large raindrops. Experimental water drop drag relations are used in the water drop equations of motion and effects of gravity settling are included. Inlet flow can be accommodated, and high Mach number compressibility effects are corrected for approximately. Seven codes are described: (1) a code used to debug and plot body surface description data; (2) a code that processes the body surface data to yield the potential flow field; (3) a code that computes flow velocities at arrays of points in space; (4) a code that computes water drop trajectories from an array of points in space; (5) a code that computes water drop trajectories and fluxes to arbitrary target points; (6) a code that computes water drop trajectories tangent to the body; and (7) a code that produces stereo pair plots which include both the body and trajectories. Accuracy of the calculations is discussed, and trajectory calculation results are compared with prior calculations and with experimental data.

  15. Comparison of the Experimental and Theoretical Distribution of Lift on a Slender Inclined Body of Revolution at M = 2

    NASA Technical Reports Server (NTRS)

    Perkins, Edward W; Kuehn, Donald M

    1953-01-01

    Pressure distributions and force characteristics have been determined for a body of revolution consisting of a fineness ratio 5.75, circular-arc, ogival nose tangent to a cylindrical afterbody for an angle-of-attack range of 0 degrees to 35.5 degrees. The free-stream Mach number was 1.98 and the free-stream Reynolds number was approximately 0.5 x 10 sup 6, based on body diameter. Comparison of the theoretical and experimental pressure distributions shows that for zero lift, either slender-body theory or higher-order theories yield results which are in good agreement with experiment. For the lifting case, good agreement with theory is found only for low angles of attack and for the region in which the body cross-sectional area is increasing in the downstream direction. Because of the effects of cross-flow separation and the effects of compressibility due to the high cross-flow Mach numbers at large angles of attack, the experimental pressure distributions differ from those predicted by potential theory. Although the flow about the inclined body was, in general, similar to that assumed as the basis for Allen's method of estimating the forces resulting from viscous effects (NACA RM A91I26), the distribution of the forces was significantly different from that assumed. Nevertheless, the lift and pitching-moment characteristics were in fair agreement with the estimated value.

  16. Guidance and control analysis of the entry of a lifting body personnel launch vehicle

    NASA Astrophysics Data System (ADS)

    Powell, Richard W.; Cruz, Christopher I.

    1991-01-01

    NASA is currently involved in definition studies of a Personnel Launch System (PLS) that could be used to transport people to and from low-earth orbit. This vehicle would serve both to complement the Space Shuttle and to provide alternative access to space in the event the Space Shuttle fleet were unavailable for a prolonged period. The PLS would consist of a manned spacecraft launched by an expendable vehicle, e.g., Titan 4. One promising candidate for the manned component of the PLS is the NASA Langley Research Center HL-20 lifting body. Many studies are currently underway to assess this vehicle, and one of the main areas of study is the development of the capability to successfully enter, glide to the landing site, and land. To provide this capability, guidance and control algorithms have been developed, incorporated into a six-degree-of-freedom simulation, and evaluation in the presence of off-nominal atmospheric conditions, consisting of both density variations and steady-state winds. In addition, the impact of atmospheric turbulence was examined for the portion of flight from Mach 3.5 to touchdown. This analysis showed that the vehicle remained controllable and could successfully land even in the presence of off-nominal atmospheric conditions.

  17. Preliminary subsonic aerodynamic model for simulation studies of the HL-20 lifting body

    NASA Technical Reports Server (NTRS)

    Jackson, E. Bruce; Cruz, Christopher I.

    1992-01-01

    A nonlinear, six-degree-of-freedom aerodynamic model for an early version of the HL-20 lifting body is described and compared with wind tunnel data upon which it is based. Polynomial functions describing most of the aerodynamic parameters are given and tables of these functions are presented. Techniques used to arrive at these functions are described. Basic aerodynamic coefficients were modeled as functions of angles of attack and sideslip. Vehicle lateral symmetry was assumed. Compressibility (Mach) effects were ignored. Control-surface effectiveness was assumed to vary linearly with angle of deflection and was assumed to be invariant with the angle of sideslip. Dynamic derivatives were obtained from predictive aerodynamic codes. Landing-gear and ground effects were scaled from Space Shuttle data. The model described is provided to support pilot-in-the-loop simulation studies of the HL-20. By providing the data in tabular format, the model is suitable for the data interpolation architecture of many existing engineering simulation facilities. Because of the preliminary nature of the data, however, this model is not recommended for study of the absolute performance of the HL-20.

  18. Relative Contribution of Lower Body Work as a Biomechanical Determinant of Spine Sparing Technique During Common Paramedic Lifting Tasks.

    PubMed

    Makhoul, Paul J; Sinden, Kathryn E; MacPhee, Renée S; Fischer, Steven L

    2017-04-01

    Paramedics represent a unique occupational group where the nature of their work, providing prehospital emergency care, makes workplace modifications to manage and control injury risks difficult. Therefore, the provision of workplace education and training to support safe lifting remains a viable and important approach. There is, however, a lack of evidence describing movement strategies that may be optimal for paramedic work. The purpose of this study was to determine if a strategy leveraging a greater contribution of work from the lower body relative to the torso was associated with lower biomechanical exposures on the spine. Twenty-five active duty paramedics performed 3 simulated lifting activities common to paramedic work. Ground reaction forces and whole body kinematics were recorded to calculate: peak spine moment and angle about the L4/L5 flexion-extension axis as indicators of biomechanical exposure; and, joint work, integrated from net joint power as a measure of technique inclusive of movement dynamics. Paramedics generating more work from the lower body, relative to the trunk, were more likely to experience lower peak L4/L5 spine moments and angles. These data can inform the development of workplace training and education on safe lifting that focuses on paramedics generating more work from the lower body.

  19. Aerodynamic characteristics of the HL-20 and HL-20A lifting-body configurations

    NASA Technical Reports Server (NTRS)

    Ware, George M.; Spencer, Bernard, Jr.; Micol, John R.

    1991-01-01

    The data show that the HL-20 is longitudinally and laterally stable over the test range from Mach 10 to 0.2. At hypersonic speeds it has a trimmed lift/drag ratio of 1.4. This values gives the vehicle a cross range capability similar to that of the Space Shuttle. At subsonic speeds, the HL-20 has a trimmed lift/drag ratio of about 3.6. Replacing the flat plate outboard fins with fins having an airfoil shape, increased the maximum trimmed L/D to 4.3. Preliminary evaluation of configuration modifications (the HL-20A series), indicates that trim at higher values of lift at hypersonic speeds could be achieved with an L/D of about 1.0. In the supersonic range, the lift and directional stability characteristics were improved. The untrimmed subsonic L/D was increased to 5.8 with airfoil fins.

  20. Marksmanship deficits caused by an exhaustive whole-body lifting task with and without torso-borne loads.

    PubMed

    Frykman, Peter N; Merullo, Donna J; Banderet, Louis E; Gregorczyk, Karen; Hasselquist, Leif

    2012-07-01

    Studies of exhaustive exercise on marksmanship are inconclusive and have not measured trigger pull latencies (LAT) nor considered impact of added torso loads. This study examined the impact of exhaustive whole-body exercise and torso loading on accuracy, precision, and latency during a marksmanship test. Twelve men lifted a 20.5-kg box on to a 1.55-m high shelf until they could not maintain a 12 lifts·min⁻¹ pace. Within 25 seconds of ending the lifting task, the subjects started a 10-minute rifle marksmanship test (8 shots·min⁻¹). During lifting and shooting, the subjects wore 2 different loads: NOLOAD = boots, uniform, and helmet (5.9 kg) and LOAD = a torso-borne load (29.9 kg) + NOLOAD. With the LOAD, the subjects were only able to work for 69% as long, perform 31% as many lifts, or do 38% as much total work compared with the NOLOAD condition. Despite performing less total external work during LOAD, the heart rate (HR) was more than 25% higher than NOLOAD. Measures of accuracy and precision improved and stabilized after minute 3. Overall, LAT increased (p < 0.025) for LOAD (mean ± SE, 2,522 ± 81 milliseconds), compared with NOLOAD (2,240 ± 121). During 0-4 minutes, LAT for LOAD was 14% greater than for NOLOAD (p < 0.05); from 4 to 10 minutes, LAT did not differ. Exhaustive whole-body exercise transiently degraded accuracy regardless of load. In the LOAD condition, LAT was immediately increased and sustained for 10 minutes; in the NOLOAD condition, LAT increased gradually. Although load did not decrease accuracy, it increased the time to engage targets, which can impact fighting effectiveness and survivability.

  1. Flight-determined aerodynamic stability and control derivatives of the M2-F2 lifting body vehicle at subsonic speeds

    NASA Technical Reports Server (NTRS)

    Kempel, R. W.; Thompson, R. C.

    1971-01-01

    Aerodynamic derivatives were obtained for the M2-F2 lifting body flight vehicle in the subsonic flight region between Mach numbers of 0.41 and 0.64 and altitudes of 7000 feet to 45,000 feet. The derivatives were determined by a flight time history curve-fitting process utilizing a hybrid computer. The flight-determined derivatives are compared with wind-tunnel and predicted values. Modal-response characteristics, calculated from the flight derivatives, are presented.

  2. Reliability of Lift Alert(™) as a feedback device for detecting changes in body position.

    PubMed

    Ekes, A M; Krister, J D; Loseth, A E; McKenzie, C L

    1995-03-01

    The Lift Alert (™) is a small battery-operated unit, usually worn on the back of a worker's collar that is designed to provide a form of biofeedback about changes in trunk position during lifting tasks. The purpose of this study was to determine how consistent the Lift Alert (™) was at each of five different sensitivity settings (A-E) in detecting changes in trunk flexion in a given individual during a controlled bending maneuver. The subjects were videotaped while performing a series of trials of bending maneuvers at each of the sensitivity settings according to a specific protocol. The videotapes were then converted onto a computer program where the still images were captured and marked for data analysis. The reliability of the Lift Alert (™) was determined by calculating a coefficient of agreement, that is, the percentage of trials that were within both 10 and 15 degrees for each of the trials at a given setting for a single individual. The coefficient of agreement for all trials at all five settings was 0.76 within 10 degrees and 0.92 within 15 degrees. The results of this study suggest that the Lift Alert (™) is a reliable device for detecting changes in trunk flexion during a controlled bending maneuver for a given individual.

  3. Estimation of lumbar spinal loading and trunk muscle forces during asymmetric lifting tasks: application of whole-body musculoskeletal modelling in OpenSim.

    PubMed

    Kim, Hyun-Kyung; Zhang, Yanxin

    2016-06-03

    Large spinal compressive force combined with axial torsional shear force during asymmetric lifting tasks is highly associated with lower back injury (LBI). The aim of this study was to estimate lumbar spinal loading and muscle forces during symmetric lifting (SL) and asymmetric lifting (AL) tasks using a whole-body musculoskeletal modelling approach. Thirteen healthy males lifted loads of 7 and 12 kg under two lifting conditions (SL and AL). Kinematic data and ground reaction force data were collected and then processed by a whole-body musculoskeletal model. The results show AL produced a significantly higher peak lateral shear force as well as greater peak force of psoas major, quadratus lumborum, multifidus, iliocostalis lumborum pars lumborum, longissimus thoracis pars lumborum and external oblique than SL. The greater lateral shear forces combined with higher muscle force and asymmetrical muscle contractions may have the biomechanical mechanism responsible for the increased risk of LBI during AL. Practitioner Summary: Estimating lumbar spinal loading and muscle forces during free-dynamic asymmetric lifting tasks with a whole-body musculoskeletal modelling in OpenSim is the core value of this research. The results show that certain muscle groups are fundamentally responsible for asymmetric movement, thereby producing high lumbar spinal loading and muscle forces, which may increase risks of LBI during asymmetric lifting tasks.

  4. Hypersonic bodies of maximum drag for a given lift-to-drag ratio.

    NASA Technical Reports Server (NTRS)

    Mcmillan, W., III; Hull, D. G.

    1971-01-01

    The problem considered in this paper is concerned with the aerodynamic design of the forebody shape of reentry vehicles in the blunt, homothetic, elliptic transversal contour, power-law longitudinal contour, raked-off configurational set. In particular, the forebody shape which maximizes the ratio of the forebody pressure drag to the free-stream dynamic pressure for a given lift-to-drag ratio and given geometric properties is determined. This problem is considered because recent survey articles indicate that its solution will provide useful qualitative design information about manned vehicles entering the earth's atmosphere from any of the foreseeable planetary missions. Single-integral equations relating the lift and drag in Newtonian hypersonic flow to the forebody geometry are derived and used to formulate the optimization problem which is solved by a direct numerical method.

  5. Self-propulsion of a body with rigid surface and variable coefficient of lift in a perfect fluid

    NASA Astrophysics Data System (ADS)

    Ramodanov, Sergey M.; Tenenev, Valentin A.; Treschev, Dmitry V.

    2012-11-01

    We study the system of a 2D rigid body moving in an unbounded volume of incompressible, vortex-free perfect fluid which is at rest at infinity. The body is equipped with a gyrostat and a so-called Flettner rotor. Due to the latter the body is subject to a lifting force (Magnus effect). The rotational velocities of the gyrostat and the rotor are assumed to be known functions of time (control inputs). The equations of motion are presented in the form of the Kirchhoff equations. The integrals of motion are given in the case of piecewise continuous control. Using these integrals we obtain a (reduced) system of first-order differential equations on the configuration space. Then an optimal control problem for several types of the inputs is solved using genetic algorithms.

  6. Flight evaluation of HL-10 lifting body handling qualities at Mach numbers from 0.30 to 1.86

    NASA Technical Reports Server (NTRS)

    Kempel, R. W.; Manke, J. A.

    1974-01-01

    The longitudinal and lateral-directional handling qualities of the HL-10 lifting body vehicle were evaluated in flight at Mach numbers up to 1.86 and altitudes up to approximately 27,450 meters (90,000 feet). In general, the vehicle's handling qualities were considered to be good. Approximately 91 percent of the pilot ratings were 3.5 or better, and 42.4 percent were 2.0. Handling qualities problems were encountered during the first flight due to problems with the control system and vehicle aerodynamics. Modifications of the flight vehicle corrected all deficiencies, and no other significant handling qualities problems were encountered.

  7. Flight of the honeybee. V. Drag and lift coefficients of the bee's body; implications for flight dynamics.

    PubMed

    Nachtigall, W; Hanauer-Thieser, U

    1992-01-01

    Drag forces and lift forces acting on honeybee trunks were measured by using specially built sensitive mechanical balances. Measurements were made on prepared bodies in 'good' and in 'bad' flight position, with and without legs, at velocities between 0.5 and 5 m.s-1 (Reynolds numbers between 4.10(2) and 4.10(3)) and at angles of attack between -20 degrees and +20 degrees. From the forces drag coefficients and lift coefficients were calculated. The drag coefficient measured with a zero angle of attack was 0.45 at 3 less than or equal to v less than or equal to 5 m.s-1, 0.6 at 2 m.s-1, 0.9 at 1 m.s-1 and 1.35 at 0.5 m.s-1, thus demonstrating a pronounced effect of Reynolds number on drag. These values are about 2 times lower (better) than those of a "drag disc" with the same diameter and attacked at the same velocity. The drag coefficient (related to constant minimal frontal area) was minimal at zero angle of attack, rising symmetrically to larger (+) and smaller (-) angles of attack in a non-linear fashion. The absolute value is higher and the rise is steeper at lower speeds or Reynolds numbers, but the incremental factors are independent of Reynolds number. For example, the drag coefficient is 1.44 +/- 0.05 times higher at an angle of attack of 20 degrees than at one of 0 degrees. On a double-logarithmic scale the slope of the drag versus Reynolds number plot was 1.5: with decreasing Reynolds number the relationship between drag and velocity changes from quadratic (Newton's law) to linear (viscous flow). Trunk drag was not systematically increased by the legs at any velocity or Reynolds number or any angle of attack. The legs appear to shape the trunk "aerodynamically", to form a relatively low-drag trunk-leg system. The body is able to generate dynamic lift. Highly significant positive linear correlations between lift coefficient and angle of attack were determined for the trunk-leg system in the typical flight position. Lift coefficient was +0.05 at zero angle of

  8. Prediction of static aerodynamic characteristics for slender bodies alone and with lifting surfaces to very high angles of attack

    NASA Technical Reports Server (NTRS)

    Jorgensen, L. H.

    1977-01-01

    An engineering-type method is presented for computing normal-force and pitching-moment coefficients for slender bodies of circular and noncircular cross section alone and with lifting surfaces. In this method, a semi-empirical term representing viscous-separation crossflow is added to a term representing potential-theory crossflow. For many bodies of revolution, computed aerodynamic characteristics are shown to agree with measured results for investigated free-stream Mach numbers from 0.6 to 2.9. The angles of attack extend from 0 deg to 180 deg for M = 2.9 from 0 deg to 60 deg for M = 0.6 to 2.0. For several bodies of elliptic cross section, measured results are also predicted reasonably well over the investigated Mach number range from 0.6 to 2.0 and at angles of attack from 0 deg to 60 deg. As for the bodies of revolution, the predictions are best for supersonic Mach numbers. For body-wing and body-wing-tail configurations with wings of aspect ratios 3 and 4, measured normal-force coefficients and centers are predicted reasonably well at the upper test Mach number of 2.0. Vapor-screen and oil-flow pictures are shown for many body, body-wing and body-wing-tail configurations. When spearation and vortex patterns are asymmetric, undesirable side forces are measured for the models even at zero sideslip angle. Generally, the side-force coefficients decrease or vanish with the following: increase in Mach number, decrease in nose fineness ratio, change from sharp to blunt nose, and flattening of body cross section (particularly the body nose).

  9. Prediction of static aerodynamic characteristics for slender bodies alone and with lifting surfaces to very high angles of attack

    NASA Technical Reports Server (NTRS)

    Jorgensen, L. H.

    1976-01-01

    An engineering-type method is presented for computing normal-force and pitching-moment coefficients for slender bodies of circular and noncircular cross section alone and with lifting surfaces. In this method, a semi-empirical term representing viscous-separation crossflow is added to a term representing potential-theory crossflow. For many bodies of revolution, computed aerodynamic characteristics are shown to agree with measured results for investigated free-stream Mach numbers from 0.6 to 2.9. For several bodies of elliptic cross section, measured results are also predicted reasonably well over the investigated Mach number range from 0.6 to 2.0 and at angles of attack from 0 to 60 deg. As for the bodies of revolution, the predictions are best for supersonic Mach numbers. For body-wing and body-wing-tail configurations with wings of aspect ratios 3 and 4, measured normal-force coefficients and centers are predicted reasonably well at the upper test Mach number of 2.0. However, with a decrease in Mach number to 0.6, the agreement for C sub N rapidly deteriorates, although the normal-force centers remain in close agreement. Vapor-screen and oil-flow pictures are shown for many body, body-wing, and body-wing-tail configurations. When separation and vortex patterns are asymmetric, undesirable side forces are measured for the models even at zero sideslip angle. Generally, the side-force coefficients decrease or vanish with the following: increase in Mach number, decrease in nose fineness ratio, change from sharp to blunt nose, and flattening of body cross section (particularly the body nose).

  10. Aero Spacelines B377SG Super Guppy on Ramp Loading the X-24B and HL-10 Lifting Bodies.

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The Aero Spacelines B377SG Super Guppy was at Dryden in May, 1976, to ferry the X-24 and HL-10 lifting bodies from the Center to the Air Force Museum at Wright-Patterson Air Force Base, Ohio. The oversized cargo aircraft is a further modification of the B377PG Pregnant Guppy, which was built to transport outsized cargo for NASA's Apollo program, primarily to carry portions of the Saturn V rockets from the manufacturer to Cape Canaveral. The original Guppy modification incorporated the wings, engines, lower fuselage and tail from a Boeing 377 Stratocruiser with a huge upper fuselage more than 20 feet in diameter. The Super Guppy further expanded the fuselage added a taller vertical tail for better lateral stability. A later version, the Super Guppy Turbine, is still in occasional use by NASA to transport oversize structures. The X-24 was one of a group of lifting bodies flown by the NASA Flight Research Center (now Dryden Flight Research Center), Edwards, California, in a joint program with the U.S. Air Force at Edwards Air Force Base from 1963 to 1975. The lifting bodies were used to demonstrate the ability of pilots to maneuver and safely land wingless vehicles designed to fly back to Earth from space and be landed like an airplane at a predetermined site. Lifting bodies' aerodynamic lift, essential to flight in the atmosphere, was obtained from their shape. The addition of fins and control surfaces allowed the pilots to stabilize and control the vehicles and regulate their flight paths. Built by Martin Aircraft Company, Maryland, for the U.S. Air Force, the X-24A was a bulbous vehicle shaped like a teardrop with three vertical fins at the rear for directional control. It weighed 6,270 pounds, was 24.5 feet long and 11.5 feet wide (measuring just the fuselage, not the distance between the tips of the outboard fins). Its first unpowered glide flight was on April 17, 1969, with Air Force Maj. Jerauld Gentry at the controls. Gentry also piloted its first powered

  11. [Injuries and damage caused by excess stress in body building and power lifting].

    PubMed

    Goertzen, M; Schöppe, K; Lange, G; Schulitz, K P

    1989-03-01

    A questionnaire, designed to elict information about training programs, experience and injury profile, was administered to 358 bodybuilders and 60 powerlifters. This was followed by a clinical orthopedic and radiological examination. The upper extremity, particulary the shoulder and elbow joint, showed the highest injury rate. More than 40% of all injuries occurred in this area. The low back region and the knee were other sites of elevated injury occurrences. Muscular injuries (muscle pulls, tendonitis, sprains) were perceived to account for 83.6% of all injury types. Powerlifting showed a twice as high injury rate as bodybuilding, probably of grounds of a more uniform training program. Weight-training should be associated with a sports-related medical care and supervised by knowledgeable people, who can instruct the athletes in proper lifting techniques and protect them from injury which can result from incorrect weight-training.

  12. Aerodynamic Characteristics and Control Effectiveness of the HL-20 Lifting Body Configuration at Mach 10 in Air

    NASA Technical Reports Server (NTRS)

    Scallion, William I.

    1999-01-01

    A 0.0196-scale model of the HL-20 lifting-body, one of several configurations proposed for future crewed spacecraft, was tested in the Langley 31-Inch Mach 10 Tunnel. The purpose of the tests was to determine the effectiveness of fin-mounted elevons, a lower surface flush-mounted body flap, and a flush-mounted yaw controller at hypersonic speeds. The nominal angle-of-attack range, representative of hypersonic entry, was 2 deg to 41 deg, the sideslip angles were 0 deg, 2 deg, and -2 deg, and the test Reynolds number was 1.06 x 10 E6 based on model reference length. The aerodynamic, longitudinal, and lateral control effectiveness along with surface oil flow visualizations are presented and discussed. The configuration was longitudinally and laterally stable at the nominal center of gravity. The primary longitudinal control, the fin-mounted elevons, could not trim the model to the desired entry angle of attack of 30 deg. The lower surface body flaps were effective for roll control and the associated adverse yawing moment was eliminated by skewing the body flap hinge lines. A yaw controller, flush-mounted on the lower surface, was also effective, and the associated small rolling moment was favorable.

  13. A Supersonic Area Rule and an Application to the Design of a Wing-Body Combination with High Lift-Drag Ratios

    NASA Technical Reports Server (NTRS)

    Whitcomb, Richard T.; Sevier, John R., Jr.

    1960-01-01

    A concept for interrelating the wave drags of wing-body combinations at supersonic speeds with axial developments of cross-sectional area is presented. A swept-wing-indented-body combination designed on the basis of this concept to have significantly improved maximum lift-drag ratios over a range of transonic and moderate supersonic speeds is described. Experimental results have been obtained for this configuration at Mach numbers from 0.80 to 2.01. Maximum lift-drag ratios of approximately 14 and 9 were measured at Mach numbers of 1.15 and 1.41, respectively.

  14. Surface and gradiometer coils near a conducting body: the lift-off effect.

    PubMed

    Suits, B H; Garroway, A N; Miller, J B

    1998-12-01

    The use of surface coils in magnetic resonance is widespread. Examples include MRI, detection of subsurface aquifers by NMR, and, more recently, landmine detection by nuclear quadrupole resonance. In many of these cases a finite-sized sample to be examined is contained within a larger medium that is a poor electrical conductor, and eddy currents induced by the RF fields provide a loss mechanism that reduces the effective quality factor Q of the transmitter and receiver coils. Here the losses induced in a circular surface coil (a horizontal loop antenna) separated a distance from a dissipative medium are calculated and compared to measurements. It is shown that often the overall efficiency of the coil for magnetic resonance can be improved by displacing the coil away from the conducting medium a prescribed "lift-off" distance. The use of a gradiometer as a surface coil is also examined, and it is shown by theory and experiment that in certain circumstances such a gradiometer can be more efficient than a conventional surface coil for inspection of conducting media.

  15. Some Research on the Lift and Stability of Wing-Body Combinations

    NASA Technical Reports Server (NTRS)

    Purser, Paul E.; Fields, E. M.

    1959-01-01

    The present paper summarizes and correlates broadly some of the research results applicable to fin-stabilized ammunition. The discussion and correlation are intended to be comprehensive, rather than detailed, in order to show general trends over the Mach number range up to 7.0. Some discussion of wings, bodies, and wing-body interference is presented, and a list of 179 papers containing further information is included. The present paper is intended to serve more as a bibliography and source of reference material than as a direct source of design information.

  16. Steady incompressible potential flow around lifting bodies immersed in a fluid. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Chiuchiolo, E. A.

    1974-01-01

    The refinement was investigated of a method for evaluating the pressure distribution on a body surface of arbitrary shape in incompressible flow. The solution was obtained in terms of the velocity potential, through numerical approximations which require the use of a high speed digital computer. The box method and the modal method are described in detail, and were applied to a very thin, rectangular wing in incompressible, steady flow. The box method is found to be more practical as it is applicable to more general geometries (the modal method requires a new set of functions for each geometry), and requires less computer time (fifty percent of that required by the modal method for the same problem).

  17. The X-38 lifting body research vehicle, seen here wrapped in a protective material, lowered onto a t

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The X-38 lifting body research vehicle, seen here wrapped in a protective material, is lowered onto a truck for shipping from the Dryden Flight Research Center in May 2000. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected

  18. Flight-determined derivatives and dynamic characteristics for the HL-10 lifting body vehicle at subsonic and transonic Mach numbers

    NASA Technical Reports Server (NTRS)

    Strutz, L. W.

    1972-01-01

    The HL-10 lifting body stability and control derivatives were determined by using an analog-matching technique and compared with derivatives obtained from wind-tunnel results. The flight derivatives were determined as a function of angle of attack for a subsonic configuration at Mach 0.7 and for a transonic configuration at Mach 0.7, 0.9, and 1.2. At an angle of attack of 14 deg, data were obtained for a Mach number range from 0.6 to 1.4. The flight and wind-tunnel derivatives were in general agreement, with the possible exception of the longitudinal and lateral damping derivatives. Some differences were noted between the vehicle dynamic response characteristics calculated from flight-determined derivatives and those predicted by the wind-tunnel results. However, the only difference the pilots noted between the response of the vehicle in flight and the response of a simulator programed with wind-tunnel-predicted data was that the damping generally was higher in the flight vehicle.

  19. The Effect of Moment of Area Rule Modifications on the Drag, Lift and Pitching Moment Characteristics of an Unswept Aspect Ratio 6 Wing and Body Combination

    NASA Technical Reports Server (NTRS)

    Dickey, Robert R.

    1959-01-01

    An experimental investigation was conducted to determine the effect of moment-of-area-rule modifications on the drag, lift, and pitching-moment characteristics of a wing-body combination with a relatively high aspect-ratio unswept wing. The basic configuration consisted of an aspect-ratio-6 wing with a sharp leading edge and a thickness ratio of 0.06 mounted on a cut-off Sears-Haack body. The model with full moment-of-area-rule modifications had four contoured pods mounted on the wing and indentations in the body to improve the longitudinal distributions of area and moments of area. Also investigated were modifications employing pods and indentations that were only half the size of the full modifications and modifications with partial body indentations. The models were tested at angles of attack from -2 deg to +12 deg at Mach numbers from 0.6 to 1.4. In general, the moment-of-area-rule modifications had a large effect on the drag characteristics of the models but only a small effect on their lift and pitching-moment characteristics. The modifications provided substantial reductions in the zero-lift drag at transonic and low supersonic speeds, but at subsonic speeds the drag was increased. Near Mach number 1.0, the model with full modification provided the greatest reduction in drag, but at the highest test Mach numbers the half modification gave the largest drag reduction. In general, the percent reductions of zero- lift drag obtained with the aspect-ratio-6 wing were as great or greater than those previously obtained with aspect-ratio-3 wings. The effect of the modifications on the drag due to lift was small except at Mach num- bers below 0.9 where the modified models had higher drag-rise factors. Above Mach number 0.9, the modified models had higher lift-drag ratios than the basic model. The modified models also had higher lift curve slopes and generally were slightly more stable than the basic configuration.

  20. Supersonic aerodynamic characteristics of a lifting-body orbiter model with a blunted delta planform at Mach 2.30 to 4.60

    NASA Technical Reports Server (NTRS)

    Blair, A. B., Jr.

    1972-01-01

    An investigation has been made in the Langley Unitary Plan wind tunnel to determine the aerodynamic characteristics of a lifting-body orbiter model with a blunted delta planform. The model was tested at Mach numbers from 2.30 to 4.60, at nominal angles of attack from -4 deg to 60 deg and angles of sideslip from -4 deg to 10 deg, and at a Reynolds number of 2.5 million per foot.

  1. A method for calculating the lift and center of pressure of wing-body-tail combinations at subsonic, transonic, and supersonic speeds

    NASA Technical Reports Server (NTRS)

    Nielsen, Jack N; Kaattari, George E; Anastasio, Robert F

    1953-01-01

    A method is presented for calculating the lift and pitching-moment characteristics of circular cylindrical bodies in combination with triangular, rectangular, or trapezoidal wings or tails through the subsonic, transonic, and supersonic speed ranges. The method covers unbanked wings, sweptback leading edges or sweptforward trailing edges, low angles of attack, and the effects of wing and tail incidence. The wing-body interference is handled by the method presented in NACA RM's A51J04 and A52B06, and the wing-tail interference is treated by assuming one completely rolled-up vortex per wing panel and evaluating the tail load by strip theory. A computing table and set of design charts are presented which reduce the calculations to routine operations. Comparison is made between the estimated and experimental characteristics for a large number of wing-body and wing-body-tail combinations. Generally speaking, the lifts were estimated to within plus-or-minus 10 percent and the centers of pressure were estimated to within plus-or-minus 0.02 of the body length. The effect of wing deflection on wing-tail interference at supersonic speeds was not correctly predicted for triangular wings with supersonic leading edges.

  2. Aerodynamic characteristics of some modified conical bodies with low lift-drag ratios at Mach numbers of 2.30 and 4.63

    NASA Technical Reports Server (NTRS)

    Davenport, E. E.

    1972-01-01

    A wind-tunnel investigation was conducted at Mach numbers of 2.30 and 4.63 to determine the static aerodynamic characteristics of three 60 deg half-angle cone models. Configuration 1 was obtained by raking off a symmetrical cone at a base angle of 6.15 deg, and configuration 2 and 3 were obtained by adding flaps to a symmetrical cone. The models were tested at angles of attack from about -5 deg to about 20 deg at roll angles of 0 deg to -180 deg and at a freestream Reynolds number of 1.09 x one million, based on body diameter. The results showed that all three configurations produced finite values of lift-drag ratio useful for lifting planetary entry. All three configurations exhibited increases in yawing moment and side force with roll angle; thus, the capability for lateral trajectory control is provided.

  3. Lift and Pitching-moment Interference Between a Pointed Cylindrical Body and Triangular Wings of Various Aspect Ratios at Mach Numbers of 1.50 and 2.02

    NASA Technical Reports Server (NTRS)

    Nielsen, Jack N; Katzen, Elliott D; Tang, Kenneth K

    1956-01-01

    The lift and pitching-moment characteristics of a body alone, six triangular wings of various aspect ratios, and the combinations were measured at Mach numbers of 1.50 and 2.02 at a Reynolds number of 5.5 million (based on the body length) for angles of attack up to 5.5 degrees. The total lift and pitching-moment interference were determined and compared with theory. The agreement was found to be good.

  4. Flight evaluation of the M2-F3 lifting body handling qualities at Mach numbers from 0.30 to 1.61

    NASA Technical Reports Server (NTRS)

    Kempel, R. W.; Dana, W. H.; Sim, A. G.

    1975-01-01

    Percentage distributions of 423 pilot ratings obtained from 27 flights are used to indicate the general level of handling qualities of the M2-F3 lifting body. Percentage distributions are compared on the basis of longitudinal and lateral-directional handling qualities, control system, control system status, and piloting task. Ratings of longitudinal handling qualities at low speed were slightly better than those for transonic and supersonic speed. The ratings of lateral-directional handling qualities were unaffected by speed and configuration. Specific handling qualities problems are discussed in detail, and comparisons are made with pertinent handling qualities criteria.

  5. Approximate method for calculating transonic flow about lifting wing-body configurations: Computer program and user's manual

    NASA Technical Reports Server (NTRS)

    Barnwell, R. W.; Davis, R. M.

    1975-01-01

    A user's manual is presented for a computer program which calculates inviscid flow about lifting configurations in the free-stream Mach-number range from zero to low supersonic. Angles of attack of the order of the configuration thickness-length ratio and less can be calculated. An approximate formulation was used which accounts for shock waves, leading-edge separation and wind-tunnel wall effects.

  6. Forehead lift

    MedlinePlus

    ... both sides even. If you have already had plastic surgery to lift your upper eyelids, a forehead ... Managing the cosmetic patient. In: Neligan PC, ed. Plastic Surgery . 3rd ed. Philadelphia, PA: Elsevier Saunders; 2013: ...

  7. Buttock Lift

    MedlinePlus

    ... after surgery using a needle and syringe. Poor wound healing. Sometimes areas along the incision line heal poorly ... might be given antibiotics if there is a wound healing problem. Scarring. Incision scars from a buttock lift ...

  8. Effects of weight lifting training combined with plyometric exercises on physical fitness, body composition, and knee extension velocity during kicking in football.

    PubMed

    Perez-Gomez, Jorge; Olmedillas, Hugo; Delgado-Guerra, Safira; Ara, Ignacio; Vicente-Rodriguez, German; Ortiz, Rafael Arteaga; Chavarren, Javier; Calbet, Jose A L

    2008-06-01

    The effects of a training program consisting of weight lifting combined with plyometric exercises on kicking performance, myosin heavy-chain composition (vastus lateralis), physical fitness, and body composition (using dual-energy X-ray absorptiometry (DXA)) was examined in 37 male physical education students divided randomly into a training group (TG: 16 subjects) and a control group (CG: 21 subjects). The TG followed 6 weeks of combined weight lifting and plyometric exercises. In all subjects, tests were performed to measure their maximal angular speed of the knee during in-step kicks on a stationary ball. Additional tests for muscle power (vertical jump), running speed (30 m running test), anaerobic capacity (Wingate and 300 m running tests), and aerobic power (20 m shuttle run tests) were also performed. Training resulted in muscle hypertrophy (+4.3%), increased peak angular velocity of the knee during kicking (+13.6%), increased percentage of myosin heavy-chain (MHC) type IIa (+8.4%), increased 1 repetition maximum (1 RM) of inclined leg press (ILP) (+61.4%), leg extension (LE) (+20.2%), leg curl (+15.9%), and half squat (HQ) (+45.1%), and enhanced performance in vertical jump (all p < or = 0.05). In contrast, MHC type I was reduced (-5.2%, p < or = 0.05) after training. In the control group, these variables remained unchanged. In conclusion, 6 weeks of strength training combining weight lifting and plyometric exercises results in significant improvement of kicking performance, as well as other physical capacities related to success in football (soccer).

  9. Protect Your Back: Guidelines for Safer Lifting.

    ERIC Educational Resources Information Center

    Cantu, Carolyn O.

    2002-01-01

    Examines back injury in teachers and child care providers; includes statistics, common causes of back pain (improper alignment, improper posture, improper lifting, and carrying), and types of back pain (acute and chronic). Focuses on preventing back injury, body mechanics for lifting and carrying, and proper lifting and carrying of children. (SD)

  10. The association between whole body vibration exposure and musculoskeletal disorders in the Swedish work force is confounded by lifting and posture

    NASA Astrophysics Data System (ADS)

    Hagberg, Mats; Burström, Lage; Ekman, Anna; Vilhelmsson, Rebecka

    2006-12-01

    This was a cross-sectional study based on material representing the Swedish work-force from a survey conducted in 1999, 2001 and 2003 by Statistics Sweden. Exposure to whole body vibration (WBV) was prevalent among agricultural, forestry, fishery workers and among plant and machinery operators based on a sample of 40,000 employed persons. Approximately 70% responders, that are 9798 persons answered both the interview and the questionnaire for the analysis of exposure-response. Exposure to WBV at least half the working time was associated with prevalence ratios above two for musculoskeletal symptoms in the low back, neck, shoulder/arm and hand among workers. When the exposure factors lifting and frequent bending were added to a multivariate analysis, surprisingly the magnitude of association was low between low back symptoms and WBV exposure. Interestingly, the relation between WBV exposure and symptoms in the neck, shoulder/arm and hand had the same or higher magnitude of association even when the possible confounders were in the model. For the neck, low back and shoulder/arm there was a visible increase in prevalence ratio (as high as 5 times) when combined exposures of WBV, lifting, frequent bending, twisted posture and noise were included in the analysis.

  11. Ear-body lift and a novel thrust generating mechanism revealed by the complex wake of brown long-eared bats (Plecotus auritus)

    NASA Astrophysics Data System (ADS)

    Johansson, L. Christoffer; Håkansson, Jonas; Jakobsen, Lasse; Hedenström, Anders

    2016-04-01

    Large ears enhance perception of echolocation and prey generated sounds in bats. However, external ears likely impair aerodynamic performance of bats compared to birds. But large ears may generate lift on their own, mitigating the negative effects. We studied flying brown long-eared bats, using high resolution, time resolved particle image velocimetry, to determine the aerodynamics of flying with large ears. We show that the ears and body generate lift at medium to cruising speeds (3–5 m/s), but at the cost of an interaction with the wing root vortices, likely reducing inner wing performance. We also propose that the bats use a novel wing pitch mechanism at the end of the upstroke generating thrust at low speeds, which should provide effective pitch and yaw control. In addition, the wing tip vortices show a distinct spiraling pattern. The tip vortex of the previous wingbeat remains into the next wingbeat and rotates together with a newly formed tip vortex. Several smaller vortices, related to changes in circulation around the wing also spiral the tip vortex. Our results thus show a new level of complexity in bat wakes and suggest large eared bats are less aerodynamically limited than previous wake studies have suggested.

  12. Ear-body lift and a novel thrust generating mechanism revealed by the complex wake of brown long-eared bats (Plecotus auritus).

    PubMed

    Johansson, L Christoffer; Håkansson, Jonas; Jakobsen, Lasse; Hedenström, Anders

    2016-04-27

    Large ears enhance perception of echolocation and prey generated sounds in bats. However, external ears likely impair aerodynamic performance of bats compared to birds. But large ears may generate lift on their own, mitigating the negative effects. We studied flying brown long-eared bats, using high resolution, time resolved particle image velocimetry, to determine the aerodynamics of flying with large ears. We show that the ears and body generate lift at medium to cruising speeds (3-5 m/s), but at the cost of an interaction with the wing root vortices, likely reducing inner wing performance. We also propose that the bats use a novel wing pitch mechanism at the end of the upstroke generating thrust at low speeds, which should provide effective pitch and yaw control. In addition, the wing tip vortices show a distinct spiraling pattern. The tip vortex of the previous wingbeat remains into the next wingbeat and rotates together with a newly formed tip vortex. Several smaller vortices, related to changes in circulation around the wing also spiral the tip vortex. Our results thus show a new level of complexity in bat wakes and suggest large eared bats are less aerodynamically limited than previous wake studies have suggested.

  13. Ear-body lift and a novel thrust generating mechanism revealed by the complex wake of brown long-eared bats (Plecotus auritus)

    PubMed Central

    Johansson, L. Christoffer; Håkansson, Jonas; Jakobsen, Lasse; Hedenström, Anders

    2016-01-01

    Large ears enhance perception of echolocation and prey generated sounds in bats. However, external ears likely impair aerodynamic performance of bats compared to birds. But large ears may generate lift on their own, mitigating the negative effects. We studied flying brown long-eared bats, using high resolution, time resolved particle image velocimetry, to determine the aerodynamics of flying with large ears. We show that the ears and body generate lift at medium to cruising speeds (3–5 m/s), but at the cost of an interaction with the wing root vortices, likely reducing inner wing performance. We also propose that the bats use a novel wing pitch mechanism at the end of the upstroke generating thrust at low speeds, which should provide effective pitch and yaw control. In addition, the wing tip vortices show a distinct spiraling pattern. The tip vortex of the previous wingbeat remains into the next wingbeat and rotates together with a newly formed tip vortex. Several smaller vortices, related to changes in circulation around the wing also spiral the tip vortex. Our results thus show a new level of complexity in bat wakes and suggest large eared bats are less aerodynamically limited than previous wake studies have suggested. PMID:27118083

  14. Development of an efficient computer code to solve the time-dependent Navier-Stokes equations. [for predicting viscous flow fields about lifting bodies

    NASA Technical Reports Server (NTRS)

    Harp, J. L., Jr.; Oatway, T. P.

    1975-01-01

    A research effort was conducted with the goal of reducing computer time of a Navier Stokes Computer Code for prediction of viscous flow fields about lifting bodies. A two-dimensional, time-dependent, laminar, transonic computer code (STOKES) was modified to incorporate a non-uniform timestep procedure. The non-uniform time-step requires updating of a zone only as often as required by its own stability criteria or that of its immediate neighbors. In the uniform timestep scheme each zone is updated as often as required by the least stable zone of the finite difference mesh. Because of less frequent update of program variables it was expected that the nonuniform timestep would result in a reduction of execution time by a factor of five to ten. Available funding was exhausted prior to successful demonstration of the benefits to be derived from the non-uniform time-step method.

  15. Utilization of simulation tools in the HL-20 conceptual design process. [passenger-carrying lifting body portion of Personnel Launch System

    NASA Technical Reports Server (NTRS)

    Jackson, E. B.; Powell, Richard W.; Ragsdale, W. A.

    1991-01-01

    The role of simulations in the design of the HL-20, the crew-carrying unpowered lifting-body component of the NASA Personnel Launch System, is reviewed and illustrated with drawings and diagrams. Detailed consideration is given to the overall implementation of a real-time simulation of the HL-20 approach and landing phase, the baseline and experimental control laws used in the flight-control system, autoland guidance and control laws (vertical and lateral steering), the control-surface mixer and actuator model, and simulation results. The simulations allowed identification and correction of design problems with respect to the position of the landing gear and the original maximum L/D ratio of 3.2.

  16. Aerothermodynamic measurements on a proposed assured crew return vehicle (ACRV) lifting-body configuration at Mach 6 and 10 in air

    NASA Technical Reports Server (NTRS)

    Horvath, Thomas J.; Rhode, Matthew N.; Buck, Gregory M.

    1990-01-01

    A 0.02-scale model of a lifting-body concept for possible application to the Assured Crew Return Vehicle from Space Station Freedom was tested at Mach 6 and 10 in air. Thermal mappings and surface streamline patterns were obtained at angles of attack ranging from 0 to 30 deg and unit Reynolds numbers Re from 2 to 8 x 10 to the 6th/ft. Areas that experienced the highest heating were near the model nose and tip-fin leading edges. The effect of Re on windward centerline heating coefficients was negligible, whereas increases in angles of attack produced increases in heating. At Mach 6 and the highest unit Re, turbulent heat at the windward centerline was three to four times the laminar level. Leeward crossflow separation and vortex reattachment along the centerline are evident across the Re and angle-of-attack ranges tested, indicative of a complex flowfield.

  17. Pre-X Experimental Re-Entry Lifting Body: Design of Flight Test Experiments for Critical Aerothermal Phenomena

    DTIC Science & Technology

    2007-06-01

    hypersonic domain has never been explored with a controlled glider . BOR 4 BOR 5 The hypersonic glider HYFLEX The main concrete...the most critical phenomena concerning the design and sizing of a re- entry vehicle. Pre-X hypersonic glider • Improving the flight measurement...laws of a gliding body with body flaps. • Performing the first design and development end to end of the hypersonic glider . • To reduce risk for

  18. A review of a method for dynamic load distribution, dynamical modeling, and explicit internal force control when two manipulators mutually lift and transport a rigid body object

    SciTech Connect

    Unseren, M.A.

    1997-04-20

    The paper reviews a method for modeling and controlling two serial link manipulators which mutually lift and transport a rigid body object in a three dimensional workspace. A new vector variable is introduced which parameterizes the internal contact force controlled degrees of freedom. A technique for dynamically distributing the payload between the manipulators is suggested which yields a family of solutions for the contact forces and torques the manipulators impart to the object. A set of rigid body kinematic constraints which restrict the values of the joint velocities of both manipulators is derived. A rigid body dynamical model for the closed chain system is first developed in the joint space. The model is obtained by generalizing the previous methods for deriving the model. The joint velocity and acceleration variables in the model are expressed in terms of independent pseudovariables. The pseudospace model is transformed to obtain reduced order equations of motion and a separate set of equations governing the internal components of the contact forces and torques. A theoretic control architecture is suggested which explicitly decouples the two sets of equations comprising the model. The controller enables the designer to develop independent, non-interacting control laws for the position control and internal force control of the system.

