Science.gov

Sample records for m2-f1 lifting body

  1. M2-F1 lifting body aircraft on a flatbed truck

    NASA Technical Reports Server (NTRS)

    1997-01-01

    After the grounding of the M2-F1 in 1966, it was kept in outside storage on the Dryden complex. After several years, its fabric and plywood structure was damaged by the sun and weather. Restoration of the vehicle began in February 1994 under the leadership of NASA retiree Dick Fischer, with other retirees who had originally worked on the M2-F1's construction and flight research three decades before also participating. The photo shows the now-restored M2-F1 returning to the site of its flight research, now called the Dryden Flight Research Center, on 22 August 1997. The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, NASA Flight Research Center (later Dryden Flight Research Center, Edwards, CA) management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with the largest engine available

  2. M2-F1 lifting body aircraft on a flatbed truck

    NASA Technical Reports Server (NTRS)

    1997-01-01

    After the grounding of the M2-F1 in 1966, it was kept in outside storage on the Dryden complex. After several years, its fabric and plywood structure was damaged by the sun and weather. Restoration of the vehicle began in February 1994 under the leadership of NASA retiree Dick Fischer, with other retirees who had originally worked on the M2-F1's construction and flight research three decades before also participating. The photo shows the now-restored M2-F1 returning to the site of its flight research, now called the Dryden Flight Research Center, on 22 August 1997. The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, NASA Flight Research Center (later Dryden Flight Research Center, Edwards, CA) management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with the largest engine available

  3. M2-F1 lifting body and Paresev 1B on ramp

    NASA Technical Reports Server (NTRS)

    1963-01-01

    In this photo of the M2-F1 lifting body and the Paresev 1B on the ramp, the viewer sees two vehicles representing different approaches to building a research craft to simulate a spacecraft able to land on the ground instead of splashing down in the ocean as the Mercury capsules did. The M2-F1 was a lifting body, a shape able to re-enter from orbit and land. The Paresev (Paraglider Research Vehicle) used a Rogallo wing that could be (but never was) used to replace a conventional parachute for landing a capsule-type spacecraft, allowing it to make a controlled landing on the ground. The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with the largest engine available. He took the car to Bill Straup's renowned hot-rod shop

  4. M2-F1 lifting body and Paresev 1B on ramp

    NASA Technical Reports Server (NTRS)

    1963-01-01

    In this photo of the M2-F1 lifting body and the Paresev 1B on the ramp, the viewer sees two vehicles representing different approaches to building a research craft to simulate a spacecraft able to land on the ground instead of splashing down in the ocean as the Mercury capsules did. The M2-F1 was a lifting body, a shape able to re-enter from orbit and land. The Paresev (Paraglider Research Vehicle) used a Rogallo wing that could be (but never was) used to replace a conventional parachute for landing a capsule-type spacecraft, allowing it to make a controlled landing on the ground. The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with the largest engine available. He took the car to Bill Straup's renowned hot-rod shop

  5. Proposed Ames M2-F1, M1-L half-cone, and Langley lenticular bodies.

    NASA Technical Reports Server (NTRS)

    1962-01-01

    Dale Reed, who inaugurated the lifting-body flight research at NASA's Flight Research Center (later, Dryden Flight Research Center, Edwards, CA), originally proposed that three wooden outer shells be built. These would then be attached to the single internal steel structure. The three shapes were (viewer's left to right) the M2-F1, the M1-L, and a lenticular shape. Milt Thompson, who supported Reed's advocacy for a lifting-body research project, recommended that only the M2-F1 shell be built, believing that the M1-L shape was 'too radical,' while the lenticular one was 'too exotic.' Although the lenticular shape was often likened to that of a flying saucer, Reed's wife Donna called it the 'powder puff.' The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey

  6. M2-F1 Pilots

    NASA Technical Reports Server (NTRS)

    1963-01-01

    The M2-F1 lifting body aircraft rests on the sun-baked floor of a dry lake bed located out in the Mojave Desert at the Dryden Flight Research Center, California. Pilot Chuck Yeager, seated in the cockpit of the M2- F1, talks with fellow pilots from left to right Milt Thompson, Don Malick and Bruce Peterson. All three flew the lifting body in several flights. The vehicle later suffered a mishap when Peterson was landing it--the oil in the landing gear hydraulics was not suitable for cold temperatures and caused the gear to break and the vehicle to suffer minor damage.

  7. M2-F1 cockpit

    NASA Technical Reports Server (NTRS)

    1963-01-01

    This photo shows the cockpit configuration of the M2-F1 wingless lifting body. With a top speed of about 120 knots, the M2-F1 had a simple instrument panel. Besides the panel itself, the ribs of the wooden shell (left) and the control stick (center) are also visible. The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with the largest engine available. He took the car to Bill Straup's renowned hot-rod shop near Long Beach for modification. With a special gearbox and racing slicks, the Pontiac could tow the 1,000-pound M2-F1 110 miles per hour in 30 seconds. It proved adequate for the roughly 400 car tows that got the M2-F1 airborne to prove it could fly safely and to train pilots before they were towed behind a C-47

  8. M2-F1 in flight

    NASA Technical Reports Server (NTRS)

    1964-01-01

    The M2-F1 Lifting Body is seen here under tow by an unseen C-47 at the NASA Flight Research Center (later redesignated the Dryden Flight Research Center), Edwards, California. The low-cost vehicle was the first piloted lifting body to be test flown. The lifting-body concept originated in the mid-1950s at the National Advisory Committee for Aeronautics' Ames Aeronautical Laboratory, Mountain View California. By February 1962, a series of possible shapes had been developed, and R. Dale Reed was working to gain support for a research vehicle. The wingless, lifting body aircraft design was initially concieved as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. These initial tests produced enough flight data about the M2-F1 to proceed with flights behind a NASA C-47 tow plane at greater altitudes. The C-47 took the craft to an altitude of 12,000 where free flights back to Rogers Dry Lake began. Pilot for the first series of flights of the M2-F1 was NASA research pilot Milt Thompson. Typical glide flights with the M2-F1 lasted about two minutes and reached speeds of 110 to l20 mph. More than 400 ground tows and 77 aircraft tow flights were carried out with the M2-F1. The success of Dryden's M2-F1 program led to NASA's development and construction of two heavyweight lifting bodies based on studies at

  9. M2-F1 in flight

    NASA Technical Reports Server (NTRS)

    1965-01-01

    The M2-F1 Lifting Body is seen here under tow, high above Rogers Dry Lake near the Flight Research Center (later redesignated the Dryden Flight Research Center), Edwards, California. R. Dale Reed effectively advocated the project with the support of NASA research pilot Milt Thompson. Together, they gained the support of Flight Research Center Director Paul Bikle. After a six-month feasibility study, Bikle gave approval in the fall of 1962 for the M2-F1 to be built. The wingless, lifting body aircraft design was initially concieved as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Flight Research Center management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. These initial tests produced enough flight data about the M2-F1 to proceed with flights behind a NASA C-47 tow plane at greater altitudes. The C-47 took the craft to an altitude of 12,000 where free flights back to Rogers Dry Lake began. Pilot for the first series of flights of the M2-F1 was NASA research pilot Milt Thompson. Typical glide flights with the M2-F1 lasted about two minutes and reached speeds of 110 to l20 mph. More than 400 ground tows and 77 aircraft tow flights were carried out with the M2-F1. The success of Dryden's M2-F1 program led to NASA's development and construction of two heavyweight lifting bodies based on studies at NASA's Ames and Langley research centers--the M2-F2 and the HL

  10. M2-F1 simulator cockpit

    NASA Technical Reports Server (NTRS)

    1963-01-01

    This early simulator of the M2-F1 lifting body was used for pilot training, to test landing techniques before the first ground tow attempts, and to test new control configurations after the first tow attempts and wind-tunnel tests. The M2-F1 simulator was limited in some ways by its analog simulator. It had only limited visual display for the pilot, as well. The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with the largest engine available. He took the car to Bill Straup's renowned hot-rod shop near Long Beach for modification. With a special gearbox and racing slicks, the Pontiac could tow the 1,000-pound M2-F1 110 miles per hour in 30 seconds. It proved adequate for the roughly 400 car tows that got the M2-F1 airborne

  11. M2-F1 in flight

    NASA Technical Reports Server (NTRS)

    1963-01-01

    This 25-second clip shows Milt Thompson being towed in the M2-F1 behind a C-47 aircraft. The M2-F1 lifting body, dubbed the 'flying bathtub' by the media, was the precursor of a remarkable series of wingless flying vehicles that contributed data used in the Space Shuttles, the X-33 Advanced Technology Demonstrator for the next century's Reusable Launch Vehicle, and the X-38 Technology Demonstrator for crew return from the International Space Station. Based on the ideas and basic design of Alfred J. Eggers and others at the Ames Aeronautical Laboratory (now the Ames Research Center), Mountain View, California, in the mid-1950's, the M2-F1 was built in 1962-63 over a four-month period for a cost of only about $30,000, plus an additional $8,000-$10,000 for an ejection seat. Engineers and technicians at the NASA Flight Research Center (now NASA Dryden) kept costs low by designing and fabricating it partly in-house, with the plywood shell constructed by a local sailplane builder. Someone at the time estimated that it would have cost a major aircraft company $150,000 to build the same vehicle. Unlike the later lifting bodies, the M2-F1 was unpowered and was initially towed by a souped-up Pontiac convertible until it was airborne. Later a C-47 took over the towing duties. Flown by such famous research pilots as Milt Thompson, Bruce Peterson, Chuck Yeager, and Bill Dana, the lightweight flying bathtub demonstrated that a wingless vehicle shaped for reentry into the Earth's atmosphere from space could be flown and landed safely. Flown from 1963 to 1966, the lightweight M2-F1 paved the way for the heavyweight M2-F2, M2-F3, HL-10, X-24A, and X-24B lifting bodies that flew under rocket power after launch from a B-52 mothership. The heavyweights flew from 1966 to 1975, demonstrating the viability and versatility of the wingless configuration and the ability of a vehicle with low lift-over-drag characteristics to fly to high altitudes and then to land precisely with their rocket

  12. M2-F1 in flight on tow line

    NASA Technical Reports Server (NTRS)

    1964-01-01

    The M2-F1 Lifting Body is seen here under tow at the Flight Research Center (later redesignated the Dryden Flight Research Center), Edwards, California. The wingless, lifting-body aircraft design was initially concieved as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Flight Research Center management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The M2-F1 project had limited goals. They were to show that a piloted lifting body could be built, that it could not only fly but be controlled in flight, and that it could make a successful landing. While the M2-F1 did prove the concept, with a wooden fuselage and fixed landing gear, it was far from an operational spacecraft. The next step in the lifting-body development was to build a heavyweight, rocket-powered vehicle that was more like an operational lifting body, albeit one without the thermal protection system that would be needed for reentry into the atmosphere from space at near-orbital speeds. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. These initial tests produced enough flight data about the M2-F1 to proceed with flights behind a NASA C-47 tow plane at greater altitudes. The C-47 took the craft to an altitude of 12,000 where free flights back to Rogers Dry Lake began. Pilot for the first series of flights of the M2-F1 was NASA research pilot Milt Thompson. Typical glide flights with the M2-F1 lasted about two minutes and reached speeds of 110 to

  13. M2-F1 on lakebed with pilot Milt Thompson

    NASA Technical Reports Server (NTRS)

    1963-01-01

    NASA Flight Research Pilot Milt Thompson, shown here on the lakebed with the M2-F1 lifting body, was an early backer of R. Dale Reed's lifting-body proposal. He urged Flight Research Center director Paul Bikle to approve the M2-F1's construction. Thompson also made the first glide flights in both the M2-F1 and its successor, the heavyweight M2-F2. The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, NASA Flight Research Center (later Dryden Flight Research Center, Edwards, CA) management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with the largest engine available. He took the car to Bill Straup's renowned hot-rod shop near Long Beach for modification. With a special gearbox and racing slicks, the Pontiac could tow the 1,000-pound M2-F1 110 miles per hour in 30 seconds. It proved

  14. M2-F1 in hangar with Pontiac tow vehicle

    NASA Technical Reports Server (NTRS)

    1963-01-01

    The M2-F1 Lifting Body is seen here in a hangar with its hotrod Pontiac convertible tow vehicle at the Flight Research Center (later the Dryden Flight Research Center), Edwards, California. The car was a 1963 Pontiac Catalina convertible, fitted with a 421-cubic-inch tripower engine like those being run at the Daytona 500 auto race. The vehicle also had a four-speed transmission and a heavy-duty suspension and cooling system. A roll bar was also added and the passenger seat turned around so an observer could watch the M2-F1 while it was being towed. The rear seat was removed and a second, side-facing seat installed. The lifting-body team used the Pontiac for all the ground-tow flights over the next three years. The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey

  15. M2-F1 in hangar with Pontiac tow vehicle

    NASA Technical Reports Server (NTRS)

    1963-01-01

    The M2-F1 Lifting Body is seen here in a hangar with its hotrod Pontiac convertible tow vehicle at the Flight Research Center (later the Dryden Flight Research Center), Edwards, California. The car was a 1963 Pontiac Catalina convertible, fitted with a 421-cubic-inch tripower engine like those being run at the Daytona 500 auto race. The vehicle also had a four-speed transmission and a heavy-duty suspension and cooling system. A roll bar was also added and the passenger seat turned around so an observer could watch the M2-F1 while it was being towed. The rear seat was removed and a second, side-facing seat installed. The lifting-body team used the Pontiac for all the ground-tow flights over the next three years. The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey

  16. M2-F1 ejection seat test at South Edwards

    NASA Technical Reports Server (NTRS)

    1963-01-01

    The M2-F1 was fitted with an ejection seat before the airtow flights began. The project selected the seat used in the T-37 as modified by the Weber Company to use a rocket rather than a ballistic charge for ejection. To test the ejection seat, the Flight Research Center's Dick Klein constructed a plywood mockup of the M2-F1's top deck and canopy. On the first firings, the test was unsuccessful, but on the final test the dummy in the seat landed safely. The M2-F1 ejection seat was later used in the two Lunar Landing Research Vehicles and the three Lunar Landing Training Vehicles. Three of them crashed, but in each case the pilot ejected from the vehicle successfully. The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with

  17. Internal steel structure of M2-F1

    NASA Technical Reports Server (NTRS)

    1963-01-01

    The internal steel structure for the M2-F1 was built at the Flight Research Center (predecessor of the Dryden Flight Research Center, Edwards, CA) in a section of the calibration hangar dubbed 'Wright Bicycle Shop.' Visible are the stick, rudder pedals, and ejection seat. The external wooden shell was attached to the steel structure. The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with the largest engine available. He took the car to Bill Straup's renowned hot-rod shop near Long Beach for modification. With a special gearbox and racing slicks, the Pontiac could tow the 1,000-pound M2-F1 110 miles per hour in 30 seconds. It proved adequate for the roughly 400 car tows that got the M2-F1 airborne to prove it could fly

  18. M2-F1 in flight over lakebed on tow line

    NASA Image and Video Library

    1963-08-30

    Following the first M2-F1 airtow flight on 16 August 1963, the Flight Research Center used the vehicle for both research flights and to check out new lifting-body pilots. These included Bruce Peterson, Don Mallick, Fred Haise, and Bill Dana from NASA. Air Force pilots who flew the M2-F1 included Chuck Yeager, Jerry Gentry, Joe Engle, Jim Wood, and Don Sorlie, although Wood, Haise, and Engle only flew on car tows. In the three years between the first and last flights of the M2-F1, it made about 400 car tows and 77 air tows.

  19. M2-F1 under tow across lakebed by car

    NASA Technical Reports Server (NTRS)

    1963-01-01

    This 20-second clip shows the M2-F1 being towed by the Pontiac across Rogers Dry Lakebed. The M2-F1 lifting body, dubbed the 'flying bathtub' by the media, was the precursor of a remarkable series of wingless flying vehicles that contributed data used in the Space Shuttles, the X-33 Advanced Technology Demonstrator for the next century's Reusable Launch Vehicle, and the X-38 Technology Demonstrator for crew return from the International Space Station. Based on the ideas and basic design of Alfred J. Eggers and others at the Ames Aeronautical Laboratory (now the Ames Research Center), Mountain View, California, in the mid-1950's, the M2-F1 was built in 1962-63 over a four-month period for a cost of only about $30,000, plus an additional $8,000-$10,000 for an ejection seat. Engineers and technicians at the NASA Flight Research Center (now NASA Dryden) kept costs low by designing and fabricating it partly in-house, with the plywood shell constructed by a local sailplane builder. Someone at the time estimated that it would have cost a major aircraft company $150,000 to build the same vehicle. Unlike the later lifting bodies, the M2-F1 was unpowered and was initially towed by a souped-up Pontiac convertible until it was airborne. Later a C-47 took over the towing duties. Flown by such famous research pilots as Milt Thompson, Bruce Peterson, Chuck Yeager, and Bill Dana, the lightweight flying bathtub demonstrated that a wingless vehicle shaped for reentry into the Earth's atmosphere from space could be flown and landed safely. Flown from 1963 to 1966, the lightweight M2-F1 paved the way for the heavyweight M2-F2, M2`F3, HL-10, X-24A, and X-24B lifting bodies that flew under rocket power after launch from a B-52 mothership. The heavyweights flew from 1966 to 1975, demonstrating the viability and versatility of the wingless configuration and the ability of a vehicle with low lift-over-drag characteristics to fly to high altitudes and then to land precisely with their

  20. M2-F1 in flight being towed by a C-47

    NASA Technical Reports Server (NTRS)

    1964-01-01

    The M2-F1 Lifting Body is seen here being towed behind a C-47 at the Flight Research Center (later redesignated the Dryden Flight Research Center), Edwards, California. In this rear view, the M2-F1 is flying above and to one side of the C-47. This was done to avoid wake turbulence from the towplane. Lacking wings, the M2-F1 used an unusual configuration for its control surfaces. It had two rudders on the fins, two elevons (called 'elephant ears') mounted on the outsides of the fins, and two body flaps on the upper rear fuselage. The wingless, lifting body aircraft design was initially concieved as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. These initial tests produced enough flight data about the M2-F1 to proceed with flights behind the C-47 tow plane at greater altitudes. The C-47 took the craft to an altitude of 12,000 where free flights back to Rogers Dry Lake began. Pilot for the first series of flights of the M2-F1 was NASA research pilot Milt Thompson. Typical glide flights with the M2-F1 lasted about two minutes and reached speeds of 110 to l20 mph. More than 400 ground tows and 77 aircraft tow flights were carried out with the M2-F1. The success of Dryden's M2-F1 program led to NASA's development and construction of two heavyweight lifting bodies based on studies at NASA's Ames and

  1. M2-F1 in flight over lakebed on tow line

    NASA Technical Reports Server (NTRS)

    1963-01-01

    Following the first M2-F1 airtow flight on 16 August 1963, the Flight Research Center used the vehicle for both research flights and to check out new lifting-body pilots. These included Bruce Peterson, Don Mallick, Fred Haise, and Bill Dana from NASA. Air Force pilots who flew the M2-F1 included Chuck Yeager, Jerry Gentry, Joe Engle, Jim Wood, and Don Sorlie, although Wood, Haise, and Engle only flew on car tows. In the three years between the first and last flights of the M2-F1, it made about 400 car tows and 77 air tows. The wingless, lifting body aircraft design was initially concieved as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with the largest engine available. He took the car to Bill Straup's renowned hot-rod shop near Long Beach for modification. With a special gearbox and

  2. M2-F1 on lakebed with Pontiac convertible tow vehicle

    NASA Technical Reports Server (NTRS)

    1963-01-01

    The M2-F1 lifting body, dubbed the 'flying bathtub' by the media, was the precursor of a remarkable series of wingless flying vehicles that contributed data used in the space shuttle and the X-38 Technology Demonstrator for crew return from the International Space Station. The early tow tests were done using the 1963 Pontiac Catalina convertible modified for the purpose. The first flight attempt occurred on 1 March 1963 but was unsuccessful due to control-system problems. It was not until 5 April 1963, after tests in the Ames Research Center wind tunnel, that Milt Thompson made the first M2-F1 tow flight. Based on the ideas and basic design of Alfred J. Eggers and others at the Ames Aeronautical Laboratory (now the Ames Research Center), Mountain View, Calif., in the mid-1950s, the M2-F1 came to be built over a four-month period in 1962-63 for a cost of only about $30,000 plus perhaps an additional $8,000-$10,000 for an ejection seat and $10,000 for solid-propellant rockets to add time to the landing flare. Engineers and technicians at the NASA Flight Research Center (now NASA Dryden) kept costs low by designing and fabricating it partly in-house, with the plywood shell constructed by a local sailplane builder. Someone at the time estimated that it would have cost a major aircraft company $150,000 to build the same vehicle. Unlike the later lifting bodies, the M2-F1 was unpowered and was initially towed until it was airborne by a souped-up Pontiac convertible. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina

  3. Wooden shell of M2-F1 being assembled at El Mirage

    NASA Technical Reports Server (NTRS)

    1962-01-01

    Wooden shell of the M2-F1 being assembled at El Mirage, CA. While Flight Research Center technicians built the internal steel structure of the M2-F1, sailplane builder Gus Briegleb built the vehicle's outer wooden shell. Its skin was 3/32-inch mahogany plywood, with 1/8-inch mahogany rib sections reinforced with spruce. The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with the largest engine available. He took the car to Bill Straup's renowned hot-rod shop near Long Beach for modification. With a special gearbox and racing slicks, the Pontiac could tow the 1,000-pound M2-F1 110 miles per hour in 30 seconds. It proved adequate for the roughly 400 car tows that got the M2-F1 airborne to prove it could fly safely and to

  4. Wooden shell of M2-F1 being assembled at El Mirage

    NASA Technical Reports Server (NTRS)

    1962-01-01

    Wooden shell of the M2-F1 being assembled at El Mirage, CA. While Flight Research Center technicians built the internal steel structure of the M2-F1, sailplane builder Gus Briegleb built the vehicle's outer wooden shell. Its skin was 3/32-inch mahogany plywood, with 1/8-inch mahogany rib sections reinforced with spruce. The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with the largest engine available. He took the car to Bill Straup's renowned hot-rod shop near Long Beach for modification. With a special gearbox and racing slicks, the Pontiac could tow the 1,000-pound M2-F1 110 miles per hour in 30 seconds. It proved adequate for the roughly 400 car tows that got the M2-F1 airborne to prove it could fly safely and to

  5. M2-F1 in flight over lakebed on tow line

    NASA Technical Reports Server (NTRS)

    1963-01-01

    After initial ground-tow flights of the M2-F1 using the Pontiac as a tow vehicle, the way was clear to make air tows behind a C-47. The first air tow took place on 16 August 1963. Pilot Milt Thompson found that the M2-F1 flew well, with good control. This first flight lasted less than two minutes from tow-line release to touchdown. The descent rate was 4,000 feet per minute. The wingless, lifting body aircraft design was initially concieved as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with the largest engine available. He took the car to Bill Straup's renowned hot-rod shop near Long Beach for modification. With a special gearbox and racing slicks, the Pontiac could tow the 1,000-pound M2-F1 110 miles per hour in 30 seconds. It proved adequate for the roughly 400 car tows that got

  6. M2-F1 mounted in NASA Ames Research Center 40x80 foot wind tunnel

    NASA Technical Reports Server (NTRS)

    1962-01-01

    After the first attempted ground-tow tests of the M2-F1 in March 1963, the vehicle was taken to the Ames Research Center, Mountain View, CA, for wind-tunnel testing. During these tests, Milt Thompson and others were in the M2-F1 to position the control surfaces for each test. The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with the largest engine available. He took the car to Bill Straup's renowned hot-rod shop near Long Beach for modification. With a special gearbox and racing slicks, the Pontiac could tow the 1,000-pound M2-F1 110 miles per hour in 30 seconds. It proved adequate for the roughly 400 car tows that got the M2-F1 airborne to prove it could fly safely and to train pilots before they were towed behind a C

  7. M2-F1 fabrication by Grierson Hamilton, Bob Green, and Ed Browne

    NASA Technical Reports Server (NTRS)

    1962-01-01

    Flight Research Center discretionary funds paid for the M2-F-1's construction. NASA mechanics, sheet-metal smiths, and technicians did much of the work in a curtained-off area of a hangar called the 'Wright Bicycle Shop.' The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with the largest engine available. He took the car to Bill Straup's renowned hot-rod shop near Long Beach for modification. With a special gearbox and racing slicks, the Pontiac could tow the 1,000-pound M2-F1 110 miles per hour in 30 seconds. It proved adequate for the roughly 400 car tows that got the M2-F1 airborne to prove it could fly safely and to train pilots before they were towed behind a C-47 aircraft and released. These initial car-tow tests

  8. M2-F1 in flight during low-speed car tow

    NASA Technical Reports Server (NTRS)

    1963-01-01

    The M2-F1 shown in flight during a low-speed car tow runs across the lakebed. Such tests allowed about two minutes to test the vehicle's handling in flight. NASA Flight Research Center (later redesignated the Dryden Flight Research Center) personnel conducted as many as 8 to 14 ground-tow flights in a single day either to test the vehicle in preparation for air tows or to train pilots to fly the vehicle before they undertook air tows. The wingless, lifting body aircraft design was initially concieved as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with the largest engine available. He took the car to Bill Straup's renowned hot-rod shop near Long Beach for modification. With a special gearbox and racing slicks, the Pontiac could tow the 1,000-pound M2-F1 110 miles per hour in 30

  9. M2-F1 fabrication by Grierson Hamilton, Bob Green, and Ed Browne

    NASA Technical Reports Server (NTRS)

    1962-01-01

    Flight Research Center discretionary funds paid for the M2-F-1's construction. NASA mechanics, sheet-metal smiths, and technicians did much of the work in a curtained-off area of a hangar called the 'Wright Bicycle Shop.' The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with the largest engine available. He took the car to Bill Straup's renowned hot-rod shop near Long Beach for modification. With a special gearbox and racing slicks, the Pontiac could tow the 1,000-pound M2-F1 110 miles per hour in 30 seconds. It proved adequate for the roughly 400 car tows that got the M2-F1 airborne to prove it could fly safely and to train pilots before they were towed behind a C-47 aircraft and released. These initial car-tow tests

  10. Dale Reed with model in front of M2-F1

    NASA Image and Video Library

    1967-03-06

    Dale Reed with a model of the M2-F1 in front of the actual lifting body. Reed used the model to show the potential of the lifting bodies. He first flew it into tall grass to test stability and trim, then hand-launched it from buildings for longer flights. Finally, he towed the lifting-body model aloft using a powered model airplane known as the "Mothership." A timer released the model and it glided to a landing. Dale's wife Donna used a 9 mm. camera to film the flights of the model. Its stability as it glided--despite its lack of wings--convinced Milt Thompson and some Flight Research Center engineers including the center director, Paul Bikle, that a piloted lifting body was possible.

  11. Dale Reed with model in front of M2-F1

    NASA Technical Reports Server (NTRS)

    1967-01-01

    Dale Reed with a model of the M2-F1 in front of the actual lifting body. Reed used the model to show the potential of the lifting bodies. He first flew it into tall grass to test stability and trim, then hand-launched it from buildings for longer flights. Finally, he towed the lifting-body model aloft using a powered model airplane known as the 'Mothership.' A timer released the model and it glided to a landing. Dale's wife Donna used a 9 mm. camera to film the flights of the model. Its stability as it glided--despite its lack of wings--convinced Milt Thompson and some Flight Research Center engineers including the center director, Paul Bikle, that a piloted lifting body was possible. The lifting body concept evolved in the mid-1950s as researchers considered alternatives to ballistic reentries of piloted space capsules. The designs for hypersonic, wingless vehicles were on the boards at NASA Ames and NASA Langley facilities, while the US Air Force was gearing up for its Dyna-Soar program, which defined the need for a spacecraft that would land like an airplane. Despite favorable research on lifting bodies, there was little support for a flight program. Dryden engineer R. Dale Reed was intrigued with the lifting body concept, and reasoned that some sort of flight demonstration was needed before wingless aircraft could be taken seriously. In February 1962, he built a model lifting body based upon the Ames M2 design, and air-launched it from a radio controlled 'mothership.' Home movies of these flights, plus the support of research pilot Milt Thompson, helped pursuade the facilities director, Paul Bikle, to give the go-ahead for the construction of a full-scale version, to be used as a wind-tunnel model and possibly flown as a glider. Comparing lifting bodies to space capsules, an unofficial motto of the project was, 'Don't be Rescued from Outer Space--Fly Back in Style.' The construction of the M2-F1 was a joint effort by Dryden and a local glider manufacturer, the

  12. Dale Reed with model in front of M2-F1

    NASA Technical Reports Server (NTRS)

    1967-01-01

    Dale Reed with a model of the M2-F1 in front of the actual lifting body. Reed used the model to show the potential of the lifting bodies. He first flew it into tall grass to test stability and trim, then hand-launched it from buildings for longer flights. Finally, he towed the lifting-body model aloft using a powered model airplane known as the 'Mothership.' A timer released the model and it glided to a landing. Dale's wife Donna used a 9 mm. camera to film the flights of the model. Its stability as it glided--despite its lack of wings--convinced Milt Thompson and some Flight Research Center engineers including the center director, Paul Bikle, that a piloted lifting body was possible. The lifting body concept evolved in the mid-1950s as researchers considered alternatives to ballistic reentries of piloted space capsules. The designs for hypersonic, wingless vehicles were on the boards at NASA Ames and NASA Langley facilities, while the US Air Force was gearing up for its Dyna-Soar program, which defined the need for a spacecraft that would land like an airplane. Despite favorable research on lifting bodies, there was little support for a flight program. Dryden engineer R. Dale Reed was intrigued with the lifting body concept, and reasoned that some sort of flight demonstration was needed before wingless aircraft could be taken seriously. In February 1962, he built a model lifting body based upon the Ames M2 design, and air-launched it from a radio controlled 'mothership.' Home movies of these flights, plus the support of research pilot Milt Thompson, helped pursuade the facilities director, Paul Bikle, to give the go-ahead for the construction of a full-scale version, to be used as a wind-tunnel model and possibly flown as a glider. Comparing lifting bodies to space capsules, an unofficial motto of the project was, 'Don't be Rescued from Outer Space--Fly Back in Style.' The construction of the M2-F1 was a joint effort by Dryden and a local glider manufacturer, the

  13. Body lift.

    PubMed

    Capella, Joseph F

    2008-01-01

    The body in the patient who has lost a massive amount of weight presents an extreme form of traditional esthetic and functional body contour concerns. Routine body contouring procedures usually produce only suboptimal results in this patient population. The body lift described herein is an excellent alternative to treat the body contour deformity of the patient who has undergone bariatric surgery. As with every technique, careful patient selection, education, and preparation are critical to minimizing complications and optimizing outcome.

  14. M2-F1 on lakebed with pilots Milt Thompson, Chuck Yeager, Don Mallick, and Bruce Peterson

    NASA Technical Reports Server (NTRS)

    1963-01-01

    After the initial M2-F1 airtow flights, the NASA Flight Research Center used the vehicle to check out other pilots. Bruce Peterson was scheduled to take over as the M2-F1 project pilot from Milt Thompson, while Don Mallick was to be his backup. Col. (later Brig. Gen.) Charles (Chuck) Yeager, then commandant of the Air Force's Aerospace Research Pilots School, wanted to evaluate a possible lifting-body trainer for the school. This photo shows all of these distinguished pilots on or in the M2-F1, with Col. Yeager in the pilot's seat. The lifting body concept evolved in the mid-1950s as researchers considered alternatives to ballistic reentries of piloted space capsules. The designs for hypersonic, wingless vehicles were on the boards at NASA Ames and NASA Langley facilities, while the US Air Force was gearing up for its Dyna-Soar program, which defined the need for a spacecraft that would land like an airplane. Despite favorable research on lifting bodies, there was little support for a flight program. Dryden engineer R. Dale Reed was intrigued with the lifting body concept, and reasoned that some sort of flight demonstration was needed before wingless aircraft could be taken seriously. In February 1962, he built a model lifting body based upon the Ames M2 design, and air-launched it from a radio controlled 'mothership.' Home movies of these flights, plus the support of research pilot Milt Thompson, helped pursuade the facilities director, Paul Bikle, to give the go-ahead for the construction of a full-scale version, to be used as a wind-tunnel model and possibly flown as a glider. Comparing lifting bodies to space capsules, an unofficial motto of the project was, 'Don't be Rescued from Outer Space--Fly Back in Style.' The construction of the M2-F1 was a joint effort by Dryden and a local glider manufacturer, the Briegleb Glider Company. The budget was $30,000. NASA craftsmen and engineers built the tubular steel interior frame. Its mahogany plywood shell was hand

  15. M2-F1 on lakebed with pilots Milt Thompson, Chuck Yeager, Don Mallick, and Bruce Peterson

    NASA Technical Reports Server (NTRS)

    1963-01-01

    After the initial M2-F1 airtow flights, the NASA Flight Research Center used the vehicle to check out other pilots. Bruce Peterson was scheduled to take over as the M2-F1 project pilot from Milt Thompson, while Don Mallick was to be his backup. Col. (later Brig. Gen.) Charles (Chuck) Yeager, then commandant of the Air Force's Aerospace Research Pilots School, wanted to evaluate a possible lifting-body trainer for the school. This photo shows all of these distinguished pilots on or in the M2-F1, with Col. Yeager in the pilot's seat. The lifting body concept evolved in the mid-1950s as researchers considered alternatives to ballistic reentries of piloted space capsules. The designs for hypersonic, wingless vehicles were on the boards at NASA Ames and NASA Langley facilities, while the US Air Force was gearing up for its Dyna-Soar program, which defined the need for a spacecraft that would land like an airplane. Despite favorable research on lifting bodies, there was little support for a flight program. Dryden engineer R. Dale Reed was intrigued with the lifting body concept, and reasoned that some sort of flight demonstration was needed before wingless aircraft could be taken seriously. In February 1962, he built a model lifting body based upon the Ames M2 design, and air-launched it from a radio controlled 'mothership.' Home movies of these flights, plus the support of research pilot Milt Thompson, helped pursuade the facilities director, Paul Bikle, to give the go-ahead for the construction of a full-scale version, to be used as a wind-tunnel model and possibly flown as a glider. Comparing lifting bodies to space capsules, an unofficial motto of the project was, 'Don't be Rescued from Outer Space--Fly Back in Style.' The construction of the M2-F1 was a joint effort by Dryden and a local glider manufacturer, the Briegleb Glider Company. The budget was $30,000. NASA craftsmen and engineers built the tubular steel interior frame. Its mahogany plywood shell was hand

  16. Lifting Bodies on Lakebed

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The wingless, lifting body aircraft sitting on Rogers Dry Lake at what is now NASA's Dryden Flight Research Center, Edwards, California, from left to right are the X-24A, M2-F3 and the HL-10.The lifting body aircraft studied the feasibility of maneuvering and landing an aerodynamic craft designed for reentry from space. These lifting bodies were air launched by a B-52 mother ship, then flew powered by their own rocket engines before making an unpowered approach and landing. They helped validate the concept that a space shuttle could make accurate landings without power. The X-24A flew from April 17, 1969 to June 4, 1971. The M2-F3 flew from June 2, 1970 until December 21, 1971. The HL-10 flew from December 22, 1966 until July 17, 1970, and logged the highest and fastest records in the lifting body program. The X-24 was one of a group of lifting bodies flown by the NASA Flight Research Center (now Dryden Flight Research Center), Edwards, California, in a joint program with the U.S. Air Force at Edwards Air Force Base from 1963 to 1975. The lifting bodies were used to demonstrate the ability of pilots to maneuver and safely land wingless vehicles designed to fly back to Earth from space and be landed like an airplane at a predetermined site. Lifting bodies' aerodynamic lift, essential to flight in the atmosphere, was obtained from their shape. The addition of fins and control surfaces allowed the pilots to stabilize and control the vehicles and regulate their flight paths. Built by Martin Aircraft Company, Maryland, for the U.S. Air Force, the X-24A was a bulbous vehicle shaped like a teardrop with three vertical fins at the rear for directional control. It weighed 6,270 pounds, was 24.5 feet long and 11.5 feet wide (measuring just the fuselage, not the distance between the tips of the outboard fins). Its first unpowered glide flight was on April 17, 1969, with Air Force Maj. Jerauld Gentry at the controls. Gentry also piloted its first powered flight on March 19

  17. Lifting Bodies on Lakebed

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The wingless, lifting body aircraft sitting on Rogers Dry Lake at what is now NASA's Dryden Flight Research Center, Edwards, California, from left to right are the X-24A, M2-F3 and the HL-10.The lifting body aircraft studied the feasibility of maneuvering and landing an aerodynamic craft designed for reentry from space. These lifting bodies were air launched by a B-52 mother ship, then flew powered by their own rocket engines before making an unpowered approach and landing. They helped validate the concept that a space shuttle could make accurate landings without power. The X-24A flew from April 17, 1969 to June 4, 1971. The M2-F3 flew from June 2, 1970 until December 22, 1972. The HL-10 flew from December 22, 1966 until July 17, 1970, and logged the highest and fastest records in the lifting body program. The X-24 was one of a group of lifting bodies flown by the NASA Flight Research Center (FRC-now Dryden Flight Research Center), Edwards, California, in a joint program with the U.S. Air Force at Edwards Air Force Base from 1963 to 1975. The lifting bodies were used to demonstrate the ability of pilots to maneuver and safely land wingless vehicles designed to fly back to Earth from space and be landed like an airplane at a predetermined site. Lifting bodies' aerodynamic lift, essential to flight in the atmosphere, was obtained from their shape. The addition of fins and control surfaces allowed the pilots to stabilize and control the vehicles and regulate their flight paths. Built by Martin Aircraft Company, Maryland, for the U.S. Air Force, the X-24A was a bulbous vehicle shaped like a teardrop with three vertical fins at the rear for directional control. It weighed 6,270 pounds, was 24.5 feet long and 11.5 feet wide (measuring just the fuselage, not the distance between the tips of the outboard fins). Its first unpowered glide flight was on April 17, 1969, with Air Force Maj. Jerauld Gentry at the controls. Gentry also piloted its first powered flight on March 19

  18. Flight-Determined Subsonic Lift and Drag Characteristics of Seven Lifting-Body and Wing-Body Reentry Vehicle Configurations With Truncated Bases

    NASA Technical Reports Server (NTRS)

    Saltzman, Edwin J.; Wang, K. Charles; Iliff, Kenneth W.

    1999-01-01

    This paper examines flight-measured subsonic lift and drag characteristics of seven lifting-body and wing-body reentry vehicle configurations with truncated bases. The seven vehicles are the full-scale M2-F1, M2-F2, HL-10, X-24A, X-24B, and X-15 vehicles and the Space Shuttle prototype. Lift and drag data of the various vehicles are assembled under aerodynamic performance parameters and presented in several analytical and graphical formats. These formats unify the data and allow a greater understanding than studying the vehicles individually allows. Lift-curve slope data are studied with respect to aspect ratio and related to generic wind-tunnel model data and to theory for low-aspect-ratio planforms. The proper definition of reference area was critical for understanding and comparing the lift data. The drag components studied include minimum drag coefficient, lift-related drag, maximum lift-to-drag ratio, and, where available, base pressure coefficients. The effects of fineness ratio on forebody drag were also considered. The influence of forebody drag on afterbody (base) drag at low lift is shown to be related to Hoerner's compilation for body, airfoil, nacelle, and canopy drag. These analyses are intended to provide a useful analytical framework with which to compare and evaluate new vehicle configurations of the same generic family.

  19. Aerodynamic Assessment of Flight-Determined Subsonic Lift and Drag Characteristics of Seven Lifting-Body and Wing-Body Reentry Vehicle Configurations

    NASA Technical Reports Server (NTRS)

    Saltzman, Edwin J.; Wang, K. Charles; Iliff, Kenneth W.

    2002-01-01

    This report examines subsonic flight-measured lift and drag characteristics of seven lifting-body and wing-body reentry vehicle configurations with truncated bases. The seven vehicles are the full-scale M2-F1, M2-F2, HL-10, X-24A, X-24B, and X-15 vehicles and the Space Shuttle Enterprise. Subsonic flight lift and drag data of the various vehicles are assembled under aerodynamic performance parameters and presented in several analytical and graphical formats. These formats are intended to unify the data and allow a greater understanding than individually studying the vehicles allows. Lift-curve slope data are studied with respect to aspect ratio and related to generic wind-tunnel model data and to theory for low-aspect-ratio platforms. The definition of reference area is critical for understanding and comparing the lift data. The drag components studied include minimum drag coefficient, lift-related drag, maximum lift-to drag ratio, and, where available, base pressure coefficients. The influence of forebody drag on afterbody and base drag at low lift is shown to be related to Hoerner's compilation for body, airfoil, nacelle, and canopy drag. This feature may result in a reduced need of surface smoothness for vehicles with a large ratio of base area to wetted area. These analyses are intended to provide a useful analytical framework with which to compare and evaluate new vehicle configurations of the same generic family.

  20. Aerodynamics of Supersonic Lifting Bodies

    DTIC Science & Technology

    1981-02-01

    verso of front cover. 19 Y WOROS (Continue on rt.’,;erso side i recessary and identily by block number) Theoretical Aerodynamics Lifting Bodies Wind ...waverider solution, developed from the supersonic wedge flow solution, is then i Fused to fashion vertLcal stabilizer-likh control surfaces. Wind ...served as Project Engineers ror thE wind tunnel work. Important contributions were also made bv: Mr. iis±ung Miin; Lee, -M. Beom-Soo Kim, Mtr. Martin Weeks

  1. Three Lifting Bodies on Lakebed

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The wingless, lifting body aircraft sitting on Rogers Dry Lake at what is now NASA's Dryden Flight Research Center, Edwards, California, from left to right are the X-24A, M2-F3 and the HL-10.The lifting body aircraft studied the feasibility of maneuvering and landing an aerodynamic craft designed for reentry from space. These lifting bodies were air launched by a B-52 mother ship, then flew powered by their own rocket engines before making an unpowered approach and landing. They helped validate the concept that a space shuttle could make accurate landings without power. The X-24A flew from April 17, 1969 to June 4, 1971. The M2-F3 flew from June 2, 1970 until December 20, 1972. The HL-10 flew from December 22, 1966 until July 17, 1970 and logged the highest and fastest records in the lifting body program. The X-24 was one of a group of lifting bodies flown by the NASA Flight Research Center (FRC--now Dryden Flight Research Center), Edwards, California, in a joint program with the U.S. Air Force at Edwards Air Force Base from 1963 to 1975. The lifting bodies were used to demonstrate the ability of pilots to maneuver and safely land wingless vehicles designed to fly back to Earth from space and be landed like an airplane at a predetermined site. Lifting bodies' aerodynamic lift, essential to flight in the atmosphere, was obtained from their shape. The addition of fins and control surfaces allowed the pilots to stabilize and control the vehicles and regulate their flight paths. Built by Martin Aircraft Company, Maryland, for the U.S. Air Force, the X-24A was a bulbous vehicle shaped like a teardrop with three vertical fins at the rear for directional control. It weighed 6,270 pounds, was 24.5 feet long and 11.5 feet wide (measuring just the fuselage, not the distance between the tips of the outboard fins). Its first unpowered glide flight was on April 17, 1969, with Air Force Maj. Jerauld Gentry at the controls. Gentry also piloted its first powered flight on March 19

  2. Wingless Flight: The Lifting Body Story

    NASA Technical Reports Server (NTRS)

    Reed, R. Dale; Lister, Darlene (Editor); Huntley, J. D. (Editor)

    1997-01-01

    Wingless Flight tells the story of the most unusual flying machines ever flown, the lifting bodies. It is my story about my friends and colleagues who committed a significant part of their lives in the 1960s and 1970s to prove that the concept was a viable one for use in spacecraft of the future. This story, filled with drama and adventure, is about the twelve-year period from 1963 to 1975 in which eight different lifting-body configurations flew. It is appropriate for me to write the story, since I was the engineer who first presented the idea of flight-testing the concept to others at the NASA Flight Research Center. Over those twelve years, I experienced the story as it unfolded day by day at that remote NASA facility northeast of los Angeles in the bleak Mojave Desert. Benefits from this effort immediately influenced the design and operational concepts of the winged NASA Shuttle Orbiter. However, the full benefits would not be realized until the 1990s when new spacecraft such as the X-33 and X-38 would fully employ the lifting-body concept. A lifting body is basically a wingless vehicle that flies due to the lift generated by the shape of its fuselage. Although both a lifting reentry vehicle and a ballistic capsule had been considered as options during the early stages of NASA's space program, NASA initially opted to go with the capsule. A number of individuals were not content to close the book on the lifting-body concept. Researchers including Alfred Eggers at the NASA Ames Research Center conducted early wind-tunnel experiments, finding that half of a rounded nose-cone shape that was flat on top and rounded on the bottom could generate a lift-to-drag ratio of about 1.5 to 1. Eggers' preliminary design sketch later resembled the basic M2 lifting-body design. At the NASA Langley Research Center, other researchers toyed with their own lifting-body shapes. Meanwhile, some of us aircraft-oriented researchers at the, NASA Flight Research Center at Edwards Air

  3. NASA HL-20 PLS Lifting Body (Mockup)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    NASA HL-20 PLS Lifting Body (Mockup): The HL-20 came into use at Langley in October 1990 and is a full-scale non-flying mockup. This mockup was used for engineering studies of maintainability of the vehicle, as testing crew positions, pilot visibility and other human factors considerations.

  4. Development and flight testing of the HL-10 lifting body

    NASA Technical Reports Server (NTRS)

    Kempel, Robert W.; Painter, Weneth D.

    1993-01-01

    The Horizontal Lander 10 (HL-10) lifting body successfully completed 37 flights, achieved the highest Mach number and altitude of this class of vehicle, and contributed to the technology base used to develop the space shuttle and future generations of lifting bodies. Design, development, and flight testing of this low-speed, air-launched, rocket-powered, lifting body was part of an unprecedented effort by NASA and the Northrop Corporation. This paper describes the evolution of the HL-10 lifting body from theoretical design, through development, to selection as one of two low-speed flight vehicles chosen for fabrication and piloted flight testing. Interesting and unusual events which occurred during the program and flight tests, review of significant problems encountered during the first flight, and discussion of how these problems were solved are presented. In addition, impressions of the pilots who flew the HL-10 lifting body are given.

  5. Complications of Lower Body Lift Surgery in Postbariatric Patients

    PubMed Central

    van Dijk, Martine M.; Klein, Steven; Hoogbergen, Maarten M.

    2016-01-01

    Background: There is an exponential rise of patients with massive weight loss because of bariatric surgery or lifestyle changes. The result is an increase of patients with folds of redundant skin that may cause physical and psychological problems. The lower body lift is a procedure to correct deformities in the abdomen, mons, flanks, lateral thighs, and buttocks. Complication rates are quite high and could negatively affect the positive outcomes. The purpose of this study is to assess complication rates and to identify predictors of complications to optimize outcomes for patients after lower body lift surgery. Methods: A retrospective analysis of 100 patients who underwent a lower body lift procedure was performed. The patients were reviewed for complications, demographic data, comorbidities, smoking, highest lifetime body mass index, body mass index before lower body lift surgery, percentage of excess weight loss, and amount of tissue excised. Results: The overall complication rate was 78%. Twenty-two percent of the patients had major complications and 56% had minor complications. There is a linear relationship between body mass index before lower body lift surgery and complications (P = 0.03). The percentage of excess weight loss (odds ratio [OR] 0.97; 95% confidence interval [CI] 0.92–1.00), highest lifetime body mass index (OR 1.08; 95% CI 1.01–1.15), body mass index before lower body lift surgery (OR 1.17; 95% CI 1.02–1.33), and smoking (OR 7.74; CI 0.98–61.16) are significantly associated with the development of complications. Conclusions: This study emphasizes the importance of a good weight status before surgery and cessation of smoking to minimize the risk of complications. PMID:27757346

  6. Analysis of transonic flow about lifting wing-body configurations

    NASA Technical Reports Server (NTRS)

    Barnwell, R. W.

    1975-01-01

    An analytical solution was obtained for the perturbation velocity potential for transonic flow about lifting wing-body configurations with order-one span-length ratios and small reduced-span-length ratios and equivalent-thickness-length ratios. The analysis is performed with the method of matched asymptotic expansions. The angles of attack which are considered are small but are large enough to insure that the effects of lift in the region far from the configuration are either dominant or comparable with the effects of thickness. The modification to the equivalence rule which accounts for these lift effects is determined. An analysis of transonic flow about lifting wings with large aspect ratios is also presented.

  7. Aerodynamic development of a lifting body launch vehicle

    SciTech Connect

    Reaser, J.S.

    1997-01-01

    The Lockheed Martin Reusable Launch Vehicle (RLV) and X-33 demonstrator vehicle incorporate a lifting body aerodynamic design. This design originated from the X-24, HL-20 and ACRV lifting body database. It evolved rapidly through successive wind tunnel tests using stereolithography generated plastic models and rapid data acquisition and analysis. The culmination of this work is a configuration that is close to meeting a goal of at least neutral stability about all axes throughout the operating Mach spectrum. The development process and aerodynamic evolution are described. {copyright} {ital 1997 American Institute of Physics.}

  8. Aerodynamic development of a lifting body launch vehicle

    NASA Astrophysics Data System (ADS)

    Reaser, J. Scott

    1997-01-01

    The Lockheed Martin Reusable Launch Vehicle (RLV) and X-33 demonstrator vehicle incorporate a lifting body aerodynamic design. This design originated from the X-24, HL-20 and ACRV lifting body database. It evolved rapidly through successive wind tunnel tests using stereolithography generated plastic models and rapid data acquisition and analysis. The culmination of this work is a configuration that is close to meeting a goal of at least neutral stability about all axes throughout the operating Mach spectrum. The development process and aerodynamic evolution are described.

  9. Mid-L/D Lifting Body Entry Demise Analysis

    NASA Technical Reports Server (NTRS)

    Ling, Lisa

    2017-01-01

    The mid-lift-to-drag ratio (mid-L/D) lifting body is a fully autonomous spacecraft under design at NASA for enabling a rapid return of scientific payloads from the International Space Station (ISS). For contingency planning and risk assessment for the Earth-return trajectory, an entry demise analysis was performed to examine three potential failure scenarios: (1) nominal entry interface conditions with loss of control, (2) controlled entry at maximum flight path angle, and (3) controlled entry at minimum flight path angle. The objectives of the analysis were to predict the spacecraft breakup sequence and timeline, determine debris survival, and calculate the debris dispersion footprint. Sensitivity analysis was also performed to determine the effect of the initial pitch rate on the spacecraft stability and breakup during the entry. This report describes the mid-L/D lifting body and presents the results of the entry demise and sensitivity analyses.

  10. Piloted simulator studies of the HL-20 Lifting Body

    NASA Technical Reports Server (NTRS)

    Rivers, Robert A.; Jackson, E. B.; Ragsdale, W. A.

    1991-01-01

    An overview is presented of the concept, design and development of the NASA Langley Lifting Body, and the flight simulator studies that have been performed. Attention is given to the aerodynamic shape of the HL-20, vehicle and simulator/cockpit description, and evolution of the HL-20 aerodynamic model. The flight simulation studies have demonstrated the HL-20 to be a viable design for accomplishing precise, unpowered, horizontal landings.

  11. Piloted simulator studies of the HL-20 Lifting Body

    NASA Astrophysics Data System (ADS)

    Rivers, Robert A.; Jackson, E. B.; Ragsdale, W. A.

    An overview is presented of the concept, design and development of the NASA Langley Lifting Body, and the flight simulator studies that have been performed. Attention is given to the aerodynamic shape of the HL-20, vehicle and simulator/cockpit description, and evolution of the HL-20 aerodynamic model. The flight simulation studies have demonstrated the HL-20 to be a viable design for accomplishing precise, unpowered, horizontal landings.

  12. The Personnel Launch System - A lifting body approach

    NASA Technical Reports Server (NTRS)

    Talay, Theodore A.; Stone, Howard W.

    1991-01-01

    A lifting-body approach to the sign of a Personnel Launch System spacecraft for Space Station crew missions is defined. This paper reviews the characteristics and capabilities of this spacecraft the HL-20. Launch vehicle options are examined and recent findings from wind tunnel tests, tests of landing dynamics and handling qualities, and human factors research using a full-scale research model are reviewed.

  13. Maximizing aesthetics in lateral-tension abdominoplasty and body lifts.

    PubMed

    Lockwood, Ted E

    2004-10-01

    The high-lateral-tension abdominoplasty addresses the practical and theoretic faults of standard abdominoplasty design. Key features include limited direct undermining, increased lateral skin resection with highest-tension wound closure along lateral limbs, two-layer superficial fascial system repair, and significant truncal liposuction when needed. The high-lateral-tension design limits the unfavorable features of standard abdominoplasty and produces balanced natural aesthetic contours. The high-lateral-tension abdominoplasty is the foundation for treatment of more generalized relaxation problems in the circumferential trunk and thighs. For more significant thigh laxity and buttock ptosis, the lateral-tension abdominoplasty is combined with the transverse thigh/buttock lift to produce the lower body lift #2.

  14. M2-F2 Lifting Body being Carried Aloft by B-52 Mothership

    NASA Technical Reports Server (NTRS)

    1966-01-01

    The M2-F2 Lifting Body is shown here being carried aloft by the Air Force's B-52 (tail number 003) prior to a research launch. The success of Dryden's 'homebuilt' M2-F1 program led to NASA's development and construction of two heavyweight lifting bodies--the M2-F2 and the HL-10, both built by the Northrop Corporation. The 'M' refers to 'manned' and 'F' refers to 'flight' version. 'HL' comes from 'horizontal landing.' The first flight of the M2-F2--which looked much like the 'F1'--was on July 12, 1966. Milt Thompson was the pilot. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable

  15. M2-F2 Lifting Body being Carried Aloft by B-52 Mothership

    NASA Technical Reports Server (NTRS)

    1966-01-01

    The M2-F2 Lifting Body is shown here being carried aloft by the Air Force's B-52 (tail number 003) prior to a research launch. The success of Dryden's 'homebuilt' M2-F1 program led to NASA's development and construction of two heavyweight lifting bodies--the M2-F2 and the HL-10, both built by the Northrop Corporation. The 'M' refers to 'manned' and 'F' refers to 'flight' version. 'HL' comes from 'horizontal landing.' The first flight of the M2-F2--which looked much like the 'F1'--was on July 12, 1966. Milt Thompson was the pilot. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable

  16. The HL-20 lifting-body personnel launch system

    NASA Technical Reports Server (NTRS)

    Stone, Howard W.; Piland, William M.

    1991-01-01

    The HL-20 early lifting-body personnel launch system (PSL) research, expected PSL mission requirements, the HL-20 concept design status, and those features which enhance aerodynamic and aerothermodynamic performance, operation, efficiency, maintainability, reliability, and crew safety are described. Results of the HL-20 PLS research to date show that the concept has definite advantages for efficiently satisfying future needs for assured manned access to space. The vehicle is designed with operational efficiency, low life-cycle costs, reliability, and safety as the primary criteria. It is shown that the HL-20 PLS can be developed and put into operation in the same timeframe that the Space Station Freedom is deployed.

  17. Viscous Theory of Lift on Bodies of Revolution

    DTIC Science & Technology

    1982-02-01

    role of viscosity in establishing a unique value of the circulatory part of the lift is completely understood within the framework of this theory...working). The generalized upwash ,g(x) can be separated into two parts ; i.e., ,49~x) =$$$b(x) +0i1l(x) (2.38) where + XT z ) ;0()=l) +. ~ fR: (2.39...and OgX (2.40) SfT The first part , 0 is completely determined in terms of the known upwash on the surface of the body. The second part , 61i can only

  18. Lifting Entry & Atmospheric Flight (LEAF) Applications at Solar System Bodies.

    NASA Astrophysics Data System (ADS)

    Lee, G.; Sen, B.; Polidan, R. S.

