Sample records for m81 outer disk

  1. New insights on the formation and assembly of M83 from deep near-infrared imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Kate L.; Van Zee, Liese; Dale, Daniel A.

    2014-07-10

    We present results from new near-infrared (NIR) imaging from the Spitzer Space Telescope that trace the low surface brightness features of the outer disk and stellar stream in the nearby spiral galaxy, M83. Previous observations have shown that M83 hosts a faint stellar stream to the northwest and a star-forming disk that extends to ∼3 times the optical radius (R{sub 25}). By combining the NIR imaging with archival far-ultraviolet (FUV) and H I imaging, we study the star formation history of the system. The NIR surface brightness profile has a break at ∼5.'8 (equivalent to 8.1 kpc and 0.9 R{submore » 25}) with a shallower slope beyond this radius, which may result from the recent accretion of gas onto the outer disk and subsequent star formation. Additionally, the ratio of FUV to NIR flux increases with increasing radius in several arms throughout the extended star forming disk, indicating an increase in the ratio of the present to past star formation rate with increasing radius. This sort of inside-out disk formation is consistent with observations of gas infall onto the outer disk of M83. Finally, the flux, size, and shape of the stellar stream are measured and the origin of the stream is explored. The stream has a total NIR flux of 11.6 mJy, which implies a stellar mass of 1 × 10{sup 8} M{sub ☉} in an area subtending ∼80°. No FUV emission is detected in the stream at a level greater than the noise, confirming an intermediate-age or old stellar population in the stream.« less

  2. Extended Millimeter Emission in the HD 141569 Circumstellar Disk Detected with ALMA

    NASA Astrophysics Data System (ADS)

    White, Jacob Aaron; Boley, A. C.

    2018-06-01

    We present archival Atacama Large Millimeter/submillimeter Array (ALMA) observations of the HD 141569 circumstellar disk at 345, 230, and 100 GHz. These data detect extended millimeter emission that is exterior to the inner disk. We find through simultaneous visibility modeling of all three data sets that the system’s morphology is described well by a two-component disk model. The inner disk ranges from approximately 16–45 au with a spectral index of 1.81 (q = 2.95), and the outer disk ranges from 95 to 300 au with a spectral index of 2.28 (q = 3.21). Azimuthally averaged radial emission profiles derived from the continuum images at each frequency show potential emission that is consistent with the visibility modeling. The analysis presented here shows that at ∼5 Myr, HD 141569's grain size distribution is steeper and therefore possibly evolved in the outer disk than in the inner disk.

  3. A New Perspective on Galaxy Evolution from the Low Density Outskirts of Galaxies

    NASA Astrophysics Data System (ADS)

    Emery Watkins, Aaron

    2017-01-01

    In order to investigate the nature of galaxy outskirts, we carried out a deep imaging campaign of several nearby ($D\\lesssim$10Mpc) galaxies, across a range of environments. We found that most of the galaxies we imaged show red and non-star-forming outer disks, implying evolved stellar populations. Such populations in outer disks are expected as the result of radial migration, yet through Fourier analysis we found no evidence of extended spiral structure in these galaxies. Without star formation or outer spiral structure, it is difficult to determine how these outer disks formed. To investigate the effects of interactions on outer disks, we also observed the Leo I Group; however, while group environments are expected to promote frequent interactions, we found only three extremely faint tidal streams, implying a calm interaction history. As Leo I is fairly low density, this implies that loose groups are ineffective at producing intragroup light (IGL). In the famous interacting system M51, we found that its extended tidal features show similarly red colors as the typical outer disks we observed, implying that M51 had a similar outer disk prior to the interaction, and that the interaction induced no extended star formation, including in the system's HI tail. Therefore, to investigate the nature of star formation in low-density environments, we carried out deep narrow-band H$\\alpha$ imaging of M101 and M51.

  4. METAL-RICH PLANETARY NEBULAE IN THE OUTER REACHES OF M31

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balick, B.; Kwitter, K. B.; Corradi, R. L. M.

    2013-09-01

    Spectroscopic data of two relatively [O III]-luminous planetary nebulae (PNe) have been obtained with the 10.4 m Gran Telescopio Canarias. M174 and M2496 are each {approx}1 Degree-Sign from the center of M31 along opposite sides of its minor axis. The ensemble of these 2 distant PNe plus 16 similarly luminous outer-disk PNe published previously by Kwitter et al. forms a homogeneous group in luminosity, metal content, progenitor mass, age, and kinematics. The main factual findings of our work are (1) O/H (and other low-mass {alpha} elements and their ratios to O) is uniformly solar-like in all 18 PNe ((12 +more » log(O/H)) = 8.62 {+-} 0.14); (2) the general sky distribution and kinematics of the ensemble much more closely resemble the rotation pattern of the classical disk of M31 than its halo or bulge; (3) the O/H gradient is surprisingly flat beyond R{sub g} {approx} 20 kpc. The PNe are too metal-rich to be bona fide members of M31's disk or halo, and (4) the abundance patterns of the sample are distinct from those in the spiral galaxies M33, M81, and NGC 300. Using standard PN age diagnostic methods, we suggest that all of the PNe formed {approx}2 Gyr ago in a starburst of metal-rich interstellar medium that followed an M31-M33 encounter about 3 Gyr ago. We review supporting evidence from stellar studies. Other more prosaic explanations, such as dwarf galaxy assimilation, are unlikely.« less

  5. Formation of Large Regular Satellites of Giant Planets in an Extended Gaseous Nebula: Subnebula Model and Accretion of Satellites

    NASA Technical Reports Server (NTRS)

    Mosqueira, I.; Estrada, P. R.

    2000-01-01

    We model the subnebulae of Jupiter and Saturn wherein satellite accretion took place. We expect a giant planet subnebula to be composed of an optically thick (given gaseous opacity) inner region inside of the planet's centrifugal radius (located at r(sub c, sup J) = l5R(sub J) for Jupiter and r(sub c, sup S) = 22R(sub S) for Saturn), and an optically thin, extended outer disk out to a fraction of the planet's Roche lobe, which we choose to be R(sub roche)/5 (located at approximately 150R(sub J) near the inner irregular satellites for Jupiter, and approximately 200R(sub S) near Phoebe for Saturn). This places Titan and Ganymede in the inner disk, Callisto and Iapetus in the outer disk, and Hyperion in the transition region. The inner disk is the leftover of the gas accreted by the protoplanet. The outer disk results from the solar torque on nebula gas flowing into the protoplanet during the time of giant planet gap opening. For the sake of specificity, we use a cosmic mixture 'minimum mass' model to constrain the gas densities of the inner disks of Jupiter and Saturn (and also Uranus). For the total mass of the outer disk we use the simple scaling M(sub disk) = M(sub P)tau(sub gap)/tau(sub acc), where M(sub P) is the mass of the giant planet, tau(sub gap) is the gap opening timescale, and tau(sub acc) is the giant planet accretion time. This gives a total outer disk mass of approximately 100M(sub Callisto) for Jupiter and possibly approximately 200M(sub Iapetus) for Saturn (which contain enough condensables to form Callisto and Iapetus respectively). Our model has Ganymede at a subnebula temperature of approximately 250 K and Titan at approximately 100 K. The outer disks of Jupiter and Saturn have constant temperatures of 130 K and 90 K respectively.

  6. UIT: Ultraviolet surface photometry of the spiral galaxy M74 (NGC 628)

    NASA Technical Reports Server (NTRS)

    Cornett, Robert H.; O'Connell, Robert W.; Greason, Michael R.; Offenberg, Joel D.; Angione, Ronald J.; Bohlin, Ralph C.; Cheng, K. P.; Roberts, Morton S.; Smith, Andrew M.; Smith, Eric P.

    1994-01-01

    Ultraviolet photometry, obtained from Ultraviolet Imaging Telescope (UIT) images at 1520 A (far-UV; magnitudes m(152)) and 2490 A (near-UV; magnitudes m(249)), of the spiral galaxy M74 (NGC 628) is compared with H-alpha, R, V, and B surface photometry and with models. M74's surface brightness profiles have a central peak with an exponential falloff; the exponential scale lengths of the profiles increase with decreasing wavelength for the broad-band images. The slope of the continuum-subtracted H-alpha profile is intermediate between those of far-UV and near-UV profiles, consistent with the related origins of H-alpha and UV emission in extreme Population I material. M74's color profiles all become bluer with increasing radius. The (m(152) - m(249)) color as measured by UIT averages near 0.0 (the color of an A0 star) over the central 20 sec radius and decreases from approximately -0.2 to approximately -0.4 from 20 sec to 200 sec. The spiral arms are the dominant component of the surface photometry colors; interarm regions are slightly redder. In the UV, M74's nuclear region resembles its disk/spiral arm material in colors and morphology, unlike galaxies such as M81. No UV 'bulge' is apparent. The m(152) - m(249) colors and models of M74's central region clearly demonstrate that there is no significant population of O or B stars present in the central 10 sec. M74's UV morphology and (m(152) - m(249)) color profiles are similar to those of M33, although M74 is approximately 0.5 mag redder. M81 has a smooth UV bulge which is much redder than the nuclear regions of M74 and M33. M74 is approximately 0.4 mag bluer than M81 in its outer disk, although M81 has bright UV sources only in spiral arms more than 5 kpc from its center. We investigate possible explanations for the color profiles of the galaxies and the differences among the galaxies: abundances; reddening due to internal dust; interplanetary magnetic field (IMF) variations, and the history of formation of the dominant generations of stars. Abundance and IMF variations do not produce large enough m(152) - m(249) or UV - V color differences. Comparing model UV/optical colors with those of M74 shows that M74's disk has undergone significant star formation over the past 500 Myr, and that either the star-formation history or the extinction varies systematically across M74's disk. Comparison of M74, M33, and M81 (UV - V) colors shows that M74 colors range from the bluest of M33's colors to the bluest of M81's. The failure of reddening models to cover the range of colors, and the known abundance range in such material, leads to the conclusion that star-formation history varies significantly as a function of radius in these galaxies, and that such variation is required to explain the range of colors observed in M74, M33, and M81.

  7. Hubble and Spitzer Space Telescope Observations of the Debris Disk around the nearby K Dwarf HD 92945

    NASA Astrophysics Data System (ADS)

    Golimowski, D. A.; Krist, J. E.; Stapelfeldt, K. R.; Chen, C. H.; Ardila, D. R.; Bryden, G.; Clampin, M.; Ford, H. C.; Illingworth, G. D.; Plavchan, P.; Rieke, G. H.; Su, K. Y. L.

    2011-07-01

    We present the first resolved images of the debris disk around the nearby K dwarf HD 92945, obtained with the Hubble Space Telescope's (HST 's) Advanced Camera for Surveys. Our F606W (Broad V) and F814W (Broad I) coronagraphic images reveal an inclined, axisymmetric disk consisting of an inner ring about 2farcs0-3farcs0 (43-65 AU) from the star and an extended outer disk whose surface brightness declines slowly with increasing radius approximately 3farcs0-5farcs1 (65-110 AU) from the star. A precipitous drop in the surface brightness beyond 110 AU suggests that the outer disk is truncated at that distance. The radial surface-density profile is peaked at both the inner ring and the outer edge of the disk. The dust in the outer disk scatters neutrally but isotropically, and it has a low V-band albedo of 0.1. This combination of axisymmetry, ringed and extended morphology, and isotropic neutral scattering is unique among the 16 debris disks currently resolved in scattered light. We also present new infrared photometry and spectra of HD 92945 obtained with the Spitzer Space Telescope's Multiband Imaging Photometer and InfraRed Spectrograph. These data reveal no infrared excess from the disk shortward of 30 μm and constrain the width of the 70 μm source to lsim180 AU. Assuming that the dust comprises compact grains of astronomical silicate with a surface-density profile described by our scattered-light model of the disk, we successfully model the 24-350 μm emission with a minimum grain size of a min = 4.5 μm and a size distribution proportional to a -3.7 throughout the disk, but with maximum grain sizes of 900 μm in the inner ring and 50 μm in the outer disk. Together, our HST and Spitzer observations indicate a total dust mass of ~0.001M ⊕. However, our observations provide contradictory evidence of the dust's physical characteristics: its neutral V-I color and lack of 24 μm emission imply grains larger than a few microns, but its isotropic scattering and low albedo suggest a large population of submicron-sized grains. If grains smaller than a few microns are absent, then stellar radiation pressure may be the cause only if the dust is composed of highly absorptive materials like graphite. The dynamical causes of the sharply edged inner ring and outer disk are unclear, but recent models of dust creation and transport in the presence of migrating planets support the notion that the disk indicates an advanced state of planet formation around HD 92945. Based in part on guaranteed observing time awarded by the National Aeronautics and Space Administration (NASA) to the Advanced Camera for Surveys Investigation Definition Team and the Multiband Imaging Photometer for Spitzer Instrument Team.

  8. Exploring the Milky Way Disk Abundance Transition Zone Rgc 10 kpc with Open Clusters

    NASA Astrophysics Data System (ADS)

    Jacobson, Heather R.; Friel, E.; Pilachowski, C.

    2009-01-01

    Recent studies of the radial chemical abundance distribution among stellar populations in the Galactic disk have shown a change in the abundance trend at galactocentric distance Rgc 10 kpc, as first noted by Twarog et al. (1997). Here the gradient in [Fe/H] with distance appears to vanish, with abundances of stars at greater distances dropping to [Fe/H] -0.3, independent of galactocentric distance. Much is still unknown about the exact nature of the transition from inner to outer disk, and it is still uncertain if the outer disk has had a distinct evolutionary history from that of the inner disk. While current chemical evolution models can well match the outer disk abundances (Cescutti et al. 2007), abundances of many more stars at Rgc 9-12 kpc must be determined to better characterize the nature of the transition from inner to outer disk. We have initiated a survey of abundances of 20 open clusters in this region using spectroscopy obtained with the WIYN, KPNO 4m, CTIO 4m and Hobby-Eberly telescopes. Chemical abundances are determined for Fe, O, Na, and alpha-elements, among others. Results for the survey to date are presented here.

  9. Revealing the Structure of a Pre-Transitional Disk: The Case of the Herbig F Star SAO 206462 (HD 135344B)

    NASA Astrophysics Data System (ADS)

    Grady, C. A.; Schneider, G.; Sitko, M. L.; Williger, G. M.; Hamaguchi, K.; Brittain, S. D.; Ablordeppey, K.; Apai, D.; Beerman, L.; Carpenter, W. J.; Collins, K. A.; Fukagawa, M.; Hammel, H. B.; Henning, Th.; Hines, D.; Kimes, R.; Lynch, D. K.; Ménard, F.; Pearson, R.; Russell, R. W.; Silverstone, M.; Smith, P. S.; Troutman, M.; Wilner, D.; Woodgate, B.; Clampin, M.

    2009-07-01

    SAO 206462 (HD 135344B) has previously been identified as a Herbig F star with a circumstellar disk with a dip in its infrared excess near 10 μm. In combination with a low accretion rate estimated from Br γ, it may represent a gapped, but otherwise primordial or "pre-transitional" disk. We test this hypothesis with Hubble Space Telescope coronagraphic imagery, FUV spectroscopy and imagery and archival X-ray data, and spectral energy distribution (SED) modeling constrained by the observed system inclination, disk outer radius, and outer disk radial surface brightness (SB) profile using the Whitney Monte Carlo Radiative Transfer Code. The essentially face-on (i lsim 20°) disk is detected in scattered light from 0farcs4 to 1farcs15 (56-160 AU), with a steep (r -9.6) radial SB profile from 0farcs6 to 0farcs93. Fitting the SB data requires a concave upward or anti-flared outer disk, indicating substantial dust grain growth and settling by 8 ± 4 Myr. The warm dust component is significantly variable in near to mid-IR excess and in temperature. At its warmest, it appears confined to a narrow belt from 0.08 to 0.2 AU. The steep SED for this dust component is consistent with grains with a<= 2.5 μm. For cosmic carbon to silicate dust composition, conspicuous 10 μm silicate emission would be expected and is not observed. This may indicate an elevated carbon to silicate ratio for the warm dust, which is not required to fit the outer disk. At its coolest, the warm dust can be fit with a disk from 0.14 to 0.31 AU, but with a higher inclination than either the outer disk or the gaseous disk, providing confirmation of the high inclination inferred from mid-IR interferometry. In tandem, the compositional and inclination difference between the warm dust and the outer dust disk suggests that the warm dust may be of second-generation origin, rather than a remnant of a primordial disk component. With its near face-on inclination, SAO 206462's disk is a prime location for planet searches. Based in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  10. Childhood to adolescence: dust and gas clearing in protoplanetary disks

    NASA Astrophysics Data System (ADS)

    Brown, Joanna Margaret

    Disks are ubiquitous around young stars. Over time, disks dissipate, revealing planets that formed hidden by their natal dust. Since direct detection of young planets at small orbital radii is currently impossible, other tracers of planet formation must be found. One sign of disk evolution, potentially linked to planet formation, is the opening of a gap or inner hole in the disk. In this thesis, I have identified and characterized several cold disks with large inner gaps but retaining massive primordial outer disks. While cold disks are not common, with ~5% of disks showing signs of inner gaps, they provide proof that at least some disks evolve from the inside-out. These large gaps are equivalent to dust clearing from inside the Earth's orbit to Neptune's orbit or even the inner Kuiper belt. Unlike more evolved systems like our own, the central star is often still accreting and a large outer disk remains. I identified four cold disks in Spitzer 5-40 μm spectra and modeled these disks using a 2-D radiative transfer code to determine the gap properties. Outer gap radii of 20-45 AU were derived. However, spectrophotometric identification is indirect and model-dependent. To validate this interpretation, I observed three disks with a submillimeter interferometer and obtained the first direct images of the central holes. The images agree well with the gap sizes derived from the spectrophotometry. One system, LkH&alpha 330, has a very steep outer gap edge which seems more consistent with gravitational perturbation rather than gradual processes, such as grain growth and settling. Roughly 70% of cold disks show CO v=1&rarr 0 gas emission from the inner 1 AU and therefore are unlikely to have evolved due to photoevaporation. The derived rotation temperatures are significantly lower for the cold disks than disks without gaps. Unresolved (sub)millimeter photometry shows that cold disks have steeper colors, indicating that they are optically thin at these wavelengths, unlike their classical T Tauri star counterparts. The gaps are cleared of most ~100 μm sized grains as well as the ~10 μm sized grains visible in the mid-infrared as silicate emission features.

  11. Embedded Protostellar Disks Around (Sub-)Solar Stars. II. Disk Masses, Sizes, Densities, Temperatures, and the Planet Formation Perspective

    NASA Astrophysics Data System (ADS)

    Vorobyov, Eduard I.

    2011-03-01

    We present basic properties of protostellar disks in the embedded phase of star formation (EPSF), which is difficult to probe observationally using available observational facilities. We use numerical hydrodynamics simulations of cloud core collapse and focus on disks formed around stars in the 0.03-1.0 M sun mass range. Our obtained disk masses scale near-linearly with the stellar mass. The mean and median disk masses in the Class 0 and I phases (M mean d,C0 = 0.12 M sun, M mdn d,C0 = 0.09 M sun and M mean d,CI = 0.18 M sun, M mdn d,CI = 0.15 M sun, respectively) are greater than those inferred from observations by (at least) a factor of 2-3. We demonstrate that this disagreement may (in part) be caused by the optically thick inner regions of protostellar disks, which do not contribute to millimeter dust flux. We find that disk masses and surface densities start to systematically exceed that of the minimum mass solar nebular for objects with stellar mass as low as M * = 0.05-0.1 M sun. Concurrently, disk radii start to grow beyond 100 AU, making gravitational fragmentation in the disk outer regions possible. Large disk masses, surface densities, and sizes suggest that giant planets may start forming as early as in the EPSF, either by means of core accretion (inner disk regions) or direct gravitational instability (outer disk regions), thus breaking a longstanding stereotype that the planet formation process begins in the Class II phase.

  12. Debris disks as signposts of terrestrial planet formation. II. Dependence of exoplanet architectures on giant planet and disk properties

    NASA Astrophysics Data System (ADS)

    Raymond, S. N.; Armitage, P. J.; Moro-Martín, A.; Booth, M.; Wyatt, M. C.; Armstrong, J. C.; Mandell, A. M.; Selsis, F.; West, A. A.

    2012-05-01

    We present models for the formation of terrestrial planets, and the collisional evolution of debris disks, in planetary systems that contain multiple marginally unstable gas giants. We previously showed that in such systems, the dynamics of the giant planets introduces a correlation between the presence of terrestrial planets and cold dust, i.e., debris disks, which is particularly pronounced at λ ~ 70 μm. Here we present new simulations that show that this connection is qualitatively robust to a range of parameters: the mass distribution of the giant planets, the width and mass distribution of the outer planetesimal disk, and the presence of gas in the disk when the giant planets become unstable. We discuss how variations in these parameters affect the evolution. We find that systems with equal-mass giant planets undergo the most violent instabilities, and that these destroy both terrestrial planets and the outer planetesimal disks that produce debris disks. In contrast, systems with low-mass giant planets efficiently produce both terrestrial planets and debris disks. A large fraction of systems with low-mass (M ≲ 30 M⊕) outermost giant planets have final planetary separations that, scaled to the planets' masses, are as large or larger than the Saturn-Uranus and Uranus-Neptune separations in the solar system. We find that the gaps between these planets are not only dynamically stable to test particles, but are frequently populated by planetesimals. The possibility of planetesimal belts between outer giant planets should be taken into account when interpreting debris disk SEDs. In addition, the presence of ~ Earth-mass "seeds" in outer planetesimal disks causes the disks to radially spread to colder temperatures, and leads to a slow depletion of the outer planetesimal disk from the inside out. We argue that this may explain the very low frequency of >1 Gyr-old solar-type stars with observed 24 μm excesses. Our simulations do not sample the full range of plausible initial conditions for planetary systems. However, among the configurations explored, the best candidates for hosting terrestrial planets at ~1 AU are stars older than 0.1-1 Gyr with bright debris disks at 70 μm but with no currently-known giant planets. These systems combine evidence for the presence of ample rocky building blocks, with giant planet properties that are least likely to undergo destructive dynamical evolution. Thus, we predict two correlations that should be detected by upcoming surveys: an anti-correlation between debris disks and eccentric giant planets and a positive correlation between debris disks and terrestrial planets. Three movies associated to Figs. 1, 3, and 7 are available in electronic form at http://www.aanda.org

  13. A Comprehensive View of Circumstellar Disks in Chamaeleon I: Infrared Excess, Accretion Signatures, and Binarity

    NASA Astrophysics Data System (ADS)

    Damjanov, Ivana; Jayawardhana, Ray; Scholz, Alexander; Ahmic, Mirza; Nguyen, Duy C.; Brandeker, Alexis; van Kerkwijk, Marten H.

    2007-12-01

    We present a comprehensive study of disks around 81 young, low-mass stars and brown dwarfs in the nearby ~2 Myr old Chamaeleon I star-forming region. We use mid-infrared photometry from the Spitzer Space Telescope, supplemented by findings from ground-based high-resolution optical spectroscopy and adaptive optics imaging. We derive disk fractions of 52%+/-6% and 58+6-7% based on 8 and 24 μm color excesses, respectively, consistent with those reported for other clusters of similar age. Within the uncertainties, the disk frequency in our sample of K3-M8 objects in Cha I does not depend on stellar mass. Diskless and disk-bearing objects have similar spatial distributions. There are no obvious transition disks in our sample, implying a rapid timescale for the inner disk clearing process; however, we find two objects with weak excess at 3-8 μm and substantial excess at 24 μm, which may indicate grain growth and dust settling in the inner disk. For a subsample of 35 objects with high-resolution spectra, we investigate the connection between accretion signatures and dusty disks: in the vast majority of cases (29/35) the two are well correlated, suggesting that, on average, the timescale for gas dissipation is similar to that for clearing the inner dust disk. The exceptions are six objects for which dust disks appear to persist even though accretion has ceased or dropped below measurable levels. Adaptive optics images of 65 of our targets reveal that 17 have companions at (projected) separations of 10-80 AU. Of the five <~20 AU binaries, four lack infrared excess, possibly indicating that a close companion leads to faster disk dispersal. The closest binary with excess is separated by ~20 AU, which sets an upper limit of ~8 AU for the outer disk radius. The overall disk frequency among stars with companions (35+15-13%) is lower than (but still statistically consistent with) the value for the total sample.

  14. Signatures of Young Planets in the Continuum Emission from Protostellar Disks

    NASA Astrophysics Data System (ADS)

    Isella, Andrea; Turner, Neal J.

    2018-06-01

    Many protostellar disks show central cavities, rings, or spiral arms likely caused by low-mass stellar or planetary companions, yet few such features are conclusively tied to bodies embedded in the disks. We note that even small features on the disk surface cast shadows, because the starlight grazes the surface. We therefore focus on accurately computing the disk thickness, which depends on its temperature. We present models with temperatures set by the balance between starlight heating and radiative cooling, which are also in vertical hydrostatic equilibrium. The planet has 20, 100, or 1000 M ⊕, ranging from barely enough to perturb the disk significantly, to clearing a deep tidal gap. The hydrostatic balance strikingly alters the appearance of the model disk. The outer walls of the planet-carved gap puff up under starlight heating, throwing a shadow across the disk beyond. The shadow appears in scattered light as a dark ring that could be mistaken for a gap opened by another more distant planet. The surface brightness contrast between outer wall and shadow for the 1000 M ⊕ planet is an order of magnitude greater than a model neglecting the temperature disturbances. The shadow is so deep that it largely hides the planet-launched outer arm of the spiral wave. Temperature gradients are such that outer low-mass planets undergoing orbital migration will converge within the shadow. Furthermore, the temperature perturbations affect the shape, size, and contrast of features at millimeter and centimeter wavelengths. Thus radiative heating and cooling are key to the appearance of protostellar disks with embedded planets.

  15. Mid-infrared multi-wavelength imaging of Ophiuchus IRS 48 transitional disk†

    NASA Astrophysics Data System (ADS)

    Honda, Mitsuhiko; Okada, Kazushi; Miyata, Takashi; Mulders, Gijs D.; Swearingen, Jeremy R.; Kamizuka, Takashi; Ohsawa, Ryou; Fujiyoshi, Takuya; Fujiwara, Hideaki; Uchiyama, Mizuho; Yamashita, Takuya; Onaka, Takashi

    2018-04-01

    Transitional disks around the Herbig Ae/Be stars are fascinating targets in the contexts of disk evolution and planet formation. Oph IRS 48 is one of such Herbig Ae stars, which shows an inner dust cavity and azimuthally lopsided large dust distribution. We present new images of Oph IRS 48 at eight mid-infrared (MIR) wavelengths from 8.59 to 24.6 μm taken with COMICS mounted on the 8.2 m Subaru Telescope. The N-band (7 to 13 μm) images show that the flux distribution is centrally peaked with a slight spatial extent, while the Q-band (17 to 25 μm) images show asymmetric double peaks (east and west). Using 18.8- and 24.6 μm images, we derived the dust temperature at both east and west peaks to be 135 ± 22 K. Thus, the asymmetry may not be attributed to a difference in the temperature. Comparing our results with previous modeling works, we conclude that the inner disk is aligned to the outer disk. A shadow cast by the optically thick inner disk has a great influence on the morphology of MIR thermal emission from the outer disk.

  16. Mid-infrared multi-wavelength imaging of Ophiuchus IRS 48 transitional disk†

    NASA Astrophysics Data System (ADS)

    Honda, Mitsuhiko; Okada, Kazushi; Miyata, Takashi; Mulders, Gijs D.; Swearingen, Jeremy R.; Kamizuka, Takashi; Ohsawa, Ryou; Fujiyoshi, Takuya; Fujiwara, Hideaki; Uchiyama, Mizuho; Yamashita, Takuya; Onaka, Takashi

    2018-06-01

    Transitional disks around the Herbig Ae/Be stars are fascinating targets in the contexts of disk evolution and planet formation. Oph IRS 48 is one of such Herbig Ae stars, which shows an inner dust cavity and azimuthally lopsided large dust distribution. We present new images of Oph IRS 48 at eight mid-infrared (MIR) wavelengths from 8.59 to 24.6 μm taken with COMICS mounted on the 8.2 m Subaru Telescope. The N-band (7 to 13 μm) images show that the flux distribution is centrally peaked with a slight spatial extent, while the Q-band (17 to 25 μm) images show asymmetric double peaks (east and west). Using 18.8- and 24.6 μm images, we derived the dust temperature at both east and west peaks to be 135 ± 22 K. Thus, the asymmetry may not be attributed to a difference in the temperature. Comparing our results with previous modeling works, we conclude that the inner disk is aligned to the outer disk. A shadow cast by the optically thick inner disk has a great influence on the morphology of MIR thermal emission from the outer disk.

  17. Falling Outer Rotation Curves of Star-forming Galaxies at 0.6 ≲ z ≲ 2.6 Probed with KMOS3D and SINS/zC-SINF

    NASA Astrophysics Data System (ADS)

    Lang, Philipp; Förster Schreiber, Natascha M.; Genzel, Reinhard; Wuyts, Stijn; Wisnioski, Emily; Beifiori, Alessandra; Belli, Sirio; Bender, Ralf; Brammer, Gabe; Burkert, Andreas; Chan, Jeffrey; Davies, Ric; Fossati, Matteo; Galametz, Audrey; Kulkarni, Sandesh K.; Lutz, Dieter; Mendel, J. Trevor; Momcheva, Ivelina G.; Naab, Thorsten; Nelson, Erica J.; Saglia, Roberto P.; Seitz, Stella; Tacchella, Sandro; Tacconi, Linda J.; Tadaki, Ken-ichi; Übler, Hannah; van Dokkum, Pieter G.; Wilman, David J.

    2017-05-01

    We exploit the deep, resolved, Hα kinematic data from the KMOS3D and SINS/zC-SINF surveys to examine the largely unexplored outer-disk kinematics of star-forming galaxies (SFGs), out to the peak of cosmic star formation. Our sample contains 101 SFGs, representative of the more massive (9.3≲ {log}{M}* /{M}⊙ ≲ 11.5) main sequence population at 0.6 ≤ z ≤ 2.6. Through a novel stacking approach, we are able to constrain a representative rotation curve extending out to ˜4 effective radii. This average rotation curve exhibits a significant drop in rotation velocity beyond the turnover, with a slope of {{Δ }}V/{{Δ }}R=-{0.26}-0.09+0.10 in units of normalized coordinates V/V max and R/R turn. This result confirms that the fall-off seen in some individual galaxies is a common feature of our sample of high-z disks. The outer fall-off strikingly deviates from the flat or mildly rising rotation curves of local spiral galaxies that have similar masses. Through a comparison with models that include baryons and dark matter, we demonstrate that the falling stacked rotation curve is consistent with a high mass fraction of baryons, relative to the total dark matter halo (m d ≳ 0.05), in combination with a sizeable level of pressure support in the outer disk. These findings agree with recent studies demonstrating that high-z star-forming disks are strongly baryon-dominated within the disk scale, and furthermore suggest that pressure gradients caused by large, turbulent gas motions are present even in their outer disks. These results are largely independent of our model assumptions, such as the presence of stellar bulges, the effect of adiabatic contraction, and variations in halo concentration.

  18. ABUNDANCES OF PLANETARY NEBULAE IN THE OUTER DISK OF M31

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwitter, Karen B.; Lehman, Emma M. M.; Balick, Bruce

    2012-07-01

    We present spectroscopic observations and chemical abundances of 16 planetary nebulae (PNe) in the outer disk of M31. The [O III] {lambda}4363 line is detected in all objects, allowing a direct measurement of the nebular temperature essential for accurate abundance determinations. Our results show that the abundances in these M31 PNe display the same correlations and general behaviors as Type II PNe in the Milky Way. We also calculate photoionization models to derive estimates of central star properties. From these we infer that our sample PNe, all near the bright-end cutoff of the planetary nebula luminosity function, originated from starsmore » near 2 M{sub Sun }. Finally, under the assumption that these PNe are located in M31's disk, we plot the oxygen abundance gradient, which appears shallower than the gradient in the Milky Way.« less

  19. Characterization of the Inner Disk around HD 141569 A from Keck/NIRC2 L-Band Vortex Coronagraphy

    NASA Astrophysics Data System (ADS)

    Mawet, Dimitri; Choquet, Élodie; Absil, Olivier; Huby, Elsa; Bottom, Michael; Serabyn, Eugene; Femenia, Bruno; Lebreton, Jérémy; Matthews, Keith; Gomez Gonzalez, Carlos A.; Wertz, Olivier; Carlomagno, Brunella; Christiaens, Valentin; Defrère, Denis; Delacroix, Christian; Forsberg, Pontus; Habraken, Serge; Jolivet, Aissa; Karlsson, Mikael; Milli, Julien; Pinte, Christophe; Piron, Pierre; Reggiani, Maddalena; Surdej, Jean; Vargas Catalan, Ernesto

    2017-01-01

    HD 141569 A is a pre-main sequence B9.5 Ve star surrounded by a prominent and complex circumstellar disk, likely still in a transition stage from protoplanetary to debris disk phase. Here, we present a new image of the third inner disk component of HD 141569 A made in the L‧ band (3.8 μm) during the commissioning of the vector vortex coronagraph that has recently been installed in the near-infrared imager and spectrograph NIRC2 behind the W.M. Keck Observatory Keck II adaptive optics system. We used reference point-spread function subtraction, which reveals the innermost disk component from the inner working distance of ≃23 au and up to ≃70 au. The spatial scale of our detection roughly corresponds to the optical and near-infrared scattered light, thermal Q, N, and 8.6 μm PAH emission reported earlier. We also see an outward progression in dust location from the L‧ band to the H band (Very Large Telescope/SPHERE image) to the visible (Hubble Space Telescope (HST)/STIS image), which is likely indicative of dust blowout. The warm disk component is nested deep inside the two outer belts imaged by HST-NICMOS in 1999 (at 406 and 245 au, respectively). We fit our new L‧-band image and spectral energy distribution of HD 141569 A with the radiative transfer code MCFOST. Our best-fit models favor pure olivine grains and are consistent with the composition of the outer belts. While our image shows a putative very faint point-like clump or source embedded in the inner disk, we did not detect any true companion within the gap between the inner disk and the first outer ring, at a sensitivity of a few Jupiter masses.

  20. Planet-Planet Scattering in Planetesimal Disks. II. Predictions for Outer Extrasolar Planetary Systems

    NASA Astrophysics Data System (ADS)

    Raymond, Sean N.; Armitage, Philip J.; Gorelick, Noel

    2010-03-01

    We develop an idealized dynamical model to predict the typical properties of outer extrasolar planetary systems, at radii comparable to the Jupiter-to-Neptune region of the solar system. The model is based upon the hypothesis that dynamical evolution in outer planetary systems is controlled by a combination of planet-planet scattering and planetary interactions with an exterior disk of small bodies ("planetesimals"). Our results are based on 5000 long duration N-body simulations that follow the evolution of three planets from a few to 10 AU, together with a planetesimal disk containing 50 M ⊕ from 10 to 20 AU. For large planet masses (M >~ M Sat), the model recovers the observed eccentricity distribution of extrasolar planets. For lower-mass planets, the range of outcomes in models with disks is far greater than that which is seen in isolated planet-planet scattering. Common outcomes include strong scattering among massive planets, sudden jumps in eccentricity due to resonance crossings driven by divergent migration, and re-circularization of scattered low-mass planets in the outer disk. We present the distributions of the eccentricity and inclination that result, and discuss how they vary with planet mass and initial system architecture. In agreement with other studies, we find that the currently observed eccentricity distribution (derived primarily from planets at a <~ 3 AU) is consistent with isolated planet-planet scattering. We explain the observed mass dependence—which is in the opposite sense from that predicted by the simplest scattering models—as a consequence of strong correlations between planet masses in the same system. At somewhat larger radii, initial planetary mass correlations and disk effects can yield similar modest changes to the eccentricity distribution. Nonetheless, strong damping of eccentricity for low-mass planets at large radii appears to be a secure signature of the dynamical influence of disks. Radial velocity measurements capable of detecting planets with K ≈ 5 m s-1 and periods in excess of 10 years will provide constraints on this regime. Finally, we present an analysis of the predicted separation of planets in two-planet systems, and of the population of planets in mean-motion resonances (MMRs). We show that, if there are systems with ~ Jupiter-mass planets that avoid close encounters, the planetesimal disk acts as a damping mechanism and populates MMRs at a very high rate (50%-80%). In many cases, resonant chains (in particular the 4:2:1 Laplace resonance) are set up among all three planets. We expect such resonant chains to be common among massive planets in outer planetary systems.

  1. Mid-infrared interferometric variability of DG Tauri: Implications for the inner-disk structure

    NASA Astrophysics Data System (ADS)

    Varga, J.; Gabányi, K. É.; Ábrahám, P.; Chen, L.; Kóspál, Á.; Menu, J.; Ratzka, Th.; van Boekel, R.; Dullemond, C. P.; Henning, Th.; Jaffe, W.; Juhász, A.; Moór, A.; Mosoni, L.; Sipos, N.

    2017-08-01

    Context. DG Tau is a low-mass pre-main sequence star, whose strongly accreting protoplanetary disk exhibits a so-far enigmatic behavior: its mid-infrared thermal emission is strongly time-variable, even turning the 10 μm silicate feature from emission to absorption temporarily. Aims: We look for the reason for the spectral variability at high spatial resolution and at multiple epochs. Methods: Infrared interferometry can spatially resolve the thermal emission of the circumstellar disk, also giving information about dust processing. We study the temporal variability of the mid-infrared interferometric signal, observed with the VLTI/MIDI instrument at six epochs between 2011 and 2014. We fit a geometric disk model to the observed interferometric signal to obtain spatial information about the disk. We also model the mid-infrared spectra by template fitting to characterize the profile and time dependence of the silicate emission. We use physically motivated radiative transfer modeling to interpret the mid-infrared interferometric spectra. Results: The inner disk (r < 1-3 au) spectra exhibit a 10 μm absorption feature related to amorphous silicate grains. The outer disk (r > 1-3 au) spectra show a crystalline silicate feature in emission, similar to the spectra of comet Hale-Bopp. The striking difference between the inner and outer disk spectral feature is highly unusual among T Tauri stars. The mid-infrared variability is dominated by the outer disk. The strength of the silicate feature changed by more than a factor of two. Between 2011 and 2014 the half-light radius of the mid-infrared-emitting region decreased from 1.15 to 0.7 au. Conclusions: For the origin of the absorption we discuss four possible explanations: a cold obscuring envelope, an accretion heated inner disk, a temperature inversion on the disk surface and a misaligned inner geometry. The silicate emission in the outer disk can be explained by dusty material high above the disk plane, whose mass can change with time, possibly due to turbulence in the disk. Based on observations made with the ESO Very Large Telescope Interferometer at Paranal Observatory (Chile) under the programs 088.C-1007 (PI: L. Mosoni), 090.C-0040 (PI: Th. Ratzka), and 092.C-0086 (PI: Th. Ratzka).

  2. Detailed Structure of the Outer Disk Around HD 169142 with Polarized Light in H-band

    NASA Technical Reports Server (NTRS)

    Momose, Munetake; Morita, Ayaka; Fukagawa, Misato; Muto, Takayuki; Takeuchi, Taku; Hashimoto, Jun; Honda, Mitsuhiko; Kudo, Tomoyuki; Okamoto, Yoshiko K.; Kanagawa, Kazuhiro D.; hide

    2015-01-01

    Coronagraphic imagery of the circumstellar disk around HD 169142 in H-band polarized intensity (PI) with Subaru/HiCIAO is presented. The emission scattered by dust particles at the disk surface in 0.''2=r=1.''2, or 29=r=174 AU, is successfully detected. The azimuthally-averaged radial profile of the PI shows a double power-law distribution, in which the PIs in r = 29-52 AU and r = 81.2-145 AU respectively show r-3-dependence. These two power-law regions are connected smoothly with a transition zone (TZ), exhibiting an apparent gap in r = 40-70 AU. The PI in the inner power-law region shows a deep minimum whose location seems to coincide with the point source at lambda = 7 mm. This can be regarded as another sign of a protoplanet in TZ. The observed radial profile of the PI is reproduced by a minimally flaring disk with an irregular surface density distribution or with an irregular temperature distribution or with the combination of both. The depletion factor of surface density in the inner power-law region (r <50 AU) is derived to be =0.16 from a simple model calculation. The obtained PI image also shows small scale asymmetries in the outer power-law region. Possible origins for these asymmetries include corrugation of the scattering surface in the outer region, and shadowing effect by a puffed up structure in the inner power-law region.

  3. The Diversity of Carbon in Cometary Refractory Dust Particles

    NASA Technical Reports Server (NTRS)

    Wooden, D. H.

    2018-01-01

    When comparing the dark icy surfaces of outer solar system small bodies and the composition of carbonaceous chondrites derived from dark asteroids we find a significant discrepancy in the assessed amounts of elemental carbon: up to 80% amorphous carbon is used to model the dark surfaces of Kuiper Belt Objects and Centaurs whereas at most 5% of elemental carbon is found in carbonaceous chondrites. If we presume that regimes of comet nuclei formation are analogous to disk regimes where other outer solar system ice-rich bodies formed then we can turn to comet dust to gain insights into the diversity in the concentration and forms of carbon available in the outer disk. Comet dust offers important insights into the diversity in the amounts and forms of carbon that were incorporated into aggregate dust particles in the colder parts of the protoplanetary disk out of which comet nuclei accreted. Comet nuclei are amongst the most primitive bodies because they have remained cold and unequilibrated. Comet dust particles reveal the presence of forms of elemental carbon and of soluble and insoluble organic matter, and in a great diversity of concentrations from very little, e.g., Stardust samples of comet 81P/Wild 2, to 80% by volume for Ultra Carbonaceous Antarctic Micro Meteorites (UCAMMs). Cometary outbursts and/or jet activity also demonstrate variations in the concentration of carbon in the grains at different grain sizes within a single comet. We review the diversity of carbon-bearing dust grains in cometary samples, flyby measurements and deduced from remote-sensing to enrich the discussion about the diversity of carbonaceous matter available in the outer ice-rich disk at the time of comet nuclei formation.

  4. Probing Signatures of a Distant Planet around the Young T-Tauri Star CI Tau Hosting a Possible Hot Jupiter

    NASA Astrophysics Data System (ADS)

    Konishi, Mihoko; Hashimoto, Jun; Hori, Yasunori

    2018-06-01

    We search for signatures of a distant planet around the two million-year-old classical T-Tauri star CI Tau hosting a hot-Jupiter candidate ({M}{{p}}\\sin i∼ 8.1 {M}Jupiter}) in an eccentric orbit (e ∼ 0.3). To probe the existence of an outer perturber, we reanalyzed 1.3 mm dust continuum observations of the protoplanetary disk around CI Tau obtained by the Atacama Large Millimeter/submillimeter Array (ALMA). We found a gap structure at ∼0.″8 in CI Tau’s disk. Our visibility fitting assuming an axisymmetric surface brightness profile suggested that the gap is located at a deprojected radius of 104.5 ± 1.6 au and has a width of 36.9 ± 2.9 au. The brightness temperature around the gap was calculated to be ∼2.3 K lower than that of the ambient disk. Gap-opening mechanisms such as secular gravitational instability (GI) and dust trapping can explain the gap morphology in the CI Tau disk. The scenario that an unseen planet created the observed gap structure cannot be ruled out, although the coexistence of an eccentric hot Jupiter and a distant planet around the young CI Tau would be challenging for gravitational scattering scenarios. The mass of the planet was estimated to be between ∼0.25 M Jupiter and ∼0.8 M Jupiter from the gap width and depth ({0.41}-0.06+0.04) in the modeled surface brightness image, which is lower than the current detection limits of high-contrast direct imaging. The young classical T-Tauri CI Tau may be a unique system for exploring the existence of a potential distant planet as well as the origin of an eccentric hot Jupiter.

  5. THE EFFECTS OF EPISODIC STAR FORMATION ON THE FUV-NUV COLORS OF STAR FORMING REGIONS IN OUTER DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Kate L.; Van Zee, Liese; Dowell, Jayce D., E-mail: barneskl@astro.indiana.edu, E-mail: vanzee@astro.indiana.edu, E-mail: jdowell@unm.edu

    2013-09-20

    We run stellar population synthesis models to examine the effects of a recently episodic star formation history (SFH) on UV and Hα colors of star forming regions. Specifically, the SFHs we use are an episodic sampling of an exponentially declining star formation rate (SFR; τ model) and are intended to simulate the SFHs in the outer disks of spiral galaxies. To enable comparison between our models and observational studies of star forming regions in outer disks, we include in our models sensitivity limits that are based on recent deep UV and Hα observations in the literature. We find significant dispersionmore » in the FUV-NUV colors of simulated star forming regions with frequencies of star formation episodes of 1 × 10{sup –8} to 4 × 10{sup –9} yr{sup –1}. The dispersion in UV colors is similar to that found in the outer disk of nearby spiral galaxies. As expected, we also find large variations in L{sub H{sub α}}/L{sub FUV}. We interpret our models within the context of inside-out disk growth, and find that a radially increasing τ and decreasing metallicity with an increasing radius will only produce modest FUV-NUV color gradients, which are significantly smaller than what is found for some nearby spiral galaxies. However, including moderate extinction gradients with our models can better match the observations with steeper UV color gradients. We estimate that the SFR at which the number of stars emitting FUV light becomes stochastic is ∼2 × 10{sup –6} M{sub ☉} yr{sup –1}, which is substantially lower than the SFR of many star forming regions in outer disks. Therefore, we conclude that stochasticity in the upper end of the initial mass function is not likely to be the dominant cause of dispersion in the FUV-NUV colors of star forming regions in outer disks. Finally, we note that if outer disks have had an episodic SFH similar to that used in this study, this should be taken into account when estimating gas depletion timescales and modeling chemical evolution of spiral galaxies.« less

  6. Environment, Ram Pressure, and Shell Formation in Holmberg II

    NASA Astrophysics Data System (ADS)

    Bureau, M.; Carignan, C.

    2002-03-01

    Neutral hydrogen VLA D-array observations of the dwarf irregular galaxy HoII, a prototype galaxy for studies of shell formation, are presented. These were extracted from the multiconfiguration data set of Puche and colleagues. H I is detected to radii over 16' or 4R25, almost a factor of 2 better than previous studies. The total H I mass MHI=6.44×108 Msolar. The integrated H I map has a comet-like appearance, with a large but faint component extending to the northwest and the H I appearing compressed on the opposite side. This suggests that HoII is affected by ram pressure from an intragroup medium (IGM). The velocity field shows a clear rotating disk pattern, and a rotation curve corrected for asymmetric drift was derived. However, the gas at large radii may not be in equilibrium. Puche and colleagues' multiconfiguration data were also reanalyzed, and it is shown that they overestimated their fluxes by over 20%. The rotation curve derived for HoII is well defined for r<~10 kpc. For 10<~r<~18 kpc, however, velocities are only defined on the approaching side, such that this part of the rotation curve should be used with caution. An analysis of the mass distribution, using the whole extent of this rotation curve, yields a total mass of 6.3×109 Msolar, of which ~80% is dark. Similarly to what is seen in many dwarfs, there is more luminous mass in H I than in stars. One peculiarity, however, is that luminous matter dominates within the optical body of the galaxy and dark matter only in the outer parts, analogous to what is seen in massive spirals rather than dwarfs. HoII lies northeast of the M81 Group's core, along with Kar 52 (M81 dwarf A) and UGC 4483. No signs of interaction are observed, however, and it is argued that HoII is part of the NGC 2403 subgroup, infalling toward M81. A case is made for ram pressure stripping and an IGM in the M81 Group. Stripping of the outer parts of the disk would require an IGM density nIGM>~4.0×10-6 atoms cm-3 at the location of HoII. This corresponds to ~1% of the virial mass of the group uniformly distributed over a volume just enclosing HoII and is consistent with the known X-ray properties of small groups. The H I tail is consistent with additional turbulent viscous stripping and evaporation, at least for low IGM temperatures. It is argued that existing observations of HoII do not support self-propagating star formation scenarios, whereby the H I holes and shells are created by supernova explosions and stellar winds. Many H I holes are located in low surface density regions of the disk, where no star formation is expected or observed. Alternative mechanisms are discussed, and it is suggested that ram pressure can help. Ram pressure has the capacity to enlarge preexisting holes and lower their creation energies, helping to bridge the gap between the observed star formation rate and that required to create the holes.

  7. CHARACTERIZATION OF THE INNER DISK AROUND HD 141569 A FROM KECK/NIRC2 L-BAND VORTEX CORONAGRAPHY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mawet, Dimitri; Bottom, Michael; Matthews, Keith

    HD 141569 A is a pre-main sequence B9.5 Ve star surrounded by a prominent and complex circumstellar disk, likely still in a transition stage from protoplanetary to debris disk phase. Here, we present a new image of the third inner disk component of HD 141569 A made in the L ′ band (3.8 μ m) during the commissioning of the vector vortex coronagraph that has recently been installed in the near-infrared imager and spectrograph NIRC2 behind the W.M. Keck Observatory Keck II adaptive optics system. We used reference point-spread function subtraction, which reveals the innermost disk component from the innermore » working distance of ≃23 au and up to ≃70 au. The spatial scale of our detection roughly corresponds to the optical and near-infrared scattered light, thermal Q , N , and 8.6 μ m PAH emission reported earlier. We also see an outward progression in dust location from the L ′ band to the H band (Very Large Telescope/SPHERE image) to the visible ( Hubble Space Telescope ( HST )/STIS image), which is likely indicative of dust blowout. The warm disk component is nested deep inside the two outer belts imaged by HST-NICMOS in 1999 (at 406 and 245 au, respectively). We fit our new L ′-band image and spectral energy distribution of HD 141569 A with the radiative transfer code MCFOST. Our best-fit models favor pure olivine grains and are consistent with the composition of the outer belts. While our image shows a putative very faint point-like clump or source embedded in the inner disk, we did not detect any true companion within the gap between the inner disk and the first outer ring, at a sensitivity of a few Jupiter masses.« less

  8. Ultraviolet Imaging Telescope ultraviolet images - Large-scale structure, H II regions, and extinction in M81

    NASA Technical Reports Server (NTRS)

    Hill, Jesse K.; Bohlin, Ralph C.; Cheng, Kwang-Ping; Hintzen, Paul M. N.; Landsman, Wayne B.; Neff, Susan G.; O'Connell, Robert W.; Roberts, Morton S.; Smith, Andrew M.; Smith, Eric P.

    1992-01-01

    The study employs UV images of M81 obtained by the Ultraviolet Imaging Telescope (UIT) during the December 1990 Astro-1 spacelab mission to determine 2490- and 1520-A fluxes from 46 H II regions and global surface brightness profiles. Comparison photometry in the V band is obtained from a ground-based CCD image. UV radial profiles show bulge and exponential disk components, with a local decrease in disk surface brightness inside the inner Lindblad Resonance about 4 arcmin from the nucleus. The V profile shows typical bulge plus exponential disk structure, with no local maximum in the disk. There is little change of UV color across the disk, although there is a strong gradient in the bulge. Observed m152-V colors of the H II regions are consistent with model spectra for young clusters, after dereddening using Av determined from m249-V and the Galactic extinction curve. The value of Av, so determined, is 0.4 mag greater on the average than Av derived from radio continuum and H-alpha fluxes.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendler, Nathanial P.; Mulders, Gijs D.; Pascucci, Ilaria

    The properties of disks around brown dwarfs and very low mass stars (hereafter VLMOs) provide important boundary conditions on the process of planet formation and inform us about the numbers and masses of planets than can form in this regime. We use the Herschel Space Observatory PACS spectrometer to measure the continuum and [O i] 63 μ m line emission toward 11 VLMOs with known disks in the Taurus and Chamaeleon I star-forming regions. We fit radiative transfer models to the spectral energy distributions of these sources. Additionally, we carry out a grid of radiative transfer models run in amore » regime that connects the luminosity of our sources with brighter T Tauri stars. We find that VLMO disks with sizes 1.3–78 au, smaller than typical T Tauri disks, fit well the spectral energy distributions assuming that disk geometry and dust properties are stellar mass independent. Reducing the disk size increases the disk temperature, and we show that VLMOs do not follow previously derived disk temperature–stellar luminosity relationships if the disk outer radius scales with stellar mass. Only 2 out of 11 sources are detected in [O i] despite a better sensitivity than was achieved for T Tauri stars, suggesting that VLMO disks are underluminous. Using thermochemical models, we show that smaller disks can lead to the unexpected [O i] 63 μ m nondetections in our sample. The disk outer radius is an important factor in determining the gas and dust observables. Hence, spatially resolved observations with ALMA—to establish if and how disk radii scale with stellar mass—should be pursued further.« less

  10. An optical study of stars and dust in the Andromeda galaxy

    NASA Technical Reports Server (NTRS)

    Walterbos, R. A. M.; Kennicutt, R. C., Jr.

    1988-01-01

    The distribution of light in M 31 is characterized on the basis of the UBVR surface photometry reported by Walterbos and Kennicutt (1987). The results of the data analysis are presented in extensive graphs, maps, and tables and discussed in detail, considering the outer disk regions, the decomposition into bulge and disk, the global disk and bulge colors, and dust and gas in two spiral arms. Principal findings examined include: (1) position-angle changes at radial distances beyond about 18 kpc (consistent with SW disk warping); (2) a bulge profile well described by an r exp 1/4 power law; (3) a bulge contribution to total light of about 40 percent; (4) increasing blueness in the outer disk (color gradient 0.02 mag/kpc in B-R); (5) an extinction law similar to that for the Galaxy; and (6) a significant correlation between dust and H I distributions.

  11. Mid-infrared interferometric variability of DG Tau: implications for the inner-disk structure .

    NASA Astrophysics Data System (ADS)

    Ábrahám, P.; Varga, J.; Gabányi, K. É.; Chen, L.; Kóspál, Á.; Ratzka, Th.; van Boekel, R.; Mosoni, L.; Henning, Th.

    DG Tau is a low-mass young star whose strongly accreting disk shows a variable 10 mu m silicate feature, that may even turn temporarily from emission to absorption. Aiming to find the physical reason of this variability, we analysed multiepoch VLTI/MIDI interferometric observations. We found that the inner disk within 3 au radius exhibits a 10 mu m absorption feature related to amorphous silicate grains, while the outer disk displays a variable crystalline feature in emission, similar in shape to the spectrum of comet Hale-Bopp. The variability may be related to a fluctuating amount of dusty material above the disk surface, possibly due to turbulence.

  12. Freeze-fracture studies of photoreceptor membranes: new observations bearing upon the distribution of cholesterol

    PubMed Central

    1983-01-01

    We performed electron microscopy of replicas from freeze-fractured retinas exposed during or after fixation to the cholesterol-binding antibiotic, filipin. We observed characteristic filipin-induced perturbations throughout the disk and plasma membranes of retinal rod outer segments of various species. It is evident that a prolonged exposure to filipin in fixative enhances rather than reduces presumptive cholesterol detection in the vertebrate photoreceptor cell. In agreement with the pattern seen in our previous study (Andrews, L.D., and A. I. Cohen, 1979, J. Cell Biol., 81:215-228), filipin- binding in membranes exhibiting particle-free patches seemed largely confined to these patches. Favorably fractured photoreceptors exhibited marked filipin-binding in apical inner segment plasma membrane topologically confluent with and proximate to the outer segment plasma membrane, which was comparatively free of filipin binding. A possible boundary between these differing membrane domains was suggested in a number of replicas exhibiting lower filipin binding to the apical plasma membrane of the inner segment in the area surrounding the cilium. This area contains a structure (Andrews, L. D., 1982, Freeze- fracture studies of vertebrate photoreceptors, In Structure of the Eye, J. G. Hollyfield and E. Acosta Vidrio, editors, Elsevier/North-Holland, New York, 11-23) that resembles the active zones of the nerve terminals for the frog neuromuscular junction. These observations lead us to hypothesize that these structures may function to direct vesicle fusion to occur near them, in a domain of membrane more closely resembling outer than inner segment plasma membrane. The above evidence supports the views that (a) all disk membranes contain cholesterol, but the particle-free patches present in some disks trap cholesterol from contiguous particulate membrane regions; (b) contiguous inner and outer segment membranes may greatly differ in cholesterol content; and (c) the suggested higher cholesterol in the inner segment than in the outer segment plasma membrane may help direct newly inserted photopigment molecules to the outer segment. PMID:6411740

  13. Hints for Small Disks around Very Low Mass Stars and Brown Dwarfs

    NASA Astrophysics Data System (ADS)

    Hendler, Nathanial P.; Mulders, Gijs D.; Pascucci, Ilaria; Greenwood, Aaron; Kamp, Inga; Henning, Thomas; Ménard, François; Dent, William R. F.; Evans, Neal J., II

    2017-06-01

    The properties of disks around brown dwarfs and very low mass stars (hereafter VLMOs) provide important boundary conditions on the process of planet formation and inform us about the numbers and masses of planets than can form in this regime. We use the Herschel Space Observatory PACS spectrometer to measure the continuum and [O I] 63 μm line emission toward 11 VLMOs with known disks in the Taurus and Chamaeleon I star-forming regions. We fit radiative transfer models to the spectral energy distributions of these sources. Additionally, we carry out a grid of radiative transfer models run in a regime that connects the luminosity of our sources with brighter T Tauri stars. We find that VLMO disks with sizes 1.3-78 au, smaller than typical T Tauri disks, fit well the spectral energy distributions assuming that disk geometry and dust properties are stellar mass independent. Reducing the disk size increases the disk temperature, and we show that VLMOs do not follow previously derived disk temperature-stellar luminosity relationships if the disk outer radius scales with stellar mass. Only 2 out of 11 sources are detected in [O I] despite a better sensitivity than was achieved for T Tauri stars, suggesting that VLMO disks are underluminous. Using thermochemical models, we show that smaller disks can lead to the unexpected [O I] 63 μm nondetections in our sample. The disk outer radius is an important factor in determining the gas and dust observables. Hence, spatially resolved observations with ALMA—to establish if and how disk radii scale with stellar mass—should be pursued further. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  14. New constraints on the disk characteristics and companion candidates around T Chamaeleontis with VLT/SPHERE

    NASA Astrophysics Data System (ADS)

    Pohl, A.; Sissa, E.; Langlois, M.; Müller, A.; Ginski, C.; van Holstein, R. G.; Vigan, A.; Mesa, D.; Maire, A.-L.; Henning, Th.; Gratton, R.; Olofsson, J.; van Boekel, R.; Benisty, M.; Biller, B.; Boccaletti, A.; Chauvin, G.; Daemgen, S.; de Boer, J.; Desidera, S.; Dominik, C.; Garufi, A.; Janson, M.; Kral, Q.; Ménard, F.; Pinte, C.; Stolker, T.; Szulágyi, J.; Zurlo, A.; Bonnefoy, M.; Cheetham, A.; Cudel, M.; Feldt, M.; Kasper, M.; Lagrange, A.-M.; Perrot, C.; Wildi, F.

    2017-09-01

    Context. The transition disk around the T Tauri star T Cha possesses a large gap, making it a prime target for high-resolution imaging in the context of planet formation. Aims: We aim to find signs of disk evolutionary processes by studying the disk geometry and the dust grain properties at its surface, and to search for companion candidates. Methods: We analyze a set of VLT/SPHERE data at near-infrared and optical wavelengths. We performed polarimetric imaging of T Cha with IRDIS (1.6 μm) and ZIMPOL (0.5-0.9 μm), and obtained intensity images from IRDIS dual-band imaging with simultaneous spectro-imaging with IFS (0.9-1.3 μm). Results: The disk around T Cha is detected in all observing modes and its outer disk is resolved in scattered light with unprecedented angular resolution and signal-to-noise. The images reveal a highly inclined disk with a noticeable east-west brightness asymmetry. The significant amount of non-azimuthal polarization signal in the Uφ images, with a Uφ/Qφ peak-to-peak value of 14%, is in accordance with theoretical studies on multiple scattering in an inclined disk. Our optimal axisymmetric radiative transfer model considers two coplanar inner and outer disks, separated by a gap of 0.̋28 ( 30 au) in size, which is larger than previously thought. We derive a disk inclination of 69 deg and PA of 114 deg. In order to self-consistently reproduce the intensity and polarimetric images, the dust grains, responsible for the scattered light, need to be dominated by sizes of around ten microns. A point source is detected at an angular distance of 3.5'' from the central star. It is, however, found not to be co-moving. Conclusions: We confirm that the dominant source of emission is forward scattered light from the near edge of the outer disk. Our point source analysis rules out the presence of a companion with mass larger than 8.5 Mjup between 0.̋1 and 0.̋3. The detection limit decreases to 2 Mjup for 0.̋3 to 4.0''. Based on observations made with European Southern Observatory (ESO) telescopes at the Paranal Observatory in Chile, under program IDs 095.C-0298(B), 096.C-0248(B) and 096.C-0248(C).

  15. High-Resolution Submillimeter and Near-Infrared Studies of the Transition Disk around Sz 91

    NASA Technical Reports Server (NTRS)

    Tsukagoshi, Takashi; Momose, Munetake; Hashimoto, Jun; Kudo, Tomoyuki; Andrews, Sean; Saito, Masao; Kitamura, Yoshimi; Ohashi, Nagayoshi; Wilner, David; Kawabe, Ryohei; hide

    2014-01-01

    To reveal the structures of a transition disk around a young stellar object in Lupus, Sz 91, we have performed aperture synthesis 345 GHz continuum and CO(32) observations with the Submillimeter Array ( 13 resolution), and high-resolution imaging of polarized intensity at the Ks-band by using the Hi-CIAO instrument on the Subaru Telescope (0.25 resolution). Our observations successfully resolved the inner and outer radii of the dust disk to be 65 and 170AU, respectively, which indicates that Sz 91 is a transition disk source with one of the largest known inner holes. The model fitting analysis of the spectral energy distribution reveals an H2 mass of 2.4 103 M in the cold (T 30 K) outer part at 65 r 170 AU by assuming a canonical gas-to-dust mass ratio of 100, although a small amount ( 3109 M) of hot (T 180 K) dust possibly remains inside the inner hole of the disk. The structure of the hot component could be interpreted as either an unresolved self-luminous companion body (not directly detected in our observations) or a narrow ring inside the inner hole. Significant CO(32) emission with a velocity gradient along the major axis of the dust disk is concentrated on the Sz 91 position, suggesting a rotating gas disk with a radius of 420 AU. The Sz 91 disk is possibly a rare disk in an evolutionary stage immediately after the formation of protoplanets because of the large inner hole and the lower disk mass than other transition disks studied thus far.

  16. THE SPITZER INFRARED SPECTROGRAPH SURVEY OF PROTOPLANETARY DISKS IN ORION A. I. DISK PROPERTIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, K. H.; Watson, Dan M.; Manoj, P.

    2016-09-01

    We present our investigation of 319 Class II objects in Orion A observed by Spitzer /IRS. We also present the follow-up observations of 120 of these Class II objects in Orion A from the Infrared Telescope Facility/SpeX. We measure continuum spectral indices, equivalent widths, and integrated fluxes that pertain to disk structure and dust composition from IRS spectra of Class II objects in Orion A. We estimate mass accretion rates using hydrogen recombination lines in the SpeX spectra of our targets. Utilizing these properties, we compare the distributions of the disk and dust properties of Orion A disks with thosemore » of Taurus disks with respect to position within Orion A (Orion Nebular Cluster [ONC] and L1641) and with the subgroups by the inferred radial structures, such as transitional disks (TDs) versus radially continuous full disks (FDs). Our main findings are as follows. (1) Inner disks evolve faster than the outer disks. (2) The mass accretion rates of TDs and those of radially continuous FDs are statistically significantly displaced from each other. The median mass accretion rate of radially continuous disks in the ONC and L1641 is not very different from that in Taurus. (3) Less grain processing has occurred in the disks in the ONC compared to those in Taurus, based on analysis of the shape index of the 10 μ m silicate feature ( F {sub 11.3}/ F {sub 9.8}). (4) The 20–31 μ m continuum spectral index tracks the projected distance from the most luminous Trapezium star, θ {sup 1} Ori C. A possible explanation is UV ablation of the outer parts of disks.« less

  17. Parametric design analysis of a hybrid composite flywheel using a laminated central disc and a filament wound outer ring

    NASA Astrophysics Data System (ADS)

    Nimmer, R. P.

    1980-09-01

    A hybrid flywheel design concept based on the use of a laminated central disk with a filament-wound outer ring is analyzed for several different combinations of composite materials. Some of the results of this study are: (1) an optimized E-glass disk with Kevlar-49 outer ring offers the prospect of 30% additional energy density over a laminated disk without a ring; (2) a laminated S2-glass disk is capable of storing more energy per unit mass than an E-glass disk because of its higher tensile strength; and (3) the use of wound graphite outer rings with S2-glass disks leads to substantial reductions in the size of the interference fit while offering still higher energy densities than for a Kevlar-49 outer ring.

  18. HERSCHEL OBSERVATIONS OF GAS AND DUST IN THE UNUSUAL 49 Ceti DEBRIS DISK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberge, A.; Kamp, I.; Montesinos, B.

    2013-07-01

    We present far-IR/sub-mm imaging and spectroscopy of 49 Ceti, an unusual circumstellar disk around a nearby young A1V star. The system is famous for showing the dust properties of a debris disk, but the gas properties of a low-mass protoplanetary disk. The data were acquired with the Herschel Space Observatory PACS and SPIRE instruments, largely as part of the ''Gas in Protoplanetary Systems'' (GASPS) Open Time Key Programme. Disk dust emission is detected in images at 70, 160, 250, 350, and 500 {mu}m; 49 Cet is significantly extended in the 70 {mu}m image, spatially resolving the outer dust disk formore » the first time. Spectra covering small wavelength ranges centered on eight atomic and molecular emission lines were obtained, including [O I] 63 {mu}m and [C II] 158 {mu}m. The C II line was detected at the 5{sigma} level-the first detection of atomic emission from the disk. No other emission lines were seen, despite the fact that the O I line is the brightest one observed in Herschel protoplanetary disk spectra. We present an estimate of the amount of circumstellar atomic gas implied by the C II emission. The new far-IR/sub-mm data fills in a large gap in the previous spectral energy distribution (SED) of 49 Cet. A simple model of the new SED confirms the two-component structure of the disk: warm inner dust and cold outer dust that produces most of the observed excess. Finally, we discuss preliminary thermochemical modeling of the 49 Cet gas/dust disk and our attempts to match several observational results simultaneously. Although we are not yet successful in doing so, our investigations shed light on the evolutionary status of the 49 Cet gas, which might not be primordial gas but rather secondary gas coming from comets.« less

  19. Herschel Observations of Gas and Dust in the Unusual 49 Ceti Debris Disk

    NASA Astrophysics Data System (ADS)

    Roberge, A.; Kamp, I.; Montesinos, B.; Dent, W. R. F.; Meeus, G.; Donaldson, J. K.; Olofsson, J.; Moór, A.; Augereau, J.-C.; Howard, C.; Eiroa, C.; Thi, W.-F.; Ardila, D. R.; Sandell, G.; Woitke, P.

    2013-07-01

    We present far-IR/sub-mm imaging and spectroscopy of 49 Ceti, an unusual circumstellar disk around a nearby young A1V star. The system is famous for showing the dust properties of a debris disk, but the gas properties of a low-mass protoplanetary disk. The data were acquired with the Herschel Space Observatory PACS and SPIRE instruments, largely as part of the "Gas in Protoplanetary Systems" (GASPS) Open Time Key Programme. Disk dust emission is detected in images at 70, 160, 250, 350, and 500 μm 49 Cet is significantly extended in the 70 μm image, spatially resolving the outer dust disk for the first time. Spectra covering small wavelength ranges centered on eight atomic and molecular emission lines were obtained, including [O I] 63 μm and [C II] 158 μm. The C II line was detected at the 5σ level—the first detection of atomic emission from the disk. No other emission lines were seen, despite the fact that the O I line is the brightest one observed in Herschel protoplanetary disk spectra. We present an estimate of the amount of circumstellar atomic gas implied by the C II emission. The new far-IR/sub-mm data fills in a large gap in the previous spectral energy distribution (SED) of 49 Cet. A simple model of the new SED confirms the two-component structure of the disk: warm inner dust and cold outer dust that produces most of the observed excess. Finally, we discuss preliminary thermochemical modeling of the 49 Cet gas/dust disk and our attempts to match several observational results simultaneously. Although we are not yet successful in doing so, our investigations shed light on the evolutionary status of the 49 Cet gas, which might not be primordial gas but rather secondary gas coming from comets.

  20. Formation of Large Regular Satellites of Giant Planets in an Extended Gaseous Nebula. 2; Satellite Migration And Survival

    NASA Technical Reports Server (NTRS)

    Mosqueira, I.; Estrada, P. R.

    2000-01-01

    Using an optically thick inner disk and an extended, optically thin outer disk as described in Mosqueira and Estrada, we compute the torque as a function of position in the subnebula, and show that although the torque exerted on the satellite is generally negative, which leads to inward migration as expected, there are regions of the disk where the torque is positive. For our model these regions of positive torque correspond roughly to the locations of Callisto and Iapetus. Though the outer location of zero torque depends on the (unknown) size of the transition region between the inner and outer disks, the result that Saturn's is found much farther out (at approximately 3r(sub c, sup S) where r(sub c, sup S) is Saturn's centrifugal radius) than Jupiter's (at approximately 2r(sub c, sup J), where r(sub c, sup J) is Jupiter's centrifugal radius) is mostly due to Saturn's less massive outer disk, and larger Hill radius. For a satellite to survive in the disk the timescale of satellite migration must be longer than the timescale for gas dissipation. For large satellites (approximately 1000 km) migration is dominated by the gas torque. We consider the possibility that the feedback reaction of the gas disk caused by the redistribution of gas surface density around satellites with masses larger than the inertial mass causes a large drop in the drift velocity of such objects, thus improving the likelihood that they will be left stranded following gas dissipation. We adapt the inviscid inertial mass criterion to include gas drag, and m-dependent non-local deposition of angular momentum.

  1. What Are M31 Disk Planetary Nebulae Trying to Tell Us?

    NASA Astrophysics Data System (ADS)

    Kwitter, Karen B.; Balick, Bruce; Henry, Richard B. C.; Corradi, Romano L. M.

    2015-01-01

    Over the past eight years we have observed optical spectra of planetary nebulae (PNe) in the disk of M31 using DIS on the 3.5-m ARC telescope at Apache Point Observatory and OSIRIS on the 10.4-m GTC on La Palma. We have so far studied more than two dozen objects over a projected galactocentric radius range from 5 - 33 kpc; this corresponds to a deprojected in-disk range of 15 - 106 kpc. Using ELSA, a five-level atom package, we have derived nebular diagnostics and ionic and total nebular abundances of He and O, as well as estimates for other elements. The average 12+log(O/H) for 23 disk PNe we have observed is 8.6, or about 80% of the solar value. The inferred oxygen abundance gradient across the disk is surprisingly shallow (~ -0.004 dex/kpc) out to R(deprojected)~60 kpc. CLOUDY models we have computed for many of these objects indicate central star masses whose main-sequence progenitors are estimated to be in the range of 1.7-2.5 solar masses, with lifetimes under ~2 Gyr. The existence of such young, relatively massive, and metal-rich stars past the outer edge of the spiral arms at ~18 kpc and the H I warp at ~30 kpc (beyond which stellar [Fe/H] < -1) is unexpected, and disagrees with standard models of outer galaxy assembly via assimilation of metal-poor dwarf galaxies. Star formation from inner-disk ISM ejected by a putative gravitational encounter between M31 and M33 about 3 GY ago (Bernard et al. 2012, ApJ 420, 2625) supplies a possible explanation.

  2. VIVA (VLA Imaging of Virgo in Atomic gas): H I Stripping in Virgo Galaxies

    NASA Astrophysics Data System (ADS)

    Chung, A.; van Gorkom, J. H.; Crowl, H.; Kenney, J. D. P.; Vollmer, B.

    2008-08-01

    We present results of a new Very Large Array survey of 53 Virgo galaxies (48 spirals and 5 dwarf/irregular systems). The goal is to study how the H I gas properties are affected by the cluster environment. The survey covers galaxies in a wide range of densities from the center of the cluster to more than 3 Mpc from M 87. The gas is imaged down to a column-density sensitivity of a few times 1019cm-2. We find examples of gas stripping at all stages. Within ˜0.5 Mpc from M 87, most galaxies are severely H I stripped. The H I disks are truncated to well within the optical disks. While the H I looks asymmetric, the outer stellar disks look undisturbed. The fact that only the gas and not the stars has been stripped suggests that those galaxies have been affected by the hot and dense cluster gas. Interestingly we also find a few truncated disks at large projected distances from the center. Although some of these may have been stripped while crossing the cluster core, a detailed population-synthesis study of the outer disk of one of these shows that star formation was terminated recently. The time since stripping is too short for the galaxy to have traveled from the core to its current location. So at least one galaxy has lost its gas from the outer disk by another mechanism than ram-pressure stripping in the dense cluster core. At intermediate- to low-density regions (>0.6 Mpc) we find H I tails with various lengths. We find seven galaxies with long one-sided H I tails pointing away from M 87. The galaxies are at 0.6-1 Mpc from M 87. Since these galaxies are only mildly H I deficient and the tails point away from M 87, these galaxies are probably falling into the cluster for the first time on highly radial orbits. For all but two of the galaxies the estimated ram pressure at their location in the cluster would be sufficient to pull out the H I in the very outer disks. One galaxy also looks optically disturbed and a simulation suggests that a combination of ram pressure plus a tidal interaction has pulled out the tail. In the outskirts of the cluster we find several examples of tidally interacting galaxies. We possibly see evidence for some accretion of gas as well. Lastly, the merging of subclusters with Virgo can cause bulk motions of the ICM. We see one example of a galaxy far out that appears to be ram-pressure stripped by a dynamic ICM. In summary, our results show that galaxies are already affected in the low-density outer regions of the cluster through ram-pressure stripping and tidal interactions, or a combination of both.

  3. WATER VAPOR IN THE PROTOPLANETARY DISK OF DG Tau

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Podio, L.; Dougados, C.; Thi, W.-F.

    2013-03-20

    Water is key in the evolution of protoplanetary disks and the formation of comets and icy/water planets. While high-excitation water lines originating in the hot inner disk have been detected in several T Tauri stars (TTSs), water vapor from the outer disk, where most water ice reservoirs are stored, was only reported in the nearby TTS TW Hya. We present spectrally resolved Herschel/HIFI observations of the young TTS DG Tau in the ortho- and para-water ground-state transitions at 557 and 1113 GHz. The lines show a narrow double-peaked profile, consistent with an origin in the outer disk, and are {approx}19-26more » times brighter than in TW Hya. In contrast, CO and [C II] lines are dominated by emission from the envelope/outflow, which makes H{sub 2}O lines a unique tracer of the disk of DG Tau. Disk modeling with the thermo-chemical code ProDiMo indicates that the strong UV field, due to the young age and strong accretion of DG Tau, irradiates a disk upper layer at 10-90 AU from the star, heating it up to temperatures of 600 K and producing the observed bright water lines. The models suggest a disk mass of 0.015-0.1 M{sub Sun }, consistent with the estimated minimum mass of the solar nebula before planet formation, and a water reservoir of {approx}10{sup 2}-10{sup 3} Earth oceans in vapor and {approx}100 times larger in the form of ice. Hence, this detection supports the scenario of ocean delivery on terrestrial planets by the impact of icy bodies forming in the outer disk.« less

  4. THE STRUCTURE AND STELLAR CONTENT OF THE OUTER DISKS OF GALAXIES: A NEW VIEW FROM THE Pan-STARRS1 MEDIUM DEEP SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Zheng; Thilker, David A.; Heckman, Timothy M.

    2015-02-20

    We present the results of an analysis of Pan-STARRS1 Medium Deep Survey multi-band (grizy) images of a sample of 698 low-redshift disk galaxies that span broad ranges in stellar mass, star-formation rate, and bulge/disk ratio. We use population synthesis spectral energy distribution fitting techniques to explore the radial distribution of the light, color, surface mass density, mass/light ratio, and age of the stellar populations. We characterize the structure and stellar content of the galaxy disks out to radii of about twice Petrosian r {sub 90}, beyond which the halo light becomes significant. We measure normalized radial profiles for sub-samples ofmore » galaxies in three bins each of stellar mass and concentration. We also fit radial profiles to each galaxy. The majority of galaxies have down-bending radial surface brightness profiles in the bluer bands with a break radius at roughly r {sub 90}. However, they typically show single unbroken exponentials in the reddest bands and in the stellar surface mass density. We find that the mass/light ratio and stellar age radial profiles have a characteristic 'U' shape. There is a good correlation between the amplitude of the down-bend in the surface brightness profile and the rate of the increase in the M/L ratio in the outer disk. As we move from late- to early-type galaxies, the amplitude of the down-bend and the radial gradient in M/L both decrease. Our results imply a combination of stellar radial migration and suppression of recent star formation can account for the stellar populations of the outer disk.« less

  5. Inner Super-Earths, Outer Gas Giants: How Pebble Isolation and Migration Feedback Keep Jupiters Cold

    NASA Astrophysics Data System (ADS)

    Fung, Jeffrey; Lee, Eve J.

    2018-06-01

    The majority of gas giants (planets of masses ≳102 M ⊕) are found to reside at distances beyond ∼1 au from their host stars. Within 1 au, the planetary population is dominated by super-Earths of 2–20 M ⊕. We show that this dichotomy between inner super-Earths and outer gas giants can be naturally explained should they form in nearly inviscid disks. In laminar disks, a planet can more easily repel disk gas away from its orbit. The feedback torque from the pile-up of gas inside the planet’s orbit slows down and eventually halts migration. A pressure bump outside the planet’s orbit traps pebbles and solids, starving the core. Gas giants are born cold and stay cold: more massive cores are preferentially formed at larger distances, and they barely migrate under disk feedback. We demonstrate this using two-dimensional hydrodynamical simulations of disk–planet interaction lasting up to 105 years: we track planet migration and pebble accretion until both come to an end by disk feedback. Whether cores undergo runaway gas accretion to become gas giants or not is determined by computing one-dimensional gas accretion models. Our simulations show that in an inviscid minimum mass solar nebula, gas giants do not form inside ∼0.5 au, nor can they migrate there while the disk is present. We also explore the dependence on disk mass and find that gas giants form further out in less massive disks.

  6. Herschel evidence for disk flattening or gas depletion in transitional disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keane, J. T.; Pascucci, I.; Espaillat, C.