  19. What is a safe lift?

    PubMed

    Espinoza, Kathy

    2013-09-01

    In a perfect world, a "safe" lift would be 51 pounds if the object is within 7 inches from the front of the body, if it is at waist height, if it is directly in front of the person, if there is a handle on the object, and if the load inside the box/bucket doesn't shift once lifted. If the load to be lifted does not meet all of these criteria, then it is an unsafe lift, and modifications must be made. Modifications would include lightening the load, getting help, or using a mechanical lifting device. There is always a way to turn an unsafe lift into a safer lift. An excellent resource for anyone interested in eliminating some of the hazards associated with lifting is the "Easy Ergonomics" publication from Cal/OSHA. This booklet offers practical advice on how to improve the workplace using engineering and administrative controls, problem-solving strategies and solutions, and a vast amount of ergonomics information and resources. "Easy Ergonomics" can be obtained by calling Cal/OSHA's education and training unit in Sacramento at 800-963-9424. A free copy can be obtained via www.dir.ca.gov/dosh/puborder.asp.

  20. Study of belly-flaps to enhance lift and pitching moment coefficient of a Blended-Wing-Body airplane in landing and takeoff configuration

    NASA Astrophysics Data System (ADS)

    Staelens, Yann Daniel

    During the first century of flight few major changes have been made to the configuration of subsonic airplanes. A distinct fuselage with wings, a tail, engines and a landing gear persists as the dominant arrangement. During WWII some companies developed tailless all-wing airplanes. However the concept failed to advance till the late 80's when the B-2, the only flying wing to enter production to date, illustrated its benefits at least for a stealth platform. The advent of the Blended-Wing-Body (BWB) addresses the historical shortcomings of all-wing designs, specifically poor volume utility and excess wetted area as a result. The BWB is now poised to become the new standard for large subsonic airplanes. Major aerospace companies are studying the concept for next generation of passenger airplanes. But there are still challenges. One is the BWB's short control lever-arm pitch. This affects rotation and go-around performances. This study presents a possible solution by using a novel type of control surface, a belly-flap, on the under side of the wing to enhance its lift and pitching moment coefficient during landing, go-around and takeoff. Increases of up to 30% in lift-off CL and 8% in positive pitching moment have been achieved during wind tunnel tests on a generic BWB-model with a belly-flap. These aerodynamic improvements when used in a mathematical simulation of landing, go-around and takeoff procedure were showing reduction in landing-field-length by up to 22%, in takeoff-field-length by up to 8% and in loss in altitude between initiation of rotation and actual rotation during go-around by up to 21.5%.

  1. Experimental and theoretical study of aerodynamic characteristics of some lifting bodies at angles of attack from -10 degrees to 53 degrees at Mach numbers from 2.30 to 4.62

    NASA Technical Reports Server (NTRS)

    Spearman, M. Leroy; Torres, Abel O.

    1994-01-01

    Lifting bodies are of interest for possible use as space transportation vehicles because they have the volume required for significant payloads and the aerodynamic capability to negotiate the transition from high angles of attack to lower angles of attack (for cruise flight) and thus safely reenter the atmosphere and perform conventional horizontal landings. Results are presented for an experimental and theoretical study of the aerodynamic characteristics at supersonic speeds for a series of lifting bodies with 75 deg delta planforms, rounded noses, and various upper and lower surface cambers. The camber shapes varied in thickness and in maximum thickness location, and hence in body volume. The experimental results were obtained in the Langley Unitary Plan Wind Tunnel for both the longitudinal and the lateral aerodynamic characteristics. Selected experimental results are compared with calculated results obtained through the use of the Hypersonic Arbitrary-Body Aerodynamic Computer Program.

  2. Lift generation by the avian tail.

    PubMed

    Maybury, W J; Rayner, J M; Couldrick, L B

    2001-07-22

    Variation with tail spread of the lift generated by a bird tail was measured on mounted, frozen European starlings (Sturnus vulgaris) in a wind tunnel at a typical air speed and body and tail angle of attack in order to test predictions of existing aerodynamic theories modelling tail lift. Measured lift at all but the lowest tail spread angles was significantly lower than the predictions of slender wing, leading edge vortex and lifting line models of lift production. Instead, the tail lift coefficient based on tail area was independent of tail spread, tail aspect ratio and maximum tail span. Theoretical models do not predict bird tail lift reliably and, when applied to tail morphology, may underestimate the aerodynamic optimum tail feather length. Flow visualization experiments reveal that an isolated tail generates leading edge vortices as expected for a low-aspect ratio delta wing, but that in the intact bird body-tail interactions are critical in determining tail aerodynamics: lifting vortices shed from the body interact with the tail and degrade tail lift compared with that of an isolated tail.

  3. Calculation of potential flow past non-lifting bodies at angle of attack using axial and surface singularity methods. M.S. Thesis. Contractor Report, 1 Jan. 1981 - 31 Aug. 1982

    NASA Technical Reports Server (NTRS)

    Shu, J. Y.

    1983-01-01

    Two different singularity methods have been utilized to calculate the potential flow past a three dimensional non-lifting body. Two separate FORTRAN computer programs have been developed to implement these theoretical models, which will in the future allow inclusion of the fuselage effect in a pair of existing subcritical wing design computer programs. The first method uses higher order axial singularity distributions to model axisymmetric bodies of revolution in an either axial or inclined uniform potential flow. Use of inset of the singularity line away from the body for blunt noses, and cosine-type element distributions have been applied to obtain the optimal results. Excellent agreement to five significant figures with the exact solution pressure coefficient value has been found for a series of ellipsoids at different angles of attack. Solutions obtained for other axisymmetric bodies compare well with available experimental data. The second method utilizes distributions of singularities on the body surface, in the form of a discrete vortex lattice. This program is capable of modeling arbitrary three dimensional non-lifting bodies. Much effort has been devoted to finding the optimal method of calculating the tangential velocity on the body surface, extending techniques previously developed by other workers.

  4. NASA HL-20 Lifting Body

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The HL-20 was built at Langley in October 1990 and is a full-scale non-flying mockup. This mockup was used for engineering studies of maintainability of the vehicle, as testing crew positions, pilot visibility and other human factors considerations. The HL-20 was a direct derivative of the HL-10 vehicle tested in the 1960s and bears a very close resemblance to engineering drawings produced at that time. Although evaluated as a possible 'space taxi,' the HL-20, sometimes called the 'Personnel Launch System,' was never built.

  5. Total facelift: forehead lift, midface lift, and neck lift.

    PubMed

    Park, Dong Man

    2015-03-01

    Patients with thick skin mainly exhibit the aging processes of sagging, whereas patients with thin skin develop wrinkles or volume loss. Asian skin is usually thicker than that of Westerners; and thus, the sagging of skin due to aging, rather than wrinkling, is the chief problem to be addressed in Asians. Asian skin is also relatively large in area and thick, implying that the weight of tissue to be lifted is considerably heavier. These factors account for the difficulties in performing a facelift in Asians. Facelifts can be divided into forehead lift, midface lift, and lower face lift. These can be performed individually or with 2-3 procedures combined.

  6. Total Facelift: Forehead Lift, Midface Lift, and Neck Lift

    PubMed Central

    2015-01-01

    Patients with thick skin mainly exhibit the aging processes of sagging, whereas patients with thin skin develop wrinkles or volume loss. Asian skin is usually thicker than that of Westerners; and thus, the sagging of skin due to aging, rather than wrinkling, is the chief problem to be addressed in Asians. Asian skin is also relatively large in area and thick, implying that the weight of tissue to be lifted is considerably heavier. These factors account for the difficulties in performing a facelift in Asians. Facelifts can be divided into forehead lift, midface lift, and lower face lift. These can be performed individually or with 2-3 procedures combined. PMID:25798381

  7. A method for estimating static aerodynamic characteristics for slender bodies of circular and noncircular cross section alone and with lifting surfaces at angles of attack from 0 deg to 90 deg

    NASA Technical Reports Server (NTRS)

    Jorgensen, L. H.

    1973-01-01

    An engineering-type method is presented for estimating normal-force, axial-force, and pitching-moment coefficients for slender bodies of circular and noncircular cross section alone and with lifting surfaces. Static aerodynamic characteristics computed by the method are shown to agree closely with experimental results for slender bodies of circular and elliptic cross section and for winged-circular and winged-elliptic cones. However, the present experimental results used for comparison with the method are limited to angles of attack only up to about 20 deg and Mach numbers from 2 to 4.

  8. A comparison of ballistic and nonballistic lower-body resistance exercise and the methods used to identify their positive lifting phases.

    PubMed

    Lake, Jason; Lauder, Mike; Smith, Neal; Shorter, Kathleen

    2012-08-01

    This study compared differences between ballistic jump squat (B) and nonballistic back squat (NB) force, velocity, power, and relative acceleration duration, and the effect that the method used to identify the positive lifting phase had on these parameters. Ground reaction force and barbell kinematics were recorded from 30 resistance trained men during B and NB performance with 45% 1RM. Force, velocity, and power was averaged over positive lifting phases identified using the traditional peak barbell displacement (PD) and positive impulse method. No significant differences were found between B and NB mean force, and mean power, but B mean velocity was 14% greater than the NB equivalent. Positive impulse mean force was 24% greater than PD mean force, and B relative acceleration duration was 8.6% greater than the NB equivalent when PD was used to identify the end of the positive lifting phase. These results challenge common perceptions of B superiority for power development.

  9. Variable Lifting Index (VLI)

    PubMed Central

    Waters, Thomas; Occhipinti, Enrico; Colombini, Daniela; Alvarez-Casado, Enrique; Fox, Robert

    2015-01-01

    Objective: We seek to develop a new approach for analyzing the physical demands of highly variable lifting tasks through an adaptation of the Revised NIOSH (National Institute for Occupational Safety and Health) Lifting Equation (RNLE) into a Variable Lifting Index (VLI). Background: There are many jobs that contain individual lifts that vary from lift to lift due to the task requirements. The NIOSH Lifting Equation is not suitable in its present form to analyze variable lifting tasks. Method: In extending the prior work on the VLI, two procedures are presented to allow users to analyze variable lifting tasks. One approach involves the sampling of lifting tasks performed by a worker over a shift and the calculation of the Frequency Independent Lift Index (FILI) for each sampled lift and the aggregation of the FILI values into six categories. The Composite Lift Index (CLI) equation is used with lifting index (LI) category frequency data to calculate the VLI. The second approach employs a detailed systematic collection of lifting task data from production and/or organizational sources. The data are organized into simplified task parameter categories and further aggregated into six FILI categories, which also use the CLI equation to calculate the VLI. Results: The two procedures will allow practitioners to systematically employ the VLI method to a variety of work situations where highly variable lifting tasks are performed. Conclusions: The scientific basis for the VLI procedure is similar to that for the CLI originally presented by NIOSH; however, the VLI method remains to be validated. Application: The VLI method allows an analyst to assess highly variable manual lifting jobs in which the task characteristics vary from lift to lift during a shift. PMID:26646300

  10. Lift truck safety review

    SciTech Connect

    Cadwallader, L.C.

    1997-03-01

    This report presents safety information about powered industrial trucks. The basic lift truck, the counterbalanced sit down rider truck, is the primary focus of the report. Lift truck engineering is briefly described, then a hazard analysis is performed on the lift truck. Case histories and accident statistics are also given. Rules and regulations about lift trucks, such as the US Occupational Safety an Health Administration laws and the Underwriter`s Laboratories standards, are discussed. Safety issues with lift trucks are reviewed, and lift truck safety and reliability are discussed. Some quantitative reliability values are given.

  11. Investigation of Minimum Drag and Maximum Lift-drag Ratios of Several Wing-body Combinations Including a Cambered Triangular Wing at Low Reynolds Numbers and at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Brown, Clinton E; Hargrave, L K

    1958-01-01

    Theoretical and experimental data for wing-body combinations with wings of triangular, arrow, and diamond plan form are presented for Mach numbers of 1.62, 1.93, and 2.41 and a Reynolds number range of 1.4 x 10 to the 6th power to 0.7 x 10 to the 6th power. Included are two each of triangular and arrow plan-form wings cambered for approximately uniform load at m = 1.62 and lift coefficients of 0.08 and 0.20. Liquid-film studies of the flow over the various configurations are also presented.

  12. High lift selected concepts

    NASA Technical Reports Server (NTRS)

    Henderson, M. L.

    1979-01-01

    The benefits to high lift system maximum life and, alternatively, to high lift system complexity, of applying analytic design and analysis techniques to the design of high lift sections for flight conditions were determined and two high lift sections were designed to flight conditions. The influence of the high lift section on the sizing and economics of a specific energy efficient transport (EET) was clarified using a computerized sizing technique and an existing advanced airplane design data base. The impact of the best design resulting from the design applications studies on EET sizing and economics were evaluated. Flap technology trade studies, climb and descent studies, and augmented stability studies are included along with a description of the baseline high lift system geometry, a calculation of lift and pitching moment when separation is present, and an inverse boundary layer technique for pressure distribution synthesis and optimization.

  13. Catwalk grate lifting tool

    DOEpatents

    Gunter, L.W.

    1992-08-11

    A device is described for lifting catwalk grates comprising an elongated bent member with a handle at one end and a pair of notched braces and a hook at the opposite end that act in conjunction with each other to lock onto the grate and give mechanical advantage in lifting the grate. 10 figs.

  14. Catwalk grate lifting tool

    DOEpatents

    Gunter, Larry W.

    1992-01-01

    A device for lifting catwalk grates comprising an elongated bent member with a handle at one end and a pair of notched braces and a hook at the opposite end that act in conjunction with each other to lock onto the grate and give mechanical advantage in lifting the grate.

  15. High lift aerodynamics

    NASA Technical Reports Server (NTRS)

    Sullivan, John; Schneider, Steve; Campbell, Bryan; Bucci, Greg; Boone, Rod; Torgerson, Shad; Erausquin, Rick; Knauer, Chad

    1994-01-01

    The current program is aimed at providing a physical picture of the flow physics and quantitative turbulence data of the interaction of a high Reynolds number wake with a flap element. The impact of high lift on aircraft performance is studied for a 150 passenger transport aircraft with the goal of designing optimum high lift systems with minimum complexity.

  16. Portable Lifting Seat

    NASA Technical Reports Server (NTRS)

    Weddendorf, Bruce

    1993-01-01

    Portable lifting machine assists user in rising from seated position to standing position, or in sitting down. Small and light enough to be carried like briefcase. Used on variety of chairs and benches. Upholstered aluminum box houses mechanism of lifting seat. Springs on outer shaft-and-arm subassembly counterbalance part of user's weight to assist motor.

  17. Understanding Wing Lift

    ERIC Educational Resources Information Center

    Silva, J.; Soares, A. A.

    2010-01-01

    The conventional explanation of aerodynamic lift based on Bernoulli's equation is one of the most common mistakes in presentations to school students and is found in children's science books. The fallacies in this explanation together with an alternative explanation for aerofoil lift have already been presented in an excellent article by Babinsky…

  18. Portable seat lift

    NASA Technical Reports Server (NTRS)

    Weddendorf, Bruce (Inventor)

    1994-01-01

    A portable seat lift that can help individuals either (1) lower themselves to a sitting position or (2) raise themselves to a standing position is presented. The portable seat lift consists of a seat mounted on a base with two levers, which are powered by a drive unit.

  19. Samus Counter Lifting Fixture

    SciTech Connect

    Stredde, H.; /Fermilab

    1998-05-27

    A lifting fixture has been designed to handle the Samus counters. These counters are being removed from the D-zero area and will be transported off site for further use at another facility. This fixture is designed specifically for this particular application and will be transferred along with the counters. The future use of these counters may entail installation at a facility without access to a crane and therefore a lift fixture suitable for both crane and/or fork lift usage has been created The counters weigh approximately 3000 lbs. and have threaded rods extended through the counter at the top comers for lifting. When these counters were first handled/installed these rods were used in conjunction with appropriate slings and handled by crane. The rods are secured with nuts tightened against the face of the counter. The rod thread is M16 x 2({approx}.625-inch dia.) and extends 2-inch (on average) from the face of the counter. It is this cantilevered rod that the lift fixture engages with 'C' style plates at the four top comers. The strongback portion of the lift fixture is a steel rectangular tube 8-inch (vertical) x 4-inch x .25-inch wall, 130-inch long. 1.5-inch square bars are welded perpendicular to the long axis of the rectangular tube at the appropriate lift points and the 'C' plates are fastened to these bars with 3/4-10 high strength bolts -grade 8. Two short channel sections are positioned-welded-to the bottom of the rectangular tube on 40 feet centers, which are used as locators for fork lift tines. On the top are lifting eyes for sling/crane usage and are rated at 3500 lbs. safe working load each - vertical lift only.

  20. Aerodynamic interactions from reaction controls for lateral control of the M2-F2 lifting-body entry configuration at transonic and supersonic and supersonic Mach numbers. [wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Bailey, R. O.; Brownson, J. J.

    1979-01-01

    Tests were conducted in the Ames 6 by 6 foot wind tunnel to determine the interaction of reaction jets for roll control on the M2-F2 lifting-body entry vehicle. Moment interactions are presented for a Mach number range of 0.6 to 1.7, a Reynolds number range of 1.2 x 10 to the 6th power to 1.6 x 10 to the 6th power (based on model reference length), an angle-of-attack range of -9 deg to 20 deg, and an angle-of-sideslip range of -6 deg to 6 deg at an angle of attack of 6 deg. The reaction jets produce roll control with small adverse yawing moment, which can be offset by horizontal thrust component of canted jets.

  1. Effectiveness of an on-body lifting aid at reducing low back physical demands during an automotive assembly task: assessment of EMG response and user acceptability.

    PubMed

    Graham, Ryan B; Agnew, Michael J; Stevenson, Joan M

    2009-09-01

    The purpose of this study was to investigate the effectiveness and user acceptability of a Personal Lift-Assist Device (PLAD) at an automotive manufacturing facility, with operators who perform an on-line assembly process requiring forward bending and static holding. Surface EMG data were collected at six sites on the low back and abdomen, and an accelerometer was used to measure trunk inclination. Use of the PLAD significantly reduced the thoracic and lumbar erector spinae activity and EMG-predicted compression at the 10th, 50th, and 90th APDF percentile levels (p < or = 0.05), without significantly increasing rectus abdominus activity or trunk flexion. Similarly, ratings of perceived exertion were found to be significantly lower when wearing the PLAD (p = 0.006). Subjective opinions were positive, with 8/10 subjects indicating they would wear the device everyday. With slight changes, workers felt that the PLAD could be beneficial at reducing forces and discomfort in similar industrial or manual materials handling tasks that place excessive physical demands on the low back.

  2. Allometry of hummingbird lifting performance.

    PubMed

    Altshuler, D L; Dudley, R; Heredia, S M; McGuire, J A

    2010-03-01

    Vertical lifting performance in 67 hummingbird species was studied across a 4000 m elevational gradient. We used the technique of asymptotic load-lifting to elicit maximum sustained muscle power output during loaded hovering flight. Our analysis incorporated direct measurements of maximum sustained load and simultaneous wingbeat kinematics, together with aerodynamic estimates of mass-specific mechanical power output, all within a robust phylogenetic framework for the Trochilidae. We evaluated key statistical factors relevant to estimating slopes for allometric relationships by performing analyses with and without phylogenetic information, and incorporating species-specific measurement error. We further examined allometric relationships at different elevations because this gradient represents a natural experiment for studying physical challenges to animal flight mechanics. Maximum lifting capacity (i.e. vertical force production) declined with elevation, but was either isometric or negatively allometric with respect to both body and muscle mass, depending on elevational occurrence of the corresponding taxa. Maximum relative muscle power output exhibited a negative allometry with respect to muscle mass, supporting theoretical predictions from muscle mechanics.

  3. A review of a method for dynamic load distribution, dynamic modeling, and explicit internal force control when two serial link manipulators mutually lift and transport a rigid body object

    SciTech Connect

    Unseren, M.A.

    1997-09-01

    The report reviews a method for modeling and controlling two serial link manipulators which mutually lift and transport a rigid body object in a three dimensional workspace. A new vector variable is introduced which parameterizes the internal contact force controlled degrees of freedom. A technique for dynamically distributing the payload between the manipulators is suggested which yields a family of solutions for the contact forces and torques the manipulators impart to the object. A set of rigid body kinematic constraints which restricts the values of the joint velocities of both manipulators is derived. A rigid body dynamical model for the closed chain system is first developed in the joint space. The model is obtained by generalizing the previous methods for deriving the model. The joint velocity and acceleration variables in the model are expressed in terms of independent pseudovariables. The pseudospace model is transformed to obtain reduced order equations of motion and a separate set of equations governing the internal components of the contact forces and torques. A theoretic control architecture is suggested which explicitly decouples the two sets of equations comprising the model. The controller enables the designer to develop independent, non-interacting control laws for the position control and internal force control of the system.

  4. Control effectiveness and tip-fin dihedral effects for the HL-20 lifting-body configuration at Mach numbers from 1.6 to 4.5

    NASA Technical Reports Server (NTRS)

    Cruz, Christopher I.; Ware, George M.

    1995-01-01

    Wind tunnel tests were made with a scale model of the HL-20 in the Langley Unitary Plan Wind Tunnel. Pitch control was investigated by deflecting the elevon surfaces on the outboard fins and body flaps on the fuselage. Yaw control tests were made with the all movable center fin deflected 5 deg. Almost full negative body flap deflection (-30 deg) was required to trim the HL-20 (moment reference center at 0.54-percent body length from nose) to positive values of life in the Mach number range from 1.6 to 2.5. Elevons were twice as effective as body flaps as a longitudinal trim device. The elevons were effective as a roll control, but because of tip-fin dihedral angle, produced about as much adverse yawing moment as rolling moment. The body flaps were less effective in producing rolling moment, but produced little adverse yawing moment. The yaw effectiveness of the all movable center fin was essentially constant over the angle-of-attack range at each Mach number. The value of yawing moment, however, was small. Center-fin deflection produced almost no rolling moments. The model was directionally unstable over most of the Mach number range with tip-fin dihedral angles less than the baseline value of 50 deg.

  5. Boundary-layer transition and displacement thickness effects on zero-lift drag of a series of power-law bodies at Mach 6

    NASA Technical Reports Server (NTRS)

    Ashby, G. C., Jr.; Harris, J. E.

    1974-01-01

    Wave and skin-friction drag have been numerically calculated for a series of power-law bodies at a Mach number of 6 and Reynolds numbers, based on body length, from 1.5 million to 9.5 million. Pressure distributions were computed on the nose by the inverse method and on the body by the method of characteristics. These pressure distributions and the measured locations of boundary-layer transition were used in a nonsimilar-boundary-layer program to determine viscous effects. A coupled iterative approach between the boundary-layer and pressure-distribution programs was used to account for boundary-layer displacement-thickness effects. The calculated-drag coefficients compared well with previously obtained experimental data.

  6. FREIGHT CONTAINER LIFTING STANDARD

    SciTech Connect

    POWERS DJ; SCOTT MA; MACKEY TC

    2010-01-13

    This standard details the correct methods of lifting and handling Series 1 freight containers following ISO-3874 and ISO-1496. The changes within RPP-40736 will allow better reading comprehension, as well as correcting editorial errors.

  7. Aerodynamic Lifting Force.

    ERIC Educational Resources Information Center

    Weltner, Klaus

    1990-01-01

    Describes some experiments showing both qualitatively and quantitatively that aerodynamic lift is a reaction force. Demonstrates reaction forces caused by the acceleration of an airstream and the deflection of an airstream. Provides pictures of demonstration apparatus and mathematical expressions. (YP)

  8. Wind tower service lift

    DOEpatents

    Oliphant, David; Quilter, Jared; Andersen, Todd; Conroy, Thomas

    2011-09-13

    An apparatus used for maintaining a wind tower structure wherein the wind tower structure may have a plurality of legs and may be configured to support a wind turbine above the ground in a better position to interface with winds. The lift structure may be configured for carrying objects and have a guide system and drive system for mechanically communicating with a primary cable, rail or other first elongate member attached to the wind tower structure. The drive system and guide system may transmit forces that move the lift relative to the cable and thereby relative to the wind tower structure. A control interface may be included for controlling the amount and direction of the power into the guide system and drive system thereby causing the guide system and drive system to move the lift relative to said first elongate member such that said lift moves relative to said wind tower structure.

  9. Advanced underwater lift device

    NASA Technical Reports Server (NTRS)

    Flanagan, David T.; Hopkins, Robert C.

    1993-01-01

    Flexible underwater lift devices ('lift bags') are used in underwater operations to provide buoyancy to submerged objects. Commercially available designs are heavy, bulky, and awkward to handle, and thus are limited in size and useful lifting capacity. An underwater lift device having less than 20 percent of the bulk and less than 10 percent of the weight of commercially available models was developed. The design features a dual membrane envelope, a nearly homogeneous envelope membrane stress distribution, and a minimum surface-to-volume ratio. A proof-of-concept model of 50 kg capacity was built and tested. Originally designed to provide buoyancy to mock-ups submerged in NASA's weightlessness simulators, the device may have application to water-landed spacecraft which must deploy flotation upon impact, and where launch weight and volume penalties are significant. The device may also be useful for the automated recovery of ocean floor probes or in marine salvage applications.

  10. Back injury prevention: a lift team success story.

    PubMed

    Hefti, Kelly S; Farnham, Richard J; Docken, Lisa; Bentaas, Ruth; Bossman, Sharon; Schaefer, Jill

    2003-06-01

    Work related back injuries among hospital personnel account for high volume, high cost workers' compensation claims. These injuries can be life altering experiences, affecting both the personal and professional lives of injured workers. Lifting must be viewed as a skill involving specialized training and mandated use of mechanical equipment, rather than as a random task performed by numerous health care providers. The use of a lift team specially trained in body mechanics, lifting techniques, and the use of mandated mechanical equipment can significantly affect injury data, financial outcomes, and employee satisfaction. The benefits of a lift team extend beyond the effect on injury and financial outcomes--they can be used for recruitment and retention strategies, and team members serve as mentors to others by demonstrating safe lifting techniques. Ultimately, a lift team helps protect a valuable resource--the health care worker.

  11. Effects of asymmetric dynamic and isometric liftings on strength/force and rating of perceived exertion.

    PubMed

    Hattori, Y; Ono, Y; Shimaoka, M; Hiruta, S; Kamijima, M; Shibata, E; Ichihara, G; Ando, S; Villaneuva, M B; Takeuchi, Y

    1996-06-01

    A laboratory study was undertaken to determine the postural and physical characteristics and subjective stress during dynamic lifting of a usual load (10 kg) compared with during isometric lifting. The authors also aimed to clarify the effects of asymmetric lifting on these parameters. The subjects were thirteen male college students. They were asked to lift a box weighing 10 kg. They performed sixteen different lifting tasks from the floor to a height of 71 cm, involving a combination of three independent factors: two lifting modes (isometric lifting and dynamic lifting), four lifting angles in relation to the sagittal plane (sagittal plane, right 45 degree, right 90 degree and left 90 degree planes) and two lifting postures (squat and stoop). For each lifting task, strengths or forces and ground reaction forces were measured. At the end of each task, the authors asked the subjects to rate their perceived exertion (RPE) during lifting at ten sites of the body. Angle factor had a significant effect on isometric strengths and dynamic peak forces. Isometric strengths during the maximum 3 s were highest in lifting in the right 45 degree plane, followed by that in the sagittal plane, while those in the right 90 degree and left 90 degree planes were the lowest. However, peak forces in dynamic lifting were the highest in the lifting in the sagittal plane, followed by that in the right 45 degree plane, while those in the right 90 degree and left 90 degree planes were the lowest. Postural factor had a significant effect on height at peak force, which is higher in squat lifting than in stoop lifting. RPEs for the left arm, the backs and the right whole body in isometric lifting were significantly higher than in dynamic lifting of 10 kg. There were remarkably high RPEs for the ipsilateral thigh to the box in right 90 degree and left 90 degree planes during both isometric and dynamic liftings. Locations of the resultant force consisting of three component forces on the force

  12. Clamp usable as jig and lifting clamp

    DOEpatents

    Tsuyama, Yoshizo

    1976-01-01

    There is provided a clamp which is well suited for use as a lifting clamp for lifting and moving materials of assembly in a shipyard, etc. and as a pulling jig in welding and other operations. The clamp comprises a clamp body including a shackle for engagement with a pulling device and a slot for receiving an article, and a pair of jaws provided on the leg portions of the clamp body on the opposite sides of the slot to grip the article in the slot, one of said jaws consisting of a screw rod and the other jaw consisting of a swivel jaw with a spherical surface, whereby when the article clamped in the slot by the pair of jaws tends to slide in any direction with respect to the clamp body, the article is more positively gripped by the pair of jaws.

  13. JWST Lifting System

    NASA Technical Reports Server (NTRS)

    Tolleson, William

    2012-01-01

    A document describes designing, building, testing, and certifying a customized crane (Lifting Device LD) with a strong back (cradle) to facilitate the installation of long wall panels and short door panels for the GHe phase of the James Webb Space Telescope (JWST). The LD controls are variable-frequency drive controls designed to be adjustable for very slow and very-short-distance movements throughout the installation. The LD has a lift beam with an electric actuator attached at the end. The actuator attaches to a rectangular strong back (cradle) for lifting the long wall panels and short door panels from a lower angle into the vertical position inside the chamber, and then rotating around the chamber for installation onto the existing ceiling and floor. The LD rotates 360 (in very small increments) in both clockwise and counterclockwise directions. Eight lifting pads are on the top ring with 2-in. (.5-cm) eye holes spaced evenly around the ring to allow for the device to be suspended by three crane hoists from the top of the chamber. The LD is operated by remote controls that allow for a single, slow mode for booming the load in and out, with slow and very slow modes for rotating the load.

  14. Forehead lift - slideshow

    MedlinePlus

    ... Indications URL of this page: //medlineplus.gov/ency/presentations/100020.htm Forehead lift - series—Indications To use the sharing features on this page, please enable JavaScript. Go to slide 1 out of 3 Go to slide 2 ...

  15. Breast lift (mastopexy) - slideshow

    MedlinePlus

    ... Incisions URL of this page: //medlineplus.gov/ency/presentations/100188.htm Breast lift (mastopexy) - series—Incisions To use the sharing features on this page, please enable JavaScript. Go to slide 1 out of 3 Go to slide 2 ...

  16. Hydraulic lifting device

    NASA Technical Reports Server (NTRS)

    Terrell, Kyle (Inventor)

    1990-01-01

    A piston and cylinder assembly is disclosed which is constructed of polyvinyl chloride that uses local water pressure to perform small lifting tasks. The chamber is either pressurized to extend the piston or depressurized to retract the piston. The present invention is best utilized for raising and lowering toilet seats.

  17. Lifting as You Climb

    ERIC Educational Resources Information Center

    Sullivan, Debra R.

    2009-01-01

    This article addresses leadership themes and answers leadership questions presented to "Exchange" by the Panel members who attended the "Exchange" Panel of 300 Reception in Dallas, Texas, last November. There is an old proverb that encourages people to lift as they climb: "While you climb a mountain, you must not forget others along the way." With…

  18. Lifting speed preferences and their effects on the maximal lifting capacity

    PubMed Central

    LIN, Chiuhsiang Joe; CHENG, Chih-Feng

    2016-01-01

    The objectives of this study were to evaluate how lifting capacity and subjective preferences are affected by different lifting speeds. The maximum lifting capacity of lift was determined with three independent variables, lifting speed, lifting technique, and lifting height. Questionnaires were evaluated after the experiment by the participants for the lifting speed preferences. This study found that the lifting speed was a significant factor in the lifting capacity (p<0.001); and the lifting height (p<0.001) and the interaction of lifting speed and lifting height (p=0.005) affected the lifting capacity significantly. The maximal lifting capacity was achieved around the optimal speed that was neither too fast nor too slow. Moreover, the participants’ preferred lifting speeds were consistently close to the optimal lifting speed. The results showed that the common lifting practice guideline to lift slowly might make the worker unable to generate a large lifting capacity. PMID:27383532

  19. Lifting speed preferences and their effects on the maximal lifting capacity.

    PubMed

    Lin, Chiuhsiang Joe; Cheng, Chih-Feng

    2017-02-07

    The objectives of this study were to evaluate how lifting capacity and subjective preferences are affected by different lifting speeds. The maximum lifting capacity of lift was determined with three independent variables, lifting speed, lifting technique, and lifting height. Questionnaires were evaluated after the experiment by the participants for the lifting speed preferences. This study found that the lifting speed was a significant factor in the lifting capacity (p<0.001); and the lifting height (p<0.001) and the interaction of lifting speed and lifting height (p=0.005) affected the lifting capacity significantly. The maximal lifting capacity was achieved around the optimal speed that was neither too fast nor too slow. Moreover, the participants' preferred lifting speeds were consistently close to the optimal lifting speed. The results showed that the common lifting practice guideline to lift slowly might make the worker unable to generate a large lifting capacity.

  20. Helicopter Toy and Lift Estimation

    ERIC Educational Resources Information Center

    Shakerin, Said

    2013-01-01

    A $1 plastic helicopter toy (called a Wacky Whirler) can be used to demonstrate lift. Students can make basic measurements of the toy, use reasonable assumptions and, with the lift formula, estimate the lift, and verify that it is sufficient to overcome the toy's weight. (Contains 1 figure.)

  1. High lift wake investigation

    NASA Technical Reports Server (NTRS)

    Sullivan, J. P.; Schneider, S. P.; Hoffenberg, R.

    1996-01-01

    The behavior of wakes in adverse pressure gradients is critical to the performance of high-lift systems for transport aircraft. Wake deceleration is known to lead to sudden thickening and the onset of reversed flow; this 'wake bursting' phenomenon can occur while surface flows remain attached. Although known to be important for high-lift systems, few studies of such decelerated wakes exist. In this study, the wake of a flat plate has been subjected to an adverse pressure gradient in a two-dimensional diffuser, whose panels were forced to remain attached by use of slot blowing. Pitot probe surveys, L.D.V. measurements, and flow visualization have been used to investigate the physics of this decelerated wake, through the onset of reversed flow.

  2. Lifting liquid from boreholes

    SciTech Connect

    Reese, T.E.

    1983-05-17

    A device for lifting liquid from boreholes comprises a pump which is located downhole in the region of a production formation and which consists of a fluid-actuated, double-action piston. The pump is connected by fluid pressure lines to a source of fluid pressure disposed above ground and a switching valve is connected to provide fluid pressure to alternate sides of the piston to effect reciprocation thereof.

  3. Enhanced Rescue Lift Capability

    NASA Technical Reports Server (NTRS)

    Young, Larry A.

    2007-01-01

    The evolving and ever-increasing demands of emergency response and disaster relief support provided by rotorcraft dictate, among other things, the development of enhanced rescue lift capability for these platforms. This preliminary analysis is first-order in nature but provides considerable insight into some of the challenges inherent in trying to effect rescue using a unique form of robotic rescue device deployed and operated from rotary-wing aerial platforms.

  4. Powered-lift aircraft technology

    NASA Technical Reports Server (NTRS)

    Deckert, W. H.; Franklin, J. A.

    1989-01-01

    Powered lift aircraft have the ability to vary the magnitude and direction of the force produced by the propulsion system so as to control the overall lift and streamwise force components of the aircraft, with the objective of enabling the aircraft to operate from minimum sized terminal sites. Power lift technology has contributed to the development of the jet lift Harrier and to the forth coming operational V-22 Tilt Rotor and the C-17 military transport. This technology will soon be expanded to include supersonic fighters with short takeoff and vertical landing capability, and will continue to be used for the development of short- and vertical-takeoff and landing transport. An overview of this field of aeronautical technology is provided for several types of powered lift aircraft. It focuses on the description of various powered lift concepts and their operational capability. Aspects of aerodynamics and flight controls pertinent to powered lift are also discussed.

  5. The effects of obesity on lifting performance.

    PubMed

    Xu, Xu; Mirka, Gary A; Hsiang, Simon M

    2008-01-01

    Obesity in the workforce is a growing problem worldwide. While the implications of this trend for biomechanical loading of the musculoskeletal system seem fairly straightforward, the evidence of a clear link between low back pain (LBP) and body mass index (BMI) (calculated as whole body mass in kilograms divided by the square of stature in meters) has not been shown in the epidemiology literature addressing this topic. The approach pursued in the current study was to evaluate the lifting kinematics and ground reaction forces of a group of 12 subjects -- six with a BMI of less than 25 kg/m(2) (normal weight) and six with a BMI of greater than 30 kg/m(2) (obese). These subjects performed a series of free dynamic lifting tasks with varied levels of load (10% and 25% of capacity) and symmetry (sagittally symmetric and 45 degrees asymmetric). The results showed that BMI had a significant effect (p<0.05) on trunk kinematics with the high BMI group exhibiting higher peak transverse plane (twisting) velocity (59% higher) and acceleration (57% higher), and exhibiting higher peak sagittal plane velocity (30% higher) and acceleration (51% higher). When normalized to body weight, there were no significant differences in the ground reaction forces between the two groups. This study provides quantitative data describing lifting task performance differences between people of differing BMI levels and may help to explain why there is no conclusive epidemiological evidence of a relationship between BMI and LBP.

  6. EA-6B high-lift wing modifications

    NASA Technical Reports Server (NTRS)

    Waggoner, E. G.; Allison, D. O.

    1987-01-01

    NASA-Langley has accomplished the computational design and experimental verification of EA-6B aircraft wing modifications for improved high lift capability. The modifications are comparatively simple, and attempt to improve low speed high lift performance while maintaining high speed cruise efficiency. Several two- and three-dimensional low speed and transonic computational techniques were employed, together with extensive wind tunnel tests. The modified inboard and outboard edge slat/flap system sections yielded efficiency improvements that were verified by three-dimensional wind tunnel experiments to amount to an 11-percent wing-body lift coefficient enhancement at low speed.

  7. Detail of lift wire rope attachment to lift span at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of lift wire rope attachment to lift span at southeast corner. Note rope-adjustment turnbuckle with strap keepers to prevent its rotation, which could pull the bridge out of alignment. A single rope and light-gauge attachment at each corner were adequate for lifting the span because most of its weight was balanced by the two counterweights. - Potomac Edison Company, Chesapeake & Ohio Canal Bridge, Spanning C & O Canal South of U.S. 11, Williamsport, Washington County, MD

  8. Framelet lifting in image processing

    NASA Astrophysics Data System (ADS)

    Lu, Da-Yong; Feng, Tie-Yong

    2010-08-01

    To obtain appropriate framelets in image processing, we often need to lift existing framelets. For this purpose the paper presents some methods which allow us to modify existing framelets or filters to construct new ones. The relationships of matrices and their eigenvalues which be used in lifting schemes show that the frame bounds of the lifted wavelet frames are optimal. Moreover, the examples given in Section 4 indicate that the lifted framelets can play the roles of some operators such as the weighted average operator, the Sobel operator and the Laplacian operator, which operators are often used in edge detection and motion estimation applications.

  9. On the relationship between discrete and repetitive lifting performance in military tasks.

    PubMed

    Savage, Robert J; Best, Stuart A; Carstairs, Greg L; Ham, Daniel J; Doyle, Tim L A

    2014-03-01

    Military manual handling requirements range from discrete lifts to continuous and repetitive lifting tasks. For the military to introduce a discrete lifting assessment, the assessment must be predictive of the various submaximum lifting tasks personnel are required to perform. This study investigated the relationship between discrete and repetitive military lifting to assess the validity of implementing a discrete lifting test. Twenty-one soldiers from the Australian Army completed a whole-body box-lifting assessment as a one repetition maximum (1RM) and a series of submaximal lifting repetitions (% 1RM). Performance was measured between the number of lifting repetitions that could be performed at different intensities between 58 and 95% 1RM. A strong curvilinear relationship existed across the entire submaximal lifting range (r = 0.72, p ≤ 0.05). The model developed demonstrated a low predictive error (standard error of the estimate = 7.2% 1RM) with no differences detected in the relationship when comparing individuals of high and low strength. Findings support the use of a discrete functional lifting assessment in providing coverage of a broad range of military lifting tasks. Parallels can be drawn between the trend reported in the current study and weight-training exercises reported in the literature.

  10. Effects of range and mode on lifting capability and lifting time.

    PubMed

    Lee, Tzu-Hsien

    2012-01-01

    This study examined the effects of 3 lifting ranges and 3 lifting modes on maximum lifting capability and total lifting time. The results demonstrated that the maximum lifting capability for FK (from floor to knuckle height) was greater than that for KS (from knuckle height to shoulder height) or FS (from floor to shoulder height). Additionally, asymmetric lifting with initial trunk rotation decreased maximum lifting capability compared with symmetric lifting or asymmetric lifting with final trunk rotation. The difference in total lifting time between KS and FS was not significant, while FK increased total lifting time by ~20% compared with FS even though the travel distance was 50% shorter.

  11. Feasibility study of modern airships, phase 1. Volume 2: Parametric analysis (task 3). [lift, weight (mass)

    NASA Technical Reports Server (NTRS)

    Lancaster, J. W.

    1975-01-01

    Various types of lighter-than-air vehicles from fully buoyant to semibuoyant hybrids were examined. Geometries were optimized for gross lifting capabilities for ellipsoidal airships, modified delta planform lifting bodies, and a short-haul, heavy-lift vehicle concept. It is indicated that: (1) neutrally buoyant airships employing a conservative update of materials and propulsion technology provide significant improvements in productivity; (2) propulsive lift for VTOL and aerodynamic lift for cruise significantly improve the productivity of low to medium gross weight ellipsoidal airships; and (3) the short-haul, heavy-lift vehicle, consisting of a simple combination of an ellipsoidal airship hull and existing helicopter componentry, provides significant potential for low-cost, near-term applications for ultra-heavy lift missions.

  12. Pneumatic Spoiler Controls Airfoil Lift

    NASA Technical Reports Server (NTRS)

    Hunter, D.; Krauss, T.

    1991-01-01

    Air ejection from leading edge of airfoil used for controlled decrease of lift. Pneumatic-spoiler principle developed for equalizing lift on helicopter rotor blades. Also used to enhance aerodynamic control of short-fuselage or rudderless aircraft such as "flying-wing" airplanes. Leading-edge injection increases maneuverability of such high-performance fixed-wing aircraft as fighters.

  13. Project LIFT: Year 1 Report

    ERIC Educational Resources Information Center

    Norton, Michael; Piccinino, Kelly

    2014-01-01

    Research for Action (RFA) is currently in the second year of a five-year external evaluation of the Project Leadership and Investment for Transformation (LIFT) Initiative in the Charlotte-Mecklenburg School District (CMS). Project LIFT is a public-private partnership between CMS and the local philanthropic and business communities in Charlotte,…

  14. Project LIFT: Year Two Report

    ERIC Educational Resources Information Center

    Norton, Michael; Piccinino, Kelly

    2014-01-01

    Research for Action (RFA) has completed its second year of a five-year external evaluation of the Project Leadership and Investment for Transformation (LIFT) Initiative in the Charlotte-Mecklenburg School District (CMS). Project LIFT is a public-private partnership between CMS and the local philanthropic and business communities in Charlotte,…

  15. Lift enhancing tabs for airfoils

    NASA Technical Reports Server (NTRS)

    Ross, James C. (Inventor)

    1994-01-01

    A tab deployable from the trailing edge of a main airfoil element forces flow onto a following airfoil element, such as a flap, to keep the flow attached and thus enhance lift. For aircraft wings with high lift systems that include leading edge slats, the slats may also be provided with tabs to turn the flow onto the following main element.

  16. Summary of Lift and Lift/Cruise Fan Powered Lift Concept Technology

    NASA Technical Reports Server (NTRS)

    Cook, Woodrow L.

    1993-01-01

    A summary is presented of some of the lift and lift/cruise fan technology including fan performance, fan stall, ground effects, ingestion and thrust loss, design tradeoffs and integration, control effectiveness and several other areas related to vertical short takeoff and landing (V/STOL) aircraft conceptual design. The various subjects addressed, while not necessarily pertinent to specific short takeoff/vertical landing (STOVL) supersonic designs being considered, are of interest to the general field of lift and lift/cruise fan aircraft designs and may be of importance in the future. The various wind tunnel and static tests reviewed are: (1) the Doak VZ-4 ducted fan, (2) the 0.57 scale model of the Bell X-22 ducted fan aircraft, (3) the Avrocar, (4) the General Electric lift/cruise fan, (5) the vertical short takeoff and landing (V/STOL) lift engine configurations related to ingestion and consequent thrust loss, (6) the XV-5 and other fan-in-wing stall consideration, (7) hybrid configurations such as lift fan and lift/cruise fan or engines, and (8) the various conceptual design studies by air-frame contractors. Other design integration problems related to small and large V/STOL transport aircraft are summarized including lessons learned during more recent conceptual design studies related to a small executive V/STOL transport aircraft.

  17. Isokinetic and isometric lifting capacity of Chinese in relation to the physical demand of job.

    PubMed

    Luk, K D K; Lu, W W; Kwan, W W; Hu, Y; Wong, Y W; Law, K K P; Leong, J C Y

    2003-03-01

    The aim of the study was to formulate normative data for the lifting capacities of a normal Chinese population, in order to establish a basic foundation for further studies and to investigate the relationship between individual attributes including age, gender, height, weight, job physical demand and each type of lifting capacity. Isokinetic and isometric lifting strength at low, waist and shoulder assessment levels were measured using the LIDO Workset II based on a sample of 93 normal Chinese adults (63 men and 30 women) between the ages of 21-51. The 50th percentile score for adult Chinese female's lifting strength was 17.71% lower than the American female while the adult Chinese male's lifting strength was 14.94% lower than the American male. Lifting forces were higher in the 20-40 year age group. The isometric work mode had considerable impact on the lifting capacities, with shoulder level having the highest lifting capacities. The gender and body weight had a significant positive correlation to lifting capacity while job physical demand had a moderate correlation. Age and body heights were weakly correlated to lifting capacity.

  18. Flight Investigations at High-Subsonic, Transonic, and Supersonic Speeds to Determine Zero-Lift Drag of Fin-Stabilized Bodies of Revolution having Fineness Ratios of 12.5, 8.91, and 6.04 and Varying Positions of Maximum Diameter

    NASA Technical Reports Server (NTRS)

    Hart, Roger G.; Katz, Ellis R.