    2015-12-01

    Introduction: Northrop Grumman and L'Garde have continued the development of a hypersonic entry, maneuverable platform capable of performing long-duration (months to a year) in situ and remote measurements at any solar system body that possesses an atmosphere. The Lifting Entry & Atmospheric Flight (LEAF) family of vehicles achieve this capability by using a semi-buoyant, ultra-low ballistic coefficient vehicle whose lifting entry allows it to enter the atmosphere without an aeroshell. In this presentation, we discuss the application of the LEAF system at various solar system bodies: Venus, Titan, Mars, and Earth. We present the key differences in platform design as well as operational differences required by the various target environments. The Venus implementation includes propulsive capability to reach higher altitudes during the day and achieves full buoyancy in the "habitable layers" of Venus' atmosphere at night. Titan also offers an attractive operating environment, allowing LEAF designs that can target low, medium, or high altitude operations, also with propulsive capabilities to roam within each altitude regime. The Mars version is a glider that descends gradually, allowing targeted delivery of payloads to the surface. Finally, an Earth version could remain in orbit in a stowed state until activated, allowing rapid response type deployments to any region of the globe.

  19. Preliminary piloted simulation studies of the HL-20 lifting body

    NASA Astrophysics Data System (ADS)

    Rivers, Robert A.; Jackson, E. Bruce; Ragsdale, W. A.

    1994-05-01

    NASA Langley Research Center is developing a lifting body vehicle, designated the HL-20, as one option of the proposed Personnel Launch System for NASA's future manned access to space requirements. Data derived from wind-tunnel and computational fluid dynamics analyses of the conceptual design led to the derivation of a flight simulator model to investigate the potential flight characteristics of the HL-20. A simulation investigation was initiated to determine if satisfactory unpowered horizontal landings could be accomplished. Control law design and trajectory development were directed toward this end. The study uncovered several deficiencies subsequently corrected through design changes, and it validated the predicted subsonic aerodynamic properties. Expanding the investigation to the Mach 4 to Mach 1 regime revealed flight characteristics necessitating the development of innovative control techniques. This article will present the significant results uncovered to date by flight simulator evaluations of a lifting body class of vehicle, and will demonstrate the effectiveness of flight simulation as an integrated part of the conceptual design phase.

  20. Thermal Management Design for the X-33 Lifting Body

    NASA Technical Reports Server (NTRS)

    Bouslog, S.; Mammano, J.; Strauss, B.

    1998-01-01

    The X-33 Advantage Technology Demonstrator offers a rare and exciting opportunity in Thermal Protection System development. The experimental program incorporates the latest design innovation in re-useable, low life cycle cost, and highly dependable Thermal Protection materials and constructions into both ground based and flight test vehicle validations. The unique attributes of the X-33 demonstrator for design application validation for the full scale Reusable Launch Vehicle, (RLV), are represented by both the configuration of the stand-off aeroshell, and the extreme exposures of sub-orbital hypersonic re-entry simulation. There are several challenges of producing a sub-orbital prototype demonstrator of Single Stage to Orbit/Reusable Launch Vehicle (SSTO/RLV) operations. An aggressive schedule with budgetary constraints precludes the opportunity for an extensive verification and qualification program of vehicle flight hardware. However, taking advantage of off the shelf components with proven technologies reduces some of the requirements for additional testing. The effects of scale on thermal heating rates must also be taken into account during trajectory design and analysis. Described in this document are the unique Thermal Protection System (TPS) design opportunities that are available with the lifting body configuration of the X-33. The two principal objectives for the TPS are to shield the primary airframe structure from excessive thermal loads and to provide an aerodynamic mold line surface. With the relatively benign aeroheating capability of the lifting body, an integrated stand-off aeroshell design with minimal weight and reduced procurement and operational costs is allowed. This paper summarizes the design objectives of the X-33 TPS, the flight test requirements driven configuration, and design benefits. Comparisons are made of the X-33 flight profiles and Space Shuttle Orbiter, and lifting body Reusable Launch Vehicle aerothermal environments. The X-33

  1. Launch pad abort of the HL-20 lifting body

    NASA Astrophysics Data System (ADS)

    Jackson, E. Bruce; Rivers, Robert A.; Chowdhry, Rajiv S.; Ragsdale, W. A.; Geyer, David W.

    1994-11-01

    The capability of the HL-20 lifting-body spacecraft to perform an abort maneuver from the launch pad to a horizontal landing was studied. This study involved both piloted and batch simulation models of the vehicle. A point-mass model of the vehicle was used for trajectory optimization studies. The piloted simulation was performed in a fixed-base simulator. A candidate maneuver was developed and refined for the worst-case launch-pad-to-landing-site geometry using an iterative procedure of off-line maneuver analysis followed by piloted evaluations and heuristic improvements to the candidate maneuver. The resulting maneuver demonstrates the launch site abort capability of the HL-20 and dictates requirements for nominal abort motor performance. The sensitivity of the maneuver to variations in several design parameters was documented.

  2. In vivo loads on a vertebral body replacement during different lifting techniques.

    PubMed

    Dreischarf, Marcel; Rohlmann, Antonius; Graichen, Friedmar; Bergmann, Georg; Schmidt, Hendrik

    2016-04-11

    The repeated lifting of heavy weights has been identified as a risk factor for low back pain (LBP). Whether squat lifting leads to lower spinal loads than stoop lifting and whether lifting a weight laterally results in smaller forces than lifting the same weight in front of the body remain matters of debate. Instrumented vertebral body replacements (VBRs) were used to measure the in vivo load in the lumbar spine in three patients at level L1 and in one patient at level L3. Stoop lifting and squat lifting were compared in 17 measuring sessions, in which both techniques were performed a total of 104 times. The trunk inclination and amount of knee bending were simultaneously estimated from recorded images. Compared with the aforementioned lifting tasks, the patients additionally lifted a weight laterally with one hand 26 times. Only a small difference (4%) in the measured resultant force was observed between stoop lifting and squat lifting, although the knee-bending angle (stoop 10°, squat 45°) and trunk inclination (stoop 52°, squat 39°) differed considerably at the time points of maximal resultant forces. Lifting a weight laterally caused 14% less implant force on average than lifting the same weight in front of the body. The current in vivo biomechanical study does not provide evidence that spinal loads differ substantially between stoop and squat lifting. The anterior-posterior position of the lifted weight relative to the spine appears to be crucial for spinal loading. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. An on-body personal lift augmentation device (PLAD) reduces EMG amplitude of erector spinae during lifting tasks.

    PubMed

    Abdoli-E, Mohammad; Agnew, Michael J; Stevenson, Joan M

    2006-06-01

    A new on-body personal lift augmentation device was developed to support the back muscles during the repetitive lifting task. Nine male subjects participated in the study. Three Fastrak units were used to record positions and rotations of the segments. Trunk muscle normalized and integrated electromyography of the left and right thoracic erector spinae, lumbar erector spinae, external obliques, and rectus abdominis, as well as the kinematic variables of peak lumbar angle, peak pelvis angle, peak trunk acceleration, peak load acceleration were compared in symmetrical lifting for three different loads (5 kg, 15 kg, 25 kg) with three different styles (stooped, squat, free) under two conditions of with and without personal lift assist device. The lift assist device significantly reduced the required muscular effort of the lumbar (p = 0.001) and thoracic erector spinae with no significant differences in the level of abdominal muscle activity. The amount of integrated electromyography reduction ranged from 14.4% to 27.6% for the lumbar and thoracic erector spinae respectively. Simple measures of trunk posture and accelerations confirmed that there were no differences in lifting technique that would cause the integrated electromyography activity to be reduced. No major kinematic differences were found when the lift assist device was worn indicating that it did not alter these specific technique variables. The lift assist device did reduce the required muscular effort of the lumbar and thoracic erector spinae without adversely affecting the level of abdominal muscle activity. This reduction may help reduce the risk of recurring back injuries or assist in the return to work phase, especially in repetitive tasks.

  4. Lift-Drag Ratios for an Arrow Wing With Bodies at Mach Number 3

    NASA Technical Reports Server (NTRS)

    Jorgensen, Leland H.

    1959-01-01

    Force and moment characteristics, including lift-drag ratios, have been measured for bodies of circular and elliptic cross section alone and combined with a warped arrow wing. The test Mach number was 2.94, and the Reynolds number was 3.5 x 10(exp 6) (based on wing mean aerodynamic chord). The experimental results show that for equal volume the use of an elliptical body can result in a noticeably higher maximum lift-drag ratio than that obtained through use of a circular body. Methods for estimating the aerodynamic characteristics have been assessed by comparing computed with experimental results. Because of good agreement of the predictions with experiment, maximum lift-drag ratios have been computed for the arrow wing in combination with bodies of various sizes. These calculations have shown that, for an efficient wing-body combination, little loss in maximum lift-drag ratio results from considerable extension of afterbody length. For example, for a wing-body configuration having a maximum lift-drag ratio of about 7.1, a loss in maximum lift-drag ratio of less than 0.2 results from a 40-percent increase in body volume by extension of afterbody length. It also appears that with body length fixed, maximum lift-drag ratio decreases almost linearly with increase in body diameter. For a wing- body combination employing a body of circular cross section, a decrease in maximum lift-drag ratio from about 9.1 for zero body diameter to about 4.6 for a body diameter of 13.5 percent of the body length was computed.

  5. Exploring the effects of seated whole body vibration exposure on repetitive asymmetric lifting tasks.

    PubMed

    Mehta, Jay P; Lavender, Steven A; Jagacinski, Richard J; Sommerich, Carolyn M

    2015-01-01

    This study investigated changes in the physiological and behavioral responses to repetitive asymmetric lifting activity after exposure to whole body vibrations. Seventeen healthy volunteers repeatedly lifted a box (15% of lifter's capacity) positioned in front of them at ankle level to a location on their left side at waist level at the rate of 10 lifts/min for a period of 60 minutes. Prior to lifting, participants were seated on a vibrating platform for 60 minutes; in one of the two sessions the platform did not vibrate. Overall, the physiological responses assessed using near-infrared spectroscopy signals for the erector spinae muscles decreased significantly over time during the seating and the lifting tasks (p < 0.001). During repetitive asymmetric lifting, behavioral changes included increases in peak forward bending motion, twisting movement, and three-dimensional movement velocities of the spine. The lateral bending movement of the spine and the duration of each lift decreased significantly over the 60 minutes of repetitive lifting. With exposure to whole body vibration, participants twisted farther (p = 0.046) and twisted faster (p = 0.025). These behavioral changes would suggest an increase in back injury risk when repetitive lifting tasks are preceded by whole body vibration exposure.

  6. Effect of lift-to-drag ratio upon pilot rating for a preliminary version of the HL-20 lifting body

    NASA Technical Reports Server (NTRS)

    Jackson, E. B.; Rivers, Robert A.; Bailey, Melvin L.

    1991-01-01

    A man-in-the-loop simulation study of the handling qualities of the HL-20 lifting body vehicle has been performed in a fixed-base simulation cockpit. The study was aimed at identifying opportunities to improve the original design of the vehicle from a handling qualities and landing performance perspective. A subsonic aerodynamic model of the HL-20 was used as a baseline, and visual approaches and landings were made at various vehicle lift-to-drag (L/D) ratios. It is concluded that there is a high degree of correlation between maximum L/D ratio and pilot rating. Using the pilot ratings Level 1, flying qualities were found to be possible for configurations with a maximum L/D ratio of 3.8 or higher.

  7. Effect of lift-to-drag ratio upon pilot rating for a preliminary version of the HL-20 lifting body

    NASA Technical Reports Server (NTRS)

    Jackson, E. B.; Rivers, Robert A.; Bailey, Melvin L.

    1991-01-01

    A man-in-the-loop simulation study of the handling qualities of the HL-20 lifting body vehicle has been performed in a fixed-base simulation cockpit. The study was aimed at identifying opportunities to improve the original design of the vehicle from a handling qualities and landing performance perspective. A subsonic aerodynamic model of the HL-20 was used as a baseline, and visual approaches and landings were made at various vehicle lift-to-drag (L/D) ratios. It is concluded that there is a high degree of correlation between maximum L/D ratio and pilot rating. Using the pilot ratings Level 1, flying qualities were found to be possible for configurations with a maximum L/D ratio of 3.8 or higher.

  8. Supporting the upper body with the hand on the thigh reduces back loading during lifting.

    PubMed

    Kingma, Idsart; Faber, Gert S; van Dieën, Jaap H

    2016-04-11

    When picking objects from the floor, low back pain patients often tend to support the upper body by leaning with one hand on a thigh. While this strategy may reduce back load, this has not yet been assessed, probably due to the difficulty of measuring the forces between hand and thigh. Ten healthy male subjects lifted a pencil and a crate from the floor, with four lifting techniques (free, squat, stoop and a Weight Lifters Technique (WLT)), each of which was performed with and without supporting with one hand on the thigh. A six Degrees of Freedom force transducer, with a comfortable surface to support the hand on, was mounted just above the subject׳s left knee. Hand forces, ground reaction forces, full body kinematics, and trunk EMG were measured. Using inverse dynamics and taking the forces between hand and thigh into account, we calculated 3D L5S1 joint moments, and subsequently estimated spine forces using an EMG-assisted trunk model. For lifting a pencil, hand support reduced average peak total moments by 17-25%, dependent on lifting technique. For crate lifting, hand support reduced total moments by 13-19% compared with one-handed lifting and by 14-26% compared to two-handed lifting. Hand support slightly increased asymmetric motions and caused a substantial increase in asymmetric moments in crate lifting. For compression forces, reductions (up to 28%) were seen in all techniques except in stoop lifts. It is concluded that leaning with a hand on the thigh can lead to substantial reductions of low back loading during lifting. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. The lift-off velocity on the surface of an arbitrary body

    NASA Astrophysics Data System (ADS)

    Van wal, S.; Scheeres, D. J.

    2016-05-01

    An expression is developed for the velocity at which a particle, moving tangentially on the surface of a body with an arbitrary shape, rotation, and gravitational field, will lift off from that surface and enter orbit. The osculating departure plane in which this lift-off motion occurs is defined by the net particle acceleration and the desired lift-off direction. The body surface is approximated within this plane, at the departure point, with some radius and center of curvature, allowing for a universal, frame-independent lift-off velocity expression. Applying the geometry of plane-ellipsoid intersections, we perform a validation of the full lift-off velocity expression on a number of rotating ellipsoids. Finally, we derive a limit expression for the case of lift-off from a rotating plane, and compare this with the results on curved bodies. This theory has numerous applications to lander/rover surface mobility operations on asteroids, comets, and small moons, as well as to geophysical processes encountered on these bodies.

  10. Personnel launch system (PLS) lifting body and low lift-to-drag (L/D)

    NASA Technical Reports Server (NTRS)

    Erwin, Harry O.

    1990-01-01

    The Personnel Launch System (PLS) is a small transportation system designed to transport people, but no cargo, to and from low-earth orbit. The PLS is being considered as an addition to the manned launch capability of the United States for three main reasons: (1) to assure manned access to space, (2) to achieve a first-stage abort ability, and (3) to reduce operations costs. To those ends, two designs are being considered for the PLS that differ in their lift-to-drag (L/D) ratio. The Lyndon B. Johnson Space Center was assigned the task of examining low L/D capsules with no wings and a parachute landing capability. The Langley Research Center is studying a higher L/D PLS with wings and runway landings. Whichever design is selected, the PLS will act as a complement to the Space Shuttle fleet and will enhance the ability of our Nation to achieve reliable, safe, and cost-effective access to space flight, thus furthering the goals of the U.S. space program and increasing the safety of the human crews manning a future space station.

  11. Personnel launch system (PLS) lifting body and low lift-to-drag (L/D)

    NASA Astrophysics Data System (ADS)

    Erwin, Harry O.

    1990-09-01

    The Personnel Launch System (PLS) is a small transportation system designed to transport people, but no cargo, to and from low-earth orbit. The PLS is being considered as an addition to the manned launch capability of the United States for three main reasons: (1) to assure manned access to space, (2) to achieve a first-stage abort ability, and (3) to reduce operations costs. To those ends, two designs are being considered for the PLS that differ in their lift-to-drag (L/D) ratio. The Lyndon B. Johnson Space Center was assigned the task of examining low L/D capsules with no wings and a parachute landing capability. The Langley Research Center is studying a higher L/D PLS with wings and runway landings. Whichever design is selected, the PLS will act as a complement to the Space Shuttle fleet and will enhance the ability of our Nation to achieve reliable, safe, and cost-effective access to space flight, thus furthering the goals of the U.S. space program and increasing the safety of the human crews manning a future space station.

  12. In-Flight Subsonic Lift and Drag Characteristics Unique to Blunt-Based Lifting Reentry Vehicles

    NASA Technical Reports Server (NTRS)

    Saltzman, Edwin J.; Wang, K. Charles; Iliff, Kenneth W.

    2007-01-01

    Lift and drag measurements have been analyzed for subsonic flight conditions for seven blunt-based reentry-type vehicles. Five of the vehicles are lifting bodies (M2-F1, M2-F2, HL-10, X-24A, and X-24B) and two are wing-body configurations (the X-15 and the Space Shuttle Enterprise). Base pressure measurements indicate that the base drag for full-scale vehicles is approximately three times greater than predicted by Hoerner's equation for three-dimensional bodies. Base drag and forebody drag combine to provide an optimal overall minimum drag (a drag "bucket") for a given configuration. The magnitude of this optimal drag, as well as the associated forebody drag, is dependent on the ratio of base area to vehicle wetted area. Counter-intuitively, the flight-determined optimal minimum drag does not occur at the point of minimum forebody drag, but at a higher forebody drag value. It was also found that the chosen definition for reference area for lift parameters should include the projection of planform area ahead of the wing trailing edge (i.e., forebody plus wing). Results are assembled collectively to provide a greater understanding of this class of vehicles than would occur by considering them individually.

  13. Investigation of Body-involved Lift Enhancement in Bio-inspired Flapping Flight

    NASA Astrophysics Data System (ADS)

    Wang, Junshi; Liu, Geng; Ren, Yan; Dong, Haibo

    2016-11-01

    Previous studies found that insects and birds are capable of using many unsteady aerodynamic mechanisms to augment the lift production. These include leading edge vortices, delayed stall, wake capture, clap-and-fling, etc. Yet the body-involved lift augmentation has not been paid enough attention. In this work, the aerodynamic effects of the wing-body interaction on the lift production in cicada and hummingbird forward flight are computationally investigated. 3D wing-body systems and wing flapping kinematics are reconstructed from the high-speed videos or literatures to keep their complexity. Vortex structures and associated aerodynamic performance are numerically studied by an in-house immersed-boundary-method-based flow solver. The results show that the wing-body interaction enhances the overall lift production by about 20% in the cicada flight and about 28% in the hummingbird flight, respectively. Further investigation on the vortex dynamics has shown that this enhancement is attributed to the interactions between the body-generated vortices and the flapping wings. The output from this work has revealed a new lift enhancement mechanism in the flapping flight. This work is supported by NSF CBET-1313217 and AFOSR FA9550-12-1-0071.

  14. A field evaluation method for assessing whole body biomechanical joint stress in manual lifting tasks.

    PubMed

    Lin, Chiuhsiang J; Wang, Shun J; Chen, Hung J

    2006-10-01

    Work-related musculoskeletal injuries are often associated with overexertion of the body at work. The manual materials handling activity of lifting is a major source of work-related musculoskeletal disorders. Biomechanical evaluation offers useful information about the physical stress imposed on the worker's body joints; however, biomechanical analysis is usually tedious and complex. For evaluation purpose, the biomechanical method needs to be easy to apply in a field environment. Manual lifting occurs as one of the most common manual materials handling tasks in the workplace. A biomechanical evaluation method was developed based on the ratio of joint moment to joint capacity. The method was applied to evaluate the physical stress of manual lifting in truck loading jobs using a nine-link whole body joint model. Thirty eight industrial tasks were evaluated using the developed joint moment ratio. The moment ratio was compared with subjectively rated body discomfort, overall workload, and the NIOSH lifting index. The moment ratio was found to have a high correlation with the NIOSH lifting index. The biomechanical method can be used with relatively simple equipment and procedure which may be suitable for on-site ergonomic evaluation.

  15. Aero-thermal analysis of lifting body configurations in hypersonic flow

    NASA Astrophysics Data System (ADS)

    Kumar, Sachin; Mahulikar, Shripad P.

    2016-09-01

    The aero-thermal analysis of a hypersonic vehicle is of fundamental interest for designing its thermal protection system. The aero-thermal environment predictions over several critical regions of the hypothesized lifting body vehicle, including the stagnation region of the nose-cap, cylindrically swept leading edges, fuselage-upper, and fuselage-lower surfaces, are discussed. The drag (Λ=70°) and temperature (Λ=80°) minimized sweepback angles are considered in the configuration design of the two hypothesized lifting body shape hypersonic vehicles. The main aim of the present study is to analyze and compare the aero-thermal characteristics of these two lifting body configurations at same heat capacity. Accordingly, a Computational Fluid Dynamics simulation has been carried out at Mach number (M∞=7), H=35 km altitude with zero Angle of Attack. Finally, the material selection for thermal protection system based on these predictions and current methodology is described.

  16. Diagnostic-Photographic Determination of Drag/Lift/Torque Coefficients of High Speed Rigid Body in Water Column

    DTIC Science & Technology

    2008-01-01

    1 Diagnostic-Photographic Determination of Drag/ Lift /Torque Coefficients of High Speed Rigid Body in Water Column Peter C. Chu and...Determination of Drag/ Lift /Torque Coefficients of High Speed Rigid Body in Water Column 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...rigid body falling through water column with a high speed (such as Mk-84 bomb) needs formulas for drag/ lift and torque coefficients, which depend on

  17. Assessment of Lifting Body Linear Aerospike Plume Effects on Vehicle Aerodynamics

    NASA Technical Reports Server (NTRS)

    Ruf, Joseph H.; Frost, Alonzo L.; Vu, Bruce; Canabal, Francisco

    1996-01-01

    The lifting body/linear aerospike is one of three configurations being studied for a single stage to orbit (SSTO) vehicle. A preliminary aerodynamics database existed for then current lifting body configurations, however, this database was developed without considering plume effects. A combined effort by the Computational Fluid Dynamics (CFD) and the Experimental Fluids Dynamics Branches was undertaken to determine first order effects of plume/external flow interactions on vehicle aerodynamics of this lifting body/linear aerospike configuration. Of interest were plume pumping/entrainment at low Mach numbers and plume induced separation of flow over the vehicle at higher altitudes. The CFD analysis included combinations of four Mach numbers, two angles of attack, and four throttle settings. The majority of the CFD was two dimensional centerline analysis of the lifting body/aerospike. Incremental plume effects were derived by comparing the power-on, power-off, and throttled cases and were extrapolated to the preliminary aerodynamic database. The plume had little effect on the vehicle aerodynamics for supersonic freestream velocities. At subsonic freestream velocities, the plume affected the vehicle aerodynamics through both jet pumping/entrainment and the jet flap effect.

  18. Pilot Milt Thompson and the M2-F2 Lifting Body

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Jay L. King, Joseph D. Huxman and Orion D. Billeter assist NASA research pilot Milt Thompson (on the ladder) into the cockpit of the M2-F2 lifting body research aircraft at the NASA Flight Research Center (now the Dryden Flight Research Center). The M2-F2 is attached to a wing pylon under the wing of NASA's B-52 mothership.

  19. Measurements of the flow around a lifting-wing/body junction

    NASA Technical Reports Server (NTRS)

    Wood, D. H.; Westphal, R. V.

    1992-01-01

    Detailed measurements of all three mean velocity components and five of the six Reynolds stresses have been made around a model of a lifting-wing/body junction. The body was the flat working section floor of a small blower wind tunnel. Measurements of the surface pressure distribution on the NACA 0012 wing showed that the lift coefficient at the body surface was reduced by only 16 percent from the freestream value. It is shown that the near constancy of the bound vorticity requires the formation of aixal vorticity within the body boundary layer. This vorticity was concentrated in the two legs of the necklace vortex formed near the leading edge of the wing. The magnitude of the vorticity was always greater in the leg that developed on the suction surface. By four chord lengths downstream of the trailing edge, the turbulence structure of the suction leg was qualitatively similar to that of a single vortex imbedded in a turbulent boundary layer.

  20. Approximate method for calculating transonic flow about lifting wing-body configurations

    NASA Technical Reports Server (NTRS)

    Barnwell, R. W.

    1976-01-01

    The three-dimensional problem of transonic flow about lifting wing-body configurations is reduced to a two-variable computational problem with the method of matched asymptotic expansions. The computational problem is solved with the method of relaxation. The method accounts for leading-edge separation, the presence of shock waves, and the presence of solid, slotted, or porous tunnel walls. The Mach number range of the method extends from zero to the supersonic value at which the wing leading edge becomes sonic. A modified form of the transonic area rule which accounts for the effect of lift is developed. This effect is explained from simple physical considerations.

  1. Autologous gluteal augmentation with circumferential body lift in the massive weight loss and aesthetic patient.

    PubMed

    Centeno, Robert F

    2006-07-01

    Massive weight loss (MWL) patients have unique and severe gluteal deformities that demand alternative body contouring solutions because they are rarely candidates for gluteal implants. Techniques for autologous gluteal augmentation (AGA) with circumferential body lift (CBL) are offered as a solution to this problem. Experience with these techniques will allow surgeons to extend AGA to other aesthetic patients presenting with flattened buttocks. Flap indications, surgical planning, techniques,results, complications, and postoperative management are discussed.

  2. The ergonomics body posture on repetitive and heavy lifting activities of workers in aerospace manufacturing warehouse

    NASA Astrophysics Data System (ADS)

    Kamat, S. R.; Zula, N. E. N. Md; Rayme, N. S.; Shamsuddin, S.; Husain, K.

    2017-06-01

    Warehouse is an important entity in manufacturing organizations. It usually involves working activities that relate ergonomics risk factors including repetitive and heavy lifting activities. Aerospace manufacturing workers are prone of having musculoskeletal disorder (MSD) problems because of the manual handling activities. From the questionnaires is states that the workers may have experience discomforts experience during manual handling work. Thus, the objectives of this study are; to investigate the body posture and analyze the level of discomfort for body posture of the workers while performing the repetitive and heavy lifting activities that cause MSD problems and to suggest proper body posture and alternatives to reduce the MSD related problems. Methodology of this study involves interviews, questionnaires distribution, anthropometry measurements, RULA (Right Upper Limb Assessment) assessment sheet and CATIA V5 RULA analysis, NIOSH lifting index (LI) and recommended weight limit (RWL). Ten workers are selected for pilot study and as for anthropometry measurement all workers in the warehouse department were involved. From the first pilot study, the RULA assessment score in CATIA V5 shows the highest score which is 7 for all postures and results after improvement of working posture is very low hence, detecting weight of the material handling is not in recommendation. To reduce the risk of MSD through the improvisation of working posture, the weight limit is also calculated in order to have a RWL for each worker. Therefore, proposing a guideline for the aerospace workers involved with repetitive movement and excessive lifting will help in reducing the risk of getting MSD.

  3. Fragmatome lifting: surgical option for intraocular lens and foreign body removal.

    PubMed

    Jorge, Rodrigo; Siqueira, Rubens C; Cardillo, José A; Costa, Rogério A

    2005-01-01

    A new technique for intraocular lens (IOL) and foreign body removal using the fragmatome is described. Removal of the formed vitreous, including cortical vitreous, was performed using a conventional vitrectomy probe. The fragmatome tip was placed on the center of the anterior surface of both the IOL optics and the foreign bodies, and active 250 mm Hg vacuum suction was applied. IOLs and foreign bodies were easily held and manipulated after being aspirated into the fragmatome tip, avoiding the use of a forceps or other grasping instrument that may damage the retina. Fragmatome lifting is a reasonable treatment option for IOL and nonmagnetic foreign body removal.

  4. Developing and flight testing the HL-10 lifting body: A precursor to the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Kempel, Robert W.; Painter, Weneth D.; Thompson, Milton O.

    1994-01-01

    The origins of the lifting-body idea are traced back to the mid-1950's, when the concept of a manned satellite reentering the Earth's atmosphere in the form of a wingless lifting body was first proposed. The advantages of low reentry deceleration loads, range capability, and horizontal landing of a lifting reentry vehicle (as compared with the high deceleration loads and parachute landing of a capsule) are presented. The evolution of the hypersonic HL-10 lifting body is reviewed from the theoretical design and development process to its selection as one of two low-speed flight vehicles for fabrication and piloted flight testing. The design, development, and flight testing of the low-speed, air-launched, rocket-powered HL-10 was part of an unprecedented NASA and contractor effort. NASA Langley Research Center conceived and developed the vehicle shape and conducted numerous theoretical, experimental, and wind-tunnel studies. NASA Flight Research Center (now NASA Dryden Flight Research Center) was responsible for final low-speed (Mach numbers less than 2.0) aerodynamic analysis, piloted simulation, control law development, and flight tests. The prime contractor, Northrop Corp., was responsible for hardware design, fabrication, and integration. Interesting and unusual events in the flight testing are presented with a review of significant problems encountered in the first flight and how they were solved. Impressions by the pilots who flew the HL-10 are included. The HL-10 completed a successful 37-flight program, achieved the highest Mach number and altitude of this class vehicle, and contributed to the technology base used to develop the space shuttle and future generations of lifting bodies.

  5. Flight-Simulated Launch-Pad-Abort-to-Landing Maneuvers for a Lifting Body

    NASA Technical Reports Server (NTRS)

    Jackson, E. Bruce; Rivers, Robert A.

    1998-01-01

    The results of an in-flight investigation of the feasibility of conducting a successful landing following a launch-pad abort of a vertically-launched lifting body are presented. The study attempted to duplicate the abort-to-land-ing trajectory from the point of apogee through final flare and included the steep glide and a required high-speed, low-altitude turn to the runway heading. The steep glide was flown by reference to ground-provided guidance. The low-altitude turn was flown visually with a reduced field- of-view duplicating that of the simulated lifting body. Results from the in-flight experiment are shown to agree with ground-based simulation results; however, these tests should not be regarded as a definitive due to performance and control law dissimilarities between the two vehicles.

  6. Aft-End Flow of a Large-Scale Lifting Body During Free-Flight Tests

    NASA Technical Reports Server (NTRS)

    Banks, Daniel W.; Fisher, David F.

    2006-01-01

    Free-flight tests of a large-scale lifting-body configuration, the X-38 aircraft, were conducted using tufts to characterize the flow on the aft end, specifically in the inboard region of the vertical fins. Pressure data was collected on the fins and base. Flow direction and movement were correlated with surface pressure and flight condition. The X-38 was conceived to be a rescue vehicle for the International Space Station. The vehicle shape was derived from the U.S. Air Force X-24 lifting body. Free-flight tests of the X-38 configuration were conducted at the NASA Dryden Flight Research Center at Edwards Air Force Base, California from 1997 to 2001.

  7. The effect of an on-body personal lift assist device (PLAD) on fatigue during a repetitive lifting task.

    PubMed

    Lotz, Christy A; Agnew, Michael J; Godwin, Alison A; Stevenson, Joan M

    2009-04-01

    Occupations demanding frequent and heavy lifting are associated with an increased risk of injury. A personal lift assist device (PLAD) was designed to assist human muscles through the use of elastic elements. This study was designed to determine if the PLAD could reduce the level of general and local back muscle fatigue during a cyclical lifting task. Electromyography of two erector spinae sites (T9 and L3) was recorded during a 45-min lifting session at six lifts/lowers per minute in which male participants (n=10) lifted a box scaled to represent 20% of their maximum back extensor strength. The PLAD device reduced the severity of muscular fatigue at both muscle sites. RMS amplitude increased minimally (22% and 26%) compared to the no-PLAD condition (104% and 88%). Minimal median frequency decreases (0.33% and 0.41%) were observed in the PLAD condition compared to drops of 12% and 20% in the no-PLAD condition. The PLAD had an additional benefit of minimizing pre-post changes in muscular strength and endurance. The PLAD also resulted in a significantly lower rate of perceived exertion across the lifting session. It was concluded that the PLAD was effective at decreasing the level of back muscular fatigue.

  8. Body Estimation and Physical Performance: Estimation of Lifting and Carrying from Fat-Free Mass.

    DTIC Science & Technology

    2007-11-02

    success. However, the Services do not generally measure strength as part of their physical fitness testing, because of issues of safety, and desires to...10 Figure 3. Relationships between lifting capacity to knuckle height and elbow height and ILM, FFM and body m ass...of the Department of Defense (DoD) is "that individual Service members possess the cardiorespiratory endurance, muscular strength and endurance, and

  9. Human Factors Lessons Learned from Flight Testing Wingless Lifting Body Vehicles

    NASA Technical Reports Server (NTRS)

    Merlin, Peter William

    2014-01-01

    Since the 1960s, NASA, the Air Force, and now private industry have attempted to develop an operational human crewed reusable spacecraft with a wingless, lifting body configuration. This type of vehicle offers increased mission flexibility and greater reentry cross range than capsule type craft, and is particularly attractive due to the capability to land on a runway. That capability, however, adds complexity to the human factors engineering requirements of developing such aircraft.

  10. The effect of on-body lift assistive device on the lumbar 3D dynamic moments and EMG during asymmetric freestyle lifting.

    PubMed

    Abdoli-E, Mohammad; Stevenson, Joan M

    2008-03-01

    A new on-body personal lift assistive device was developed to reduce force requirements of back muscles during lifting and static holding tasks. Nine male subjects participated in the study. Twelve Fastrak sensors were used to record positions and rotations of the segments. Trunk muscles were normalized to maximum and integrated electromyographic amplitudes of the left and right thoracic erector spinae, lumbar erector spinae, external obliques, and rectus abdominalis were compared in asymmetrical lifting for three different loads (5 kg, 15 kg, 25 kg) using free style under two conditions: with and without a lift assistive device. The assistive device significantly reduced the required muscular effort of the lumbar and thoracic erector spinae (P=0.001) with no significant differences in the level of abdominal muscular activity. Average integrated electromyography amplitudes were reduced across all subjects by 23.9% for lumbar erector spinae, 24.4% for thoracic erector spinae, and 34.9% for the contralateral external oblique muscles. The assistive device had its greatest impact on smaller moments with 30% reduction in lateral bending, and 24% reduction in rotational moments, with only 19.5% a reduction in larger flexion-extension moments. To investigate whether the lift assistive device affected lifting kinematics, the device tensions were zeroed mathematically. No kinematic differences in lifting technique would explain this magnitude of moment reduction. The on-body assistive device reduced the required muscular effort of the lumbar and thoracic erector spinae without adversely affecting the level of abdominal muscle activity. These reductions were mirrored by similar 3D moment reductions.

  11. Subsonic aerodynamic characteristics of the HL-20 lifting-body configuration

    NASA Technical Reports Server (NTRS)

    Ware, George M.; Cruz, Christopher I.

    1993-01-01

    The HL-20 is proposed as a possible future manned spacecraft. The configuration consists of a low-aspect-ratio body with a flat undersurface. Three fins (a small centerline fin and two outboard (tip) fins set at a dihedral angle of 50 deg) are mounted on the aft body. The control system consists of elevon surfaces on the outboard fins, a set of four body flaps on the upper and lower aft body, and an all-movable center fin. Both the elevons and body flaps were capable of trimming the model to angles of attack from -2 deg to above 20 deg. The maximum trimmed lift-drag ratio was 3.6. Replacing the flat-plate tip fins with airfoil tip fins increased the maximum trimmed lift-drag ratio to 4.2. The elevons were effective as a roll control, but they produced about as much yawing moment as rolling moment because of the tip-fin dihedral angle. The body flaps produced less rolling moment than the elevons and only small values of yawing moment. A limited investigation of the effect of varying tip-fin dihedral angle indicated that a dihedral angle of 50 deg was a reasonable compromise for longitudinal and lateral stability, longitudinal trim, and performance at subsonic speeds.

  12. Generic multi-body formulation of heavy lift airship equations of motion

    NASA Technical Reports Server (NTRS)

    Ringland, R. F.; Tischler, M. B.; Ashkenas, I. L.; Jex, H. R.

    1980-01-01

    This paper describes the formulation of a comprehensive set of equations which describe the dynamic behavior of a generic heavy lift airship (HLA). They are being used in a digital computer simulation to investigate the response dynamics and flying qualities of HLAs operating with various payloads in a variety of operational environments. A key feature is the separate treatment of each component body making up the HLA. This allows the analyst to vary the configuration (e.g., number of lift-propulsion units, presence or absence of slung payload, etc.) without rewriting the equations. It further provides measures of key structural and control loads acting on the HLA and eases the task of modeling wind disturbances.

  13. Lift and center of pressure of wing-body-tail combinations at subsonic, transonic, and supersonic speeds

    NASA Technical Reports Server (NTRS)

    Pitts, William C; Nielsen, Jack N; Kaattari, George E

    1957-01-01

    A method is presented for calculating the lift and centers of pressure of wing-body and wing-body-tail combinations at subsonic, transonic, and supersonic speeds. A set of design charts and a computing table are presented which reduce the computations to routine operations. Comparison between the estimated and experimental characteristics for a number of wing-body and wing-body-tail combinations shows correlation to within + or - 10 percent on lift and to within about + or - 0.02 of the body length on center of pressure.

  14. Three Lifting Bodies on Lakebed (X-24A, M2-F3, HL-10)

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The wingless, lifting body aircraft sitting on Rogers Dry Lake at what is now NASA's Dryden Flight Research Center, Edwards, California, from left to right are the X-24A, M2-F3 and the HL-10.The lifting body aircraft studied the feasibility of maneuvering and landing an aerodynamic craft designed for reentry from space. These lifting bodies were air launched by a B-52 mother ship, then flew powered by their own rocket engines before making an unpowered approach and landing. They helped validate the concept that a space shuttle could make accurate landings without power. The X-24A flew from April 17, 1969 to June 4, 1971. The M2-F3 flew from June 2, 1970 until December 20, 1972. The HL-10 flew from December 22, 1966 until July 17, 1970, and logged the highest and fastest records in the lifting body program. The X-24 was one of a group of lifting bodies flown by the NASA Flight Research Center (FRC--now Dryden Flight Research Center), Edwards, California, in a joint program with the U.S. Air Force at Edwards Air Force Base from 1963 to 1975. The lifting bodies were used to demonstrate the ability of pilots to maneuver and safely land wingless vehicles designed to fly back to Earth from space and be landed like an airplane at a predetermined site. Lifting bodies' aerodynamic lift, essential to flight in the atmosphere, was obtained from their shape. The addition of fins and control surfaces allowed the pilots to stabilize and control the vehicles and regulate their flight paths. Built by Martin Aircraft Company, Maryland, for the U.S. Air Force, the X-24A was a bulbous vehicle shaped like a teardrop with three vertical fins at the rear for directional control. It weighed 6,270 pounds, was 24.5 feet long and 11.5 feet wide (measuring just the fuselage, not the distance between the tips of the outboard fins). Its first unpowered glide flight was on April 17, 1969, with Air Force Maj. Jerauld Gentry at the controls. Gentry also piloted its first powered flight on March

  15. Three Lifting Bodies on Lakebed (X-24A, M2-F3, HL-10)

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The wingless, lifting body aircraft sitting on Rogers Dry Lake at what is now NASA's Dryden Flight Research Center, Edwards, California, from left to right are the X-24A, M2-F3 and the HL-10.The lifting body aircraft studied the feasibility of maneuvering and landing an aerodynamic craft designed for reentry from space. These lifting bodies were air launched by a B-52 mother ship, then flew powered by their own rocket engines before making an unpowered approach and landing. They helped validate the concept that a space shuttle could make accurate landings without power. The X-24A flew from April 17, 1969 to June 4, 1971. The M2-F3 flew from June 2, 1970 until December 20, 1972. The HL-10 flew from December 22, 1966 until July 17, 1970 and logged the highest and fastest records in the lifting body program. The X-24 was one of a group of lifting bodies flown by the NASA Flight Research Center (now Dryden Flight Research Center), Edwards, California, in a joint program with the U.S. Air Force at Edwards Air Force Base from 1963 to 1975. The lifting bodies were used to demonstrate the ability of pilots to maneuver and safely land wingless vehicles designed to fly back to Earth from space and be landed like an airplane at a predetermined site. Lifting bodies' aerodynamic lift, essential to flight in the atmosphere, was obtained from their shape. The addition of fins and control surfaces allowed the pilots to stabilize and control the vehicles and regulate their flight paths. Built by Martin Aircraft Company, Maryland, for the U.S. Air Force, the X-24A was a bulbous vehicle shaped like a teardrop with three vertical fins at the rear for directional control. It weighed 6,270 pounds, was 24.5 feet long and 11.5 feet wide (measuring just the fuselage, not the distance between the tips of the outboard fins). Its first unpowered glide flight was on April 17, 1969, with Air Force Maj. Jerauld Gentry at the controls. Gentry also piloted its first powered flight on March 19

  16. A Study of a Lifting Body as a Space Station Crew Exigency Return Vehicle (CERV)

    NASA Technical Reports Server (NTRS)

    MacConochie, Ian O.

    2000-01-01

    A lifting body is described for use as a return vehicle for crews from a space station. Reentry trajectories, subsystem weights and performance, and costs are included. The baseline vehicle is sized for a crew of eight. An alternate configuration is shown in which only four crew are carried with the extra volume reserved for logistics cargo. A water parachute recovery system is shown as an emergency alternative to a runway landing. Primary reaction control thrusters from the Shuttle program are used for orbital maneuvering while the Shuttle verniers are used for all attitude control maneuvers.

  17. Predicted aerodynamic characteristics for HL-20 lifting-body using the aerodynamic preliminary analysis system (APAS)

    NASA Technical Reports Server (NTRS)

    Cruz, Christopher I.; Ware, George M.

    1992-01-01

    The aerodynamic characteristics of the HL-20 lifting body configuraiton obtained through the APAS and from wind-tunnel tests have been compared. The APAS is considered to be an easy-to-use, relatively simple tool for quick preliminary estimation of vehicle aerodynamics. The APAS estimates are found to be in good agreement with experimental results to be used for preliminary evaluation of the HL-20. The APAS accuracy in predicting aerodynamics of the HL-20 varied over the Mach range. The speed ranges of best agreement were subsonic and hypersonic, while least agreement was in the Mach range from 1.2 to about 2,5.

  18. A second-order shock-expansion method applicable to bodies of revolution near zero lift

    NASA Technical Reports Server (NTRS)

    1957-01-01

    A second-order shock-expansion method applicable to bodies of revolution is developed by the use of the predictions of the generalized shock-expansion method in combination with characteristics theory. Equations defining the zero-lift pressure distributions and the normal-force and pitching-moment derivatives are derived. Comparisons with experimental results show that the method is applicable at values of the similarity parameter, the ratio of free-stream Mach number to nose fineness ratio, from about 0.4 to 2.

  19. Statistical analysis of landing contact conditions for three lifting body research vehicles

    NASA Technical Reports Server (NTRS)

    Larson, R. R.

    1972-01-01

    The landing contact conditions for the HL-10, M2-F2/F3, and the X-24A lifting body vehicles are analyzed statistically for 81 landings. The landing contact parameters analyzed are true airspeed, peak normal acceleration at the center of gravity, roll angle, and roll velocity. Ground measurement parameters analyzed are lateral and longitudinal distance from intended touchdown, lateral distance from touchdown to full stop, and rollout distance. The results are presented in the form of histograms for frequency distributions and cumulative frequency distribution probability curves with a Pearson Type 3 curve fit for extrapolation purposes.

  20. Lifting Entry & Atmospheric Flight (LEAF) System Concept Applications at Solar System Bodies With an Atmosphere

    NASA Astrophysics Data System (ADS)

    Lee, Greg; Polidan, Ronald; Ross, Floyd; Sokol, Daniel; Warwick, Steve

    2015-11-01

    Northrop Grumman and L’Garde have continued the development of a hypersonic entry, semi-buoyant, maneuverable platform capable of performing long-duration (months to a year) in situ and remote measurements at any solar system body that possesses an atmosphere.The Lifting Entry & Atmospheric Flight (LEAF) family of vehicles achieves this capability by using a semi-buoyant, ultra-low ballistic coefficient vehicle whose lifting entry allows it to enter the atmosphere without an aeroshell. The mass savings realized by eliminating the heavy aeroshell allows significantly more payload to be accommodated by the platform for additional science collection and return.In this presentation, we discuss the application of the LEAF system at various solar system bodies: Venus, Titan, Mars, and Earth. We present the key differences in platform design as well as operational differences required by the various target environments. The Venus implementation includes propulsive capability to reach higher altitudes during the day and achieves full buoyancy in the mid-cloud layer of Venus’ atmosphere at night.Titan also offers an attractive operating environment, allowing LEAF designs that can target low or medium altitude operations, also with propulsive capabilities to roam within each altitude regime. The Mars version is a glider that descends gradually, allowing targeted delivery of payloads to the surface or high resolution surface imaging. Finally, an Earth version could remain in orbit in a stowed state until activated, allowing rapid response type deployments to any region of the globe.

  1. A simple demonstration of Einstein's lift: a body thrown upwards moves rectilinearly and uniformly relative to a free-falling model of the lift

    NASA Astrophysics Data System (ADS)

    Mayer, V. V.; Varaksina, E. I.

    2015-09-01

    The educational model of Einstein's lift consists of a table suspended from an electromagnet. A flexible support is attached to the table. A metal ball is on the support and deforms it. When the electromagnet is deenergized, the table falls, the system goes to a weightless state and the support throws the ball up. A camera carries out frame-by-frame photography of the free-falling model. The resulting photographs are imported into a computer, projected on to a screen with a multimedia projector and analyzed in a lecture with the audience. The experiment proves that a thrown up body moves rectilinearly and uniformly relative to the free-falling model of Einstein's lift. In the second version of the experiment we replace the ball with a water drop lying on the unwettable surface of the table of the model.

  2. A Multidisciplinary Performance Analysis of a Lifting-Body Single-Stage-to-Orbit Vehicle

    NASA Technical Reports Server (NTRS)

    Tartabini, Paul V.; Lepsch, Roger A.; Korte, J. J.; Wurster, Kathryn E.

    2000-01-01

    Lockheed Martin Skunk Works (LMSW) is currently developing a single-stage-to-orbit reusable launch vehicle called VentureStar(TM) A team at NASA Langley Research Center participated with LMSW in the screening and evaluation of a number of early VentureStar(TM) configurations. The performance analyses that supported these initial studies were conducted to assess the effect of a lifting body shape, linear aerospike engine and metallic thermal protection system (TPS) on the weight and performance of the vehicle. These performance studies were performed in a multidisciplinary fashion that indirectly linked the trajectory optimization with weight estimation and aerothermal analysis tools. This approach was necessary to develop optimized ascent and entry trajectories that met all vehicle design constraints. Significant improvements in ascent performance were achieved when the vehicle flew a lifting trajectory and varied the engine mixture ratio during flight. Also, a considerable reduction in empty weight was possible by adjusting the total oxidizer-to-fuel and liftoff thrust-to-weight ratios. However, the optimal ascent flight profile had to be altered to ensure that the vehicle could be trimmed in pitch using only the flow diverting capability of the aerospike engine. Likewise, the optimal entry trajectory had to be tailored to meet TPS heating rate and transition constraints while satisfying a crossrange requirement.

  3. Patient satisfaction, body image, and quality of life after lower body lift: a prospective pre- and postoperative long-term survey.

    PubMed

    Vierhapper, Martin F; Pittermann, Anna; Hacker, Stefan; Kitzinger, Hugo B

    2017-05-01

    Body contouring surgery after massive weight loss remains a fast growing field due to the rising number of postbariatric surgery patients, and it can improve patients' quality of life substantially. Patient expectations in these procedures are very high, but only little is known as to whether these procedures have a long lasting influence on body image, patient satisfaction, and quality of life. University hospital, Austria. We evaluated 40 consecutive female patients who underwent a lower body lift between 2009 and 2013. Patients took part in a prospective pre- and postoperative questionnaire survey inquiring about their psychological and physical wellbeing. The mean postoperative follow up interval was 61±14 months. We used 2 validated (Body Image Questionnaire and Body Appraisal Inventory) and one self-designed questionnaires (body lift follow-up questionnaire). The postoperative response rate in January 2016 was 72.5%. Lower body lift significantly reduced dismissive body ratings and increased long-term feelings of attractiveness and self-esteem, and significantly reduced discomfort associated with excess skin. Patients reported feeling happier, more attractive, and more self-confident. The procedure enhanced their physical wellbeing, even years after surgery. Lower body lift satisfied patients' expectations and improved long-term quality of life. Therefore, it is an essential component in the treatment of patients who have experienced massive weight loss. Copyright © 2017 American Society for Bariatric Surgery. Published by Elsevier Inc. All rights reserved.

  4. Investigation of the launch pad abort capabilities of the HL-20 lifting body

    NASA Astrophysics Data System (ADS)

    Jackson, E. B.; Rivers, Robert A.; Chowdhry, Rajiv S.; Ragsdale, W. A.; Geyer, David W.

    1993-08-01

    The capability of the HL-20 lifting body spacecraft to perform an abort maneuver from the launch pad to a horizontal landing was studied at NASA Langley Research Center. This study involved both piloted and batch simulation models of the vehicle. A point-mass model of the vehicle was used for trajectory optimization studies. The piloted simulation was performed in the Visual Motion Simulator in fixed-base mode. A candidate maneuver was developed and refined for the worst-case launch-pad-to-landing-site geometry using an iterative procedure of off-line maneuver analysis followed by piloted evaluations and heuristic improvements to the candidate maneuver. The resulting maneuver demonstrates the launch site abort capability of the HL-20 and dictates requirements for nominal abort motor performance. The sensitivity of the maneuver to variations in several design parameters was documented.

  5. Real-time simulation model of the HL-20 lifting body

    NASA Astrophysics Data System (ADS)

    Jackson, E. Bruce; Cruz, Christopher I.; Ragsdale, W. A.

    1992-07-01

    A proposed manned spacecraft design, designated the HL-20, has been under investigation at Langley Research Center. Included in that investigation are flight control design and flying qualities studies utilizing a man-in-the-loop real-time simulator. This report documents the current real-time simulation model of the HL-20 lifting body vehicle, known as version 2.0, presently in use at NASA Langley Research Center. Included are data on vehicle aerodynamics, inertias, geometries, guidance and control laws, and cockpit displays and controllers. In addition, trim case and dynamic check case data is provided. The intent of this document is to provide the reader with sufficient information to develop and validate an equivalent simulation of the HL-20 for use in real-time or analytical studies.

  6. Launch-pad abort capabilities of the HL-20 lifting body

    NASA Technical Reports Server (NTRS)

    Jackson, E. Bruce; Rivers, Robert A.; Chowdhry, Rajiv S.; Ragsdale, W. A.; Geyer, David W.

    1994-01-01

    The capability of the HL-20 lifting body to perform an abort maneuver from the launch pad to a horizontal landing was studied. The study involved both piloted and batch simulation models of the vehicle. A point-mass model of the vehicle was used for trajectory optimization studies. The piloted simulation was performed in the Langley Visual/Motion Simulator in the fixed-base mode. A candidate maneuver was developed and refined for the worst-case launch-pad-to-landing-site geometry with an iterative procedure of off-line maneuver analysis followed by piloted evaluations and heuristic improvements to the candidate maneuver. The resulting maneuver demonstrates the launch-site abort capability of the HL-20 and dictates requirements for nominal abort-motor performance. The sensitivity of the maneuver to variations in several design parameters was documented.

  7. Investigation of the launch pad abort capabilities of the HL-20 lifting body

    NASA Technical Reports Server (NTRS)

    Jackson, E. B.; Rivers, Robert A.; Chowdhry, Rajiv S.; Ragsdale, W. A.; Geyer, David W.

    1993-01-01

    The capability of the HL-20 lifting body spacecraft to perform an abort maneuver from the launch pad to a horizontal landing was studied at NASA Langley Research Center. This study involved both piloted and batch simulation models of the vehicle. A point-mass model of the vehicle was used for trajectory optimization studies. The piloted simulation was performed in the Visual Motion Simulator in fixed-base mode. A candidate maneuver was developed and refined for the worst-case launch-pad-to-landing-site geometry using an iterative procedure of off-line maneuver analysis followed by piloted evaluations and heuristic improvements to the candidate maneuver. The resulting maneuver demonstrates the launch site abort capability of the HL-20 and dictates requirements for nominal abort motor performance. The sensitivity of the maneuver to variations in several design parameters was documented.

  8. Real-time simulation model of the HL-20 lifting body

    NASA Technical Reports Server (NTRS)

    Jackson, E. Bruce; Cruz, Christopher I.; Ragsdale, W. A.

    1992-01-01

    A proposed manned spacecraft design, designated the HL-20, has been under investigation at Langley Research Center. Included in that investigation are flight control design and flying qualities studies utilizing a man-in-the-loop real-time simulator. This report documents the current real-time simulation model of the HL-20 lifting body vehicle, known as version 2.0, presently in use at NASA Langley Research Center. Included are data on vehicle aerodynamics, inertias, geometries, guidance and control laws, and cockpit displays and controllers. In addition, trim case and dynamic check case data is provided. The intent of this document is to provide the reader with sufficient information to develop and validate an equivalent simulation of the HL-20 for use in real-time or analytical studies.

  9. Calculation of water drop trajectories to and about arbitrary three-dimensional lifting and nonlifting bodies in potential airflow

    NASA Technical Reports Server (NTRS)

    Norment, H. G.

    1985-01-01

    Subsonic, external flow about nonlifting bodies, lifting bodies or combinations of lifting and nonlifting bodies is calculated by a modified version of the Hess lifting code. Trajectory calculations can be performed for any atmospheric conditions and for all water drop sizes, from the smallest cloud droplet to large raindrops. Experimental water drop drag relations are used in the water drop equations of motion and effects of gravity settling are included. Inlet flow can be accommodated, and high Mach number compressibility effects are corrected for approximately. Seven codes are described: (1) a code used to debug and plot body surface description data; (2) a code that processes the body surface data to yield the potential flow field; (3) a code that computes flow velocities at arrays of points in space; (4) a code that computes water drop trajectories from an array of points in space; (5) a code that computes water drop trajectories and fluxes to arbitrary target points; (6) a code that computes water drop trajectories tangent to the body; and (7) a code that produces stereo pair plots which include both the body and trajectories. Accuracy of the calculations is discussed, and trajectory calculation results are compared with prior calculations and with experimental data.

  10. Comparison of the Experimental and Theoretical Distribution of Lift on a Slender Inclined Body of Revolution at M = 2

    NASA Technical Reports Server (NTRS)

    Perkins, Edward W; Kuehn, Donald M

    1953-01-01

    Pressure distributions and force characteristics have been determined for a body of revolution consisting of a fineness ratio 5.75, circular-arc, ogival nose tangent to a cylindrical afterbody for an angle-of-attack range of 0 degrees to 35.5 degrees. The free-stream Mach number was 1.98 and the free-stream Reynolds number was approximately 0.5 x 10 sup 6, based on body diameter. Comparison of the theoretical and experimental pressure distributions shows that for zero lift, either slender-body theory or higher-order theories yield results which are in good agreement with experiment. For the lifting case, good agreement with theory is found only for low angles of attack and for the region in which the body cross-sectional area is increasing in the downstream direction. Because of the effects of cross-flow separation and the effects of compressibility due to the high cross-flow Mach numbers at large angles of attack, the experimental pressure distributions differ from those predicted by potential theory. Although the flow about the inclined body was, in general, similar to that assumed as the basis for Allen's method of estimating the forces resulting from viscous effects (NACA RM A91I26), the distribution of the forces was significantly different from that assumed. Nevertheless, the lift and pitching-moment characteristics were in fair agreement with the estimated value.

  11. Preliminary subsonic aerodynamic model for simulation studies of the HL-20 lifting body

    NASA Technical Reports Server (NTRS)

    Jackson, E. Bruce; Cruz, Christopher I.

    1992-01-01

    A nonlinear, six-degree-of-freedom aerodynamic model for an early version of the HL-20 lifting body is described and compared with wind tunnel data upon which it is based. Polynomial functions describing most of the aerodynamic parameters are given and tables of these functions are presented. Techniques used to arrive at these functions are described. Basic aerodynamic coefficients were modeled as functions of angles of attack and sideslip. Vehicle lateral symmetry was assumed. Compressibility (Mach) effects were ignored. Control-surface effectiveness was assumed to vary linearly with angle of deflection and was assumed to be invariant with the angle of sideslip. Dynamic derivatives were obtained from predictive aerodynamic codes. Landing-gear and ground effects were scaled from Space Shuttle data. The model described is provided to support pilot-in-the-loop simulation studies of the HL-20. By providing the data in tabular format, the model is suitable for the data interpolation architecture of many existing engineering simulation facilities. Because of the preliminary nature of the data, however, this model is not recommended for study of the absolute performance of the HL-20.