    Transitional disks are protoplanetary disks characterized by reduced near- and mid-infrared emission, with respect to full disks. This characteristic spectral energy distribution indicates the presence of an optically thin inner cavity within the dust disk believed to mark the disappearance of the primordial massive disk. We present new Herschel Space Observatory PACS spectra of [O I] 63.18 μm for 21 transitional disks. Our survey complements the larger Herschel GASPS program ({sup G}as in Protoplanetary Systems{sup )} by quadrupling the number of transitional disks observed with PACS in this wavelength. [O I] 63.18 μm traces material in the outer regions ofmore » the disk, beyond the inner cavity of most transitional disks. We find that transitional disks have [O I] 63.18 μm line luminosities ∼2 times fainter than their full disk counterparts. We self-consistently determine various stellar properties (e.g., bolometric luminosity, FUV excess, etc.) and disk properties (e.g., disk dust mass, etc.) that could influence the [O I] 63.18 μm line luminosity, and we find no correlations that can explain the lower [O I] 63.18 μm line luminosities in transitional disks. Using a grid of thermo-chemical protoplanetary disk models, we conclude that either transitional disks are less flared than full disks or they possess lower gas-to-dust ratios due to a depletion of gas mass. This result suggests that transitional disks are more evolved than their full disk counterparts, possibly even at large radii.« less

  7. High-resolution submillimeter and near-infrared studies of the transition disk around Sz 91

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsukagoshi, Takashi; Momose, Munetake; Hashimoto, Jun

    2014-03-10

    To reveal the structures of a transition disk around a young stellar object in Lupus, Sz 91 , we have performed aperture synthesis 345 GHz continuum and CO(3-2) observations with the Submillimeter Array (∼1''-3'' resolution) and high-resolution imaging of polarized intensity at the K{sub s} -band using the HiCIAO instrument on the Subaru Telescope (0.''25 resolution). Our observations successfully resolved the inner and outer radii of the dust disk to be 65 and 170 AU, respectively, which indicates that Sz 91 is a transition disk source with one of the largest known inner holes. The model fitting analysis of themore » spectral energy distribution reveals an H{sub 2} mass of 2.4 × 10{sup –3} M {sub ☉} in the cold (T < 30 K) outer part at 65 AU 3 × 10{sup –9} M {sub ☉}) of hot (T ∼ 180 K) dust possibly remains inside the inner hole of the disk. The structure of the hot component could be interpreted as either an unresolved self-luminous companion body (not directly detected in our observations) or a narrow ring inside the inner hole. Significant CO(3-2) emission with a velocity gradient along the major axis of the dust disk is concentrated on the Sz 91 position, suggesting a rotating gas disk with a radius of 420 AU. The Sz 91 disk is possibly a rare disk in an evolutionary stage immediately after the formation of protoplanets because of the large inner hole and the lower disk mass than other transition disks studied thus far.« less

  8. High-Resolution Submillimeter and Near-Infrared Studies of the Transition Disk Around Sz 91

    NASA Technical Reports Server (NTRS)

    Tsukagoshi, Takashi; Momose, Munetake; Abe, Lyu; Akiyama, Eiji; Brandner, Wolfgang; Brandt, Timothy D.; Carson, Joseph; Currie, Thayne; Egner, Sebastian E.; Goto, Miwa; hide

    2014-01-01

    To reveal the structures of a transition disk around a young stellar object in Lupus, Sz 91, we have performed aperture synthesis 345 GHz continuum and CO(3--2) observations with the Submillimeter Array (approximately 1" - 3" resolution), and high-resolution imaging of polarized intensity at the K(sub s) -band by using the HiCIAO instrument on the Subaru Telescope (0.25" resolution). Our observations successfully resolved the inner and outer radii of the dust disk to be 65 AU and 170 AU, respectively, which indicates that Sz 91 is a transition disk source with one of the largest known inner holes. The model fitting analysis of the spectral energy distribution reveals an H 2 mass of 2.4×10(exp -3) M(solar mass) in the cold (T less than 30 K) outer part at 65 less than r less than 170 AU by assuming a canonical gas-to-dust mass ratio of 100, although a small amount (greater than 3×10(exp -9) M(solar mass)) of hot (T approximately 180 K) dust possibly remains inside the inner hole of the disk. The structure of the hot component could be interpreted as either an unresolved self-luminous companion body (not directly detected in our observations) or a narrow ring inside the inner hole. Significant CO(3--2) emission with a velocity gradient along the major axis of the dust disk is concentrated on the Sz 91 position, suggesting a rotating gas disk with a radius of 420 AU. The Sz 91 disk is possibly a rare disk in an evolutionary stage immediately after the formation of protoplanets because of the large inner hole and the lower disk mass than other transition disks studied thus far.

  9. New Constraints on Turbulence and Embedded Planet Mass in the HD 163296 Disk from Planet–Disk Hydrodynamic Simulations

    NASA Astrophysics Data System (ADS)

    Liu, Shang-Fei; Jin, Sheng; Li, Shengtai; Isella, Andrea; Li, Hui

    2018-04-01

    Recent Atacama Large Millimeter and Submillimeter Array (ALMA) observations of the protoplanetary disk around the Herbig Ae star HD 163296 revealed three depleted dust gaps at 60, 100, and 160 au in the 1.3 mm continuum as well as CO depletion in the middle and outer dust gaps. However, no CO depletion was found in the inner dust gap. To examine the planet–disk interaction model, we present results of 2D two fluid (gas + dust) hydrodynamic simulations coupled with 3D radiative transfer simulations. To fit the high gas-to-dust ratio of the first gap, we find that the Shakura–Sunyaev viscosity parameter α must be very small (≲ {10}-4) in the inner disk. On the other hand, a relatively large α (∼ 7.5× {10}-3) is required to reproduce the dust surface density in the outer disk. We interpret the variation of α as an indicator of the transition from an inner dead zone to the outer magnetorotational instability (MRI) active zone. Within ∼100 au, the HD 163296 disk’s ionization level is low, and non-ideal magnetohydrodynamic effects could suppress the MRI, so the disk can be largely laminar. The disk’s ionization level gradually increases toward larger radii, and the outermost disk (r> 300 au) becomes turbulent due to MRI. Under this condition, we find that the observed dust continuum and CO gas line emissions can be reasonably fit by three half-Jovian-mass planets (0.46, 0.46, and 0.58 {M}{{J}}) at 59, 105, and 160 au, respectively.

  10. Noncircular outer disks in unbarred S0 galaxies: NGC 502 and NGC 5485

    NASA Astrophysics Data System (ADS)

    Sil'chenko, O. K.

    2016-03-01

    Highly noncircular outer stellar disks have been detected in two SA0 (unbarred) galaxies by comparing the spectroscopic data on the rotation of stars and the photometric data on the shape and orientation of isophotes. In NGC 502, the oval distortion of the disk is manifested in the shape of the inner and outer elliptical rings occupying wide radial zones between the bulge and the disk and at the outer disk edge; such a structure can be a consequence of the so-called "dry minor merger," multiple cannibalization of gas-free satellites. In NGC 5485, the stellar kinematics is absolutely unrelated to the orientation of isophotes in the disk region, and for this galaxy the conclusion about its global triaxial structure is unavoidable.

  11. Numerical Modeling of Tidal Effects in Polytropic Accretion Disks

    NASA Technical Reports Server (NTRS)

    Godon, Patrick

    1997-01-01

    A two-dimensional time-dependent hybrid Fourier-Chebyshev method of collocation is developed and used for the study of tidal effects in accretion disks, under the assumptions of a polytropic equation of state and a standard alpha viscosity prescription. Under the influence of the m = 1 azimuthal component of the tidal potential, viscous oscillations in the outer disk excite an m = 1 eccentric instability in the disk. While the m = 2 azimuthal component of the tidal potential excites a Papaloizou-Pringle instability in the inner disk (a saturated m = 2 azimuthal mode), with an elliptic pattern rotating at about a fraction (approx. = 1/3) of the local Keplerian velocity in the inner disk. The period of the elliptic mode corresponds well to the periods of the short-period oscillations observed in cataclysmic variables. In cold disks (r(Omega)/c(sub s) = M approx. = 40) we also find a critical value of the viscosity parameter (alpha approx. = 0.01), below which shock dissipation dominates and is balanced by the wave amplification due to the wave action conservation. In this case the double spiral shock propagates all the way to the inner boundary with a Mach number M(sub s) approx. = 1.3.

  12. STAR CLUSTER POPULATIONS IN THE OUTER DISKS OF NEARBY GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herbert-Fort, Stephane; Zaritsky, Dennis; Moustakas, John

    We present a Large Binocular Telescope imaging study that characterizes the star cluster component of nearby galaxy outer disks (beyond the optical radius R{sub 25}). Expanding on the pilot project of Herbert-Fort et al., we present deep ({approx}27.5 mag V-band point-source limiting magnitude) U- and V-band imaging of six galaxies: IC 4182, NGC 3351, NGC 4736, NGC 4826, NGC 5474, and NGC 6503. We find that the outer disk of each galaxy is populated with marginally resolved star clusters with masses {approx}10{sup 3} M{sub Sun} and ages up to {approx}1 Gyr (masses and ages are limited by the depth ofmore » our imaging and uncertainties are large given how photometry can be strongly affected by the presence or absence of a few stars in such low-mass systems), and that they are typically found out to at least 2 R{sub 25} but sometimes as far as 3-4 R{sub 25}-even beyond the apparent H I disk. The mean rate of cluster formation for 1 R{sub 25} {<=} R {<=} 1.5 R{sub 25} is at least one every {approx}2.5 Myr and the clusters are spatially correlated with the H I, most strongly with higher density gas near the periphery of the optical disk and with lower density neutral gas at the H I disk periphery. We hypothesize that the clusters near the edge of the optical disk are formed in the extension of spiral structure from the inner disk and are a fairly consistent phenomenon and that the clusters formed at the periphery of the H I disk are the result of accretion episodes.« less

  13. Testing giant planet formation in the transitional disk of SAO 206462 using deep VLT/SPHERE imaging

    NASA Astrophysics Data System (ADS)

    Maire, A.-L.; Stolker, T.; Messina, S.; Müller, A.; Biller, B. A.; Currie, T.; Dominik, C.; Grady, C. A.; Boccaletti, A.; Bonnefoy, M.; Chauvin, G.; Galicher, R.; Millward, M.; Pohl, A.; Brandner, W.; Henning, T.; Lagrange, A.-M.; Langlois, M.; Meyer, M. R.; Quanz, S. P.; Vigan, A.; Zurlo, A.; van Boekel, R.; Buenzli, E.; Buey, T.; Desidera, S.; Feldt, M.; Fusco, T.; Ginski, C.; Giro, E.; Gratton, R.; Hubin, N.; Lannier, J.; Le Mignant, D.; Mesa, D.; Peretti, S.; Perrot, C.; Ramos, J. R.; Salter, G.; Samland, M.; Sissa, E.; Stadler, E.; Thalmann, C.; Udry, S.; Weber, L.

    2017-05-01

    Context. The SAO 206462 (HD 135344B) disk is one of the few known transitional disks showing asymmetric features in scattered light and thermal emission. Near-infrared scattered-light images revealed two bright outer spiral arms and an inner cavity depleted in dust. Giant protoplanets have been proposed to account for the disk morphology. Aims: We aim to search for giant planets responsible for the disk features and, in the case of non-detection, to constrain recent planet predictions using the data detection limits. Methods: We obtained new high-contrast and high-resolution total intensity images of the target spanning the Y to the K bands (0.95-2.3 μm) using the VLT/SPHERE near-infrared camera and integral field spectrometer. Results: The spiral arms and the outer cavity edge are revealed at high resolutions and sensitivities without the need for aggressive image post-processing techniques, which introduce photometric biases. We do not detect any close-in companions. For the derivation of the detection limits on putative giant planets embedded in the disk, we show that the knowledge of the disk aspect ratio and viscosity is critical for the estimation of the attenuation of a planet signal by the protoplanetary dust because of the gaps that these putative planets may open. Given assumptions on these parameters, the mass limits can vary from 2-5 to 4-7 Jupiter masses at separations beyond the disk spiral arms. The SPHERE detection limits are more stringent than those derived from archival NaCo/L' data and provide new constraints on a few recent predictions of massive planets (4-15 MJ) based on the spiral density wave theory. The SPHERE and ALMA data do not favor the hypotheses on massive giant planets in the outer disk (beyond 0.6''). There could still be low-mass planets in the outer disk and/or planets inside the cavity. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programmes 095.C-0298 and 090.C-0443.

  14. Images of the Extended Outer Regions of the Debris Ring around HR 4796 A

    NASA Technical Reports Server (NTRS)

    Thalmann, C.; Janson, M.; Buenzli, E.; Brandt, T. D.; Wisniewski, J. P.; Moro-Martin, A.; Usuda, T.; Schneider, G.; Carson, J.; McElwain, M. W.; hide

    2012-01-01

    We present high-contrast images of HR 4796 A taken with Subaru/HiCIAO in H-band, resolving the debris disk in scattered light. The application of specialized angular differential imaging methods (ADI) allows us to trace the inner edge of the disk with high precision, and reveals a pair of "streamers" extending radially outwards from the ansae. Using a simple disk model with a power-law surface brightness profile, we demonstrate that the observed streamers can be understood as part of the smoothly tapered outer boundary of the debris disk, which is most visible at the ansae. Our observations are consistent with the expected result of a narrow planetesimal ring being ground up in a collisional cascade, yielding dust with a wide range of grain sizes. Radiation forces leave large grains in the ring and push smaller grains onto elliptical, or even hyperbolic trajectories. We measure and characterize the disk's surface brightness profile, and confirm the previously suspected offset of the disk's center from the star's position along the ring's major axis. Furthermore, we present first evidence for an offset along the minor axis. Such offsets are commonly viewed as signposts for the presence of unseen planets within a disk's cavity. Our images also offer new constraints on the presence of companions down to the planetary mass regime (approx 9 M(sub Jup) at 0".5, approx 3 M(sub Jup) at 1").

  15. The Disk and Jet of the Classical T Tauri Star AA Tau

    NASA Technical Reports Server (NTRS)

    Cox, A. W.; Grady, C. A.; Hamel, H.; Hornbeck, Jeremy; Russell, R.; Sitko, M.; Woodgate, B.

    2013-01-01

    Previous studies of the classical T Tauri star AA Tau have interpreted the UX Orionis-like photopolarimetric variability as being due to a warp in the inner disk caused by an inclined stellar magnetic dipolefield. We test that these effects are macroscopically observable in the inclination and alignment of the disk. We use the HST/STIS coronagraphic detection of the disk to measure the outer disk radius and inclination, and find that the inner disk is both misinclined and misaligned with respect to the outer disk. AA Tau drives a faint jet which is also misaligned with respect to the projection of the outer disk minor axis. The jet is also poorly collimated near the star. The measured inclination, 71+/-1deg, is above the inclination range suggested for stars with UX Orionis-like variability, indicating that dust grains in the disk have grown and settled toward the disk midplane.

  16. Connecting Stellar Substructures to the Oscillating Disk: Monoceros and A13

    NASA Astrophysics Data System (ADS)

    Sheffield, Allyson; Tzanidakis, Anastasios; Johnston, Kathryn; Price-Whelan, Adrian

    2018-01-01

    Recent observations of stellar substructures in the Milky Way have challenged our view of where the traditional disk ends. By assessing the stellar populations in a stellar feature, particularly the fraction of RR Lyrae to M giant stars, an accretion scenario can be ruled out in favor of a kicked-out disk origin. A more definitive distinction can be made with the inclusion of high-resolution abundances. I will present evidence that two low latitude stellar substructures, the Monoceros Ring and A13, originated in the Galactic disk and were kicked out to their current location, in the outer regions of the stellar disk, due to a dynamic perturbation to the disk.

  17. Spectral domain optical coherence tomography imaging in optic disk pit associated with outer retinal dehiscence

    PubMed Central

    Wong, Chee Wai; Wong, Doric; Mathur, Ranjana

    2014-01-01

    A 37-year-old Bangladeshi male presented with an inferotemporal optic disk pit and serous macular detachment in the left eye. Imaging with spectral domain optical coherence tomography (OCT) revealed a multilayer macular schisis pattern with a small subfoveal outer retinal dehiscence. This case illustrates a rare phenotype of optic disk maculopathy with macular schisis and a small outer retinal layer dehiscence. Spectral domain OCT was a useful adjunct in delineating the retinal layers in optic disk pit maculopathy, and revealed a small area of outer retinal layer dehiscence that could only have been detected on high-resolution OCT. PMID:25349471

  18. Chemical Abundances of Planetary Nebulae in the Substructures of M31. II. The Extended Sample and a Comparison Study with the Outer-disk Group

    NASA Astrophysics Data System (ADS)

    Fang, Xuan; García-Benito, Rubén; Guerrero, Martín A.; Zhang, Yong; Liu, Xiaowei; Morisset, Christophe; Karakas, Amanda I.; Miller Bertolami, Marcelo M.; Yuan, Haibo; Cabrera-Lavers, Antonio

    2018-01-01

    We report deep spectroscopy of 10 planetary nebulae (PNe) in the Andromeda Galaxy (M31) using the 10.4 m Gran Telescopio Canarias (GTC). Our targets reside in different regions of M31, including halo streams and the dwarf satellite M32, and kinematically deviate from the extended disk. The temperature-sensitive [O III] λ4363 line is observed in all PNe. For four PNe, the GTC spectra extend beyond 1 μm, enabling the explicit detection of the [S III] λ6312 and λλ9069, 9531 lines and thus determination of the [S III] temperature. Abundance ratios are derived and generally consistent with AGB model predictions. Our PNe probably all evolved from low-mass (<2 M ⊙) stars, as analyzed with the most up-to-date post-AGB evolutionary models, and their main-sequence ages are mostly ∼2–5 Gyr. Compared to the underlying, smooth, metal-poor halo of M31, our targets are uniformly metal rich ([O/H] ≳ ‑0.4), and seem to resemble the younger population in the stream. We thus speculate that our halo PNe formed in the Giant Stream’s progenitor through extended star formation. Alternatively, they might have formed from the same metal-rich gas as did the outer-disk PNe but were displaced into their present locations as a result of galactic interactions. These interpretations are, although speculative, qualitatively in line with the current picture, as inferred from previous wide-field photometric surveys, that M31's halo is the result of complex interactions and merger processes. The behavior of the N/O of the combined sample of the outer-disk and our halo/substructure PNe signifies that hot bottom burning might actually occur at <3 M ⊙ but careful assessment is needed. Based on observations made with the Gran Telescopio Canarias, installed at the Spanish Observatorio del Roque de los Muchachos of Instituto de Astrofísica de Canarias, in the island of La Palma. The observations presented in this paper are associated with GTC programs #GTC66-16A and #GTC25-16B.

  19. Description of a new species of Microhyla from Bali, Indonesia (Amphibia, Anura).

    PubMed

    Matsui, Masafumi; Hamidy, Amir; Eto, Koshiro

    2013-01-01

    We describe a microhylid frog from Bali, Indonesia as a new species, Microhyla orientalis sp. nov. It belongs to the M. achatina group and is close to M. mantheyi, M. malang, and M. borneensis. It is distinguished from its congeners by a combination of the following characters: small size (adult males about 16-17 mm in SVL); a faint vertebral stripe present; a black lateral stripe from behind eye to half length of trunk; snout rounded in profile; eyelid without supraciliary spines; first finger less than one-fifth of third; tips of three outer fingers weakly dilated, forming weak disks, dorsally with median longitudinal groove; outer palmar tubercle single; tibiotarsal articulation reaching up to center of eye; tips of toes distinctly dilated into disks, dorsally with median longitudinal groove; inner and outer metatarsal tubercles present; four or more phalanges on inner and outer sides of fourth toe, and three phalanges on inner side of fifth toe free of web; and tail of larva with a black marking at middle. The male advertisement call of the new species consists of a series of notes each lasts for 0.01-0.08 s and composed of 3-5 pulses with a dominant frequency of 3.2-3.6 kHz. Uncorrected sequence divergences between M. orientalis and all homologous 16S rRNA sequences available were > 6.6%. At present, the new species is known from rice fields between 435-815 m elevation in Wongaya Gede and Batukaru.

  20. A Circumstellar Disk around HD 169142 in the Mid-Infrared (N-Band)

    NASA Astrophysics Data System (ADS)

    Okamoto, Yoshiko Kataza; Kataza, Hirokazu; Honda, M.; Yamashita, T.; Fujiyoshi, T.; Miyata, T.; Sako, S.; Fujiwara, H.; Sakon, I.; Fukagawa, M.; Momose, M.; Onaka, T.

    2017-07-01

    The Herbig Ae star HD 169142 is one of the objects that show complex structure, such as multiple (innermost, middle, and outer) disks, gaps, and unresolved sources. We made N-band (8-13 μm) observations of HD 169142 with the Cooled Mid-Infrared Camera and Spectrometer on the 8.2 m Subaru Telescope. The images are spatially resolved out to an ˜1″ radius in all the observed bands. We made a simple disk model composed of an unresolved central source (representing the innermost disk/halo) and the ring at a radius r ˜ 25 au (corresponding to the inner wall or edge of a middle disk at ˜25-40 au). The radial intensity profile within the central region (≲0.″3 or ≲ 40 au) is well reproduced by the model. Furthermore, we subtracted the model image from the observed one to search for additional structures. In the model-subtracted images, we found an unresolved west source separated by 17.0 ± 2.9 au in the direction of position angle 260° ± 5° from the original emission peak, which is supposed to correspond to the position of the central star, and a bright east arc located at r ˜ 60 au. The west source is different from the L‧-band unresolved source recently found in coronagraphic observations. It could be a structure related to planet formation in the disk, such as a circumplanetary disk or clumpy disk structure. The east arc corresponds to the inner wall or edge of the outer disk. Based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morales, F. Y.; Bryden, G.; Werner, M. W.

    We present dual-band Herschel /PACS imaging for 59 main-sequence stars with known warm dust ( T {sub warm} ∼ 200 K), characterized by Spitzer . Of 57 debris disks detected at Herschel wavelengths (70 and/or 100 and 160 μ m), about half have spectral energy distributions (SEDs) that suggest two-ring disk architectures mirroring that of the asteroid–Kuiper Belt geometry; the rest are consistent with single belts of warm, asteroidal material. Herschel observations spatially resolve the outer/cold dust component around 14 A-type and 4 solar-type stars with two-belt systems, 15 of which for the first time. Resolved disks are typically observedmore » with radii >100 AU, larger than expected from a simple blackbody fit. Despite the absence of narrow spectral features for ice, we find that the shape of the continuum, combined with resolved outer/cold dust locations, can help constrain the grain size distribution and hint at the dust’s composition for each resolved system. Based on the combined Spitzer /IRS+Multiband Imaging Photometer (5-to-70 μ m) and Herschel /PACS (70-to-160 μ m) data set, and under the assumption of idealized spherical grains, we find that over half of resolved outer/cold belts are best fit with a mixed ice/rock composition. Minimum grain sizes are most often equal to the expected radiative blowout limit, regardless of composition. Three of four resolved systems around the solar-type stars, however, tend to have larger minimum grains compared to expectation from blowout ( f {sub MB} = a {sub min}/ a {sub BOS} ∼ 5). We also probe the disk architecture of 39 Herschel -unresolved systems by modeling their SEDs uniformly, and find them to be consistent with 31 single- and 8 two-belt debris systems.« less

  2. Magnetorotational instability in decretion disks of critically rotating stars and the outer structure of Be and Be/X-ray disks

    NASA Astrophysics Data System (ADS)

    Krtička, J.; Kurfürst, P.; Krtičková, I.

    2015-01-01

    Context. Evolutionary models of fast-rotating stars show that the stellar rotational velocity may approach the critical speed. Critically rotating stars cannot spin up more, therefore they lose their excess angular momentum through an equatorial outflowing disk. The radial extension of such disks is unknown, partly because we lack information about the radial variations of the viscosity. Aims: We study the magnetorotational instability, which is considered to be the origin of anomalous viscosity in outflowing disks. Methods: We used analytic calculations to study the stability of outflowing disks submerged in the magnetic field. Results: The magnetorotational instability develops close to the star if the plasma parameter is large enough. At large radii the instability disappears in the region where the disk orbital velocity is roughly equal to the sound speed. Conclusions: The magnetorotational instability is a plausible source of anomalous viscosity in outflowing disks. This is also true in the region where the disk radial velocity approaches the sound speed. The disk sonic radius can therefore be roughly considered as an effective outer disk radius, although disk material may escape from the star to the insterstellar medium. The radial profile of the angular momentum-loss rate already flattens there, consequently, the disk mass-loss rate can be calculated with the sonic radius as the effective disk outer radius. We discuss a possible observation determination of the outer disk radius by using Be and Be/X-ray binaries.

  3. High-Resolution Near-Infrared Polarimetry of a Circumstellar Disk around UX Tau A

    NASA Astrophysics Data System (ADS)

    Tanii, Ryoko; Itoh, Yoichi; Kudo, Tomoyuki; Hioki, Tomonori; Oasa, Yumiko; Gupta, Ranjan; Sen, Asoke K.; Wisniewski, John P.; Muto, Takayuki; Grady, Carol A.; Hashimoto, Jun; Fukagawa, Misato; Mayama, Satoshi; Hornbeck, Jeremy; Sitko, Michael L.; Russell, Ray W.; Werren, Chelsea; Curé, Michel; Currie, Thayne; Ohashi, Nagayoshi; Okamoto, Yoshiko; Momose, Munetake; Honda, Mitsuhiko; Inutsuka, Shu-ichi; Takeuchi, Taku; Dong, Ruobing; Abe, Lyu; Brandner, Wolfgang; Brandt, Timothy D.; Carson, Joseph; Egner, Sebastian E.; Feldt, Markus; Fukue, Tsubasa; Goto, Miwa; Guyon, Olivier; Hayano, Yutaka; Hayashi, Masahiko; Hayashi, Saeko S.; Henning, Thomas; Hodapp, Klaus W.; Ishii, Miki; Iye, Masanori; Janson, Markus; Kandori, Ryo; Knapp, Gillian R.; Kusakabe, Nobuhiko; Kuzuhara, Masayuki; Matsuo, Taro; McElwain, Michael W.; Miyama, Shoken; Morino, Jun-ichi; Moro-Martín, Amaya; Nishimura, Tetsuro; Pyo, Tae-Soo; Serabyn, Eugene; Suto, Hiroshi; Suzuki, Ryuji; Takami, Michihiro; Takato, Naruhisa; Terada, Hiroshi; Thalmann, Christian; Tomono, Daigo; Turner, Edwin L.; Watanabe, Makoto; Yamada, Toru; Takami, Hideki; Usuda, Tomonori; Tamura, Motohide

    2012-12-01

    We present H-band polarimetric imagery of UX Tau A taken with HiCIAO/AO188 on the Subaru Telescope. UX Tau A has been classified as a pre-transitional disk object, with a gap structure separating its inner and outer disks. Our imagery taken with the 0.''15 (21 AU) radius coronagraphic mask has revealed a strongly polarized circumstellar disk surrounding UX Tau A, which extends to 120 AU, at a spatial resolution of 0.''1 (14 AU). It is inclined by 46° ± 2°, since the west side is nearest. Although SED modeling and sub-millimeter imagery have suggested the presence of a gap in the disk, with the inner edge of the outer disk estimated to be located at 25-30 AU, we detect no evidence of a gap at the limit of our inner working angle (23 AU) at the near-infrared wavelength. We attribute the observed strong polarization (up to 66%) to light scattering by dust grains in the disk. However, neither polarization models of the circumstellar disk based on Rayleigh-scattering nor Mie-scattering approximations were consistent with the observed azimuthal profile of the polarization degrees of the disk. Instead, a geometric optics model of the disk with nonspherical grains with radii of 30μm is consistent with the observed profile. We suggest that the dust grains have experienced frequent collisional coagulations, and have grown in the circumstellar disk of UX Tau A.

  4. TRANSITIONAL DISKS AND THEIR ORIGINS: AN INFRARED SPECTROSCOPIC SURVEY OF ORION A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, K. H.; Watson, Dan M.; Manoj, P.

    Transitional disks are protoplanetary disks around young stars, with inner holes or gaps which are surrounded by optically thick outer, and often inner, disks. Here we present observations of 62 new transitional disks in the Orion A star-forming region. These were identified using the Spitzer Space Telescope's Infrared Spectrograph and followed up with determinations of stellar and accretion parameters using the Infrared Telescope Facility's SpeX. We combine these new observations with our previous results on transitional disks in Taurus, Chamaeleon I, Ophiuchus, and Perseus, and with archival X-ray observations. This produces a sample of 105 transitional disks of ''cluster'' agemore » 3 Myr or less, by far the largest hitherto assembled. We use this sample to search for trends between the radial structure in the disks and many other system properties, in order to place constraints on the possible origins of transitional disks. We see a clear progression of host-star accretion rate and the different disk morphologies. We confirm that transitional disks with complete central clearings have median accretion rates an order of magnitude smaller than radially continuous disks of the same population. Pre-transitional disks-those objects with gaps that separate inner and outer disks-have median accretion rates intermediate between the two. Our results from the search for statistically significant trends, especially related to M-dot , strongly support that in both cases the gaps are far more likely to be due to the gravitational influence of Jovian planets or brown dwarfs orbiting within the gaps, than to any of the photoevaporative, turbulent, or grain-growth processes that can lead to disk dissipation. We also find that the fraction of Class II YSOs which are transitional disks is large, 0.1-0.2, especially in the youngest associations.« less

  5. The impact of galaxy geometry and mass evolution on the survival of star clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madrid, Juan P.; Hurley, Jarrod R.; Martig, Marie

    2014-04-01

    Direct N-body simulations of globular clusters in a realistic Milky-Way-like potential are carried out using the code NBODY6 to determine the impact of the host galaxy disk mass and geometry on the survival of star clusters. A relation between disk mass and star-cluster dissolution timescale is derived. These N-body models show that doubling the mass of the disk from 5 × 10{sup 10} M {sub ☉} to 10 × 10{sup 10} M {sub ☉} halves the dissolution time of a satellite star cluster orbiting the host galaxy at 6 kpc from the galactic center. Different geometries in a disk ofmore » identical mass can determine either the survival or dissolution of a star cluster orbiting within the inner 6 kpc of the galactic center. Furthermore, disk geometry has measurable effects on the mass loss of star clusters up to 15 kpc from the galactic center. N-body simulations performed with a fine output time step show that at each disk crossing the outer layers of star clusters experiences an increase in velocity dispersion of ∼5% of the average velocity dispersion in the outer section of star clusters. This leads to an enhancement of mass loss—a clearly discernable effect of disk shocking. By running models with different inclinations, we determine that star clusters with an orbit that is perpendicular to the Galactic plane have larger mass loss rates than do clusters that evolve in the Galactic plane or in an inclined orbit.« less

  6. Imaging the Disk and Jet of the Classical T Tauri Star AA Tau

    NASA Astrophysics Data System (ADS)

    Cox, Andrew; Grady, C.; Hammel, H. B.; Hornbeck, J.; Russell, R. W.; Sitko, M. L.; Woodgate, B. E.

    2013-01-01

    Previous studies of the classical T Tauri star AA Tau have interpreted the UX Orionis-like photo-polarimetric variability as being due to a warp in the inner disk caused by an inclined stellar magnetic dipole field. We test that these effects are macroscopically observable in the inclination and alignment of the disk. We use HST/STIS coronagraphic imagery to measure the V magnitude of the star for both STIS corona graphic observations, compare these data with optical photometry in the literature and find that unlike other classical T Tauri stars observed on the same HST program, the disk is most robustly detected at optical minimum light. We measure the outer disk radius, major axis position angle, and disk inclination, and find that the inner disk, as reported in the literature, is both mis-inclined and misaligned with respect to the outer disk. AA Tau drives a faint jet which is also misaligned with respect to the projection of the outer disk minor axis and which is poorly collimated near the star. The measured outer disk inclination, 71±1 degrees, is out of the inclination band suggested for stars with UX Orionis-like variability where no grain growth has occurred in the disk. The faintness of the disk, the small disk size, and visibility of the star and despite the high inclination, all indicate that the disk must have experienced grain growth and settling toward the disk midplane, which we verify by comparing the observed disk with model imagery from the literature.

  7. MECHANISM FOR EXCITING PLANETARY INCLINATION AND ECCENTRICITY THROUGH A RESIDUAL GAS DISK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Yuanyuan; Liu Huigen; Zhao Gang

    2013-05-20

    According to the theory of Kozai resonance, the initial mutual inclination between a small body and a massive planet in an outer circular orbit is as high as {approx}39. Degree-Sign 2 for pumping the eccentricity of the inner small body. Here we show that with the presence of a residual gas disk outside two planetary orbits, the inclination can be reduced to as low as a few degrees. The presence of the disk changes the nodal precession rates and directions of the planet orbits. At the place where the two planets achieve the same nodal processing rate, vertical secular resonancemore » (VSR) occurs so that the mutual inclination of the two planets will be excited, which might further trigger the Kozai resonance between the two planets. However, in order to pump an inner Jupiter-like planet, the conditions required for the disk and the outer planet are relatively strict. We develop a set of evolution equations, which can fit the N-body simulation quite well but can be integrated within a much shorter time. By scanning the parameter spaces using the evolution equations, we find that a massive planet (10 M{sub J} ) at 30 AU with an inclination of 6 Degree-Sign to a massive disk (50 M{sub J} ) can finally enter the Kozai resonance with an inner Jupiter around the snowline. An inclination of 20 Degree-Sign of the outer planet to the disk is required for flipping the inner one to a retrograde orbit. In multiple planet systems, the mechanism can happen between two nonadjacent planets or can inspire a chain reaction among more than two planets. This mechanism could be the source of the observed giant planets in moderate eccentric and inclined orbits, or hot Jupiters in close-in, retrograde orbits after tidal damping.« less

  8. An almost head-on collision as the origin of two off-centre rings in the Andromeda galaxy.

    PubMed

    Block, D L; Bournaud, F; Combes, F; Groess, R; Barmby, P; Ashby, M L N; Fazio, G G; Pahre, M A; Willner, S P

    2006-10-19

    The unusual morphology of the Andromeda galaxy (Messier 31, the closest spiral galaxy to the Milky Way) has long been an enigma. Although regarded for decades as showing little evidence of a violent history, M31 has a well-known outer ring of star formation at a radius of ten kiloparsecs whose centre is offset from the galaxy nucleus. In addition, the outer galaxy disk is warped, as seen at both optical and radio wavelengths. The halo contains numerous loops and ripples. Here we report the presence of a second, inner dust ring with projected dimensions of 1.5 x 1 kiloparsecs and offset by about half a kiloparsec from the centre of the galaxy (based upon an analysis of previously-obtained data). The two rings appear to be density waves propagating in the disk. Numerical simulations indicate that both rings result from a companion galaxy plunging through the centre of the disk of M31. The most likely interloper is M32. Head-on collisions between galaxies are rare, but it appears nonetheless that one took place 210 million years ago in our Local Group of galaxies.

  9. The Shadow Knows: Using Shadows to Investigate the Structure of the Pretransitional Disk of HD 100453

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Zachary C.; Fernandes, Rachel B.; Sitko, Michael

    2017-03-20

    We present Gemini Planet Imager polarized intensity imagery of HD 100453 in Y , J , and K 1 bands that reveals an inner gap (9–18 au), an outer disk (18–39 au) with two prominent spiral arms, and two azimuthally localized dark features that are also present in Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) total intensity images. Spectral energy distribution fitting further suggests that the radial gap extends to 1 au. The narrow, wedge-like shape of the dark features appears similar to predictions of shadows cast by an inner disk that is misaligned with respect to the outer disk. Using themore » Monte Carlo radiative transfer code HOCHUNCK3D, we construct a model of the disk that allows us to determine its physical properties in more detail. From the angular separation of the features, we measure the difference in inclination between the disks (45°) and their major axes, PA = 140° east of north for the outer disk, and 100° for the inner disk. We find an outer-disk inclination of 25° ± 10° from face-on, in broad agreement with the Wagner et al. measurement of 34°. SPHERE data in J and H bands indicate a reddish disk, which indicates that HD 100453 is evolving into a young debris disk.« less

  10. The Shadow Knows: Using Shadows to Investigate the Structure of the Pretransitional Disk of HD 100453

    NASA Astrophysics Data System (ADS)

    Long, Zachary C.; Fernandes, Rachel B.; Sitko, Michael; Wagner, Kevin; Muto, Takayuki; Hashimoto, Jun; Follette, Katherine; Grady, Carol A.; Fukagawa, Misato; Hasegawa, Yasuhiro; Kluska, Jacques; Kraus, Stefan; Mayama, Satoshi; McElwain, Michael W.; Oh, Daehyon; Tamura, Motohide; Uyama, Taichi; Wisniewski, John P.; Yang, Yi

    2017-03-01

    We present Gemini Planet Imager polarized intensity imagery of HD 100453 in Y, J, and K1 bands that reveals an inner gap (9-18 au), an outer disk (18-39 au) with two prominent spiral arms, and two azimuthally localized dark features that are also present in Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) total intensity images. Spectral energy distribution fitting further suggests that the radial gap extends to 1 au. The narrow, wedge-like shape of the dark features appears similar to predictions of shadows cast by an inner disk that is misaligned with respect to the outer disk. Using the Monte Carlo radiative transfer code HOCHUNCK3D, we construct a model of the disk that allows us to determine its physical properties in more detail. From the angular separation of the features, we measure the difference in inclination between the disks (45°) and their major axes, PA = 140° east of north for the outer disk, and 100° for the inner disk. We find an outer-disk inclination of 25° ± 10° from face-on, in broad agreement with the Wagner et al. measurement of 34°. SPHERE data in J and H bands indicate a reddish disk, which indicates that HD 100453 is evolving into a young debris disk.

  11. The Shadow Knows: Using Shadows to Investigate the Structure of the Pretransitional Disk of HD 100453

    NASA Technical Reports Server (NTRS)

    Long, Zachary C.; Fernandes, Rachel B.; Sitko, Michael; Wagner, Kevin; Muto, Takayuki; Hashimoto, Jun; Follette, Katherine; Grady, Carol A.; Fukagawa, Misato; Hasegawa, Yasuhiro; hide

    2017-01-01

    We present Gemini Planet Imager polarized intensity imagery of HD 100453 in Y, J, and K1 bands that reveals an inner gap (9-18 au), an outer disk (18-39 au) with two prominent spiral arms, and two azimuthally localized dark features that are also present in Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) total intensity images. Spectral energy distribution fitting further suggests that the radial gap extends to 1 au. The narrow, wedge-like shape of the dark features appears similar to predictions of shadows cast by an inner disk that is misaligned with respect to the outer disk. Using the Monte Carlo radiative transfer code HOCHUNCK3D, we construct a model of the disk that allows us to determine its physical properties in more detail. From the angular separation of the features, we measure the difference in inclination between the disks (45deg) and their major axes, PA = 140deg east of north for the outer disk, and 100deg for the inner disk. We find an outer-disk inclination of 25deg +/- 10deg from face-on, in broad agreement with the Wagner et al. measurement of 34deg. SPHERE data in J and H bands indicate a reddish disk, which indicates that HD 100453 is evolving into a young debris disk.

  12. Imaging the Disk and Jet of the Classical T Tauri Star AA Tau

    NASA Technical Reports Server (NTRS)

    Cox, Andrew W.; Grady, Carol A.; Hammel, Heidi B.; Hornbeck, Jeremy; Russell, Ray W.; Sitko, Michael L.; Woodgate, Bruce E.

    2013-01-01

    Previous studies of the classical T Tauri star AA Tau have interpreted the UX-Orionis-like photo-polarimetric variability as being due to a warp in the inner disk caused by an inclined stellar magnetic dipole field. We test that these effects are macroscopically observable in the inclination and alignment of the disk. We use Hubble Space Telescope (HST)/STIS coronagraphic imagery to measure the V magnitude of the star for both STIS coronagraphic observations, compare these data with optical photometry in the literature, and find that, unlike other classical T Tauri stars observed in the same HST program, the disk is most robustly detected in scattered light at stellar optical minimum light.We measure the outer disk radius, 1 inch.15 plus-minus 0 inch.10, major-axis position angle, and disk inclination and find that the inner disk, as reported in the literature, is both misinclined and misaligned with respect to the outer disk. AA Tau drives a faint jet, detected in both STIS observations and in follow-on Goddard Fabry-Perot imagery, which is also misaligned with respect to the projection of the outer disk minor axis and is poorly collimated near the star, but which can be traced 21 inches from the star in data from 2005. The measured outer disk inclination, 71deg plus-minus 1deg, is out of the range of inclinations suggested for stars with UX-Orionis-like variability when no grain growth has occurred in the disk. The faintness of the disk, small disk size, and detection of the star despite the high inclination all indicate that the dust disk must have experienced grain growth and settling toward the disk midplane, which we verify by comparing the observed disk with model imagery from the literature.

  13. IMAGING THE DISK AND JET OF THE CLASSICAL T TAURI STAR AA TAU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, Andrew W.; Grady, Carol A.; Hammel, Heidi B.

    2013-01-01

    Previous studies of the classical T Tauri star AA Tau have interpreted the UX-Orionis-like photo-polarimetric variability as being due to a warp in the inner disk caused by an inclined stellar magnetic dipole field. We test that these effects are macroscopically observable in the inclination and alignment of the disk. We use Hubble Space Telescope (HST)/STIS coronagraphic imagery to measure the V magnitude of the star for both STIS coronagraphic observations, compare these data with optical photometry in the literature, and find that, unlike other classical T Tauri stars observed in the same HST program, the disk is most robustlymore » detected in scattered light at stellar optical minimum light. We measure the outer disk radius, 1.''15 {+-} 0.''10, major-axis position angle, and disk inclination and find that the inner disk, as reported in the literature, is both misinclined and misaligned with respect to the outer disk. AA Tau drives a faint jet, detected in both STIS observations and in follow-on Goddard Fabry-Perot imagery, which is also misaligned with respect to the projection of the outer disk minor axis and is poorly collimated near the star, but which can be traced 21'' from the star in data from 2005. The measured outer disk inclination, 71 Degree-Sign {+-} 1 Degree-Sign , is out of the range of inclinations suggested for stars with UX-Orionis-like variability when no grain growth has occurred in the disk. The faintness of the disk, small disk size, and detection of the star despite the high inclination all indicate that the dust disk must have experienced grain growth and settling toward the disk midplane, which we verify by comparing the observed disk with model imagery from the literature.« less

  14. The Thermal Regulation of Gravitational Instabilities in Protoplanetary Disks. II. Extended Simulations with Varied Cooling Rates

    NASA Astrophysics Data System (ADS)

    Mejía, Annie C.; Durisen, Richard H.; Pickett, Megan K.; Cai, Kai

    2005-02-01

    In order to investigate mass transport and planet formation through gravitational instabilities (GIs), we have extended our three-dimensional hydrodynamic simulations of protoplanetary disks from a previous paper. Our goal is to determine the asymptotic behavior of GIs and how it is affected by different constant cooling times. Initially, Rdisk=40 AU, Mdisk=0.07 Msolar, M*=0.5 Msolar, and Qmin=1.5. Sustained cooling, with tcool=2 ORPs (outer rotation periods; 1ORP~250 yr), drives the disk to instability in about 4 ORPs. This calculation is followed for 23.5 ORPs. After 12 ORPs, the disk settles into a quasi-steady state with sustained nonlinear instabilities, an average Q=1.44 over the outer disk, a well-defined power law Σ(r), and a roughly steady M~5×10-7 Msolar yr-1. The transport is driven by global low-order spiral modes. We restart the calculation at 11.2 ORPs with tcool=1 and 1/4 ORPs. The latter case is also run at high azimuthal resolution. We find that shorter cooling times lead to increased M-values, denser and thinner spiral structures, and more violent dynamic behavior. The asymptotic total internal energy and the azimuthally averaged Q(r) are insensitive to tcool. Fragmentation occurs only in the high-resolution tcool=1/4 ORP case; however, none of the fragments survive for even a quarter of an orbit. Ringlike density enhancements appear and grow near the boundary between GI-active and GI-inactive regions. We discuss the possible implications of these rings for gas giant planet formation.

  15. N-Body Simulations of Planetary Accretion Around M Dwarf Stars

    NASA Astrophysics Data System (ADS)

    Ogihara, Masahiro; Ida, Shigeru

    2009-07-01

    We have investigated planetary accretion from planetesimals in terrestrial planet regions inside the ice line around M dwarf stars through N-body simulations including tidal interactions with disk gas. Because of low luminosity of M dwarfs, habitable zones (HZs) are located in inner regions (~0.1 AU). In the close-in HZ, type-I migration and the orbital decay induced by eccentricity damping are efficient according to the high disk gas density in the small orbital radii. Since the orbital decay is terminated around the disk inner edge and the disk edge is close to the HZ, the protoplanets accumulated near the disk edge affect formation of planets in the HZ. Ice lines are also in relatively inner regions at ~0.3 AU. Due to the small orbital radii, icy protoplanets accrete rapidly and undergo type-I migration before disk depletion. The rapid orbital decay, the proximity of the disk inner edge, and large amount of inflow of icy protoplanets are characteristic in planetary accretion in terrestrial planet regions around M dwarfs. In the case of full efficiency of type-I migration predicted by the linear theory, we found that protoplanets that migrate to the vicinity of the host star undergo close scatterings and collisions, and four to six planets eventually remain in mutual mean-motion resonances and their orbits have small eccentricities (lsim0.01) and they are stable both before and after disk gas decays. In the case of slow migration, the resonant capture is so efficient that densely packed ~40 small protoplanets remain in mutual mean-motion resonances. In this case, they start orbit crossing, after the disk gas decays and eccentricity damping due to tidal interaction with gas is no more effective. Through merging of the protoplanets, several planets in widely separated non-resonant orbits with relatively large eccentricities (~0.05) are formed. Thus, the final orbital configurations (separations, resonant or non-resonant, eccentricity, and distribution) of the terrestrial planets around M dwarfs sensitively depend on strength of type-I migration. We also found that large amount of water-ice is delivered by type-I migration from outer regions and final planets near the inner disk edge around M dwarfs are generally abundant in water-ice except for the innermost one that is shielded by the outer planets, unless type-I migration speed is reduced by a factor of more than 100 from that predicted by the linear theory.

  16. Gravitational Instabilities in the Disks of Massive Protostars as an Explanation for Linear Distributions of Methanol Masers

    NASA Astrophysics Data System (ADS)

    Durisen, Richard H.; Mejia, Annie C.; Pickett, Brian K.; Hartquist, Thomas W.

    2001-12-01

    Evidence suggests that some masers associated with massive protostars may originate in the outer regions of large disks, at radii of hundreds to thousands of AU from the central mass. This is particularly true for methanol (CH3OH), for which linear distributions of masers are found with disklike kinematics. In three-dimensional hydrodynamics simulations we have made to study the effects of gravitational instabilities in the outer parts of disks around young low-mass stars, the nonlinear development of the instabilities leads to a complex of intersecting spiral shocks, clumps, and arclets within the disk and to significant time-dependent, nonaxisymmetric distortions of the disk surface. A rescaling of our disk simulations to the case of a massive protostar shows that conditions in the disturbed outer disk seem conducive to the appearance of masers if it is viewed edge-on.

  17. The Outer Disks of Herbig Stars From the UV to NIR

    NASA Technical Reports Server (NTRS)

    Grady, C.; Fukagawa, M.; Maruta, Y.; Ohta, Y.; Wisniewski, J.; Hashimoto, J.; Okamoto, Y.; Momose, M.; Currie, T.; Mcelwain, M.; hide

    2014-01-01

    Spatially-resolved imaging of Herbig stars and related objects began with HST, but intensified with commissioning of high-contrast imagers on 8-m class telescopes. The bulk of the data taken from the ground have been polarized intensity imagery at H-band, with the majority of the sources observed as part of the Strategic Exploration of Exoplanets and Disks with Subaru (SEEDS) survey. Sufficiently many systems have been imaged that we discuss disk properties in scattered, polarized light in terms of groups defined by the IR spectral energy distribution. We find novel phenomena in many of the disks, including spiral density waves, and discuss the disks in terms of clearing mechanisms. Some of the disks have sufficient data to map the dust and gas components, including water ice dissociation products.

  18. Masers in Disks due to Gravitational Instabilities

    NASA Astrophysics Data System (ADS)

    Mejia, A. C.; Durisen, R. H.; Pickett, B. K.; Hartquist, T. W.

    2001-12-01

    Evidence suggests that some masers associated with massive protostars may originate in the outer regions of large circumstellar disks, at radii of 100's to 1000's of AU from the central mass. This is particularly true for methanol (CH3OH), where linear distributions of masers are found with disk-like kinematics. In 3D hydrodynamics simulations we have made to study the effects of gravitational instabilities in the outer parts of disks around young low-mass stars, the nonlinear development of the instabilities leads to a complex of intersecting spiral shocks, clumps, and arclets within the disk and to significant time-dependent, nonaxisymmetric distortions of the disk surface. A rescaling of our disk simulations to the case of a massive protostar shows that conditions in the disturbed outer disk seem conducive to the appearance of masers if it is viewed edge-on. This work was supported by NASA Origins Program Grant NAGW5-4342, by the Alexander von Humboldt Foundation, and by NASA Planetary Geology and Geophysics Program Grant NAG5-10262.

  19. The retention of dust in protoplanetary disks: Evidence from agglomeratic olivine chondrules from the outer Solar System

    NASA Astrophysics Data System (ADS)

    Schrader, Devin L.; Nagashima, Kazuhide; Waitukaitis, Scott R.; Davidson, Jemma; McCoy, Timothy J.; Connolly, Harold C.; Lauretta, Dante S.

    2018-02-01

    By investigating the in situ chemical and O-isotope compositions of olivine in lightly sintered dust agglomerates from the early Solar System, we constrain their origins and the retention of dust in the protoplanetary disk. The grain sizes of silicates in these agglomeratic olivine (AO) chondrules indicate that the grain sizes of chondrule precursors in the Renazzo-like carbonaceous (CR) chondrites ranged from <1 to 80 μm. We infer this grain size range to be equivalent to the size range for dust in the early Solar System. AO chondrules may contain, but are not solely composed of, recycled fragments of earlier formed chondrules. They also contain 16O-rich olivine related to amoeboid olivine aggregates and represent the best record of chondrule-precursor materials. AO chondrules contain one or more large grains, sometimes similar to FeO-poor (type I) and/or FeO-rich (type II) chondrules, while others contain a type II chondrule core. These morphologies are consistent with particle agglomeration by electrostatic charging of grains during collision, a process that may explain solid agglomeration in the protoplanetary disk in the micrometer size regime. The petrographic, isotopic, and chemical compositions of AO chondrules are consistent with chondrule formation by large-scale shocks, bow shocks, and current sheets. The petrographic, isotopic, and chemical similarities between AO chondrules in CR chondrites and chondrule-like objects from comet 81P/Wild 2 indicate that comets contain AO chondrules. We infer that these AO chondrules likely formed in the inner Solar System and migrated to the comet forming region at least 3 Ma after the formation of the first Solar System solids. Observations made in this study imply that the protoplanetary disk retained a dusty disk at least ∼3.7 Ma after the formation of the first Solar System solids, longer than half of the dusty accretion disks observed around other stars.

  20. PSOCT studies of intervertebral disk

    NASA Astrophysics Data System (ADS)

    Matcher, Stephen J.; Winlove, Peter C.; Gangnus, Sergey V.

    2004-07-01

    Polarization-sensitive optical coherence tomography (PSOCT) is an emerging optical imaging technique that is sensitive to the birefringence properties of tissues. It thus has applications in studying the large-scale ordering of collagen fibers within connective tissues. This ordering not only provides useful insights into the relationship between structure and function for various anatomical structures but also is an indicator of pathology. Intervertebral disk is an elastic tissue of the spine and possesses a 3-D collagen structure well suited to study using PSOCT. Since the outer layer of the disk has a lamellar structure with collagen fibers oriented in a trellis-like arrangement between lamellae, the birefringence fast-axis shows pronounced variations with depth, on a spatial scale of about 100 μm. The lamellar thickness varies with age and possibly with disease. We have used a polarisation-sensitive optical coherence tomography system to measure the birefringence properties of freshly excised, hydrated bovine caudal intervertebral disk and compared this with equine flexor tendon. Our results clearly demonstrate the ability of PSOCT to detect the outer three lamellae, down to a depth of at least 700 μm, via discontinuities in the depth-resolved retardance. We have applied a simple semi-empirical model based on Jones calculus to quantify the variation in the fast-axis orientation with depth. Our data and modeling is in broad agreement with previous studies using x-ray diffraction and polarization microscopy applied to histological sections of dehydrated disk. Our results imply that PSOCT may prove a useful tool to study collagen organisation within intervertebral disk in vitro and possibly in vivo and its variation with age and disease.

  1. The early evolution of protostellar disks

    NASA Technical Reports Server (NTRS)

    Stahler, Steven W.; Korycansky, D. G.; Brothers, Maxwell J.; Touma, Jihad

    1994-01-01

    We consider the origin and intital growth of the disks that form around protostars during the collapse of rotating molecular cloud cores. These disks are assumed to be inviscid and pressure free, and to have masses small compared to those of their central stars. We find that there exist three distinct components-an outer disk, in which shocked gas moves with comparable azimuthal and radical velocities; and inner disk, where material follows nearly circular orbits, but spirals slowly toward the star because of the drag exerted by adjacent onfalling matter, and a turbulent ring adjoining the first two regions. Early in the evolution, i.e., soon after infalling matter begins to miss the star, only the outer disk is present, and the total mass acceration rate onto the protostar is undiminished. Once the outer disk boundary grows to more than 2.9 times the stellar radius, first the ring, and then the inner disk appear. Thereafter, the radii of all three components expand as t(exp 3). The mass of the ring increase with time and is always 13% of the total mass that has fallen from the cloud. Concurrently with the buildup of the inner disk and ring, the accretion rate onto the star falls off. However, the protostellar mass continue to rise, asymptotically as t(exp 1/4). We calculated the radiated flux from the inner and outer disk components due to the release of gravitational potential energy. The flux from the inner disk is dominant and rises steeply toward the stellar surface. We also determine the surface temperature of the inner disk as a function of radius. The total disk luminosity decreases slowly with time, while the contributions from the ring and inner disk both fall as t(exp -2).

  2. Emission Lines from the Gas Disk Around TW Hydra and the Origin of the Inner Hole

    NASA Technical Reports Server (NTRS)

    Gorti, U.; Hollenbach, D.; Najita, J.; Pascucci, I.

    2011-01-01

    We compare line emission calculated from theoretical disk models with optical to submillimeter wavelength observational data of the gas disk surrounding TW Hya and infer the spatial distribution of mass in the gas disk. The model disk that best matches observations has a gas mass ranging from approx.10(exp -4) to 10(exp -5) M for 0.06AU < r < 3.5 AU and approx. 0.06M for 3.5AU < r < 200 AU. We find that the inner dust hole (r < 3.5 AU) in the disk must be depleted of gas by approx. 1-2 orders of magnitude compared with the extrapolated surface density distribution of the outer disk. Grain growth alone is therefore not a viable explanation for the dust hole. CO vibrational emission arises within r approx. 0.5 AU from thermal excitation of gas. [O i] 6300Å and 5577Å forbidden lines and OH mid-infrared emission are mainly due to prompt emission following UV photodissociation of OH and water at r < or approx. 0.1 AU and at r approx. 4 AU. [Ne ii] emission is consistent with an origin in X-ray heated neutral gas at r < or approx. 10 AU, and may not require the presence of a significant extreme-ultraviolet (h? > 13.6 eV) flux from TW Hya. H2 pure rotational line emission comes primarily from r approx. 1 to 30 AU. [Oi] 63microns, HCO+, and CO pure rotational lines all arise from the outer disk at r approx. 30-120 AU. We discuss planet formation and photoevaporation as causes for the decrease in surface density of gas and dust inside 4 AU. If a planet is present, our results suggest a planet mass approx. 4-7MJ situated at 3 AU. Using our photoevaporation models and the best surface density profile match to observations, we estimate a current photoevaporative mass loss rate of 4x10(exp -9M)/yr and a remaining disk lifetime of approx.5 million years.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Ya-Wen; Dutrey, Anne; Guilloteau, Stéphane

    We aim to unveil the observational imprint of physical mechanisms that govern planetary formation in the young, multiple system GG Tau A. We present ALMA observations of {sup 12}CO and {sup 13}CO 3–2 and 0.9 mm continuum emission with 0.″35 resolution. The {sup 12}CO 3–2 emission, found within the cavity of the circumternary dust ring (at radius <180 au) where no {sup 13}CO emission is detected, confirms the presence of CO gas near the circumstellar disk of GG Tau Aa. The outer disk and the recently detected hot spot lying at the outer edge of the dust ring are mappedmore » both in {sup 12}CO and {sup 13}CO. The gas emission in the outer disk can be radially decomposed as a series of slightly overlapping Gaussian rings, suggesting the presence of unresolved gaps or dips. The dip closest to the disk center lies at a radius very close to the hot spot location at ∼250–260 au. The CO excitation conditions indicate that the outer disk remains in the shadow of the ring. The hot spot probably results from local heating processes. The two latter points reinforce the hypothesis that the hot spot is created by an embedded proto-planet shepherding the outer disk.« less

  4. Connecting the shadows: probing inner disk geometries using shadows in transitional disks

    NASA Astrophysics Data System (ADS)

    Min, M.; Stolker, T.; Dominik, C.; Benisty, M.

    2017-08-01

    Aims: Shadows in transitional disks are generally interpreted as signs of a misaligned inner disk. This disk is usually beyond the reach of current day high contrast imaging facilities. However, the location and morphology of the shadow features allow us to reconstruct the inner disk geometry. Methods: We derive analytic equations of the locations of the shadow features as a function of the orientation of the inner and outer disk and the height of the outer disk wall. In contrast to previous claims in the literature, we show that the position angle of the line connecting the shadows cannot be directly related to the position angle of the inner disk. Results: We show how the analytic framework derived here can be applied to transitional disks with shadow features. We use estimates of the outer disk height to put constraints on the inner disk orientation. In contrast with the results from Long et al. (2017, ApJ, 838, 62), we derive that for the disk surrounding HD 100453 the analytic estimates and interferometric observations result in a consistent picture of the orientation of the inner disk. Conclusions: The elegant consistency in our analytic framework between observation and theory strongly support both the interpretation of the shadow features as coming from a misaligned inner disk as well as the diagnostic value of near infrared interferometry for inner disk geometry.

  5. Submillimeter Array {sup 12}CO (2-1) Imaging of the NGC 6946 Giant Molecular Clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Ya-Lin; Sakamoto, Kazushi; Pan, Hsi-An, E-mail: yalinwu@email.arizona.edu

    2017-04-10

    We present a {sup 12}CO (2–1) mosaic map of the spiral galaxy NGC 6946 by combining data from the Submillimeter Array and the IRAM 30 m telescope. We identify 390 giant molecular clouds (GMCs) from the nucleus to 4.5 kpc in the disk. GMCs in the inner 1 kpc are generally more luminous and turbulent, some of which have luminosities >10{sup 6} K km s{sup −1} pc{sup 2} and velocity dispersions >10 km s{sup −1}. Large-scale bar-driven dynamics likely regulate GMC properties in the nuclear region. Similar to the Milky Way and other disk galaxies, GMC mass function of NGCmore » 6946 has a shallower slope (index > −2) in the inner region, and a steeper slope (index < −2) in the outer region. This difference in mass spectra may be indicative of different cloud formation pathways: gravitational instabilities might play a major role in the nuclear region, while cloud coalescence might be dominant in the outer disk. Finally, the NGC 6946 clouds are similar to those in M33 in terms of statistical properties, but they are generally less luminous and turbulent than the M51 clouds.« less

  6. Disk Chemistry and Cometary Composition

    NASA Astrophysics Data System (ADS)

    Markwick, A. J.; Charnley, S. B.

    2003-05-01

    We will describe current chemical modelling of disks similar to the protosolar nebula. Calculations are being undertaken to determine the spatial and temporal chemistry of the gas and dust within the 5-40AU comet-forming region of the nebula. These theoretical studies aim to determine the contribution of pristine and partially-processed interstellar material from the cool outer nebula, as compared to that obtained from outward radial mixing of matter from the hot inner nebula. Reference Molecular distributions in the inner regions of protostellar disks, Markwick, A. J., Ilgner, M., Millar, T. J., Henning, Th. (2002), Astron. Astrophys., 385, 632.

  7. Disk Chemistry and Cometary Composition

    NASA Astrophysics Data System (ADS)

    Markwick, A. J.; Charnley, S. B.

    2005-01-01

    We will describe current chemical modelling of disks similar to the protosolar nebula. Calculations are being undertaken to determine the spatial and temporal chemistry of the gas and dust within the 5-40AU comet-forming region of the nebula. These theoretical studies aim to determine the contribution of pristine and partially-processed interstellar material from the cool outer nebula as compared to that obtained from outward radial mixing of matter from the hot inner nebula. Reference Molecular distributions in the inner regions of protostellar disks Markwick A. J. Ilgner M. Millar T. J. Henning Th. (2002) Astron. Astrophys. 385 632

  8. On Shocks Driven by High-mass Planets in Radiatively Inefficient Disks. III. Observational Signatures in Thermal Emission and Scattered Light

    NASA Astrophysics Data System (ADS)

    Hord, Blake; Lyra, Wladimir; Flock, Mario; Turner, Neal J.; Mac Low, Mordecai-Mark

    2017-11-01

    Recent observations of the protoplanetary disk around the Herbig Be star HD 100546 show two bright features in infrared (H and {L}{\\prime } bands) at about 50 au,with one so far unexplained. We explore the observational signatures of a high-mass planet causing shock heating in order to determine if it could be the source of the unexplained infrared feature in HD 100546. More fundamentally, we identify and characterize planetary shocks as an extra, hitherto ignored, source of luminosity in transition disks. The RADMC-3D code is used to perform dust radiative transfer calculations on the hydrodynamical disk models, including volumetric heating. A stronger shock heating rate by a factor of 20 would be necessary to qualitatively reproduce the morphology of the second infrared source. Instead, we find that the outer edge of the gap carved by the planet heats up by about 50% relative to the initial reference temperature, which leads to an increase in the scale height. The bulge is illuminated by the central star, producing a lopsided feature in scattered light, as the outer gap edge shows an asymmetry in density and temperature attributable to a secondary spiral arm launched not from the Lindblad resonances but from the 2:1 resonance. We conclude that high-mass planets lead to shocks in disks that may be directly observed, particularly at wavelengths of 10 μm or longer, but that they are more likely to reveal their presence in scattered light by puffing up their outer gap edges and exciting multiple spiral arms.

  9. On the impact origin of Phobos and Deimos

    NASA Astrophysics Data System (ADS)

    Genda, Hidenori; Hyodo, Ryuki; Chanorz, Sebastian; Rosenblatt, Pascal

    2017-10-01

    Phobos and Deimos, the two small satellites of Mars, are thought either to be captured asteroids or to have accreted in an impact-induced debris disk. Recently, we succeeded in making them in a framework of the giant impact scenario [1]. In our canonical simulation, large moons form from the material in the dense inner disk and then migrate outwards due to gravitational interactions with the remnant disk. As the large inner moons migrate outward, their orbital resonances sweep up and gather materials distributed within a thin outer disk, facilitating accretion of two small satellites whose sizes are similar to Phobos and Deimos. The large inner moons fall back to Mars after about 5 million years due to tidal pull of Mars, and the two small outer satellites evolve into current Phobos- and Deimos-like orbits.In addition, we recently perform high-resolution SPH giant impact simulations using sophisticated equation of states (M-ANEOS). We investigate the thermodynamic and physical aspects of the impact-induced disk [2], such as degrees of melting and vaporization of materials, mixing ratio of Mars and impactor’s materials, and expected particle sizes that form Phobos and Deimos. Our results will give useful information for planning a future sample return mission to Martian moons, such as JAXA’s MMX (Martian Moons eXploration) mission.[1] Rosenblatt, P., Charnoz, S., Dunseath, K.M., Terao-Dunseath, M., Trinh, A., Hyodo, R., Genda, H., Toupin, S., 2016. Accretion of Phobos and Deimos in an extended debris disc stirred by transient moons. Nature Geoscience 9, 581-583.[2] Hyodo, R., Genda, H., Charnoz, S., Rosenblatt, P., 2017, On the impact origin of Phobos and Deimos I: Thermodynamic and physical aspects. ApJ accepted (arXiv:1707.06282).

  10. A Hot White Dwarf SDSS J134430.11+032423.1 with a Planetary Debris Disk

    NASA Astrophysics Data System (ADS)

    Li, Lifang; Zhang, Fenghui; Kong, Xiaoyang; Han, Quanwang; Li, Jiansha

    2017-02-01

    We discovered a debris disk around hot white dwarf (WD) SDSS J134430.11+032423.1 (SDSS J1344+0324). The effective temperature [{T}{eff} = 26,071(±163) K], surface gravity [{log}g=7.88(2)], and mass [M=0.58(1) {M}⊙ ] of this WD have been redetermined based on the analysis of its SDSS spectrum. We found that SDSS J1344+0324 is currently the hottest WD with a debris disk. Two spectra observed by SDSS at different times show that this object is similar to SDSS J1228+1040 with variable near-IR Ca II triplet emissions from a gaseous disk. The parameters of the debris disk are derived from the IR excess analysis of SDSS J1344+0324. We found that the disk is the coolest of all debris disks around WDs, and that the inner and outer radii are very close to the tide radius of the WD. Thus, the debris disk is very narrow (about 0.22 {R}⊙ ). This implies that it might be a newly formed disk resulting from the tidal disruption of a rocky planetary body that has just entered the tide volume of the WD. This might provide strong observational evidence for the formation of debris disks around WDs.

  11. Migration and growth of protoplanetary embryos. I. Convergence of embryos in protoplanetary disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiaojia; Lin, Douglas N. C.; Liu, Beibei

    2014-12-10

    According to the core accretion scenario, planets form in protostellar disks through the condensation of dust, coagulation of planetesimals, and emergence of protoplanetary embryos. At a few AU in a minimum mass nebula, embryos' growth is quenched by dynamical isolation due to the depletion of planetesimals in their feeding zone. However, embryos with masses (M{sub p} ) in the range of a few Earth masses (M {sub ⊕}) migrate toward a transition radius between the inner viscously heated and outer irradiated regions of their natal disk. Their limiting isolation mass increases with the planetesimals surface density. When M{sub p} >more » 10 M {sub ⊕}, embryos efficiently accrete gas and evolve into cores of gas giants. We use a numerical simulation to show that despite stream line interference, convergent embryos essentially retain the strength of non-interacting embryos' Lindblad and corotation torques by their natal disks. In disks with modest surface density (or equivalently accretion rates), embryos capture each other in their mutual mean motion resonances and form a convoy of super-Earths. In more massive disks, they could overcome these resonant barriers to undergo repeated close encounters, including cohesive collisions that enable the formation of massive cores.« less

  12. Exploring Dust around HD 142527 down to 0.″025 (4 au) Using SPHERE/ZIMPOL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avenhaus, H.; Quanz, S. P.; Schmid, H. M.

    We have observed the protoplanetary disk of the well-known young Herbig star HD 142527 using ZIMPOL polarimetric differential imaging with the very broad band (∼600–900 nm) filter. We obtained two data sets in 2015 May and 2016 March. Our data allow us to explore dust scattering around the star down to a radius of ∼0.″025 (∼4 au). The well-known outer disk is clearly detected at higher resolution than before and shows previously unknown substructures, including spirals going inward into the cavity. Close to the star, dust scattering is detected at high signal-to-noise ratio, but it is unclear whether the signal represents the innermore » disk, which has been linked to the two prominent local minima in the scattering of the outer disk that are interpreted as shadows. An interpretation of an inclined inner disk combined with a dust halo is compatible with both our and previous observations, but other arrangements of the dust cannot be ruled out. Dust scattering is also present within the large gap between ∼30 and ∼140 au. The comparison of the two data sets suggests rapid evolution of the inner regions of the disk, potentially driven by the interaction with the close-in M-dwarf companion, around which no polarimetric signal is detected.« less

  13. A New Giant Stellar Structure in the Outer Halo of M31

    NASA Astrophysics Data System (ADS)

    Zucker, Daniel B.; Kniazev, Alexei Y.; Bell, Eric F.; Martínez-Delgado, David; Grebel, Eva K.; Rix, Hans-Walter; Rockosi, Constance M.; Holtzman, Jon A.; Walterbos, Rene A. M.; Ivezić, Željko; Brinkmann, J.; Brewington, Howard; Harvanek, Michael; Kleinman, S. J.; Krzesinski, Jurek; Lamb, Don Q.; Long, Dan; Newman, Peter R.; Nitta, Atsuko; Snedden, Stephanie A.

    2004-09-01

    The Sloan Digital Sky Survey has revealed an overdensity of luminous red giant stars ~3° (40 projected kpc) to the northeast of M31, which we have called Andromeda NE. The line-of-sight distance to Andromeda NE is within ~50 kpc of M31; Andromeda NE is not a physically unrelated projection. Andromeda NE has a g-band absolute magnitude of ~-11.6 and a central surface brightness of ~29 mag arcsec-2, making it nearly 2 orders of magnitude more diffuse than any known Local Group dwarf galaxy at that luminosity. Based on its distance and morphology, Andromeda NE is likely undergoing tidal disruption. Andromeda NE's red giant branch color is unlike that of M31's present-day outer disk or the stellar stream reported by Ibata et al., arguing against a direct link between Andromeda NE and these structures. However, Andromeda NE has a red giant branch color similar to that of the G1 clump; it is possible that these structures are both material torn off of M31's disk in the distant past or that these are both part of one ancient stellar stream.

  14. HCO+ Detection of Dust-depleted Gas in the Inner Hole of the LkCa 15 Pre-transitional Disk

    NASA Astrophysics Data System (ADS)

    Drabek-Maunder, E.; Mohanty, S.; Greaves, J.; Kamp, I.; Meijerink, R.; Spaans, M.; Thi, W.-F.; Woitke, P.

    2016-12-01

    LkCa 15 is an extensively studied star in the Taurus region, known for its pre-transitional disk with a large inner cavity in the dust continuum and normal gas accretion rate. The most popular hypothesis to explain the LkCa 15 data invokes one or more planets to carve out the inner cavity, while gas continues to flow across the gap from the outer disk onto the central star. We present spatially unresolved HCO+ J=4\\to 3 observations of the LkCa 15 disk from the James Clerk Maxwell telescope (JCMT) and model the data with the ProDiMo code. We find that: (1) HCO+ line-wings are clearly detected, certifying the presence of gas in the cavity within ≲50 au of the star. (2) Reproducing the observed line-wing flux requires both a significant suppression of cavity dust (by a factor ≳104 compared to the interstellar medium (ISM)) and a substantial increase in the gas scale-height within the cavity (H 0/R 0 ˜ 0.6). An ISM dust-to-gas ratio (d:g = 10-2) yields too little line-wing flux, regardless of the scale-height or cavity gas geometry, while a smaller scale-height also under-predicts the flux even with a reduced d:g. (3) The cavity gas mass is consistent with the surface density profile of the outer disk extended inwards to the sublimation radius (corresponding to mass M d ˜ 0.03 M ⊙), and masses lower by a factor ≳10 appear to be ruled out.

  15. Dust modeling of the combined ALMA and SPHERE datasets of HD 163296. Is HD 163296 really a Meeus group II disk?

    NASA Astrophysics Data System (ADS)

    Muro-Arena, G. A.; Dominik, C.; Waters, L. B. F. M.; Min, M.; Klarmann, L.; Ginski, C.; Isella, A.; Benisty, M.; Pohl, A.; Garufi, A.; Hagelberg, J.; Langlois, M.; Menard, F.; Pinte, C.; Sezestre, E.; van der Plas, G.; Villenave, M.; Delboulbé, A.; Magnard, Y.; Möller-Nilsson, O.; Pragt, J.; Rabou, P.; Roelfsema, R.

    2018-06-01

    Context. Multiwavelength observations are indispensable in studying disk geometry and dust evolution processes in protoplanetary disks. Aims: We aim to construct a three-dimensional model of HD 163296 that is capable of reproducing simultaneously new observations of the disk surface in scattered light with the SPHERE instrument and thermal emission continuum observations of the disk midplane with ALMA. We want to determine why the spectral energy distribution of HD 163296 is intermediary between the otherwise well-separated group I and group II Herbig stars. Methods: The disk was modeled using the Monte Carlo radiative transfer code MCMax3D. The radial dust surface density profile was modeled after the ALMA observations, while the polarized scattered light observations were used to constrain the inclination of the inner disk component and turbulence and grain growth in the outer disk. Results: While three rings are observed in the disk midplane in millimeter thermal emission at 80, 124, and 200 AU, only the innermost of these is observed in polarized scattered light, indicating a lack of small dust grains on the surface of the outer disk. We provide two models that are capable of explaining this difference. The first model uses increased settling in the outer disk as a mechanism to bring the small dust grains on the surface of the disk closer to the midplane and into the shadow cast by the first ring. The second model uses depletion of the smallest dust grains in the outer disk as a mechanism for decreasing the optical depth at optical and near-infrared wavelengths. In the region outside the fragmentation-dominated regime, such depletion is expected from state-of-the-art dust evolution models. We studied the effect of creating an artificial inner cavity in our models, and conclude that HD 163296 might be a precursor to typical group I sources.

  16. DOUBLE DCO{sup +} RINGS REVEAL CO ICE DESORPTION IN THE OUTER DISK AROUND IM LUP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Öberg, Karin I.; Loomis, Ryan; Andrews, Sean M.

    2015-09-10

    In a protoplanetary disk, a combination of thermal and non-thermal desorption processes regulate where volatiles are liberated from icy grain mantles into the gas phase. Non-thermal desorption should result in volatile-enriched gas in disk-regions where complete freeze-out is otherwise expected. We present Atacama Large Millimeter/Submillimeter Array observations of the disk around the young star IM Lup in 1.4 mm continuum, C{sup 18}O 2–1, H{sup 13}CO{sup +} 3–2 and DCO{sup +} 3–2 emission at ∼0.″5 resolution. The images of these dust and gas tracers are clearly resolved. The DCO{sup +} line exhibits a striking pair of concentric rings of emission thatmore » peak at radii of ∼0.″6 and 2″ (∼90 and 300 AU, respectively). Based on disk chemistry model comparison, the inner DCO{sup +} ring is associated with the balance of CO freeze-out and thermal desorption due to a radial decrease in disk temperature. The outer DCO{sup +} ring is explained by non-thermal desorption of CO ice in the low-column-density outer disk, repopulating the disk midplane with cold CO gas. The CO gas then reacts with abundant H{sub 2}D{sup +} to form the observed DCO{sup +} outer ring. These observations demonstrate that spatially resolved DCO{sup +} emission can be used to trace otherwise hidden cold gas reservoirs in the outmost disk regions, opening a new window onto their chemistry and kinematics.« less

  17. Hydrodynamical Modeling of Large Circumstellar Disks

    NASA Astrophysics Data System (ADS)

    Kurfürst, P.; Krtǐcka, J.

    2016-11-01

    Direct centrifugal ejection from a critically or near-critically rotating surface forms a gaseous equatorial decretion disk. Anomalous viscosity provides the efficient mechanism for transporting the angular momentum outwards. The outer part of the disk can extend up to a very large distance from the parent star. We study the evolution of density, radial and azimuthal velocity, and angular momentum loss rate of equatorial decretion disks out to very distant regions. We investigate how the physical characteristics of the disk depend on the distribution of temperature and viscosity. We also study the magnetorotational instability, which is considered to be the origin of anomalous viscosity in outflowing disks. We use analytical calculations to study the stability of outflowing disks submerged to the magnetic field. At large radii the instability disappears in the region where the disk orbital velocity is roughly equal to the sound speed. Therefore, the disk sonic radius can be roughly considered as an outer disk radius.

  18. Disk filter

    DOEpatents

    Bergman, Werner

    1986-01-01

    An electric disk filter provides a high efficiency at high temperature. A hollow outer filter of fibrous stainless steel forms the ground electrode. A refractory filter material is placed between the outer electrode and the inner electrically isolated high voltage electrode. Air flows through the outer filter surfaces through the electrified refractory filter media and between the high voltage electrodes and is removed from a space in the high voltage electrode.

  19. Disk filter

    DOEpatents

    Bergman, W.

    1985-01-09

    An electric disk filter provides a high efficiency at high temperature. A hollow outer filter of fibrous stainless steel forms the ground electrode. A refractory filter material is placed between the outer electrode and the inner electrically isolated high voltage electrode. Air flows through the outer filter surfaces through the electrified refractory filter media and between the high voltage electrodes and is removed from a space in the high voltage electrode.

  20. Hydrocarbon Emission Rings in Protoplanetary Disks Induced by Dust Evolution

    NASA Astrophysics Data System (ADS)

    Bergin, Edwin A.; Du, Fujun; Cleeves, L. Ilsedore; Blake, G. A.; Schwarz, K.; Visser, R.; Zhang, K.

    2016-11-01

    We report observations of resolved C2H emission rings within the gas-rich protoplanetary disks of TW Hya and DM Tau using the Atacama Large Millimeter Array. In each case the emission ring is found to arise at the edge of the observable disk of millimeter-sized grains (pebbles) traced by submillimeter-wave continuum emission. In addition, we detect a C3H2 emission ring with an identical spatial distribution to C2H in the TW Hya disk. This suggests that these are hydrocarbon rings (I.e., not limited to C2H). Using a detailed thermo-chemical model we show that reproducing the emission from C2H requires a strong UV field and C/O > 1 in the upper disk atmosphere and outer disk, beyond the edge of the pebble disk. This naturally arises in a disk where the ice-coated dust mass is spatially stratified due to the combined effects of coagulation, gravitational settling and drift. This stratification causes the disk surface and outer disk to have a greater permeability to UV photons. Furthermore the concentration of ices that transport key volatile carriers of oxygen and carbon in the midplane, along with photochemical erosion of CO, leads to an elemental C/O ratio that exceeds unity in the UV-dominated disk. Thus the motions of the grains, and not the gas, lead to a rich hydrocarbon chemistry in disk surface layers and in the outer disk midplane.

  1. Coevolution of Binaries and Circumbinary Gaseous Disks

    NASA Astrophysics Data System (ADS)

    Fleming, David; Quinn, Thomas R.

    2018-04-01

    The recent discoveries of circumbinary planets by Kepler raise questions for contemporary planet formation models. Understanding how these planets form requires characterizing their formation environment, the circumbinary protoplanetary disk, and how the disk and binary interact. The central binary excites resonances in the surrounding protoplanetary disk that drive evolution in both the binary orbital elements and in the disk. To probe how these interactions impact both binary eccentricity and disk structure evolution, we ran N-body smooth particle hydrodynamics (SPH) simulations of gaseous protoplanetary disks surrounding binaries based on Kepler 38 for 10^4 binary orbital periods for several initial binary eccentricities. We find that nearly circular binaries weakly couple to the disk via a parametric instability and excite disk eccentricity growth. Eccentric binaries strongly couple to the disk causing eccentricity growth for both the disk and binary. Disks around sufficiently eccentric binaries strongly couple to the disk and develop an m = 1 spiral wave launched from the 1:3 eccentric outer Lindblad resonance (EOLR). This wave corresponds to an alignment of gas particle longitude of periastrons. We find that in all simulations, the binary semi-major axis decays due to dissipation from the viscous disk.

  2. Role of subunit assembly in autosomal dominant retinitis pigmentosa linked to mutations in peripherin 2.

    PubMed

    Molday, Robert S; Molday, Laurie L; Loewen, Christopher J R

    2004-01-01

    Peripherin 2 is a photoreceptor-specific membrane protein implicated in outer segment disk morphogenesis and linked to various retinopathies including autosomal dominant retinitis pigmentosa (ADRP). Peripherin 2 and ROM1 assemble as a mixture of core noncovalent homomeric and heteromeric tetramers that further link together through disulfide bonds to form higher order oligomers. These complexes are critical for disk rim formation and outer segment structure through interaction with the cGMP-gated channel and other photoreceptor proteins. We have examined the role of subunit assembly in peripherin 2 targeting to disks, outer segment structure, and photoreceptor degeneration by examining molecular and cellular properties of peripherin 2 mutants in COS-1 cells and transgenic Xenopus laevis rod photoreceptors. Wild-type (WT) and the ADRP-linked P216L mutant were transported and incorporated into newly formed outer segment disks of transgenic X. laevis. The P216L mutant, however, induced progressive outer segment instability and photoreceptor degeneration possibly through the introduction of a new N-linked oligosaccharide chain. In contrast, the C214S and L185P disease-linked, tetramerization-defective mutants, were retained in the inner segment, but did not affect outer segment structure or induce photoreceptor degeneration. Together, these results indicate that peripherin 2 mutations can cause ADRP either through a deficiency in WT peripherin 2 (C214S, 1.185P) or by a dominant negative effect on disk stability (P216L).

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergin, Edwin A.; Du, Fujun; Schwarz, K.

    We report observations of resolved C{sub 2}H emission rings within the gas-rich protoplanetary disks of TW Hya and DM Tau using the Atacama Large Millimeter Array. In each case the emission ring is found to arise at the edge of the observable disk of millimeter-sized grains (pebbles) traced by submillimeter-wave continuum emission. In addition, we detect a C{sub 3}H{sub 2} emission ring with an identical spatial distribution to C{sub 2}H in the TW Hya disk. This suggests that these are hydrocarbon rings (i.e., not limited to C{sub 2}H). Using a detailed thermo-chemical model we show that reproducing the emission frommore » C{sub 2}H requires a strong UV field and C/O > 1 in the upper disk atmosphere and outer disk, beyond the edge of the pebble disk. This naturally arises in a disk where the ice-coated dust mass is spatially stratified due to the combined effects of coagulation, gravitational settling and drift. This stratification causes the disk surface and outer disk to have a greater permeability to UV photons. Furthermore the concentration of ices that transport key volatile carriers of oxygen and carbon in the midplane, along with photochemical erosion of CO, leads to an elemental C/O ratio that exceeds unity in the UV-dominated disk. Thus the motions of the grains, and not the gas, lead to a rich hydrocarbon chemistry in disk surface layers and in the outer disk midplane.« less

  4. Chemical Evolution and Star Formation History of the Disks of Spirals in Local Group

    NASA Astrophysics Data System (ADS)

    Yin, J.