    1949-01-01

    Rocket-powered models were flown at high-subsonic, transonic, and supersonic speeds to determine the zero-lift drag of fin-stabilized parabolic bodies of revolution differing in fineness ratio and in position of maximum diameter. The present paper presents the results for fineness ratio 12.5, 8.91 and 6.04 bodies having maximum diameters located at stations of 20, 40, 60, and 80 percent of body length. All configurations had cut-off sterns and all had equal base, frontal, and exposed fin areas. For most of the supersonic-speed range models having their maximum diameters at the 60-percent station gave the lowest values of drag coefficient. At supersonic speeds, increasing the fineness ratio generally reduced the drag coefficient for a given position of maximum diameter.

  19. Lifting strength in two-person teamwork.

    PubMed

    Lee, Tzu-Hsien

    2016-01-01

    This study examined the effects of lifting range, hand-to-toe distance, and lifting direction on single-person lifting strengths and two-person teamwork lifting strengths. Six healthy males and seven healthy females participated in this study. Two-person teamwork lifting strengths were examined in both strength-matched and strength-unmatched groups. Our results showed that lifting strength significantly decreased with increasing lifting range or hand-to-toe distance. However, lifting strengths were not affected by lifting direction. Teamwork lifting strength did not conform to the law of additivity for both strength-matched and strength-unmatched groups. In general, teamwork lifting strength was dictated by the weaker of the two members, implying that weaker members might be exposed to a higher potential danger in teamwork exertions. To avoid such overexertion in teamwork, members with significantly different strength ability should not be assigned to the same team.

  20. Ergonomic Assessment of Floor-based and Overhead Lifts

    PubMed Central

    Waters, Thomas R.; Dick, Robert; Lowe, Brian; Werren, Dwight; Parsons, Kelley

    2015-01-01

    Manual full-body vertical lifts of patients have high risk for developing musculoskeletal disorders. Two primary types of battery-powered lift assist devices are available for these tasks: floor-based and overhead-mounted devices. Studies suggest that the operation of floor-based devices may require excessive pushing and pulling forces and that overhead-mounted devices are safer and require lower operating forces. This study evaluated required operating hand forces and resulting biomechanical spinal loading for overhead-mounted lifts versus floor-based lifts across various floor surfaces and patient weight conditions. We did not examine differences in how operators performed the tasks, but rather focused on differences in required operating forces and estimated biomechanical loads across various exposure conditions for a typical operator. Findings show that the floor-based lifts exceeded recommended exposure limits for pushing and pulling for many of the floor/weight conditions and that the overhead-mounted lifts did not. As expected, forces and spinal loads were greater for nonlinoleum floor surfaces compared with linoleum floors. Based on these findings, it is suggested that overhead-mounted devices be used whenever possible, particularly in instances where carpeted floors would be encountered. PMID:26550545

  1. Null lifts and projective dynamics

    SciTech Connect

    Cariglia, Marco

    2015-11-15

    We describe natural Hamiltonian systems using projective geometry. The null lift procedure endows the tangent bundle with a projective structure where the null Hamiltonian is identified with a projective conic and induces a Weyl geometry. Projective transformations generate a set of known and new dualities between Hamiltonian systems, as for example the phenomenon of coupling-constant metamorphosis. We conclude outlining how this construction can be extended to the quantum case for Eisenhart–Duval lifts.

  2. Vortex Lift Augmentation by Suction

    NASA Technical Reports Server (NTRS)

    Taylor, A. H.; Jackson, L. R.; Huffman, J. K.

    1983-01-01

    Lift performance is improved on a 60 degrees swept Gothic wing. Vortex lift at moderate to high angles of attack on highly swept wings used to improve takeoff performance and maneuverability. New design proposed in which suction of propulsion system augments vortex. Turbofan placed at down stream end of leading-edge vortex system induces vortex to flow into inlet which delays onset of vortex breakdown.

  3. Maximum Team Lifting Capacity as a Function of Team Size

    DTIC Science & Technology

    1993-10-01

    2 REVIEW OF LITERATURE ............................... 3 METHODS ...................................... 4 SUBJECTS...and body size with team-lifting capacity. 2 2 I S.. - , .. .., ,, , , ,, = ,, , n~ i I I II I . . REVIEW OF LITERATURE S Isometric and isokinetic...strengths, but showed little or no further decline with the addition of a third woman (Karwowski & Pongpatanasuegsa, 1988). Although no statistical

  4. Normalized lift: an energy interpretation of the lift coefficient simplifies comparisons of the lifting ability of rotating and flapping surfaces.

    PubMed

    Burgers, Phillip; Alexander, David E

    2012-01-01

    For a century, researchers have used the standard lift coefficient C(L) to evaluate the lift, L, generated by fixed wings over an area S against dynamic pressure, ½ρv(2), where v is the effective velocity of the wing. Because the lift coefficient was developed initially for fixed wings in steady flow, its application to other lifting systems requires either simplifying assumptions or complex adjustments as is the case for flapping wings and rotating cylinders.This paper interprets the standard lift coefficient of a fixed wing slightly differently, as the work exerted by the wing on the surrounding flow field (L/ρ·S), compared against the total kinetic energy required for generating said lift, ½v(2). This reinterpreted coefficient, the normalized lift, is derived from the work-energy theorem and compares the lifting capabilities of dissimilar lift systems on a similar energy footing. The normalized lift is the same as the standard lift coefficient for fixed wings, but differs for wings with more complex motions; it also accounts for such complex motions explicitly and without complex modifications or adjustments. We compare the normalized lift with the previously-reported values of lift coefficient for a rotating cylinder in Magnus effect, a bat during hovering and forward flight, and a hovering dipteran.The maximum standard lift coefficient for a fixed wing without flaps in steady flow is around 1.5, yet for a rotating cylinder it may exceed 9.0, a value that implies that a rotating cylinder generates nearly 6 times the maximum lift of a wing. The maximum normalized lift for a rotating cylinder is 1.5. We suggest that the normalized lift can be used to evaluate propellers, rotors, flapping wings of animals and micro air vehicles, and underwater thrust-generating fins in the same way the lift coefficient is currently used to evaluate fixed wings.

  5. Normalized Lift: An Energy Interpretation of the Lift Coefficient Simplifies Comparisons of the Lifting Ability of Rotating and Flapping Surfaces

    PubMed Central

    Burgers, Phillip; Alexander, David E.

    2012-01-01

    For a century, researchers have used the standard lift coefficient CL to evaluate the lift, L, generated by fixed wings over an area S against dynamic pressure, ½ρv2, where v is the effective velocity of the wing. Because the lift coefficient was developed initially for fixed wings in steady flow, its application to other lifting systems requires either simplifying assumptions or complex adjustments as is the case for flapping wings and rotating cylinders. This paper interprets the standard lift coefficient of a fixed wing slightly differently, as the work exerted by the wing on the surrounding flow field (L/ρ·S), compared against the total kinetic energy required for generating said lift, ½v2. This reinterpreted coefficient, the normalized lift, is derived from the work-energy theorem and compares the lifting capabilities of dissimilar lift systems on a similar energy footing. The normalized lift is the same as the standard lift coefficient for fixed wings, but differs for wings with more complex motions; it also accounts for such complex motions explicitly and without complex modifications or adjustments. We compare the normalized lift with the previously-reported values of lift coefficient for a rotating cylinder in Magnus effect, a bat during hovering and forward flight, and a hovering dipteran. The maximum standard lift coefficient for a fixed wing without flaps in steady flow is around 1.5, yet for a rotating cylinder it may exceed 9.0, a value that implies that a rotating cylinder generates nearly 6 times the maximum lift of a wing. The maximum normalized lift for a rotating cylinder is 1.5. We suggest that the normalized lift can be used to evaluate propellers, rotors, flapping wings of animals and micro air vehicles, and underwater thrust-generating fins in the same way the lift coefficient is currently used to evaluate fixed wings. PMID:22629326

  6. Summary of Free-Flight Zero-Lift Drag Results from Tests of 1/5-Scale Models of the Convair YF-102 and F-102A Airplanes and Several Related Small Equivalent Bodies at Mach Numbers from 0.70 to 1.46

    NASA Technical Reports Server (NTRS)

    Wallskog, Harvey A.

    1954-01-01

    One-fifth-scale rocket-propelled models of the Convair YF-102 and F-102A airplanes were tested to determine free-flight zero-lift drag coefficients through the transonic speed range at Reynolds numbers near those to be encountered by the full-scale airplane. Trim and duct characteristics were obtained along with measurements of total-, internal-, and base-drag coefficients. Additional zero-lift drag tests involved a series of small equivalent-body-of-revolution models which were launched to low supersonic speeds by means of a helium gun. The several small models tested corresponded to the following full-scale airplanes: basic, YF-102, 2-foot (full-scale) fuselage extension, F-102A, F-102A (relocated inlets), F-102A (faired nose), and F-102A (parabolic nose) . Equivalent-body models corresponding to the normal area distribution (derived for Mach number 1.0) of each of these airplane shapes were flown and, in addition, equivalent-body models designed to represent the YF-102 and F-102A airplanes at Mach number 1.2 were tested. External-drag coefficients obtained from the 115-scale tests ranged from 0.0094 to 0.0273 for the YF-102 model and from 0.0100 to 0.0255 for the F-102A model. Forebody external-pressure-drag coefficients (drag rise) at Mach number 1.05 of 0.0183 and 0.0134 were obtained from the 115-scale models of the YF-102 and F-102A, respectively, a 16-percent reduction for the F-102A model. Values of drag rise at Mach number 1.05 from the small equivalent-body tests were nearly the same for the basic, YF-102, and 2-foot-fuselage-extension airplane shapes. Equivalent-body tests of the YF-102 and F-102A shapes showed the latter to have about 25 percent less drag rise as compared with a 16-percent reduction illustrated by the 1/5-scale tests. Additional equivalent-body tests illustrating effects of modifications to the F-102A airplane shape shared that relocating the inlets on the fuselage or altering the nose shape to provide a smoother cross-sectional area

  7. Numerical study of aerodynamic effects on road vehicles lifting surfaces

    NASA Astrophysics Data System (ADS)

    Cernat, Mihail Victor; Cernat Bobonea, Andreea

    2017-01-01

    The aerodynamic performance analysis of road vehicles depends on the study of engine intake and cooling flow, internal ventilation, tire cooling, and overall external flow as the motion of air around a moving vehicle affects all of its components in one form or another. Due to the complex geometry of these, the aerodynamic interaction between the various body components is significant, resulting in vortex flow and lifting surface shapes. The present study, however focuses on the effects of external aerodynamics only, and in particular on the flow over the lifting surfaces of a common compact car, designed especially for this study.

  8. Mist lift analysis summary report

    SciTech Connect

    Davenport, R.L.

    1980-09-01

    The mist flow open-cycle OTEC concept proposed by S.L. Ridgway has much promise, but the fluid mechanics of the mist flow are not well understood. The creation of the mist and the possibility of droplet growth leading to rainout (when the vapor can no longer support the mist) are particularly troublesome. This report summarizes preliminary results of a numerical analysis initiated at SERI in FY79 to study the mist-lift process. The analysis emphasizes the mass transfer and fluid mechanics of the steady-state mist flow and is based on one-dimensional models of the mist flow developed for SERI by Graham Wallis. One of Wallis's models describes a mist composed of a single size of drops and another considers several drop sizes. The latter model, further developed at SERI, considers a changing spectrum of discrete drop sizes and incorporates the mathematics describing collisions and growth of the droplets by coalescence. The analysis results show that under conditions leading to maximum lift in the single-drop-size model, the multigroup model predicts significantly reduced lift because of the growth of droplets by coalescence. The predicted lift height is sensitive to variations in the mass flow rate and inlet pressure. Inclusion of a coasting section, in which the drops would rise ballistically without change in temperature, may lead to increased lift within the existing range of operation.

  9. Lifting China's water spell.

    PubMed

    Guan, Dabo; Hubacek, Klaus; Tillotson, Martin; Zhao, Hongyan; Liu, Weidong; Liu, Zhu; Liang, Sai

    2014-10-07

    China is a country with significant but unevenly distributed water resources. The water stressed North stays in contrast to the water abundant and polluted South defining China's current water environment. In this paper we use the latest available data sets and adopt structural decomposition analysis for the years 1992 to 2007 to investigate the driving forces behind the emerging water crisis in China. We employ four water indicators in China, that is, freshwater consumption, discharge of COD (chemical oxygen demand) in effluent water, cumulative COD and dilution water requirements for cumulative pollution, to investigate the driving forces behind the emerging crisis. The paper finds water intensity improvements can effectively offset annual freshwater consumption and COD discharge driven by per capita GDP growth, but that it had failed to eliminate cumulative pollution in water bodies. Between 1992 and 2007, 225 million tones of COD accumulated in Chinese water bodies, which would require 3.2-8.5 trillion m(3) freshwater, depending on the water quality of the recipient water bodies to dilute pollution to a minimum reusable standard. Cumulative water pollution is a key driver to pollution induced water scarcity across China. In addition, urban household consumption, export of goods and services, and infrastructure investment are the main factors contributing to accumulated water pollution since 2000.

  10. Serrated-Planform Lifting-Surfaces

    NASA Technical Reports Server (NTRS)

    McGrath, Brian E. (Inventor); Wood, Richard M. (Inventor)

    1999-01-01

    A novel set of serrated-planform lifting surfaces produce unexpectedly high lift coefficients at moderate to high angles-of-attack. Each serration, or tooth, is designed to shed a vortex. The interaction of the vortices greatly enhances the lifting capability over an extremely large operating range. Variations of the invention use serrated-planform lifting surfaces in planes different than that of a primary lifting surface. In an alternate embodiment, the individual teeth are controllably retractable and deployable to provide for active control of the vortex system and hence lift coefficient. Differential lift on multiple serrated-planform lifting surfaces provides a means for vehicle control. The important aerodynamic advantages of the serrated-planform lifting surfaces are not limited to aircraft applications but can be used to establish desirable performance characteristics for missiles, land vehicles, and/or watercraft.

  11. Endoscopic brow lifts uber alles.

    PubMed

    Patel, Bhupendra C K

    2006-12-01

    Innumerable approaches to the ptotic brow and forehead have been described in the past. Over the last twenty-five years, we have used all these techniques in cosmetic and reconstructive patients. We have used the endoscopic brow lift technique since 1995. While no one technique is applicable to all patients, the endoscopic brow lift, with appropriate modifications for individual patients, can be used effectively for most patients with brow ptosis. We present the nuances of this technique and show several different fixation methods we have found useful.

  12. Unsteady Lift Generation for MAVs

    DTIC Science & Technology

    2010-10-22

    canonical pitch - up , pitch -down wing maneuver, in 39th AIAA Fluid Dynamics Conference, AIAA 2009-3687, San Antonio, TX, 22-25 June 2009. [7] C. P. Ellington...unsteady lift generation on three-dimensional flapping wings in the MAV flight regime and, if a leading edge vortex develops at MAV-like Reynolds numbers... wing rotates in a propeller-like motion through a wing stroke angle up to 90 degrees. Unsteady lift and drag force data was acquired throughout the

  13. ExFiT Flight Design and Structural Modeling for FalconLAUNCH VIII Sounding Rocket

    DTIC Science & Technology

    2010-03-01

    in October of 1958[13]. In 1963, the first lifting body flight test was conducted with NASA’s M2-F1, nick - named “the flying bathtub” shown in Figure...missiles. Technical Report NACA TN 4197, NACA. 21. Hodges , D., and Pierce, A., 2002. An Introduction to Structural Dynamics and Aeroelasticity John

  14. Three-Dimensional Effects on Multi-Element High Lift Computations

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.; Lee-Rausch, Elizabeth M.; Watson, Ralph D.

    2002-01-01

    In an effort to discover the causes for disagreement between previous 2-D computations and nominally 2-D experiment for flow over the 3-clement McDonnell Douglas 30P-30N airfoil configuration at high lift, a combined experimental/CFD investigation is described. The experiment explores several different side-wall boundary layer control venting patterns, document's venting mass flow rates, and looks at corner surface flow patterns. The experimental angle of attack at maximum lift is found to be sensitive to the side wall venting pattern: a particular pattern increases the angle of attack at maximum lift by at least 2 deg. A significant amount of spanwise pressure variation is present at angles of attack near maximum lift. A CFD study using 3-D structured-grid computations, which includes the modeling of side-wall venting, is employed to investigate 3-D effects of the flow. Side-wall suction strength is found to affect the angle at which maximum lift is predicted. Maximum lift in the CFD is shown to be limited by the growth of all off-body corner flow vortex and consequent increase in spanwise pressure variation and decrease in circulation. The 3-D computations with and without wall venting predict similar trends to experiment at low angles of attack, but either stall too earl or else overpredict lift levels near maximum lift by as much as 5%. Unstructured-grid computations demonstrate that mounting brackets lower die the levels near maximum lift conditions.

  15. Lifting Mechanism for the Mars Explorer Rover

    NASA Technical Reports Server (NTRS)

    Melko, Joseph; Iskenderian, Theodore; Harrington, Brian; Voorhees, Christopher

    2005-01-01

    A report discusses the design of a rover lift mechanism (RLM) -- a major subsystem of each of the Mars Exploration Rover vehicles, which were landed on Mars in January 2004. The RLM had to satisfy requirements to (1) be foldable as part of an extremely dense packing arrangement and (2) be capable of unfolding itself in a complex, multistep process for disengaging the rover from its restraints in the lander, lifting the main body of the rover off its landing platform, and placing the rover wheels on the platform in preparation for driving the rover off the platform. There was also an overriding requirement to minimize the overall mass of the rover and lander. To satisfy the combination of these and other requirements, it was necessary to formulate an extremely complex design that integrated components and functions of the RLM with those of a rocker-bogie suspension system, the aspects of which have been described in several prior NASA Tech Briefs articles. In this design, suspension components also serve as parts of a 4- bar linkage in the RLM.

  16. Prosthetic Hand Lifts Heavy Loads

    NASA Technical Reports Server (NTRS)

    Carden, James R.; Norton, William; Belcher, Jewell G.; Vest, Thomas W.

    1991-01-01

    Prosthetic hand designed to enable amputee to lift diverse heavy objects like rocks and logs. Has simple serrated end effector with no moving parts. Prosthesis held on forearm by system of flexible straps. Features include ruggedness, simplicity, and relatively low cost.

  17. Powered-Lift Aerodynamics and Acoustics. [conferences

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Powered lift technology is reviewed. Topics covered include: (1) high lift aerodynamics; (2) high speed and cruise aerodynamics; (3) acoustics; (4) propulsion aerodynamics and acoustics; (5) aerodynamic and acoustic loads; and (6) full-scale and flight research.

  18. 46 CFR 64.43 - Lifting fittings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Lifting fittings. 64.43 Section 64.43 Shipping COAST... HANDLING SYSTEMS Standards for an MPT § 64.43 Lifting fittings. Each MPT must have attached lifting fittings so that the tank remains horizontal and stable while being moved....

  19. Vertical Lift - Not Just For Terrestrial Flight

    NASA Technical Reports Server (NTRS)

    Young, Larry A

    2000-01-01

    Autonomous vertical lift vehicles hold considerable potential for supporting planetary science and exploration missions. This paper discusses several technical aspects of vertical lift planetary aerial vehicles in general, and specifically addresses technical challenges and work to date examining notional vertical lift vehicles for Mars, Titan, and Venus exploration.

  20. Project LIFT: Year Three Student Outcomes Memo

    ERIC Educational Resources Information Center

    Norton, Michael; Kim, Dae Y.; Long, Daniel A.

    2016-01-01

    Research for Action (RFA) was commissioned to evaluate changes in student outcomes during the first three years of the Project Leadership and Investment for Transformation (LIFT). This report focuses on two questions: (1) how do LIFT students' behavioral and academic performance compare to those of a matched set of non-LIFT comparison students?;…

  1. An Alternative Maxillary Sinus Lift Technique – Sinu Lift System

    PubMed Central

    T, Parthasaradhi; B, Shivakumar; Kumar, T.S.S.; P, Suganya

    2015-01-01

    Objectives: Maxillary sinus augmentation surgical techniques have evolved greatly allowing successful placement of dental implants in the atrophic posterior maxillary region. The purpose of the present study is to evaluate the clinical and radiological outcomes and postoperative morbidity of sinus floor elevation procedures performed using the minimally invasive surgical technique the Sinu lift system. Materials and Methods: Sinus lift procedure was done using the sinu lift system by a transcrestal approach and bone augmentation was done on ten systemically healthy patients using β- tricalcium phosphate and platelet rich plasma mix. The study was evaluated upto six months period with bone related parameters being assessed at base line using CT scan, OPG and after six months the results were analysed using SPSS Version 18.0 software (p < 0.01 (0.005). Wilcoxson signed rank sum test was used to correlate between preoperative and postoperative measurements. Implant placements were done at the desired area of sinus augmentation with a two year follow up. (Nobel Biocare, Nobel Biocare Holding AG, Zürich-Flughafen, Switzerland) Results: The augmented sites had a significant increase in the bone parameters at the desired grafted region. The mean gain in bone height as observed in CT Scan had revealed increased measurements from 5.80mm±0.98 to 10.20mm±1.68 at the sixth month evaluation. This was statistically significant (0.005). Clinically, no complications were observed during or after the surgical procedure. Conclusion: Within the limitations of this study, the Sinu lift system with a controlled working action resulted in high procedural success and this procedure may be an alternative to the currently used surgical methods. PMID:25954702

  2. The effect of obesity on postural stability during a standardized lifting task.

    PubMed

    Pajoutan, Mojdeh; Xu, Xu; Cavuoto, Lora A

    2017-03-01

    The objective of this study was to assess the effect of obesity on postural stability during a standardized lifting task. Twelve young males, six obese and six non-obese, completed three replications of repeated six lifts (at a rate of six lifts per minutes) at two levels of loads (10% and 25% of capacity) crossed with two levels of orientation (0° and 45° from sagittal plane). Postural stability measures showed that center of pressure sway path and sway area were ∼21% and ∼53% lower with obesity, respectively. Additionally, frequency band of amplitude spectrum in the medial lateral direction at 0° lifting orientation was significantly lower with obesity. The results suggest that obesity, as measured by body mass index, does not impair balance control in healthy young males when lifting load is relative to the capacity.

  3. Analysis of the Effects of Streamwise Lift Distribution on Sonic Boom Signature

    NASA Technical Reports Server (NTRS)

    Yoo, Seung Yeun (Paul)

    2010-01-01

    The streamwise lift distribution of a wing-canard-stabilator-body configuration was varied to study its effect on the near-field sonic boom signature. The investigation was carried out via solving the three-dimensional Euler equation with the OVERFLOW-2 flow solver. The computational meshes were created using the Chimera overset grid topology. The lift distribution was varied by first deflecting the canard then trimming the aircraft with the wing and the stabilator while maintaining constant lift coefficient of 0.05. A validation study using experimental results was also performed to determine required grid resolution and appropriate numerical scheme. A wide range of streamwise lift distribution was simulated. The result shows that the longitudinal wave propagation speed can be controlled through lift distribution thus controlling the shock coalescence.

  4. Influences on lifetime of wire ropes in traction lifts

    NASA Astrophysics Data System (ADS)

    Vogel, W.

    2016-05-01

    Traction lifts are complex systems with rotating and translating moving masses, springs and dampers and several system inputs from the lifts and the users. The wire ropes are essential mechanical elements. The mechanical properties of the ropes in use depend on the rope construction, the load situation, nonlinearities and the lift dimensions. The mechanical properties are important for the proper use in lifts and the ride quality. But first of all the wire ropes (for all other suspension means as well) have to satisfy the safety relevant requirements sufficient lifetime, reliable determination of discard and sufficient and limited traction capacity. The lifetime of the wire ropes better the number of trips until rope discard depends on a lot of parameters of the rope and the rope application eg use of plastic deflection sheaves and reverse bending layouts. New challenges for rope lifetime are resulting from the more or less open D/d-ratio limits possible by certificates concerning the examination of conformity by notified bodies. This paper will highlight the basics of wire rope technology, the endurance and lifetime of wire ropes running over sheaves, and the different influences from the ropes and more and more important from the lift application parameters. Very often underestimated are the influences of transport, storage, installation and maintenance. With this background we will lead over to the calculation methods of wire rope lifetime considering the actual findings of wire rope endurance research. We'll show in this paper new and innovative facts as the influence of rope length and size factor in the lifetime formular, the reduction of lifetime caused by traction grooves, the new model for the calculation in reverse bending operations and the statistically firmed possibilities for machine roomless lifts (MRL) under very small bending conditions.

  5. Serrated trailing edges for improving lift and drag characteristics of lifting surfaces

    NASA Technical Reports Server (NTRS)

    Vijgen, Paul M. H. W. (Inventor); Howard, Floyd G. (Inventor); Bushnell, Dennis M. (Inventor); Holmes, Bruce J. (Inventor)

    1992-01-01

    An improvement in the lift and drag characteristics of a lifting surface is achieved by attaching a serrated panel to the trailing edge of the lifting surface. The serrations may have a saw-tooth configuration, with a 60 degree included angle between adjacent serrations. The serrations may vary in shape and size over the span-wise length of the lifting surface, and may be positioned at fixed or adjustable deflections relative to the chord of the lifting surface.

  6. Quiet powered-lift propulsion

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Latest results of programs exploring new propulsion technology for powered-lift aircraft systems are presented. Topics discussed include results from the 'quiet clean short-haul experimental engine' program and progress reports on the 'quiet short-haul research aircraft' and 'tilt-rotor research aircraft' programs. In addition to these NASA programs, the Air Force AMST YC 14 and YC 15 programs were reviewed.

  7. Lift enhancement by bats' dynamically changing wingspan

    PubMed Central

    Wang, Shizhao; Zhang, Xing; He, Guowei; Liu, Tianshu

    2015-01-01

    This paper elucidates the aerodynamic role of the dynamically changing wingspan in bat flight. Based on direct numerical simulations of the flow over a slow-flying bat, it is found that the dynamically changing wingspan can significantly enhance the lift. Further, an analysis of flow structures and lift decomposition reveal that the elevated vortex lift associated with the leading-edge vortices intensified by the dynamically changing wingspan considerably contributed to enhancement of the time-averaged lift. The nonlinear interaction between the dynamically changing wing and the vortical structures plays an important role in the lift enhancement of a flying bat in addition to the geometrical effect of changing the lifting-surface area in a flapping cycle. In addition, the dynamically changing wingspan leads to the higher efficiency in terms of generating lift for a given amount of the mechanical energy consumed in flight. PMID:26701882

  8. Generalised Eisenhart lift of the Toda chain

    SciTech Connect

    Cariglia, Marco; Gibbons, Gary

    2014-02-15

    The Toda chain of nearest neighbour interacting particles on a line can be described both in terms of geodesic motion on a manifold with one extra dimension, the Eisenhart lift, or in terms of geodesic motion in a symmetric space with several extra dimensions. We examine the relationship between these two realisations and discover that the symmetric space is a generalised, multi-particle Eisenhart lift of the original problem that reduces to the standard Eisenhart lift. Such generalised Eisenhart lift acts as an inverse Kaluza-Klein reduction, promoting coupling constants to momenta in higher dimension. In particular, isometries of the generalised lift metric correspond to energy preserving transformations that mix coordinates and coupling constants. A by-product of the analysis is that the lift of the Toda Lax pair can be used to construct higher rank Killing tensors for both the standard and generalised lift metrics.

  9. The relationship between maximal lifting capacity and maximum acceptable lift in strength-based soldiering tasks.

    PubMed

    Savage, Robert J; Best, Stuart A; Carstairs, Greg L; Ham, Daniel J

    2012-07-01

    Psychophysical assessments, such as the maximum acceptable lift, have been used to establish worker capability and set safe load limits for manual handling tasks in occupational settings. However, in military settings, in which task demand is set and capable workers must be selected, subjective measurements are inadequate, and maximal capacity testing must be used to assess lifting capability. The aim of this study was to establish and compare the relationship between maximal lifting capacity and a self-determined tolerable lifting limit, maximum acceptable lift, across a range of military-relevant lifting tasks. Seventy male soldiers (age 23.7 ± 6.1 years) from the Australian Army performed 7 strength-based lifting tasks to determine their maximum lifting capacity and maximum acceptable lift. Comparisons were performed to identify maximum acceptable lift relative to maximum lifting capacity for each individual task. Linear regression was used to identify the relationship across all tasks when the data were pooled. Strong correlations existed between all 7 lifting tasks (rrange = 0.87-0.96, p < 0.05). No differences were found in maximum acceptable lift relative to maximum lifting capacity across all tasks (p = 0.46). When data were pooled, maximum acceptable lift was equal to 84 ± 8% of the maximum lifting capacity. This study is the first to illustrate the strong and consistent relationship between maximum lifting capacity and maximum acceptable lift for multiple single lifting tasks. The relationship developed between these indices may be used to help assess self-selected manual handling capability through occupationally relevant maximal performance tests.

  10. The role of back muscle endurance, maximum force, balance and trunk rotation control regarding lifting capacity.

    PubMed

    Schenk, Peter; Klipstein, Andreas; Spillmann, Susanne; Strøyer, Jesper; Laubli, Thomas

    2006-01-01

    Evaluation of lifting capacity is widely used as a reliable instrument in order to evaluate maximal and safe lifting capacity. This is of importance in regard to planning rehabilitation programs and determining working ability. The aim of this study was to investigate the influence of basic functions on the lifting capacity measured by the progressive isoinertial lifting evaluation (PILE) and the functional capacity evaluation (FCE) tests in a lower (floor to waist) and an upper (waist to shoulder) setting and compare the two test constructs. Seventy-four female subjects without acute low back pain underwent an examination of their lifting capacities and the following basic functions: (1) strength and endurance of trunk muscles, (2) cardiovascular endurance, (3) trunk mobility and (4) coordination ability. A linear regression model was used to predict lifting capacity by means of the above-mentioned basic functions, where the F statistics of the variables had to be significant at the 0.05 level to remain in the model. Maximal force in flexion showed significant influence on the lifting capacity in both the PILE and the FCE in the lower, as well as in the upper, lifting task. Furthermore, there was a significant influence of cardiovascular endurance on the lower PILE and also of endurance in trunk flexion on the lower FCE. Additional inclusion of individual factors (age, height, weight, body mass index) into the regression model showed a highly significant association between body height and all lifting tasks. The r (2) of the original model used was 0.19/0.18 in the lower/upper FCE and 0.35/0.26 in the lower/upper PILE. The model r (2) increased after inclusion of these individual factors to between 0.3 and 0.4. The fact that only a limited part of the variance in the lifting capacities can be explained by the basic functions analyzed in this study confirms the assumption that factors not related to the basic functions studied, such as lifting technique and motor

  11. Analysis of the Effects of Streamwise Lift Distribution on Sonic Boom Signature

    NASA Technical Reports Server (NTRS)

    Yoo, Paul

    2013-01-01

    Investigation of sonic boom has been one of the major areas of study in aeronautics due to the benefits a low-boom aircraft has in both civilian and military applications. This work conducts a numerical analysis of the effects of streamwise lift distribution on the shock coalescence characteristics. A simple wing-canard-stabilator body model is used in the numerical simulation. The streamwise lift distribution is varied by fixing the canard at a deflection angle while trimming the aircraft with the wing and the stabilator at the desired lift coefficient. The lift and the pitching moment coefficients are computed using the Missile DATCOM v. 707. The flow field around the wing-canard- stabilator body model is resolved using the OVERFLOW-2 flow solver. Overset/ chimera grid topology is used to simplify the grid generation of various configurations representing different streamwise lift distributions. The numerical simulations are performed without viscosity unless it is required for numerical stability. All configurations are simulated at Mach 1.4, angle-of-attack of 1.50, lift coefficient of 0.05, and pitching moment coefficient of approximately 0. Four streamwise lift distribution configurations were tested.

  12. On the lift induced drag in viscous flows

    NASA Astrophysics Data System (ADS)

    Tognaccini, Renato; Marongiu, Claudio; Ueno, Makoto

    2012-11-01

    As stated by Spalart (JFM, 2008): ``An ambition which will have to wait is a rigorous definition of induced drag in viscous flows.'' The idea that there is a link between the aerodynamic force and the Lamb vector, defined as the cross product of fluid vorticity and velocity dates back to Prandtl. Saffman (``Vortex Dynamics,'' 1992) and, more recently, Wu J.-Z. et al. (JFM, 2007) suggested an expression of the lift induced drag in terms of vortex force (the volume integral of the Lamb vector). In this paper we analyze the steady incompressible flow around a 3D lifting body at high Reynolds numbers. The suggested connection between vortex force and induced drag is discussed in detail. In particular, a rigorous definition of the lift induced drag in viscous flows without ambiguities is proposed. A numerical experiment: the analysis of the flow around an elliptic wing will confirm the theoretical analysis. The aerodynamic force and its lift and drag components are computed by integration of the Lamb vector field as obtained by a numerical solution and will be compared with classical expressions.

  13. New and expected developments in artificial lift

    SciTech Connect

    Lea, J.F.; Winkler, H.W.

    1994-12-31

    Artificial lift is a broad subject. This paper discusses some of the new developments in the major areas of artificial lift. These are (1) beam lift, (2) electrical submersible pumping, (3) gas lift, (4) hydraulic pumping and (5) miscellaneous topics. The beam lift discussion concerns a new rod material, downhole measurements for rod loading, unit design and some miscellaneous topics. The ESP (Electrical Submersible Pump) section includes a discussion on solids handling, downhole sensor technology, new motor temperature limitations, motor efficiency, and other topics. The gas lift discussion includes mention of coiled tubing with gas lift valves internal, a surface controlled gas lift valve concept, and gas lift valve testing and modeling. Hydraulic pumping is used in many locations with deep pay and fairly small production rates. New hydraulic developments include a wider availability of power fluid pumps other than positive displacement pumps, and small jet pumps specifically designed for de-watering gas wells. Some miscellaneous developments include an insertable PC (progressing cavity) pump and improved plunger lift algorithms and equipment.

  14. Lift enhancement by trapped vortex

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.

    1992-01-01

    The viewgraphs and discussion of lift enhancement by trapped vortex are provided. Efforts are continuously being made to find simple ways to convert wings of aircraft from an efficient cruise configuration to one that develops the high lift needed during landing and takeoff. The high-lift configurations studied here consist of conventional airfoils with a trapped vortex over the upper surface. The vortex is trapped by one or two vertical fences that serve as barriers to the oncoming stream and as reflection planes for the vortex and the sink that form a separation bubble on top of the airfoil. Since the full three-dimensional unsteady flow problem over the wing of an aircraft is so complicated that it is hard to get an understanding of the principles that govern the vortex trapping process, the analysis is restricted here to the flow field illustrated in the first slide. It is assumed that the flow field between the two end plates approximates a streamwise strip of the flow over a wing. The flow between the endplates and about the airfoil consists of a spanwise vortex located between the suction orifices in the endplates. The spanwise fence or spoiler located near the nose of the airfoil serves to form a separated flow region and a shear layer. The vorticity in the shear layer is concentrated into the vortex by withdrawal of fluid at the suction orifices. As the strength of the vortex increases with time, it eventually dominates the flow in the separated region so that a shear or vertical layer is no longer shed from the tip of the fence. At that point, the vortex strength is fixed and its location is such that all of the velocity contributions at its center sum to zero thereby making it an equilibrium point for the vortex. The results of a theoretical analysis of such an idealized flow field are described.

  15. Maximum isoinertial lifting capabilities for different lifting ranges and container dimensions.

    PubMed

    Lee, Tzu-Hsien

    2005-05-01

    The aim of this study was to examine the effects of lifting range and container dimension on human maximum isoinertial lifting capability in the sagittal plane. Ten young and experienced lifters were tested for their maximum isoinertial lifting capabilities for 12 different lifting conditions (three lifting ranges x four container dimensions). The results showed that lifting range and container dimension significantly affected human maximum isoinertial lifting capability. The order for the highest to lowest lifting capability for the three lifting ranges was FK (from floor to knuckle height, 0-74 cm), FS (from floor to shoulder height, 0-141 cm) and KS (from knuckle height to shoulder height, 74-141 cm) regardless of the container dimension, and for the four container dimensions was 50 x 35 x 15 cm(3), 70 x 35 x 15 cm(3), 50 x 50 x 15 cm(3) and 70 x 50 x 15 cm(3) regardless of the lifting range. The mean(SD) maximum isoinertial lifting capability ranged from 29.3(3.3) kg for the combination of KS range and 70 x 50 x 15 cm(3) container to 53.2(5.7)kg for the combination of FK range and 50 x 35 x 15 cm(3) container. The results of this study can help our knowledge of human maximum isoinertial lifting capability and designing the upper limit of lifting weight.

  16. Training for lifting; an unresolved ergonomic issue?

    PubMed

    Sedgwick, A W; Gormley, J T

    1998-10-01

    The paper describes a nine year project on lifting training which included nine trans-Australia consensus conferences attended by more than 900 health professionals. Major outcomes were: (1) The essence of lifting work is the need for the performer to cope with variability in task, environment, and self, and the essence of lifting skill is therefore adaptability; (2) the semi-squat approach provides the safest and most effective basis for lifting training; (3) for lifting training to be effective, the basic principles of skill learning must be systematically applied, with adaptability as a specific goal; (4) physical work capacity (aerobic power, strength, endurance, joint mobility) is a decisive ingredient of safe and effective lifting and, in addition to skill learning, should be incorporated in the training of people engaging regularly in heavy manual work; (5) if effective compliance with recommended skilled behaviour is to be achieved, then training must apply the principles and methods appropriate to adult learning and behaviour modification.

  17. Influence of Lift Offset on Rotorcraft Performance

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2009-01-01

    The influence of lift offset on the performance of several rotorcraft configurations is explored. A lift-offset rotor, or advancing blade concept, is a hingeless rotor that can attain good efficiency at high speed by operating with more lift on the advancing side than on the retreating side of the rotor disk. The calculated performance capability of modern-technology coaxial rotors utilizing a lift offset is examined, including rotor performance optimized for hover and high-speed cruise. The ideal induced power loss of coaxial rotors in hover and twin rotors in forward flight is presented. The aerodynamic modeling requirements for performance calculations are evaluated, including wake and drag models for the high-speed flight condition. The influence of configuration on the performance of rotorcraft with lift-offset rotors is explored, considering tandem and side-by-side rotorcraft as well as wing-rotor lift share.

  18. Influence of Lift Offset on Rotorcraft Performance

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2008-01-01

    The influence of lift offset on the performance of several rotorcraft configurations is explored. A lift-offset rotor, or advancing blade concept, is a hingeless rotor that can attain good efficiency at high speed, by operating with more lift on the advancing side than on the retreating side of the rotor disk. The calculated performance capability of modern-technology coaxial rotors utilizing a lift offset is examined, including rotor performance optimized for hover and high-speed cruise. The ideal induced power loss of coaxial rotors in hover and twin rotors in forward flight is presented. The aerodynamic modeling requirements for performance calculations are evaluated, including wake and drag models for the high speed flight condition. The influence of configuration on the performance of rotorcraft with lift-offset rotors is explored, considering tandem and side-by-side rotorcraft as well as wing-rotor lift share.

  19. Inducing Lift on Spherical Particles by Traveling Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin; Grugel, Richard N.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Gravity induced sedimentation of suspensions is a serious drawback to many materials and biotechnology processes, a factor that can, in principle, be overcome by utilizing an opposing Lorentz body force. In this work we demonstrate the utility of employing a traveling magnetic field (TMF) to induce a lifting force on particles dispersed in the fluid. Theoretically, a model has been developed to ascertain the net force, induced by TMF, acting on a spherical body as a function of the fluid medium's electrical conductivity and other parameters. Experimentally, the model is compared to optical observations of particle motion in the presence of TMF.

  20. The lift-fan aircraft: Lessons learned

    NASA Technical Reports Server (NTRS)

    Deckert, Wallace H.

    1995-01-01

    This report summarizes the highlights and results of a workshop held at NASA Ames Research Center in October 1992. The objective of the workshop was a thorough review of the lessons learned from past research on lift fans, and lift-fan aircraft, models, designs, and components. The scope included conceptual design studies, wind tunnel investigations, propulsion systems components, piloted simulation, flight of aircraft such as the SV-5A and SV-5B and a recent lift-fan aircraft development project. The report includes a brief summary of five technical presentations that addressed the subject The Lift-Fan Aircraft: Lessons Learned.

  1. Aerodynamic lift effect on satellite orbits

    NASA Technical Reports Server (NTRS)

    Karr, G. R.; Cleland, J. G.; Devries, L. L.

    1975-01-01

    Numerical quadrature is employed to obtain orbit perturbation results from the general perturbation equations. Both aerodynamic lift and drag forces are included in the analysis of the satellite orbit. An exponential atmosphere with and without atmospheric rotation is used. A comparison is made of the perturbations which are caused by atmospheric rotation with those caused by satellite aerodynamic effects. Results indicate that aerodynamic lift effects on the semi-major axis and orbit inclination can be of the same order as the effects of atmosphere rotation depending upon the orientation of the lift vector. The results reveal the importance of including aerodynamic lift effects in orbit perturbation analysis.

  2. Fuel Cell Powered Lift Truck

    SciTech Connect

    Moulden, Steve

    2015-08-20

    This project, entitled “Recovery Act: Fuel Cell-Powered Lift Truck Sysco (Houston) Fleet Deployment”, was in response to DOE funding opportunity announcement DE-PS36-08GO98009, Topic 7B, which promotes the deployment of fuel cell powered material handling equipment in large, multi-shift distribution centers. This project promoted large-volume commercialdeployments and helped to create a market pull for material handling equipment (MHE) powered fuel cell systems. Specific outcomes and benefits involved the proliferation of fuel cell systems in 5-to 20-kW lift trucks at a high-profile, real-world site that demonstrated the benefits of fuel cell technology and served as a focal point for other nascent customers. The project allowed for the creation of expertise in providing service and support for MHE fuel cell powered systems, growth of existing product manufacturing expertise, and promoted existing fuel cell system and component companies. The project also stimulated other MHE fleet conversions helping to speed the adoption of fuel cell systems and hydrogen fueling technology. This document also contains the lessons learned during the project in order to communicate the successes and difficulties experienced, which could potentially assist others planning similar projects.

  3. Computation of viscous transonic flow about a lifting airfoil

    NASA Technical Reports Server (NTRS)

    Walitt, L.; Liu, C. Y.

    1976-01-01

    The viscous transonic flow about a stationary body in free air was numerically investigated. The geometry chosen was a symmetric NACA 64A010 airfoil at a freestream Mach number of 0.8, a Reynolds number of 4 million based on chord, and angles of attack of 0 and 2 degrees. These conditions were such that, at 2 degrees incidence unsteady periodic motion was calculated along the aft portion of the airfoil and in its wake. Although no unsteady measurements were made for the NACA 64A010 airfoil at these flow conditions, interpolated steady measurements of lift, drag, and surface static pressures compared favorably with corresponding computed time-averaged lift, drag, and surface static pressures.

  4. 33 CFR 118.85 - Lights on vertical lift bridges.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Lights on vertical lift bridges... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.85 Lights on vertical lift bridges. (a) Lift span lights. The vertical lift span of every vertical lift bridge shall be lighted so that the center of...

  5. 33 CFR 118.85 - Lights on vertical lift bridges.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.85 Lights on vertical lift bridges. (a) Lift span lights. The vertical lift span of every vertical lift bridge shall be lighted so that the center of the navigable channel under the span will be marked by a range of two green lights when the vertical lift...

  6. Soccer Ball Lift Coefficients via Trajectory Analysis

    ERIC Educational Resources Information Center

    Goff, John Eric; Carre, Matt J.

    2010-01-01

    We performed experiments in which a soccer ball was launched from a machine while two high-speed cameras recorded portions of the trajectory. Using the trajectory data and published drag coefficients, we extracted lift coefficients for a soccer ball. We determined lift coefficients for a wide range of spin parameters, including several spin…

  7. 49 CFR 37.203 - Lift maintenance.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Lift maintenance. 37.203 Section 37.203 Transportation Office of the Secretary of Transportation TRANSPORTATION SERVICES FOR INDIVIDUALS WITH DISABILITIES (ADA) Over-the-Road Buses (OTRBs) § 37.203 Lift maintenance. (a) The entity shall establish...

  8. 49 CFR 37.203 - Lift maintenance.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 1 2012-10-01 2012-10-01 false Lift maintenance. 37.203 Section 37.203 Transportation Office of the Secretary of Transportation TRANSPORTATION SERVICES FOR INDIVIDUALS WITH DISABILITIES (ADA) Over-the-Road Buses (OTRBs) § 37.203 Lift maintenance. (a) The entity shall establish...

  9. 49 CFR 37.203 - Lift maintenance.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 1 2014-10-01 2014-10-01 false Lift maintenance. 37.203 Section 37.203 Transportation Office of the Secretary of Transportation TRANSPORTATION SERVICES FOR INDIVIDUALS WITH DISABILITIES (ADA) Over-the-Road Buses (OTRBs) § 37.203 Lift maintenance. (a) The entity shall establish...

  10. 49 CFR 37.203 - Lift maintenance.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 1 2013-10-01 2013-10-01 false Lift maintenance. 37.203 Section 37.203 Transportation Office of the Secretary of Transportation TRANSPORTATION SERVICES FOR INDIVIDUALS WITH DISABILITIES (ADA) Over-the-Road Buses (OTRBs) § 37.203 Lift maintenance. (a) The entity shall establish...

  11. 49 CFR 37.203 - Lift maintenance.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 1 2011-10-01 2011-10-01 false Lift maintenance. 37.203 Section 37.203 Transportation Office of the Secretary of Transportation TRANSPORTATION SERVICES FOR INDIVIDUALS WITH DISABILITIES (ADA) Over-the-Road Buses (OTRBs) § 37.203 Lift maintenance. (a) The entity shall establish...

  12. Training Guidelines: Fork Lift Truck Driving.

    ERIC Educational Resources Information Center

    Ceramics, Glass, and Mineral Products Industry Training Board, Harrow (England).