  12. Guidance and control analysis of the entry of a lifting body personnel launch vehicle

    NASA Astrophysics Data System (ADS)

    Powell, Richard W.; Cruz, Christopher I.

    1991-01-01

    NASA is currently involved in definition studies of a Personnel Launch System (PLS) that could be used to transport people to and from low-earth orbit. This vehicle would serve both to complement the Space Shuttle and to provide alternative access to space in the event the Space Shuttle fleet were unavailable for a prolonged period. The PLS would consist of a manned spacecraft launched by an expendable vehicle, e.g., Titan 4. One promising candidate for the manned component of the PLS is the NASA Langley Research Center HL-20 lifting body. Many studies are currently underway to assess this vehicle, and one of the main areas of study is the development of the capability to successfully enter, glide to the landing site, and land. To provide this capability, guidance and control algorithms have been developed, incorporated into a six-degree-of-freedom simulation, and evaluation in the presence of off-nominal atmospheric conditions, consisting of both density variations and steady-state winds. In addition, the impact of atmospheric turbulence was examined for the portion of flight from Mach 3.5 to touchdown. This analysis showed that the vehicle remained controllable and could successfully land even in the presence of off-nominal atmospheric conditions.

  13. Relative Contribution of Lower Body Work as a Biomechanical Determinant of Spine Sparing Technique During Common Paramedic Lifting Tasks.

    PubMed

    Makhoul, Paul J; Sinden, Kathryn E; MacPhee, Renée S; Fischer, Steven L

    2017-04-01

    Paramedics represent a unique occupational group where the nature of their work, providing prehospital emergency care, makes workplace modifications to manage and control injury risks difficult. Therefore, the provision of workplace education and training to support safe lifting remains a viable and important approach. There is, however, a lack of evidence describing movement strategies that may be optimal for paramedic work. The purpose of this study was to determine if a strategy leveraging a greater contribution of work from the lower body relative to the torso was associated with lower biomechanical exposures on the spine. Twenty-five active duty paramedics performed 3 simulated lifting activities common to paramedic work. Ground reaction forces and whole body kinematics were recorded to calculate: peak spine moment and angle about the L4/L5 flexion-extension axis as indicators of biomechanical exposure; and, joint work, integrated from net joint power as a measure of technique inclusive of movement dynamics. Paramedics generating more work from the lower body, relative to the trunk, were more likely to experience lower peak L4/L5 spine moments and angles. These data can inform the development of workplace training and education on safe lifting that focuses on paramedics generating more work from the lower body.

  14. Aerodynamic characteristics of the HL-20 and HL-20A lifting-body configurations

    NASA Technical Reports Server (NTRS)

    Ware, George M.; Spencer, Bernard, Jr.; Micol, John R.

    1991-01-01

    The data show that the HL-20 is longitudinally and laterally stable over the test range from Mach 10 to 0.2. At hypersonic speeds it has a trimmed lift/drag ratio of 1.4. This values gives the vehicle a cross range capability similar to that of the Space Shuttle. At subsonic speeds, the HL-20 has a trimmed lift/drag ratio of about 3.6. Replacing the flat plate outboard fins with fins having an airfoil shape, increased the maximum trimmed L/D to 4.3. Preliminary evaluation of configuration modifications (the HL-20A series), indicates that trim at higher values of lift at hypersonic speeds could be achieved with an L/D of about 1.0. In the supersonic range, the lift and directional stability characteristics were improved. The untrimmed subsonic L/D was increased to 5.8 with airfoil fins.

  15. Marksmanship deficits caused by an exhaustive whole-body lifting task with and without torso-borne loads.

    PubMed

    Frykman, Peter N; Merullo, Donna J; Banderet, Louis E; Gregorczyk, Karen; Hasselquist, Leif

    2012-07-01

    Studies of exhaustive exercise on marksmanship are inconclusive and have not measured trigger pull latencies (LAT) nor considered impact of added torso loads. This study examined the impact of exhaustive whole-body exercise and torso loading on accuracy, precision, and latency during a marksmanship test. Twelve men lifted a 20.5-kg box on to a 1.55-m high shelf until they could not maintain a 12 lifts·min⁻¹ pace. Within 25 seconds of ending the lifting task, the subjects started a 10-minute rifle marksmanship test (8 shots·min⁻¹). During lifting and shooting, the subjects wore 2 different loads: NOLOAD = boots, uniform, and helmet (5.9 kg) and LOAD = a torso-borne load (29.9 kg) + NOLOAD. With the LOAD, the subjects were only able to work for 69% as long, perform 31% as many lifts, or do 38% as much total work compared with the NOLOAD condition. Despite performing less total external work during LOAD, the heart rate (HR) was more than 25% higher than NOLOAD. Measures of accuracy and precision improved and stabilized after minute 3. Overall, LAT increased (p < 0.025) for LOAD (mean ± SE, 2,522 ± 81 milliseconds), compared with NOLOAD (2,240 ± 121). During 0-4 minutes, LAT for LOAD was 14% greater than for NOLOAD (p < 0.05); from 4 to 10 minutes, LAT did not differ. Exhaustive whole-body exercise transiently degraded accuracy regardless of load. In the LOAD condition, LAT was immediately increased and sustained for 10 minutes; in the NOLOAD condition, LAT increased gradually. Although load did not decrease accuracy, it increased the time to engage targets, which can impact fighting effectiveness and survivability.

  16. Flight-determined aerodynamic stability and control derivatives of the M2-F2 lifting body vehicle at subsonic speeds

    NASA Technical Reports Server (NTRS)

    Kempel, R. W.; Thompson, R. C.

    1971-01-01

    Aerodynamic derivatives were obtained for the M2-F2 lifting body flight vehicle in the subsonic flight region between Mach numbers of 0.41 and 0.64 and altitudes of 7000 feet to 45,000 feet. The derivatives were determined by a flight time history curve-fitting process utilizing a hybrid computer. The flight-determined derivatives are compared with wind-tunnel and predicted values. Modal-response characteristics, calculated from the flight derivatives, are presented.

  17. Reliability of Lift Alert(™) as a feedback device for detecting changes in body position.

    PubMed

    Ekes, A M; Krister, J D; Loseth, A E; McKenzie, C L

    1995-03-01

    The Lift Alert (™) is a small battery-operated unit, usually worn on the back of a worker's collar that is designed to provide a form of biofeedback about changes in trunk position during lifting tasks. The purpose of this study was to determine how consistent the Lift Alert (™) was at each of five different sensitivity settings (A-E) in detecting changes in trunk flexion in a given individual during a controlled bending maneuver. The subjects were videotaped while performing a series of trials of bending maneuvers at each of the sensitivity settings according to a specific protocol. The videotapes were then converted onto a computer program where the still images were captured and marked for data analysis. The reliability of the Lift Alert (™) was determined by calculating a coefficient of agreement, that is, the percentage of trials that were within both 10 and 15 degrees for each of the trials at a given setting for a single individual. The coefficient of agreement for all trials at all five settings was 0.76 within 10 degrees and 0.92 within 15 degrees. The results of this study suggest that the Lift Alert (™) is a reliable device for detecting changes in trunk flexion during a controlled bending maneuver for a given individual.

  18. Estimation of aerodynamics for slender bodies alone and with lifting surfaces at alpha's from 0 deg to 90 deg.

    NASA Technical Reports Server (NTRS)

    Jorgensen, L. H.

    1973-01-01

    Expressions are derived, according to a method developed by the author (1972), for bodies in which the cross-sectional shape (but not necessarily the area) is constant along the longitudinal axis. For the more general case of a body alone or with lifting surfaces where the cross-sectional shape varies along the length, a similar procedure is suggested. The specific case for an elliptic cone with a triangular wing is considered, and formulas for winged elliptic cross sections are developed. For the limited test conditions shown, the agreement between computed and experimental results is very good.

  19. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, the rear body flap is lifted into place on the orbiter Discovery. The body flap, which is temporarily under protective covering, attaches below the main engines.

    NASA Image and Video Library

    2003-09-23

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, the rear body flap is lifted into place on the orbiter Discovery. The body flap, which is temporarily under protective covering, attaches below the main engines.

  20. KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility get ready to lift and install the rear body flap on orbiter Discovery. The body flap, which is temporarily under protective covering, attaches below the main engines.

    NASA Image and Video Library

    2003-09-23

    KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility get ready to lift and install the rear body flap on orbiter Discovery. The body flap, which is temporarily under protective covering, attaches below the main engines.

  1. Estimation of lumbar spinal loading and trunk muscle forces during asymmetric lifting tasks: application of whole-body musculoskeletal modelling in OpenSim.

    PubMed

    Kim, Hyun-Kyung; Zhang, Yanxin

    2016-06-03

    Large spinal compressive force combined with axial torsional shear force during asymmetric lifting tasks is highly associated with lower back injury (LBI). The aim of this study was to estimate lumbar spinal loading and muscle forces during symmetric lifting (SL) and asymmetric lifting (AL) tasks using a whole-body musculoskeletal modelling approach. Thirteen healthy males lifted loads of 7 and 12 kg under two lifting conditions (SL and AL). Kinematic data and ground reaction force data were collected and then processed by a whole-body musculoskeletal model. The results show AL produced a significantly higher peak lateral shear force as well as greater peak force of psoas major, quadratus lumborum, multifidus, iliocostalis lumborum pars lumborum, longissimus thoracis pars lumborum and external oblique than SL. The greater lateral shear forces combined with higher muscle force and asymmetrical muscle contractions may have the biomechanical mechanism responsible for the increased risk of LBI during AL. Practitioner Summary: Estimating lumbar spinal loading and muscle forces during free-dynamic asymmetric lifting tasks with a whole-body musculoskeletal modelling in OpenSim is the core value of this research. The results show that certain muscle groups are fundamentally responsible for asymmetric movement, thereby producing high lumbar spinal loading and muscle forces, which may increase risks of LBI during asymmetric lifting tasks.

  2. Hypersonic bodies of maximum drag for a given lift-to-drag ratio.

    NASA Technical Reports Server (NTRS)

    Mcmillan, W., III; Hull, D. G.

    1971-01-01

    The problem considered in this paper is concerned with the aerodynamic design of the forebody shape of reentry vehicles in the blunt, homothetic, elliptic transversal contour, power-law longitudinal contour, raked-off configurational set. In particular, the forebody shape which maximizes the ratio of the forebody pressure drag to the free-stream dynamic pressure for a given lift-to-drag ratio and given geometric properties is determined. This problem is considered because recent survey articles indicate that its solution will provide useful qualitative design information about manned vehicles entering the earth's atmosphere from any of the foreseeable planetary missions. Single-integral equations relating the lift and drag in Newtonian hypersonic flow to the forebody geometry are derived and used to formulate the optimization problem which is solved by a direct numerical method.

  3. Self-propulsion of a body with rigid surface and variable coefficient of lift in a perfect fluid

    NASA Astrophysics Data System (ADS)

    Ramodanov, Sergey M.; Tenenev, Valentin A.; Treschev, Dmitry V.

    2012-11-01

    We study the system of a 2D rigid body moving in an unbounded volume of incompressible, vortex-free perfect fluid which is at rest at infinity. The body is equipped with a gyrostat and a so-called Flettner rotor. Due to the latter the body is subject to a lifting force (Magnus effect). The rotational velocities of the gyrostat and the rotor are assumed to be known functions of time (control inputs). The equations of motion are presented in the form of the Kirchhoff equations. The integrals of motion are given in the case of piecewise continuous control. Using these integrals we obtain a (reduced) system of first-order differential equations on the configuration space. Then an optimal control problem for several types of the inputs is solved using genetic algorithms.

  4. Flight evaluation of HL-10 lifting body handling qualities at Mach numbers from 0.30 to 1.86

    NASA Technical Reports Server (NTRS)

    Kempel, R. W.; Manke, J. A.

    1974-01-01

    The longitudinal and lateral-directional handling qualities of the HL-10 lifting body vehicle were evaluated in flight at Mach numbers up to 1.86 and altitudes up to approximately 27,450 meters (90,000 feet). In general, the vehicle's handling qualities were considered to be good. Approximately 91 percent of the pilot ratings were 3.5 or better, and 42.4 percent were 2.0. Handling qualities problems were encountered during the first flight due to problems with the control system and vehicle aerodynamics. Modifications of the flight vehicle corrected all deficiencies, and no other significant handling qualities problems were encountered.

  5. Flight of the honeybee. V. Drag and lift coefficients of the bee's body; implications for flight dynamics.

    PubMed

    Nachtigall, W; Hanauer-Thieser, U

    1992-01-01

    Drag forces and lift forces acting on honeybee trunks were measured by using specially built sensitive mechanical balances. Measurements were made on prepared bodies in 'good' and in 'bad' flight position, with and without legs, at velocities between 0.5 and 5 m.s-1 (Reynolds numbers between 4.10(2) and 4.10(3)) and at angles of attack between -20 degrees and +20 degrees. From the forces drag coefficients and lift coefficients were calculated. The drag coefficient measured with a zero angle of attack was 0.45 at 3 less than or equal to v less than or equal to 5 m.s-1, 0.6 at 2 m.s-1, 0.9 at 1 m.s-1 and 1.35 at 0.5 m.s-1, thus demonstrating a pronounced effect of Reynolds number on drag. These values are about 2 times lower (better) than those of a "drag disc" with the same diameter and attacked at the same velocity. The drag coefficient (related to constant minimal frontal area) was minimal at zero angle of attack, rising symmetrically to larger (+) and smaller (-) angles of attack in a non-linear fashion. The absolute value is higher and the rise is steeper at lower speeds or Reynolds numbers, but the incremental factors are independent of Reynolds number. For example, the drag coefficient is 1.44 +/- 0.05 times higher at an angle of attack of 20 degrees than at one of 0 degrees. On a double-logarithmic scale the slope of the drag versus Reynolds number plot was 1.5: with decreasing Reynolds number the relationship between drag and velocity changes from quadratic (Newton's law) to linear (viscous flow). Trunk drag was not systematically increased by the legs at any velocity or Reynolds number or any angle of attack. The legs appear to shape the trunk "aerodynamically", to form a relatively low-drag trunk-leg system. The body is able to generate dynamic lift. Highly significant positive linear correlations between lift coefficient and angle of attack were determined for the trunk-leg system in the typical flight position. Lift coefficient was +0.05 at zero angle of

  6. Prediction of static aerodynamic characteristics for slender bodies alone and with lifting surfaces to very high angles of attack

    NASA Technical Reports Server (NTRS)

    Jorgensen, L. H.

    1976-01-01

    An engineering-type method is presented for computing normal-force and pitching-moment coefficients for slender bodies of circular and noncircular cross section alone and with lifting surfaces. In this method, a semi-empirical term representing viscous-separation crossflow is added to a term representing potential-theory crossflow. For many bodies of revolution, computed aerodynamic characteristics are shown to agree with measured results for investigated free-stream Mach numbers from 0.6 to 2.9. For several bodies of elliptic cross section, measured results are also predicted reasonably well over the investigated Mach number range from 0.6 to 2.0 and at angles of attack from 0 to 60 deg. As for the bodies of revolution, the predictions are best for supersonic Mach numbers. For body-wing and body-wing-tail configurations with wings of aspect ratios 3 and 4, measured normal-force coefficients and centers are predicted reasonably well at the upper test Mach number of 2.0. However, with a decrease in Mach number to 0.6, the agreement for C sub N rapidly deteriorates, although the normal-force centers remain in close agreement. Vapor-screen and oil-flow pictures are shown for many body, body-wing, and body-wing-tail configurations. When separation and vortex patterns are asymmetric, undesirable side forces are measured for the models even at zero sideslip angle. Generally, the side-force coefficients decrease or vanish with the following: increase in Mach number, decrease in nose fineness ratio, change from sharp to blunt nose, and flattening of body cross section (particularly the body nose).

  7. Prediction of static aerodynamic characteristics for slender bodies alone and with lifting surfaces to very high angles of attack

    NASA Technical Reports Server (NTRS)

    Jorgensen, L. H.

    1977-01-01

    An engineering-type method is presented for computing normal-force and pitching-moment coefficients for slender bodies of circular and noncircular cross section alone and with lifting surfaces. In this method, a semi-empirical term representing viscous-separation crossflow is added to a term representing potential-theory crossflow. For many bodies of revolution, computed aerodynamic characteristics are shown to agree with measured results for investigated free-stream Mach numbers from 0.6 to 2.9. The angles of attack extend from 0 deg to 180 deg for M = 2.9 from 0 deg to 60 deg for M = 0.6 to 2.0. For several bodies of elliptic cross section, measured results are also predicted reasonably well over the investigated Mach number range from 0.6 to 2.0 and at angles of attack from 0 deg to 60 deg. As for the bodies of revolution, the predictions are best for supersonic Mach numbers. For body-wing and body-wing-tail configurations with wings of aspect ratios 3 and 4, measured normal-force coefficients and centers are predicted reasonably well at the upper test Mach number of 2.0. Vapor-screen and oil-flow pictures are shown for many body, body-wing and body-wing-tail configurations. When spearation and vortex patterns are asymmetric, undesirable side forces are measured for the models even at zero sideslip angle. Generally, the side-force coefficients decrease or vanish with the following: increase in Mach number, decrease in nose fineness ratio, change from sharp to blunt nose, and flattening of body cross section (particularly the body nose).

  8. Aero Spacelines B377SG Super Guppy on Ramp Loading the X-24B and HL-10 Lifting Bodies.

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The Aero Spacelines B377SG Super Guppy was at Dryden in May, 1976, to ferry the X-24 and HL-10 lifting bodies from the Center to the Air Force Museum at Wright-Patterson Air Force Base, Ohio. The oversized cargo aircraft is a further modification of the B377PG Pregnant Guppy, which was built to transport outsized cargo for NASA's Apollo program, primarily to carry portions of the Saturn V rockets from the manufacturer to Cape Canaveral. The original Guppy modification incorporated the wings, engines, lower fuselage and tail from a Boeing 377 Stratocruiser with a huge upper fuselage more than 20 feet in diameter. The Super Guppy further expanded the fuselage added a taller vertical tail for better lateral stability. A later version, the Super Guppy Turbine, is still in occasional use by NASA to transport oversize structures. The X-24 was one of a group of lifting bodies flown by the NASA Flight Research Center (now Dryden Flight Research Center), Edwards, California, in a joint program with the U.S. Air Force at Edwards Air Force Base from 1963 to 1975. The lifting bodies were used to demonstrate the ability of pilots to maneuver and safely land wingless vehicles designed to fly back to Earth from space and be landed like an airplane at a predetermined site. Lifting bodies' aerodynamic lift, essential to flight in the atmosphere, was obtained from their shape. The addition of fins and control surfaces allowed the pilots to stabilize and control the vehicles and regulate their flight paths. Built by Martin Aircraft Company, Maryland, for the U.S. Air Force, the X-24A was a bulbous vehicle shaped like a teardrop with three vertical fins at the rear for directional control. It weighed 6,270 pounds, was 24.5 feet long and 11.5 feet wide (measuring just the fuselage, not the distance between the tips of the outboard fins). Its first unpowered glide flight was on April 17, 1969, with Air Force Maj. Jerauld Gentry at the controls. Gentry also piloted its first powered

  9. Jim Newman and Bob McDonald attach an M2-F2 lifting body model to the "Mothership"

    NASA Image and Video Library

    1968-06-26

    A photo of model airplane builders James B. Newman and Robert L. McDonald preparing for a flight with models of the M2-F2 and a “Mothership”. In 1968 a test flight was made on the Rosamond dry lakebed, Rosamond, California. The original idea of lifting bodies was conceived about 1957 by Dr. Alfred J. Eggers, Jr., then the assistant director for Research and Development Analysis and Planning at the National Advisory Committee for Aeronautics' Ames Aeronautical Laboratory, Moffett Field, California. Nose cone studies led to the design known as the M-2, a modified half-cone, rounded on the bottom and flat on top, with a blunt, rounded nose and twin tail fins. To gather flight data on this configuration, models were found to be an effective method. A special twin-engined, 14-foot model “mothership” was used for carrying the M2-F2 model to altitude and a launch, much as was being done with the B-52 for the full-scale lifting bodies. Jim (on the left) will fly the “mothership” and Bob will take control of the M2-F2 at launch and fly it to a landing on the lakebed.

  10. Aero Spacelines B377SG Super Guppy on Ramp Loading the X-24B and HL-10 Lifting Bodies.

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The Aero Spacelines B377SG Super Guppy was at Dryden in May, 1976, to ferry the X-24 and HL-10 lifting bodies from the Center to the Air Force Museum at Wright-Patterson Air Force Base, Ohio. The oversized cargo aircraft is a further modification of the B377PG Pregnant Guppy, which was built to transport outsized cargo for NASA's Apollo program, primarily to carry portions of the Saturn V rockets from the manufacturer to Cape Canaveral. The original Guppy modification incorporated the wings, engines, lower fuselage and tail from a Boeing 377 Stratocruiser with a huge upper fuselage more than 20 feet in diameter. The Super Guppy further expanded the fuselage added a taller vertical tail for better lateral stability. A later version, the Super Guppy Turbine, is still in occasional use by NASA to transport oversize structures. The X-24 was one of a group of lifting bodies flown by the NASA Flight Research Center (now Dryden Flight Research Center), Edwards, California, in a joint program with the U.S. Air Force at Edwards Air Force Base from 1963 to 1975. The lifting bodies were used to demonstrate the ability of pilots to maneuver and safely land wingless vehicles designed to fly back to Earth from space and be landed like an airplane at a predetermined site. Lifting bodies' aerodynamic lift, essential to flight in the atmosphere, was obtained from their shape. The addition of fins and control surfaces allowed the pilots to stabilize and control the vehicles and regulate their flight paths. Built by Martin Aircraft Company, Maryland, for the U.S. Air Force, the X-24A was a bulbous vehicle shaped like a teardrop with three vertical fins at the rear for directional control. It weighed 6,270 pounds, was 24.5 feet long and 11.5 feet wide (measuring just the fuselage, not the distance between the tips of the outboard fins). Its first unpowered glide flight was on April 17, 1969, with Air Force Maj. Jerauld Gentry at the controls. Gentry also piloted its first powered

  11. [Injuries and damage caused by excess stress in body building and power lifting].

    PubMed

    Goertzen, M; Schöppe, K; Lange, G; Schulitz, K P

    1989-03-01

    A questionnaire, designed to elict information about training programs, experience and injury profile, was administered to 358 bodybuilders and 60 powerlifters. This was followed by a clinical orthopedic and radiological examination. The upper extremity, particulary the shoulder and elbow joint, showed the highest injury rate. More than 40% of all injuries occurred in this area. The low back region and the knee were other sites of elevated injury occurrences. Muscular injuries (muscle pulls, tendonitis, sprains) were perceived to account for 83.6% of all injury types. Powerlifting showed a twice as high injury rate as bodybuilding, probably of grounds of a more uniform training program. Weight-training should be associated with a sports-related medical care and supervised by knowledgeable people, who can instruct the athletes in proper lifting techniques and protect them from injury which can result from incorrect weight-training.

  12. Aerodynamic Characteristics and Control Effectiveness of the HL-20 Lifting Body Configuration at Mach 10 in Air

    NASA Technical Reports Server (NTRS)

    Scallion, William I.

    1999-01-01

    A 0.0196-scale model of the HL-20 lifting-body, one of several configurations proposed for future crewed spacecraft, was tested in the Langley 31-Inch Mach 10 Tunnel. The purpose of the tests was to determine the effectiveness of fin-mounted elevons, a lower surface flush-mounted body flap, and a flush-mounted yaw controller at hypersonic speeds. The nominal angle-of-attack range, representative of hypersonic entry, was 2 deg to 41 deg, the sideslip angles were 0 deg, 2 deg, and -2 deg, and the test Reynolds number was 1.06 x 10 E6 based on model reference length. The aerodynamic, longitudinal, and lateral control effectiveness along with surface oil flow visualizations are presented and discussed. The configuration was longitudinally and laterally stable at the nominal center of gravity. The primary longitudinal control, the fin-mounted elevons, could not trim the model to the desired entry angle of attack of 30 deg. The lower surface body flaps were effective for roll control and the associated adverse yawing moment was eliminated by skewing the body flap hinge lines. A yaw controller, flush-mounted on the lower surface, was also effective, and the associated small rolling moment was favorable.

  13. A Supersonic Area Rule and an Application to the Design of a Wing-Body Combination with High Lift-Drag Ratios

    NASA Technical Reports Server (NTRS)

    Whitcomb, Richard T.; Sevier, John R., Jr.

    1960-01-01

    A concept for interrelating the wave drags of wing-body combinations at supersonic speeds with axial developments of cross-sectional area is presented. A swept-wing-indented-body combination designed on the basis of this concept to have significantly improved maximum lift-drag ratios over a range of transonic and moderate supersonic speeds is described. Experimental results have been obtained for this configuration at Mach numbers from 0.80 to 2.01. Maximum lift-drag ratios of approximately 14 and 9 were measured at Mach numbers of 1.15 and 1.41, respectively.

  14. Surface and gradiometer coils near a conducting body: the lift-off effect.

    PubMed

    Suits, B H; Garroway, A N; Miller, J B

    1998-12-01

    The use of surface coils in magnetic resonance is widespread. Examples include MRI, detection of subsurface aquifers by NMR, and, more recently, landmine detection by nuclear quadrupole resonance. In many of these cases a finite-sized sample to be examined is contained within a larger medium that is a poor electrical conductor, and eddy currents induced by the RF fields provide a loss mechanism that reduces the effective quality factor Q of the transmitter and receiver coils. Here the losses induced in a circular surface coil (a horizontal loop antenna) separated a distance from a dissipative medium are calculated and compared to measurements. It is shown that often the overall efficiency of the coil for magnetic resonance can be improved by displacing the coil away from the conducting medium a prescribed "lift-off" distance. The use of a gradiometer as a surface coil is also examined, and it is shown by theory and experiment that in certain circumstances such a gradiometer can be more efficient than a conventional surface coil for inspection of conducting media.

  15. Some Research on the Lift and Stability of Wing-Body Combinations

    NASA Technical Reports Server (NTRS)

    Purser, Paul E.; Fields, E. M.

    1959-01-01

    The present paper summarizes and correlates broadly some of the research results applicable to fin-stabilized ammunition. The discussion and correlation are intended to be comprehensive, rather than detailed, in order to show general trends over the Mach number range up to 7.0. Some discussion of wings, bodies, and wing-body interference is presented, and a list of 179 papers containing further information is included. The present paper is intended to serve more as a bibliography and source of reference material than as a direct source of design information.

  16. Steady incompressible potential flow around lifting bodies immersed in a fluid. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Chiuchiolo, E. A.

    1974-01-01

    The refinement was investigated of a method for evaluating the pressure distribution on a body surface of arbitrary shape in incompressible flow. The solution was obtained in terms of the velocity potential, through numerical approximations which require the use of a high speed digital computer. The box method and the modal method are described in detail, and were applied to a very thin, rectangular wing in incompressible, steady flow. The box method is found to be more practical as it is applicable to more general geometries (the modal method requires a new set of functions for each geometry), and requires less computer time (fifty percent of that required by the modal method for the same problem).

  17. Flight-determined derivatives and dynamic characteristics for the HL-10 lifting body vehicle at subsonic and transonic Mach numbers

    NASA Technical Reports Server (NTRS)

    Strutz, L. W.

    1972-01-01

    The HL-10 lifting body stability and control derivatives were determined by using an analog-matching technique and compared with derivatives obtained from wind-tunnel results. The flight derivatives were determined as a function of angle of attack for a subsonic configuration at Mach 0.7 and for a transonic configuration at Mach 0.7, 0.9, and 1.2. At an angle of attack of 14 deg, data were obtained for a Mach number range from 0.6 to 1.4. The flight and wind-tunnel derivatives were in general agreement, with the possible exception of the longitudinal and lateral damping derivatives. Some differences were noted between the vehicle dynamic response characteristics calculated from flight-determined derivatives and those predicted by the wind-tunnel results. However, the only difference the pilots noted between the response of the vehicle in flight and the response of a simulator programed with wind-tunnel-predicted data was that the damping generally was higher in the flight vehicle.

  18. The X-38 lifting body research vehicle, seen here wrapped in a protective material, lowered onto a t

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The X-38 lifting body research vehicle, seen here wrapped in a protective material, is lowered onto a truck for shipping from the Dryden Flight Research Center in May 2000. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected

  19. The X-38 lifting body research vehicle, seen here wrapped in a protective material, lowered onto a t

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The X-38 lifting body research vehicle, seen here wrapped in a protective material, is lowered onto a truck for shipping from the Dryden Flight Research Center in May 2000. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected

  20. The Effect of Moment of Area Rule Modifications on the Drag, Lift and Pitching Moment Characteristics of an Unswept Aspect Ratio 6 Wing and Body Combination

    NASA Technical Reports Server (NTRS)

    Dickey, Robert R.

    1959-01-01

    An experimental investigation was conducted to determine the effect of moment-of-area-rule modifications on the drag, lift, and pitching-moment characteristics of a wing-body combination with a relatively high aspect-ratio unswept wing. The basic configuration consisted of an aspect-ratio-6 wing with a sharp leading edge and a thickness ratio of 0.06 mounted on a cut-off Sears-Haack body. The model with full moment-of-area-rule modifications had four contoured pods mounted on the wing and indentations in the body to improve the longitudinal distributions of area and moments of area. Also investigated were modifications employing pods and indentations that were only half the size of the full modifications and modifications with partial body indentations. The models were tested at angles of attack from -2 deg to +12 deg at Mach numbers from 0.6 to 1.4. In general, the moment-of-area-rule modifications had a large effect on the drag characteristics of the models but only a small effect on their lift and pitching-moment characteristics. The modifications provided substantial reductions in the zero-lift drag at transonic and low supersonic speeds, but at subsonic speeds the drag was increased. Near Mach number 1.0, the model with full modification provided the greatest reduction in drag, but at the highest test Mach numbers the half modification gave the largest drag reduction. In general, the percent reductions of zero- lift drag obtained with the aspect-ratio-6 wing were as great or greater than those previously obtained with aspect-ratio-3 wings. The effect of the modifications on the drag due to lift was small except at Mach num- bers below 0.9 where the modified models had higher drag-rise factors. Above Mach number 0.9, the modified models had higher lift-drag ratios than the basic model. The modified models also had higher lift curve slopes and generally were slightly more stable than the basic configuration.

  1. Breast lift

    MedlinePlus

    ... enable JavaScript. A breast lift, or mastopexy, is cosmetic breast surgery to lift the breasts. The surgery ... the position of the areola and nipple. Description Cosmetic breast surgery can be done at an outpatient ...

  2. Comparison of Experimental and Theoretical Zero-Lift Wave-Drag Results for Various Wing-Body-Tail Combinations at Mach Numbers up to 1.9

    NASA Technical Reports Server (NTRS)

    Petersen, R. B.

    1957-01-01

    Comparisons are made of experimental and theoretical zero-lift wave drag for several nose shapes, wing-body combinations, and models of current airplanes at Mach numbers up to 1.0. The experimental data were obtained from tests in the Ames 6- by6-foot supersonic wind tunnel and at the NACA Wallops Island facility. The theoretical drag was found by use of linear theory utilizing model area distributions. The agreement between theoretical and experimental zero-lift wave-drag coefficients was generally very good, especially for a fuselage or for fuselage-wing combinations that were vertically symmetrical. For other models that had rapid changes in body shape and/or were not vertically symmetrical, the agreement of theory with experiment ranged from fair to poor, depending on the severity of the change in shape.

  3. Results of a feasibility study using the Newton-Raphson digital computer program to identify lifting body derivatives from flight data

    NASA Technical Reports Server (NTRS)

    Sim, A. G.

    1973-01-01

    A brief study was made to assess the applicability of the Newton-Raphson digital computer program as a routine technique for extracting aerodynamic derivatives from flight tests of lifting body types of vehicles. Lateral-direction flight data from flight tests of the HL-10 lifting body reserch vehicle were utilized. The results in general, show the computer program to be a reliable and expedient means for extracting derivatives for this class of vehicles as a standard procedure. This result was true even when stability augmentation was used. As a result of the study, a credible set of HL-10 lateral-directional derivatives was obtained from flight data. These derivatives are compared with results from wind-tunnel tests.

  4. Supersonic aerodynamic characteristics of a lifting-body orbiter model with a blunted delta planform at Mach 2.30 to 4.60

    NASA Technical Reports Server (NTRS)

    Blair, A. B., Jr.

    1972-01-01

    An investigation has been made in the Langley Unitary Plan wind tunnel to determine the aerodynamic characteristics of a lifting-body orbiter model with a blunted delta planform. The model was tested at Mach numbers from 2.30 to 4.60, at nominal angles of attack from -4 deg to 60 deg and angles of sideslip from -4 deg to 10 deg, and at a Reynolds number of 2.5 million per foot.

  5. A Study of the Zero-Lift Drag-Rise Characteristics of Wing-Body Combinations Near the Speed of Sound

    NASA Technical Reports Server (NTRS)

    Whitcomb, Richard T

    1956-01-01

    Comparisons have been made of the shock phenomena and drag-rise increments for representative wing and central-body combinations with those for bodies of revolution having the same axial developments of cross-sectional areas normal to the airstream. On the basis of these comparisons, it is concluded that near the speed of sound the zero-lift drag rise of a low-aspect-ratio thin-wing and body combination is primarily dependent on the axial development of the cross-sectional areas normal to the airstream. It follows that the drag rise for any such configuration is approximately the same as that for any other with the same development of cross-sectional areas. Investigations have also been made of representative wing-body combinations with the body so indented that the axial developments of cross-sectional areas for the combinations were the same as that for the original body alone. Such indentations greatly reduced or eliminated the zero-lift drag-rise increments associated with the wings near the speed of sound.

  6. A method for calculating the lift and center of pressure of wing-body-tail combinations at subsonic, transonic, and supersonic speeds

    NASA Technical Reports Server (NTRS)

    Nielsen, Jack N; Kaattari, George E; Anastasio, Robert F

    1953-01-01

    A method is presented for calculating the lift and pitching-moment characteristics of circular cylindrical bodies in combination with triangular, rectangular, or trapezoidal wings or tails through the subsonic, transonic, and supersonic speed ranges. The method covers unbanked wings, sweptback leading edges or sweptforward trailing edges, low angles of attack, and the effects of wing and tail incidence. The wing-body interference is handled by the method presented in NACA RM's A51J04 and A52B06, and the wing-tail interference is treated by assuming one completely rolled-up vortex per wing panel and evaluating the tail load by strip theory. A computing table and set of design charts are presented which reduce the calculations to routine operations. Comparison is made between the estimated and experimental characteristics for a large number of wing-body and wing-body-tail combinations. Generally speaking, the lifts were estimated to within plus-or-minus 10 percent and the centers of pressure were estimated to within plus-or-minus 0.02 of the body length. The effect of wing deflection on wing-tail interference at supersonic speeds was not correctly predicted for triangular wings with supersonic leading edges.

  7. Aerodynamic characteristics of some modified conical bodies with low lift-drag ratios at Mach numbers of 2.30 and 4.63

    NASA Technical Reports Server (NTRS)

    Davenport, E. E.

    1972-01-01

    A wind-tunnel investigation was conducted at Mach numbers of 2.30 and 4.63 to determine the static aerodynamic characteristics of three 60 deg half-angle cone models. Configuration 1 was obtained by raking off a symmetrical cone at a base angle of 6.15 deg, and configuration 2 and 3 were obtained by adding flaps to a symmetrical cone. The models were tested at angles of attack from about -5 deg to about 20 deg at roll angles of 0 deg to -180 deg and at a freestream Reynolds number of 1.09 x one million, based on body diameter. The results showed that all three configurations produced finite values of lift-drag ratio useful for lifting planetary entry. All three configurations exhibited increases in yawing moment and side force with roll angle; thus, the capability for lateral trajectory control is provided.

  8. Lift and Pitching-moment Interference Between a Pointed Cylindrical Body and Triangular Wings of Various Aspect Ratios at Mach Numbers of 1.50 and 2.02

    NASA Technical Reports Server (NTRS)

    Nielsen, Jack N; Katzen, Elliott D; Tang, Kenneth K

    1956-01-01

    The lift and pitching-moment characteristics of a body alone, six triangular wings of various aspect ratios, and the combinations were measured at Mach numbers of 1.50 and 2.02 at a Reynolds number of 5.5 million (based on the body length) for angles of attack up to 5.5 degrees. The total lift and pitching-moment interference were determined and compared with theory. The agreement was found to be good.

  9. Approximate method for calculating transonic flow about lifting wing-body configurations: Computer program and user's manual

    NASA Technical Reports Server (NTRS)

    Barnwell, R. W.; Davis, R. M.

    1975-01-01

    A user's manual is presented for a computer program which calculates inviscid flow about lifting configurations in the free-stream Mach-number range from zero to low supersonic. Angles of attack of the order of the configuration thickness-length ratio and less can be calculated. An approximate formulation was used which accounts for shock waves, leading-edge separation and wind-tunnel wall effects.

  10. Wind-tunnel investigation of the aerodynamic characteristics of the M2-F2 lifting-body entry configuration at transonic and supersonic Mach numbers

    NASA Technical Reports Server (NTRS)

    Keener, E. R.; Brownson, J. J.

    1972-01-01

    Results are presented for wind tunnel tests of a one to twelve scale model of the M2-F2 lifting body entry configuration at transonic and supersonic speeds. The Mach number was varied from 0.6 to 2.0. Reynolds numbers ranged from 4 to 13 million. Angles of attack and sideslip varied from minus 8 degrees to plus 20 degrees and minus 4 degrees to plus 6 degrees respectively. A brief history of the development of the configuration is included.

  11. Transonic Zero-Lift Drag Tests of Four Equivalent-Body-of-Revolution Models Representing Variations of the Convair F-102 Airplane

    NASA Technical Reports Server (NTRS)

    Stoney, William E., Jr.

    1955-01-01

    Four 0.01643-scale equivalent-body-of-revolution models, designed to aid in the evaluation of the relative merits of various degrees of redesign of the existing (1955) Convair F-102 airplane, were launched from the helium gun at Wallops Island, Va., to determine their zero-lift drag at Mach numbers from 0.8 to 1.3. The data are presented with only sufficient analysis to validate their general subsonic level. Estimated values of the friction drag are presented at all Mach numbers to allow a comparison of the pressure drag values alone.

  12. Flight evaluation of the M2-F3 lifting body handling qualities at Mach numbers from 0.30 to 1.61

    NASA Technical Reports Server (NTRS)

    Kempel, R. W.; Dana, W. H.; Sim, A. G.

    1975-01-01

    Percentage distributions of 423 pilot ratings obtained from 27 flights are used to indicate the general level of handling qualities of the M2-F3 lifting body. Percentage distributions are compared on the basis of longitudinal and lateral-directional handling qualities, control system, control system status, and piloting task. Ratings of longitudinal handling qualities at low speed were slightly better than those for transonic and supersonic speed. The ratings of lateral-directional handling qualities were unaffected by speed and configuration. Specific handling qualities problems are discussed in detail, and comparisons are made with pertinent handling qualities criteria.

  13. Patient lifts.

    PubMed

    1990-03-01

    In this issue, we evaluate conventional patient lifts that operate by hand cranking, hand pumping, or battery-powered motors and are intended for use in the home or in institutions. We did not evaluate lifts that are designed to be used solely in bathrooms or vehicles or those that permanently affix to walls, floors or ceilings. Some of the evaluated lifts are intended primarily for use in specific environments (e.g., one can be easily disassembled into small components for automobile transport). We evaluated 15 patient lifts from eight manufacturers, basing our ratings on performance, safety, and human factors design. Because different designs make lifts preferable for different environments, we rated the lifts for both home and institutional use based on their size, ruggedness, ease of storage, maneuverability, and cost. Seven units-the Arjo 218150; the Handi-Move 1200; the Hoyer C-CBL; the Invacare 9901, 9916 and 9917; and the Porto-Lift PL-1 are rated Acceptable for both home and institutional use. The Trans-Aid S1-600 and the Versa Lift are rated Acceptable for institutional use and Acceptable-Not Recommended for home use because of their size and cost. The Arjo B and the Hoyer Travel Lift are rated Acceptable for home use and Acceptable-Not Recommended for institutional use because they will not comfortably accommodate patients of all sizes; the Arjo B has additional limitations. The Hoyer C-HLA, the Invacare 9902, and the Trans-Aid LAT-2 are rated Conditionally Acceptable for home use on the condition that they are not used to transfer patients who weigh more than 200 lb; all three units are rated Conditionally Acceptable-Not Recommended for institutional use since there is no reliable way to ensure that they will not be used on heavier patients. The Century C-3 lift is rated Conditionally Acceptable for institutional use on the condition that it is used with the base fully extended; because the fully extended base makes the unit awkward to maneuver in

  14. Forehead lift

    MedlinePlus

    ... both sides even. If you have already had plastic surgery to lift your upper eyelids, a forehead ... Managing the cosmetic patient. In: Neligan PC, ed. Plastic Surgery . 3rd ed. Philadelphia, PA: Elsevier Saunders; 2013: ...

  15. Buttock Lift

    MedlinePlus

    ... after surgery using a needle and syringe. Poor wound healing. Sometimes areas along the incision line heal poorly ... might be given antibiotics if there is a wound healing problem. Scarring. Incision scars from a buttock lift ...

  16. Effects of weight lifting training combined with plyometric exercises on physical fitness, body composition, and knee extension velocity during kicking in football.

    PubMed

    Perez-Gomez, Jorge; Olmedillas, Hugo; Delgado-Guerra, Safira; Ara, Ignacio; Vicente-Rodriguez, German; Ortiz, Rafael Arteaga; Chavarren, Javier; Calbet, Jose A L

    2008-06-01

    The effects of a training program consisting of weight lifting combined with plyometric exercises on kicking performance, myosin heavy-chain composition (vastus lateralis), physical fitness, and body composition (using dual-energy X-ray absorptiometry (DXA)) was examined in 37 male physical education students divided randomly into a training group (TG: 16 subjects) and a control group (CG: 21 subjects). The TG followed 6 weeks of combined weight lifting and plyometric exercises. In all subjects, tests were performed to measure their maximal angular speed of the knee during in-step kicks on a stationary ball. Additional tests for muscle power (vertical jump), running speed (30 m running test), anaerobic capacity (Wingate and 300 m running tests), and aerobic power (20 m shuttle run tests) were also performed. Training resulted in muscle hypertrophy (+4.3%), increased peak angular velocity of the knee during kicking (+13.6%), increased percentage of myosin heavy-chain (MHC) type IIa (+8.4%), increased 1 repetition maximum (1 RM) of inclined leg press (ILP) (+61.4%), leg extension (LE) (+20.2%), leg curl (+15.9%), and half squat (HQ) (+45.1%), and enhanced performance in vertical jump (all p < or = 0.05). In contrast, MHC type I was reduced (-5.2%, p < or = 0.05) after training. In the control group, these variables remained unchanged. In conclusion, 6 weeks of strength training combining weight lifting and plyometric exercises results in significant improvement of kicking performance, as well as other physical capacities related to success in football (soccer).

  17. Face Lift.

    PubMed

    Wan, Dinah; Small, Kevin H; Barton, Fritz E

    2015-11-01

    After studying this article, the participant should be able to: 1. Identify the essential anatomy of the aging face and its relationship to face-lift surgery. 2. Understand the common operative approaches to the aging face and a historical perspective. 3. Understand and describe the common complications following face lifting and treatment options. Surgical rejuvenation of the aging face remains one of the most commonly performed plastic surgery procedures. This article reviews the anatomy of the face and its impact on surgical correction. In addition, this review discusses the evolution of various face-lift techniques and the current surgical approach to the aging face. Finally, this article discusses potential postoperative complications after rhytidectomy and management solutions.

  18. Protect Your Back: Guidelines for Safer Lifting.

    ERIC Educational Resources Information Center

    Cantu, Carolyn O.

    2002-01-01

    Examines back injury in teachers and child care providers; includes statistics, common causes of back pain (improper alignment, improper posture, improper lifting, and carrying), and types of back pain (acute and chronic). Focuses on preventing back injury, body mechanics for lifting and carrying, and proper lifting and carrying of children. (SD)

  19. Protect Your Back: Guidelines for Safer Lifting.

    ERIC Educational Resources Information Center

    Cantu, Carolyn O.

    2002-01-01

    Examines back injury in teachers and child care providers; includes statistics, common causes of back pain (improper alignment, improper posture, improper lifting, and carrying), and types of back pain (acute and chronic). Focuses on preventing back injury, body mechanics for lifting and carrying, and proper lifting and carrying of children. (SD)

  20. Ear-body lift and a novel thrust generating mechanism revealed by the complex wake of brown long-eared bats (Plecotus auritus).

    PubMed

    Johansson, L Christoffer; Håkansson, Jonas; Jakobsen, Lasse; Hedenström, Anders

    2016-04-27

    Large ears enhance perception of echolocation and prey generated sounds in bats. However, external ears likely impair aerodynamic performance of bats compared to birds. But large ears may generate lift on their own, mitigating the negative effects. We studied flying brown long-eared bats, using high resolution, time resolved particle image velocimetry, to determine the aerodynamics of flying with large ears. We show that the ears and body generate lift at medium to cruising speeds (3-5 m/s), but at the cost of an interaction with the wing root vortices, likely reducing inner wing performance. We also propose that the bats use a novel wing pitch mechanism at the end of the upstroke generating thrust at low speeds, which should provide effective pitch and yaw control. In addition, the wing tip vortices show a distinct spiraling pattern. The tip vortex of the previous wingbeat remains into the next wingbeat and rotates together with a newly formed tip vortex. Several smaller vortices, related to changes in circulation around the wing also spiral the tip vortex. Our results thus show a new level of complexity in bat wakes and suggest large eared bats are less aerodynamically limited than previous wake studies have suggested.

  1. The association between whole body vibration exposure and musculoskeletal disorders in the Swedish work force is confounded by lifting and posture

    NASA Astrophysics Data System (ADS)

    Hagberg, Mats; Burström, Lage; Ekman, Anna; Vilhelmsson, Rebecka

    2006-12-01

    This was a cross-sectional study based on material representing the Swedish work-force from a survey conducted in 1999, 2001 and 2003 by Statistics Sweden. Exposure to whole body vibration (WBV) was prevalent among agricultural, forestry, fishery workers and among plant and machinery operators based on a sample of 40,000 employed persons. Approximately 70% responders, that are 9798 persons answered both the interview and the questionnaire for the analysis of exposure-response. Exposure to WBV at least half the working time was associated with prevalence ratios above two for musculoskeletal symptoms in the low back, neck, shoulder/arm and hand among workers. When the exposure factors lifting and frequent bending were added to a multivariate analysis, surprisingly the magnitude of association was low between low back symptoms and WBV exposure. Interestingly, the relation between WBV exposure and symptoms in the neck, shoulder/arm and hand had the same or higher magnitude of association even when the possible confounders were in the model. For the neck, low back and shoulder/arm there was a visible increase in prevalence ratio (as high as 5 times) when combined exposures of WBV, lifting, frequent bending, twisted posture and noise were included in the analysis.

  2. Ear-body lift and a novel thrust generating mechanism revealed by the complex wake of brown long-eared bats (Plecotus auritus)

    PubMed Central

    Johansson, L. Christoffer; Håkansson, Jonas; Jakobsen, Lasse; Hedenström, Anders

    2016-01-01

    Large ears enhance perception of echolocation and prey generated sounds in bats. However, external ears likely impair aerodynamic performance of bats compared to birds. But large ears may generate lift on their own, mitigating the negative effects. We studied flying brown long-eared bats, using high resolution, time resolved particle image velocimetry, to determine the aerodynamics of flying with large ears. We show that the ears and body generate lift at medium to cruising speeds (3–5 m/s), but at the cost of an interaction with the wing root vortices, likely reducing inner wing performance. We also propose that the bats use a novel wing pitch mechanism at the end of the upstroke generating thrust at low speeds, which should provide effective pitch and yaw control. In addition, the wing tip vortices show a distinct spiraling pattern. The tip vortex of the previous wingbeat remains into the next wingbeat and rotates together with a newly formed tip vortex. Several smaller vortices, related to changes in circulation around the wing also spiral the tip vortex. Our results thus show a new level of complexity in bat wakes and suggest large eared bats are less aerodynamically limited than previous wake studies have suggested. PMID:27118083

  3. Ear-body lift and a novel thrust generating mechanism revealed by the complex wake of brown long-eared bats (Plecotus auritus)

    NASA Astrophysics Data System (ADS)

    Johansson, L. Christoffer; Håkansson, Jonas; Jakobsen, Lasse; Hedenström, Anders

    2016-04-01

    Large ears enhance perception of echolocation and prey generated sounds in bats. However, external ears likely impair aerodynamic performance of bats compared to birds. But large ears may generate lift on their own, mitigating the negative effects. We studied flying brown long-eared bats, using high resolution, time resolved particle image velocimetry, to determine the aerodynamics of flying with large ears. We show that the ears and body generate lift at medium to cruising speeds (3–5 m/s), but at the cost of an interaction with the wing root vortices, likely reducing inner wing performance. We also propose that the bats use a novel wing pitch mechanism at the end of the upstroke generating thrust at low speeds, which should provide effective pitch and yaw control. In addition, the wing tip vortices show a distinct spiraling pattern. The tip vortex of the previous wingbeat remains into the next wingbeat and rotates together with a newly formed tip vortex. Several smaller vortices, related to changes in circulation around the wing also spiral the tip vortex. Our results thus show a new level of complexity in bat wakes and suggest large eared bats are less aerodynamically limited than previous wake studies have suggested.

  4. Aerothermodynamic measurements on a proposed assured crew return vehicle (ACRV) lifting-body configuration at Mach 6 and 10 in air

    NASA Technical Reports Server (NTRS)

    Horvath, Thomas J.; Rhode, Matthew N.; Buck, Gregory M.

    1990-01-01

    A 0.02-scale model of a lifting-body concept for possible application to the Assured Crew Return Vehicle from Space Station Freedom was tested at Mach 6 and 10 in air. Thermal mappings and surface streamline patterns were obtained at angles of attack ranging from 0 to 30 deg and unit Reynolds numbers Re from 2 to 8 x 10 to the 6th/ft. Areas that experienced the highest heating were near the model nose and tip-fin leading edges. The effect of Re on windward centerline heating coefficients was negligible, whereas increases in angles of attack produced increases in heating. At Mach 6 and the highest unit Re, turbulent heat at the windward centerline was three to four times the laminar level. Leeward crossflow separation and vortex reattachment along the centerline are evident across the Re and angle-of-attack ranges tested, indicative of a complex flowfield.

  5. Development of an efficient computer code to solve the time-dependent Navier-Stokes equations. [for predicting viscous flow fields about lifting bodies

    NASA Technical Reports Server (NTRS)

    Harp, J. L., Jr.; Oatway, T. P.

    1975-01-01

    A research effort was conducted with the goal of reducing computer time of a Navier Stokes Computer Code for prediction of viscous flow fields about lifting bodies. A two-dimensional, time-dependent, laminar, transonic computer code (STOKES) was modified to incorporate a non-uniform timestep procedure. The non-uniform time-step requires updating of a zone only as often as required by its own stability criteria or that of its immediate neighbors. In the uniform timestep scheme each zone is updated as often as required by the least stable zone of the finite difference mesh. Because of less frequent update of program variables it was expected that the nonuniform timestep would result in a reduction of execution time by a factor of five to ten. Available funding was exhausted prior to successful demonstration of the benefits to be derived from the non-uniform time-step method.

  6. Utilization of simulation tools in the HL-20 conceptual design process. [passenger-carrying lifting body portion of Personnel Launch System

    NASA Technical Reports Server (NTRS)

    Jackson, E. B.; Powell, Richard W.; Ragsdale, W. A.

    1991-01-01

    The role of simulations in the design of the HL-20, the crew-carrying unpowered lifting-body component of the NASA Personnel Launch System, is reviewed and illustrated with drawings and diagrams. Detailed consideration is given to the overall implementation of a real-time simulation of the HL-20 approach and landing phase, the baseline and experimental control laws used in the flight-control system, autoland guidance and control laws (vertical and lateral steering), the control-surface mixer and actuator model, and simulation results. The simulations allowed identification and correction of design problems with respect to the position of the landing gear and the original maximum L/D ratio of 3.2.

  7. [Plastic surgical body form correction. Part II: Face-lift, periorbital surgery, and breast augmentation and reduction].

    PubMed

    Ryssel, H; Germann, G; Heitmann, C

    2007-04-01

    The demand for a younger appearance is increasing as the average age of the population increases. Extensive anatomic studies in recent years have improved for facial and breast reconstruction the understanding of anatomic structures and the basis of the aging process. Numerous new surgical techniques have resulted. This understanding of the anatomy of aging and the diversity of surgical methods have made the attainment of naturally young facial appearance more easily possible, in which repositioning of the tissue plays a more important role than lifting. In the past, plastic surgery of the eyelids aimed primarily at hiding the aging process, not at true anatomic restoration. Modern techniques in this field aim more toward redistribution of fatty tissues and the anatomic restoration of aging structures. In this way long-term results are stabilized and secondary stigmata can be avoided. New concepts have also been established in breast surgery that allow more natural results, particularly in augmentation. Although no single method may be designated as superior, there still exists an optimal technique suited to every patient's anatomy and personal wishes.

  8. Pre-X Experimental Re-Entry Lifting Body: Design of Flight Test Experiments for Critical Aerothermal Phenomena

    DTIC Science & Technology

    2007-06-01

    hypersonic domain has never been explored with a controlled glider . BOR 4 BOR 5 The hypersonic glider HYFLEX The main concrete...the most critical phenomena concerning the design and sizing of a re- entry vehicle. Pre-X hypersonic glider • Improving the flight measurement...laws of a gliding body with body flaps. • Performing the first design and development end to end of the hypersonic glider . • To reduce risk for

  9. A review of a method for dynamic load distribution, dynamical modeling, and explicit internal force control when two manipulators mutually lift and transport a rigid body object

    SciTech Connect

    Unseren, M.A.

    1997-04-20

    The paper reviews a method for modeling and controlling two serial link manipulators which mutually lift and transport a rigid body object in a three dimensional workspace. A new vector variable is introduced which parameterizes the internal contact force controlled degrees of freedom. A technique for dynamically distributing the payload between the manipulators is suggested which yields a family of solutions for the contact forces and torques the manipulators impart to the object. A set of rigid body kinematic constraints which restrict the values of the joint velocities of both manipulators is derived. A rigid body dynamical model for the closed chain system is first developed in the joint space. The model is obtained by generalizing the previous methods for deriving the model. The joint velocity and acceleration variables in the model are expressed in terms of independent pseudovariables. The pseudospace model is transformed to obtain reduced order equations of motion and a separate set of equations governing the internal components of the contact forces and torques. A theoretic control architecture is suggested which explicitly decouples the two sets of equations comprising the model. The controller enables the designer to develop independent, non-interacting control laws for the position control and internal force control of the system.

  10. Face lift.

    PubMed

    Warren, Richard J; Aston, Sherrell J; Mendelson, Bryan C

    2011-12-01

    After reading this article, the participant should be able to: 1. Identify and describe the anatomy of and changes to the aging face, including changes in bone mass and structure and changes to the skin, tissue, and muscles. 2. Assess each individual's unique anatomy before embarking on face-lift surgery and incorporate various surgical techniques, including fat grafting and other corrective procedures in addition to shifting existing fat to a higher position on the face, into discussions with patients. 3. Identify risk factors and potential complications in prospective patients. 4. Describe the benefits and risks of various techniques. The ability to surgically rejuvenate the aging face has progressed in parallel with plastic surgeons' understanding of facial anatomy. In turn, a more clear explanation now exists for the visible changes seen in the aging face. This article and its associated video content review the current understanding of facial anatomy as it relates to facial aging. The standard face-lift techniques are explained and their various features, both good and bad, are reviewed. The objective is for surgeons to make a better aesthetic diagnosis before embarking on face-lift surgery, and to have the ability to use the appropriate technique depending on the clinical situation.