    2011-05-01

    Milky Way (MW), M31 and M33 are the only three spiral galaxies in our Local group. MW and M31 have similar mass, luminosity and morphology, while M33 is only about one tenth of MW in terms of its baryonic mass. Detailed theoretical researches on these three spirals will help us to understand the formation and evolution history of both spiral galaxies and Local group. Referring to the phenomenological chemical evolution model adopted in MW disk, a similar model is established to investigate the star formation and chemical enrichment history of these three local spirals. Firstly, the properties of M31 disk are studied by building a similar chemical evolution model which is able to successfully describe the MW disk. It is expected that a simple unified phenomenological chemical evolution model could successfully describe the radial and global properties of both disks. Comparing with the former work, we adopt an extensive data set as model constraints, including the star formation profile of M31 disk derived from the recent UV data of GALEX. The comparison among the observed properties of these two disks displays very interesting similarities in their radial profiles when the distance from the galactic center is expressed in terms of the corresponding scale length. This implies some common processes in their formation and evolution history. Based on the observed data of the gas mass surface density and SFR surface density, the SFR radial profile of MW can be well described by Kennicutt-Schmidt star formation law (K-S law) or modified K-S law (SFR is inversely proportional to the distance from the galactic center), but this is not applicable to the M31 disk. Detailed calculations show that our unified model describes fairly well all the main properties of the MW disk and most properties of M31 disk, provided that the star formation efficiency of M31 disk is adjusted to be twice as large as that of MW disk (as anticipated from the lower gas fraction of M31). However, the model fails to match the present SFR in M31 disk by predicting too much SFR in the outer disk. We attribute this disagreement to the fact that M31 has been perturbed recently by a violent encounter. The observed SFR profile of M31 caused by this encounter does not seem to follow any form of the K-S law. On the other hand, the stellar metallicity distribution functions (MDFs) measured along the disk of M31 indicate the integrated star formation during the whole disk history and should not be affected by recent events. Our model reproduces rather well those distributions from 6 kpc to 21 kpc (except the region at 16 kpc). Basically, the disks of MW and M31 are formed "inside-out" with similar infall timescale. If M31 is closer to a typical disk galaxy, it would be the best that the researches on the models of this disk galaxy are carried out within the cosmological framework. Simple models, like the one adopted in this thesis, could be used to describe the quiescent galaxy, like the MW. Secondly, the similar model is applied to investigate the formation history of M33 disk. We calculate the radial profiles of gas surface density and SFR surface density, gas fraction, abundances, the surface brightness of FUV and K bands, FUV-K color gradient and so on. All those properties are compared with observations if available. Two different infall histories, namely collapse model and accretion model, are adopted respectively. The effects of free parameters (infall timescale, infall delay time and efficiency of outflow) on the model results are discussed in detail. It is found that the disk of M33 can not be formed by fast collapse process. Observations show that M33 is much smaller and less massive than MW, but has larger gas fraction and lower metallicity. This implies that it should be formed by slow accretion process and is consistent with the slow accretion model. We study the abundance gradients of different elements in M33 disk and find that outflow should play an important role in the evolution of abundance gradients. The present abundances will be much higher than the observation if without outflow. When the disk undergoes an outflow with a similar strength to the local SFR, the abundance within the radius of 6 kpc will be reduced dramatically, but no noticeable change occurs in outer regions, resulting in a flatter abundance gradient. This is consistent with the observed features. Our model predicts a slightly flatter FUV-K color gradient when the long infall timescale and proper outflow are adopted. Considering the uncertainty of the extinction correction, the results are acceptable.

  5. OUTWARD MIGRATION OF JUPITER AND SATURN IN 3:2 OR 2:1 RESONANCE IN RADIATIVE DISKS: IMPLICATIONS FOR THE GRAND TACK AND NICE MODELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierens, Arnaud; Raymond, Sean N.; Nesvorny, David

    Embedded in the gaseous protoplanetary disk, Jupiter and Saturn naturally become trapped in 3:2 resonance and migrate outward. This serves as the basis of the Grand Tack model. However, previous hydrodynamical simulations were restricted to isothermal disks, with moderate aspect ratio and viscosity. Here we simulate the orbital evolution of the gas giants in disks with viscous heating and radiative cooling. We find that Jupiter and Saturn migrate outward in 3:2 resonance in modest-mass (M {sub disk} ≈ M {sub MMSN}, where MMSN is the {sup m}inimum-mass solar nebula{sup )} disks with viscous stress parameter α between 10{sup –3} andmore » 10{sup –2}. In disks with relatively low-mass (M {sub disk} ≲ M {sub MMSN}), Jupiter and Saturn get captured in 2:1 resonance and can even migrate outward in low-viscosity disks (α ≤ 10{sup –4}). Such disks have a very small aspect ratio (h ∼ 0.02-0.03) that favors outward migration after capture in 2:1 resonance, as confirmed by isothermal runs which resulted in a similar outcome for h ∼ 0.02 and α ≤ 10{sup –4}. We also performed N-body runs of the outer solar system starting from the results of our hydrodynamical simulations and including 2-3 ice giants. After dispersal of the gaseous disk, a Nice model instability starting with Jupiter and Saturn in 2:1 resonance results in good solar systems analogs. We conclude that in a cold solar nebula, the 2:1 resonance between Jupiter and Saturn can lead to outward migration of the system, and this may represent an alternative scenario for the evolution of the solar system.« less

  6. VLA Observations of the Disk around the Young Brown Dwarf 2MASS J044427+2512

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ricci, L.; Rome, H.; Pinilla, P.

    We present multi-wavelength radio observations obtained with the VLA of the protoplanetary disk surrounding the young brown dwarf 2MASS J04442713+2512164 (2M0444) in the Taurus star-forming region. 2M0444 is the brightest known brown dwarf disk at millimeter wavelengths, making this an ideal target to probe radio emission from a young brown dwarf. Thermal emission from dust in the disk is detected at 6.8 and 9.1 mm, whereas the 1.36 cm measured flux is dominated by ionized gas emission. We combine these data with previous observations at shorter sub-mm and mm wavelengths to test the predictions of dust evolution models in gas-richmore » disks after adapting their parameters to the case of 2M0444. These models show that the radial drift mechanism affecting solids in a gaseous environment has to be either completely made inefficient, or significantly slowed down by very strong gas pressure bumps in order to explain the presence of mm/cm-sized grains in the outer regions of the 2M0444 disk. We also discuss the possible mechanisms for the origin of the ionized gas emission detected at 1.36 cm. The inferred radio luminosity for this emission is in line with the relation between radio and bolometric luminosity valid for for more massive and luminous young stellar objects, and extrapolated down to the very low luminosity of the 2M0444 brown dwarf.« less

  7. Evolution of Warped Accretion Disks in Active Galactic Nuclei. I. Roles of Feeding at the Outer Boundaries

    NASA Astrophysics Data System (ADS)

    Li, Yan-Rong; Wang, Jian-Min; Cheng, Cheng; Qiu, Jie

    2013-02-01

    We investigate the alignment processes of spinning black holes and their surrounding warped accretion disks in a frame of two different types of feeding at the outer boundaries. We consider (1) fixed flows in which gas is continually fed with a preferred angular momentum, and (2) free flows in which there is no gas supply and the disks diffuse freely at their outer edges. As expected, we find that for the cases of fixed flows the black hole disk systems always align on timescales of several 106 yr, irrespective of the initial inclinations. If the initial inclination angles are larger than π/2, the black hole accretion transits from retrograde to prograde fashion, and the accreted mass onto the black holes during these two phases is comparable. On the other hand, for the cases of free flows, both alignments and anti-alignments can occur, depending on the initial inclinations and the ratios of the angular momentum of the disks to that of the black holes. In such cases, the disks will be consumed within timescales of 106 yr by black holes accreting at the Eddington limit. We propose that there is a close connection between the black hole spin and the lifetime for which the feeding persists, which determines the observable episodic lifetimes of active galactic nuclei. We conclude that careful inclusion of the disk feeding at the outer boundaries is crucial for modeling the evolution of the black hole spin.

  8. On the Outer Edges of Protoplanetary Dust Disks

    NASA Astrophysics Data System (ADS)

    Birnstiel, Tilman; Andrews, Sean M.

    2014-01-01

    The expectation that aerodynamic drag will force the solids in a gas-rich protoplanetary disk to spiral in toward the host star on short timescales is one of the fundamental problems in planet formation theory. The nominal efficiency of this radial drift process is in conflict with observations, suggesting that an empirical calibration of solid transport mechanisms in a disk is highly desirable. However, the fact that both radial drift and grain growth produce a similar particle size segregation in a disk (such that larger particles are preferentially concentrated closer to the star) makes it difficult to disentangle a clear signature of drift alone. We highlight a new approach, by showing that radial drift leaves a distinctive "fingerprint" in the dust surface density profile that is directly accessible to current observational facilities. Using an analytical framework for dust evolution, we demonstrate that the combined effects of drift and (viscous) gas drag naturally produce a sharp outer edge in the dust distribution (or, equivalently, a sharp decrease in the dust-to-gas mass ratio). This edge feature forms during the earliest phase in the evolution of disk solids, before grain growth in the outer disk has made much progress, and is preserved over longer timescales when both growth and transport effects are more substantial. The key features of these analytical models are reproduced in detailed numerical simulations, and are qualitatively consistent with recent millimeter-wave observations that find gas/dust size discrepancies and steep declines in dust continuum emission in the outer regions of protoplanetary disks.

  9. THE SPITZER c2d SURVEY OF WEAK-LINE T TAURI STARS. III. THE TRANSITION FROM PRIMORDIAL DISKS TO DEBRIS DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wahhaj, Zahed; Cieza, Lucas; Koerner, David W.

    2010-12-01

    We present 3.6 to 70 {mu}m Spitzer photometry of 154 weak-line T Tauri stars (WTTSs) in the Chamaeleon, Lupus, Ophiuchus, and Taurus star formation regions, all of which are within 200 pc of the Sun. For a comparative study, we also include 33 classical T Tauri stars which are located in the same star-forming regions. Spitzer sensitivities allow us to robustly detect the photosphere in the IRAC bands (3.6 to 8 {mu}m) and the 24 {mu}m MIPS band. In the 70 {mu}m MIPS band, we are able to detect dust emission brighter than roughly 40 times the photosphere. These observationsmore » represent the most sensitive WTTSs survey in the mid- to far-infrared to date and reveal the frequency of outer disks (r = 3-50 AU) around WTTSs. The 70 {mu}m photometry for half the c2d WTTSs sample (the on-cloud objects), which were not included in the earlier papers in this series, those of Padgett et al. and Cieza et al., are presented here for the first time. We find a disk frequency of 19% for on-cloud WTTSs, but just 5% for off-cloud WTTSs, similar to the value reported in the earlier works. WTTSs exhibit spectral energy distributions that are quite diverse, spanning the range from optically thick to optically thin disks. Most disks become more tenuous than L{sub disk}/L{sub *} = 2 x 10{sup -3} in 2 Myr and more tenuous than L{sub disk}/L{sub *} = 5 x 10{sup -4} in 4 Myr.« less

  10. A Radial Age Gradient in the Geometrically Thick Disk of the Milky Way

    NASA Astrophysics Data System (ADS)

    Martig, Marie; Minchev, Ivan; Ness, Melissa; Fouesneau, Morgan; Rix, Hans-Walter

    2016-11-01

    In the Milky Way, the thick disk can be defined using individual stellar abundances, kinematics, or age, or geometrically, as stars high above the midplane. In nearby galaxies, where only a geometric definition can be used, thick disks appear to have large radial scale lengths, and their red colors suggest that they are uniformly old. The Milky Way’s geometrically thick disk is also radially extended, but it is far from chemically uniform: α-enhanced stars are confined within the inner Galaxy. In simulated galaxies, where old stars are centrally concentrated, geometrically thick disks are radially extended, too. Younger stellar populations flare in the simulated disks’ outer regions, bringing those stars high above the midplane. The resulting geometrically thick disks therefore show a radial age gradient, from old in their central regions to younger in their outskirts. Based on our age estimates for a large sample of giant stars in the APOGEE survey, we can now test this scenario for the Milky Way. We find that the geometrically defined thick disk in the Milky Way has indeed a strong radial age gradient: the median age for red clump stars goes from ∼9 Gyr in the inner disk to 5 Gyr in the outer disk. We propose that at least some nearby galaxies could also have thick disks that are not uniformly old, and that geometrically thick disks might be complex structures resulting from different formation mechanisms in their inner and outer parts.

  11. A Study on the Characteristics of the Structure of Vega's Debris Disk

    NASA Astrophysics Data System (ADS)

    Lu, Tao; Ji, Jiang-hui

    2013-10-01

    The clumpy structure in the Vega's debris disk was reported at millimeter wavelengths previously, and attributed to the concentration of dust grains trapped in resonances with a potential high-eccentricity planet. However, current imaging at multi-wavelengths with higher sensitivity indicates that the Vega's debris disk has a smooth structure. But a planet orbiting Vega could not be neglected, and the present-day observations may place a severe constraint on the orbital parameters for the potential planet. Herein, we utilize the modi- fied MERCURY codes to numerically simulate the Vega system, which consists of a debris disk and a planet. In our simulations, the initial inner and outer boundaries of the debris disk are assumed to be 80 AU and 120 AU, respectively. The dust grains in the disk have the sizes from 10 μm to 100 μm, and the nearly coplanar orbits. From the outcomes, we show that the evolution of debris disk is consistent with recent observations, if there is no planet orbiting Vega. However, if Vega owns a planet with a high eccentricity (e.g., e = 0.6), the planet's semi- major axis cannot be larger than 60 AU, otherwise, an aggregation phenomenon will occur in the debris disk due to the existence of the postulated planet. In addition, the 2:1 mean motion resonances may play a significant role in forming the structure of debris disk.

  12. Clumps in the outer disk by disk instability: Why they are initially gas giants and the legacy of disruption

    NASA Astrophysics Data System (ADS)

    Boley, Aaron C.; Hayfield, Tristen; Mayer, Lucio; Durisen, Richard H.

    2010-06-01

    We explore the initial conditions for fragments in the extended regions (r≳50AU) of gravitationally unstable disks. We combine analytic estimates for the fragmentation of spiral arms with 3D SPH simulations to show that initial fragment masses are in the gas giant regime. These initial fragments will have substantial angular momentum, and should form disks with radii of a few AU. We show that clumps will survive for multiple orbits before they undergo a second, rapid collapse due to H 2 dissociation and that it is possible to destroy bound clumps by transporting them into the inner disk. The consequences of disrupted clumps for planet formation, dust processing, and disk evolution are discussed. We argue that it is possible to produce Earth-mass cores in the outer disk during the earliest phases of disk evolution.

  13. GASP. IV. A Muse View of Extreme Ram-pressure-stripping in the Plane of the Sky: The Case of Jellyfish Galaxy JO204

    NASA Astrophysics Data System (ADS)

    Gullieuszik, Marco; Poggianti, Bianca M.; Moretti, Alessia; Fritz, Jacopo; Jaffé, Yara L.; Hau, George; Bischko, Jan C.; Bellhouse, Callum; Bettoni, Daniela; Fasano, Giovanni; Vulcani, Benedetta; D’Onofrio, Mauro; Biviano, Andrea

    2017-09-01

    In the context of the GAs Stripping Phenomena in galaxies with Muse (GASP) survey, we present the characterization of JO204, a jellyfish galaxy in A957, a relatively low-mass cluster with M=4.4× {10}14 {M}ȯ . This galaxy shows a tail of ionized gas that extends up to 30 kpc from the main body in the opposite direction of the cluster center. No gas emission is detected in the galaxy outer disk, suggesting that gas-stripping is proceeding outside-in. The stellar component is distributed as a regular disk galaxy; the stellar kinematics shows a symmetric rotation curve with a maximum radial velocity of 200 km s‑1 out to 20 kpc from the galaxy center. The radial velocity of the gas component in the central part of the disk follows the distribution of the stellar component; the gas kinematics in the tail retains the rotation of the galaxy disk, indicating that JO204 is moving at high speed in the intracluster medium. Both the emission and radial-velocity maps of the gas and stellar components indicate ram-pressure as the most likely primary mechanism for gas-stripping, as expected given that JO204 is close to the cluster center and it is likely at the first infall in the cluster. The spatially resolved star formation history of JO204 provides evidence that the onset of ram-pressure-stripping occurred in the last 500 Myr, quenching the star formation activity in the outer disk, where the gas has been already completely stripped. Our conclusions are supported by a set of hydrodynamic simulations.

  14. Unraveling the Helix Nebula: Its Structure and Knots

    NASA Astrophysics Data System (ADS)

    O'Dell, C. R.; McCullough, Peter R.; Meixner, Margaret

    2004-11-01

    Through Hubble Space Telescope (HST) imaging of the inner part of the main ring of the Helix Nebula, together with CTIO 4 m images of the fainter outer parts, we have a view of unprecedented quality of the nearest bright planetary nebula. These images have allowed us to determine that the main ring of the nebula is composed of an inner disk of about 499" diameter (0.52 pc) surrounded by an outer ring (in reality a torus) of 742" diameter (0.77 pc) whose plane is highly inclined to the plane of the disk. This outer ring is surrounded by an outermost ring of 1500" (1.76 pc) diameter, which is flattened on the side colliding with the ambient interstellar medium. The inner disk has an extended distribution of low-density gas along its rotational axis of symmetry, and the disk is optically thick to ionizing radiation, as is the outer ring. Published radial velocities of the knots provide support for the two-component structure of the main ring of the nebula and for the idea that the knots found there are expanding along with the nebular material from which they recently originated. These velocities indicate a spatial expansion velocity of the inner disk of 40 and 32 km s-1 for the outer ring, which yields expansion ages of 6560 and 12,100 yr, respectively. The outermost ring may be partially ionized through scattered recombination continuum from the inner parts of the nebula, but shocks certainly are occurring in it. This outermost ring probably represents a third period of mass loss by the central star. There is one compact, outer object that is unexplained, showing shock structures indicating a different orientation of the gas flow from that of the nebula. There is a change in the morphology of the knots as a function of the distance from the local ionization front. This supports a scenario in which the knots are formed in or near the ionization front and are then sculpted by the stellar radiation from the central star as the ionization front advances beyond them. Based in part on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Based in part on observations obtained at the Cerro Tololo Inter-American Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a Cooperative Agreement with the National Science Foundation.

  15. Galactic disk dynamical tracers: Open clusters and the local Milky Way rotation curve and velocity field

    NASA Astrophysics Data System (ADS)

    Frinchaboy, Peter Michael, III

    Establishing the rotation curve of the Milky Way is one of the fundamental contributions needed to understand the Galaxy and its mass distribution. We have undertaken a systematic spectroscopic survey of open star clusters which can serve as tracers of Galactic disk dynamics. We report on our initial sample of 67 clusters for which the Hydra multi-fiber spectrographs on the WIYN and Blanco telescopes have delivered ~1-2 km s -1 radial velocities (RVs) of many dozens of stars in the fields of each cluster, which are used to derive cluster membership and bulk cluster kinematics when combined with Tycho-2 proper motions. The clusters selected for study have a broad spatial distribution in order to be sensitive to the disk velocity field in all Galactic quadrants and across a Galactocentric radius range as much as 3.0 kpc from the solar circle. Through analysis of the cluster sample, we find (1) the rotation velocity of the Local Standard of Rest (LSR) is [Special characters omitted.] km s -1 , (2 ) the local rotation curve is declining with radius having a slope of -9.1 km s -1 kpc -1 , (3) we find (using R 0 = 8.5 kpc) the following Galactic parameters: A = 17.0 km s -1 kpc -1 and B = -8.9 km s -1 kpc -1 , which using a flat rotation curve and our determined values for the rotation velocity of the LSR yields a Galaxy mass within 1.5 R 0 of M = 1.4 ± 0.2 × 10 11 [Spe cial characters omitted.] and a M/L of 9 [Special characters omitted.] . We also explore the distribution of the local velocity field and find evidence for non- circular motion due to the spiral arms. Additionally, a number of outer disk ( R gc > 12 kpc) open clusters, including Be29 and Sa1, are studied that have potentially critical leverage on radial, age and metallicity gradients in the outer Galactic disk. We find that the measured kinematics of Sa1 and Be29 are consistent with being associated with the Galactic anticenter stellar structure (GASS; or Monoceros stream), which points to a possible "accretion" origin for these and possibly other outer disk open clusters, if one believes that GASS represents an accreting dwarf galaxy system.

  16. Dielectric supported radio-frequency cavities

    DOEpatents

    Yu, David U. L.; Lee, Terry G.

    2000-01-01

    A device which improves the electrical and thermomechanical performance of an RF cavity, for example, in a disk-loaded accelerating structure. A washer made of polycrystalline diamond is brazed in the middle to a copper disk washer and at the outer edge to the plane wave transformer tank wall, thus dissipating heat from the copper disk to the outer tank wall while at the same time providing strong mechanical support to the metal disk. The washer structure eliminates the longitudinal connecting rods and cooling channels used in the currently available cavities, and as a result minimizes problems such as shunt impedance degradation and field distortion in the plane wave transformer, and mechanical deflection and uneven cooling of the disk assembly.

  17. Radial decoupling of small and large dust grains in the transitional disk RX J1615.3-3255

    NASA Astrophysics Data System (ADS)

    Kooistra, Robin; Kamp, Inga; Fukagawa, Misato; Ménard, François; Momose, Munetake; Tsukagoshi, Takashi; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Hashimoto, Jun; Abe, Lyu; Brandner, Wolfgang; Brandt, Timothy D.; Carson, Joseph C.; Egner, Sebastian E.; Feldt, Markus; Goto, Miwa; Grady, Carol A.; Guyon, Olivier; Hayano, Yutaka; Hayashi, Masahiko; Hayashi, Saeko S.; Henning, Thomas; Hodapp, Klaus W.; Ishii, Miki; Iye, Masanori; Janson, Markus; Kandori, Ryo; Knapp, Gillian R.; Kuzuhara, Masayuki; Kwon, Jungmi; Matsuo, Taro; McElwain, Michael W.; Miyama, Shoken; Morino, Jun-Ichi; Moro-Martin, Amaya; Nishimura, Tetsuo; Pyo, Tae-Soo; Serabyn, Eugene; Suenaga, Takuya; Suto, Hiroshi; Suzuki, Ryuji; Takahashi, Yasuhiro H.; Takami, Michihiro; Takato, Naruhisa; Terada, Hiroshi; Thalmann, Christian; Tomono, Daigo; Turner, Edwin L.; Watanabe, Makoto; Wisniewski, John; Yamada, Toru; Takami, Hideki; Usuda, Tomonori; Tamura, Motohide; Currie, Thayne; Akiyama, Eiji; Mayama, Satoshi; Follette, Katherine B.; Nakagawa, Takao

    2017-01-01

    We present H-band (1.6 μm) scattered light observations of the transitional disk RX J1615.3-3255, located in the 1 Myr old Lupus association. From a polarized intensity image, taken with the HiCIAO instrument of the Subaru Telescope, we deduce the position angle and the inclination angle of the disk. The disk is found to extend out to 68 ± 12 AU in scattered light and no clear structure is observed. Our inner working angle of 24 AU does not allow us to detect a central decrease in intensity similar to that seen at 30 AU in the 880 μm continuum observations. We compare the observations with multiple disk models based on the spectral energy distribution (SED) and submm interferometry and find that an inner rim of the outer disk at 30 AU containing small silicate grains produces a polarized intensity signal which is an order of magnitude larger than observed. We show that a model in which the small dust grains extend smoothly into the cavity found for large grains is closer to the actual H-band observations. A comparison of models with different dust size distributions suggests that the dust in the disk might have undergone significant processing compared to the interstellar medium.

  18. RESOLVING THE PLANET-HOSTING INNER REGIONS OF THE LkCa 15 DISK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thalmann, C.; Garufi, A.; Quanz, S. P.

    2016-09-10

    LkCa 15 hosts a pre-transitional disk as well as at least one accreting protoplanet orbiting in its gap. Previous disk observations have focused mainly on the outer disk, which is cleared inward of ∼50 au. The planet candidates, on the other hand, reside at orbital radii around 15 au, where disk observations have been unreliable until recently. Here, we present new J -band imaging polarimetry of LkCa 15 with SPHERE IRDIS, yielding the most accurate and detailed scattered-light images of the disk to date down to the planet-hosting inner regions. We find what appear to be persistent asymmetric structures inmore » the scattering material at the location of the planet candidates, which could be responsible at least for parts of the signals measured with sparse-aperture masking. These images further allow us to trace the gap edge in scattered light at all position angles and search the inner and outer disks for morphological substructure. The outer disk appears smooth with slight azimuthal variations in polarized surface brightness, which may be due to shadowing from the inner disk or a two-peaked polarized phase function. We find that the near-side gap edge revealed by polarimetry matches the sharp crescent seen in previous ADI imaging very well. Finally, the ratio of polarized disk to stellar flux is more than six times larger in the J -band than in the RI bands.« less

  19. On the Possibility of Enrichment and Differentiation in Gas Giants During Birth by Disk Instability

    NASA Astrophysics Data System (ADS)

    Boley, Aaron C.; Durisen, Richard H.

    2010-11-01

    We investigate the coupling between rock-size solids and gas during the formation of gas giant planets by disk fragmentation in the outer regions of massive disks. In this study, we use three-dimensional radiative hydrodynamic simulations and model solids as a spatial distribution of particles. We assume that half of the total solid fraction is in small grains and half in large solids. The former are perfectly entrained with the gas and set the opacity in the disk, while the latter are allowed to respond to gas drag forces, with the back reaction on the gas taken into account. To explore the maximum effects of gas-solid interactions, we first consider 10 cm size particles. We then compare these results to a simulation with 1 km size particles, which explores the low-drag regime. We show that (1) disk instability planets have the potential to form large cores due to aerodynamic capturing of rock-size solids in spiral arms before fragmentation; (2) temporary clumps can concentrate tens of M ⊕ of solids in very localized regions before clump disruption; (3) the formation of permanent clumps, even in the outer disk, is dependent on the grain-size distribution, i.e., the opacity; (4) nonaxisymmetric structure in the disk can create disk regions that have a solids-to-gas ratio greater than unity; (5) the solid distribution may affect the fragmentation process; (6) proto-gas giants and proto-brown dwarfs can start as differentiated objects prior to the H2 collapse phase; (7) spiral arms in a gravitationally unstable disk are able to stop the inward drift of rock-size solids, even redistributing them to larger radii; and (8) large solids can form spiral arms that are offset from the gaseous spiral arms. We conclude that planet embryo formation can be strongly affected by the growth of solids during the earliest stages of disk accretion.

  20. Spreading dynamics of superposed liquid drops on a spinning disk

    NASA Astrophysics Data System (ADS)

    Sahoo, Subhadarshinee; Orpe, Ashish V.; Doshi, Pankaj

    2018-01-01

    We have experimentally studied simultaneous spreading of superposed drops of two Newtonian liquids on top of a horizontal spinning disk using the flow visualization technique. An inner drop of high surface tension liquid is placed centrally on the disk followed by a drop of outer liquid (lower surface tension) placed exactly above that. The disk is then rotated at a desired speed for a range of volume ratios of two liquids. Such an arrangement of two superposed liquid drops does not affect the spreading behavior of the outer liquid but influences that of the inner liquid significantly. The drop spreads to a larger extent and breaks into more fingers (Nf) as compared to the case where the same liquid is spreading in the absence of outer liquid. The experimentally observed number of fingers is compared with the prediction using available theory for single liquid. It is found that the theory over-predicts the value of Nf for the inner liquid while it is covered by an outer liquid. We provide a theoretical justification for this observation using linear stability analysis. Our analysis demonstrates that for small but finite surface tension ratio of the two liquids, the presence of the outer interface reduces the value of the most unstable wave number which is equivalent to the decrease in the number of fingers observed experimentally. Finally, sustained rotation of the disk leads to the formation of droplets at the tip of the fingers traveling outwards.

  1. A Study on the Characteristics of the Structure of Vega's Debris Disk

    NASA Astrophysics Data System (ADS)

    Lu, T.; Ji, J. H.

    2013-03-01

    Clumpy structure in the Vega's debris disk has been previously reported at millimeter wavelengths and attributed to the concentrations of dust grains trapped in resonances with a potential planet. However, current imaging at multi-wavelengths with higher sensitivity is against the former observed structure. The disk is now revealed to have a smooth structure. A planet orbiting Vega could not be neglected,but the present-day observations may place a severe constraint on the orbital parameters for the potential planet. Herein, we utilize modified MERCURY codes to numerically simulate Vega system, consisting of debris disk and a planet. In our simulations, the initial inner and outer boundaries of the debris disk are assumed to be 80~AU and 120~AU, respectively. The radius of dust grains distributes in the range from 10 μm to 100 μm, in nearly coplanar orbits. From the outcomes, we show that the evolution of debris disk is consistent with recent observations, if there is no planet orbiting Vega. However, if Vega owns a planet with a high eccentricity (e.g., e=0.6), the planetary semi-major axis cannot be larger than 60~AU, otherwise, the structure of debris disk will congregate due to the existence of the postulated planet. The 2:1 mean motion resonances may play a significant role in sculpting the debris disk.

  2. The Inner 25 au Debris Distribution in the ϵ Eri System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Kate Y. L.; Rieke, George H.; Ballering, Nicholas P.

    Debris disk morphology is wavelength dependent due to the wide range of particle sizes and size-dependent dynamics influenced by various forces. Resolved images of nearby debris disks reveal complex disk structures that are difficult to distinguish from their spectral energy distributions. Therefore, multi-wavelength resolved images of nearby debris systems provide an essential foundation to understand the intricate interplay between collisional, gravitational, and radiative forces that govern debris disk structures. We present the Stratospheric Observatory for Infrared Astronomy (SOFIA) 35 μ m resolved disk image of ϵ Eri, the closest debris disk around a star similar to the early Sun. Combiningmore » with the Spitzer resolved image at 24 μ m and 15–38 μ m excess spectrum, we examine two proposed origins of the inner debris in ϵ Eri: (1) in situ planetesimal belt(s) and (2) dragged-in grains from the cold outer belt. We find that the presence of in situ dust-producing planetesmial belt(s) is the most likely source of the excess emission in the inner 25 au region. Although a small amount of dragged-in grains from the cold belt could contribute to the excess emission in the inner region, the resolution of the SOFIA data is high enough to rule out the possibility that the entire inner warm excess results from dragged-in grains, but not enough to distinguish one broad inner disk from two narrow belts.« less

  3. RESONANT CLUMPING AND SUBSTRUCTURE IN GALACTIC DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molloy, Matthew; Smith, Martin C.; Shen, Juntai

    2015-05-10

    We describe a method to extract resonant orbits from N-body simulations, exploiting the fact that they close in frames rotating with a constant pattern speed. Our method is applied to the N-body simulation of the Milky Way by Shen et al. This simulation hosts a massive bar, which drives strong resonances and persistent angular momentum exchange. Resonant orbits are found throughout the disk, both close to the bar and out to the very edges of the disk. Using Fourier spectrograms, we demonstrate that the bar is driving kinematic substructure even in the very outer parts of the disk. We identifymore » two major orbit families in the outskirts of the disk, one of which makes significant contributions to the kinematic landscape, namely, the m:l = 3:−2 family, resonating with the bar. A mechanism is described that produces bimodal distributions of Galactocentric radial velocities at selected azimuths in the outer disk. It occurs as a result of the temporal coherence of particles on the 3:−2 resonant orbits, which causes them to arrive simultaneously at pericenter or apocenter. This resonant clumping, due to the in-phase motion of the particles through their epicycle, leads to both inward and outward moving groups that belong to the same orbital family and consequently produce bimodal radial velocity distributions. This is a possible explanation of the bimodal velocity distributions observed toward the Galactic anticenter by Liu et al. Another consequence is that transient overdensities appear and dissipate (in a symmetric fashion), resulting in a periodic pulsing of the disk’s surface density.« less

  4. HST and Adaptive Optics Imaging of the Edge-on Circumtertiary Disk in the Young Triple System HV Tauri

    NASA Astrophysics Data System (ADS)

    Stapelfeldt, K. R.; Menard, F.; Brandner, W.; Padgett, D. L.; Krist, J. E.; Watson, A. M.

    2000-12-01

    Hubble Space Telescope images of the HV Tauri triple system show that HV Tau C appears as a compact bipolar nebula at visual wavelengths. Near-infrared adaptive optics observations made at the Canada France Hawaii Telescope show a similar morphology, and no directly visible star at wavelengths less than 2 microns. These results confirm the conclusions of Monin & Bouvier 2000, namely that HV Tau C is an optically thick circumstellar disk seen close to edge-on. The images are compared to scattered light models for circumstellar disks. We find that the HV Tau C disk has an outer radius of 85 AU, inclination of about 6 deg, gaussian scale height of 15 AU at its outer radius, and is flared. The thickness of the dark lane indicates a total disk mass about half that of Jupiter. There is clear evidence for declining dust opacity toward longer wavelengths, as the dust lane thickness shrinks by 30 between 0.8 and 2.2 microns; the trend is consistent with interstellar dust grains. Tidal truncation of the disk outer radius may have occurred in this system.

  5. The SEEDS of Planet Formation: Observations of Transitional Disks

    NASA Technical Reports Server (NTRS)

    Grady, Carol A.

    2011-01-01

    As part of its 5-year study, the Strategic Exploration of Exoplanets and Disk Systems (SEEDS) has already observed a number of YSOs with circumstellar disks, including 13 0.5-8 Myr old A-M stars with indications that they host wide gaps or central cavities in their circumstellar disks in millimeter or far-IR observations, or from deficits in warm dust thermal emission. For 8 of the disks, the 0.15" inner working angle of HiCIAO+A0188 samples material in the millimeter or mid-IR identified cavity. In one case we report detection of a previously unrecognized wide gap. For the remaining 4 stars, the SEEDS data sample the outer disk: in 3 cases, we present the first NIR imagery of the disks. The data for the youngest sample members 1-2 Myr) closely resemble coeval primordial disks. After approximately 3 Myr, the transitional disks show a wealth of structure including spiral features, rings, divots, and in some cases, largely cleared gaps in the disks which are not seen in coeval primordial disks. Some of these structural features are predicted consequences of Jovian-mass planets having formed in the disk, while others are novel features. We discuss the implications for massive planet formation timescales and mechanisms.

  6. The SEEDS of Planet Formation: Observations of Transitional Disks

    NASA Technical Reports Server (NTRS)

    Grady, Carol

    2011-01-01

    As part of its 5-year study, the Strategic Exploration of Exoplanets and Disk Systems (SEEDS) has already observed a number of YSOs with circumstellar disks, including 13 0.5- 8 Myr old A-M stars with indications that they host wide gaps or central cavities in their circumstellar disks in millimeter or far-IR observations, or from deficits in warm dust thermal emission. For 8 of the disks, the 0.15" inner working angle of HiCIAO+A0188 samples material in the millimeter or mid-IR identified cavity. In one case we reprt detection of a previously unrecognized wide gap. For the remaining 4 stars, the SEEDS data sample the outer disk: in 3 cases, we present the first NIR imagery of the disks. The data for the youngest sample members (less than 1-2 Myr) closely resemble coeval primordial disks. After approximately 3 Myr, the transitional disks show a wealth of structure including spiral features, rings, divots, and in some cases, largely cleared gaps in the disks which are not seen in coeval primordial disks. Some of these structural features are predicted consequences of lovianmass planets having formed in the disk, while others are novel features. We discuss the implications for massive planet formation timescales and mechanisms.

  7. The twofold debris disk around HD 113766 A. Warm and cold dust as seen with VLTI/MIDI and Herschel/PACS

    NASA Astrophysics Data System (ADS)

    Olofsson, J.; Henning, Th.; Nielbock, M.; Augereau, J.-C.; Juhàsz, A.; Oliveira, I.; Absil, O.; Tamanai, A.

    2013-03-01

    Context. Warm debris disks are a sub-sample of the large population of debris disks, and display excess emission in the mid-infrared. Around solar-type stars, very few objects (~2% of all debris disks) show emission features in mid-IR spectroscopic observations that are attributed to small, warm silicate dust grains. The origin of this warm dust could be explained either by a recent catastrophic collision between several bodies or by transport from an outer belt similar to the Kuiper belt in the solar system. Aims: We present and analyze new far-IR Herschel/PACS photometric observations, supplemented by new and archival ground-based data in the mid-IR (VLTI/MIDI and VLT/VISIR), for one of these rare systems: the 10-16 Myr old debris disk around HD 113766 A. We improve an existing model to account for these new observations. Methods: We implemented the contribution of an outer planetesimal belt in the Debra code, and successfully used it to model the spectral energy distribution (SED) as well as complementary observations, notably MIDI data. We better constrain the spatial distribution of the dust and its composition. Results: We underline the limitations of SED modeling and the need for spatially resolved observations. We improve existing models and increase our understanding of the disk around HD 113766 A. We find that the system is best described by an inner disk located within the first AU, well constrained by the MIDI data, and an outer disk located between 9-13 AU. In the inner dust belt, our previous finding of Fe-rich crystalline olivine grains still holds. We do not observe time variability of the emission features over at least an eight-year time span in an environment subjected to strong radiation pressure. Conclusions: The time stability of the emission features indicates that μm-sized dust grains are constantly replenished from the same reservoir, with a possible depletion of sub- μm-sized grains. We suggest that the emission features may arise from multi-composition aggregates. We discuss possible scenarios concerning the origin of the warm dust observed around HD 113766 A. The compactness of the innermost regions as probed by the MIDI visibilities and the dust composition suggest that we are witnessing the results of (at least) one collision between partially differentiated bodies, in an environment possibly rendered unstable by terrestrial planetary formation. Based on Herschel observations, OBSIDs: 1342227026, 1342227027, 1342237934, and 1342237935. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA. Based on VISIR observations collected at the VLT (European Southern Observatory, Paranal, Chile) with program 089.C-0322(A).

  8. Modeling transiting circumstellar disks: characterizing the newly discovered eclipsing disk system OGLE LMC-ECL-11893

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, Erin L.; Mamajek, Eric E.; Pecaut, Mark J.

    2014-12-10

    We investigate the nature of the unusual eclipsing star OGLE LMC-ECL-11893 (OGLE J05172127-6900558) in the Large Magellanic Cloud recently reported by Dong et al. The eclipse period for this star is 468 days, and the eclipses exhibit a minimum of ∼1.4 mag, preceded by a plateau of ∼0.8 mag. Spectra and optical/IR photometry are consistent with the eclipsed star being a lightly reddened B9III star of inferred age ∼150 Myr and mass ∼4 M {sub ☉}. The disk appears to have an outer radius of ∼0.2 AU with predicted temperatures of ∼1100-1400 K. We model the eclipses as being duemore » to either a transiting geometrically thin dust disk or gaseous accretion disk around a secondary object; the debris disk produces a better fit. We speculate on the origin of such a dense circumstellar dust disk structure orbiting a relatively old low-mass companion, and on the similarities of this system to the previously discovered EE Cep.« less

  9. Multipass pumped Nd-based thin-disk lasers: continuous-wave laser operation at 1.06 and 0.9 {mu}m with intracavity frequency doubling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavel, Nicolaie; Luenstedt, Kai; Petermann, Klaus

    2007-12-01

    The laser performances of the 1.06 {mu}m 4F3/2 --> 4I11/2 four-level transition and of the 0.9 {mu}m 4F3/2 --> I9/24 quasi-three-level transition were investigated using multipass pumped Nd-based media in thin-disk geometry. When pumping at 0.81 {mu}m into the 4F5/2 level, continuous-wave laser operation was obtained with powers in excess of 10 W at 1.06 {mu}m, in the multiwatt region at 0.91 {mu}m in Nd:YVO4 and Nd:GdVO4, and at 0.95 {mu}m in Nd:YAG. Intracavity frequency-doubled Nd:YVO4 thin-disk lasers with output powers of 6.4 W at 532 nm and of 1.6 W at 457 nm were realized at this pumping wavelength.more » The pumping at 0.88 {mu}m, which is directed into the 4F3/2 emitting level, was also employed, and Nd:YVO4 and Nd:GdVO4 thin-disk lasers with {approx}9 W output power at 1.06 {mu}m and visible laser radiation at 0.53 {mu}m with output power in excess of 4 W were realized. Frequency-doubled Nd:vanadate thin-disk lasers with deep blue emission at 0.46 {mu}m were obtained under pumping directly into the 4F3/2 emitting level.« less

  10. EXTERNAL PHOTOEVAPORATION OF THE SOLAR NEBULA: JUPITER's NOBLE GAS ENRICHMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monga, Nikhil; Desch, Steven

    We present a model explaining the elemental enrichments in Jupiter's atmosphere, particularly the noble gases Ar, Kr, and Xe. While He, Ne, and O are depleted, seven other elements show similar enrichments (∼3 times solar, relative to H). Being volatile, Ar is difficult to fractionate from H{sub 2}. We argue that external photoevaporation by far-ultraviolet (FUV) radiation from nearby massive stars removed H{sub 2}, He, and Ne from the solar nebula, but Ar and other species were retained because photoevaporation occurred at large heliocentric distances where temperatures were cold enough (≲ 30 K) to trap them in amorphous water ice. Asmore » the solar nebula lost H, it became relatively and uniformly enriched in other species. Our model improves on the similar model of Guillot and Hueso. We recognize that cold temperatures alone do not trap volatiles; continuous water vapor production is also necessary. We demonstrate that FUV fluxes that photoevaporated the disk generated sufficient water vapor in regions ≲ 30 K to trap gas-phase species in amorphous water ice in solar proportions. We find more efficient chemical fractionation in the outer disk: whereas the model of Guillot and Hueso predicts a factor of three enrichment when only <2% of the disk mass remains, we find the same enrichments when 30% of the disk mass remains. Finally, we predict the presence of ∼0.1 M {sub ⊕} of water vapor in the outer solar nebula and protoplanetary disks in H II regions.« less

  11. Observational and research progress of the M51 galaxy

    NASA Astrophysics Data System (ADS)

    Chen, Zhu; Williams, Peter

    2006-12-01

    The M51 system consists of a grand-design spiral galaxy and a relatively large close companion, NGC 5195. Because M51 (=NGC 5194) is nearby and nearly face-on to us, its structure can be observed in great detail and with a minimum of obscuration from dust. As a result, this galaxy has been thoroughly observed at wavelengths from radio to X-ray. Due to the rich archive of observational data, its structure, dynamical process, star formation mechanism and some other important properties have been analyzed by many authors. In the center of M51, there is a Seyfert 2 or LINER type AGN which radius is 100 pc. The mass within 70 pc in the center is (4~7)×106 Msun, this indicates there may be a black hole there. The disk of M51 can be divided into two parts, the inner disk around the nucleus cuts off at 1350 pc, from this radius to 10 kpc is the outer disk. In contrast, the companion, NGC 5195 is small and faint, and heavy dust from the arm of M51 in the foreground obscures its optical radiation. M51 has many interesting properties different from other normal galaxies, such as the wide open spiral arm, the long HI tidal tail and the huge distorted gas ring around the outer disk, these may be related to the interaction effects. Actually, the dynamical modeling history of M51 is long, in the early stage of astronomical numerical simulation, Toomre & Toomre have given a simple simulation of M51 to study its tidal effect. In 1990, the discovery of M51's long HI tidal tail made the astrophysicists shift the preferred collision time of M51 and NGC 5195 to somewhat later times in order to give the tail more time to develop. More recently, Salo and Laurikainen suggested that a multiple-passage model might be more appropriate for the system, such a scenario appears to do a better job of explaining NGC 5194's HI velocity field, but the predicted structure of the HI tidal tail is more complex than its observation. In this paper, the authers review literature of multi-wavelength observations and recent research results of M51, discuss the improvements and drawbacks of its simulation results and also summarize the available observations of NGC 5195.

  12. Fall-Back Disks in Long and Short GRBS

    NASA Technical Reports Server (NTRS)

    Cannizo, John K.; Troja, E.; Gehrels, N.

    2011-01-01

    We present numerical time-dependent calculations for fall-back disks relevant for GRBs in which the disk of material surrounding the black hole (BH) powering the GRB jet modulates the mass flow, and hence the strength of the jet. Given the initial existence of a small mass appr oximately less than 10(exp -4) M(solar) near the progenitor with a circularization radius approximately 10(exp 10) - 10(exp 11) cm, an una voidable consequence will be the formation of an "external disk" whose outer edge continually moves to larger radii due to angular momentum transport and lack of a confining torque. For long GRBs, if the mass distribution in the initial fall-back disk traces the progenitor envelope, then a radius approximates 10(exp 11) cm gives a time scale app roximately 10(exp 4) s for the X-ray plateau. For late times t > 10(exp 7) s a steepening due to a cooling front in the disk may have obser vational support in GRB 060729. For short GRBs, one expects most of t he mass initially to lie at small radii < 10(exp 8) cm; however the presence of even a trace amount approximately 10(exp -9) M(solar) of hi gh angular material can give a brief plateau in the light curve.

  13. A Resolved Near-Infrared Image of the Inner Cavity in the GM Aur Transitional Disk

    NASA Technical Reports Server (NTRS)

    Oh, Daehyeon; Hashimoto, Jun; Carson, Joseph C.; Janson, Markus; Kwon, Jungmi; Nakagawa, Takao; Mayama, Satoshi; Uyama, Taichi; Grady, Carol A.; McElwain, Michael W.

    2016-01-01

    We present high-contrast H-band polarized intensity (PI) images of the transitional disk around the young solar like star GM Aur. The near-infrared direct imaging of the disk was derived by polarimetric differential imaging using the Subaru 8.2 m Telescope and HiCIAO. An angular resolution and an inner working angle of 0 07 and radius approximately 0 05, respectively, were obtained. We clearly resolved a large inner cavity, with a measured radius of 18+/ 2 au, which is smaller than that of a submillimeter interferometric image (28 au). This discrepancy in the cavity radii at near-infrared and submillimeter wavelengths may be caused by a 34M(sub Jup) planet about 20 au away from the star, near the edge of the cavity. The presence of a near-infrared inner cavity is a strong constraint on hypotheses for inner cavity formation in a transitional disk. A dust filtration mechanism has been proposed to explain the large cavity in the submillimeter image, but our results suggest that this mechanism must be combined with an additional process. We found that the PI slope of the outer disk is significantly different from the intensity slope obtained from HSTNICMOS, and this difference may indicate the grain growth process in the disk.

  14. Effect of External Photoevaporation on the Radial Transport of Volatiles and the Water Snowline in the Solar Nebula

    NASA Astrophysics Data System (ADS)

    Kalyaan, Anusha; Desch, Steven

    2017-01-01

    The Sun was likely born in a high mass star forming region [1]. Such a birth environment with a proximity to a nearby O or B star would photoevaporate the sun’s protoplanetary disk and cause an outward mass flow from the outer edge, as well as truncation of the disk, as seen in the Orion proplyds (although not as intensely)[2]. Photoevaporation likely explains the currently observed ~47 AU edge of the Kuiper Belt in our solar system [3], and more compellingly, the origin of certain short-lived radionuclides (such as Fe60), which cannot be successfully explained by a nebular origin [4][5]. Such a mass loss mechanism should affect the radial transport processes in the snowline region and along with temperature, has the potential to alter the location of the snowline.In this context, and in the light of recent ALMA observational results indicative of non-traditional behavior of snowlines and volatile transport in disks [6][7], this work studies what effect a photoevaporative mass loss from the outer disk may have on the volatile transport around the snowline region between ~1-10 AU in the disk. We build on the model of [8] and explore the effects of a steep photoevaporated non-uniform $\\alpha$ disk on radial transport of volatiles and small icy solids by incorporating the advection-diffusion equations as in [9] and condensation/evaporation of volatiles. We present results of these simulations, including volatile mass fluxes, ice/rock ratios, and snow line locations, in protoplanetary disks like the solar nebula.References: [1] Adams, F.C., 2010, ARAA 48,47 [2] Henney, W.J., & O’Dell, C.R., 1999, AJ, 118, 2350 [3] Trujillo,C.A. & Brown,M.E., 2001, ApJL,554,L95 [4] Hester, J.J., & Desch, S.J., 2005,ASPC, 341,107 [5] Wadhwa, M. et al. , 2007, Protostars & Planets V, 835 [5 [6] Cieza, L.A., et al., 2016, Nature,535,258 [7] Huang, J, et al. et al., 2016, ApJL, 823, L18 [8] Kalyaan, A., et al., 2015, ApJ, 815, 112 [9] Desch, S.J., et al., (in review).

  15. Internal position and limit sensor for free piston machines

    NASA Technical Reports Server (NTRS)

    Holliday, Ezekiel S. (Inventor); Wood, James Gary (Inventor)

    2012-01-01

    A sensor for sensing the position of a reciprocating free piston in a free piston Stirling machine. The sensor has a disk mounted to an end face of the power piston coaxially with its cylinder and reciprocating with the piston The disk includes a rim around its outer perimeter formed of an electrically conductive material A coil is wound coaxially with the cylinder, spaced outwardly from the outer perimeter of the disk and mounted in fixed position relative to the pressure vessel, preferably on the exterior of the pressure vessel wall.

  16. A radio frequency coaxial feedthrough

    DOEpatents

    Owens, T.L.

    1987-12-07

    An improved radio frequency coaxial transmission line vacuum feedthrough is provided based on the use of a half-wavelength annular dielectric pressure barrier disk, or multiple disks comprising an effective half wavelength structure to eliminate reflection from the barrier surfaces. Gas-tight seals are formed about the outer and inner diameter surfaces of the barrier disk using a sealing technique which generates radial forces sufficient to form seals by forcing the conductor walls against the surfaces of the barrier disks in a manner which does not deform the radii of the inner and outer conductors, thereby preventing enhancement of the electric field at the barrier faces which limits the voltage and power handling capabilities of a feedthrough.

  17. Radio frequency coaxial feedthrough

    DOEpatents

    Owens, Thomas L.

    1989-01-17

    An improved radio frequency coaxial transmission line vacuum feed-through provided based on the use of a half-wavelength annular dielectric pressure barrier disk, or multiple disks comprising an effective half wavelength structure to eliminate reflections from the barrier surfaces. Gas-tight seals are formed about the outer and inner diameter surfaces of the barrier disk using a sealing technique which generates radial forces sufficient to form seals by forcing the conductor walls against the surfaces of the barrier disks in a manner which does not deform the radii of the inner and outer conductors, thereby preventing enhancement of the electric field at the barrier faces which limits voltage and power handling capabilities of a feedthrough.

  18. Identification of transitional disks in Chamaeleon with Herschel

    NASA Astrophysics Data System (ADS)

    Ribas, Á.; Merín, B.; Bouy, H.; Alves de Oliveira, C.; Ardila, D. R.; Puga, E.; Kóspál, Á.; Spezzi, L.; Cox, N. L. J.; Prusti, T.; Pilbratt, G. L.; André, Ph.; Matrà, L.; Vavrek, R.

    2013-04-01

    Context. Transitional disks are circumstellar disks with inner holes that in some cases are produced by planets and/or substellar companions in these systems. For this reason, these disks are extremely important for the study of planetary system formation. Aims: The Herschel Space Observatory provides an unique opportunity for studying the outer regions of protoplanetary disks. In this work we update previous knowledge on the transitional disks in the Chamaeleon I and II regions with data from the Herschel Gould Belt Survey. Methods: We propose a new method for transitional disk classification based on the WISE 12 μm - PACS 70 μm color, together with inspection of the Herschel images. We applied this method to the population of Class II sources in the Chamaeleon region and studied the spectral energy distributions of the transitional disks in the sample. We also built the median spectral energy distribution of Class II objects in these regions for comparison with transitional disks. Results: The proposed method allows a clear separation of the known transitional disks from the Class II sources. We find six transitional disks, all previously known, and identify five objects previously thought to be transitional as possibly non-transitional. We find higher fluxes at the PACS wavelengths in the sample of transitional disks than those of Class II objects. Conclusions: We show the Herschel 70 μm band to be a robust and efficient tool for transitional disk identification. The sensitivity and spatial resolution of Herschel reveals a significant contamination level among the previously identified transitional disk candidates for the two regions, which calls for a revision of previous samples of transitional disks in other regions. The systematic excess found at the PACS bands could be either a result of the mechanism that produces the transitional phase, or an indication of different evolutionary paths for transitional disks and Class II sources. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Appendix A is available in electronic form at http://www.aanda.org

  19. Interaction of the stream from L 1 with the outer edge of the accretion disk in a cataclysmic variable

    NASA Astrophysics Data System (ADS)

    Kaigorodov, P. V.; Bisikalo, D. V.; Kurbatov, E. P.

    2017-08-01

    Vertical oscillations of the gas at the outer edge of the accretion disk in a semi-detached binary due to interaction with the stream of matter from the inner Lagrangian point L 1 are considered. Mixing of the matter from the stream from L 1 with matter of the disk halo results in the formation of a system of two diverging shocks and a contact discontinuity, or so-called "hot line". The passage of matter through the region of the hot line leads to an increase in its vertical velocity and a thickening of the disk at phases 0.7-0.8. Subsequently, the matter moving along the outer edge of the disk also experiences vertical oscillations, forming secondary maxima at phases 0.2-0.4. It is shown that, for systems with component mass ratios of 0.6, these oscillations will be amplified with each passage of the matter through the hotline zone, while the observations will be quenched in systems with component mass ratios 0.07 and 7. The most favorable conditions for the flow of matter from the stream through the edge of the disk arise for component mass ratios 0.62. A theoretical relation between the phases of disk thickenings and the component mass ratio of the system is derived.

  20. A 5 Micron of beta Pictoris B at a Sub-Jupiter Projected Separation: Evidence for a Misalignment Between the Planet and the Inner, Warped Disk

    NASA Technical Reports Server (NTRS)

    Currie, Thayne; Thalmann, Christian; Matsumura, Soko; Madhusudhan, Nikku; Burrows, Adam; Kuchner, Marc

    2011-01-01

    We present and analyze a new M' detection of the young exoplanet Beta Pictoris b from 2008 VLT/NaCo data at a separation of approx. = 4 AU and a high signal-to-noise rereduction of L' data taken in December 2Q09. Based on our orbital analysis, the planet's orbit is viewed almost perfectly edge-on (i approx. 89 degrees) and has a Saturn-like semimajor axis of 9.50AU(+3.93 AU)/-(1.7AU) . Intriguingly, the planet's orbit is aligned with the major axis of the outer disk (Omega approx.31 degrees) but probably misaligned with the warp/inclined disk at 80 AU often cited as a signpost for the planet's existence. Our results motivate new studies to clarify how Beta Pic b sculpts debris disk structures and whether a second planet is required to explain the warp/inclined disk

  1. A Distant Solar System Artist Concept

    NASA Image and Video Library

    2004-12-09

    This artist concept depicts a distant hypothetical solar system, similar in age to our own. Looking inward from the system outer fringes, a ring of dusty debris can be seen, and within it, planets circling a star the size of our Sun. This debris is all that remains of the planet-forming disk from which the planets evolved. Planets are formed when dusty material in a large disk surrounding a young star clumps together. Leftover material is eventually blown out by solar wind or pushed out by gravitational interactions with planets. Billions of years later, only an outer disk of debris remains. These outer debris disks are too faint to be imaged by visible-light telescopes. They are washed out by the glare of the Sun. However, NASA's Spitzer Space Telescope can detect their heat, or excess thermal emission, in infrared light. This allows astronomers to study the aftermath of planet building in distant solar systems like our own. http://photojournal.jpl.nasa.gov/catalog/PIA07096

  2. OUTER-DISK POPULATIONS IN NGC 7793: EVIDENCE FOR STELLAR RADIAL MIGRATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radburn-Smith, David J.; Dalcanton, Julianne J.; Roskar, Rok

    2012-07-10

    We analyzed the radial surface brightness profile of the spiral galaxy NGC 7793 using HST/ACS images from the GHOSTS survey and a new HST/WFC3 image across the disk break. We used the photometry of resolved stars to select distinct populations covering a wide range of stellar ages. We found breaks in the radial profiles of all stellar populations at 280'' ({approx}5.1 kpc). Beyond this disk break, the profiles become steeper for younger populations. This same trend is seen in numerical simulations where the outer disk is formed almost entirely by radial migration. We also found that the older stars ofmore » NGC 7793 extend significantly farther than the underlying H I disk. They are thus unlikely to have formed entirely at their current radii, unless the gas disk was substantially larger in the past. These observations thus provide evidence for substantial stellar radial migration in late-type disks.« less

  3. ALMA Observations of Elias 2–24: A Protoplanetary Disk with Multiple Gaps in the Ophiuchus Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Cieza, Lucas A.; Casassus, Simon; Pérez, Sebastian; Hales, Antonio; Cárcamo, Miguel; Ansdell, Megan; Avenhaus, Henning; Bayo, Amelia; Bertrang, Gesa H.-M.; Cánovas, Hector; Christiaens, Valentin; Dent, William; Ferrero, Gabriel; Gamen, Roberto; Olofsson, Johan; Orcajo, Santiago; Osses, Axel; Peña-Ramirez, Karla; Principe, David; Ruíz-Rodríguez, Dary; Schreiber, Matthias R.; van der Plas, Gerrit; Williams, Jonathan P.; Zurlo, Alice

    2017-12-01

    We present ALMA 1.3 mm continuum observations at 0\\buildrel{\\prime\\prime}\\over{.} 2 (25 au) resolution of Elias 2–24, one of the largest and brightest protoplanetary disks in the Ophiuchus Molecular Cloud, and we report the presence of three partially resolved concentric gaps located at ∼20, 52, and 87 au from the star. We perform radiative transfer modeling of the disk to constrain its surface density and temperature radial profile and place the disk structure in the context of mechanisms capable of forming narrow gaps such as condensation fronts and dynamical clearing by actively forming planets. In particular, we estimate the disk temperature at the locations of the gaps to be 23, 15, and 12 K (at 20, 52, and 87 au, respectively), very close to the expected snowlines of CO (23–28 K) and N2 (12–15 K). Similarly, by assuming that the widths of the gaps correspond to 4–8× the Hill radii of forming planets (as suggested by numerical simulations), we estimate planet masses in the range of 0.2{--}1.5 {M}{Jup}, 1.0{--}8.0 {M}{Jup}, and 0.02{--}0.15 {M}{Jup} for the inner, middle, and outer gap, respectively. Given the surface density profile of the disk, the amount of “missing mass” at the location of each one of these gaps (between 4 and 20 {M}{Jup}) is more than sufficient to account for the formation of such planets.

  4. NASA's Solar Eclipse Composite Image July 11, 2010

    NASA Image and Video Library

    2017-12-08

    Eclipse 2010 Composite A solar eclipse photo (gray and white) from the Williams College Expedition to Easter Island in the South Pacific (July 11, 2010) was embedded with an image of the Sun’s outer corona taken by the Large Angle Spectrometric Coronagraph (LASCO) on the SOHO spacecraft and shown in red false color. LASCO uses a disk to blot out the bright sun and the inner corona so that the faint outer corona can be monitored and studied. Further, the dark silhouette of the moon was covered with an image of the Sun taken in extreme ultraviolet light at about the same time by the Atmospheric Imaging Assembly on Solar Dynamics Observatory (SDO). The composite brings out the correlation of structures in the inner and outer corona. Credits: Williams College Eclipse Expedition -- Jay M. Pasachoff, Muzhou Lu, and Craig Malamut; SOHO’s LASCO image courtesy of NASA/ESA; solar disk image from NASA’s SDO; compositing by Steele Hill, NASA Goddard Space Flight Center. NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  5. Swivel Joint For Liquid Nitrogen

    NASA Technical Reports Server (NTRS)

    Milner, James F.

    1988-01-01

    Swivel joint allows liquid-nitrogen pipe to rotate through angle of 100 degree with respect to mating pipe. Functions without cracking hard foam insulation on lines. Pipe joint rotates on disks so mechanical stress not transmitted to thick insulation on pipes. Inner disks ride on fixed outer disks. Disks help to seal pressurized liquid nitrogen flowing through joint.

  6. Numerical Treatment of Thin Accretion Disk Dynamics around Rotating Black Holes

    NASA Astrophysics Data System (ADS)

    Yildiran, Deniz; Donmez, Orhan

    In the present study, we perform the numerical simulation of a relativistic thin accretion disk around the nonrotating and rapidly rotating black holes using the general relativistic hydrodynamic code with Kerr in Kerr-Schild coordinate that describes the central rotating black hole. Since the high energy X-rays are produced close to the event horizon resulting the black hole-disk interaction, this interaction should be modeled in the relativistic region. We have set up two different initial conditions depending on the values of thermodynamical variables around the black hole. In the first setup, the computational domain is filled with constant parameters without injecting gas from the outer boundary. In the second, the computational domain is filled with the matter which is then injected from the outer boundary. The matter is assumed to be at rest far from the black hole. Both cases are modeled over a wide range of initial parameters such as the black hole angular momentum, adiabatic index, Mach number and asymptotic velocity of the fluid. It has been found that initial values and setups play an important role in determining the types of the shock cone and in designating the events on the accretion disk. The continuing injection from the outer boundary presents a tail shock to the steady state accretion disk. The opening angle of shock cone grows as long as the rotation parameter becomes larger. A more compressible fluid (bigger adiabatic index) also presents a bigger opening angle, a spherical shock around the rotating black hole, and less accumulated gas in the computational domain. While results from [J. A. Font, J. M. A. Ibanez and P. Papadopoulos, Mon. Not. R. Astron. Soc. 305 (1999) 920] indicate that the tail shock is warped around for the rotating hole, our study shows that it is the case not only for the warped tail shock but also for the spherical and elliptical shocks around the rotating black hole. The warping around the rotating black hole in our case is much smaller than the one by [J. A. Font, J. M. A. Ibanez and P. Papadopoulos, Mon. Not. R. Astron. Soc. 305 (1999) 920], due to the representation of results at the different coordinates. Contrary to the nonrotating black hole, the tail shock is slightly warped around the rotating black hole. The filled computational domain without any injection leads to an unstable accretion disk. However much of it reaches a steady state for a short period of time and presents quasi-periodic oscillation (QPO). Furthermore, the disk tends to loose mass during the whole dynamical evolution. The time-variability of these types of accretion flowing close to the black hole may clarify the light curves in Sgr A*.

  7. Dual effect of local anesthetics on the function of excitable rod outer segment disk membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mashimo, T.; Abe, K.; Yoshiya, I.

    1986-04-01

    The effects of local anesthetics and a divalent cation, Ca2+, on the function of rhodopsin were estimated from the measurements of light-induced proton uptake. The light-induced proton uptake by rhodopsin in the rod outer segment disk membrane was enhanced at lower pH (4) but depressed at higher pHs (6 to 8) by the tertiary amine local anesthetics lidocaine, bupivacaine, tetracaine, and dibucaine. The order of local anesthetic-induced depression of the proton uptake followed that of their clinical anesthetic potencies. The depression of the proton uptake versus the concentration of the uncharged form of local anesthetic nearly describes the same curvemore » for small and large dose of added anesthetic. Furthermore, a neutral local anesthetic, benzocaine, depressed the proton uptake at all pHs between 4 and 7. These results indicate that the depression of the proton uptake is due to the effect of only the uncharged form. It is hypothesized that the uncharged form of local anesthetics interacts hydrophobically with the rhodopsin in the disk membrane. The dual effect of local anesthetics on the proton uptake, on the other hand, suggests that the activation of the function of rhodopsin may be caused by the charged form. There was no significant change in the light-induced proton uptake by rhodopsin when 1 mM of Ca2+ was introduced into the disk membrane at varying pHs in the absence or presence of local anesthetics. This fact indicates that Ca2+ ion does not influence the diprotonating process of metarhodopsin; neither does it interfere with the local anesthetic-induced changes in the rhodopsin molecule.« less

  8. RESOLVED CO GAS INTERIOR TO THE DUST RINGS OF THE HD 141569 DISK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flaherty, Kevin M.; Hughes, A. Meredith; Zachary, Julia

    2016-02-10

    The disk around HD 141569 is one of a handful of systems whose weak infrared emission is consistent with a debris disk, but still has a significant reservoir of gas. Here we report spatially resolved millimeter observations of the CO(3-2) and CO(1-0) emission as seen with the Submillimeter Array and CARMA. We find that the excitation temperature for CO is lower than expected from cospatial blackbody grains, similar to previous observations of analogous systems, and derive a gas mass that lies between that of gas-rich primordial disks and gas-poor debris disks. The data also indicate a large inner hole inmore » the CO gas distribution and an outer radius that lies interior to the outer scattered light rings. This spatial distribution, with the dust rings just outside the gaseous disk, is consistent with the expected interactions between gas and dust in an optically thin disk. This indicates that gas can have a significant effect on the location of the dust within debris disks.« less

  9. Evaporation of Accretion Disks around Black Holes: The Disk-Corona Transition and the Connection to the Advection-dominated Accretion Flow.

    PubMed

    Liu; Yuan; Meyer; Meyer-Hofmeister; Xie

    1999-12-10

    We apply the disk-corona evaporation model (Meyer & Meyer-Hofmeister) originally derived for dwarf novae to black hole systems. This model describes the transition of a thin cool outer disk to a hot coronal flow. The mass accretion rate determines the location of this transition. For a number of well-studied black hole binaries, we take the mass flow rates derived from a fit of the advection-dominated accretion flow (ADAF) model to the observed spectra (for a review, see Narayan, Mahadevan, & Quataert) and determine where the transition of accretion via a cool disk to a coronal flow/ADAF would be located for these rates. We compare this with the observed location of the inner disk edge, as estimated from the maximum velocity of the Halpha emission line. We find that the transition caused by evaporation agrees with this determination in stellar disks. We also show that the ADAF and the "thin outer disk + corona" are compatible in terms of the physics in the transition region.

  10. [CII] emission from NGC 4258 with SOFIA/FIFI-LS

    NASA Astrophysics Data System (ADS)

    Fadda, Dario; Appleton, Philip N.; Diaz Santos, Tanio; Togi, Aditya; Ogle, Patrick

    2018-06-01

    We present the [CII]157.7μm map of the NGC 4258 (M106) galaxy obtained with the FIFI-LS spectrometer onboard SOFIA.M106 contains an active nucleus classified as type 1.9 Seyfert with a warped inner rotating disk of water-vapor masers which allowed for the first high accuracy measurements of the mass of a supermassive black hole in any galaxy. A relativistic jet is thought to be responsible for anomalous radio-continuum spiral arms, which appear several kpc from the center, and extend outwards through the outer disk. These arms do not correlate with the galaxy's underlying stellar spiral structure, and their presence suggest that in the past, the jet has strongly interacted with the galaxy's outer disk , exciting synchrotron radiation. Since that time, a new burst of activity seems to have occurred, creating a compact jet at the core of the galaxy, and two radio hotspots further out associated with optical "bow-shocks". The position angle of this new "active" jet is different from that needed to excited the outer radio arms, presumably because the jet has precessed, perhaps as a result of precession of the axis of the inner warped accretion disk.Our observations reveal three main sources of [CII] emission: two associated with large regions of gas at the ends of the active jet, and a third minor axis filament associated with linear clumps of star formation and dust seen in HST images offset from the nucleus. We combine the SOFIA observations with previous Spitzer mid-IR, Chandra X-ray and VLA radio observations to explore the nature of the detected [CII] emission. In regions along the northern active jet, we see a significant deficiency in the [CII]/FIR ratio, and higher ratios near the ends of the jet. This implies that the jet has changed the conditions of the gas along its length. In several places near the jet, the [CII] emission shows very broad lines, suggestive of enhanced turbulence. Additionally, the minor-axis filament we discovered may represent gas in-falling towards the nucleus perpendicular to the jet. The results provide clues about how radio jets in active galaxies can influence the star formation properties of their host galaxies.

  11. Design, simulation and testing of a novel radial multi-pole multi-layer magnetorheological brake

    NASA Astrophysics Data System (ADS)

    Wu, Jie; Li, Hua; Jiang, Xuezheng; Yao, Jin

    2018-02-01

    This paper deals with design, simulation and experimental testing of a novel radial multi-pole multi-layer magnetorheological (MR) brake. This MR brake has an innovative structural design with superposition principle of two magnetic fields generated by the inner coils and the outer coils. The MR brake has several media layers of magnetorheological (MR) fluid located between the inner coils and the outer coils, and it can provide higher torque and higher torque density than conventional single-disk or multi-disk or multi-pole single-layer MR brakes can. In this paper, a brief introduction to the structure of the proposed MR brake was given first. Then, theoretical analysis of the magnetic circuit and the braking torque was conducted. In addition, a 3D electromagnetic model of the MR brake was developed to simulate and examine the magnetic flux intensity and corresponding braking torque. A prototype of the brake was fabricated and several tests were carried out to validate its torque capacity. The results show that the proposed MR brake can produce a maximum braking torque of 133 N m and achieve a high torque density of 25.0 kN m-2, a high torque range of 42 and a high torque-to-power ratio of 0.95 N m W-1.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, K. H.; Watson, Dan M.; Manoj, P.

    We present 5-40 {mu}m Spitzer Infrared Spectrograph spectra of a collection of transitional disks, objects for which the spectral energy distribution (SED) indicates central clearings (holes) or gaps in the dust distribution, in the Chamaeleon I star-forming region. Like their counterparts in the Taurus-Auriga star-forming region that we have previously observed, the spectra of these young objects (1-3 Myr old) reveal that the central clearings or gaps are very sharp-edged, and are surrounded by optically thick dusty disks similar to those around other classical T Tauri stars in the Chamaeleon I association. Also like the Taurus transitional disks, the Chamaeleonmore » I transitional disks have extremely large depletion factors for small dust grains in their gaps, compared to the full accretion disks whose SEDs are represented by the median SED of Class II objects in the region. We find that the fraction of transitional disks in the Chamaeleon I cloud is somewhat higher than that in the Taurus-Auriga cloud, possibly indicating that the frequency of transitional disks, on average, increases with cluster age. We also find a significant correlation between the stellar mass and the radius of the outer edge of the gap. We discuss the disk structures implied by the spectra and the constraints they place on gap-formation mechanisms in protoplanetary disks.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasper, Markus; Apai, Dániel; Wagner, Kevin

    Using Very Large Telescope/SPHERE near-infrared dual-band imaging and integral field spectroscopy, we discovered an edge-on debris disk around the 17 Myr old A-type member of the Scorpius–Centaurus OB association HD 110058. The edge-on disk can be traced to about 0.″6 or 65 AU projected separation. In its northern and southern wings, the disk shows at all wavelengths two prominent, bright, and symmetrically placed knots at 0.″3 or 32 AU from the star. We interpret these knots as a ring of planetesimals whose collisions may produce most of the dust observed in the disk. We find no evidence for a bowmore » in the disk, but we identify a pair of symmetric, hooklike features in both wings. Based on similar features in the Beta Pictoris disk, we propose that this wing-tilt asymmetry traces either an outer planetesimal belt that is inclined with respect to the disk midplane or radiation-pressure-driven dust blown out from a yet unseen inner belt that is inclined with respect to the disk midplane. The misaligned inner or outer disk may be a result of interaction with a yet unseen planet. Overall, the disk geometry resembles the nearby disk around Beta Pictoris, albeit seen at smaller radial scales.« less

  14. M101: Spectral Observations of H II Regions and Their Physical Properties

    NASA Astrophysics Data System (ADS)

    Hu, Ning; Wang, Enci; Lin, Zesen; Kong, Xu; Cheng, Fuzhen; Fan, Zou; Fang, Guangwen; Lin, Lin; Mao, Yewei; Wang, Jing; Zhou, Xu; Zhou, Zhiming; Zhu, Yinan; Zou, Hu

    2018-02-01

    By using the Hectospec 6.5 m Multiple Mirror Telescope and the 2.16 m telescope of the National Astronomical Observatories, of the Chinese Academy of Sciences, we obtained 188 high signal-to-noise ratio spectra of {{H}} {{II}} regions in the nearby galaxy M101, which is the largest spectroscopic sample of {{H}} {{II}} regions for this galaxy so far. These spectra cover a wide range of regions on M101, which enables us to analyze two-dimensional distributions of its physical properties. The physical parameters are derived from emission lines or stellar continua, including stellar population age, electron temperature, oxygen abundance, etc. The oxygen abundances are derived using two empirical methods based on O3N2 and R 23 indicators, as well as the direct {T}e method when [{{O}} {{III}}] λ 4363 is available. By applying the harmonic decomposition analysis to the velocity field, we obtained a line-of-sight rotation velocity of 71 {km} {{{s}}}-1 and a position angle of 36°. The stellar age profile shows an old stellar population in the galaxy center and a relatively young stellar population in outer regions, suggesting an old bulge and a young disk. The oxygen abundance profile exhibits a clear break at ∼18 kpc, with a gradient of ‑0.0364 dex kpc‑1 in the inner region and ‑0.00686 dex kpc‑1 in the outer region. Our results agree with the “inside-out” disk growth scenario of M101.

  15. Disk-like Chemistry of the Triangulum-Andromeda Overdensity as Seen by APOGEE

    NASA Astrophysics Data System (ADS)

    Hayes, Christian R.; Majewski, Steven R.; Hasselquist, Sten; Beaton, Rachael L.; Cunha, Katia; Smith, Verne V.; Price-Whelan, Adrian M.; Anguiano, Borja; Beers, Timothy C.; Carrera, Ricardo; Fernández-Trincado, J. G.; Frinchaboy, Peter M.; García-Hernández, D. A.; Lane, Richard R.; Nidever, David L.; Nitschelm, Christian; Roman-Lopes, Alexandre; Zamora, Olga

    2018-05-01

    The nature of the Triangulum-Andromeda (TriAnd) system has been debated since the discovery of this distant, low-latitude Milky Way (MW) overdensity more than a decade ago. Explanations for its origin are either as a halo substructure from the disruption of a dwarf galaxy, or a distant extension of the Galactic disk. We test these hypotheses using the chemical abundances of a dozen TriAnd members from the Sloan Digital Sky Survey-IV’s (SDSS-IV’s) 14th Data Release (DR14) of Apache Point Observatory Galactic Evolution Experiment (APOGEE) data to compare to APOGEE abundances of stars with similar metallicity from both the Sagittarius (Sgr) dSph and the outer MW disk. We find that TriAnd stars are chemically distinct from Sgr across a variety of elements, (C+N), Mg, K, Ca, Mn, and Ni, with a separation in [X/Fe] of about 0.1 to 0.4 dex depending on the element. Instead, the TriAnd stars, with a median metallicity of about ‑0.8, exhibit chemical abundance ratios similar to those of the lowest metallicity ([Fe/H] ∼ ‑0.7) stars in the outer Galactic disk, and are consistent with expectations of extrapolated chemical gradients in the outer disk of the MW. These results suggest that TriAnd is associated with the MW disk, and, therefore, that the disk extends to this overdensity—i.e., past a Galactocentric radius of 24 kpc—albeit vertically perturbed about 7 kpc below the nominal disk midplane in this region of the Galaxy.

  16. Chemistry of the Triangulum-Andromeda Overdensity as Seen by APOGEE

    NASA Astrophysics Data System (ADS)

    Rochford Hayes, Christian; Majewski, Steven R.; Hasselquist, Sten; Beaton, Rachael; Cunha, Katia M. L.; Smith, Verne V.; Price-Whelan, Adrian M.; APOGEE Team

    2018-06-01

    The nature of the Triangulum-Andromeda (TriAnd) system has been debated since the discovery of this distant, low-latitude Milky Way (MW) overdensity more than a decade ago. Explanations for its origin are either as a halo substructure from the disruption of a dwarf galaxy or a distant extension of the Galactic disk. We test these hypotheses using chemical abundances of a dozen TriAnd members from the Sloan Digital Sky Survey’s 14th Data Release of Apache Point Observatory Galactic Evolution Experiment (APOGEE) data to compare to APOGEE abundances of stars with similar metallicity from both the Sagittarius (Sgr) dSph, and the outer MW disk. We find that TriAnd stars are chemically distinct from Sgr across a variety of elements, (C+N), Mg, K, Ca, Mn, and Ni, with a separation in [X/Fe] of about 0.1 to 0.4 dex depending on the element. Instead, the TriAnd stars, with a median metallicity of about -0.8, exhibit chemical abundance ratios similar to those of the lowest metallicity ([Fe/H] ~ -0.7) stars in the outer Galactic disk, and are consistent with expectations of extrapolated chemical gradients in the outer disk of the MW. These results suggest that TriAnd is associated with the MW disk, and, therefore, that the disk extends to this overdensity - i.e., past a Galactocentric radius of 24 kpc - albeit vertically perturbed about 7 kpc below the nominal disk midplane in this region of the Galaxy.

  17. A RESOLVED NEAR-INFRARED IMAGE OF THE INNER CAVITY IN THE GM Aur TRANSITIONAL DISK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, Daehyeon; Yang, Yi; Hashimoto, Jun

    We present high-contrast H -band polarized intensity (PI) images of the transitional disk around the young solar-like star GM Aur. The near-infrared direct imaging of the disk was derived by polarimetric differential imaging using the Subaru 8.2 m Telescope and HiCIAO. An angular resolution and an inner working angle of 0.″07 and r ∼ 0.″05, respectively, were obtained. We clearly resolved a large inner cavity, with a measured radius of 18 ± 2 au, which is smaller than that of a submillimeter interferometric image (28 au). This discrepancy in the cavity radii at near-infrared and submillimeter wavelengths may be causedmore » by a 3–4 M {sub Jup} planet about 20 au away from the star, near the edge of the cavity. The presence of a near-infrared inner cavity is a strong constraint on hypotheses for inner cavity formation in a transitional disk. A dust filtration mechanism has been proposed to explain the large cavity in the submillimeter image, but our results suggest that this mechanism must be combined with an additional process. We found that the PI slope of the outer disk is significantly different from the intensity slope obtained from HST /NICMOS, and this difference may indicate the grain growth process in the disk.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esposito, Thomas M.; Fitzgerald, Michael P.; Graham, James R.

    Here, the HD 61005 debris disk ("The Moth") stands out from the growing collection of spatially resolved circumstellar disks by virtue of its unusual swept-back morphology, brightness asymmetries, and dust ring offset. Despite several suggestions for the physical mechanisms creating these features, no definitive answer has been found. In this work, we demonstrate the plausibility of a scenario in which the disk material is shaped dynamically by an eccentric, inclined planet. We present new Keck NIRC2 scattered-light angular differential imaging of the disk at 1.2–2.3 μm that further constrains its outer morphology (projected separations of 27–135 au). We also presentmore » complementary Gemini Planet Imager 1.6 μm total intensity and polarized light detections that probe down to projected separations less than 10 au. To test our planet-sculpting hypothesis, we employed secular perturbation theory to construct parent body and dust distributions that informed scattered-light models. We found that this method produced models with morphological and photometric features similar to those seen in the data, supporting the premise of a planet-perturbed disk. Briefly, our results indicate a disk parent body population with a semimajor axis of 40–52 au and an interior planet with an eccentricity of at least 0.2. Many permutations of planet mass and semimajor axis are allowed, ranging from an Earth mass at 35 au to a Jupiter mass at 5 au.« less

  19. A Keplerian Disk around Orion SrCI, a ∼ 15 M ⊙ YSO

    NASA Astrophysics Data System (ADS)

    Ginsburg, Adam; Bally, John; Goddi, Ciriaco; Plambeck, Richard; Wright, Melvyn

    2018-06-01

    We report ALMA long-baseline observations of Orion Source I (SrcI), with a resolution 0.″03–0.″06 (12–24 au) at 1.3 and 3.2 mm. We detect both continuum and spectral line emission from SrcI’s disk. We also detect a central weakly resolved source that we interpret as a hot spot in the inner disk, which may indicate the presence of a binary system. The high angular resolution and sensitivity of these observations allows us to measure the outer envelope of the rotation curve of the H2O {5}5,0}{--}{6}4,3} line, which gives a mass M I ≈ 15 ± 2 {M}ȯ . We detected several other lines that more closely trace the disk, but were unable to identify their parent species. Using centroid-of-channel methods on these other lines, we infer a similar mass. These measurements solidify SrcI as a genuine high-mass protostar system and support the theory that SrcI and the Becklin-Neugebauer Object were ejected from the dynamical decay of a multiple-star system ∼500 years ago, an event that also launched the explosive molecular outflow in Orion.

  20. Bringing "The Moth" to light: A planet-sculpting scenario for the HD 61005 debris disk

    DOE PAGES

    Esposito, Thomas M.; Fitzgerald, Michael P.; Graham, James R.; ...