    This manual of operative training guidelines for fork lift truck driving has been developed by the Ceramics, Glass and Mineral Products Industry Training Board (Great Britain) in consultation with a number of firms which manufacture fork lift trucks or which already have training--programs for their use. The purpose of the guidelines is to assist…

  13. Measuring lifting forces in rock climbing: effect of hold size and fingertip structure.

    PubMed

    Bourne, Roger; Halaki, Mark; Vanwanseele, Benedicte; Clarke, Jillian

    2011-02-01

    This study investigates the hypothesis that shallow edge lifting force in high-level rock climbers is more strongly related to fingertip soft tissue anatomy than to absolute strength or strength to body mass ratio. Fifteen experienced climbers performed repeated maximal single hand lifting exercises on rectangular sandstone edges of depth 2.8, 4.3, 5.8, 7.3, and 12.5 mm while standing on a force measurement platform. Fingertip soft tissue dimensions were assessed by ultrasound imaging. Shallow edge (2.8 and 4.3 mm) lifting force, in newtons or body mass normalized, was uncorrelated with deep edge (12.5 mm) lifting force (r < .1). There was a positive correlation (r = .65, p < .05) between lifting force in newtons at 2.8 mm edge depth and tip of bone to tip of finger pulp measurement (r < .37 at other edge depths). The results confirm the common perception that maximum lifting force on a deep edge ("strength") does not predict maximum force production on very shallow edges. It is suggested that increased fingertip pulp dimension or plasticity may enable increased deformation of the fingertip, increasing the skin to rock contact area on very shallow edges, and thus increase the limit of force production. The study also confirmed previous assumptions of left/right force symmetry in climbers.

  14. What's new in artificial lift

    SciTech Connect

    Lea, J.F.; Winker, H.W.

    1989-05-01

    New developments might be expected to decline as oil, and thus equipment and service, prices decrease. However, there is no indication that this is occurring. In fact, several new and innovative developments are covered in this article. Of the more unique are a new geometry pumping unit and a hydraulic powered sucker and rod system. Other items described in this article include: New pump-off controller; Automatic balancing for air balanced pumping units; New rod couplings; New pump plunger; Sucker rod pulsation dampener; Stripper type BOP; Rod coupling tool; ESP cable protectors; New ESP motor; VSD communications interface; ESP gas separator; Portable hydraulic production test unit; Casing gas lift plunger; Production shut-of valve; Ceramic material for pump parts; Pressure transmitter; and New versatile packer.

  15. Lip Lifting: Unveiling Dental Beauty.

    PubMed

    Stanley, Kyle; Caligiuri, Matthew; Schlichting, Luís Henrique; Bazos, Panaghiotis K; Magne, Michel

    2017-01-01

    The focus for the achievement of complete success in the esthetic zone has traditionally been on addressing deficiencies of intraoral hard and soft tissue. Often, these deficiencies are accompanied by esthetic concerns regarding the lips that are routinely neglected by the dental team. A predictable plastic surgery technique - the lip lift - has been used for decades to enhance lip esthetics by shortening the senile upper lip to achieve a more youthful appearance. Over the years, this technique has been refined and used in many different ways, allowing its routine incorporation into full facial esthetic planning. Through restoration of the upper lip to its optimal position, the artistry of the dentist and dental technician can truly be appreciated in the rejuvenated smile. By the introduction of this minimally invasive surgical technique to the dental community, patients stand to benefit from a comprehensive orofacial approach to anterior dental esthetic planning.

  16. Heavy-lift airship dynamics

    NASA Technical Reports Server (NTRS)

    Tischler, M. B.; Ringland, R. F.; Jex, H. R.

    1983-01-01

    The basic aerodynamic and dynamic properties of an example heavy-lift airship (HLA) configuration are analyzed using a nonlinear, multibody, 6-degrees-of-freedom digital simulation. The slung-payload model is described, and a preliminary analysis of the coupled vehicle-payload dynamics is presented. Trim calculations show the importance of control mixing selection and suggest performance deficiencies in crosswind stationkeeping for the unloaded example HLA. Numerically linearized dynamics of the unloaded vehicle exhibit a divergent yaw mode and an oscillatory pitch mode whose stability characteristic is sensitive to flight speed. An analysis of the vehicle-payload dynamics shows significant coupling of the payload dynamics with those of the basic HLA. It is shown that significant improvement in the vehicle's dynamic behavior can be achieved with the incorporation of a simple flight controller having proportional, rate, and integral-error feedbacks.

  17. View of West end of central lift span truss web ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of West end of central lift span truss web of Tensaw River Bridge, showing web brace of lift girder superstructure, looking west - Tensaw River Lift Bridge, Spanning Tensaw River at U.S. Highway 90, Mobile, Mobile County, AL

  18. Formal optimization of hovering performance using free wake lifting surface theory

    NASA Technical Reports Server (NTRS)

    Chung, S. Y.

    1986-01-01

    Free wake techniques for performance prediction and optimization of hovering rotor are discussed. The influence functions due to vortex ring, vortex cylinder, and source or vortex sheets are presented. The vortex core sizes of rotor wake vortices are calculated and their importance is discussed. Lifting body theory for finite thickness body is developed for pressure calculation, and hence performance prediction of hovering rotors. Numerical optimization technique based on free wake lifting line theory is presented and discussed. It is demonstrated that formal optimization can be used with the implicit and nonlinear objective or cost function such as the performance of hovering rotors as used in this report.

  19. THE IMPORTANCE OF NEGATIVE ACCELERATION OF THE LOAD IN FREE-STYLE LIFTING.

    PubMed

    Trafimow, Jordan; Xaygnaraj, Joseph; Trafimow, David; Aruin, Alexander S

    2015-08-01

    Lifters may use negative acceleration in lifting a very light load. Body kinematic data were recorded in 10 participants lifting a 114 g box. Vertical position and acceleration of the center of mass and angle of the thigh to a vertical line were calculated. Acceleration data between the positions of the body when the thighs were horizontal and as the knees extended to an angle of 45° indicated that negative acceleration was present at 68.9% of time points, more than predicted by chance.

  20. An experimental study of the lift, drag and static longitudinal stability for a three lifting surface configuration

    NASA Technical Reports Server (NTRS)

    Ostowari, C.; Naik, D.

    1986-01-01

    The experimental procedure and aerodynamic force and moment measurements for wind tunnel testing of the three lifting surface configuration (TLC) are described. The influence of nonelliptical lift distributions on lift, drag, and static longitudinal stability are examined; graphs of the lift coefficient versus angle of attack, the pitching moment coefficient, drag coefficient, and lift to drag ratio versus lift coefficient are provided. The TLC data are compared with the conventional tail-aft configuration and the canard-wing configuration; it is concluded that the TLC has better lift and high-lift drag characteristics, lift to drag ratio, and zero-lift moments than the other two configurations. The effects of variations in forward and tail wind incidence angles, gap, stagger, and forward wind span on the drag, lift, longitudinal stability, and zero-lift moments of the configuration are studied.

  1. Advanced wind turbine with lift cancelling aileron for shutdown

    DOEpatents

    Coleman, Clint; Juengst, Theresa M.; Zuteck, Michael D.

    1996-06-18

    An advanced aileron configuration for wind turbine rotors featuring an independent, lift generating aileron connected to the rotor blade. The aileron has an airfoil profile which is inverted relative to the airfoil profile of the main section of the rotor blade. The inverted airfoil profile of the aileron allows the aileron to be used for strong positive control of the rotation of the rotor while deflected to angles within a control range of angles. The aileron functions as a separate, lift generating body when deflected to angles within a shutdown range of angles, generating lift with a component acting in the direction opposite the direction of rotation of the rotor. Thus, the aileron can be used to shut down rotation of the rotor. The profile of the aileron further allows the center of rotation to be located within the envelope of the aileron, at or near the centers of pressure and mass of the aileron. The location of the center of rotation optimizes aerodynamically and gyroscopically induced hinge moments and provides a fail safe configuration.

  2. Modeling lift operations with SASmacr Simulation Studio

    NASA Astrophysics Data System (ADS)

    Kar, Leow Soo

    2016-10-01

    Lifts or elevators are an essential part of multistorey buildings which provide vertical transportation for its occupants. In large and high-rise apartment buildings, its occupants are permanent, while in buildings, like hospitals or office blocks, the occupants are temporary or users of the buildings. They come in to work or to visit, and thus, the population of such buildings are much higher than those in residential apartments. It is common these days that large office blocks or hospitals have at least 8 to 10 lifts serving its population. In order to optimize the level of service performance, different transportation schemes are devised to control the lift operations. For example, one lift may be assigned to solely service the even floors and another solely for the odd floors, etc. In this paper, a basic lift system is modelled using SAS Simulation Studio to study the effect of factors such as the number of floors, capacity of the lift car, arrival rate and exit rate of passengers at each floor, peak and off peak periods on the system performance. The simulation is applied to a real lift operation in Sunway College's North Building to validate the model.

  3. Secondary lift for magnetically levitated vehicles

    DOEpatents

    Cooper, Richard K.

    1976-01-01

    A high-speed terrestrial vehicle that is magnetically levitated by means of magnets which are used to induce eddy currents in a continuous electrically conductive nonferromagnetic track to produce magnetic images that repel the inducing magnet to provide primary lift for the vehicle. The magnets are arranged so that adjacent ones have their fields in opposite directions and the magnets are spaced apart a distance that provides a secondary lift between each magnet and the adjacent magnet's image, the secondary lift being maximized by optimal spacing of the magnets.

  4. Lift and thrust generation by a butterfly-like 3D flapping wing model

    NASA Astrophysics Data System (ADS)

    Suzuki, Kosuke; Inamuro, Takaji

    2013-11-01

    The flapping flight of tiny insects such as a butterfly is of fundamental interest not only in biology itself but also in its practical use for the development of micro air vehicles. It is known that a butterfly flaps downward for generating lift force and backward for generating thrust force. In this study, we consider a simple butterfly-like 3D flapping wing model whose body is a thin rod, wings are rigid and rectangular, and wing motion is simplified. We investigate the lift and thrust generation by the butterfly-like flapping wing model by using the immersed boundary-lattice Boltzmann method. Firstly, we compute the lift and thrust forces when the body of the model is fixed for Reynolds numbers in the range of 50 - 1000. In addition, we evaluate the supportable mass for each Reynolds number by using the computed lift force. Secondly, we simulate the free flight where the body can move translationally but cannot rotate. As results, we find that the evaluated supportable mass can be supported even in the free flight, and the wing model with the mass and the Reynolds number of a fruit fly can go upward against the gravity. Finally, we simulate the effect of the rotation of the body. As results, we find that the body has a large pitching motion and consequently gets off-balance.

  5. Motor-Evoked Potentials in the Lower Back Are Modulated by Visual Perception of Lifted Weight

    PubMed Central

    Behrendt, Frank; de Lussanet, Marc H. E.; Zentgraf, Karen; Zschorlich, Volker R.

    2016-01-01

    Facilitation of the primary motor cortex (M1) during the mere observation of an action is highly congruent with the observed action itself. This congruency comprises several features of the executed action such as somatotopy and temporal coding. Studies using reach-grasp-lift paradigms showed that the muscle-specific facilitation of the observer’s motor system reflects the degree of grip force exerted in an observed hand action. The weight judgment of a lifted object during action observation is an easy task which is the case for hand actions as well as for lifting boxes from the ground. Here we investigated whether the cortical representation in M1 for lumbar back muscles is modulated due to the observation of a whole-body lifting movement as it was shown for hand action. We used transcranial magnetic stimulation (TMS) to measure the corticospinal excitability of the m. erector spinae (ES) while subjects visually observed the recorded sequences of a person lifting boxes of different weights from the floor. Consistent with the results regarding hand action the present study reveals a differential modulation of corticospinal excitability despite the relatively small M1 representation of the back also for lifting actions that mainly involve the lower back musculature. PMID:27336751

  6. Does the personal lift-assist device affect the local dynamic stability of the spine during lifting?

    PubMed

    Graham, Ryan B; Sadler, Erin M; Stevenson, Joan M

    2011-02-03

    The personal lift-assist device (PLAD) is an on-body ergonomic aid that reduces low back physical demands through the restorative moment of an external spring element, which possesses a mechanical advantage over the erector spinae. Although the PLAD has proven effective at reducing low back muscular demand, spinal moments, and localized muscular fatigue during laboratory and industrial tasks, the effects of the device on the neuromuscular control of spinal stability during lifting have yet to be assessed. Thirty healthy subjects (15M, 15F) performed repetitive lifting for three minutes, at a rate of 10 lifts per minute, with and without the PLAD. Maximum finite-time Lyapunov exponents, representing short-term (λ(max-s)) and long-term (λ(max-l)) divergence were calculated from the measured trunk kinematics to estimate the local dynamic stability of the lumbar spine. Using a mixed-design repeated-measures ANOVA, it was determined that wearing the PLAD did not significantly change λ(max-s) (μ(NP)=0.335, μ(P)=0.321, p=0.225), but did significantly reduce λ(max-l) (μ(NP)=0.0024, μ(P)=-0.0011, p=0.014, η(2)=0.197). There were no between-subject effects of sex, or significant interactions (p>0.720). The present results indicated that λ(max-s) was not statistically different between the device conditions, but that the PLAD significantly reduced λ(max-l) to a negative (stable) value. This shows that subjects' neuromuscular systems were able to respond to local perturbations more effectively when wearing the device, reflecting a more stable control of spinal movements. These findings are important when recommending the PLAD for long-term industrial or clinical use.

  7. Experimental determination of baseball spin and lift.

    PubMed

    Alaways, L W; Hubbard, M

    2001-05-01

    The aim of this study was to develop a new method for the determination of lift on spinning baseballs. Inertial trajectories of (a) ball surface markers during the first metre of flight and (b) the centre of mass trajectory near home-plate were measured in a pitch using high-speed video. A theoretical model was developed, incorporating aerodynamic Magnus-Robins lift, drag and cross forces, which predicts the centre of mass and marker trajectories. Parameters including initial conditions and aerodynamic coefficients were estimated iteratively by minimizing the error between predicted and measured trajectories. We compare the resulting lift coefficients and spin parameter values with those of previous studies. Lift on four-seam pitches can be as much as three times that of two-seam pitches, although this disparity is reduced for spin parameters greater than 0.4.

  8. Heavy Lift & Propulsion Technology (HL&PT)

    NASA Video Gallery

    Cris Guidi delivers a presentation from the Heavy Lift & Propulsion Technology (HL&PT) study team on May 25, 2010, at the NASA Exploration Enterprise Workshop held in Galveston, TX. The purpose of ...

  9. Evaluation of the age-related changes in movement smoothness in the lower extremity joints during lifting.

    PubMed

    Sakata, Kiyoshi; Kogure, Akira; Hosoda, Masataka; Isozaki, Koji; Masuda, Tadashi; Morita, Sadao

    2010-01-01

    The purpose of this study was to analyze age-related movement smoothness changes in the lower extremity joints during load lifting. A total of 10 young and 13 elderly subjects participated in the study. Infrared reflective markers were attached to body landmarks in each subject. While the subjects stood on force plates and lifted a box, the marker displacements and ground reaction forces were measured using a 3D motion analysis system. The jerk square mean value (JSM) was defined as the lower extremity joint movement smoothness index during lifting. JSM represented the average of the square of the joint angle third derivative value, according to the jerk third derivative of the position data. Each subject's JSM values were calculated for the hip, knee and ankle joints. Movement smoothness appeared to decrease as JSM increased. Multiple regression analyses were performed for dependent variables (hip, knee and ankle joint JSM values) and independent variables (age, hand grip strength, sex difference and lifting duration). The level of significance was set at p<0.05. For the hip joint JSM, the regression coefficient for age was significantly positive and that for lifting duration was significantly negative. For the knee joint JSM, the regression coefficient for lifting duration was significantly negative. For the ankle joint JSM, the regression coefficients for age and hand grip strength were significantly positive and that for lifting duration was significantly negative. These results suggest that movement smoothness in the hip and ankle joints during lifting decreases with advancing age.

  10. Integrated lift/drag controller for aircraft

    NASA Technical Reports Server (NTRS)

    Olcott, J. W.; Seckel, E.; Ellis, D. R. (Inventor)

    1974-01-01

    A system for altering the lift/drag characteristics of powered aircraft to provide a safe means of glide path control includes a control device integrated for coordination action with the aircraft throttle. Such lift/drag alteration devices as spoilers, dive brakes, and the like are actuated by manual operation of a single lever coupled with the throttle for integrating, blending or coordinating power control. Improper operation of the controller is inhibited by safety mechanisms.

  11. Liftings and stresses for planar periodic frameworks

    PubMed Central

    Borcea, Ciprian; Streinu, Ileana

    2015-01-01

    We formulate and prove a periodic analog of Maxwell’s theorem relating stressed planar frameworks and their liftings to polyhedral surfaces with spherical topology. We use our lifting theorem to prove deformation and rigidity-theoretic properties for planar periodic pseudo-triangulations, generalizing features known for their finite counterparts. These properties are then applied to questions originating in mathematical crystallography and materials science, concerning planar periodic auxetic structures and ultrarigid periodic frameworks. PMID:26973370

  12. Liftings and stresses for planar periodic frameworks.

    PubMed

    Borcea, Ciprian; Streinu, Ileana

    2015-06-01

    We formulate and prove a periodic analog of Maxwell's theorem relating stressed planar frameworks and their liftings to polyhedral surfaces with spherical topology. We use our lifting theorem to prove deformation and rigidity-theoretic properties for planar periodic pseudo-triangulations, generalizing features known for their finite counterparts. These properties are then applied to questions originating in mathematical crystallography and materials science, concerning planar periodic auxetic structures and ultrarigid periodic frameworks.

  13. The effect of asymmetry on psychophysical lifting capacity for three lifting types.

    PubMed

    Han, B; Stobbe, T J; Hobbs, G R

    2005-03-15

    The effect of asymmetry on a person's lifting capacity was investigated using the psychophysical approach. Ten male college students lifted a box from pallet height (15 cm) to conveyor height (75 cm) at a frequency of one and five lifts/min. Three types of asymmetric lifting tasks (step-turn, middle twist and twist) were studied using 90 and 180 degrees task angles. Lifting capacity reductions for middle twist and twist at a 90 degrees asymmetric angle were about one-half of the 30% reduction that would be calculated by the 1991 National Institute for Occupational Safety & Health (NIOSH) lifting equation. The lifting capacity reduction for step-turn at 180 degrees was 14.9%, although that reduction cannot be calculated in the NIOSH equation. The middle twist lifting capacity was greatest among the three types at a 90 degrees task angle. The reductions for the middle twist and step-turn were not proportional to the task angle. This is contrary to the proportional reduction in the NIOSH lifting equation. Heart rate did not increase with an increase in task angle. Based on the results of this research, a different approach to assigning the asymmetric multiplier is proposed. This approach includes a task angle (as opposed to asymmetric angle) of up to 180 degrees.

  14. Novice Lifters Exhibit A More Kyphotic Lifting Posture Than Experienced Lifters In Straight-Leg Lifting

    PubMed Central

    Riley, A.E.; Craig, T.D.; Sharma, N.K.; Billinger, S.A.; Wilson, S.E.

    2015-01-01

    As torso flexion and repetitive lifting are known risk factors for low back pain and injury, it is important to investigate lifting techniques that might reduce injury during repetitive lifting. By normalizing lumbar posture to a subject’s range of motion (ROM), as a function of torso flexion, this research examined when subjects approached their range of motion limits during dynamic lifting tasks. For this study, it was hypothesized that experienced lifters would maintain a more neutral lumbar angle relative to their range of motion, while novice lifters would approach the limits of their lumbar ROM during the extension phase of a straight-leg lift. The results show a statistically significant difference in lifting patterns for these two groups supporting this hypothesis. The novice group maintained a much more kyphotic lumbar angle for both the flexion (74% of the lumbar angle ROM) and extension phases (86% of the lumbar angle ROM) of the lifting cycle, while the experienced group retained a more neutral curvature throughout the entire lifting cycle (37% of lumbar angle ROM in flexion and 48% of lumbar angle ROM in extension). By approaching the limits of their range of motion, the novice lifters could be at greater risk of injury by placing greater loads on the supporting soft tissues of the spine. Future research should examine whether training subjects to assume more neutral postures during lifting could indeed lower injury risks. PMID:26077846

  15. 49 CFR 178.812 - Top lift test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... (b) Special preparation for the top lift test. (1) Metal, rigid plastic, and composite IBC design... 49 Transportation 2 2010-10-01 2010-10-01 false Top lift test. 178.812 Section 178.812... Testing of IBCs § 178.812 Top lift test. (a) General. The top lift test must be conducted for...

  16. 49 CFR 178.975 - Top lift test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Large Packagings, from the side. (b) Special preparation for the top lift test. (1) Metal and rigid... 49 Transportation 2 2010-10-01 2010-10-01 false Top lift test. 178.975 Section 178.975... Testing of Large Packagings § 178.975 Top lift test. (a) General. The top lift test must be conducted...

  17. 49 CFR 178.812 - Top lift test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Top lift test. 178.812 Section 178.812... Top lift test. (a) General. The top lift test must be conducted for the qualification of all IBC design types designed to be lifted from the top or, for flexible IBCs, from the side. (b)...

  18. 49 CFR 178.975 - Top lift test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Top lift test. 178.975 Section 178.975... Packagings § 178.975 Top lift test. (a) General. The top lift test must be conducted for the qualification of all of Large Packagings design types to be lifted from the top or, for flexible Large Packagings,...

  19. 49 CFR 178.812 - Top lift test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... preparation for the top lift test. (1) Metal, rigid plastic, and composite IBC design types must be loaded to... 49 Transportation 3 2013-10-01 2013-10-01 false Top lift test. 178.812 Section 178.812... Top lift test. (a) General. The top lift test must be conducted for the qualification of all...

  20. 49 CFR 178.811 - Bottom lift test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Bottom lift test. (a) General. The bottom lift test must be conducted for the qualification of all IBC.... (c) Test method. All IBC design types must be raised and lowered twice by a lift truck with the forks... 49 Transportation 3 2011-10-01 2011-10-01 false Bottom lift test. 178.811 Section...

  1. 49 CFR 178.975 - Top lift test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Packagings § 178.975 Top lift test. (a) General. The top lift test must be conducted for the qualification of... distributed. (c) Test method. (1) A Large Packaging must be lifted in the manner for which it is designed... 49 Transportation 3 2013-10-01 2013-10-01 false Top lift test. 178.975 Section...

  2. 49 CFR 178.811 - Bottom lift test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... evenly distributed. (c) Test method. All IBC design types must be raised and lowered twice by a lift... 49 Transportation 2 2010-10-01 2010-10-01 false Bottom lift test. 178.811 Section 178.811... Testing of IBCs § 178.811 Bottom lift test. (a) General. The bottom lift test must be conducted for...

  3. 49 CFR 178.811 - Bottom lift test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Bottom lift test. (a) General. The bottom lift test must be conducted for the qualification of all IBC.... (c) Test method. All IBC design types must be raised and lowered twice by a lift truck with the forks... 49 Transportation 3 2013-10-01 2013-10-01 false Bottom lift test. 178.811 Section...

  4. The Selection of a Van Lift or a Scooter.

    ERIC Educational Resources Information Center

    Stevens, John H.

    1990-01-01

    This newsletter issue describes 3-wheeled scooters and van lifts that can assist a person with a disability to drive independently or have access to transportation. The section on van lifts compares hydraulic lifts and electric lifts, lists manufacturers, and offers an "assessment quiz" outlining factors to consider in selecting a van…

  5. Wind Tunnel Testing of Powered Lift, All-Wing STOL Model

    NASA Technical Reports Server (NTRS)

    Collins, Scott W.; Westra, Bryan W.; Lin, John C.; Jones, Gregory S.; Zeune, Cal H.

    2008-01-01

    Short take-off and landing (STOL) systems can offer significant capabilities to warfighters and, for civil operators thriving on maximizing efficiencies they can improve airspace use while containing noise within airport environments. In order to provide data for next generation systems, a wind tunnel test of an all-wing cruise efficient, short take-off and landing (CE STOL) configuration was conducted in the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) 14- by 22-foot Subsonic Wind Tunnel. The test s purpose was to mature the aerodynamic aspects of an integrated powered lift system within an advanced mobility configuration capable of CE STOL. The full-span model made use of steady flap blowing and a lifting centerbody to achieve high lift coefficients. The test occurred during April through June of 2007 and included objectives for advancing the state-of-the-art of powered lift testing through gathering force and moment data, on-body pressure data, and off-body flow field measurements during automatically controlled blowing conditions. Data were obtained for variations in model configuration, angles of attack and sideslip, blowing coefficient, and height above ground. The database produced by this effort is being used to advance design techniques and computational tools for developing systems with integrated powered lift technologies.

  6. Three-dimensional flow and lift characteristics of a hovering ruby-throated hummingbird.

    PubMed

    Song, Jialei; Luo, Haoxiang; Hedrick, Tyson L

    2014-09-06

    A three-dimensional computational fluid dynamics simulation is performed for a ruby-throated hummingbird (Archilochus colubris) in hovering flight. Realistic wing kinematics are adopted in the numerical model by reconstructing the wing motion from high-speed imaging data of the bird. Lift history and the three-dimensional flow pattern around the wing in full stroke cycles are captured in the simulation. Significant asymmetry is observed for lift production within a stroke cycle. In particular, the downstroke generates about 2.5 times as much vertical force as the upstroke, a result that confirms the estimate based on the measurement of the circulation in a previous experimental study. Associated with lift production is the similar power imbalance between the two half strokes. Further analysis shows that in addition to the angle of attack, wing velocity and surface area, drag-based force and wing-wake interaction also contribute significantly to the lift asymmetry. Though the wing-wake interaction could be beneficial for lift enhancement, the isolated stroke simulation shows that this benefit is buried by other opposing effects, e.g. presence of downwash. The leading-edge vortex is stable during the downstroke but may shed during the upstroke. Finally, the full-body simulation result shows that the effects of wing-wing interaction and wing-body interaction are small.

  7. Lifting teams in health care facilities: a literature review.

    PubMed

    Haiduven, Donna

    2003-05-01

    1. Manual lifting and transfer activities are job tasks frequently associated with back injuries in nursing personnel. One approach with potential to decrease these injuries is the lifting team. 2. In program evaluations completed to date, there have been numerous benefits and several limitations attributed to use of lifting teams in health care facilities. 3. Benefits of lifting teams include reductions in lost time workdays, restricted workdays, workers' compensation claims, and injuries to lifting team members; satisfaction of patients, staff, and lifting team members; and capacity of the lifting team to absorb the majority of high risk lifts and transfers on shifts in which they operate. 4. Lifting teams may not be appropriate for all settings, require infrastructure and lifting team equipment to support their use, and require careful consideration related to staffing. However, when their use is appropriate, efforts to overcome their limitations can be accomplished with careful evaluation of outcome measures and indicators.

  8. Modification of the Douglas Neumann program to improve the efficiency of predicting component interference and high lift characteristics

    NASA Technical Reports Server (NTRS)

    Bristow, D. R.; Grose, G. G.

    1978-01-01

    The Douglas Neumann method for low-speed potential flow on arbitrary three-dimensional lifting bodies was modified by substituting the combined source and doublet surface paneling based on Green's identity for the original source panels. Numerical studies show improved accuracy and stability for thin lifting surfaces, permitting reduced panel number for high-lift devices and supercritical airfoil sections. The accuracy of flow in concave corners is improved. A method of airfoil section design for a given pressure distribution, based on Green's identity, was demonstrated. The program uses panels on the body surface with constant source strength and parabolic distribution of doublet strength, and a doublet sheet on the wake. The program is written for the CDC CYBER 175 computer. Results of calculations are presented for isolated bodies, wings, wing-body combinations, and internal flow.

  9. Chirality-specific lift forces of helix under shear flows: Helix perpendicular to shear plane.

    PubMed

    Zhang, Qi-Yi

    2017-02-01

    Chiral objects in shear flow experience a chirality-specific lift force. Shear flows past helices in a low Reynolds number regime were studied using slender-body theory. The chirality-specific lift forces in the vorticity direction experienced by helices are dominated by a set of helix geometry parameters: helix radius, pitch length, number of turns, and helix phase angle. Its analytical formula is given. The chirality-specific forces are the physical reasons for the chiral separation of helices in shear flow. Our results are well supported by the latest experimental observations.

  10. Lift mechanics of downhill skiing and snowboarding

    NASA Astrophysics Data System (ADS)

    Wu, Qianhong; Igci, Yesim; Andreopoulos, Yiannis

    2005-11-01

    A simplified mathematical model is derived to describe the lift mechanics of downhill skiing and snowboarding, where the lift contributions due to both the transiently trapped air and the compressed snow crystals are determined for the first time. Using Shimizu's empirical relation to predict the local variation in snow permeability, we employ force and moment analysis to predict the angle of attack of the planing surface, the penetration depth at the leading edge and the shift in the center of pressure for two typical snow types, fresh and wind-packed snow. We present numerical solutions for snowboarding and asymptotic analytic solutions for skiing for the case where there are no edging or turning maneuvers, which shows that approximately 50% of the total lift force is generated by the trapped air in the case of wind-packed snow for snowboarding and 40% for skiing. For highly permeable fresh powder snow the lift contribution from the pore air pressure drops to < 20%. This new theory is an extension of the series of studies on lift generation in highly compressible porous media.

  11. Design of a portable powered seat lift

    NASA Technical Reports Server (NTRS)

    Weddendorf, Bruce

    1993-01-01

    People suffering from degenerative hip or knee joints find sitting and rising from a seated position very difficult. These people can rely on large stationary chairs at home, but must ask others for assistance when rising from any other chair. An orthopedic surgeon identified to the MSFC Technology Utilization Office the need for development of a portable device that could perform a similar function to the stationary lift chairs. The MSFC Structural Development Branch answered the Technology Utilization Office's request for design of a portable powered seat lift. The device is a seat cushion that opens under power, lifting the user to near-standing positions. The largest challenge was developing a mechanism to provide a stable lift over the large range of motion needed, and fold flat enough to be comfortable to sit on. CAD 3-D modeling was used to generate complete drawings for the prototype, and a full-scale working model of the Seat lift was made based on the drawings. The working model is of low strength, but proves the function of the mechanism and the concept.

  12. Lifting device for nuclear power plants

    SciTech Connect

    Krieger, F.

    1984-07-17

    A lifting device for lifting and transporting nuclear fuel elements. This device comprises a mast-like support on the lower end of which automatically operated and locked gripping pawls are provided. The support has a considerable height and may be referred to as lifting mast. The gripping pawls and their operating mechanism are referred to as gripping-head. The gripping-head and the lifting mast are telescopically movable relative to each other. To this end guide rods and compression springs are interposed between the lower end of the lifting mast and the gripping-head. The gripping-head comprises two concentric annular members which are relatively movable or rotatable about their common geometrical axis. One of the annular members supports the gripping pawls are T-shaped. One of their transverse ends is adapted to engage the fuel rods, and the other of their transverse ends is adapted to engage curved grooves in the other annular member. The rotary motion of one annular member relative to the other gripping pawls. In their limit positions the two annular members are blocked by a safety lever engaging slits or slots.

  13. Noise impact of advanced high lift systems

    NASA Technical Reports Server (NTRS)

    Elmer, Kevin R.; Joshi, Mahendra C.

    1995-01-01

    The impact of advanced high lift systems on aircraft size, performance, direct operating cost and noise were evaluated for short-to-medium and medium-to-long range aircraft with high bypass ratio and very high bypass ratio engines. The benefit of advanced high lift systems in reducing noise was found to be less than 1 effective-perceived-noise decibel level (EPNdB) when the aircraft were sized to minimize takeoff gross weight. These aircraft did, however, have smaller wings and lower engine thrusts for the same mission than aircraft with conventional high lift systems. When the advanced high lift system was implemented without reducing wing size and simultaneously using lower flap angles that provide higher L/D at approach a cumulative noise reduction of as much as 4 EPNdB was obtained. Comparison of aircraft configurations that have similar approach speeds showed cumulative noise reduction of 2.6 EPNdB that is purely the result of incorporating advanced high lift system in the aircraft design.

  14. NASA Heavy Lift Rotorcraft Systems Investigation

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne; Yamauchi, Gloria K.; Watts, Michael E.

    2005-01-01

    The NASA Heavy Lift Rotorcraft Systems Investigation examined in depth several rotorcraft configurations for large civil transport, designed to meet the technology goals of the NASA Vehicle Systems Program. The investigation identified the Large Civil Tiltrotor as the configuration with the best potential to meet the technology goals. The design presented was economically competitive, with the potential for substantial impact on the air transportation system. The keys to achieving a competitive aircraft were low drag airframe and low disk loading rotors; structural weight reduction, for both airframe and rotors; drive system weight reduction; improved engine efficiency; low maintenance design; and manufacturing cost comparable to fixed-wing aircraft. Risk reduction plans were developed to provide the strategic direction to support a heavy-lift rotorcraft development. The following high risk areas were identified for heavy lift rotorcraft: high torque, light weight drive system; high performance, structurally efficient rotor/wing system; low noise aircraft; and super-integrated vehicle management system.

  15. TMI-2 reactor vessel plenum final lift

    SciTech Connect

    Wilson, D C

    1986-01-01

    Removal of the plenum assembly from the TMI-2 reactor vessel was necessary to gain access to the core region for defueling. The plenum was lifted from the reactor vessel by the polar crane using three specially designed pendant assemblies. It was then transferred in air to the flooded deep end of the refueling canal and lowered onto a storage stand where it will remain throughout the defueling effort. The lift and transfer were successfully accomplished on May 15, 1985 in just under three hours by a lift team located in a shielded area within the reactor building. The success of the program is attributed to extensive mockup and training activities plus thorough preparations to address potential problems. 54 refs.

  16. Unsteady lifting-line theory with applications

    NASA Technical Reports Server (NTRS)

    Ahmadi, A. R.; Widnall, S. E.

    1982-01-01

    Unsteady lifting-line theory is developed for a flexible unswept wing of large aspect ratio oscillating at low frequency in inviscid incompressible flow. The theory is formulated in terms of the acceleration potential and treated by the method of matched asymptotic expansions. The wing displacements are prescribed and the pressure field, airloads, and unsteady induced downwash are obtained in closed form. Sample numerical calculations are presented. The present work identifies and resolves errors in the unsteady lifting-line theory of James and points out a limitation in that of Van Holten. Comparison of the results of Reissner's approximate unsteady lifting-surface theory with those of the present work shows favorable agreement. The present work thus provides some formal justification for Reissner's ad hoc theory. For engineering purposes, the region of applicability of the theory in the reduced frequency-aspect ratio domain is identified approximately and found to cover most cases of practical interest.

  17. Coriolis effects enhance lift on revolving wings.

    PubMed

    Jardin, T; David, L

    2015-03-01

    At high angles of attack, an aircraft wing stalls. This dreaded event is characterized by the development of a leading edge vortex on the upper surface of the wing, followed by its shedding which causes a drastic drop in the aerodynamic lift. At similar angles of attack, the leading edge vortex on an insect wing or an autorotating seed membrane remains robustly attached, ensuring high sustained lift. What are the mechanisms responsible for both leading edge vortex attachment and high lift generation on revolving wings? We review the three main hypotheses that attempt to explain this specificity and, using direct numerical simulations of the Navier-Stokes equations, we show that the latter originates in Coriolis effects.

  18. Aeromechanical stability analysis of a multirotor vehicle model representing a hybrid heavy lift airship (HHLA)

    NASA Technical Reports Server (NTRS)

    Venkatesan, C.; Friedmann, P. P.

    1984-01-01

    Hybrid Heavy Lift Airship (HHLA) is a proposed candidate vehicle aimed at providing heavy lift capability at low cost. This vehicle consists of a buoyant envelope attached to a supporting structure to which four rotor systems, taken from existing helicopters are attached. Nonlinear equations of motion capable of modelling the dynamics of this coupled multi-rotor/support frame/vehicle system have been developed. Using these equations of motion the aeroelastic and aeromechanical stability analysis is performed aimed at identifying potential instabilities which could occur for this type of vehicle. The coupling between various blade, supporting structure and rigid body modes is identified. Furthermore, the effects of changes in buoyancy ratio (Buoyant lift/total weight) on the dynamic characteristics of the vehicle are studied. The dynamic effects found are of considerable importance for the design of such vehicles. The analytical model developed is also useful for studying the aeromechanical stability of single rotor and tandem rotor coupled rotor/fuselage systems.

  19. Biomechanical comparison of unilateral and bilateral power snatch lifts.

    PubMed

    Lauder, Mike A; Lake, Jason P

    2008-05-01

    Biomechanical characteristics of the one-handed dumbbell power snatch (DBPS) were examined to determine whether significant differences existed between unilateral and bilateral weightlifting movements. Kinetic and kinematic movement data were recorded from 10 male weightlifters (mean +/- SD: age: 30.2 +/- 10.2 years; height: 174.2 +/- 4.4 cm; body mass: 81.5 +/- 14.6 kg) during one-handed dumbbell (DB) and traditional barbell (BBPS) power snatch performance with loads of approximately 80% of respective lift one repetition maximums (1RM) with the use of 2 synchronized Kistler force plates and high-speed 3-dimensional video. Results highlighted asymmetry in the ground reaction force and kinematic profile of the DBPS, which deviated from the observed patterns of the bilateral movement. This study found that the nonlifting side (the side corresponding with the hand that did not hold the DB) tended to generate a greater pull phase peak vertical ground reaction forces significantly faster (p = 0.001) than the lifting side (the side corresponding with the hand that held the DB) during the DBPS. In addition, the DBPS nonlifting side catch phase loading rate was approximately double that of the lifting side loading rate (p < 0.05). These results quantify symmetrical deviations in the movement patterns of the unilateral power snatch movement both during the concentric muscular contraction of load vertical displacement, and the loading implications of unilateral landing. This asymmetry supports the contention that unilateral variations of weightlifting movements may provide a different training stimulus to athletes.

  20. Soccer ball lift coefficients via trajectory analysis

    NASA Astrophysics Data System (ADS)

    Goff, John Eric; Carré, Matt J.

    2010-07-01

    We performed experiments in which a soccer ball was launched from a machine while two high-speed cameras recorded portions of the trajectory. Using the trajectory data and published drag coefficients, we extracted lift coefficients for a soccer ball. We determined lift coefficients for a wide range of spin parameters, including several spin parameters that have not been obtained by today's wind tunnels. Our trajectory analysis technique is not only a valuable tool for professional sports scientists, it is also accessible to students with a background in undergraduate-level classical mechanics.

  1. Not Just Being Lifted: Infants are Sensitive to Delay During a Pick-Up Routine

    PubMed Central

    Fantasia, Valentina; Markova, Gabriela; Fasulo, Alessandra; Costall, Alan; Reddy, Vasudevi

    2016-01-01

    In the present study we observed whether infants show online adjustments to the mother’s incipient action by looking at their sensitivity to changes as the pick-up unfolded. Twenty-three 3-month-old infants and their mothers were observed in the lab, where mothers were instructed (1) to pick-up their infants as they usually did (normal pick-up), and then (2) to delay the pick-up for 6 s after placing their hands on the infants’ waist (delayed pick-up). In both Normal and Delayed conditions infant’s body tension, affective displays and gaze shifts were coded during three phases: Approach, Contact, and Lift. Additionally, a measure of infants’ head support in terms of head lag at the beginning and end of Lift was computed. Results showed that during normal pick-up infants tensed up their body during the Approach phase and increased their tension during contact, maintaining it through Lift; their head was also supported and in line with their body during Lift. When the pick-up was delayed, infants also tensed their body during Approach, yet this tension did not increase during the Contact phase and was significantly lower at Lift. Their head support was also lower in the Delayed condition and they shifted their gazes away from their mothers’ face more often than in the Normal condition. These results suggest that infants are sensitive to changes of the timing of the pick-up sequence, which in turn may have affected their contribution to the interaction. PMID:26834674

  2. Light aircraft lift, drag, and moment prediction: A review and analysis

    NASA Technical Reports Server (NTRS)

    Smetana, F. O.; Summey, D. C.; Smith, N. S.; Carden, R. K.

    1975-01-01

    The historical development of analytical methods for predicting the lift, drag, and pitching moment of complete light aircraft configurations in cruising flight is reviewed. Theoretical methods, based in part on techniques described in the literature and in part on original work, are developed. These methods form the basis for understanding the computer programs given to: (1) compute the lift, drag, and moment of conventional airfoils, (2) extend these two-dimensional characteristics to three dimensions for moderate-to-high aspect ratio unswept wings, (3) plot complete configurations, (4) convert the fuselage geometric data to the correct input format, (5) compute the fuselage lift and drag, (6) compute the lift and moment of symmetrical airfoils to M = 1.0 by a simplified semi-empirical procedure, and (7) compute, in closed form, the pressure distribution over a prolate spheroid at alpha = 0. Comparisons of the predictions with experiment indicate excellent lift and drag agreement for conventional airfoils and wings. Limited comparisons of body-alone drag characteristics yield reasonable agreement. Also included are discussions for interference effects and techniques for summing the results above to obtain predictions for complete configurations.

  3. The lift-fan powered-lift aircraft concept: Lessons learned

    NASA Technical Reports Server (NTRS)

    Deckert, Wallace H.

    1993-01-01

    This is one of a series of reports on the lessons learned from past research related to lift-fan aircraft concepts. An extensive review is presented of the many lift-fan aircraft design studies conducted by both government and industry over the past 45 years. Mission applications and design integration including discussions on manifolding hot gas generators, hot gas dusting, and energy transfer control are addressed. Past lift-fan evaluations of the Avrocar are discussed. Lessons learned from these past efforts are identified.

  4. Compound Channels, Transition Expectations, and Liftings

    SciTech Connect

    Accardi, L.; Ohya, M.

    1999-01-15

    In Section 1 we introduce the notion of lifting as a generalization of the notion of compound state introduced in [21] and [22] and we show that this notion allows a unified approach to the problems of quantum measurement and of signal transmission through quantum channels. The dual of a linear lifting is a transition expectation in the sense of [3] and we characterize those transition expectations which arise from compound states in the sense of [22]. In Section 2 we characterize those liftings whose range is contained in the closed convex hull of product states and we prove that the corresponding quantum Markov chains [2] are uniquely determined by a classical generalization of both the quantum random walks of [4] and the locally diagonalizable states considered in [3]. In Section 4, as a first application of the above results, we prove that the attenuation (beam splitting) process for optical communication treated in [21] can be described in a simpler and more general way in terms of liftings and of transition expectations. The error probabilty of information transmission in the attenuation process is rederived from our new description. We also obtain some new results concerning the explicit computation of error probabilities in the squeezing case.

  5. Effects of Mach Number on Maximum Lift

    DTIC Science & Technology

    1947-01-01

    raAruaKJ tablo, grapho Haeh nunber effect on r»\\irirmr> lift is datomlncd for unsuopt end onopt-back Dingo . Suopt-back ulngo oboa tho oarx> early tip...ulngo. &7opt-toack uingo ahan tho anm early tip stalling tondancioa at high opoede ae they do at leu opoede. For unsnopt Dingo tho Cj p^ of

  6. High gantry for lifting and handling

    NASA Technical Reports Server (NTRS)

    Kerley, J. J., Jr.; Tereniak, W. T.

    1977-01-01

    Standard gantry has been inexpensively modified with standard pipes to allow lifting of heavy loads to distances between 14 and 30 ft. Addition of air mounts permits extensive and sensitive equipment to be moved smoothly and safely over smooth or moderately rough surfaces. Unit has been tested at 6000 pounds without yielding.

  7. The Monoplane as a Lifting Vortex Surface

    NASA Technical Reports Server (NTRS)

    Blenk, Hermann

    1947-01-01

    In Prandtl's airfoil theory the monoplane was replaced by a single lifting vortex line and yielded fairly practical results. However, the theory remained restricted to the straight wing. Yawed wings and those curved in flight direction could not be computed with this first approximation; for these the chordwise lift distribution must be taken into consideration. For the two-dimensional problem the transition from the lifting line to the lifting surface has been explained by Birnbaum. In the present report the transition to the three-dimensional problem is undertaken. The first fundamental problem involves the prediction of flow, profile, and drag for prescribed circulation distribution on the straight rectangular wing, the yawed wing for lateral boundaries parallel to the direction of flight, the swept-back wing, and the rectangular wing in slipping, with the necessary series developments for carrying through the calculations, the practical range of convergence of which does not comprise the wing tips or the break point of the swept-back wing. The second problem concerns the calculation of the circulation distribution with given profile for a slipping rectangular monoplane with flat profile and aspect ratio 6, and a rectangular wing with cambered profile and variable aspect ratio-the latter serving as check of the so-called conversion formulas of the airfoil theory.

  8. O.H. Module Vacuum Lifting Fixture

    SciTech Connect

    McGivern, Paul; /Fermilab

    1987-12-31

    In order to move the 800 lb. copper plates that make up the O.H. modules a vacuum lifting device has been made that will lift the plates safely. The purpose of this report is to provide documentation for the structural integrity of the system and to make sure that it passes all of the safety requirements that have been established for a system of this nature. The vacuum system is composed of a PIAB model M125 vacuum pump that has the pumping capacity of 27 in. Hg. This pump will produce vacuum for three 8 1/2 in. diameter suction cups or pads. A pressure gauge is fixed on the unit to allow the operator to continually monitor the pressure during all lifts. An additional safety feature is a mechanical vacuum monitoring device that is set to emit a shrill tone if the system vacuum falls below 24 in. Hg. A 'bleed' valve fixed on the unit will be used to let the system go to atmospheric pressure once the lift is complete. A 3 psi. check valve and a vacuum reserve of 384 in. is used to insure that the device will not just drop the object if the pump fails. A schematic for the pumping system is given in Figure 1.