  11. What is a safe lift?

    PubMed

    Espinoza, Kathy

    2013-09-01

    In a perfect world, a "safe" lift would be 51 pounds if the object is within 7 inches from the front of the body, if it is at waist height, if it is directly in front of the person, if there is a handle on the object, and if the load inside the box/bucket doesn't shift once lifted. If the load to be lifted does not meet all of these criteria, then it is an unsafe lift, and modifications must be made. Modifications would include lightening the load, getting help, or using a mechanical lifting device. There is always a way to turn an unsafe lift into a safer lift. An excellent resource for anyone interested in eliminating some of the hazards associated with lifting is the "Easy Ergonomics" publication from Cal/OSHA. This booklet offers practical advice on how to improve the workplace using engineering and administrative controls, problem-solving strategies and solutions, and a vast amount of ergonomics information and resources. "Easy Ergonomics" can be obtained by calling Cal/OSHA's education and training unit in Sacramento at 800-963-9424. A free copy can be obtained via www.dir.ca.gov/dosh/puborder.asp.

  12. Study of belly-flaps to enhance lift and pitching moment coefficient of a Blended-Wing-Body airplane in landing and takeoff configuration

    NASA Astrophysics Data System (ADS)

    Staelens, Yann Daniel

    During the first century of flight few major changes have been made to the configuration of subsonic airplanes. A distinct fuselage with wings, a tail, engines and a landing gear persists as the dominant arrangement. During WWII some companies developed tailless all-wing airplanes. However the concept failed to advance till the late 80's when the B-2, the only flying wing to enter production to date, illustrated its benefits at least for a stealth platform. The advent of the Blended-Wing-Body (BWB) addresses the historical shortcomings of all-wing designs, specifically poor volume utility and excess wetted area as a result. The BWB is now poised to become the new standard for large subsonic airplanes. Major aerospace companies are studying the concept for next generation of passenger airplanes. But there are still challenges. One is the BWB's short control lever-arm pitch. This affects rotation and go-around performances. This study presents a possible solution by using a novel type of control surface, a belly-flap, on the under side of the wing to enhance its lift and pitching moment coefficient during landing, go-around and takeoff. Increases of up to 30% in lift-off CL and 8% in positive pitching moment have been achieved during wind tunnel tests on a generic BWB-model with a belly-flap. These aerodynamic improvements when used in a mathematical simulation of landing, go-around and takeoff procedure were showing reduction in landing-field-length by up to 22%, in takeoff-field-length by up to 8% and in loss in altitude between initiation of rotation and actual rotation during go-around by up to 21.5%.

  13. 77 FR 20558 - Federal Motor Vehicle Safety Standards; Platform Lifts for Motor Vehicles; Platform Lift...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-05

    ... route bus systems and vehicles purchased by private entities for use in public transportation to provide... use lifts. FMVSS No. 404, S4.1.1 requires that the lift on each lift-equipped bus, school bus and... Body Company (Blue Bird), the School Bus Manufacturers Technical Council (SBMTC), which represents...

  14. Experimental and theoretical study of aerodynamic characteristics of some lifting bodies at angles of attack from -10 degrees to 53 degrees at Mach numbers from 2.30 to 4.62

    NASA Technical Reports Server (NTRS)

    Spearman, M. Leroy; Torres, Abel O.

    1994-01-01

    Lifting bodies are of interest for possible use as space transportation vehicles because they have the volume required for significant payloads and the aerodynamic capability to negotiate the transition from high angles of attack to lower angles of attack (for cruise flight) and thus safely reenter the atmosphere and perform conventional horizontal landings. Results are presented for an experimental and theoretical study of the aerodynamic characteristics at supersonic speeds for a series of lifting bodies with 75 deg delta planforms, rounded noses, and various upper and lower surface cambers. The camber shapes varied in thickness and in maximum thickness location, and hence in body volume. The experimental results were obtained in the Langley Unitary Plan Wind Tunnel for both the longitudinal and the lateral aerodynamic characteristics. Selected experimental results are compared with calculated results obtained through the use of the Hypersonic Arbitrary-Body Aerodynamic Computer Program.

  15. Lifting the lid on geographic complexity in the relationship between body mass index and education in China.

    PubMed

    Zhou, Maigeng; Feng, Xiaoqi; Yong, Jiang; Li, Yichong; Zhang, Mei; Page, Andrew; Astell-Burt, Thomas; Zhao, Wenhua

    2017-07-01

    In China, rising obesity has coincided with increasing affluence. Few studies have properly accounted for geographic variation, however, which may influence prior results. Using large data with biomarkers in China, we show body mass index (BMI) to be positively correlated with higher person-level education if estimated using ordinary least squares. In stark contrast, fitting the same data within a multilevel model gives the complete opposite result. We go on to show that the relationship between BMI and person-level education in China is dependent upon geography, underlining why multilevel modelling is crucial for revealing these types of people-place contingencies. Copyright © 2017. Published by Elsevier Ltd.

  16. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, workers look down from spaces allotted for the main engines as the rear body flap is lifted for installation on the orbiter Discovery. The body flap, which is temporarily under protective covering, attaches below the main engines.

    NASA Image and Video Library

    2003-09-23

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, workers look down from spaces allotted for the main engines as the rear body flap is lifted for installation on the orbiter Discovery. The body flap, which is temporarily under protective covering, attaches below the main engines.

  17. Lift generation by the avian tail.

    PubMed

    Maybury, W J; Rayner, J M; Couldrick, L B

    2001-07-22

    Variation with tail spread of the lift generated by a bird tail was measured on mounted, frozen European starlings (Sturnus vulgaris) in a wind tunnel at a typical air speed and body and tail angle of attack in order to test predictions of existing aerodynamic theories modelling tail lift. Measured lift at all but the lowest tail spread angles was significantly lower than the predictions of slender wing, leading edge vortex and lifting line models of lift production. Instead, the tail lift coefficient based on tail area was independent of tail spread, tail aspect ratio and maximum tail span. Theoretical models do not predict bird tail lift reliably and, when applied to tail morphology, may underestimate the aerodynamic optimum tail feather length. Flow visualization experiments reveal that an isolated tail generates leading edge vortices as expected for a low-aspect ratio delta wing, but that in the intact bird body-tail interactions are critical in determining tail aerodynamics: lifting vortices shed from the body interact with the tail and degrade tail lift compared with that of an isolated tail.

  18. Calculation of potential flow past non-lifting bodies at angle of attack using axial and surface singularity methods. M.S. Thesis. Contractor Report, 1 Jan. 1981 - 31 Aug. 1982

    NASA Technical Reports Server (NTRS)

    Shu, J. Y.

    1983-01-01

    Two different singularity methods have been utilized to calculate the potential flow past a three dimensional non-lifting body. Two separate FORTRAN computer programs have been developed to implement these theoretical models, which will in the future allow inclusion of the fuselage effect in a pair of existing subcritical wing design computer programs. The first method uses higher order axial singularity distributions to model axisymmetric bodies of revolution in an either axial or inclined uniform potential flow. Use of inset of the singularity line away from the body for blunt noses, and cosine-type element distributions have been applied to obtain the optimal results. Excellent agreement to five significant figures with the exact solution pressure coefficient value has been found for a series of ellipsoids at different angles of attack. Solutions obtained for other axisymmetric bodies compare well with available experimental data. The second method utilizes distributions of singularities on the body surface, in the form of a discrete vortex lattice. This program is capable of modeling arbitrary three dimensional non-lifting bodies. Much effort has been devoted to finding the optimal method of calculating the tangential velocity on the body surface, extending techniques previously developed by other workers.

  19. NASA HL-20 Lifting Body

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The HL-20 was built at Langley in October 1990 and is a full-scale non-flying mockup. This mockup was used for engineering studies of maintainability of the vehicle, as testing crew positions, pilot visibility and other human factors considerations. The HL-20 was a direct derivative of the HL-10 vehicle tested in the 1960s and bears a very close resemblance to engineering drawings produced at that time. Although evaluated as a possible 'space taxi,' the HL-20, sometimes called the 'Personnel Launch System,' was never built.

  20. Total facelift: forehead lift, midface lift, and neck lift.

    PubMed

    Park, Dong Man

    2015-03-01

    Patients with thick skin mainly exhibit the aging processes of sagging, whereas patients with thin skin develop wrinkles or volume loss. Asian skin is usually thicker than that of Westerners; and thus, the sagging of skin due to aging, rather than wrinkling, is the chief problem to be addressed in Asians. Asian skin is also relatively large in area and thick, implying that the weight of tissue to be lifted is considerably heavier. These factors account for the difficulties in performing a facelift in Asians. Facelifts can be divided into forehead lift, midface lift, and lower face lift. These can be performed individually or with 2-3 procedures combined.

  1. Total Facelift: Forehead Lift, Midface Lift, and Neck Lift

    PubMed Central

    2015-01-01

    Patients with thick skin mainly exhibit the aging processes of sagging, whereas patients with thin skin develop wrinkles or volume loss. Asian skin is usually thicker than that of Westerners; and thus, the sagging of skin due to aging, rather than wrinkling, is the chief problem to be addressed in Asians. Asian skin is also relatively large in area and thick, implying that the weight of tissue to be lifted is considerably heavier. These factors account for the difficulties in performing a facelift in Asians. Facelifts can be divided into forehead lift, midface lift, and lower face lift. These can be performed individually or with 2-3 procedures combined. PMID:25798381

  2. A method for estimating static aerodynamic characteristics for slender bodies of circular and noncircular cross section alone and with lifting surfaces at angles of attack from 0 deg to 90 deg

    NASA Technical Reports Server (NTRS)

    Jorgensen, L. H.

    1973-01-01

    An engineering-type method is presented for estimating normal-force, axial-force, and pitching-moment coefficients for slender bodies of circular and noncircular cross section alone and with lifting surfaces. Static aerodynamic characteristics computed by the method are shown to agree closely with experimental results for slender bodies of circular and elliptic cross section and for winged-circular and winged-elliptic cones. However, the present experimental results used for comparison with the method are limited to angles of attack only up to about 20 deg and Mach numbers from 2 to 4.

  3. A comparison of ballistic and nonballistic lower-body resistance exercise and the methods used to identify their positive lifting phases.

    PubMed

    Lake, Jason; Lauder, Mike; Smith, Neal; Shorter, Kathleen

    2012-08-01

    This study compared differences between ballistic jump squat (B) and nonballistic back squat (NB) force, velocity, power, and relative acceleration duration, and the effect that the method used to identify the positive lifting phase had on these parameters. Ground reaction force and barbell kinematics were recorded from 30 resistance trained men during B and NB performance with 45% 1RM. Force, velocity, and power was averaged over positive lifting phases identified using the traditional peak barbell displacement (PD) and positive impulse method. No significant differences were found between B and NB mean force, and mean power, but B mean velocity was 14% greater than the NB equivalent. Positive impulse mean force was 24% greater than PD mean force, and B relative acceleration duration was 8.6% greater than the NB equivalent when PD was used to identify the end of the positive lifting phase. These results challenge common perceptions of B superiority for power development.

  4. Variable Lifting Index (VLI)

    PubMed Central

    Waters, Thomas; Occhipinti, Enrico; Colombini, Daniela; Alvarez-Casado, Enrique; Fox, Robert

    2015-01-01

    Objective: We seek to develop a new approach for analyzing the physical demands of highly variable lifting tasks through an adaptation of the Revised NIOSH (National Institute for Occupational Safety and Health) Lifting Equation (RNLE) into a Variable Lifting Index (VLI). Background: There are many jobs that contain individual lifts that vary from lift to lift due to the task requirements. The NIOSH Lifting Equation is not suitable in its present form to analyze variable lifting tasks. Method: In extending the prior work on the VLI, two procedures are presented to allow users to analyze variable lifting tasks. One approach involves the sampling of lifting tasks performed by a worker over a shift and the calculation of the Frequency Independent Lift Index (FILI) for each sampled lift and the aggregation of the FILI values into six categories. The Composite Lift Index (CLI) equation is used with lifting index (LI) category frequency data to calculate the VLI. The second approach employs a detailed systematic collection of lifting task data from production and/or organizational sources. The data are organized into simplified task parameter categories and further aggregated into six FILI categories, which also use the CLI equation to calculate the VLI. Results: The two procedures will allow practitioners to systematically employ the VLI method to a variety of work situations where highly variable lifting tasks are performed. Conclusions: The scientific basis for the VLI procedure is similar to that for the CLI originally presented by NIOSH; however, the VLI method remains to be validated. Application: The VLI method allows an analyst to assess highly variable manual lifting jobs in which the task characteristics vary from lift to lift during a shift. PMID:26646300

  5. Lift truck safety review

    SciTech Connect

    Cadwallader, L.C.

    1997-03-01

    This report presents safety information about powered industrial trucks. The basic lift truck, the counterbalanced sit down rider truck, is the primary focus of the report. Lift truck engineering is briefly described, then a hazard analysis is performed on the lift truck. Case histories and accident statistics are also given. Rules and regulations about lift trucks, such as the US Occupational Safety an Health Administration laws and the Underwriter`s Laboratories standards, are discussed. Safety issues with lift trucks are reviewed, and lift truck safety and reliability are discussed. Some quantitative reliability values are given.

  6. Breast lift (mastopexy) - slideshow

    MedlinePlus

    ... page: //medlineplus.gov/ency/presentations/100188.htm Breast lift (mastopexy) - series—Incisions To use the sharing features ... to slide 3 out of 3 Overview Breast lift (mastopexy) is usually performed for drooping breasts, which ...

  7. Forehead lift - slideshow

    MedlinePlus

    ... page: //medlineplus.gov/ency/presentations/100020.htm Forehead lift - series—Indications To use the sharing features on ... to slide 3 out of 3 Overview Forehead lifts are most commonly done for people in their ...

  8. Inexpensive Dramatic Pneumatic Lift

    NASA Astrophysics Data System (ADS)

    Morse, Robert A.

    2017-09-01

    Various experiments and demonstrations relate air pressure and air pressure difference to force and area. Carpenter and Minnix describe a large-scale pneumatic lift in which a person sitting on a board atop a plastic garbage bag is lifted when the bag is connected to the exhaustport of a vacuum cleaner, which easily lifts the person. This article describes the construction and use of an inexpensive hand-held pneumatic lift to demonstrate the same principle.

  9. Inexpensive Dramatic Pneumatic Lift

    ERIC Educational Resources Information Center

    Morse, Robert A.

    Various experiments and demonstrations relate air pressure and air pressure difference to force and area. Carpenter and Minnix describe a large-scale pneumatic lift in which a person sitting on a board atop a plastic garbage bag is lifted when the bag is connected to the exhaustport of a vacuum cleaner, which easily lifts the person. This article…

  10. Investigation of Minimum Drag and Maximum Lift-drag Ratios of Several Wing-body Combinations Including a Cambered Triangular Wing at Low Reynolds Numbers and at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Brown, Clinton E; Hargrave, L K

    1958-01-01

    Theoretical and experimental data for wing-body combinations with wings of triangular, arrow, and diamond plan form are presented for Mach numbers of 1.62, 1.93, and 2.41 and a Reynolds number range of 1.4 x 10 to the 6th power to 0.7 x 10 to the 6th power. Included are two each of triangular and arrow plan-form wings cambered for approximately uniform load at m = 1.62 and lift coefficients of 0.08 and 0.20. Liquid-film studies of the flow over the various configurations are also presented.

  11. Validation of a musculoskeletal model of lifting and its application for biomechanical evaluation of lifting techniques.

    PubMed

    Mirakhorlo, Mojtaba; Azghani, Mahmood Reza; Kahrizi, Sedighe

    2014-01-01

    Lifting methods, including standing stance and techniques have wide effects on spine loading and stability. Previous studies explored lifting techniques in many biomechanical terms and documented changes in muscular and postural response of body as a function of techniques .However, the impact of standing stance and lifting technique on human musculoskeletal had not been investigated concurrently. A whole body musculoskeletal model of lifting had been built in order to evaluate standing stance impact on muscle activation patterns and spine loading during each distinctive lifting technique. Verified model had been used in different stances width during squat, stoop and semi-squat lifting for examining the effect of standing stance on each lifting technique. The model muscle's activity was validated by experimental muscle EMGs resulting in Pearson's coefficients of greater than 0.8. Results from analytical analyses show that the effect of stance width on biomechanical parameters consists in the lifting technique, depending on what kind of standing stance was used. Standing stance in each distinctive lifting technique exhibit positive and negative aspects and it can't be recommended either one as being better in terms of biomechanical parameters.

  12. High lift selected concepts

    NASA Technical Reports Server (NTRS)

    Henderson, M. L.

    1979-01-01

    The benefits to high lift system maximum life and, alternatively, to high lift system complexity, of applying analytic design and analysis techniques to the design of high lift sections for flight conditions were determined and two high lift sections were designed to flight conditions. The influence of the high lift section on the sizing and economics of a specific energy efficient transport (EET) was clarified using a computerized sizing technique and an existing advanced airplane design data base. The impact of the best design resulting from the design applications studies on EET sizing and economics were evaluated. Flap technology trade studies, climb and descent studies, and augmented stability studies are included along with a description of the baseline high lift system geometry, a calculation of lift and pitching moment when separation is present, and an inverse boundary layer technique for pressure distribution synthesis and optimization.

  13. Pig lift: A new artifical lift method

    SciTech Connect

    Lima, P.C.R.

    1996-12-31

    Artificial lift of oil wells is a fairly broad subject. There are many different methods available but in a few cases none of them turns out to be a fit option. Some specific situation such as high viscosity or waxy oil, high gas-to-liquid ratio (GLR), horizontal and/or very deep well generate artificial lift problems that causes high reservoir back pressure, and, consequently, low production rates. Pig lift is a new novel artificial lift method developed to solve some of these problems. It uses a U-shaped double completion string in the wellbore, with a full bore bottom hole connector, and a surface piping and control system. This physical arrangement is put together to allow the cyclic and automated launching of a low density foam pig from the surface, pushing along with it the liquid phase accumulated into the tubing string. The method is, therefore, cyclic. High pressure gas is used to displace the pig. The system was successfully installed in five wells in Brazil, increasing the production flow rate significantly, as compared to conventional artificial lift methods. This paper presents the description of the pig lift method, and reports the results obtained in these field trials. Discussions of its technical and economical advantages and potential areas of application is also given.

  14. Lifting BLS Power Supplies

    SciTech Connect

    Sarychev, Michael

    2007-08-01

    This note describes BLS power supplies lifting techniques and provides stress calculations for lifting plate and handles bolts. BLS power supply weight is about 120 Lbs, with the center of gravity shifted toward the right front side. A lifting plate is used to attach a power supply to a crane or a hoist. Stress calculations show that safety factors for lifting plate are 12.9 (vs. 5 required) for ultimate stress and 5.7 (vs. 3 required) for yield stress. Safety factor for shackle bolt thread shear load is 37, and safety factor for bolts that attach handles is 12.8.

  15. Lifting motion simulation using a hybrid approach.

    PubMed

    Song, Jiahong; Qu, Xingda; Chen, Chun-Hsien

    2015-01-01

    In this study, a hybrid dynamic model for lifting motion simulation is presented. The human body is represented by a two-dimensional (2D) five-segment model. The lifting motions are predicted by solving a nonlinear optimisation problem, the objective function of which is defined based on a minimal-effort performance criterion. In the optimisation procedure, the joint angular velocities are bounded by time-functional constraints that are determined by actual motions. Symmetric lifting motions performed by younger and older adults under varied task conditions were simulated. Comparisons between the simulation results and actual motion data were made for model evaluation. The results showed that the mean and median joint angle errors were less than 10°, which suggests the proposed model is able to accurately simulate 2D lifting motions. The proposed model is also comparable with the existing motion simulation models in terms of the prediction accuracy. Strengths and limitations of this hybrid model are discussed. Practitioner Summary: Human motion simulation is a useful tool in assessing the risks of occupational injuries. Lifting motions are associated with low-back pain. A hybrid model for lifting motion simulation was constructed. The model was able to accurately simulate 2D lifting motions in varied task scenarios for younger and older subjects.

  16. Catwalk grate lifting tool

    DOEpatents

    Gunter, Larry W.

    1992-01-01

    A device for lifting catwalk grates comprising an elongated bent member with a handle at one end and a pair of notched braces and a hook at the opposite end that act in conjunction with each other to lock onto the grate and give mechanical advantage in lifting the grate.

  17. Portable Lifting Seat

    NASA Technical Reports Server (NTRS)

    Weddendorf, Bruce

    1993-01-01

    Portable lifting machine assists user in rising from seated position to standing position, or in sitting down. Small and light enough to be carried like briefcase. Used on variety of chairs and benches. Upholstered aluminum box houses mechanism of lifting seat. Springs on outer shaft-and-arm subassembly counterbalance part of user's weight to assist motor.

  18. Catwalk grate lifting tool

    DOEpatents

    Gunter, L.W.

    1992-08-11

    A device is described for lifting catwalk grates comprising an elongated bent member with a handle at one end and a pair of notched braces and a hook at the opposite end that act in conjunction with each other to lock onto the grate and give mechanical advantage in lifting the grate. 10 figs.

  19. Understanding Wing Lift

    ERIC Educational Resources Information Center

    Silva, J.; Soares, A. A.

    2010-01-01

    The conventional explanation of aerodynamic lift based on Bernoulli's equation is one of the most common mistakes in presentations to school students and is found in children's science books. The fallacies in this explanation together with an alternative explanation for aerofoil lift have already been presented in an excellent article by Babinsky…

  20. Portable Lifting Seat

    NASA Technical Reports Server (NTRS)

    Weddendorf, Bruce

    1993-01-01

    Portable lifting machine assists user in rising from seated position to standing position, or in sitting down. Small and light enough to be carried like briefcase. Used on variety of chairs and benches. Upholstered aluminum box houses mechanism of lifting seat. Springs on outer shaft-and-arm subassembly counterbalance part of user's weight to assist motor.

  1. High lift aerodynamics

    NASA Technical Reports Server (NTRS)

    Sullivan, John; Schneider, Steve; Campbell, Bryan; Bucci, Greg; Boone, Rod; Torgerson, Shad; Erausquin, Rick; Knauer, Chad

    1994-01-01

    The current program is aimed at providing a physical picture of the flow physics and quantitative turbulence data of the interaction of a high Reynolds number wake with a flap element. The impact of high lift on aircraft performance is studied for a 150 passenger transport aircraft with the goal of designing optimum high lift systems with minimum complexity.

  2. Understanding Wing Lift

    ERIC Educational Resources Information Center

    Silva, J.; Soares, A. A.

    2010-01-01

    The conventional explanation of aerodynamic lift based on Bernoulli's equation is one of the most common mistakes in presentations to school students and is found in children's science books. The fallacies in this explanation together with an alternative explanation for aerofoil lift have already been presented in an excellent article by Babinsky…

  3. Portable seat lift

    NASA Technical Reports Server (NTRS)

    Weddendorf, Bruce (Inventor)

    1994-01-01

    A portable seat lift that can help individuals either (1) lower themselves to a sitting position or (2) raise themselves to a standing position is presented. The portable seat lift consists of a seat mounted on a base with two levers, which are powered by a drive unit.

  4. Samus Counter Lifting Fixture

    SciTech Connect

    Stredde, H.; /Fermilab

    1998-05-27

    A lifting fixture has been designed to handle the Samus counters. These counters are being removed from the D-zero area and will be transported off site for further use at another facility. This fixture is designed specifically for this particular application and will be transferred along with the counters. The future use of these counters may entail installation at a facility without access to a crane and therefore a lift fixture suitable for both crane and/or fork lift usage has been created The counters weigh approximately 3000 lbs. and have threaded rods extended through the counter at the top comers for lifting. When these counters were first handled/installed these rods were used in conjunction with appropriate slings and handled by crane. The rods are secured with nuts tightened against the face of the counter. The rod thread is M16 x 2({approx}.625-inch dia.) and extends 2-inch (on average) from the face of the counter. It is this cantilevered rod that the lift fixture engages with 'C' style plates at the four top comers. The strongback portion of the lift fixture is a steel rectangular tube 8-inch (vertical) x 4-inch x .25-inch wall, 130-inch long. 1.5-inch square bars are welded perpendicular to the long axis of the rectangular tube at the appropriate lift points and the 'C' plates are fastened to these bars with 3/4-10 high strength bolts -grade 8. Two short channel sections are positioned-welded-to the bottom of the rectangular tube on 40 feet centers, which are used as locators for fork lift tines. On the top are lifting eyes for sling/crane usage and are rated at 3500 lbs. safe working load each - vertical lift only.

  5. Aerodynamic interactions from reaction controls for lateral control of the M2-F2 lifting-body entry configuration at transonic and supersonic and supersonic Mach numbers. [wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Bailey, R. O.; Brownson, J. J.

    1979-01-01

    Tests were conducted in the Ames 6 by 6 foot wind tunnel to determine the interaction of reaction jets for roll control on the M2-F2 lifting-body entry vehicle. Moment interactions are presented for a Mach number range of 0.6 to 1.7, a Reynolds number range of 1.2 x 10 to the 6th power to 1.6 x 10 to the 6th power (based on model reference length), an angle-of-attack range of -9 deg to 20 deg, and an angle-of-sideslip range of -6 deg to 6 deg at an angle of attack of 6 deg. The reaction jets produce roll control with small adverse yawing moment, which can be offset by horizontal thrust component of canted jets.

  6. Effectiveness of an on-body lifting aid at reducing low back physical demands during an automotive assembly task: assessment of EMG response and user acceptability.

    PubMed

    Graham, Ryan B; Agnew, Michael J; Stevenson, Joan M

    2009-09-01

    The purpose of this study was to investigate the effectiveness and user acceptability of a Personal Lift-Assist Device (PLAD) at an automotive manufacturing facility, with operators who perform an on-line assembly process requiring forward bending and static holding. Surface EMG data were collected at six sites on the low back and abdomen, and an accelerometer was used to measure trunk inclination. Use of the PLAD significantly reduced the thoracic and lumbar erector spinae activity and EMG-predicted compression at the 10th, 50th, and 90th APDF percentile levels (p < or = 0.05), without significantly increasing rectus abdominus activity or trunk flexion. Similarly, ratings of perceived exertion were found to be significantly lower when wearing the PLAD (p = 0.006). Subjective opinions were positive, with 8/10 subjects indicating they would wear the device everyday. With slight changes, workers felt that the PLAD could be beneficial at reducing forces and discomfort in similar industrial or manual materials handling tasks that place excessive physical demands on the low back.

  7. Allometry of hummingbird lifting performance

    PubMed Central

    Altshuler, D. L.; Dudley, R.; Heredia, S. M.; McGuire, J. A.

    2010-01-01

    Vertical lifting performance in 67 hummingbird species was studied across a 4000 m elevational gradient. We used the technique of asymptotic load-lifting to elicit maximum sustained muscle power output during loaded hovering flight. Our analysis incorporated direct measurements of maximum sustained load and simultaneous wingbeat kinematics, together with aerodynamic estimates of mass-specific mechanical power output, all within a robust phylogenetic framework for the Trochilidae. We evaluated key statistical factors relevant to estimating slopes for allometric relationships by performing analyses with and without phylogenetic information, and incorporating species-specific measurement error. We further examined allometric relationships at different elevations because this gradient represents a natural experiment for studying physical challenges to animal flight mechanics. Maximum lifting capacity (i.e. vertical force production) declined with elevation, but was either isometric or negatively allometric with respect to both body and muscle mass, depending on elevational occurrence of the corresponding taxa. Maximum relative muscle power output exhibited a negative allometry with respect to muscle mass, supporting theoretical predictions from muscle mechanics. PMID:20154187

  8. Allometry of hummingbird lifting performance.

    PubMed

    Altshuler, D L; Dudley, R; Heredia, S M; McGuire, J A

    2010-03-01

    Vertical lifting performance in 67 hummingbird species was studied across a 4000 m elevational gradient. We used the technique of asymptotic load-lifting to elicit maximum sustained muscle power output during loaded hovering flight. Our analysis incorporated direct measurements of maximum sustained load and simultaneous wingbeat kinematics, together with aerodynamic estimates of mass-specific mechanical power output, all within a robust phylogenetic framework for the Trochilidae. We evaluated key statistical factors relevant to estimating slopes for allometric relationships by performing analyses with and without phylogenetic information, and incorporating species-specific measurement error. We further examined allometric relationships at different elevations because this gradient represents a natural experiment for studying physical challenges to animal flight mechanics. Maximum lifting capacity (i.e. vertical force production) declined with elevation, but was either isometric or negatively allometric with respect to both body and muscle mass, depending on elevational occurrence of the corresponding taxa. Maximum relative muscle power output exhibited a negative allometry with respect to muscle mass, supporting theoretical predictions from muscle mechanics.

  9. A review of a method for dynamic load distribution, dynamic modeling, and explicit internal force control when two serial link manipulators mutually lift and transport a rigid body object

    SciTech Connect

    Unseren, M.A.

    1997-09-01

    The report reviews a method for modeling and controlling two serial link manipulators which mutually lift and transport a rigid body object in a three dimensional workspace. A new vector variable is introduced which parameterizes the internal contact force controlled degrees of freedom. A technique for dynamically distributing the payload between the manipulators is suggested which yields a family of solutions for the contact forces and torques the manipulators impart to the object. A set of rigid body kinematic constraints which restricts the values of the joint velocities of both manipulators is derived. A rigid body dynamical model for the closed chain system is first developed in the joint space. The model is obtained by generalizing the previous methods for deriving the model. The joint velocity and acceleration variables in the model are expressed in terms of independent pseudovariables. The pseudospace model is transformed to obtain reduced order equations of motion and a separate set of equations governing the internal components of the contact forces and torques. A theoretic control architecture is suggested which explicitly decouples the two sets of equations comprising the model. The controller enables the designer to develop independent, non-interacting control laws for the position control and internal force control of the system.

  10. Control effectiveness and tip-fin dihedral effects for the HL-20 lifting-body configuration at Mach numbers from 1.6 to 4.5

    NASA Technical Reports Server (NTRS)

    Cruz, Christopher I.; Ware, George M.

    1995-01-01

    Wind tunnel tests were made with a scale model of the HL-20 in the Langley Unitary Plan Wind Tunnel. Pitch control was investigated by deflecting the elevon surfaces on the outboard fins and body flaps on the fuselage. Yaw control tests were made with the all movable center fin deflected 5 deg. Almost full negative body flap deflection (-30 deg) was required to trim the HL-20 (moment reference center at 0.54-percent body length from nose) to positive values of life in the Mach number range from 1.6 to 2.5. Elevons were twice as effective as body flaps as a longitudinal trim device. The elevons were effective as a roll control, but because of tip-fin dihedral angle, produced about as much adverse yawing moment as rolling moment. The body flaps were less effective in producing rolling moment, but produced little adverse yawing moment. The yaw effectiveness of the all movable center fin was essentially constant over the angle-of-attack range at each Mach number. The value of yawing moment, however, was small. Center-fin deflection produced almost no rolling moments. The model was directionally unstable over most of the Mach number range with tip-fin dihedral angles less than the baseline value of 50 deg.

  11. The personal lift-assist device and lifting technique: a principal component analysis.

    PubMed

    Sadler, Erin M; Graham, Ryan B; Stevenson, Joan M

    2011-04-01

    The personal lift-assist device (PLAD) is a non-motorised, on-body device that acts as an external force generator using the concept of stored elastic energy. In this study, the effect of the PLAD on the lifting kinematics of male and female lifters was investigated using principal component analysis. Joint kinematic data of 15 males and 15 females were collected using an opto-electronic system during a freestyle, symmetrical-lifting protocol with and without wearing the PLAD. Of the 31 Principal Components (PCs) retained in the models, eight scores were significantly different between the PLAD and no-PLAD conditions. There were no main effects for gender and no significant interactions. Results indicated that the PLAD similarly affected the lifting kinematics of males and females; demonstrating significantly less lumbar and thoracic flexion and significantly greater hip and ankle flexion when wearing the PLAD. These findings add to the body of work that suggest the PLAD may be a safe and effective ergonomic aid. STATEMENT OF RELEVANCE: The PLAD is an ergonomic aid that has been shown to be effective at reducing low back demands during manual materials handling tasks. This body of work establishes that the PLAD encourages safe lifting practices without adversely affecting lifting technique.

  12. Advanced underwater lift device

    NASA Technical Reports Server (NTRS)

    Flanagan, David T.; Hopkins, Robert C.

    1993-01-01

    Flexible underwater lift devices ('lift bags') are used in underwater operations to provide buoyancy to submerged objects. Commercially available designs are heavy, bulky, and awkward to handle, and thus are limited in size and useful lifting capacity. An underwater lift device having less than 20 percent of the bulk and less than 10 percent of the weight of commercially available models was developed. The design features a dual membrane envelope, a nearly homogeneous envelope membrane stress distribution, and a minimum surface-to-volume ratio. A proof-of-concept model of 50 kg capacity was built and tested. Originally designed to provide buoyancy to mock-ups submerged in NASA's weightlessness simulators, the device may have application to water-landed spacecraft which must deploy flotation upon impact, and where launch weight and volume penalties are significant. The device may also be useful for the automated recovery of ocean floor probes or in marine salvage applications.

  13. Lifting the Runners

    NASA Image and Video Library

    2010-08-25

    Under the unflinching summer sun, workers at NASA Deep Space Network complex in Goldstone, Calif., use a crane to lift a runner segment that is part of major surgery on a giant, 70-meter-wide antenna.

  14. Wind tower service lift

    DOEpatents

    Oliphant, David; Quilter, Jared; Andersen, Todd; Conroy, Thomas

    2011-09-13

    An apparatus used for maintaining a wind tower structure wherein the wind tower structure may have a plurality of legs and may be configured to support a wind turbine above the ground in a better position to interface with winds. The lift structure may be configured for carrying objects and have a guide system and drive system for mechanically communicating with a primary cable, rail or other first elongate member attached to the wind tower structure. The drive system and guide system may transmit forces that move the lift relative to the cable and thereby relative to the wind tower structure. A control interface may be included for controlling the amount and direction of the power into the guide system and drive system thereby causing the guide system and drive system to move the lift relative to said first elongate member such that said lift moves relative to said wind tower structure.

  15. FREIGHT CONTAINER LIFTING STANDARD

    SciTech Connect

    POWERS DJ; SCOTT MA; MACKEY TC

    2010-01-13

    This standard details the correct methods of lifting and handling Series 1 freight containers following ISO-3874 and ISO-1496. The changes within RPP-40736 will allow better reading comprehension, as well as correcting editorial errors.

  16. Aerodynamic Lifting Force.

    ERIC Educational Resources Information Center

    Weltner, Klaus

    1990-01-01

    Describes some experiments showing both qualitatively and quantitatively that aerodynamic lift is a reaction force. Demonstrates reaction forces caused by the acceleration of an airstream and the deflection of an airstream. Provides pictures of demonstration apparatus and mathematical expressions. (YP)

  17. Aerodynamic Lifting Force.

    ERIC Educational Resources Information Center

    Weltner, Klaus

    1990-01-01

    Describes some experiments showing both qualitatively and quantitatively that aerodynamic lift is a reaction force. Demonstrates reaction forces caused by the acceleration of an airstream and the deflection of an airstream. Provides pictures of demonstration apparatus and mathematical expressions. (YP)

  18. Boundary-layer transition and displacement thickness effects on zero-lift drag of a series of power-law bodies at Mach 6

    NASA Technical Reports Server (NTRS)

    Ashby, G. C., Jr.; Harris, J. E.

    1974-01-01

    Wave and skin-friction drag have been numerically calculated for a series of power-law bodies at a Mach number of 6 and Reynolds numbers, based on body length, from 1.5 million to 9.5 million. Pressure distributions were computed on the nose by the inverse method and on the body by the method of characteristics. These pressure distributions and the measured locations of boundary-layer transition were used in a nonsimilar-boundary-layer program to determine viscous effects. A coupled iterative approach between the boundary-layer and pressure-distribution programs was used to account for boundary-layer displacement-thickness effects. The calculated-drag coefficients compared well with previously obtained experimental data.

  19. Understanding anthropometric characteristics associated with performance in manual lifting tasks.

    PubMed

    Beck, Ben; Middleton, Kane J; Billing, Daniel C; Caldwell, Joanne N; Carstairs, Greg L

    2017-07-03

    Manual lifting is an essential military job task and is commonly linked to occupational injury. Methods to reduce injury risk focus on ensuring that employees have the requisite physical capacity to safely conduct critical job tasks. The aim of this study was to investigate which anthropometric characteristics are associated with lifting performance to inform targeted training programs for job critical lifting tasks. Sixty-three (42 males and 21 females) participants conducted three maximal lifts to a platform (pack lift to 1.5 m, box lift to 1.3 m and box lift to 1.5 m). A dual-energy x-ray absorptiometry scan was used to quantify anthropometric characteristics (body-region specific lean mass and fat mass). While anthropometric measures were strongly associated with each other, multivariable linear regression revealed that a significant proportion of the total variation in lifting performance in each of the three tasks was explained by upper arm lean mass (pack lift: β = 5.42, p<0.001; box lift 1.3 m: β = 5.64, p<0.001; box lift 1.5 m: β = 7.00, p<0.001). Leg lean mass also significantly contributed to the variation of pack lift performance (β = 0.93, p=0.01). When controlling for key anthropometric characteristics in these three tasks, separate analyses showed no significant effect of sex or stature on lift performance. These results suggest that the perceived limitations of stature and sex may be overcome by targeted training programs to improve specific physical characteristics associated with lifting performance.

  20. Precision markedly attenuates repetitive lift capacity.

    PubMed

    Collier, Brooke R; Holland, Laura; McGhee, Deirdre; Sampson, John A; Bell, Alison; Stapley, Paul J; Groeller, Herbert

    2014-01-01

    This study investigated the effect of precision on time to task failure in a repetitive whole-body manual handling task. Twelve participants were required to repetitively lift a box weighing 65% of their single repetition maximum to shoulder height using either precise or unconstrained box placement. Muscle activity, forces exerted at the ground, 2D body kinematics, box acceleration and psychophysical measures of performance were recorded until task failure was reached. With precision, time to task failure for repetitive lifting was reduced by 72%, whereas the duration taken to complete a single lift and anterior deltoid muscle activation increased by 39% and 25%, respectively. Yet, no significant difference was observed in ratings of perceived exertion or heart rate at task failure. In conclusion, our results suggest that when accuracy is a characteristic of a repetitive manual handling task, physical work capacity will decline markedly. The capacity to lift repetitively to shoulder height was reduced by 72% when increased accuracy was required to place a box upon a shelf. Lifting strategy and muscle activity were also modified, confirming practitioners should take into consideration movement precision when evaluating the demands of repetitive manual handling tasks.

  1. Back injury prevention: a lift team success story.

    PubMed

    Hefti, Kelly S; Farnham, Richard J; Docken, Lisa; Bentaas, Ruth; Bossman, Sharon; Schaefer, Jill

    2003-06-01

    Work related back injuries among hospital personnel account for high volume, high cost workers' compensation claims. These injuries can be life altering experiences, affecting both the personal and professional lives of injured workers. Lifting must be viewed as a skill involving specialized training and mandated use of mechanical equipment, rather than as a random task performed by numerous health care providers. The use of a lift team specially trained in body mechanics, lifting techniques, and the use of mandated mechanical equipment can significantly affect injury data, financial outcomes, and employee satisfaction. The benefits of a lift team extend beyond the effect on injury and financial outcomes--they can be used for recruitment and retention strategies, and team members serve as mentors to others by demonstrating safe lifting techniques. Ultimately, a lift team helps protect a valuable resource--the health care worker.

  2. Effects of asymmetric dynamic and isometric liftings on strength/force and rating of perceived exertion.

    PubMed

    Hattori, Y; Ono, Y; Shimaoka, M; Hiruta, S; Kamijima, M; Shibata, E; Ichihara, G; Ando, S; Villaneuva, M B; Takeuchi, Y

    1996-06-01

    A laboratory study was undertaken to determine the postural and physical characteristics and subjective stress during dynamic lifting of a usual load (10 kg) compared with during isometric lifting. The authors also aimed to clarify the effects of asymmetric lifting on these parameters. The subjects were thirteen male college students. They were asked to lift a box weighing 10 kg. They performed sixteen different lifting tasks from the floor to a height of 71 cm, involving a combination of three independent factors: two lifting modes (isometric lifting and dynamic lifting), four lifting angles in relation to the sagittal plane (sagittal plane, right 45 degree, right 90 degree and left 90 degree planes) and two lifting postures (squat and stoop). For each lifting task, strengths or forces and ground reaction forces were measured. At the end of each task, the authors asked the subjects to rate their perceived exertion (RPE) during lifting at ten sites of the body. Angle factor had a significant effect on isometric strengths and dynamic peak forces. Isometric strengths during the maximum 3 s were highest in lifting in the right 45 degree plane, followed by that in the sagittal plane, while those in the right 90 degree and left 90 degree planes were the lowest. However, peak forces in dynamic lifting were the highest in the lifting in the sagittal plane, followed by that in the right 45 degree plane, while those in the right 90 degree and left 90 degree planes were the lowest. Postural factor had a significant effect on height at peak force, which is higher in squat lifting than in stoop lifting. RPEs for the left arm, the backs and the right whole body in isometric lifting were significantly higher than in dynamic lifting of 10 kg. There were remarkably high RPEs for the ipsilateral thigh to the box in right 90 degree and left 90 degree planes during both isometric and dynamic liftings. Locations of the resultant force consisting of three component forces on the force

  3. Regional changes in spine posture at lift onset with changes in lift distance and lift style.

    PubMed

    Gill, K Peter; Bennett, Simon J; Savelsbergh, Geert J P; van Dieën, Jaap H

    2007-07-01

    Repeated measures experiment. To determine the effect of changes in horizontal lift distance on the amount of flexion, at lift onset, in different spine regions when using different lift styles. By approximating spine bending during lifting as a pure rotation about a single revolute joint, the differential effects of task constraints and instructions on motions of different spine levels will be obscured. Eight participants lifted a 10-kg crate from the floor, 10 times at each of five distances. Participants were instructed to use freestyle (a participant's preferred lift style), squat, or stoop lift styles. Kinematic data were collected from the mid thoracic spine, lower thoracic/upper lumbar spine, mid lumbar spine, and the lower lumbar spine at lift onset. A whole spine angle was also calculated. Flexion of the lower lumbar spine was not affected by lift distance and style. Differences between lift styles occurred mainly in the mid thoracic and the lower thoracic/upper lumbar regions. With increasing horizontal distance, changes in lift style occurred in the upper three spine regions. These results suggest that the tensile strain on tissues in the lower lumbar spine, which can be a cause of injury in lifting, was not affected by lift style or horizontal lift distance when lifting from floor level.

  4. Effects of jets, wakes, and vortices on lifting surfaces

    NASA Technical Reports Server (NTRS)

    Margason, R. J.

    1976-01-01

    The interaction of jets, wakes, and vortices on lifting bodies represents a broad spectrum of aerodynamic flow phenomena. A literature survey is presented of 79 research activities in related aerodynamic situations.

  5. [Modern face lift surgery].

    PubMed

    von Gregory, H F; Gubisch, W

    2011-09-01

    Face lift surgery is generally considered the classical surgical procedure of plastic surgery. This is an extensive operation which has undergone a huge development since its first implementation more than 100 years ago. What began as a simple skin tightening procedure is today a sophisticated and complex technique which ideally combines different treatment methods planned with surgical precision. This article provides an overview of the history of the procedure to the present state of the art concept of pairing biplanar and bivectorial face-neck lifts with autologous fat transfer and dermabrasion.

  6. The effects of load magnitude and lifting speed on the kinematic data of load and human posture.

    PubMed

    Lee, Tzu-Hsien

    2015-01-01

    This study examined the effects of load magnitude and lifting speed on the kinematic data of load and human posture in a lifting task. Three load magnitudes (10, 20 and 30 kg) and three lifting speeds (fast, normal and slow) were examined in this study. This study showed that participants shortened the load acceleration period on lifting a lighter load than on lifting a heavier load. For normal and slow lifting speeds, participants moved and lifted the load closer to their body when lifting a heavy load. Participants tended to maintain their postures by using an ankle strategy when in heavier load or faster lifting conditions. The profiles of angle velocity of knee and ankle joints demonstrated the important role of the lower extremities in the acceleration of the load in the initial stage of fast lifting. In addition, participants could not easily control the momentum transmitted to the ankle joint for lifting the heavy load.

  7. [Endoscopy and face-lift].

    PubMed

    Dardour, J C; Abbou, R

    2017-08-02

    For many years, the face-lift has not been the only intervention for facial rejuvenation. It is necessary today to specify the type of face-lift, cervico-facial lifting, frontal lifting or facelift. We will consider in this article the frontal lift and centro-facial lift and its possible execution assisted by endoscopy with therefore minimal scars, hidden in the scalp. We will consider successively its technique, its indications and its results highlighting a very long hold over time. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Clamp usable as jig and lifting clamp

    DOEpatents

    Tsuyama, Yoshizo

    1976-01-01

    There is provided a clamp which is well suited for use as a lifting clamp for lifting and moving materials of assembly in a shipyard, etc. and as a pulling jig in welding and other operations. The clamp comprises a clamp body including a shackle for engagement with a pulling device and a slot for receiving an article, and a pair of jaws provided on the leg portions of the clamp body on the opposite sides of the slot to grip the article in the slot, one of said jaws consisting of a screw rod and the other jaw consisting of a swivel jaw with a spherical surface, whereby when the article clamped in the slot by the pair of jaws tends to slide in any direction with respect to the clamp body, the article is more positively gripped by the pair of jaws.

  9. JWST Lifting System

    NASA Technical Reports Server (NTRS)

    Tolleson, William

    2012-01-01

    A document describes designing, building, testing, and certifying a customized crane (Lifting Device LD) with a strong back (cradle) to facilitate the installation of long wall panels and short door panels for the GHe phase of the James Webb Space Telescope (JWST). The LD controls are variable-frequency drive controls designed to be adjustable for very slow and very-short-distance movements throughout the installation. The LD has a lift beam with an electric actuator attached at the end. The actuator attaches to a rectangular strong back (cradle) for lifting the long wall panels and short door panels from a lower angle into the vertical position inside the chamber, and then rotating around the chamber for installation onto the existing ceiling and floor. The LD rotates 360 (in very small increments) in both clockwise and counterclockwise directions. Eight lifting pads are on the top ring with 2-in. (.5-cm) eye holes spaced evenly around the ring to allow for the device to be suspended by three crane hoists from the top of the chamber. The LD is operated by remote controls that allow for a single, slow mode for booming the load in and out, with slow and very slow modes for rotating the load.

  10. Lifting as You Climb

    ERIC Educational Resources Information Center

    Sullivan, Debra R.

    2009-01-01

    This article addresses leadership themes and answers leadership questions presented to "Exchange" by the Panel members who attended the "Exchange" Panel of 300 Reception in Dallas, Texas, last November. There is an old proverb that encourages people to lift as they climb: "While you climb a mountain, you must not forget others along the way." With…

  11. Lifting Sample Return Capsule

    NASA Technical Reports Server (NTRS)

    2006-01-01

    NASA's Stardust sample return capsule successfully landed at the U.S. Air Force Utah Test and Training Range at 2:10 a.m. Pacific time (3:10 a.m. Mountain time). The capsule contains cometary and interstellar samples gathered by the Stardust spacecraft.

    Here, the capsule is being lifted at the landing site.

  12. Hydraulic lifting device

    NASA Technical Reports Server (NTRS)

    Terrell, Kyle (Inventor)

    1990-01-01

    A piston and cylinder assembly is disclosed which is constructed of polyvinyl chloride that uses local water pressure to perform small lifting tasks. The chamber is either pressurized to extend the piston or depressurized to retract the piston. The present invention is best utilized for raising and lowering toilet seats.

  13. Lifting as You Climb

    ERIC Educational Resources Information Center

    Sullivan, Debra R.

    2009-01-01

    This article addresses leadership themes and answers leadership questions presented to "Exchange" by the Panel members who attended the "Exchange" Panel of 300 Reception in Dallas, Texas, last November. There is an old proverb that encourages people to lift as they climb: "While you climb a mountain, you must not forget others along the way." With…

  14. Obesity-related changes in prolonged repetitive lifting performance.

    PubMed

    Ghesmaty Sangachin, Mahboobeh; Cavuoto, Lora A

    2016-09-01

    Despite the rising prevalence of obesity, little is known about its moderating effects on injury risk factors, such as fatigue, in occupational settings. This study investigated the effect of obesity, prolonged repetitive lifting and their interaction on lifting performance of 14 participants, 7 obese (mean body mass index (BMI): 33.2 kg m(-2)) and 7 non-obese (mean BMI: 22.2 kg m(-2)) subjects. To present a physically challenging task, subjects performed repetitive lifting for 1 h at 120% of their maximum acceptable weight of lift. Generalized linear mixed models were fit to posture and acceleration data. The obese group bent to a ∼10° lower peak trunk sagittal flexion angle, had 17% lower root mean square (RMS) jerk and took 0.8 s longer per lift. Over time, the obese group increased their trunk transverse and sagittal posterior accelerations while the non-obese maintained theirs. Although the majority of lifting variables were unaffected by BMI or its interaction with prolonged lifting duration, the observed differences, combined with a greater upper body mass, necessitate a more cautious use of existing psychophysical lifting limits for individuals who are obese, particularly when fatigued. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. [Maximum acceptable weight of lift for manual lifting tasks].

    PubMed

    Chen, Jing; Yang, Lei

    2006-04-01

    To explore the maximum acceptable weight of lift (MAWL) in different lifting conditions and the suitable lifting equation for the stipulation of occupational health standard of manual lifting tasks in China. The MAWL was investigated among the thirteen male and ten female students using psychophysical methodology and the recommended weight of limit (RWL) was compared. The MAWL of male and female subjects was decreased gradually with the increase of lifting height. Once the height of lifting was over shoulder, the MAWL was decreased dramatically. The RWL was greater than the MAWL at 25 cm horizontal distance in male subjects, but the RWL was smaller than the MAWL at the distance of 45 cm and 63 cm. The average MAWL of male subjects was 30.8% greater than that of female subjects. The MAWL was decreased gradually with increase of the horizontal distance at the same height of lifting. The result of the male subjects was consistent with that of the female subjects. For the asymmetric lifting tasks of the male subjects, the bigger the angle of rotation was, the less the MAWL became. The angle of rotation had negative correlation with the capability of lifting (r = -0.996 6, P < 0.01). When the subjects performed asymmetric lifting tasks, the RWL was smaller than the MAWL and the difference was significant. The revision is sufficient for the horizontal distance and asymmetric lifting in the NIOSH lifting equation, but it is not suitable for height, especially for the task of lifting over shoulder. The RWL for the task of lifting over shoulder should be lowered. The factor of gender should be taken into account in the lifting equation and the constant of gender S can be added. Then S = 1 for male while S = 0.692 for female.

  16. Lifting speed preferences and their effects on the maximal lifting capacity.

    PubMed

    Lin, Chiuhsiang Joe; Cheng, Chih-Feng

    2017-02-07

    The objectives of this study were to evaluate how lifting capacity and subjective preferences are affected by different lifting speeds. The maximum lifting capacity of lift was determined with three independent variables, lifting speed, lifting technique, and lifting height. Questionnaires were evaluated after the experiment by the participants for the lifting speed preferences. This study found that the lifting speed was a significant factor in the lifting capacity (p<0.001); and the lifting height (p<0.001) and the interaction of lifting speed and lifting height (p=0.005) affected the lifting capacity significantly. The maximal lifting capacity was achieved around the optimal speed that was neither too fast nor too slow. Moreover, the participants' preferred lifting speeds were consistently close to the optimal lifting speed. The results showed that the common lifting practice guideline to lift slowly might make the worker unable to generate a large lifting capacity.

  17. Lifting speed preferences and their effects on the maximal lifting capacity

    PubMed Central

    LIN, Chiuhsiang Joe; CHENG, Chih-Feng

    2016-01-01

    The objectives of this study were to evaluate how lifting capacity and subjective preferences are affected by different lifting speeds. The maximum lifting capacity of lift was determined with three independent variables, lifting speed, lifting technique, and lifting height. Questionnaires were evaluated after the experiment by the participants for the lifting speed preferences. This study found that the lifting speed was a significant factor in the lifting capacity (p<0.001); and the lifting height (p<0.001) and the interaction of lifting speed and lifting height (p=0.005) affected the lifting capacity significantly. The maximal lifting capacity was achieved around the optimal speed that was neither too fast nor too slow. Moreover, the participants’ preferred lifting speeds were consistently close to the optimal lifting speed. The results showed that the common lifting practice guideline to lift slowly might make the worker unable to generate a large lifting capacity. PMID:27383532

  18. Helicopter Toy and Lift Estimation

    ERIC Educational Resources Information Center

    Shakerin, Said

    2013-01-01

    A $1 plastic helicopter toy (called a Wacky Whirler) can be used to demonstrate lift. Students can make basic measurements of the toy, use reasonable assumptions and, with the lift formula, estimate the lift, and verify that it is sufficient to overcome the toy's weight. (Contains 1 figure.)

  19. Helicopter Toy and Lift Estimation

    ERIC Educational Resources Information Center

    Shakerin, Said

    2013-01-01

    A $1 plastic helicopter toy (called a Wacky Whirler) can be used to demonstrate lift. Students can make basic measurements of the toy, use reasonable assumptions and, with the lift formula, estimate the lift, and verify that it is sufficient to overcome the toy's weight. (Contains 1 figure.)

  20. Lift performance and lumbar loading in standing and seated lifts.

    PubMed

    Middleton, Kane J; Carstairs, Greg L; Ham, Daniel J

    2016-09-01

    This study investigated the effect of posture on lifting performance. Twenty-three male soldiers lifted a loaded box onto a platform in standing and seated postures to determine their maximum lift capacity and maximum acceptable lift. Lift performance, trunk kinematics, lumbar loads, anthropometric and strength data were recorded. There was a significant main effect for lift effort but not for posture or the interaction. Effect sizes showed that lumbar compression forces did not differ between postures at lift initiation (Standing 5566.2 ± 627.8 N; Seated 5584.0 ± 16.0) but were higher in the standing posture (4045.7 ± 408.3 N) when compared with the seated posture (3655.8 ± 225.7 N) at lift completion. Anterior shear forces were higher in the standing posture at both lift initiation (Standing 519.4 ± 104.4 N; Seated 224.2 ± 9.4 N) and completion (Standing 183.3 ± 62.5 N; Seated 71.0 ± 24.2 N) and may have been a result of increased trunk flexion and a larger horizontal distance of the mass from the L5-S1 joint. Practitioner Summary: Differences between lift performance and lumbar forces in standing and seated lifts are unclear. Using a with-in subjects repeated measures design, we found no difference in lifted mass or lumbar compression force at lift initiation between standing and seated lifts.

  1. An Ultrasonic Circulation Measurement Technique for Spatial Lift Distributions

    NASA Astrophysics Data System (ADS)

    Yuan, Jiankun; Olinger, David J.

    1998-11-01

    An experimental investigation of the mean spanwise lift distribution for flow over inclined flat plates with sinusoidal trailing edges has been conducted. The stationary plates were vertically aligned in a low-speed wind tunnel with Reynolds number based on chord length of about 30,000. Three distinct flow patterns; streamlined flow, stalled flow and bluff body flow, were studied by varying plate angle of attack between 6 and 45 degrees. A novel ultrasonic technique based on determining the fluid circulation around a path enclosing the flat plate was utilized to measure the lift distribution. In order to correlate the measured lift distribution with wake structures, smoke-wire flow visualization was also performed. The lift distributions for the sinusoidal trailing edge case varied significantly from the nominal 2-D distributions based on local chord length. Preliminary extensions of the ultrasonic method to measure instantaneous lift distributions during an entire shedding cycle on vibrating plates and flexible cables are also discussed.

  2. High lift wake investigation

    NASA Technical Reports Server (NTRS)

    Sullivan, J. P.; Schneider, S. P.; Hoffenberg, R.