    2016-09-16

    Here, the HD 61005 debris disk ("The Moth") stands out from the growing collection of spatially resolved circumstellar disks by virtue of its unusual swept-back morphology, brightness asymmetries, and dust ring offset. Despite several suggestions for the physical mechanisms creating these features, no definitive answer has been found. In this work, we demonstrate the plausibility of a scenario in which the disk material is shaped dynamically by an eccentric, inclined planet. We present new Keck NIRC2 scattered-light angular differential imaging of the disk at 1.2–2.3 μm that further constrains its outer morphology (projected separations of 27–135 au). We also presentmore » complementary Gemini Planet Imager 1.6 μm total intensity and polarized light detections that probe down to projected separations less than 10 au. To test our planet-sculpting hypothesis, we employed secular perturbation theory to construct parent body and dust distributions that informed scattered-light models. We found that this method produced models with morphological and photometric features similar to those seen in the data, supporting the premise of a planet-perturbed disk. Briefly, our results indicate a disk parent body population with a semimajor axis of 40–52 au and an interior planet with an eccentricity of at least 0.2. Many permutations of planet mass and semimajor axis are allowed, ranging from an Earth mass at 35 au to a Jupiter mass at 5 au.« less

  1. Increased H2CO production in the outer disk around HD 163296

    NASA Astrophysics Data System (ADS)

    Carney, M. T.; Hogerheijde, M. R.; Loomis, R. A.; Salinas, V. N.; Öberg, K. I.; Qi, C.; Wilner, D. J.

    2017-09-01

    Context. The gas and dust in circumstellar disks provide the raw materials to form planets. The study of organic molecules and their building blocks in such disks offers insight into the origin of the prebiotic environment of terrestrial planets. Aims: We aim to determine the distribution of formaldehyde, H2CO, in the disk around HD 163296 to assess the contribution of gas- and solid-phase formation routes of this simple organic. Methods: Three formaldehyde lines were observed (H2CO 303-202, H2CO 322-221, and H2CO 321-220) in the protoplanetary disk around the Herbig Ae star HD 163296 with ALMA at 0.5″ (60 AU) spatial resolution. Different parameterizations of the H2CO abundance were compared to the observed visibilities, using either a characteristic temperature, a characteristic radius or a radial power law index to describe the H2CO chemistry. Similar models were applied to ALMA Science Verification data of C18O. In each scenario, χ2 minimization on the visibilities was used to determine the best-fit model in each scenario. Results: H2CO 303-202 was readily detected via imaging, while the weaker H2CO 322-221 and H2CO 321-220 lines required matched filter analysis to detect. H2CO is present throughout most of the gaseous disk, extending out to 550 AU. An apparent 50 AU inner radius of the H2CO emission is likely caused by an optically thick dust continuum. The H2CO radial intensity profile shows a peak at 100 AU and a secondary bump at 300 AU, suggesting increased production in the outer disk. In all modeling scenarios, fits to the H2CO data show an increased abundance in the outer disk. The overall best-fit H2CO model shows a factor of two enhancement beyond a radius of 270 ± 20 AU, with an inner abundance (relative to H2) of 2 - 5 × 10-12. The H2CO emitting region has a lower limit on the kinetic temperature of T> 20 K. The C18O modeling suggests an order of magnitude depletion of C18O in the outer disk and an abundance of 4 - 12 × 10-8 in the inner disk. Conclusions: There is a desorption front seen in the H2CO emission that roughly coincides with the outer edge of the 1.3 millimeter continuum. The increase in H2CO outer disk emission could be a result of hydrogenation of CO ices on dust grains that are then sublimated via thermal desorption or UV photodesorption. Alternatively, there could be more efficient gas-phase production of H2CO beyond 300 AU if CO is photodisocciated in this region. The reduced datacube is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/605/A21

  2. Heat transfer in a rotating cavity with a stationary stepped casing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirzaee, I.; Quinn, P.; Wilson, M.

    1999-04-01

    In the system considered here, corotating turbine disks are cooled by air supplied at the periphery of the system. The system comprises two corotating disks, connected by a rotating cylindrical hub and shrouded by a stepped, stationary cylindrical outer casing. Cooling air enters the system through holes in the periphery of one disk, and leaves through the clearances between the outer casing and the disks. The paper describes a combined computational and experimental study of the heat transfer in the above-described system. In the experiments, one rotating disk is heated, the hub and outer casing are insulated, and the othermore » disk is quasi-adiabatic. Thermocouples and fluxmeters attached to the heated disc enable the Nusselt numbers, Nu, to be determined for a wide range of rotational speeds and coolant flow rates. Computations are carried out using an axisymmetric elliptic solver incorporating the Launder-Sharma low-Reynolds-number {kappa}-{epsilon} turbulence model. The flow structure is shown to be complex and depends strongly on the so-called turbulent flow parameter, {lambda}{sub T}, which incorporates both rotational speed and flow rate. For a given value of {lambda}{sub T}, the computations show that Nu increases as Re{sub {phi}}, the rotational Reynolds number, increases. Despite the complexity of the flow, the agreement between the computed and measured Nusselt numbers is reasonably good.« less

  3. DEAD, UNDEAD, AND ZOMBIE ZONES IN PROTOSTELLAR DISKS AS A FUNCTION OF STELLAR MASS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanty, Subhanjoy; Ercolano, Barbara; Turner, Neal J., E-mail: s.mohanty@imperial.ac.uk, E-mail: ercolano@usm.lmu.de, E-mail: neal.turner@jpl.nasa.gov

    We investigate the viability of the magnetorotational instability (MRI) in X-ray ionized viscous accretion disks around both solar-type stars and very low mass stars. In particular, we determine the disk regions where the MRI can be shut off either by Ohmic resistivity (the so-called dead and undead zones) or by ambipolar diffusion (a region we term the zombie zone). We consider two stellar masses: M {sub *} = 0.7 M {sub Sun} and 0.1 M {sub Sun }. In each case, we assume that: the disk surface density profile is that of a scaled Minimum Mass Solar Nebula, with Mmore » {sub disk}/M {sub *} = 0.01 as suggested by current data; disk ionization is driven primarily by stellar X-rays, complemented by cosmic rays and radionuclides; and the stellar X-ray luminosity scales with bolometric luminosity as L{sub X} /L {sub *} Almost-Equal-To 10{sup -3.5}, as observed. Ionization rates are calculated with the MOCCASIN Monte Carlo X-ray transport code, and ionization balance determined using a simplified chemical network, including well-mixed 0.1 {mu}m grains at various levels of depletion. We find that (1) ambipolar diffusion is the primary factor controlling MRI activity in disks around both solar-type and very low mass classical T Tauri stars. Assuming that the MRI yields the maximum possible field strength at each radius, we further find that: (2) the MRI-active layer constitutes only {approx}5%-10% of the total disk mass; (3) the accretion rate ( M-dot ) varies radially in both magnitude and sign (inward or outward), implying time-variable accretion as well as the creation of disk gaps and overdensities, with consequences for planet formation and migration; (4) achieving the empirical accretion rates in solar-type and very low mass stars requires a depletion of well-mixed small grains (via grain growth and/or settling) by a factor of 10-1000 relative to the standard dust-to-gas mass ratio of 10{sup -2}; and (5) the current non-detection of polarized emission from field-aligned grains in the outer disk regions is consistent with active MRI at those radii.« less

  4. Herschel's "Cold Debris Disks": Background Galaxies or Quiescent Rims of Planetary Systems?

    NASA Astrophysics Data System (ADS)

    Krivov, A. V.; Eiroa, C.; Löhne, T.; Marshall, J. P.; Montesinos, B.; del Burgo, C.; Absil, O.; Ardila, D.; Augereau, J.-C.; Bayo, A.; Bryden, G.; Danchi, W.; Ertel, S.; Lebreton, J.; Liseau, R.; Mora, A.; Mustill, A. J.; Mutschke, H.; Neuhäuser, R.; Pilbratt, G. L.; Roberge, A.; Schmidt, T. O. B.; Stapelfeldt, K. R.; Thébault, Ph.; Vitense, Ch.; White, G. J.; Wolf, S.

    2013-07-01

    Infrared excesses associated with debris disk host stars detected so far peak at wavelengths around ~100 μm or shorter. However, 6 out of 31 excess sources studied in the Herschel Open Time Key Programme, DUNES, have been seen to show significant—and in some cases extended—excess emission at 160 μm, which is larger than the 100 μm excess. This excess emission has been attributed to circumstellar dust and has been suggested to stem from debris disks colder than those known previously. Since the excess emission of the cold disk candidates is extremely weak, challenging even the unrivaled sensitivity of Herschel, it is prudent to carefully consider whether some or even all of them may represent unrelated galactic or extragalactic emission, or even instrumental noise. We re-address these issues using several distinct methods and conclude that it is highly unlikely that none of the candidates represents a true circumstellar disk. For true disks, both the dust temperatures inferred from the spectral energy distributions and the disk radii estimated from the images suggest that the dust is nearly as cold as a blackbody. This requires the grains to be larger than ~100 μm, even if they are rich in ices or are composed of any other material with a low absorption in the visible. The dearth of small grains is puzzling, since collisional models of debris disks predict that grains of all sizes down to several times the radiation pressure blowout limit should be present. We explore several conceivable scenarios: transport-dominated disks, disks of low dynamical excitation, and disks of unstirred primordial macroscopic grains. Our qualitative analysis and collisional simulations rule out the first two of these scenarios, but show the feasibility of the third one. We show that such disks can indeed survive for gigayears, largely preserving the primordial size distribution. They should be composed of macroscopic solids larger than millimeters, but smaller than a few kilometers in size. If larger planetesimals were present, then they would stir the disk, triggering a collisional cascade and thus causing production of small debris, which is not seen. Thus, planetesimal formation, at least in the outer regions of the systems, has stopped before "cometary" or "asteroidal" sizes were reached.

  5. THE MEGAMASER COSMOLOGY PROJECT. IX. BLACK HOLE MASSES FOR THREE MASER GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, F.; Zhao, W.; Braatz, J. A.

    As part of the Megamaser Cosmology Project, we present VLBI maps of nuclear water masers toward five galaxies. The masers originate in sub-parsec circumnuclear disks. For three of the galaxies, we fit Keplerian rotation curves to estimate their supermassive black hole (SMBH) masses, and determine (2.9 ± 0.3) × 10{sup 6} M {sub ⊙} for J0437+2456, (1.7 ± 0.1) × 10{sup 7} M {sub ⊙} for ESO 558–G009, and (1.1 ± 0.2) × 10{sup 7} M {sub ⊙} for NGC 5495. In the other two galaxies, Mrk 1029 and NGC 1320, the geometry and dynamics are more complicated and preclude robust black hole mass estimates. Including our new results, we compiled amore » list of 15 VLBI-confirmed disk maser galaxies with robust SMBH mass measurements. With this sample, we confirm the empirical relation of R {sub out} ∝ 0.3 M {sub SMBH} reported in Wardle and Yusef-Zadeh. We also find a tentative correlation between maser disk outer radii and Wide-Field Infrared Survey Explorer luminosity. We find no correlations of maser disk size with X-ray 2–10 keV luminosity or [O iii] luminosity.« less

  6. Tracing Interactions of a Protoplanet with its Circumstellar Disk

    NASA Astrophysics Data System (ADS)

    Stapelfeldt, Karl

    2017-08-01

    A candidate companion to a very young star has been discovered in HST snapshot optical images. The object is projected at the outer radius of an edge-on protoplanetary disk and is aligned with the disk plane. Keck LGS photometry results indicate the object has the same temperature as brown dwarf GQ Lupi b but with 10x less luminosity - consistent with a planetary mass companion. Because the edge-on disk suppresses the light of the central star, the companion is uniquely accessible to follow-up studies with minimal starlight residuals. We propose HST/WFC3 imaging and spectroscopy of the system to 1) fully define the morphology of the disk scattered light, particularly at the disk outer edge near the companion; 2) search for Halpha emission from the companion as evidence that it is actively accreting; and 3) complete spectral characterization of the companion using G141 spectroscopy. Confirmation of a substellar spectrum, accretion, and disk interaction action would establish this object as a leading example of an accreting protoplanet at 100 AU and offer support to models for planet formation by gravitational instability.

  7. The Anemic Stellar Halo of M101

    NASA Astrophysics Data System (ADS)

    Holwerda, Benne

    2014-10-01

    Models of galaxy formation in a cosmological context predict that massive disk galaxies should have richly-structured extended stellar halos, containing ~10% of a galaxy's stars, originating in large part from the tidal disruption of dwarf galaxies. Observations of a number of nearby disk galaxies have generally agreed with these expectations. Recent new observations in integrated light with a novel array of low scattered-light telephoto lenses have failed to convincingly detect a stellar halo in the nearby massive face-on disk galaxy M101 (van Dokkum et al. 2014). They argue that any halo has to have <0.3% of the mass of the galaxy. This halo would be the least massive of any massive disk galaxy in the local Universe (by factors of several) -- such a halo is not predicted or naturally interpreted by the models, and would present a critical challenge to the picture of ubiquitous stellar halos formed from the debris of disrupting dwarf galaxies.We propose to resolve the stellar populations of this uniquely anemic stellar halo for 6 orbits with HST (ACS and WFC3), allowing us to reach surface brightness limits sufficient to clearly detect and characterize M101's stellar halo if it carries more than 0.1% of M101's mass. With resolved stellar populations, we can use the gradient of stellar populations as a function of radius to separate stellar halo from disk, which is impossible using integrated light observations. The resolved stellar populations will reveal the halo mass to much greater accuracy, measure the halo radial profile, constrain any halo lopsidedness, estimate the halo's stellar metallicity, and permit an analysis of outer disk stellar populations.

  8. The correlation between HCN/H2O flux ratios and disk mass: evidence for protoplanet formation

    NASA Astrophysics Data System (ADS)

    Rose, Caitlin; Salyk, Colette

    2017-01-01

    We analyze hydrogen cyanide (HCN) and water vapor flux ratios in protoplanetary disks as a way to trace planet formation. Analyzing only disks in the Taurus molecular cloud, Najita et al. (2013) found a tentative correlation between protoplanetary disk mass and the HCN/H2O line flux ratio in Spitzer-IRS emission spectra. They interpret this correlation to be a consequence of more massive disks forming planetesimals more efficiently than smaller disks, as the formation of large planetesimals may lock up water ice in the cool outer disk region and prevent it from migrating, drying out the inner disk. The sequestering of water (and therefore oxygen) in the outer disk may also increase the carbon-to- oxygen ratio in the inner disk, leading to enhanced organic molecule (e.g. HCN) emission. To confirm this trend, we expand the Najita et al. sample by calculating HCN/H2O line flux ratios for 8 more sources with known disk masses from clusters besides Taurus. We find agreement with the Najita et al. trend, suggesting that this is a widespread phenomenon. In addition, we find HCN/H2O line flux ratios for 17 more sources that await disk mass measurements, which should become commonplace in the ALMA era. Finally, we investigate linear fits and outliers to this trend, and discuss possible causes.

  9. Physics and chemistry of the solar nebula.

    PubMed

    Lunine, J I

    1997-06-01

    The solar system is thought to have begun in a flattened disk of gas and dust referred to traditionally as the solar nebula. Such a construct seems to be a natural product of the collapse of dense parts of giant molecular clouds, the vast star-forming regions that pepper the Milky Way and other galaxies. Gravitational, magnetic and thermal forces within the solar nebula forced a gradual evolution of mass toward the center (where the sun formed) and angular momentum (borne by a small fraction of the mass) toward the outer more distant regions of the disk. This evolution was accompanied by heating and a strong temperature contrast from the hot, inner regions to the cold, more remote parts of the disk. The resulting chemistry in the disk determined the initial distribution of organic matter in the planets; most of the reduced carbon species, in condensed form, were located beyond the asteroid belt (the 'outer' solar system). The Earth could have received much of its inventory of pre-biological material from comets and other icy fragments of the process of planetary formation in the outer solar system.

  10. Outer-disk reddening and gas-phase metallicities: The CALIFA connection

    NASA Astrophysics Data System (ADS)

    Marino, R. A.; Gil de Paz, A.; Sánchez, S. F.; Sánchez-Blázquez, P.; Cardiel, N.; Castillo-Morales, A.; Pascual, S.; Vílchez, J.; Kehrig, C.; Mollá, M.; Mendez-Abreu, J.; Catalán-Torrecilla, C.; Florido, E.; Perez, I.; Ruiz-Lara, T.; Ellis, S.; López-Sánchez, A. R.; González Delgado, R. M.; de Lorenzo-Cáceres, A.; García-Benito, R.; Galbany, L.; Zibetti, S.; Cortijo, C.; Kalinova, V.; Mast, D.; Iglesias-Páramo, J.; Papaderos, P.; Walcher, C. J.; Bland-Hawthorn, J.

    2016-01-01

    We study, for the first time in a statistically significant and well-defined sample, the relation between the outer-disk ionized-gas metallicity gradients and the presence of breaks in the surface brightness profiles of disk galaxies. Sloan Digital Sky Survey (SDSS) g'- and r'-band surface brightness, (g' - r') color, and ionized-gasoxygen abundance profiles for 324 galaxies within the Calar Alto Legacy Integral Field Area (CALIFA) survey are used for this purpose. We perform a detailed light-profile classification, finding that 84% of our disks show down- or up-bending profiles (Type II and Type III, respectively), while the remaining 16% are well fitted by one single exponential (Type I). The analysis of the color gradients at both sides of this break shows a U-shaped profile for most Type II galaxies with an average minimum (g' - r') color of ~0.5 mag and an ionized-gas metallicity flattening associated with it only in the case of low-mass galaxies. Comparatively, more massive systems show a rather uniform negative metallicity gradient. The correlation between metallicity flattening and stellar mass for these systems results in p-values as low as 0.01. Independent of the mechanism having shaped the outer light profiles of these galaxies, stellar migration or a previous episode of star formation in a shrinking star-forming disk, it is clear that the imprint in their ionized-gas metallicity was different for low- and high-mass Type II galaxies. In the case of Type III disks, a positive correlation between the change in color and abundance gradient is found (the null hypothesis is ruled out with a p-value of 0.02), with the outer disks of Type III galaxies with masses ≤1010 M⊙ showing a weak color reddening or even a bluing. This is interpreted as primarily due to a mass downsizing effect on the population of Type III galaxies that recently experienced an enhanced inside-out growth.

  11. Type II Migration and Giant Planet Survival

    NASA Technical Reports Server (NTRS)

    Ward, William R.

    2003-01-01

    Type II migration, in which a newly formed large planet opens a gap in its precursor circumstellar nebula and subsequently evolves with it, has been implicated as a delivery mechanism responsible for close stellar companions. Large scale migration is possible in a viscously spreading disk of surface density sigma (r,t) when most of it is sacrificed to the primary in order to promote a small portion of the disk to much higher angular momentum orbits. Embedded planets generally follow its evolution unless their own angular momentum is comparable to that of the disk. The fraction of the starting disk mass, M (sub d) = 2pi integral rsigma(r,0)dr, that is consumed by the star depends on the distance at which material escapes the disk's outer boundary. If the disk is allowed to expand indefinitely, virtually all of the disk will fall into the primary in order to send a vanishingly small portion to infinity. For such a case, it is difficult to explain the survival of any giant planets, including Jupiter and Saturn. Realistically, however, there are processes that could truncate a disk at a finite distance, r(sub d). Recent numerical modeling has illustrated that planets can survive in this case. We show here that much of these results can be understood by simple conservation arguments.

  12. Long-lived Eccentric modes in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Lee, Wing-Kit; Dempsey, Adam M.; Lithwick, Yoram

    2018-04-01

    A theory is developed to understand global eccentric modes that are slowly precessing in protoplanetary disks. Using the typical self-similar density profiles, we found that these modes are trapped in the disk and are not sensitive to the uncertain boundary condition at the disk edge. This is contrary to common wisdom that the modes can only exist in disks with very sharp outer edge. Because of their discrete spectrum, once excited, a perturbed disk can stay eccentric for a long time until the mode is viscously damped. The physics behind the mode trapping depends ultimately on the relative importance of gas pressure and self-gravity, which is characterized by g = 1/ (Q h), where h is the disk aspect ratio and Q is the Toomre stability parameter. A very low mass disk (g ≪ 1) is pressure-dominated and supports pressure modes, in which the eccentricity is highest at the disk edge. The modes are trapped by a turning point due to the density drop in the outer disk. For a more massive disk with g of order of unity (Q~1/h~10-100), prograde modes are supported. Unlike the pressure modes, these modes are trapped by Q-barriers and result in a bump in the radial eccentricity profile. As the mode trapping is a generic phenomenon for typical disk profiles, the free linear eccentric modes are likely to be present in protoplanetary disks with a wide range of disk mass.

  13. Spiral Arms in the Asymmetrically Illuminated Disk of MWC 758 and Constraints on Giant Planets

    NASA Technical Reports Server (NTRS)

    Grady, C. A.; Muto, T.; Hashimoto, J.; Fukagawa, M.; Currie, T.; Biller, B.; Thalmann, C.; Sitko, M. L.; Russell, R.; Wisniewski, J.; hide

    2013-01-01

    We present the first near-IR scattered light detection of the transitional disk associated with the Herbig Ae star MWC 758 using data obtained as part of the Strategic Exploration of Exoplanets and Disks with Subaru, and 1.1 micrometer Hubble Space Telescope/NICMOS data. While submillimeter studies suggested there is a dust-depleted cavity with r = 0".35, we find scattered light as close as 0".1 (20-28 AU) from the star, with no visible cavity at H, K', or Ks . We find two small-scaled spiral structures that asymmetrically shadow the outer disk. We model one of the spirals using spiral density wave theory, and derive a disk aspect ratio of h approximately 0.18, indicating a dynamically warm disk. If the spiral pattern is excited by a perturber, we estimate its mass to be 5(exp +3)(sub -4) M(sub J), in the range where planet filtration models predict accretion continuing onto the star. Using a combination of non-redundant aperture masking data at L' and angular differential imaging with Locally Optimized Combination of Images at K' and Ks , we exclude stellar or massive brown dwarf companions within 300 mas of the Herbig Ae star, and all but planetary mass companions exterior to 0".5. We reach 5 sigma contrasts limiting companions to planetary masses, 3-4 M(sub J) at 1".0 and 2 M(sub J) at 1".55, using the COND models. Collectively, these data strengthen the case for MWC 758 already being a young planetary system.

  14. On the AU Microscopii debris disk. Density profiles, grain properties, and dust dynamics

    NASA Astrophysics Data System (ADS)

    Augereau, J.-C.; Beust, H.

    2006-09-01

    Context: . AU Mic is a young M-type star surrounded by an edge-on optically thin debris disk that shares many common observational properties with the disk around β Pictoris. In particular, the scattered light surface brightness profile falls off as ˜ r-5 outside 120 AU for β Pictoris and 35 AU for AU Mic. In both cases, the disk color rises as the distance increases beyond these reference radii. Aims: . In this paper, we present the first comprehensive analysis of the AU Mic disk properties since the system was resolved by Kalas et al. (2004, Science, 303, 1990). We explore whether the dynamical model, which successfully reproduces the β Pictoris brightness profile (e.g., Augereau et al. 2001, A&A, 370, 447), could apply to AU Mic. Methods: . We calculate the surface density profile of the AU Mic disk by performing the inversion of the near-IR and visible scattered light brightness profiles measured by Liu (2004, Science, 305, 1442) and Krist et al. (2005, AJ, 129, 1008), respectively. We discuss the grain properties by analysing the blue color of the disk in the visible (Krist et al. 2005) and by fitting the disk spectral energy distribution. Finally, we evaluate the radiation and wind forces on the grains. The impact of the recurrent X-ray and UV-flares on the dust dynamics is also discussed. Results: . We show that irrespective of the mean scattering asymmetry factor of the grains, most of the emission arises from an asymmetric, collisionally-dominated region that peaks close to the surface brightness break around 35 AU. The elementary scatterers at visible wavelengths are found to be sub-micronic, but the inferred size distribution underestimates the number of large grains, resulting in sub-millimeter emissions that are too low compared to the observations. From our inversion procedure, we find that the V- to H-band scattering cross sections ratio increases outside 40 AU, in line with the observed color gradient of the disk. This behavior is expected if the grains have not been produced locally, but placed in orbits of high eccentricity by a size-dependent pressure force, resulting in a paucity of large grains beyond the outer edge of the parent bodies' disk. Because of the low luminosity of AU Mic, radiation pressure is inefficient to diffuse the smallest grains in the outer disk, even when the flares are taken into account. Conversely, we show that a standard, solar-like stellar wind generates a pressure force onto the dust particles that behaves much like a radiation pressure force. With an assumed dot{M} ≃ 3×102 dot{M}⊙, the wind pressure overcomes the radiation pressure, and this effect is enhanced by the stellar flares. This greatly contributes to populating the extended AU Mic debris disk and explains the similarity between the β Pictoris and AU Mic brightness profiles. In both cases, the color gradient beyond 120 AU for β Pictoris and 35 AU for AU Mic, is believed to be a direct consequence of the dust dynamics.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lieman-Sifry, Jesse; Hughes, A. Meredith; Flaherty, Kevin M.

    We present a CO(2-1) and 1240 μ m continuum survey of 23 debris disks with spectral types B9-G1, observed at an angular resolution of 0.″5–1″ with the Atacama Large Millimeter/Submillimeter Array (ALMA). The sample was selected for large infrared excess and age ∼10 Myr, to characterize the prevalence of molecular gas emission in young debris disks. We identify three CO-rich debris disks, plus two additional tentative (3 σ) CO detections. Twenty disks were detected in the continuum at the >3 σ level. For the 12 disks in the sample that are spatially resolved by our observations, we perform an independentmore » analysis of the interferometric continuum visibilities to constrain the basic dust disk geometry, as well as a simultaneous analysis of the visibilities and broadband spectral energy distribution to constrain the characteristic grain size and disk mass. The gas-rich debris disks exhibit preferentially larger outer radii in their dust disks, and a higher prevalence of characteristic grain sizes smaller than the blowout size. The gas-rich disks do not exhibit preferentially larger dust masses, contrary to expectations for a scenario in which a higher cometary destruction rate would be expected to result in a larger mass of both CO and dust. The three debris disks in our sample with strong CO detections are all around A stars: the conditions in disks around intermediate-mass stars appear to be the most conducive to the survival or formation of CO.« less

  16. Flow visualization in radial flow through stationary and corotating parallel disks

    NASA Astrophysics Data System (ADS)

    Mochizuki, S.; Tanaka, M.; Yang, Wen-Jei

    Paraffin mist is used here as a tracer to observe the patterns in the radial flow through both stationary and corotating parallel disks. The periodic and alternative generation of separation bubbles on both disks and the resulting flow fluctuation and turbulent flow in the radial channel are studied. Stall cells are visualized around the outer rim of the corotating disks.

  17. Magnetically Induced Disk Winds and Transport in the HL Tau Disk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasegawa, Yasuhiro; Flock, Mario; Turner, Neal J.

    2017-08-10

    The mechanism of angular momentum transport in protoplanetary disks is fundamental to understanding the distributions of gas and dust in the disks. The unprecedented ALMA observations taken toward HL Tau at high spatial resolution and subsequent radiative transfer modeling reveal that a high degree of dust settling is currently achieved in the outer part of the HL Tau disk. Previous observations, however, suggest a high disk accretion rate onto the central star. This configuration is not necessarily intuitive in the framework of the conventional viscous disk model, since efficient accretion generally requires a high level of turbulence, which can suppressmore » dust settling considerably. We develop a simplified, semi-analytical disk model to examine under what condition these two properties can be realized in a single model. Recent, non-ideal MHD simulations are utilized to realistically model the angular momentum transport both radially via MHD turbulence and vertically via magnetically induced disk winds. We find that the HL Tau disk configuration can be reproduced well when disk winds are properly taken into account. While the resulting disk properties are likely consistent with other observational results, such an ideal situation can be established only if the plasma β at the disk midplane is β {sub 0} ≃ 2 × 10{sup 4} under the assumption of steady accretion. Equivalently, the vertical magnetic flux at 100 au is about 0.2 mG. More detailed modeling is needed to fully identify the origin of the disk accretion and quantitatively examine plausible mechanisms behind the observed gap structures in the HL Tau disk.« less

  18. Magnetically Induced Disk Winds and Transport in the HL Tau Disk

    NASA Astrophysics Data System (ADS)

    Hasegawa, Yasuhiro; Okuzumi, Satoshi; Flock, Mario; Turner, Neal J.

    2017-08-01

    The mechanism of angular momentum transport in protoplanetary disks is fundamental to understanding the distributions of gas and dust in the disks. The unprecedented ALMA observations taken toward HL Tau at high spatial resolution and subsequent radiative transfer modeling reveal that a high degree of dust settling is currently achieved in the outer part of the HL Tau disk. Previous observations, however, suggest a high disk accretion rate onto the central star. This configuration is not necessarily intuitive in the framework of the conventional viscous disk model, since efficient accretion generally requires a high level of turbulence, which can suppress dust settling considerably. We develop a simplified, semi-analytical disk model to examine under what condition these two properties can be realized in a single model. Recent, non-ideal MHD simulations are utilized to realistically model the angular momentum transport both radially via MHD turbulence and vertically via magnetically induced disk winds. We find that the HL Tau disk configuration can be reproduced well when disk winds are properly taken into account. While the resulting disk properties are likely consistent with other observational results, such an ideal situation can be established only if the plasma β at the disk midplane is β 0 ≃ 2 × 104 under the assumption of steady accretion. Equivalently, the vertical magnetic flux at 100 au is about 0.2 mG. More detailed modeling is needed to fully identify the origin of the disk accretion and quantitatively examine plausible mechanisms behind the observed gap structures in the HL Tau disk.

  19. Molecular basis for photoreceptor outer segment architecture

    PubMed Central

    Goldberg, Andrew F. X.; Moritz, Orson L.; Williams, David S.

    2016-01-01

    To serve vision, vertebrate rod and cone photoreceptors must detect photons, convert the light stimuli into cellular signals, and then convey the encoded information to downstream neurons. Rods and cones are sensory neurons that each rely on specialized ciliary organelles to detect light. These organelles, called outer segments, possess elaborate architectures that include many hundreds of light-sensitive membranous disks arrayed one atop another in precise register. These stacked disks capture light and initiate the chain of molecular and cellular events that underlie normal vision. Outer segment organization is challenged by an inherently dynamic nature; these organelles are subject to a renewal process that replaces a significant fraction of their disks (up to ~10%) on a daily basis. In addition, a broad range of environmental and genetic insults can disrupt outer segment morphology to impair photoreceptor function and viability. In this chapter, we survey the major progress that has been made for understanding the molecular basis of outer segment architecture. We also discuss key aspects of organelle lipid and protein composition, and highlight distributions, interactions, and potential structural functions of key OS-resident molecules, including: kinesin-2, actin, RP1, prominin-1, protocadherin 21, peripherin-2/rds, rom-1, glutamic acid-rich proteins, and rhodopsin. Finally, we identify key knowledge gaps and challenges that remain for understanding how normal outer segment architecture is established and maintained. PMID:27260426

  20. Imaging Transitional Disks with TMT: Lessons Learned from the SEEDS Survey

    NASA Technical Reports Server (NTRS)

    Grady, Carol A.; Fukagawa, M.; Muto, T.; Hashimoto, J.

    2014-01-01

    TMT studies of the early phases of giant planet formation will build on studies carried out in this decade using 8-meter class telescopes. One such study is the Strategic Exploration of Exoplanets and Disks with Subaru transitional disk survey. We have found a wealth of indirect signatures of giant planet presence, including spiral arms, pericenter offsets of the outer disk from the star, and changes in disk color at the inner edge of the outer disk in intermediate-mass PMS star disks. T Tauri star transitional disks are less flamboyant, but are also dynamically colder: any spiral arms in these diskswill be more tightly wound. Imaging such features at the distance of the nearest star-forming regions requires higher angular resolution than achieved with HiCIAO+ AO188. Imaging such disks with extreme AO systems requires use of laser guide stars, and are infeasible with the extreme AO systems currently commissioning on 8-meter class telescopes. Similarly, the JWST and AFTAWFIRST coronagraphs being considered have inner working angles 0.2, and will occult the inner 28 atomic units of systems at d140pc, a region where both high-contrast imagery and ALMA data indicate that giant planets are located in transitional disks. However, studies of transitional disks associated with solar-mass stars and their planet complement are feasible with TMT using NFIRAOS.

  1. DUST DYNAMICS IN PROTOPLANETARY DISK WINDS DRIVEN BY MAGNETOROTATIONAL TURBULENCE: A MECHANISM FOR FLOATING DUST GRAINS WITH CHARACTERISTIC SIZES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyake, Tomoya; Suzuki, Takeru K.; Inutsuka, Shu-ichiro, E-mail: miyake.tomoya@e.mbox.nagoya-u.ac.jp, E-mail: stakeru@nagoya-u.jp

    We investigate the dynamics of dust grains of various sizes in protoplanetary disk winds driven by magnetorotational turbulence, by simulating the time evolution of the dust grain distribution in the vertical direction. Small dust grains, which are well-coupled to the gas, are dragged upward with the upflowing gas, while large grains remain near the midplane of a disk. Intermediate-size grains float near the sonic point of the disk wind located at several scale heights from the midplane, where the grains are loosely coupled to the background gas. For the minimum mass solar nebula at 1 au, dust grains with sizemore » of 25–45 μm float around 4 scale heights from the midplane. Considering the dependence on the distance from the central star, smaller-size grains remain only in an outer region of the disk, while larger-size grains are distributed in a broader region. We also discuss the implications of our result for observations of dusty material around young stellar objects.« less

  2. A LIKELY CLOSE-IN LOW-MASS STELLAR COMPANION TO THE TRANSITIONAL DISK STAR HD 142527

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biller, Beth; Benisty, Myriam; Chauvin, Gael

    2012-07-10

    With the uniquely high contrast within 0.''1 ({Delta}mag(L') = 5-6.5 mag) available using Sparse Aperture Masking with NACO at Very Large Telescope, we detected asymmetry in the flux from the Herbig Fe star HD 142527 with a barycenter emission situated at a projected separation of 88 {+-} 5 mas (12.8 {+-} 1.5 AU at 145 pc) and flux ratios in H, K, and L' of 0.016 {+-} 0.007, 0.012 {+-} 0.008, and 0.0086 {+-} 0.0011, respectively (3{sigma} errors), relative to the primary star and disk. After extensive closure-phase modeling, we interpret this detection as a close-in, low-mass stellar companion withmore » an estimated mass of {approx}0.1-0.4 M{sub Sun }. HD 142527 has a complex disk structure, with an inner gap imaged in both the near and mid-IR as well as a spiral feature in the outer disk in the near-IR. This newly detected low-mass stellar companion may provide a critical explanation of the observed disk structure.« less

  3. Tomographic Sounding of Protoplanetary and Transitional Disks: Using Inner Disk Variability at Near to Mid-IR Wavelengths to Probe Conditions in the Outer Disk

    NASA Technical Reports Server (NTRS)

    Grady, C. A.; Sitko, M.L.

    2013-01-01

    Spitzer synoptic monitoring of young stellar associations has demonstrated that variability among young stars and their disks is ubiquitous. The Spitzer studies have been limited by target visibility windows and cover only a short temporal baseline in years. A complementary approach is to focus on stars chosen for high-value observations (e.g. high-contrast imaging, interferometry, or access to wavelengths which are difficult to achieve from the ground) where the synoptic data can augment the imagery or interferometry as well as probing disk structure. In this talk, we discuss how synoptic data for two protoplanetary disks, MWC 480 and HD 163296, constrain the dust disk scale height, account for variable disk illumination, and can be used to locate emission features, such as the IR bands commonly associated with PAHs in the disk, as part of our SOFIA cycle 1 study. Similar variability is now known for several pre-transitional disks, where synoptic data can be used to identify inner disks which are not coplanar with the outer disk, and which may be relicts of giant planet-giant planet scattering events. Despite the logistical difficulties in arranging supporting, coordinated observations in tandem with high-value observations, such data have allowed us to place imagery in context, constrained structures in inner disks not accessible to direct imagery, and may be a tool for identifying systems where planet scattering events have occurred.

  4. Super-Earths as Failed Cores in Orbital Migration Traps

    NASA Astrophysics Data System (ADS)

    Hasegawa, Yasuhiro

    2016-11-01

    I explore whether close-in super-Earths were formed as rocky bodies that failed to grow fast enough to become the cores of gas giants before the natal protostellar disk dispersed. I model the failed cores’ inward orbital migration in the low-mass or type I regime to stopping points at distances where the tidal interaction with the protostellar disk applies zero net torque. The three kinds of migration traps considered are those due to the dead zone's outer edge, the ice line, and the transition from accretion to starlight as the disk's main heat source. As the disk disperses, the traps move toward final positions near or just outside 1 au. Planets at this location exceeding about 3 M ⊕ open a gap, decouple from their host traps, and migrate inward in the high-mass or type II regime to reach the vicinity of the star. I synthesize the population of planets that formed in this scenario, finding that a fraction of the observed super-Earths could have been failed cores. Most super-Earths that formed this way have more than 4 M ⊕, so their orbits when the disks dispersed were governed by type II migration. These planets have solid cores surrounded by gaseous envelopes. Their subsequent photoevaporative mass loss is most effective for masses originally below about 6 M ⊕. The failed core scenario suggests a division of the observed super-Earth mass-radius diagram into five zones according to the inferred formation history.

  5. Short-period cataclysmic variables at Observatorio Astronomico Nacional IA UNAM.

    NASA Astrophysics Data System (ADS)

    Zharikov, S.

    2014-03-01

    We present results of time-resolved spectroscopy and photometry of faint (∼17-19 mag) Cataclysmic Variable stars with periods around the minimum orbital period (∼80 min). In this work we concentrated to our results of study of CVs systems which have evolved beyond the period minimum (so-called bounce-back systems). Using various instruments attached to 2.1m, 1.5m and 0.84m telescopes of OAN SPM of IA UNAM we explored conditions and structure of accretion disks in those short-period Cataclysmic Variables. We showed that the accretion disk in a system with an extremely low mass ratio (≤0.05) grows in the size reaching 2:1 resonance radius and is relatively cool. The disk in such systems also becomes largely optically thin in the continuum, contributing to the total flux less than the stellar components of the system. In contrast, the viscosity and the temperature in spiral arms formed at the outer edge of the disk are higher and their contribution in continuum plays an increasingly important role. We model such disks and generate light curves which successfully simulate the observed double-humped light curves in the quiescence. Thanks to support of our programs by the Time Allocation Commission of OAN SPM, the perfect astroclimate in the observatory, and the phase-locked method of spectroscopic observations, the significant progress in the study of bounce-back systems using a small size telescope was reached.

  6. PLANETARY SYSTEM FORMATION IN THE PROTOPLANETARY DISK AROUND HL TAURI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akiyama, Eiji; Hasegawa, Yasuhiro; Hayashi, Masahiko

    2016-02-20

    We reprocess the Atacama Large Millimeter/Submillimeter Array (ALMA) long-baseline science verification data taken toward HL Tauri. Assuming the observed gaps are opened up by currently forming, unseen bodies, we estimate the mass of such hypothetical bodies based on the following two approaches: the Hill radius analysis and a more elaborate approach developed from the angular momentum transfer analysis in gas disks. For the former, the measured gap widths are used for estimating the mass of the bodies, while for the latter, the measured gap depths are utilized. We show that their masses are comparable to or less than the mass of Jovian planets.more » By evaluating Toomre’s gravitational instability (GI) condition and cooling effect, we find that the GI might be a mechanism to form the bodies in the outer region of the disk. As the disk might be gravitationally unstable only in the outer region of the disk, inward planetary migration would be needed to construct the current architecture of the observed disk. We estimate the gap-opening mass and show that type II migration might be able to play such a role. Combining GIs with inward migration, we conjecture that all of the observed gaps may be a consequence of bodies that might have originally formed at the outer part of the disk, and have subsequently migrated to the current locations. While ALMA’s unprecedented high spatial resolution observations can revolutionize our picture of planet formation, more dedicated observational and theoretical studies are needed to fully understand the HL Tauri images.« less

  7. Spitzer observations of NGC 2264: the nature of the disk population

    NASA Astrophysics Data System (ADS)

    Teixeira, P. S.; Lada, C. J.; Marengo, M.; Lada, E. A.

    2012-04-01

    Aims: NGC 2264 is a young cluster with a rich circumstellar disk population which makes it an ideal target for studying the evolution of stellar clusters. Our goal is to study the star formation history of NGC 2264 and to analyse the primordial disk evolution of its members. Methods: The study presented is based on data obtained with the Infrared Array Camera (IRAC) and the Multiband Imaging Photometer for Spitzer (MIPS) on board the Spitzer Space Telescope, combined with deep near-infrared (NIR) ground-based FLAMINGOS imaging and previously published optical data. Results: We build NIR dust extinction maps of the molecular cloud associated with the cluster, and determine it to have a mass of 2.1 × 103 M⊙ above an AV of 7 mag. Using a differential Ks-band luminosity function (KLF) of the cluster, we estimate the size of the population of NGC 2264, within the area observed by FLAMINGOS, to be 1436 ± 242 members. The star formation efficiency is ≥ ~25%. We identify the disk population and divide it into 3 groups based on their spectral energy distribution slopes from 3.6 μm to 8 μm and on the 24 μm excess emission: (i) optically thick inner disks, (ii) anaemic inner disks, and (iii) disks with inner holes, or transition disks. We analyse the spatial distribution of these sources and find that sources with thick disks segregate into sub-clusterings, whereas sources with anaemic disks do not. Furthermore, sources with anaemic disks are found to be unembedded (i.e., with AV < 3 mag), whereas the clustered sources with thick disks are still embedded within the parental cloud. Conclusions: NGC 2264 has undergone more than one star-forming event, where the anaemic and extincted thick disk population appear to have formed in separate episodes: the sources with anaemic disks are more evolved and have had time to disperse and populate a halo of the cluster. We also find tentative evidence of triggered star-formation in the Fox Fur Nebula. In terms of disk evolution, our findings support the emerging disk evolution paradigm of two distinct evolutionary paths for primordial optically thick disks: a homologous one where the disk emission decreases uniformly at NIR and mid-infrared (MIR) wavelengths, and a radially differential one where the emission from the inner region of the disk decreases more rapidly than from the outer region (forming transition disks).

  8. Adaptive Optics Imaging of the Circumbinary Disk around the T Tauri Binary UY Aurigae: Estimates of the Binary Mass and Circumbinary Dust Grain Size Distribution

    NASA Astrophysics Data System (ADS)

    Close, L. M.; Dutrey, A.; Roddier, F.; Guilloteau, S.; Roddier, C.; Northcott, M.; Ménard, F.; Duvert, G.; Graves, J. E.; Potter, D.

    1998-05-01

    We have obtained high-resolution (FWHM = 0.15") deep images of the UY Aur binary at J, H, and K' with the University of Hawaii adaptive optics instrument. We clearly detect an R ~ 500 AU circumbinary disk discovered with millimeter interferometry, making UY Aur the second young binary with a confirmed circumbinary disk. It appears that the disk is inclined ~42° from face on. We find that the near side of the disk is brighter than the far side by factors of 2.6, 2.7, and 6.5 times at K', H, and J, respectively. The original GG Tau circumbinary disk has been reexamined and is found to have similar flux ratios of 1.5, 2.6, and 3.6 at K', H, and J, respectively. A realistic power-law distribution (p = 4.7) of spherical dust aggregates (composed of silicates, amorphous carbon, and graphite) that reproduces the observed ISM extinction curve also predicts these observed flux ratios from Mie scattering theory. We find the observed preference of forward-scattering over back-scattering is well fitted (global χ2 minimization) by Mie scattering off particles in the range amin = 0.03 μm to amax = 0.5-0.6 μm. The existence of a significant population of grain radii larger than 0.6 μm is not supported by the scattering observations. Based on the observed disk inclination we derive an orbit for UY Aur where the mass for the binary is 1.6+0.47-0.67 M⊙. Based on the observed K7 and M0 spectral types for UY Aur A and B, accretion disk models for the inner disks around the central stars were constructed. The models suggest that small (lower limit R ~ 5-10 AU) inner disks exist around B and A. It appears that B is accreting ~5 times faster than A, and that both inner disks may be exhausted in ~102-103 yr without replenishment from the outer circumbinary disk. Our images suggest that these inner disks may indeed be resupplied with material through thin streamers of material that penetrate inside the circumbinary disk. Currently it appears that such a streamer may be a close to UY Aur B. Comparison of our IR images and the millimeter images of the gas clearly show that the dust seen in our IR images traces the gas in the circumbinary disk, as was also the case with GG Tau.

  9. Inferring a Gap in the Group II Disk of the Herbig Ae/Be Star HD 142666

    NASA Astrophysics Data System (ADS)

    Ezra Rubinstein, Adam; Macías, Enrique; Espaillat, Catherine; Calvet, Nuria; Robinson, Connor; Zhang, Ke

    2018-01-01

    Disks around Herbig Ae/Be (HAeBe) stars have been classified into Group I or Group II, which are thought to be flared and flat disks respectively. Most Group I disks have been shown to have large gaps, suggesting ongoing planet formation, while no large gaps have been found in Group II disks. We analyzed the Group II disk of HD 142666 using irradiated accretion disk modeling of the broad-band spectral energy distribution along with the 1.3 millimeter spatial brightness distribution traced by Atacama Large Millimeter and Submillimeter Array (ALMA) observations. Our model is able to reproduce the available data, predicting a high degree of settling in the disk, which is consistent with the Group II classification of HD 142666. Although the ALMA observations did not have enough angular resolution to fully resolve the inner parts of the disk, the observed visibilities and synthesized image can only be reproduced when including a gap between ~5 to 12 au in our disk model. In addition, we also infer that the disk has an outer radius of ~65 au, which may be evidence of radial migration of dust or an unseen, low-mass companion that is truncating the outer disk. These results may suggest that Group II disks around HAeBe stars have gaps, possibly carved by young giant planets in the disk. Further ALMA observations of HD 142666 and other Group II disks are needed to discern if gaps are common in this class of objects, as well as to reveal their possible origin.

  10. Hubble Space Telescope Imaging of the Active Dwarf Galaxy RGG 118

    NASA Astrophysics Data System (ADS)

    Baldassare, Vivienne F.; Reines, Amy E.; Gallo, Elena; Greene, Jenny E.

    2017-12-01

    RGG 118 (SDSS 1523+1145) is a nearby (z = 0.0243), dwarf disk galaxy ({M}* ≈ 2× {10}9 {M}⊙ ) that is found to host an active ˜50,000 solar mass black hole at its core. RGG 118 is one of a growing collective sample of dwarf galaxies known to contain active galactic nuclei (AGNs)—a group that, until recently, contained only a handful of objects. Here, we report on new Hubble Space Telescope Wide Field Camera 3 UVIS and IR imaging of RGG 118, with the main goal of analyzing its structure. Using 2D parametric modeling, we find that the morphology of RGG 118 is best described by an outer spiral disk, an inner component consistent with a pseudobulge, and a central point-spread function (PSF). The luminosity of the PSF is consistent with the central point source that is being dominated by the AGN. We measure the luminosity and the mass of the “pseudobulge” and confirm that the central black hole in RGG 118 is under-massive, with respect to the {M}{BH}{--}{M}{bulge} and {M}{BH}{--}{L}{bulge} relations. This result is consistent with a picture in which black holes in disk-dominated galaxies grow primarily through secular processes.

  11. A Complete ALMA Map of the Fomalhaut Debris Disk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacGregor, Meredith A.; Wilner, David J.; Matrà, Luca

    We present ALMA mosaic observations at 1.3 mm (223 GHz) of the Fomalhaut system with a sensitivity of 14 μ Jy/beam. These observations provide the first millimeter map of the continuum dust emission from the complete outer debris disk with uniform sensitivity, enabling the first conclusive detection of apocenter glow. We adopt an MCMC modeling approach that accounts for the eccentric orbital parameters of a collection of particles within the disk. The outer belt is radially confined with an inner edge of 136.3 ± 0.9 au and width of 13.5 ± 1.8 au. We determine a best-fit eccentricity of 0.12more » ± 0.01. Assuming a size distribution power-law index of q = 3.46 ± 0.09, we constrain the dust absorptivity power-law index β to be 0.9 < β < 1.5. The geometry of the disk is robustly constrained with inclination 65.°6 ± 0.°3, position angle 337.°9 ± 0.°3, and argument of periastron 22.°5 ± 4.°3. Our observations do not confirm any of the azimuthal features found in previous imaging studies of the disk with Hubble Space Telescope , SCUBA, and ALMA. However, we cannot rule out structures ≤10 au in size or that only affect smaller grains. The central star is clearly detected with a flux density of 0.75 ± 0.02 mJy, significantly lower than predicted by current photospheric models. We discuss the implications of these observations for the directly imaged Fomalhaut b and the inner dust belt detected at infrared wavelengths.« less

  12. HD 106906 b: A PLANETARY-MASS COMPANION OUTSIDE A MASSIVE DEBRIS DISK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, Vanessa; Reiter, Megan; Morzinski, Katie

    2014-01-01

    We report the discovery of a planetary-mass companion, HD 106906 b, with the new Magellan Adaptive Optics (MagAO) + Clio2 system. The companion is detected with Clio2 in three bands: J, K{sub S} , and L', and lies at a projected separation of 7.''1 (650 AU). It is confirmed to be comoving with its 13 ± 2 Myr F5 host using Hubble Space Telescope Advanced Camera for Surveys astrometry over a time baseline of 8.3 yr. DUSTY and COND evolutionary models predict that the companion's luminosity corresponds to a mass of 11 ± 2 M {sub Jup}, making it one ofmore » the most widely separated planetary-mass companions known. We classify its Magellan/Folded-Port InfraRed Echellette J/H/K spectrum as L2.5 ± 1; the triangular H-band morphology suggests an intermediate surface gravity. HD 106906 A, a pre-main-sequence Lower Centaurus Crux member, was initially targeted because it hosts a massive debris disk detected via infrared excess emission in unresolved Spitzer imaging and spectroscopy. The disk emission is best fit by a single component at 95 K, corresponding to an inner edge of 15-20 AU and an outer edge of up to 120 AU. If the companion is on an eccentric (e > 0.65) orbit, it could be interacting with the outer edge of the disk. Close-in, planet-like formation followed by scattering to the current location would likely disrupt the disk and is disfavored. Furthermore, we find no additional companions, though we could detect similar-mass objects at projected separations >35 AU. In situ formation in a binary-star-like process is more probable, although the companion-to-primary mass ratio, at <1%, is unusually small.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballering, Nicholas P.; Su, Kate Y. L.; Rieke, George H.

    We investigate whether varying the dust composition (described by the optical constants) can solve a persistent problem in debris disk modeling—the inability to fit the thermal emission without overpredicting the scattered light. We model five images of the β Pictoris disk: two in scattered light from the Hubble Space Telescope ( HST )/Space Telescope Imaging Spectrograph at 0.58 μ m and HST /Wide Field Camera 3 (WFC 3) at 1.16 μ m, and three in thermal emission from Spitzer /Multiband Imaging Photometer for Spitzer (MIPS) at 24 μ m, Herschel /PACS at 70 μ m, and Atacama Large Millimeter/submillimeter Arraymore » at 870 μ m. The WFC3 and MIPS data are published here for the first time. We focus our modeling on the outer part of this disk, consisting of a parent body ring and a halo of small grains. First, we confirm that a model using astronomical silicates cannot simultaneously fit the thermal and scattered light data. Next, we use a simple generic function for the optical constants to show that varying the dust composition can improve the fit substantially. Finally, we model the dust as a mixture of the most plausible debris constituents: astronomical silicates, water ice, organic refractory material, and vacuum. We achieve a good fit to all data sets with grains composed predominantly of silicates and organics, while ice and vacuum are, at most, present in small amounts. This composition is similar to one derived from previous work on the HR 4796A disk. Our model also fits the thermal spectral energy distribution, scattered light colors, and high-resolution mid-IR data from T-ReCS for this disk. Additionally, we show that sub-blowout grains are a necessary component of the halo.« less

  14. Chandra/ACIS-I Study of the X-Ray Properties of the NGC 6611 and M16 Stellar Populations

    NASA Astrophysics Data System (ADS)

    Guarcello, M. G.; Caramazza, M.; Micela, G.; Sciortino, S.; Drake, J. J.; Prisinzano, L.

    2012-07-01

    Mechanisms regulating the origin of X-rays in young stellar objects and the correlation with their evolutionary stage are under debate. Studies of the X-ray properties in young clusters allow us to understand these mechanisms. One ideal target for this analysis is the Eagle Nebula (M16), with its central cluster NGC 6611. At 1750 pc from the Sun, it harbors 93 OB stars, together with a population of low-mass stars from embedded protostars to disk-less Class III objects, with age <=3 Myr. We study an archival 78 ks Chandra/ACIS-I observation of NGC 6611 and two new 80 ks observations of the outer region of M16, one centered on the Column V and the other on a region of the molecular cloud with ongoing star formation. We detect 1755 point sources with 1183 candidate cluster members (219 disk-bearing and 964 disk-less). We study the global X-ray properties of M16 and compare them with those of the Orion Nebula Cluster. We also compare the level of X-ray emission of Class II and Class III stars and analyze the X-ray spectral properties of OB stars. Our study supports the lower level of X-ray activity for the disk-bearing stars with respect to the disk-less members. The X-ray luminosity function (XLF) of M16 is similar to that of Orion, supporting the universality of the XLF in young clusters. Eighty-five percent of the O stars of NGC 6611 have been detected in X-rays. With only one possible exception, they show soft spectra with no hard components, indicating that mechanisms for the production of hard X-ray emission in O stars are not operating in NGC 6611.

  15. Transitional Disks Associated with Intermediate-Mass Stars: Results of the SEEDS YSO Survey

    NASA Technical Reports Server (NTRS)

    Grady, C.; Fukagawa, M.; Maruta, Y.; Ohta, Y.; Wisniewski, J.; Hashimoto, J.; Okamoto, Y.; Momose, M.; Currie, T.; McElwain, M.; hide

    2014-01-01

    Protoplanetary disks are where planets form, grow, and migrate to produce the diversity of exoplanet systems we observe in mature systems. Disks where this process has advanced to the stage of gap opening, and in some cases central cavity formation, have been termed pre-transitional and transitional disks in the hope that they represent intermediate steps toward planetary system formation. Recent reviews have focussed on disks where the star is of solar or sub-solar mass. In contrast to the sub-millimeter where cleared central cavities predominate, at H-band some T Tauri star transitional disks resemble primordial disks in having no indication of clearing, some show a break in the radial surface brightness profile at the inner edge of the outer disk, while others have partially to fully cleared gaps or central cavities. Recently, the Meeus Group I Herbig stars, intermediate-mass PMS stars with IR spectral energy distributions often interpreted as flared disks, have been proposed to have transitional and pre-transitional disks similar to those associated with solar-mass PMS stars, based on thermal-IR imaging, and sub-millimeter interferometry. We have investigated their appearance in scattered light as part of the Strategic Exploration of Exoplanets and Disks with Subaru (SEEDS), obtaining H-band polarimetric imagery of 10 intermediate-mass stars with Meeus Group I disks. Augmented by other disks with imagery in the literature, the sample is now sufficiently large to explore how these disks are similar to and differ from T Tauri star disks. The disk morphologies seen in the Tauri disks are also found for the intermediate-mass star disks, but additional phenomena are found; a hallmark of these disks is remarkable individuality and diversity which does not simply correlate with disk mass or stellar properties, including age, including spiral arms in remnant envelopes, arms in the disk, asymmetrically and potentially variably shadowed outer disks, gaps, and one disk where only half of the disk is seen in scattered light at H. We will discuss our survey results in terms of spiral arm theory, dust trapping vortices, and systematic differences in the relative scale height of these disks compared to those around Solar-mass stars. For the disks with spiral arms we discuss the planet-hosting potential, and limits on where giant planets can be located. We also discuss the implications for imaging with extreme adaptive optics instruments. Grady is supported under NSF AST 1008440 and through the NASA Origins of Solar Systems program on NNG13PB64P. JPW is supported NSF AST 100314. 0) in marked contrast to protoplanetary disks, transitional disks exhibit wide range of structural features1) arm visibility correlated with relative scale height in disk2) asymmetric and possibly variable shadowing of outer portions some transitional disks3) confirm pre-transitional disk nature of Oph IRS 48, MWC 758, HD 169142, etc.

  16. The inner-disk and stellar properties of the young stellar object WL 16

    NASA Technical Reports Server (NTRS)

    Carr, John S.; Tokunaga, Alan T.; Najita, Joan; Shu, Frank H.; Glassgold, Alfred E.

    1993-01-01

    We present kinematic evidence for a rapidly rotating circumstellar disk around the young stellar object WL 16, based on new high-velocity-resolution data of the v = 2-0 CO bandhead emission. A Keplerian disk provides an excellent fit to the observed profile and requires a projected velocity for the CO-emitting region of roughly 250 km/s at the inner radius and 140 km/s at the outer radius, giving a ratio of the inner to the outer radius of about 0.3. We show that satisfying the constraints imposed by the gas kinematics, the observed CO flux, and the total source luminosity requires the mass of WL 16 to lie between 1.4 and 2.5 solar mass. The inner disk radius for the CO emission must be less than 8 solar radii.

  17. Design and Operation of a Calorimeter for Advanced Multilayer Insulation Testing

    NASA Technical Reports Server (NTRS)

    Chato, David J.; Johnson, Wesley L.; Van Dresar, Neil

    2016-01-01

    A calorimeter has been constructed to accurately measure insulation performance with a nominal 90K outer boundary and a 20K inner boundary. Unique features of this design include use of mechanical cryocoolers instead of cryogens and measurement of the heat load with a calibrated heat conduction rod. The calorimeter is operational and has completed its first test series. The initial test series was designed to look for differences in performance between a single layer of aluminum foil and a sheet of double aluminized Mylar (DAM). Although it has been speculated that the aluminum foil would perform better, since the aluminum coating on the Mylar might not be thick enough to stop the transmission of long wave length infrared radiation, our testing showed a higher heat load for the aluminum foil than the DAM. The aluminum foil showed a heat load of 132 mW at an 87 K outer temperature and 152 mW at a 107K outer temperature, whereas the DAM showed a heat load of 66 mW at an 88 K outer temperature and 81 mW at 108 K.

  18. Design and Operation of a Calorimeter for Advanced Multilayer Insulation Testing

    NASA Technical Reports Server (NTRS)

    Chato, David; Johnson, Wesley; Dresar, Neil Van

    2016-01-01

    A calorimeter has been constructed to accurately measure insulation performance with a nominal 90K cold outer boundary and a 20K inner boundary. Unique features of this design include use of mechanical cryocoolers instead cryogens and measurement of the heat load with a calibrated rod to serve as a conduction path. The calorimeter is operational and has completed its first test series. The initial test series was designed to look for differences in performance between a single layer of aluminum foil and a sheet of double aluminized mylar (DAM). Although it has been speculated that the aluminum foil would perform better, since the mylar coating might not thick enough to stop the transmission of long wave length infrared radiation, our testing showed a higher heat load for the aluminum foil than the DAM. The aluminum foil showed a heat load of 132 mW at an 87 K outer temperature and 152 mW at a 107K outer temperature. Whereas the DAM showed a heat load of 66 mW at an 88 K outer temperature and 81 mW at 108 K.

  19. Modulated mass-transfer model for superhumps in SU Ursae Majoris stars

    NASA Technical Reports Server (NTRS)

    Mineshige, Shin

    1988-01-01

    The response of a circular accretion disk to rapid modulation of the mass-transfer rate into the disk is explored in order to model superhumps in SU UMa stars. It is proposed that periodically enhanced flow may disrupt or heat up the outer disk and produce the dips noted just before the superhump peaks. The elliptical accretion-disk model with extended vertical disk structure can account for the observed characteristics of superhumps in these stars.

  20. Radial decoupling of small and large dust grains in the transitional disk RX J1615.3-3255

    NASA Technical Reports Server (NTRS)

    Kooistra, Robin; Kamp, Inga; Fukagawa, Misato; Menard, Francois; Momose, Munetake; Tsukagoshi, Takashi; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Hashimoto, Jun; Abe, Lyu; hide

    2017-01-01

    We present H-band (1.6 micron) scattered light observations of the transitional disk RX J1615.3-3255, located in the approx. 1 Myr old Lupus association. From a polarized intensity image, taken with the HiCIAO instrument of the Subaru Telescope, we deduce the position angle and the inclination angle of the disk. The disk is found to extend out to 68 +/- 12 AU in scattered light and no clear structure is observed. Our inner working angle of 24 AU does not allow us to detect a central decrease in intensity similar to that seen at 30 AU in the 880 m continuum observations. We compare the observations with multiple disk models based on the spectral energy distribution (SED) and submm interferometry and find that an inner rim of the outer disk at 30 AU containing small silicate grains produces a polarized intensity signal which is an order of magnitude larger than observed. We show that a model in which the small dust grains extend smoothly into the cavity found for large grains is closer to the actual H-band observations. A comparison of models with different dust size distributions suggests that the dust in the disk might have undergone significant processing compared to the interstellar medium.

  1. The protoplanetary system HD 100546 in Hα polarized light from SPHERE/ZIMPOL. A bar-like structure across the disk gap?

    NASA Astrophysics Data System (ADS)

    Mendigutía, I.; Oudmaijer, R. D.; Garufi, A.; Lumsden, S. L.; Huélamo, N.; Cheetham, A.; de Wit, W. J.; Norris, B.; Olguin, F. A.; Tuthill, P.

    2017-12-01

    Context. HD 100546 is one of the few known pre-main-sequence stars that may host a planetary system in its disk. Aims: This work aims to contribute to our understanding of HD 100546 by analyzing new polarimetric images with high spatial resolution. Methods: Using VLT/SPHERE/ZIMPOL with two filters in Hα and the adjacent continuum, we have probed the disk gap and the surface layers of the outer disk, covering a region <500 mas (<55 au at 109 pc) from the central star, at an angular resolution of 20 mas. Results: Our data show an asymmetry: the SE and NW regions of the outer disk are more polarized than the SW and NE regions. This asymmetry can be explained from a preferential scattering angle close to 90° and is consistent with previous polarization images. The outer disk in our observations extends from 13 ± 2 to 45 ± 9 au, with a position angle and inclination of 137 ± 5° and 44 ± 8°, respectively. The comparison with previous estimates suggests that the disk inclination could increase with the stellocentric distance, although the different measurements are still consistent within the error bars. In addition, no direct signature of the innermost candidate companion is detected from the polarimetric data, confirming recent results that were based on intensity imagery. We set an upper limit to its mass accretion rate <10-8 M⊙ yr-1 for a substellar mass of 15 MJup. Finally, we report the first detection (>3σ) of a 20 au bar-like structure that crosses the gap through the central region of HD 100546. Conclusions: In the absence of additional data, it is tentatively suggested that the bar could be dust dragged by infalling gas that radially flows from the outer disk to the inner region. This could represent an exceptional case in which a small-scale radial inflow is observed in a single system. If this scenario is confirmed, it could explain the presence of atomic gas in the inner disk that would otherwise accrete on to the central star on a timescale of a few months/years, as previously indicated from spectro-interferometric data, and could be related with additional (undetected) planets.

  2. PLANETARY MIGRATION AND ECCENTRICITY AND INCLINATION RESONANCES IN EXTRASOLAR PLANETARY SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Man Hoi; Thommes, Edward W.

    2009-09-10

    The differential migration of two planets due to planet-disk interaction can result in capture into the 2:1 eccentricity-type mean-motion resonances. Both the sequence of 2:1 eccentricity resonances that the system is driven through by continued migration and the possibility of a subsequent capture into the 4:2 inclination resonances are sensitive to the migration rate within the range expected for type II migration due to planet-disk interaction. If the migration rate is fast, the resonant pair can evolve into a family of 2:1 eccentricity resonances different from those found by Lee. This new family has outer orbital eccentricity e {sub 2}more » {approx}> 0.4-0.5, asymmetric librations of both eccentricity resonance variables, and orbits that intersect if they are exactly coplanar. Although this family exists for an inner-to-outer planet mass ratio m {sub 1}/m {sub 2} {approx}> 0.2, it is possible to evolve into this family by fast migration only for m {sub 1}/m {sub 2} {approx}> 2. Thommes and Lissauer have found that a capture into the 4:2 inclination resonances is possible only for m {sub 1}/m {sub 2} {approx}< 2. We show that this capture is also possible for m {sub 1}/m {sub 2} {approx}> 2 if the migration rate is slightly slower than that adopted by Thommes and Lissauer. There is significant theoretical uncertainty in both the sign and the magnitude of the net effect of planet-disk interaction on the orbital eccentricity of a planet. If the eccentricity is damped on a timescale comparable to or shorter than the migration timescale, e {sub 2} may not be able to reach the values needed to enter either the new 2:1 eccentricity resonances or the 4:2 inclination resonances. Thus, if future observations of extrasolar planetary systems were to reveal certain combinations of mass ratio and resonant configuration, they would place a constraint on the strength of eccentricity damping during migration, as well as on the rate of the migration itself.« less

  3. High-Contrast NIR Polarization Imaging of MWC480

    NASA Technical Reports Server (NTRS)

    McElwain, M. W.; Kusakabe, N.; Hashimoto, J.; Kudo, T.; Kandori, R.; Miyama, S.; Morino, J.-I.; Suto, H.; Suzuki, R.; Tamura, M.; hide

    2012-01-01

    One of the key predictions of modeling from the IR excess of Herbig Ae stars is that for protoplanetary disks, where significant grain growth and settling has occurred, the dust disk has flattened to the point that it can be partially or largely shadowed by the innermost material at or near the dust sublimation radius. When the self-shadowing has already started, the outer disk is expected to be detected in scattered light only in the exceptional cases that the scale height of the dust disk at the sublimation radius is smaller than usual. High-contrast imaging combined with the IR spectral energy distribution allow us to measure the degree of flattening of the disk, as well as to determine the properties of the outer disk. We present polarimetric differential imaging in H band obtained with Subaru/HiCIAO of one such system, MWC 480. The HiCIAO data were obtained at a historic minimum of the NIR excess. The disk is detected in scattered light from 0".2-1"0 (27.4-137 AU). Together with the marginal detection of the disk from 1998 February 24 by HST / NICMOS, our data constrain the opening half angle for the disk to lie between 1.3 <= Theta <=2.2 deg. When compared with similar measures in CO for the gas disk from the literature, the dust disk subtends only approx 30% of the gas disk scale height (H/R approx 0. 03). Such a dust disk is a factor of 5-7 flatter than transitional disks, which have structural signatures that giant planets have formed.

  4. LAUNCHING AND QUENCHING OF BLACK HOLE RELATIVISTIC JETS AT LOW ACCRETION RATE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pu, Hung-Yi; Chang, Hsiang-Kuang; Hirotani, Kouichi

    2012-10-20

    Relativistic jets are launched from black hole (BH) X-ray binaries and active galactic nuclei when the disk accretion rate is below a certain limit (i.e., when the ratio of the accretion rate to the Eddingtion accretion rate, m-dot , is below about 0.01) but quenched when above. We propose a new paradigm to explain this observed coupling between the jet and the accretion disk by investigating the extraction of the rotational energy of a BH when it is surrounded by different types of accretion disk. At low accretion rates (e.g., when m-dot {approx}<0.1), the accretion near the event horizon ismore » quasi-spherical. The accreting plasmas fall onto the event horizon in a wide range of latitudes, breaking down the force-free approximation near the horizon. To incorporate the plasma inertia effect, we consider the magnetohydrodynamical (MHD) extraction of the rotational energy from BHs by the accreting MHD fluid, as described by the MHD Penrose process. It is found that the energy extraction operates, and hence a relativistic jet is launched, preferentially when the accretion disk consists of an outer Shakura-Sunyaev disk (SSD) and an inner advection-dominated accretion flow. When the entire accretion disk type changes into an SSD, the jet is quenched because the plasmas bring more rest-mass energy than what is extracted from the hole electromagnetically to stop the extraction. Several other issues related to observed BH disk-jet couplings, such as why the radio luminosity increases with increasing X-ray luminosity until the radio emission drops, are also explained.« less

  5. Studies of extra-solar Oort Clouds and the Kuiper Disk

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan

    1994-01-01

    The March 1994 Semi-Annual report for Studies of Extra-Solar Oort Clouds and the Kuiper Disk is presented. We are conducting research designed to enhance our understanding of the evolution and detectability of comet clouds and disks. This area holds promise for also improving our understanding of outer solar system formation, the bombardment history of the planets, the transport of volatiles and organics from the outer solar system to the inner planets, and to the ultimate fate of comet clouds around the Sun and other stars. According to 'standard' theory, both the Kuiper Disk and Oort Cloud are (at least in part) natural products of the planetary accumulation stage of solar system formation. One expects such assemblages to be a common attribute of other solar systems. Therefore, searches for comet disks and clouds orbiting other stars offer a new method for inferring the presence of planetary systems. Our three-year effort consists of two major efforts: observational work to predict and search for the signatures of Oort Clouds and comet disks around other stars; and modeling studies of the formation and evolution of the Kuiper Disk (KD) and similar assemblages that may reside around other stars, including beta Pic.

  6. Weak Turbulence in Protoplanetary Disks as Revealed by ALMA

    NASA Astrophysics Data System (ADS)

    Flaherty, Kevin; Hughes, A. Meredith; Simon, Jacob; Andrews, Sean; Bai, Xue-Ning; Wilner, David

    2018-01-01

    Gas kinematics are an important part of planet formation, influencing processes ranging from the growth of sub-micron grains to the migration of gas giant planets. Dynamical behavior can be traced with both synoptic observations of the mid-infrared excess, sensitive to the inner disk, and spatially resolved radio observations of gas emission, sensitive to the outer disk. I report on our ongoing efforts to constrain turbulence using ALMA observations of CO emission from protoplanetary disks. Building on our upper limit around HD 163296 (<0.05cs), we find evidence for weak turbulence around TW Hya (<0.08cs) indicating that weak non-thermal motion is not unique to HD 163296. I will also discuss observations of CO/13CO/C18O from around V4046 Sgr, DM Tau, and MWC 480 that will help to further expand the turbulence sample, as well as inform our understanding of CO photo-chemistry in the outer edges of these disks.

  7. Photoevaporating Disks around Young Stars: Ultracompact HII Regions and Protoplanetary Disks.

    NASA Astrophysics Data System (ADS)

    Johnstone, Douglas Ian

    1995-01-01

    Newly formed stars produce sufficient Lyman continuum luminosity phi to significantly alter the structure and evolution of the accretion disk surrounding them. In the absence of a stellar wind, a nearly static, photoionized, 10^4 K, disk atmosphere, with a scale height that increases with disk radius varpi as varpi^{3/2 }, forms inside the gravitational radius varpig ~ 1014(M_*/ M_odot) cm where M _* is the mass of the central star. This ionized atmosphere is maintained by both the direct radiation from the central star and the diffuse field produced in the disk atmosphere by the significant fraction of hydrogen recombinations directly to the ground state. Beyond varpig the material evaporated from the disk is capable of escaping from the system and produces an ionized disk wind. The mass-loss due to this disk wind peaks at varpig . The inclusion of a stellar wind into the basic picture reduces the height of the inner disk atmosphere and introduces a new scale radius varpi_ {w} where the thermal pressure of the material evaporated from the disk balances the ram pressure in the wind. In this case the mass-loss due to the disk wind peaks at varpiw and is enhanced over the no-wind case. The photoevaporation of disks around newly formed stars has significance to both ultracompact HII regions and the dispersal of solar-type nebulae. High mass stars are intrinsically hot and thus yield sufficient Lyman luminosity to create, even without a stellar wind, disk mass-loss rates of order 2 times 10 ^{-5}phi_sp{49} {1/2} M_odotyr ^{-1}, where phi 49 = phi/(10 49 Lyman continuum photons s^{-1}). This wind, which will last until the disk is dispersed, ~ 10^5 yrs if the disk mass is M_ {d}~0.3M_*, yields sizes, emission measures and ages consistent with observations of ultracompact HII regions. The well-observed high mass star MWC 349 may be the best example to date of an evaporating disk around a high mass star. On the other end of the stellar scale, many newly formed low-mass stars are known to have enhanced extreme ultraviolet luminosity suggested to be due to boundary layer accretion. Assuming that most low mass stars have such an enhanced Lyman luminosity phi ~ 1041 s ^{-1}, for ~ 3 times 10^7 yrs it is possible to remove most of the gas in the outer disk. A diagnostic of this mass loss may be the low-velocity forbidden oxygen, nitrogen, and sulphur line emission observed around young stars with disks. Photoevaporating disk models yield reasonable agreement with the flux seen in these lines. The process of photoevaporation also has implications for the formation of the giant planets within the solar nebula. Within young stellar clusters a few high mass stars may overwhelm the internal Lyman continuum flux from low mass stars and externally evaporated disks may result. The Trapezium region presents the best studied example of such a cluster. Photoionization due to high energy photons from the high mass stars erode the disks around nearby low mass stars. The resulting short destruction times for these disks constrain the gestation period for creating planets.

  8. [Sulfhydryl group distribution along the axis of the rod outer segment in the frog].

    PubMed

    Derevianchenko, T G; Fedorovich, I B; Ostrovskiĭ, M A

    1985-10-01

    The existence of SH-group concentration axial gradient in frog's retinal rod outer segments has been shown. A diminution of SH-groups in the outer segment apical part points to a damage of the vision pigment during the life span of the rod disks.

  9. The martian moons as the remnants of a giant impact

    NASA Astrophysics Data System (ADS)

    Ronnet, T.; Vernazza, P.; Mousis, O.; Brugger, B.; Beck, P.; Devouard, B.; Witasse, O.; Cipriani, F.

    2017-09-01

    The origin of Phobos and Deimos is still an open question. Currently, none of the three proposed scenarios for their origin (intact capture of two distinct outer solar system small bodies, co-accretion with Mars, and accretion within an impact-generated disk) is able to reconcile their orbital and physical properties. Here we show that gas-to-solid condensation of the building blocks in the outer part of an extended impact-generated disk could reproduce the spectral and physical properties of the moons.

  10. Dust-Corrected Star Formation Rates in Galaxies with Outer Rings

    NASA Astrophysics Data System (ADS)

    Kostiuk, I.; Silchenko, O.

    2018-03-01

    The star formation rates SFR, as well as the SFR surface densities ΣSFR and absolute stellar magnitudes MAB, are determined and corrected for interinsic dust absorption for 34 disk galaxies of early morphological types with an outer ring structure and ultraviolet emission from the ring. These characteristic are determined for the outer ring structures and for the galaxies as a whole. Data from the space telescopes GALEX (in the NUV and FUV ultraviolet ranges) and WISE (in the W4 22 μm infrared band) are used. The average relative deviation in the corrected SFR and ΣSFR derived from the NUV and FUV bands is only 19.0%, so their averaged values are used for statistical consideration. The relations between the dust-corrected SFR characteristics, UV colours, the galaxy morphological type, absolute magnitude are illustrated.

  11. Calorimetric Studies of Bovine Rod Outer Segment Disk Membranes Support a Monomeric Unit for Both Rhodopsin and Opsin

    PubMed Central

    Edrington, Thomas C.; Bennett, Michael; Albert, Arlene D.

    2008-01-01

    The photoreceptor rhodopsin is a G-protein coupled receptor that has recently been proposed to exist as a dimer or higher order oligomer, in contrast to the previously described monomer, in retinal rod outer segment disk membranes. Rhodopsin exhibits considerably greater thermal stability than opsin (the bleached form of the receptor), which is reflected in an ∼15°C difference in the thermal denaturation temperatures (Tm) of rhodopsin and opsin as measured by differential scanning calorimetry. Here we use differential scanning calorimetry to investigate the effect of partial bleaching of disk membranes on the Tm of rhodopsin and of opsin in native disk membranes, as well as in cross-linked disk membranes in which rhodopsin dimers are known to be present. The Tms of rhodopsin and opsin are expected to be perturbed if mixed oligomers are present. The Tm remained constant for rhodopsin and opsin in native disks regardless of the level of bleaching. In contrast, the Tm of cross-linked rhodopsin in disk membranes was dependent on the extent of bleaching. The energy of activation for denaturation of rhodopsin and cross-linked rhodopsin was calculated. Cross-linking rhodopsin significantly decreased the energy of activation. We conclude that in native disk membranes, rhodopsin behaves predominantly as a monomer. PMID:18586850

  12. Herschel Observations of Protostellar and Young Stellar Objects in Nearby Molecular Clouds: The DIGIT Open Time Key Project

    NASA Astrophysics Data System (ADS)

    Green, Joel D.; DIGIT OTKP Team

    2010-01-01

    The DIGIT (Dust, Ice, and Gas In Time) Open Time Key Project utilizes the PACS spectrometer (57-210 um) onboard the Herschel Space Observatory to study the colder regions of young stellar objects and protostellar cores, complementary to recent observations from Spitzer and ground-based observatories. DIGIT focuses on 30 embedded sources and 64 disk sources, and includes supporting photometry from PACS and SPIRE, as well as spectroscopy from HIFI, selected from nearby molecular clouds. For the embedded sources, PACS spectroscopy will allow us to address the origin of [CI] and high-J CO lines observed with ISO-LWS. Our observations are sensitive to the presence of cold crystalline water ice, diopside, and carbonates. Additionally, PACS scans are 5x5 maps of the embedded sources and their outflows. Observations of more evolved disk sources will sample low and intermediate mass objects as well as a variety of spectral types from A to M. Many of these sources are extremely rich in mid-IR crystalline dust features, enabling us to test whether similar features can be detected at larger radii, via colder dust emission at longer wavelengths. If processed grains are present only in the inner disk (in the case of full disks) or from the emitting wall surface which marks the outer edge of the gap (in the case of transitional disks), there must be short timescales for dust processing; if processed grains are detected in the outer disk, radial transport must be rapid and efficient. Weak bands of forsterite and clino- and ortho-enstatite in the 60-75 um range provide information about the conditions under which these materials were formed. For the Science Demonstration Phase we are observing an embedded protostar (DK Cha) and a Herbig Ae/Be star (HD 100546), exemplars of the kind of science that DIGIT will achieve over the full program.

  13. A tunnel and a traffic jam: How transition disks maintain a detectable warm dust component despite the presence of a large planet-carved gap

    NASA Astrophysics Data System (ADS)

    Pinilla, P.; Klarmann, L.; Birnstiel, T.; Benisty, M.; Dominik, C.; Dullemond, C. P.

    2016-01-01

    Context. Transition disks are circumstellar disks that show evidence of a dust cavity, which may be related to dynamical clearing by embedded planet(s). Most of these objects show signs of significant accretion, indicating that the inner disks are not truly empty, but that gas is still streaming through to the star. A subset of transition disks, sometimes called pre-transition disks, also shows a strong near-infrared excess, interpreted as an optically thick dusty belt located close to the dust sublimation radius within the first astronomical unit. Aims: We study the conditions for the survival and maintenance of such an inner disk in the case where a massive planet opens a gap in the disk. In this scenario, the planet filters out large dust grains that are trapped at the outer edge of the gap, while the inner regions of the disk may or may not be replenished with small grains. Methods: We combined hydrodynamical simulations of planet-disk interactions with dust evolution models that include coagulation and fragmentation of dust grains over a large range of radii and derived observational properties using radiative transfer calculations. We studied the role of the snow line in the survival of the inner disk of transition disks. Results: Inside the snow line, the lack of ice mantles in dust particles decreases the sticking efficiency between grains. As a consequence, particles fragment at lower collision velocities than in regions beyond the snow line. This effect allows small particles to be maintained for up to a few Myr within the first astronomical unit. These particles are closely coupled to the gas and do not drift significantly with respect to the gas. For lower mass planets (1 MJup), the pre-transition appearance can be maintained even longer because dust still trickles through the gap created by the planet, moves invisibly and quickly in the form of relatively large grains through the gap, and becomes visible again as it fragments and gets slowed down inside of the snow line. Conclusions: The global study of dust evolution of a disk with an embedded planet, including the changes of the dust aerodynamics near the snow line, can explain the concentration of millimetre-sized particles in the outer disk and the survival of the dust in the inner disk if a large dust trap is present in the outer disk. This behaviour solves the conundrum of the combination of both near-infrared excess and ring-like millimetre emission observed in several transition disks.