  9. Measuring Lift with the Wright Airfoils

    ERIC Educational Resources Information Center

    Heavers, Richard M.; Soleymanloo, Arianne

    2011-01-01

    In this laboratory or demonstration exercise, we mount a small airfoil with its long axis vertical at one end of a nearly frictionless rotating platform. Air from a leaf blower produces a sidewise lift force L on the airfoil and a drag force D in the direction of the air flow (Fig. 1). The rotating platform is kept in equilibrium by adding weights…

  10. View of lifting girder and tower support superstructure on Tensaw ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of lifting girder and tower support superstructure on Tensaw River Bridge truss No. 2, looking northwest. Showing rope connectors and deflector sheaves. - Tensaw River Lift Bridge, Spanning Tensaw River at U.S. Highway 90, Mobile, Mobile County, AL

  11. View of central lift span truss web of Tensaw River ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of central lift span truss web of Tensaw River Bridge, showing support girders for life house, looking east - Tensaw River Lift Bridge, Spanning Tensaw River at U.S. Highway 90, Mobile, Mobile County, AL

  12. 39. DETAIL AERIAL VIEW LOOKING AT 210' 9' LIFT SPAN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. DETAIL AERIAL VIEW LOOKING AT 210' 9' LIFT SPAN TOWER SHEAVES SHOWING 1 SET WITH AND 1 SET WITHOUT SHEAVE HOODS - Central Railroad of New Jersey, Newark Bay Lift Bridge, Spanning Newark Bay, Newark, Essex County, NJ

  13. Lift estimation of Half-Rotating Wing in hovering flight

    NASA Astrophysics Data System (ADS)

    Wang, X. Y.; Dong, Y. P.; Qiu, Z. Z.; Zhang, Y. Q.; Shan, J. H.

    2016-11-01

    Half-Rotating Wing (HRW) is a new kind of flapping wing system with rotating flapping instead of oscillating flapping. Estimating approach of hovering lift which generated in hovering flight was important theoretical foundation to design aircraft using HRW. The working principle of HRW based on Half-Rotating Mechanism (HRM) was firstly introduced in this paper. Generating process of lift by HRW was also given. The calculating models of two lift mechanisms for HRW, including Lift of Flow Around Wing (LFAW) and Lift of Flow Dragging Wing (LFDW), were respectively established. The lift estimating model of HRW was further deduced, by which hovering lift for HRW with different angular velocity could be calculated. Case study using XFLOW software simulation indicates that the above estimating method was effective and feasible to predict roughly the hovering lift for a new HRW system.

  14. Kinematics and kinetics of the dead lift in adolescent power lifters.

    PubMed

    Brown, E W; Abani, K

    1985-10-01

    This study documented characteristics of the dead lift of teenage lifters. Films of 10 "skilled" and 11 "unskilled" contestants in a Michigan Teenage Powerlifting Championship provided data for analysis. Equations of motion, force, and moments were developed for a multisegment model of the lifters' movement in the sagittal plane and applied to the film data. Analysis was limited to 1) body segment orientations, 2) vertical bar accelerations, 3) vertical joint reaction forces, 4) segmental angular accelerations, 5) horizontal moment arms of the bar to selected joints, and 6) intersegmental resultant moments. Significant differences (P less than 0.05) in body segment orientation indicated a more upright posture at lift-off in the skilled group. Maximum vertical bar acceleration and angular acceleration of the trunk tended to occur near lift-off in the skilled lifters. The unskilled subjects demonstrated greater variability and magnitude in linear and angular acceleration parameters. In all lifters, maximum vertical force was experienced at the ankle joint. Within each subject, the hip joint experienced the greatest torque because of the relatively large horizontal moment arm of the bar (dominant mass in the system) to this joint. In all subjects, the magnitude of the mass lifted, and not the technique, was the primary determinant in the intersegmental resultant moment acting at the hip and the vertical force experienced at the ankle, knee, and hip joints.

  15. Effects of box size, frequency of lifting, and height of lift on maximum acceptable weight of lift and heart rate for male university students in Iran

    PubMed Central

    Abadi, Ali Salehi Sahl; Mazlomi, Adel; Saraji, Gebraeil Nasl; Zeraati, Hojjat; Hadian, Mohammad Reza; Jafari, Amir Homayoun

    2015-01-01

    Introduction In spite of the widespread use of automation in industry, manual material handling (MMH) is still performed in many occupational settings. The emphasis on ergonomics in MMH tasks is due to the potential risks of workplace accidents and injuries. This study aimed to assess the effect of box size, frequency of lift, and height of lift on maximum acceptable weight of lift (MAWL) on the heart rates of male university students in Iran. Methods This experimental study was conducted in 2015 with 15 male students recruited from Tehran University of Medical Sciences. Each participant performed 18 different lifting tasks that involved three lifting frequencies (1lift/min, 4.3 lifts/min and 6.67 lifts/min), three lifting heights (floor to knuckle, knuckle to shoulder, and shoulder to arm reach), and two box sizes. Each set of experiments was conducted during the 20 min work period using the free-style lifting technique. The working heart rates (WHR) were recorded for the entire duration. In this study, we used SPSS version 18 software and descriptive statistical methods, analysis of variance (ANOVA), and the t-test for data analysis. Results The results of the ANOVA showed that there was a significant difference between the mean of MAWL in terms of frequencies of lifts (p = 0.02). Tukey’s post hoc test indicated that there was a significant difference between the frequencies of 1 lift/minute and 6.67 lifts/minute (p = 0. 01). There was a significant difference between the mean heart rates in terms of frequencies of lifts (p = 0.006), and Tukey’s post hoc test indicated a significant difference between the frequencies of 1 lift/minute and 6.67 lifts/minute (p = 0.004). But, there was no significant difference between the mean of MAWL and the mean heart rate in terms of lifting heights (p > 0.05). The results of the t-test showed that there was a significant difference between the mean of MAWL and the mean heart rate in terms of the sizes of the two boxes (p

  16. 21 CFR 880.5500 - AC-powered patient lift.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL USE DEVICES General Hospital and Personal Use Therapeutic Devices § 880.5500 AC-powered patient lift. (a) Identification. An AC-powered lift is an electrically powered device either fixed or mobile, used to lift and transport patients in the horizontal or...

  17. 21 CFR 880.5500 - AC-powered patient lift.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false AC-powered patient lift. 880.5500 Section 880.5500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Devices § 880.5500 AC-powered patient lift. (a) Identification. An AC-powered lift is an...

  18. 33 CFR 118.85 - Lights on vertical lift bridges.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... below the outermost edge of the bridge span structure so as to be visible from an approaching vessel... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Lights on vertical lift bridges... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.85 Lights on vertical lift bridges. (a) Lift span...

  19. 33 CFR 118.85 - Lights on vertical lift bridges.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... below the outermost edge of the bridge span structure so as to be visible from an approaching vessel... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Lights on vertical lift bridges... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.85 Lights on vertical lift bridges. (a) Lift span...

  20. 33 CFR 118.85 - Lights on vertical lift bridges.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... below the outermost edge of the bridge span structure so as to be visible from an approaching vessel... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Lights on vertical lift bridges... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.85 Lights on vertical lift bridges. (a) Lift span...

  1. 14 CFR 29.551 - Auxiliary lifting surfaces.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Auxiliary lifting surfaces. 29.551 Section 29.551 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT....551 Auxiliary lifting surfaces. Each auxiliary lifting surface must be designed to withstand— (a)...

  2. 49 CFR 178.970 - Bottom lift test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... gross mass, the load being evenly distributed. (c) Test method. All Large Packaging design types must be... 49 Transportation 3 2013-10-01 2013-10-01 false Bottom lift test. 178.970 Section 178.970... Packagings § 178.970 Bottom lift test. (a) General. The bottom lift test must be conducted for...

  3. 49 CFR 178.1050 - Top lift test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Containers § 178.1050 Top lift test. (a) General. The top lift test must be conducted for the qualification... permissible gross mass, the load being evenly distributed. (c) Test method. (1) A Flexible Bulk Container must... 49 Transportation 3 2013-10-01 2013-10-01 false Top lift test. 178.1050 Section...

  4. Oscillatory Counter-Centrifugation: Effects of History and Lift Forces

    NASA Astrophysics Data System (ADS)

    Nadim, Ali

    2014-11-01

    This work is co-authored with my doctoral student Shujing Xu and is dedicated to the memory of my doctoral advisor Howard Brenner who enjoyed thought experiments related to rotating systems. Oscillatory Counter-Centrifugation refers to our theoretical discovery that within a liquid-filled container that rotates in an oscillatory manner about a fixed axis as a rigid body, a suspended particle can be made to migrate on average in the direction opposite to that of ordinary centrifugation. That is, a heavy (or light) particle can move toward (or away from) the rotation axis, when the frequency of oscillations is high enough. In this work we analyze the effects of the Basset history force and the Saffman lift force on particle trajectories and find that the counter-centrifugation phenomenon persists even when these forces are active.

  5. 75 FR 33320 - Notice of Issuance of Final Determination Concerning a Lift Unit for an Overhead Patient Lift...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-11

    ... notice that it had issued a final determination concerning the country of origin of a lift unit for an... Code of Federal Regulations (CFR) concerning the country of origin of a lift unit for an overhead... determination concerning the country of origin of the lift unit which may be offered to the U.S....

  6. Systematic Review and Meta-Analysis of Predictors of Military Task Performance: Maximal Lift Capacity.

    PubMed

    Hydren, Jay R; Borges, Alexander S; Sharp, Marilyn A

    2017-04-01

    Hydren, JR, Borges, AS, and Sharp, MA. Systematic review and meta-analysis of predictors of military task performance: maximal lift capacity. J Strength Cond Res 31(4): 1142-1164, 2017-Physical performance tests (e.g., physical employment tests, return-to-duty tests) are commonly used to predict occupational task performance to assess the ability of individuals to do a job. The purpose of this systematic review was to identify predictive tests that correlate well with maximal lifting capacity in military personnel. Three databases were searched and experts in the field were contacted, resulting in the identification of 9 reports confined to military personnel that presented correlations between predictor tests and job tasks that measured maximal lift capacity. These 9 studies used 9 variations of a maximal lift capacity test, which were pooled to evaluate comparisons. The predictive tests were categorized into 10 fitness domains, which in ranked order were as follows: body mass and composition, absolute aerobic capacity, dynamic strength, power, isometric strength, strength-endurance, speed, isokinetic strength, flexibility, and age. Limitations of these data include a restricted age range (95% confidence interval [95% CI], 20-35; no correlations to maximal lift capacity) and the limited number of comparisons available within the cited studies. Weighted mean correlations ((Equation is included in full-text article.)) and 95% CI were calculated for each test. Lean body mass (kg) was the strongest overall predictor ((Equation is included in full-text article.); 95% CI, 0.697-0.966). Tests of dynamic strength had stronger correlations than strength endurance ((Equation is included in full-text article.), 95% CI, 0.69-0.89 vs. (Equation is included in full-text article.), 95% CI, 0.21-0.61). The following 6 domains of physical performance predictive tests had pooled correlations of 0.40 or greater for combined-sex samples: dynamic strength, power, isometric strength

  7. Comparative Kinematic Analysis of the Snatch Lifts in Elite Male Adolescent Weightlifters

    PubMed Central

    Harbili, Erbil; Alptekin, Ahmet

    2014-01-01

    The purpose of the study was to compare the linear kinematics of the barbell and the angular kinematics of the lower limb during the snatch lifts of two different barbell weights in elite male adolescent weightlifters. In the national team level, nine elite male adolescent weightlifters participated in the study. The snatch lifts were recorded by two video cameras under competitive conditions in preparation period before the European Junior Championship (Sony MiniDv PAL- 50 field/s) and the two heaviest successful lifts were selected for kinematic analysis. The little toe, ankle, knee, hip, and shoulder on the body and one point on the barbell were digitized using Ariel Performance Analysis System (APAS, San Diego, CA, USA). Significant decreases were found in the maximum barbell height, the relative power output during the second pull, and the maximum vertical velocity of the barbell during the second pull of the heaviest lift (p < 0.05). Maximum extension velocity of the hip joint significantly increased during the first pull of the heaviest lift (p < 0.05). As the mass of the barbell increased, the maximum vertical velocity and the maximum height of the barbell and relative power output during the second pull decreased in the heaviest lift performed by adolescent weightlifters. Coaches should pay attention to assistant exercises to increase explosive strength during the second pull with maximum strength in male adolescent weightlifters. Key points The results demonstrate that the maximum strength of the extensor muscles of the hip during the first pull and their explosive strength during the second pull must be improved. Coaches should pay attention to assistant exercises to increase explosive strength during the second pull with maximum strength in male adolescent weightlifters. PMID:24790499

  8. LIFT Tenant Is Off and Running

    NASA Technical Reports Server (NTRS)

    Steele, Gynelle C.

    2001-01-01

    Lewis Incubator for Technology (LIFT) tenant, Analiza Inc., graduated from the incubator July 2000. Analiza develops technology and products for the early diagnosis of diseases, quality control of bio-pharmaceutical therapeutics, and other applications involving protein analyses. Technology links with NASA from existing and planned work are in areas of microfluidics and laser light scattering. Since their entry in LIFT in May, 1997, Analiza has: Received a $750,000 grant from the National Institutes of Health. Collaborated with a Nobel Prize winner on drug design. Collaborated with Bristol-Myers Squibb on the characterization of biological therapeutics. Added a Ph.D. senior scientist and several technicians. Received significant interest from major pharmaceutical companies about collaborating and acquiring Analiza technology.

  9. Particle Lifting Processes in Dust Devils

    NASA Astrophysics Data System (ADS)

    Neakrase, L. D. V.; Balme, M. R.; Esposito, F.; Kelling, T.; Klose, M.; Kok, J. F.; Marticorena, B.; Merrison, J.; Patel, M.; Wurm, G.

    2016-11-01

    Particle lifting in dust devils on both Earth and Mars has been studied from many different perspectives, including how dust devils could influence the dust cycles of both planets. Here we review our current understanding of particle entrainment by dust devils by examining results from field observations on Earth and Mars, laboratory experiments (at terrestrial ambient and Mars-analog conditions), and analytical modeling. By combining insights obtained from these three methodologies, we provide a detailed overview on interactions between particle lifting processes due to mechanical, thermal, electrodynamical and pressure effects, and how these processes apply to dust devils on Earth and Mars. Experiments and observations have shown dust devils to be effective lifters of dust given the proper conditions on Earth and Mars. However, dust devil studies have yet to determine the individual roles of each of the component processes acting at any given time in dust devils.

  10. Closed, nonendoscopic, small-incision forehead lift.

    PubMed

    Marten, Timothy J

    2008-07-01

    As endoscopic techniques made inroads into surgery, one of the first procedures they were adapted to by plastic surgeons was the forehead lift. The "closed" forehead lift procedure has since achieved wide acceptance and exists as a viable alternative to open procedures for many patients. Experience has shown, however, that it is not necessary to use an endoscope to mobilize and release the forehead and modify the corrugator supercilii muscles in "closed" procedures if the anatomy is understood, the operation is appropriately planned, and the corrugator muscles are modified using a transpalpebral approach. In addition, transpalpebral corrugator myectomy, when used in conjunction with closed mobilization and resuspension of the forehead, provides not only a scheme for the performance of closed foreheadplasty without the need for an endoscope, but a method by which medial brow elevation can be minimized or avoided. This may, indeed, be one the procedure's most important advantages over the endoscopic technique.

  11. Lift and drag of cetacean flippers

    NASA Astrophysics Data System (ADS)

    Murray, Mark; Weber, Paul; Howle, Laurens; Fish, Frank

    2008-11-01

    Field observation and collection of biological samples has resulted in cetacean (whales, dolphins and porpoises) flipper geometry being known for most species. However, the hydrodynamic properties of cetacean flippers have not been rigorously tested and thus their performance characteristics are unknown. Here, conducting water tunnel testing using scale models of cetacean flippers derived via computed tomography (CT) scans, as well as computational fluid dynamic (CFD) simulations, we present a baseline work to determine the hydrodynamic characteristics of cetacean flippers. We found that flippers of similar planform shape had similar hydrodynamic performance characteristics. Furthermore, one group of flippers of planform shape similar to a modern swept wing was found to have lift coefficient versus angle of attack curves that were biphasic rather than linear in nature, which was caused by the onset of vortex-dominated lift. Drag coefficient versus angle of attack curves were found to be less dependant on planform shape.

  12. Future Directions in Tactical Vertical Lift

    DTIC Science & Technology

    2010-04-29

    UH -60A/L UH -60M (Divest) UH - 60L Hunter Warrior Shadow Raven FY 2025 and Beyond ATTACK/ RECON UH -60M/HH-60M 2025 Timeframe • AH64...Transport Assault Heavy Lift Mine CM SOF Ultraheavy Lift SERVICE ARMY USMC ARMY USMC USN USCG USAF ARMY USMC USN AH-1W UH -1Y CH/MH-47 D/F/G MH-53E OH-58D...KW) MH/AH-6J UH -72A CH-53K MV-22B CV-22B CVLSP* Mine CM CSAR CH-53E AH-1Z MH-60S MH-60R UH -60M MH-60T * Not Program of

  13. V/STOL gets a lift

    NASA Technical Reports Server (NTRS)

    Biesiadny, Tom

    1991-01-01

    The concept of a supersonic STOVL that could offer enhanced mission capability, survivability, operational flexibility, and utility over conventional aircraft is presented. Emphasis is currently on design studies, CFD work, small- and large-scale wind tunnel tests, simulation activities, flight experiments, and ground environment experiments. Propulsion system technology centers about the adaptation of existing or off-the-shelf engines. Concepts under study include separate flow in hover, gas-driven lift fan, and shaft-driven lift fan. NASA is examining generic valve and ducting configurations with airflow at ambient temperature and at temperatures up to 1000 F to gather pressure loss and heat transfer data. Advanced civil rotorcraft technologies examined include high-efficiency/dual-mode components such as torque converters; lightweight, quiet transmissions; and variable geometry power turbines; along with dual-function or convertible engines.

  14. Static Thrust Analysis of the Lifting Airscrew

    NASA Technical Reports Server (NTRS)

    Knight, Montgomery; Hefner, Ralph A

    1937-01-01

    This report presents the results of a combined theoretical and experimental investigation conducted at the Georgia School of Technology on the static thrust of the lifting air screw of the type used in modern autogiros and helicopters. The theoretical part of this study is based on Glauert's analysis but certain modifications are made that further clarify and simplify the problem. Of these changes the elimination of the solidity as an independent parameter is the most important. The experimental data were obtained from tests on four rotor models of two, four, and five blades and, in general, agree quite well with the theoretical calculations. The theory indicates a method of evaluating scale effects on lifting air screws, and these corrections have been applied to the model results to derive general full-scale static thrust, torque, and figure-of-merit curves for constant-chord, constant-incidence rotors. Convenient charts are included that enable hovering flight performance to be calculated rapidly.

  15. Pipe lifting hook having clamp assembly

    SciTech Connect

    Codner, J.A.

    1984-06-12

    A pipe lifting hook is provided having a generally ''C'' shaped hook member having an elongated lower portion being insertable within the end of a joint of pipe and having an upper portion positionable above the pipe and provided with lifting connection means. The hook member is frictionally clamped to the pipe by grip shoe means that is movably supported by the upper portion of the hook member and is selectably movable from a released position out of contact with said pipe to a locked position in frictional locking engagement with the outer surface of the pipe. A ratchet mechanism couples said grip shoe means to the upper portion of the hook member and is manually positionable to lock said grip shoe means at said locked position or release said grip shoe means for movement toward said released position thereof.

  16. Eisenhart lift for higher derivative systems

    NASA Astrophysics Data System (ADS)

    Galajinsky, Anton; Masterov, Ivan

    2017-02-01

    The Eisenhart lift provides an elegant geometric description of a dynamical system of second order in terms of null geodesics of the Brinkmann-type metric. In this work, we attempt to generalize the Eisenhart method so as to encompass higher derivative models. The analysis relies upon Ostrogradsky's Hamiltonian. A consistent geometric description seems feasible only for a particular class of potentials. The scheme is exemplified by the Pais-Uhlenbeck oscillator.

  17. HSCT high lift system aerodynamic requirements

    NASA Technical Reports Server (NTRS)

    Paulson, John A.

    1992-01-01

    The viewgraphs and discussion of high lift system aerodynamic requirements are provided. Low speed aerodynamics has been identified as critical to the successful development of a High Speed Civil Transport (HSCT). The airplane must takeoff and land at a sufficient number of existing or projected airports to be economically viable. At the same time, community noise must be acceptable. Improvements in cruise drag, engine fuel consumption, and structural weight tend to decrease the wing size and thrust required of engines. Decreasing wing size increases the requirements for effective and efficient low speed characteristics. Current design concepts have already been compromised away from better cruise wings for low speed performance. Flap systems have been added to achieve better lift-to-drag ratios for climb and approach and for lower pitch attitudes for liftoff and touchdown. Research to achieve improvements in low speed aerodynamics needs to be focused on areas most likely to have the largest effect on the wing and engine sizing process. It would be desirable to provide enough lift to avoid sizing the airplane for field performance and to still meet the noise requirements. The airworthiness standards developed in 1971 will be the basis for performance requirements for an airplane that will not be critical to the airplane wing and engine size. The lift and drag levels that were required to meet the performance requirements of tentative airworthiness standards established in 1971 and that were important to community noise are identified. Research to improve the low speed aerodynamic characteristics of the HSCT needs to be focused in the areas of performance deficiency and where noise can be reduced. Otherwise, the wing planform, engine cycle, or other parameters for a superior cruising airplane would have to be changed.

  18. Lift production in the hovering hummingbird.

    PubMed

    Warrick, Douglas R; Tobalske, Bret W; Powers, Donald R

    2009-11-07

    Aerodynamic theory and empirical observations of animals flying at similar Reynolds numbers (Re) predict that airflow over hummingbird wings will be dominated by a stable, attached leading edge vortex (LEV). In insects exhibiting similar kinematics, when the translational movement of the wing ceases (as at the end of the downstroke), the LEV is shed and lift production decreases until the energy of the LEV is re-captured in the subsequent half-cycle translation. We here show that while the hummingbird wing is strongly influenced by similar sharp-leading-edge aerodynamics, leading edge vorticity is inconsistent, varying from 0.7 to 26 per cent (mean 16%) of total lift production, is always generated within 3 mm of the dorsal surface of the wing, showing no retrograde (trailing to leading edge) flow, and does not increase from proximal to distal wing as would be expected with a conical vortex (class III LEV) described for hawkmoths. Further, the bound circulation is not shed as a vortex at the end of translation, but instead remains attached and persists after translation has ceased, augmented by the rotation (pronation, supination) of the wing that occurs between the wing-translation half-cycles. The result is a near-continuous lift production through wing turn-around, previously unknown in vertebrates, able to contribute to weight support as well as stability and control during hovering. Selection for a planform suited to creating this unique flow and nearly-uninterrupted lift production throughout the wingbeat cycle may help explain the relatively narrow hummingbird wing.

  19. Vertical Lift - Not Just For Terrestrial Flight

    DTIC Science & Technology

    2000-10-01

    Cassini space mission will reach Saturn’s orbit and release the Huygens probe (descending via parachute) into Titan’s atmosphere. The Huygens ...is outside the official mission scope). This accomplishment will likely come from future missions post- Cassini / Huygens . The use of vertical lift...from HST) With the arrival of the Cassini / Huygens spacecraft to Saturn and Titan in 2004 -- and the anticipated science and outreach bonanza from this

  20. Pressure Roller For Tape-Lift Tests

    NASA Technical Reports Server (NTRS)

    Abrams, Eve

    1991-01-01

    Rolling device applies nearly constant, uniform pressure to surface. Simple tool exerts nearly constant pressure via compression of sheath by fixed amount. Pins hold wheels on cylinder and cylinder on tangs of handle. Cylinder and handle made of metal or plastic. Sheath press-fit or glued to cylinder. End pins attached to cylinder by adhesive or screw threads. Device intended for use in taking tape-lift samples of particulate contamination on surface.

  1. Psychophysically determined asymmetrical lifting capabilities for different frequencies and containers.

    PubMed

    Lee, Tzu-Hsien

    2005-04-01

    Ten young male participants were tested their psychophysically determined 4-h maximum acceptable weight of lifting (MAWL) of 90-degree asymmetric lifting for three lifting frequencies (1 lift/min, 2 lifts/min, 4 lifts/min) and three lifting containers (50 x 35 x 15 cm, 70 x 35 x 15 cm, 50 x 50 x 15 cm). The results showed that the MAWL decreased with increasing frequency and container width or length dimension, while the interaction effect of frequency and container on MAWL was not significant. The MAWL ranged from 13.7 kg to 18 kg for the nine (3 frequencies x 3 containers) lifting conditions. When averaged across the levels of the other independent variable, the MAWL decreased by 7.4% and 16.1% for 2 lifts/min and 4 lifts/min as compared with the MAWL of 1 lift/min, respectively, and decreased by 1.6% and 9.4% for 70 x 35 x 15 cm and 50 x 50 x 15 cm as compared with the MAWL of 50 x 35 x 15 cm, respectively. Additionally, the discrepancies between the MAWL data and the recommended weight limits derived from the revised NIOSH equation were discussed.

  2. Dragonfly flight. III. Lift and power requirements.

    PubMed

    Wakeling, JM; Ellington, CP

    1997-02-01

    A mean lift coefficient quasi-steady analysis has been applied to the free flight of the dragonfly Sympetrum sanguineum and the damselfly Calopteryx splendens. The analysis accommodated the yaw and accelerations involved in free flight. For any given velocity or resultant aerodynamic force (thrust), the damselfly mean lift coefficient was higher than that for the dragonfly because of its clap and fling. For both species, the maximum mean lift coefficient L was higher than the steady CL,max. Both species aligned their strokes planes to be nearly normal to the thrust, a strategy that reduces the L required for flight and which is different from the previously published hovering and slow dragonfly flights with stroke planes steeply inclined to the horizontal. Owing to the relatively low costs of accelerating the wing, the aerodynamic power required for flight represents the mechanical power output from the muscles. The maximum muscle mass-specific power was estimated at 156 and 166 W kg-1 for S. sanguineum and C. splendens, respectively. Measurements of heat production immediately after flight resulted in mechanical efficiency estimates of 13 % and 9 % for S. sanguineum and C. splendens muscles, respectively.

  3. Lift and Drag Measurements of Superhydrophobic Hydrofoils

    NASA Astrophysics Data System (ADS)

    Sur, Samrat; Kim, Jeong-Hyun; Rothstein, Jonathan

    2015-11-01

    For several years, superhydrophobic surfaces which are chemically hydrophobic with micron or nanometer scale surface features have been considered for their ability to reduce drag and produce slip in microfluidic devices. More recently it has been demonstrated that superhydrophobic surfaces reduce friction coefficient in turbulent flows as well. In this talk, we will consider that modifying a hydrofoil's surface to make it superhydrophobic has on the resulting lift and drag measurements over a wide range of angles of attack. Experiments are conducted over the range of Reynolds numbers between 10,000lift coefficients along with changes to separation point at high angles of attack are observed when the hydrofoil is made superhydrophobic. The hydrofoils are coated Teflon that has been hot embossed with a 325grit stainless steel woven mesh to produce a regular pattern of microposts. In addition to fully superhydrophobic hydrofoils, selectively coated symmetrical hydrofoils will also be examined to study the effect that asymmetries in the surface properties can have on lift and drag. Partially funded by NSF CBET-1334962.

  4. Analysis of particulates on tape lift samples

    NASA Astrophysics Data System (ADS)

    Moision, Robert M.; Chaney, John A.; Panetta, Chris J.; Liu, De-Ling

    2014-09-01

    Particle counts on tape lift samples taken from a hardware surface exceeded threshold requirements in six successive tests despite repeated cleaning of the surface. Subsequent analysis of the particle size distributions of the failed tests revealed that the handling and processing of the tape lift samples may have played a role in the test failures. In order to explore plausible causes for the observed size distribution anomalies, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were employed to perform chemical analysis on collected particulates. SEM/EDX identified Na and S containing particles on the hardware samples in a size range identified as being responsible for the test failures. ToF-SIMS was employed to further examine the Na and S containing particulates and identified the molecular signature of sodium alkylbenzene sulfonates, a common surfactant used in industrial detergent. The root cause investigation suggests that the tape lift test failures originated from detergent residue left behind on the glass slides used to mount and transport the tape following sampling and not from the hardware surface.

  5. SPA face lift: SMAS plication-anchoring.

    PubMed

    Mottura, A Aldo

    2011-08-01

    A variation of the superficial musculoaponeurotic system (SMAS) plication called SPA face lift is here described. An axial line and then two medial and lateral parallel lines are penciled on the skin from the lateral canthus to the earlobe to show the future plication area. The undermining zone is delimited 1 cm beyond the medial line. In face- and neck-lifting, such marks extend vertically to the neck. Once the skin is undermined up to the delimiting marks, the three lines are penciled again on the fat layer, and a running lock suture is used for plication, with big superficial bites between the two distal lines. In fatty faces, a strip of fat is removed along the axial line to avoid bulging that can be seen through the skin. Because the undermining is limited, minor swelling occurs, and the postoperative recovery is shorter and faster. The same three lines can be marked in the contralateral side or can differ in cases of asymmetry. This report describes 244 face-lifts without any facial nerve problems. The author managed five hematoma cases in which surgery to the neck was performed. Three patients had to be touched up for insufficient skin tension. The SPA technique is consistent and easy to learn.

  6. Sharp Transition in the Lift Force of a Fluid Flowing Past Nonsymmetrical Obstacles: Evidence for a Lift Crisis in the Drag Crisis Regime.

    PubMed

    Bot, Patrick; Rabaud, Marc; Thomas, Goulven; Lombardi, Alessandro; Lebret, Charles

    2016-12-02

    Bluff bodies moving in a fluid experience a drag force which usually increases with velocity. However in a particular velocity range a drag crisis is observed, i.e., a sharp and strong decrease of the drag force. This counterintuitive result is well characterized for a sphere or a cylinder. Here we show that, for an object breaking the up-down symmetry, a lift crisis is observed simultaneously to the drag crisis. The term lift crisis refers to the fact that at constant incidence the time-averaged transverse force, which remains small or even negative at low velocity, transitions abruptly to large positive values above a critical flow velocity. This transition is characterized from direct force measurements as well as from change in the velocity field around the obstacle.

  7. LiftingWiSe: A Lifting-Based Efficient Data Processing Technique in Wireless Sensor Networks

    PubMed Central

    Aboelela, Emad

    2014-01-01

    Monitoring thousands of objects which are deployed over large-hard-to-reach areas, is an important application of the wireless sensor networks (WSNs). Such an application requires disseminating a large amount of data within the WSN. This data includes, but is not limited to, the object's location and the environment conditions at that location. WSNs require efficient data processing and dissemination processes due to the limited storage, processing power, and energy available in the WSN nodes. The aim of this paper is to propose a data processing technique that can work under constrained storage, processing, and energy resource conditions. The proposed technique utilizes the lifting procedure in processing the disseminated data. Lifting is usually used in discrete wavelet transform (DWT) operations. The proposed technique is referred to as LiftingWiSe, which stands for Lifting-based efficient data processing technique for Wireless Sensor Networks. LiftingWiSe has been tested and compared to other relevant techniques from the literature. The test has been conducted via a simulation of the monitored field and the deployed wireless sensor network nodes. The simulation results have been analyzed and discussed. PMID:25116902

  8. Superficial shoulder muscle co-activations during lifting tasks: Influence of lifting height, weight and phase.

    PubMed

    Blache, Y; Dal Maso, F; Desmoulins, L; Plamondon, A; Begon, M

    2015-04-01

    This study aimed to assess the level of co-activation of the superficial shoulder muscles during lifting movement. Boxes containing three different loads (6, 12, and 18 kg) were lifted by fourteen subjects from the waist to shoulder or eye level. The 3D kinematics and electromyograms of the three deltoids, latissimus dorsi and pectoralis major were recorded. A musculoskeletal model was used to determine direction of the moment arm of these muscles. Finally an index of muscle co-activation named the muscle focus was used to evaluate the effects of lifting height, weight lifted and phase (pulling, lifting and dropping phases) on superficial shoulder muscle coactivation. The muscle focus was lower (more co-contraction) during the dropping phase compared to the two other phases (-13%, p<0.001). This was explained by greater muscle activations and by a change in the direction of the muscle moment arm as a function of glenohumeral joint position. Consequently, the function of the shoulder superficial muscles varied with respect to the glenohumeral joint position. To increase the superficial muscle coactivation during the dropping phase may be a solution to increase glenohumeral joint stiffness.

  9. WAVDRAG- ZERO-LIFT WAVE DRAG OF COMPLEX AIRCRAFT CONFIGURATIONS

    NASA Technical Reports Server (NTRS)

    Craidon, C. B.

    1994-01-01

    WAVDRAG calculates the supersonic zero-lift wave drag of complex aircraft configurations. The numerical model of an aircraft is used throughout the design process from concept to manufacturing. WAVDRAG incorporates extended geometric input capabilities to permit use of a more accurate mathematical model. With WAVDRAG, the engineer can define aircraft components as fusiform or nonfusiform in terms of non-intersecting contours in any direction or more traditional parallel contours. In addition, laterally asymmetric configurations can be simulated. The calculations in WAVDRAG are based on Whitcomb's area-rule computation of equivalent-bodies, with modifications for supersonic speed. Instead of using a single equivalent-body, WAVDRAG calculates a series of equivalent-bodies, one for each roll angle. The total aircraft configuration wave drag is the integrated average of the equivalent-body wave drags through the full roll range of 360 degrees. WAVDRAG currently accepts up to 30 user-defined components containing a maximum of 50 contours as geometric input. Each contour contains a maximum of 50 points. The Mach number, angle-of-attack, and coordinates of angle-of-attack rotation are also input. The program warns of any fusiform-body line segments having a slope larger than the Mach angle. WAVDRAG calculates total drag and the wave-drag coefficient of the specified aircraft configuration. WAVDRAG is written in FORTRAN 77 for batch execution and has been implemented on a CDC CYBER 170 series computer with a central memory requirement of approximately 63K (octal) of 60 bit words. This program was developed in 1983.

  10. Group Lifting Structures For Multirate Filter Banks, I: Uniqueness Of Lifting Factorizations

    SciTech Connect

    Brislawn, Christopher M

    2008-01-01

    This paper studies two-channel finite impulse response (FIR) perfect reconstruction filter banks. The connection between filter banks and wavelet transforms is well-known and will not be treated here. Figure 1 depicts the polyphase-with-advance representation of a filter bank [6]. A lifting factorization, is a factorization of polyphase matrices into upper and lower triangular lifting matrices. The existence of such decompositions via the Euclidean algorithm was shown for general FIR perfect reconstruction filter banks in [9] and was subsequently refined for linear phase filter banks in [10], [6]. These latter works were motivated by the ISO JPEG 2000 image coding standard [11], [12], [10], which specifies whole-sample symmetric (WS, or FIR type 1 linear phase) filter banks, as in Figure 2(a), in terms of half-sample symmetric (RS, or FIR type 2) lifting filters.

  11. Space Shuttle and Launch Pad Computational Fluid Dynamics Model for Lift-off Debris Transport Analysis

    NASA Technical Reports Server (NTRS)

    Dougherty, Sam; West, Jeff; Droege, Alan; Wilson, Josh; Liever, Peter; Slaby, Matthew

    2006-01-01

    This paper discusses the Space Shuttle Lift-off CFD model developed for potential Lift-off Debris transport for return-to-flight. The Lift-off portion of the flight is defined as the time starting with tanking of propellants until tower clear, approximately T0+6 seconds, where interactions with the launch pad cease. A CFD model containing the Space Shuttle and launch Pad geometry has been constructed and executed. Simplifications required in the construction of the model are presented and discussed. A body-fitted overset grid of up to 170 million grid points was developed which allowed positioning of the Vehicle relative to the Launch Pad over the first six seconds of Climb-Out. The CFD model works in conjunction with a debris particle transport model and a debris particle impact damage tolerance model. These models have been used to assess the interactions of the Space Shuttle plumes, the wind environment, and their interactions with each other and the Launch Pad and their ultimate effect on potential debris during Lift-off.

  12. Application of a Full Reynolds Stress Model to High Lift Flows

    NASA Technical Reports Server (NTRS)

    Lee-Rausch, E. M.; Rumsey, C. L.; Eisfeld, B.

    2016-01-01

    A recently developed second-moment Reynolds stress model was applied to two challenging high-lift flows: (1) transonic flow over the ONERA M6 wing, and (2) subsonic flow over the DLR-F11 wing-body configuration from the second AIAA High Lift Prediction Workshop. In this study, the Reynolds stress model results were contrasted with those obtained from one- and two{equation turbulence models, and were found to be competitive in terms of the prediction of shock location and separation. For an ONERA M6 case, results from multiple codes, grids, and models were compared, with the Reynolds stress model tending to yield a slightly smaller shock-induced separation bubble near the wing tip than the simpler models, but all models were fairly close to the limited experimental surface pressure data. For a series of high-lift DLR{F11 cases, the range of results was more limited, but there was indication that the Reynolds stress model yielded less-separated results than the one-equation model near maximum lift. These less-separated results were similar to results from the one-equation model with a quadratic constitutive relation. Additional computations need to be performed before a more definitive assessment of the Reynolds stress model can be made.

  13. Grid-Adapted FUN3D Computations for the Second High Lift Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Lee-Rausch, E. M.; Rumsey, C. L.; Park, M. A.

    2014-01-01

    Contributions of the unstructured Reynolds-averaged Navier-Stokes code FUN3D to the 2nd AIAA CFD High Lift Prediction Workshop are described, and detailed comparisons are made with experimental data. Using workshop-supplied grids, results for the clean wing configuration are compared with results from the structured code CFL3D Using the same turbulence model, both codes compare reasonably well in terms of total forces and moments, and the maximum lift is similarly over-predicted for both codes compared to experiment. By including more representative geometry features such as slat and flap brackets and slat pressure tube bundles, FUN3D captures the general effects of the Reynolds number variation, but under-predicts maximum lift on workshop-supplied grids in comparison with the experimental data, due to excessive separation. However, when output-based, off-body grid adaptation in FUN3D is employed, results improve considerably. In particular, when the geometry includes both brackets and the pressure tube bundles, grid adaptation results in a more accurate prediction of lift near stall in comparison with the wind-tunnel data. Furthermore, a rotation-corrected turbulence model shows improved pressure predictions on the outboard span when using adapted grids.

  14. Numerical Calculations of 3-D High-Lift Flows and Comparison with Experiment

    NASA Technical Reports Server (NTRS)

    Compton, William B, III

    2015-01-01

    Solutions were obtained with the Navier-Stokes CFD code TLNS3D to predict the flow about the NASA Trapezoidal Wing, a high-lift wing composed of three elements: the main-wing element, a deployed leading-edge slat, and a deployed trailing-edge flap. Turbulence was modeled by the Spalart-Allmaras one-equation turbulence model. One case with massive separation was repeated using Menter's two-equation SST (Menter's Shear Stress Transport) k-omega turbulence model in an attempt to improve the agreement with experiment. The investigation was conducted at a free stream Mach number of 0.2, and at angles of attack ranging from 10.004 degrees to 34.858 degrees. The Reynolds number based on the mean aerodynamic chord of the wing was 4.3 x 10 (sup 6). Compared to experiment, the numerical procedure predicted the surface pressures very well at angles of attack in the linear range of the lift. However, computed maximum lift was 5% low. Drag was mainly under predicted. The procedure correctly predicted several well-known trends and features of high-lift flows, such as off-body separation. The two turbulence models yielded significantly different solutions for the repeated case.

  15. Effects of a Specifically Designed Physical Conditioning Program on the Load Carriage and Lifting Performance of Female Soldiers.

    DTIC Science & Technology

    1997-11-01

    52 18. Percent body fat measured by DEXA .............................. 53 19. Biceps skinfold...circumferences: neck, chest, upper arm, waist, hips, thigh, and calf skinfolds: subscapular, triceps, biceps , suprailiac, abdominal, thigh, and calf muscle...strain, hip strain, groin tendinitis . Maximal lift tests accounted for two injuries. The load carriage test and trailer pull each resulted in one injury

  16. Standard versus Abdominal Lifting and Compression CPR

    PubMed Central

    Liu, Qing; Han, Shupeng; Zhang, Ziran; Zhang, Yan; Liu, Yahua; Li, Jing

    2016-01-01

    Background. This study compared outcomes of abdominal lifting and compression cardiopulmonary resuscitation (ALP-CPR) with standard CPR (STD-CPR). Materials and Methods. Patients with cardiac arrest seen from April to December 2014 were randomized to receive standard CPR or ALP-CPR performed with a novel abdominal lifting/compression device. The primary outcome was return of spontaneous circulation (ROSC). Results. Patients were randomized to receive ALP-CPR (n = 40) and STD-CPR (n = 43), and the groups had similar baseline characteristics. After CPR, 9 (22.5%) and 7 (16.3%) patients in the ALP-CPR and STD-CPR groups, respectively, obtained ROSC. At 60 minutes after ROSC, 7 (77.8%) and 2 (28.6%) patients, respectively, in the ALP-CPR and STD-CPR groups survived (P = 0.049). Patients in the ALP-CPR group had a significantly higher heart rate and lower mean arterial pressure (MAP) than those in the STD-CPR group (heart rate: 106.8 versus 79.0, P < 0.001; MAP: 60.0 versus 67.3 mm Hg, P = 0.003). The posttreatment PCO2 was significantly lower in ALP-CPR group than in STD-CPR group (52.33 versus 58.81, P = 0.009). PO2 was significantly increased after ALP-CPR (45.15 to 60.68, P < 0.001), but it was not changed after STD-CPR. PO2 after CPR was significantly higher in the ALP-CPR group (60.68 versus 44.47, P < 0.001). There were no differences between genders and for patients who are > 65 or ≤ 65 years of age. Conclusions. The abdominal lifting and compression cardiopulmonary resuscitation device used in this study is associated with a higher survival rate after ROSC than standard CPR. PMID:27882073

  17. Theory of attached and lifted diffusion flames

    NASA Astrophysics Data System (ADS)

    Wichman, Indrek S.; Ramadan, Bassem

    1998-12-01

    Diffusion flame (DF) attachment and liftoff are examined, leading to (1) explanations of the origins of previous, successful empirical correlations; (2) the discovery of multiple lifting regimes. The latter includes a very slow flow regime, a slow-to-moderate flow regime, and a moderate-to-fast flow regime. Formulas for liftoff height (l̂g) and characteristic flame tip breadth (l̂r) are developed from a combination of the differential and integral form of the conservation equations. These formulas are compared with numerical solutions of the same equations.

  18. Catalytic Generation of Lift Gases for Balloons

    NASA Technical Reports Server (NTRS)

    Zubrin, Robert; Berggren, Mark

    2011-01-01

    A lift-gas cracker (LGC) is an apparatus that generates a low-molecular-weight gas (mostly hydrogen with smaller amounts of carbon monoxide and/or carbon dioxide) at low gauge pressure by methanol reforming. LGCs are undergoing development for use as sources of buoyant gases for filling zero-gauge-pressure meteorological and scientific balloons in remote locations where heavy, high-pressure helium cylinders are not readily available. LGCs could also be used aboard large, zero-gauge-pressure, stratospheric research balloons to extend the duration of flight.

  19. Circulation control lift generation experiment: Hardware development

    NASA Technical Reports Server (NTRS)

    Panontin, T. L.

    1985-01-01

    A circulation control airfoil and its accompanying hardware were developed to allow the investigation of lift generation that is independent of airfoil angle of attack and relative flow velocity. The test equipment, designed for use in a water tunnel, includes the blown airfoil, the support systems for both flow visualization and airfoil load measurement, and the fluid control system, which utilizes hydraulic technology. The primary design tasks, the selected solutions, and the unforseen problems involved in the development of these individual components of hardware are described.

  20. Fixed Wordsize Implementation of Lifting Schemes

    NASA Astrophysics Data System (ADS)

    Karp, Tanja

    2006-12-01

    We present a reversible nonlinear discrete wavelet transform with predefined fixed wordsize based on lifting schemes. Restricting the dynamic range of the wavelet domain coefficients due to a fixed wordsize may result in overflow. We show how this overflow has to be handled in order to maintain reversibility of the transform. We also perform an analysis on how large a wordsize of the wavelet coefficients is needed to perform optimal lossless and lossy compressions of images. The scheme is advantageous to well-known integer-to-integer transforms since the wordsize of adders and multipliers can be predefined and does not increase steadily. This also results in significant gains in hardware implementations.

  1. Analysis of interacting dual lifting ejector systems

    NASA Technical Reports Server (NTRS)

    Lund, T. S.; Tavella, D. A.; Roberts, L.

    1986-01-01

    An analytical treatment is presented for a flowfield generated by a pair of interacting, two-dimensional parallel jets, representative of the two exhaust streams issuing from the thrust augmentor nozzles of dual lifting jet VTOL aircraft propulsion systems. Predictions of the analysis for the ratio of primary to secondary velocity are in close agreement with experimentally observed values, if the spreading rate parameter is allowed to assume a value greater than that which applies to a free jet. Theoretical results are combined with existing experimental data for unventilated jets, in order to arrive at an estimate of the thrust augmentation produced by a jet pair with an arbitrary degree of ventilation.

  2. Labyrinth seal testing for lift fan engines

    NASA Technical Reports Server (NTRS)

    Dobek, L. J.

    1973-01-01

    An abradable buffered labyrinth seal for the control of turbine gas path leakage in a tip-turbine driven lift fan was designed, tested, and analyzed. The seal configuration was not designed to operate in any specific location but was sized to be evaluated in an existing test rig. The final sealing diameter selected was 28 inches. Results of testing indicate that the flow equations predicted seal air flows consistent with measured values. Excellent sealing characteristics of the abradable coating on the stator land were demonstrated when a substantial seal penetration of .030 inch into the land surface was encountered without appreciable wear on the labyrinth knife edges.