    1996-01-01

    The behavior of wakes in adverse pressure gradients is critical to the performance of high-lift systems for transport aircraft. Wake deceleration is known to lead to sudden thickening and the onset of reversed flow; this 'wake bursting' phenomenon can occur while surface flows remain attached. Although known to be important for high-lift systems, few studies of such decelerated wakes exist. In this study, the wake of a flat plate has been subjected to an adverse pressure gradient in a two-dimensional diffuser, whose panels were forced to remain attached by use of slot blowing. Pitot probe surveys, L.D.V. measurements, and flow visualization have been used to investigate the physics of this decelerated wake, through the onset of reversed flow.

  3. Enhanced Rescue Lift Capability

    NASA Technical Reports Server (NTRS)

    Young, Larry A.

    2007-01-01

    The evolving and ever-increasing demands of emergency response and disaster relief support provided by rotorcraft dictate, among other things, the development of enhanced rescue lift capability for these platforms. This preliminary analysis is first-order in nature but provides considerable insight into some of the challenges inherent in trying to effect rescue using a unique form of robotic rescue device deployed and operated from rotary-wing aerial platforms.

  4. ESB Heavy Lift Requirements

    DTIC Science & Technology

    2006-01-01

    capacity, cross-country travel ability, and redundancy than the three axles and twelve tires found on the M870 trailer.13,14 In fact, this...equates to an organic ability to move approximately twenty- three percent of the battalion’s heavy equipment that requires prime movers in one lift...Truck Tractor manufactured by Oshkosh Truck Corporation and the M1000 Heavy Equipment Transporter semi-trailer manufactured by Systems

  5. Lifting liquid from boreholes

    SciTech Connect

    Reese, T.E.

    1983-05-17

    A device for lifting liquid from boreholes comprises a pump which is located downhole in the region of a production formation and which consists of a fluid-actuated, double-action piston. The pump is connected by fluid pressure lines to a source of fluid pressure disposed above ground and a switching valve is connected to provide fluid pressure to alternate sides of the piston to effect reciprocation thereof.

  6. Powered-lift aircraft technology

    NASA Technical Reports Server (NTRS)

    Deckert, W. H.; Franklin, J. A.

    1989-01-01

    Powered lift aircraft have the ability to vary the magnitude and direction of the force produced by the propulsion system so as to control the overall lift and streamwise force components of the aircraft, with the objective of enabling the aircraft to operate from minimum sized terminal sites. Power lift technology has contributed to the development of the jet lift Harrier and to the forth coming operational V-22 Tilt Rotor and the C-17 military transport. This technology will soon be expanded to include supersonic fighters with short takeoff and vertical landing capability, and will continue to be used for the development of short- and vertical-takeoff and landing transport. An overview of this field of aeronautical technology is provided for several types of powered lift aircraft. It focuses on the description of various powered lift concepts and their operational capability. Aspects of aerodynamics and flight controls pertinent to powered lift are also discussed.

  7. Breath control during manual free-style lifting of a maximally tolerated load

    PubMed Central

    Lamberg, Eric M.; Hagins, Marshall

    2010-01-01

    Clear evidence links voluntary breath control, intra-abdominal pressure, and lumbar stability. However, little is known regarding optimal breath control during manual materials handling. No studies have examined natural breath control while lifting a maximal load. Fourteen healthy subjects lifted a loaded crate from the floor to a table while respiratory flow data were collected. The loads lifted began at 10% of body weight and increased up to 50% (if tolerated) by 5% increments. Data from the minimum, moderate and maximum loads were analyzed. Uniform and consistent breath holding during lifting of a maximally-tolerated load did not occur. Across all three loads frequency of inspiration was highest immediately prior to lift-off and significantly higher inspired volume occurred at lift-off of the load compared with preparation for lifting. Holding the breath does not appear to be related to lifting of a maximally tolerated load from floor to table. PMID:20191413

  8. The effects of obesity on lifting performance.

    PubMed

    Xu, Xu; Mirka, Gary A; Hsiang, Simon M

    2008-01-01

    Obesity in the workforce is a growing problem worldwide. While the implications of this trend for biomechanical loading of the musculoskeletal system seem fairly straightforward, the evidence of a clear link between low back pain (LBP) and body mass index (BMI) (calculated as whole body mass in kilograms divided by the square of stature in meters) has not been shown in the epidemiology literature addressing this topic. The approach pursued in the current study was to evaluate the lifting kinematics and ground reaction forces of a group of 12 subjects -- six with a BMI of less than 25 kg/m(2) (normal weight) and six with a BMI of greater than 30 kg/m(2) (obese). These subjects performed a series of free dynamic lifting tasks with varied levels of load (10% and 25% of capacity) and symmetry (sagittally symmetric and 45 degrees asymmetric). The results showed that BMI had a significant effect (p<0.05) on trunk kinematics with the high BMI group exhibiting higher peak transverse plane (twisting) velocity (59% higher) and acceleration (57% higher), and exhibiting higher peak sagittal plane velocity (30% higher) and acceleration (51% higher). When normalized to body weight, there were no significant differences in the ground reaction forces between the two groups. This study provides quantitative data describing lifting task performance differences between people of differing BMI levels and may help to explain why there is no conclusive epidemiological evidence of a relationship between BMI and LBP.

  9. EA-6B high-lift wing modifications

    NASA Technical Reports Server (NTRS)

    Waggoner, E. G.; Allison, D. O.

    1987-01-01

    NASA-Langley has accomplished the computational design and experimental verification of EA-6B aircraft wing modifications for improved high lift capability. The modifications are comparatively simple, and attempt to improve low speed high lift performance while maintaining high speed cruise efficiency. Several two- and three-dimensional low speed and transonic computational techniques were employed, together with extensive wind tunnel tests. The modified inboard and outboard edge slat/flap system sections yielded efficiency improvements that were verified by three-dimensional wind tunnel experiments to amount to an 11-percent wing-body lift coefficient enhancement at low speed.

  10. Detail of lift wire rope attachment to lift span at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of lift wire rope attachment to lift span at southeast corner. Note rope-adjustment turnbuckle with strap keepers to prevent its rotation, which could pull the bridge out of alignment. A single rope and light-gauge attachment at each corner were adequate for lifting the span because most of its weight was balanced by the two counterweights. - Potomac Edison Company, Chesapeake & Ohio Canal Bridge, Spanning C & O Canal South of U.S. 11, Williamsport, Washington County, MD

  11. E-10598

    NASA Image and Video Library

    1963-11-05

    In this photo of the M2-F1 lifting body and the Paresev 1B on the ramp, the viewer sees two vehicles representing different approaches to building a research craft to simulate a spacecraft able to land on the ground instead of splashing down in the ocean as the Mercury capsules did. The M2-F1 was a lifting body, a shape able to re-enter from orbit and land. The Paresev (Paraglider Research Vehicle) used a Rogallo wing that could be (but never was) used to replace a conventional parachute for landing a capsule-type spacecraft, allowing it to make a controlled landing on the ground.

  12. Lifting strategy and stability in strength-impaired elders.

    PubMed

    Puniello, M S; McGibbon, C A; Krebs, D E

    2001-04-01

    Ninety-six subjects underwent biomechanical analysis of freestyle box lifting. To relate lifting strategy to lower extremity muscle strength and postural stability in functionally limited elders. Back pain and postural instability in elders is rampant and poorly understood. Much of the literature on lifting relates to young subjects. Lifting strategy for 91 functionally limited elders was classified by timing of peak power in the back and knee joints. Isometric hip and knee extensor strength and postural stability were compared among strategy classifications. Postural stability was analyzed by measuring center of gravity (CG) displacement during lifting. Three lift strategy groups were established: back-lift, or back dominant strategy (BDS); leg-lift, or leg dominant strategy (LDS); and leg-dominant back-first mixed strategy (LDB). Subjects with relatively strong hip and knee extensors used leg dominant strategy; subjects with relatively strong knee, but weak hip, extensors used leg-dominant back-first mixed strategy; and subjects with weak hip and knee extensors used back dominant strategy. Leg dominant strategy and leg-dominant back-first mixed strategy engendered less center of gravity displacement and thus were posturally more stable than the back dominant strategy. Subjects apparently chose their lift strategy based on their hip and knee extensor strength. Weaker elders using a less stable back dominant strategy could be susceptible to falls and subsequent long bone and vertebral body fractures. Clinicians could identify at-risk elders by muscle testing. Beyond emphasizing strength and endurance exercise in elderly patients, weak elders should be taught to use a leg dominant lifting strategy, or if they are not physically able, to use a combined back/leg strategy.

  13. Framelet lifting in image processing

    NASA Astrophysics Data System (ADS)

    Lu, Da-Yong; Feng, Tie-Yong

    2010-08-01

    To obtain appropriate framelets in image processing, we often need to lift existing framelets. For this purpose the paper presents some methods which allow us to modify existing framelets or filters to construct new ones. The relationships of matrices and their eigenvalues which be used in lifting schemes show that the frame bounds of the lifted wavelet frames are optimal. Moreover, the examples given in Section 4 indicate that the lifted framelets can play the roles of some operators such as the weighted average operator, the Sobel operator and the Laplacian operator, which operators are often used in edge detection and motion estimation applications.

  14. Comparison of Male and Female Maximum Lifting Capacity,

    DTIC Science & Technology

    1985-09-01

    and Womersley, J.W., 1974, Body fat assessed from total body density and its estimation f.’om skinfold thicknesses ; measurements on 481 men and women...ratio. Skinfold measurements were made to obtain an estimate of lean body mass (LBM). Females exhibited 63% of the isometric strength and 55-59% of the... Skinfold measurements were made to obtain an estimate of lean body mass (LBM). Females exhibited 63% of the isometric strength and 55-59$ of the lifting

  15. On the relationship between discrete and repetitive lifting performance in military tasks.

    PubMed

    Savage, Robert J; Best, Stuart A; Carstairs, Greg L; Ham, Daniel J; Doyle, Tim L A

    2014-03-01

    Military manual handling requirements range from discrete lifts to continuous and repetitive lifting tasks. For the military to introduce a discrete lifting assessment, the assessment must be predictive of the various submaximum lifting tasks personnel are required to perform. This study investigated the relationship between discrete and repetitive military lifting to assess the validity of implementing a discrete lifting test. Twenty-one soldiers from the Australian Army completed a whole-body box-lifting assessment as a one repetition maximum (1RM) and a series of submaximal lifting repetitions (% 1RM). Performance was measured between the number of lifting repetitions that could be performed at different intensities between 58 and 95% 1RM. A strong curvilinear relationship existed across the entire submaximal lifting range (r = 0.72, p ≤ 0.05). The model developed demonstrated a low predictive error (standard error of the estimate = 7.2% 1RM) with no differences detected in the relationship when comparing individuals of high and low strength. Findings support the use of a discrete functional lifting assessment in providing coverage of a broad range of military lifting tasks. Parallels can be drawn between the trend reported in the current study and weight-training exercises reported in the literature.

  16. Spine loading as a function of lift frequency, exposure duration, and work experience.

    PubMed

    Marras, W S; Parakkat, J; Chany, A M; Yang, G; Burr, D; Lavender, S A

    2006-05-01

    Physiological and psychophysical studies of the effects of lifting frequency have focused on whole-body measurements of fatigue or subjective acceptance of the task and have not considered how spine loads may change as a function of lift frequency or lift time exposure. Our understanding of biomechanical spine loading has been extrapolated from short lifting bouts to the entire work day and may have led us to incorrect assumptions. The objective of this project was to document how spine loading changes as a function of experience, lift frequency, and lift duration while repetitively lifting over the course of an 8-h workday. Twelve novice and twelve experienced manual materials handlers performed repetitive, asymmetric lifts at different load and lift frequency levels throughout an 8-h exposure period. Compression, anterior-posterior shear, and lateral shear were evaluated over the lifting period using an EMG-assisted biomechanical model. Spinal loads increased after the first 2 h of lifting exposure regardless of the lift frequency. Loading was also greater for the inexperienced subjects compared to experienced lifters. The greatest spine loads occurred at those lift frequencies and weights to which the workers were unaccustomed. Increases in spine loading were tracked back to the changes in muscle recruitment patterns that typically involved increased muscle coactivation. The results emphasize the importance of previous motor programming in defining spine loads during repetitive lifting. These results indicate a very different influence of frequency and lift time exposure compared to physiologic and psychophysical assessments. This study has shown that it is not sufficient to extrapolate from short lift periods to extended exposure periods if the biomechanical loading implications of the task are of interest.

  17. Effects of range and mode on lifting capability and lifting time.

    PubMed

    Lee, Tzu-Hsien

    2012-01-01

    This study examined the effects of 3 lifting ranges and 3 lifting modes on maximum lifting capability and total lifting time. The results demonstrated that the maximum lifting capability for FK (from floor to knuckle height) was greater than that for KS (from knuckle height to shoulder height) or FS (from floor to shoulder height). Additionally, asymmetric lifting with initial trunk rotation decreased maximum lifting capability compared with symmetric lifting or asymmetric lifting with final trunk rotation. The difference in total lifting time between KS and FS was not significant, while FK increased total lifting time by ~20% compared with FS even though the travel distance was 50% shorter.

  18. SMAP Lift to CR

    NASA Image and Video Library

    2014-10-16

    Inside the Astrotech payload processing facility on Vandenberg Air Force Base in California, engineers and technicians use a crane to move a component of NASA's Soil Moisture Active Passive, or SMAP, spacecraft for a lift by a crane. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.

  19. Pneumatic Spoiler Controls Airfoil Lift

    NASA Technical Reports Server (NTRS)

    Hunter, D.; Krauss, T.

    1991-01-01

    Air ejection from leading edge of airfoil used for controlled decrease of lift. Pneumatic-spoiler principle developed for equalizing lift on helicopter rotor blades. Also used to enhance aerodynamic control of short-fuselage or rudderless aircraft such as "flying-wing" airplanes. Leading-edge injection increases maneuverability of such high-performance fixed-wing aircraft as fighters.

  20. Project LIFT: Year Two Report

    ERIC Educational Resources Information Center

    Norton, Michael; Piccinino, Kelly

    2014-01-01

    Research for Action (RFA) has completed its second year of a five-year external evaluation of the Project Leadership and Investment for Transformation (LIFT) Initiative in the Charlotte-Mecklenburg School District (CMS). Project LIFT is a public-private partnership between CMS and the local philanthropic and business communities in Charlotte,…

  1. Project LIFT: Year 1 Report

    ERIC Educational Resources Information Center

    Norton, Michael; Piccinino, Kelly

    2014-01-01

    Research for Action (RFA) is currently in the second year of a five-year external evaluation of the Project Leadership and Investment for Transformation (LIFT) Initiative in the Charlotte-Mecklenburg School District (CMS). Project LIFT is a public-private partnership between CMS and the local philanthropic and business communities in Charlotte,…

  2. Lift enhancing tabs for airfoils

    NASA Technical Reports Server (NTRS)

    Ross, James C. (Inventor)

    1994-01-01

    A tab deployable from the trailing edge of a main airfoil element forces flow onto a following airfoil element, such as a flap, to keep the flow attached and thus enhance lift. For aircraft wings with high lift systems that include leading edge slats, the slats may also be provided with tabs to turn the flow onto the following main element.

  3. Pneumatic Spoiler Controls Airfoil Lift

    NASA Technical Reports Server (NTRS)

    Hunter, D.; Krauss, T.

    1991-01-01

    Air ejection from leading edge of airfoil used for controlled decrease of lift. Pneumatic-spoiler principle developed for equalizing lift on helicopter rotor blades. Also used to enhance aerodynamic control of short-fuselage or rudderless aircraft such as "flying-wing" airplanes. Leading-edge injection increases maneuverability of such high-performance fixed-wing aircraft as fighters.

  4. Feasibility study of modern airships, phase 1. Volume 2: Parametric analysis (task 3). [lift, weight (mass)

    NASA Technical Reports Server (NTRS)

    Lancaster, J. W.

    1975-01-01

    Various types of lighter-than-air vehicles from fully buoyant to semibuoyant hybrids were examined. Geometries were optimized for gross lifting capabilities for ellipsoidal airships, modified delta planform lifting bodies, and a short-haul, heavy-lift vehicle concept. It is indicated that: (1) neutrally buoyant airships employing a conservative update of materials and propulsion technology provide significant improvements in productivity; (2) propulsive lift for VTOL and aerodynamic lift for cruise significantly improve the productivity of low to medium gross weight ellipsoidal airships; and (3) the short-haul, heavy-lift vehicle, consisting of a simple combination of an ellipsoidal airship hull and existing helicopter componentry, provides significant potential for low-cost, near-term applications for ultra-heavy lift missions.

  5. Summary of Lift and Lift/Cruise Fan Powered Lift Concept Technology

    NASA Technical Reports Server (NTRS)

    Cook, Woodrow L.

    1993-01-01

    A summary is presented of some of the lift and lift/cruise fan technology including fan performance, fan stall, ground effects, ingestion and thrust loss, design tradeoffs and integration, control effectiveness and several other areas related to vertical short takeoff and landing (V/STOL) aircraft conceptual design. The various subjects addressed, while not necessarily pertinent to specific short takeoff/vertical landing (STOVL) supersonic designs being considered, are of interest to the general field of lift and lift/cruise fan aircraft designs and may be of importance in the future. The various wind tunnel and static tests reviewed are: (1) the Doak VZ-4 ducted fan, (2) the 0.57 scale model of the Bell X-22 ducted fan aircraft, (3) the Avrocar, (4) the General Electric lift/cruise fan, (5) the vertical short takeoff and landing (V/STOL) lift engine configurations related to ingestion and consequent thrust loss, (6) the XV-5 and other fan-in-wing stall consideration, (7) hybrid configurations such as lift fan and lift/cruise fan or engines, and (8) the various conceptual design studies by air-frame contractors. Other design integration problems related to small and large V/STOL transport aircraft are summarized including lessons learned during more recent conceptual design studies related to a small executive V/STOL transport aircraft.

  6. Lift Recovery for AFC-Enabled High Lift System

    NASA Technical Reports Server (NTRS)

    Shmilovich, Arvin; Yadlin, Yoram; Dickey, Eric D.; Gissen, Abraham N.; Whalen, Edward A.

    2017-01-01

    This project is a continuation of the NASA AFC-Enabled Simplified High-Lift System Integration Study contract (NNL10AA05B) performed by Boeing under the Fixed Wing Project. This task is motivated by the simplified high-lift system, which is advantageous due to the simpler mechanical system, reduced actuation power and lower maintenance costs. Additionally, the removal of the flap track fairings associated with conventional high-lift systems renders a more efficient aerodynamic configuration. Potentially, these benefits translate to a approx. 2.25% net reduction in fuel burn for a twin-engine, long-range airplane.

  7. Isokinetic and isometric lifting capacity of Chinese in relation to the physical demand of job.

    PubMed

    Luk, K D K; Lu, W W; Kwan, W W; Hu, Y; Wong, Y W; Law, K K P; Leong, J C Y

    2003-03-01

    The aim of the study was to formulate normative data for the lifting capacities of a normal Chinese population, in order to establish a basic foundation for further studies and to investigate the relationship between individual attributes including age, gender, height, weight, job physical demand and each type of lifting capacity. Isokinetic and isometric lifting strength at low, waist and shoulder assessment levels were measured using the LIDO Workset II based on a sample of 93 normal Chinese adults (63 men and 30 women) between the ages of 21-51. The 50th percentile score for adult Chinese female's lifting strength was 17.71% lower than the American female while the adult Chinese male's lifting strength was 14.94% lower than the American male. Lifting forces were higher in the 20-40 year age group. The isometric work mode had considerable impact on the lifting capacities, with shoulder level having the highest lifting capacities. The gender and body weight had a significant positive correlation to lifting capacity while job physical demand had a moderate correlation. Age and body heights were weakly correlated to lifting capacity.

  8. Flight Investigations at High-Subsonic, Transonic, and Supersonic Speeds to Determine Zero-Lift Drag of Fin-Stabilized Bodies of Revolution having Fineness Ratios of 12.5, 8.91, and 6.04 and Varying Positions of Maximum Diameter

    NASA Technical Reports Server (NTRS)

    Hart, Roger G.; Katz, Ellis R.

    1949-01-01

    Rocket-powered models were flown at high-subsonic, transonic, and supersonic speeds to determine the zero-lift drag of fin-stabilized parabolic bodies of revolution differing in fineness ratio and in position of maximum diameter. The present paper presents the results for fineness ratio 12.5, 8.91 and 6.04 bodies having maximum diameters located at stations of 20, 40, 60, and 80 percent of body length. All configurations had cut-off sterns and all had equal base, frontal, and exposed fin areas. For most of the supersonic-speed range models having their maximum diameters at the 60-percent station gave the lowest values of drag coefficient. At supersonic speeds, increasing the fineness ratio generally reduced the drag coefficient for a given position of maximum diameter.

  9. Development lifts Egyptian output

    SciTech Connect

    Not Available

    1981-08-01

    Oil revenue is now the largest source of foreign exchange for the Arab Republic of Egypt, and, as such, is of vital importance to the country's plans for industrial and social development. Last year oil exports earned Egypt $2.9 billion, playing a key role in keeping the nation's economy in the black. Oil production in 1980 averaged 585,000 bpd, up from 510,000 bpd in 1979. This year oil output should average 650,000 bpd. While output is increasing, it does not appear to be doing so at a sufficient rate to meet the 1984 government target of 1 million bpd. However, the oil industry view in Egypt is that this target is achievable, though not until the mid to late 1980s. Development work scheduled for completion by 1984 only seems set to lift output to between 750,000 and 800,000 bpd. At the same time, if expansions plans for gas production are taken into account, then total hydrocarbon output measured in oil equivalents will not be too far short of the 1-million-bpd figure.

  10. Lifting strength in two-person teamwork.

    PubMed

    Lee, Tzu-Hsien

    2016-01-01

    This study examined the effects of lifting range, hand-to-toe distance, and lifting direction on single-person lifting strengths and two-person teamwork lifting strengths. Six healthy males and seven healthy females participated in this study. Two-person teamwork lifting strengths were examined in both strength-matched and strength-unmatched groups. Our results showed that lifting strength significantly decreased with increasing lifting range or hand-to-toe distance. However, lifting strengths were not affected by lifting direction. Teamwork lifting strength did not conform to the law of additivity for both strength-matched and strength-unmatched groups. In general, teamwork lifting strength was dictated by the weaker of the two members, implying that weaker members might be exposed to a higher potential danger in teamwork exertions. To avoid such overexertion in teamwork, members with significantly different strength ability should not be assigned to the same team.

  11. Interjoint coordination and the personal lift-assist device.

    PubMed

    Graham, Ryan B; Smallman, Catherine L W; Sadler, Erin M; Stevenson, Joan M

    2013-04-01

    It has been suggested that interjoint coordination may serve to reduce joint stress and muscular demand and to maintain balance during dynamic lifting tasks, thus having implications for safe lifting practices. Before recommending the use of an on-body ergonomic aid, the Personal Lift-Assist Device (PLAD), it is important to determine any effects this device may have on interjoint coordination. Principal component analyses were applied to relative phase angle waveforms, defining the hip-knee and lumbar spine-hip coordination of 15 males and 15 females during a repetitive lifting task. When wearing the PLAD, users lifted with more synchronous hip-knee and lumbar spine-hip coordination patterns (P < .01). Furthermore, increases in load caused less synchronized interjoint coordination at both the hip-knee and lumbar spine-hip during the up and down phases of the lift (P < .01) for all conditions. No significant main effects of sex or significant interactions were observed on any of the outcome variables.

  12. Ergonomic Assessment of Floor-based and Overhead Lifts

    PubMed Central

    Waters, Thomas R.; Dick, Robert; Lowe, Brian; Werren, Dwight; Parsons, Kelley

    2015-01-01

    Manual full-body vertical lifts of patients have high risk for developing musculoskeletal disorders. Two primary types of battery-powered lift assist devices are available for these tasks: floor-based and overhead-mounted devices. Studies suggest that the operation of floor-based devices may require excessive pushing and pulling forces and that overhead-mounted devices are safer and require lower operating forces. This study evaluated required operating hand forces and resulting biomechanical spinal loading for overhead-mounted lifts versus floor-based lifts across various floor surfaces and patient weight conditions. We did not examine differences in how operators performed the tasks, but rather focused on differences in required operating forces and estimated biomechanical loads across various exposure conditions for a typical operator. Findings show that the floor-based lifts exceeded recommended exposure limits for pushing and pulling for many of the floor/weight conditions and that the overhead-mounted lifts did not. As expected, forces and spinal loads were greater for nonlinoleum floor surfaces compared with linoleum floors. Based on these findings, it is suggested that overhead-mounted devices be used whenever possible, particularly in instances where carpeted floors would be encountered. PMID:26550545

  13. Null lifts and projective dynamics

    SciTech Connect

    Cariglia, Marco

    2015-11-15

    We describe natural Hamiltonian systems using projective geometry. The null lift procedure endows the tangent bundle with a projective structure where the null Hamiltonian is identified with a projective conic and induces a Weyl geometry. Projective transformations generate a set of known and new dualities between Hamiltonian systems, as for example the phenomenon of coupling-constant metamorphosis. We conclude outlining how this construction can be extended to the quantum case for Eisenhart–Duval lifts.

  14. Vortex Lift Augmentation by Suction

    NASA Technical Reports Server (NTRS)

    Taylor, A. H.; Jackson, L. R.; Huffman, J. K.

    1983-01-01

    Lift performance is improved on a 60 degrees swept Gothic wing. Vortex lift at moderate to high angles of attack on highly swept wings used to improve takeoff performance and maneuverability. New design proposed in which suction of propulsion system augments vortex. Turbofan placed at down stream end of leading-edge vortex system induces vortex to flow into inlet which delays onset of vortex breakdown.

  15. The Future of Heavy Lift

    DTIC Science & Technology

    2002-03-01

    Future of Heavy Lift. MAWTS-1 Memo, 2001. Osprey On-Line. Home Page. <http://www.navair.navy.mil/ v22 />. Overarching Commonality Assessment...logistics tails grow. While the MV-22 Osprey will provide this "Over the Horizon" (OTH) capability, it is strictly a medium lift aircraft. It will never...territory. The MV-22 is the Marine Corps’ current answer to implementing OMFTS/STOM from an aviation perspective. 3 The Osprey will eventually

  16. Vortex Lift Augmentation by Suction

    NASA Technical Reports Server (NTRS)

    Taylor, A. H.; Jackson, L. R.; Huffman, J. K.

    1983-01-01

    Lift performance is improved on a 60 degrees swept Gothic wing. Vortex lift at moderate to high angles of attack on highly swept wings used to improve takeoff performance and maneuverability. New design proposed in which suction of propulsion system augments vortex. Turbofan placed at down stream end of leading-edge vortex system induces vortex to flow into inlet which delays onset of vortex breakdown.

  17. Simple anthropometric and physical performance tests to predict maximal box-lifting ability.

    PubMed

    Williams, Alun G; Wilkinson, Mick

    2007-05-01

    Box-lifting ability is an important characteristic of military personnel. The purpose of this paper was to determine the usefulness of the upright row free weight exercise and simple anthropometric tests to predict maximal box-lifting performance that simulates the loading of military supply vehicles. Two groups of adults performed maximal box lifts to 1.4 m (study 1) and 1.7 m (study 2), respectively. All subjects were also tested for upright row 1 repetition maximum (1RM) strength, body mass, height, and body composition. In study 1, a remarkably good prediction of maximal box-lift performance to 1.4 m (42 +/- 12 kg) was obtained from a regression equation including the variables body mass, body composition, and upright row 1RM. Approximately 95% of the variation in 1.4-m box-lifting performance could be accounted for. In contrast, in study 2, only 80% of the variation in 1.7-m box-lifting performance (51 +/- 15 kg) could be accounted for by the best predictor equation. Upright row 1RM strength appears to be a useful tool in the prediction of box-lifting ability to approximately chest height for most adults, probably due to a close match between the muscle groups and contraction modes required during both tasks. Military or other organizations could use the data reported here to substitute simple anthropometry and a 1RM test of strength and for the direct assessment of 1.4-m box-lifting performance.

  18. Maximum Team Lifting Capacity as a Function of Team Size

    DTIC Science & Technology

    1993-10-01

    2 REVIEW OF LITERATURE ............................... 3 METHODS ...................................... 4 SUBJECTS...and body size with team-lifting capacity. 2 2 I S.. - , .. .., ,, , , ,, = ,, , n~ i I I II I . . REVIEW OF LITERATURE S Isometric and isokinetic...strengths, but showed little or no further decline with the addition of a third woman (Karwowski & Pongpatanasuegsa, 1988). Although no statistical

  19. Role of obesity on cerebral hemodynamics and cardiorespiratory responses in healthy men during repetitive incremental lifting.

    PubMed

    Cavuoto, Lora A; Maikala, Rammohan V

    2015-09-01

    The goal of this study was to quantify obesity-related differences in systemic physiologic responses and cerebral hemodynamics during physical work to exhaustion. Twenty men, ten who are obese and ten of healthy weight, completed an incremental exercise lifting a box from 25 cm below to 25 cm above knuckle height at 10 lifts/min. The lifting started with a load of 5 kg and was increased by 2 kg every 2 min until participants reached either voluntary fatigue or two of the American College of Sports Medicine endpoints for maximum aerobic capacity. Cardiorespiratory and prefrontal hemodynamic responses were measured simultaneously during rest, incremental lifting, and recovery. The non-obese group lifted for ~64 % longer than the obese group. Both groups reached similar peak pulmonary oxygen uptake at the termination of exercise; however, when these responses were expressed relative to their body mass, the obese group had ~60 % reduced oxygen uptake. As the load increased, steady increases in cerebral oxygenation and blood volume responses were observed in both groups up to ~90 % of the lifting trial. In contrast, at higher intensities (near 100 % of the lifting trial), cerebral oxygenation and blood volume decreased in the obese group, whereas it plateaued or slightly increased in the non-obese group, with greatest cerebral oxygen extraction occurring at the cessation of lifting trial. These findings suggest that acute exposure to repetitive lifting exercise decreases cardiorespiratory responses and cerebral hemodynamics in the group who are obese, which may contribute to their reduced lifting capacity.

  20. Mist lift analysis summary report

    SciTech Connect

    Davenport, R.L.

    1980-09-01

    The mist flow open-cycle OTEC concept proposed by S.L. Ridgway has much promise, but the fluid mechanics of the mist flow are not well understood. The creation of the mist and the possibility of droplet growth leading to rainout (when the vapor can no longer support the mist) are particularly troublesome. This report summarizes preliminary results of a numerical analysis initiated at SERI in FY79 to study the mist-lift process. The analysis emphasizes the mass transfer and fluid mechanics of the steady-state mist flow and is based on one-dimensional models of the mist flow developed for SERI by Graham Wallis. One of Wallis's models describes a mist composed of a single size of drops and another considers several drop sizes. The latter model, further developed at SERI, considers a changing spectrum of discrete drop sizes and incorporates the mathematics describing collisions and growth of the droplets by coalescence. The analysis results show that under conditions leading to maximum lift in the single-drop-size model, the multigroup model predicts significantly reduced lift because of the growth of droplets by coalescence. The predicted lift height is sensitive to variations in the mass flow rate and inlet pressure. Inclusion of a coasting section, in which the drops would rise ballistically without change in temperature, may lead to increased lift within the existing range of operation.

  1. Lifting China's water spell.

    PubMed

    Guan, Dabo; Hubacek, Klaus; Tillotson, Martin; Zhao, Hongyan; Liu, Weidong; Liu, Zhu; Liang, Sai

    2014-10-07

    China is a country with significant but unevenly distributed water resources. The water stressed North stays in contrast to the water abundant and polluted South defining China's current water environment. In this paper we use the latest available data sets and adopt structural decomposition analysis for the years 1992 to 2007 to investigate the driving forces behind the emerging water crisis in China. We employ four water indicators in China, that is, freshwater consumption, discharge of COD (chemical oxygen demand) in effluent water, cumulative COD and dilution water requirements for cumulative pollution, to investigate the driving forces behind the emerging crisis. The paper finds water intensity improvements can effectively offset annual freshwater consumption and COD discharge driven by per capita GDP growth, but that it had failed to eliminate cumulative pollution in water bodies. Between 1992 and 2007, 225 million tones of COD accumulated in Chinese water bodies, which would require 3.2-8.5 trillion m(3) freshwater, depending on the water quality of the recipient water bodies to dilute pollution to a minimum reusable standard. Cumulative water pollution is a key driver to pollution induced water scarcity across China. In addition, urban household consumption, export of goods and services, and infrastructure investment are the main factors contributing to accumulated water pollution since 2000.

  2. Normalized lift: an energy interpretation of the lift coefficient simplifies comparisons of the lifting ability of rotating and flapping surfaces.

    PubMed

    Burgers, Phillip; Alexander, David E

    2012-01-01

    For a century, researchers have used the standard lift coefficient C(L) to evaluate the lift, L, generated by fixed wings over an area S against dynamic pressure, ½ρv(2), where v is the effective velocity of the wing. Because the lift coefficient was developed initially for fixed wings in steady flow, its application to other lifting systems requires either simplifying assumptions or complex adjustments as is the case for flapping wings and rotating cylinders.This paper interprets the standard lift coefficient of a fixed wing slightly differently, as the work exerted by the wing on the surrounding flow field (L/ρ·S), compared against the total kinetic energy required for generating said lift, ½v(2). This reinterpreted coefficient, the normalized lift, is derived from the work-energy theorem and compares the lifting capabilities of dissimilar lift systems on a similar energy footing. The normalized lift is the same as the standard lift coefficient for fixed wings, but differs for wings with more complex motions; it also accounts for such complex motions explicitly and without complex modifications or adjustments. We compare the normalized lift with the previously-reported values of lift coefficient for a rotating cylinder in Magnus effect, a bat during hovering and forward flight, and a hovering dipteran.The maximum standard lift coefficient for a fixed wing without flaps in steady flow is around 1.5, yet for a rotating cylinder it may exceed 9.0, a value that implies that a rotating cylinder generates nearly 6 times the maximum lift of a wing. The maximum normalized lift for a rotating cylinder is 1.5. We suggest that the normalized lift can be used to evaluate propellers, rotors, flapping wings of animals and micro air vehicles, and underwater thrust-generating fins in the same way the lift coefficient is currently used to evaluate fixed wings.

  3. Normalized Lift: An Energy Interpretation of the Lift Coefficient Simplifies Comparisons of the Lifting Ability of Rotating and Flapping Surfaces

    PubMed Central

    Burgers, Phillip; Alexander, David E.

    2012-01-01

    For a century, researchers have used the standard lift coefficient CL to evaluate the lift, L, generated by fixed wings over an area S against dynamic pressure, ½ρv2, where v is the effective velocity of the wing. Because the lift coefficient was developed initially for fixed wings in steady flow, its application to other lifting systems requires either simplifying assumptions or complex adjustments as is the case for flapping wings and rotating cylinders. This paper interprets the standard lift coefficient of a fixed wing slightly differently, as the work exerted by the wing on the surrounding flow field (L/ρ·S), compared against the total kinetic energy required for generating said lift, ½v2. This reinterpreted coefficient, the normalized lift, is derived from the work-energy theorem and compares the lifting capabilities of dissimilar lift systems on a similar energy footing. The normalized lift is the same as the standard lift coefficient for fixed wings, but differs for wings with more complex motions; it also accounts for such complex motions explicitly and without complex modifications or adjustments. We compare the normalized lift with the previously-reported values of lift coefficient for a rotating cylinder in Magnus effect, a bat during hovering and forward flight, and a hovering dipteran. The maximum standard lift coefficient for a fixed wing without flaps in steady flow is around 1.5, yet for a rotating cylinder it may exceed 9.0, a value that implies that a rotating cylinder generates nearly 6 times the maximum lift of a wing. The maximum normalized lift for a rotating cylinder is 1.5. We suggest that the normalized lift can be used to evaluate propellers, rotors, flapping wings of animals and micro air vehicles, and underwater thrust-generating fins in the same way the lift coefficient is currently used to evaluate fixed wings. PMID:22629326

  4. Numerical study of aerodynamic effects on road vehicles lifting surfaces

    NASA Astrophysics Data System (ADS)

    Cernat, Mihail Victor; Cernat Bobonea, Andreea

    2017-01-01

    The aerodynamic performance analysis of road vehicles depends on the study of engine intake and cooling flow, internal ventilation, tire cooling, and overall external flow as the motion of air around a moving vehicle affects all of its components in one form or another. Due to the complex geometry of these, the aerodynamic interaction between the various body components is significant, resulting in vortex flow and lifting surface shapes. The present study, however focuses on the effects of external aerodynamics only, and in particular on the flow over the lifting surfaces of a common compact car, designed especially for this study.

  5. Summary of Free-Flight Zero-Lift Drag Results from Tests of 1/5-Scale Models of the Convair YF-102 and F-102A Airplanes and Several Related Small Equivalent Bodies at Mach Numbers from 0.70 to 1.46

    NASA Technical Reports Server (NTRS)

    Wallskog, Harvey A.

    1954-01-01

    One-fifth-scale rocket-propelled models of the Convair YF-102 and F-102A airplanes were tested to determine free-flight zero-lift drag coefficients through the transonic speed range at Reynolds numbers near those to be encountered by the full-scale airplane. Trim and duct characteristics were obtained along with measurements of total-, internal-, and base-drag coefficients. Additional zero-lift drag tests involved a series of small equivalent-body-of-revolution models which were launched to low supersonic speeds by means of a helium gun. The several small models tested corresponded to the following full-scale airplanes: basic, YF-102, 2-foot (full-scale) fuselage extension, F-102A, F-102A (relocated inlets), F-102A (faired nose), and F-102A (parabolic nose) . Equivalent-body models corresponding to the normal area distribution (derived for Mach number 1.0) of each of these airplane shapes were flown and, in addition, equivalent-body models designed to represent the YF-102 and F-102A airplanes at Mach number 1.2 were tested. External-drag coefficients obtained from the 115-scale tests ranged from 0.0094 to 0.0273 for the YF-102 model and from 0.0100 to 0.0255 for the F-102A model. Forebody external-pressure-drag coefficients (drag rise) at Mach number 1.05 of 0.0183 and 0.0134 were obtained from the 115-scale models of the YF-102 and F-102A, respectively, a 16-percent reduction for the F-102A model. Values of drag rise at Mach number 1.05 from the small equivalent-body tests were nearly the same for the basic, YF-102, and 2-foot-fuselage-extension airplane shapes. Equivalent-body tests of the YF-102 and F-102A shapes showed the latter to have about 25 percent less drag rise as compared with a 16-percent reduction illustrated by the 1/5-scale tests. Additional equivalent-body tests illustrating effects of modifications to the F-102A airplane shape shared that relocating the inlets on the fuselage or altering the nose shape to provide a smoother cross-sectional area

  6. Low-Lift Drag of the Grumman F9F-9 Airplane as Obtained by a 1/7.5-Scale Rocket-Boosted Model and by Three 1/45.85-Scale Equivalent-Body Models between Mach Numbers of 0.8 and 1.3, TED No. NACA DE 391

    NASA Technical Reports Server (NTRS)

    Stevens, Joseph E.

    1955-01-01

    Low-lift drag data are presented herein for one 1/7.5-scale rocket-boosted model and three 1/45.85-scale equivalent-body models of the Grumman F9F-9 airplane, The data were obtained over a Reynolds number range of about 5 x 10(exp 6) to 10 x 10(exp 6) based on wing mean aerodynamic chord for the rocket model and total body length for the equivalent-body models. The rocket-boosted model showed a drag rise of about 0,037 (based on included wing area) between the subsonic level and the peak supersonic drag coefficient at the maximum Mach number of this test. The base drag coefficient measured on this model varied from a value of -0,0015 in the subsonic range to a maximum of about 0.0020 at a Mach number of 1.28, Drag coefficients for the equivalent-body models varied from about 0.125 (based on body maximum area) in the subsonic range to about 0.300 at a Mach number of 1.25. Increasing the total fineness ratio by a small amount raised the drag-rise Mach number slightly.

  7. Serrated-Planform Lifting-Surfaces

    NASA Technical Reports Server (NTRS)

    McGrath, Brian E. (Inventor); Wood, Richard M. (Inventor)

    1999-01-01

    A novel set of serrated-planform lifting surfaces produce unexpectedly high lift coefficients at moderate to high angles-of-attack. Each serration, or tooth, is designed to shed a vortex. The interaction of the vortices greatly enhances the lifting capability over an extremely large operating range. Variations of the invention use serrated-planform lifting surfaces in planes different than that of a primary lifting surface. In an alternate embodiment, the individual teeth are controllably retractable and deployable to provide for active control of the vortex system and hence lift coefficient. Differential lift on multiple serrated-planform lifting surfaces provides a means for vehicle control. The important aerodynamic advantages of the serrated-planform lifting surfaces are not limited to aircraft applications but can be used to establish desirable performance characteristics for missiles, land vehicles, and/or watercraft.

  8. Weight lifting in women with breast-cancer-related lymphedema.

    PubMed

    Schmitz, Kathryn H; Ahmed, Rehana L; Troxel, Andrea; Cheville, Andrea; Smith, Rebecca; Lewis-Grant, Lorita; Bryan, Cathy J; Williams-Smith, Catherine T; Greene, Quincy P

    2009-08-13

    Weight lifting has generally been proscribed for women with breast-cancer-related lymphedema, preventing them from obtaining the well-established health benefits of weight lifting, including increases in bone density. We performed a randomized, controlled trial of twice-weekly progressive weight lifting involving 141 breast-cancer survivors with stable lymphedema of the arm. The primary outcome was the change in arm and hand swelling at 1 year, as measured through displaced water volume of the affected and unaffected limbs. Secondary outcomes included the incidence of exacerbations of lymphedema, number and severity of lymphedema symptoms, and muscle strength. Participants were required to wear a well-fitted compression garment while weight lifting. The proportion of women who had an increase of 5% or more in limb swelling was similar in the weight-lifting group (11%) and the control group (12%) (cumulative incidence ratio, 1.00; 95% confidence interval, 0.88 to 1.13). As compared with the control group, the weight-lifting group had greater improvements in self-reported severity of lymphedema symptoms (P=0.03) and upper- and lower-body strength (P<0.001 for both comparisons) and a lower incidence of lymphedema exacerbations as assessed by a certified lymphedema specialist (14% vs. 29%, P=0.04). There were no serious adverse events related to the intervention. In breast-cancer survivors with lymphedema, slowly progressive weight lifting had no significant effect on limb swelling and resulted in a decreased incidence of exacerbations of lymphedema, reduced symptoms, and increased strength. (ClinicalTrials.gov number, NCT00194363.) 2009 Massachusetts Medical Society

  9. Integral lift engine preliminary design

    NASA Technical Reports Server (NTRS)

    Pratt, W.; Leto, A.; Schaefer, R.

    1971-01-01

    A preliminary mechanical design of a complete lift fan engine system is reported. A description of the lift fan engine, layout drawings of the components and complete engine, and a discussion of the design analyses and results are presented. The design features and areas of analysis include fan and compressor rotor blades of composite construction, a combustor folded over the compressor, relatively high-temperature blades in the high-pressure turbine, the first stage of the low-pressure turbine used for bearing support and ducting of lubricant to the bearings, a complete lubrication system, critical speeds of the shafting, and vibration and flutter of the blading.

  10. Unsteady Lift Generation for MAVs

    DTIC Science & Technology

    2010-10-22

    canonical pitch - up , pitch -down wing maneuver, in 39th AIAA Fluid Dynamics Conference, AIAA 2009-3687, San Antonio, TX, 22-25 June 2009. [7] C. P. Ellington...unsteady lift generation on three-dimensional flapping wings in the MAV flight regime and, if a leading edge vortex develops at MAV-like Reynolds numbers... wing rotates in a propeller-like motion through a wing stroke angle up to 90 degrees. Unsteady lift and drag force data was acquired throughout the

  11. Endoscopic brow lifts uber alles.

    PubMed

    Patel, Bhupendra C K

    2006-12-01

    Innumerable approaches to the ptotic brow and forehead have been described in the past. Over the last twenty-five years, we have used all these techniques in cosmetic and reconstructive patients. We have used the endoscopic brow lift technique since 1995. While no one technique is applicable to all patients, the endoscopic brow lift, with appropriate modifications for individual patients, can be used effectively for most patients with brow ptosis. We present the nuances of this technique and show several different fixation methods we have found useful.

  12. Tool for use in lifting pin supported objects

    NASA Technical Reports Server (NTRS)

    Marzek, R. A.; Read, W. S. (Inventor)

    1974-01-01

    A tool for use in lifting a pin-supported, electronic package mounted in juxtaposition with the surface of an electronic circuit board is described. The tool is configured to be received beneath a pin-supported package and is characterized by a manually operable linkage, including an elongated, rigid link is supported for axial reciprocation and a pivotal link pinned to the body and supported for oscillation induced in response to axial motion imparted to the rigid link. A lifting plate is pivotally coupled to the distal end of the pivotal link so that oscillatory motion imparted to the pivotal link serves to move the plate vertically for elevating the plate into lifting engagement with the electronic package positioned thereabove.

  13. Effect of a stiff lifting belt on spine compression during lifting.

    PubMed

    Kingma, Idsart; Faber, Gert S; Suwarganda, Edin K; Bruijnen, Tom B M; Peters, Rob J A; van Dieën, Jaap H

    2006-10-15

    An in vivo study on weightlifters. To determine if and how a stiff back belt affects spinal compression forces in weightlifting. In weightlifting, a back belt has been reported to enhance intraabdominal pressure (IAP) and to reduce back muscle EMG and spinal compression forces. Nine experienced weightlifters lifted barbells up to 75% body weight while inhaling and wearing a belt, inhaling and not wearing a belt, and exhaling and wearing a belt. IAP, trunk muscle EMG, ground reaction forces, and kinematics were measured. An EMG-assisted trunk model, including IAP effects, was used to calculate spinal compression and shear forces and to reveal the contribution of back muscles, abdominal muscles, and IAP to moment generation. The belt reduced compression forces by about 10%, but only when inhaling before lifting. The moment generated by IAP increased when wearing a belt and inhaling, but this moment was small and the increase was largely negated by the flexing moment generated by abdominal muscles. Wearing a tight and stiff back belt while inhaling before lifting reduces spine loading. This is caused by a moment generated by the belt rather than by the IAP.

  14. Unsuccessful vs. successful performance in snatch lifts: a kinematic approach.

    PubMed

    Gourgoulis, Vassilios; Aggeloussis, Nikolaos; Garas, Athanasios; Mavromatis, Georgios

    2009-03-01

    The purpose of the present study was to determine the kinematic characteristics of snatch movements that result in an unsuccessful performance, involving the barbell's drop in front of the weightlifter. The sample comprised 7 high-level men weightlifters competing at the international level. Their successful and unsuccessful snatch lifts with the same load were recorded with 2 S-VHS camcorders (60 Hz), and selected points onto the body and the barbell were digitized manually using the Ariel Performance Analysis System. The statistical treatment of the data showed no significant differences (p > 0.05) between successful and unsuccessful lifts in the angular displacement and velocity data of the lower-limb joints, the trajectory and vertical linear velocity of the barbell, or the generated work and power output during the first and second pulls of the lift. Consequently, the general movement pattern of the limbs and the barbell was not modified in unsuccessful lifts in relation to the successful ones. However, significant differences (p < 0.05) were found in the direction of the barbell's resultant acceleration vector, suggesting that proper direction of force application onto the barbell is crucial for a successful performance in snatch lifts. Thus, coaches should pay particular attention to the applied force onto the barbell from the first pull.

  15. Comparison of static lifting capacity between experienced and novice Taiwanese female workers.

    PubMed

    Chen, Yi-Lang; Chiou, Wen-Ko

    2015-01-01

    Previous studies have analyzed the lifting capacity of either experienced workers or novices, but a systematic comparison of the lifting capacity of experienced female workers and novices has not been conducted. This study was conducted to identify differences in lifting strengths and postures between experienced and novice Taiwanese female workers. Twenty-three experienced female workers and 23 novices volunteered for this study. Their static lifting strengths (n = 46) and lifting postures (n = 22) were analyzed using statistical analysis software. Experienced workers' vertical lifting strengths were approximately 5-7  kg lower than those of novices at lower heights (≤50  cm). However, at heights equal to or higher than 90  cm, the experienced workers generated approximately 2-3  kg higher toward-body lifting strengths than did novices. The experienced workers' strengths at all 15 lifting heights were relatively unchanged, compared with changes in the novices' strengths. Experienced workers tended to adopt a consistently deep squat at lower heights and a more flexed arm posture at higher heights. Through daily work experience, experienced workers may have subconsciously learned to shift their postures to avoid overexertion. These techniques for safe lifting should be taught to new Taiwanese female workers.

  16. Three-Dimensional Effects on Multi-Element High Lift Computations

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.; Lee-Rausch, Elizabeth M.; Watson, Ralph D.

    2002-01-01

    In an effort to discover the causes for disagreement between previous 2-D computations and nominally 2-D experiment for flow over the 3-clement McDonnell Douglas 30P-30N airfoil configuration at high lift, a combined experimental/CFD investigation is described. The experiment explores several different side-wall boundary layer control venting patterns, document's venting mass flow rates, and looks at corner surface flow patterns. The experimental angle of attack at maximum lift is found to be sensitive to the side wall venting pattern: a particular pattern increases the angle of attack at maximum lift by at least 2 deg. A significant amount of spanwise pressure variation is present at angles of attack near maximum lift. A CFD study using 3-D structured-grid computations, which includes the modeling of side-wall venting, is employed to investigate 3-D effects of the flow. Side-wall suction strength is found to affect the angle at which maximum lift is predicted. Maximum lift in the CFD is shown to be limited by the growth of all off-body corner flow vortex and consequent increase in spanwise pressure variation and decrease in circulation. The 3-D computations with and without wall venting predict similar trends to experiment at low angles of attack, but either stall too earl or else overpredict lift levels near maximum lift by as much as 5%. Unstructured-grid computations demonstrate that mounting brackets lower die the levels near maximum lift conditions.

  17. Lifting Mechanism for the Mars Explorer Rover

    NASA Technical Reports Server (NTRS)

    Melko, Joseph; Iskenderian, Theodore; Harrington, Brian; Voorhees, Christopher

    2005-01-01

    A report discusses the design of a rover lift mechanism (RLM) -- a major subsystem of each of the Mars Exploration Rover vehicles, which were landed on Mars in January 2004. The RLM had to satisfy requirements to (1) be foldable as part of an extremely dense packing arrangement and (2) be capable of unfolding itself in a complex, multistep process for disengaging the rover from its restraints in the lander, lifting the main body of the rover off its landing platform, and placing the rover wheels on the platform in preparation for driving the rover off the platform. There was also an overriding requirement to minimize the overall mass of the rover and lander. To satisfy the combination of these and other requirements, it was necessary to formulate an extremely complex design that integrated components and functions of the RLM with those of a rocker-bogie suspension system, the aspects of which have been described in several prior NASA Tech Briefs articles. In this design, suspension components also serve as parts of a 4- bar linkage in the RLM.

  18. Prosthetic Hand Lifts Heavy Loads

    NASA Technical Reports Server (NTRS)

    Carden, James R.; Norton, William; Belcher, Jewell G.; Vest, Thomas W.

    1991-01-01

    Prosthetic hand designed to enable amputee to lift diverse heavy objects like rocks and logs. Has simple serrated end effector with no moving parts. Prosthesis held on forearm by system of flexible straps. Features include ruggedness, simplicity, and relatively low cost.

  19. Prosthetic Hand Lifts Heavy Loads

    NASA Technical Reports Server (NTRS)

    Carden, James R.; Norton, William; Belcher, Jewell G.; Vest, Thomas W.

    1991-01-01

    Prosthetic hand designed to enable amputee to lift diverse heavy objects like rocks and logs. Has simple serrated end effector with no moving parts. Prosthesis held on forearm by system of flexible straps. Features include ruggedness, simplicity, and relatively low cost.

  20. Weight lifting and appendicular skeletal muscle mass among breast cancer survivors: a randomized controlled trial.

    PubMed

    Brown, Justin C; Schmitz, Kathryn H

    2015-06-01

    Low appendicular skeletal muscle mass (ASMM) is associated with premature mortality, hyperinsulinemia, frailty, disability, and low bone mineral density. We explored the potential efficacy of slowly progressive weight lifting to attenuate the decline of ASMM among breast cancer survivors by conducting a post hoc analysis of data from the Physical Activity and Lymphedema trial. Between October 2005 and August 2008, we conducted a single-blind, randomized controlled trial of twice weekly slowly progressive weight lifting or standard care among 295 non-metastatic breast cancer survivors. ASMM was quantified using dual-energy X-ray absorptiometry. Changes in ASMM were evaluated from baseline to 12 months between the weight lifting and control groups using repeated measures linear mixed effects regression models. Over 12 months, participants in the weight lifting group experienced attenuated declines in muscle mass compared to the control group, as reflected by relative ASMM (-0.01 ± 0.02 kg/m(2) vs -0.08 ± 0.03 kg/m(2); P = 0.041) and absolute ASMM (-0.02 ± 0.06 kg vs -0.22 ± 0.07 kg; P = 0.038), respectively. Weight lifting did not alter other body composition outcomes including body mass index, total body mass, body fat percentage, and fat mass compared to the control group. Weight lifting significantly increased upper and lower body muscle strength compared to the control group. The intervention was well tolerated with no serious adverse events related to weight lifting. Slowly progressive weight lifting attenuated the decline of ASMM among breast cancer survivors compared to standard care over 12 months. These data are hypothesis generating. Future studies should examine the efficacy of weight lifting to improve distal health outcomes among breast cancer survivors.

  1. Powered-Lift Aerodynamics and Acoustics. [conferences

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Powered lift technology is reviewed. Topics covered include: (1) high lift aerodynamics; (2) high speed and cruise aerodynamics; (3) acoustics; (4) propulsion aerodynamics and acoustics; (5) aerodynamic and acoustic loads; and (6) full-scale and flight research.

  2. 30 CFR 56.16016 - Lift trucks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Lift trucks. 56.16016 Section 56.16016 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND....16016 Lift trucks. Fork and other similar types of lift trucks shall be operated with the— (a) Upright...

  3. 30 CFR 57.16016 - Lift trucks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Lift trucks. 57.16016 Section 57.16016 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... § 57.16016 Lift trucks. Fork and other similar types of lift trucks shall be operated with the: (a...

  4. 46 CFR 64.43 - Lifting fittings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Lifting fittings. 64.43 Section 64.43 Shipping COAST... HANDLING SYSTEMS Standards for an MPT § 64.43 Lifting fittings. Each MPT must have attached lifting fittings so that the tank remains horizontal and stable while being moved....

  5. Project LIFT: Year Three Student Outcomes Memo

    ERIC Educational Resources Information Center

    Norton, Michael; Kim, Dae Y.; Long, Daniel A.

    2016-01-01

    Research for Action (RFA) was commissioned to evaluate changes in student outcomes during the first three years of the Project Leadership and Investment for Transformation (LIFT). This report focuses on two questions: (1) how do LIFT students' behavioral and academic performance compare to those of a matched set of non-LIFT comparison students?;…

  6. Vertical Lift - Not Just For Terrestrial Flight

    NASA Technical Reports Server (NTRS)

    Young, Larry A

    2000-01-01

    Autonomous vertical lift vehicles hold considerable potential for supporting planetary science and exploration missions. This paper discusses several technical aspects of vertical lift planetary aerial vehicles in general, and specifically addresses technical challenges and work to date examining notional vertical lift vehicles for Mars, Titan, and Venus exploration.

  7. 49 CFR 37.203 - Lift maintenance.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Lift maintenance. 37.203 Section 37.203... DISABILITIES (ADA) Over-the-Road Buses (OTRBs) § 37.203 Lift maintenance. (a) The entity shall establish a system of regular and frequent maintenance checks of lifts sufficient to determine if they are operative...