  14. High-Resolution Near-Infrared Polarimetry of a Circumstellar Disk around UX Tau A

    NASA Technical Reports Server (NTRS)

    Serabyn, G.; Grady, C. A.; Currie, T.

    2012-01-01

    We present H-band polarimetric imagery of UX Tau A taken with HiCIAO/AO188 on the Subaru Telescope. UX Tau A has been classified as a pre-transitional disk object, with a gap structure separating its inner and outer disks. Our imagery taken with the 0.15" (21 AU) radius coronagraphic mask has revealed a strongly polarized circumstellar disk surrounding UX Tau A which extends to 120 AU, at a spatial resolution of 0.1" (14 AU). It is inclined by 46 degrees plus or minus 2 degrees as the west side is nearest. Although SED modeling and sub-millimeter imagery suggested the presence of a gap in the disk, with the inner edge of the outer disk estimated to be located at 25 - 30 AU, we detect no evidence of a gap at the limit of our inner working angle (23AU) at the near-infrared wavelength. We attribute the observed strong polarization (up to 66 %) to light scattering by dust grains in the disk. However, neither polarization models of the circumstellar disk based on Rayleigh scattering nor Mie scattering approximations were consistent with the observed azimuthal profile of the polarization degrees of the disk. Instead, a geometric optics model of the disk with nonspherical grains with the radii of 30 micrometers is consistent with the observed profile. We suggest that the dust grains have experienced frequent collisional coagulations and have grown in the circumstellar disk of UX Tau A.

  15. Three-dimensional organization of nascent rod outer segment disk membranes.

    PubMed

    Volland, Stefanie; Hughes, Louise C; Kong, Christina; Burgess, Barry L; Linberg, Kenneth A; Luna, Gabriel; Zhou, Z Hong; Fisher, Steven K; Williams, David S

    2015-12-01

    The vertebrate photoreceptor cell contains an elaborate cilium that includes a stack of phototransductive membrane disks. The disk membranes are continually renewed, but how new disks are formed remains poorly understood. Here we used electron microscope tomography to obtain 3D visualization of the nascent disks of rod photoreceptors in three mammalian species, to gain insight into the process of disk morphogenesis. We observed that nascent disks are invariably continuous with the ciliary plasma membrane, although, owing to partial enclosure, they can appear to be internal in 2D profiles. Tomographic analyses of the basal-most region of the outer segment show changes in shape of the ciliary plasma membrane indicating an invagination, which is likely a first step in disk formation. The invagination flattens to create the proximal surface of an evaginating lamella, as well as membrane protrusions that extend between adjacent lamellae, thereby initiating a disk rim. Immediately distal to this initiation site, lamellae of increasing diameter are evident, indicating growth outward from the cilium. In agreement with a previous model, our data indicate that mature disks are formed once lamellae reach full diameter, and the growth of a rim encloses the space between adjacent surfaces of two lamellae. This study provides 3D data of nascent and mature rod photoreceptor disk membranes at unprecedented z-axis depth and resolution, and provides a basis for addressing fundamental questions, ranging from protein sorting in the photoreceptor cilium to photoreceptor electrophysiology.

  16. Sculpting the disk around T Chamaeleontis: an interferometric view

    NASA Astrophysics Data System (ADS)

    Olofsson, J.; Benisty, M.; Le Bouquin, J.-B.; Berger, J.-P.; Lacour, S.; Ménard, F.; Henning, Th.; Crida, A.; Burtscher, L.; Meeus, G.; Ratzka, T.; Pinte, C.; Augereau, J.-C.; Malbet, F.; Lazareff, B.; Traub, W.

    2013-04-01

    Context. Circumstellar disks are believed to be the birthplace of planets and are expected to dissipate on a timescale of a few Myr. The processes responsible for the removal of the dust and gas will strongly modify the radial distribution of the circumstellar matter and consequently the spectral energy distribution. In particular, a young planet will open a gap, resulting in an inner disk dominating the near-IR emission and an outer disk emitting mostly in the far-infrared. Aims: We analyze a full set of data involving new near-infrared data obtained with the 4-telescope combiner (VLTI/PIONIER), new mid-infrared interferometric VLTI/MIDI data, literature photometric and archival data from VLT/NaCo/SAM to constrain the structure of the transition disk around T Cha. Methods: After a preliminary analysis with a simple geometric model, we used the MCFOST radiative transfer code to simultaneously model the SED and the interferometric observables from raytraced images in the H-, L'-, and N-bands. Results: We find that the dust responsible for the strong emission in excess in the near-IR must have a narrow temperature distribution with a maximum close to the silicate sublimation temperature. This translates into a narrow inner dusty disk (0.07-0.11 AU), with a significant height (H/r ~ 0.2) to increase the geometric surface illuminated by the central star. We find that the outer disk starts at about 12 AU and is partially resolved by the PIONIER, SAM, and MIDI instruments. We discuss the possibility of a self-shadowed inner disk, which can extend to distances of several AU. Finally, we show that the SAM closure phases, interpreted as the signature of a candidate companion, may actually trace the asymmetry generated by forward scattering by dust grains in the upper layers of the outer disk. These observations help constrain the inclination and position angle of the disk to about + 58° and - 70°, respectively. Conclusions: The circumstellar environment of T Cha appears to be best described by two disks spatially separated by a large gap. The presence of matter (dust or gas) inside the gap is, however, difficult to assess with present-day observations. Our model suggests the outer disk contaminates the interferometric signature of any potential companion that could be responsible for the gap opening, and such a companion still has to be unambiguously detected. We stress the difficulty to observe point sources in bright massive disks, and the consequent need to account for disk asymmetries (e.g. anisotropic scattering) in model-dependent search for companions. Based on PIONIER observations collected at the VLTI (European Southern Observatory, Paranal, Chile) with programs 087.C-0702(B), 087.C-0709(A), 089.C-0537(A), 083.C-0883(C & D), and 083.C-0295(A & B).

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szulagyi, Judit; Pascucci, Ilaria; Abraham, Peter

    Mid-infrared atomic and ionic line ratios measured in spectra of pre-main-sequence stars are sensitive indicators of the hardness of the radiation field impinging on the disk surface. We present a low-resolution Spitzer IRS search for [Ar II] at 6.98 {mu}m, [Ne II] at 12.81 {mu}m, and [Ne III] 15.55 {mu}m lines in 56 transitional disks. These objects, characterized by reduced near-infrared but strong far-infrared excess emission, are ideal targets to set constraints on the stellar radiation field onto the disk, because their spectra are not contaminated by shock emission from jets/outflows or by molecular emission lines. After demonstrating that wemore » can detect [Ne II] lines and recover their fluxes from the low-resolution spectra, here we report the first detections of [Ar II] lines toward protoplanetary disks. We did not detect [Ne III] emission in any of our sources. Our [Ne II]/[Ne III] line flux ratios combined with literature data suggest that a soft-EUV or X-ray spectrum produces these gas lines. Furthermore, the [Ar II]/[Ne II] line flux ratios point to a soft X-ray and/or soft-EUV stellar spectrum as the ionization source of the [Ar II] and [Ne II] emitting layer of the disk. If the soft X-ray component dominates over the EUV, then we would expect larger photoevaporation rates and, hence, a reduction of the time available to form planets.« less

  18. On the shoulders of giants: properties of the stellar halo and the Milky Way mass distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kafle, Prajwal Raj; Sharma, Sanjib; Lewis, Geraint F.

    2014-10-10

    Halo stars orbit within the potential of the Milky Way, and hence their kinematics can be used to understand the underlying mass distribution. However, the inferred mass distribution depends sensitively on assumptions made on the density and the velocity anisotropy profiles of the tracer population. Also, there is a degeneracy between the parameters of the halo and those of the disk or bulge. Most previous attempts that use halo stars have made arbitrary assumptions about these. In this paper, we decompose the Galaxy into three major components—a bulge, a Miyamoto-Nagai disk, and a Navarro-Frenk-White dark matter halo - and thenmore » model the kinematic data of the halo blue horizontal branch and K-giant stars from the Sloan Extension for Galactic Understanding and Exploration. Additionally, we use the gas terminal velocity curve and the Sgr A* proper motion. With the distance of the Sun from the center of the Galaxy R {sub ☉} = 8.5 kpc, our kinematic analysis reveals that the density of the stellar halo has a break at 17.2{sub −1.0}{sup +1.1} kpc and an exponential cutoff in the outer parts starting at 97.7{sub −15.8}{sup +15.6} kpc. Also, we find that the tracer velocity anisotropy is radially biased with β {sub s} = 0.4 ± 0.2 in the outer halo. We measure halo virial mass M {sub vir} to be 0.80{sub −0.16}{sup +0.31}×10{sup 12} M{sub ⊙}, concentration c to be 21.1{sub −8.3}{sup +14.8}, disk mass to be 0.95{sub −0.30}{sup +0.24}×10{sup 11} M{sub ⊙}, disk scale length to be 4.9{sub −0.4}{sup +0.4} kpc, and bulge mass to be 0.91{sub −0.38}{sup +0.31}×10{sup 10} M{sub ⊙}. The halo mass is found to be small, and this has important consequences. The giant stars reveal that the outermost halo stars have low velocity dispersion, but interestingly this suggests a truncation of the stellar halo density rather than a small overall mass of the Galaxy. Our estimates of local escape velocity v{sub esc}=550.9{sub −22.1}{sup +32.4} km s{sup −1} and dark matter density ρ{sub ⊙}{sup DM}=0.0088{sub −0.0018}{sup +0.0024} M{sub ⊙} pc{sup −3} (0.35{sub −0.07}{sup +0.08} GeV cm{sup –3}) are in good agreement with recent estimates. Some of the above estimates, in particular M {sub vir}, are dependent on the adopted value of R {sub ☉} and also on the choice of the outer power-law index of the tracer number density.« less

  19. The Andromeda Optical and Infrared Disk Survey

    NASA Astrophysics Data System (ADS)

    Sick, J.; Courteau, S.; Cuillandre, J.-C.

    2014-03-01

    The Andromeda Optical and Infrared Disk Survey has mapped M31 in u* g' r' i' JKs wavelengths out to R = 40 kpc using the MegaCam and WIRCam wide-field cameras on the Canada-France-Hawaii Telescope. Our survey is uniquely designed to simultaneously resolve stars while also carefully reproducing the surface brightness of M31, allowing us to study M31's global structure in the context of both resolved stellar populations and spectral energy distributions. We use the Elixir-LSB method to calibrate the optical u* g' r' i' images by building real-time maps of the sky background with sky-target nodding. These maps are stable to μg ≲ 28.5 mag arcsec-2 and reveal warps in the outer M31 disk in surface brightness. The equivalent WIRCam mapping in the near-infrared uses a combination of sky-target nodding and image-to-image sky offset optimization to produce stable surface brightnesses. This study enables a detailed analysis of the systematics of spectral energy distribution fitting with near-infrared bands where asymptotic giant branch stars impose a significant, but ill-constrained, contribution to the near-infrared light of a galaxy. Here we present panchromatic surface brightness maps and initial results from our near-infrared resolved stellar catalog.

  20. Premixed direct injection disk

    DOEpatents

    York, William David; Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin; Zuo, Baifang; Uhm, Jong Ho

    2013-04-23

    A fuel/air mixing disk for use in a fuel/air mixing combustor assembly is provided. The disk includes a first face, a second face, and at least one fuel plenum disposed therebetween. A plurality of fuel/air mixing tubes extend through the pre-mixing disk, each mixing tube including an outer tube wall extending axially along a tube axis and in fluid communication with the at least one fuel plenum. At least a portion of the plurality of fuel/air mixing tubes further includes at least one fuel injection hole have a fuel injection hole diameter extending through said outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.

  1. BREEDING SUPER-EARTHS AND BIRTHING SUPER-PUFFS IN TRANSITIONAL DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Eve J.; Chiang, Eugene, E-mail: evelee@berkeley.edu, E-mail: echiang@astro.berkeley.edu

    The riddle posed by super-Earths (1–4R{sub ⊕}, 2–20M{sub ⊕}) is that they are not Jupiters: their core masses are large enough to trigger runaway gas accretion, yet somehow super-Earths accreted atmospheres that weigh only a few percent of their total mass. We show that this puzzle is solved if super-Earths formed late, as the last vestiges of their parent gas disks were about to clear. This scenario would seem to present fine-tuning problems, but we show that there are none. Ambient gas densities can span many (in one case up to 9) orders of magnitude, and super-Earths can still robustlymore » emerge after ∼0.1–1 Myr with percent-by-weight atmospheres. Super-Earth cores are naturally bred in gas-poor environments where gas dynamical friction has weakened sufficiently to allow constituent protocores to gravitationally stir one another and merge. So little gas is present at the time of core assembly that cores hardly migrate by disk torques: formation of super-Earths can be in situ. The basic picture—that close-in super-Earths form in a gas-poor (but not gas-empty) inner disk, fed continuously by gas that bleeds inward from a more massive outer disk—recalls the largely evacuated but still accreting inner cavities of transitional protoplanetary disks. We also address the inverse problem presented by super-puffs: an uncommon class of short-period planets seemingly too voluminous for their small masses (4–10R{sub ⊕}, 2–6M{sub ⊕}). Super-puffs most easily acquire their thick atmospheres as dust-free, rapidly cooling worlds outside ∼1 AU where nebular gas is colder, less dense, and therefore less opaque. Unlike super-Earths, which can form in situ, super-puffs probably migrated in to their current orbits; they are expected to form the outer links of mean-motion resonant chains, and to exhibit greater water content. We close by confronting observations and itemizing remaining questions.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quintana, Elisa V.; Lissauer, Jack J., E-mail: elisa.quintana@nasa.gov

    Models of planet formation have shown that giant planets have a large impact on the number, masses, and orbits of terrestrial planets that form. In addition, they play an important role in delivering volatiles from material that formed exterior to the snow line (the region in the disk beyond which water ice can condense) to the inner region of the disk where terrestrial planets can maintain liquid water on their surfaces. We present simulations of the late stages of terrestrial planet formation from a disk of protoplanets around a solar-type star and we include a massive planet (from 1 Mmore » {sub ⊕} to 1 M {sub J}) in Jupiter's orbit at ∼5.2 AU in all but one set of simulations. Two initial disk models are examined with the same mass distribution and total initial water content, but with different distributions of water content. We compare the accretion rates and final water mass fraction of the planets that form. Remarkably, all of the planets that formed in our simulations without giant planets were water-rich, showing that giant planet companions are not required to deliver volatiles to terrestrial planets in the habitable zone. In contrast, an outer planet at least several times the mass of Earth may be needed to clear distant regions of debris truncating the epoch of frequent large impacts. Observations of exoplanets from radial velocity surveys suggest that outer Jupiter-like planets may be scarce, therefore, the results presented here suggest that there may be more habitable planets residing in our galaxy than previously thought.« less

  3. External Photoevaporation of the Solar Nebula. II. Effects on Disk Structure and Evolution with Non-uniform Turbulent Viscosity due to the Magnetorotational Instability

    NASA Astrophysics Data System (ADS)

    Kalyaan, A.; Desch, S. J.; Monga, N.

    2015-12-01

    The structure and evolution of protoplanetary disks, especially the radial flows of gas through them, are sensitive to a number of factors. One that has been considered only occasionally in the literature is external photoevaporation by far-ultraviolet (FUV) radiation from nearby, massive stars, despite the fact that nearly half of disks will experience photoevaporation. Another effect apparently not considered in the literature is a spatially and temporally varying value of α in the disk (where the turbulent viscosity ν is α times the sound speed C times the disk scale height H). Here we use the formulation of Bai & Stone to relate α to the ionization fraction in the disk, assuming turbulent transport of angular momentum is due to the magnetorotational instability. We calculate the ionization fraction of the disk gas under various assumptions about ionization sources and dust grain properties. Disk evolution is most sensitive to the surface area of dust. We find that typically α ≲ 10-5 in the inner disk (<2 AU), rising to ˜10-1 beyond 20 AU. This drastically alters the structure of the disk and the flow of mass through it: while the outer disk rapidly viscously spreads, the inner disk hardly evolves; this leads to a steep surface density profile ({{Σ }}\\propto {r}-< p> with < p> ≈ 2-5 in the 5-30 AU region) that is made steeper by external photoevaporation. We also find that the combination of variable α and external photoevaporation eventually causes gas as close as 3 AU, previously accreting inward, to be drawn outward to the photoevaporated outer edge of the disk. These effects have drastic consequences for planet formation and volatile transport in protoplanetary disks.

  4. Usher syndrome type 1–associated cadherins shape the photoreceptor outer segment

    PubMed Central

    Parain, Karine; Aghaie, Asadollah; Picaud, Serge

    2017-01-01

    Usher syndrome type 1 (USH1) causes combined hearing and sight defects, but how mutations in USH1 genes lead to retinal dystrophy in patients remains elusive. The USH1 protein complex is associated with calyceal processes, which are microvilli of unknown function surrounding the base of the photoreceptor outer segment. We show that in Xenopus tropicalis, these processes are connected to the outer-segment membrane by links composed of protocadherin-15 (USH1F protein). Protocadherin-15 deficiency, obtained by a knockdown approach, leads to impaired photoreceptor function and abnormally shaped photoreceptor outer segments. Rod basal outer disks displayed excessive outgrowth, and cone outer segments were curved, with lamellae of heterogeneous sizes, defects also observed upon knockdown of Cdh23, encoding cadherin-23 (USH1D protein). The calyceal processes were virtually absent in cones and displayed markedly reduced F-actin content in rods, suggesting that protocadherin-15–containing links are essential for their development and/or maintenance. We propose that calyceal processes, together with their associated links, control the sizing of rod disks and cone lamellae throughout their daily renewal. PMID:28495838

  5. Usher syndrome type 1-associated cadherins shape the photoreceptor outer segment.

    PubMed

    Schietroma, Cataldo; Parain, Karine; Estivalet, Amrit; Aghaie, Asadollah; Boutet de Monvel, Jacques; Picaud, Serge; Sahel, José-Alain; Perron, Muriel; El-Amraoui, Aziz; Petit, Christine

    2017-06-05

    Usher syndrome type 1 (USH1) causes combined hearing and sight defects, but how mutations in USH1 genes lead to retinal dystrophy in patients remains elusive. The USH1 protein complex is associated with calyceal processes, which are microvilli of unknown function surrounding the base of the photoreceptor outer segment. We show that in Xenopus tropicalis , these processes are connected to the outer-segment membrane by links composed of protocadherin-15 (USH1F protein). Protocadherin-15 deficiency, obtained by a knockdown approach, leads to impaired photoreceptor function and abnormally shaped photoreceptor outer segments. Rod basal outer disks displayed excessive outgrowth, and cone outer segments were curved, with lamellae of heterogeneous sizes, defects also observed upon knockdown of Cdh23 , encoding cadherin-23 (USH1D protein). The calyceal processes were virtually absent in cones and displayed markedly reduced F-actin content in rods, suggesting that protocadherin-15-containing links are essential for their development and/or maintenance. We propose that calyceal processes, together with their associated links, control the sizing of rod disks and cone lamellae throughout their daily renewal. © 2017 Schietroma et al.

  6. Imaging a Central Ionized Component, a Narrow Ring, and the CO Snowline in the Multigapped Disk of HD 169142

    NASA Astrophysics Data System (ADS)

    Macías, Enrique; Anglada, Guillem; Osorio, Mayra; Torrelles, José M.; Carrasco-González, Carlos; Gómez, José F.; Rodríguez, Luis F.; Sierra, Anibal

    2017-04-01

    We report Very Large Array observations at 7 mm, 9 mm, and 3 cm toward the pre-transitional disk of the Herbig Ae star HD 169142. These observations have allowed us to study the millimeter emission of this disk with the highest angular resolution so far (0.″12 × 0.″09, or 14 au × 11 au, at 7 mm). Our 7 and 9 mm images show a narrow ring of emission at a radius of ˜25 au tracing the outer edge of the inner gap. This ring presents an asymmetric morphology that could be produced by dynamical interactions between the disk and forming planets. Additionally, the azimuthally averaged radial intensity profiles of the 7 and 9 mm images confirm the presence of the previously reported gap at ˜45 au and reveal a new gap at ˜85 au. We analyzed archival DCO+(3-2) and C18O(2-1) ALMA observations, showing that the CO snowline is located very close to this third outer gap. This suggests that growth and accumulation of large dust grains close to the CO snowline could be the mechanism responsible for this proposed outer gap. Finally, a compact source of emission is detected at 7 mm, 9 mm, and 3 cm toward the center of the disk. Its flux density and spectral index indicate that it is dominated by free-free emission from ionized gas, which could be associated with the photoionization of the inner disk, an independent object, or an ionized jet.

  7. The Large-scale Magnetic Fields of Thin Accretion Disks

    NASA Astrophysics Data System (ADS)

    Cao, Xinwu; Spruit, Hendrik C.

    2013-03-01

    Large-scale magnetic field threading an accretion disk is a key ingredient in the jet formation model. The most attractive scenario for the origin of such a large-scale field is the advection of the field by the gas in the accretion disk from the interstellar medium or a companion star. However, it is realized that outward diffusion of the accreted field is fast compared with the inward accretion velocity in a geometrically thin accretion disk if the value of the Prandtl number P m is around unity. In this work, we revisit this problem considering the angular momentum of the disk to be removed predominantly by the magnetically driven outflows. The radial velocity of the disk is significantly increased due to the presence of the outflows. Using a simplified model for the vertical disk structure, we find that even moderately weak fields can cause sufficient angular momentum loss via a magnetic wind to balance outward diffusion. There are two equilibrium points, one at low field strengths corresponding to a plasma-beta at the midplane of order several hundred, and one for strong accreted fields, β ~ 1. We surmise that the first is relevant for the accretion of weak, possibly external, fields through the outer parts of the disk, while the latter one could explain the tendency, observed in full three-dimensional numerical simulations, of strong flux bundles at the centers of disk to stay confined in spite of strong magnetororational instability turbulence surrounding them.

  8. Sequential planet formation in transition disks: The case of HD 100546

    NASA Astrophysics Data System (ADS)

    Pinilla, Paola; Birnsitel, Til; Walsh, Catherine; van Dishoeck, Ewine

    2015-08-01

    Transition disks are circumstellar disks with dust inner cavities and may reveal an intermediate step of the ongoing disk dispersal process, where planet formation might happen. The recent gas and dust observations of transition disks have given major support to the presence of massive planets in transition disks. The analysis of such observations help to constrain the properties of the potential unseen planets. An excellent candidate to analyse the dust evolution when planets are embedded in disks is the transition disk around the Herbig Ae star HD 100546. Near-infrared observations of HD 100546 suggested the presence on an inner planet at 10 AU distance from the star (e.g. Mulders et al. 2013), while an outer planet has been directly imaged at 70 AU distance, which may be in the act of formation (Quant et al. 2013, 2015; Currie et al. 2014). The two embedded planets can lead to remarkable dust structures due to the particle trapping at the edges of the gaps caved by such planets (e.g. Pinilla et al. 2012, 2015). Recent ALMA Cycle 0 observations of this disk reveal a two-ring like structure consistent with particle trapping induced by the two companions (Walsh et al. 2014). The comparison of these observations with dust evolution models, that include the coagulation and fragmentation of dust grains, suggest that the outer companion must be at least two million of years younger than the inner companion, revealing sequential planet formation in this disk (Pinilla et al. 2015, under revision).

  9. IRAS colors within M31: Evidence for deficiency of very small grains?

    NASA Technical Reports Server (NTRS)

    Xu, Cong; Helou, George

    1994-01-01

    Significant differences are found in the IRAS color-color diagrams of small regions (2 min x 2 min, or 0.4 x 1.8 kpc) within the disk of M31 compared to Galactic cirrus, most noticeably demonstrated by a trend of low 60 to 100 micrometer surface brightness ratio and high 12 to 25 micrometer ratio. Based on physical arguments, we conclude that these color differences are best explained by assuming that 'very small grains' (VSG; but not polycylic aromatic hydrocarbons) are only half as abundant in M31 as they are in Galactic cirrus. We confirm this conclusion and test its detailed agreement with data by using the phenomenological model of Desert et al. (1990). In particular, we show that the data cannot be explained by postulating weaker UV heating in the disk of M31. We also show that the VSG-deficient model predicts correctly the correspondence between the IRAS colors and the 100 micrometer emissivity per H I atom in the outer disk of M31. 'Very small grains' are a leading candidate for the carrier of the 2175 A bump in the extinction curve. Our suggested VSG deficiency in M31 is thus consistent with recent Hubble Space Telescope (HST) observations which show evidence for a weaker and narrower 2175 A bump on the M31 extinction curve. Some speculation is offered as to possible links between very small grains and the low rate of current star formation in M31.

  10. DIRECT IMAGING OF FINE STRUCTURES IN GIANT PLANET-FORMING REGIONS OF THE PROTOPLANETARY DISK AROUND AB AURIGAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashimoto, J.; Tamura, M.; Fukue, T.

    We report high-resolution 1.6 {mu}m polarized intensity (PI) images of the circumstellar disk around the Herbig Ae star AB Aur at a radial distance of 22 AU (0.''15) up to 554 AU (3.''85), which have been obtained by the high-contrast instrument HiCIAO with the dual-beam polarimetry. We revealed complicated and asymmetrical structures in the inner part ({approx}<140 AU) of the disk while confirming the previously reported outer (r {approx}> 200 AU) spiral structure. We have imaged a double ring structure at {approx}40 and {approx}100 AU and a ring-like gap between the two. We found a significant discrepancy of inclination anglesmore » between two rings, which may indicate that the disk of AB Aur is warped. Furthermore, we found seven dips (the typical size is {approx}45 AU or less) within two rings, as well as three prominent PI peaks at {approx}40 AU. The observed structures, including a bumpy double ring, a ring-like gap, and a warped disk in the innermost regions, provide essential information for understanding the formation mechanism of recently detected wide-orbit (r > 20 AU) planets.« less

  11. DIRECT IMAGING AND SPECTROSCOPY OF A YOUNG EXTRASOLAR KUIPER BELT IN THE NEAREST OB ASSOCIATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Currie, Thayne; Lisse, Carey M.; Kuchner, Marc

    2015-07-01

    We describe the discovery of a bright, young Kuiper belt–like debris disk around HD 115600, a ∼1.4–1.5 M{sub ⊙}, ∼15 Myr old member of the Sco–Cen OB Association. Our H-band coronagraphy/integral field spectroscopy from the Gemini Planet Imager shows the ring has a (luminosity-scaled) semimajor axis of (∼22 AU) ∼ 48 AU, similar to the current Kuiper belt. The disk appears to have neutral-scattering dust, is eccentric (e ∼ 0.1–0.2), and could be sculpted by analogs to the outer solar system planets. Spectroscopy of the disk ansae reveal a slightly blue to gray disk color, consistent with major Kuiper beltmore » chemical constituents, where water ice is a very plausible dominant constituent. Besides being the first object discovered with the next generation of extreme adaptive optics systems (i.e., SCExAO, GPI, SPHERE), HD 115600's debris ring and planetary system provide a key reference point for the early evolution of the solar system, the structure, and composition of the Kuiper belt and the interaction between debris disks and planets.« less

  12. SMA Continuum Survey of Circumstellar Disks in Serpens

    NASA Astrophysics Data System (ADS)

    Law, Charles; Ricci, Luca; Andrews, Sean M.; Wilner, David J.; Qi, Chunhua

    2017-06-01

    The lifetime of disks surrounding pre-main-sequence stars is closely linked to planet formation and provides information on disk dispersal mechanisms and dissipation timescales. The potential for these optically thick, gas-rich disks to form planets is critically dependent on how much dust is available to be converted into terrestrial planets and rocky cores of giant planets. For this reason, an understanding of how dust mass varies with key properties such as stellar mass, age, and environment is critical for understanding planet formation. Millimeter wavelength observations, in which the dust emission is optically thin, are required to study the colder dust residing in the disk’s outer regions and to measure disk dust masses. Hence, we have obtained SMA 1.3 mm continuum observations of 62 Class II sources with suspected circumstellar disks in the Serpens star-forming region (SFR). Relative to the well-studied Taurus SFR, Serpens allows us to probe the distribution of dust masses for disks in a much denser and more clustered environment. Only 13 disks were detected in the continuum with the SMA. We calculate the total dust masses of these disks and compare their masses to those of disks in Taurus, Lupus, and Upper Scorpius. We do not find evidence of diminished dust masses in Serpens disks relative to those in Taurus despite the fact that disks in denser clusters may be expected to contain less dust mass due to stronger and more frequent tidal interactions that can disrupt the outer regions of disks. However, considering the low detection fraction, we likely detected only bright continuum sources and a more sensitive survey of Serpens would help clarify these results.

  13. Evidence for dust grain growth in young circumstellar disks.

    PubMed

    Throop, H B; Bally, J; Esposito, L W; McCaughrean, M J

    2001-06-01

    Hundreds of circumstellar disks in the Orion nebula are being rapidly destroyed by the intense ultraviolet radiation produced by nearby bright stars. These young, million-year-old disks may not survive long enough to form planetary systems. Nevertheless, the first stage of planet formation-the growth of dust grains into larger particles-may have begun in these systems. Observational evidence for these large particles in Orion's disks is presented. A model of grain evolution in externally irradiated protoplanetary disks is developed and predicts rapid particle size evolution and sharp outer disk boundaries. We discuss implications for the formation rates of planetary systems.

  14. On the possibility of enrichment and differentiation in gas giants during birth by disk instability

    NASA Astrophysics Data System (ADS)

    Boley, Aaron C.; Durisen, Richard H.

    2011-11-01

    We investigate the coupling between solids and gas during the formation of gas giant planets by disk fragmentation in the outer regions of massive disks. We find that fragments can become differentiated at birth. Even if an entire clump does not survive, differentiation could create solids cores that survive to accrete gaseous envelopes later.

  15. Studies of extra-solar OORT clouds and the Kuiper disk

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan

    1993-01-01

    This is the second report for NAGW-3023, Studies of Extra-Solar Oort Clouds and the Kuiper Disk. We are conducting research designed to enhance our understanding of the evolution and detectability of comet clouds and disks. This area holds promise for also improving our understanding of outer solar system formation, the bombardment history of the planets, the transport of volatiles and organics from the outer solar system to the inner planets, and the ultimate fate of comet clouds around the Sun and other stars. According to 'standard' theory, both the Kuiper Disk and Oort Cloud are (at least in part) natural products of the planetary accumulation stage of solar system formation. One expects such assemblages to be a common attribute of other solar systems. Therefore, searches for comet disks and clouds orbiting other stars offer a new method for infering the presence of planetary systems. Our three-year effort consists of two major efforts: (1) observational work to predict and search for the signatures of Oort Clouds and comet disks around other stars; and (2) modelling studies of the formation and evolution of the Kuiper Disk (KD) and similar assemblages that may reside around other stars, including Beta Pic. These efforts are referred to as Task 1 and 2, respectively.

  16. Studies of extra-solar Oort Clouds and the Kuiper Disk

    NASA Technical Reports Server (NTRS)

    Stern, Alan

    1995-01-01

    This is the September 1995 Semi-Annual report for Studies of Extra-Solar Oort Clouds and the Kuiper Disk. We are conducting research designed to enhance our understanding of the evolution and detectability of comet clouds and disks. This area holds promise for also improving our understanding of outer solar system formation the bombardment history of the planets, the transport of volatiles and organics from the outer solar system to the inner planets, and to the ultimate fate of comet clouds around the Sun and other stars. According to 'standard' theory, both the Kuiper Disk and the Oort Cloud are (at least in part) natural products of the planetary accumulation stage of solar system formation. One expects such assemblages to be a common attribute of other solar systems. Therefore, searches for comet disks and clouds orbiting other stars offer a new method for inferring the presence of planetary systems. This project consists of two major efforts: (1) observational work to predict and search for the signatures of Oort Clouds and comet disks around other stars; and (2) modelling studies of the formation and evolution of the Kuiper Disk (KD) and similar assemblages that may reside around other stars, including beta Pic. These efforts are referred to as Task 1 and 2.

  17. Modeling the HD 32297 Debris Disk With Far-Infrared Herschel Data

    NASA Technical Reports Server (NTRS)

    Donaldson, J.K.; Lebreton, J.; Roberge, A.; Augereau, J.-C.; Krivov, A. V.

    2013-01-01

    HD 32297 is a young A-star (approx. 30 Myr) 112 pc away with a bright edge-on debris disk that has been resolved in scattered light. We observed the HD 32297 debris disk in the far-infrared and sub-millimeter with the Herschel Space Observatory PACS and SPIRE instruments, populating the spectral energy distribution (SED) from 63 to 500 micron..We aimed to determine the composition of dust grains in the HD 32297 disk through SED modeling, using geometrical constraints from the resolved imaging to break the degeneracies inherent in SED modeling. We found the best fitting SED model has two components: an outer ring centered around 110 AU, seen in the scattered light images, and an inner disk near the habitable zone of the star. The outer disk appears to be composed of grains>2 micron consisting of silicates, carbonaceous material, and water ice with an abundance ratio of 1:2:3 respectively and 90% porosity. These grains appear consistent with cometary grains, implying the underlying planetesimal population is dominated by comet-like bodies. We also discuss the 3.7 sigma detection of [C ii] emission at 158 micron with the Herschel PACS instrument, making HD 32297 one of only a handful of debris disks with circumstellar gas detected

  18. First Scattered-light Images of the Gas-rich Debris Disk around 49 Ceti

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choquet, Élodie; Milli, Julien; Wahhaj, Zahed

    We present the first scattered-light images of the debris disk around 49 Ceti, a ∼40 Myr A1 main-sequence star at 59 pc, famous for hosting two massive dust belts as well as large quantities of atomic and molecular gas. The outer disk is revealed in reprocessed archival Hubble Space Telescope NICMOS-F110W images, as well as new coronagraphic H-band images from the Very Large Telescope SPHERE instrument. The disk extends from 1.″1 (65 au) to 4.″6 (250 au) and is seen at an inclination of 73°, which refines previous measurements at lower angular resolution. We also report no companion detection largermore » than 3 M {sub Jup} at projected separations beyond 20 au from the star (0.″34). Comparison between the F110W and H-band images is consistent with a gray color of 49 Ceti’s dust, indicating grains larger than ≳2 μ m. Our photometric measurements indicate a scattering efficiency/infrared excess ratio of 0.2–0.4, relatively low compared to other characterized debris disks. We find that 49 Ceti presents morphological and scattering properties very similar to the gas-rich HD 131835 system. From our constraint on the disk inclination we find that the atomic gas previously detected in absorption must extend to the inner disk, and that the latter must be depleted of CO gas. Building on previous studies, we propose a schematic view of the system describing the dust and gas structure around 49 Ceti and hypothetical scenarios for the gas nature and origin.« less

  19. LOCAL TADPOLE GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elmegreen, Debra Meloy; Putko, Joseph; Dewberry, Janosz

    2012-05-10

    Tadpole galaxies have a giant star-forming region at the end of an elongated intensity distribution. Here we use Sloan Digital Sky Survey data to determine the ages, masses, and surface densities of the heads and tails in 14 local tadpoles selected from the Kiso and Michigan surveys of UV-bright galaxies, and we compare them to tadpoles previously studied in the Hubble Ultra Deep Field. The young stellar mass in the head scales linearly with rest-frame galaxy luminosity, ranging from {approx}10{sup 5} M{sub Sun} at galaxy absolute magnitude U = -13 mag to 10{sup 9} M{sub Sun} at U = -20more » mag. The corresponding head surface density increases from several M {sub Sun} pc{sup -2} locally to 10-100 M{sub Sun} pc{sup -2} at high redshift, and the star formation rate (SFR) per unit area in the head increases from {approx}0.01 M{sub Sun} yr{sup -1} kpc{sup -2} locally to {approx}1 M{sub Sun} yr{sup -1} kpc{sup -2} at high z. These local values are normal for star-forming regions, and the increases with redshift are consistent with other cosmological SFRs, most likely reflecting an increase in gas abundance. The tails in the local sample look like bulge-free galaxy disks. Their photometric ages decrease from several Gyr to several hundred Myr with increasing z, and their surface densities are more constant than the surface densities of the heads. The far-outer intensity profiles in the local sample are symmetric and exponential. We suggest that most local tadpoles are bulge-free galaxy disks with lopsided star formation, perhaps from environmental effects such as ram pressure or disk impacts, or from a Jeans length comparable to half the disk size.« less

  20. Spectral Evidence for an Inner Carbon-rich Circumstellar Belt in the Young HD 36546 A-star System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lisse, C. M.; Sitko, M. L.; Russell, R. W.

    Using the NASA/IRTF SpeX and BASS spectrometers we have obtained 0.7–13 μ m observations of the newly imaged 3–10 Myr old HD 36546 disk system. The SpeX spectrum is most consistent with the photospheric emission expected from an L {sub *} ∼ 20 L {sub ⊙}, solar abundance A1.5V star with little to no extinction, and excess emission from circumstellar dust detectable beyond 4.5 μ m. Non-detections of CO emission lines and accretion signatures point to the gas-poor circumstellar environment of a very old transition disk. Combining the SpeX + BASS spectra with archival WISE / AKARI / IRAS /more » Herschel photometry, we find an outer cold dust belt at ∼135 K and 20–40 au from the primary, likely coincident with the disk imaged by Subaru, and a new second inner belt with a temperature ∼570 K and an unusual, broad SED maximum in the 6–9 μ m region, tracing dust at 1.1–2.2 au. An SED maximum at 6–9 μ m has been reported in just two other A-star systems, HD 131488 and HD 121191, both of ∼10 Myr age. From Spitzer , we have also identified the ∼12 Myr old A7V HD 148657 system as having similar 5–35 μ m excess spectral features. The Spitzer data allows us to rule out water emission and rule in carbonaceous materials—organics, carbonates, SiC—as the source of the 6–9 μ m excess. Assuming a common origin for the four young A-star systems’ disks, we suggest they are experiencing an early era of carbon-rich planetesimal processing.« less

  1. Population and Star Formation Histories from the Outer Limits Survey

    NASA Astrophysics Data System (ADS)

    Brondel, Brian Joseph; Saha, Abhijit; Olszewski, Edward

    2015-08-01

    The Outer Limits Survey (OLS) is a deep survey of selected fields in the outlying areas of the Magellanic Clouds based on the MOSAIC-II instrument on the Blanco 4-meter Telescope at CTIO. OLS is designed to probe the outer disk and halo structures of Magellanic System. The survey comprises ~50 fields obtained in Landolt R, I and Washington C, M and DDO51 filters, extending to a depth of about 24th magnitude in I. While qualitative examination of the resulting data has yielded interesting published results, we report here on quantitative analysis through matching of Hess diagrams to theoretical isochrones. We present analysis based on techniques developed by Dolphin (e.g., 2002, MNRAS, 332, 91) for fields observed by OLS. Our results broadly match those found by qualitative examination of the CMDs, but interesting details emerge from isochrone fitting.

  2. Tracing the potential planet-forming regions around seven pre-main-sequence stars

    NASA Astrophysics Data System (ADS)

    Schegerer, A. A.; Wolf, S.; Hummel, C. A.; Quanz, S. P.; Richichi, A.

    2009-07-01

    Aims: We investigate the nature of the innermost regions with radii of several AUs of seven circumstellar disks around pre-main-sequence stars, T Tauri stars in particular. Our object sample contains disks apparently at various stages of their evolution. Both single stars and spatially resolved binaries are considered. In particular, we search for inner disk gaps as proposed for several young stellar objects (YSOs). When analyzing the underlying dust population in the atmosphere of circumstellar disks, the shape of the 10 μm feature should additionally be investigated. Methods: We performed interferometric observations in N band (8-13 μm) with the Mid-Infrared Interferometric Instrument (MIDI) at the Very Large Telescope Interferometer (VLTI) using baseline lengths of between 54 m and 127 m. The data analysis is based on radiative-transfer simulations using the Monte Carlo code MC3D by modeling simultaneously the spectral energy distribution (SED), N band spectra, and interferometric visibilities. Correlated and uncorrelated N band spectra are compared to investigate the radial distribution of the dust composition of the disk atmosphere. Results: Spatially resolved mid-infrared (MIR) emission was detected in all objects. For four objects (DR Tau, RU Lup, S CrA N, and S CrA S), the observed N band visibilities and corresponding SEDs could be simultaneously simulated using a parameterized active disk-model. For the more evolved objects of our sample, HD 72106 and HBC 639, a purely passive disk-model provides the closest fit. The visibilities inferred for the source RU Lup allow the presence of an inner disk gap. For the YSO GW Ori, one of two visibility measurements could not be simulated by our modeling approach. All uncorrelated spectra reveal the 10 μm silicate emission feature. In contrast to this, some correlated spectra of the observations of the more evolved objects do not show this feature, indicating a lack of small silicates in the inner versus the outer regions of these disks. We conclude from this observational result that more evolved dust grains can be found in the more central disk regions. Based on observations made with Telescopes of the European Organisation for Astronomical Research in the Southern Hemisphere (ESO) at the Paranal Observatory, Chile, under the programs 074.C-0342(A), 075.C-0064(A,B), 075.C-0413(A,B), and 076.C-0356(A). Appendix A is only available in electronic form at http://www.aanda.org

  3. ACCRETION KINEMATICS THROUGH THE WARPED TRANSITION DISK IN HD 142527 FROM RESOLVED CO(6–5) OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casassus, S.; Marino, S.; Pérez, S.

    2015-10-01

    The finding of residual gas in the large central cavity of the HD 142527 disk motivates questions regarding the origin of its non-Keplerian kinematics and possible connections with planet formation. We aim to understand the physical structure that underlies the intra-cavity gaseous flows, guided by new molecular-line data in CO(6–5) with unprecedented angular resolutions. Given the warped structure inferred from the identification of scattered-light shadows cast on the outer disk, the kinematics are consistent, to first order, with axisymmetric accretion onto the inner disk occurring at all azimuths. A steady-state accretion profile, fixed at the stellar accretion rate, explains themore » depth of the cavity as traced in CO isotopologues. The abrupt warp and evidence for near free-fall radial flows in HD 142527 resemble theoretical models for disk tearing, which could be driven by the reported low-mass companion, whose orbit may be contained in the plane of the inner disk. The companion’s high inclination with respect to the massive outer disk could drive Kozai oscillations over long timescales; high-eccentricity periods may perhaps account for the large cavity. While shadowing by the tilted disk could imprint an azimuthal modulation in the molecular-line maps, further observations are required to ascertain the significance of azimuthal structure in the density field inside the cavity of HD 142527.« less

  4. Protoplanetary Disk Masses from Stars to Brown Dwarfs

    NASA Astrophysics Data System (ADS)

    Mohanty, Subhanjoy; Greaves, Jane; Mortlock, Daniel; Pascucci, Ilaria; Scholz, Aleks; Thompson, Mark; Apai, Daniel; Lodato, Giuseppe; Looper, Dagny

    2013-08-01

    We present SCUBA-2 850 μm observations of seven very low mass stars (VLMS) and brown dwarfs (BDs). Three are in Taurus and four in the TW Hydrae Association (TWA), and all are classical T Tauri (cTT) analogs. We detect two of the three Taurus disks (one only marginally), but none of the TWA ones. For standard grains in cTT disks, our 3σ limits correspond to a dust mass of 1.2 M ⊕ in Taurus and a mere 0.2 M ⊕ in the TWA (3-10× deeper than previous work). We combine our data with other submillimeter/millimeter (sub-mm/mm) surveys of Taurus, ρ Oph, and the TWA to investigate the trends in disk mass and grain growth during the cTT phase. Assuming a gas-to-dust mass ratio of 100:1 and fiducial surface density and temperature profiles guided by current data, we find the following. (1) The minimum disk outer radius required to explain the upper envelope of sub-mm/mm fluxes is ~100 AU for intermediate-mass stars, solar types, and VLMS, and ~20 AU for BDs. (2) While the upper envelope of apparent disk masses increases with M * from BDs to VLMS to solar-type stars, no such increase is observed from solar-type to intermediate-mass stars. We propose this is due to enhanced photoevaporation around intermediate stellar masses. (3) Many of the disks around Taurus and ρ Oph intermediate-mass and solar-type stars evince an opacity index of β ~ 0-1, indicating significant grain growth. Of the only four VLMS/BDs in these regions with multi-wavelength measurements, three are consistent with considerable grain growth, though optically thick disks are not ruled out. (4) For the TWA VLMS (TWA 30A and B), combining our 850 μm fluxes with the known accretion rates and ages suggests substantial grain growth by 10 Myr, comparable to that in the previously studied TWA cTTs Hen 3-600A and TW Hya. The degree of grain growth in the TWA BDs (2M1207A and SSPM1102) remains largely unknown. (5) A Bayesian analysis shows that the apparent disk-to-stellar mass ratio has a roughly constant mean of log10[M disk/M *] ≈ -2.4 all the way from intermediate-mass stars to VLMS/BDs, supporting previous qualitative suggestions that the ratio is ~1% throughout the stellar/BD domain. (6) Similar analysis shows that the disk mass in close solar-type Taurus binaries (sep <100 AU) is significantly lower than in singles (by a factor of 10), while that in wide solar-type Taurus binaries (>=100 AU) is closer to that in singles (lower by a factor of three). (7) We discuss the implications of these results for planet formation around VLMS/BDs, and for the observed dependence of accretion rate on stellar mass.

  5. Galactic Behavior for the Outer B Ring

    NASA Image and Video Library

    2010-11-01

    Keeping a close watch on the outer portion of Saturn B ring, NASA Cassini spacecraft records the complex inward and outward movement of the edge of the ring. This ring movement resembles the suspected behavior of spiral disk galaxies.

  6. A Hyper Suprime-Cam View of the Interacting Galaxies of the M81 Group

    NASA Astrophysics Data System (ADS)

    Okamoto, Sakurako; Arimoto, Nobuo; Ferguson, Annette M. N.; Bernard, Edouard J.; Irwin, Mike J.; Yamada, Yoshihiko; Utsumi, Yousuke

    2015-08-01

    We present the first results of a wide-field mapping survey of the M81 group conducted with Hyper Suprime-Cam on the Subaru Telescope. Our deep photometry reaches ˜2 mag below the tip of the red giant branch (RGB) and reveals the spatial distribution of both old and young stars over an area of ˜ 100 × 115 kpc at the distance of M81. The young stars (˜30-160 Myr old) closely follow the neutral hydrogen distribution and can be found in a stellar stream between M81 and NGC 3077 and in numerous outlying stellar associations, including the known concentrations of Arp's Loop, Holmberg IX, an arc in the halo of M82, BK3N, and the Garland. Many of these groupings do not have counterparts in the RGB maps, suggesting they may be genuinely young systems. Our survey also reveals for the first time the very extended (≥slant 2× {R}25) halos of RGB stars around M81, M82, and NGC 3077, as well as faint tidal streams that link these systems. The halos of M82 and NGC 3077 exhibit highly disturbed morphologies, presumably a consequence of the recent gravitational encounter and their ongoing disruption. While the halos of M81 and NGC 3077 and the inner halo of M82 have similar {(g-i)}0 colors, the outer halo of M82 is significantly bluer indicating it is more metal poor. Remarkably, our deep panoramic view of the M81 group demonstrates that the complexity long known to be present in HI is equally matched in the low surface brightness stellar component. Based on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  7. Debris disks as signposts of terrestrial planet formation

    NASA Astrophysics Data System (ADS)

    Raymond, S. N.; Armitage, P. J.; Moro-Martín, A.; Booth, M.; Wyatt, M. C.; Armstrong, J. C.; Mandell, A. M.; Selsis, F.; West, A. A.

    2011-06-01

    There exists strong circumstantial evidence from their eccentric orbits that most of the known extra-solar planetary systems are the survivors of violent dynamical instabilities. Here we explore the effect of giant planet instabilities on the formation and survival of terrestrial planets. We numerically simulate the evolution of planetary systems around Sun-like stars that include three components: (i) an inner disk of planetesimals and planetary embryos; (ii) three giant planets at Jupiter-Saturn distances; and (iii) an outer disk of planetesimals comparable to estimates of the primitive Kuiper belt. We calculate the dust production and spectral energy distribution of each system by assuming that each planetesimal particle represents an ensemble of smaller bodies in collisional equilibrium. Our main result is a strong correlation between the evolution of the inner and outer parts of planetary systems, i.e. between the presence of terrestrial planets and debris disks. Strong giant planet instabilities - that produce very eccentric surviving planets - destroy all rocky material in the system, including fully-formed terrestrial planets if the instabilities occur late, and also destroy the icy planetesimal population. Stable or weakly unstable systems allow terrestrial planets to accrete in their inner regions and significant dust to be produced in their outer regions, detectable at mid-infrared wavelengths as debris disks. Stars older than ~100 Myr with bright cold dust emission (in particular at λ ~ 70 μm) signpost dynamically calm environments that were conducive to efficient terrestrial accretion. Such emission is present around ~16% of billion-year old Solar-type stars. Our simulations yield numerous secondary results: 1) the typical eccentricities of as-yet undetected terrestrial planets are ~0.1 but there exists a novel class of terrestrial planet system whose single planet undergoes large amplitude oscillations in orbital eccentricity and inclination; 2) by scaling our systems to match the observed semimajor axis distribution of giant exoplanets, we predict that terrestrial exoplanets in the same systems should be a few times more abundant at ~0.5 AU than giant or terrestrial exoplanets at 1 AU; 3) the Solar System appears to be unusual in terms of its combination of a rich terrestrial planet system and a low dust content. This may be explained by the weak, outward-directed instability that is thought to have caused the late heavy bombardment. The movie associated to Fig. 2 is available in electronic form at http://www.aanda.org

  8. On the metallicity gradients of the Galactic disk as revealed by LSS-GAC red clump stars

    NASA Astrophysics Data System (ADS)

    Huang, Yang; Liu, Xiao-Wei; Zhang, Hua-Wei; Yuan, Hai-Bo; Xiang, Mao-Sheng; Chen, Bing-Qiu; Ren, Juan-Juan; Sun, Ning-Chen; Wang, Chun; Zhang, Yong; Hou, Yong-Hui; Wang, Yue-Fei; Yang, Ming

    2015-08-01

    Using a sample of over 70 000 red clump (RC) stars with 5%-10% distance accuracy selected from the LAMOST Spectroscopic Survey of the Galactic Anti-center (LSS-GAC), we study the radial and vertical gradients of the Galactic disk(s) mainly in the anti-center direction, covering a significant volume of the disk in the range of projected Galactocentric radius 7 ≤ RGC ≤ 14 kpc and height from the Galactic midplane 0 ≤ |Z| ≤ 3 kpc. Our analysis shows that both the radial and vertical metallicity gradients are negative across much of the volume of the disk that is probed, and they exhibit significant spatial variations. Near the solar circle (7 ≤ RGC ≤ 115 kpc), the radial gradient has a moderately steep, negative slope of -0.08 dex kpc-1 near the midplane (|Z| < 0.1 kpc), and the slope flattens with increasing |Z|. In the outer disk (11.5 < RGC ≤ 14 kpc), the radial gradients have an essentially constant, much less steep slope of -0.01 dex kpc-1 at all heights above the plane, suggesting that the outer disk may have experienced an evolutionary path different from that of the inner disk. The vertical gradients are found to flatten largely with increasing RGC. However, the vertical gradient of the lower disk (0 ≤ |Z| ≤ 1 kpc) is found to flatten with RGC quicker than that of the upper disk (1 < |Z| ≤ 3 kpc). Our results should provide strong constraints on the theory of disk formation and evolution, as well as the underlying physical processes that shape the disk (e.g. gas flows, radial migration, and internal and external perturbations).

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espaillat, C.; D'Alessio, P.; Hernandez, J.

    In the past few years, several disks with inner holes that are relatively empty of small dust grains have been detected and are known as transitional disks. Recently, Spitzer has identified a new class of 'pre-transitional disks' with gaps based on near-infrared photometry and mid-infrared spectra; these objects have an optically thick inner disk separated from an optically thick outer disk by an optically thin disk gap. A near-infrared spectrum provided the first confirmation of a gap in the pre-transitional disk of LkCa 15 by verifying that the near-infrared excess emission in this object was due to an optically thickmore » inner disk. Here, we investigate the difference between the nature of the inner regions of transitional and pre-transitional disks using the same veiling-based technique to extract the near-infrared excess emission above the stellar photosphere. However, in this work we use detailed disk models to fit the excess continua as opposed to the simple blackbody fits previously used. We show that the near-infrared excess emission of the previously identified pre-transitional disks of LkCa 15 and UX Tau A in the Taurus cloud as well as the newly identified pre-transitional disk of ROX 44 in Ophiuchus can be fit with an inner disk wall located at the dust destruction radius. We also present detailed modeling of the broadband spectral energy distributions of these objects, taking into account the effect of shadowing by the inner disk on the outer disk, but considering the finite size of the star, unlike other recent treatments. The near-infrared excess continua of these three pre-transitional disks, which can be explained by optically thick inner disks, are significantly different from that of the transitional disks of GM Aur, whose near-infrared excess continuum can be reproduced by emission from sub-micron-sized optically thin dust, and DM Tau, whose near-infrared spectrum is consistent with a disk hole that is relatively free of small dust. The structure of pre-transitional disks may be a sign of young planets forming in these disks and future studies of pre-transitional disks will provide constraints to aid in theoretical modeling of planet formation.« less

  10. Shadows and spirals in the protoplanetary disk HD 100453

    NASA Astrophysics Data System (ADS)

    Benisty, M.; Stolker, T.; Pohl, A.; de Boer, J.; Lesur, G.; Dominik, C.; Dullemond, C. P.; Langlois, M.; Min, M.; Wagner, K.; Henning, T.; Juhasz, A.; Pinilla, P.; Facchini, S.; Apai, D.; van Boekel, R.; Garufi, A.; Ginski, C.; Ménard, F.; Pinte, C.; Quanz, S. P.; Zurlo, A.; Boccaletti, A.; Bonnefoy, M.; Beuzit, J. L.; Chauvin, G.; Cudel, M.; Desidera, S.; Feldt, M.; Fontanive, C.; Gratton, R.; Kasper, M.; Lagrange, A.-M.; LeCoroller, H.; Mouillet, D.; Mesa, D.; Sissa, E.; Vigan, A.; Antichi, J.; Buey, T.; Fusco, T.; Gisler, D.; Llored, M.; Magnard, Y.; Moeller-Nilsson, O.; Pragt, J.; Roelfsema, R.; Sauvage, J.-F.; Wildi, F.

    2017-01-01

    Context. Understanding the diversity of planets requires studying the morphology and physical conditions in the protoplanetary disks in which they form. Aims: We aim to study the structure of the 10 Myr old protoplanetary disk HD 100453, to detect features that can trace disk evolution and to understand the mechanisms that drive these features. Methods: We observed HD 100453 in polarized scattered light with VLT/SPHERE at optical (0.6 μm, 0.8 μm) and near-infrared (1.2 μm) wavelengths, reaching an angular resolution of 0.02'', and an inner working angle of 0.09''. Results: We spatially resolve the disk around HD 100453, and detect polarized scattered light up to 0.42'' ( 48 au). We detect a cavity, a rim with azimuthal brightness variations at an inclination of 38° with respect to our line of sight, two shadows and two symmetric spiral arms. The spiral arms originate near the location of the shadows, close to the semi major axis. We detect a faint feature in the SW that can be interpreted as the scattering surface of the bottom side of the disk, if the disk is tidally truncated by the M-dwarf companion currently seen at a projected distance of 119 au. We construct a radiative transfer model that accounts for the main characteristics of the features with an inner and outer disk misaligned by 72°. The azimuthal brightness variations along the rim are well reproduced with the scattering phase function of the model. While spirals can be triggered by the tidal interaction with the companion, the close proximity of the spirals to the shadows suggests that the shadows could also play a role. The change in stellar illumination along the rim induces an azimuthal variation of the scale height that can contribute to the brightness variations. Conclusions: Dark regions in polarized images of transition disks are now detected in a handful of disks and often interpreted as shadows due to a misaligned inner disk. However, the origin of such a misalignment in HD 100453, and of the spirals, is still unclear, and might be due to a yet-undetected massive companion inside the cavity, and on an inclined orbit. Observations over a few years will allow us to measure the spiral pattern speed, and determine if the shadows are fixed or moving, which may constrain their origin. Based on observations performed with VLT/SPHERE under program ID 096.C-0248(B).

  11. An Earth with affinities to Enstatite Chondrites

    NASA Astrophysics Data System (ADS)

    McDonough, W. F.

    2015-12-01

    The Enstatite chondrite model for the Earth, as envisaged by Marc Javoy and colleagues, has strengths and weaknesses. The overwhelming evidence against layered mantle scenarios makes the existing enstatite Earth models unacceptable. Increasingly, stable and radiogenic isotope data for the Earth and the range of chondrites find that many (but not all) isotopic ratios are shared between the Earth and enstatite chondrites. This significant amount of overlap in isotope space compels one to reconsider the enstatite chondrite model for the Earth. During early solar system formation (circa +1 Ma) radial inward migration of the Jupiter and Saturn in the disk (e.g., Grand Tack model) would fully disrupted an asteroid belt, resulting in mixing and redistribution of preexisting components, while much later after the disk is gone (e.g., +100 Ma) gravitational scattering by these planets may have transported small bodies from the outer reaches of the solar system inward towards the rocky planets (Nice model). Astromineralogy reveals variations in the proportion of olivine to pyroxene in accretion disks, some with inner disk regions being richer in olivine relative to the disk wide composition, while other disks show the abundance of olivine is greater in the outer (vs the inner) part of the circumstellar disk, with differences in disk mineralogy being relating to type of star (e.g., T Tauri vs Herbig Ae/Be stars). The inner disk regions (a few AU) show higher abundances of large grains and generally higher crystallinity as compared to outer disk regions, suggesting grain growth occurs more rapidly in the inner disk regions. Recent results from geoneutrino measurements are most consistent with geochemical models that predict 20 TW of radiogenic power, less so with existing enstatite Earth models predicting less power in the planet. At 1 AU the Earth accreted a greater proportion of olivine to pyroxene (i.e., Mg/Si of pyrolite) than that available to the known enstatite chondrite parent body. The Earth accreted early in a reduced state, perhaps to the point of differentiating silicides into the core. Later accreted material was increasingly more oxidized. Stirring and mixing in the early solar system created opportunities for the Earth and enstatite chondrites to share some, but not all chemical and isotopic characteristics.

  12. Imaging a Central Ionized Component, a Narrow Ring, and the CO Snowline in the Multigapped Disk of HD 169142

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macías, Enrique; Anglada, Guillem; Osorio, Mayra

    2017-04-01

    We report Very Large Array observations at 7 mm, 9 mm, and 3 cm toward the pre-transitional disk of the Herbig Ae star HD 169142. These observations have allowed us to study the millimeter emission of this disk with the highest angular resolution so far (0.″12 × 0.″09, or 14 au × 11 au, at 7 mm). Our 7 and 9 mm images show a narrow ring of emission at a radius of ∼25 au tracing the outer edge of the inner gap. This ring presents an asymmetric morphology that could be produced by dynamical interactions between the disk andmore » forming planets. Additionally, the azimuthally averaged radial intensity profiles of the 7 and 9 mm images confirm the presence of the previously reported gap at ∼45 au and reveal a new gap at ∼85 au. We analyzed archival DCO{sup +}(3–2) and C{sup 18}O(2–1) ALMA observations, showing that the CO snowline is located very close to this third outer gap. This suggests that growth and accumulation of large dust grains close to the CO snowline could be the mechanism responsible for this proposed outer gap. Finally, a compact source of emission is detected at 7 mm, 9 mm, and 3 cm toward the center of the disk. Its flux density and spectral index indicate that it is dominated by free–free emission from ionized gas, which could be associated with the photoionization of the inner disk, an independent object, or an ionized jet.« less

  13. Exploring Structures and Variability in the Pre-transitional Disk in HD 169142

    NASA Astrophysics Data System (ADS)

    Wagner, Kevin Robert; Sitko, Michael L.; Grady, Carol A.; Whitney, Barbara; Swearingen, Jeremy R.; Champney, Elizabeth H.; Johnson, Alexa N.; Warren, Chelsea C.; Russell, Ray W.; Schneider, Glenn; Momose, Muntake; Muto, Takayuki; Inoue, Akio K.; Lauroesch, James Thomas; Hornbeck, Jeremy; Brown, Alexander; Fukagawa, Misato; Currie, Thayne M.; Wisniewski, John P.; Woodgate, Bruce E.

    2015-01-01

    We present a theoretical modelling analysis of of the structures in the pre-transisitonal disk in HD 169142 using 3D Monte-Carlo radiative transfer simulation. The multi-epoch broadband spectral energy distribution (SED) exhibits clear evidence of changes to the inner (sub-AU) regions of the disk over a maximum timescale of 10 years with the additional constraint that the shadowing of the outer (>25 AU) disk is non-time-dependent. We find that changes to the inner dust rim (0.2 AU) cannot account for this behavior. Instead, we find that if the inner disk posses an optically thin body of small grains then changes to the outer edge of these structures may successfully reproduce the two states in the SED (analogous to what may be occurring due to accretion onto the central star or dynamical clearing by planets). Furthermore, we explore the density distributions of the outer disk structures as they are constrained by the SED and imaged surface brightness profiles, with the conclusion that a mid-plane density power law profile of r^{-2} and r^{-1} for the 35-70 AU and 70-250 AU regions, respectively, may reproduce the observations to the limit of our available complexity of structures within our modelling software. Finally, we find that a 0.3x density scaling of the 35-70 AU region reproduces the second gap imaged in the near-infrared and at 7 mm, strengthening the link to this structure being cleared by one or more planetary mass bodies.This work was supported by NASA ADAP grant NNX09AC73G, Hubble Space Telescope grant HST-GO-13032, the IR&D program at The Aerospace Corporation, and the University of Cincinnati Honors Program.

  14. THE GRAVITATIONAL INTERACTION BETWEEN PLANETS ON INCLINED ORBITS AND PROTOPLANETARY DISKS AS THE ORIGIN OF PRIMORDIAL SPIN–ORBIT MISALIGNMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsakos, Titos; Königl, Arieh

    Many of the observed spin–orbit alignment properties of exoplanets can be explained in the context of the primordial disk misalignment model, in which an initially aligned protoplanetary disk is torqued by a distant stellar companion on a misaligned orbit, resulting in a precessional motion that can lead to large-amplitude oscillations of the spin–orbit angle. We consider a variant of this model in which the companion is a giant planet with an orbital radius of a few astronomical units. Guided by the results of published numerical simulations, we model the dynamical evolution of this system by dividing the disk into inner andmore » outer parts—separated at the location of the planet—that behave as distinct, rigid disks. We show that the planet misaligns the inner disk even as the orientation of the outer disk remains unchanged. In addition to the oscillations induced by the precessional motion, whose amplitude is larger the smaller the initial inner-disk-to-planet mass ratio, the spin–orbit angle also exhibits a secular growth in this case—driven by ongoing mass depletion from the disk—that becomes significant when the inner disk’s angular momentum drops below that of the planet. Altogether, these two effects can produce significant misalignment angles for the inner disk, including retrograde configurations. We discuss these results within the framework of the Stranded Hot Jupiter scenario and consider their implications, including the interpretation of the alignment properties of debris disks.« less

  15. Star-forming Environments throughout the M101 Group

    NASA Astrophysics Data System (ADS)

    Watkins, Aaron E.; Mihos, J. Christopher; Harding, Paul

    2017-12-01

    We present a multiwavelength study of star formation within the nearby M101 Group, including new deep Hα imaging of M101 and its two companions. We perform a statistical analysis of the Hα-to-FUV flux ratios in H II regions located in three different environments: M101's inner disk, M101's outer disk, and M101's lower-mass companion galaxy NGC 5474. We find that, once bulk radial trends in extinction are taken into account, both the median and scatter in F Hα /F FUV in H II regions are invariant across all of these environments. Also, using Starburst99 models, we are able to qualitatively reproduce the distributions of F Hα /F FUV throughout these different environments using a standard Kroupa initial mass function (IMF); hence, we find no need to invoke truncations in the upper-mass end of the IMF to explain the young star-forming regions in the M101 Group even at extremely low surface density. This implies that star formation in low-density environments differs from star formation in high-density environments only by intensity and not by cloud-to-cloud physics.

  16. First Keck Nulling Observations of a Young Stellar Object: Probing the Circumstellar Environment of the Herbig Ae star MWC 325

    NASA Technical Reports Server (NTRS)

    Ragland, S.; Ohnaka, K.; Hillenbrand, L.; Ridgway, S. T.; Colavita, M. M.; Akeson, R. L.; Cotton, W.; Danichi, W. C.; Hrynevych, M.; Milan-Gabet, R.; hide

    2012-01-01

    We present the first N-band nulling plus K- and L-band V(sup 2) observations of a young stellar object, MWC325, taken with the 85 m baseline Keck Interferometer. The Keck nuller was designed for the study of faint dust signatures associated with debris disks, but it also has a unique capability for studying the temperature and density distribution of denser disks found around young stellar objects. Interferometric observations of MWC 325 at K, L and N encompass a factor of five in spectral range and thus, especially when spectrally dispersed within each band, enable characterization of the structure of the inner disk regions where planets form. Fitting our observations with geometric models such as a uniform disk or a Gaussian disk show that the apparent size increases monotonically with wavelength in the 2-12 micrometer wavelength region, confirming the widely held assumption based on radiative transfer models, now with spatially resolved measurements over broad wavelength range, that disks are extended with a temperature gradient. The effective size is a factor of about 1.3 and 2 larger in the Lband and N-band, respectively, compared to that in the K-band. The existing interferometric measurements and the spectral energy distribution can be reproduced by a flat disk or a weakly shadowed nearly flat-disk model, with only slight flaring in the outer regions of the disk, consisting of representative "sub-micron" (0.1 micron) and "micron" (2 micron) grains of a 50:50 ratio of silicate and graphite. This is marked contrast with the disks previously found in other Herbig Ae/Be stars suggesting a wide variety in the disk properties among Herbig Ae/Be stars.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobson, Heather R.; Pilachowski, Catherine A.; Friel, Eileen D., E-mail: jacob189@msu.edu, E-mail: catyp@astro.indiana.edu, E-mail: edfriel@mac.com

    We present a detailed chemical abundance study of evolved stars in 10 open clusters based on Hydra multi-object echelle spectra obtained with the WIYN 3.5 m telescope. From an analysis of both equivalent widths and spectrum synthesis, abundances have been determined for the elements Fe, Na, O, Mg, Si, Ca, Ti, Ni, Zr, and for two of the 10 clusters, Al and Cr. To our knowledge, this is the first detailed abundance analysis for clusters NGC 1245, NGC 2194, NGC 2355, and NGC 2425. These 10 clusters were selected for analysis because they span a Galactocentric distance range R{sub gc}more » {approx} 9-13 kpc, the approximate location of the transition between the inner and outer disks. Combined with cluster samples from our previous work and those of other studies in the literature, we explore abundance trends as a function of cluster R{sub gc}, age, and [Fe/H]. As found previously by us and other studies, the [Fe/H] distribution appears to decrease with increasing R{sub gc} to a distance of {approx}12 kpc and then flattens to a roughly constant value in the outer disk. Cluster average element [X/Fe] ratios appear to be independent of R{sub gc}, although the picture for [O/Fe] is more complicated with a clear trend of [O/Fe] with [Fe/H] and sample incompleteness. Other than oxygen, no other element [X/Fe] exhibits a clear trend with [Fe/H]; likewise, there does not appear to be any strong correlation between abundance and cluster age. We divided clusters into different age bins to explore temporal variations in the radial element distributions. The radial metallicity gradient appears to have flattened slightly as a function of time, as found by other studies. There is also some indication that the transition from the inner disk metallicity gradient to the {approx}constant [Fe/H] distribution of the outer disk occurs at different Galactocentric radii for different age bins. However, interpretation of the time evolution of radial abundance distributions is complicated by the unequal R{sub gc} and [Fe/H] ranges spanned by clusters in different age bins.« less

  18. United theory of planet formation (i): Tandem regime

    NASA Astrophysics Data System (ADS)

    Ebisuzaki, Toshikazu; Imaeda, Yusuke

    2017-07-01

    The present paper is the first one of a series of papers that present the new united theory of planet formation, which includes magneto-rotational instability and porous aggregation of solid particles in an consistent way. We here describe the ;tandem; planet formation regime, in which a solar system like planetary systems are likely to be produced. We have obtained a steady-state, 1-D model of the accretion disk of a protostar taking into account the magneto-rotational instability (MRI) and and porous aggregation of solid particles. We find that the disk is divided into an outer turbulent region (OTR), a MRI suppressed region (MSR), and an inner turbulent region (ITR). The outer turbulent region is fully turbulent because of MRI. However, in the range, rout(= 8 - 60 AU) from the central star, MRI is suppressed around the midplane of the gas disk and a quiet area without turbulence appears, because the degree of ionization of gas becomes low enough. The disk becomes fully turbulent again in the range rin(= 0.2 - 1 AU), which is called the inner turbulent region, because the midplane temperature become high enough (>1000 K) due to gravitational energy release. Planetesimals are formed through gravitational instability at the outer and inner MRI fronts (the boundaries between the MRI suppressed region (MSR) and the outer and inner turbuent regions) without particle enhancement in the original nebula composition, because of the radial concentration of the solid particles. At the outer MRI front, icy particles grow through low-velocity collisions into porous aggregates with low densities (down to ∼10-5 gcm-3). They eventually undergo gravitational instability to form icy planetesimals. On the other hand, rocky particles accumulate at the inner MRI front, since their drift velocities turn outward due to the local maximum in gas pressure. They undergo gravitational instability in a sub-disk of pebbles to form rocky planetesimals at the inner MRI front. They are likely to be volatile-free because of the high temperature (>1000 K) at this formation site. Such water-free rocky particles may explain the formation of enstatite chondrites, of which the Earth is likely to be primarily composed of. It is also consistent with the model in which the Earth was initially formed as a completely volatile-free planet. The water and other volatile elements came later through the accretion of icy particles by the occasional scatterings in the outer regions. Our new proposed tandem planet formation regime shows that planetesimals are formed at two distinct sites (outer and inner edges of the MRI suppressed region). The former is likely to be the source of outer gas giants and the latter inner rocky planets. The tandem regime also explains the gap in the distribution of solid components (2-4 AU), which is necessary to form a ;solar-system-like; planetary system, which has a relatively small Mars and a very small mass in the main asteroid belt. We found that this tandem regime dose not take place when the vertical magnetic field of the disk five times weaker compared with that we assumed in the present paper, since the outer MRI front shift outward beyond 100 AU. This suggests that yet other regimes exists in our united theory. It may explain the variation observed in exsoplanetary systems by variations in magnetic field and probably angular momentum of the parent molecular cloud.

  19. CHANDRA/ACIS-I STUDY OF THE X-RAY PROPERTIES OF THE NGC 6611 AND M16 STELLAR POPULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guarcello, M. G.; Drake, J. J.; Caramazza, M.

    2012-07-10

    Mechanisms regulating the origin of X-rays in young stellar objects and the correlation with their evolutionary stage are under debate. Studies of the X-ray properties in young clusters allow us to understand these mechanisms. One ideal target for this analysis is the Eagle Nebula (M16), with its central cluster NGC 6611. At 1750 pc from the Sun, it harbors 93 OB stars, together with a population of low-mass stars from embedded protostars to disk-less Class III objects, with age {<=}3 Myr. We study an archival 78 ks Chandra/ACIS-I observation of NGC 6611 and two new 80 ks observations of themore » outer region of M16, one centered on the Column V and the other on a region of the molecular cloud with ongoing star formation. We detect 1755 point sources with 1183 candidate cluster members (219 disk-bearing and 964 disk-less). We study the global X-ray properties of M16 and compare them with those of the Orion Nebula Cluster. We also compare the level of X-ray emission of Class II and Class III stars and analyze the X-ray spectral properties of OB stars. Our study supports the lower level of X-ray activity for the disk-bearing stars with respect to the disk-less members. The X-ray luminosity function (XLF) of M16 is similar to that of Orion, supporting the universality of the XLF in young clusters. Eighty-five percent of the O stars of NGC 6611 have been detected in X-rays. With only one possible exception, they show soft spectra with no hard components, indicating that mechanisms for the production of hard X-ray emission in O stars are not operating in NGC 6611.« less

  20. NGC 1058: Gas motions in an extended, quiescent spiral disk

    NASA Technical Reports Server (NTRS)

    Hanson, Margaret Murray; Dickey, John M.; Helou, George

    1990-01-01

    Researchers investigate in detail the motion of gas in the galaxy NGC 1058 using the very large array (VLA) to map the emission in the 21-cm line. This galaxy is so nearly face-on that the contribution to the line width due to the variation of the rotational velocity across the D-array beam is small compared with the random z-motion of the gas. Researchers confirm results of earlier studies (Lewis 1987, A. and A. Suppl., 63, 515; van der Kruit and Shostak 1984, A. and A., 134, 258) of the galaxy's total neutral hydrogen (HI) and kinematics, including the fact that the rotation curve drops faster than Keplerian at the outer edge of the disk, which is interpreted as a fortuitous twist of the plane of rotation in the outer disk. However, their very high velocity resolution (2.58 km s(exp -1) after Hanning smoothing) coupled with good spatial resolution, allows researchers to measure more accurately the line width, and even to some extent its shape, throughout the disk. One of the most interesting results of this study is the remarkable constancy of the line width in the outer disk. From radius 90 to 210 seconds the Gaussian velocity dispersion (sigma sub nu) of the 21-cm line has a mean value of 5.7 km s(exp -1) (after correcting for the spectral resolution) with a dispersion of less than 0.9 km s(exp -1) (after correcting for the spectral resolution) with a dispersion of less than 0.9 km s(exp -1). Translating this directly into a kinetic temperature (Doppler temperature): T sub Dopp equals 121K (sigma sub mu exp 2/(km s(exp -1) (exp 2) gives 4000 K, with a dispersion of less than 1500 K over the outer disk. This constancy is observed even when comparing the spiral arms versus inter-arm regions, which in the radius range from 100 to 150 seconds the surface density modulates (defined as the ratio N sub peak -N sub trough/N sub peak + N sub trough) from 0.5 to 0.25 in the range 150 to 200 seconds.

  1. HST eclipse mapping of dwarf nova OY Carinae in quiescence: An 'Fe II curtain' with Mach approx. = 6 velocity dispersion veils the white dwarf

    NASA Technical Reports Server (NTRS)

    Horne, Keith; Marsh, T. R.; Cheng, F. H.; Hubeny, Ivan; Lanz, Theirry

    1994-01-01

    Hubble Space Telescope (HST) observations of the eclipsing dwarf nova OY Car in its quiescent state are used to isolate the ultraviolet spectrum (1150-2500 A at 9.2 A Full Width at Half Maximum (FWHM) resolution) of the white dwarf, the accretion disk, and the bright spot. The white dwarf spectrum has a Stark-broadened photospheric L(alpha) absorption, but is veiled by a forest of blended Fe II features that we attribute to absorption by intervening disk material. A fit gives T(sub w) approx. = 16.5 x 10(exp 3) K for the white dwarf with a solar-abundance, log g = 8 model atmosphere, and T approx. = 10(exp 4) K, n(sub e) approx. = 10(exp 13)/cu cm, N(sub H) approx. = 10(exp 22) sq cm, and velocity dispersion delta V approx. = 60 km/s for the veil of homogeneous solar-abundance local thermodynamic equilibrium (LTE) gas. The veil parameters probably measure characteristic physical conditions in the quiescent accretion disk or its chromosphere. The large velocity dispersion is essential for a good fit; it lowers (chi square)/778 from 22 to 4. Keplerian shear can produce the velocity dispersion if the veiling gas is located at R approx. = 5 R(sub W) with (delta R)/R approx. = 0.3, but this model leaves an unobscured view to the upper hemisphere of the white dwarf, incompatible with absorptions that are up to 80% deep. The veiling gas may be in the upper atmosphere of the disk near its outer rim, but we then require supersonic (Mach approx. = 6) but sub-Keplerian (delta V/V(sub Kep) approx. = 0.07) velocity disturbances in this region to produce both the observed radial velocity dispersion and vertical motions sufficient to elevate the gas to z/R = cos i = 0.12. Such motions might be driven by the gas stream, since it may take several Kepler periods to reestablish the disk's vertical hydrostatic equilibrium. The temperature and column density of the gas we see as Fe II absorption in the ultraviolet are similar to what is required to produce the strong Balmer jump and line emissions seen in optical spectra of OY Car and similar quiescent dwarf novae. The outer accretion disk is detected at mid-eclipse with a spectrum that rises from 0.05 to 0.3 mJy between 2000 and 2500 A, consistent with combinations of cool blackbodies, blended Fe II emission lines, and Balmer continuum emission. The total disk flux density is 0.5 mJy at 2500 A, and this shallow disk eclipse implies a roughly flat surface brightness distribution. The bright spot, somewhat bluer than the disk, has a flux density rising from 0.05 to 0.15 mJy between 1600 and 2500 A. The C IV emission line has a broad shallow eclipse, but the radial velocity variations observed during the eclipse do not clearly distinguish between a disk or wind origin. The only possible indications of boundary layer emission are fast UV flares that appear to arise from near the central object -- not from the bright spot.

  2. Galactic Structure in the Outer Disk: The Field in the Line of Sight to the Intermediate-age Open Cluster Tombaugh 1

    NASA Astrophysics Data System (ADS)

    Carraro, Giovanni; Sales Silva, Joao Victor; Moni Bidin, Christian; Vazquez, Ruben A.

    2017-03-01

    We employ optical photometry and high-resolution spectroscopy to study a field toward the open cluster Tombaugh 1, where we identify a complex population mixture that we describe in terms of young and old Galactic thin disks. Of particular interest is the spatial distribution of the young population, which consists of dwarfs with spectral types as early as B6 and is distributed in a blue plume feature in the color-magnitude diagram. For the first time, we confirm spectroscopically that most of these stars are early-type stars and not blue stragglers or halo/thick-disk subdwarfs. Moreover, they are not evenly distributed along the line of sight but crowd at heliocentric distances between 6.6 and 8.2 kpc. We compare these results with present-day understanding of the spiral structure of the Galaxy and suggest that they trace the outer arm. This range of distances challenges current Galactic models adopting a disk cutoff at 14 kpc from the Galactic center. The young dwarfs overlap in space with an older component, which is identified as an old Galactic thin disk. Both young and old populations are confined in space since the disk is warped at the latitude and longitude of Tombaugh 1. The main effects of the warp are that the line of sight intersects the disk and entirely crosses it at the outer arm distance and that there are no traces of the closer Perseus arm, which would then be either unimportant in this sector or located much closer to the formal Galactic plane. Finally, we analyze a group of giant stars, which turn out to be located at very different distances and to possess very different chemical properties, with no obvious relation to the other populations. Based on observations carried out at Las Campanas Observatory, Chile (program ID CN009B-042), and Cerro Tololo Inter-American Observatory.