  3. A submicrometer lifted diffused-layer MOSFET

    NASA Astrophysics Data System (ADS)

    Inokawa, Hiroshi; Kobayashi, Toshio; Kiuchi, Kazuhide

    1987-03-01

    A new lifted diffused-layer (LID) MOSFET has been devised and fabricated, where the major portions of the source/drain (S/D) diffused layers are placed on top of the field insulator to reduce S/D parasitic capacitances. The primary feature of this MOSFET is that the structure and processing are especially developed for submicrometer gate lengths. The fabricated LID MOSFET with a 0.5-micron gate length and a 10-nm gate oxide thickness showed good electrical characteristics, such as a maximum transconductance of 115 mS/mm and an inverter delay time of 59 ps/stage.

  4. Comparing the results of five lifting analysis tools.

    PubMed

    Russell, Steven J; Winnemuller, Lori; Camp, Janice E; Johnson, Peter W

    2007-01-01

    The objective of this study was to compare the results of the NIOSH, ACGIH TLV, Snook, 3DSSPP and WA L&I lifting assessment instruments when applied to a uniform task (lifting and lowering milk cases with capacities of 15 and 23l). To enable comparisons between the various lifting assessment instruments, the outputs of each method were converted to an exposure index similar to the NIOSH Lifting Index. All instruments showed higher exposures associated with lifting the 23l cases versus the 15l cases. The NIOSH, ACGIH TLV and Snook methods were similar in their results with respect to the pattern of exposure over various height levels and the differences in exposures associated with lifting 15 and 23l cases. However, the WA L&I and 3DSSPP predicted substantially lower exposures. The reasons for instrument differences are presented so that practitioners can better select the methods they need and interpret the results appropriately.

  5. Determining safe limits for significant task parameters during manual lifting.

    PubMed

    Singh, Ravindra Pratrap; Batish, Ajay; Singh, Tejinder Pal

    2014-04-01

    This experimental study investigated the effect of lifting task parameters (i.e., lifting weight, frequency, coupling, asymmetric angle, and vertical, horizontal, and travel distances) for various dynamic human lifting activities on the ground reaction forces of workers. Ten male workers loaded containers from different levels asymmetrically during experimental trials. The experimental design evolved using Taguchi's Fractional Factorial Experiments. Three factors (lifting weight, frequency, and vertical distance) were observed to be significant. The results showed that vertical reaction forces increase when workers lift weight from floor to shoulder height frequently. It was also observed that instantaneous loading rate increases with more weight, vertical distance, and frequency; a significant extra loading rate is required to change the lower level of load, frequency, and vertical distance to higher levels. Safe limits for significant factors were determined to result in optimal performance of the manual lifting task.

  6. Bats dynamically change wingspan to enhance lift and efficiency

    NASA Astrophysics Data System (ADS)

    Wang, Shizhao; Zhang, Xing; He, Guowei; Liu, Tianshu; Turbulence Team

    2016-11-01

    Bats can dynamically change the wingspan by controlling the joints on the wings. This work focuses on the effect of dynamically changing wingspan on the lift and efficiency in slow-flying bats. The geometry and kinematics of the bat model is constructed based on the experimental measurements of Wolf et al.. The Navier-Stokes equations for incompressible flows are solved numerically to investigate the 3D unsteady flows around the bat model. It is found that the dynamically changing wingspan can significantly enhance the lift and efficiency. The lift enhancement is contributed by both lifting surface area extended during the downstroke and the vortex force associated with the leading-edge vortices intensified by the dynamically changing wingspan. The nonlinear interaction between the dynamically changing wing and the vortex structures plays an important role in the lift enhancement of a slow-flying bat in addition to the geometrical effect of changing the lifting-surface area in a flapping cycle.

  7. HSR High Lift Program and PCD2 Update

    NASA Technical Reports Server (NTRS)

    Kemmerly, Guy T.; Coen, Peter; Meredith, Paul; Clark, Roger; Hahne, Dave; Smith, Brian

    1999-01-01

    The mission of High-Lift Technology is to develop technology allowing the design of practical high lift concepts for the High-Speed Civil Transport (HSCT) in order to: 1) operate safely and efficiently; and 2) reduce terminal control area and community noise. In fulfilling this mission, close and continuous coordination will be maintained with other High-Speed Research (HSR) technology elements in order to support optimization of the overall airplane (rather than just the high lift system).

  8. Wind tunnel tests of high-lift systems for advanced transports using high-aspect-ratio supercritical wings

    NASA Technical Reports Server (NTRS)

    Allen, J. B.; Oliver, W. R.; Spacht, L. A.

    1982-01-01

    The wind tunnel testing of an advanced technology high lift system for a wide body and a narrow body transport incorporating high aspect ratio supercritical wings is described. This testing has added to the very limited low speed high Reynolds number data base for this class or aircraft. The experimental results include the effects on low speed aerodynamic characteristics of various leading and trailing edge devices, nacelles and pylons, ailerons, and spoilers, and the effects of Mach and Reynolds numbers.

  9. Lift mechanics of downhill skiing and snowboarding

    NASA Astrophysics Data System (ADS)

    Wu, Q.; Igci, Y.; Andreopoulos, Y.; Xanthos, S.; Weinbaum, S.

    2004-11-01

    In a recent paper, Feng and Weinbaum (2000), hereafter referred to as F, developed a new type of lubrication theory for highly compressible porous media (e. g., snow) where one can generate lift forces that are several orders of magnitude greater than in classical lubrication theory. Herein we report the first measurements of the pore pressures generated on the time scale of skiing or snowboarding to verify the hypothesis in F. We then extend the F theory to long slender planing surfaces which lie outside the range of validity of the lubrication approximation and, include inertia effects. We derive a new simplified equation for downhill skiing or snowboarding which also describes both edging and turning maneuvers. For the case where there is no edging or turning, we obtain numerical solutions of this equation for snowboarding and analytical asymptotic solutions for skiing. The new experimental and theoretical approach presented herein and the previous F theory have laid the foundation for understanding the mechanism of lift generation in downhill skiing and snowboarding on fresh snow.

  10. Lift-based paddling in diving grebe.

    PubMed

    Johansson, L C; Lindhe Norberg, U M

    2001-05-01

    To examine the hydrodynamic propulsion mechanism of a diving great crested grebe (Podiceps cristatus), the three-dimensional kinematics was determined by digital analysis of sequential video images of dorsal and lateral views. During the acceleration phase of this foot-propelled bird, the feet move through an arc in a plane nearly normal to the bird's line of motion through the water, i.e. the toes move dorsally and medially but not caudally relative to the water. The kinematics of the grebe's lobed feet is different from that in anseriforms, whose feet move in a plane mostly parallel to the bird's line of progress through the water. Our results suggest that the foot-propelled locomotor mechanism of grebes is based primarily on a lift-producing leg and foot stroke, in contrast to the drag-based locomotion assumed previously. We suggest that the lift-based paddling of grebes considerably increases both maximum swimming speed and energetic efficiency over drag-based propulsion. Furthermore, the results implicate a new interpretation of the functional morphology of these birds, with the toes serving as a self-stabilizing multi-slotted hydrofoil during the power phase.

  11. Modification of integrated partial payload lifting assembly

    NASA Technical Reports Server (NTRS)

    Groah, Melodie; Haddock, Michael; Woodworth, Warren

    1986-01-01

    The Integrated Partial Payload Lifting Assembly (IPPLA) is currently used to transport and load experimental payloads into the cargo bay of the Space Shuttle. It is unable to carry the astronaut/passenger tunnel without a structural modification. The purpose of this design is to create a removalbe modification that will allow the IPPLA to lift and carry the passenger tunnel. Modifications evaluated were full-length insert beams which would extend through the existing strongback arms. These beam proposals were eliminated because of high cost and weight. Other proposals evaluated were attachments of cantilever beams to the existing strongback areas. The cantilever proposals reduced cost and weight compared to the full-length modifications. A third method evaluated was to simply make modifications to one side of the IPPLA therefore reducing the materials of the cantilever proposals by 40 percent. The design of the modification selected was completed with two channel beams jointly welded to a centered steel plate. The extension arm modification is inserted into the existing strongback channel beams and bolted into place. Two extension arms are added to one side of the IPPLA to provide the extra length needed to accommodate the passenger tunnel. The center counterbalance will then be offset about 20 inches to center gravity and therefore maintain horizontal status. The extension arm modification was selected because of minimum cost, low weight, and minimal installation time.

  12. Method for calculating lift distributions for unswept wings with flaps or ailerons by use of nonlinear section lift data

    NASA Technical Reports Server (NTRS)

    Sivells, James C; Westrick, Gertrude C

    1952-01-01

    A method is presented which allows the use of nonlinear section lift data in the calculation of the spanwise lift distribution of unswept wings with flaps or ailerons. This method is based upon lifting line theory and is an extension to the method described in NACA rep. 865. The mathematical treatment of the discontinuity in absolute angle of attack at the end of the flap or aileron involves the use of a correction factor which accounts for the inability of a limited trigonometric series to represent adequately the spanwise lift distribution. A treatment of the apparent discontinuity in maximum section lift coefficient is also described. Simplified computing forms containing detailed examples are given for both symmetrical and asymmetrical lift distributions. A few comparisons of calculated characteristics with those obtained experimentally are also presented.

  13. High-Lift Systems on Commercial Subsonic Airliners

    NASA Technical Reports Server (NTRS)

    Rudolph, Peter K. C.

    1996-01-01

    The early breed of slow commercial airliners did not require high-lift systems because their wing loadings were low and their speed ratios between cruise and low speed (takeoff and landing) were about 2:1. However, even in those days the benefit of high-lift devices was recognized. Simple trailing-edge flaps were in use, not so much to reduce landing speeds, but to provide better glide-slope control without sideslipping the airplane and to improve pilot vision over the nose by reducing attitude during low-speed flight. As commercial-airplane cruise speeds increased with the development of more powerful engines, wing loadings increased and a real need for high-lift devices emerged to keep takeoff and landing speeds within reasonable limits. The high-lift devices of that era were generally trailing-edge flaps. When jet engines matured sufficiently in military service and were introduced commercially, airplane speed capability had to be increased to best take advantage of jet engine characteristics. This speed increase was accomplished by introducing the wing sweep and by further increasing wing loading. Whereas increased wing loading called for higher lift coefficients at low speeds, wing sweep actually decreased wing lift at low speeds. Takeoff and landing speeds increased on early jet airplanes, and, as a consequence, runways worldwide had to be lengthened. There are economical limits to the length of runways; there are safety limits to takeoff and landing speeds; and there are speed limits for tires. So, in order to hold takeoff and landing speeds within reasonable limits, more powerful high-lift devices were required. Wing trailing-edge devices evolved from plain flaps to Fowler flaps with single, double, and even triple slots. Wing leading edges evolved from fixed leading edges to a simple Krueger flap, and from fixed, slotted leading edges to two- and three-position slats and variable-camber (VC) Krueger flaps. The complexity of high-lift systems probably

  14. Sensorimotor Memory Biases Weight Perception During Object Lifting

    PubMed Central

    van Polanen, Vonne; Davare, Marco

    2015-01-01

    When lifting an object, the brain uses visual cues and an internal object representation to predict its weight and scale fingertip forces accordingly. Once available, tactile information is rapidly integrated to update the weight prediction and refine the internal object representation. If visual cues cannot be used to predict weight, force planning relies on implicit knowledge acquired from recent lifting experience, termed sensorimotor memory. Here, we investigated whether perception of weight is similarly biased according to previous lifting experience and how this is related to force scaling. Participants grasped and lifted series of light or heavy objects in a semi-randomized order and estimated their weights. As expected, we found that forces were scaled based on previous lifts (sensorimotor memory) and these effects increased depending on the length of recent lifting experience. Importantly, perceptual weight estimates were also influenced by the preceding lift, resulting in lower estimations after a heavy lift compared to a light one. In addition, weight estimations were negatively correlated with the magnitude of planned force parameters. This perceptual bias was only found if the current lift was light, but not heavy since the magnitude of sensorimotor memory effects had, according to Weber’s law, relatively less impact on heavy compared to light objects. A control experiment tested the importance of active lifting in mediating these perceptual changes and showed that when weights are passively applied on the hand, no effect of previous sensory experience is found on perception. These results highlight how fast learning of novel object lifting dynamics can shape weight perception and demonstrate a tight link between action planning and perception control. If predictive force scaling and actual object weight do not match, the online motor corrections, rapidly implemented to downscale forces, will also downscale weight estimation in a proportional manner

  15. Levator plate upward lift and levator muscle strength

    PubMed Central

    Rostaminia, Ghazaleh; Peck, Jennifer; Quiroz, Lieschen; Shobeiri, S. Abbas

    2016-01-01

    Objective The aim of study was to compare digital palpation with the levator plate lift measured by endovaginal and transperineal dynamic ultrasound. Methods Dynamic transperineal and endovaginal ultrasound were performed as part of multicompartmental pelvic floor functional assessment. Patients were instructed to perform Kegels while a probe captured the video clip of the levator plate movement at rest and during contraction in 2D mid-sagittal posterior view. We measured the distance between the levator plate and the probe on endovaginal ultrasound as well as the distance between the levator plate and the gothic arch of the pubis in transperineal ultrasound. The change in diameter (lift) and a levator plate lift ratio (lift / rest) x 100) were calculated. Pelvic floor muscle strength was assessed by digital palpation and divided into functional and non-functional groups using the Modified Oxford Scale (MOS). Mean differences in levator plate upward lifts were compared by MOS score using student t-tests and analysis of variance (ANOVA). Results 74 women were available for analysis. The mean age was 55 (SD±11.9). When measured by vaginal dynamic ultrasound, mean values of the lift and lift/rest ratio increased with increasing MOS score (ANOVA p=0.09 and p=0.04, respectively). When MOS scores were categorized to represent non-functional (MOS 0-1) and functional (MOS 2-5) muscle strength groups, the mean values of the lift (3.2 mm vs. 4.6 mm, p=0.03) and lift/rest ratio (13% vs 20%, p=0.01) were significantly higher in women with functional muscle strength. All patients with ≥ 30% lift detected by vaginal ultrasound had functional muscle strength. Conclusions Greater levator plate lift ratio detected by dynamic endovaginal ultrasound was associated with higher muscle strength as determined by MOS. This novel measurement can be incorporated into ultrasound evaluation of the levator ani function. PMID:26333568

  16. AFC-Enabled Simplified High-Lift System Integration Study

    NASA Technical Reports Server (NTRS)

    Hartwich, Peter M.; Dickey, Eric D.; Sclafani, Anthony J.; Camacho, Peter; Gonzales, Antonio B.; Lawson, Edward L.; Mairs, Ron Y.; Shmilovich, Arvin

    2014-01-01

    The primary objective of this trade study report is to explore the potential of using Active Flow Control (AFC) for achieving lighter and mechanically simpler high-lift systems for transonic commercial transport aircraft. This assessment was conducted in four steps. First, based on the Common Research Model (CRM) outer mold line (OML) definition, two high-lift concepts were developed. One concept, representative of current production-type commercial transonic transports, features leading edge slats and slotted trailing edge flaps with Fowler motion. The other CRM-based design relies on drooped leading edges and simply hinged trailing edge flaps for high-lift generation. The relative high-lift performance of these two high-lift CRM variants is established using Computational Fluid Dynamics (CFD) solutions to the Reynolds-Averaged Navier-Stokes (RANS) equations for steady flow. These CFD assessments identify the high-lift performance that needs to be recovered through AFC to have the CRM variant with the lighter and mechanically simpler high-lift system match the performance of the conventional high-lift system. Conceptual design integration studies for the AFC-enhanced high-lift systems were conducted with a NASA Environmentally Responsible Aircraft (ERA) reference configuration, the so-called ERA-0003 concept. These design trades identify AFC performance targets that need to be met to produce economically feasible ERA-0003-like concepts with lighter and mechanically simpler high-lift designs that match the performance of conventional high-lift systems. Finally, technical challenges are identified associated with the application of AFC-enabled highlift systems to modern transonic commercial transports for future technology maturation efforts.

  17. Utilities plan fish lifts for Susquehanna River Dams

    SciTech Connect

    Not Available

    1993-02-01

    Pennsylvania Power Light Co., Baltimore Gas Electric Co., and Metropolitan Edison Co. will install fish lifts at three dams on the Susquehanna River to aid the spawning of American shad. The utilities estimate the lifts will cost a total of $15 million. PP L will install two lifts at its 108-MW Holtwood Dam, according to the utility's Bob Domermuth, a project scientist. One will be located at the spillway and the second in the tailrace. The two lifts will cost approximately $8 million. At the 417-MW Safe Harbor Dam, which PP L and BG E jointly own, one lift costing $5 million to $6 million will be built on the west side of the powerhouse. Met Ed will install a lift at its 20-MW York Haven Dam, the farthest upstream, at a cost of $3 million. Lifts at Holtwood and Safe Harbor will be completed in time for the spring 1997 shad run; York Haven's passage is to be completed no later than the spring of the year 2000. In 1991, Philadelphia Electric Co. completed a lift at its 512-MW Conowingo Dam, the first dam shad encounter as they swim upstream from the ocean. The utilities agreed with state and federal fish and wildlife agencies to build the lifts, after a decade of studying shad population and rebuilding stocks. Although the agreement is only in draft form, the utilities have begun studying fish movement to determine the best lift designs. While American shad is the species targeted by the effort, the lifts will open the river to all species, Comermuth said. The utilities also are preparing a bid package soliciting design and construction proposals.

  18. Current Status of NASA's Heavy Lift Plans

    NASA Technical Reports Server (NTRS)

    Creech, Steve

    2010-01-01

    Numerous studies since the Apollo Program of the 1960s have highlighted the benefits of - and the need for - a national heavy lift launch capability to support human exploration, science, national security, and commercial development of space. NASA's most recent and most refined effort to develop that heavy lift capability is the Ares V. Ares V is a key element of NASA's Constellation Program. It s overall goal s part of approved national space policy is to retire the Space Shuttle and develop its successor, complete the International Space Station, and resume human exploration beyond low Earth orbit (LEO), beginning with exploration of the Moon as a step to other destinations in the Solar System. Ares V s first role is that of cargo vehicle to carry a lunar lander into Earth orbit, rendezvous with astronauts launched on the smaller Ares I crew launch vehicle, and perform the trans lunar injection (TLI) mission to send the mated crew and lander vehicles to the Moon. The design reference missions (DRMs) envisioned for it also include direct lunar cargo flights and a human Mars mission. Although NASA's priority from the start of the Constellation Program to the present has been development of the Ares I and Orion crew vehicle to replace the retiring Shuttle fleet, the Ares team has made significant progress in understanding the performance, design trades, technology needs, mission scenarios, ground and flight operations, cost, and other factors associated with heavy lift development. The current reference configuration was selected during the Lunar Capabilities Concept Review (LCCR) in fall 2008. That design has served since then as a point of departure for further refinements and trades among five participating NASA field centers. Ares V development to date has benefited from progress on the Ares I due to commonality between the vehicles. The Ares I first stage completed a successful firing of a 5-segment solid rocket motor. The Ares I-X launch Numerous studies

  19. Heavy Loads and Lifting are Risk Factors for Musculoskeletal Injuries in Deployed Female Soldiers.

    PubMed

    Roy, Tanja C; Piva, Sara R; Christiansen, Bryan C; Lesher, Jonathan D; Doyle, Peter M; Waring, Rachel M; Irrgang, James J; Moore, Charity G; Brininger, Teresa L; Sharp, Marilyn A

    2016-11-01

    The purpose of this prospective cohort study was to investigate physical, occupational, and psychosocial risk factors for musculoskeletal injuries (MSI) in deployed female soldiers. Before deployment, participants completed performance testing and surveys and after deployment an additional survey detailing occupational demands and MSI. Data analyzed found 57/160 (36%) suffered 78 MSI. In unadjusted analyses, these factors increased the relative risk (RR, 95% confidence interval) of injury: wearing an average load >10% body weight (BW) (RR = 2.00, 1.31-4.57), wearing an average load >1 hour (RR = 2.44, 1.30-4.57), heaviest load worn >15% BW (RR = 5.83, 1.51-22.50), wearing a backpack (RR = 1.82, 1.23-2.80), wearing body armor >1 hour (RR = 1.62, 1.002-2.62), lifting objects weighing above 22.68 kg (RR = 1.96, 1.08-3.57), lifting objects one to two times (RR = 1.73, 1.002-2.97), carrying objects >7.62 m (RR = 2.01, 1.19-3.42), and Y Balance composite score <95.23 (RR = 1.71, 1.13-2.60). The best logistic regression model predicting MSI was average load as % BW (odds ratio [OR] = 1.04, 1.01-1.07), heaviest load as % BW (OR = 1.03, 1.01-1.05), average repetitions lifting objects (OR = 1.07, 1.01-1.14), and sit-ups (OR = 0.93, 0.93-0.99). Results indicate that risk of MSI in deployed female soldiers increased with heavier equipment worn and more repetitious lifting, although more performing more sit-ups on the fitness test before deployment reduced the risk.

  20. UF{sub 6} cylinder lifting equipment enhancements

    SciTech Connect

    Hortel, J.M.

    1991-12-31

    This paper presents numerous enhancements that have been made to the Portsmouth lifting equipment to ensure the safe handling of cylinders containing liquid uranium hexafluoride (UF{sub 6}). The basic approach has been to provide redundancy to all components of the lift path so that any one component failure would not cause the load to drop or cause any undesirable movement.

  1. 49 CFR 178.970 - Bottom lift test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... conducted for the qualification of all Large Packagings design types designed to be lifted from the base. (b... permissible gross mass, the load being evenly distributed. (c) Test method. All Large Packaging design types... Large Packagings design types designed to be lifted from the base, there may be no permanent...

  2. View of lifting girder and tower support superstructure on Tensaw ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of lifting girder and tower support superstructure on Tensaw River Bridge, looking north west. Showing rope connectors and welding cut from tower removal. - Tensaw River Lift Bridge, Spanning Tensaw River at U.S. Highway 90, Mobile, Mobile County, AL

  3. Successful implementation of ceiling-mounted lift systems.

    PubMed

    Weinel, Diana

    2008-01-01

    Rehabilitation nurses are well aware of the risks for musculoskeletal injuries related to patient handling tasks. Repetitive lifting, turning, and repositioning of patients with mobility limitations can take a toll on the nurse. This article chronicles integration of ceiling lift technology for patient-handling tasks into nursing practice on a spinal cord injury inpatient unit.

  4. A Lighter-Than-Air System Enhanced with Kinetic Lift

    NASA Technical Reports Server (NTRS)

    Spearman, M. Leroy

    2002-01-01

    A hybrid airship system is proposed in which the buoyant lift is enhanced with kinetic lift. The airship would consist of twin hulls in which the buoyant gas is contained. The twin hulls would be connected in parallel by a wing having an airfoil contour. In forward flight, the wing would provide kinetic lift that would add to the buoyant lift. The added lift would permit a greater payload/altitude combination than that which could be supported by the buoyant lift alone. The buoyant lift is a function of the volume of gas and the flight altitude. The kinetic lift is a function of the airfoil section, wing area, and the speed and altitude of flight. Accordingly there are a number of factors that can be manipulated to arrive at a particular design. Particular designs could vary from small, lightweight systems to very large, heavy-load systems. It will be the purpose of this paper to examine the sensitivity of such a design to the several variables. In addition, possible uses made achievable by such a hybrid system will be suggested.

  5. 49 CFR 37.165 - Lift and securement use.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 1 2012-10-01 2012-10-01 false Lift and securement use. 37.165 Section 37.165 Transportation Office of the Secretary of Transportation TRANSPORTATION SERVICES FOR INDIVIDUALS WITH DISABILITIES (ADA) Provision of Service § 37.165 Lift and securement use. (a) This section applies to...

  6. 49 CFR 37.165 - Lift and securement use.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 1 2011-10-01 2011-10-01 false Lift and securement use. 37.165 Section 37.165 Transportation Office of the Secretary of Transportation TRANSPORTATION SERVICES FOR INDIVIDUALS WITH DISABILITIES (ADA) Provision of Service § 37.165 Lift and securement use. Link to an amendment published at...

  7. 49 CFR 37.165 - Lift and securement use.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 1 2014-10-01 2014-10-01 false Lift and securement use. 37.165 Section 37.165 Transportation Office of the Secretary of Transportation TRANSPORTATION SERVICES FOR INDIVIDUALS WITH DISABILITIES (ADA) Provision of Service § 37.165 Lift and securement use. (a) This section applies to...

  8. Similarity of different lifting techniques in trunk muscular synergies.

    PubMed

    Mirakhorlo, Mojtaba; Azghani, Mahmood Reza

    2015-01-01

    Lifting is known to be a major reason for musculoskeletal injuries. In this way, lifting has a crucial effect on human musculoskeletal system and intensity of this impact depends slightly on the selection of techniques. Underlying mechanisms by which trunk muscles are executed during performing lifting are central to biomechanical study of lifting techniques. In the current study, the trunk muscular control mechanisms of lifting are investigated using the synergetic control analysis. Non-negative matrix factorization has been used to extract trunk muscles synergies from their activities - which are computed by a previously validated musculoskeletal model - during different lifting techniques aimed to investigate motor control strategies. Three lifting techniques are considered; stoop, squat and semi-squat. Three synergies account for variety among muscle activation of trunk muscles with related VAF (Variability Account For) of over 95%. Trunk muscle synergy weightings and related time-varying coefficients are calculated for each kind of lifting techniques considering three synergies. Paired correlation coefficients between muscle synergies are all greater than 0.91 (P < 0.05) suggesting that trunk muscle synergies are similar for examined techniques in spite of their kinematic diversity. This similarity can be a result of their common ultimate goal. The acquired results also elucidate the mechanisms of muscle activation patterns that can be exploited in future studies and ergonomic interventions.

  9. 14 CFR 25.699 - Lift and drag device indicator.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Lift and drag device indicator. 25.699 Section 25.699 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION....699 Lift and drag device indicator. (a) There must be means to indicate to the pilots the position...

  10. Solid state lift for micrometering in a fuel injector

    DOEpatents

    Milam, David M.; Carroll, Thomas S.; Lee, Chien-Chang; Miller, Charles R.

    2002-01-01

    A fuel injector performs main fuel injection by raising fuel pressure in a nozzle chamber to lift a check valve member to a fully open position, and performs preinjection or microinjection by operating a solid state motor to lift the check valve member a much smaller distance.

  11. 34. ALTERNATE DESIGN USING BATTERED AND UNSHEATHED LIFT TOWERS, WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. ALTERNATE DESIGN USING BATTERED AND UNSHEATHED LIFT TOWERS, WITH DEEPENED TRUSS ON LIFT SPAN. Pen-and-ink drawing by project architect Alfred Eichler, 1934. - Sacramento River Bridge, Spanning Sacramento River at California State Highway 275, Sacramento, Sacramento County, CA

  12. Optimization of the lithographic performance for lift-off processing

    NASA Astrophysics Data System (ADS)

    Yin, Wenyan; Fillmore, Ward; Dempsey, Kevin J.

    1999-06-01

    Shipley MICROPOSIT LOL lift-off technology exploits a develop rate difference in a resist, LOL1000 bi-layer system to generate retrograde profiles. This is an enabling technology for 'additive' processing. Deposition follows lithography and the resist is then 'lifted off' to generate a patterned layer.

  13. Vortex lift research: Early contributions and some current challenges

    NASA Technical Reports Server (NTRS)

    Polhamus, E. C.

    1986-01-01

    The trend towards slender wing aircraft for supersonic cruise and the early chronology of research directed towards their vortex-lift characteristics are briefly reviewed. An overview of the development of vortex-lift theoretical methods is presented, and some current computational and experimental challenges related to the viscous flow aspects of this vortex flow are discussed.

  14. Atlantis is lifted from its transporter in the VAB

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- This closeup shows the workers, standing on lifts, who are checking the bolts on the apparatus holding the orbiter Atlantis. The orbiter will be rotated and lifted into high bay 1 where it will be stacked with its external tank and solid rocket boosters. Space Shuttle Atlantis is scheduled to launch on mission STS-104 in early July.

  15. 49 CFR 37.165 - Lift and securement use.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Lift and securement use. 37.165 Section 37.165 Transportation Office of the Secretary of Transportation TRANSPORTATION SERVICES FOR INDIVIDUALS WITH DISABILITIES (ADA) Provision of Service § 37.165 Lift and securement use. (a) This section applies to...

  16. 14 CFR 25.699 - Lift and drag device indicator.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Lift and drag device indicator. 25.699 Section 25.699 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION....699 Lift and drag device indicator. (a) There must be means to indicate to the pilots the position...

  17. Force-controlled lifting of molecular wires

    NASA Astrophysics Data System (ADS)

    Fournier, N.; Wagner, C.; Weiss, C.; Temirov, R.; Tautz, F. S.

    2011-07-01

    Lifting a single molecular wire off the surface with a combined frequency-modulated atomic force and tunneling microscope it is possible to monitor the evolution of both the wire configuration and the contacts simultaneously with the transport conductance experiment. In particular, critical points where individual bonds to the surface are broken and instabilities where the wire is prone to change its contact configuration can be identified in the force gradient and dissipation responses of the junction. This additional mechanical information can be used to unambiguously determine the conductance of a true molecular wire, that is, of a molecule that is contacted via a pointlike “crocodile clip” to each of the electrodes but is otherwise free.

  18. Separation of blood cells using hydrodynamic lift

    NASA Astrophysics Data System (ADS)

    Geislinger, T. M.; Eggart, B.; Braunmüller, S.; Schmid, L.; Franke, T.

    2012-04-01

    Using size and deformability as intrinsic biomarkers, we separate red blood cells (RBCs) from other blood components based on a repulsive hydrodynamic cell-wall-interaction. We exploit this purely viscous lift effect at low Reynolds numbers to induce a lateral migration of soft objects perpendicular to the streamlines of the fluid, which closely follows theoretical prediction by Olla [J. Phys. II 7, 1533, (1997)]. We study the effects of flow rate and fluid viscosity on the separation efficiency and demonstrate the separation of RBCs, blood platelets, and solid microspheres from each other. The method can be used for continuous and label-free cell classification and sorting in on-chip blood analysis.

  19. Insulation Test Cryostat with Lift Mechanism

    NASA Technical Reports Server (NTRS)

    Fesmire, James E. (Inventor); Dokos, Adam G. (Inventor)

    2016-01-01

    A multi-purpose, cylindrical thermal insulation test apparatus is used for testing insulation materials and systems of materials using a liquid boil-off calorimeter system for absolute measurement of the effective thermal conductivity (k-value) and heat flux of a specimen material at a fixed environmental condition (cold-side temperature, warm-side temperature, vacuum pressure level, and residual gas composition). An inner vessel receives liquid with a normal boiling point below ambient temperature, such as liquid nitrogen, enclosed within a vacuum chamber. A cold mass assembly, including upper and lower guard chambers and middle test vessel, is suspended from a lid of the vacuum canister. Each of the three chambers is filled and vented through a single feedthrough. All fluid and instrumentation feedthroughs are mounted and suspended from a top domed lid allowing easy removal of the cold mass. A lift mechanism allows manipulation of the cold mass assembly and insulation test article.

  20. Transport properties of epitaxial lift off films

    NASA Technical Reports Server (NTRS)

    Mena, R. A.; Schacham, S. E.; Young, P. G.; Haugland, E. J.; Alterovitz, S. A.

    1993-01-01

    Transport properties of epitaxially lifted-off (ELO) films were characterized using conductivity, Hall, and Shubnikov-de Haas measurements. A 10-15 percent increase in the 2D electron gas concentration was observed in these films as compared with adjacent conventional samples. We believe this result to be caused by a backgating effect produced by a charge build up at the interface of the ELO film and the quartz substrate. This increase results in a substantial decrease in the quantum lifetime in the ELO samples, by 17-30 percent, but without a degradation in carrier mobility. Under persistent photoconductivity, only one subband was populated in the conventional structure, while in the ELO films the population of the second subband was clearly visible. However, the increase of the second subband concentration with increasing excitation is substantially smaller than anticipated due to screening of the backgating effect.

  1. Vector lifting schemes for stereo image coding.

    PubMed

    Kaaniche, Mounir; Benazza-Benyahia, Amel; Pesquet-Popescu, Béatrice; Pesquet, Jean-Christophe

    2009-11-01

    Many research efforts have been devoted to the improvement of stereo image coding techniques for storage or transmission. In this paper, we are mainly interested in lossy-to-lossless coding schemes for stereo images allowing progressive reconstruction. The most commonly used approaches for stereo compression are based on disparity compensation techniques. The basic principle involved in this technique first consists of estimating the disparity map. Then, one image is considered as a reference and the other is predicted in order to generate a residual image. In this paper, we propose a novel approach, based on vector lifting schemes (VLS), which offers the advantage of generating two compact multiresolution representations of the left and the right views. We present two versions of this new scheme. A theoretical analysis of the performance of the considered VLS is also conducted. Experimental results indicate a significant improvement using the proposed structures compared with conventional methods.

  2. DWPF Air Lift Pump Life Cycle Evaluation

    SciTech Connect

    IMRICH, KENNETH

    2004-03-15

    The Defense Waste Processing Facility (DWPF) air lift pump was successfully tested at Clemson for 72 days of operation. It provided sufficient flow to pump molten glass without excessive foaming. Slurry feeding also did not reveal any problems with cold cap stability. Metallurgically the Inconel 690 (690) portions of the pump were in excellent condition with no visual evidence of degradation even in high flow regions, i.e., air/melt interface and glass discharge regions. Spinel deposits, which completely covered the air passage on one side, were found at the inlet of each platinum/rhodium (Pt/Rh) nozzle. Although the deposits were extensive, they were porous and did not have an adverse effect on the operation of the pump. The technique used to secure the platinum/rhodium nozzles to the 690 housing appeared to be adequate with only minor oxidation of the 690 threads and glass in-leakage. Galvanic attack was observed where the nozzle formed a seal with the 690. Significant pitting of the 690 was observed around the entire seal. Intergranular cracking of the Pt/Rh alloy was extensive but the cause could not be determined. Testing would be required to evaluate the degradation. Data from the performance test and the metallurgical evaluation are being used to modify the design of the first DWPF production air lift pump. It will be fabricated entirely from 690 and use argon as the purge gas. It is intended to have a service life of 6 months. Recommendations for insertion, operation, and inspection of the pump are also included in this report. Performance data collected from the operation of the production pump will be used to further optimize the design. Laboratory exposure tests should also be performed to evaluate the galvanic effect between platinum/rhodium and 690.

  3. Correlation of Puma airloads: Lifting-line and wake calculation

    NASA Technical Reports Server (NTRS)

    Bousman, William G.; Young, Colin; Gilbert, Neil; Toulmay, Francois; Johnson, Wayne; Riley, M. J.

    1989-01-01

    A cooperative program undertaken by organizations in the United States, England, France, and Australia has assessed the strengths and weaknesses of four lifting-line/wake methods and three CFD methods by comparing their predictions with the data obtained in flight trials of a research Puma. The Puma was tested in two configurations: a mixed bladed rotor with instrumented rectangular tip blades, and a configuration with four identical swept tip blades. The results are examined of the lifting-line predictions. The better lifting-line methods show good agreement with lift at the blade tip for the configuration with four swept tips; the moment is well predicted at 0.92 R, but deteriorates outboard. The predictions for the mixed bladed rotor configuration range from fair to good. The lift prediction is better for the swept tip blade than for the rectangular tip blade, but the reasons for this cannot be determined because of the unmodeled effects of the mixed bladed rotor.

  4. Refined AFC-Enabled High-Lift System Integration Study

    NASA Technical Reports Server (NTRS)

    Hartwich, Peter M.; Shmilovich, Arvin; Lacy, Douglas S.; Dickey, Eric D.; Scalafani, Anthony J.; Sundaram, P.; Yadlin, Yoram

    2016-01-01

    A prior trade study established the effectiveness of using Active Flow Control (AFC) for reducing the mechanical complexities associated with a modern high-lift system without sacrificing aerodynamic performance at low-speed flight conditions representative of takeoff and landing. The current technical report expands on this prior work in two ways: (1) a refined conventional high-lift system based on the NASA Common Research Model (CRM) is presented that is more representative of modern commercial transport aircraft in terms of stall characteristics and maximum Lift/Drag (L/D) ratios at takeoff and landing-approach flight conditions; and (2) the design trade space for AFC-enabled high-lift systems is expanded to explore a wider range of options for improving their efficiency. The refined conventional high-lift CRM (HL-CRM) concept features leading edge slats and slotted trailing edge flaps with Fowler motion. For the current AFC-enhanced high lift system trade study, the refined conventional high-lift system is simplified by substituting simply-hinged trailing edge flaps for the slotted single-element flaps with Fowler motion. The high-lift performance of these two high-lift CRM variants is established using Computational Fluid Dynamics (CFD) solutions to the Reynolds-Averaged Navier-Stokes (RANS) equations. These CFD assessments identify the high-lift performance that needs to be recovered through AFC to have the CRM variant with the lighter and mechanically simpler high-lift system match the performance of the conventional high-lift system. In parallel to the conventional high-lift concept development, parametric studies using CFD guided the development of an effective and efficient AFC-enabled simplified high-lift system. This included parametric trailing edge flap geometry studies addressing the effects of flap chord length and flap deflection. As for the AFC implementation, scaling effects (i.e., wind-tunnel versus full-scale flight conditions) are addressed

  5. Circulation control technology applied to propulsive high lift systems

    NASA Technical Reports Server (NTRS)

    Englar, R. J.; Nichols, J. H., Jr.; Harris, M. J.; Eppel, J. C.; Shovlin, M. D.

    1984-01-01

    Technology developed for the Circulation Control Wing high-lift system has been extended to augment lift by entraining and redirecting engine thrust. Ejecting a thin jet sheet tangentially over a small curved deflecting surface adjacent to the slipstream of a turbofan engine causes the slipstream to flow around that deflecting surface. The angle of deflection is controlled pneumatically by varying the momentum of the thin jet sheet. The downward momentum of the slipstream enhances wing lift. This concept of pneumatically deflecting the slipstream has been applied to an upper surface blowing high-lift system and to a thrust deflecting system. The capability of the pneumatic upper surface blowing system was demonstrated in a series of investigations using a wind tunnel model and the NASA Quiet Short-haul Research Aircraft (QSRA). Full-scale thrust deflections greater than 90 deg were achieved. This mechanically simple system can provide increased maneuverability, heavy lift or overload capability, or short takeoff and landing performance.

  6. General equilibrium characteristics of a dual-lift helicopter system

    NASA Technical Reports Server (NTRS)

    Cicolani, L. S.; Kanning, G.

    1986-01-01

    The equilibrium characteristics of a dual-lift helicopter system are examined. The system consists of the cargo attached by cables to the endpoints of a spreader bar which is suspended by cables below two helicopters. Results are given for the orientation angles of the suspension system and its internal forces, and for the helicopter thrust vector requirements under general circumstances, including nonidentical helicopters, any accelerating or static equilibrium reference flight condition, any system heading relative to the flight direction, and any distribution of the load to the two helicopters. Optimum tether angles which minimize the sum of the required thrust magnitudes are also determined. The analysis does not consider the attitude degrees of freedom of the load and helicopters in detail, but assumes that these bodies are stable, and that their aerodynamic forces in equilibrium flight can be determined independently as functions of the reference trajectory. The ranges of these forces for sample helicopters and loads are examined and their effects on the equilibrium characteristics are given parametrically in the results.

  7. A contrarotative aircraft lifting concept for a future Titan mission

    NASA Astrophysics Data System (ADS)

    Duquesnay, P.; Coustenis, A.; Lebreton, J.-P.; Tavel, J.

    2008-09-01

    Titan has a thick and cold atmosphere (surface pressure 1.5 bar and surface temperature 94 K) and the surface gravity is about 1/7 of Earth's. Surface wind velocities are low. These unique characteristics make Titan's atmosphere an ideal place for an helicopter type of aircraft with vertical lift capability. Here we present a conceptual idea of a Titan helicopter designed as a student project. Two cases have been considered: a 100-kg helicopter and a 2-kg one. The concept is based on a contra-rotating double rotor. The device would be powered by a combination of rechargeable batteries and a low-power radioisotope source. The double rotor and the body of the helicopter would be protected by a mesh structure. It would carry a science payload at its base that would allow surface sampling and analysis each time it would land. During landing, it would also recharge its batteries to allow flying to the next stop. The concept has been inspired by studying modelaircraft- making devices. Various concepts developed for industrial and military applications have also been a source of inspiration. The following web sites were consulted: • www.onera.fr/conferences/drones • www.aurora.aero • www.sikorsky.com/sik/index.asp • www.microdrones.com The poster will present a preliminary design of the device. Its capability to contribute to the exploration of Titan's surface will be illustrated.

  8. Numerical simulation of a powered-lift landing, tracking flow features using overset grids, and simulation of high lift devices on a fighter-lift-and-control wing

    NASA Technical Reports Server (NTRS)

    Chawla, Kalpana

    1993-01-01

    Attached as appendices to this report are documents describing work performed on the simulation of a landing powered-lift delta wing, the tracking of flow features using overset grids, and the simulation of flaps on the Wright Patterson Lab's fighter-lift-and-control (FLAC) wing. Numerical simulation of a powered-lift landing includes the computation of flow about a delta wing at four fixed heights as well as a simulated landing, in which the delta wing descends toward the ground. Comparison of computed and experimental lift coefficients indicates that the simulations capture the qualitative trends in lift-loss encountered by thrust-vectoring aircraft operating in ground effect. Power spectra of temporal variations of pressure indicate computed vortex shedding frequencies close to the jet exit are in the experimentally observed frequency range; the power spectra of pressure also provide insights into the mechanisms of lift oscillations. Also, a method for using overset grids to track dynamic flow features is described and the method is validated by tracking a moving shock and vortices shed behind a circular cylinder. Finally, Chimera gridding strategies were used to develop pressure coefficient contours for the FLAC wing for a Mach no. of 0.18 and Reynolds no. of 2.5 million.

  9. 75 FR 31803 - Notice of Issuance of Final Determination Concerning a Lift Unit for an Overhead Patient Lift System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-04

    ... in the final determination that Sweden is the country of origin of the lift unit for purposes of U.S..., the lift unit, assembled in Sweden from parts made in a non-TAA country and in Sweden, is substantially transformed in Sweden, such that Sweden is the country of origin of the finished article...

  10. Effects of a Belt on Intra-Abdominal Pressure during Weight Lifting.

    DTIC Science & Technology

    1988-03-01

    potentially injurious b compressive forces on spinal discs during lifting. To investigate the effects of a standard lifting belt on lAP and lifting mechanics...injurious compressive forces on spinal discs during lifting. To investigate the effects of a standard lifting belt on IAP and lifting ! mechanics...pressure has been estimated to reduce spinal disc compressive forces by up to 40% (6,9,12,14). High intra-abdominal pressures have been recorded during

  11. Effect of lift-to-drag ratio in pilot rating of the HL-20 landing task

    NASA Technical Reports Server (NTRS)

    Jackson, E. B.; Rivers, Robert A.; Bailey, Melvin L.

    1993-01-01

    A man-in-the-loop simulation study of the handling qualities of the HL-20 lifting-body vehicle was made in a fixed-base simulation cockpit at NASA Langley Research Center. The purpose of the study was to identify and substantiate opportunities for improving the original design of the vehicle from a handling qualities and landing performance perspective. Using preliminary wind-tunnel data, a subsonic aerodynamic model of the HL-20 was developed. This model was adequate to simulate the last 75-90 s of the approach and landing. A simple flight-control system was designed and implemented. Using this aerodynamic model as a baseline, visual approaches and landings were made at several vehicle lift-to-drag ratios. Pilots rated the handling characteristics of each configuration using a conventional numerical pilot-rating scale. Results from the study showed a high degree of correlation between the lift-to-drag ratio and pilot rating. Level 1 pilot ratings were obtained when the L/D ratio was approximately 3.8 or higher.

  12. Effect of lift-to-drag ratio in pilot rating of the HL-20 landing task

    NASA Astrophysics Data System (ADS)

    Jackson, E. B.; Rivers, Robert A.; Bailey, Melvin L.

    1993-10-01

    A man-in-the-loop simulation study of the handling qualities of the HL-20 lifting-body vehicle was made in a fixed-base simulation cockpit at NASA Langley Research Center. The purpose of the study was to identify and substantiate opportunities for improving the original design of the vehicle from a handling qualities and landing performance perspective. Using preliminary wind-tunnel data, a subsonic aerodynamic model of the HL-20 was developed. This model was adequate to simulate the last 75-90 s of the approach and landing. A simple flight-control system was designed and implemented. Using this aerodynamic model as a baseline, visual approaches and landings were made at several vehicle lift-to-drag ratios. Pilots rated the handling characteristics of each configuration using a conventional numerical pilot-rating scale. Results from the study showed a high degree of correlation between the lift-to-drag ratio and pilot rating. Level 1 pilot ratings were obtained when the L/D ratio was approximately 3.8 or higher.

  13. Delta-wing function of webbed feet gives hydrodynamic lift for swimming propulsion in birds.

    PubMed

    Johansson, L Christoffer; Norberg, R Ake

    2003-07-03

    Most foot-propelled swimming birds sweep their webbed feet backwards in a curved path that lies in a plane aligned with the swimming direction. When the foot passes the most outward position, near the beginning of the power stroke, a tangent to the foot trajectory is parallel with the line of swimming and the foot web is perpendicular to it. But later in the stroke the foot takes an increasingly transverse direction, swinging towards the longitudinal axis of the body. Here we show that, early in the power stroke, propulsion is achieved mostly by hydrodynamic drag on the foot, whereas there is a gradual transition into lift-based propulsion later in the stroke. At the shift to lift mode, the attached vortices of the drag-based phase turn into a starting vortex, shed at the trailing edge, and into spiralling leading-edge vortices along the sides of the foot. Because of their delta shape, webbed feet can generate propulsive forces continuously through two successive modes, from drag at the beginning of the stroke, all the way through the transition to predominantly lift later in the stroke.