  8. An Alternative Maxillary Sinus Lift Technique – Sinu Lift System

    PubMed Central

    T, Parthasaradhi; B, Shivakumar; Kumar, T.S.S.; P, Suganya

    2015-01-01

    Objectives: Maxillary sinus augmentation surgical techniques have evolved greatly allowing successful placement of dental implants in the atrophic posterior maxillary region. The purpose of the present study is to evaluate the clinical and radiological outcomes and postoperative morbidity of sinus floor elevation procedures performed using the minimally invasive surgical technique the Sinu lift system. Materials and Methods: Sinus lift procedure was done using the sinu lift system by a transcrestal approach and bone augmentation was done on ten systemically healthy patients using β- tricalcium phosphate and platelet rich plasma mix. The study was evaluated upto six months period with bone related parameters being assessed at base line using CT scan, OPG and after six months the results were analysed using SPSS Version 18.0 software (p < 0.01 (0.005). Wilcoxson signed rank sum test was used to correlate between preoperative and postoperative measurements. Implant placements were done at the desired area of sinus augmentation with a two year follow up. (Nobel Biocare, Nobel Biocare Holding AG, Zürich-Flughafen, Switzerland) Results: The augmented sites had a significant increase in the bone parameters at the desired grafted region. The mean gain in bone height as observed in CT Scan had revealed increased measurements from 5.80mm±0.98 to 10.20mm±1.68 at the sixth month evaluation. This was statistically significant (0.005). Clinically, no complications were observed during or after the surgical procedure. Conclusion: Within the limitations of this study, the Sinu lift system with a controlled working action resulted in high procedural success and this procedure may be an alternative to the currently used surgical methods. PMID:25954702

  9. An alternative maxillary sinus lift technique - sinu lift system.

    PubMed

    T, Parthasaradhi; B, Shivakumar; Kumar, T S S; Jain, Ashish R; P, Suganya

    2015-03-01

    Maxillary sinus augmentation surgical techniques have evolved greatly allowing successful placement of dental implants in the atrophic posterior maxillary region. The purpose of the present study is to evaluate the clinical and radiological outcomes and postoperative morbidity of sinus floor elevation procedures performed using the minimally invasive surgical technique the Sinu lift system. Sinus lift procedure was done using the sinu lift system by a transcrestal approach and bone augmentation was done on ten systemically healthy patients using β- tricalcium phosphate and platelet rich plasma mix. The study was evaluated upto six months period with bone related parameters being assessed at base line using CT scan, OPG and after six months the results were analysed using SPSS Version 18.0 software (p < 0.01 (0.005). Wilcoxson signed rank sum test was used to correlate between preoperative and postoperative measurements. Implant placements were done at the desired area of sinus augmentation with a two year follow up. (Nobel Biocare, Nobel Biocare Holding AG, Zürich-Flughafen, Switzerland) Results: The augmented sites had a significant increase in the bone parameters at the desired grafted region. The mean gain in bone height as observed in CT Scan had revealed increased measurements from 5.80mm±0.98 to 10.20mm±1.68 at the sixth month evaluation. This was statistically significant (0.005). Clinically, no complications were observed during or after the surgical procedure. Within the limitations of this study, the Sinu lift system with a controlled working action resulted in high procedural success and this procedure may be an alternative to the currently used surgical methods.

  10. Analysis of the Effects of Streamwise Lift Distribution on Sonic Boom Signature

    NASA Technical Reports Server (NTRS)

    Yoo, Seung Yeun (Paul)

    2010-01-01

    The streamwise lift distribution of a wing-canard-stabilator-body configuration was varied to study its effect on the near-field sonic boom signature. The investigation was carried out via solving the three-dimensional Euler equation with the OVERFLOW-2 flow solver. The computational meshes were created using the Chimera overset grid topology. The lift distribution was varied by first deflecting the canard then trimming the aircraft with the wing and the stabilator while maintaining constant lift coefficient of 0.05. A validation study using experimental results was also performed to determine required grid resolution and appropriate numerical scheme. A wide range of streamwise lift distribution was simulated. The result shows that the longitudinal wave propagation speed can be controlled through lift distribution thus controlling the shock coalescence.

  11. The effect of obesity on postural stability during a standardized lifting task.

    PubMed

    Pajoutan, Mojdeh; Xu, Xu; Cavuoto, Lora A

    2017-03-01

    The objective of this study was to assess the effect of obesity on postural stability during a standardized lifting task. Twelve young males, six obese and six non-obese, completed three replications of repeated six lifts (at a rate of six lifts per minutes) at two levels of loads (10% and 25% of capacity) crossed with two levels of orientation (0° and 45° from sagittal plane). Postural stability measures showed that center of pressure sway path and sway area were ∼21% and ∼53% lower with obesity, respectively. Additionally, frequency band of amplitude spectrum in the medial lateral direction at 0° lifting orientation was significantly lower with obesity. The results suggest that obesity, as measured by body mass index, does not impair balance control in healthy young males when lifting load is relative to the capacity.

  12. Influences on lifetime of wire ropes in traction lifts

    NASA Astrophysics Data System (ADS)

    Vogel, W.

    2016-05-01

    Traction lifts are complex systems with rotating and translating moving masses, springs and dampers and several system inputs from the lifts and the users. The wire ropes are essential mechanical elements. The mechanical properties of the ropes in use depend on the rope construction, the load situation, nonlinearities and the lift dimensions. The mechanical properties are important for the proper use in lifts and the ride quality. But first of all the wire ropes (for all other suspension means as well) have to satisfy the safety relevant requirements sufficient lifetime, reliable determination of discard and sufficient and limited traction capacity. The lifetime of the wire ropes better the number of trips until rope discard depends on a lot of parameters of the rope and the rope application eg use of plastic deflection sheaves and reverse bending layouts. New challenges for rope lifetime are resulting from the more or less open D/d-ratio limits possible by certificates concerning the examination of conformity by notified bodies. This paper will highlight the basics of wire rope technology, the endurance and lifetime of wire ropes running over sheaves, and the different influences from the ropes and more and more important from the lift application parameters. Very often underestimated are the influences of transport, storage, installation and maintenance. With this background we will lead over to the calculation methods of wire rope lifetime considering the actual findings of wire rope endurance research. We'll show in this paper new and innovative facts as the influence of rope length and size factor in the lifetime formular, the reduction of lifetime caused by traction grooves, the new model for the calculation in reverse bending operations and the statistically firmed possibilities for machine roomless lifts (MRL) under very small bending conditions.

  13. Quiet powered-lift propulsion

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Latest results of programs exploring new propulsion technology for powered-lift aircraft systems are presented. Topics discussed include results from the 'quiet clean short-haul experimental engine' program and progress reports on the 'quiet short-haul research aircraft' and 'tilt-rotor research aircraft' programs. In addition to these NASA programs, the Air Force AMST YC 14 and YC 15 programs were reviewed.

  14. Gluteal lift with subfascial implants.

    PubMed

    de la Peña-Salcedo, Jose Abel; Soto-Miranda, Miguel Angel; Vaquera-Guevara, Marcelo Osvaldo; Lopez-Salguero, Jose Fernando; Lavareda-Santana, Marco Antonio; Ledezma-Rodriguez, Jocelyn Celeste

    2013-06-01

    Gluteal enhancement surgery includes buttock implants, gluteal flaps, lipografting, and gluteal lifts. However, no information is available on the outcomes achievable using the gluteal lift combined with subfascial gluteal implants. A retrospective study was performed to analyze the outcomes of gluteal lift combined with subfascial gluteal implants performed during a 7-year period by a single surgeon at a single institution. During the study period, 114 patients (228 implants) ages 27-68 years (mean 47 years) were found. The follow-up period was 1-7 years (mean 4.5 years). The findings showed seroma in 11.4 % of the patients, hematoma in 5.26 %, minor wound dehiscence in 19.29 %, major wound dehiscence in 1.75 %, minor infection in 1.75 %, implant exposure in 0 %, capsular contracture Becker 3 and 4 in 3.5 %, implant rupture in 0 %, implant malposition in 5.25 %, long-term numbness of the buttock in 0 %, palpability of the implant in 0 %, implant rippling in 0 %, implant rupture in 0 %, wide scars in 41.2 %, need for secondary surgery in 26.31 %, and dissatisfaction with the final volume in 10.52 %. A patient satisfaction rate of 9.6 in 10 was found. The study showed that the gluteal lift combined with gluteal implants placed in the subfascial pocket provided good long-lasting results with an acceptable rate of complications, very high patient satisfaction, and easily concealed scars. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  15. Numerical simulation of lifting mechanism

    NASA Astrophysics Data System (ADS)

    Gebel, E. S.; Zhursenbaev, B. I.; Solomin, V. Yu.

    2012-11-01

    The article presents a method of kinematical synthesis of planar multilink linkage with adjustable closed loop, which is designed for a plane-parallel motion of the output lever and can be used as an actuator for lifting mechanism. Methods of kinematical synthesis and analysis are developed in this paper allow to design the scheme of mechanism that performs the given function of displacement of the output link, and to evaluate the kinematical characteristics of the designed layout.

  16. Generalised Eisenhart lift of the Toda chain

    SciTech Connect

    Cariglia, Marco; Gibbons, Gary

    2014-02-15

    The Toda chain of nearest neighbour interacting particles on a line can be described both in terms of geodesic motion on a manifold with one extra dimension, the Eisenhart lift, or in terms of geodesic motion in a symmetric space with several extra dimensions. We examine the relationship between these two realisations and discover that the symmetric space is a generalised, multi-particle Eisenhart lift of the original problem that reduces to the standard Eisenhart lift. Such generalised Eisenhart lift acts as an inverse Kaluza-Klein reduction, promoting coupling constants to momenta in higher dimension. In particular, isometries of the generalised lift metric correspond to energy preserving transformations that mix coordinates and coupling constants. A by-product of the analysis is that the lift of the Toda Lax pair can be used to construct higher rank Killing tensors for both the standard and generalised lift metrics.

  17. Lift enhancement by bats' dynamically changing wingspan

    PubMed Central

    Wang, Shizhao; Zhang, Xing; He, Guowei; Liu, Tianshu

    2015-01-01

    This paper elucidates the aerodynamic role of the dynamically changing wingspan in bat flight. Based on direct numerical simulations of the flow over a slow-flying bat, it is found that the dynamically changing wingspan can significantly enhance the lift. Further, an analysis of flow structures and lift decomposition reveal that the elevated vortex lift associated with the leading-edge vortices intensified by the dynamically changing wingspan considerably contributed to enhancement of the time-averaged lift. The nonlinear interaction between the dynamically changing wing and the vortical structures plays an important role in the lift enhancement of a flying bat in addition to the geometrical effect of changing the lifting-surface area in a flapping cycle. In addition, the dynamically changing wingspan leads to the higher efficiency in terms of generating lift for a given amount of the mechanical energy consumed in flight. PMID:26701882

  18. Individuals with low back pain breathe differently than healthy individuals during a lifting task.

    PubMed

    Hagins, Marshall; Lamberg, Eric M

    2011-03-01

    Case control, repeated-measures, experimental laboratory study. To determine if, during a whole-body lifting task, individuals with low back pain (LBP) breathe differently than age-matched controls. Breath control may be optimized to provide increased intersegmental control of the lumbar spine through the generation of intra-abdominal pressure. Consequently, impairments in respiratory and trunk muscle coordination during lifting tasks may contribute to the occurrence or maintenance of LBP. Participants without LBP (n = 30) were matched by gender and age with those presenting with chronic mechanical LBP (n = 32) of at least 1 year in duration. Participants completed a total of 8 self-paced lifts of a crate from the floor to a table, with the crate empty during 4 of the lifts and loaded to 25% of the participant's body weight during 4 of the lifts. The amount of volume in the lungs, measured as a percentage of the individual's vital capacity (%VC), was identified at 9 points during the lifting task. A 2 × 2 × 2 × 9 (group by gender by load by time) mixed-model analysis of covariance (ANCOVA), with age as the covariate, was used to identify differences among conditions and groups of %VC used during the lift. Individuals with LBP performed the lifting task with more volume in their lungs (48.2 %VC) than healthy peers (40.9 %VC). Age significantly affected %VC used during the lift: with increasing age, participants with LBP increased inspired volume and participants without LBP decreased inspired volume. Individuals with LBP performed a lifting task with more inhaled lung volume than individuals without LBP. These findings are consistent with the theoretical link between breath control, intra-abdominal pressure, and lumbar segmental control.

  19. Variable Lifting Index (VLI): A New Method for Evaluating Variable Lifting Tasks.

    PubMed

    Waters, Thomas; Occhipinti, Enrico; Colombini, Daniela; Alvarez-Casado, Enrique; Fox, Robert

    2016-08-01

    We seek to develop a new approach for analyzing the physical demands of highly variable lifting tasks through an adaptation of the Revised NIOSH (National Institute for Occupational Safety and Health) Lifting Equation (RNLE) into a Variable Lifting Index (VLI). There are many jobs that contain individual lifts that vary from lift to lift due to the task requirements. The NIOSH Lifting Equation is not suitable in its present form to analyze variable lifting tasks. In extending the prior work on the VLI, two procedures are presented to allow users to analyze variable lifting tasks. One approach involves the sampling of lifting tasks performed by a worker over a shift and the calculation of the Frequency Independent Lift Index (FILI) for each sampled lift and the aggregation of the FILI values into six categories. The Composite Lift Index (CLI) equation is used with lifting index (LI) category frequency data to calculate the VLI. The second approach employs a detailed systematic collection of lifting task data from production and/or organizational sources. The data are organized into simplified task parameter categories and further aggregated into six FILI categories, which also use the CLI equation to calculate the VLI. The two procedures will allow practitioners to systematically employ the VLI method to a variety of work situations where highly variable lifting tasks are performed. The scientific basis for the VLI procedure is similar to that for the CLI originally presented by NIOSH; however, the VLI method remains to be validated. The VLI method allows an analyst to assess highly variable manual lifting jobs in which the task characteristics vary from lift to lift during a shift. © 2015, Human Factors and Ergonomics Society.

  20. The relationship between maximal lifting capacity and maximum acceptable lift in strength-based soldiering tasks.

    PubMed

    Savage, Robert J; Best, Stuart A; Carstairs, Greg L; Ham, Daniel J

    2012-07-01

    Psychophysical assessments, such as the maximum acceptable lift, have been used to establish worker capability and set safe load limits for manual handling tasks in occupational settings. However, in military settings, in which task demand is set and capable workers must be selected, subjective measurements are inadequate, and maximal capacity testing must be used to assess lifting capability. The aim of this study was to establish and compare the relationship between maximal lifting capacity and a self-determined tolerable lifting limit, maximum acceptable lift, across a range of military-relevant lifting tasks. Seventy male soldiers (age 23.7 ± 6.1 years) from the Australian Army performed 7 strength-based lifting tasks to determine their maximum lifting capacity and maximum acceptable lift. Comparisons were performed to identify maximum acceptable lift relative to maximum lifting capacity for each individual task. Linear regression was used to identify the relationship across all tasks when the data were pooled. Strong correlations existed between all 7 lifting tasks (rrange = 0.87-0.96, p < 0.05). No differences were found in maximum acceptable lift relative to maximum lifting capacity across all tasks (p = 0.46). When data were pooled, maximum acceptable lift was equal to 84 ± 8% of the maximum lifting capacity. This study is the first to illustrate the strong and consistent relationship between maximum lifting capacity and maximum acceptable lift for multiple single lifting tasks. The relationship developed between these indices may be used to help assess self-selected manual handling capability through occupationally relevant maximal performance tests.

  1. The role of back muscle endurance, maximum force, balance and trunk rotation control regarding lifting capacity.

    PubMed

    Schenk, Peter; Klipstein, Andreas; Spillmann, Susanne; Strøyer, Jesper; Laubli, Thomas

    2006-01-01

    Evaluation of lifting capacity is widely used as a reliable instrument in order to evaluate maximal and safe lifting capacity. This is of importance in regard to planning rehabilitation programs and determining working ability. The aim of this study was to investigate the influence of basic functions on the lifting capacity measured by the progressive isoinertial lifting evaluation (PILE) and the functional capacity evaluation (FCE) tests in a lower (floor to waist) and an upper (waist to shoulder) setting and compare the two test constructs. Seventy-four female subjects without acute low back pain underwent an examination of their lifting capacities and the following basic functions: (1) strength and endurance of trunk muscles, (2) cardiovascular endurance, (3) trunk mobility and (4) coordination ability. A linear regression model was used to predict lifting capacity by means of the above-mentioned basic functions, where the F statistics of the variables had to be significant at the 0.05 level to remain in the model. Maximal force in flexion showed significant influence on the lifting capacity in both the PILE and the FCE in the lower, as well as in the upper, lifting task. Furthermore, there was a significant influence of cardiovascular endurance on the lower PILE and also of endurance in trunk flexion on the lower FCE. Additional inclusion of individual factors (age, height, weight, body mass index) into the regression model showed a highly significant association between body height and all lifting tasks. The r (2) of the original model used was 0.19/0.18 in the lower/upper FCE and 0.35/0.26 in the lower/upper PILE. The model r (2) increased after inclusion of these individual factors to between 0.3 and 0.4. The fact that only a limited part of the variance in the lifting capacities can be explained by the basic functions analyzed in this study confirms the assumption that factors not related to the basic functions studied, such as lifting technique and motor

  2. Abdominal lift for laparoscopic cholecystectomy.

    PubMed

    Gurusamy, Kurinchi Selvan; Koti, Rahul; Davidson, Brian R

    2013-08-31

    Laparoscopic cholecystectomy (key-hole removal of the gallbladder) is now the most often used method for treatment of symptomatic gallstones. Several cardiopulmonary changes (decreased cardiac output, pulmonary compliance, and increased peak airway pressure) occur during pneumoperitoneum, which is now introduced to allow laparoscopic cholecystectomy. These cardiopulmonary changes may not be tolerated in individuals with poor cardiopulmonary reserve. To assess the benefits and harms of abdominal wall lift compared to pneumoperitoneum in patients undergoing laparoscopic cholecystectomy. We searched the Cochrane Hepato-Biliary Group Controlled Trials Register, the Cochrane Central Register of Controlled Trials (CENTRAL) in The Cochrane Library, MEDLINE, EMBASE, and Science Citation Index Expanded until February 2013. We included all randomised clinical trials comparing abdominal wall lift (with or without pneumoperitoneum) versus pneumoperitoneum. We calculated the risk ratio (RR), rate ratio (RaR), or mean difference (MD) with 95% confidence intervals (CI) based on intention-to-treat analysis with both the fixed-effect and the random-effects models using the Review Manager (RevMan) software. For abdominal wall lift with pneumoperitoneum versus pneumoperitoneum, a total of 130 participants (all with low anaesthetic risk) scheduled for elective laparoscopic cholecystectomy were randomised in five trials to abdominal wall lift with pneumoperitoneum (n = 53) versus pneumoperitoneum only (n = 52). One trial which included 25 people did not state the number of participants in each group. All five trials had a high risk of bias. There was no mortality or conversion to open cholecystectomy in any of the participants in the trials that reported these outcomes. There was no significant difference in the rate of serious adverse events between the two groups (two trials; 2/29 events (0.069 events per person) versus 2/29 events (0.069 events per person); rate ratio 1.00; 95% CI 0

  3. Abdominal lift for laparoscopic cholecystectomy.

    PubMed

    Gurusamy, Kurinchi Selvan; Koti, Rahul; Samraj, Kumarakrishnan; Davidson, Brian R

    2012-05-16

    Laparoscopic cholecystectomy (key-hole removal of the gallbladder) is now the most often used method for treatment of symptomatic gallstones. Several cardiopulmonary changes (decreased cardiac output, pulmonary compliance, and increased peak airway pressure) occur during pneumoperitoneum, which is now introduced to allow laparoscopic cholecystectomy. These cardiopulmonary changes may not be tolerated in individuals with poor cardiopulmonary reserve. To assess the benefits and harms of abdominal wall lift compared with pneumoperitoneum in patients undergoing laparoscopic cholecystectomy. We searched the Cochrane Hepato-Biliary Group Controlled Trials Register, the Cochrane Central Register of Controlled Trials (CENTRAL) in The Cochrane Library, MEDLINE, EMBASE, and Science Citation Index Expanded until January 2012. We included all randomised clinical trials comparing abdominal wall lift (with or without pneumoperitoneum) versus pneumoperitoneum. We calculated the risk ratio (RR), rate ratio (RaR), or mean difference (MD) with 95% confidence intervals (CI) based on intention-to-treat analysis with both the fixed-effect and the random-effects models using RevMan software. For abdominal wall lift with pneumoperitoneum versus pneumoperitoneum, a total of 156 participants (all with low anaesthetic risk) who underwent elective laparoscopic cholecystectomy were randomised in six trials to abdominal wall lift with pneumoperitoneum (n = 65) versus pneumoperitoneum only (n = 66). One trial which included 25 patients did not state the number of patients in each group. All six trials had a high risk of bias. There was no mortality or conversion to open cholecystectomy in any of the patients in the trials that reported these outcomes. There was no significant difference in the rate of serious adverse events between the two groups (2 trials; 2/29 events (0.069 events per patient) versus 2/29 events (0.069 events per patient); rate ratio 1.00; 95% CI 0.17 to 5.77). None of the

  4. Analysis of the Effects of Streamwise Lift Distribution on Sonic Boom Signature

    NASA Technical Reports Server (NTRS)

    Yoo, Paul

    2013-01-01

    Investigation of sonic boom has been one of the major areas of study in aeronautics due to the benefits a low-boom aircraft has in both civilian and military applications. This work conducts a numerical analysis of the effects of streamwise lift distribution on the shock coalescence characteristics. A simple wing-canard-stabilator body model is used in the numerical simulation. The streamwise lift distribution is varied by fixing the canard at a deflection angle while trimming the aircraft with the wing and the stabilator at the desired lift coefficient. The lift and the pitching moment coefficients are computed using the Missile DATCOM v. 707. The flow field around the wing-canard- stabilator body model is resolved using the OVERFLOW-2 flow solver. Overset/ chimera grid topology is used to simplify the grid generation of various configurations representing different streamwise lift distributions. The numerical simulations are performed without viscosity unless it is required for numerical stability. All configurations are simulated at Mach 1.4, angle-of-attack of 1.50, lift coefficient of 0.05, and pitching moment coefficient of approximately 0. Four streamwise lift distribution configurations were tested.

  5. On the lift induced drag in viscous flows

    NASA Astrophysics Data System (ADS)

    Tognaccini, Renato; Marongiu, Claudio; Ueno, Makoto

    2012-11-01

    As stated by Spalart (JFM, 2008): ``An ambition which will have to wait is a rigorous definition of induced drag in viscous flows.'' The idea that there is a link between the aerodynamic force and the Lamb vector, defined as the cross product of fluid vorticity and velocity dates back to Prandtl. Saffman (``Vortex Dynamics,'' 1992) and, more recently, Wu J.-Z. et al. (JFM, 2007) suggested an expression of the lift induced drag in terms of vortex force (the volume integral of the Lamb vector). In this paper we analyze the steady incompressible flow around a 3D lifting body at high Reynolds numbers. The suggested connection between vortex force and induced drag is discussed in detail. In particular, a rigorous definition of the lift induced drag in viscous flows without ambiguities is proposed. A numerical experiment: the analysis of the flow around an elliptic wing will confirm the theoretical analysis. The aerodynamic force and its lift and drag components are computed by integration of the Lamb vector field as obtained by a numerical solution and will be compared with classical expressions.

  6. New and expected developments in artificial lift

    SciTech Connect

    Lea, J.F.; Winkler, H.W.

    1994-12-31

    Artificial lift is a broad subject. This paper discusses some of the new developments in the major areas of artificial lift. These are (1) beam lift, (2) electrical submersible pumping, (3) gas lift, (4) hydraulic pumping and (5) miscellaneous topics. The beam lift discussion concerns a new rod material, downhole measurements for rod loading, unit design and some miscellaneous topics. The ESP (Electrical Submersible Pump) section includes a discussion on solids handling, downhole sensor technology, new motor temperature limitations, motor efficiency, and other topics. The gas lift discussion includes mention of coiled tubing with gas lift valves internal, a surface controlled gas lift valve concept, and gas lift valve testing and modeling. Hydraulic pumping is used in many locations with deep pay and fairly small production rates. New hydraulic developments include a wider availability of power fluid pumps other than positive displacement pumps, and small jet pumps specifically designed for de-watering gas wells. Some miscellaneous developments include an insertable PC (progressing cavity) pump and improved plunger lift algorithms and equipment.

  7. Variable Lifting Index for Manual-Lifting Risk Assessment: A Preliminary Validation Study.

    PubMed

    Battevi, Natale; Pandolfi, Monica; Cortinovis, Ivan

    2016-08-01

    The aim of this study was to evaluate the efficacy of the new Variable Lifting Index (VLI) method, theoretically based on the Revised National Institute for Occupational Safety and Health [NIOSH] Lifting Equation (RNLE), in predicting the risk of acute low-back pain (LBP) in the past 12 months. A new risk variable termed the VLI for assessing variable manual lifting has been developed, but there has been no epidemiological study that evaluates the relationship between the VLI and LBP. A sample of 3,402 study participants from 16 companies in different industrial sectors was analyzed. Of the participants, 2,374 were in the risk exposure group involving manual materials handling (MMH), and 1,028 were in the control group without MMH. The VLI was calculated for each participant in the exposure group using a systematic approach. LBP information was collected by occupational physicians at the study sites. The risk of acute LBP was estimated by calculating the odds ratio (OR) between levels of the risk exposure and the control group using a logistic regression analysis. Both crude and adjusted ORs for body mass index, gender, and age were analyzed. Both crude and adjusted ORs showed a dose-response relationship. As the levels of VLI increased, the risk of LBP increased. This risk relationship existed when VLI was greater than 1. The VLI method can be used to assess the risk of acute LBP, although further studies are needed to confirm the outcome and to define better VLI categories. © 2016, Human Factors and Ergonomics Society.

  8. Lift enhancement by trapped vortex

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.

    1992-01-01

    The viewgraphs and discussion of lift enhancement by trapped vortex are provided. Efforts are continuously being made to find simple ways to convert wings of aircraft from an efficient cruise configuration to one that develops the high lift needed during landing and takeoff. The high-lift configurations studied here consist of conventional airfoils with a trapped vortex over the upper surface. The vortex is trapped by one or two vertical fences that serve as barriers to the oncoming stream and as reflection planes for the vortex and the sink that form a separation bubble on top of the airfoil. Since the full three-dimensional unsteady flow problem over the wing of an aircraft is so complicated that it is hard to get an understanding of the principles that govern the vortex trapping process, the analysis is restricted here to the flow field illustrated in the first slide. It is assumed that the flow field between the two end plates approximates a streamwise strip of the flow over a wing. The flow between the endplates and about the airfoil consists of a spanwise vortex located between the suction orifices in the endplates. The spanwise fence or spoiler located near the nose of the airfoil serves to form a separated flow region and a shear layer. The vorticity in the shear layer is concentrated into the vortex by withdrawal of fluid at the suction orifices. As the strength of the vortex increases with time, it eventually dominates the flow in the separated region so that a shear or vertical layer is no longer shed from the tip of the fence. At that point, the vortex strength is fixed and its location is such that all of the velocity contributions at its center sum to zero thereby making it an equilibrium point for the vortex. The results of a theoretical analysis of such an idealized flow field are described.

  9. Ultrasonically assisted face-lift.

    PubMed

    de la Peña, Jose Abel; Soto-Miranda, Miguel Angel; López-Salguero, José Fernando

    2012-08-01

    The face-lift procedure is one of the most skillful interventions performed by plastic surgeons. Ultrasonic energy is used to elevate the facial skin flap, which allows for preservation of vascular, lymphatic, and nervous structures, thereby decreasing the morbidity associated with this procedure. A retrospective study to compare the outcomes of ultrasound and non-ultrasound-assisted face-lifts is reported. All the procedures were performed at the Institute for Plastic Surgery. Each group consisted of 104 patients. Statistical analysis was performed to determine differences between the groups. The mean operating time was 4 h in the treatment group versus 4.2 h in the control group (p>0.05). The incidence of hematoma formation was 0.96% in the treatment group versus 2.4% in the control group (p<0.05). The incidence of flap necrosis was 0% in both groups. The duration of ecchymosis was 13 days in the experimental group versus 17.2 days in the control group (p<0.05). The duration of postoperative swelling was 17.4 days in the treatment group versus 20.4 days in the control group (p<0.05). As reported, 85% of patients in the treatment group were very satisfied, 14.42% were satisfied, 0% were mildly satisfied, and 0% were not satisfied. In the control group, 80.7% were very satisfied, 18.26% were satisfied, 0.96% were mildly satisfied, and 0% were not satisfied. According to Fisher's exact test, the p value for patient satisfaction exceeded 0.05%. The preservation of the blood and lymphatic vessels diminishes postoperative swelling and shortens the duration of ecchymosis considerably. The incidence of hematoma formation is lower than with a non-ultrasonic face-lift. This study failed to prove any statistically significant difference in operating time or patient satisfaction between the two groups.

  10. The effects of anthropometrics, lifting strength, and physical activities in disc degeneration.

    PubMed

    Videman, Tapio; Levälahti, Esko; Battié, Michele C

    2007-06-01

    A cross-sectional study design was used. The objective was to examine the influences of body anthropometrics, axial disc area, and lifting strength on disc degeneration and to compare these with the effects of lifetime physical demands and age. Although recent studies have shown that heredity is a dominant factor in disc degeneration, the common notion that occupational physical loading is the major risk factor persists. However, substantial variations in disc degeneration, particularly at the lowest lumbar levels, remain unexplained by heredity or occupational physical demands. Univariate methods and stepwise multiple regression modeling were used to estimate associations of body height, weight, fat content, axial disc area, isokinetic lifting performance, and lifetime routine physical activities at work and leisure with disc height narrowing and disc signal (in T2 images) based on lumbar MRIs. These data were available from a population sample of 600 men, 35 to 70 years of age. Lower disc signal, representing disc desiccation, was associated with higher age, lower body mass and lifting strength, and larger axial disc area. Of the variance in disc signal, age explained 8.0% (P < 0.001) and body weight/axial disc area, isokinetic lifting strength, and occupational lifting history added 3.9%, 2.3%, and 1.3%, respectively. Greater disc narrowing was associated with higher age, larger axial disc area, and higher occupational physical loading. Of the variance in disc narrowing, age accounted for 3.8% (P < 0.001); axial disc area and occupational loading added 1.9% (P < 0.004) and 1.3% (P < 0.007), respectively. Body weight, lifting strength, and axial disc area were more highly associated with disc degeneration than occupational and leisure physical activity histories, although all had modest influences. Furthermore, higher body mass, greater lifting strength, and heavier work were all associated with more disc height narrowing but less disc desiccation contrary to

  11. The vertical medial thigh lift.

    PubMed

    Capella, Joseph F

    2014-10-01

    This article discusses management of the post-weight loss thigh deformity. Beginning with an explanation of the soft tissue variables contributing to the thigh and medial thigh deformity in the postbariatric individual, the article describes the important elements of selecting and screening candidates for surgery and the ideal sequence of procedures that should be followed to optimize results in this patient population. A detailed step-by-step description of the author's technique for medial thigh lift is provided along with multiple examples of outcomes. Aftercare is reviewed along with potential complications and their management. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Maximum isoinertial lifting capabilities for different lifting ranges and container dimensions.

    PubMed

    Lee, Tzu-Hsien

    2005-05-01

    The aim of this study was to examine the effects of lifting range and container dimension on human maximum isoinertial lifting capability in the sagittal plane. Ten young and experienced lifters were tested for their maximum isoinertial lifting capabilities for 12 different lifting conditions (three lifting ranges x four container dimensions). The results showed that lifting range and container dimension significantly affected human maximum isoinertial lifting capability. The order for the highest to lowest lifting capability for the three lifting ranges was FK (from floor to knuckle height, 0-74 cm), FS (from floor to shoulder height, 0-141 cm) and KS (from knuckle height to shoulder height, 74-141 cm) regardless of the container dimension, and for the four container dimensions was 50 x 35 x 15 cm(3), 70 x 35 x 15 cm(3), 50 x 50 x 15 cm(3) and 70 x 50 x 15 cm(3) regardless of the lifting range. The mean(SD) maximum isoinertial lifting capability ranged from 29.3(3.3) kg for the combination of KS range and 70 x 50 x 15 cm(3) container to 53.2(5.7)kg for the combination of FK range and 50 x 35 x 15 cm(3) container. The results of this study can help our knowledge of human maximum isoinertial lifting capability and designing the upper limit of lifting weight.

  13. Training for lifting; an unresolved ergonomic issue?

    PubMed

    Sedgwick, A W; Gormley, J T

    1998-10-01

    The paper describes a nine year project on lifting training which included nine trans-Australia consensus conferences attended by more than 900 health professionals. Major outcomes were: (1) The essence of lifting work is the need for the performer to cope with variability in task, environment, and self, and the essence of lifting skill is therefore adaptability; (2) the semi-squat approach provides the safest and most effective basis for lifting training; (3) for lifting training to be effective, the basic principles of skill learning must be systematically applied, with adaptability as a specific goal; (4) physical work capacity (aerobic power, strength, endurance, joint mobility) is a decisive ingredient of safe and effective lifting and, in addition to skill learning, should be incorporated in the training of people engaging regularly in heavy manual work; (5) if effective compliance with recommended skilled behaviour is to be achieved, then training must apply the principles and methods appropriate to adult learning and behaviour modification.

  14. Influence of Lift Offset on Rotorcraft Performance

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2009-01-01

    The influence of lift offset on the performance of several rotorcraft configurations is explored. A lift-offset rotor, or advancing blade concept, is a hingeless rotor that can attain good efficiency at high speed by operating with more lift on the advancing side than on the retreating side of the rotor disk. The calculated performance capability of modern-technology coaxial rotors utilizing a lift offset is examined, including rotor performance optimized for hover and high-speed cruise. The ideal induced power loss of coaxial rotors in hover and twin rotors in forward flight is presented. The aerodynamic modeling requirements for performance calculations are evaluated, including wake and drag models for the high-speed flight condition. The influence of configuration on the performance of rotorcraft with lift-offset rotors is explored, considering tandem and side-by-side rotorcraft as well as wing-rotor lift share.

  15. Influence of Lift Offset on Rotorcraft Performance

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2008-01-01

    The influence of lift offset on the performance of several rotorcraft configurations is explored. A lift-offset rotor, or advancing blade concept, is a hingeless rotor that can attain good efficiency at high speed, by operating with more lift on the advancing side than on the retreating side of the rotor disk. The calculated performance capability of modern-technology coaxial rotors utilizing a lift offset is examined, including rotor performance optimized for hover and high-speed cruise. The ideal induced power loss of coaxial rotors in hover and twin rotors in forward flight is presented. The aerodynamic modeling requirements for performance calculations are evaluated, including wake and drag models for the high speed flight condition. The influence of configuration on the performance of rotorcraft with lift-offset rotors is explored, considering tandem and side-by-side rotorcraft as well as wing-rotor lift share.

  16. HSR High-Lift Technology Overview

    NASA Technical Reports Server (NTRS)

    Applin, Z. T.

    1999-01-01

    High-lift system performance will have a large impact on airplane noise and weight. Successful completion of PCD1 activities provided greater understanding of aerodynamic characteristics and configuration features important to high-lift system performance including: 1) Reynolds number effects (Ref. H); 2) Propulsion/airframe integration effects; and 3) Planform effects, canard/3-surface, alternate high-lift concepts, etc. PCD2 plans are aimed at achieving technology development performance goals and increasing technology readiness level for Technology Concept.

  17. Inducing Lift on Spherical Particles by Traveling Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin; Grugel, Richard N.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Gravity induced sedimentation of suspensions is a serious drawback to many materials and biotechnology processes, a factor that can, in principle, be overcome by utilizing an opposing Lorentz body force. In this work we demonstrate the utility of employing a traveling magnetic field (TMF) to induce a lifting force on particles dispersed in the fluid. Theoretically, a model has been developed to ascertain the net force, induced by TMF, acting on a spherical body as a function of the fluid medium's electrical conductivity and other parameters. Experimentally, the model is compared to optical observations of particle motion in the presence of TMF.

  18. Inducing Lift on Spherical Particles by Traveling Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin; Grugel, Richard N.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Gravity induced sedimentation of suspensions is a serious drawback to many materials and biotechnology processes, a factor that can, in principle, be overcome by utilizing an opposing Lorentz body force. In this work we demonstrate the utility of employing a traveling magnetic field (TMF) to induce a lifting force on particles dispersed in the fluid. Theoretically, a model has been developed to ascertain the net force, induced by TMF, acting on a spherical body as a function of the fluid medium's electrical conductivity and other parameters. Experimentally, the model is compared to optical observations of particle motion in the presence of TMF.

  19. Inducing Lift on Spherical Particles by Traveling Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin; Grugel, Richard N.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Gravity induced sedimentation of suspensions is a serious drawback to many materials and biotechnology processes, a factor that can, in principle, be overcome by utilizing an opposing Lorentz body force. In this work we demonstrate the utility of employing a traveling magnetic field (TMF) to induce a lifting force on particles dispersed in the fluid. Theoretically, a model has been developed to ascertain the net force, induced by TMF, acting on a spherical body as a function of the fluid medium's electrical conductivity and other parameters. Experimentally, the model is compared to optical observations of particle motion in the presence of TMF.

  20. The lift-fan aircraft: Lessons learned

    NASA Technical Reports Server (NTRS)

    Deckert, Wallace H.

    1995-01-01

    This report summarizes the highlights and results of a workshop held at NASA Ames Research Center in October 1992. The objective of the workshop was a thorough review of the lessons learned from past research on lift fans, and lift-fan aircraft, models, designs, and components. The scope included conceptual design studies, wind tunnel investigations, propulsion systems components, piloted simulation, flight of aircraft such as the SV-5A and SV-5B and a recent lift-fan aircraft development project. The report includes a brief summary of five technical presentations that addressed the subject The Lift-Fan Aircraft: Lessons Learned.

  1. Aerodynamic lift effect on satellite orbits

    NASA Technical Reports Server (NTRS)

    Karr, G. R.; Cleland, J. G.; Devries, L. L.

    1975-01-01

    Numerical quadrature is employed to obtain orbit perturbation results from the general perturbation equations. Both aerodynamic lift and drag forces are included in the analysis of the satellite orbit. An exponential atmosphere with and without atmospheric rotation is used. A comparison is made of the perturbations which are caused by atmospheric rotation with those caused by satellite aerodynamic effects. Results indicate that aerodynamic lift effects on the semi-major axis and orbit inclination can be of the same order as the effects of atmosphere rotation depending upon the orientation of the lift vector. The results reveal the importance of including aerodynamic lift effects in orbit perturbation analysis.

  2. Fuel Cell Powered Lift Truck

    SciTech Connect

    Moulden, Steve

    2015-08-20

    This project, entitled “Recovery Act: Fuel Cell-Powered Lift Truck Sysco (Houston) Fleet Deployment”, was in response to DOE funding opportunity announcement DE-PS36-08GO98009, Topic 7B, which promotes the deployment of fuel cell powered material handling equipment in large, multi-shift distribution centers. This project promoted large-volume commercialdeployments and helped to create a market pull for material handling equipment (MHE) powered fuel cell systems. Specific outcomes and benefits involved the proliferation of fuel cell systems in 5-to 20-kW lift trucks at a high-profile, real-world site that demonstrated the benefits of fuel cell technology and served as a focal point for other nascent customers. The project allowed for the creation of expertise in providing service and support for MHE fuel cell powered systems, growth of existing product manufacturing expertise, and promoted existing fuel cell system and component companies. The project also stimulated other MHE fleet conversions helping to speed the adoption of fuel cell systems and hydrogen fueling technology. This document also contains the lessons learned during the project in order to communicate the successes and difficulties experienced, which could potentially assist others planning similar projects.

  3. Hybrid Airships for Lift: A New Lift Paradigm and a Pragmatic Assessment of the Vehicle’s Key Operational Challenges

    DTIC Science & Technology

    2011-12-01

    required lift for flight, Hybrid Airships use a combination of buoyant lift (provided by a gas such as Helium), aerodynamic lift (generated by airflow...AIR FORCE FELLOWS AIR UNIVERSITY HYBRID AIRSHIPS FOR LIFT: A NEW LIFT PARADIGM AND A PRAGMATIC ASSESSMENT OF THE...00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE Hybrid Airships for Lift: A New Lift Paradigm And A Pragmatic Assessment Of The Vehicle’s Key

  4. Isolated neck-lifting procedure: isolated stork lift.

    PubMed

    Barbarino, Sheila C; Wu, Allan Y; Morrow, David M

    2013-04-01

    Many patients desire cosmetic improvement of neck laxity when consulting with a plastic surgeon about their face. Neck laxity and loss of the cervicomental angle can be due to multiple components of aging such as skin quality/elasticity, loss of platysma muscle tone, and submental fat accumulation. Traditionally, the procedure of choice for patients with an aging lower face and neck is a cervicofacial rhytidectomy. However, occasionally, a patient wishes to have no other facial surgery than an improvement of their excessive skin of the anterior, lateral, and/or posterior neck. In other instances, a patient may present with having had a face/neck-lifting procedure that left objectionable vertical/diagonal lines at the lateral neck. In both these instances, a surgeon should consider an isolated stork lift (ISL) procedure. An ISL procedure avoids and/or corrects problematic vertical/diagonal lateral neck folds by "walking" the excess skin flaps around the posterior inferior occipital hairline bilaterally, bringing the flaps together at the lateral and posterior neck, which sometimes involves a midline posterior dart excision of the dog ear. A patient presenting with excessive skin of the neck (anterior, lateral, and/or posterior) and/or residual vertical/diagonal skin folds is an excellent candidate for the ISL. The ISL procedure was performed on 273 patients over a 2-year period at The Morrow Institute. Patients were included if they had excessive skin of the anterior, lateral, and/or posterior neck and/or diagonal/vertical lateral bands and did not desire a full face-lifting procedure. Patients were excluded from this study if they would not accept having longer hair in order to cover the scar along the posterior inferior occipital hairline or a midline T-flap skin closure scar at the base of the posterior midline neck. Under a combination of local anesthesia and IV sedation, a postauricular face-lift incision was made that was extended in a circumoccipital fashion

  5. Computation of viscous transonic flow about a lifting airfoil

    NASA Technical Reports Server (NTRS)

    Walitt, L.; Liu, C. Y.

    1976-01-01

    The viscous transonic flow about a stationary body in free air was numerically investigated. The geometry chosen was a symmetric NACA 64A010 airfoil at a freestream Mach number of 0.8, a Reynolds number of 4 million based on chord, and angles of attack of 0 and 2 degrees. These conditions were such that, at 2 degrees incidence unsteady periodic motion was calculated along the aft portion of the airfoil and in its wake. Although no unsteady measurements were made for the NACA 64A010 airfoil at these flow conditions, interpolated steady measurements of lift, drag, and surface static pressures compared favorably with corresponding computed time-averaged lift, drag, and surface static pressures.

  6. 33 CFR 118.85 - Lights on vertical lift bridges.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Lights on vertical lift bridges... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.85 Lights on vertical lift bridges. (a) Lift span lights. The vertical lift span of every vertical lift bridge shall be lighted so that the center of the...

  7. 33 CFR 118.85 - Lights on vertical lift bridges.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Lights on vertical lift bridges... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.85 Lights on vertical lift bridges. (a) Lift span lights. The vertical lift span of every vertical lift bridge shall be lighted so that the center of the...

  8. 33 CFR 118.85 - Lights on vertical lift bridges.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Lights on vertical lift bridges... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.85 Lights on vertical lift bridges. (a) Lift span lights. The vertical lift span of every vertical lift bridge shall be lighted so that the center of the...

  9. 33 CFR 118.85 - Lights on vertical lift bridges.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Lights on vertical lift bridges... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.85 Lights on vertical lift bridges. (a) Lift span lights. The vertical lift span of every vertical lift bridge shall be lighted so that the center of the...

  10. 33 CFR 118.85 - Lights on vertical lift bridges.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Lights on vertical lift bridges... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.85 Lights on vertical lift bridges. (a) Lift span lights. The vertical lift span of every vertical lift bridge shall be lighted so that the center of the...

  11. Heavy-lift airship dynamics

    NASA Technical Reports Server (NTRS)

    Tischler, M. B.; Ringland, R. F.; Jex, H. R.

    1983-01-01

    The basic aerodynamic and dynamic properties of an example heavy-lift airship (HLA) configuration are analyzed using a nonlinear, multibody, 6-degrees-of-freedom digital simulation. The slung-payload model is described, and a preliminary analysis of the coupled vehicle-payload dynamics is presented. Trim calculations show the importance of control mixing selection and suggest performance deficiencies in crosswind stationkeeping for the unloaded example HLA. Numerically linearized dynamics of the unloaded vehicle exhibit a divergent yaw mode and an oscillatory pitch mode whose stability characteristic is sensitive to flight speed. An analysis of the vehicle-payload dynamics shows significant coupling of the payload dynamics with those of the basic HLA. It is shown that significant improvement in the vehicle's dynamic behavior can be achieved with the incorporation of a simple flight controller having proportional, rate, and integral-error feedbacks.

  12. What's new in artificial lift

    SciTech Connect

    Lea, J.F.; Winker, H.W.

    1989-05-01

    New developments might be expected to decline as oil, and thus equipment and service, prices decrease. However, there is no indication that this is occurring. In fact, several new and innovative developments are covered in this article. Of the more unique are a new geometry pumping unit and a hydraulic powered sucker and rod system. Other items described in this article include: New pump-off controller; Automatic balancing for air balanced pumping units; New rod couplings; New pump plunger; Sucker rod pulsation dampener; Stripper type BOP; Rod coupling tool; ESP cable protectors; New ESP motor; VSD communications interface; ESP gas separator; Portable hydraulic production test unit; Casing gas lift plunger; Production shut-of valve; Ceramic material for pump parts; Pressure transmitter; and New versatile packer.

  13. Lip Lifting: Unveiling Dental Beauty.

    PubMed

    Stanley, Kyle; Caligiuri, Matthew; Schlichting, Luís Henrique; Bazos, Panaghiotis K; Magne, Michel

    2017-01-01

    The focus for the achievement of complete success in the esthetic zone has traditionally been on addressing deficiencies of intraoral hard and soft tissue. Often, these deficiencies are accompanied by esthetic concerns regarding the lips that are routinely neglected by the dental team. A predictable plastic surgery technique - the lip lift - has been used for decades to enhance lip esthetics by shortening the senile upper lip to achieve a more youthful appearance. Over the years, this technique has been refined and used in many different ways, allowing its routine incorporation into full facial esthetic planning. Through restoration of the upper lip to its optimal position, the artistry of the dentist and dental technician can truly be appreciated in the rejuvenated smile. By the introduction of this minimally invasive surgical technique to the dental community, patients stand to benefit from a comprehensive orofacial approach to anterior dental esthetic planning.

  14. Improving Grading Consistency through Grade Lift Reporting

    ERIC Educational Resources Information Center

    Millet, Ido

    2010-01-01

    We define Grade Lift as the difference between average class grade and average cumulative class GPA. This metric provides an assessment of how lenient the grading was for a given course. In 2006, we started providing faculty members individualized Grade Lift reports reflecting their position relative to an anonymously plotted school-wide…

  15. Training Guidelines: Fork Lift Truck Driving.

    ERIC Educational Resources Information Center

    Ceramics, Glass, and Mineral Products Industry Training Board, Harrow (England).

    This manual of operative training guidelines for fork lift truck driving has been developed by the Ceramics, Glass and Mineral Products Industry Training Board (Great Britain) in consultation with a number of firms which manufacture fork lift trucks or which already have training--programs for their use. The purpose of the guidelines is to assist…

  16. Soccer Ball Lift Coefficients via Trajectory Analysis

    ERIC Educational Resources Information Center

    Goff, John Eric; Carre, Matt J.

    2010-01-01

    We performed experiments in which a soccer ball was launched from a machine while two high-speed cameras recorded portions of the trajectory. Using the trajectory data and published drag coefficients, we extracted lift coefficients for a soccer ball. We determined lift coefficients for a wide range of spin parameters, including several spin…

  17. 49 CFR 37.203 - Lift maintenance.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 1 2012-10-01 2012-10-01 false Lift maintenance. 37.203 Section 37.203 Transportation Office of the Secretary of Transportation TRANSPORTATION SERVICES FOR INDIVIDUALS WITH DISABILITIES (ADA) Over-the-Road Buses (OTRBs) § 37.203 Lift maintenance. (a) The entity shall establish...

  18. 49 CFR 37.203 - Lift maintenance.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 1 2014-10-01 2014-10-01 false Lift maintenance. 37.203 Section 37.203 Transportation Office of the Secretary of Transportation TRANSPORTATION SERVICES FOR INDIVIDUALS WITH DISABILITIES (ADA) Over-the-Road Buses (OTRBs) § 37.203 Lift maintenance. (a) The entity shall establish...

  19. 49 CFR 37.203 - Lift maintenance.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 1 2013-10-01 2013-10-01 false Lift maintenance. 37.203 Section 37.203 Transportation Office of the Secretary of Transportation TRANSPORTATION SERVICES FOR INDIVIDUALS WITH DISABILITIES (ADA) Over-the-Road Buses (OTRBs) § 37.203 Lift maintenance. (a) The entity shall establish...

  20. 49 CFR 37.203 - Lift maintenance.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 1 2011-10-01 2011-10-01 false Lift maintenance. 37.203 Section 37.203 Transportation Office of the Secretary of Transportation TRANSPORTATION SERVICES FOR INDIVIDUALS WITH DISABILITIES (ADA) Over-the-Road Buses (OTRBs) § 37.203 Lift maintenance. (a) The entity shall establish...

  1. Retractable End Plates for Aircraft Lifting Surfaces

    NASA Technical Reports Server (NTRS)

    Harvey, W. D.; Mangalam, S. M.

    1985-01-01

    End plates and winglets improve aerodynamic characteristics of aircraft wings and other fixed lifting surfaces. Retractable end plates automatically actuated by same shaft that deflects lifting surface and require little or no extra power and absolutely no control input from cockpit. Besides being modular in construction, easily fitted to any existing aircraft design with only minor modifications.

  2. 29 CFR 1926.453 - Aerial lifts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... American National Standards for “Vehicle Mounted Elevating and Rotating Work Platforms,” ANSI A92.2-1969, including appendix. Aerial lifts acquired before January 22, 1973 which do not meet the requirements of ANSI... conform with the applicable design and construction requirements of ANSI A92.2-1969. Aerial lifts include...

  3. 29 CFR 1926.453 - Aerial lifts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... American National Standards for “Vehicle Mounted Elevating and Rotating Work Platforms,” ANSI A92.2-1969, including appendix. Aerial lifts acquired before January 22, 1973 which do not meet the requirements of ANSI... conform with the applicable design and construction requirements of ANSI A92.2-1969. Aerial lifts include...

  4. Soccer Ball Lift Coefficients via Trajectory Analysis

    ERIC Educational Resources Information Center

    Goff, John Eric; Carre, Matt J.

    2010-01-01

    We performed experiments in which a soccer ball was launched from a machine while two high-speed cameras recorded portions of the trajectory. Using the trajectory data and published drag coefficients, we extracted lift coefficients for a soccer ball. We determined lift coefficients for a wide range of spin parameters, including several spin…

  5. Hydraulic lift in a neotropical savanna.

    Treesearch

    M.Z. Moreira; F.G. Scholz; S.J. Bucci; L.S. Sternberg; G. Goldstein; F.C. Meinzer; A.C. Franco

    2003-01-01

    We report hydraulic lift in the sawmlia vegetation of central Brazil (Cerrado). Both heat-pulse measurements and isotopic (deuterium) labelling were used to determine whether hydraulic lift occurred in two common species, and whether neighbouring small shrubs and trees were utilizing this water.Both techniques showed water uptake by tap-...

  6. Measuring lifting forces in rock climbing: effect of hold size and fingertip structure.

    PubMed

    Bourne, Roger; Halaki, Mark; Vanwanseele, Benedicte; Clarke, Jillian

    2011-02-01

    This study investigates the hypothesis that shallow edge lifting force in high-level rock climbers is more strongly related to fingertip soft tissue anatomy than to absolute strength or strength to body mass ratio. Fifteen experienced climbers performed repeated maximal single hand lifting exercises on rectangular sandstone edges of depth 2.8, 4.3, 5.8, 7.3, and 12.5 mm while standing on a force measurement platform. Fingertip soft tissue dimensions were assessed by ultrasound imaging. Shallow edge (2.8 and 4.3 mm) lifting force, in newtons or body mass normalized, was uncorrelated with deep edge (12.5 mm) lifting force (r < .1). There was a positive correlation (r = .65, p < .05) between lifting force in newtons at 2.8 mm edge depth and tip of bone to tip of finger pulp measurement (r < .37 at other edge depths). The results confirm the common perception that maximum lifting force on a deep edge ("strength") does not predict maximum force production on very shallow edges. It is suggested that increased fingertip pulp dimension or plasticity may enable increased deformation of the fingertip, increasing the skin to rock contact area on very shallow edges, and thus increase the limit of force production. The study also confirmed previous assumptions of left/right force symmetry in climbers.

  7. Design and analysis of lifting tool assemblies to lift different engine block

    NASA Astrophysics Data System (ADS)

    Sawant, Arpana; Deshmukh, Nilaj N.; Chauhan, Santosh; Dabhadkar, Mandar; Deore, Rupali

    2017-07-01

    Engines block are required to be lifted from one place to another while they are being processed. The human effort required for this purpose is more and also the engine block may get damaged if it is not handled properly. There is a need for designing a proper lifting tool which will be able to conveniently lift the engine block and place it at the desired position without any accident and damage to the engine block. In the present study lifting tool assemblies are designed and analyzed in such way that it may lift different categories of engine blocks. The lifting tool assembly consists of lifting plate, lifting ring, cap screws and washers. A parametric model and assembly of Lifting tool is done in 3D modelling software CREO 2.0 and analysis is carried out in ANSYS Workbench 16.0. A test block of weight equivalent to that of an engine block is considered for the purpose of analysis. In the preliminary study, without washer the stresses obtained on the lifting tool were more than the safety margin. In the present design, washers were used with appropriate dimensions which helps to bring down the stresses on the lifting tool within the safety margin. Analysis is carried out to verify that tool design meets the ASME BTH-1 required safety margin.

  8. View of West end of central lift span truss web ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of West end of central lift span truss web of Tensaw River Bridge, showing web brace of lift girder superstructure, looking west - Tensaw River Lift Bridge, Spanning Tensaw River at U.S. Highway 90, Mobile, Mobile County, AL

  9. Weight lifted in strength training predicts bone change in postmenopausal women.

    PubMed

    Cussler, Ellen C; Lohman, Timothy G; Going, Scott B; Houtkooper, Linda B; Metcalfe, Lauve L; Flint-Wagner, Hilary G; Harris, Robin B; Teixeira, Pedro J

    2003-01-01

    The aim of this study was to examine the relationship between weight lifted in 1 yr of progressive strength training and change in bone mineral density (BMD) in a group of calcium-replete, postmenopausal women. As part of a large clinical trial, 140 calcium-supplemented women, 44-66 yr old, were randomized to a 1-yr progressive strength-training program. Half of the women were using hormone replacement therapy. Three times weekly, subjects completed two sets of six to eight repetitions in eight core exercises at 70-80% of one repetition maximum. BMD was measured at baseline and 1 yr. In multiple linear regression, the increase in femur trochanter (FT) BMD was positively related to total weight lifted (0.001 g.cm (-2)) for a SD of weight lifted, P< 0.01) after adjusting for age, baseline factors, HRT status, weight change, cohort, and fitness center. The weighted squats showed the strongest (0.002 g.cm(-2)) for a SD of weight lifted, P< 0.001), whereas the back extension exhibited the weakest (0.0005 g.cm(-2)) for a SD of weight lifted, P< 0.26) association with change in FT BMD. The amount of weight lifted in the weighted march exercise was significantly related to total body BMD (0.0006 g.cm(-2)) for a SD of weight lifted, P< 0.01). The associations between weight lifted and BMD for the femur neck or lumbar spine were not significant. Evidence of a linear relationship between BMD change and total and exercise-specific weight lifted in a 1-yr strength-training program reinforces the positive association between this type of exercise and BMD in postmenopausal women.