  3. Galactic Structure in the Outer Disk: The Field in the Line of Sight to the Intermediate-Age open Cluster Tombaugh 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carraro, Giovanni; Silva, Joao Victor Sales; Bidin, Christian Moni

    We employ optical photometry and high-resolution spectroscopy to study a field toward the open cluster Tombaugh 1, where we identify a complex population mixture that we describe in terms of young and old Galactic thin disks. Of particular interest is the spatial distribution of the young population, which consists of dwarfs with spectral types as early as B6 and is distributed in a blue plume feature in the color–magnitude diagram. For the first time, we confirm spectroscopically that most of these stars are early-type stars and not blue stragglers or halo/thick-disk subdwarfs. Moreover, they are not evenly distributed along the linemore » of sight but crowd at heliocentric distances between 6.6 and 8.2 kpc. We compare these results with present-day understanding of the spiral structure of the Galaxy and suggest that they trace the outer arm. This range of distances challenges current Galactic models adopting a disk cutoff at 14 kpc from the Galactic center. The young dwarfs overlap in space with an older component, which is identified as an old Galactic thin disk. Both young and old populations are confined in space since the disk is warped at the latitude and longitude of Tombaugh 1. The main effects of the warp are that the line of sight intersects the disk and entirely crosses it at the outer arm distance and that there are no traces of the closer Perseus arm, which would then be either unimportant in this sector or located much closer to the formal Galactic plane. Finally, we analyze a group of giant stars, which turn out to be located at very different distances and to possess very different chemical properties, with no obvious relation to the other populations.« less

  4. Metallicity and Kinematics of M31's Outer Stellar Halo from a Keck Spectroscopic Survey

    NASA Astrophysics Data System (ADS)

    Reitzel, David B.; Guhathakurta, Puragra

    2002-07-01

    We present first results from a spectroscopic survey designed to examine the metallicity and kinematics of individual red giant branch stars in the outer halo of the Andromeda spiral galaxy (M31). This study is based on multislit spectroscopy with the Keck II 10 m telescope and Low Resolution Imaging Spectrograph of the Ca II near-infrared triplet in 99 M31 halo candidates in a field at R=19 kpc on the southeast minor axis with brightnesses from 20~2 dex range over which the abundance measurement methods are calibrated. The mean/median metallicity of the M31 halo is about <[Fe/H]>=-1.9 to -1.1 dex (depending on the details of metallicity calibration and sample selection) and possibly higher: the high-metallicity end of the distribution is poorly constrained by our data since the selection function for the secure M31 sample excludes over 80% of the giants in solar/supersolar metallicity range. Possible reasons are explored for the apparent discrepancy between the mean [Fe/H] found in our spectroscopic survey (corrected for metallicity selection bias) and the slightly higher mean values found in earlier photometric studies. Field halo red giants in M31 appear to be somewhat more metal-rich on average than their Milky Way counterparts. The M31 halo [Fe/H] distribution is comparable to that of M31 globular clusters, Galactic globular clusters, and Local Group dwarf satellite galaxies. The data in this 19 kpc outer halo field are broadly consistent with a scenario in which the halo is built from the accretion of small stellar subsystems. There are four stars in the secure M31 sample that have particularly strong Ca II lines, indicating solar metallicity, at a common velocity of ~-340 km s-1 close to the galaxy's systemic velocity, similar to what might be expected for M31 disk giants on the minor axis. An extrapolation of the inner disk brightness profile, however, falls far short of accounting for these four stars-the disk would instead have to be very large (Rdisk>~80 kpc) and/or warped. More likely, these four stars represent a metal-rich debris trail from a past accretion event in the halo. Data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  5. Regulation of black-hole accretion by a disk wind during a violent outburst of V404 Cygni

    NASA Astrophysics Data System (ADS)

    Muñoz-Darias, T.; Casares, J.; Mata Sánchez, D.; Fender, R. P.; Armas Padilla, M.; Linares, M.; Ponti, G.; Charles, P. A.; Mooley, K. P.; Rodriguez, J.

    2016-06-01

    Accretion of matter onto black holes is universally associated with strong radiative feedback and powerful outflows. In particular, black-hole transients have outflows whose properties are strongly coupled to those of the accretion flow. This includes X-ray winds of ionized material, expelled from the accretion disk encircling the black hole, and collimated radio jets. Very recently, a distinct optical variability pattern has been reported in the transient stellar-mass black hole V404 Cygni, and interpreted as disrupted mass flow into the inner regions of its large accretion disk. Here we report observations of a sustained outer accretion disk wind in V404 Cyg, which is unlike any seen hitherto. We find that the outflowing wind is neutral, has a large covering factor, expands at one per cent of the speed of light and triggers a nebular phase once accretion drops sharply and the ejecta become optically thin. The large expelled mass (>10-8 solar masses) indicates that the outburst was prematurely ended when a sizeable fraction of the outer disk was depleted by the wind, detaching the inner regions from the rest of the disk. The luminous, but brief, accretion phases shown by transients with large accretion disks imply that this outflow is probably a fundamental ingredient in regulating mass accretion onto black holes.

  6. Direct imaging of an asymmetric debris disk in the HD 106906 planetary system

    DOE PAGES

    Kalas, Paul G.; Rajan, Abhijith; Wang, Jason J.; ...

    2015-11-13

    Here, we present the first scattered light detections of the HD 106906 debris disk using the Gemini/Gemini Planet Imager in the infrared and Hubble Space Telescope (HST)/Advanced Camera for Surveys in the optical. HD 106906 is a 13 Myr old F5V star in the Sco–Cen association, with a previously detected planet-mass candidate HD 106906b projected 650 AU from the host star. Our observations reveal a near edge-on debris disk that has a central cleared region with radius ~50 AU, and an outer extent >500 AU. The HST data show that the outer regions are highly asymmetric, resembling the "needle" morphologymore » seen for the HD 15115 debris disk. The planet candidate is oriented ~21° away from the position angle of the primary's debris disk, strongly suggesting non-coplanarity with the system. We hypothesize that HD 106906b could be dynamically involved in the perturbation of the primary's disk, and investigate whether or not there is evidence for a circumplanetary dust disk or cloud that is either primordial or captured from the primary. In conclusion, we show that both the existing optical properties and near-infrared colors of HD 106906b are weakly consistent with this possibility, motivating future work to test for the observational signatures of dust surrounding the planet.« less

  7. Regulation of black-hole accretion by a disk wind during a violent outburst of V404 Cygni.

    PubMed

    Muñoz-Darias, T; Casares, J; Mata Sánchez, D; Fender, R P; Armas Padilla, M; Linares, M; Ponti, G; Charles, P A; Mooley, K P; Rodriguez, J

    2016-06-02

    Accretion of matter onto black holes is universally associated with strong radiative feedback and powerful outflows. In particular, black-hole transients have outflows whose properties are strongly coupled to those of the accretion flow. This includes X-ray winds of ionized material, expelled from the accretion disk encircling the black hole, and collimated radio jets. Very recently, a distinct optical variability pattern has been reported in the transient stellar-mass black hole V404 Cygni, and interpreted as disrupted mass flow into the inner regions of its large accretion disk. Here we report observations of a sustained outer accretion disk wind in V404 Cyg, which is unlike any seen hitherto. We find that the outflowing wind is neutral, has a large covering factor, expands at one per cent of the speed of light and triggers a nebular phase once accretion drops sharply and the ejecta become optically thin. The large expelled mass (>10(-8) solar masses) indicates that the outburst was prematurely ended when a sizeable fraction of the outer disk was depleted by the wind, detaching the inner regions from the rest of the disk. The luminous, but brief, accretion phases shown by transients with large accretion disks imply that this outflow is probably a fundamental ingredient in regulating mass accretion onto black holes.

  8. Studies of Disks Around the Sun and Other Stars

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan (Principal Investigator)

    1996-01-01

    We are conducting research designed to enhance our understanding of the evolution and detectability of comet clouds and disks. This area holds promise for also improving our understanding of outer solar system formation, the bombardment history of the planets, the transport of volatiles and organics from the outer solar system to the inner planets, and to the ultimate fate of comet clouds around the Sun and other stars. According to 'standard' theory, both the Kuiper Disk and the Oort Cloud are (at least in part) natural products of the planetary accumulation stage of solar system formation. One expects such assemblages to be a common attribute of other solar systems. Therefore, searches for comet disks and clouds orbiting other stars offer a new method for inferring the presence of planetary systems. This two-element program consists modeling collisions in the Kuiper Disk and the dust disks around other stars. The modeling effort focuses on moving from our simple, first-generation, Kuiper disk collision rate model, to a time-dependent, second-generation model that incorporates physical collisions, velocity evolution, dynamical erosion, and various dust transport mechanisms. This second generation model will be used to study the evolution of surface mass density and the object-size spectrum in the disk. The observational effort focuses on obtaining submm/mm-wave flux density measurements of 25-30 IR excess stars in order to better constrain the masses, spatial extents and structure of their dust ensembles.

  9. Multimodal imaging in a case of bilateral outer retinitis associated with mumps infection.

    PubMed

    Kahloun, Rim; Ben Amor, Hager; Ksiaa, Imen; Zina, Sourour; Jelliti, Bechir; Ben Yahia, Salim; Khairallah, Moncef

    2018-02-01

    To report the results of multimodal imaging of acute outer retinitis associated to mumps infection. A patient with mumps-associated outer retinitis evaluated by color fundus photography, spectral domain optical coherence tomography (SD-OCT), optical coherence tomography angiography, fundus autofluorescence (FAF), fluorescein angiography (FA), and indocyanine green angiography (ICGA). We report a case of a 12-year-old boy who developed bilateral outer retinitis related to mumps. Ophthalmoscopy showed confluent areas of outer retinitis involving the posterior pole and the periphery with a centrifugal gyrate pattern. SD-OCT revealed a marked disorganization of the outer retinal layers with multiple highly reflective spicules. FA shows diffuse late hyperfluorescence with optic disk staining. ICGA shows macular and peripheral hyperfluorescent lesions with a geographical pattern in the late phases. The patient was treated with acyclovir and oral prednisone. Four weeks after presentation visual acuity remained unchanged, and retinal changes seen at the acute phase had resolved leading to extensive retinal atrophy and optic disk pallor. SD-OCT showed atrophy of the retinal pigment epithelial and outer retinal layers. FAF revealed scattered hyperautofluorescent lesions. Electrophysiology showed generalized retinal dysfunction. Mumps infection should be considered in the differential diagnosis of bilateral necrotizing outer retinitis in children and young adults. A multimodal imaging approach may help distinguish mumps-associated retinitis from other causes of viral retinitis and facilitate appropriate management.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalas, Paul G.; Rajan, Abhijith; Wang, Jason J.

    Here, we present the first scattered light detections of the HD 106906 debris disk using the Gemini/Gemini Planet Imager in the infrared and Hubble Space Telescope (HST)/Advanced Camera for Surveys in the optical. HD 106906 is a 13 Myr old F5V star in the Sco–Cen association, with a previously detected planet-mass candidate HD 106906b projected 650 AU from the host star. Our observations reveal a near edge-on debris disk that has a central cleared region with radius ~50 AU, and an outer extent >500 AU. The HST data show that the outer regions are highly asymmetric, resembling the "needle" morphologymore » seen for the HD 15115 debris disk. The planet candidate is oriented ~21° away from the position angle of the primary's debris disk, strongly suggesting non-coplanarity with the system. We hypothesize that HD 106906b could be dynamically involved in the perturbation of the primary's disk, and investigate whether or not there is evidence for a circumplanetary dust disk or cloud that is either primordial or captured from the primary. In conclusion, we show that both the existing optical properties and near-infrared colors of HD 106906b are weakly consistent with this possibility, motivating future work to test for the observational signatures of dust surrounding the planet.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalas, Paul G.; Wang, Jason J.; Duchene, Gaspard

    We present the first scattered light detections of the HD 106906 debris disk using the Gemini/Gemini Planet Imager in the infrared and Hubble Space Telescope (HST)/Advanced Camera for Surveys in the optical. HD 106906 is a 13 Myr old F5V star in the Sco–Cen association, with a previously detected planet-mass candidate HD 106906b projected 650 AU from the host star. Our observations reveal a near edge-on debris disk that has a central cleared region with radius ∼50 AU, and an outer extent >500 AU. The HST data show that the outer regions are highly asymmetric, resembling the “needle” morphology seenmore » for the HD 15115 debris disk. The planet candidate is oriented ∼21° away from the position angle of the primary’s debris disk, strongly suggesting non-coplanarity with the system. We hypothesize that HD 106906b could be dynamically involved in the perturbation of the primary’s disk, and investigate whether or not there is evidence for a circumplanetary dust disk or cloud that is either primordial or captured from the primary. We show that both the existing optical properties and near-infrared colors of HD 106906b are weakly consistent with this possibility, motivating future work to test for the observational signatures of dust surrounding the planet.« less

  12. OUTWARD MOTION OF POROUS DUST AGGREGATES BY STELLAR RADIATION PRESSURE IN PROTOPLANETARY DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tazaki, Ryo; Nomura, Hideko, E-mail: rtazaki@kusastro.kyoto-u.ac.jp

    2015-02-01

    We study the dust motion at the surface layer of protoplanetary disks. Dust grains in the surface layer migrate outward owing to angular momentum transport via gas-drag force induced by the stellar radiation pressure. In this study we calculate the mass flux of the outward motion of compact grains and porous dust aggregates by the radiation pressure. The radiation pressure force for porous dust aggregates is calculated using the T-Matrix Method for the Clusters of Spheres. First, we confirm that porous dust aggregates are forced by strong radiation pressure even if they grow to be larger aggregates, in contrast tomore » homogeneous and spherical compact grains, for which radiation pressure efficiency becomes lower when their sizes increase. In addition, we find that the outward mass flux of porous dust aggregates with monomer size of 0.1 μm is larger than that of compact grains by an order of magnitude at the disk radius of 1 AU, when their sizes are several microns. This implies that large compact grains like calcium-aluminum-rich inclusions are hardly transported to the outer region by stellar radiation pressure, whereas porous dust aggregates like chondritic-porous interplanetary dust particles are efficiently transported to the comet formation region. Crystalline silicates are possibly transported in porous dust aggregates by stellar radiation pressure from the inner hot region to the outer cold cometary region in the protosolar nebula.« less

  13. Spatially extended polycyclic aromatic hydrocarbons in circumstellar disks around T Tauri and Herbig Ae stars

    NASA Astrophysics Data System (ADS)

    Geers, V. C.; van Dishoeck, E. F.; Visser, R.; Pontoppidan, K. M.; Augereau, J.-C.; Habart, E.; Lagrange, A. M.

    2007-12-01

    Aims:Our aim is to determine the presence and location of the emission from polycyclic aromatic hydrocarbons (PAHs) towards low and intermediate mass young stars with disks using large aperture telescopes. Methods: VLT-VISIR N-band spectra and VLT-ISAAC and VLT-NACO L-band spectra of 29 sources are presented, spectrally resolving the 3.3, 8.6, 11.2, and 12.6 μm PAH features. Spatial-extent profiles of the features and the continuum emission have been derived and used to associate the PAH emission with the disks. The results are discussed in the context of recent PAH-emission disk models. Results: The 3.3, 8.6, and 11.2 μm PAH features are detected toward a small fraction of the T Tauri stars, with typical upper limits between 1 × 10-15 and 5 × 10-17 W m-2. All 11.2 μm detections from a previous Spitzer survey are confirmed with (tentative) 3.3 μm detections, and both the 8.6 and the 11.2 μm features are detected in all PAH sources. For 6 detections, the spatial extent of the PAH features is confined to scales typically smaller than 0.12-0.34'', consistent with the radii of 12-60 AU disks at their distances (typically 150 pc). For 3 additional sources, WL 16, HD 100546, and TY CrA, one or more of the PAH features are more extended than the hot dust continuum of the disk, whereas for Oph IRS 48, the size of the resolved PAH emission is confirmed as smaller than for the large grains. For HD 100546, the 3.3 μm emission is confined to a small radial extent of 12±3 AU, most likely associated with the outer rim of the gap in this disk. Gaps with radii out to 10-30 AU may also affect the observed PAH extent for other sources. For both Herbig Ae and T Tauri stars, the small measured extents of the 8.6 and 11.2 μm features are consistent with larger (≥100 carbon atoms) PAHs. Based on observations obtained at the European Southern Observatory, Paranal, Chile, within the observing programs 164.I-0605 (ISAAC May 2002), 074.C-0413 (NACO, March/April 2005), 075.C-0420 (ISAAC August 2005), 077.C-0668 (VISIR/ISAAC April/May 2006). Appendix A is only available in electronic form at http://www.aanda.org

  14. The Dragonfly Nearby Galaxies Survey. IV. A Giant Stellar Disk in NGC 2841

    NASA Astrophysics Data System (ADS)

    Zhang, Jielai; Abraham, Roberto; van Dokkum, Pieter; Merritt, Allison; Janssens, Steven

    2018-03-01

    Neutral gas is commonly believed to dominate over stars in the outskirts of galaxies, and investigations of the disk-halo interface are generally considered to be in the domain of radio astronomy. This may simply be a consequence of the fact that deep H I observations typically probe to a lower-mass surface density than visible wavelength data. This paper presents low-surface-brightness, optimized visible wavelength observations of the extreme outskirts of the nearby spiral galaxy NGC 2841. We report the discovery of an enormous low-surface brightness stellar disk in this object. When azimuthally averaged, the stellar disk can be traced out to a radius of ∼70 kpc (5 R 25 or 23 inner disk scale lengths). The structure in the stellar disk traces the morphology of H I emission and extended UV emission. Contrary to expectations, the stellar mass surface density does not fall below that of the gas mass surface density at any radius. In fact, at all radii greater than ∼20 kpc, the ratio of the stellar mass to gas mass surface density is a constant 3:1. Beyond ∼30 kpc, the low-surface-brightness stellar disk begins to warp, which may be an indication of a physical connection between the outskirts of the galaxy and infall from the circumgalactic medium. A combination of stellar migration, accretion, and in situ star formation might be responsible for building up the outer stellar disk, but whatever mechanisms formed the outer disk must also explain the constant ratio between stellar and gas mass in the outskirts of this galaxy.

  15. On the Grain-modified Magnetic Diffusivities in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Xu, Rui; Bai, Xue-Ning

    2016-03-01

    Weakly ionized protoplanetary disks (PPDs) are subject to nonideal magnetohydrodynamic (MHD) effects, including ohmic resistivity, the Hall effect, and ambipolar diffusion (AD), and the resulting magnetic diffusivities ({η }{{O}},{η }{{H}}, and {η }{{A}}) largely control the disk gas dynamics. The presence of grains not only strongly reduces the disk ionization fraction, but also modifies the scalings of {η }{{H}} and {η }{{A}} with magnetic field strength. We analytically derive asymptotic expressions of {η }{{H}} and {η }{{A}} in both the strong and weak field limits and show that toward a strong field, {η }{{H}} can change sign (at a threshold field strength {B}{{th}}), mimicking a flip of field polarity, and AD is substantially reduced. Applied to PPDs, we find that when small ˜0.1 (0.01)μm grains are sufficiently abundant (mass ratio ˜0.01 (10-4)), {η }{{H}} can change sign up to ˜2-3 scale heights above the midplane at a modest field strength (plasma β ˜ 100) over a wide range of disk radii. The reduction of AD is also substantial toward the AD-dominated outer disk and may activate the magnetorotational instability. We further perform local nonideal MHD simulations of the inner disk (within 10 au) and show that, with sufficiently abundant small grains, the magnetic field amplification due to the Hall-shear instability saturates at a very low level near the threshold field strength {B}{{th}}. Together with previous studies, we conclude by discussing the grain-abundance-dependent phenomenology of PPD gas dynamics.

  16. Inside-out Planet Formation. IV. Pebble Evolution and Planet Formation Timescales

    NASA Astrophysics Data System (ADS)

    Hu, Xiao; Tan, Jonathan C.; Zhu, Zhaohuan; Chatterjee, Sourav; Birnstiel, Tilman; Youdin, Andrew N.; Mohanty, Subhanjoy

    2018-04-01

    Systems with tightly packed inner planets (STIPs) are very common. Chatterjee & Tan proposed Inside-out Planet Formation (IOPF), an in situ formation theory, to explain these planets. IOPF involves sequential planet formation from pebble-rich rings that are fed from the outer disk and trapped at the pressure maximum associated with the dead zone inner boundary (DZIB). Planet masses are set by their ability to open a gap and cause the DZIB to retreat outwards. We present models for the disk density and temperature structures that are relevant to the conditions of IOPF. For a wide range of DZIB conditions, we evaluate the gap-opening masses of planets in these disks that are expected to lead to the truncation of pebble accretion onto the forming planet. We then consider the evolution of dust and pebbles in the disk, estimating that pebbles typically grow to sizes of a few centimeters during their radial drift from several tens of astronomical units to the inner, ≲1 au scale disk. A large fraction of the accretion flux of solids is expected to be in such pebbles. This allows us to estimate the timescales for individual planet formation and the entire planetary system formation in the IOPF scenario. We find that to produce realistic STIPs within reasonable timescales similar to disk lifetimes requires disk accretion rates of ∼10‑9 M ⊙ yr‑1 and relatively low viscosity conditions in the DZIB region, i.e., a Shakura–Sunyaev parameter of α ∼ 10‑4.

  17. AN UNBIASED 1.3 mm EMISSION LINE SURVEY OF THE PROTOPLANETARY DISK ORBITING LkCa 15

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Punzi, K. M.; Kastner, J. H.; Hily-Blant, P.

    2015-06-01

    The outer (>30 AU) regions of the dusty circumstellar disk orbiting the ∼2–5 Myr old, actively accreting solar analog LkCa 15 are known to be chemically rich, and the inner disk may host a young protoplanet within its central cavity. To obtain a complete census of the brightest molecular line emission emanating from the LkCa 15 disk over the 210–270 GHz (1.4–1.1 mm) range, we have conducted an unbiased radio spectroscopic survey with the Institute de Radioastronomie Millimétrique (IRAM) 30 m telescope. The survey demonstrates that in this spectral region, the most readily detectable lines are those of CO andmore » its isotopologues {sup 13}CO and C{sup 18}O, as well as HCO{sup +}, HCN, CN, C{sub 2}H, CS, and H{sub 2}CO. All of these species had been previously detected in the LkCa 15 disk; however, the present survey includes the first complete coverage of the CN (2–1) and C{sub 2}H (3–2) hyperfine complexes. Modeling of these emission complexes indicates that the CN and C{sub 2}H either reside in the coldest regions of the disk or are subthermally excited, and that their abundances are enhanced relative to molecular clouds and young stellar object environments. These results highlight the value of unbiased single-dish line surveys in guiding future high-resolution interferometric imaging of disks.« less

  18. Unlocking CO Depletion in Protoplanetary Disks. I. The Warm Molecular Layer

    NASA Astrophysics Data System (ADS)

    Schwarz, Kamber R.; Bergin, Edwin A.; Cleeves, L. Ilsedore; Zhang, Ke; Öberg, Karin I.; Blake, Geoffrey A.; Anderson, Dana

    2018-03-01

    CO is commonly used as a tracer of the total gas mass in both the interstellar medium and in protoplanetary disks. Recently, there has been much debate about the utility of CO as a mass tracer in disks. Observations of CO in protoplanetary disks reveal a range of CO abundances, with measurements of low CO to dust mass ratios in numerous systems. One possibility is that carbon is removed from CO via chemistry. However, the full range of physical conditions conducive to this chemical reprocessing is not well understood. We perform a systematic survey of the time dependent chemistry in protoplanetary disks for 198 models with a range of physical conditions. We vary dust grain size distribution, temperature, comic-ray and X-ray ionization rates, disk mass, and initial water abundance, detailing what physical conditions are necessary to activate the various CO depletion mechanisms in the warm molecular layer. We focus our analysis on the warm molecular layer in two regions: the outer disk (100 au) well outside the CO snowline and the inner disk (19 au) just inside the midplane CO snowline. After 1 Myr, we find that the majority of models have a CO abundance relative to H2 less than 10‑4 in the outer disk, while an abundance less than 10‑5 requires the presence of cosmic-rays. Inside the CO snowline, significant depletion of CO only occurs in models with a high cosmic-ray rate. If cosmic-rays are not present in young disks, it is difficult to chemically remove carbon from CO. Additionally, removing water prior to CO depletion impedes the chemical processing of CO. Chemical processing alone cannot explain current observations of low CO abundances. Other mechanisms must also be involved.

  19. Differential distribution of proteins and lipids in detergent-resistant and detergent-soluble domains in rod outer segment plasma membranes and disks.

    PubMed

    Elliott, Michael H; Nash, Zack A; Takemori, Nobuaki; Fliesler, Steven J; McClellan, Mark E; Naash, Muna I

    2008-01-01

    Membrane heterogeneity plays a significant role in regulating signal transduction and other cellular activities. We examined the protein and lipid components associated with the detergent-resistant membrane (DRM) fractions from retinal rod outer segment (ROS) disk and plasma membrane-enriched preparations. Proteomics and correlative western blot analysis revealed the presence of alpha and beta subunits of the rod cGMP-gated ion channel and glucose transporter type 1, among other proteins. The glucose transporter was present exclusively in ROS plasma membrane (not disks) and was highly enriched in DRMs, as was the cGMP-gated channel beta-subunit. In contrast, the majority of rod opsin and ATP-binding cassette transporter A4 was localized to detergent-soluble domains in disks. As expected, the cholesterol : fatty acid mole ratio was higher in DRMs than in the corresponding parent membranes (disk and plasma membranes, respectively) and was also higher in disks compared to plasma membranes. Furthermore, the ratio of saturated : polyunsaturated fatty acids was also higher in DRMs compared to their respective parent membranes (disk and plasma membranes). These results confirm that DRMs prepared from both disks and plasma membranes are enriched in cholesterol and in saturated fatty acids compared to their parent membranes. The dominant fatty acids in DRMs were 16 : 0 and 18 : 0; 22 : 6n3 and 18 : 1 levels were threefold higher and twofold lower, respectively, in disk-derived DRMs compared to plasma membrane-derived DRMs. We estimate, based on fatty acid recovery that DRMs account for only approximately 8% of disks and approximately 12% of ROS plasma membrane.

  20. The Dynamical Structure of HR 8799's Inner Debris Disk

    NASA Astrophysics Data System (ADS)

    Contro, B.; Wittenmyer, Robert A.; Horner, J.; Marshall, Jonathan P.

    2015-06-01

    The HR 8799 system, with its four giant planets and two debris belts, has an architecture closely mirroring that of our Solar system where the inner, warm asteroid belt and outer, cool Edgeworth-Kuiper belt bracket the giant planets. As such, it is a valuable laboratory for examining exoplanetary dynamics and debris disk-exoplanet interactions. Whilst the outer debris belt of HR 8799 has been well resolved by previous observations, the spatial extent of the inner disk remains unknown. This leaves a significant question mark over both the location of the planetesimals responsible for producing the belt's visible dust and the physical properties of those grains. We have performed the most extensive simulations to date of the inner, unresolved debris belt around HR 8799, using UNSW Australia's Katana supercomputing facility to follow the dynamical evolution of a model inner disk comprising 300,298 particles for a period of 60 Ma. These simulations have enabled the characterisation of the extent and structure of the inner disk in detail, and will in future allow us to provide a first estimate of the small-body impact rate and water delivery prospects for possible (as-yet undetected) terrestrial planet (s) in the inner system.

  1. The Dynamical Structure of HR 8799's Inner Debris Disk.

    PubMed

    Contro, B; Wittenmyer, Robert A; Horner, J; Marshall, Jonathan P

    2015-06-01

    The HR 8799 system, with its four giant planets and two debris belts, has an architecture closely mirroring that of our Solar system where the inner, warm asteroid belt and outer, cool Edgeworth-Kuiper belt bracket the giant planets. As such, it is a valuable laboratory for examining exoplanetary dynamics and debris disk-exoplanet interactions. Whilst the outer debris belt of HR 8799 has been well resolved by previous observations, the spatial extent of the inner disk remains unknown. This leaves a significant question mark over both the location of the planetesimals responsible for producing the belt's visible dust and the physical properties of those grains. We have performed the most extensive simulations to date of the inner, unresolved debris belt around HR 8799, using UNSW Australia's Katana supercomputing facility to follow the dynamical evolution of a model inner disk comprising 300,298 particles for a period of 60 Ma. These simulations have enabled the characterisation of the extent and structure of the inner disk in detail, and will in future allow us to provide a first estimate of the small-body impact rate and water delivery prospects for possible (as-yet undetected) terrestrial planet (s) in the inner system.

  2. VARIABILITY OF DISK EMISSION IN PRE-MAIN SEQUENCE AND RELATED STARS. III. EXPLORING STRUCTURAL CHANGES IN THE PRE-TRANSITIONAL DISK IN HD 169142

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, Kevin R.; Sitko, Michael L.; Swearingen, Jeremy R.

    We present near-IR (NIR) and far-UV observations of the pre-transitional (gapped) disk in HD 169142 using NASA's Infrared Telescope Facility and Hubble Space Telescope. The combination of our data along with existing data sets into the broadband spectral energy distribution reveals variability of up to 45% between ∼1.5-10 μm over a maximum timescale of 10 yr. All observations known to us separate into two distinct states corresponding to a high near-IR state in the pre-2000 epoch and a low state in the post-2000 epoch, indicating activity within the ≲1 AU region of the disk. Through analysis of the Pa β and Brmore » γ lines in our data we derive a mass accretion rate in 2013 May of M-dot ≈ (1.5-2.7) × 10{sup –9} M {sub ☉} yr{sup –1}. We present a theoretical modeling analysis of the disk in HD 169142 using Monte-Carlo radiative transfer simulation software to explore the conditions and perhaps signs of planetary formation in our collection of 24 yr of observations. We find that shifting the outer edge (r ≈ 0.3 AU) of the inner disk by 0.05 AU toward the star (in simulation of accretion and/or sculpting by forming planets) successfully reproduces the shift in NIR flux. We establish that the ∼40-70 AU dark ring imaged in the NIR by Quanz et al. and Momose et al. and at 7 mm by Osorio et al. may be reproduced with a 30% scaled density profile throughout the region, strengthening the link to this structure being dynamically cleared by one or more planetary mass bodies.« less

  3. Explaining the Birth of the Martian Moons

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-09-01

    A new study examines the possibility that Marss two moons formed after a large body slammed into Mars, creating a disk of debris. This scenario might be the key to reconciling the moons orbital properties with their compositions.Conflicting EvidenceThe different orbital (left) and spectral (right) characteristics of the Martian moons in the three different formation scenarios. Click for a better look! Phobos and Deimoss orbital characteristics are best matched by formation around Mars (b and c), and their physical characteristics are best matched by formation in the outer region of an impact-generated accretion disk (rightmost panel of c). [Ronnet et al. 2016]How were Marss two moons, Phobos and Deimos, formed? There are three standing theories:Two already-formed, small bodies from the outer main asteroid belt were captured by Mars, intact.The bodies formed simultaneously with Mars, by accretion from the same materials.A large impact on Mars created an accretion disk of material from which the two bodies formed.Our observations of the Martian moons, unfortunately, provide conflicting evidence about which of these scenarios is correct. The physical properties of the moons low albedos, low densities are consistent with those of asteroids in our solar system, and are not consistent with Marss properties, suggesting that the co-accretion scenario is unlikely. On the other hand, the moons orbital properties low inclination, low eccentricity, prograde orbits are consistent with bodies that formed around Mars rather than being captured.In a recent study,a team of scientists led by Thomas Ronnet and Pierre Vernazza (Aix-Marseille University, Laboratory of Astrophysics of Marseille) has attempted to reconcile these conflictingobservations by focusing on the third option.Moons After a Large ImpactIn the thirdscenario, an impactor of perhaps a few percent of Marss mass smashed into Mars, forming a debris disk of hot material that encircled Mars. Perturbations in the disk then led to the formation of large clumps, which eventually agglomerated to form Phobos and Deimos.The authors find that Phobos and Deimos most likely formed in the outer regions of the accretion disk that was created by a large impact with Mars. [Adapted from Ronnet et al. 2016]In the study conducted by Ronnet, Vernazza, and collaborators, the authors investigated the composition and texture of the dust that would have crystallized in an impact-generated accretion disk making up Marss moons. They find that Phobos and Deimos could not have formed out of the extremely hot, magma-filled inner regions of such a disk, because this would have resulted in different compositions than we observe.Phobos and Deimos could have formed, however, in the very outer part of an impact-generated accretion disk, where the hot gas condensed directly into small solid grains instead of passing through the magma phase. Accretion of such tiny grains would naturally explain the similarity in physical properties we observe between Marss moons and some main-belt asteroids and yet this picture is also consistent with the moons current orbital parameters.The authors argue that the formation of the Martian moons from the outer regions of an impact-generated accretion disk is therefore a plausible scenario, neatly reconciling the observed physical properties of Phobos and Diemos with their orbital properties.CitationT. Ronnet et al 2016 ApJ 828 109. doi:10.3847/0004-637X/828/2/109

  4. Polarized Disk Emission from Herbig Ae/Be Stars Observed Using Gemini Planet Imager: HD 144432, HD 150193, HD 163296, and HD 169142

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monnier, John D.; Aarnio, Alicia; Adams, Fred C.

    In order to look for signs of ongoing planet formation in young disks, we carried out the first J -band polarized emission imaging of the Herbig Ae/Be stars HD 150193, HD 163296, and HD 169142 using the Gemini Planet Imager, along with new H band observations of HD 144432. We confirm the complex “double ring” structure for the nearly face-on system HD 169142 first seen in H -band, finding the outer ring to be substantially redder than the inner one in polarized intensity. Using radiative transfer modeling, we developed a physical model that explains the full spectral energy distribution andmore » J - and H -band surface brightness profiles, suggesting that the differential color of the two rings could come from reddened starlight traversing the inner wall and may not require differences in grain properties. In addition, we clearly detect an elongated, off-center ring in HD 163296 (MWC 275), locating the scattering surface to be 18 au above the midplane at a radial distance of 77 au, co-spatial with a ring seen at 1.3 mm by ALMA linked to the CO snow line. Lastly, we report a weak tentative detection of scattered light for HD 150193 (MWC 863) and a non-detection for HD 144432; the stellar companion known for each of these targets has likely disrupted the material in the outer disk of the primary star. For HD 163296 and HD 169142, the prominent outer rings we detect could be evidence for giant planet formation in the outer disk or a manifestation of large-scale dust growth processes possibly related to snow-line chemistry.« less

  5. The HD 163296 Circumstellar Disk in Scattered Light: Evidence of Time-Variable Self-Shadowing

    NASA Technical Reports Server (NTRS)

    Wisniewski, John P.; Clampin, Mark; Grady, Carol A.; Ardila, David R.; Ford, Holland C.; Golimowski, David A.; Illingworth, Garth D.; Krist, John E.

    2008-01-01

    We present the first multi-color view of the scattered light disk of the Herbig Ae star HD 163296, based on coronagraphic observations from the Hubble Space Telescope Advanced Camera for Surveys (ACS). Radial profile fits of the surface brightness along the disk's semi-major axis indicates that the disk is not continuously flared, and extends to approx.540 AU. The disk's color (V-I)=1.1 at a radial distance of 3.5" is redder than the observed stellar color (V-I)=0.15. This red disk color might be indicative of either an evolution in the grain size distribution (i.e. grain growth) and/or composition, both of which would be consistent with the observed non-flared geometry of the outer disk. We also identify a single ansa morphological structure in our F435W ACS data, which is absent from earlier epoch F606W and F814W ACS data, but corresponds to one of the two ansa observed in archival HST STIS coronagraphic data. Following transformation to similar band-passes, we find that the scattered light disk of HD 163296 is 1 mag arcsec(sup -2) fainter at 3.5" in the STIS data than in the ACS data. Moreover, variations are seen in (i) the visibility of the ansa(e) structures, in (ii) the relative surface brightness of the ansa(e) structures, and in (iii) the (known) intrinsic polarization of the system. These results indicate that the scattered light from the HD 163296 disk is variable. We speculate that the inner disk wall, which Sitko et al. suggests has a variable scale height as diagnosed by near-IR SED variability, induces variable self-shadowing of the outer disk. We further speculate that the observed surface brightness variability of the ansa(e) structures may indicate that the inner disk wall is azimuthally asymmetric. Subject headings: circumstellar matter - stars: individual (HD 163296) - planetary systems: formation - planetary systems: protoplanetary disks

  6. The Small-Scale Structure of High-Velocity Na I Absorption Toward M81

    NASA Astrophysics Data System (ADS)

    Roth, K. C.; Meyer, D. M.; Lauroesch, J. T.

    2000-12-01

    We present high-resolution (R=20,000) integral field spectra of the Na I absorption toward the nucleus of the nearby spiral galaxy M81 (NGC 3031) obtained in April 2000 with the WIYN 3.5-m telescope and the DensePak fiber optic bundle. Our DensePak map covers the central 27 x 43 arcsec of M81 at a spatial resolution of 4 arcsec which corresponds to a projected length scale of 63 pc at the distance of the galaxy (3.25 Mpc). These data were intended to explore the spatial extent of high-velocity (v = 110-130 km/s) gas seen in Na I, Mg I and Mg II absorption toward SN 1993J by Bowen et al. (1994), which they proposed is due to tidal material associated with interactions between M81 and nearby M82 (Yun, Ho & Lo 1993). No H I gas at these velocities has been detected in 21 cm interferometry maps near the position of SN 1993J (2.6 arcmin SW of the M81 nucleus). Our Na I map of the M81 core shows no evidence of the strong absorption seen at v = 110-130 km/s toward SN 1993J. However, our map does reveal a strong Na I component at v = 220 km/s in several fibers that appears to trace a filamentary structure running from the SW to the NE across the M81 nuclear region. The origin and distance of this filament are unknown. No H I gas at v = 220 km/s has previously been detected in 21 cm studies of the core. At the location of SN 1993J, Bowen et al. measured weak Mg II absorption at this velocity but found no evidence of corresponding Na I absorption. The only known H I gas that corresponds to this velocity in the M81 group are the H I streamers found around M82 by Yun, Ho, & Lo that they interpreted as tidally disrupted M82 disk material.

  7. Probing the accretion flow and emission-line regions of M81, the nearest broad-lined low-luminosity AGN

    NASA Astrophysics Data System (ADS)

    Barth, Aaron

    2017-08-01

    The nucleus of M81 is an object of singular importance as a template for low-luminosity accretion flows onto supermassive black holes. We propose to obtain a complete, small-aperture, high S/N STIS UV/optical spectrum of the M81 nucleus and multi-filter WFC3 imaging covering the UV through near-IR. Such data have never previously been obtained with HST; the only prior archival UV/optical spectra of M81 have low S/N, incomplete wavelength coverage, and are strongly contaminated by starlight. Combined with new Chandra X-ray data, our proposed observations will comprise the definitive reference dataset on the spectral energy distribution of this benchmark low-luminosity AGN. These data will provide unique new constraints on the possible contribution of a truncated thin accretion disk to the AGN emission spectrum, clarifying a fundamental property of low-luminosity accretion flows. The data will additionally provide new insights into broad-line region structure and black hole mass scaling relationships at the lowest AGN luminosities, and spatially resolved diagnostics of narrow-line region excitation conditions at unprecedented spatial resolution to assess the impact of the AGN on the ionization state of the gas in the host galaxy bulge.

  8. Colours of minor bodies in the outer solar system. II. A statistical analysis revisited

    NASA Astrophysics Data System (ADS)

    Hainaut, O. R.; Boehnhardt, H.; Protopapa, S.

    2012-10-01

    We present an update of the visible and near-infrared colour database of Minor Bodies in the Outer Solar System (MBOSSes), which now includes over 2000 measurement epochs of 555 objects, extracted from over 100 articles. The list is fairly complete as of December 2011. The database is now large enough to enable any dataset with a large dispersion to be safely identified and rejected from the analysis. The selection method used is quite insensitive to individual outliers. Most of the rejected datasets were observed during the early days of MBOSS photometry. The individual measurements are combined in a way that avoids possible rotational artifacts. The spectral gradient over the visible range is derived from the colours, as well as the R absolute magnitude M(1,1). The average colours, absolute magnitude, and spectral gradient are listed for each object, as well as the physico-dynamical classes using a classification adapted from Gladman and collaborators. Colour-colour diagrams, histograms, and various other plots are presented to illustrate and investigate class characteristics and trends with other parameters, whose significances are evaluated using standard statistical tests. Except for a small discrepancy for the J-H colour, the largest objects, with M(1,1) < 5, are indistinguishable from the smaller ones. The larger ones are slightly bluer than the smaller ones in J-H. Short-period comets, Plutinos and other resonant objects, hot classical disk objects, scattered disk objects and detached disk objects have similar properties in the visible, while the cold classical disk objects and the Jupiter Trojans form two separate groups of their spectral properties in the visible wavelength range. The well-known colour bimodality of Centaurs is confirmed. The hot classical disk objects with large inclinations, or large orbital excitations are found to be bluer than the others, confirming a previously known result. Additionally, the hot classical disk objects with a smaller perihelion distance are bluer than those that do not come as close to the Sun. The bluer hot classical disk objects and resonant objects have fainter absolute magnitudes than the redder ones of the same class. Finally, we discuss possible scenarios for the origin of the colour diversity observed in MBOSSes, i.e. colouration caused by evolutionary or formation processes. The colour tables and all plots are also available on the MBOSS colour web page, which will be updated when new measurements are published Full Tables 2 and 3 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/546/A115

  9. Disk-loss and disk-renewal phases in classical Be stars. II. Contrasting with stable and variable disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Draper, Zachary H.; Wisniewski, John P.; Bjorkman, Karen S.

    2014-05-10

    Recent observational and theoretical studies of classical Be stars have established the utility of polarization color diagrams (PCDs) in helping to constrain the time-dependent mass decretion rates of these systems. We expand on our pilot observational study of this phenomenon, and report the detailed analysis of a long-term (1989-2004) spectropolarimetric survey of nine additional classical Be stars, including systems exhibiting evidence of partial disk-loss/disk-growth episodes as well as systems exhibiting long-term stable disks. After carefully characterizing and removing the interstellar polarization along the line of sight to each of these targets, we analyze their intrinsic polarization behavior. We find thatmore » many steady-state Be disks pause at the top of the PCD, as predicted by theory. We also observe sharp declines in the Balmer jump polarization for later spectral type, near edge-on steady-state disks, again as recently predicted by theory, likely caused when the base density of the disk is very high, and the outer region of the edge-on disk starts to self absorb a significant number of Balmer jump photons. The intrinsic V-band polarization and polarization position angle of γ Cas exhibits variations that seem to phase with the orbital period of a known one-armed density structure in this disk, similar to the theoretical predictions of Halonen and Jones. We also observe stochastic jumps in the intrinsic polarization across the Balmer jump of several known Be+sdO systems, and speculate that the thermal inflation of part of the outer region of these disks could be responsible for producing this observational phenomenon. Finally, we estimate the base densities of this sample of stars to be between ≈8 × 10{sup –11} and ≈4 × 10{sup –12} g cm{sup –3} during quasi steady state periods given there maximum observed polarization.« less

  10. Variety in planetary systems

    NASA Technical Reports Server (NTRS)

    Wetherill, George W.

    1993-01-01

    Observation of circumstellar disks, regular satellite systems of outer planets, and planet-size objects orbiting pulsars support the supposition that formation of planetary systems is a robust, rather than a fragile, byproduct of the formation and evolution of stars. The extent to which these systems may be expected to resemble one another and our Solar System, either in overall structure or in detail remains uncertain. When the full range of possible stellar masses, disk masses, and initial specific angular momenta are considered, the possible variety of planetary configurations is very large. Numerical modeling indicates a difference between the formation of small, inner, terrestrial planets and the outer planets.

  11. Cepheid variables in the flared outer disk of our galaxy.

    PubMed

    Feast, Michael W; Menzies, John W; Matsunaga, Noriyuki; Whitelock, Patricia A

    2014-05-15

    Flaring and warping of the disk of the Milky Way have been inferred from observations of atomic hydrogen but stars associated with flaring have not hitherto been reported. In the area beyond the Galactic centre the stars are largely hidden from view by dust, and the kinematic distances of the gas cannot be estimated. Thirty-two possible Cepheid stars (young pulsating variable stars) in the direction of the Galactic bulge were recently identified. With their well-calibrated period-luminosity relationships, Cepheid stars are useful distance indicators. When observations of these stars are made in two colours, so that their distance and reddening can be determined simultaneously, the problems of dust obscuration are minimized. Here we report that five of the candidates are classical Cepheid stars. These five stars are distributed from approximately one to two kiloparsecs above and below the plane of the Galaxy, at radial distances of about 13 to 22 kiloparsecs from the centre. The presence of these relatively young (less than 130 million years old) stars so far from the Galactic plane is puzzling, unless they are in the flared outer disk. If so, they may be associated with the outer molecular arm.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraus, Stefan; Espaillat, Catherine; Wilner, David J.

    Pre-transitional disks are protoplanetary disks with a gapped disk structure, potentially indicating the presence of young planets in these systems. In order to explore the structure of these objects and their gap-opening mechanism, we observed the pre-transitional disk V1247 Orionis using the Very Large Telescope Interferometer, the Keck Interferometer, Keck-II, Gemini South, and IRTF. This allows us to spatially resolve the AU-scale disk structure from near- to mid-infrared wavelengths (1.5-13 {mu}m), tracing material at different temperatures and over a wide range of stellocentric radii. Our observations reveal a narrow, optically thick inner-disk component (located at 0.18 AU from the star)more » that is separated from the optically thick outer disk (radii {approx}> 46 AU), providing unambiguous evidence for the existence of a gap in this pre-transitional disk. Surprisingly, we find that the gap region is filled with significant amounts of optically thin material with a carbon-dominated dust mineralogy. The presence of this optically thin gap material cannot be deduced solely from the spectral energy distribution, yet it is the dominant contributor at mid-infrared wavelengths. Furthermore, using Keck/NIRC2 aperture masking observations in the H, K', and L' bands, we detect asymmetries in the brightness distribution on scales of {approx}15-40 AU, i.e., within the gap region. The detected asymmetries are highly significant, yet their amplitude and direction changes with wavelength, which is not consistent with a companion interpretation but indicates an inhomogeneous distribution of the gap material. We interpret this as strong evidence for the presence of complex density structures, possibly reflecting the dynamical interaction of the disk material with sub-stellar mass bodies that are responsible for the gap clearing.« less

  13. Probing active galactic nuclei with H2O megamasers.

    PubMed

    Moran, J; Greenhill, L; Herrnstein, J; Diamond, P; Miyoshi, M; Nakai, N; Inque, M

    1995-12-05

    We describe the characteristics of the rapidly rotating molecular disk in the nucleus of the mildly active galaxy NGC4258. The morphology and kinematics of the disk are delineated by the point-like watervapor emission sources at 1.35-cm wavelength. High angular resolution [200 microas where as is arcsec, corresponding to 0.006 parsec (pc) at 6.4 million pc] and high spectral resolution (0.2 km.s-1 or nu/Deltanu = 1.4 x 10(6)) with the Very-Long-Baseline Array allow precise definition of the disk. The disk is very thin, but slightly warped, and is viewed nearly edge-on. The masers show that the disk is in nearly perfect Keplerian rotation within the observable range of radii of 0.13-0.26 pc. The approximately random deviations from the Keplerian rotation curve among the high-velocity masers are approximately 3.5 km.s-1 (rms). These deviations may be due to the masers lying off the midline by about +/-4 degrees or variations in the inclination of the disk by +/-4 degrees. Lack of systematic deviations indicates that the disk has a mass of <4 x 10(6) solar mass (M[symbol: see text]). The gravitational binding mass is 3.5 x 10(7) M[symbol: see text], which must lie within the inner radius of the disk and requires that the mass density be >4 x 10(9) M[symbol: see text].pc-3. If the central mass were in the form of a star cluster with a density distribution such as a Plummer model, then the central mass density would be 4 x 10(12) M[symbol: see text].pc-3. The lifetime of such a cluster would be short with respect to the age of the galaxy [Maoz, E. (1995) Astrophys. J. Lett. 447, L91-L94]. Therefore, the central mass may be a black hole. The disk as traced by the systemic velocity features is unresolved in the vertical direction, indicating that its scale height is <0.0003 pc (hence the ratio of thickness to radius, H/R, is <0.0025). For a disk in hydrostatic equilibrium the quadrature sum of the sound speed and Alfven velocity is <2.5 km.s-1, so that the temperature of the disk must be <1000 K and the toroidal magnetic field component must be <250 mG. If the molecular mass density in the disk is 10(10) cm-3, then the disk mass is approximately 10(4) M[symbol: see text], and the disk is marginally stable as defined by the Toomre stability parameter Q (Q = 6 at the inner edge and 1 at the outer edge). The inward drift velocity is predicted to be <0.007 km.s-1, for a viscosity parameter of 0.1, and the accretion rate is <7 x 10(-5) M[symbol: see text].yr-1. At this value the accretion would be sufficient to power the nuclear x-ray source of 4 x 10(40) ergs-1 (1 erg = 0.1 microJ). The volume of individual maser components may be as large as 10(46) cm3, based on the velocity gradients, which is sufficient to supply the observed luminosity. The pump power undoubtedly comes from the nucleus, perhaps in the form of x-rays. The warp may allow the pump radiation to penetrate the disk obliquely [Neufeld, D. A. & Maloney, P. R. (1995) Astrophys. J. Lett. 447, L17-L19]. A total of 15 H2O megamasers have been identified out of >250 galaxies searched. Galaxy NGC4258 may be the only case where conditions are optimal to reveal a well-defined nuclear disk. Future measurement of proper motions and accelerations for NGC4258 will yield an accurate distance and a more precise definition of the dynamics of the disk

  14. Extra-mitochondrial aerobic metabolism in retinal rod outer segments: new perspectives in retinopathies.

    PubMed

    Panfoli, I; Calzia, D; Ravera, S; Morelli, A M; Traverso, C E

    2012-04-01

    Vertebrate retinal rods are photoreceptors for dim-light vision. They display extreme sensitivity to light thanks to a specialized subcellular organelle, the rod outer segment. This is filled with a stack of membranous disks, expressing the proteins involved in visual transduction, a very energy demanding process. Our previous proteomic and biochemical studies have shed new light on the chemical energy processes that supply ATP to the outer segment, suggesting the presence of an extra-mitochondrial aerobic metabolism in rod outer segment, devoid of mitochondria, which would account for a quantitatively adequate ATP supply for phototransduction. Here the functional presence of an oxidative phosphorylation in the rod outer limb is examined for its relationship to many physiological and pathological data on the rod outer segment. We hypothesize that the rod outer limb is at risk of oxidative stress, in any case of impairment in the respiratory chain functioning, or of blood supply. In fact, the electron transfer chain is a major source of reactive O(2) species, known to produce severe alteration to the membrane lipids, especially those of the outer segment that are rich in polyunsaturated fatty acids. We propose that the disk membrane may become the target of reactive oxygen species that may be released by the electron transport chain under pathologic conditions. For example, during aging reactive oxygen species production increases, while cellular antioxidant capacity decreases. Also the apoptosis of the rod observed after exposure to bright or continuous illumination can be explained considering that an overfunctioning of phototransduction may damage the disk membrane to a point at which cytochrome c escapes from the intradiskal space, where it is presently supposed to be, activating a putative caspase 9 and the apoptosome. A pathogenic mechanism for many inherited and acquired retinal degenerations, representing a major problem in clinical ophthalmology, is proposed: a number of rod pathologies would be promoted by impairment of energy supply and/or oxidative stress in the rod outer segment. In conclusion we suppose that the damaging role of oxygen, be it hypoxia or hyperoxia invoked in most of the blinding diseases, acquired and even hereditary is to be seeked for inside the photoreceptor outer segment that would conceal a potential for cell death that is still to be recognized. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. A Study of Inner Disk Gas around Young Stars in the Lupus Complex

    NASA Astrophysics Data System (ADS)

    Arulanantham, Nicole Annemarie; France, Kevin; Hoadley, Keri

    2018-06-01

    We present a study of molecular hydrogen at the surfaces of the disks around five young stars in the Lupus complex: RY Lupi, RU Lupi, MY Lupi, Sz 68, and TYC 7851. Each system was observed with the Cosmic Origins Spectrograph (COS) onboard the Hubble Space Telescope (HST), and we detect a population of fluorescent H2 in all five sources. The temperatures required for LyA fluorescence to proceed (T ~ 1500-2500 K) place the gas within ~15 AU of the central stars. We have used these features to extract the radial distribution of H2 in the inner disk, where planet formation may already be taking place. The objects presented here have very different outer disk morphologies, as seen by ALMA via 890 micron dust continuum emission, ranging from full disks with no signs of cavities to systems with large regions that are clearly depleted (e.g. TYC 7851, with a cavity extending to 75 and 60 AU in dust and gas, respectively). Our results are interpreted in conjunction with sub-mm data from the five systems in an effort to piece together a more complete picture of the overall disk structure. We have previously applied this multi-wavelength approach to RY Lupi, including 4.7 micron IR-CO emission in our analysis. These IR-CO and UV-H2 observations were combined with 10 micron silicate emission, the 890 micron dust continuum, and 1.3 mm CO observations from the literature to infer a gapped structure in the inner disk. This single system has served as a testing ground for the larger Lupus complex sample, which we compare here to examine any trends between the outer disk morphology and inner disk gas distributions.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bromley, Benjamin C.; Kenyon, Scott J., E-mail: bromley@physics.utah.edu, E-mail: skenyon@cfa.harvard.edu

    Correlations in the orbits of several minor planets in the outer solar system suggest the presence of a remote, massive Planet Nine. With at least 10 times the mass of the Earth and a perihelion well beyond 100 au, Planet Nine poses a challenge to planet formation theory. Here we expand on a scenario in which the planet formed closer to the Sun and was gravitationally scattered by Jupiter or Saturn onto a very eccentric orbit in an extended gaseous disk. Dynamical friction with the gas then allowed the planet to settle in the outer solar system. We explore thismore » possibility with a set of numerical simulations. Depending on how the gas disk evolves, scattered super-Earths or small gas giants settle on a range of orbits, with perihelion distances as large as 300 au. Massive disks that clear from the inside out on million-year timescales yield orbits that allow a super-Earth or gas giant to shepherd the minor planets as observed. A massive planet can achieve a similar orbit in a persistent, low-mass disk over the lifetime of the solar system.« less

  17. Reconciling the Orbital and Physical Properties of the Martian Moons

    NASA Astrophysics Data System (ADS)

    Ronnet, T.; Vernazza, P.; Mousis, O.; Brugger, B.; Beck, P.; Devouard, B.; Witasse, O.; Cipriani, F.

    2016-09-01

    The origin of Phobos and Deimos is still an open question. Currently, none of the three proposed scenarios for their origin (intact capture of two distinct outer solar system small bodies, co-accretion with Mars, and accretion within an impact-generated disk) are able to reconcile their orbital and physical properties. Here we investigate the expected mineralogical composition and size of the grains from which the moons once accreted assuming they formed within an impact-generated accretion disk. A comparison of our results with the present-day spectral properties of the moons allows us to conclude that their building blocks cannot originate from a magma phase, thus preventing their formation in the innermost part of the disk. Instead, gas-to-solid condensation of the building blocks in the outer part of an extended gaseous disk is found as a possible formation mechanism as it does allow reproducing both the spectral and physical properties of the moons. Such a scenario may finally reconcile their orbital and physical properties, alleviating the need to invoke an unlikely capture scenario to explain their physical properties.

  18. HD139614: the Interferometric Case for a Group-Ib Pre-Transitional Young Disk

    NASA Technical Reports Server (NTRS)

    Labadie, Lucas; Matter, Alexis; Kreplin, Alexander; Lopez, Bruno; Wolf, Sebastian; Weigelt, Gerd; Ertel, Steve; Berger, Jean-Philippe; Pott, Jorg-Uwe; Danchi, William C.

    2014-01-01

    The Herbig Ae star HD139614 is a group-Ib object, which featureless SED indicates disk flaring and a possible pre-transitional evolutionary stage. We present mid- and near-IR interferometric results collected with MIDI, AMBER and PIONIER with the aim of constraining the spatial structure of the 0.1-10 AU disk region and assess its possible multi-component structure. A two-component disk model composed of an optically thin 2-AU wide inner disk and an outer temperature-gradient disk starting at 5.6 AU reproduces well the observations. This is an additional argument to the idea that group-I HAeBe inner disks could be already in the disk-clearing transient stage. HD139614 will become a prime target for mid-IR interferometric imaging with the second-generation instrument MATISSE of the VLTI.

  19. Neutral lipids and phospholipids in Scots pine (Pinus sylvestris) sapwood and heartwood.

    PubMed

    Piispanen, R; Saranpää, P

    2002-06-01

    Variations in the concentration and composition of triacylglycerols, free fatty acids and phospholipids were analyzed in Scots pine (Pinus sylvestris L.) trees at five sites. Disks were taken at breast height or at a height of 4 m from the stems of 81 trees differing in diameter and growth rate. The mean concentration of triacylglycerols in sapwood was 26 mg g(-1) dry mass; however, variation among trees was large (16-51 mg g(dm)(-1)). The concentration of triacylglycerols was slightly larger at 4 m height in the stem than at breast height. Concentrations of triacylglycerols did not differ between the sapwood of young and small-diameter stems (DBH < 12 cm) and the sapwood of old stems (DBH > 36 cm). Concentrations of free fatty acids were negligible in the outer sapwood, but ranged between 5 and 18 mg g(dm)(-1) in the heartwood. The most abundant fatty acids of triacylglycerols were oleic (18:1), linoleic (18:2omega6, 18:2Delta5,9), linolenic (pinolenic, 18:3Delta5,9,12 and 18:3omega3) and eicosatrienoic acid (20:3Delta5,11,14 and 20:3omega6). The concentration of linoleic acid comprised 39-46% of the triacylglycerol fatty acids and the concentration was higher in the slow-growing stem from northern Finland than in the stems from southern Finland. Major phospholipids were detected only in sapwood, and only traces of lipid phosphorus were detected in heartwood.

  20. Network simulation-based optimization of centrifugo-pneumatic blood plasma separation

    PubMed Central

    Zehnle, S.; Zengerle, R.; von Stetten, F.; Paust, N.

    2017-01-01

    Automated and robust separation of 14 μl of plasma from 40 μl of whole blood at a purity of 99.81% ± 0.11% within 43 s is demonstrated for the hematocrit range of 20%–60% in a centrifugal microfluidic polymer disk. At high rotational frequency, red blood cells (RBCs) within whole blood are concentrated in a radial outer RBC collection chamber. Simultaneously, plasma is concentrated in a radial inner pneumatic chamber, where a defined air volume is enclosed and compressed. Subsequent reduction of the rotational frequency to not lower than 25 Hz enables rapid transfer of supernatant plasma into a plasma collection chamber, with highly suppressed resuspension of red blood cells. Disk design and the rotational protocol are optimized to make the process fast, robust, and insusceptible for undesired cell resuspension. Numerical network simulation with lumped model elements is used to predict and optimize the fluidic characteristics. Lysis of the remaining red blood cells in the purified plasma, followed by measurement of the hemoglobin concentration, was used to determine plasma purity. Due to the pneumatic actuation, no surface treatment of the fluidic cartridge or any additional external means are required, offering the possibility for low-cost mass fabrication technologies, such as injection molding or thermoforming. PMID:28798850

  1. Ruling out unresolved binaries in five transitional disks. VLT/NACO deep 2.12 and 1.75 μm narrow-band imaging

    NASA Astrophysics Data System (ADS)

    Vicente, S.; Merín, B.; Hartung, M.; Bouy, H.; Huélamo, N.; Artigau, E.; Augereau, J.-C.; van Dishoeck, E.; Olofsson, J.; Oliveira, I.; Prusti, T.

    2011-09-01

    Context. The presence of unresolved binaries on sub-arsecond scales could explain the existence of optically thin inner holes or gaps in circumstellar disks, which are commonly referred to as "transitional" or "cold" disks, and it is the first scenario to check before making any other assumptions. Aims: We aim at detecting the presence of companions inside the inner hole/gap region of a sample of five well known transitional disks using spatially-resolved imaging in the near-IR with the VLT/NACO/S13 camera, which probes projected distances from the primary of typically 0.1 to 7 arcsec. The sample includes the stars DoAr 21, HD 135344B (SAO 206462), HR 4796A, T Cha, and TW Hya, spanning ages of less than 1 to 10 Myr, spectral types of A0 to K7, and hole/gap outer radii of 4 to 100 AU. Methods: In order to enhance the contrast and to avoid saturation at the core of the point-spread function (PSF), we use narrow-band filters at 1.75 and 2.12 μm. The "locally optimized combination of images" (LOCI) algorithm is applied for an optimal speckle noise removal and PSF subtraction, providing an increase of 0.5-1.5 mag in contrast over the classic method. Results: With the proviso that we could have missed companions owing to unfavorable projections, the VLT/NACO observations rule out the presence of unresolved companions down to an inner radius of about 0.1 arcsec from the primary in all five transitional disks and with a detection limit of 2 to 5 mag in contrast. In the disk outer regions the detection limits typically reach 8 to 9 mag in contrast and 4.7 mag for T Cha. Hence, the NACO images resolve part of the inner hole/gap region of all disks with the exception of TW Hya, for which the inner hole is only 4 AU. The 5σ sensitivity profiles, together with a selected evolutionary model, allow to discard stellar companions within the inner hole/gap region of T Cha, and down to the substellar regime for HD 135344B and HR 4796A. DoAr 21 is the only object from the sample of five disks for which the NACO images are sensitive enough for a detection of objects less massive than ~13 MJup that is, potential giant planets or low-mass brown dwarfs at radii larger than ~76 AU (0.63 arcsec). Conclusions: These new VLT/NACO observations further constrain the origin of the inner opacity cavities to be owing to closer or lower-mass companions or other mechanisms such as giant planet formation, efficient grain growth, and photoevaporation (for DoAr 21 and HR 4796A).

  2. A Herschel-Detected Correlation between Planets and Debris Disks

    NASA Astrophysics Data System (ADS)

    Bryden, Geoffrey; Krist, J. E.; Stapelfeldt, K. R.; Kennedy, G.; Wyatt, M.; Beichman, C. A.; Eiroa, C.; Marshall, J.; Maldonado, J.; Montesinos, B.; Moro-Martin, A.; Matthews, B. C.; Fischer, D.; Ardila, D. R.; Kospal, A.; Rieke, G.; Su, K. Y.

    2013-01-01

    The Fomalhaut, beta Pic, and HR 8799 systems each have directly imaged planets and prominent debris disks, suggesting a direct link between the two phenomena. Unbiased surveys with Spitzer, however, failed to find a statistically significant correlation. We present results from SKARPS (the Search for Kuiper belts Around Radial-velocity Planet Stars) a Herschel far-IR survey for debris disks around solar-type stars known to have orbiting planets. The identified disks are generally cold and distant 50 K/100 AU), i.e. well separated from the radial-velocity-discovered planets. Nevertheless, we find a strong correlation between the inner planets and outer disks, with disks around planet-bearing stars tending to be much brighter than those not known to have planets.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kikuchi, Akihiro; Higuchi, Arika; Ida, Shigeru, E-mail: kikuchi.a@geo.titech.ac.jp, E-mail: higuchia@geo.titech.ac.jp, E-mail: ida@elsi.jp

    Recently, gas giant planets in nearly circular orbits with large semimajor axes (a ∼ 30-1000 AU) have been detected by direct imaging. We have investigated orbital evolution in a formation scenario for such planets, based on a core accretion model. (1) Icy cores accrete from planetesimals at ≲ 30 AU, (2) they are scattered outward by an emerging nearby gas giant to acquire highly eccentric orbits, and (3) their orbits are circularized through the accretion of disk gas in outer regions, where they spend most of their time. We analytically derived equations to describe the orbital circularization through gas accretion.more » Numerical integrations of these equations show that the eccentricity decreases by a factor of more than 5 while the planetary mass increases by a factor of 10. Because runaway gas accretion increases planetary mass by ∼10-300, the orbits are sufficiently circularized. On the other hand, a is reduced at most only by a factor of two, leaving the planets in the outer regions. If the relative velocity damping by shock is considered, the circularization slows down, but is still efficient enough. Therefore, this scenario potentially accounts for the formation of observed distant jupiters in nearly circular orbits. If the apocenter distances of the scattered cores are larger than the disk sizes, their a shrink to a quarter of the disk sizes; the a-distribution of distant giants could reflect the outer edges of the disks in a similar way that those of hot jupiters may reflect inner edges.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rigliaco, Elisabetta; Pascucci, I.; Mulders, G. D.

    In this paper we investigate the origin of the mid-infrared (IR) hydrogen recombination lines for a sample of 114 disks in different evolutionary stages (full, transitional, and debris disks) collected from the Spitzer archive. We focus on the two brighter H I lines observed in the Spitzer spectra, the H I (7-6) at 12.37 μm and the H I (9-7) at 11.32 μm. We detect the H I (7-6) line in 46 objects, and the H I (9-7) in 11. We compare these lines with the other most common gas line detected in Spitzer spectra, the [Ne II] at 12.81more » μm. We argue that it is unlikely that the H I emission originates from the photoevaporating upper surface layers of the disk, as has been found for the [Ne II] lines toward low-accreting stars. Using the H I (9-7)/H I (7-6) line ratios we find these gas lines are likely probing gas with hydrogen column densities of 10{sup 10}-10{sup 11} cm{sup –3}. The subsample of objects surrounded by full and transitional disks show a positive correlation between the accretion luminosity and the H I line luminosity. These two results suggest that the observed mid-IR H I lines trace gas accreting onto the star in the same way as other hydrogen recombination lines at shorter wavelengths. A pure chromospheric origin of these lines can be excluded for the vast majority of full and transitional disks. We report for the first time the detection of the H I (7-6) line in eight young (<20 Myr) debris disks. A pure chromospheric origin cannot be ruled out in these objects. If the H I (7-6) line traces accretion in these older systems, as in the case of full and transitional disks, the strength of the emission implies accretion rates lower than 10{sup –10} M {sub ☉} yr{sup –1}. We discuss some advantages of extending accretion indicators to longer wavelengths, and the next steps required pinning down the origin of mid-IR hydrogen lines.« less

  5. Probing Stellar Accretion with Mid-infrared Hydrogen Lines

    NASA Astrophysics Data System (ADS)

    Rigliaco, Elisabetta; Pascucci, I.; Duchene, G.; Edwards, S.; Ardila, D. R.; Grady, C.; Mendigutía, I.; Montesinos, B.; Mulders, G. D.; Najita, J. R.; Carpenter, J.; Furlan, E.; Gorti, U.; Meijerink, R.; Meyer, M. R.

    2015-03-01

    In this paper we investigate the origin of the mid-infrared (IR) hydrogen recombination lines for a sample of 114 disks in different evolutionary stages (full, transitional, and debris disks) collected from the Spitzer archive. We focus on the two brighter H I lines observed in the Spitzer spectra, the H I (7-6) at 12.37 μm and the H I (9-7) at 11.32 μm. We detect the H I (7-6) line in 46 objects, and the H I (9-7) in 11. We compare these lines with the other most common gas line detected in Spitzer spectra, the [Ne II] at 12.81 μm. We argue that it is unlikely that the H I emission originates from the photoevaporating upper surface layers of the disk, as has been found for the [Ne II] lines toward low-accreting stars. Using the H I (9-7)/H I (7-6) line ratios we find these gas lines are likely probing gas with hydrogen column densities of 1010-1011 cm-3. The subsample of objects surrounded by full and transitional disks show a positive correlation between the accretion luminosity and the H I line luminosity. These two results suggest that the observed mid-IR H I lines trace gas accreting onto the star in the same way as other hydrogen recombination lines at shorter wavelengths. A pure chromospheric origin of these lines can be excluded for the vast majority of full and transitional disks. We report for the first time the detection of the H I (7-6) line in eight young (<20 Myr) debris disks. A pure chromospheric origin cannot be ruled out in these objects. If the H I (7-6) line traces accretion in these older systems, as in the case of full and transitional disks, the strength of the emission implies accretion rates lower than 10-10 M ⊙ yr-1. We discuss some advantages of extending accretion indicators to longer wavelengths, and the next steps required pinning down the origin of mid-IR hydrogen lines.

  6. Jupiter's magnetosphere and radiation belts

    NASA Technical Reports Server (NTRS)

    Kennel, C. F.; Coroniti, F. V.

    1979-01-01

    Radioastronomy and Pioneer data reveal the Jovian magnetosphere as a rotating magnetized source of relativistic particles and radio emission, comparable to astrophysical cosmic ray and radio sources, such as pulsars. According to Pioneer data, the magnetic field in the outer magnetosphere is radially extended into a highly time variable disk-shaped configuration which differs fundamentally from the earth's magnetosphere. The outer disk region, and the energetic particles confined in it, are modulated by Jupiter's 10 hr rotation period. The entire outer magnetosphere appears to change drastically on time scales of a few days to a week. In addition to its known modulation of the Jovian decametric radio bursts, Io was found to absorb some radiation belt particles and to accelerate others, and most importantly, to be a source of neutral atoms, and by inference, a heavy ion plasma which may significantly affect the hydrodynamic flow in the magnetosphere. Another important Pioneer finding is that the Jovian outer magnetosphere generates, or permits to escape, fluxes of relativistic electrons of such intensities that Jupiter may be regarded as the dominant source of 1 to 30 MeV cosmic ray electrons in the heliosphere.

  7. Stardust (Comet 81P/Wild-2) Samples and Early Solar Sys-tem Processes

    NASA Astrophysics Data System (ADS)

    Ebel, Denton S.; Weisberg, M. K.; Connolly, H. C.; Zolensky, M.; Mineralogy/Petrology Preliminary Examination Subteam, Stardust

    2006-12-01

    Dust particles from comet 81P/Wild-2 were captured in silica aerogel (also as impact debris on Al-foil strips) at 6.1 km/s relative velocity by the Stardust spacecraft on 2-Jan-2004, and returned to Earth 15-Jan-2006 [1]. A pre-liminary examination team (PET) of 150 are preparing reports on a subset of samples [2, 3, e.g., 4]. PET investigations in a short time on a limited number of <10 micron grains show that olivine, pyroxene, FeNi-metal and sulfide are common. Olivine and low-Ca pyroxene are unequilibrated in Mg/(Fe+Mg). Some for-sterite is low-iron, Mn-enriched as also found in some in-terplanetary dust particles (IDPs), and in matrix and amoe-boid olivine aggregates in CR carbonaceous chondrites (CC)[5]. Diopside and melilite are found, similar to those in spinel-pyroxene aggregates in CM chondrites and in re-fractory IDPs[6,7]. FeNi-metal and Fe-Ni, Fe-Ni-Cu and Fe-Zn sulfides are observed, and the highly reduced phase osbornite (TiN). Hydrous silicates and carbonates are not observed. A primary result is the preponderance of high temperature and reduced crystalline phases. These may form from amorphous precursors heated near the sun[8], or by viscosity-related processes farther out in the disk[9]. Silicate, metal and sulfide compositions are consistent with chondrites, particularly the CR clan. A better comparison may perhaps be made to anhydrous IDPs, which probably sample outer regions of the Solar System. The isotopic homogeneity of the grains will have important implications for mixing in the early disk. References: [1] Brownlee et al. (2004) Science 304, 1764.[2] ftp://ftp.lpi.usra.edu/pub/outgoing/lpsc2006/full101.pdf [3] Zolensky et al. (2006) LPSC XXXVII #1203. [4] Zolensky et al. (2006, in prep.) Science. [5] Weisberg et al. (2004) MaPS 39, 1741. [6] McKeegan (1987) Science 237, 1468. [7] Zolensky (1987) Science 237, 1466. [8] Scott and Krot (2005) Chondrules and the Protoplanetary Disk, 15-54. [9] Joung et al. (2004) ApJ 606, 532.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pott, Jorg-Uwe; Perrin, Marshall D.; Furlan, Elise

    With the Keck Interferometer, we have studied at 2 {mu}m the innermost regions of several nearby, young, dust-depleted 'transitional' disks. Our observations target five of the six clearest cases of transitional disks in the Taurus/Auriga star-forming region (DM Tau, GM Aur, LkCa 15, UX Tau A, and RY Tau) to explore the possibility that the depletion of optically thick dust from the inner disks is caused by stellar companions rather than the more typical planet-formation hypothesis. At the 99.7% confidence level, the observed visibilities exclude binaries with flux ratios of at least 0.05 and separations ranging from 2.5 to 30more » mas (0.35-4 AU) over {approx}>94% of the area covered by our measurements. All targets but DM Tau show near-infrared (NIR) excess in their spectral energy distribution (SED) higher than our companion flux ratio detection limits. While a companion has previously been detected in the candidate transitional disk system CoKu Tau/4, we can exclude similar mass companions as the typical origin for the clearing of inner dust in transitional disks and of the NIR excess emission. Unlike CoKu Tau/4, all our targets show some evidence of accretion. We find that all but one of the targets are clearly spatially resolved, and UX Tau A is marginally resolved. Our data are consistent with hot material on small scales (0.1 AU) inside of and separated from the cooler outer disk, consistent with the recent SED modeling. These observations support the notion that some transitional disks have radial gaps in their optically thick material, which could be an indication for planet formation in the habitable zone ({approx} a few AU) of a protoplanetary disk.« less

  9. A disk of scattered icy objects and the origin of Jupiter-family comets.

    PubMed

    Duncan, M J; Levison, H F

    1997-06-13

    Orbital integrations carried out for 4 billion years produced a disk of scattered objects beyond the orbit of Neptune. Objects in this disk can be distinguished from Kuiper belt objects by a greater range of eccentricities and inclinations. This disk was formed in the simulations by encounters with Neptune during the early evolution of the outer solar system. After particles first encountered Neptune, the simulations show that about 1 percent of the particles survive in this disk for the age of the solar system. A disk currently containing as few as approximately 6 x 10(8) objects could supply all of the observed Jupiter-family comets. Two recently discovered objects, 1996 RQ20 and 1996 TL66, have orbital elements similar to those predicted for objects in this disk, suggesting that they are thus far the only members of this disk to be identified.

  10. Spiral density waves in a young protoplanetary disk.

    PubMed

    Pérez, Laura M; Carpenter, John M; Andrews, Sean M; Ricci, Luca; Isella, Andrea; Linz, Hendrik; Sargent, Anneila I; Wilner, David J; Henning, Thomas; Deller, Adam T; Chandler, Claire J; Dullemond, Cornelis P; Lazio, Joseph; Menten, Karl M; Corder, Stuartt A; Storm, Shaye; Testi, Leonardo; Tazzari, Marco; Kwon, Woojin; Calvet, Nuria; Greaves, Jane S; Harris, Robert J; Mundy, Lee G

    2016-09-30

    Gravitational forces are expected to excite spiral density waves in protoplanetary disks, disks of gas and dust orbiting young stars. However, previous observations that showed spiral structure were not able to probe disk midplanes, where most of the mass is concentrated and where planet formation takes place. Using the Atacama Large Millimeter/submillimeter Array, we detected a pair of trailing symmetric spiral arms in the protoplanetary disk surrounding the young star Elias 2-27. The arms extend to the disk outer regions and can be traced down to the midplane. These millimeter-wave observations also reveal an emission gap closer to the star than the spiral arms. We argue that the observed spirals trace shocks of spiral density waves in the midplane of this young disk. Copyright © 2016, American Association for the Advancement of Science.

  11. Live-Cell Imaging of Phagosome Motility in Primary Mouse RPE Cells.

    PubMed

    Hazim, Roni; Jiang, Mei; Esteve-Rudd, Julian; Diemer, Tanja; Lopes, Vanda S; Williams, David S

    2016-01-01

    The retinal pigment epithelium (RPE) is a post-mitotic epithelial monolayer situated between the light-sensitive photoreceptors and the choriocapillaris. Given its vital functions for healthy vision, the RPE is a primary target for insults that result in blinding diseases, including age-related macular degeneration (AMD). One such function is the phagocytosis and digestion of shed photoreceptor outer segments. In the present study, we examined the process of trafficking of outer segment disk membranes in live cultures of primary mouse RPE, using high speed spinning disk confocal microscopy. This approach has enabled us to track phagosomes, and determine parameters of their motility, which are important for their efficient degradation.

  12. Structure of the Iconic Vega Debris Disk

    NASA Astrophysics Data System (ADS)

    Su, Kate

    2015-10-01

    Debris structures provide the best means to explore planets down to ice-giant masses in the outer (>5 AU) parts of extrasolar planetary systems. It is thought that the iconic Vega debris disk composes of two separate belts shepherded by unseen planets, similar to the Solar System. We will probe this possibility with SOFIA at 35 microns by: 1.) documenting the structure of the debris with sufficient resolution to distinguish a separate warm belt from the alternative model of dust flowing inward from the outer debris ring; and 2.) testing for traces of dust in its 15-60 AU zone and thus probing the possibility that ice giant planets may be shepherding the debris belts.

  13. A Resolved Debris Disk Around the Candidate Planet-hosting Star HD 95086

    NASA Technical Reports Server (NTRS)

    Moor, A.; Abraham, P.; Kospal, A.; Szabo, Gy. M.; Apai, D.; Balog, Z.; Csengeri, T.; Grady, C.; Henning, Th.; Juhasz, J.; hide

    2013-01-01

    Recently, a new planet candidate was discovered on direct images around the young (10-17 Myr) A-type star HD 95086. The strong infrared excess of the system indicates that, similar to HR8799, Beta Pic, and Fomalhaut, the star harbors a circumstellar disk. Aiming to study the structure and gas content of the HD 95086 disk, and to investigate its possible interaction with the newly discovered planet, here we present new optical, infrared, and millimeter observations. We detected no CO emission, excluding the possibility of an evolved gaseous primordial disk. Simple blackbody modeling of the spectral energy distribution suggests the presence of two spatially separate dust belts at radial distances of 6 and 64 AU. Our resolved images obtained with the Herschel Space Observatory reveal a characteristic disk size of approx. 6.0 × 5.4 (540 × 490 AU) and disk inclination of approx 25 deg. Assuming the same inclination for the planet candidate's orbit, its reprojected radial distance from the star is 62 AU, very close to the blackbody radius of the outer cold dust ring. The structure of the planetary system at HD 95086 resembles the one around HR8799. Both systems harbor a warm inner dust belt and a broad colder outer disk and giant planet(s) between the two dusty regions. Modeling implies that the candidate planet can dynamically excite the motion of planetesimals even out to 270 AU via their secular perturbation if its orbital eccentricity is larger than about 0.4. Our analysis adds a new example to the three known systems where directly imaged planet(s) and debris disks coexist.

  14. Differences in the protein composition of bovine retinal rod outer segment disk and plasma membranes isolated by a ricin-gold-dextran density perturbation method

    PubMed Central

    1987-01-01

    The plasma membrane and disk membranes of bovine retinal rod outer segments (ROS) have been purified by a novel density-gradient perturbation method for analysis of their protein compositions. Purified ROS were treated with neuraminidase to expose galactose residues on plasma membrane-specific glycoproteins and labeled with ricin-gold-dextran particles. After the ROS were lysed in hypotonic buffer, the plasma membrane was dissociated from the disks by either mild trypsin digestion or prolonged exposure to low ionic strength buffer. The dense ricin-gold-dextran-labeled plasma membrane was separated from disks by sucrose gradient centrifugation. Electron microscopy was used to follow this fractionation procedure. The dense red pellet primarily consisted of inverted plasma membrane vesicles containing gold particles; the membrane fraction of density 1.13 g/cc consisted of unlabeled intact disks and vesicles. Ricin-binding studies indicated that the plasma membrane from trypsin-treated ROS was purified between 10-15-fold. The protein composition of plasma membranes and disks was significantly different as analyzed by SDS gels and Western blots labeled with lectins and monoclonal antibodies. ROS plasma membrane exhibited three major proteins of 36 (rhodopsin), 38, and 52 kD, three ricin-binding glycoproteins of 230, 160, and 110 kD, and numerous minor proteins in the range of 14-270 kD. In disk membranes rhodopsin appeared as the only major protein. A 220-kD concanavalin A-binding glycoprotein and peripherin, a rim-specific protein, were also present along with minor proteins of 43 and 57-63 kD. Radioimmune assays indicated that the ROS plasma membrane contained about half as much rhodopsin as disk membranes. PMID:2447095

  15. Radiation Hydrodynamics Simulations of Photoevaporation of Protoplanetary Disks by Ultraviolet Radiation: Metallicity Dependence

    NASA Astrophysics Data System (ADS)

    Nakatani, Riouhei; Hosokawa, Takashi; Yoshida, Naoki; Nomura, Hideko; Kuiper, Rolf

    2018-04-01

    Protoplanetary disks are thought to have lifetimes of several million yr in the solar neighborhood, but recent observations suggest that the disk lifetimes are shorter in a low-metallicity environment. We perform a suite of radiation hydrodynamics simulations of photoevaporating protoplanetary disks to study their long-term evolution of ∼10,000 yr and the metallicity dependence of mass-loss rates. Our simulations follow hydrodynamics, extreme and far-ultraviolet (FUV) radiative transfer, and nonequilibrium chemistry in a self-consistent manner. Dust-grain temperatures are also calculated consistently by solving the radiative transfer of the stellar irradiation and grain (re-)emission. We vary the disk metallicity over a wide range of {10}-4 {Z}ȯ ≤slant Z≤slant 10 {Z}ȯ . The photoevaporation rate is lower with higher metallicity in the range of {10}-1 {Z}ȯ ≲ Z≲ 10 {Z}ȯ , because dust shielding effectively prevents FUV photons from penetrating and heating the dense regions of the disk. The photoevaporation rate sharply declines at even lower metallicities in {10}-2 {Z}ȯ ≲ Z≲ {10}-1 {Z}ȯ , because FUV photoelectric heating becomes less effective than dust–gas collisional cooling. The temperature in the neutral region decreases, and photoevaporative flows are excited only in an outer region of the disk. At {10}-4 {Z}ȯ ≤slant Z≲ {10}-2 {Z}ȯ , H I photoionization heating acts as a dominant gas heating process and drives photoevaporative flows with a roughly constant rate. The typical disk lifetime is shorter at Z = 0.3 {Z}ȯ than at Z={Z}ȯ , being consistent with recent observations of the extreme outer galaxy.