  14. Influence of heel lifts during standing in children with motor disorders.

    PubMed

    Bartonek, Asa; Lidbeck, Cecilia M; Pettersson, Robert; Weidenhielm, Eva Broström; Eriksson, Marie; Gutierrez-Farewik, Elena

    2011-07-01

    Heel wedges may influence standing posture but how and to what extent are unknown. Thirty-two children with motor disorders - 16 with arthrogryposis multiplex congenita (AMC) and 16 with cerebral palsy (CP) - and 19 control children underwent a three-dimensional motion analysis. Unassisted standing during 20s with shoes only and with heel lifts of 10, 20 and 30mm heights was recorded in a randomized order. The more weight-bearing limb or the right limb was chosen for analysis. In both the AMC and CP groups, significant changes were seen between various heel lifts in ankle, knee and pelvis, and in the control group in the ankle only. Between orthosis and non-orthosis users significant differences were seen between different heel lift conditions in ankle, knee and trunk in the AMC group and in the ankle in the CP group. Pelvis position changed toward less anterior tilt with increasing heel height, but led to increasing knee flexion in most of the children, except for the AMC Non-Ort group. Children with AMC and CP represent different motor disorders, but the heel wedges had a similar influence on pelvis, hip and knee positions in all children with CP and in the AMC orthosis users. A challenge is to apply heel heights adequate to each individual's orthopaedic and neurologic conditions to improve biomechanical alignment with respect to all body segments.

  15. EMG Processing Based Measures of Fatigue Assessment during Manual Lifting

    PubMed Central

    Marhaban, M. H.; Abdullah, A. R.

    2017-01-01

    Manual lifting is one of the common practices used in the industries to transport or move objects to a desired place. Nowadays, even though mechanized equipment is widely available, manual lifting is still considered as an essential way to perform material handling task. Improper lifting strategies may contribute to musculoskeletal disorders (MSDs), where overexertion contributes as the highest factor. To overcome this problem, electromyography (EMG) signal is used to monitor the workers' muscle condition and to find maximum lifting load, lifting height and number of repetitions that the workers are able to handle before experiencing fatigue to avoid overexertion. Past researchers have introduced several EMG processing techniques and different EMG features that represent fatigue indices in time, frequency, and time-frequency domain. The impact of EMG processing based measures in fatigue assessment during manual lifting are reviewed in this paper. It is believed that this paper will greatly benefit researchers who need a bird's eye view of the biosignal processing which are currently available, thus determining the best possible techniques for lifting applications. PMID:28303251

  16. 29 CFR 1926.453 - Aerial lifts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... body belts are not acceptable as part of a personal fall arrest system. The use of a body belt in a tethering system or in a restraint system is acceptable and is regulated under § 1926.502(e). (vi) Boom and... (b)(2)(viii) of this section. (3) Electrical tests. All electrical tests shall conform to...

  17. 29 CFR 1926.453 - Aerial lifts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... body belts are not acceptable as part of a personal fall arrest system. The use of a body belt in a tethering system or in a restraint system is acceptable and is regulated under § 1926.502(e). (vi) Boom and... (b)(2)(viii) of this section. (3) Electrical tests. All electrical tests shall conform to...

  18. 29 CFR 1926.453 - Aerial lifts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... body belts are not acceptable as part of a personal fall arrest system. The use of a body belt in a tethering system or in a restraint system is acceptable and is regulated under § 1926.502(e). (vi) Boom and... (b)(2)(viii) of this section. (3) Electrical tests. All electrical tests shall conform to...

  19. 29 CFR 1926.453 - Aerial lifts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... body belts are not acceptable as part of a personal fall arrest system. The use of a body belt in a tethering system or in a restraint system is acceptable and is regulated under § 1926.502(e). (vi) Boom and... (b)(2)(viii) of this section. (3) Electrical tests. All electrical tests shall conform to...

  20. 29 CFR 1926.453 - Aerial lifts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... body belts are not acceptable as part of a personal fall arrest system. The use of a body belt in a tethering system or in a restraint system is acceptable and is regulated under § 1926.502(e). (vi) Boom and... (b)(2)(viii) of this section. (3) Electrical tests. All electrical tests shall conform to...

  1. Lift-through head and swivel

    SciTech Connect

    Baldridge, M.G.

    1991-02-26

    This patent describes a cementing head apparatus. It comprises: a container body; a first cylindrical release plunger; a spherical releasing ball; and upper and lower cementing lines. This patent also describes a swivel for use with a well. It comprises: a swivel body; a swivel mandrel; bearing means; first and second seal means; and an inspection passage means.

  2. Lifting kernel-based sprite codec

    NASA Astrophysics Data System (ADS)

    Dasu, Aravind R.; Panchanathan, Sethuraman

    2000-12-01

    The International Standards Organization (ISO) has proposed a family of standards for compression of image and video sequences, including the JPEG, MPEG-1 and MPEG-2. The latest MPEG-4 standard has many new dimensions to coding and manipulation of visual content. A video sequence usually contains a background object and many foreground objects. Portions of this background may not be visible in certain frames due to the occlusion of the foreground objects or camera motion. MPEG-4 introduces the novel concepts of Video Object Planes (VOPs) and Sprites. A VOP is a visual representation of real world objects with shapes that need not be rectangular. Sprite is a large image composed of pixels belonging to a video object visible throughout a video segment. Since a sprite contains all parts of the background that were at least visible once, it can be used for direct reconstruction of the background Video Object Plane (VOP). Sprite reconstruction is dependent on the mode in which it is transmitted. In the Static sprite mode, the entire sprite is decoded as an Intra VOP before decoding the individual VOPs. Since sprites consist of the information needed to display multiple frames of a video sequence, they are typically much larger than a single frame of video. Therefore a static sprite can be considered as a large static image. In this paper, a novel solution to address the problem of spatial scalability has been proposed, where the sprite is encoded in Discrete Wavelet Transform (DWT). A lifting kernel method of DWT implementation has been used for encoding and decoding sprites. Modifying the existing lifting scheme while maintaining it to be shape adaptive results in a reduced complexity. The proposed scheme has the advantages of (1) avoiding the need for any extensions to image or tile border pixels and is hence superior to the DCT based low latency scheme (used in the current MPEG-4 verification model), (2) mapping the in place computed wavelet coefficients into a zero

  3. Effect of floor slope on submaximal lifting capacity.

    PubMed

    Wickel, Eric E; Reiser, Raoul F

    2004-01-01

    In order to reduce injuries due to lifting a box from the floor, maximal acceptable weights of lift (MAWL) have been established for a level surface. However, an inclined surface condition may be encountered on a jobsite. The purpose of this investigation was to determine if facing up or down a sloped surface affects MAWL. After obtaining university-approved informed consent, 20 apparently healthy men (age = 22.4 +/- 1.4 yrs) and 20 women (age = 22.0 +/- 1.9 yrs) determined floor to knuckle height MAWL using the psychophysical approach. After a familiarization day, two data collection days were completed with the uphill and level (+20, +10 and 0 degree) or downhill and level (-20, -10 and 0 degree) lifting capacities determined. A cadence of four lifts/min was used after starting with an unknown load that participants adjusted after each lift. No differences (p > 0.05) in level MAWL were found on the downhill day compared to the uphill day. While the men lifted significantly more than the women in every condition (p < 0.001), no differences were found across the lifting conditions (p > 0.05). The men averaged a MAWL of 24.7 kg across the five conditions (average standard deviation (SD) = 7.4 kg), the women averaged 14.8 kg (average SD = 3.1 kg). While these findings would suggest no changes in lifting guidelines for a sloped surface within 20 degrees of level, other factors such as lifting technique and the stress placed on the low-back should be examined to assess risk of injury in these different conditions.

  4. Lift evaluation of a two-dimensional pitching flat plate

    NASA Astrophysics Data System (ADS)

    Xia, X.; Mohseni, K.

    2013-09-01

    Several previous experimental and theoretical studies have shown that a leading edge vortex (LEV) on an airfoil or wing can provide lift enhancement. In this paper, unsteady two-dimensional (2D) potential flow theory is employed to model the flow field of a pitching flat plate wing. A multi-vortices model is developed to model both the leading edge and trailing edge vortices (TEVs), which offers improved accuracy compared with using only single vortex at each separation location. The lift is obtained by integrating the unsteady Blasius equation. It is found that the motion of vortices contributes significantly to the overall aerodynamic force on the flat plate. A Kutta-like condition is used to determine the vortex intensity and location at the leading edge for large angle of attack cases; however, it is proposed to relax this condition for small angle of attack cases and apply a 2D shear layer model to calculate the circulation of the new added vortex. The results of the simulation are then compared with classical numerical, theoretical, and experimental data for canonical unsteady flat plat problems. Good agreement with these data is observed. Moreover, these results suggested that the leading edge vortex shedding for small angles of attack should be modeled differently than that for large angles of attack. Finally, the results of vortex motion vs. lift indicate that the slow convection of the LEV creates less negative lift while the rapid shedding of the TEV creates more positive lift. The difference between these two contributions of lift results in a total positive lift that lasts for about two chord-length travel of the plate. It is therefore concluded that the lift enhancement during the LEV "stabilization" above the wing is a combined effect of both the LEV and TEV motion. This also provides the insights for future active flow control of micro aerial vehicles (MAVs) that the formation and shedding process of LEVs and TEVs can be manipulated to provide lift

  5. Heavy Lift Launch Capability with a New Hydrocarbon Engine

    NASA Technical Reports Server (NTRS)

    Threet, Grady E., Jr.; Holt, James B.; Philips, Alan D.; Garcia, Jessica A.

    2011-01-01

    The Advanced Concepts Office at NASA's George C. Marshall Space Flight Center was tasked to define the thrust requirement of a new liquid oxygen rich staged combustion cycle hydrocarbon engine that could be utilized in a launch vehicle to meet NASA s future heavy lift needs. Launch vehicle concepts were sized using this engine for different heavy lift payload classes. Engine out capabilities for one of the heavy lift configurations were also analyzed for increased reliability that may be desired for high value payloads or crewed missions. The applicability for this engine in vehicle concepts to meet military and commercial class payloads comparable to current ELV capability was also evaluated.

  6. Hydrofoils: optimum lift-off speed for sailboats.

    PubMed

    Baker, R M

    1968-12-13

    For a hydrofoil sailboat there is a unique optimum lift-off speed. Before this speed is reached, if there are no parasitic vertical hydrofoil appendages, the submerged or partially submerged hydrofoils increase drag and degrade performance. As soon as this speed is reached and the hydrofoils are fully and promptly deployed, the performance of a hydrofoil-borne craft is significantly improved. At speeds exceeding optimum lift-off speed, partially submerged hydrofoils impair performance if there is no significant effect of loading on the hydrofoil lift-to-drag ratio.

  7. Two-dimensional unsteady lift problems in supersonic flight

    NASA Technical Reports Server (NTRS)

    Heaslet, Max A; Lomax, Harvard

    1949-01-01

    The variation of pressure distribution is calculated for a two-dimensional supersonic airfoil either experiencing a sudden angle-of-attack change or entering a sharp-edge gust. From these pressure distributions the indicial lift functions applicable to unsteady lift problems are determined for two cases. Results are presented which permit the determination of maximum increment in lift coefficient attained by an unrestrained airfoil during its flight through a gust. As an application of these results, the minimum altitude for safe flight through a specific gust is calculated for a particular supersonic wing of given strength and wing loading.

  8. Weight and cost estimating relationships for heavy lift airships

    NASA Technical Reports Server (NTRS)

    Gray, D. W.

    1979-01-01

    Weight and cost estimating relationships, including additional parameters that influence the cost and performance of heavy-lift airships (HLA), are discussed. Inputs to a closed loop computer program, consisting of useful load, forward speed, lift module positive or negative thrust, and rotors and propellers, are examined. Detail is given to the HLA cost and weight program (HLACW), which computes component weights, vehicle size, buoyancy lift, rotor and propellar thrust, and engine horse power. This program solves the problem of interrelating the different aerostat, rotors, engines and propeller sizes. Six sets of 'default parameters' are left for the operator to change during each computer run enabling slight data manipulation without altering the program.

  9. Space Shuttle Discovery lifts off successfully

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Clouds of exhaust fill Launch Pad 39B as Space Shuttle Discovery lifts off at 2:19 p.m. EST Oct. 29 on mission STS-95. Making his second voyage into space after 36 years is Payload Specialist John H. Glenn Jr., senator from Ohio. Other crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Payload Specialist Chiaki Mukai, (M.D., Ph.D.), with the National Space Development Agency of Japan (NASDA), Mission Specialist Stephen K. Robinson, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), and Mission Specialist Scott E. Parazynski. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Discovery is expected to return to KSC at 11:49 a.m. EST on Nov. 7.

  10. Space Shuttle Discovery lifts off successfully

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Against a curtain of blue sky, the Space Shuttle Discovery spews clouds of exhaust as it lifts off from Launch Pad 39B at 2:19 p.m. EST Oct. 29 on the 9-day mission STS-95. On board Discovery are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Payload Specialist Chiaki Mukai, (M.D., Ph.D.), with the National Space Development Agency of Japan (NASDA), Payload Specialist John H. Glenn Jr., senator from Ohio, Mission Specialist Stephen K. Robinson, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), and Mission Specialist Scott E. Parazynski. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Discovery is expected to return to KSC at 11:49 a.m. EST on Nov. 7.

  11. Space Shuttle Discovery lifts off successfully

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Clouds of exhaust seem to fill the marsh near Launch Pad 39B as Space Shuttle Discovery lifts off at 2:19 p.m. EST Oct. 29 on mission STS-95. Making his second voyage into space after 36 years is Payload Specialist John H. Glenn Jr., senator from Ohio. Other crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Payload Specialist Chiaki Mukai, (M.D., Ph.D.), with the National Space Development Agency of Japan (NASDA), Mission Specialist Stephen K. Robinson, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), and Mission Specialist Scott E. Parazynski. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Discovery is expected to return to KSC at 11:49 a.m. EST on Nov. 7.

  12. Space Shuttle Discovery lifts off successfully

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Clouds of exhaust and blazing light fill Launch Pad 39B as Space Shuttle Discovery lifts off at 2:19 p.m. EST Oct. 29 on mission STS-95. Making his second voyage into space after 36 years is Payload Specialist John H. Glenn Jr., senator from Ohio. Other crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Payload Specialist Chiaki Mukai, (M.D., Ph.D.), with the National Space Development Agency of Japan (NASDA), Mission Specialist Stephen K. Robinson, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), and Mission Specialist Scott E. Parazynski. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Discovery is expected to return to KSC at 11:49 a.m. EST on Nov. 7.

  13. Space Shuttle Discovery lifts off successfully

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Framed by the foliage of the Canaveral National Sea Shore, Space Shuttle Discovery soars through bright blue skies as it lifts off from Launch Pad 39B at 2:19 p.m. EST Oct. 29 on mission STS-95. Making his second voyage into space after 36 years is Payload Specialist John H. Glenn Jr., senator from Ohio. Other crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Payload Specialist Chiaki Mukai, (M.D., Ph.D.), with the National agency for Space Development (NASDA), Mission Specialist Stephen K. Robinson, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), and Mission Specialist Scott E. Parazynski. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Discovery is expected to return to KSC at 11:49 a.m. EST on Nov. 7.

  14. Space Shuttle Discovery lifts off successfully

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Space Shuttle Discovery clears Launch Pad 39B at 2:19 p.m. EST Oct. 29 as it lifts off on mission STS-95. Making his second voyage into space after 36 years is Payload Specialist John H. Glenn Jr., senator from Ohio. Other crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Payload Specialist Chiaki Mukai, (M.D., Ph.D.), with the National Space Development Agency of Japan (NASDA), Mission Specialist Stephen K. Robinson, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), and Mission Specialist Scott E. Parazynski. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Discovery is expected to return to KSC at 11:49 a.m. EST on Nov. 7.

  15. Space Shuttle Discovery lifts off successfully

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Thousands of gallons of water released as part of the sound suppression system at the launch pad create clouds of steam and exhaust as Space Shuttle Discovery lifts off from Launch Pad 39B at 2:19 p.m. EST Oct. 29 on mission STS-95. Making his second voyage into space after 36 years is Payload Specialist John H. Glenn Jr., senator from Ohio. Other crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Payload Specialist Chiaki Mukai, (M.D., Ph.D.), with the National Space Development Agency of Japan (NASDA), Mission Specialist Stephen K. Robinson, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), and Mission Specialist Scott E. Parazynski. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Discovery is expected to return to KSC at 11:49 a.m. EST on Nov. 7.

  16. Space Shuttle Discovery lifts off successfully

    NASA Technical Reports Server (NTRS)

    1998-01-01

    As if sprung from the rolling exhaust clouds below, Space Shuttle Discovery shoots into the heavens over the blue Atlantic Ocean from Launch Pad 39B on mission STS-95. Lifting off at 2:19 p.m. EST, Discovery carries a crew of six, including Payload Specialist John H. Glenn Jr., senator from Ohio, who is making his second voyage into space after 36 years. Other crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Payload Specialist Chiaki Mukai, (M.D., Ph.D.), with the National Space Development Agency of Japan (NASDA), Mission Specialist Stephen K. Robinson, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), and Mission Specialist Scott E. Parazynski. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Discovery is expected to return to KSC at 11:49 a.m. EST on Nov. 7.

  17. Dignitaries Await Apollo 11 Lift Off

    NASA Technical Reports Server (NTRS)

    1969-01-01

    From the right, NASA administrator, Dr. Thomas O. Paine talks with U.S. Vice President Spiro T. Agnew while awaiting the launch of Saturn V (AS-506) that carried the Apollo 11 spacecraft to the Moon for man's historic first landing on the lunar surface. At center is astronaut William Anders, a member of the first crew to orbit the moon during the Apollo 8 mission. At left is Lee B. James, director of Program Management at the NASA Marshall Space Flight Center (MSFC) where the Saturn V was developed. The craft lifted off from launch pad 39 at Kennedy Space Flight Center (KSC) on July 16, 1969. The moon bound crew included astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (M) pilot. The mission finalized with splashdown in the Pacific Ocean on July 24, 1969. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  18. Insulation Test Cryostat with Lift Mechanism

    NASA Technical Reports Server (NTRS)

    Fesmire, James E. (Inventor); Dokos, Adam G. (Inventor)

    2014-01-01

    A multi-purpose, cylindrical thermal insulation test apparatus is used for testing insulation materials and systems of materials using a liquid boil-off calorimeter system for absolute measurement of the effective thermal conductivity (k-value) and heat flux of a specimen material at a fixed environmental condition (cold-side temperature, warm-side temperature, vacuum pressure level, and residual gas composition). The apparatus includes an inner vessel for receiving a liquid with a normal boiling point below ambient temperature, such as liquid nitrogen, enclosed within a vacuum chamber. A cold mass assembly, including the upper and lower guard chambers and a middle test vessel, is suspended from a lid of the vacuum canister. Each of the three chambers is filled and vented through a single feedthrough. All fluid and instrumentation feedthroughs are mounted and suspended from a top domed lid to allow easy removal of the cold mass. A lift mechanism allows manipulation of the cold mass assembly and insulation test article.

  19. Mars Reconnaissance Orbiter (MRO) Lifts Off

    NASA Technical Reports Server (NTRS)

    2005-01-01

    At 7:43 a.m. EDT an Atlas V launch vehicle, 19 stories tall, with a two-ton Mars Reconnaissance Orbiter (MRO) on top, lifts off the pad on Launch Complex 41 at Cape Canaveral Air Force Station in Florida. All systems performed nominally for NASA's first launch of an Atlas V on an interplanetary mission. MRO established radio contact with controllers 61 minutes after launch and within four minutes of separation from the upper stage. Initial contact came through an antenna at the Japan Aerospace Exploration Agency's Uchinoura Space Center in southern Japan. Mars is 72 million miles from Earth today, but the spacecraft will travel more than four times that distance on its outbound-arc trajectory to intercept the red planet on March 10, 2006. The orbiter carries six scientific instruments for examining the surface, atmosphere and subsurface of Mars in unprecedented detail from low orbit. NASA expects to get several times more data about Mars from MRO than from all previous Martian missions combined. Researchers will use the instruments to learn more about the history and distribution of Mars' water. That information will improve understanding of planetary climate change and will help guide the quest to answer whether Mars ever supported life. The orbiter will also evaluate potential landing sites for future missions.

  20. Microfluidic particle sorting utilizing inertial lift force.

    PubMed

    Nieuwstadt, Harm A; Seda, Robinson; Li, David S; Fowlkes, J Brian; Bull, Joseph L

    2011-02-01

    A simple passive microfluidic device that continuously separates microparticles is presented. Its development is motivated by the need for specific size micro perfluorocarbon (PFC) droplets to be used for a novel gas embolotherapy method. The device consists of a rectangular channel in which inertial lift forces are utilized to separate particles in lateral distance. At the entrance of the channel, particles are introduced at the center by focusing the flow from a center channel with flow from two side channels. Downstream, large particles will occupy a lateral equilibrium position in shorter axial distance than small particles. At the exit of the channel, flow containing large particles is separated from flow containing small particles. It is shown that 10.2-μm diameter microspheres can be separated from 3.0-μm diameter microspheres with a separation efficiency of 69-78% and a throughput in the order of 2 ·10⁴ particles per minute. Computational Fluid Dynamics (CFD) calculations were done to calculate flow fields and verify theoretical particle trajectories. Theory underlying this research shows that higher separation efficiencies for very specific diameter cut-off are possible. This microfluidic channel design has a simple structure and can operate without external forces which makes it feasible for lab-on-a-chip (LOC) applications.

  1. Equations of motion of slung load systems with results for dual lift

    NASA Technical Reports Server (NTRS)

    Cicolani, Luigi S.; Kanning, Gerd

    1990-01-01

    General simulation equations are derived for the rigid body motion of slung load systems. These systems are viewed as consisting of several rigid bodies connected by straight-line cables or links. The suspension can be assumed to be elastic or inelastic, both cases being of interest in simulation and control studies. Equations for the general system are obtained via D'Alembert's principle and the introduction of generalized velocity coordinates. Three forms are obtained. Two of these generalize previous case-specific results for single helicopter systems with elastic or inelastic suspensions. The third is a new formulation for inelastic suspensions. It is derived from the elastic suspension equations by choosing the generalized coordinates so as to separate motion due to cable stretching from motion with invariant cable lengths. The result is computationally more efficient than the conventional formulation, and is readily integrated with the elastic suspension formulation and readily applied to the complex dual lift and multilift systems. Equations are derived for dual lift systems. Three proposed suspension arrangements can be integrated in a single equation set. The equations are given in terms of the natural vectors and matrices of three-dimensional rigid body mechanics and are tractable for both analysis and programming.

  2. Extensions of the concept of suction analogy to prediction of vortex lift effect

    NASA Technical Reports Server (NTRS)

    Lan, C. E.

    1986-01-01

    Flow field data for a double delta wing at low speed were used to determine the location of a vortex action point. The result was found to be consistent with what was determined for a delta wing. In supersonic flow, the action point location was determined empirically. For a wing with rounded leading edges, an assumption for initial vortex separation was shown to be equivalent to initial leading edge bubble separation for airfoils. A theoretical formulation by the section analogy to determine the delayed vortex separation on a cambered wing with rounded leading edges was presented. The method of suction analogy was further shown to be applicable to predicting the body vortex lift.

  3. Physiological, Biomechanical, and Medical Aspects of Lifting and Repetitive Lifting: A Review

    DTIC Science & Technology

    1983-11-01

    Cardiorespiratory and metabolic studies demonstrate that VO 2’ HR, VE, and ratings of perceived exertion increase in a linear manner with increases in the...8217’ ,.""-"’.- ".’- "- .. ....-,-,.,.. .,.... *- - .- -, - - pressures the normal cardiovascular relationships expected from rhythmic exercise may not apply. In this study 18 male subjects (36.7 + 11 yrs...causal relationship between back injuries and lifting (3). Several survey studies have been conducted but suffer from a plethora of problems as

  4. Unsteady flow field, lift and drag measurements of impulsively started elliptic cylinder and circular-arc airfoil

    NASA Astrophysics Data System (ADS)

    Izumi, K.; Kuwahara, K.

    1983-07-01

    Developments of flow fields around and forces acting on an elliptic cylinder and a circular-arc airfoil with high angle of attack after impulsive start were experimentally investigated using a water tank. Special attention is called to elucidate the correlation between the unsteady forces acting on the body and the corresponding flow patterns. Except the initial instant, the peaks of the lift are observed when the large, separated vortex from the leading edge is traped on the leeward surface of the body, while the troughs of it coincide to the period when these vortex is shed from the trailing edge. The variations of the drag are found to be very small compared with those of the lift. These results are succesfully compared with the corresponding computation by discrete-vortex approximation.

  5. Oyster shell conveyor used to lift shells from the dock ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Oyster shell conveyor used to lift shells from the dock into the receiving room housed in the 1965 concrete block addition. - J.C. Lore Oyster House, 14430 Solomons Island Road, Solomons, Calvert County, MD

  6. 15. OVERALL VIEW OF UPSTREAM FACE OF LIFT GATE SECTION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. OVERALL VIEW OF UPSTREAM FACE OF LIFT GATE SECTION WITH TAINTER GATE SECTION OF SPILLWAY TO THE LEFT. VIEW TO SOUTHWEST. - Starved Rock Locks & Dam, Illinois Waterway River mile 231, Peru, La Salle County, IL

  7. 14 CFR 25.697 - Lift and drag devices, controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... automatic positioning or load limiting device, without further attention by the pilots. (b) Each lift and... response to the operation of the control and the characteristics of the automatic positioning or...

  8. 14 CFR 25.697 - Lift and drag devices, controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... automatic positioning or load limiting device, without further attention by the pilots. (b) Each lift and... response to the operation of the control and the characteristics of the automatic positioning or...

  9. Detail view of fourth level platform winch used to lift ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of fourth level platform winch used to lift platform segments away from the Shuttle assembly during testing. - Marshall Space Flight Center, Saturn V Dynamic Test Facility, East Test Area, Huntsville, Madison County, AL

  10. 4. DETAIL VIEW OF LIFTING GEAR ON MULE AND RACK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. DETAIL VIEW OF LIFTING GEAR ON MULE AND RACK ATTACHMENT BOOKS, LOOKING EAST - Nine Mile Hydroelectric Development, Powerhouse, State Highway 291 along Spokane River, Nine Mile Falls, Spokane County, WA

  11. Wind tunnel study of slot spoilers for direct lift control

    NASA Technical Reports Server (NTRS)

    Andrisani, D., II; Gentry, G. L., Jr.; Stickle, J. W.

    1972-01-01

    An investigation was conducted in a 300-mph 7- by 10- foot tunnel to obtain data for a slot spoiler direct lift control system. Slot spoilers are believed to have advantages over flap-type direct lift control (DLC) systems because of the small amount of power required for actuation. These tests, run at a Reynolds number of 1,400,000 showed that up to 78 percent of the lift due to flap deflection could be spoiled by opening several spanwise slots within the flaps. For a given lift change the drag change was significantly less than that which would be obtained by a variable flap DLC system. A nozzle-shaped slot was the most effective of the slot shapes tested.

  12. Physiological effects of back belt wearing during asymmetric lifting.

    PubMed

    Bobick, T G; Belard, J L; Hsiao, H; Wassell, J T

    2001-12-01

    This study investigated the effect of wearing a back belt on subjects' heart rate, oxygen consumption, systolic and diastolic blood pressure, and respiratory frequency during asymmetric repetitive lifting. Thirty subjects with materials-handling experience utilized three different belts (ten subjects per belt). Subjects completed six 30-min lifting sessions--three while wearing a belt and three without. Data analyses were conducted on the second, third, and fourth lifting periods. A 9.4 kg box, without handles, was lifted 3 times/min, starting at 10 cm above the floor, ending at 79 cm, with a 60 degree twist to the right. Data analysis indicates that belt-wearing did not have a significant effect on the overall mean values for heart rate, systolic and diastolic blood pressure, and respiratory frequency. Belt-wearing had a significant effect on the overall mean oxygen consumption of the subjects.

  13. 58. AIR PRESSURIZATION TANK BEING LIFTED INTO PLACE ON THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    58. AIR PRESSURIZATION TANK BEING LIFTED INTO PLACE ON THE VAL BRIDGE STRUCTURE AT ISLIP CANYON, April 9, 1948. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  14. PRECAST CONCRETE WALL PANELS ARE LIFTED INTO PLACE ON MTR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PRECAST CONCRETE WALL PANELS ARE LIFTED INTO PLACE ON MTR STEEL FRAME STRUCTURE. INL NEGATIVE NO. 1330. Unknown Photographer, 1/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  15. Energetics of oscillating lifting surfaces using integral conservation laws

    NASA Technical Reports Server (NTRS)

    Ahmadi, Ali R.; Widnall, Sheila E.

    1987-01-01

    The energetics of oscillating flexible lifting surfaces in two and three dimensions is calculated by the use of integral conservation laws in inviscid incompressible flow for general and harmonic transverse oscillations. Total thrust is calculated from the momentum theorem and energy loss rate due to vortex shedding in the wake from the principle of conservation of mechanical energy. Total power required to maintain the oscillations and hydrodynamic efficiency are also determined. In two dimensions, the results are obtained in closed form. In three dimensions, the distribution of vorticity on the lifting surface is also required as input to the calculations. Thus, unsteady lifting-surface theory must be used as well. The analysis is applicable to oscillating lifting surfaces of arbitrary planform, aspect ratio, and reduced frequency and does not require calculation of the leading-edge thrust.

  16. View northwest, wharf A, sheet steel bulkhead, steel lift tower ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View northwest, wharf A, sheet steel bulkhead, steel lift tower - U.S. Coast Guard Sandy Hook Station, Western Docking Structure, West of intersection of Canfield Road & Hartshorne Drive, Highlands, Monmouth County, NJ

  17. Gearbox fault diagnosis using adaptive redundant Lifting Scheme

    NASA Astrophysics Data System (ADS)

    Hongkai, Jiang; Zhengjia, He; Chendong, Duan; Peng, Chen

    2006-11-01

    Vibration signals acquired from a gearbox usually are complex, and it is difficult to detect the symptoms of an inherent fault in a gearbox. In this paper, an adaptive redundant lifting scheme for the fault diagnosis of gearboxes is developed. It adopts data-based optimisation algorithm to lock on to the dominant structure of the signal, and well reveal the transient components of the vibration signal in time domain. Both lifting scheme and adaptive redundant lifting scheme are applied to analyse the experimental signal from a gearbox with wear fault and the practical vibration signal from a large air compressor. The results confirm that adaptive redundant lifting scheme is quite effective in extracting impulse and modulation feature components from the complex background.

  18. Efficient assessment of exposure to manual lifting using company data.

    PubMed

    van der Beek, Allard J; Mathiassen, Svend Erik; Burdorf, Alex

    2013-05-01

    The objective of this study, based on an extensive dataset on manual materials handling during scaffolding, was to explore whether routinely collected company data can be used to estimate exposure to manual lifting. The number of manual lifts of scaffold parts while constructing/dismantling scaffolds was well predicted by the number of scaffolders in the team and the type of worksite, in combination with company data of either the number of scaffold parts or the scaffold volume. The proportion of explained variance in the number of lifts ranged from 77% to 92%, depending on the variables in the model. Data on scaffold parts and scaffold volume can easily be obtained from the company's administration, since this is its usual paperwork supporting logistics and customer invoicing, respectively. We conclude that company data can be a promising source of information for ergonomic practitioners and researchers, to support assessment of manual lifting in scaffolding.

  19. 32. DETAIL OF CONCRETE TOWER AND SLIDE GATE LIFTING GEARS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. DETAIL OF CONCRETE TOWER AND SLIDE GATE LIFTING GEARS ON HEADWORKS OF DEER FLAT LOW LINE CANAL ON LOWER EMBANKMENT. VIEW TO SOUTHEAST. - Boise Project, Deer Flat Embankments, Lake Lowell, Nampa, Canyon County, ID

  20. 13. DETAIL OF CONCRETE TOWER AND SLIDE GATE LIFTING GEARS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. DETAIL OF CONCRETE TOWER AND SLIDE GATE LIFTING GEARS ON HEADWORKS OF DEER FLAT NAMPA CANAL ON UPPER EMBANKMENT. VIEW TO SOUTHWEST. - Boise Project, Deer Flat Embankments, Lake Lowell, Nampa, Canyon County, ID

  1. DETAIL VIEW OF BRIDGE CRANE USED TO LIFT DOMED LIDS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF BRIDGE CRANE USED TO LIFT DOMED LIDS OF THE ALTITUDE CHAMBERS, FACING SOUTHWEST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  2. 17. Photograph of Original Drawing of Direct Loading Lifting Car ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. Photograph of Original Drawing of Direct Loading Lifting Car Dumper, Drawing No. 64460, dated 9/30/20 (original in possession of CSX Transportation, Inc.) - Port Covington Terminal, Coal Pier No. 4, Baltimore, Independent City, MD

  3. Lift-Off Processing and Superconducting Circuit Coherence

    NASA Astrophysics Data System (ADS)

    Quintana, C. M.; Megrant, A.; Dunsworth, A.; Chen, Zijun; Chiaro, B.; Barends, R.; Campbell, B.; Chen, Yu; Jeffrey, E.; Kelly, J.; Mutus, J. Y.; Neill, C.; O'Malley, P. J. J.; Roushan, P.; Sank, D.; Wenner, J.; White, T. C.; Cleland, A. N.; Martinis, John M.

    2014-03-01

    As superconducting circuit coherence continues to increase, careful attention must be paid to device fabrication techniques. Substantial evidence points to dielectric loss from two-level state defects in thin amorphous interfacial regions as a limiting relaxation mechanism for superconducting qubits. Transmon qubits have traditionally been fabricated using lift-off aluminum deposited together with their Josephson junctions; however, improved coherence times have recently been found in transmons which use lift-off metal for only a small fraction of the qubit. To better understand this improvement and predict any remaining limits imposed by the incorporation of lift-off, we characterize the increased loss found in coplanar waveguide resonators formed with lift-off metal. We vary surface treatment such as oxygen ashing and ion milling, and study the effects of double-angle evaporation, e-beam resist residue, and surface roughness on resonator quality factors.

  4. Transonic wind-tunnel tests of a lifting parachute model

    NASA Technical Reports Server (NTRS)

    Foughner, J. T., Jr.; Reed, J. F.; Wynne, E. C.

    1976-01-01

    Wind-tunnel tests have been made in the Langley transonic dynamics tunnel on a 0.25-scale model of Sandia Laboratories' 3.96-meter (13-foot), slanted ribbon design, lifting parachute. The lifting parachute is the first stage of a proposed two-stage payload delivery system. The lifting parachute model was attached to a forebody representing the payload. The forebody was designed and installed in the test section in a manner which allowed rotational freedom about the pitch and yaw axes. Values of parachute axial force coefficient, rolling moment coefficient, and payload trim angles in pitch and yaw are presented through the transonic speed range. Data are presented for the parachute in both the reefed and full open conditions. Time history records of lifting parachute deployment and disreefing tests are included.

  5. 13. TURNING DEVICE SUSPENDED FROM, AND LIFTED BY THE OVERHEAD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. TURNING DEVICE SUSPENDED FROM, AND LIFTED BY THE OVERHEAD CRANE SYSTEM EAST OF No. 1 PRESS. - U.S. Steel Homestead Works, Press Shop No. 1, Along Monongahela River, Homestead, Allegheny County, PA

  6. 14. CLOSEUP OF TURNING DEVICE SUSPENDED FROM, AND LIFTED BY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. CLOSE-UP OF TURNING DEVICE SUSPENDED FROM, AND LIFTED BY THE OVERHEAD CRANE SYSTEM EAST OF No. 1 PRESS. - U.S. Steel Homestead Works, Press Shop No. 1, Along Monongahela River, Homestead, Allegheny County, PA

  7. 15. Perspective view of bascule and vertical lift spans, each ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Perspective view of bascule and vertical lift spans, each in open position, facing east - Sault Ste. Marie International Railroad Bridge, Spanning Soo Locks at St. Marys Falls Canal, Sault Ste. Marie, Chippewa County, MI

  8. CT gas lift captures last of field reserves

    SciTech Connect

    Tran, T.B.; Miller, J.; Woodell, M.E.; Johnson, H.

    1996-06-01

    Texaco Exploration and Production Inc.`s (TEPI) Brookeland Field in Newton County, Texas, produces from 30, mostly dual-horizontal, wells in the Austin Chalk reservoir. The wells are typically drilled vertically and casing is set to the top of the Austin Chalk at about 10,000 ft. Building at 15{degree}/100 ft, 4,000-ft laterals are drilled to the northwest and southeast to intersect the natural fractures of the Austin Chalk. The horizontal sections of the wellbore are openhole completions that average 700 b/d of oil and 5 MMcfd of gas. Within 1 year of initial production, the wells require compression to sustain flow and conventional gas lift is used when the wells load up with fluid. Typically, when production declines to 200 Mcfd and 100 b/d of fluid, the gas lift injection point is at 8,000 ft and average gas lift usage is 500 Mcfd. Coiled tubing-conveyed artificial lift was suggested, but first other concerns had to be addressed. The long, horizontal lateral sections functioned as a natural gas and fluid separator, resulting in a distinct slug flow pattern. During a 24-hour period, slug flow caused the wells to produce 100% gas or 100% fluid. For cost reasons TEPI chose conventional, field-installed coiled tubing (CT) gas lift equipment over spoolable equipment. Texaco then formed a team alliance with McMurry-Macco Lift Systems and Dowell to evaluate and complete trial wells with coiled tubing gas lift equipment. This paper reviews the case history of the field, the design considerations of the coiled tubing gas lift, and the surface support equipment used.

  9. Civil markets for buoyant heavy-lift vehicles

    NASA Technical Reports Server (NTRS)

    Mettam, P. J.; Hansen, D.; Ardema, M. D.

    1981-01-01

    Worldwide civil markets for heavy lift airships were investigated. Substantial potential market demand was identified for payloads of from 13 to 800 tons. The largest markets appear to be in applications to relieve port congestion, construction of power generating plants, and, most notably, logging. Because of significant uncertainties both in vehicle and market characteristics, further analysis will be necessary to verify the identified market potential of heavy lift airship concepts.

  10. NASA safety standard for lifting devices and equipment

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's minimum safety requirements are established for the design, testing, inspection, maintenance, certification, and use of overhead and gantry cranes (including top running monorail, underhung, and jib cranes), mobile cranes, derrick hoists, and special hoist supported personnel lifting devices (these do not include elevators, ground supported personnel lifts, or powered platforms). Minimum requirements are also addressed for the testing, inspection, and use of Hydra-sets, hooks, and slings. Safety standards are thoroughly detailed.

  11. NASA safety standard for lifting devices and equipment

    NASA Astrophysics Data System (ADS)

    1990-09-01

    NASA's minimum safety requirements are established for the design, testing, inspection, maintenance, certification, and use of overhead and gantry cranes (including top running monorail, underhung, and jib cranes), mobile cranes, derrick hoists, and special hoist supported personnel lifting devices (these do not include elevators, ground supported personnel lifts, or powered platforms). Minimum requirements are also addressed for the testing, inspection, and use of Hydra-sets, hooks, and slings. Safety standards are thoroughly detailed.

  12. Generalizing Lifted Tensor-Product Wavelets to Irregular Polygonal Domains

    SciTech Connect

    Bertram, M.; Duchaineau, M.A.; Hamann, B.; Joy, K.I.

    2002-04-11

    We present a new construction approach for symmetric lifted B-spline wavelets on irregular polygonal control meshes defining two-manifold topologies. Polygonal control meshes are recursively refined by stationary subdivision rules and converge to piecewise polynomial limit surfaces. At every subdivision level, our wavelet transforms provide an efficient way to add geometric details that are expanded from wavelet coefficients. Both wavelet decomposition and reconstruction operations are based on local lifting steps and have linear-time complexity.

  13. Lift augmentation via spanwise tip blowing - A numerical study

    NASA Technical Reports Server (NTRS)

    Childs, R. E.

    1986-01-01

    Numerical simulations of a low aspect ratio wing with and without a spanwise directed jet issuing from the wing tip have been performed. The results show that the tip vortex is displaced outward and upward by the blowing. This gives rise to a local lift augmentation mechanism, vortex lift caused by the vortex core being above the wing, and a global mechanism, the reduction of induced velocities due to greater apparent spin.

  14. Lift and Drag Performance of Odontocete Cetacean Flippers

    DTIC Science & Technology

    2009-01-01

    Cooper et al., 2008). The cross-section of a typical flipper is similar to that of a modern engineered air/ hydrofoil (Fish, 2004; Miklosovic et al., 2004...to modern engineered hydrofoils , which have hydrodynamic properties such as lift coefficient, drag coefficient and associated efficiency. Field...study are differentiated by whether or not their lift curves are linear. An engineered hydrofoil with linear behavior in the non-stall region was also

  15. Moving base simulation of an ASTOVL lift-fan aircraft

    NASA Technical Reports Server (NTRS)

    Chung, William W. Y.; Borchers, Paul F.; Franklin, James A.

    1995-01-01

    Using a generalized simulation model, a moving-base simulation of a lift-fan short takeoff/vertical landing fighter aircraft was conducted on the Vertical Motion Simulator at Ames Research Center. Objectives of the experiment were to (1) assess the effects of lift-fan propulsion system design features on aircraft control during transition and vertical flight including integration of lift fan/lift/cruise engine/aerodynamic controls and lift fan/lift/cruise engine dynamic response, (2) evaluate pilot-vehicle interface with the control system and head-up display including control modes for low-speed operational tasks and control mode/display integration, and (3) conduct operational evaluations of this configuration during takeoff, transition, and landing similar to those carried out previously by the Ames team for the mixed-flow, vectored thrust, and augmentor-ejector concepts. Based on results of the simulation, preliminary assessments of acceptable and borderline lift-fan and lift/cruise engine thrust response characteristics were obtained. Maximum pitch, roll, and yaw control power used during transition, hover, and vertical landing were documented. Control and display mode options were assessed for their compatibility with a range of land-based and shipboard operations from takeoff to cruise through transition back to hover and vertical landing. Flying qualities were established for candidate control modes and displays for instrument approaches and vertical landings aboard an LPH assault ship and DD-963 destroyer. Test pilot and engineer teams from the Naval Air Warfare Center, Boeing, Lockheed, McDonnell Douglas, and the British Defence Research Agency participated in the program.

  16. Atlantis is lifted from its transporter in the VAB

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- In the Vehicle Assembly Building, the orbiter Atlantis is being lifted from a transporter after rolling over from Orbiter Processing Facility bay 3. The orbiter will be raised to a vertical position, rotated and lifted into high bay 1, and stacked with its external tank and solid rocket boosters. Space Shuttle Atlantis is scheduled to launch on mission STS-104 in early July.

  17. Noise of fan designed to reduce stator lift fluctuations

    NASA Technical Reports Server (NTRS)

    Dittmar, J. H.; Woodward, R. P.; Stakolich, E. G.

    1977-01-01

    An existing fan stage was redesigned to reduce stator lift fluctuations and was acoustically tested at three nozzle sizes for reduced noise generation. The lift fluctuations on the stator were reduced by increasing the stator cord, adjusting incidence angles, and adjusting the rotor velocity diagrams. Broadband noise levels were signficantly reduced in the middle to high frequencies. Blade passage tone sound power was not lessened, but decreases in the harmonics were observed. Aerodynamic improvements in both performance and efficiency were obtained.

  18. Profound Impacts of AN Arctic Face Lift

    NASA Astrophysics Data System (ADS)

    Nghiem, Son

    Son Nghiem, son.v.nghiem@jpl.nasa.gov Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, United States The ice cover on the Arctic Ocean has undergone a face lift that removes much of the older and thicker perennial ice and replaces it with the younger and thinner seasonal ice. Although the sea ice cover is a thin skin compared to the depth of the Arctic Ocean, this face lift exerts profound change in the Arctic environment. Here, we present scatterometer remote sensing of Arctic sea ice change and its implication on chemical processes from the ice surface to the troposphere extending into the internal continental land. In the context of a half century change, the extent of perennial ice declines at rate of 0.5 million km2 per decade in the 1970s-1990s while there is no discernable trend in the 1950s-1960s. Abruptly, the rate of decrease has tripled to 1.5 million km2 per decade in the 2000s. A record was set in the reduction of Arctic perennial ice extent in winter 2008. By 1 March 2008, perennial ice extent was reduced by one million km2 compared to that at the same time in 2007. On 1 May 2009, perennial ice extent was reduced to 2.1 million km2 , which is a virtual tie to 2.2 million km2 of perennial ice extent on 1 May 2008 given the uncertainty of ±0.2 million km2 . Although the extent of perennial ice extent is similar, its distribution is quite different, with a significant perennial ice pack in the Beaufort Sea in 2008, and in contrast a large expanse of perennial ice along the Transpolar Drift Stream in 2009. The continuing drastic reduction of perennial ice significantly decreases the overall surface albedo, resulting in enhanced solar heat absorption in spring and summer, which further decreases the Arctic ice pack through the ice-albedo feedback mechanism and ice melt from the underside due to oceanic thermodynamic interactions. Satellite maps of sea ice class distribution show the closely conformation with patterns of

  19. Insulation-Testing Cryostat With Lifting Mechanism

    NASA Technical Reports Server (NTRS)

    Fesmire, James; Dokos, Adam; Scholtens, Brekke; Nagy, Zoltan; Augustynowicz, Stanislaw

    2010-01-01

    The figure depicts selected aspects of an apparatus for testing thermal-insulation materials for cryogenic systems at temperatures and under vacuum or atmospheric conditions representative of those encountered in use. This apparatus, called "Cryostat-100," is based on the established cryogen-boil-off calorimeter method, according to which the amount of heat that passes through an insulation specimen to a cryogenic fluid in a container, and thus the effective thermal conductance of the specimen, is taken to be proportional to the amount of the cryogenic fluid that boils off from the container. The design of Cryostat-100 is based partly on, and incorporates improvements over, the design of a similar prior apparatus called "Cryostat-1" described in "Improved Methods of Testing Cryogenic Insulation Materials" (KSC-12107 & KSC- 12108), NASA Tech Briefs, Vol. 24, No. 12 (December 2000), page 46. The design of Cryostat-100 also incorporates the best features of two other similar prior apparatuses called "Cryostat-2" (also described in the cited prior article) and "Cryostat- 4." Notable among the improvements in Cryostat-100 is the addition of a lifting mechanism that enables safe, rapid, reliable insertion and removal of insulation specimens and facilitates maintenance operations that involve lifting. As in Cryostat-1, the cold mass is a vertical stainless-steel cylindrical vessel subdivided into a larger measurement vessel with smaller thermal-guard vessels at both ends. During operation, all three vessels are kept filled with liquid nitrogen near saturation at ambient pressure (temperature .77.4 K). The cold mass of Cryostat-100 has a length of 1 m and diameter of 168 mm. Each specimen has a corresponding nominal length and inner diameter and a nominal thickness of 25.4 mm. Specimens that are shorter and have thicknesses between 0 and 50 mm are also acceptable. Bulk-fill, foam, clam-shell, multilayer insulation, and layered materials can be tested over a very wide range

  20. Biomechanical simulation of manual lifting using spacetime optimization.

    PubMed

    Chang, C C; Brown, D R; Bloswick, D S; Hsiang, S M

    2001-04-01

    Previous optimization techniques for the prediction of lifting motion patterns often require a change in either the number of variables or the order of the mathematical functions used to express the angular displacement of selected joints in response to change in variant conditions. The resolution of predicted results can also be seriously constrained by the number of variables used. These restrictions may often limit the applicability of these methodologies. In this paper, we proposed a new methodology for generating the optimum motion patterns for para-sagittal lifting tasks. A detailed description of this methodology is introduced. An example of an analysis using this methodology is presented. The computer program generated lifting motion patterns with a reduction of the overall objective function values. The actual versus predicted lifting motion patterns are compared. Using this method, constraints can be added anywhere within the lifting cycle without the need of rewriting the whole program. These features provide for a more flexible and efficient prediction of the lifting motion.