  10. The validity and interrater reliability of video-based posture observation during asymmetric lifting tasks.

    PubMed

    Xu, Xu; Chang, Chien-Chi; Faber, Gert S; Kingma, Idsart; Dennerlein, Jack T

    2011-08-01

    The objective was to evaluate the validity and interrater reliability of a video-based posture observation method for the major body segment angles during asymmetric lifting tasks. Observational methods have been widely used as an awkward-posture assessment tool for ergonomics studies. Previous research proposed a video-based posture observation method with estimation of major segment angles during lifting tasks. However, it was limited to symmetric lifting tasks. The current study extended this method to asymmetric lifting tasks and investigated the validity and the interrater reliability. Various asymmetric lifting tasks were performed in a laboratory while a side-view video camera recorded the lift, and the body segment angles were measured directly by a motion tracking system. For this study, 10 raters estimated seven major segment angles using a customized program that played back the video recording, thus allowing users to enter segment angles. The validity of estimated segment angles was evaluated in relation to measured segment angles. Interrater reliability was assessed among the raters. For all the segment angles except trunk lateral bending, the estimated segment angles were strongly correlated with the measured segment angles (r > .8), and the intraclass correlation coefficient was greater than 0.75. The proposed observational method was able to provide a robust estimation of major segment angles for asymmetric lifting tasks based on side-view video clips. The estimated segment angles were consistent among raters. This method can be used for assessing posture during asymmetric lifting tasks. It also supports developing a video-based rapid joint loading estimation method.

  11. Formal optimization of hovering performance using free wake lifting surface theory

    NASA Technical Reports Server (NTRS)

    Chung, S. Y.

    1986-01-01

    Free wake techniques for performance prediction and optimization of hovering rotor are discussed. The influence functions due to vortex ring, vortex cylinder, and source or vortex sheets are presented. The vortex core sizes of rotor wake vortices are calculated and their importance is discussed. Lifting body theory for finite thickness body is developed for pressure calculation, and hence performance prediction of hovering rotors. Numerical optimization technique based on free wake lifting line theory is presented and discussed. It is demonstrated that formal optimization can be used with the implicit and nonlinear objective or cost function such as the performance of hovering rotors as used in this report.

  12. THE IMPORTANCE OF NEGATIVE ACCELERATION OF THE LOAD IN FREE-STYLE LIFTING.

    PubMed

    Trafimow, Jordan; Xaygnaraj, Joseph; Trafimow, David; Aruin, Alexander S

    2015-08-01

    Lifters may use negative acceleration in lifting a very light load. Body kinematic data were recorded in 10 participants lifting a 114 g box. Vertical position and acceleration of the center of mass and angle of the thigh to a vertical line were calculated. Acceleration data between the positions of the body when the thighs were horizontal and as the knees extended to an angle of 45° indicated that negative acceleration was present at 68.9% of time points, more than predicted by chance.

  13. An experimental study of the lift, drag and static longitudinal stability for a three lifting surface configuration

    NASA Technical Reports Server (NTRS)

    Ostowari, C.; Naik, D.

    1986-01-01

    The experimental procedure and aerodynamic force and moment measurements for wind tunnel testing of the three lifting surface configuration (TLC) are described. The influence of nonelliptical lift distributions on lift, drag, and static longitudinal stability are examined; graphs of the lift coefficient versus angle of attack, the pitching moment coefficient, drag coefficient, and lift to drag ratio versus lift coefficient are provided. The TLC data are compared with the conventional tail-aft configuration and the canard-wing configuration; it is concluded that the TLC has better lift and high-lift drag characteristics, lift to drag ratio, and zero-lift moments than the other two configurations. The effects of variations in forward and tail wind incidence angles, gap, stagger, and forward wind span on the drag, lift, longitudinal stability, and zero-lift moments of the configuration are studied.

  14. Lift-Enhancing Tabs on Multielement Airfoils

    NASA Technical Reports Server (NTRS)

    Ross, James C.; Storms, Bruce L.; Carrannanto, Paul G.

    1995-01-01

    The use of flat-plate tabs (similar to Gurney flaps) to enhance the lift of multielement airfoils is extended here by placing them on the pressure side and near the trailing edge of the main element rather than just on the furthest downstream wing element. The tabs studied range in height from 0.125 to 1.25% of the airfoil reference chord. In practice, such tabs would be retracted when the high-lift system is stowed. The effectiveness of the concept was demonstrated experimentally and computationally on a two-dimensional NACA 63(sub 2)-215 Mod B airfoil with a single-slotted, 30%-chord flap. Both the experiments and computations showed that the tabs significantly increase the lift at a given angle of attack and the maximum lift coefficient of the airfoil. The computational results showed that the increased lift was a result of additional turning of the flow by the tab that reduced or eliminated now separation on the flap. The best configuration tested, a 0.5%-chord tab placed 0.5% chord upstream of the trailing edge of the main element, increased the maximum lift coefficient of the airfoil by 12% and the maximum lift-to-drag ratio by 40%.

  15. Modeling lift operations with SASmacr Simulation Studio

    NASA Astrophysics Data System (ADS)

    Kar, Leow Soo

    2016-10-01

    Lifts or elevators are an essential part of multistorey buildings which provide vertical transportation for its occupants. In large and high-rise apartment buildings, its occupants are permanent, while in buildings, like hospitals or office blocks, the occupants are temporary or users of the buildings. They come in to work or to visit, and thus, the population of such buildings are much higher than those in residential apartments. It is common these days that large office blocks or hospitals have at least 8 to 10 lifts serving its population. In order to optimize the level of service performance, different transportation schemes are devised to control the lift operations. For example, one lift may be assigned to solely service the even floors and another solely for the odd floors, etc. In this paper, a basic lift system is modelled using SAS Simulation Studio to study the effect of factors such as the number of floors, capacity of the lift car, arrival rate and exit rate of passengers at each floor, peak and off peak periods on the system performance. The simulation is applied to a real lift operation in Sunway College's North Building to validate the model.

  16. Advanced wind turbine with lift cancelling aileron for shutdown

    DOEpatents

    Coleman, Clint; Juengst, Theresa M.; Zuteck, Michael D.

    1996-06-18

    An advanced aileron configuration for wind turbine rotors featuring an independent, lift generating aileron connected to the rotor blade. The aileron has an airfoil profile which is inverted relative to the airfoil profile of the main section of the rotor blade. The inverted airfoil profile of the aileron allows the aileron to be used for strong positive control of the rotation of the rotor while deflected to angles within a control range of angles. The aileron functions as a separate, lift generating body when deflected to angles within a shutdown range of angles, generating lift with a component acting in the direction opposite the direction of rotation of the rotor. Thus, the aileron can be used to shut down rotation of the rotor. The profile of the aileron further allows the center of rotation to be located within the envelope of the aileron, at or near the centers of pressure and mass of the aileron. The location of the center of rotation optimizes aerodynamically and gyroscopically induced hinge moments and provides a fail safe configuration.

  17. Biomechanical comparison of isokinetic lifting and free lifting when applied to chronic low back pain rehabilitation.

    PubMed

    Bouilland, S; Loslever, P; Lepoutre, F X

    2002-03-01

    The study compares free and isokinetic lifting using a multivariate statistical analysis. Each of the 13 male subjects performed three free lifts and three isokinetic lifts using a CYBEX LIFTASK. The measurement variables were obtained from a 3D video system, two force plates and two strain-gauge transducers. Coupling of fuzzy space-time windowing and multiple correspondence analysis was used to show the links between the variables and the differences between the experimental situations. Isokinetic lifting had almost no points in common with free-lifting, but there was a similar range of extension for the different joints. Most free-lifting strategies could not be used in isokinetic lifting, as constraints between the subject and his environment were different. The main drawback of the isokinetic lifting was due to the necessity for individuals to reach the machine speed, yielding high transient efforts. The maximum vertical effort at the L5/S1 joint was about 1600, 1500 and 1400N for low, medium and high speed, whereas it was lower than 1300N, irrespective of the load, during free lifting. In the context of chronic low back pain rehabilitation, movement strategies used in free lifting could not be relearnt using an isokinetic machine. A better understanding of the common points and differences between isokinetic movement and free movement could help rehabilitation physicians to plan rehabilitation programmes, taking advantage of each kind of movement.

  18. Secondary lift for magnetically levitated vehicles

    DOEpatents

    Cooper, Richard K.

    1976-01-01

    A high-speed terrestrial vehicle that is magnetically levitated by means of magnets which are used to induce eddy currents in a continuous electrically conductive nonferromagnetic track to produce magnetic images that repel the inducing magnet to provide primary lift for the vehicle. The magnets are arranged so that adjacent ones have their fields in opposite directions and the magnets are spaced apart a distance that provides a secondary lift between each magnet and the adjacent magnet's image, the secondary lift being maximized by optimal spacing of the magnets.

  19. Geometry program for aerodynamic lifting surface theory

    NASA Technical Reports Server (NTRS)

    Medan, R. T.

    1973-01-01

    A computer program that provides the geometry and boundary conditions appropriate for an analysis of a lifting, thin wing with control surfaces in linearized, subsonic, steady flow is presented. The kernel function method lifting surface theory is applied. The data which is generated by the program is stored on disk files or tapes for later use by programs which calculate an influence matrix, plot the wing planform, and evaluate the loads on the wing. In addition to processing data for subsequent use in a lifting surface analysis, the program is useful for computing area and mean geometric chords of the wing and control surfaces.

  20. HSCT high-lift technology requirements

    NASA Technical Reports Server (NTRS)

    Antani, D. L.; Morgenstern, J. M.

    1992-01-01

    The viewgraphs and discussion of high lift needs and related aerodynamic goals established in system studies are described. The goals are presented for the takeoff, approach, and subsonic climb and cruise modes. The status of the related high lift databases and available design and analysis methods are described. Various high lift research and technology areas for future work including innovative concepts verification, flap design, computational fluid dynamics (CFD) calibration and application, high Reynolds number testing, subsonic/transonic flap optimization, and flight testing are described.

  1. Lift and thrust generation by a butterfly-like 3D flapping wing model

    NASA Astrophysics Data System (ADS)

    Suzuki, Kosuke; Inamuro, Takaji

    2013-11-01

    The flapping flight of tiny insects such as a butterfly is of fundamental interest not only in biology itself but also in its practical use for the development of micro air vehicles. It is known that a butterfly flaps downward for generating lift force and backward for generating thrust force. In this study, we consider a simple butterfly-like 3D flapping wing model whose body is a thin rod, wings are rigid and rectangular, and wing motion is simplified. We investigate the lift and thrust generation by the butterfly-like flapping wing model by using the immersed boundary-lattice Boltzmann method. Firstly, we compute the lift and thrust forces when the body of the model is fixed for Reynolds numbers in the range of 50 - 1000. In addition, we evaluate the supportable mass for each Reynolds number by using the computed lift force. Secondly, we simulate the free flight where the body can move translationally but cannot rotate. As results, we find that the evaluated supportable mass can be supported even in the free flight, and the wing model with the mass and the Reynolds number of a fruit fly can go upward against the gravity. Finally, we simulate the effect of the rotation of the body. As results, we find that the body has a large pitching motion and consequently gets off-balance.

  2. Does the personal lift-assist device affect the local dynamic stability of the spine during lifting?

    PubMed

    Graham, Ryan B; Sadler, Erin M; Stevenson, Joan M

    2011-02-03

    The personal lift-assist device (PLAD) is an on-body ergonomic aid that reduces low back physical demands through the restorative moment of an external spring element, which possesses a mechanical advantage over the erector spinae. Although the PLAD has proven effective at reducing low back muscular demand, spinal moments, and localized muscular fatigue during laboratory and industrial tasks, the effects of the device on the neuromuscular control of spinal stability during lifting have yet to be assessed. Thirty healthy subjects (15M, 15F) performed repetitive lifting for three minutes, at a rate of 10 lifts per minute, with and without the PLAD. Maximum finite-time Lyapunov exponents, representing short-term (λ(max-s)) and long-term (λ(max-l)) divergence were calculated from the measured trunk kinematics to estimate the local dynamic stability of the lumbar spine. Using a mixed-design repeated-measures ANOVA, it was determined that wearing the PLAD did not significantly change λ(max-s) (μ(NP)=0.335, μ(P)=0.321, p=0.225), but did significantly reduce λ(max-l) (μ(NP)=0.0024, μ(P)=-0.0011, p=0.014, η(2)=0.197). There were no between-subject effects of sex, or significant interactions (p>0.720). The present results indicated that λ(max-s) was not statistically different between the device conditions, but that the PLAD significantly reduced λ(max-l) to a negative (stable) value. This shows that subjects' neuromuscular systems were able to respond to local perturbations more effectively when wearing the device, reflecting a more stable control of spinal movements. These findings are important when recommending the PLAD for long-term industrial or clinical use. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. A lifting surface theory in rotational flow

    NASA Technical Reports Server (NTRS)

    Shiau, M. J.; Lan, C. E.

    1983-01-01

    The partial differential equation for small disturbance steady rotational flow in three dimensions is solved through an integral equation approach. The solution is obtained by using the method of weighted residuals. Specific applications are directed to wings in nonuniform subsonic parallel streams with velocity varying in vertical and spanwise directions and to airfoils in nonuniform freestream. Comparison with limited known results indicates that the present method is reasonably accurate. Numerical results for the lifting pressure of airfoil, lift, induced drag, and pitching moments of airfoil, lift, induced drag, and pitching moments of elliptic, rectangular, and delta wings in a jet, wake, or monotonic sheared stream are presented. It is shown that, in addition to the effect of local dynamic pressures, a positive velocity gradient tends to enhance the lift.

  4. Experimental determination of baseball spin and lift.

    PubMed

    Alaways, L W; Hubbard, M

    2001-05-01

    The aim of this study was to develop a new method for the determination of lift on spinning baseballs. Inertial trajectories of (a) ball surface markers during the first metre of flight and (b) the centre of mass trajectory near home-plate were measured in a pitch using high-speed video. A theoretical model was developed, incorporating aerodynamic Magnus-Robins lift, drag and cross forces, which predicts the centre of mass and marker trajectories. Parameters including initial conditions and aerodynamic coefficients were estimated iteratively by minimizing the error between predicted and measured trajectories. We compare the resulting lift coefficients and spin parameter values with those of previous studies. Lift on four-seam pitches can be as much as three times that of two-seam pitches, although this disparity is reduced for spin parameters greater than 0.4.

  5. Heavy Lift & Propulsion Technology (HL&PT)

    NASA Image and Video Library

    Cris Guidi delivers a presentation from the Heavy Lift & Propulsion Technology (HL&PT) study team on May 25, 2010, at the NASA Exploration Enterprise Workshop held in Galveston, TX. The purpose of ...

  6. Bernoulli's Law and Aerodynamic Lifting Force.

    ERIC Educational Resources Information Center

    Weltner, Klaus

    1990-01-01

    Explains the lifting force based on Bernoulli's law and as a reaction force. Discusses the interrelation of both explanations. Considers accelerations in line with stream lines and perpendicular to stream lines. (YP)

  7. Mars Reconnaissance Orbiter MRO Lifts Off

    NASA Image and Video Library

    2005-08-12

    Atlas V launch vehicle, 19 stories tall, with a two-ton NASA Mars Reconnaissance Orbiter MRO on top, lifts off the pad on Launch Complex 41 at Cape Canaveral Air Force Station in Florida on Aug. 12, 2005.

  8. Effects of Psychophysical Lifting Training on Maximal Repetitive Lifting Capacity.

    DTIC Science & Technology

    1987-12-01

    Estimation from Skinfold Thicknesses ; Measurements on 481 Men and Women Aged from 16 to 72 Years. Br. J. Nutr. 32:77-96 (1974). 5. Teves, M.A., J.M...weight=76.3 * 11.5 kg and percent body fat=14.1 * 4.7%. Percent body fat was determined from the sum of four skinfold measurements ’V’s 4 p.1 1g...outlined in Table I. During week 1 descriptive measures of muscular strength and endurance, aerobic capacity and anaerobic power were made. Adequate

  9. Motor-Evoked Potentials in the Lower Back Are Modulated by Visual Perception of Lifted Weight

    PubMed Central

    Behrendt, Frank; de Lussanet, Marc H. E.; Zentgraf, Karen; Zschorlich, Volker R.

    2016-01-01

    Facilitation of the primary motor cortex (M1) during the mere observation of an action is highly congruent with the observed action itself. This congruency comprises several features of the executed action such as somatotopy and temporal coding. Studies using reach-grasp-lift paradigms showed that the muscle-specific facilitation of the observer’s motor system reflects the degree of grip force exerted in an observed hand action. The weight judgment of a lifted object during action observation is an easy task which is the case for hand actions as well as for lifting boxes from the ground. Here we investigated whether the cortical representation in M1 for lumbar back muscles is modulated due to the observation of a whole-body lifting movement as it was shown for hand action. We used transcranial magnetic stimulation (TMS) to measure the corticospinal excitability of the m. erector spinae (ES) while subjects visually observed the recorded sequences of a person lifting boxes of different weights from the floor. Consistent with the results regarding hand action the present study reveals a differential modulation of corticospinal excitability despite the relatively small M1 representation of the back also for lifting actions that mainly involve the lower back musculature. PMID:27336751

  10. Motor-Evoked Potentials in the Lower Back Are Modulated by Visual Perception of Lifted Weight.

    PubMed

    Behrendt, Frank; de Lussanet, Marc H E; Zentgraf, Karen; Zschorlich, Volker R

    2016-01-01

    Facilitation of the primary motor cortex (M1) during the mere observation of an action is highly congruent with the observed action itself. This congruency comprises several features of the executed action such as somatotopy and temporal coding. Studies using reach-grasp-lift paradigms showed that the muscle-specific facilitation of the observer's motor system reflects the degree of grip force exerted in an observed hand action. The weight judgment of a lifted object during action observation is an easy task which is the case for hand actions as well as for lifting boxes from the ground. Here we investigated whether the cortical representation in M1 for lumbar back muscles is modulated due to the observation of a whole-body lifting movement as it was shown for hand action. We used transcranial magnetic stimulation (TMS) to measure the corticospinal excitability of the m. erector spinae (ES) while subjects visually observed the recorded sequences of a person lifting boxes of different weights from the floor. Consistent with the results regarding hand action the present study reveals a differential modulation of corticospinal excitability despite the relatively small M1 representation of the back also for lifting actions that mainly involve the lower back musculature.

  11. The Effect of Lifting Speed on Cumulative and Peak Biomechanical Loading for Symmetric Lifting Tasks

    PubMed Central

    Greenland, Kasey O.; Merryweather, Andrew S.; Bloswick, Donald S.

    2013-01-01

    Background To determine the influence of lifting speed and type on peak and cumulative back compressive force (BCF) and shoulder moment (SM) loads during symmetric lifting. Another aim of the study was to compare static and dynamic lifting models. Methods Ten male participants performed a floor-to-shoulder, floor-to-waist, and waist-to-shoulder lift at three different speeds [slow (0.34 m/s), medium (0.44 m/s), and fast (0.64 m/s)], and with two different loads [light (2.25 kg) and heavy (9 kg)]. Two-dimensional kinematics and kinetics were determined. A three-way repeated measures analysis of variance was used to calculate peak and cumulative loading of BCF and SM for light and heavy loads. Results Peak BCF was significantly different between slow and fast lifting speeds (p < 0.001), with a mean difference of 20% between fast and slow lifts. The cumulative loading of BCF and SM was significantly different between fast and slow lifting speeds (p < 0.001), with mean differences ≥80%. Conclusion Based on peak values, BCF is highest for fast speeds, but the BCF cumulative loading is highest for slow speeds, with the largest difference between fast and slow lifts. This may imply that a slow lifting speed is at least as hazardous as a fast lifting speed. It is important to consider the duration of lift when determining risks for back and shoulder injuries due to lifting and that peak values alone are likely not sufficient. PMID:23961334

  12. Liftings and stresses for planar periodic frameworks.

    PubMed

    Borcea, Ciprian; Streinu, Ileana

    2015-06-01

    We formulate and prove a periodic analog of Maxwell's theorem relating stressed planar frameworks and their liftings to polyhedral surfaces with spherical topology. We use our lifting theorem to prove deformation and rigidity-theoretic properties for planar periodic pseudo-triangulations, generalizing features known for their finite counterparts. These properties are then applied to questions originating in mathematical crystallography and materials science, concerning planar periodic auxetic structures and ultrarigid periodic frameworks.

  13. Reduction of wing lift by the drag

    NASA Technical Reports Server (NTRS)

    Betz, A; Lotz, J

    1932-01-01

    Drag and loss of lift of a wing are attributable to the same cause, wake formation, thus indicating that there is some relation between both. The analysis of measurements on Joukowsky sections revealed a typical course of curves for the interdependence between drag and loss of lift. The shape of the curves apparently depends quite regularly on the mean camber and on the thickness of the profile.

  14. Liftings and stresses for planar periodic frameworks

    PubMed Central

    Borcea, Ciprian; Streinu, Ileana

    2015-01-01

    We formulate and prove a periodic analog of Maxwell’s theorem relating stressed planar frameworks and their liftings to polyhedral surfaces with spherical topology. We use our lifting theorem to prove deformation and rigidity-theoretic properties for planar periodic pseudo-triangulations, generalizing features known for their finite counterparts. These properties are then applied to questions originating in mathematical crystallography and materials science, concerning planar periodic auxetic structures and ultrarigid periodic frameworks. PMID:26973370

  15. Integrated lift/drag controller for aircraft

    NASA Technical Reports Server (NTRS)

    Olcott, J. W.; Seckel, E.; Ellis, D. R. (Inventor)

    1974-01-01

    A system for altering the lift/drag characteristics of powered aircraft to provide a safe means of glide path control includes a control device integrated for coordination action with the aircraft throttle. Such lift/drag alteration devices as spoilers, dive brakes, and the like are actuated by manual operation of a single lever coupled with the throttle for integrating, blending or coordinating power control. Improper operation of the controller is inhibited by safety mechanisms.

  16. Evaluation of the age-related changes in movement smoothness in the lower extremity joints during lifting.

    PubMed

    Sakata, Kiyoshi; Kogure, Akira; Hosoda, Masataka; Isozaki, Koji; Masuda, Tadashi; Morita, Sadao

    2010-01-01

    The purpose of this study was to analyze age-related movement smoothness changes in the lower extremity joints during load lifting. A total of 10 young and 13 elderly subjects participated in the study. Infrared reflective markers were attached to body landmarks in each subject. While the subjects stood on force plates and lifted a box, the marker displacements and ground reaction forces were measured using a 3D motion analysis system. The jerk square mean value (JSM) was defined as the lower extremity joint movement smoothness index during lifting. JSM represented the average of the square of the joint angle third derivative value, according to the jerk third derivative of the position data. Each subject's JSM values were calculated for the hip, knee and ankle joints. Movement smoothness appeared to decrease as JSM increased. Multiple regression analyses were performed for dependent variables (hip, knee and ankle joint JSM values) and independent variables (age, hand grip strength, sex difference and lifting duration). The level of significance was set at p<0.05. For the hip joint JSM, the regression coefficient for age was significantly positive and that for lifting duration was significantly negative. For the knee joint JSM, the regression coefficient for lifting duration was significantly negative. For the ankle joint JSM, the regression coefficients for age and hand grip strength were significantly positive and that for lifting duration was significantly negative. These results suggest that movement smoothness in the hip and ankle joints during lifting decreases with advancing age.

  17. Novice Lifters Exhibit A More Kyphotic Lifting Posture Than Experienced Lifters In Straight-Leg Lifting

    PubMed Central

    Riley, A.E.; Craig, T.D.; Sharma, N.K.; Billinger, S.A.; Wilson, S.E.

    2015-01-01

    As torso flexion and repetitive lifting are known risk factors for low back pain and injury, it is important to investigate lifting techniques that might reduce injury during repetitive lifting. By normalizing lumbar posture to a subject’s range of motion (ROM), as a function of torso flexion, this research examined when subjects approached their range of motion limits during dynamic lifting tasks. For this study, it was hypothesized that experienced lifters would maintain a more neutral lumbar angle relative to their range of motion, while novice lifters would approach the limits of their lumbar ROM during the extension phase of a straight-leg lift. The results show a statistically significant difference in lifting patterns for these two groups supporting this hypothesis. The novice group maintained a much more kyphotic lumbar angle for both the flexion (74% of the lumbar angle ROM) and extension phases (86% of the lumbar angle ROM) of the lifting cycle, while the experienced group retained a more neutral curvature throughout the entire lifting cycle (37% of lumbar angle ROM in flexion and 48% of lumbar angle ROM in extension). By approaching the limits of their range of motion, the novice lifters could be at greater risk of injury by placing greater loads on the supporting soft tissues of the spine. Future research should examine whether training subjects to assume more neutral postures during lifting could indeed lower injury risks. PMID:26077846

  18. Novice lifters exhibit a more kyphotic lifting posture than experienced lifters in straight-leg lifting.

    PubMed

    Riley, A E; Craig, T D; Sharma, N K; Billinger, S A; Wilson, S E

    2015-07-16

    As torso flexion and repetitive lifting are known risk factors for low back pain and injury, it is important to investigate lifting techniques that might reduce injury during repetitive lifting. By normalizing lumbar posture to a subject's range of motion (ROM), as a function of torso flexion, this research examined when subjects approached their range of motion limits during dynamic lifting tasks. For this study, it was hypothesized that experienced lifters would maintain a more neutral lumbar angle relative to their range of motion, while novice lifters would approach the limits of their lumbar ROM during the extension phase of a straight-leg lift. The results show a statistically significant difference in lifting patterns for these two groups supporting this hypothesis. The novice group maintained a much more kyphotic lumbar angle for both the flexion (74% of the lumbar angle ROM) and extension phases (86% of the lumbar angle ROM) of the lifting cycle, while the experienced group retained a more neutral curvature throughout the entire lifting cycle (37% of lumbar angle ROM in flexion and 48% of lumbar angle ROM in extension). By approaching the limits of their range of motion, the novice lifters could be at greater risk of injury by placing greater loads on the supporting soft tissues of the spine. Future research should examine whether training subjects to assume more neutral postures during lifting could indeed lower injury risks. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. The effect of asymmetry on psychophysical lifting capacity for three lifting types.

    PubMed

    Han, B; Stobbe, T J; Hobbs, G R

    2005-03-15

    The effect of asymmetry on a person's lifting capacity was investigated using the psychophysical approach. Ten male college students lifted a box from pallet height (15 cm) to conveyor height (75 cm) at a frequency of one and five lifts/min. Three types of asymmetric lifting tasks (step-turn, middle twist and twist) were studied using 90 and 180 degrees task angles. Lifting capacity reductions for middle twist and twist at a 90 degrees asymmetric angle were about one-half of the 30% reduction that would be calculated by the 1991 National Institute for Occupational Safety & Health (NIOSH) lifting equation. The lifting capacity reduction for step-turn at 180 degrees was 14.9%, although that reduction cannot be calculated in the NIOSH equation. The middle twist lifting capacity was greatest among the three types at a 90 degrees task angle. The reductions for the middle twist and step-turn were not proportional to the task angle. This is contrary to the proportional reduction in the NIOSH lifting equation. Heart rate did not increase with an increase in task angle. Based on the results of this research, a different approach to assigning the asymmetric multiplier is proposed. This approach includes a task angle (as opposed to asymmetric angle) of up to 180 degrees.

  20. Buttock Lifting with Polypropylene Strips.

    PubMed

    Ballivian Rico, José; Esteche, Atilio; Hanke, Carlos José Ramírez; Ribeiro, Ricardo Cavalcanti

    2016-04-01

    The purpose of this study was to evaluate the results of gluteal suspension with polypropylene strips. Ninety healthy female patients between the ages of 20 and 50 years (mean, 26 years), who wished to remodel their buttocks from December 2004 to February 2013 were studied retrospectively. All 90 patients were treated with 2 strips of polypropylene on each buttock using the following procedures: 27 (30 %) patients were suspended with polypropylene strips; 63 (70 %) patients were treated with tumescent liposuction in the sacral "V", lower back, supragluteal regions, and flanks to improve buttocks contour (aspirated volume of fat from 350 to 800 cc); 16 (18 %) patients underwent fat grafting in the subcutaneous and intramuscular layers (up to 300 cc in each buttock to increase volume); 5 (6 %) patients received implants to increase volume; and 4 (4.4 %) patients underwent removal and relocation of intramuscular gluteal implants to improve esthetics. Over an 8-year period, 90 female patients underwent gluteal suspension surgeries. Good esthetic results without complications were obtained in 75 of 90 (84 %) cases. Complications occurred in 15 of 90 (16.6 %) patients, including strip removal due to postoperative pain in 1 (1.1 %) patient, and seroma in both subgluteal sulci in 3 (3.3 %) patients. The results of this study performed in 90 patients over 8 years showed that the suspension with polypropylene strips performed as a single procedure or in combination with other cosmetic methods helps to enhance and lift ptosed gluteal and paragluteal areas. This journal requires that the authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.

  1. Production automation system for gas lift wells

    SciTech Connect

    Cooksey, A.; Pool, M.

    1995-12-31

    Economic conditions in the gas and oil industry have necessitated not only reductions in manpower and capital expenditure but also optimization of existing facilities. The approach that appears to offer the most viability for satisfying these needs is system automation. For this reason, technology in gas lift operation has directed its attention toward the development of modular systems that can automate operations at each wellhead and platform. Intelligent controllers can be used (1) with centralized master station direction or (2) as stand-alone products for automating immediate response to preset conditional parameters. In addition to reducing manpower requirements, intelligent controllers will further enhance gas lift operation by helping to increase the efficiency of continuous-flow gas lift operations. In addition, they can be used to automate load shedding that results from lift gas fluctuations. With automated systems, operators can now set up field-wide programs that provide optimum use of available lift gas with minimal manpower; this supports the operational direction encouraged by the economic climate of today`s oilfield. Production rates increase when normal gas lift flow rate set-point control is maintained at each well. In the optimization system described in this paper, the set point changes can be manually entered at the wellhead controller or from a central master station.

  2. Influence of Physical Therapists' Kinesiophobic Beliefs on Lifting Capacity in Healthy Adults.

    PubMed

    Lakke, Sandra E; Soer, Remko; Krijnen, Wim P; van der Schans, Cees P; Reneman, Michiel F; Geertzen, Jan H B

    2015-09-01

    Physical therapists' recommendations to patients to avoid daily physical activity can be influenced by the therapists' kinesiophobic beliefs. Little is known about the amount of influence of a physical therapist's kinesiophobic beliefs on a patient's actual lifting capacity during a lifting test. The objective of this study was to determine the influence of physical therapists' kinesiophobic beliefs on lifting capacity in healthy people. A blinded, cluster-randomized cross-sectional study was performed. The participants (n=256; 105 male, 151 female) were physical therapist students who performed a lifting capacity test. Examiners (n=24) were selected from second-year physical therapist students. Participants in group A (n=124) were tested in the presence of an examiner with high scores on the Tampa Scale of Kinesiophobia for health care providers (TSK-HC), and those in group B (n=132) were tested in the presence of an examiner with low scores on the TSK-HC. Mixed-model analyses were performed on lifting capacity to test for possible (interacting) effects. Mean lifting capacity was 32.1 kg (SD=13.6) in group A and 39.6 kg (SD=16.4) in group B. Mixed-model analyses revealed that after controlling for sex, body weight, self-efficacy, and the interaction between the examiners' and participants' kinesiophobic beliefs, the influence of examiners' kinesiophobic beliefs significantly reduced lifting capacity by 14.4 kg in participants with kinesiophobic beliefs and 8.0 kg in those without kinesiophobic beliefs. Generalizability to physical therapists and patients with pain should be studied. Physical therapists' kinesiophobic beliefs negatively influence lifting capacity of healthy adults. During everyday clinical practice, physical therapists should be aware of the influence of their kinesiophobic beliefs on patients' functional ability. © 2015 American Physical Therapy Association.

  3. Assessment of fall-arrest systems for scissor lift operators: computer modeling and manikin drop testing.

    PubMed

    Pan, Christopher S; Powers, John R; Hartsell, Jared J; Harris, James R; Wimer, Bryan M; Dong, Renguang G; Wu, John Z

    2012-06-01

    The current study is intended to evaluate the stability of a scissor lift and the performance of various fall-arrest harnesses/lanyards during drop/fall-arrest conditions and to quantify the dynamic loading to the head/ neck caused by fall-arrest forces. No data exist that establish the efficacy of fall-arrest systems for use on scissor lifts or the injury potential from the fall incidents using a fall-arrest system. The authors developed a multibody dynamic model of the scissor lift and a human lift operator model using ADAMS and LifeMOD Biomechanics Human Modeler. They evaluated lift stability for four fall-arrest system products and quantified biomechanical impacts on operators during drop/fall arrest, using manikin drop tests. Test conditions were constrained to flat surfaces to isolate the effect of manikin-lanyard interaction. The fully extended scissor lift maintained structural and dynamic stability for all manikin drop test conditions. The maximum arrest forces from the harnesses/lanyards were all within the limits of ANSI Z359.1. The dynamic loading in the lower neck during the fall impact reached a level that is typically observed in automobile crash tests, indicating a potential injury risk for vulnerable participants. Fall-arrest systems may function as an effective mechanism for fall injury protection for operators of scissor lifts. However, operators may be subjected to significant biomechanical loadings on the lower neck during fall impact. Results suggest that scissor lifts retain stability under test conditions approximating human falls from predefined distances but injury could occur to vulnerable body structures.

  4. Lower-limb extensor power and lifting characteristics in disabled elders.

    PubMed

    Dancewicz, Teresa M; Krebs, David E; McGibbon, Chris A

    2003-01-01

    Few reports address lifting in disabled elders. Resistance training may facilitate function by improving coordination and muscular recruitment in common lifting tasks. Subjects were considered "functionally limited" if they reported a limitation in at least 1 of 9 possible functional areas listed on the Short-Form Health Survey physical function scale (SF-36), excluding the vigorous activity item. Eighty-nine functionally limited elders (60.3 to 89.8 years old) consented to participate in an intervention trial consisting of a 6-month in-home video-facilitated resistance exercise program using elastic bands. Biomechanical variables (leg extensor power, work, squared jerk), temporal outcomes (lift time and time to peak leg powers), and leg extensor strength were analyzed with the use of analysis of variance (ANOVA) between the (1) experimental group versus control group and the (2) subgroup of the weakest third of subjects (pretest leg extensor strength as percent of body weight [BW]). The experimental group had significant improvements in strength in knee extension (16.7%) and hip extension (20.5%). Resistance-trained weak subjects significantly increased hip extension strength compared to controls. A trend toward improved performance in lifting--decreased total lift time--was noted in the resistance-trained subjects. Significant correlations were found between total leg extension power, total leg extension strength, total work, and lift time. Resistance-trained disabled elders demonstrated strength benefits and several trends consistent with improved coordination and more efficient lifting. Leg-muscle power was related to better functional performance in lifting.

  5. 49 CFR 178.811 - Bottom lift test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Bottom lift test. (a) General. The bottom lift test must be conducted for the qualification of all IBC.... (c) Test method. All IBC design types must be raised and lowered twice by a lift truck with the forks... 49 Transportation 3 2011-10-01 2011-10-01 false Bottom lift test. 178.811 Section...

  6. 49 CFR 178.975 - Top lift test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Packagings § 178.975 Top lift test. (a) General. The top lift test must be conducted for the qualification of... distributed. (c) Test method. (1) A Large Packaging must be lifted in the manner for which it is designed... 49 Transportation 3 2013-10-01 2013-10-01 false Top lift test. 178.975 Section...

  7. 49 CFR 178.811 - Bottom lift test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... evenly distributed. (c) Test method. All IBC design types must be raised and lowered twice by a lift... 49 Transportation 2 2010-10-01 2010-10-01 false Bottom lift test. 178.811 Section 178.811... Testing of IBCs § 178.811 Bottom lift test. (a) General. The bottom lift test must be conducted for...

  8. 49 CFR 178.811 - Bottom lift test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Bottom lift test. (a) General. The bottom lift test must be conducted for the qualification of all IBC.... (c) Test method. All IBC design types must be raised and lowered twice by a lift truck with the forks... 49 Transportation 3 2013-10-01 2013-10-01 false Bottom lift test. 178.811 Section...

  9. 49 CFR 178.812 - Top lift test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Top lift test. 178.812 Section 178.812... Testing of IBCs § 178.812 Top lift test. (a) General. The top lift test must be conducted for the.... (b) Special preparation for the top lift test. (1) Metal, rigid plastic, and composite IBC design...

  10. 14 CFR 25.697 - Lift and drag devices, controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Lift and drag devices, controls. 25.697....697 Lift and drag devices, controls. (a) Each lift device control must be designed so that the pilots....101(d). Lift and drag devices must maintain the selected positions, except for movement produced by an...

  11. 49 CFR 178.975 - Top lift test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Top lift test. 178.975 Section 178.975... Testing of Large Packagings § 178.975 Top lift test. (a) General. The top lift test must be conducted for... Large Packagings, from the side. (b) Special preparation for the top lift test. (1) Metal and rigid...

  12. 49 CFR 178.970 - Bottom lift test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Bottom lift test. 178.970 Section 178.970... Testing of Large Packagings § 178.970 Bottom lift test. (a) General. The bottom lift test must be...) Special preparation for the bottom lift test. The Large Packaging must be loaded to 1.25 times its maximum...

  13. 49 CFR 178.812 - Top lift test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... preparation for the top lift test. (1) Metal, rigid plastic, and composite IBC design types must be loaded to... 49 Transportation 3 2013-10-01 2013-10-01 false Top lift test. 178.812 Section 178.812... Top lift test. (a) General. The top lift test must be conducted for the qualification of all...

  14. 49 CFR 178.812 - Top lift test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Top lift test. 178.812 Section 178.812... Top lift test. (a) General. The top lift test must be conducted for the qualification of all IBC design types designed to be lifted from the top or, for flexible IBCs, from the side. (b)...

  15. 49 CFR 178.975 - Top lift test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Top lift test. 178.975 Section 178.975... Packagings § 178.975 Top lift test. (a) General. The top lift test must be conducted for the qualification of all of Large Packagings design types to be lifted from the top or, for flexible Large Packagings,...

  16. The Selection of a Van Lift or a Scooter.

    ERIC Educational Resources Information Center

    Stevens, John H.

    1990-01-01

    This newsletter issue describes 3-wheeled scooters and van lifts that can assist a person with a disability to drive independently or have access to transportation. The section on van lifts compares hydraulic lifts and electric lifts, lists manufacturers, and offers an "assessment quiz" outlining factors to consider in selecting a van…

  17. Wind Tunnel Testing of Powered Lift, All-Wing STOL Model

    NASA Technical Reports Server (NTRS)

    Collins, Scott W.; Westra, Bryan W.; Lin, John C.; Jones, Gregory S.; Zeune, Cal H.

    2008-01-01

    Short take-off and landing (STOL) systems can offer significant capabilities to warfighters and, for civil operators thriving on maximizing efficiencies they can improve airspace use while containing noise within airport environments. In order to provide data for next generation systems, a wind tunnel test of an all-wing cruise efficient, short take-off and landing (CE STOL) configuration was conducted in the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) 14- by 22-foot Subsonic Wind Tunnel. The test s purpose was to mature the aerodynamic aspects of an integrated powered lift system within an advanced mobility configuration capable of CE STOL. The full-span model made use of steady flap blowing and a lifting centerbody to achieve high lift coefficients. The test occurred during April through June of 2007 and included objectives for advancing the state-of-the-art of powered lift testing through gathering force and moment data, on-body pressure data, and off-body flow field measurements during automatically controlled blowing conditions. Data were obtained for variations in model configuration, angles of attack and sideslip, blowing coefficient, and height above ground. The database produced by this effort is being used to advance design techniques and computational tools for developing systems with integrated powered lift technologies.

  18. Three-dimensional flow and lift characteristics of a hovering ruby-throated hummingbird.

    PubMed

    Song, Jialei; Luo, Haoxiang; Hedrick, Tyson L

    2014-09-06

    A three-dimensional computational fluid dynamics simulation is performed for a ruby-throated hummingbird (Archilochus colubris) in hovering flight. Realistic wing kinematics are adopted in the numerical model by reconstructing the wing motion from high-speed imaging data of the bird. Lift history and the three-dimensional flow pattern around the wing in full stroke cycles are captured in the simulation. Significant asymmetry is observed for lift production within a stroke cycle. In particular, the downstroke generates about 2.5 times as much vertical force as the upstroke, a result that confirms the estimate based on the measurement of the circulation in a previous experimental study. Associated with lift production is the similar power imbalance between the two half strokes. Further analysis shows that in addition to the angle of attack, wing velocity and surface area, drag-based force and wing-wake interaction also contribute significantly to the lift asymmetry. Though the wing-wake interaction could be beneficial for lift enhancement, the isolated stroke simulation shows that this benefit is buried by other opposing effects, e.g. presence of downwash. The leading-edge vortex is stable during the downstroke but may shed during the upstroke. Finally, the full-body simulation result shows that the effects of wing-wing interaction and wing-body interaction are small. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  19. Three-dimensional flow and lift characteristics of a hovering ruby-throated hummingbird

    PubMed Central

    Song, Jialei; Luo, Haoxiang; Hedrick, Tyson L.

    2014-01-01

    A three-dimensional computational fluid dynamics simulation is performed for a ruby-throated hummingbird (Archilochus colubris) in hovering flight. Realistic wing kinematics are adopted in the numerical model by reconstructing the wing motion from high-speed imaging data of the bird. Lift history and the three-dimensional flow pattern around the wing in full stroke cycles are captured in the simulation. Significant asymmetry is observed for lift production within a stroke cycle. In particular, the downstroke generates about 2.5 times as much vertical force as the upstroke, a result that confirms the estimate based on the measurement of the circulation in a previous experimental study. Associated with lift production is the similar power imbalance between the two half strokes. Further analysis shows that in addition to the angle of attack, wing velocity and surface area, drag-based force and wing–wake interaction also contribute significantly to the lift asymmetry. Though the wing–wake interaction could be beneficial for lift enhancement, the isolated stroke simulation shows that this benefit is buried by other opposing effects, e.g. presence of downwash. The leading-edge vortex is stable during the downstroke but may shed during the upstroke. Finally, the full-body simulation result shows that the effects of wing–wing interaction and wing–body interaction are small. PMID:25008082

  20. Project Plan for Vertical Lift Machine

    SciTech Connect

    Ellsworth, G F

    2002-08-05

    This document describes the Project Plan for the development and manufacture of a Vertical Lift Machine. It is assumed by this project plan that the Vertical Lift Machine will be developed, designed, manufactured, and tested by a qualified vendor. LLNL will retain review and approval authority for each step given in this project plan. The Vertical Lift Machine is a single linear axis positioning device capable of lifting objects vertically at controlled rates and positioning them repeatedly at predetermined heights, in relation to other objects suspended from above, for high neutron multiplication experiments. Operation of the machine during the experiments is done remotely. The lift mechanism shall accommodate various platforms (tables) that support the objects to be raised. A frame will support additional subassemblies from above such that the lower subassembly can be raised close to and/or interface with those above. The structure must be stiff and motion of the table linear such that radial alignment is maintained (e.g. concentricity). The safe position for the Vertical Lift Machine is the lift mechanism fully retracted with the subassemblies fully separated. The machine shall reside in this position when not in use. It must return to this safe condition from any position upon failure of power sources, open safety interlocks, or operator initiated SCRAM. The Vertical Lift Machine shall have the capability of return to the safe position with no externally applied power. The Vertical Lift Machine shall have dual operator interfaces, one near the machine and another located in a remote control room. Conventional single key, key-lock switching shall be implemented to lock out the control interface not in use. The interface at the machine will be used for testing and ''dry running'' experimental setup(s) with inert subassemblies (i.e. Setup Mode). The remote interface shall provide full control and data recording capability (i.e. Assembly Mode). The control system

  1. Lifting teams in health care facilities: a literature review.

    PubMed

    Haiduven, Donna

    2003-05-01

    1. Manual lifting and transfer activities are job tasks frequently associated with back injuries in nursing personnel. One approach with potential to decrease these injuries is the lifting team. 2. In program evaluations completed to date, there have been numerous benefits and several limitations attributed to use of lifting teams in health care facilities. 3. Benefits of lifting teams include reductions in lost time workdays, restricted workdays, workers' compensation claims, and injuries to lifting team members; satisfaction of patients, staff, and lifting team members; and capacity of the lifting team to absorb the majority of high risk lifts and transfers on shifts in which they operate. 4. Lifting teams may not be appropriate for all settings, require infrastructure and lifting team equipment to support their use, and require careful consideration related to staffing. However, when their use is appropriate, efforts to overcome their limitations can be accomplished with careful evaluation of outcome measures and indicators.

  2. Modification of the Douglas Neumann program to improve the efficiency of predicting component interference and high lift characteristics

    NASA Technical Reports Server (NTRS)

    Bristow, D. R.; Grose, G. G.

    1978-01-01

    The Douglas Neumann method for low-speed potential flow on arbitrary three-dimensional lifting bodies was modified by substituting the combined source and doublet surface paneling based on Green's identity for the original source panels. Numerical studies show improved accuracy and stability for thin lifting surfaces, permitting reduced panel number for high-lift devices and supercritical airfoil sections. The accuracy of flow in concave corners is improved. A method of airfoil section design for a given pressure distribution, based on Green's identity, was demonstrated. The program uses panels on the body surface with constant source strength and parabolic distribution of doublet strength, and a doublet sheet on the wake. The program is written for the CDC CYBER 175 computer. Results of calculations are presented for isolated bodies, wings, wing-body combinations, and internal flow.

  3. Facial thread lifting with suture suspension.

    PubMed

    Tavares, Joana de Pinho; Oliveira, Carlos Augusto Costa Pires; Torres, Rodolfo Prado; Bahmad, Fayez

    2017-05-09

    The increased interest in minimally-invasive treatments, such as the thread lifting, with lower risk of complications, minimum length of time away from work and effectiveness in correcting ptosis and aging characteristics has led many specialists to adopt this technique, but many doubts about its safety and effectiveness still limit its overall use. To analyze data published in the literature on the durability of results, their effectiveness, safety, and risk of serious adverse events associated with procedures using several types of threading sutures. Literature review using the key words "thread lift", "barbed suture", "suture suspension" and "APTOS". Due to the scarcity of literature, recent reports of facial lifting using threads were also selected, complemented with bibliographical references. The first outcomes of facial lifting with barbed sutures remain inconclusive. Adverse events may occur, although they are mostly minor, self-limiting, and short-lived. The data on the maximum effect of the correction, the durability of results, and the consequences of the long-term suture stay are yet to be clarified. Interest in thread lifting is currently high, but this review suggests that it should not yet be adopted as an alternative to rhytidectomy. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  4. Experimental Study of Lift-Generated Vortices

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.; Nixon, David (Technical Monitor)

    1998-01-01

    The flow fields of vortices, whether bouyancy-driven or lift-generated, are fascinating fluid-dynamic phenomena which often possess intense swirl velocities and complex time-dependent behavior. As part of the on-going study of vortex behavior, this paper presents a historical overview of the research conducted on the structure and modification of the vortices generated by the lifting surfaces of subsonic transport aircraft. It is pointed out that the characteristics of lift-generated vortices are related to the aerodynamic shapes that produce them and that various arrangements of surfaces can be used to produce different vortex structures. The primary purpose of the research to be described is to find a way to reduce the hazard potential of lift-generated vortices shed by subsonic transport aircraft in the vicinity of airports during landing and takeoff operations. It is stressed that lift-generated vortex wakes are so complex that progress towards a solution requires application of a combined theoretical and experimental research program because either alone often leads to incorrect conclusions. It is concluded that a satisfactory aerodynamic solution to the wake-vortex problem at airports has not yet been found but a reduction in the impact of the wake-vortex hazard on airport capacity may become available in the foreseeable future through wake-vortex avoidance concepts currently under study. The material to be presented in this overview is drawn from aerospace journals that are available publicly.

  5. Lifting device for nuclear power plants

    SciTech Connect

    Krieger, F.

    1984-07-17

    A lifting device for lifting and transporting nuclear fuel elements. This device comprises a mast-like support on the lower end of which automatically operated and locked gripping pawls are provided. The support has a considerable height and may be referred to as lifting mast. The gripping pawls and their operating mechanism are referred to as gripping-head. The gripping-head and the lifting mast are telescopically movable relative to each other. To this end guide rods and compression springs are interposed between the lower end of the lifting mast and the gripping-head. The gripping-head comprises two concentric annular members which are relatively movable or rotatable about their common geometrical axis. One of the annular members supports the gripping pawls are T-shaped. One of their transverse ends is adapted to engage the fuel rods, and the other of their transverse ends is adapted to engage curved grooves in the other annular member. The rotary motion of one annular member relative to the other gripping pawls. In their limit positions the two annular members are blocked by a safety lever engaging slits or slots.

  6. Noise impact of advanced high lift systems

    NASA Technical Reports Server (NTRS)

    Elmer, Kevin R.; Joshi, Mahendra C.

    1995-01-01

    The impact of advanced high lift systems on aircraft size, performance, direct operating cost and noise were evaluated for short-to-medium and medium-to-long range aircraft with high bypass ratio and very high bypass ratio engines. The benefit of advanced high lift systems in reducing noise was found to be less than 1 effective-perceived-noise decibel level (EPNdB) when the aircraft were sized to minimize takeoff gross weight. These aircraft did, however, have smaller wings and lower engine thrusts for the same mission than aircraft with conventional high lift systems. When the advanced high lift system was implemented without reducing wing size and simultaneously using lower flap angles that provide higher L/D at approach a cumulative noise reduction of as much as 4 EPNdB was obtained. Comparison of aircraft configurations that have similar approach speeds showed cumulative noise reduction of 2.6 EPNdB that is purely the result of incorporating advanced high lift system in the aircraft design.

  7. Design of a portable powered seat lift

    NASA Technical Reports Server (NTRS)

    Weddendorf, Bruce

    1993-01-01

    People suffering from degenerative hip or knee joints find sitting and rising from a seated position very difficult. These people can rely on large stationary chairs at home, but must ask others for assistance when rising from any other chair. An orthopedic surgeon identified to the MSFC Technology Utilization Office the need for development of a portable device that could perform a similar function to the stationary lift chairs. The MSFC Structural Development Branch answered the Technology Utilization Office's request for design of a portable powered seat lift. The device is a seat cushion that opens under power, lifting the user to near-standing positions. The largest challenge was developing a mechanism to provide a stable lift over the large range of motion needed, and fold flat enough to be comfortable to sit on. CAD 3-D modeling was used to generate complete drawings for the prototype, and a full-scale working model of the Seat lift was made based on the drawings. The working model is of low strength, but proves the function of the mechanism and the concept.

  8. Noise impact of advanced high lift systems

    NASA Astrophysics Data System (ADS)

    Elmer, Kevin R.; Joshi, Mahendra C.

    1995-03-01

    The impact of advanced high lift systems on aircraft size, performance, direct operating cost and noise were evaluated for short-to-medium and medium-to-long range aircraft with high bypass ratio and very high bypass ratio engines. The benefit of advanced high lift systems in reducing noise was found to be less than 1 effective-perceived-noise decibel level (EPNdB) when the aircraft were sized to minimize takeoff gross weight. These aircraft did, however, have smaller wings and lower engine thrusts for the same mission than aircraft with conventional high lift systems. When the advanced high lift system was implemented without reducing wing size and simultaneously using lower flap angles that provide higher L/D at approach a cumulative noise reduction of as much as 4 EPNdB was obtained. Comparison of aircraft configurations that have similar approach speeds showed cumulative noise reduction of 2.6 EPNdB that is purely the result of incorporating advanced high lift system in the aircraft design.

  9. Lift mechanics of downhill skiing and snowboarding

    NASA Astrophysics Data System (ADS)

    Wu, Qianhong; Igci, Yesim; Andreopoulos, Yiannis

    2005-11-01

    A simplified mathematical model is derived to describe the lift mechanics of downhill skiing and snowboarding, where the lift contributions due to both the transiently trapped air and the compressed snow crystals are determined for the first time. Using Shimizu's empirical relation to predict the local variation in snow permeability, we employ force and moment analysis to predict the angle of attack of the planing surface, the penetration depth at the leading edge and the shift in the center of pressure for two typical snow types, fresh and wind-packed snow. We present numerical solutions for snowboarding and asymptotic analytic solutions for skiing for the case where there are no edging or turning maneuvers, which shows that approximately 50% of the total lift force is generated by the trapped air in the case of wind-packed snow for snowboarding and 40% for skiing. For highly permeable fresh powder snow the lift contribution from the pore air pressure drops to < 20%. This new theory is an extension of the series of studies on lift generation in highly compressible porous media.

  10. The third suture in MACS-lifting: making midface-lifting simple and safe.

    PubMed

    Verpaele, A; Tonnard, P; Gaia, S; Guerao, F P; Pirayesh, A

    2007-01-01

    The minimal access cranial suspension (MACS)-lift is a short scar rhytidectomy with vertical purse string suture suspension of the facial tissues. It exists in a simple and extended version. The simple MACS-lift achieves a vertical lifting of neck and lower half of the face with two purse string sutures. The action of a third, malar suture gives additional correction of the middle third of the face, and results in the extended MACS-lift. To draw attention to the power and advantages of the 'third' malar suture in the extended MACS-lift in achieving volumetric restoration of the midface, softening of the nasolabial fold and enhancing support of the lower eyelid. The core principle of this technique is the use of strong purse string sutures in a pure antigravitational direction for correction of the ageing neck and lower two-thirds of the face. In a simple MACS-lift the neck is corrected by a first narrow vertical purse-string suture. The volume of jowls and cheeks is repositioned in a cranial direction with a second, slightly oblique purse string suture. To achieve better control over the midface an extended MACS-lift is performed by adding a third malar vertical purse string suture between the paracanthal area and the malar fat pad. 557 MACS-lift procedures have been performed by the two senior authors, of which 183 were simple and 374 extended. A retrospective review of this technique revealed high patient satisfaction, only one major complication and a minor complication rate of 6%. Both versions of the technique deliver a vertical vector correction of sagged facial features. The third suture restores the volume of the midface and malar mound and provides strong support of the lower eyelid. The third suture in the MACS-lift short scar rhytidectomy produces a natural midface lifting through a short scar, with adequate softening of the nasolabial fold and good support of the lower eyelid.

  11. Review of the physics of enhancing vortex lift by unsteady excitation

    NASA Technical Reports Server (NTRS)

    Wu, J. Z.; Vakili, A. D.; Wu, J. M.

    1991-01-01

    A review aimed at providing a physical understanding of the crucial mechanisms for obtaining super lift by means of unsteady excitations is presented. Particular attention is given to physical problems, including rolled-up vortex layer instability and receptivity, wave-vortex interaction and resonance, nonlinear streaming, instability of vortices behind bluff bodies and their shedding, and vortex breakdown. A general theoretical framework suitable for handling the unsteady vortex flows is introduced. It is suggested that wings with swept and sharp leading edges, equipped with devices for unsteady excitations, could yield the first breakthrough of the unsteady separation barrier and provide super lift at post-stall angle of attack.

  12. Chirality-specific lift forces of helix under shear flows: Helix perpendicular to shear plane.

    PubMed

    Zhang, Qi-Yi

    2017-02-01

    Chiral objects in shear flow experience a chirality-specific lift force. Shear flows past helices in a low Reynolds number regime were studied using slender-body theory. The chirality-specific lift forces in the vorticity direction experienced by helices are dominated by a set of helix geometry parameters: helix radius, pitch length, number of turns, and helix phase angle. Its analytical formula is given. The chirality-specific forces are the physical reasons for the chiral separation of helices in shear flow. Our results are well supported by the latest experimental observations.

  13. Coriolis effects enhance lift on revolving wings.

    PubMed

    Jardin, T; David, L

    2015-03-01

    At high angles of attack, an aircraft wing stalls. This dreaded event is characterized by the development of a leading edge vortex on the upper surface of the wing, followed by its shedding which causes a drastic drop in the aerodynamic lift. At similar angles of attack, the leading edge vortex on an insect wing or an autorotating seed membrane remains robustly attached, ensuring high sustained lift. What are the mechanisms responsible for both leading edge vortex attachment and high lift generation on revolving wings? We review the three main hypotheses that attempt to explain this specificity and, using direct numerical simulations of the Navier-Stokes equations, we show that the latter originates in Coriolis effects.

  14. NASA Heavy Lift Rotorcraft Systems Investigation

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne; Yamauchi, Gloria K.; Watts, Michael E.