  16. Evidence for a dwarf galaxy remnant around M82 from deep Hubble Space Telescope imaging

    NASA Astrophysics Data System (ADS)

    Suwannajak, Chutipong; Sarajedini, Ata

    2018-01-01

    We present HST/ACS photometry of an over-dense region of stars in the southern halo of the edge-on galaxy M82. The structure is located at a projected distance of 5 kpc from the disk of the galaxy, and its color-magnitude diagram reveals a population of predominantly young stars, which are largely absent from the surrounding halo. Their ages are similar to those of the young stars formed in the tidal debris between M81, M82, and NGC3077 as a result of their interactions. We derive the mean metallicity of the surrounding stars, which are considered to be the halo population of M82, to be similar to that of the red giant branch (RGB) population of the halo of M81. However, the mean metallicity of the RGB in the over-dense structure is significantly more metal-rich than the halo. We theorize that this over-density existed as a dwarf galaxy prior to its interaction with M82 with the young stars forming later from the gas remaining in its main body.

  17. The Most Ancient Spiral Galaxy: A 2.6-Gyr-old Disk with a Tranquil Velocity Field

    NASA Astrophysics Data System (ADS)

    Yuan, Tiantian; Richard, Johan; Gupta, Anshu; Federrath, Christoph; Sharma, Soniya; Groves, Brent A.; Kewley, Lisa J.; Cen, Renyue; Birnboim, Yuval; Fisher, David B.

    2017-11-01

    We report an integral-field spectroscopic (IFS) observation of a gravitationally lensed spiral galaxy A1689B11 at redshift z = 2.54. It is the most ancient spiral galaxy discovered to date and the second kinematically confirmed spiral at z≳ 2. Thanks to gravitational lensing, this is also by far the deepest IFS observation with the highest spatial resolution (˜400 pc) on a spiral galaxy at a cosmic time when the Hubble sequence is about to emerge. After correcting for a lensing magnification of 7.2 ± 0.8, this primitive spiral disk has an intrinsic star formation rate of 22 ± 2 M ⊙ yr-1, a stellar mass of {10}9.8+/- 0.3 M ⊙, and a half-light radius of {r}1/2=2.6+/- 0.7 {kpc}, typical of a main-sequence star-forming galaxy at z˜ 2. However, the Hα kinematics show a surprisingly tranquil velocity field with an ordered rotation ({V}{{c}}=200+/- 12 km s-1) and uniformly small velocity dispersions ({V}σ ,{mean}=23 +/- 4 km s-1 and {V}σ ,{outer - {disk}}=15+/- 2 km s-1). The low gas velocity dispersion is similar to local spiral galaxies and is consistent with the classic density wave theory where spiral arms form in dynamically cold and thin disks. We speculate that A1689B11 belongs to a population of rare spiral galaxies at z≳ 2 that mark the formation epoch of thin disks. Future observations with the James Webb Space Telescope will greatly increase the sample of these rare galaxies and unveil the earliest onset of spiral arms.

  18. Nebular dead zone effects on the D/H ratio in chondrites and comets

    NASA Astrophysics Data System (ADS)

    Ali-Dib, Mohamad; Martin, R. G.; Petit, J.-M.; Mousis, O.; Vernazza, P.; Lunine, J. I.

    2015-11-01

    Comets and chondrites show non-monotonic behaviour of their Deuterium to Hydrogen (D/H) ratio as a function of their formation location from the Sun. This is difficult to explain with a classical protoplanetary disk model that has a decreasing temperature structure with radius from the Sun.We want to understand if a protoplanetary disc with a dead zone, a region of zero or low turbulence, can explain the measured D/H values in comets and chondrites. We use time snapshots of a vertically layered disk model with turbulent surface layers and a dead zone at the midplane. The disc has a non-monotonic temperature structure due to increased heating from self-gravity in the outer parts of the dead zone. We couple this to a D/H ratio evolution model in order to quantify the effect of such thermal profiles on D/H enrichment in the nebula.We find that the local temperature peak in the disk can explain the diversity in the D/H ratios of different chondritic families. This disk temperature profile leads to a non-monotonic D/H enrichment evolution, allowing these families to acquire their different D/H values while forming in close proximity. The formation order we infer for these families is compatible with that inferred from their water abundances. However, we find that even for very young disks, the thermal profile reversal is too close to the Sun to be relevant for comets.[1] Ali-Dib, M., Martin, R. G., Petit, J.-M., Mousis, O., Vernazza, P., and Lunine, J. I. (2015, in press A&A). arXiv:1508.00263.

  19. DUSTiNGS. III. Distribution of Intermediate-age and Old Stellar Populations in Disks and Outer Extremities of Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    McQuinn, Kristen B. W.; Boyer, Martha L.; Mitchell, Mallory B.; Skillman, Evan D.; Gehrz, R. D.; Groenewegen, Martin A. T.; McDonald, Iain; Sloan, G. C.; van Loon, Jacco Th.; Whitelock, Patricia A.; Zijlstra, Albert A.

    2017-01-01

    We have traced the spatial distributions of intermediate-age and old stars in nine dwarf galaxies in the distant parts of the Local Group, using multi-epoch 3.6 and 4.5 μm data from the DUST in Nearby Galaxies with Spitzer (DUSTiNGS) survey. Using complementary optical imaging from the Hubble Space Telescope, we identify the tip of the red giant branch (TRGB) in the 3.6 μm photometry, separating thermally pulsating asymptotic giant branch stars from the larger red giant branch populations. Unlike the constant TRGB in the I band, at 3.6 μm, the TRGB magnitude varies by ˜0.7 mag, making it unreliable as a distance indicator. The intermediate-age and old stars are well mixed in two-thirds of the sample, with no evidence of a gradient in the ratio of the intermediate-age to old stellar populations outside the central ˜1‧-2‧. Variable AGB stars are detected in the outer extremities of the galaxies, indicating that chemical enrichment from these dust-producing stars may occur in the outer regions of galaxies with some frequency. Theories of structure formation in dwarf galaxies must account for the lack of radial gradients in intermediate-age populations and the presence of these stars in the outer extremities of dwarfs. Finally, we identify unique features in individual galaxies, such as extended tidal features in Sex A and Sag DIG and a central concentration of AGB stars in the inner regions of NGC 185 and NGC 147.

  20. Herschel Observations of Gas and Dust in the Unusual 49 Ceti Debris Disk

    NASA Technical Reports Server (NTRS)

    Roberge, A.; Kamp, I.; Montesinos, B.; Dent, W. R. F.; Meeus, G.; Donaldson, J. K.; Olofsson, J.; Moor, A.; Augereau, J.-C.; Howard, C.; hide

    2013-01-01

    We present far-IR/sub-mm imaging and spectroscopy of 49 Ceti, an unusual circumstellar disk around a nearby young A1V star. The system is famous for showing the dust properties of a debris disk, but the gas properties of a low-mass protoplanetary disk. The data were acquired with the Herschel Space Observatory PACS and SPIRE instruments, largely as part of the “Gas in Protoplanetary Systems” (GASPS) Open Time Key Programme. Disk dust emission is detected in images at 70, 160, 250, 350, and 500 micron; 49 Cet is significantly extended in the 70 micron image, spatially resolving the outer dust disk for the first time. Spectra covering small wavelength ranges centered on eight atomic and molecular emission lines were obtained, including [O i] 63 micron and [C ii] 158 micron. The C ii line was detected at the 5 sigma level—the first detection of atomic emission from the disk. No other emission lines were seen, despite the fact that the Oi line is the brightest one observed in Herschel protoplanetary disk spectra. We present an estimate of the amount of circumstellar atomic gas implied by the C ii emission. The new far-IR/sub-mm data fills in a large gap in the previous spectral energy distribution (SED) of 49 Cet. A simple model of the new SED confirms the two-component structure of the disk: warm inner dust and cold outer dust that produces most of the observed excess. Finally, we discuss preliminary thermochemical modeling of the 49 Cet gas/dust disk and our attempts to match several observational results simultaneously. Although we are not yet successful in doing so, our investigations shed light on the evolutionary status of the 49 Cet gas, which might not be primordial gas but rather secondary gas coming from comets.

  1. CONSTRAINTS ON THE FORMATION OF THE GALACTIC BULGE FROM Na, Al, AND HEAVY-ELEMENT ABUNDANCES IN PLAUT's FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Christian I.; Rich, R. Michael; Kobayashi, Chiaki

    2012-04-20

    We report chemical abundances of Na, Al, Zr, La, Nd, and Eu for 39 red giant branch (RGB) stars and 23 potential inner disk red clump stars located in Plaut's low-extinction window. We also measure lithium for a super Li-rich RGB star. The abundances were determined by spectrum synthesis of high-resolution (R Almost-Equal-To 25,000), high signal-to-noise (S/N {approx} 50-100 pixel{sup -1}) spectra obtained with the Blanco 4 m telescope and Hydra multifiber spectrograph. For the bulge RGB stars, we find a general increase in the [Na/Fe] and [Na/Al] ratios with increasing metallicity, and a similar decrease in [La/Fe] and [Nd/Fe].more » Additionally, the [Al/Fe] and [Eu/Fe] abundance trends almost identically follow those of the {alpha}-elements, and the [Zr/Fe] ratios exhibit relatively little change with [Fe/H]. The consistently low [La/Eu] ratios of the RGB stars indicate that at least a majority of bulge stars formed rapidly ({approx}<1 Gyr) and before the main s-process could become a significant pollution source. In contrast, we find that the potential inner disk clump stars exhibit abundance patterns more similar to those of the thin and thick disks. Comparisons between the abundance trends at different bulge locations suggest that the inner and outer bulges formed on similar timescales. However, we find evidence of some abundance differences between the most metal-poor and metal-rich stars in various bulge fields. The data also indicate that the halo may have had a more significant impact on the outer bulge initial composition than the inner bulge composition. The [Na/Fe], and to a lesser extent [La/Fe], abundances further indicate that the metal-poor bulge, at least at {approx}1 kpc from the Galactic center, and thick disk may not share an identical chemistry.« less

  2. RESULTS FROM LONG-TERM OPTICAL MONITORING OF THE SOFT X-RAY TRANSIENT SAX J1810.8-2609

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu Ling; Di Stefano, Rosanne; Wyrzykowski, Lukasz, E-mail: zhul04@mails.tsinghua.edu.cn

    2012-12-20

    In this paper, we report the long-term optical observation of the faint soft X-ray transient SAX J1810.8-2609 from the Optical Gravitational Lensing Experiment (OGLE) and Microlensing Observations in Astrophysics (MOA). We have focused on the 2007 outburst, and also cross-correlated its optical light curves and quasi-simultaneous X-ray observations from RXTE/Swift. Both the optical and X-ray light curves of the 2007 outburst show multi-peak features. Quasi-simultaneous optical/X-ray luminosity shows that both the X-ray reprocessing and viscously thermal emission can explain the observed optical flux. There is a slight X-ray delay of 0.6 {+-} 0.3 days during the first peak, while themore » X-ray emission lags the optical emission by {approx}2 days during the rebrightening stage, which suggests that X-ray reprocessing emission contributes significantly to the optical flux in the first peak, but the viscously heated disk origin dominates it during rebrightening. This implies variation of the physical environment of the outer disk, with even the source remaining in a low/hard state during the entire outburst. The {approx}2 day X-ray lag indicates a small accretion disk in the system, and its optical counterpart was not detected by OGLE and MOA during quiescence, which constrained it to be fainter than M{sub I} = 7.5 mag. There is a suspected short-time optical flare detected at MJD = 52583.5 with no detected X-ray counterpart; this single flux increase implies a magnetic loop reconnection in the outer disk, as proposed by Zurita et al. The observations cover all stages of the outburst; however, due to the low sensitivity of RXTE/ASM, we cannot conclude whether it is an optical precursor at the initial rise of the outburst.« less

  3. Gaps, rings, and non-axisymmetric structures in protoplanetary disks: Emission from large grains

    NASA Astrophysics Data System (ADS)

    Ruge, J. P.; Flock, M.; Wolf, S.; Dzyurkevich, N.; Fromang, S.; Henning, Th.; Klahr, H.; Meheut, H.

    2016-05-01

    Aims: Dust grains with sizes around (sub)mm are expected to couple only weakly to the gas motion in regions beyond 10 au of circumstellar disks. In this work, we investigate the influence of the spatial distribution of these grains on the (sub)mm appearance of magnetized protoplanetary disks. Methods: We perform non-ideal global 3D magneto-hydrodynamic (MHD) stratified disk simulations, including particles of different sizes (50 μm to 1 cm), using a Lagrangian particle solver. Subsequently, we calculate the spatial dust temperature distribution, including the dynamically coupled submicron-sized dust grains, and derive ideal continuum re-emission maps of the disk through radiative transfer simulations. Finally, we investigate the feasibility of observing specific structures in the thermal re-emission maps with the Atacama Large Millimeter/submillimeter Array (ALMA). Results: Depending on the level of turbulence, the radial pressure gradient of the gas, and the grain size, particles settle to the midplane and/or drift radially inward. The pressure bump close to the outer edge of the dead-zone leads to particle-trapping in ring structures. More specifically, vortices in the disk concentrate the dust and create an inhomogeneous distribution of solid material in the azimuthal direction. The large-scale disk perturbations are preserved in the (sub)mm re-emission maps. The observable structures are very similar to those expected from planet-disk interaction. Additionally, the larger dust particles increase the brightness contrast between the gap and ring structures. We find that rings, gaps, and the dust accumulation in the vortex could be traced with ALMA down to a scale of a few astronomical units in circumstellar disks located in nearby star-forming regions. Finally, we present a brief comparison of these structures with those recently found with ALMA in the young circumstellar disks of HL Tau and Oph IRS 48.

  4. A gaseous metal disk around a white dwarf.

    PubMed

    Gänsicke, B T; Marsh, T R; Southworth, J; Rebassa-Mansergas, A

    2006-12-22

    The destiny of planetary systems through the late evolution of their host stars is very uncertain. We report a metal-rich gas disk around a moderately hot and young white dwarf. A dynamical model of the double-peaked emission lines constrains the outer disk radius to just 1.2 solar radii. The likely origin of the disk is a tidally disrupted asteroid, which has been destabilized from its initial orbit at a distance of more than 1000 solar radii by the interaction with a relatively massive planetesimal object or a planet. The white dwarf mass of 0.77 solar mass implies that planetary systems may form around high-mass stars.

  5. Dynamical Upheaval in Ice Giant Formation: A Solution to the Fine-tuning Problem in the Formation Story

    NASA Astrophysics Data System (ADS)

    Frelikh, Renata; Murray-Clay, Ruth

    2018-04-01

    We report on our recent theoretical work, where we suggest that a protoplanetary disk dynamical instability may have played a crucial role in determining the atmospheric size of the solar system’s ice giants. In contrast to the gas giants, the intermediate-size ice giants never underwent runaway gas accretion in a full gas disk. However, as their substantial core masses are comparable to those of the gas giants, they would have gone runaway, given enough time. In the standard scenario, the ice giants stay at roughly their current size for most of the disk lifetime, undergoing period of slow gas accretion onto ~full-sized cores that formed early-on. The gas disk dissipates before the ice giants accumulate too much gas, but we believe this is fine tuned. A considerable amount of solids is observed in outer disks in mm-to-cm sized particles (pebbles). Assisted by gas drag, these pebbles rapidly accrete onto cores. This would cause the growing ice giants to exceed their current core masses, and quickly turn into gas giants. To resolve this problem, we propose that Uranus and Neptune stayed small for the bulk of the disk lifetime. They only finished their core and atmospheric growth in a short timeframe just as the disk gas dissipated, accreting most of their gas from a disk depleted to ~1% of its original mass. The ice giants have atmospheric mass fractions comparable to the disk gas-to-solid ratio of this depleted disk. This coincides with a disk dynamical upheaval onset by the depletion of gas. We propose that the cores started growing closer-in, where they were kept small by proximity to Jupiter and Saturn. As the gas cleared, the cores were kicked out by the gas giants. Then, they finished their core growth and accreted their atmospheres from the remaining, sparse gas at their current locations. We predict that the gas giants may play a key role in forming intermediate-size atmospheres in the outer disk.

  6. Millimetre spectral indices of transition disks and their relation to the cavity radius

    NASA Astrophysics Data System (ADS)

    Pinilla, P.; Benisty, M.; Birnstiel, T.; Ricci, L.; Isella, A.; Natta, A.; Dullemond, C. P.; Quiroga-Nuñez, L. H.; Henning, T.; Testi, L.

    2014-04-01

    Context. Transition disks are protoplanetary disks with inner depleted dust cavities that are excellent candidates for investigating the dust evolution when there is a pressure bump. A pressure bump at the outer edge of the cavity allows dust grains from the outer regions to stop their rapid inward migration towards the star and to efficiently grow to millimetre sizes. Dynamical interactions with planet(s) have been one of the most exciting theories to explain the clearing of the inner disk. Aims: We look for evidence of millimetre dust particles in transition disks by measuring their spectral index αmm with new and available photometric data. We investigate the influence of the size of the dust depleted cavity on the disk integrated millimetre spectral index. Methods: We present the 3-mm (100 GHz) photometric observations carried out with the Plateau de Bure Interferometer of four transition disks: LkHα 330, UX Tau A, LRLL 31, and LRLL 67. We used the available values of their fluxes at 345 GHz to calculate their spectral index, as well as the spectral index for a sample of twenty transition disks. We compared the observations with two kinds of models. In the first set of models, we considered coagulation and fragmentation of dust in a disk in which a cavity is formed by a massive planet located at different positions. The second set of models assumes disks with truncated inner parts at different radii and with power-law dust-size distributions, where the maximum size of grains is calculated considering turbulence as the source of destructive collisions. Results: We show that the integrated spectral index is higher for transition disks (TD) than for regular protoplanetary disks (PD) with mean values of bar{αmmTD} = 2.70 ± 0.13 and bar{αmmPD} = 2.20 ± 0.07 respectively. For transition disks, the probability that the measured spectral index is positively correlated with the cavity radius is 95%. High angular resolution imaging of transition disks is needed to distinguish between the dust trapping scenario and the truncated disk case. The final PdBI data used in the paper are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/564/A51

  7. FORMING HABITABLE PLANETS AROUND DWARF STARS: APPLICATION TO OGLE-06-109L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Su; Zhou Jilin, E-mail: suwang@nju.edu.cn, E-mail: zhoujl@nju.edu.cn

    2011-02-01

    Dwarf stars are believed to have a small protostar disk where planets may grow up. During the planet formation stage, embryos undergoing type I migration are expected to be stalled at an inner edge of the magnetically inactive disk (a{sub crit} {approx} 0.2-0.3 AU). This mechanism makes the location around a{sub crit} a 'sweet spot' for forming planets. In dwarf stars with masses {approx}0.5 M{sub sun}, a{sub crit} is roughly inside the habitable zone of the system. In this paper, we study the formation of habitable planets due to this mechanism using model system OGLE-06-109L, which has a 0.51 M{submore » sun} dwarf star with two giant planets in 2.3 and 4.6 AU observed by microlensing. We model the embryos undergoing type I migration in the gas disk with a constant disk-accretion rate ( M-dot ). Giant planets in outside orbits affect the formation of habitable planets through secular perturbations at the early stage and secular resonance at the late stage. We find that the existence and the masses of the habitable planets in the OGLE-06-109L system depend on both M-dot and the speed of type I migration. If planets are formed earlier, so that M-dot is larger ({approx}10{sup -7} M{sub sun} yr{sup -1}), terrestrial planets cannot survive unless the type I migration rate is an order of magnitude less. If planets are formed later, so that M-dot is smaller ({approx}10{sup -8} M{sub sun} yr{sup -1}), single and high-mass terrestrial planets with high water contents ({approx}5%) will be formed by inward migration of outer planet cores. A slower-speed migration will result in several planets via collisions of embryos, and thus their water contents will be low ({approx}2%). Mean motion resonances or apsidal resonances among planets may be observed if multiple planets survive in the inner system.« less

  8. Contribution of collagen fibers to the compressive stiffness of cartilaginous tissues.

    PubMed

    Römgens, Anne M; van Donkelaar, Corrinus C; Ito, Keita

    2013-11-01

    Cartilaginous tissues such as the intervertebral disk are predominantly loaded under compression. Yet, they contain abundant collagen fibers, which are generally assumed to contribute to tensile loading only. Fiber tension is thought to originate from swelling of the proteoglycan-rich nucleus. However, in aged or degenerate disk, proteoglycans are depleted, whereas collagen content changes little. The question then rises to which extend the collagen may contribute to the compressive stiffness of the tissue. We hypothesized that this contribution is significant at high strain magnitudes and that the effect depends on fiber orientation. In addition, we aimed to determine the compression of the matrix. Bovine inner and outer annulus fibrosus specimens were subjected to incremental confined compression tests up to 60 % strain in radial and circumferential direction. The compressive aggregate modulus was determined per 10 % strain increment. The biochemical composition of the compressed specimens and uncompressed adjacent tissue was determined to compute solid matrix compression. The stiffness of all specimens increased nonlinearly with strain. The collagen-rich outer annulus was significantly stiffer than the inner annulus above 20 % compressive strain. Orientation influenced the modulus in the collagen-rich outer annulus. Finally, it was shown that the solid matrix was significantly compressed above 30 % strain. Therefore, we concluded that collagen fibers significantly contribute to the compressive stiffness of the intervertebral disk at high strains. This is valuable for understanding the compressive behavior of collagen-reinforced tissues in general, and may be particularly relevant for aging or degenerate disks, which become more fibrous and less hydrated.

  9. Thermal shields for gas turbine rotor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, Christopher W.; Acar, Bulent

    A turbomachine including a rotor having an axis and a plurality of disks positioned adjacent to each other in the axial direction, each disk including opposing axially facing surfaces and a circumferentially extending radially facing surface located between the axially facing surfaces. At least one row of blades is positioned on each of the disks, and the blades include an airfoil extending radially outward from the disk A non-segmented circumferentially continuous ring structure includes an outer rim defining a thermal barrier extending axially in overlapping relation over a portion of the radially facing surface of at least one disk, andmore » extending to a location adjacent to a blade on the disk A compliant element is located between a radially inner circumferential portion of the ring structure and a flange structure that extends axially from an axially facing surface of the disk.« less

  10. A 3D Numerical Study of Gravitational Instabilities in Young Circumbinary Disks

    NASA Astrophysics Data System (ADS)

    Cai, Kai; Michael, Scott; Durisen, Richard

    2013-07-01

    Gravitational instabilities (GIs) in protoplanetary disks have been suggested as one of the major formation mechanisms of giant planets. Theoretical and computational studies have indicated that certain family of GIs can be excited in a circumbinary disk, which could lead to enhanced protoplanet formation (e.g., Sellwood & Lin 1989, Boss 2006). We have carried out a 3D simulation of a gravitationally unstable circumbinary disk around a young Sun-like star and a 0.02-Msun companion, both inside the central hole of the disk. Here we present a preliminary comparison between this simulation and a similarly simulated circumstellar disk around a solar-mass star but without the low-mass companion. The GIs stimulated by the binary and those that arise spontaneously are quite different in structure and strength. However, no fragmentation is observed, even after many orbital periods as measured in the outer disk.

  11. Modeling Protoplanetary Disks to Characterize the Evolution of their Structure

    NASA Astrophysics Data System (ADS)

    Allen, Magdelena; van der Marel, Nienke; Williams, Jonathan

    2018-01-01

    Stars form from gravitationally collapsing clouds of gas and dust. Most young stars retain a protoplanetary disk for a few million years. This disk’s dust reemits stellar flux in the infrared, producing a spectral energy distribution (SED) observable by Spitzer and other telescopes. To understand the inner clearing of dust cavities and evolution in the SED, we used the Chiang & Goldreich two-layer approximation. We first wrote a python script based on refinements by Dullemond that includes a hot, puffed inner rim, shadowed mid region, flaring outer disk, and a variable inner cavity. This was then coupled with a Markov Chain Monte Carlo procedure to fit the observed SEDs of disks in the star forming Lupus region. The fitting procedure recovers physical characteristics of the disk including temperature, size, mass, and surface density. We compare the characteristics of circumstellar disks without holes and more evolved transition disks with cleared inner regions.

  12. FALL-BACK DISKS IN LONG AND SHORT GAMMA-RAY BURSTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cannizzo, J. K.; Troja, E.; Gehrels, N., E-mail: John.K.Cannizzo@nasa.gov

    2011-06-10

    We present time-dependent numerical calculations for fall-back disks relevant to gamma-ray bursts (GRBs) in which the disk of material surrounding the black hole powering the GRB jet modulates the mass flow and hence the strength of the jet. Given the initial existence of a small mass {approx}< 10{sup -4} M{sub sun} near the progenitor with a circularization radius {approx}10{sup 10}-10{sup 11} cm, an unavoidable consequence will be the formation of an 'external disk' whose outer edge continually moves to larger radii due to angular momentum transport and lack of a confining torque. For long GRBs, if the mass distribution inmore » the initial fall-back disk traces the progenitor envelope, then a radius {approx}10{sup 11} cm gives a timescale {approx}10{sup 4} s for the X-ray plateau. For late times t > 10{sup 7} s a steepening due to a cooling front in the disk may have observational support in GRB 060729. For short GRBs, one expects most of the mass initially to lie at small radii <10{sup 8} cm; however, the presence of even a trace amount {approx}10{sup -9} M{sub sun} of high angular material can give a brief plateau in the light curve. By studying the plateaus in the X-ray decay of GRBs, which can last up to {approx}10{sup 4} s after the prompt emission, Dainotti et al. find an apparent inverse relation between the X-ray luminosity at the end of the plateau and the duration of the plateau. We show that this relation may simply represent the fact that one is biased against detecting faint plateaus and therefore preferentially sampling the more energetic GRBs. If, however, there were a standard reservoir in fall-back mass, our model could reproduce the inverse X-ray luminosity-duration relation. We emphasize that we do not address the very steep, initial decays immediately following the prompt emission, which have been modeled by Lindner et al. as fall back of the progenitor core, and may entail the accretion of {approx}> 1 M{sub sun}.« less

  13. The gas drag in a circular binary system

    NASA Astrophysics Data System (ADS)

    Ciecielä G, P.; Ida, S.; Gawryszczak, A.; Burkert, A.

    2007-07-01

    We investigate the motion of massless particles orbiting the primary star in a close circular binary system with particular focus on the gas drag effects. These are the first calculations with particles ranging in size from 1 m to 10 km, which account for the presence of a tidally perturbed gaseous disk. We have found numerically that the radial mass transport by the tidal waves plays a crucial role in the orbital evolution of particles. In the outer region of the gaseous disk, where its perturbation is strongest, the migration rate of a particle for all considered sizes is enhanced by a factor of 3 with respect to the axisymmetric disk in radial equilibrium. Similar enhancement is observed in the damping rate of inclinations. We present a simple analytical argument proving that the migration rate of a particle in such a disk is enhanced due to the enhanced mass flux of gas colliding with the particle. Thus the enhancement factor does not depend on the sign of the radial gas velocity, and the migration is always directed inward. Within the framework of the perturbation theory, we derive more general, approximate formulae for short-term variations of the particle semi-major axis, eccentricity, and inclination in a disk out of radial equilibrium. The basic version of the formulae applies to the axisymmetric disk, but we present how to account for departures from axial symmetry by introducing effective components of the gas velocity. Comparison with numerical results proves that our formulae are correct within several percent. We have also found in numerical simulations that the tidal waves introduce coherence in periastron longitude and eccentricity for particles on neighboring orbits. The degree of the coherence depends on the particle size and on the distance from the primary star, being most prominent for particles with 10 m radius. The results are important mainly in the context of planetesimal formation and, to a lesser degree, during the early planetesimal accretion stage.

  14. Probing midplane CO abundance and gas temperature with DCO+ in the protoplanetary disk around HD 169142

    NASA Astrophysics Data System (ADS)

    Carney, M. T.; Fedele, D.; Hogerheijde, M. R.; Favre, C.; Walsh, C.; Bruderer, S.; Miotello, A.; Murillo, N. M.; Klaassen, P. D.; Henning, Th.; van Dishoeck, E. F.

    2018-06-01

    Context. Physical and chemical processes in protoplanetary disks affect the disk structure and the midplane environment within which planets form. The simple deuterated molecular cation DCO+ has been proposed to act as a tracer of the disk midplane conditions. Aims: This work aims to understand which midplane conditions are probed by the DCO+ emission in the disk around the Herbig Ae star HD 169142. We explore the sensitivity of the DCO+ formation pathways to gas temperature and CO abundance. Methods: The DCO+ J = 3-2 transition was observed with Atacama Large Millimeter/submillimeter Array at a spatial resolution of 0.3'' (35 AU at 117 pc). We modeled the DCO+ emission in HD 169142 with a physical disk structure adapted from the literature, and employed a simple deuterium chemical network to investigate the formation of DCO+ through the cold deuterium fractionation pathway via H2D+. Parameterized models are used to modify the gas temperature and CO abundance structure of the disk midplane to test their effect on DCO+ production. Contributions from the warm deuterium fractionation pathway via CH2D+ are approximated using a constant abundance in the intermediate disk layers. Results: The DCO+ line is detected in the HD 169142 disk with a total integrated line flux of 730 ± 73 mJy km s-1. The radial intensity profile reveals a warm, inner component of the DCO+ emission at radii ≲30 AU and a broad, ring-like structure from 50-230 AU with a peak at 100 AU just beyond the edge of the millimeter grain distribution. Parameterized models show that alterations to the midplane gas temperature and CO abundance are both needed to recover the observed DCO+ radial intensity profile. The alterations are relative to the fiducial physical structure of the literature model constrained by dust and CO observations. The best-fit model contains a shadowed, cold midplane in the region z/r < 0.1 with an 8 K decrease in Tgas and a factor of five CO depletion just beyond the millimeter grains (r = 83 AU), and a 2 K decrease in Tgas for r > 120 AU. The warm deuterium fractionation pathway is implemented as a constant DCO+ abundance of 2.0 × 10-12 between 30-70 K and contributes >85% to the DCO+ emission at r < 83 AU in the best-fit model. Conclusions: The DCO+ emission probes a reservoir of cold material in the HD 169142 outer disk that is not probed by the millimeter continuum, the spectral energy distribution, nor the emission from the 12 CO, 13 CO, or C18O J = 2-1 lines. The DCO+ emission is a sensitive probe of gas temperature and CO abundance near the disk midplane and provides information about the outer disk beyond the millimeter continuum distribution that is largely absent in abundant gaseous tracers such as CO isotopologues. The reduced datacubes (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/614/A106

  15. HOT-DUST-POOR TYPE 1 ACTIVE GALACTIC NUCLEI IN THE COSMOS SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao Heng; Elvis, Martin; Civano, Francesca

    2010-11-20

    We report a sizable class of type 1 active galactic nuclei (AGNs) with unusually weak near-infrared (1-3 {mu}m) emission in the XMM-COSMOS type 1 AGN sample. The fraction of these 'hot-dust-poor' AGNs increases with redshift from 6% at low redshift (z < 2) to 20% at moderate high redshift (2 < z < 3.5). There is no clear trend of the fraction with other parameters: bolometric luminosity, Eddington ratio, black hole mass, and X-ray luminosity. The 3 {mu}m emission relative to the 1 {mu}m emission is a factor of 2-4 smaller than the typical Elvis et al. AGN spectral energymore » distribution (SED), which indicates a 'torus' covering factor of 2%-29%, a factor of 3-40 smaller than required by unified models. The weak hot dust emission seems to expose an extension of the accretion disk continuum in some of the source SEDs. We estimate the outer edge of their accretion disks to lie at (0.3-2.0) x 10{sup 4} Schwarzschild radii, {approx}10-23 times the gravitational stability radii. Formation scenarios for these sources are discussed.« less

  16. Properties of the outer regions of spiral disks: abundances, colors and ages

    NASA Astrophysics Data System (ADS)

    Mollá, Mercedes; Díaz, Angeles I.; Gibson, Brad K.; Cavichia, Oscar; López-Sánchez, Ángel-R.

    2017-03-01

    We summarize the results obtained from our suite of chemical evolution models for spiral disks, computed for different total masses and star formation efficiencies. Once the gas, stars and star formation radial distributions are reproduced, we analyze the Oxygen abundances radial profiles for gas and stars, in addition to stellar averaged ages and global metallicity. We examine scenarios for the potential origin of the apparent flattening of abundance gradients in the outskirts of disk galaxies, in particular the role of molecular gas formation prescriptions.

  17. The Nonbarred Double-Ringed Galaxy, PGC 1000714

    NASA Astrophysics Data System (ADS)

    Seigar, Marc; Mutlu Pakdil, Burcin; Mangedarage, Mithila; Treuthardt, Patrick M.

    2017-01-01

    Hoag-type galaxies are rare peculiar systems which bear strong resemblance to Hoag's Object with an elliptical-like core, a detached outer ring, and no signs of a bar or stellar disk. They represent extreme cases and help us understand the formation of galaxies in general by providing clues on formation mechanisms. The nature of outer rings in Hoag-type galaxies is still debated and may be related either to slow secular evolution, such as dissolution of a barlike structure or to environmental processes, such as galaxy-galaxy interactions or gas infall. Due to a fairly superficial resemblance to Hoag's Object, PGC 1000714 is a good target for detailed study of the peculiar structure of this type. We present the first photometric study of PGC 1000714 that has not yet been described in the literature. Our aim is to evaluate its structure and properties as well as understand the origin of outer rings in such galaxies. Surface photometry of the central body is performed using near-UV, BVRI and JHK images. Based on the photometric data, the nearly round central body follows a de Vaucouleurs profile almost all the way to the center. The detailed photometry reveals a reddish inner ring-shaped structure that shares the same center as the central body. However, no sign of a bar or stellar disk is detected. The outer ring appears as a bump in the surface brightness profile with a peak brightness of 25.8 mag/arcsec^{2} in the B-band and shows no sharp outer boundary. By reconstructing the observed SED for the central body and the rings, we recover the stellar population properties of the galaxy components. Our work suggests different formation histories for the inner and outer rings. We rule out the secular evolution model as being a formation mechanism for the outer ring. The colors of the outer ring are consistent with a feature that may have experienced a burst of star formation due to a possible recent accretion event. In addition, our work supports that the central body may be formed by a relatively dry major merger or in a single, short and highly effective star formation burst, and the inner ring may be formed as a result of intergalactic medium accretion or secular evolution of a possible gaseous disk

  18. MAGNETIZED ACCRETION AND DEAD ZONES IN PROTOSTELLAR DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dzyurkevich, Natalia; Henning, Thomas; Turner, Neal J.

    The edges of magnetically dead zones in protostellar disks have been proposed as locations where density bumps may arise, trapping planetesimals and helping form planets. Magneto-rotational turbulence in magnetically active zones provides both accretion of gas on the star and transport of mass to the dead zone. We investigate the location of the magnetically active regions in a protostellar disk around a solar-type star, varying the disk temperature, surface density profile, and dust-to-gas ratio. We also consider stellar masses between 0.4 and 2 M{sub Sun }, with corresponding adjustments in the disk mass and temperature. The dead zone's size andmore » shape are found using the Elsasser number criterion with conductivities including the contributions from ions, electrons, and charged fractal dust aggregates. The charged species' abundances are found using the approach proposed by Okuzumi. The dead zone is in most cases defined by the ambipolar diffusion. In our maps, the dead zone takes a variety of shapes, including a fish tail pointing away from the star and islands located on and off the midplane. The corresponding accretion rates vary with radius, indicating locations where the surface density will increase over time, and others where it will decrease. We show that density bumps do not readily grow near the dead zone's outer edge, independently of the disk parameters and the dust properties. Instead, the accretion rate peaks at the radius where the gas-phase metals freeze out. This could lead to clearing a valley in the surface density, and to a trap for pebbles located just outside the metal freezeout line.« less

  19. Gaps, rings, and non-axisymmetric structures in protoplanetary disks. From simulations to ALMA observations

    NASA Astrophysics Data System (ADS)

    Flock, M.; Ruge, J. P.; Dzyurkevich, N.; Henning, Th.; Klahr, H.; Wolf, S.

    2015-02-01

    Aims: Recent observations by the Atacama Large Millimeter/submillimeter Array (ALMA) of disks around young stars revealed distinct asymmetries in the dust continuum emission. In this work we wish to study axisymmetric and non-axisymmetric structures that are generated by the magneto-rotational instability in the outer regions of protoplanetary disks. We combine the results of state-of-the-art numerical simulations with post-processing radiative transfer (RT) to generate synthetic maps and predictions for ALMA. Methods: We performed non-ideal global 3D magneto-hydrodynamic (MHD) stratified simulations of the dead-zone outer edge using the FARGO MHD code PLUTO. The stellar and disk parameters were taken from a parameterized disk model applied for fitting high-angular resolution multi-wavelength observations of various circumstellar disks. We considered a stellar mass of M∗ = 0.5 M⊙ and a total disk mass of about 0.085 M∗. The 2D initial temperature and density profiles were calculated consistently from a given surface density profile and Monte Carlo radiative transfer. The 2D Ohmic resistivity profile was calculated using a dust chemistry model. We considered two values for the dust-to-gas mass ratio, 10-2 and 10-4, which resulted in two different levels of magnetic coupling. The initial magnetic field was a vertical net flux field. The radiative transfer simulations were performed with the Monte Carlo-based 3D continuum RT code MC3D. The resulting dust reemission provided the basis for the simulation of observations with ALMA. Results: All models quickly turned into a turbulent state. The fiducial model with a dust-to-gas mass ratio of 10-2 developed a large gap followed by a jump in surface density located at the dead-zone outer edge. The jump in density and pressure was strong enough to stop the radial drift of particles at this location. In addition, we observed the generation of vortices by the Rossby wave instability at the jump location close to 60 AU. The vortices were steadily generated and destroyed at a cycle of 40 local orbits. The RT results and simulated ALMA observations predict that it is feasible to observe these large-scale structures that appear in magnetized disks without planets. Neither the turbulent fluctuations in the disk nor specific times of the model can be distinguished on the basis of high-angular resolution submillimeter observations alone. The same applies to the distinction between gaps at the dead-zone edges and planetary gaps, to the distinction between turbulent and simple unperturbed disks, and to the asymmetry created by the vortex.

  20. Free-fall dynamics of a pair of rigidly linked disks

    NASA Astrophysics Data System (ADS)

    Kim, Taehyun; Chang, Jaehyeock; Kim, Daegyoum

    2018-03-01

    We investigate experimentally the free-fall motion of a pair of identical disks rigidly connected to each other. The three-dimensional coordinates of the pair of falling disks were constructed to quantitatively describe its trajectory, and the flow structure formed by the disk pair was identified by using dye visualization. The rigidly linked disk pair exhibits a novel falling pattern that creates a helical path with a conical configuration in which the lower disk rotates in a wider radius than the upper disk with respect to a vertical axis. The helical motion occurs consistently for the range of disk separation examined in this study. The dye visualization reveals that a strong, noticeable helical vortex core is generated from the outer tip of the lower disk during the helical motion. With an increasing length ratio, which is the ratio of the disk separation to the diameter of the disks, the nutation angle and the rate of change in the precession angle that characterize the combined helical and conical kinematics decrease linearly, whereas the pitch of the helical path increases linearly. Although all disk pairs undergo this helical motion, the horizontal-drift patterns of the disk pair depend on the length ratio.

  1. A kinematic determination of the structure of the double ring planetary nebula NGC 2392, the Eskimo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'dell, C.R.; Weiner, L.D.; Chu, Yoyhua

    Slit spectra and existing velocity cube data have been used to determine the structure of the double ring PN NGC 2392. The inner shell is a stellar wind-sculpted prolate spheroid with a ratio of axes of 2:1 and the approaching end of the long axis pointed 20 deg from the line of sight in P.A. = 200 deg. The outer ring is caused by an outer disk with density dropping off with distance from the central star and with distance from its plane, which is the same as the equatorial band of high density in the inner shell. The outermore » disk contains a ring of higher density knots at a distance of 16 arcsec and is losing material through free expansion, forming an outer envelope of increasing velocity. Forbidden S II spectra are used to determine the densities in all of the major regions of the nebula. It is argued that the filamentary cores at the centers of the knots seen in the outer ring originate in the sublimation of bodies formed at the same time as the parent star. 26 refs.« less

  2. The accretion of migrating giant planets

    NASA Astrophysics Data System (ADS)

    Dürmann, Christoph; Kley, Wilhelm

    2017-02-01

    Aims: Most studies concerning the growth and evolution of massive planets focus either on their accretion or their migration only. In this work we study both processes concurrently to investigate how they might mutually affect one another. Methods: We modeled a two-dimensional disk with a steady accretion flow onto the central star and embedded a Jupiter mass planet at 5.2 au. The disk is locally isothermal and viscosity is modeled using a constant α. The planet is held on a fixed orbit for a few hundred orbits to allow the disk to adapt and carve a gap. After this period, the planet is released and free to move according to the gravitational interaction with the gas disk. The mass accretion onto the planet is modeled by removing a fraction of gas from the inner Hill sphere, and the removed mass and momentum can be added to the planet. Results: Our results show that a fast migrating planet is able to accrete more gas than a slower migrating planet. Utilizing a tracer fluid we analyzed the origin of the accreted gas originating predominantly from the inner disk for a fast migrating planet. In the case of slower migration, the fraction of gas from the outer disk increases. We also found that even for very high accretion rates, in some cases gas crosses the planetary gap from the inner to the outer disk. Our simulations show that the crossing of gas changes during the migration process as the migration rate slows down. Therefore, classical type II migration where the planet migrates with the viscous drift rate and no gas crosses the gap is no general process but may only occur for special parameters and at a certain time during the orbital evolution of the planet.

  3. 51 OPHIUCHUS: A POSSIBLE BETA PICTORIS ANALOG MEASURED WITH THE KECK INTERFEROMETER NULLER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stark, Christopher C.; Kuchner, Marc J.; Traub, Wesley A.

    2009-10-01

    We present observations of the 51 Ophiuchi circumstellar disk made with the Keck interferometer operating in nulling mode at N band. We model these data simultaneously with VLTI-MIDI visibility data and a Spitzer IRS spectrum using a variety of optically thin dust cloud models and an edge-on optically thick disk model. We find that single-component optically thin disk models and optically thick disk models are inadequate to reproduce the observations, but an optically thin two-component disk model can reproduce all of the major spectral and interferometric features. Our preferred disk model consists of an inner disk of blackbody grains extendingmore » to {approx}4 AU and an outer disk of small silicate grains extending out to {approx}1200 AU. Our model is consistent with an inner 'birth' disk of continually colliding parent bodies producing an extended envelope of ejected small grains. This picture resembles the disks around Vega, AU Microscopii, and beta Pictoris, supporting the idea that 51 Ophiuchius may be a beta Pictoris analog.« less

  4. TESTING GALAXY FORMATION MODELS WITH THE GHOSTS SURVEY: THE COLOR PROFILE OF M81's STELLAR HALO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monachesi, Antonela; Bell, Eric F.; Bailin, Jeremy

    2013-04-01

    We study the properties of the stellar populations in M81's outermost part, which hereafter we will call the stellar halo, using Hubble Space Telescope (HST) Advanced Camera for Surveys observations of 19 fields from the GHOSTS survey. The observed fields probe the stellar halo out to a projected distance of {approx}50 kpc from the galactic center. Each field was observed in both F606W and F814W filters. The 50% completeness levels of the color-magnitude diagrams (CMDs) are typically at 2 mag below the tip of the red giant branch (TRGB). Fields at distances closer than 15 kpc show evidence of disk-dominatedmore » populations whereas fields at larger distances are mostly populated by halo stars. The red giant branch (RGB) of the M81's halo CMDs is well matched with isochrones of {approx}10 Gyr and metallicities [Fe/H] {approx} - 1.2 dex, suggesting that the dominant stellar population of M81's halo has a similar age and metallicity. The halo of M81 is characterized by a color distribution of width {approx}0.4 mag and an approximately constant median value of (F606W - F814W) {approx}1 mag measured using stars within the magnitude range 23.7 {approx}< F814W {approx}< 25.5. When considering only fields located at galactocentric radius R > 15 kpc, we detect no color gradient in the stellar halo of M81. We place a limit of 0.03 {+-} 0.11 mag difference between the median color of RGB M81 halo stars at {approx}15 and at 50 kpc, corresponding to a metallicity difference of 0.08 {+-} 0.35 dex over that radial range for an assumed constant age of 10 Gyr. We compare these results with model predictions for the colors of stellar halos formed purely via accretion of satellite galaxies. When we analyze the cosmologically motivated models in the same way as the HST data, we find that they predict no color gradient for the stellar halos, in good agreement with the observations.« less

  5. Characterization of the modified Hodge test-positive isolates of Enterobacteriaceae in Taiwan.

    PubMed

    Hung, Kuei-Hsiang; Yan, Jing-Jou; Lu, Jang-Jih; Chen, Hung-Mo; Wu, Jiunn-Jong

    2013-02-01

    The modified Hodge test is a phenotypic test to detect KPC-type carbapenemase producers among Enterobacteriaceae, as recommended by the Clinical Laboratory Standards Institute. However, false positive results were reported. In this study, we aimed to large-scale investigate the characterization of the modified Hodge test-positive isolates of Enterobacteriaceae collected between 2006 and 2010 in Taiwan. Fifty-six isolates, including 24 Enterobacter cloacae, 17 Escherichia coli, 10 Klebsiella pneumoniae, and 5 Citrobacter freundii, tested positive with the modified Hodge test. The in vitro activities of 10 antimicrobial agents were determined by the agar dilution method. Boronic acid combined-disk test was used to further confirm the KPC producers. Phenotype of ESBL, AmpC, class B carbapenemases, and profile of outer membrane proteins were investigated by the confirmatory test, boronic acid disk method, 2-mercaptopropionic acid double-disk method, and urea/sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), respectively. β-lactamase genes were examined by PCR and sequencing. These isolates were resistant to ceftazidime (100%), aztreonam (82.1%), ertapenem (64.3%), gentamicin (53.6%), ciprofloxacin (50%), levofloxacin (48.2%), cefepime (19.6%), imipenem (16.1%), meropenem (12.5%), and amikacin (8.9%). Phenotypic testing among isolates revealed the production of ESBLs, metallo-β-lactamases (MBLs), and AmpC in 10 (17.9%), 16 (28.6%), and 12 (44.4%) isolates, respectively. Carbapenemase and non-carbapenemase β-lactamase genes bla(TEM-1), bla(SHV), bla(CTX-M), bla(IMP-8), bla(CMY-2), and bla(DHA-1) were found in 32 (57.1%), 19 (33.9%), 4 (7.1%), 16 (28.6%), 14 (25%), and 5 (8.9%) of the strains, respectively. No class A and D carbapenemase genes were detected. Outer membrane protein profile showed obviously decreased expression in 49 (87.5%) isolates with positive result of modified Hodge test. Our data show that ESBLs, AmpC, and imipenemase-8 (IMP-8) carbapenemase coupled with decreased expression of outer membrane protein were prevalent in Enterobacteriaceae isolates testing positive for the modified Hodge test in Taiwan. Copyright © 2012. Published by Elsevier B.V.

  6. Radiation Hydrodynamical Turbulence in Protoplanetary Disks: Numerical Models and Observational Constraints

    NASA Astrophysics Data System (ADS)

    Flock, Mario; Nelson, Richard P.; Turner, Neal J.; Bertrang, Gesa H.-M.; Carrasco-González, Carlos; Henning, Thomas; Lyra, Wladimir; Teague, Richard

    2017-12-01

    Planets are born in protostellar disks, which are now observed with enough resolution to address questions about internal gas flows. Magnetic forces are possibly drivers of the flows, but ionization state estimates suggest that much of the gas mass decouples from magnetic fields. Thus, hydrodynamical instabilities could play a major role. We investigate disk dynamics under conditions typical for a T Tauri system, using global 3D radiation-hydrodynamics simulations with embedded particles and a resolution of 70 cells per scale height. Stellar irradiation heating is included with realistic dust opacities. The disk starts in joint radiative balance and hydrostatic equilibrium. The vertical shear instability (VSI) develops into turbulence that persists up to at least 1600 inner orbits (143 outer orbits). Turbulent speeds are a few percent of the local sound speed at the midplane, increasing to 20%, or 100 m s-1, in the corona. These are consistent with recent upper limits on turbulent speeds from optically thin and thick molecular line observations of TW Hya and HD 163296. The predominantly vertical motions induced by the VSI efficiently lift particles upward. Grains 0.1 and 1 mm in size achieve scale heights greater than expected in isotropic turbulence. We conclude that while kinematic constraints from molecular line emission do not directly discriminate between magnetic and nonmagnetic disk models, the small dust scale heights measured in HL Tau and HD 163296 favor turbulent magnetic models, which reach lower ratios of the vertical kinetic energy density to the accretion stress.

  7. A model for neutrino emission from nuclear accretion disks

    NASA Astrophysics Data System (ADS)

    Deaton, Michael

    2015-04-01

    Compact object mergers involving at least one neutron star can produce short-lived black hole accretion engines. Over tens to hundreds of milliseconds such an engine consumes a disk of hot, nuclear-density fluid, and drives changes to its surrounding environment through luminous emission of neutrinos. The neutrino emission may drive an ultrarelativistic jet, may peel off the disk's outer layers as a wind, may irradiate those winds or other forms of ejecta and thereby change their composition, may change the composition and thermodynamic state of the disk itself, and may oscillate in its flavor content. We present the full spatial-, angular-, and energy-dependence of the neutrino distribution function around a realistic model of a nuclear accretion disk, to inform future explorations of these types of behaviors. Spectral Einstein Code (SpEC).

  8. Early scattering of the solar protoplanetary disk recorded in meteoritic chondrules

    PubMed Central

    Marrocchi, Yves; Chaussidon, Marc; Piani, Laurette; Libourel, Guy

    2016-01-01

    Meteoritic chondrules are submillimeter spherules representing the major constituent of nondifferentiated planetesimals formed in the solar protoplanetary disk. The link between the dynamics of the disk and the origin of chondrules remains enigmatic. Collisions between planetesimals formed at different heliocentric distances were frequent early in the evolution of the disk. We show that the presence, in some chondrules, of previously unrecognized magnetites of magmatic origin implies the formation of these chondrules under impact-generated oxidizing conditions. The three oxygen isotopes systematic of magmatic magnetites and silicates can only be explained by invoking an impact between silicate-rich and ice-rich planetesimals. This suggests that these peculiar chondrules are by-products of the early mixing in the disk of populations of planetesimals from the inner and outer solar system. PMID:27419237

  9. Modeling Protostar Envelopes and Disks Seen With ALMA: A Focus on L1527 Kinematics

    NASA Astrophysics Data System (ADS)

    Terebey, Susan; Flores Rivera, Lizxandra; Willacy, Karen

    2018-06-01

    ALMA probes continuum and spectral line emission from protostars that comes from both the envelope and circumstellar disk. The dust and gas emit on a variety of spatial scales, ranging from sub-arcseconds for disks to roughly 10 arcseconds for envelopes for nearby protostars. We present models of what ALMA should detect that incorporate a self-consistent collapse solution, radiative transfer, and realistic dust properties. Molecular abundances are also calculated; we present results for CO and isotopologues for the Class 0 source L1527. Results for the outer disk show that there can be significant differences from standard assumptions due to the effect of CO freeze out and non-Keplerian dynamics.

  10. Gas in Debris Disks and the Volatiles of Terrestrial Planet Formation

    NASA Technical Reports Server (NTRS)

    Kuchner, Marc

    2010-01-01

    Debris disks are a kind of protoplanetary disk that likely corresponds to the epoch of terrestrial planet and outer planet formation. Previously pictured to be gas-free, some debris disks are now revealing gas components, sometimes with strikingly non-solar abundance patterns. Understanding the nature and distribution of this gas may eventually help us understand the origin of volatiles on the Earth, the carbon depletion of the asteroids, and even the origin of life. I'll describe what we know about these systems observationally, some of the leading hypotheses about the sources and sinks of the gas, and how these new astronomical discoveries may bear on solar-system science.

  11. Young stars in ɛ Chamaleontis and their disks: disk evolution in sparse associations

    NASA Astrophysics Data System (ADS)

    Fang, M.; van Boekel, R.; Bouwman, J.; Henning, Th.; Lawson, W. A.; Sicilia-Aguilar, A.

    2013-01-01

    Context. The nearby young stellar association ɛ Cha has an estimated age of 3-5 Myr, making it an ideal laboratory to study the disk dissipation process and provide empirical constraints on the timescale of planet formation. Aims: We wish to complement existing optical and near-infrared data of the ɛ Cha association, which provide the stellar properties of its members, with mid-infrared data that probe the presence, geometry, and mineralogical composition of protoplanetary disks around individual stars. Methods: We combine the available literature data with our Spitzer/IRS spectroscopy and VLT/VISIR imaging data. We use proper motions to refine the membership of ɛ Cha. Masses and ages of individual stars are estimated by fitting model atmospheres to the optical and near-infrared photometry, followed by placement in the Hertzsprung-Russell diagram. The Spitzer/IRS spectra are analyzed using the two-layer temperature distribution spectral decomposition method. Results: Two stars previously identified as members, CXOU J120152.8 and 2MASS J12074597, have proper motions that are very different from those of the other stars. But other observations suggest that the two stars are still young and thus might still be related to ɛ Cha. HD 104237C is the lowest mass member of ɛ Cha with an estimated mass of ~13-15 Jupiter masses. The very low mass stars USNO-B120144.7 and 2MASS J12005517 show globally depleted spectral energy distributions, pointing at strong dust settling. 2MASS J12014343 may have a disk with a very specific inclination, where the central star is effectively screened by the cold outer parts of a flared disk, but the 10 μm radiation of the warm inner disk can still reach us. We find that the disks in sparse stellar associations are dissipated more slowly than those in denser (cluster) environments. We detect C2H2 rovibrational band around 13.7 μm on the IRS spectrum of USNO-B120144.7. We find strong signatures of grain growth and crystallization in all ɛ Cha members with 10 μm features detected in their IRS spectra. We combine the dust properties derived in the ɛ Cha sample with those found using identical or similar methods in the MBM 12, Coronet, η Cha associations, and in the cores-to-disks legacy program. We find that disks around low-mass young stars show a negative radial gradient in the mass-averaged grain size and mass fraction of crystalline silicates. A positive correlation exists between the mass-averaged grain sizes of amorphous silicates and the accretion rates if the latter is above ~10-9 M⊙ yr-1, possibly indicating that those disks are sufficiently turbulent to prevent grains of several microns in size to sink into the disk interior. Based on observations performed at ESO's La Silla-Paranal observatory under programme 076.C-0470.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osorio, Mayra; Anglada, Guillem; Macías, Enrique

    We present Very Large Array observations at 7 mm that trace the thermal emission of large dust grains in the HD 169142 protoplanetary disk. Our images show a ring of enhanced emission of radius ∼25-30 AU, whose inner region is devoid of detectable 7 mm emission. We interpret this ring as tracing the rim of an inner cavity or gap, possibly created by a planet or a substellar companion. The ring appears asymmetric, with the western part significantly brighter than the eastern one. This azimuthal asymmetry is reminiscent of the lopsided structures that are expected to be produced as a consequence of trappingmore » of large dust grains. Our observations also reveal an outer annular gap at radii from ∼40 to ∼70 AU. Unlike other sources, the radii of the inner cavity, the ring, and the outer gap observed in the 7 mm images, which trace preferentially the distribution of large (millimeter/centimeter sized) dust grains, coincide with those obtained from a previous near-infrared polarimetric image, which traces scattered light from small (micron-sized) dust grains. We model the broadband spectral energy distribution and the 7 mm images to constrain the disk physical structure. From this modeling we infer the presence of a small (radius ∼0.6 AU) residual disk inside the central cavity, indicating that the HD 169142 disk is a pre-transitional disk. The distribution of dust in three annuli with gaps in between them suggests that the disk in HD 169142 is being disrupted by at least two planets or substellar objects.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cieza, Lucas A.; Mathews, Geoffrey S.; Kraus, Adam L.

    We present deep Sparse Aperture Masking (SAM) observations obtained with the ESO Very Large Telescope of the pre-transitional disk object FL Cha (SpT = K8, d = 160 pc), the disk of which is known to have a wide optically thin gap separating optically thick inner and outer disk components. We find non-zero closure phases, indicating a significant flux asymmetry in the K{sub S} -band emission (e.g., a departure from a single point source detection). We also present radiative transfer modeling of the spectral energy distribution of the FL Cha system and find that the gap extends from 0.06{sup +0.05}{submore » -0.01} AU to 8.3 {+-} 1.3 AU. We demonstrate that the non-zero closure phases can be explained almost equally well by starlight scattered off the inner edge of the outer disk or by a (sub)stellar companion. Single-epoch, single-wavelength SAM observations of transitional disks with large cavities that could become resolved should thus be interpreted with caution, taking the disk and its properties into consideration. In the context of a binary model, the signal is most consistent with a high-contrast ({Delta}K{sub S} {approx} 4.8 mag) source at a {approx}40 mas (6 AU) projected separation. However, the flux ratio and separation parameters remain highly degenerate and a much brighter source ({Delta}K{sub S} {approx} 1 mag) at 15 mas (2.4 AU) can also reproduce the signal. Second-epoch, multi-wavelength observations are needed to establish the nature of the SAM detection in FL Cha.« less

  14. On the Impact Origin of Phobos and Deimos. II. True Polar Wander and Disk Evolution

    NASA Astrophysics Data System (ADS)

    Hyodo, Ryuki; Rosenblatt, Pascal; Genda, Hidenori; Charnoz, Sébastien

    2017-12-01

    Phobos and Deimos are the two small Martian moons, orbiting almost on the equatorial plane of Mars. Recent works have shown that they can accrete within an impact-generated inner dense and outer light disk, and that the same impact potentially forms the Borealis basin, a large northern hemisphere basin on the current Mars. However, there is no a priori reason for the impact to take place close to the north pole (Borealis present location), nor to generate a debris disk in the equatorial plane of Mars (in which Phobos and Deimos orbit). In this paper, we investigate these remaining issues on the giant impact origin of the Martian moons. First, we show that the mass deficit created by the Borealis impact basin induces a global reorientation of the planet to realign its main moment of inertia with the rotation pole (True Polar Wander). This moves the location of the Borealis basin toward its current location. Next, using analytical arguments, we investigate the detailed dynamical evolution of the eccentric inclined disk from the equatorial plane of Mars that is formed by the Martian-moon-forming impact. We find that, as a result of precession of disk particles due to the Martian dynamical flattening J 2 term of its gravity field and particle–particle inelastic collisions, eccentricity and inclination are damped and an inner dense and outer light equatorial circular disk is eventually formed. Our results strengthen the giant impact origin of Phobos and Deimos that can finally be tested by a future sample return mission such as JAXA’s Martian Moons eXploration mission.

  15. Variable Dynamics in the Inner Disk of HD 135344B Revealed with Multi-epoch Scattered Light Imaging

    NASA Astrophysics Data System (ADS)

    Stolker, Tomas; Sitko, Mike; Lazareff, Bernard; Benisty, Myriam; Dominik, Carsten; Waters, Rens; Min, Michiel; Perez, Sebastian; Milli, Julien; Garufi, Antonio; de Boer, Jozua; Ginski, Christian; Kraus, Stefan; Berger, Jean-Philippe; Avenhaus, Henning

    2017-11-01

    We present multi-epoch Very Large Telescope/Spectro-Polarimetric High-contrast Exoplanet REsearch (VLT/SPHERE) observations of the protoplanetary disk around HD 135344B (SAO 206462). The J-band scattered light imagery reveal, with high spatial resolution (˜41 mas, 6.4 au), the disk surface beyond ˜20 au. Temporal variations are identified in the azimuthal brightness distributions of all epochs, presumably related to the asymmetrically shading dust distribution in the inner disk. These shadows manifest themselves as narrow lanes, cast by localized density enhancements, and broader features which possibly trace the larger scale dynamics of the inner disk. We acquired visible and near-infrared photometry which shows variations up to 10% in the JHK bands, possibly correlated with the presence of the shadows. Analysis of archival Very Large Telescope Interferometer/Precision Integrated-Optics Near-infrared Imaging ExpeRiment (VLTI/PIONIER) H-band visibilities constrain the orientation of the inner disk to I=18\\buildrel{\\circ}\\over{.} {2}-4.1+3.4 and {PA}=57\\buildrel{\\circ}\\over{.} 3+/- 5\\buildrel{\\circ}\\over{.} 7, consistent with an alignment with the outer disk or a minor disk warp of several degrees. The latter scenario could explain the broad, quasi-stationary shadowing in north-northwest direction in case the inclination of the outer disk is slightly larger. The correlation between the shadowing and the near-infrared excess is quantified with a grid of radiative transfer models. The variability of the scattered light contrast requires extended variations in the inner disk atmosphere (H/r≲ 0.2). Possible mechanisms that may cause asymmetric variations in the optical depth ({{Δ }}τ ≲ 1) through the atmosphere of the inner disk include turbulent fluctuations, planetesimal collisions, or a dusty disk wind, possibly enhanced by a minor disk warp. A fine temporal sampling is required to follow day-to-day changes of the shadow patterns which may be a face-on variant of the UX Orionis phenomenon. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programmes 087.C-0702(A,B), 087.C-0458(B,C), 087.C-0703(B), 088.C-0670(B), 088.D-0185(A), 088.C-0763(D), 089.C-0211(A), 091.C-0570(A), 095.C-0273(A), 097.C-0885(A), 097.C-0702(A), and 297.C-5023(A).

  16. Comparison Simulations of Gas Giant Planet Formation via Disk Instability

    NASA Astrophysics Data System (ADS)

    Pickett, Megan K.; Cai, K.; Durisen, R.; Milne, M.

    2011-01-01

    There has been disagreement about whether cooling in protoplanetary disks can be sufficiently fast to induce the formation of gas giant protoplanets via gravitational instabilities. Simulations by our own group and others indicate that this method of planet formation does not work for disks around young, low-mass stars inside several tens of AU, while simulations by other groups show fragmentation into protoplanetary clumps in this region. To allow direct comparison in hopes of isolating the cause of the differences, we here present a comparison high-resolution three-dimensional hydrodynamics simulation of a protoplanetary disk,using an improved version of one of our own radiative schemes. We find that the disk does not fragment in our code but instead quickly settles into a state with only low amplitude nonaxisymmetric structure, which persists for at least several outer disk rotations. Further, we see no rapid radiative or convective cooling.

  17. β Pictoris' inner disk in polarized light and new orbital parameters for β Pictoris b

    DOE PAGES

    Millar-Blanchaer, Maxwell A.; Graham, James R.; Pueyo, Laurent; ...

    2015-09-16

    Here, we present H-band observations of β Pic with the Gemini Planet Imager's (GPI's) polarimetry mode that reveal the debris disk between ~0farcs3 (6 AU) and ~1farcs7 (33 AU), while simultaneously detecting β Pic b. The polarized disk image was fit with a dust density model combined with a Henyey–Greenstein scattering phase function. The best-fit model indicates a disk inclined to the line of sight (more » $$\\phi =85\\buildrel{\\circ}\\over{.} {27}_{-0.19}^{+0.26}$$) with a position angle (PA) $${\\theta }_{\\mathrm{PA}}=30\\buildrel{\\circ}\\over{.} {35}_{-0.28}^{+0.29}$$ (slightly offset from the main outer disk, $${\\theta }_{\\mathrm{PA}}\\approx 29^\\circ $$), that extends from an inner disk radius of $${23.6}_{-0.6}^{+0.9}\\;\\mathrm{AU}$$ to well outside GPI's field of view.« less

  18. Pineal organs of deep-sea fish: photopigments and structure.

    PubMed

    Bowmaker, James K; Wagner, Hans-Joachim

    2004-06-01

    We have examined the morphology and photopigments of the pineal organs from a number of mesopelagic fish, including representatives of the hatchet fish (Sternoptychidae), scaly dragon-fish (Chauliodontidae) and bristlemouths (Gonostomidae). Although these fish were caught at depths of between 500 and 1000 m, the morphological organisation of their pineal organs is remarkably similar to that of surface-dwelling fish. Photoreceptor inner and outer segments protrude into the lumen of the pineal vesicle, and the outer segment is composed of a stack of up to 20 curved disks that form a cap-like cover over the inner segment. In all species, the pineal photopigment was spectrally distinct from the retinal rod pigment, with lambdamax displaced to longer wavelengths, between approximately 485 and 503 nm. We also investigated the pineal organ of the deep demersal eel, Synaphobranchus kaupi, caught at depths below 2000 m, which possesses a rod visual pigment with lambdamax at 478 nm, but the pineal pigment has lambdamax at approximately 515 nm. In one species of hatchet fish, Argyropelecus affinis, two spectral classes of pinealocyte were identified, both spectrally distinct from the retinal rod photopigment.

  19. Shadows cast on the transition disk of HD 135344B. Multiwavelength VLT/SPHERE polarimetric differential imaging

    NASA Astrophysics Data System (ADS)

    Stolker, T.; Dominik, C.; Avenhaus, H.; Min, M.; de Boer, J.; Ginski, C.; Schmid, H. M.; Juhasz, A.; Bazzon, A.; Waters, L. B. F. M.; Garufi, A.; Augereau, J.-C.; Benisty, M.; Boccaletti, A.; Henning, Th.; Langlois, M.; Maire, A.-L.; Ménard, F.; Meyer, M. R.; Pinte, C.; Quanz, S. P.; Thalmann, C.; Beuzit, J.-L.; Carbillet, M.; Costille, A.; Dohlen, K.; Feldt, M.; Gisler, D.; Mouillet, D.; Pavlov, A.; Perret, D.; Petit, C.; Pragt, J.; Rochat, S.; Roelfsema, R.; Salasnich, B.; Soenke, C.; Wildi, F.

    2016-11-01

    Context. The protoplanetary disk around the F-type star HD 135344B (SAO 206462) is in a transition stage and shows many intriguing structures both in scattered light and thermal (sub-)millimeter emission which are possibly related to planet formation processes. Aims: We aim to study the morphology and surface brightness of the disk in scattered light to gain insight into the innermost disk regions, the formation of protoplanets, planet-disk interactions traced in the surface and midplane layers, and the dust grain properties of the disk surface. Methods: We have carried out high-contrast polarimetric differential imaging (PDI) observations with VLT/SPHERE and obtained polarized scattered light images with ZIMPOL in the R and I-bands and with IRDIS in the Y and J-bands. The scattered light images and surface brightness profiles are used to study in detail structures in the disk surface and brightness variations. We have constructed a 3D radiative transfer model to support the interpretation of several detected shadow features. Results: The scattered light images reveal with unprecedented angular resolution and sensitivity the spiral arms as well as the 25 au cavity of the disk. Multiple shadow features are discovered on the outer disk with one shadow only being present during the second observation epoch. A positive surface brightness gradient is observed in the stellar irradiation corrected (r2-scaled) images in southwest direction possibly due to an azimuthally asymmetric perturbation of the temperature and/or surface density by the passing spiral arms. The disk integrated polarized flux, normalized to the stellar flux, shows a positive trend towards longer wavelengths which we attribute to large (2πa ≳ λ) aggregate dust grains in the disk surface. Part of the non-azimuthal polarization signal in the Uφ image of the J-band observation can be attributed to multiple scattering in the disk. Conclusions: The detected shadow features and their possible variability have the potential to provide insight into the structure of and processes occurring in the innermost disk regions. Possible explanations for the presence of the shadows include a 22° misaligned inner disk, a warped disk region that connects the inner disk with the outer disk, and variable or transient phenomena such as a perturbation of the inner disk or an asymmetric accretion flow. The spiral arms are best explained by one or multiple protoplanets in the exterior of the disk although no gap is detected beyond the spiral arms up to 1.''0. Based on observations collected at the European Southern Observatory, Chile, ESO No. 095.C-0273(A) and 095.C-0273(D).

  20. Strongly baryon-dominated disk galaxies at the peak of galaxy formation ten billion years ago

    NASA Astrophysics Data System (ADS)

    Genzel, R.; Schreiber, N. M. Förster; Übler, H.; Lang, P.; Naab, T.; Bender, R.; Tacconi, L. J.; Wisnioski, E.; Wuyts, S.; Alexander, T.; Beifiori, A.; Belli, S.; Brammer, G.; Burkert, A.; Carollo, C. M.; Chan, J.; Davies, R.; Fossati, M.; Galametz, A.; Genel, S.; Gerhard, O.; Lutz, D.; Mendel, J. T.; Momcheva, I.; Nelson, E. J.; Renzini, A.; Saglia, R.; Sternberg, A.; Tacchella, S.; Tadaki, K.; Wilman, D.

    2017-03-01

    In the cold dark matter cosmology, the baryonic components of galaxies—stars and gas—are thought to be mixed with and embedded in non-baryonic and non-relativistic dark matter, which dominates the total mass of the galaxy and its dark-matter halo. In the local (low-redshift) Universe, the mass of dark matter within a galactic disk increases with disk radius, becoming appreciable and then dominant in the outer, baryonic regions of the disks of star-forming galaxies. This results in rotation velocities of the visible matter within the disk that are constant or increasing with disk radius—a hallmark of the dark-matter model. Comparisons between the dynamical mass, inferred from these velocities in rotational equilibrium, and the sum of the stellar and cold-gas mass at the peak epoch of galaxy formation ten billion years ago, inferred from ancillary data, suggest high baryon fractions in the inner, star-forming regions of the disks. Although this implied baryon fraction may be larger than in the local Universe, the systematic uncertainties (owing to the chosen stellar initial-mass function and the calibration of gas masses) render such comparisons inconclusive in terms of the mass of dark matter. Here we report rotation curves (showing rotation velocity as a function of disk radius) for the outer disks of six massive star-forming galaxies, and find that the rotation velocities are not constant, but decrease with radius. We propose that this trend arises because of a combination of two main factors: first, a large fraction of the massive high-redshift galaxy population was strongly baryon-dominated, with dark matter playing a smaller part than in the local Universe; and second, the large velocity dispersion in high-redshift disks introduces a substantial pressure term that leads to a decrease in rotation velocity with increasing radius. The effect of both factors appears to increase with redshift. Qualitatively, the observations suggest that baryons in the early (high-redshift) Universe efficiently condensed at the centres of dark-matter haloes when gas fractions were high and dark matter was less concentrated.

  1. Strongly baryon-dominated disk galaxies at the peak of galaxy formation ten billion years ago.

    PubMed

    Genzel, R; Schreiber, N M Förster; Übler, H; Lang, P; Naab, T; Bender, R; Tacconi, L J; Wisnioski, E; Wuyts, S; Alexander, T; Beifiori, A; Belli, S; Brammer, G; Burkert, A; Carollo, C M; Chan, J; Davies, R; Fossati, M; Galametz, A; Genel, S; Gerhard, O; Lutz, D; Mendel, J T; Momcheva, I; Nelson, E J; Renzini, A; Saglia, R; Sternberg, A; Tacchella, S; Tadaki, K; Wilman, D

    2017-03-15

    In the cold dark matter cosmology, the baryonic components of galaxies-stars and gas-are thought to be mixed with and embedded in non-baryonic and non-relativistic dark matter, which dominates the total mass of the galaxy and its dark-matter halo. In the local (low-redshift) Universe, the mass of dark matter within a galactic disk increases with disk radius, becoming appreciable and then dominant in the outer, baryonic regions of the disks of star-forming galaxies. This results in rotation velocities of the visible matter within the disk that are constant or increasing with disk radius-a hallmark of the dark-matter model. Comparisons between the dynamical mass, inferred from these velocities in rotational equilibrium, and the sum of the stellar and cold-gas mass at the peak epoch of galaxy formation ten billion years ago, inferred from ancillary data, suggest high baryon fractions in the inner, star-forming regions of the disks. Although this implied baryon fraction may be larger than in the local Universe, the systematic uncertainties (owing to the chosen stellar initial-mass function and the calibration of gas masses) render such comparisons inconclusive in terms of the mass of dark matter. Here we report rotation curves (showing rotation velocity as a function of disk radius) for the outer disks of six massive star-forming galaxies, and find that the rotation velocities are not constant, but decrease with radius. We propose that this trend arises because of a combination of two main factors: first, a large fraction of the massive high-redshift galaxy population was strongly baryon-dominated, with dark matter playing a smaller part than in the local Universe; and second, the large velocity dispersion in high-redshift disks introduces a substantial pressure term that leads to a decrease in rotation velocity with increasing radius. The effect of both factors appears to increase with redshift. Qualitatively, the observations suggest that baryons in the early (high-redshift) Universe efficiently condensed at the centres of dark-matter haloes when gas fractions were high and dark matter was less concentrated.

  2. You’re Cut Off: HD and MHD Simulations of Truncated Accretion Disks

    NASA Astrophysics Data System (ADS)

    Hogg, J. Drew; Reynolds, Christopher S.

    2017-01-01

    Truncated accretion disks are commonly invoked to explain the spectro-temporal variability from accreting black holes in both small systems, i.e. state transitions in galactic black hole binaries (GBHBs), and large systems, i.e. low-luminosity active galactic nuclei (LLAGNs). In the canonical truncated disk model of moderately low accretion rate systems, gas in the inner region of the accretion disk occupies a hot, radiatively inefficient phase, which leads to a geometrically thick disk, while the gas in the outer region occupies a cooler, radiatively efficient phase that resides in the standard geometrically thin disk. Observationally, there is strong empirical evidence to support this phenomenological model, but a detailed understanding of the disk behavior is lacking. We present well-resolved hydrodynamic (HD) and magnetohydrodynamic (MHD) numerical models that use a toy cooling prescription to produce the first sustained truncated accretion disks. Using these simulations, we study the dynamics, angular momentum transport, and energetics of a truncated disk in the two different regimes. We compare the behaviors of the HD and MHD disks and emphasize the need to incorporate a full MHD treatment in any discussion of truncated accretion disk evolution.

  3. Murchison CM2 chondrite at nanoscale: evidence for hydrated minerals in the protoplanetary disk

    NASA Astrophysics Data System (ADS)

    Trigo-Rodriguez, J. M.; Vila-Ruaix, A.; Alonso-Azcárate, J.; Abad, M. M.

    2017-03-01

    The most pristine chondrites are undifferentiated meteorites with highly unequilibrated mineral grains that accreted from the protoplanetary disk about 4.6 Gyrs ago. Here we focus our attention in the study of Murchison, one of the most primitive carbonaceous chondrites belonging to the CM2 group. Despite of being aqueously altered, Murchison matrix is extraordinarily complex at nanoscale, and its study can hold clues to understand the origin of the water incorporated in the parent bodies of carbonaceous chondrites. Murchison comes from an undifferentiated carbon-rich asteroid which formed from the accretion of solid particles formed in the outer protoplanetary disk. Their rock-forming materials felt into the plane of the system where they mixed with organics, and probably with hydrated minerals. Our UHRTEM (ultra-high resolution transmission electron microscopy) data demonstrate that Murchison fine-grained matrix consists of a complex mixture of many ingredients, including chondrule and CAI fragments, stellar grains, phyllosilicates and organic compounds. We describe here some mineral and textural features that exemplify how pristine, and diverse is Murchison matrix. Our results indicate that the study of carbonaceous chondrites at nanoscale can provide a significant progress in our understanding of the accretion of materials and the preservation of presolar grains in the outer regions of the protoplanetary disk.

  4. Terahertz plasmon-induced transparency based on asymmetric dual-disk resonators coupled to a semiconductor InSb waveguide and its biosensor application

    NASA Astrophysics Data System (ADS)

    Shahamat, Yadollah; Vahedi, Mohammad

    2017-06-01

    An ultracompact double eight-shaped plasmonic structure for the realization of plasmon-induced transparency (PIT) in the terahertz (THz) region has been studied. The device consists of a semiconductor-insulator-semiconductor bus waveguide coupled to the dual-disk resonators. Indium antimonide is employed to excite SPP in the THz region. The transmission characteristics of the proposed device are simulated numerically by the finite-difference time-domain method. In addition, a theoretical analysis based on the coupled-mode theory for transmission features is presented and compared with the numerical results. Results are in good agreement. Also, the dependence of PIT frequency characteristics on the radius of the outer disk is discussed in detail. In addition, by removing one of the outer disk resonators, double-PIT peaks can be observed in the transmission spectrum, and the physical mechanism of the appeared peaks is investigated. Finally, an application of the proposed structure for distinguishing different states of DNA molecules is discussed. Results show that the maximum sensitivity with 654 GHz/RIU-1 could be obtained for a single PIT structure. The frequency shifts equal to 37 and 99 GHz could be observed for the denatured and the hybridized DNA states, respectively.

  5. Radio continuum of galaxies with H2O megamaser disks: 33 GHz VLA data

    NASA Astrophysics Data System (ADS)

    Kamali, F.; Henkel, C.; Brunthaler, A.; Impellizzeri, C. M. V.; Menten, K. M.; Braatz, J. A.; Greene, J. E.; Reid, M. J.; Condon, J. J.; Lo, K. Y.; Kuo, C. Y.; Litzinger, E.; Kadler, M.

    2017-09-01

    Context. Galaxies with H2O megamaser disks are active galaxies in whose edge-on accretion disks 22 GHz H2O maser emission has been detected. Because their geometry is known, they provide a unique view into the properties of active galactic nuclei. Aims: The goal of this work is to investigate the nuclear environment of galaxies with H2O maser disks and to relate the maser and host galaxy properties to those of the radio continuum emission of the galaxy. Methods: The 33 GHz (9 mm) radio continuum properties of 24 galaxies with reported 22 GHz H2O maser emission from their disks are studied in the context of the multiwavelength view of these sources. The 29-37 GHz Ka-band observations are made with the Karl Jansky Very Large Array in B, CnB, or BnA configurations, achieving a resolution of 0.2-0.5 arcsec. Hard X-ray data from the Swift/BAT survey and 22 μm infrared data from WISE, 22 GHz H2O maser data and 1.4 GHz data from NVSS and FIRST surveys are also included in the analysis. Results: Eighty-seven percent (21 out of 24) galaxies in our sample show 33 GHz radio continuum emission at levels of 4.5-240σ. Five sources show extended emission (deconvolved source size larger than 2.5 times the major axis of the beam), including one source with two main components and one with three main components. The remaining detected 16 sources (and also some of the above-mentioned targets) exhibit compact cores within the sensitivity limits. Little evidence is found for extended jets (>300 pc) in most sources. Either they do not exist, or our chosen frequency of 33 GHz is too high for a detection of these supposedly steep spectrum features. In NGC 4388, we find an extended jet-like feature that appears to be oriented perpendicular to the H2O megamaser disk. NGC 2273 is another candidate whose radio continuum source might be elongated perpendicular to the maser disk. Smaller 100-300 pc sized jets might also be present, as is suggested by the beam-deconvolved morphology of our sources. Whenever possible, central positions with accuracies of 20-280 mas are provided. A correlation analysis shows that the 33 GHz luminosity weakly correlates with the infrared luminosity. The 33 GHz luminosity is anticorrelated with the circular velocity of the galaxy. The black hole masses show stronger correlations with H2O maser luminosity than with 1.4 GHz, 33 GHz, or hard X-ray luminosities. Furthermore, the inner radii of the disks show stronger correlations with 1.4 GHz, 33 GHz, and hard X-ray luminosities than their outer radii, suggesting that the outer radii may be affected by disk warping, star formation, or peculiar density distributions.

  6. On The Possibility of Enrichment and Differentiation in Gas Giants During Birth by Disk Instability

    NASA Astrophysics Data System (ADS)

    Boley, Aaron C.; Durisen, R. H.

    2011-01-01

    We investigate the coupling between rock-size solids and gas during the formation of gas giant planets by disk fragmentation in the outer regions of massive disks. In this study, we use three-dimensional radiative hydrodynamics simulations and model solids as a spatial distribution of particles. We assume that half of the total solid fraction is in small grains and half in large solids. The former are perfectly entrained with the gas and set the opacity, while the latter are allowed to respond to gas drag forces. To explore the maximum effects of gas-solid interactions, we first consider 10cm-size particles. We then compare these results to a simulation with 1km-size particles, which explores the low-drag regime.We show that (1) disk instability planets have the potential to form large cores due to aerodynamic capturing of rock-size solids in spiral arms before fragmentation; (2) that temporary clumps can concentrate tens of M⊕ of solids in very localized regions before clump disruption; (3) that the formation of permanent clumps, even in the outer disk, is dependent on the opacity; (4) that nonaxisymmetric structure in the disk can create disk regions that have a solids-to-gas ratio greater than unity; (5) that the solid distribution may affect the fragmentation process; (6) that proto-gas giants and proto-brown dwarfs can start as differentiated objects prior to the H2 collapse phase; (7) that spiral arms in a gravitationally unstable disk are able to stop the inward drift of rock-size solids, even redistributing them to larger radii; and, (8) that large solids can form spiral arms that are offset from the gaseous spiral arms. ACB's support was provided in part under contract with the California Institute of Technology (Caltech) funded by NASA through the Sagan Fellowship Program. RHD was supported by NASA Origins of Solar Systems grant NNX08AK36G.