  1. Maximum isometric lifting strengths of men in teamwork.

    PubMed

    Lee, Tzu-Hsien

    2004-01-01

    This study reexamined the additivity of maximum isometric teamwork lifting strength using experienced and height-matched young male participants. The maximum isometric lifting strength was measured for four exertion heights (45, 75, 105, and 140 cm) and four lifting styles (one-, two, three-, and four-person exertions). The results showed that actual teamwork strength could be greater or lower than the sum of individual strengths. If it was greater, the difference between the two could be either significant or nonsignificant, but if it was lower, there was no significant difference between the two. Actual teamwork strength ranged from 90.0% to 134.8% of the sum of individual strengths, indicating that experienced and height-matched participants could overcome the problem of lack of coordination in isometric teamwork lifting. The results also showed that some teamwork members, especially weaker members, might be forced to exert strengths higher than their maximum individual voluntary strengths in teamwork lifting. To avoid such overexertion in teamwork, it is recommended that the weight of the handled load be controlled and lower than the sum of all members' strengths. Additionally, members with significantly different strength abilities should not be assigned to the same team. Actual or potential applications of this research include designing member assignments in teamwork lifting tasks.

  2. High-lift calculations using Navier-Stokes methods

    NASA Astrophysics Data System (ADS)

    Larsson, Torbjoern

    Wing sections on an aircraft are designed for optimal cruise performance, whereas during the take-off and landing phase totally different lift-to-drag characteristics are needed. High lift and low drag is essential while taking off, on the other hand high lift and high drag is favorable when landing. The design and shaping of the high-lift system can have a major influence on the overall economy and safety of the aircraft. In a historical perspective experimental investigations have been the only way to gain any deeper knowledge of the performance of a given wing-flap configuration. Today, computational methods for high-lift systems based on the viscid-inviscid interaction approach with integral methods for boundary layers and wakes are quite common. Although fast solutions can be obtained with these methods it is highly desirable to have a numerical method that captures the flow physics in a more detailed and adequate way. The present wotk demonstrates that Navier-Stokes methods can be used with good results for simulating high-lift flow fields, but also points to the area where further research is needed.

  3. Classification of similar medical images in the lifting domain

    NASA Astrophysics Data System (ADS)

    Sallee, Chad W.; Tashakkori, Rahman

    2002-03-01

    In this paper lifting is used for similarity analysis and classification of sets of similar medical images. The lifting scheme is an invertible wavelet transform that maps integers to integers. Lifting provides efficient in-place calculation of transfer coefficients and is widely used for analysis of similar image sets. Images of a similar set show high degrees of correlation with one another. The inter-set redundancy can be exploited for the purposes of prediction, compression, feature extraction, and classification. This research intends to show that there is a higher degree of correlation between images of a similar set in the lifting domain than in the pixel domain. Such a high correlation will result in more accurate classification and prediction of images in a similar set. Several lifting schemes from Calderbank-Daubechies-Fauveue's family were used in this research. The research shows that some of these lifting schemes decorrelates the images of similar sets more effectively than others. The research presents the statistical analysis of the data in scatter plots and regression models.

  4. Comparison of Infant Car Seat grip orientations and lift strategies.

    PubMed

    Clamann, Michael; Zhu, Biwen; Beaver, Leah; Taylor, Kinley; Kaber, David

    2012-07-01

    The rear-facing Infant Car Seat (ICS) is designed to meet federal requirements for transporting children less than 1 year old. Typical use includes transfer in and out of a vehicle, which is shown to be a difficult lift. Despite the frequency of this lift, manufacturers provide little guidance for users. Review of relevant literature suggested an ICS featuring an angled handle, promoting a neutral wrist posture, would increase grip stability and decrease lifting effort. Popular press suggested a foot-in-car stance for the ICS lift would do the same. An experiment was conducted in which wrist deviations from neutral posture were recorded along with lifting muscle activation levels (multiple flexor muscles and biceps brachii) and overall perceived exertion for straight versus a new bent handle design and conventional stance versus foot-in-car. Foot position was examined to test the recommendations in the popular press. Surprisingly, wrist deviation was not significantly affected by the new bent handle design (due to compensatory behavior with the straight handle) but was related to foot placement (p=0.04). Results revealed the bent handle to significantly reduce flexor activation compared with the straight handle (p=0.0003); however, the level of biceps activation increased. Biceps activation also significantly increased for foot-in-car stance (p=0.035) but not flexor activation. In general, the bent handle enabled the user to lift the ICS with a steadier grip and less effort.

  5. Prevention of disabling back injuries in nurses by the use of mechanical patient lift systems.

    PubMed

    Edlich, Richard F; Winters, Kathryne L; Hudson, Mary Anne; Britt, L D; Long, William B

    2004-01-01

    immediately has resulted in numerous denials of claims for rehabilitation and compensation that nurses deserve. Experts believe that training in proper body mechanics does not prevent back injury. Consequently, focus has been placed on other innovative injury prevention programs, including the use of engineering controls as well as the "lift team" method. Ergonomics involves the use of mechanical devices (e.g., walking belt and mechanical hoist) to aid in patient lifting and transferring tasks. Guldmann Inc. has devised ceiling lift systems and slings during the past 20 years. They have successfully completed thousands of installations worldwide, covering a wide range of challenging conditions and complex environments. The Guldmann ceiling-mounted hoist system consists of a wide range of lifting units, rail components, and a complete assortment of lifting slings and accessories. Its sling is made of polyester, which is characterized by its strength and elasticity. It retains its shape and is dirt repellent and easy to maintain. The Guldmann network has one of the largest and indisputably most experienced group of certified installers in the United States. The "lift team" method was devised to remove nursing personnel from the everyday task of moving patients. This type of intervention assumes that lifting is a specialized skill to be performed only by expert professional patient movers who have been thoroughly trained in the latest lifting device techniques.

  6. 49 CFR 571.404 - Standard No. 404; Platform lift installations in motor vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... platform lifts used to assist persons with limited mobility in entering or leaving a vehicle. S2. Purpose..., Lift Systems for Motor Vehicles (49 CFR 571.403). S4.1.2Lift-equipped motor vehicles, other than ones... Systems for Motor Vehicles (49 CFR 571.403). S4.1.3Platform lifts must be installed in the vehicle...

  7. 78 FR 79599 - Airworthiness Directives; Various Aircraft Equipped With Wing Lift Struts

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-31

    ... 99-01-05 R1] RIN 2120-AA64 Airworthiness Directives; Various Aircraft Equipped With Wing Lift Struts... aircraft equipped with wing lift struts. The list of affected airplanes in the Applicability section is... wing lift struts for corrosion; repetitively inspecting the wing lift strut forks for cracks;...

  8. What`s new in artificial lift. Part 1 -- Sucker rod pumping, progressing cavity pumping, gas lift

    SciTech Connect

    Lea, J.F.; Winkler, H.W.

    1997-03-01

    Breaking the overall concept of artificially lifting producing oil and gas wells--vs. relying solely on the wells` ability to flow at desired rates--into two parts, this article discusses the three techniques of sucker rod and progressing cavity (PC) pumping, and gas lift. In the major category of sucker rod pumping, nine recently introduced new techniques include: a new standing valve cage; three types of improved stuffing boxes; a pump inlet gas separator; a computerized well monitor; improved paraffin removal techniques; tubing lining with polyethylene; and a novel way to dispose of produced water in a gas well. Three advances for PC pumping include: introduction of a metallic stator, a flowrate controller to prevent pump damage and a locking tubing collar to prevent backoff. Two gas-lift innovations describe a wireline retrievable valve for coiled tubing and applications of CO{sub 2} gas lift in West Texas.

  9. The spanwise distribution of lift for minimum induced drag of wings having a given lift and a given bending moment

    NASA Technical Reports Server (NTRS)

    Jones, R. T.

    1950-01-01

    The problem of the minimum induced drag of wings having a given lift and a given span is extended to include cases in which the bending moment to be supported by the wing is also given. The theory is limited to lifting surfaces traveling at subsonic speeds. It is found that the required shape of the downwash distribution can be obtained in an elementary way which is applicable to a variety of such problems. Expressions for the minimum drag and the corresponding spanwise load distributions are also given for the case in which the lift and the bending moment about the wing root are fixed while the span is allowed to vary. The results show a 15-percent reduction of the induced drag with a 15-percent increase in span as compared with results for an elliptically loaded wing having the same total lift and bending moment.

  10. AORN Ergonomic Tool 6: lifting and carrying supplies and equipment in the perioperative setting.

    PubMed

    Waters, Thomas; Baptiste, Andrea; Short, Manon; Plante-Mallon, Lori; Nelson, Audrey

    2011-08-01

    Perioperative team members often are required to lift and carry heavy supplies and equipment into and around the OR; this includes lifting equipment such as hand tables, fluoroscopy boards, stirrups, Wilson frames, irrigation containers for lithotripsy, and heavy instrument pans. Lifting heavy objects creates considerable risk for musculoskeletal injuries to the back and shoulders. AORN Ergonomic Tool 6: Lifting and Carrying Supplies and Equipment in the Perioperative Setting can help caregivers evaluate lifting and carrying tasks and take measures to protect themselves from injury. Caregivers can use the revised National Institute for Occupational Safety and Health lifting equation to assess whether a specific lifting task can be performed safely.

  11. Shape memory alloy resetable spring lift for pedestrian protection

    NASA Astrophysics Data System (ADS)

    Barnes, Brian M.; Brei, Diann E.; Luntz, Jonathan E.; Strom, Kenneth; Browne, Alan L.; Johnson, Nancy

    2008-03-01

    Pedestrian protection has become an increasingly important aspect of automotive safety with new regulations taking effect around the world. Because it is increasingly difficult to meet these new regulations with traditional passive approaches, active lifts are being explored that increase the "crush zone" between the hood and rigid under-hood components as a means of mitigating the consequences of an impact with a non-occupant. Active lifts, however, are technically challenging because of the simultaneously high forces, stroke and quick timing resulting in most of the current devices being single use. This paper introduces the SMArt (Shape Memory Alloy ReseTable) Spring Lift, an automatically resetable and fully reusable device, which couples conventional standard compression springs to store the energy required for a hood lift, with Shape Memory Alloys actuators to achieve both an ultra high speed release of the spring and automatic reset of the system for multiple uses. Each of the four SMArt Device subsystems, lift, release, lower and reset/dissipate, are individually described. Two identical complete prototypes were fabricated and mounted at the rear corners of the hood, incorporated within a full-scale vehicle testbed at the SMARTT (Smart Material Advanced Research and Technology Transfer) lab at University of Michigan. Full operational cycle testing of a stationary vehicle in a laboratory setting confirms the ultrafast latch release, controlled lift profile, gravity lower to reposition the hood, and spring recompression via the ratchet engine successfully rearming the device for repeat cycles. While this is only a laboratory demonstration and extensive testing and development would be required for transition to a fielded product, this study does indicate that the SMArt Lift has promise as an alternative approach to pedestrian protection.

  12. Heavy Lift Launch Capability with a New Hydrocarbon Engine (NHE)

    NASA Technical Reports Server (NTRS)

    Threet, Grady E., Jr.; Holt, James B.; Philips, Alan D.; Garcia, Jessica A.

    2011-01-01

    The Advanced Concepts Office (ACO) at NASA Marshall Space Flight Center has analyzed over 2000 Ares V and other heavy lift concepts in the last 3 years. These concepts were analyzed for Lunar Exploration Missions, heavy lift capability to Low Earth Orbit (LEO) as well as exploratory missions to other near earth objects in our solar system. With the pending retirement of the Shuttle fleet, our nation will be without a civil heavy lift launch capability, so the future development of a new heavy lift capability is imperative for the exploration and large science missions our Agency has been tasked to deliver. The majority of the heavy lift concepts analyzed by ACO during the last 3 years have been based on liquid oxygen / liquid hydrogen (LOX/LH2) core stage and solids booster stage propulsion technologies (Ares V / Shuttle Derived and their variants). These concepts were driven by the decisions made from the results of the Exploration Systems Architecture Study (ESAS), which in turn, led to the Ares V launch vehicle that has been baselined in the Constellation Program. Now that the decision has been made at the Agency level to cancel Constellation, other propulsion options such as liquid hydrocarbon fuels are back in the exploration trade space. NASA is still planning exploration missions with the eventual destination of Mars and a new heavy lift launch vehicle is still required and will serve as the centerpiece of our nation s next exploration architecture s infrastructure. With an extensive launch vehicle database already developed on LOX/LH2 based heavy lift launch vehicles, ACO initiated a study to look at using a new high thrust (> 1.0 Mlb vacuum thrust) hydrocarbon engine as the primary main stage propulsion in such a launch vehicle.

  13. A comparative study of DRL-lift and lift on integrated polyisobutylene polymer matrices

    NASA Astrophysics Data System (ADS)

    Dinca, V.; Palla Papavlu, A.; Matei, A.; Luculescu, C.; Dinescu, M.; Lippert, T.; di Pietrantonio, F.; Cannata, D.; Benetti, M.; Verona, E.

    2010-11-01

    This paper presents a comparative study of polymer pixel on sensors obtained by Laser Induced Forward Transfer (LIFT) assisted by a triazene polymer as Dynamic Release Layer (DRL). Polyisobutylene (PIB) was selected as model for chemoselective polymers which could be used as hydrogen-bond acidic polymer for vapor sensors. PIB films deposited on fused silica, respectively, on triazene polymer coated fused silica substrates were used as targets. Both targets were prepared by Matrix Assisted Pulsed Laser Evaporation (MAPLE). The parameters related to a regular, well-defined transfer were analyzed and compared for the substrates with and without the DRL. The morphological characterization of the transferred PIB was performed by Atomic Force Microscopy (AFM), Optical Microscopy, and Scanning Electron Microscopy (SEM). It was found that a minimal thickness of the dynamic release layer, i.e. 100 nm is required to protect the sensitive PIB polymer in a clean laser transfer process.

  14. Roll Damping Derivatives from Generalized Lifting-Surface Theory and Wind Tunnel Forced-Oscillation Tests

    NASA Technical Reports Server (NTRS)

    Pototzky, Anthony S; Murphy, Patrick C.

    2014-01-01

    Improving aerodynamic models for adverse loss-of-control conditions in flight is an area being researched under the NASA Aviation Safety Program. Aerodynamic models appropriate for loss of control conditions require a more general mathematical representation to predict nonlinear unsteady behaviors. As more general aerodynamic models are studied that include nonlinear higher order effects, the possibility of measurements that confound aerodynamic and structural responses are probable. In this study an initial step is taken to look at including structural flexibility in analysis of rigid-body forced-oscillation testing that accounts for dynamic rig, sting and balance flexibility. Because of the significant testing required and associated costs in a general study, it makes sense to capitalize on low cost analytical methods where possible, especially where structural flexibility can be accounted for by a low cost method. This paper provides an initial look at using linear lifting surface theory applied to rigid-body aircraft roll forced-oscillation tests.

  15. TRW vortex-lattice method subsonic aerodynamic analysis for multiple-lifting-surfaces (N. surface) TRW program number HA010B

    NASA Technical Reports Server (NTRS)

    Gomez, A. V.

    1972-01-01

    The program was designed to provide solutions of engineering accuracy for determining the aerodynamic loads on single- or multiple-lifting-surface configurations that represent vehicles in subsonic flight, e.g., wings, wing-tail, wing-canard, lifting bodies, etc. The preparation is described of the input data, associated input arrangement, and the output format for the program data, including specification of the various operational details of the program such as array sizes, tape numbers utilized, and program dumps. A full description of the underlying theory used in the program development and a review of the program qualification tests are included.

  16. Advances in Engineering Software for Lift Transportation Systems

    NASA Astrophysics Data System (ADS)

    Kazakoff, Alexander Borisoff

    2012-03-01

    In this paper an attempt is performed at computer modelling of ropeway ski lift systems. The logic in these systems is based on a travel form between the two terminals, which operates with high capacity cabins, chairs, gondolas or draw-bars. Computer codes AUTOCAD, MATLAB and Compaq-Visual Fortran - version 6.6 are used in the computer modelling. The rope systems computer modelling is organized in two stages in this paper. The first stage is organization of the ground relief profile and a design of the lift system as a whole, according to the terrain profile and the climatic and atmospheric conditions. The ground profile is prepared by the geodesists and is presented in an AUTOCAD view. The next step is the design of the lift itself which is performed by programmes using the computer code MATLAB. The second stage of the computer modelling is performed after the optimization of the co-ordinates and the lift profile using the computer code MATLAB. Then the co-ordinates and the parameters are inserted into a program written in Compaq Visual Fortran - version 6.6., which calculates 171 lift parameters, organized in 42 tables. The objective of the work presented in this paper is an attempt at computer modelling of the design and parameters derivation of the rope way systems and their computer variation and optimization.

  17. The mechanisms of lift enhancement in insect flight

    NASA Astrophysics Data System (ADS)

    Lehmann, Fritz-Olaf

    Recent studies have revealed a diverse array of fluid dynamic phenomena that enhance lift production during flapping insect flight. Physical and analytical models of oscillating wings have demonstrated that a prominent vortex attached to the wing's leading edge augments lift production throughout the translational parts of the stroke cycle, whereas aerodynamic circulation due to wing rotation, and possibly momentum transfer due to a recovery of wake energy, may increase lift at the end of each half stroke. Compared to the predictions derived from conventional steady-state aerodynamic theory, these unsteady aerodynamic mechanisms may account for the majority of total lift produced by a flying insect. In addition to contributing to the lift required to keep the insect aloft, manipulation of the translational and rotational aerodynamic mechanisms may provide a potent means by which a flying animal can modulate direction and magnitude of flight forces for manoeuvring flight control and steering behaviour. The attainment of flight, including the ability to control aerodynamic forces by the neuromuscular system, is a classic paradigm of the remarkable adaptability that flying insects have for utilising the principles of unsteady fluid dynamics. Applying these principles to biology broadens our understanding of how the diverse patterns of wing motion displayed by the different insect species have been developed throughout their long evolutionary history.

  18. A dynamic plunger-lift model for gas wells

    SciTech Connect

    1998-07-01

    A free piston or plunger traveling up and down the tubing has been used for different applications in oil and gas production for decades. Its most widespread use is in conventional plunger lift, which is an artificial-lift technique characterized by use of reservoir energy stored in the gas phase to lift fluids to the surface. The plunger acts as an interface between the liquid slug and the gas to keep the ballistic-shaped flow pattern of the higher-velocity gas phase from breaking through the liquid phase during production. Several authors have modeled plunger-lift installations. Static models have been proposed and are widely accepted. Dynamic models also have been published to describe the phenomenon of a plunger-lift cycle. The dynamic model developed in the full-length paper overcomes some of the assumptions used in previous models. It includes reservoir performance, gas expansion with friction effects, and the transient behavior of the gas above the liquid slug when the surface valve is opened. It also includes a blow-down or afterflow period for production after the liquid slug surfaces. The upstroke model includes a transition phase that describes the production of the slug into the flowline.

  19. Laser-induced forward transfer (LIFT) of congruent voxels

    NASA Astrophysics Data System (ADS)

    Piqué, Alberto; Kim, Heungsoo; Auyeung, Raymond C. Y.; Beniam, Iyoel; Breckenfeld, Eric

    2016-06-01

    Laser-induced forward transfer (LIFT) of functional materials offers unique advantages and capabilities for the rapid prototyping of electronic, optical and sensor elements. The use of LIFT for printing high viscosity metallic nano-inks and nano-pastes can be optimized for the transfer of voxels congruent with the shape of the laser pulse, forming thin film-like structures non-lithographically. These processes are capable of printing patterns with excellent lateral resolution and thickness uniformity typically found in 3-dimensional stacked assemblies, MEMS-like structures and free-standing interconnects. However, in order to achieve congruent voxel transfer with LIFT, the particle size and viscosity of the ink or paste suspensions must be adjusted to minimize variations due to wetting and drying effects. When LIFT is carried out with high-viscosity nano-suspensions, the printed voxel size and shape become controllable parameters, allowing the printing of thin-film like structures whose shape is determined by the spatial distribution of the laser pulse. The result is a new level of parallelization beyond current serial direct-write processes whereby the geometry of each printed voxel can be optimized according to the pattern design. This work shows how LIFT of congruent voxels can be applied to the fabrication of 2D and 3D microstructures by adjusting the viscosity of the nano-suspension and laser transfer parameters.

  20. A Simple Method for High-Lift Propeller Conceptual Design

    NASA Technical Reports Server (NTRS)

    Patterson, Michael; Borer, Nick; German, Brian

    2016-01-01

    In this paper, we present a simple method for designing propellers that are placed upstream of the leading edge of a wing in order to augment lift. Because the primary purpose of these "high-lift propellers" is to increase lift rather than produce thrust, these props are best viewed as a form of high-lift device; consequently, they should be designed differently than traditional propellers. We present a theory that describes how these props can be designed to provide a relatively uniform axial velocity increase, which is hypothesized to be advantageous for lift augmentation based on a literature survey. Computational modeling indicates that such propellers can generate the same average induced axial velocity while consuming less power and producing less thrust than conventional propeller designs. For an example problem based on specifications for NASA's Scalable Convergent Electric Propulsion Technology and Operations Research (SCEPTOR) flight demonstrator, a propeller designed with the new method requires approximately 15% less power and produces approximately 11% less thrust than one designed for minimum induced loss. Higher-order modeling and/or wind tunnel testing are needed to verify the predicted performance.

  1. Toward a new nanoLIFT transfer process

    NASA Astrophysics Data System (ADS)

    Mézel, C.; Hallo, L.; Souquet, A.; Bourgeade, A.; Breil, J.; Hébert, D.; Guillemot, F.; Saut, O.

    2010-02-01

    The Laser Induced Forward Transfer (LIFT) is a direct-write technique used to print biological materials such as living cells or molecules. During the LIFT process, the biomaterial to be printed is deposited on a target submitted to a nanosecond laser shot, and the ejecta are collected onto a receiving substrate. Despite the several advantages of this technique (control of the propelled quantity, no spoiling of the substrate), it remains difficult to be employed due to the high sensitivity of its control parameters. Recently, Duocastella published some experimental results which exhibit the real-time jet formation process, under conditions similar to those present in the LIFT process [1]. In the first Section, a typical experimental setup for LIFT process is presented. Then, simulations of Duocastella's and Guillemot's [2] experiments are carried out to model the jet formation in water when irradiated by an ultraviolet nanosecond laser pulse. The 2D axisymmetric hydrodynamic code CHIC (Code d'Hydrodynamique et d'Implosion du CELIA) [3] is used for these simulations with included equations of state (EOS) to take into account the behavior of water under standard conditions. Finally, an improvement of the LIFT technique which consists in using femtosecond lasers instead of nanosecond ones, is presented. It would allow to process smaller bioelements and to control the jet diameter, as it is directly related to the laser beam waist.

  2. Lift crisis of a spinning table tennis ball

    NASA Astrophysics Data System (ADS)

    Miyazaki, T.; Sakai, W.; Komatsu, T.; Takahashi, N.; Himeno, R.

    2017-03-01

    The aerodynamic properties of a spinning table tennis ball were investigated using flight experiments. Using high-speed video cameras, the trajectory and rotation of an official ball (Nittaku 3-Star Premium), which was launched by a three rotor machine, were recorded. The drag and lift coefficients (C D and C L) were determined by analysing the video images. The measurements covered the speed and rotation range of typical table tennis shots in the form of the Reynolds number (Re) and dimensionless spin rate (SP), i.e. 3.0 × 104 < Re < 9.0 × 104 and 0 < SP < 1.0, and C D and C L were obtained as functions of Re and SP. We determined that the lift coefficient C L is not a monotonically increasing function of SP. A deep valley of C L was found around SP = 0.5, and the lift force exerted on a spinning ball almost vanished at Re = 9.0 × 104 and 0.48 < SP < 0.5. These results qualitatively agree with the results from recent wind tunnel tests, but quantitative differences owing to the unsteady nature of the flight experiments remain. This anomaly in the lift coefficient should be called the ‘lift crisis’.

  3. Development of an integrated staircase lift for home access

    PubMed Central

    Mattie, Johanne L.; Borisoff, Jaimie F.; Leland, Danny; Miller, William C.

    2015-01-01

    Purpose Stairways into buildings present a significant environmental barrier for those with mobility impairments, including older adults. A number of home access solutions that allow users to safely enter and exit the home exist, however these all have some limitations. The purpose of this work was to develop a novel, inclusive home access solution that integrates a staircase and a lift into one device. Method The development of an integrated staircase lift followed a structured protocol with stakeholders providing feedback at various stages in the design process, consistent with rehabilitation engineering design methods. Results A novel home access device was developed. The integrated staircase-lift has the following features: inclusivity, by a universal design that provides an option for either use of stairs or a lift; constant availability, with a lift platform always ready for use on either level; and potential aesthetic advantages when integrating the device into an existing home. The potential also exists for emergency descent during a power outage, and self-powered versions. Conclusions By engaging stakeholders in a user centred design process, insight on the limitations of existing home access solutions and specific feedback on our design guided development of a novel home access device. PMID:26793318

  4. Cleft lift procedure for pilonidal disease: technique and perioperative management.

    PubMed

    Favuzza, J; Brand, M; Francescatti, A; Orkin, B

    2015-08-01

    Pilonidal disease is a common condition affecting young patients. It is often disruptive to their lifestyle due to recurrent abscesses or chronic wound drainage. The most common surgical treatment, "cystectomy," removes useful tissue unnecessarily and does not address the etiology of the condition. Herein, we describe the etiology of pilonidal disease and our technique for definitive management of pilonidal disease using the cleft lift procedure. In this paper, we present our method of performing the cleft lift procedure for pilonidal disease including perioperative management and surgical technique. We have used the cleft lift procedure in nearly 200 patients with pilonidal disease, in both primary and salvage procedures settings. It has been equally successful in both settings with a high rate of success. It results in a closed wound with relatively minimal discomfort and straightforward wound care. We have described our current approach to recurrent and complex pilonidal disease using the cleft lift procedure. Once learned, the cleft lift procedure is a straightforward and highly successful solution to a chronic and challenging condition.

  5. A design method for constellation of lifting reentry vehicles

    NASA Astrophysics Data System (ADS)

    Xiang, Yu; Kun, Liu

    2017-03-01

    As the reachable domain of a single lifting reentry vehicle is not large enough to cover the whole globe in a short time, which is disadvantageous to responsive operation, it is of great significance to study on how to construct a constellation of several lifting reentry vehicles to responsively reach any point of the globe. This paper addresses a design method for such a constellation. Firstly, an approach for calculating the reachable domain of a single lifting reentry vehicle is given, using the combination of Gauss Pseudospectral Method and SQP method. Based on that, the entire reachable domain taking the limit of responsive time into consideration is simplified reasonably to reduce the complexity of the problem. Secondly, a Streets-of-Coverage (SOC) method is used to design the constellation and the parameters of the constellation are optimized through simple analysis and comparison. Lastly, a point coverage simulation method is utilized to verify the correctness of the optimization result. The verified result shows that 6 lifting reentry vehicles whose maximum lift-to-drag ratio is 1.7 can reach nearly any point on the earth's surface between -50° and 50° in less than 90 minutes.

  6. Experimental research on dust lifting by propagating shock wave

    NASA Astrophysics Data System (ADS)

    Żydak, P.; Oleszczak, P.; Klemens, R.

    2017-03-01

    The aim of the presented work was to study the dust lifting process from a layer of dust behind a propagating shock wave. The experiments were conducted with the use of a shock tube and a specially constructed, five-channel laser optical device enabling measurements at five positions located in one vertical plane along the height of the tube. The system enabled measurements of the delay in lifting up of the dust from the layer, and the vertical velocity of the dust cloud was calculated from the dust concentration measurements. The research was carried out for various initial conditions and for three fractions of black coal dust. In the presented tests, three shock wave velocities: 450, 490 and 518 m/s and three dust layer thicknesses, equal to 1.0, 1.5 and 2.0 mm, were taken into consideration. On the grounds of the obtained experimental results, it was assumed that the vertical component of the lifted dust velocity is a function of the dust particle diameter, the velocity of the air flow in the channel, the layer thickness and the dust bulk density. It appeared, however, that lifting up of the dust from the thick layers, thicker than 1 mm, is a more complex process than that from thin layers and still requires further research. A possible explanation is that the shock wave action upon the thick layer results in its aggregation in the first stage of the dispersing process, which suppresses the dust lifting process.

  7. Efficient architecture for adaptive directional lifting-based wavelet transform

    NASA Astrophysics Data System (ADS)

    Yin, Zan; Zhang, Li; Shi, Guangming

    2010-07-01

    Adaptive direction lifting-based wavelet transform (ADL) has better performance than conventional lifting both in image compression and de-noising. However, no architecture has been proposed to hardware implement it because of its high computational complexity and huge internal memory requirements. In this paper, we propose a four-stage pipelined architecture for 2 Dimensional (2D) ADL with fast computation and high data throughput. The proposed architecture comprises column direction estimation, column lifting, row direction estimation and row lifting which are performed in parallel in a pipeline mode. Since the column processed data is transposed, the row processor can reuse the column processor which can decrease the design complexity. In the lifting step, predict and update are also performed in parallel. For an 8×8 image sub-block, the proposed architecture can finish the ADL forward transform within 78 clock cycles. The architecture is implemented on Xilinx Virtex5 device on which the frequency can achieve 367 MHz. The processed time is 212.5 ns, which can meet the request of real-time system.

  8. Development of action representation during adolescence as assessed from anticipatory control in a bimanual load-lifting task.

    PubMed

    Barlaam, F; Fortin, C; Vaugoyeau, M; Schmitz, C; Assaiante, C

    2012-09-27

    The aim of this study was to explore, during adolescence, alterations in the use of a sensori-motor representation as unveiled by the measurement of anticipatory postural control in a bimanual load-lifting task. We hypothesised that adolescence constitutes a period of refinement of anticipatory postural control due to on-going updates of the body schema and sensori-motor representations. The anticipatory postural control was assessed using a bimanual load-lifting paradigm in which subjects stabilise their left postural forearm, which is supporting an object, while they use their right hand to lift up the object. Kinematics and electromyographic data were recorded in two groups of adolescents (11-13 and 14-16 years of age) and a group of adults. Age and gender effects were tested. During voluntary unloading, the postural forearm stabilisation in adolescents was still different from the adult one, suggesting that further improvement of the postural forearm stabilisation must take place after the age of 16. No differences occur in the two adolescent groups. Moreover, girls presented a better stabilisation of the postural forearm than boys, indicating an earlier refinement of anticipatory postural control. The decrease of activity over postural flexors, which ensure postural stabilisation, appeared later in adolescents with respect to adults. Delayed timing adjustments and increased variability could reflect intense developmental processes underlain by an intense period of CNS maturation during adolescence. We discuss the role of brain maturation in the refinement of sensori-motor representations and the update of body schema.

  9. Aerodynamic Force Characteristics of a Series of Lifting Cone and Cone-Cylinder Configurations at a Mach Number of 6.83 and Angles of Attack up to 130 Deg

    NASA Technical Reports Server (NTRS)

    Penland, Jim A.

    1961-01-01

    Force tests of a series of right circular cones having semivertex angles ranging from 5 deg to 45 deg and a series of right circular cone-cylinder configurations having semivertex angles ranging from 5 deg to 20 deg and an afterbody fineness ratio of 6 have been made in the Langley 11-inch hypersonic tunnel at a Mach number of 6.83, a Reynolds number of 0.24 x 10.6 per inch, and angles of attack up to 130 deg. An analysis of the results made use of the Newtonian and modified Newtonian theories and the exact theory. A comparison of the experimental data of both cone and cone-cylinder configurations with theoretical calculations shows that the Newtonian concept gives excellent predictions of trends of the force characteristics and the locations with respect to angle of attack of the points of maximum lift, maximum drag, and maximum lift-drag ratio. Both the Newtonian a.nd exact theories give excellent predictions of the sign and value of the initial lift-curve slope. The maximum lift coefficient for conical bodies is nearly constant at a value of 0.5 based on planform area for semivertex angles up to 30 deg. The maximum lift-drag ratio for conical bodies can be expected to be not greater than about 3.5, and this value might be expected only for slender cones having semivertex angles of less than 5 deg. The increments of angle of attack and lift coefficient between the maximum lift-drag ratio and the maximum lift coefficient for conical bodies decrease rapidly with increasing semivertex angles as predicted by the modified Newtonian theory.

  10. Manual materials handling in mining: the effect of rod heights and foot positions when lifting "in-the-hole" drill rods.

    PubMed

    Plamondon, André; Delisle, Alain; Trimble, Karin; Desjardins, Pierre; Rickwood, Trevor

    2006-11-01

    There is a paucity of studies focusing on the lifting of rods or long awkward heavy objects. In-the-hole (ITH) drilling is a heavy repetitive mining task, which has been identified as having a relatively high incidence and severity rate of musculoskeletal injuries. The purpose of this study was to examine how the load experienced by ITH drill operators changed when lifting a vertical drilling rod (1.61m, 35kg) using two rod heights and four different foot positions. In addition, a symmetrical lift with a lifting index (LI) of 1.4 also served as a comparison to determine possible risk of low back injury. Eleven experienced ITH drill operators participated in the study. Each subject was required to lift a vertical drilling rod until the upper body was in an erect posture using four different foot positions (0 degrees =subject facing the rod, 45 degrees =subject oblique to the rod, 90 degrees =subject right side to the rod and freestyle). In addition, two rod height conditions were studied where the base of the vertical rod was supported either (1) at ground level (height of rod CG=0.83m) or (2) on a 20cm rack (height of rod CG=1.03m). Finally, each subject lifted a 21.5kg box in the sagittal plane, which corresponded to an LI of 1.4 in the NIOSH lifting equation. Reflective markers were placed on the subjects, and three video cameras and one force plate were used to record the forces and the motion of the subjects' segments. Two surface electrodes were applied on the right and the left erector spinae (ES) at the level of L3. Back loading was defined by the level of the peak moments, the mechanical work and erector spinae muscle activity (EMG). It was found that the vertical height of the rod had the most significant impact on back loading, while the effect of the initial foot positioning relative to the rod was limited by the technique adopted by the drillers. Moreover, it was found that some of the subjects used techniques less strenuous for the back than others

  11. RF Properties of Epitaxial Lift-Off HEMT Devices

    NASA Technical Reports Server (NTRS)

    Young, Paul G.; Alterovitz, Samuel A.; Mena, Rafael A.; Smith, Edwyn D.

    1993-01-01

    Epitaxial layers containing GaAs HEMT and P-HEMT structures have been lifted-off the GaAs substrate and attached to other host substrates using an AlAs parting layer. The devices were on-wafer RF probed before and after the lift-off step showing no degradation in the measured S-parameters. The maximum stable gain indicates a low frequency enhancement of the gain of 1-2 dB with some devices showing an enhancement of F(sub max)F(sub T) consistently shows an increase of 12-20% for all lifted-off HEMT structures. Comparison of the Hall measurements and small signal models show that the gain is improved and this is most probably associated with an enhanced carrier concentration.

  12. Testing and analysis of modified HMMWV front lift provisions

    NASA Astrophysics Data System (ADS)

    Cavallaro, Christopher; Dooley, Robert B.; Weight, Kristen D.; Cavallaro, Paul V.

    1992-05-01

    The U.S. Army Materials Technology Laboratory (MTL) was requested by the Tank and Automotive Command (TACOM) and the Military Traffic Management Command (MTMC) to investigate the performance of the modified front lift provisions on the high mobility, multipurpose, wheeled vehicle (HMMWV). In order to evaluate the front lift provisions, a series of simulated air lift, ultimate pull, and fatigue tests were performed. Each type of test was performed for two different load magnitudes and angles. In addition to the mechanical tests performed, nondestructive testing procedures were utilized to inspect the provisions for imperfections and cracks before and after testing. A finite element analysis (FEA) was also conducted to analyze the hook and the provision bracket for each of the two load configurations.

  13. Experimental and simulated control of lift using trailing edge devices

    NASA Astrophysics Data System (ADS)

    Cooperman, A.; Blaylock, M.; van Dam, C. P.

    2014-12-01

    Two active aerodynamic load control (AALC) devices coupled with a control algorithm are shown to decrease the change in lift force experienced by an airfoil during a change in freestream velocity. Microtabs are small (1% chord) surfaces deployed perpendicular to an airfoil, while microjets are pneumatic jets with flow perpendicular to the surface of the airfoil near the trailing edge. Both devices are capable of producing a rapid change in an airfoil's lift coefficient. A control algorithm for microtabs has been tested in a wind tunnel using a modified S819 airfoil, and a microjet control algorithm has been simulated for a NACA 0012 airfoil using OVERFLOW. In both cases, the AALC devices have shown the ability to mitigate the changes in lift during a gust.

  14. Multiple element airfoils optimized for maximum lift coefficient.

    NASA Technical Reports Server (NTRS)

    Ormsbee, A. I.; Chen, A. W.

    1972-01-01

    Optimum airfoils in the sense of maximum lift coefficient are obtained for incompressible fluid flow at large Reynolds number. The maximum lift coefficient is achieved by requiring that the turbulent skin friction be zero in the pressure rise region on the airfoil upper surface. Under this constraint, the pressure distribution is optimized. The optimum pressure distribution is a function of Reynolds number and the trailing edge velocity. Geometries of those airfoils which will generate these optimum pressure distributions are obtained using a direct-iterative method which is developed in this study. This method can be used to design airfoils consisting of any number of elements. Numerical examples of one- and two-element airfoils are given. The maximum lift coefficients obtained range from 2 to 2.5.

  15. Lift generation by a two-dimensional symmetric flapping wing

    NASA Astrophysics Data System (ADS)

    Inamuro, Takaji; Ota, Keigo; Suzuki, Kosuke

    2010-11-01

    Two-dimensional symmetric flapping flight is investigated by an immersed boundary-lattice Boltzmann method. In the method we can treat the moving boundary problem efficiently on the Cartesian grid. First, we investigate the effect of the Reynolds number on flows around symmetric flapping wings under no-gravity field and find that at high Reynolds numbers asymmetric vortices are appeared and the time-averaged lift force is induced on the wings, while at low Reynolds numbers only symmetric vortices are appeared around the wings and no lift force is induced. Also, the effect of the initial position of the wings on the lift force is investigated. Secondly, we carry out free flight simulations under gravity field for various Reynolds and Froude numbers and find the region where upward flights are possible.

  16. Designs and Technology Requirements for Civil Heavy Lift Rotorcraft

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne; Yamauchi, Gloria K.; Watts, Michael E.

    2006-01-01

    The NASA Heavy Lift Rotorcraft Systems Investigation examined in depth several rotorcraft configurations for large civil transport, designed to meet the technology goals of the NASA Vehicle Systems Program. The investigation identified the Large Civil Tiltrotor as the configuration with the best potential to meet the technology goals. The design presented was economically competitive, with the potential for substantial impact on the air transportation system. The keys to achieving a competitive aircraft were low drag airframe and low disk loading rotors; structural weight reduction, for both airframe and rotors; drive system weight reduction; improved engine efficiency; low maintenance design; and manufacturing cost comparable to fixed-wing aircraft. Risk reduction plans were developed to provide the strategic direction to support a heavy-lift rotorcraft development. The following high risk areas were identified for heavy lift rotorcraft: high torque, light weight drive system; high performance, structurally efficient rotor/wing system; low noise aircraft; and super-integrated vehicle management system.

  17. Lifting and protecting residential structures from subsidence damage using airbags

    SciTech Connect

    Triplett, T.L.; Bennett, R.M.

    1998-12-31

    Conventional practice in protecting residential structures from subsidence damage concentrates on saving the superstructure. The foundation is sacrificed, even though it represents the structural component with the greatest replacement cost. In this study, airbags were used to lift a 20 ft x 30 ft structure to test their ability to protect both the foundation and superstructure from ground settlement. Two contiguous sides of the test foundation were unreinforced, and the other two contiguous sides incorporated footing and wall reinforcement. The airbags successfully lifted the structure without causing damage, even on the unreinforced sides. This paper gives a procedure for determining airbag spacing, and describes installation and operation techniques of the airbags. The paper then focuses on the performance of the airbags in lifting the structure, and shows that airbags can preserve existing foundations during subsidence movements.

  18. Lifting a large object from an anisotropic porous bed

    NASA Astrophysics Data System (ADS)

    Karmakar, Timir; Raja Sekhar, G. P.

    2016-09-01

    An analytical study of two dimensional problem of lifting an object from the top of a fully saturated rigid porous bed is discussed. It is assumed that the porous bed is anisotropic in nature. The flow within the gap region between the object and the porous bed is assumed to be governed by Stokes equation while the flow within the porous bed is governed by Brinkman equation. The breakout phenomenon for different kinds of soil is reported. The effect of mechanical properties like anisotropic permeability, grain diameter size, and porosity on streamlines, velocity, and force is analyzed. Relevant comparison with C. C. Mei, R. W. Yeung, and K. F. Liu ["Lifting a large object from a porous bed," J. Fluid. Mech. 152, 203-215 (1985)] and Y. Chang, L. H. Huang and F. P. Y. Yang ["Two-dimensional lift-up problem for a rigid porous bed," Phys. Fluids, 27, 053101 (2015)] is done.

  19. Balance and Strength - Estimating the Maximum Prey-Lifting Potential of the Large Predatory Dinosaur Carcharodontosaurus saharicus.

    PubMed

    Henderson, Donald M; Nicholls, Robert

    2015-08-01

    Motivated by the work of palaeo-art "Double Death (2011)," a biomechanical analysis using three-dimensional digital models was conducted to assess the potential of a pair of the large, Late Cretaceous theropod dinosaur Carcharodontosaurus saharicus to successfully lift a medium-sized sauropod and not lose balance. Limaysaurus tessonei from the Late Cretaceous of South America was chosen as the sauropod as it is more completely known, but closely related to the rebbachisaurid sauropods found in the same deposits with C. saharicus. The body models incorporate the details of the low-density regions associated with lungs, systems of air sacs, and pneumatized axial skeletal regions. These details, along with the surface meshes of the models, were used to estimate the body masses and centers of mass of the two animals. It was found that a 6 t C. saharicus could successfully lift a mass of 2.5 t and not lose balance as the combined center of mass of the body and the load in the jaws would still be over the feet. However, the neck muscles were found to only be capable of producing enough force to hold up the head with an added mass of 424 kg held at the midpoint of the maxillary tooth row. The jaw adductor muscles were more powerful, and could have held a load of 512 kg. The more limiting neck constraint leads to the conclusion that two, adult C. saharicus could successfully lift a L. tessonei with a maximum body mass of 850 kg and a body length of 8.3 m.

  20. Lift outs: how to acquire a high-functioning team.

    PubMed

    Groysberg, Boris; Abrahams, Robin

    2006-12-01

    More and more, expanding companies are hiring high-functioning groups of people who have been working together effectively within one company and can rapidly come up to speed in a new environment. These lifted-out teams don't need to get acquainted with one another or to establish shared values, mutual accountability, or group norms; their long-standing relationships and trust help them make an impact very quickly. Of course, the process is not without risks: A failed lift out can lead to loss of money, opportunity, credibility, and even native talent. Boris Groysberg and Robin Abrahams studied more than 40 high-profile moves and interviewed team leaders in multiple industries and countries to examine the risks and opportunities that lift outs present. They concluded that, regardless of industry, nationality, or size of the team, a successful lift out unfolds over four consecutive, interdependent stages that must be meticulously managed. In the courtship stage, the hiring company and the leader of the targeted team determine whether the proposed move is, in fact, a good idea, and then define their business goals and discuss strategies. At the same time, the team leader discusses the potential move with the other members of his or her group to assess their level of interest and prepare them for the change. The second stage involves the integration of the team leader with the new company's top leadership. This part of the process ensures the team's access to senior executives-the most important factor in a lift out's success. Operational integration is the focus of the third stage. Ideally, teams will start out working with the same or similar clients, vendors, and industry standards. The fourth stage entails full cultural integration. To succeed, the lifted-out team members must be willing to re-earn credibility by proving their value and winning their new colleagues' trust.