    2005-01-01

    The NASA Heavy Lift Rotorcraft Systems Investigation examined in depth several rotorcraft configurations for large civil transport, designed to meet the technology goals of the NASA Vehicle Systems Program. The investigation identified the Large Civil Tiltrotor as the configuration with the best potential to meet the technology goals. The design presented was economically competitive, with the potential for substantial impact on the air transportation system. The keys to achieving a competitive aircraft were low drag airframe and low disk loading rotors; structural weight reduction, for both airframe and rotors; drive system weight reduction; improved engine efficiency; low maintenance design; and manufacturing cost comparable to fixed-wing aircraft. Risk reduction plans were developed to provide the strategic direction to support a heavy-lift rotorcraft development. The following high risk areas were identified for heavy lift rotorcraft: high torque, light weight drive system; high performance, structurally efficient rotor/wing system; low noise aircraft; and super-integrated vehicle management system.

  15. Measuring Lift with the Wright Airfoils

    NASA Astrophysics Data System (ADS)

    Heavers, Richard M.; Soleymanloo, Arianne

    2011-11-01

    In this laboratory or demonstration exercise, we mount a small airfoil with its long axis vertical at one end of a nearly frictionless rotating platform. Air from a leaf blower2 produces a sidewise lift force L on the airfoil and a drag force D in the direction of the air flow (Fig. 1). The rotating platform is kept in equilibrium by adding weights (the measured values of L) to the lower end of a string passing over a pulley and connected to the other end of the rotating platform (Fig. 2). Our homemade airfoils are similar to those tested by the Wright brothers in 1901. From our lift plots in Fig. 3, we can draw the same conclusions as the Wrights about the influence of an airfoil's curvature and shape on lift.

  16. TMI-2 reactor vessel plenum final lift

    SciTech Connect

    Wilson, D C

    1986-01-01

    Removal of the plenum assembly from the TMI-2 reactor vessel was necessary to gain access to the core region for defueling. The plenum was lifted from the reactor vessel by the polar crane using three specially designed pendant assemblies. It was then transferred in air to the flooded deep end of the refueling canal and lowered onto a storage stand where it will remain throughout the defueling effort. The lift and transfer were successfully accomplished on May 15, 1985 in just under three hours by a lift team located in a shielded area within the reactor building. The success of the program is attributed to extensive mockup and training activities plus thorough preparations to address potential problems. 54 refs.

  17. Unsteady lifting-line theory with applications

    NASA Technical Reports Server (NTRS)

    Ahmadi, A. R.; Widnall, S. E.

    1982-01-01

    Unsteady lifting-line theory is developed for a flexible unswept wing of large aspect ratio oscillating at low frequency in inviscid incompressible flow. The theory is formulated in terms of the acceleration potential and treated by the method of matched asymptotic expansions. The wing displacements are prescribed and the pressure field, airloads, and unsteady induced downwash are obtained in closed form. Sample numerical calculations are presented. The present work identifies and resolves errors in the unsteady lifting-line theory of James and points out a limitation in that of Van Holten. Comparison of the results of Reissner's approximate unsteady lifting-surface theory with those of the present work shows favorable agreement. The present work thus provides some formal justification for Reissner's ad hoc theory. For engineering purposes, the region of applicability of the theory in the reduced frequency-aspect ratio domain is identified approximately and found to cover most cases of practical interest.

  18. Soccer ball lift coefficients via trajectory analysis

    NASA Astrophysics Data System (ADS)

    Goff, John Eric; Carré, Matt J.

    2010-07-01

    We performed experiments in which a soccer ball was launched from a machine while two high-speed cameras recorded portions of the trajectory. Using the trajectory data and published drag coefficients, we extracted lift coefficients for a soccer ball. We determined lift coefficients for a wide range of spin parameters, including several spin parameters that have not been obtained by today's wind tunnels. Our trajectory analysis technique is not only a valuable tool for professional sports scientists, it is also accessible to students with a background in undergraduate-level classical mechanics.

  19. Aeromechanical stability analysis of a multirotor vehicle model representing a hybrid heavy lift airship (HHLA)

    NASA Technical Reports Server (NTRS)

    Venkatesan, C.; Friedmann, P. P.

    1984-01-01

    Hybrid Heavy Lift Airship (HHLA) is a proposed candidate vehicle aimed at providing heavy lift capability at low cost. This vehicle consists of a buoyant envelope attached to a supporting structure to which four rotor systems, taken from existing helicopters are attached. Nonlinear equations of motion capable of modelling the dynamics of this coupled multi-rotor/support frame/vehicle system have been developed. Using these equations of motion the aeroelastic and aeromechanical stability analysis is performed aimed at identifying potential instabilities which could occur for this type of vehicle. The coupling between various blade, supporting structure and rigid body modes is identified. Furthermore, the effects of changes in buoyancy ratio (Buoyant lift/total weight) on the dynamic characteristics of the vehicle are studied. The dynamic effects found are of considerable importance for the design of such vehicles. The analytical model developed is also useful for studying the aeromechanical stability of single rotor and tandem rotor coupled rotor/fuselage systems.

  20. Aeromechanical stability analysis of a multirotor vehicle with application to hybrid heavy lift helicopter dynamics

    NASA Technical Reports Server (NTRS)

    Venkatesan, C.; Friedmann, P. P.

    1984-01-01

    The Hybrid Heavy Lift Helicopter (HHLH) is a potential candidate vehicle aimed at providing heavy lift capability at low cost. This vehicle consists of a buoyant envelope attached to a supporting structure. Four rotor systems are also attached to the supporting structure. Nonlinear equations of motion capable of modeling the dynamics of this multi-rotor/support frame/vehicle system have been developed and used to study the fundamental aeromechanical stability characteristics of this class of vehicles. The mechanism of coupling between the blades, supporting structure and rigid body modes is identified and the effect of buoyancy ratio (buoyant lift/total weight) on the vehicle dynamics is studied. It is shown that dynamics effects have a major role in the design of such vehicles. The analytical model developed is also useful for studying the aeromechanical stability of single rotor and tandem rotor coupled rotor/fuselage systems.

  1. Biomechanical comparison of unilateral and bilateral power snatch lifts.

    PubMed

    Lauder, Mike A; Lake, Jason P

    2008-05-01

    Biomechanical characteristics of the one-handed dumbbell power snatch (DBPS) were examined to determine whether significant differences existed between unilateral and bilateral weightlifting movements. Kinetic and kinematic movement data were recorded from 10 male weightlifters (mean +/- SD: age: 30.2 +/- 10.2 years; height: 174.2 +/- 4.4 cm; body mass: 81.5 +/- 14.6 kg) during one-handed dumbbell (DB) and traditional barbell (BBPS) power snatch performance with loads of approximately 80% of respective lift one repetition maximums (1RM) with the use of 2 synchronized Kistler force plates and high-speed 3-dimensional video. Results highlighted asymmetry in the ground reaction force and kinematic profile of the DBPS, which deviated from the observed patterns of the bilateral movement. This study found that the nonlifting side (the side corresponding with the hand that did not hold the DB) tended to generate a greater pull phase peak vertical ground reaction forces significantly faster (p = 0.001) than the lifting side (the side corresponding with the hand that held the DB) during the DBPS. In addition, the DBPS nonlifting side catch phase loading rate was approximately double that of the lifting side loading rate (p < 0.05). These results quantify symmetrical deviations in the movement patterns of the unilateral power snatch movement both during the concentric muscular contraction of load vertical displacement, and the loading implications of unilateral landing. This asymmetry supports the contention that unilateral variations of weightlifting movements may provide a different training stimulus to athletes.

  2. Observing object lifting errors modulates cortico-spinal excitability and improves object lifting performance.

    PubMed

    Buckingham, Gavin; Wong, Jeremy D; Tang, Minnie; Gribble, Paul L; Goodale, Melvyn A

    2014-01-01

    Observing the actions of others has been shown to modulate cortico-spinal excitability and affect behaviour. However, the sensorimotor consequences of observing errors are not well understood. Here, participants watched actors lift identically weighted large and small cubes which typically elicit expectation-based fingertip force errors. One group of participants observed the standard overestimation and underestimation-style errors that characterise early lifts with these cubes (Error video--EV). Another group watched the same actors performing the well-adapted error-free lifts that characterise later, well-practiced lifts with these cubes (No error video--NEV). We then examined actual object lifting performance in the subjects who watched the EV and NEV. Despite having similar cognitive expectations and perceptions of heaviness, the group that watched novice lifters making errors themselves made fewer overestimation-style errors than those who watched the expert lifts. To determine how the observation of errors alters cortico-spinal excitability, we measured motor evoked potentials in separate group of participants while they passively observed these EV and NEV. Here, we noted a novel size-based modulation of cortico-spinal excitability when observing the expert lifts, which was eradicated when watching errors. Together, these findings suggest that individuals' sensorimotor systems are sensitive to the subtle visual differences between observing novice and expert performance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Not Just Being Lifted: Infants are Sensitive to Delay During a Pick-Up Routine

    PubMed Central

    Fantasia, Valentina; Markova, Gabriela; Fasulo, Alessandra; Costall, Alan; Reddy, Vasudevi

    2016-01-01

    In the present study we observed whether infants show online adjustments to the mother’s incipient action by looking at their sensitivity to changes as the pick-up unfolded. Twenty-three 3-month-old infants and their mothers were observed in the lab, where mothers were instructed (1) to pick-up their infants as they usually did (normal pick-up), and then (2) to delay the pick-up for 6 s after placing their hands on the infants’ waist (delayed pick-up). In both Normal and Delayed conditions infant’s body tension, affective displays and gaze shifts were coded during three phases: Approach, Contact, and Lift. Additionally, a measure of infants’ head support in terms of head lag at the beginning and end of Lift was computed. Results showed that during normal pick-up infants tensed up their body during the Approach phase and increased their tension during contact, maintaining it through Lift; their head was also supported and in line with their body during Lift. When the pick-up was delayed, infants also tensed their body during Approach, yet this tension did not increase during the Contact phase and was significantly lower at Lift. Their head support was also lower in the Delayed condition and they shifted their gazes away from their mothers’ face more often than in the Normal condition. These results suggest that infants are sensitive to changes of the timing of the pick-up sequence, which in turn may have affected their contribution to the interaction. PMID:26834674

  4. The effect of a repetitive, fatiguing lifting task on horizontal ground reaction forces.

    PubMed

    Shu, Yu; Southard, Stephanie; Shin, Gwanseob; Mirka, Gary A

    2005-08-01

    There are many outdoor work environments that involve the combination of repetitive, fatiguing lifting tasks and less-than-optimal footing (muddy/slippery ground surfaces). The focus of the current research was to evaluate the effects of lifting-induced fatigue of the low back extensors on lifting kinematics and ground reaction forces. Ten participants performed a repetitive lifting task over a period of 8 minutes. As they performed this task, the ground reaction forces and whole body kinematics were captured using a force platform and magnetic motion tracking system, respectively. Fatigue was verified in this experiment by documenting a decrease in the median frequency of the bilateral erector spinae muscles (pretest-posttest). Results indicate significant (p < 0.05) increases in the magnitude of the peak anterior/posterior (increased by an average of 18.3%) and peak lateral shear forces (increased by an average of 24.3%) with increasing time into the lifting bout. These results have implications for work environments such as agriculture and construction, where poor footing conditions and requirements for considerable manual materials handling may interact to create an occupational scenario with an exceptionally high risk of a slip and fall.

  5. Force measurements of postural sway and rapid arm lift in seated children with and without MMC.

    PubMed

    Norrlin, Simone; Karlsson, Annica; Ahlsten, Gunnar; Lanshammar, Håkan; Silander, Hans C; Dahl, Margareta

    2002-03-01

    The aim was to investigate the horizontal ground reaction forces of seated postural sway and rapid arm lift in children with and without myelomeningocele. BACKGROUND; It is unclear whether children with myelomeningocele have limited control of body posture entirely caused by the impairment in the legs or also by other dysfunction. 11 children with myelomeningocele, 10-13 years, and 20 children without physical impairment were investigated. Data were collected by force plate measurements during quiet sitting and during rapid arm lift. The forces were expressed as the corresponding acceleration of the centre of mass. The amplitude and the frequency of the centre of mass acceleration quantified the sway. Movement time, onset and anteroposterior peak acceleration were analysed during arm lift. The children with myelomeningocele had a low sway frequency under both conditions: eyes open and eyes closed. The movement time was longer for these children compared to the controls. The onset of initial anteroposterior centre of mass acceleration preceded the arm lift and was directed forward in both groups. The peak centre of mass acceleration was usually directed backward. The control of postural sway was different in children with myelomeningocele compared to children without disabilities and this could not be explained by the cele level. The children with myelomeningocele had a slow motor performance of the seated sway and during arm lift. Slow motor performance involves functional limitations in the individual child and is important for the therapy program.

  6. Light aircraft lift, drag, and moment prediction: A review and analysis

    NASA Technical Reports Server (NTRS)

    Smetana, F. O.; Summey, D. C.; Smith, N. S.; Carden, R. K.

    1975-01-01

    The historical development of analytical methods for predicting the lift, drag, and pitching moment of complete light aircraft configurations in cruising flight is reviewed. Theoretical methods, based in part on techniques described in the literature and in part on original work, are developed. These methods form the basis for understanding the computer programs given to: (1) compute the lift, drag, and moment of conventional airfoils, (2) extend these two-dimensional characteristics to three dimensions for moderate-to-high aspect ratio unswept wings, (3) plot complete configurations, (4) convert the fuselage geometric data to the correct input format, (5) compute the fuselage lift and drag, (6) compute the lift and moment of symmetrical airfoils to M = 1.0 by a simplified semi-empirical procedure, and (7) compute, in closed form, the pressure distribution over a prolate spheroid at alpha = 0. Comparisons of the predictions with experiment indicate excellent lift and drag agreement for conventional airfoils and wings. Limited comparisons of body-alone drag characteristics yield reasonable agreement. Also included are discussions for interference effects and techniques for summing the results above to obtain predictions for complete configurations.

  7. Predicting Endurance Time in a Repetitive Lift and Carry Task Using Linear Mixed Models.

    PubMed

    Beck, Ben; Ham, Daniel J; Best, Stuart A; Carstairs, Greg L; Savage, Robert J; Straney, Lahn; Caldwell, Joanne N

    2016-01-01

    Repetitive manual handling tasks account for a substantial portion of work-related injuries. However, few studies report endurance time in repetitive manual handling tasks. Consequently, there is little guidance to inform expected work time for repetitive manual handling tasks. We aimed to investigate endurance time and oxygen consumption of a repetitive lift and carry task using linear mixed models. Fourteen male soldiers (age 22.4 ± 4.5 yrs, height 1.78 ± 0.04 m, body mass 76.3 ± 10.1 kg) conducted four assessment sessions that consisted of one maximal box lifting session and three lift and carry sessions. The relationships between carry mass (range 17.5-37.5 kg) and the duration of carry, and carry mass and oxygen consumption, were assessed using linear mixed models with random effects to account for between-subject variation. Results demonstrated that endurance time was inversely associated with carry mass (R2 = 0.24), with significant individual-level variation (R2 = 0.85). Normalising carry mass to performance in a maximal box lifting test improved the prediction of endurance time (R2 = 0.40). Oxygen consumption presented relative to total mass (body mass, external load and carried mass) was not significantly related to lift and carry mass (β1 = 0.16, SE = 0.10, 95%CI: -0.04, 0.36, p = 0.12), indicating that there was no change in oxygen consumption relative to total mass with increasing lift and carry mass. Practically, these data can be used to guide work-rest schedules and provide insight into methods assessing the physical capacity of workers conducting repetitive manual handling tasks.

  8. Predicting Endurance Time in a Repetitive Lift and Carry Task Using Linear Mixed Models

    PubMed Central

    Ham, Daniel J.; Best, Stuart A.; Carstairs, Greg L.; Savage, Robert J.; Straney, Lahn; Caldwell, Joanne N.

    2016-01-01

    Objectives Repetitive manual handling tasks account for a substantial portion of work-related injuries. However, few studies report endurance time in repetitive manual handling tasks. Consequently, there is little guidance to inform expected work time for repetitive manual handling tasks. We aimed to investigate endurance time and oxygen consumption of a repetitive lift and carry task using linear mixed models. Methods Fourteen male soldiers (age 22.4 ± 4.5 yrs, height 1.78 ± 0.04 m, body mass 76.3 ± 10.1 kg) conducted four assessment sessions that consisted of one maximal box lifting session and three lift and carry sessions. The relationships between carry mass (range 17.5–37.5 kg) and the duration of carry, and carry mass and oxygen consumption, were assessed using linear mixed models with random effects to account for between-subject variation. Results Results demonstrated that endurance time was inversely associated with carry mass (R2 = 0.24), with significant individual-level variation (R2 = 0.85). Normalising carry mass to performance in a maximal box lifting test improved the prediction of endurance time (R2 = 0.40). Oxygen consumption presented relative to total mass (body mass, external load and carried mass) was not significantly related to lift and carry mass (β1 = 0.16, SE = 0.10, 95%CI: -0.04, 0.36, p = 0.12), indicating that there was no change in oxygen consumption relative to total mass with increasing lift and carry mass. Conclusion Practically, these data can be used to guide work-rest schedules and provide insight into methods assessing the physical capacity of workers conducting repetitive manual handling tasks. PMID:27379902

  9. The lift-fan powered-lift aircraft concept: Lessons learned

    NASA Technical Reports Server (NTRS)

    Deckert, Wallace H.

    1993-01-01

    This is one of a series of reports on the lessons learned from past research related to lift-fan aircraft concepts. An extensive review is presented of the many lift-fan aircraft design studies conducted by both government and industry over the past 45 years. Mission applications and design integration including discussions on manifolding hot gas generators, hot gas dusting, and energy transfer control are addressed. Past lift-fan evaluations of the Avrocar are discussed. Lessons learned from these past efforts are identified.

  10. O.H. Module Vacuum Lifting Fixture

    SciTech Connect

    McGivern, Paul; /Fermilab

    1987-12-31

    In order to move the 800 lb. copper plates that make up the O.H. modules a vacuum lifting device has been made that will lift the plates safely. The purpose of this report is to provide documentation for the structural integrity of the system and to make sure that it passes all of the safety requirements that have been established for a system of this nature. The vacuum system is composed of a PIAB model M125 vacuum pump that has the pumping capacity of 27 in. Hg. This pump will produce vacuum for three 8 1/2 in. diameter suction cups or pads. A pressure gauge is fixed on the unit to allow the operator to continually monitor the pressure during all lifts. An additional safety feature is a mechanical vacuum monitoring device that is set to emit a shrill tone if the system vacuum falls below 24 in. Hg. A 'bleed' valve fixed on the unit will be used to let the system go to atmospheric pressure once the lift is complete. A 3 psi. check valve and a vacuum reserve of 384 in. is used to insure that the device will not just drop the object if the pump fails. A schematic for the pumping system is given in Figure 1.

  11. Computation of Lifting Wing-Flap Configurations

    NASA Technical Reports Server (NTRS)

    Cantwell, Brian; Kwak, Dochan

    1996-01-01

    Research has been carried out on the computation of lifting wing-flap configurations. The long term goal of the research is to develop improved computational tools for the analysis and design of high lift systems. Results show that state-of-the-art computational methods are sufficient to predict time-averaged lift and overall flow field characteristics on simple high-lift configurations. Recently there has been an increased interest in the problem of airframe generated noise and experiments carried out in the 7 x 10 wind tunnel at NASA Ames have identified the flap edge as an important source of noise. A follow-on set of experiments will be conducted toward the end of 1995. The computations being carried out under this project are coordinated with these experiments. In particular, the model geometry being used in the computations is the same as that in the experiments. The geometry consists of a NACA 63-215 Mod B airfoil section which spans the 7 x lO tunnel. The wing is unswept and has an aspect ratio of two. A 30% chord Fowler flap is deployed modifications of the flap edge geometry have been shown to be effective in reducing noise and the existing code is currently being used to compute the effect of a modified geometry on the edge flow.

  12. 29 CFR 1926.453 - Aerial lifts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Qualification Procedure, AWS B3.0-41. (ii) Recommended Practices for Automotive Welding Design, AWS D8.4-61... 22, 1973 shall be designed and constructed in conformance with the applicable requirements of the... conform with the applicable design and construction requirements of ANSI A92.2-1969. Aerial lifts include...

  13. 29 CFR 1926.453 - Aerial lifts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Qualification Procedure, AWS B3.0-41. (ii) Recommended Practices for Automotive Welding Design, AWS D8.4-61... 22, 1973 shall be designed and constructed in conformance with the applicable requirements of the... conform with the applicable design and construction requirements of ANSI A92.2-1969. Aerial lifts include...

  14. Measuring Lift with the Wright Airfoils

    ERIC Educational Resources Information Center

    Heavers, Richard M.; Soleymanloo, Arianne

    2011-01-01

    In this laboratory or demonstration exercise, we mount a small airfoil with its long axis vertical at one end of a nearly frictionless rotating platform. Air from a leaf blower produces a sidewise lift force L on the airfoil and a drag force D in the direction of the air flow (Fig. 1). The rotating platform is kept in equilibrium by adding weights…

  15. Compound Channels, Transition Expectations, and Liftings

    SciTech Connect

    Accardi, L.; Ohya, M.

    1999-01-15

    In Section 1 we introduce the notion of lifting as a generalization of the notion of compound state introduced in [21] and [22] and we show that this notion allows a unified approach to the problems of quantum measurement and of signal transmission through quantum channels. The dual of a linear lifting is a transition expectation in the sense of [3] and we characterize those transition expectations which arise from compound states in the sense of [22]. In Section 2 we characterize those liftings whose range is contained in the closed convex hull of product states and we prove that the corresponding quantum Markov chains [2] are uniquely determined by a classical generalization of both the quantum random walks of [4] and the locally diagonalizable states considered in [3]. In Section 4, as a first application of the above results, we prove that the attenuation (beam splitting) process for optical communication treated in [21] can be described in a simpler and more general way in terms of liftings and of transition expectations. The error probabilty of information transmission in the attenuation process is rederived from our new description. We also obtain some new results concerning the explicit computation of error probabilities in the squeezing case.

  16. High gantry for lifting and handling

    NASA Technical Reports Server (NTRS)

    Kerley, J. J., Jr.; Tereniak, W. T.

    1977-01-01

    Standard gantry has been inexpensively modified with standard pipes to allow lifting of heavy loads to distances between 14 and 30 ft. Addition of air mounts permits extensive and sensitive equipment to be moved smoothly and safely over smooth or moderately rough surfaces. Unit has been tested at 6000 pounds without yielding.

  17. Measuring Lift with the Wright Airfoils

    ERIC Educational Resources Information Center

    Heavers, Richard M.; Soleymanloo, Arianne

    2011-01-01

    In this laboratory or demonstration exercise, we mount a small airfoil with its long axis vertical at one end of a nearly frictionless rotating platform. Air from a leaf blower produces a sidewise lift force L on the airfoil and a drag force D in the direction of the air flow (Fig. 1). The rotating platform is kept in equilibrium by adding weights…

  18. Effects of Mach Number on Maximum Lift

    DTIC Science & Technology

    1947-01-01

    raAruaKJ tablo, grapho Haeh nunber effect on r»\\irirmr> lift is datomlncd for unsuopt end onopt-back Dingo . Suopt-back ulngo oboa tho oarx> early tip...ulngo. &7opt-toack uingo ahan tho anm early tip stalling tondancioa at high opoede ae they do at leu opoede. For unsnopt Dingo tho Cj p^ of

  19. The Monoplane as a Lifting Vortex Surface

    NASA Technical Reports Server (NTRS)

    Blenk, Hermann

    1947-01-01

    In Prandtl's airfoil theory the monoplane was replaced by a single lifting vortex line and yielded fairly practical results. However, the theory remained restricted to the straight wing. Yawed wings and those curved in flight direction could not be computed with this first approximation; for these the chordwise lift distribution must be taken into consideration. For the two-dimensional problem the transition from the lifting line to the lifting surface has been explained by Birnbaum. In the present report the transition to the three-dimensional problem is undertaken. The first fundamental problem involves the prediction of flow, profile, and drag for prescribed circulation distribution on the straight rectangular wing, the yawed wing for lateral boundaries parallel to the direction of flight, the swept-back wing, and the rectangular wing in slipping, with the necessary series developments for carrying through the calculations, the practical range of convergence of which does not comprise the wing tips or the break point of the swept-back wing. The second problem concerns the calculation of the circulation distribution with given profile for a slipping rectangular monoplane with flat profile and aspect ratio 6, and a rectangular wing with cambered profile and variable aspect ratio-the latter serving as check of the so-called conversion formulas of the airfoil theory.

  20. Anatomic concepts for brow lift procedures.

    PubMed

    Knize, David M

    2009-12-01

    Brow lifting became a component of the facialplasty procedure 45 years ago, and the original brow-lifting technique incorporating a coronal incision approach is still practiced by many surgeons today. Over the past 15 years, however, the endoscope-assisted procedure and the limited incision, nonendoscopic techniques have evolved as alternate procedures for brow lifting. The level of artistry in performing any brow lift technique is raised when the surgeon acquires knowledge of upper facial anatomy and integrates that knowledge into a working concept of the aging process of the upper face. This article presents one surgeon's concepts of the process that culminate in the typical appearance of the aged upper face. The same understanding of upper facial anatomy that can be called upon to explain the steps in this aging process can also be applied to the technical steps of any foreheadplasty procedure. Those anatomic structures that play a role in this process are examined here. The typical appearance of the aged upper face is the product of muscle action and gravitational forces acting on the unique anatomy of the human face. Interestingly, the appearance of the typical aged upper face exhibits much the same characteristics as one might observe in the face of an individual experiencing the emotions of sadness or grief. It is an inappropriate facial expression of sadness or grief that most often motivates the patient to schedule a consultation with the plastic surgeon. Any of the brow lift procedures used in current clinical practice can provide a successful cosmetic result in selected patients if the procedure incorporates technical steps based on sound anatomic principles.

  1. View of lifting girder and tower support superstructure on Tensaw ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of lifting girder and tower support superstructure on Tensaw River Bridge truss No. 2, looking northwest. Showing rope connectors and deflector sheaves. - Tensaw River Lift Bridge, Spanning Tensaw River at U.S. Highway 90, Mobile, Mobile County, AL

  2. Lift estimation of Half-Rotating Wing in hovering flight

    NASA Astrophysics Data System (ADS)

    Wang, X. Y.; Dong, Y. P.; Qiu, Z. Z.; Zhang, Y. Q.; Shan, J. H.

    2016-11-01

    Half-Rotating Wing (HRW) is a new kind of flapping wing system with rotating flapping instead of oscillating flapping. Estimating approach of hovering lift which generated in hovering flight was important theoretical foundation to design aircraft using HRW. The working principle of HRW based on Half-Rotating Mechanism (HRM) was firstly introduced in this paper. Generating process of lift by HRW was also given. The calculating models of two lift mechanisms for HRW, including Lift of Flow Around Wing (LFAW) and Lift of Flow Dragging Wing (LFDW), were respectively established. The lift estimating model of HRW was further deduced, by which hovering lift for HRW with different angular velocity could be calculated. Case study using XFLOW software simulation indicates that the above estimating method was effective and feasible to predict roughly the hovering lift for a new HRW system.

  3. 2. DETAIL OF CONTROL GATE ADJACENT TO LIFT LOCK NO. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. DETAIL OF CONTROL GATE ADJACENT TO LIFT LOCK NO. 7; THIS CONTROL GATE IS A 1980s RECONSTRUCTION. - Illinois & Michigan Canal, Lift Lock No. 7 & Control Gate, East side of DuPage River, Channahon, Will County, IL

  4. View of central lift span truss web of Tensaw River ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of central lift span truss web of Tensaw River Bridge, showing support girders for life house, looking east - Tensaw River Lift Bridge, Spanning Tensaw River at U.S. Highway 90, Mobile, Mobile County, AL

  5. View uphill of single chair lift, tower 15 in foreground, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View uphill of single chair lift, tower 15 in foreground, TOWERS 16 and 17 in the distance, LOOKING SOUTH. - Mad River Glen, Single Chair Ski Lift, 62 Mad River Glen Resort Road, Fayston, Washington County, VT

  6. 39. DETAIL AERIAL VIEW LOOKING AT 210' 9' LIFT SPAN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. DETAIL AERIAL VIEW LOOKING AT 210' 9' LIFT SPAN TOWER SHEAVES SHOWING 1 SET WITH AND 1 SET WITHOUT SHEAVE HOODS - Central Railroad of New Jersey, Newark Bay Lift Bridge, Spanning Newark Bay, Newark, Essex County, NJ

  7. Analysis of lifting beam and redesigned lifting lugs for 241-AZ-01A decant pump

    SciTech Connect

    Coverdell, B.L.

    1994-11-29

    This supporting document details calculations for the proper design of a lifting beam and redesigned lifting lugs for the 241AZO1A decant pump. This design is in accordance with Standard Architectural-Civil Design Criteria, Design Loads for Facilities (DOE-RL 1989) and is safety class three. The design and fabrication is in accordance with American Institute of Steel Construction, Manual of Steel Construction, (AISC, 1989) and the Hanford Hoisting and Rigging Manual (DOE-RL 1993).

  8. Effects of box size, frequency of lifting, and height of lift on maximum acceptable weight of lift and heart rate for male university students in Iran

    PubMed Central

    Abadi, Ali Salehi Sahl; Mazlomi, Adel; Saraji, Gebraeil Nasl; Zeraati, Hojjat; Hadian, Mohammad Reza; Jafari, Amir Homayoun

    2015-01-01

    Introduction In spite of the widespread use of automation in industry, manual material handling (MMH) is still performed in many occupational settings. The emphasis on ergonomics in MMH tasks is due to the potential risks of workplace accidents and injuries. This study aimed to assess the effect of box size, frequency of lift, and height of lift on maximum acceptable weight of lift (MAWL) on the heart rates of male university students in Iran. Methods This experimental study was conducted in 2015 with 15 male students recruited from Tehran University of Medical Sciences. Each participant performed 18 different lifting tasks that involved three lifting frequencies (1lift/min, 4.3 lifts/min and 6.67 lifts/min), three lifting heights (floor to knuckle, knuckle to shoulder, and shoulder to arm reach), and two box sizes. Each set of experiments was conducted during the 20 min work period using the free-style lifting technique. The working heart rates (WHR) were recorded for the entire duration. In this study, we used SPSS version 18 software and descriptive statistical methods, analysis of variance (ANOVA), and the t-test for data analysis. Results The results of the ANOVA showed that there was a significant difference between the mean of MAWL in terms of frequencies of lifts (p = 0.02). Tukey’s post hoc test indicated that there was a significant difference between the frequencies of 1 lift/minute and 6.67 lifts/minute (p = 0. 01). There was a significant difference between the mean heart rates in terms of frequencies of lifts (p = 0.006), and Tukey’s post hoc test indicated a significant difference between the frequencies of 1 lift/minute and 6.67 lifts/minute (p = 0.004). But, there was no significant difference between the mean of MAWL and the mean heart rate in terms of lifting heights (p > 0.05). The results of the t-test showed that there was a significant difference between the mean of MAWL and the mean heart rate in terms of the sizes of the two boxes (p

  9. Effects of box size, frequency of lifting, and height of lift on maximum acceptable weight of lift and heart rate for male university students in Iran.

    PubMed

    Abadi, Ali Salehi Sahl; Mazlomi, Adel; Saraji, Gebraeil Nasl; Zeraati, Hojjat; Hadian, Mohammad Reza; Jafari, Amir Homayoun

    2015-10-01

    In spite of the widespread use of automation in industry, manual material handling (MMH) is still performed in many occupational settings. The emphasis on ergonomics in MMH tasks is due to the potential risks of workplace accidents and injuries. This study aimed to assess the effect of box size, frequency of lift, and height of lift on maximum acceptable weight of lift (MAWL) on the heart rates of male university students in Iran. This experimental study was conducted in 2015 with 15 male students recruited from Tehran University of Medical Sciences. Each participant performed 18 different lifting tasks that involved three lifting frequencies (1lift/min, 4.3 lifts/min and 6.67 lifts/min), three lifting heights (floor to knuckle, knuckle to shoulder, and shoulder to arm reach), and two box sizes. Each set of experiments was conducted during the 20 min work period using the free-style lifting technique. The working heart rates (WHR) were recorded for the entire duration. In this study, we used SPSS version 18 software and descriptive statistical methods, analysis of variance (ANOVA), and the t-test for data analysis. The results of the ANOVA showed that there was a significant difference between the mean of MAWL in terms of frequencies of lifts (p = 0.02). Tukey's post hoc test indicated that there was a significant difference between the frequencies of 1 lift/minute and 6.67 lifts/minute (p = 0. 01). There was a significant difference between the mean heart rates in terms of frequencies of lifts (p = 0.006), and Tukey's post hoc test indicated a significant difference between the frequencies of 1 lift/minute and 6.67 lifts/minute (p = 0.004). But, there was no significant difference between the mean of MAWL and the mean heart rate in terms of lifting heights (p > 0.05). The results of the t-test showed that there was a significant difference between the mean of MAWL and the mean heart rate in terms of the sizes of the two boxes (p = 0.000). Based on the results of

  10. Kinematics and kinetics of the dead lift in adolescent power lifters.

    PubMed

    Brown, E W; Abani, K

    1985-10-01

    This study documented characteristics of the dead lift of teenage lifters. Films of 10 "skilled" and 11 "unskilled" contestants in a Michigan Teenage Powerlifting Championship provided data for analysis. Equations of motion, force, and moments were developed for a multisegment model of the lifters' movement in the sagittal plane and applied to the film data. Analysis was limited to 1) body segment orientations, 2) vertical bar accelerations, 3) vertical joint reaction forces, 4) segmental angular accelerations, 5) horizontal moment arms of the bar to selected joints, and 6) intersegmental resultant moments. Significant differences (P less than 0.05) in body segment orientation indicated a more upright posture at lift-off in the skilled group. Maximum vertical bar acceleration and angular acceleration of the trunk tended to occur near lift-off in the skilled lifters. The unskilled subjects demonstrated greater variability and magnitude in linear and angular acceleration parameters. In all lifters, maximum vertical force was experienced at the ankle joint. Within each subject, the hip joint experienced the greatest torque because of the relatively large horizontal moment arm of the bar (dominant mass in the system) to this joint. In all subjects, the magnitude of the mass lifted, and not the technique, was the primary determinant in the intersegmental resultant moment acting at the hip and the vertical force experienced at the ankle, knee, and hip joints.

  11. 49 CFR 178.970 - Bottom lift test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... gross mass, the load being evenly distributed. (c) Test method. All Large Packaging design types must be... 49 Transportation 3 2013-10-01 2013-10-01 false Bottom lift test. 178.970 Section 178.970... Packagings § 178.970 Bottom lift test. (a) General. The bottom lift test must be conducted for...

  12. 49 CFR 178.1050 - Top lift test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Containers § 178.1050 Top lift test. (a) General. The top lift test must be conducted for the qualification... permissible gross mass, the load being evenly distributed. (c) Test method. (1) A Flexible Bulk Container must... 49 Transportation 3 2013-10-01 2013-10-01 false Top lift test. 178.1050 Section...

  13. 49 CFR 37.165 - Lift and securement use.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Lift and securement use. 37.165 Section 37.165... DISABILITIES (ADA) Provision of Service § 37.165 Lift and securement use. (a) This section applies to public... with disabilities with the use of securement systems, ramps and lifts. If it is necessary for the...

  14. 14 CFR 29.551 - Auxiliary lifting surfaces.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Auxiliary lifting surfaces. 29.551 Section 29.551 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT....551 Auxiliary lifting surfaces. Each auxiliary lifting surface must be designed to withstand— (a)...

  15. 14 CFR 29.551 - Auxiliary lifting surfaces.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Auxiliary lifting surfaces. 29.551 Section 29.551 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT....551 Auxiliary lifting surfaces. Each auxiliary lifting surface must be designed to withstand— (a) The...

  16. 14 CFR 29.551 - Auxiliary lifting surfaces.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Auxiliary lifting surfaces. 29.551 Section 29.551 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT....551 Auxiliary lifting surfaces. Each auxiliary lifting surface must be designed to withstand— (a) The...

  17. 14 CFR 29.551 - Auxiliary lifting surfaces.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Auxiliary lifting surfaces. 29.551 Section 29.551 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT....551 Auxiliary lifting surfaces. Each auxiliary lifting surface must be designed to withstand— (a) The...

  18. 14 CFR 29.551 - Auxiliary lifting surfaces.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Auxiliary lifting surfaces. 29.551 Section 29.551 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT....551 Auxiliary lifting surfaces. Each auxiliary lifting surface must be designed to withstand— (a) The...

  19. 21 CFR 880.5500 - AC-powered patient lift.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL USE DEVICES General Hospital and Personal Use Therapeutic Devices § 880.5500 AC-powered patient lift. (a) Identification. An AC-powered lift is an electrically powered device either fixed or mobile, used to lift and transport patients in the horizontal or other...

  20. 21 CFR 880.5500 - AC-powered patient lift.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL USE DEVICES General Hospital and Personal Use Therapeutic Devices § 880.5500 AC-powered patient lift. (a) Identification. An AC-powered lift is an electrically powered device either fixed or mobile, used to lift and transport patients in the horizontal or other...

  1. 21 CFR 880.5500 - AC-powered patient lift.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL USE DEVICES General Hospital and Personal Use Therapeutic Devices § 880.5500 AC-powered patient lift. (a) Identification. An AC-powered lift is an electrically powered device either fixed or mobile, used to lift and transport patients in the horizontal or other...

  2. Oscillatory Counter-Centrifugation: Effects of History and Lift Forces

    NASA Astrophysics Data System (ADS)

    Nadim, Ali

    2014-11-01

    This work is co-authored with my doctoral student Shujing Xu and is dedicated to the memory of my doctoral advisor Howard Brenner who enjoyed thought experiments related to rotating systems. Oscillatory Counter-Centrifugation refers to our theoretical discovery that within a liquid-filled container that rotates in an oscillatory manner about a fixed axis as a rigid body, a suspended particle can be made to migrate on average in the direction opposite to that of ordinary centrifugation. That is, a heavy (or light) particle can move toward (or away from) the rotation axis, when the frequency of oscillations is high enough. In this work we analyze the effects of the Basset history force and the Saffman lift force on particle trajectories and find that the counter-centrifugation phenomenon persists even when these forces are active.

  3. Lifting a familiar object: visual size analysis, not memory for object weight, scales lift force.

    PubMed

    Cole, Kelly J

    2008-07-01

    The brain can accurately predict the forces needed to efficiently manipulate familiar objects in relation to mechanical properties such as weight. These predictions involve memory or some type of central representation, but visual analysis of size also yields accurate predictions of the needed fingertip forces. This raises the issue of which process (weight memory or visual size analysis) is used during everyday life when handling familiar objects. Our aim was to determine if subjects use a sensorimotor memory of weight, or a visual size analysis, to predictively set their vertical lift force when lifting a recently handled object. Two groups of subjects lifted an opaque brown bottle filled with water (470 g) during the first experimental session, and then rested for 15 min in a different room. Both groups were told that they would lift the same bottle in their next session. However, the experimental group returned to lift a slightly smaller bottle filled with water (360 g) that otherwise was identical in appearance to the first bottle. The control group returned to lift the same bottle from the first session, which was only partially filled with water so that it also weighed 360 g. At the end of the second session subjects were asked if they observed any changes between sessions, but no subject indicated awareness of a specific change. An acceleration ratio was computed by dividing the peak vertical acceleration during the first lift of the second session by the average peak acceleration of the last five lifts during the first session. This ratio was >1 for the control subjects 1.30 (SEM 0.08), indicating that they scaled their lift force for the first lift of the second session based on a memory of the (heavier) bottle from the first session. In contrast, the acceleration ratio was 0.94 (0.10) for the experimental group (P < 0.011). We conclude that the experimental group processed visual cues concerning the size of the bottle. These findings raise the

  4. 75 FR 33320 - Notice of Issuance of Final Determination Concerning a Lift Unit for an Overhead Patient Lift...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-11

    ... SECURITY U.S. Customs and Border Protection Notice of Issuance of Final Determination Concerning a Lift Unit for an Overhead Patient Lift System; Correction AGENCY: U.S. Customs and Border Protection... notice that it had issued a final determination concerning the country of origin of a lift unit for an...

  5. Systematic Review and Meta-Analysis of Predictors of Military Task Performance: Maximal Lift Capacity.

    PubMed

    Hydren, Jay R; Borges, Alexander S; Sharp, Marilyn A

    2017-04-01

    Hydren, JR, Borges, AS, and Sharp, MA. Systematic review and meta-analysis of predictors of military task performance: maximal lift capacity. J Strength Cond Res 31(4): 1142-1164, 2017-Physical performance tests (e.g., physical employment tests, return-to-duty tests) are commonly used to predict occupational task performance to assess the ability of individuals to do a job. The purpose of this systematic review was to identify predictive tests that correlate well with maximal lifting capacity in military personnel. Three databases were searched and experts in the field were contacted, resulting in the identification of 9 reports confined to military personnel that presented correlations between predictor tests and job tasks that measured maximal lift capacity. These 9 studies used 9 variations of a maximal lift capacity test, which were pooled to evaluate comparisons. The predictive tests were categorized into 10 fitness domains, which in ranked order were as follows: body mass and composition, absolute aerobic capacity, dynamic strength, power, isometric strength, strength-endurance, speed, isokinetic strength, flexibility, and age. Limitations of these data include a restricted age range (95% confidence interval [95% CI], 20-35; no correlations to maximal lift capacity) and the limited number of comparisons available within the cited studies. Weighted mean correlations ((Equation is included in full-text article.)) and 95% CI were calculated for each test. Lean body mass (kg) was the strongest overall predictor ((Equation is included in full-text article.); 95% CI, 0.697-0.966). Tests of dynamic strength had stronger correlations than strength endurance ((Equation is included in full-text article.), 95% CI, 0.69-0.89 vs. (Equation is included in full-text article.), 95% CI, 0.21-0.61). The following 6 domains of physical performance predictive tests had pooled correlations of 0.40 or greater for combined-sex samples: dynamic strength, power, isometric strength

  6. Comparative Kinematic Analysis of the Snatch Lifts in Elite Male Adolescent Weightlifters

    PubMed Central

    Harbili, Erbil; Alptekin, Ahmet

    2014-01-01

    The purpose of the study was to compare the linear kinematics of the barbell and the angular kinematics of the lower limb during the snatch lifts of two different barbell weights in elite male adolescent weightlifters. In the national team level, nine elite male adolescent weightlifters participated in the study. The snatch lifts were recorded by two video cameras under competitive conditions in preparation period before the European Junior Championship (Sony MiniDv PAL- 50 field/s) and the two heaviest successful lifts were selected for kinematic analysis. The little toe, ankle, knee, hip, and shoulder on the body and one point on the barbell were digitized using Ariel Performance Analysis System (APAS, San Diego, CA, USA). Significant decreases were found in the maximum barbell height, the relative power output during the second pull, and the maximum vertical velocity of the barbell during the second pull of the heaviest lift (p < 0.05). Maximum extension velocity of the hip joint significantly increased during the first pull of the heaviest lift (p < 0.05). As the mass of the barbell increased, the maximum vertical velocity and the maximum height of the barbell and relative power output during the second pull decreased in the heaviest lift performed by adolescent weightlifters. Coaches should pay attention to assistant exercises to increase explosive strength during the second pull with maximum strength in male adolescent weightlifters. Key points The results demonstrate that the maximum strength of the extensor muscles of the hip during the first pull and their explosive strength during the second pull must be improved. Coaches should pay attention to assistant exercises to increase explosive strength during the second pull with maximum strength in male adolescent weightlifters. PMID:24790499

  7. Comparative kinematic analysis of the snatch lifts in elite male adolescent weightlifters.

    PubMed

    Harbili, Erbil; Alptekin, Ahmet

    2014-05-01

    The purpose of the study was to compare the linear kinematics of the barbell and the angular kinematics of the lower limb during the snatch lifts of two different barbell weights in elite male adolescent weightlifters. In the national team level, nine elite male adolescent weightlifters participated in the study. The snatch lifts were recorded by two video cameras under competitive conditions in preparation period before the European Junior Championship (Sony MiniDv PAL- 50 field/s) and the two heaviest successful lifts were selected for kinematic analysis. The little toe, ankle, knee, hip, and shoulder on the body and one point on the barbell were digitized using Ariel Performance Analysis System (APAS, San Diego, CA, USA). Significant decreases were found in the maximum barbell height, the relative power output during the second pull, and the maximum vertical velocity of the barbell during the second pull of the heaviest lift (p < 0.05). Maximum extension velocity of the hip joint significantly increased during the first pull of the heaviest lift (p < 0.05). As the mass of the barbell increased, the maximum vertical velocity and the maximum height of the barbell and relative power output during the second pull decreased in the heaviest lift performed by adolescent weightlifters. Coaches should pay attention to assistant exercises to increase explosive strength during the second pull with maximum strength in male adolescent weightlifters. Key pointsThe results demonstrate that the maximum strength of the extensor muscles of the hip during the first pull and their explosive strength during the second pull must be improved.Coaches should pay attention to assistant exercises to increase explosive strength during the second pull with maximum strength in male adolescent weightlifters.

  8. LIFT Tenant Is Off and Running

    NASA Technical Reports Server (NTRS)

    Steele, Gynelle C.

    2001-01-01

    Lewis Incubator for Technology (LIFT) tenant, Analiza Inc., graduated from the incubator July 2000. Analiza develops technology and products for the early diagnosis of diseases, quality control of bio-pharmaceutical therapeutics, and other applications involving protein analyses. Technology links with NASA from existing and planned work are in areas of microfluidics and laser light scattering. Since their entry in LIFT in May, 1997, Analiza has: Received a $750,000 grant from the National Institutes of Health. Collaborated with a Nobel Prize winner on drug design. Collaborated with Bristol-Myers Squibb on the characterization of biological therapeutics. Added a Ph.D. senior scientist and several technicians. Received significant interest from major pharmaceutical companies about collaborating and acquiring Analiza technology.

  9. Future Directions in Tactical Vertical Lift

    DTIC Science & Technology

    2010-04-29

    UH -60A/L UH -60M (Divest) UH - 60L Hunter Warrior Shadow Raven FY 2025 and Beyond ATTACK/ RECON UH -60M/HH-60M 2025 Timeframe • AH64...Transport Assault Heavy Lift Mine CM SOF Ultraheavy Lift SERVICE ARMY USMC ARMY USMC USN USCG USAF ARMY USMC USN AH-1W UH -1Y CH/MH-47 D/F/G MH-53E OH-58D...KW) MH/AH-6J UH -72A CH-53K MV-22B CV-22B CVLSP* Mine CM CSAR CH-53E AH-1Z MH-60S MH-60R UH -60M MH-60T * Not Program of

  10. [Bone substitutes used for sinus lift].

    PubMed

    Kamm, T; Kamm, S; Heppt, W

    2015-07-01

    In dental surgery today a variety of bone substitutes are used for sinus lift. After the increased application of synthetics during the last decade there has now been a move back to autologous bone transplants, combined with allogenic and xenogenic augmentation materials. The effects of transforming growth factors and recombinant equivalents of bone morphogenetic proteins remain to be seen. Covering the augmented area with a collagen membrane is the basic standard in many cases. Concomitant illnesses of dental origin or of the maxillary sinus have to be assessed prior to any sinus lift. Once complications such as laceration of the Schneiderian membrane, infection or adverse reaction have occurred, early and consistent therapy is required.

  11. Tape Lift Sampling of Chemical Threat Agents.

    PubMed

    Brady, Krista; Stilley, Becky; Olds, Maria; O'Neill, Terry; Egan, James; Durnal, Evan

    2017-07-01

    Commercial-off-the-shelf (COTS) materials were evaluated as surface samplers for the Department of Homeland Security Chemical Forensics Program. The program helps evidence collectors identify trace chemical residues at incident scenes. COTS items are widely available, produced in large lots, and with strict controls. Chemical attribution signatures were collected from common surfaces. Eight tape lift candidates were considered, five were chosen based on performance and tested for analytical interferences and extraction efficiencies with 14 chemicals. Three products (duct tape, print lifters, command strips) were evaluated for uptake from common interior surfaces (glass, tile, ABS plastic). Duct tape provided highest recoveries across all surfaces. Even the most volatile analytes were detected in the ABS plastic samples (nondetections in others), regardless of tape lift material used. The porous plastic substrate provides better target retention than glass and tile surfaces. Forensic field operators should sample surfaces made of ABS plastic (keyboards, remotes, phones, etc.) whenever possible. © 2017 American Academy of Forensic Sciences.

  12. V/STOL gets a lift

    NASA Technical Reports Server (NTRS)

    Biesiadny, Tom

    1991-01-01

    The concept of a supersonic STOVL that could offer enhanced mission capability, survivability, operational flexibility, and utility over conventional aircraft is presented. Emphasis is currently on design studies, CFD work, small- and large-scale wind tunnel tests, simulation activities, flight experiments, and ground environment experiments. Propulsion system technology centers about the adaptation of existing or off-the-shelf engines. Concepts under study include separate flow in hover, gas-driven lift fan, and shaft-driven lift fan. NASA is examining generic valve and ducting configurations with airflow at ambient temperature and at temperatures up to 1000 F to gather pressure loss and heat transfer data. Advanced civil rotorcraft technologies examined include high-efficiency/dual-mode components such as torque converters; lightweight, quiet transmissions; and variable geometry power turbines; along with dual-function or convertible engines.

  13. Particle Lifting Processes in Dust Devils

    NASA Astrophysics Data System (ADS)

    Neakrase, L. D. V.; Balme, M. R.; Esposito, F.; Kelling, T.; Klose, M.; Kok, J. F.; Marticorena, B.; Merrison, J.; Patel, M.; Wurm, G.

    2016-11-01

    Particle lifting in dust devils on both Earth and Mars has been studied from many different perspectives, including how dust devils could influence the dust cycles of both planets. Here we review our current understanding of particle entrainment by dust devils by examining results from field observations on Earth and Mars, laboratory experiments (at terrestrial ambient and Mars-analog conditions), and analytical modeling. By combining insights obtained from these three methodologies, we provide a detailed overview on interactions between particle lifting processes due to mechanical, thermal, electrodynamical and pressure effects, and how these processes apply to dust devils on Earth and Mars. Experiments and observations have shown dust devils to be effective lifters of dust given the proper conditions on Earth and Mars. However, dust devil studies have yet to determine the individual roles of each of the component processes acting at any given time in dust devils.

  14. Closed, nonendoscopic, small-incision forehead lift.

    PubMed

    Marten, Timothy J

    2008-07-01

    As endoscopic techniques made inroads into surgery, one of the first procedures they were adapted to by plastic surgeons was the forehead lift. The "closed" forehead lift procedure has since achieved wide acceptance and exists as a viable alternative to open procedures for many patients. Experience has shown, however, that it is not necessary to use an endoscope to mobilize and release the forehead and modify the corrugator supercilii muscles in "closed" procedures if the anatomy is understood, the operation is appropriately planned, and the corrugator muscles are modified using a transpalpebral approach. In addition, transpalpebral corrugator myectomy, when used in conjunction with closed mobilization and resuspension of the forehead, provides not only a scheme for the performance of closed foreheadplasty without the need for an endoscope, but a method by which medial brow elevation can be minimized or avoided. This may, indeed, be one the procedure's most important advantages over the endoscopic technique.

  15. Lift and drag of cetacean flippers

    NASA Astrophysics Data System (ADS)

    Murray, Mark; Weber, Paul; Howle, Laurens; Fish, Frank

    2008-11-01

    Field observation and collection of biological samples has resulted in cetacean (whales, dolphins and porpoises) flipper geometry being known for most species. However, the hydrodynamic properties of cetacean flippers have not been rigorously tested and thus their performance characteristics are unknown. Here, conducting water tunnel testing using scale models of cetacean flippers derived via computed tomography (CT) scans, as well as computational fluid dynamic (CFD) simulations, we present a baseline work to determine the hydrodynamic characteristics of cetacean flippers. We found that flippers of similar planform shape had similar hydrodynamic performance characteristics. Furthermore, one group of flippers of planform shape similar to a modern swept wing was found to have lift coefficient versus angle of attack curves that were biphasic rather than linear in nature, which was caused by the onset of vortex-dominated lift. Drag coefficient versus angle of attack curves were found to be less dependant on planform shape.

  16. Pipe lifting hook having clamp assembly

    SciTech Connect

    Codner, J.A.

    1984-06-12

    A pipe lifting hook is provided having a generally ''C'' shaped hook member having an elongated lower portion being insertable within the end of a joint of pipe and having an upper portion positionable above the pipe and provided with lifting connection means. The hook member is frictionally clamped to the pipe by grip shoe means that is movably supported by the upper portion of the hook member and is selectably movable from a released position out of contact with said pipe to a locked position in frictional locking engagement with the outer surface of the pipe. A ratchet mechanism couples said grip shoe means to the upper portion of the hook member and is manually positionable to lock said grip shoe means at said locked position or release said grip shoe means for movement toward said released position thereof.

  17. Static Thrust Analysis of the Lifting Airscrew

    NASA Technical Reports Server (NTRS)

    Knight, Montgomery; Hefner, Ralph A

    1937-01-01

    This report presents the results of a combined theoretical and experimental investigation conducted at the Georgia School of Technology on the static thrust of the lifting air screw of the type used in modern autogiros and helicopters. The theoretical part of this study is based on Glauert's analysis but certain modifications are made that further clarify and simplify the problem. Of these changes the elimination of the solidity as an independent parameter is the most important. The experimental data were obtained from tests on four rotor models of two, four, and five blades and, in general, agree quite well with the theoretical calculations. The theory indicates a method of evaluating scale effects on lifting air screws, and these corrections have been applied to the model results to derive general full-scale static thrust, torque, and figure-of-merit curves for constant-chord, constant-incidence rotors. Convenient charts are included that enable hovering flight performance to be calculated rapidly.

  18. Cost Benefit Analysis of Boat Lifts

    DTIC Science & Technology

    2014-09-01

    Craft Shallow Water TX Texas Cost Benefit Analysis of Boat Lifts x UNCLAS//Public | CG-926 R...example, cleaning the hull by scraping or power washing will lead to pollutants potentially dropping into the water and therefore requires a permit...development of a written Storm Water Pollution Prevention Plan (SWPPP), implementation of control measures, and submittal of a request for permit coverage

  19. HSCT high lift system aerodynamic requirements

    NASA Technical Reports Server (NTRS)

    Paulson, John A.

    1992-01-01

    The viewgraphs and discussion of high lift system aerodynamic requirements are provided. Low speed aerodynamics has been identified as critical to the successful development of a High Speed Civil Transport (HSCT). The airplane must takeoff and land at a sufficient number of existing or projected airports to be economically viable. At the same time, community noise must be acceptable. Improvements in cruise drag, engine fuel consumption, and structural weight tend to decrease the wing size and thrust required of engines. Decreasing wing size increases the requirements for effective and efficient low speed characteristics. Current design concepts have already been compromised away from better cruise wings for low speed performance. Flap systems have been added to achieve better lift-to-drag ratios for climb and approach and for lower pitch attitudes for liftoff and touchdown. Research to achieve improvements in low speed aerodynamics needs to be focused on areas most likely to have the largest effect on the wing and engine sizing process. It would be desirable to provide enough lift to avoid sizing the airplane for field performance and to still meet the noise requirements. The airworthiness standards developed in 1971 will be the basis for performance requirements for an airplane that will not be critical to the airplane wing and engine size. The lift and drag levels that were required to meet the performance requirements of tentative airworthiness standards established in 1971 and that were important to community noise are identified. Research to improve the low speed aerodynamic characteristics of the HSCT needs to be focused in the areas of performance deficiency and where noise can be reduced. Otherwise, the wing planform, engine cycle, or other parameters for a superior cruising airplane would have to be changed.

  20. Delta II JPSS-1 Interstage Lift & Mate

    NASA Image and Video Library

    2016-07-13

    The interstage of the United Launch Alliance Delta II rocket that will launch the Joint Polar Satellite System-1 (JPSS-1) is lifted at Space Launch Complex 2 on Vandenberg Air Force Base in California. JPSS, a next-generation environmental satellite system, is a collaborative program between the National Oceanic and Atmospheric Administration (NOAA) and NASA. To learn more about JPSS-1, visit www.jpss.noaa.gov.