  7. Unbiased millimeter-wave line surveys of TW Hya and V4046 Sgr: The enhanced C{sub 2}H and CN abundances of evolved protoplanetary disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kastner, Joel H.; Punzi, Kristina; Hily-Blant, Pierre

    2014-09-20

    We have conducted the first comprehensive millimeter-wave molecular emission line surveys of the evolved circumstellar disks orbiting the nearby, roughly solar-mass, pre-main-sequence (T Tauri) stars, TW Hya (D = 54 pc) and V4046 Sgr AB (D = 73 pc). Both disks are known to retain significant residual gaseous components despite the advanced ages of their host stars (∼8 Myr and ∼21 Myr, respectively). Our unbiased broadband radio spectral surveys of the TW Hya and V4046 Sgr disks were performed with the Atacama Pathfinder Experiment 12 m telescope, and are intended to yield a complete census of the bright molecular emissionmore » lines in the range 275-357 GHz (1.1-0.85 mm). We find that lines of {sup 12}CO, {sup 13}CO, HCN, CN, and C{sub 2}H, all of which lie in the higher frequency (>330 GHz) range, constitute the strongest molecular emission from both disks in the spectral region surveyed. The molecule C{sub 2}H is detected here for the first time in both disks, as is CS in the TW Hya disk. The survey results also include the first measurements of the full suite of the hyperfine transitions of CN N = 3 → 2 and C{sub 2}H N = 4 → 3 in both disks. Modeling of these CN and C{sub 2}H hyperfine complexes in the spectrum of TW Hya indicates that the emission from both species is optically thick and may originate from very cold (≲10 K) disk regions. The latter result, if confirmed, would suggest the efficient production of CN and C{sub 2}H in the outer disk and/or near the disk midplane. It furthermore appears that the fractional abundances of CN and C{sub 2}H are significantly enhanced in these evolved protoplanetary disks, relative to the fractional abundances of the same molecules in the environments of deeply embedded protostars. These results, combined with previous determinations of the enhanced abundances of other species (such as HCO{sup +}) in T Tauri star disks, underscore the importance of properly accounting for high-energy (FUV and X-ray) radiation from the central T Tauri star when modeling protoplanetary disk gas chemistry and physical conditions.« less

  8. Gas lines from the 5-Myr old optically thin disk around HD 141569A . Herschel observations and modeling

    NASA Astrophysics Data System (ADS)

    Thi, W.-F.; Pinte, C.; Pantin, E.; Augereau, J. C.; Meeus, G.; Ménard, F.; Martin-Zaïdi, C.; Woitke, P.; Riviere-Marichalar, P.; Kamp, I.; Carmona, A.; Sandell, G.; Eiroa, C.; Dent, W.; Montesinos, B.; Aresu, G.; Meijerink, R.; Spaans, M.; White, G.; Ardila, D.; Lebreton, J.; Mendigutía, I.; Brittain, S.

    2014-01-01

    Context. The gas- and dust dissipation processes in disks around young stars remain uncertain despite numerous studies. At the distance of ~99-116 pc, HD 141569A is one of the nearest HerbigAe stars that is surrounded by a tenuous disk, probably in transition between a massive primordial disk and a debris disk. Atomic and molecular gases have been found in the structured 5-Myr old HD 141569A disk, making HD 141569A the perfect object within which to directly study the gaseous atomic and molecular component. Aims: We wish to constrain the gas and dust mass in the disk around HD 141569A. Methods: We observed the fine-structure lines of O i at 63 and 145 μm and the C ii line at 157 μm with the PACS instrument onboard the Herschel Space Telescope as part of the open-time large program GASPS. We complemented the atomic line observations with archival Spitzer spectroscopic and photometric continuum data, a ground-based VLT-VISIR image at 8.6 μm, and 12CO fundamental ro-vibrational and pure rotational J = 3-2 observations. We simultaneously modeled the continuum emission and the line fluxes with the Monte Carlo radiative transfer code MCFOST and the thermo-chemical code ProDiMo to derive the disk gas- and dust properties assuming no dust settling. Results: The models suggest that the oxygen lines are emitted from the inner disk around HD 141569A, whereas the [C ii] line emission is more extended. The CO submillimeter flux is emitted mostly by the outer disk. Simultaneous modeling of the photometric and line data using a realistic disk structure suggests a dust mass derived from grains with a radius smaller than 1 mm of ~2.1 × 10-7M⊙ and from grains with a radius of up to 1 cm of 4.9 × 10-6M⊙. We constrained the polycyclic aromatic hydrocarbons (PAH) mass to be between 2 × 10-11 and 1.4 × 10-10M⊙ assuming circumcircumcoronene (C150H30) as the representative PAH. The associated PAH abundance relative to hydrogen is lower than those found in the interstellar medium (3 × 10-7) by two to three orders of magnitude. The disk around HD 141569A is less massive in gas (2.5 to 4.9 × 10-4M⊙ or 67 to 164 M⊕) and has a flat opening angle (<10%). Conclusions: We constrained simultaneously the silicate dust grain, PAH, and gas mass in a ~5-Myr old Herbig Ae disk. The disk-averaged gas-to-dust-mass is most likely around 100, which is the assumed value at the disk formation despite the uncertainties due to disagreements between the different gas tracers. If the disk was originally massive, the gas and the dust would have dissipated at the same rate. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 079.C-0602(A).Appendix A is available in electronic form at http://www.aanda.orgHerschel is an ESA space observatory with science instruments provided by Principal Investigator consortia. It is open for proposals for observing time from the worldwide astronomical community.

  9. Prominin-1 Localizes to the Open Rims of Outer Segment Lamellae in Xenopus laevis Rod and Cone Photoreceptors

    PubMed Central

    Han, Zhou; Anderson, David W.

    2012-01-01

    Purpose. Prominin-1 expresses in rod and cone photoreceptors. Mutations in the prominin-1 gene cause retinal degeneration in humans. In this study, the authors investigated the expression and subcellular localization of xlProminin-1 protein, the Xenopus laevis ortholog of prominin-1, in rod and cone photoreceptors of this frog. Methods. Antibodies specific for xlProminin-1 were generated. Immunoblotting was used to study the expression and posttranslational processing of xlProminin-1 protein. Immunocytochemical light and electron microscopy and transgenesis were used to study the subcellular distribution of xlProminin-1. Results. xlProminin-1 is expressed and is subject to posttranslational proteolytic processing in the retina, brain, and kidney. xlProminin-1 is differently expressed and localized in outer segments of rod and cone photoreceptors of X. laevis. Antibodies specific for the N or C termini of xlProminin-1 labeled the open rims of lamellae of cone outer segments (COS) and the open lamellae at the base of rod outer segments (ROS). By contrast, anti–peripherin-2/rds antibody, Xper5A11, labeled the closed rims of cone lamellae adjacent to the ciliary axoneme and the rims of the closed ROS disks. The extent of labeling of the basal ROS by anti–xlProminin-1 antibodies varied with the light cycle in this frog. The entire ROS was also faintly labeled by both antibodies, a result that contrasts with the current notion that prominin-1 localizes only to the basal ROS. Conclusions. These findings suggest that xlProminin-1 may serve as an anti–fusogenic factor in the regulation of disk morphogenesis and may help to maintain the open lamellar structure of basal ROS and COS disks in X. laevis photoreceptors. PMID:22076989

  10. Orbital evolution and accretion of protoplanets tidally interacting with a gas disk. I. Effects of interaction with planetesimals and other protoplanets

    NASA Astrophysics Data System (ADS)

    Kominami, Junko; Tanaka, Hidekazu; Ida, Shigeru

    2005-11-01

    We have performed N-body simulations on the stage of protoplanet formation from planetesimals, taking into account so-called "type-I migration," and damping of orbital eccentricities and inclinations, as a result of tidal interaction with a gas disk without gap formation. One of the most serious problems in formation of terrestrial planets and jovian planet cores is that the migration time scale predicted by the linear theory is shorter than the disk lifetime (10 6-10 7 years). In this paper, we investigate retardation of type-I migration of a protoplanet due to a torque from a planetesimal disk in which a gap is opened up by the protoplanet, and torques from other protoplanets which are formed in inner and outer regions. In the first series of runs, we carried out N-body simulations of the planetesimal disk, which ranges from 0.9 to 1.1 AU, with a protoplanet seed in order to clarify how much retardation can be induced by the planetesimal disk and how long such retardation can last. We simulated six cases with different migration speeds. We found that in all of our simulations, a clear gap is not maintained for more than 10 5 years in the planetesimal disk. For very fast migration, a gap cannot be created in the planetesimal disk. For migration slower than some critical speed, a gap does form. However, because of the growth of the surrounding planetesimals, gravitational perturbation of the planetesimals eventually becomes so strong that the planetesimals diffuse into the vicinity of the protoplanets, resulting in destruction of the gap. After the gap is destroyed, close encounters with the planetesimals rather accelerate the protoplanet migration. In this way, the migration cannot be retarded by the torque from the planetesimal disk, regardless of the migration speed. In the second series of runs, we simulated accretion of planetesimals in wide range of semimajor axis, 0.5 to 2-5 AU, starting with equal mass planetesimals without a protoplanet seed. Since formation of comparable-mass multiple protoplanets ("oligarchic growth") is expected, the interactions with other protoplanets have a potential to alter the migration speed. However, inner protoplanets migrate before outer ones are formed, so that the migration and the accretion process of a runaway protoplanet are not affected by the other protoplanets placed inner and outer regions of its orbit. From the results of these two series of simulations, we conclude that the existence of planetesimals and multiple protoplanets do not affect type-I migration and therefore the migration shall proceed as the linear theory has suggested.

  11. Ysovar: The First Sensitive, Wide-area, Mid-infrared Photometric Monitoring of the Orion Nebula Cluster

    NASA Astrophysics Data System (ADS)

    Morales-Calderón, M.; Stauffer, J. R.; Hillenbrand, L. A.; Gutermuth, R.; Song, I.; Rebull, L. M.; Plavchan, P.; Carpenter, J. M.; Whitney, B. A.; Covey, K.; Alves de Oliveira, C.; Winston, E.; McCaughrean, M. J.; Bouvier, J.; Guieu, S.; Vrba, F. J.; Holtzman, J.; Marchis, F.; Hora, J. L.; Wasserman, L. H.; Terebey, S.; Megeath, T.; Guinan, E.; Forbrich, J.; Huélamo, N.; Riviere-Marichalar, P.; Barrado, D.; Stapelfeldt, K.; Hernández, J.; Allen, L. E.; Ardila, D. R.; Bayo, A.; Favata, F.; James, D.; Werner, M.; Wood, K.

    2011-05-01

    We present initial results from time-series imaging at infrared wavelengths of 0.9 deg2 in the Orion Nebula Cluster (ONC). During Fall 2009 we obtained 81 epochs of Spitzer 3.6 and 4.5 μm data over 40 consecutive days. We extracted light curves with ~3% photometric accuracy for ~2000 ONC members ranging from several solar masses down to well below the hydrogen-burning mass limit. For many of the stars, we also have time-series photometry obtained at optical (Ic ) and/or near-infrared (JK s ) wavelengths. Our data set can be mined to determine stellar rotation periods, identify new pre-main-sequence eclipsing binaries, search for new substellar Orion members, and help better determine the frequency of circumstellar disks as a function of stellar mass in the ONC. Our primary focus is the unique ability of 3.6 and 4.5 μm variability information to improve our understanding of inner disk processes and structure in the Class I and II young stellar objects (YSOs). In this paper, we provide a brief overview of the YSOVAR Orion data obtained in Fall 2009 and highlight our light curves for AA-Tau analogs—YSOs with narrow dips in flux, most probably due to disk density structures passing through our line of sight. Detailed follow-up observations are needed in order to better quantify the nature of the obscuring bodies and what this implies for the structure of the inner disks of YSOs.

  12. Outward transport of high-temperature materials around the midplane of the solar nebula.

    PubMed

    Ciesla, Fred J

    2007-10-26

    The Stardust samples collected from Comet 81P/Wild 2 indicate that large-scale mixing occurred in the solar nebula, carrying materials from the hot inner regions to cooler environments far from the Sun. Similar transport has been inferred from telescopic observations of protoplanetary disks around young stars. Models for protoplanetary disks, however, have difficulty explaining the observed levels of transport. Here I report the results of a new two-dimensional model that shows that outward transport of high-temperature materials in protoplanetary disks is a natural outcome of disk formation and evolution. This outward transport occurs around the midplane of the disk.

  13. How robust are our views of Milky Way stellar populations before Gaia?

    NASA Astrophysics Data System (ADS)

    Haywood, M.

    2014-07-01

    One year before the first release of the first data from Gaia, how robust are our views of the Milky Way stellar populations? Recent results have shown that limits, differences and/or continuities between populations are not where we thought they were just a few years ago. The outer disk (> 10kpc) has properties essentially different from the inner (thin+thick) disk, while the bulge is best explained in terms of disk populations, with a negligible or inexistent classical bulge, suggesting that the Milky Way is a pure disk galaxy. Much less contingent than previously envisaged, the thick disk is probably the main phase of stellar mass creation in the MW, and the parent population of the thin disk. These results lead to fundamental changes in our views on the stellar mass growth of the Galaxy, secular mass redistribution in the disk, and imply a change of paradigm of the chemical evolution. I review these different advances, and discuss some of the key questions.

  14. Molecular Clouds in the Extreme Outer Galaxy between l  = 34.°75 to 45.°25

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yan; Su, Yang; Zhang, Shao-Bo

    We present the results of an unbiased CO survey in the Galactic range of 34.°75 ≤  l  ≤ 45.°25 and −5.°25 ≤  b  ≤ 5.°25, and the velocity range beyond the Outer arm. A total of 168 molecular clouds (MCs) are identified within the Extreme Outer Galaxy (EOG) region, and 31 of these MCs are associated with {sup 13}CO  emission. However, none of them show significant C{sup 18}O  emission under the current detection limit. The typical size and mass of these MCs are 5 pc and 3 × 10{sup 3} M {sub ⊙}, implying a lack of large and massive MCs in the EOG region. Similar to MCsmore » in the outer Galaxy, the velocity dispersions of EOG clouds are also correlated with their sizes; however, they are well displaced below the scaling relationship defined by the inner Galaxy MCs. These MCs with a median Galactocentric radius of 12.6 kpc show very different distributions from those of the MCs in the Outer arm published in our previous paper, while roughly following the Outer Scutum–Centaurus arm defined by Dame and Thaddeus. This result may provide robust evidence for the existence of the Outer Scutum–Centaurus arm. The lower limit of the total mass of this segment is about 2.7 × 10{sup 5} M {sub ⊙}, which is about one magnitude lower than that of the Outer arm. The mean thickness of the gaseous disk is about 1.°45 or 450 pc, and the scale height is about 1.°27, or 400 pc above the b  = 0° plane. The warp traced by CO emission is very obvious in the EOG region and its amplitude is consistent with the predictions by other warp models using different tracers, such as dust, H i, and stellar components of our Galaxy.« less

  15. The Cosmic Battery in Astrophysical Accretion Disks

    NASA Astrophysics Data System (ADS)

    Contopoulos, Ioannis; Nathanail, Antonios; Katsanikas, Matthaios

    2015-06-01

    The aberrated radiation pressure at the inner edge of the accretion disk around an astrophysical black hole imparts a relative azimuthal velocity on the electrons with respect to the ions which gives rise to a ring electric current that generates large-scale poloidal magnetic field loops. This is the Cosmic Battery established by Contopoulos and Kazanas in 1998. In the present work we perform realistic numerical simulations of this important astrophysical mechanism in advection-dominated accretion flows, ADAFs. We confirm the original prediction that the inner parts of the loops are continuously advected toward the central black hole and contribute to the growth of the large-scale magnetic field, whereas the outer parts of the loops are continuously diffusing outward through the turbulent accretion flow. This process of inward advection of the axial field and outward diffusion of the return field proceeds all the way to equipartition, thus generating astrophysically significant magnetic fields on astrophysically relevant timescales. We confirm that there exists a critical value of the magnetic Prandtl number between unity and 10 in the outer disk above which the Cosmic Battery mechanism is suppressed.

  16. A 29-year-old Harken disk mitral valve: long-term follow-up by echocardiographic and cineradiographic imaging.

    PubMed

    Hsi, David H; Ryan, Gerald F; Taft, Janice; Arnone, Thomas J

    2003-01-01

    An 81-year-old woman was evaluated for prosthetic mitral valve function. She had received a Harken disk mitral valve 29 years earlier due to severe mitral valve disease. This particular valve prosthesis is known for premature disk edge wear and erosion. The patients 2-dimensional Doppler echocardiogram showed the distinctive appearance of a disk mitral valve prosthesis. Color Doppler in diastole showed a unique crown appearance, with initial flow acceleration around the disk followed by convergence to laminar flow in the left ventricle. Cineradiographic imaging revealed normal valve function and minimal disk erosion. We believe this to be the longest reported follow-up of a surviving patient with a rare Harken disk valve. We present images with unique echocardiographic and cineangiographic features.

  17. A 29-Year-Old Harken Disk Mitral Valve

    PubMed Central

    Hsi, David H.; Ryan, Gerald F.; Taft, Janice; Arnone, Thomas J.

    2003-01-01

    An 81-year-old woman was evaluated for prosthetic mitral valve function. She had received a Harken disk mitral valve 29 years earlier due to severe mitral valve disease. This particular valve prosthesis is known for premature disk edge wear and erosion. The patient's 2-dimensional Doppler echocardiogram showed the distinctive appearance of a disk mitral valve prosthesis. Color Doppler in diastole showed a unique crown appearance, with initial flow acceleration around the disk followed by convergence to laminar flow in the left ventricle. Cineradiographic imaging revealed normal valve function and minimal disk erosion. We believe this to be the longest reported follow-up of a surviving patient with a rare Harken disk valve. We present images with unique echocardiographic and cineangiographic features. (Tex Heart Inst J 2003;30:319–21) PMID:14677746

  18. 33 CFR 142.81 - Purpose and applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) OUTER CONTINENTAL SHELF ACTIVITIES WORKPLACE SAFETY AND HEALTH General Workplace Conditions § 142.81 Purpose and applicability. This subpart prescribes requirements relating to general working conditions on...

  19. A mysterious dust clump in a disk around an evolved binary star system.

    PubMed

    Jura, M; Turner, J

    1998-09-10

    The discovery of planets in orbit around the pulsar PSR1257+12 shows that planets may form around post-main-sequence stars. Other evolved stars, such as HD44179 (an evolved star which is part of the binary system that has expelled the gas and dust that make the Red Rectangle nebula), possess gravitationally bound orbiting dust disks. It is possible that planets might form from gravitational collapse in such disks. Here we report high-angular-resolution observations at millimetre and submillimetre wavelengths of the dusk disk associated with the Red Rectangle. We find a dust clump with an estimated mass near that of Jupiter in the outer region of the disk. The clump is larger than our Solar System, and far beyond where planet formation would normally be expected, so its nature is at present unclear.

  20. The Mass Distribution in Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Courteau, Stéphane; Dutton, Aaron A.

    We present the relative fraction of baryons and dark matter at various radii in galaxies. For spiral galaxies, this fraction measured in a galaxy's inner parts is typically baryon-dominated (maximal) and dark-matter dominated (sub-maximal) in the outskirts. The transition from maximal to sub-maximal baryons occurs within the inner parts of low-mass disk galaxies (with V tot <= 200 km s-1) and in the outer disk for more massive systems. The mean mass fractions for late- and early-type galaxies vary significantly at the same fiducial radius and circular velocity, suggesting a range of galaxy formation mechanisms. A more detailed discussion, and resolution of the so-called ``maximal disk problem'', is presented in Courteau & Dutton, ApJL, 801, 20.

  1. The unusual carbon star HD 59643 - Alternative models

    NASA Technical Reports Server (NTRS)

    Johnson, H. R.; Eaton, J. A.; Querci, F. R.; Querci, M.; Baumert, J. H.

    1988-01-01

    A binary model for the carbon star HD 59643 is discussed in which the secondary spectrum is formed in an accretion disk. If this hot, ultraviolet-emitting disk radiates like a 20,000 K black-body, it must be 0.03 solar radii or less across at minimum emission. Large widths of C IV multiplet UV1 on high-resolution spectra indicate its formation in the inner parts of a disk. The semiforbidden C III and Si III lines, however, are much narrower and could be formed in the outer parts of a disk or in the carbon star's chromosphere. The electron density in the region of formation of C III is about 10 to the 10th/cu cm.

  2. JARE Syowa Station 11-m Antenna, Antarctica

    NASA Technical Reports Server (NTRS)

    Aoyama, Yuichi; Doi, Koichiro; Shibuya, Kazuo

    2013-01-01

    In 2012, the 52nd and the 53rd Japanese Antarctic Research Expeditions (hereinafter, referred to as JARE-52 and JARE-53, respectively) participated in five OHIG sessions - OHIG76, 78, 79, 80, and 81. These data were recorded on hard disks through the K5 terminal. Only the hard disks for the OHIG76 session have been brought back from Syowa Station to Japan, in April 2012, by the icebreaker, Shirase, while those of the other four sessions are scheduled to arrive in April 2013. The data obtained from the OHIG73, 74, 75, and 76 sessions by JARE-52 and JARE-53 have been transferred to the Bonn Correlator via the servers of National Institute of Information and Communications Technology (NICT). At Syowa Station, JARE-53 and JARE-54 will participate in six OHIG sessions in 2013.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duffell, Paul C.; MacFadyen, Andrew I.; Farris, Brian D.

    Most standard descriptions of Type II migration state that massive, gap-opening planets must migrate at the viscous drift rate. This is based on the idea that the disk is separated into an inner and outer region and gas is considered unable to cross the gap. In fact, gas easily crosses the gap on horseshoe orbits, nullifying this necessary premise which would set the migration rate. In this work, it is demonstrated using highly accurate numerical calculations that the actual migration rate is dependent on disk and planet parameters, and can be significantly larger or smaller than the viscous drift rate. Inmore » the limiting case of a disk much more massive than the secondary, the migration rate saturates to a constant that is sensitive to disk parameters and is not necessarily of the order of the viscous rate. In the opposite limit of a low-mass disk, the migration rate decreases linearly with disk mass. Steady-state solutions in the low disk mass limit show no pile-up outside the secondary's orbit, and no corresponding drainage of the inner disk.« less

  4. Formation of TRAPPIST-1

    NASA Astrophysics Data System (ADS)

    Ormel, C. W.; Liu, B.; Schoonenberg, D.

    2017-09-01

    We present a model for the formation of the recently-discovered TRAPPIST-1 planetary system. In our scenario planets form in the interior regions, by accretion of mm to cm-size particles (pebbles) that drifted from the outer disk. This scenario has several advantages: it connects to the observation that disks are made up of pebbles, it is efficient, it explains why the TRAPPIST-1 planets are ˜Earth mass, and it provides a rationale for the system's architecture.

  5. Cost/benefit analysis of advanced materials technologies for future aircraft turbine engines

    NASA Technical Reports Server (NTRS)

    Bisset, J. W.

    1976-01-01

    The cost/benefits of advance commercial gas turbine materials are described. Development costs, estimated payoffs and probabilities of success are discussed. The materials technologies investigated are: (1) single crystal turbine blades, (2) high strength hot isostatic pressed turbine disk, (3) advanced oxide dispersion strengthened burner liner, (4) bore entry cooled hot isostatic pressed turbine disk, (5) turbine blade tip - outer airseal system, and (6) advance turbine blade alloys.

  6. BLISS: A Computer Program for the Protection of Blood Donors

    DTIC Science & Technology

    1982-06-28

    EXAMPLE 5 LIST OUTPUT -OC: I L. SECU F I T NO.: 111-11-1111 NAME: ALFRED RENTA NO. OF DONATIONS: 4 VDISK; 1 DONATION NO. : 1 DATE: 81-13-81 METHOD OF...DISK # I N-.’ SOCIAL SECURITY NO.: 111-11-1111 NAME: ALFRED RENTA .,, DONATION DATE: 04-23-81 -p SOCIAL SECURITY NO.: 222-22-2222 NAME: MILO BENDER

  7. Signatures of planets: Observations and modeling of structure in the zodiacal cloud and Kuiper disk

    NASA Astrophysics Data System (ADS)

    Holmes, Elizabeth Katherine

    2002-12-01

    There is a possible connection between structure in evolved circumstellar disks and the presence of planets, our own zodiacal cloud being a proven example. Asymmetries in such a disk could be diagnostic of planets which would be otherwise undetectable. Using COBE DIRBE observations, we link structure in the zodiacal cloud, namely the warp and offset of the cloud, to the presence of planets using secular perturbation theory. In addition, we obtain supplementary ISO observations and determine a scale factor for the data which we apply to calibrate the data to the observed COBE brightness. A Kuiper dust disk will have a resonant structure, with two concentrations in brightness along the ecliptic longitude arising because 10 15% of the Kuiper belt objects are in the 3:2 mean motion resonance with Neptune. We run numerical integrations of particles originating from source bodies trapped in the 3:2 resonance and we determine what percentage of particles remain in the resonance for a variety of particle and source body sizes. The dynamical evolution of the particles is followed from source to sink with Poynting- Robertson light drag, solar wind drag, radiation pressure, the Lorentz force, neutral interstellar gas drag, and the effects of planetary gravitational perturbations included. We then conduct an observational search in the 60 μm COBE data for the Kuiper disk, which is predicted to be, at most, a few percent of the brightness of the zodiacal cloud. By removing emission due to the background zodiacal cloud and the dust bands, we expect to see the trailing/leading signature of Earth's resonant ring. However, when subtracted from the data, we find that none of the empirical background zodiacal cloud models give the residuals predicted by theory. We conclude that a dynamical two-component (both inner and outer) zodiacal cloud model must be created to complete the search. Lastly, we extend our work outside the solar system and obtain upper limits on the flux around ten Vega-type stars using the Sub-millimeter Telescope Observatory in the 870 μm and 1300 μm wave bands, which will be used to determine the most promising candidates for future observations.

  8. Trapped magnetic-field properties of prototype for Gd-Ba-Cu-O/MgB2 hybrid-type superconducting bulk magnet

    NASA Astrophysics Data System (ADS)

    Naito, Tomoyuki; Mochizuki, Hidehiko; Fujishiro, Hiroyuki; Teshima, Hidekazu

    2016-03-01

    We have studied experimentally and numerically the trapped magnetic-field properties of a hybrid-type superconducting bulk magnet, which comprised an inner Gd-Ba-Cu-O (GdBCO) disk-bulk and an outer MgB2 ring-bulk, under field-cooled magnetization (FCM) and pulsed-field magnetization (PFM). The trapped field by FCM at the center of the hybrid bulk was 4.5 T at 20 K, which was 0.2 T higher than that of the inner GdBCO disk-bulk without MgB2 ring-bulk. The experimental results by FCM were quantitatively reproduced by the numerical estimations for a model, which makes it possible to understand the trapped field properties of the hybrid bulk. The total magnetic flux by FCM, which was estimated numerically, was enhanced by about 1.7 times from 0.91 mWb of the single GdBCO bulk to 1.53 mWb of the hybrid bulk. We also succeeded in magnetizing the whole hybrid bulk by applying multi-pulsed-fields. The central trapped field of 1.88 T was not enhanced, but the total magnetic flux, which was obtained experimentally, was evidently increased by 2.5 times (0.25 \\to 0.62 mWb) for the hybrid bulk. The obtained results suggest that the hybridization is effective to enhance the total magnetic flux. To confirm the reinforcing effect of the MgB2 ring to the GdBCO disk during the cooling and magnetization processes, we have measured the thermal dilatation, {\\text{}}{dL}({\\text{}}T)/{\\text{}}L(300 K), of the GdBCO, MgB2 and stainless steel. As a result, the thermal dilatation of MgB2 was smaller than that of GdBCO. MgB2 ring-bulk shows no compression effect to resist the hoop stress of the GdBCO disk-bulk during the FCM process. The reinforcing material such as the stainless steel ring must be set outside the GdBCO disk-bulk.

  9. The Dynamics and Implications of Gap Clearing via Planets in Planetesimal (Debris) Disks

    NASA Astrophysics Data System (ADS)

    Morrison, Sarah Jane

    Exoplanets and debris disks are examples of solar systems other than our own. As the dusty reservoirs of colliding planetesimals, debris disks provide indicators of planetary system evolution on orbital distance scales beyond those probed by the most prolific exoplanet detection methods, and on timescales 10 r to 10 Gyr. The Solar System possesses both planets and small bodies, and through studying the gravitational interactions between both, we gain insight into the Solar System's past. As we enter the era of resolved observations of debris disks residing around other stars, I add to our theoretical understanding of the dynamical interactions between debris, planets, and combinations thereof. I quantify how single planets clear material in their vicinity and how long this process takes for the entire planetary mass regime. I use these relationships to assess the lowest mass planet that could clear a gap in observed debris disks over the system's lifetime. In the distant outer reaches of gaps in young debris systems, this minimum planet mass can exceed Neptune's. To complement the discoveries of wide-orbit, massive, exoplanets by direct imaging surveys, I assess the dynamical stability of high mass multi-planet systems to estimate how many high mass planets could be packed into young, gapped debris disks. I compare these expectations to the planet detection rates of direct imaging surveys and find that high mass planets are not the primary culprits for forming gaps in young debris disk systems. As an alternative model for forming gaps in planetesimal disks with planets, I assess the efficacy of creating gaps with divergently migrating pairs of planets. I find that migrating planets could produce observed gaps and elude detection. Moreover, the inferred planet masses when neglecting migration for such gaps could be expected to be observable by direct imaging surveys for young, nearby systems. Wide gaps in young systems would likely still require more than two planets even with plantesimal-driven migration. These efforts begin to probe the types of potential planets carving gaps in disks of different evolutionary stages and at wide orbit separations on scales similar to our outer Solar System.

  10. China’s Aerospace Industry: Technology, Funding and Modernization

    DTIC Science & Technology

    1992-01-01

    7 was to use a General Electric F404 engine (from the F-20 Tigershark) along with other foreign engines as candidates but that program was again...firms like General Electric and Pratt & Whitney. As the Chinese engine industry gets more behind, more foreign engines are chosen, and the factories have... Electric since 1984.81 Liming Engine Plant makes compressor disks and turbine disks for GE and turbine disks for Pratt & Whitney while the Chengdu Engine

  11. Comparison of central axis and jet ring coolant supply for turbine disk cooling on a SSME-HPOTP model

    NASA Technical Reports Server (NTRS)

    Kim, Y. W.; Metzger, D. E.

    1992-01-01

    The test facility, test methods and results are presented for an experimental study modeling the cooling of turbine disks in the blade attachment regions with multiple impinging jets, in a configuration simulating the disk cooling method employed on the Space Shuttle Main Engine oxygen turbopump. The study's objective was to provide a comparison of detailed local convection heat transfer rates obtained for a single center-supply of disk coolant with those obtained with the present flight configuration where disk coolant is supplied through an array of 19 jets located near the disk outer radius. Specially constructed disk models were used in a program designed to evaluate possible benefits and identify any possible detrimental effects involved in employing an alternate disk cooling scheme. The study involved the design, construction and testing of two full scale rotating model disks, one plane and smooth for baseline testing and the second contoured to the present flight configuration, together with the corresponding plane and contoured stator disks. Local heat transfer rates are determined from the color display of encapsulated liquid crystals coated on the disk in conjunction with use of a computer vision system. The test program was composed of a wide variety of disk speeds, flowrates, and geometrical configurations, including testing for the effects of disk boltheads and gas ingestion from the gas path region radially outboard of the disk-cavity.

  12. Deuterium fractionation of water in the Solar nebula

    NASA Astrophysics Data System (ADS)

    Albertsson, Tobias; Semenov, Dmitry; Henning, Thomas

    2013-07-01

    Water evaporates in the inner regions of protoplanetary disks and is frozen onto grains in the outer regions. Therefore its presence in vast quantities on Earth is puzzling. Subsequent delivery through bombardment by primitive bodies formed in the outer icy regions is the favored mechanism. By studying water D/H ratios one hopes to understand whether the water was mainly delivered by comets or asteroids. Using an extended deuterium chemistry network coupled to a 2D chemo-dynamical disk model, we investigate the evolution of the D/H ratio of water in the young Solar nebula. We find that both the laminar and mixing Solar nebula models show the Earth's ocean water D/H ratio at 2-3 AU. In addition, the 2D-mixing model explains better the water D/H values observed in the Oort- and Jupiter-family comets.

  13. Multicolor eclipse studies of UU Aquarii. 1: Observations and system parameters

    NASA Technical Reports Server (NTRS)

    Baptista, R.; Steiner, J. E.; Cieslinski, D.

    1994-01-01

    A study of the eclipses in UU Aqr from multicolor high-speed photometry is presented. A revised ephemeris for the times of minimum and an upper limit for orbital period variations are obtained. We use measurements of contact phases in the eclipse light curve to derive the binary geometry and to estimate masses and relevant dimensions. We find a mass ratio of q = 0.30 +/- 0.07 and an inclination of i = 78 deg +/- 2 deg. The masses of the component stars are M(sub 1) = 0.67 +/- 0.14 solar mass and M(sub 2) = 0.20 +/- 0.07 solar mass. Our photometric model predicts K(sub 1) = 84 +/- 26 km/s, which is approximately 30% smaller than the velocity amplitude obtained from the emission lines. From the white dwarf fluxes we estimate T(sub wd) approximately = 34,000 K and a distance of d = 270 +/- 50 pc if the inner disk is opaque. UU Aqr has long term brightness variations of approximately = 0.3 m on timescales of approximately 4 yr. The system was in a 'high' state in 1989 and 1990 and in a 'low' state in 1988 and 1992. The high state results from an increase in the brightness of the outer and cooler parts of the disk, mainly due to the appearance of a bright spot at disk rim. Based on the smooth and gradual eclipse shape and on the absence of a prominent hump in the light curve we suggest that UU Aqr is a high mass-transfer nova-like system with a relatively bright and optically thick accretion disk. We find no perceptible eclipse in the H-alpha emission line. The fluxes at mid-eclipse can be fitted by a compostion of a late-type spectrum plus an optically thin hydrogen emission-line spectrum. These evidences suggest that the emission lines are formed in an extended region only partially occulted during eclipse.

  14. Susceptibility of superconductor disks and rings with and without flux creep

    NASA Astrophysics Data System (ADS)

    Brandt, Ernst Helmut

    1997-06-01

    First some consequences of the Bean assumption of constant critical current Jc in type-II superconductors are listed and the Bean ac susceptibility of narrow rings is derived. Then flux creep is described by a nonlinear current-voltage law E~Jn, from which the saturated magnetic moment at constant ramp rate H-|Apa(t) is derived for rings with general hole radius a1 and general creep exponent n. Next the exact formulation for rings in a perpendicular applied field Ha(t) is presented in the form of an equation of motion for the current density in thick rings and disks or the sheet current in thin rings and disks. This method is used to compute general magnetization curves m(Ha) and ac susceptibilities χ of rings with and without creep, accounting also for nonconstant Jc(B). Typical current and field (B) profiles are depicted. The initial slope of m(Ha) (the ideal diamagnetic moment) and the field of full penetration are expressed as functions of the inner and outer ring radii a1 and a. A scaling law is derived which states that for arbitrary creep exponent n the complex nonlinear ac susceptibility χ(H0,ω) depends only on the combination Hn-10/ω of the ac amplitude H0 and the ac frequency ω/2π. This scaling law thus connects the known dependencies χ=χ(ω) in the ohmic limit (n=1) and χ=χ(H0) in the Bean limit (n-->∞).

  15. Modeling Jupiter's current disc - Pioneer 10 outbound

    NASA Astrophysics Data System (ADS)

    Jones, D. E.; Melville, J. G.; Blake, M. L.

    1980-07-01

    A model of the magnetic field of the Jovian current disk is presented. The model uses Euler functions and the Biot-Savart law applied to a series of concentric, but not necessarily coplanar current rings. It was found that the best fit to the Pioneer 10 outbound perturbation magnetic field data is obtained if the current disk is twisted, and also bent to tend toward parallelism with the Jovigraphic equator. The inner and outer radii of the disk appear to be about 7 and 150 Jovian radii, respectively; because of the observed current disk penetrations, the bent disk also requires a deformation in the form of a bump or wrinkle whose axis tends to exhibit spiraling. Modeling of the azimuthal field shows that it is due to a thin radial current sheet, but it may actually be due in large part to penetration of a tail current sheet as suggested by Voyager observations.

  16. Modeling of the heat distribution in the intervertebral disk.

    PubMed

    Persson, Johan; Hansen, Eskil; Lidgren, Lars; McCarthy, Ian

    2005-05-01

    The heat transfer equation was used to model the heat distribution in an intervertebral disk during ultrasound (US) exposure. The influence of thermal and acoustic parameters was studied to get a quantitative understanding of the heat transfer in the system. Heating of collagen to 65 degrees C or above will lead to denaturation and is believed to stabilize and contract the outer part of the disk in a herniated disk. In our model, the US intensity was approximated by a Gaussian distribution and nonlinear propagation was excluded. The effect of self-heating and cooling of the transducer was also studied. The simulations were performed using the finite element method. From this model, it can be concluded that it is possible to heat parts of the disk to treatment temperature using a focused 5-mm diameter US probe. The physical constraints on the piezocrystal set the limit of the size of the treatment volume.

  17. Inner and outer star forming regions over the disks of spiral galaxies. I. Sample characterization

    NASA Astrophysics Data System (ADS)

    Rodríguez-Baras, M.; Díaz, A. I.; Rosales-Ortega, F. F.; Sánchez, S. F.

    2018-01-01

    Context. The knowledge of abundance distributions is central to understanding the formation and evolution of galaxies. Most of the relations employed for the derivation of gas abundances have so far been derived from observations of outer disk H ii regions, despite the known differences between inner and outer regions. Aims: Using integral field spectroscopy (IFS) observations we aim to perform a systematic study and comparison of two inner and outer H ii regions samples. The spatial resolution of the IFS, the number of objects and the homogeneity and coherence of the observations allow a complete characterization of the main observational properties and differences of the regions. Methods: We analyzed a sample of 725 inner H ii regions and a sample of 671 outer H ii regions, all of them detected and extracted from the observations of a sample of 263 nearby, isolated, spiral galaxies observed by the CALIFA survey. Results: We find that inner H ii regions show smaller equivalent widths, greater extinction and luminosities, along with greater values of [N ii] λ6583/Hα and [O ii] λ3727/[O iii] λ5007 emission-line ratios, indicating higher metallicities and lower ionization parameters. Inner regions have also redder colors and higher photometric and ionizing masses, although MionMphot is slighty higher for the outer regions. Conclusions: This work shows important observational differences between inner and outer H ii regions in star forming galaxies not previously studied in detail. These differences indicate that inner regions have more evolved stellar populations and are in a later evolution state with respect to outer regions, which goes in line with the inside-out galaxy formation paradigm. Table 4 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A102

  18. Ringed Structures of the HD 163296 Protoplanetary Disk Revealed by ALMA

    NASA Astrophysics Data System (ADS)

    Isella, Andrea; Guidi, Greta; Testi, Leonardo; Liu, Shangfei; Li, Hui; Li, Shengtai; Weaver, Erik; Boehler, Yann; Carperter, John M.; De Gregorio-Monsalvo, Itziar; Manara, Carlo F.; Natta, Antonella; Pérez, Laura M.; Ricci, Luca; Sargent, Anneila; Tazzari, Marco; Turner, Neal

    2016-12-01

    We present Atacama Large Millimeter and Submillimeter Array observations of the protoplanetary disk around the Herbig Ae star HD 163296 that trace the spatial distribution of millimeter-sized particles and cold molecular gas on spatial scales as small as 25 astronomical units (A.U.). The image of the disk recorded in the 1.3 mm continuum emission reveals three dark concentric rings that indicate the presence of dust depleted gaps at about 60, 100, and 160 A.U. from the central star. The maps of the 12CO, 13CO, and C 18O J =2 -1 emission do not show such structures but reveal a change in the slope of the radial intensity profile across the positions of the dark rings in the continuum image. By comparing the observations with theoretical models for the disk emission, we find that the density of CO molecules is reduced inside the middle and outer dust gaps. However, in the inner ring there is no evidence of CO depletion. From the measurements of the dust and gas densities, we deduce that the gas-to-dust ratio varies across the disk and, in particular, it increases by at least a factor 5 within the inner dust gap compared to adjacent regions of the disk. The depletion of both dust and gas suggests that the middle and outer rings could be due to the gravitational torque exerted by two Saturn-mass planets orbiting at 100 and 160 A.U. from the star. On the other hand, the inner dust gap could result from dust accumulation at the edge of a magnetorotational instability dead zone, or from dust opacity variations at the edge of the CO frost line. Observations of the dust emission at higher angular resolution and of molecules that probe dense gas are required to establish more precisely the origins of the dark rings observed in the HD 163296 disk.

  19. Ringed Structures of the HD 163296 Protoplanetary Disk Revealed by ALMA.

    PubMed

    Isella, Andrea; Guidi, Greta; Testi, Leonardo; Liu, Shangfei; Li, Hui; Li, Shengtai; Weaver, Erik; Boehler, Yann; Carperter, John M; De Gregorio-Monsalvo, Itziar; Manara, Carlo F; Natta, Antonella; Pérez, Laura M; Ricci, Luca; Sargent, Anneila; Tazzari, Marco; Turner, Neal

    2016-12-16

    We present Atacama Large Millimeter and Submillimeter Array observations of the protoplanetary disk around the Herbig Ae star HD 163296 that trace the spatial distribution of millimeter-sized particles and cold molecular gas on spatial scales as small as 25 astronomical units (A.U.). The image of the disk recorded in the 1.3 mm continuum emission reveals three dark concentric rings that indicate the presence of dust depleted gaps at about 60, 100, and 160 A.U. from the central star. The maps of the ^{12}CO, ^{13}CO, and C^{18}O J=2-1 emission do not show such structures but reveal a change in the slope of the radial intensity profile across the positions of the dark rings in the continuum image. By comparing the observations with theoretical models for the disk emission, we find that the density of CO molecules is reduced inside the middle and outer dust gaps. However, in the inner ring there is no evidence of CO depletion. From the measurements of the dust and gas densities, we deduce that the gas-to-dust ratio varies across the disk and, in particular, it increases by at least a factor 5 within the inner dust gap compared to adjacent regions of the disk. The depletion of both dust and gas suggests that the middle and outer rings could be due to the gravitational torque exerted by two Saturn-mass planets orbiting at 100 and 160 A.U. from the star. On the other hand, the inner dust gap could result from dust accumulation at the edge of a magnetorotational instability dead zone, or from dust opacity variations at the edge of the CO frost line. Observations of the dust emission at higher angular resolution and of molecules that probe dense gas are required to establish more precisely the origins of the dark rings observed in the HD 163296 disk.

  20. Some aspects of the cosmogonic outward migration of Neptune. Co-planar migration

    NASA Astrophysics Data System (ADS)

    Neslušan, L.; Jakubík, M.

    2013-10-01

    Considering a simple model of the cosmogonic outward migration of Neptune, we investigate if the assumption of an extremely low orbital inclination of small bodies in a once-existing proto-planetary disk could influence the structure of reservoirs of the objects in the trans-Neptunian region. We found no significant influence. Our models predict only the existence of the mean-motion resonances (MMRs) with Neptune 2:3, 3:5, 1:2, and an anemic scattered disk (MMRs 3:4, 5:7, and 9:11 are also indicated). To explain the classical Edgeworth-Kuiper belt, relatively abundant 4:7 and 2:5 MMRs, and the more numerous scattered disk, we need to assume that, e.g., the outer boundary of the original proto-planetary disk considerably exceeded the distance of the current Neptune's orbit (Neptune probably ended its migration at the distance, where the disk's density started to be sub-critical), or that some Pluto-sized objects resided inside the MMRs and in the distant parts of the original proto-planetary disk.

  1. Low-temperature crystallization of silicate dust in circumstellar disks.

    PubMed

    Molster, F J; Yamamura, I; Waters, L B; Tielens, A G; de Graauw, T; de Jong, T; de Koter, A; Malfait, K; van den Ancker, M E; van Winckel, H; Voors, R H; Waelkens, C

    1999-10-07

    Silicate dust in the interstellar medium is observed to be amorphous, yet silicate dust in comets and interplanetary dust particles is sometimes partially crystalline. The dust in disks that are thought to be forming planets around some young stars also appears to be partially crystalline. These observations suggest that as the dust goes from the precursor clouds to a planetary system, it must undergo some processing, but the nature and extent of this processing remain unknown. Here we report observations of highly crystalline silicate dust in the disks surrounding binary red-giant stars. The dust was created in amorphous form in the outer atmospheres of the red giants, and therefore must be processed in the disks to become crystalline. The temperatures in these disks are too low for the grains to anneal; therefore, some low-temperature process must be responsible. As the physical properties of the disks around young stars and red giants are similar, our results suggest that low-temperature crystallization of silicate grains also can occur in protoplanetary systems.

  2. Variation on the similar-size disk tower of hanoi puzzle

    NASA Astrophysics Data System (ADS)

    Zuchri, S.

    2017-02-01

    The famous Tower of Hanoi puzzle was invented by Edouard Lucas in 1883. This puzzle proposed three pegs, and the number of disks with different size. The puzzle starts with the disks in a neat stack in ascending order of size on one peg, the smallest at the top. The objective of the puzzle is to move the entire stack to another peg, by following these simple rules: (1) only one disk can be moved at a time; (2) Each move consists of taking the upper disk from one of the stacks and placing it on top of another stack; (2) No disk is placed on the top of a smaller disk and the minimum number of move is the goal of this puzzle. Many variations have been proposed as exercises and challenges. Some have more than three pegs and some with colours. This paper poses a new variation. There are two or more disks with similar size. The goal is to move each stack of the disk from its initial location to its final location. As usual, disk must be moved one at a time and a disk can never sit above a disk of smaller. Let n be a number of disks and there are p similar size disks. The disks are labelled from 1 to n - p + 1 in increasing order of size so the disk with similar size has the same label. If m is the label of the similar disks, so Mp(n; m) is the minimum number moves needed to move all the disks in original peg to destination peg. We have, M2(n; m) = 2n-1 + 2n-m-1 - 1 M3(n; m) = 2n-2 + 2n-m-1 - 1 The number moves needed to move if there are p1 similar size disks m1 and p2 similar size disks m2 is Mp1,p2 (n; m1, m2) = 2n-p1-p2 + 2[(p12-m1 + p22-m2 ) - (2-m1 + 2-m2 + 1] - 1

  3. Studies of Disks Around the Sun and Other Stars

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan

    1997-01-01

    This is a NASA Origins of Solar Systems research program, and this NASA Headquarters grant has now been transferred to a new grant at NASA GSFC (NAG5-4082). Thus the need for this 'Final Report' on a project that is not, in fact, complete. We are conducting research designed to enhance our understanding of the evolution and detectability of comet clouds and disks. This area holds promise for also improving our understanding of outer solar system formation, the bombardment history of the planets, the transport of volatiles and organics from the outer solar system to the inner planets, and to the ultimate fate of comet clouds around the Sun and other stars. According to "standard" theory, both the Kuiper Belt and the Oort Cloud are (at least in part) natural products of the planetary accumulation stage of solar system formation. One expects such assemblages to be a common attribute of other solar systems. Our program consists of modeling collisions in the Kuiper Belt and the dust disks around other stars. The modeling effort focuses on moving from our simple, first-generation, Kuiper Belt collision rate model, to a time-dependent, second-generation model that incorporates physical collisions, velocity evolution, dynamical erosion, and various dust transport mechanisms. This second generation model is to be used to study the evolution of surface mass density and the object-size spectrum in the disk.

  4. A Low Mass for Mars from Jupiter's Early Gas-Driven Migration

    NASA Technical Reports Server (NTRS)

    Walsh, Kevin J.; Morbidelli, Alessandro; Raymond, Sean N.; O'Brien, David P.; Mandell, Avi M.

    2011-01-01

    Jupiter and Saturn formed in a few million years from a gas-dominated protoplanetary disk, and were susceptible to gas-driven migration of their orbits on timescales of only approximately 100,000 years. Hydrodynamic simulations show that these giant planets can undergo a two-stage, inward-then-outward, migration. The terrestrial planets finished accreting much later and their characteristics, including Mars' small mass, are best reproduced by starting from a planetesimal disk with an outer edge at about one astronomical unit from the Sun (1 AU is the Earth-Sun distance). Here we report simulations of the early Solar System that show how the inward migration of Jupiter to 1.5 AU, and its subsequent outward migration, lead to a planetesimal disk truncated at 1 AU; the terrestrial planets then form from this disk over the next 30-50 million years, with an Earth/Mars mass ratio consistent with observations. Scattering by Jupiter initially empties but then repopulates the asteroid belt, with inner-belt bodies originating between 1 and 3 AU and outer-belt bodies originating between and beyond the giant planets. This explains the significant compositional differences across the asteroid belt. The key aspect missing from previous models of terrestrial planet formation is the substantial radial migration of the giant planets, which suggests that their behaviour is more similar to that inferred for extrasolar planets than previously thought.

  5. X-Ray Quasi-periodic Oscillations in the Lense–Thirring Precession Model. I. Variability of Relativistic Continuum

    NASA Astrophysics Data System (ADS)

    You, Bei; Bursa, Michal; Życki, Piotr T.

    2018-05-01

    We develop a Monte Carlo code to compute the Compton-scattered X-ray flux arising from a hot inner flow that undergoes Lense–Thirring precession. The hot flow intercepts seed photons from an outer truncated thin disk. A fraction of the Comptonized photons will illuminate the disk, and the reflected/reprocessed photons will contribute to the observed spectrum. The total spectrum, including disk thermal emission, hot flow Comptonization, and disk reflection, is modeled within the framework of general relativity, taking light bending and gravitational redshift into account. The simulations are performed in the context of the Lense–Thirring precession model for the low-frequency quasi-periodic oscillations, so the inner flow is assumed to precess, leading to periodic modulation of the emitted radiation. In this work, we concentrate on the energy-dependent X-ray variability of the model and, in particular, on the evolution of the variability during the spectral transition from hard to soft state, which is implemented by the decrease of the truncation radius of the outer disk toward the innermost stable circular orbit. In the hard state, where the Comptonizing flow is geometrically thick, the Comptonization is weakly variable with a fractional variability amplitude of ≤10% in the soft state, where the Comptonizing flow is cooled down and thus becomes geometrically thin, the fractional variability of the Comptonization is highly variable, increasing with photon energy. The fractional variability of the reflection increases with energy, and the reflection emission for low spin is counterintuitively more variable than the one for high spin.

  6. Shape of LOSVDs in Barred Disks: Implications for Future IFU Surveys

    NASA Astrophysics Data System (ADS)

    Li, Zhao-Yu; Shen, Juntai; Bureau, Martin; Zhou, Yingying; Du, Min; Debattista, Victor P.

    2018-02-01

    The shape of line-of-sight velocity distributions (LOSVDs) carries important information about the internal dynamics of galaxies. The skewness of LOSVDs represents their asymmetric deviation from a Gaussian profile. Correlations between the skewness parameter (h 3) and the mean velocity (\\overline{V}) of a Gauss–Hermite series reflect the underlying stellar orbital configurations of different morphological components. Using two self-consistent N-body simulations of disk galaxies with different bar strengths, we investigate {h}3-\\overline{V} correlations at different inclination angles. Similar to previous studies, we find anticorrelations in the disk area, and positive correlations in the bar area when viewed edge-on. However, at intermediate inclinations, the outer parts of bars exhibit anticorrelations, while the core areas dominated by the boxy/peanut-shaped (B/PS) bulges still maintain weak positive correlations. When viewed edge-on, particles in the foreground/background disk (the wing region) in the bar area constitute the main velocity peak, whereas the particles in the bar contribute to the high-velocity tail, generating the {h}3-\\overline{V} correlation. If we remove the wing particles, the LOSVDs of the particles in the outer part of the bar only exhibit a low-velocity tail, resulting in a negative {h}3-\\overline{V} correlation, whereas the core areas in the central region still show weakly positive correlations. We discuss implications for IFU observations on bars, and show that the variation of the {h}3-\\overline{V} correlation in the disk galaxy may be used as a kinematic indicator of the bar and the B/PS bulge.

  7. The Size Distribution Of Cluster Galaxies

    NASA Astrophysics Data System (ADS)

    Kuchner, U.; Ziegler, B.; Bamford, S.; Verdugo, M.; Haeussler, B.

    2017-06-01

    We establish a sample of 560 spectroscopically confirmed cluster members of MACS J1206.2- 0847 at z = 0.45 and utilize multi-wavelength and multi-component Sersic profile fitting to provide luminosities and sizes for the key structural components bulge and disk. While the difference between field and cluster galaxy properties are mostly due to a preference for cluster members to be early-type (quiescent, bulge-dominated), we see evidence for an outer disk fading and a sharp rise in the number of red disks with smaller effective radii at the tidally active cluster region around R200. Even though red disks are already virialized according to their velocity distribution, they are clearly not part of the old population found in the innermost region; they represent an important population of transitional objects in clusters.

  8. The range and valence of a real Smirnov function

    NASA Astrophysics Data System (ADS)

    Ferguson, Timothy; Ross, William T.

    2018-02-01

    We give a complete description of the possible ranges of real Smirnov functions (quotients of two bounded analytic functions on the open unit disk where the denominator is outer and such that the radial boundary values are real almost everywhere on the unit circle). Our techniques use the theory of unbounded symmetric Toeplitz operators, some general theory of unbounded symmetric operators, classical Hardy spaces, and an application of the uniformization theorem. In addition, we completely characterize the possible valences for these real Smirnov functions when the valence is finite. To do so we construct Riemann surfaces we call disk trees by welding together copies of the unit disk and its complement in the Riemann sphere. We also make use of certain trees we call valence trees that mirror the structure of disk trees.

  9. Oscillations at B Ring Edge

    NASA Image and Video Library

    2010-11-01

    This image obtained by NASA Cassini spacecraft of the outer edge of Saturn?s B ring, reveals the combined effects of a tugging moon and oscillations that can naturally occur in disks like Saturn rings and spiral galaxies.

  10. Hypovitaminosis D and Cervical Disk Herniation among Adults Undergoing Spine Surgery

    PubMed Central

    Stoker, Geoffrey E.; Buchowski, Jacob M.; Chen, Christopher T.; Kim, Han Jo; Park, Moon Soo; Riew, K. Daniel

    2013-01-01

    Study Design Single-center, retrospective study. Objective Suboptimal concentrations of vitamin D have been linked to hip and knee osteoarthritis in large, population-based cohort studies. We sought to examine the association of vitamin D levels with intervertebral disk disease. Methods From January 2010 through May 2011, 91 consecutive, eligible adult spine surgery patients who had undergone cervical magnetic resonance imaging (MRI) and preoperative serum 25-hydroxyvitamin D (s25D) measurement were retrospectively included. MRI was read for C2–T1 disk herniation and degeneration (grades I to V). Logistic regressions were performed. Results Compared with the 384 disks of nondeficient patients, 162 disks of vitamin D-deficient (< 20 ng/mL) patients were more frequently herniated (40% versus 27%, p = 0.004); deficiency was not predictive of individual disk grade (unadjusted odds ratio [uOR] = 0.98, p = 0.817). On regression analysis, deficiency was associated with increased number of herniations per patient (uOR = 2.17, 95% confidence interval [CI] = 1.22 to 3.87, p = 0.009; adjusted odds ratio [aOR] = 2.12, 95% CI = 1.11 to 4.03, p = 0.023). When disks were analyzed individually, and levels (e.g., C5 to C6), additionally controlled for, deficiency correlated with greater likelihood of herniation per disk (uOR = 1.81, 95% CI = 1.22 to 2.66, p = 0.003; aOR = 2.06, 95% CI = 1.25 to 3.41, p = 0.005). Conclusion Among adults undergoing spine surgery at our institution, vitamin D deficiency was associated with cervical disk herniation. Considering the current epidemics of vitamin D insufficiency and neck pain, further investigation is warranted, as these data were retrospectively collected and subject to sampling bias. PMID:24436874

  11. Towards a Global Evolutionary Model of Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Bai, Xue-Ning

    2016-04-01

    A global picture of the evolution of protoplanetary disks (PPDs) is key to understanding almost every aspect of planet formation, where standard α-disk models have been continually employed for their simplicity. In the meantime, disk mass loss has been conventionally attributed to photoevaporation, which controls disk dispersal. However, a paradigm shift toward accretion driven by magnetized disk winds has taken place in recent years, thanks to studies of non-ideal magnetohydrodynamic effects in PPDs. I present a framework of global PPD evolution aiming to incorporate these advances, highlighting the role of wind-driven accretion and wind mass loss. Disk evolution is found to be largely dominated by wind-driven processes, and viscous spreading is suppressed. The timescale of disk evolution is controlled primarily by the amount of external magnetic flux threading the disks, and how rapidly the disk loses the flux. Rapid disk dispersal can be achieved if the disk is able to hold most of its magnetic flux during the evolution. In addition, because wind launching requires a sufficient level of ionization at the disk surface (mainly via external far-UV (FUV) radiation), wind kinematics is also affected by the FUV penetration depth and disk geometry. For a typical disk lifetime of a few million years, the disk loses approximately the same amount of mass through the wind as through accretion onto the protostar, and most of the wind mass loss proceeds from the outer disk via a slow wind. Fractional wind mass loss increases with increasing disk lifetime. Significant wind mass loss likely substantially enhances the dust-to-gas mass ratio and promotes planet formation.

  12. ROCKET PORT CLOSURE

    DOEpatents

    Mattingly, J.T.

    1963-02-12

    This invention provides a simple pressure-actuated closure whereby windowless observation ports are opened to the atmosphere at preselected altitudes. The closure comprises a disk which seals a windowless observation port in rocket hull. An evacuated instrument compartment is affixed to the rocket hull adjacent the inner surface of the disk, while the outer disk surface is exposed to the atmosphere through which the rocket is traveling. The pressure differential between the evacuated instrument compartment and the relatively high pressure external atmosphere forces the disk against the edge of the observation port, thereby effecting a tight seai. The instrument compartment is evacuated to a pressure equal to the atmospheric pressure existing at the altitude at which it is desiretl that the closure should open. When the rocket reaches this preselected altitude, the inwardly directed atmospheric force on the disk is just equaled by the residual air pressure force within the instrument compartment. Consequently, the closure disk falls away and uncovers the open observation port. The separation of the disk from the rocket hull actuates a switch which energizes the mechanism of a detecting instrument disposed within the instrument compartment. (AE C)

  13. A Semiautomatic Pipeline for Be Star Light Curves

    NASA Astrophysics Data System (ADS)

    Rímulo, L. R.; Carciofi, A. C.; Rivinius, T.; Okazaki, A.

    2016-11-01

    Observational and theoretical studies from the last decade have shown that the Viscous Decretion Disk (VDD) scenario, in which turbulent viscosity is the physical mechanism responsible for the transport of material and angular momentum ejected from the star to the outer regions of the disk, is the only viable model for explaining the circumstellar disks of Be stars. In the α-disk approach applied to the VDD, the dimensionless parameter α is a measure of the turbulent viscosity. Recently, combining the time-dependent evolution of a VDD α-disk with non-LTE radiative transfer calculations, the first measurement of the α parameter was made, for the disk dissipation of the Be star ω CMa. It was found that α≍ 1 for that Be disk. The main motivation of this present work is the statistical determination of the α parameter. For this purpose, we present a pipeline that will allow the semiautomatic determination of the α parameter of several dozens of light curves of Be stars available from photometric surveys, In this contribution, we describe the pipeline, outlining the main staps required for the semiautomatic analysis of light curves

  14. Measurement of Circumstellar Disk Sizes in the Upper Scorpius OB Association with ALMA

    NASA Astrophysics Data System (ADS)

    Barenfeld, Scott A.; Carpenter, John M.; Sargent, Anneila I.; Isella, Andrea; Ricci, Luca

    2017-12-01

    We present detailed modeling of the spatial distributions of gas and dust in 57 circumstellar disks in the Upper Scorpius OB Association observed with ALMA at submillimeter wavelengths. We fit power-law models to the dust surface density and CO J = 3–2 surface brightness to measure the radial extent of dust and gas in these disks. We found that these disks are extremely compact: the 25 highest signal-to-noise disks have a median dust outer radius of 21 au, assuming an {R}-1 dust surface density profile. Our lack of CO detections in the majority of our sample is consistent with these small disk sizes assuming the dust and CO share the same spatial distribution. Of seven disks in our sample with well-constrained dust and CO radii, four appear to be more extended in CO, although this may simply be due to the higher optical depth of the CO. Comparison of the Upper Sco results with recent analyses of disks in Taurus, Ophiuchus, and Lupus suggests that the dust disks in Upper Sco may be approximately three times smaller in size than their younger counterparts, although we caution that a more uniform analysis of the data across all regions is needed. We discuss the implications of these results for disk evolution.

  15. Three-dimensional discrete element method simulation of core disking

    NASA Astrophysics Data System (ADS)

    Wu, Shunchuan; Wu, Haoyan; Kemeny, John

    2018-04-01

    The phenomenon of core disking is commonly seen in deep drilling of highly stressed regions in the Earth's crust. Given its close relationship with the in situ stress state, the presence and features of core disking can be used to interpret the stresses when traditional in situ stress measuring techniques are not available. The core disking process was simulated in this paper using the three-dimensional discrete element method software PFC3D (particle flow code). In particular, PFC3D is used to examine the evolution of fracture initiation, propagation and coalescence associated with core disking under various stress states. In this paper, four unresolved problems concerning core disking are investigated with a series of numerical simulations. These simulations also provide some verification of existing results by other researchers: (1) Core disking occurs when the maximum principal stress is about 6.5 times the tensile strength. (2) For most stress situations, core disking occurs from the outer surface, except for the thrust faulting stress regime, where the fractures were found to initiate from the inner part. (3) The anisotropy of the two horizontal principal stresses has an effect on the core disking morphology. (4) The thickness of core disk has a positive relationship with radial stress and a negative relationship with axial stresses.

  16. Control of Growth Within Drosophila Peripheral Nerves by Ras and Protein Kinase A

    DTIC Science & Technology

    2007-02-01

    Grant W81XWH-04- 1-0272 (M.S.). We are grateful to Angela Lynn, Vanathi Sundaresan, and Gia Fazio for technical assistance and Kei Ito, Vanessa Auld, Marc...by Van - essa Auld (University of British Columbia, Vancouver, British Columbia, Canada) and Kei Ito (National Institute for Basic Biology, Okazaki, Ja...and an outer, meso- dermally derived perineurial glia ( Edwards et al., 1993). A trans- mission electron micrograph (TEM) of a peripheral nerve cross

  17. Dynamics of ultraharmonic resonances in spiral galaxies

    NASA Technical Reports Server (NTRS)

    Artymowicz, Pawel; Lubow, Stephen H.

    1992-01-01

    The mildly nonlinear response of a fluid disk with pressure, viscosity, and self-gravity to spiral stellar forcing is considered as a model of the interstellar medium in spiral galaxies. Nonlinear effects are analyzed through a quasi-linear flow analysis ordered by successive powers of a dimensionless spiral perturbing force, which is the ratio of imposed nonaxisymmetric gravitational to axisymmetric gravitational forces. Waves with mn arms are launched from a position where the wavenumber of a free wave matches n times the wavenumber of the spiral forcing. The launched short wave in the gas is an interarm feature that is more tightly wrapped than the stellar wave. The gas wave extracts energy and angular momentum from the stellar wave, causing it to damp. The application of the results to the stellar disk alone reveals even stronger damping, as stars undergo Landau damping of the short wave. For parameters in M81, damping times are less than 10 exp 9 yr.

  18. Sublimation of icy planetesimals and the delivery of water to the habitable zone around solar type stars

    NASA Astrophysics Data System (ADS)

    Brunini, Adrián; López, María Cristina

    2018-06-01

    We present a semi analytic model to evaluate the delivery of water to the habitable zone around a solar type star carried by icy planetesimals born beyond the snow line. The model includes sublimation of ice, gas drag and scattering by an outer giant planet located near the snow line. The sublimation model is general and could be applicable to planetary synthesis models or N-Body simulations of the formation of planetary systems. We perform a short series of simulations to asses the potential relevance of sublimation of volatiles in the process of delivery of water to the inner regions of a planetary system during early stages of its formation. We could anticipate that erosion by sublimation would prevent the arrival of much water to the habitable zone of protoplanetary disks in the form of icy planetesimals. Close encounters with a massive planet orbiting near the outer edge of the snow line could make possible for planetesimals to reach the habitable zone somewhat less eroded. However, only large planetesimals could provide appreciable amounts of water. Massive disks and sharp gas surface density profiles favor icy planetesimals to reach inner regions of a protoplanetary disk.

  19. A MegaCam Survey of Outer Halo Satellites. III. Photometric and Structural Parameters

    NASA Astrophysics Data System (ADS)

    Muñoz, Ricardo R.; Côté, Patrick; Santana, Felipe A.; Geha, Marla; Simon, Joshua D.; Oyarzún, Grecco A.; Stetson, Peter B.; Djorgovski, S. G.

    2018-06-01

    We present structural parameters from a wide-field homogeneous imaging survey of Milky Way satellites carried out with the MegaCam imagers on the 3.6 m Canada–France–Hawaii Telescope and 6.5 m Magellan-Clay telescope. Our survey targets an unbiased sample of “outer halo” satellites (i.e., substructures having galactocentric distances greater than 25 kpc) and includes classical dSph galaxies, ultra-faint dwarfs, and remote globular clusters. We combine deep, panoramic gr imaging for 44 satellites and archival gr imaging for 14 additional objects (primarily obtained with the DECam instrument as part of the Dark Energy Survey) to measure photometric and structural parameters for 58 outer halo satellites. This is the largest and most uniform analysis of Milky Way satellites undertaken to date and represents roughly three-quarters (58/81 ≃ 72%) of all known outer halo satellites. We use a maximum-likelihood method to fit four density laws to each object in our survey: exponential, Plummer, King, and Sérsic models. We systematically examine the isodensity contour maps and color–magnitude diagrams for each of our program objects, present a comparison with previous results, and tabulate our best-fit photometric and structural parameters, including ellipticities, position angles, effective radii, Sérsic indices, absolute magnitudes, and surface brightness measurements. We investigate the distribution of outer halo satellites in the size–magnitude diagram and show that the current sample of outer halo substructures spans a wide range in effective radius, luminosity, and surface brightness, with little evidence for a clean separation into star cluster and galaxy populations at the faintest luminosities and surface brightnesses.

  20. Constraining the Structure of the Transition Disk HD 135344B (SAO 206462) by Simultaneous Modeling of Multiwavelength Gas and Dust Observations

    NASA Technical Reports Server (NTRS)

    Carmona, A.; Pinte, C.; Thi, W. F.; Benisty, M.; Menard, F.; Grady, C.; Kamp, I.; Woitke, P.; Olofsson, J.; Roberge, A.; hide

    2014-01-01

    Context: Constraining the gas and dust disk structure of transition disks, particularly in the inner dust cavity, is a crucial step toward understanding the link between them and planet formation. HD 135344B is an accreting (pre-)transition disk that displays the CO 4.7 micrometer emission extending tens of AU inside its 30 AU dust cavity. Aims: We constrain HD 135344B's disk structure from multi-instrument gas and dust observations. Methods: We used the dust radiative transfer code MCFOST and the thermochemical code ProDiMo to derive the disk structure from the simultaneous modeling of the spectral energy distribution (SED), VLT/CRIRES CO P(10) 4.75 Micrometers, Herschel/PACS [O(sub I)] 63 Micrometers, Spitzer/IRS, and JCMT CO-12 J = 3-2 spectra, VLTI/PIONIER H-band visibilities, and constraints from (sub-)mm continuum interferometry and near-IR imaging. Results: We found a disk model able to describe the current gas and dust observations simultaneously. This disk has the following structure. (1) To simultaneously reproduce the SED, the near-IR interferometry data, and the CO ro-vibrational emission, refractory grains (we suggest carbon) are present inside the silicate sublimation radius (0.08 is less than R less than 0.2 AU). (2) The dust cavity (R is less than 30 AU) is filled with gas, the surface density of the gas inside the cavity must increase with radius to fit the CO ro-vibrational line profile, a small gap of a few AU in the gas distribution is compatible with current data, and a large gap of tens of AU in the gas does not appear likely. (4) The gas-to-dust ratio inside the cavity is >100 to account for the 870 Micrometers continuum upper limit and the CO P(10) line flux. (5) The gas-to-dust ratio in the outer disk (30 is less than R less than 200 AU) is less than 10 to simultaneously describe the [O(sub I)] 63 Micrometers line flux and the CO P(10) line profile. (6) In the outer disk, most of the gas and dust mass should be located in the midplane, and a significant fraction of the dust should be in large grains. Conclusions: Simultaneous modeling of the gas and dust is required to break the model degeneracies and constrain the disk structure. An increasing gas surface density with radius in the inner cavity echoes the effect of a migrating Jovian planet in the disk structure. The low gas mass (a few Jupiter masses) throughout the HD 135344B disk supports the idea that it is an evolved disk that has already lost a large portion of its mass.

  1. The Nature and Cause of Spectral Variability in LMC X-1

    NASA Technical Reports Server (NTRS)

    Ruhlen, L.; Smith, D. M.; Scank, J. H.

    2011-01-01

    We present the results of a long-term observation campaign of the extragalactic wind-accreting black-hole X-ray binary LMC X-1, using the Proportional Counter Array on the Rossi X-Ray Timing Explorer (RXTE). The observations show that LMC X-1's accretion disk exhibits an anomalous temperature-luminosity relation. We use deep archival RXTE observations to show that large movements across the temperature-luminosity space occupied by the system can take place on time scales as short as half an hour. These changes cannot be adequately explained by perturbations that propagate from the outer disk on a viscous timescale. We propose instead that the apparent disk variations reflect rapid fluctuations within the Compton up-scattering coronal material, which occults the inner parts of the disk. The expected relationship between the observed disk luminosity and apparent disk temperature derived from the variable occultation model is quantitatively shown to be in good agreement with the observations. Two other observations support this picture: an inverse correlation between the flux in the power-law spectral component and the fitted inner disk temperature, and a near-constant total photon flux, suggesting that the inner disk is not ejected when a lower temperature is observed.

  2. A search for planetary Nebulae with the Sloan digital sky survey: the outer regions of M31

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kniazev, Alexei Y.; Grebel, Eva K.; Martínez-Delgado, David

    2014-01-01

    We have developed a method to identify planetary nebula (PN) candidates in imaging data of the Sloan Digital Sky Survey (SDSS). This method exploits the SDSS's five-band sampling of emission lines in PN spectra, which results in a color signature distinct from that of other sources. Selection criteria based on this signature can be applied to nearby galaxies in which PNe appear as point sources. We applied these criteria to the whole area of M31 as scanned by the SDSS, selecting 167 PN candidates that are located in the outer regions of M31. The spectra of 80 selected candidates weremore » then observed with the 2.2 m telescope at Calar Alto Observatory. These observations and cross-checks with literature data show that our method has a selection rate efficiency of about 90%, but the efficiency is different for the different groups of PN candidates. In the outer regions of M31, PNe trace different well-known morphological features like the Northern Spur, the NGC 205 Loop, the G1 Clump, etc. In general, the distribution of PNe in the outer region 8 < R < 20 kpc along the minor axis shows the {sup e}xtended disk{sup —}a rotationally supported low surface brightness structure with an exponential scale length of 3.21 ± 0.14 kpc and a total mass of ∼10{sup 10} M {sub ☉}, which is equivalent to the mass of M33. We report the discovery of three PN candidates with projected locations in the center of Andromeda NE, a very low surface brightness giant stellar structure in the outer halo of M31. Two of the PNe were spectroscopically confirmed as genuine PNe. These two PNe are located at projected distances along the major axis of ∼48 Kpc and ∼41 Kpc from the center of M31 and are the most distant PNe in M31 found up to now. With the new PN data at hand we see the obvious kinematic connection between the continuation of the Giant Stream and the Northern Spur. We suggest that 20%-30% of the stars in the Northern Spur area may belong to the Giant Stream. In our data we also see a possible kinematic connection between the Giant Stream and PNe in Andromeda NE, suggesting that Andromeda NE could be the core or remnant of the Giant Stream. Using PN data we estimate the total mass of the Giant Stream progenitor to be ≈10{sup 9} M {sub ☉}. About 90% of its stars appear to have been lost during the interaction with M31.« less

  3. The inclination of the dwarf irregular galaxy Holmberg II

    NASA Astrophysics Data System (ADS)

    Sánchez-Salcedo, F. J.; Hidalgo-Gámez, A. M.; Martínez-García, E. E.

    2014-10-01

    We provide constraints on the inclination angle of the H I disk of the dwarf irregular galaxy Holmberg II (Ho II) from a stability analysis of the outer gaseous disk. We point out that a mean inclination angle of 27(°) and thus a flat circular velocity of ≈ 60 km s(-1) , is required to have a level of gravitational stability similar to that found in other galaxies. Adopting this inclination angle, we find that Ho II lies on the right location in the baryonic Tully-Fisher relation. Moreover, for this inclination, its rotation curve is consistent with MOND. However, the corresponding analysis of the stability under MOND indicates that this galaxy could be problematic for MOND because its outer parts are marginally unstable in this gravity theory. We urge MOND simulators to study numerically the non-linear stability of gas-rich dwarf galaxies since this may provide a new key test for MOND.

  4. AMBER-NACO aperture-synthesis imaging of the half-obscured central star and the edge-on disk of the red giant L2 Puppis

    NASA Astrophysics Data System (ADS)

    Ohnaka, K.; Schertl, D.; Hofmann, K.-H.; Weigelt, G.

    2015-09-01

    Aims: The red giant L2 Pup started a dimming event in 1994, which is considered to be caused by the ejection of dust clouds. We present near-IR aperture-synthesis imaging of L2 Pup achieved by combining data from VLT/NACO and the AMBER instrument of the Very Large Telescope Interferometer (VLTI). Our aim is to spatially resolve the innermost region of the circumstellar environment. Methods: We carried out speckle interferometric observations at 2.27 μm with VLT/NACO and long-baseline interferometric observations with VLTI/AMBER at 2.2-2.35 μm with baselines of 15-81 m. We also extracted an 8.7 μm image from the mid-IR VLTI instrument MIDI. Results: The diffraction-limited image obtained by bispectrum speckle interferometry with NACO with a spatial resolution of 57 mas shows an elongated component. The aperture-synthesis imaging combining the NACO speckle data and AMBER data with a spatial resolution of 5.6 × 7.3 mas further resolves not only this elongated component, but also the central star. The reconstructed image reveals that the elongated component is a nearly edge-on disk with a size of ~180 × 50 mas lying in the E-W direction, and furthermore, that the southern hemisphere of the central star is severely obscured by the equatorial dust lane of the disk. The angular size of the disk is consistent with the distance that the dust clouds that were ejected at the onset of the dimming event should have traveled by the time of our observations, if we assume that the dust clouds moved radially. This implies that the formation of the disk may be responsible for the dimming event. The 8.7 μm image with a spatial resolution of 220 mas extracted from the MIDI data taken in 2004 (seven years before the AMBER and NACO observations) shows an approximately spherical envelope without a signature of the disk. This suggests that the mass loss before the dimming event may have been spherical. Based on AMBER, NACO, and MIDI observations made with the Very Large Telescope and Very Large Telescope Interferometer of the European Southern Observatory. Program ID: 074.D-0075(A), 074.D-0101(A), 074.D-0198(B), 088.D-0150(A/B), and 288.D-5041(A). Appendices are available in electronic form at http://www.aanda.org

  5. Substellar Companions to weak-line TTauri Stars

    NASA Astrophysics Data System (ADS)

    Brandner, W.; Alcala, J. M.; Covino, E.; Frink, S.

    1997-05-01

    Weak-line TTauri stars, contrary to classical TTauri stars, no longer possess massive circumstellar disks. In weak-line TTauri stars, the circumstellar matter was either accreted onto the TTauri star or has been redistributed. Disk instabilities in the outer disk might result in the formation of brown dwarfs and giant planets. Based on photometric and spectroscopic studies of ROSAT sources, we have selected an initial sample of 200 weak-line TTauri stars in the Chamaeleon T association and the Scorpius Centaurus OB association. In the course of follow-up observations we identified visual and spectroscopic binary stars and excluded them from our final list, as the complex dynamics and gravitational interaction in binary systems might aggravate or even completely inhibit the formation of planets (depending on physical separation of the binary components and their mass-ratio). The membership of individual stars to the associations was established from proper motion studies and radial velocity surveys. Our final sample consists of 70 single weak-line TTauri stars. We have initiated a program to spatially RESOLVE young brown dwarfs and young giant planets as companions to single weak-line TTauri stars using adaptive optics at the ESO 3.6m telescope and HST/NICMOS. In this poster we describe the observing strategy and present first results of our adaptive optics observations.

  6. The Coast Artillery Journal. Volume 66, Number 2, February 1927

    DTIC Science & Technology

    1927-02-01

    bicycle gear and chain , step-up 1 to 5, con- necting the disk with the elevating drum. As a result one turn of the range disk covers the outer two...our seacoast cities, navy yards, a!ld habors are reasonably protected against bombardment, because we would otherwise be forced to chain down our...type and the sliding sleeve type. Spare parts, such as the rear bands, etc., are continually heing suplied for these two types and it would be

  7. Cosmic Rays and Non-thermal Emission Induced by Accretion of Cool Gas onto the Galactic Disk

    NASA Astrophysics Data System (ADS)

    Inoue, Susumu; Uchiyama, Yasunobu; Arakawa, Masanori; Renaud, Matthieu; Wada, Keiichi

    2017-11-01

    On both observational and theoretical grounds, the disk of our Galaxy should be accreting cool gas with temperature ≲ {10}5 K via the halo at a rate ˜1 {{M}⊙ {yr}}-1. At least some of this accretion is mediated by high-velocity clouds (HVCs), observed to be traveling in the halo with velocities of a few 100 km s-1 and occasionally impacting the disk at such velocities, especially in the outer regions of the Galaxy. We address the possibility of particle acceleration in shocks triggered by such HVC accretion events, and the detectability of consequent non-thermal emission in the radio to gamma-ray bands and high-energy neutrinos. For plausible shock velocities ˜ 300 {km} {{{s}}}-1 and magnetic field strengths ˜ 0.3{--}10 μ {{G}}, electrons and protons may be accelerated up to ˜1-10 TeV and ˜ 30{--}{10}3 TeV, respectively, in sufficiently strong adiabatic shocks during their lifetime of ˜ {10}6 {{yr}}. The resultant pion decay and inverse Compton gamma-rays may be the origin of some unidentified Galactic GeV-TeV sources, particularly the “dark” source HESS J1503-582 that is spatially coincident with the anomalous H I structure known as “forbidden-velocity wings.” Correlation of their locations with star-forming regions may be weak, absent, or even opposite. Non-thermal radio and X-ray emission from primary and/or secondary electrons may be detectable with deeper observations. The contribution of HVC accretion to Galactic cosmic rays is subdominant, but could be non-negligible in the outer Galaxy. As the thermal emission induced by HVC accretion is likely difficult to detect, observations of such phenomena may offer a unique perspective on probing gas accretion onto the Milky Way and other galaxies.

  8. Formation Location of Enceladus and Comets from D/H Measurements

    NASA Astrophysics Data System (ADS)

    Petit, J.-M.; Mousis, O.; Kavelaars, J. J.

    2012-04-01

    The building blocks of Enceladus could have formed in Saturn's subnebula, thus bearing no connection with planetesimals condensed in Saturn's feeding zone. We have shown that the D/H ratio in H2O in Saturn's sub-nebula reaches the protosolar value in about 1,000 yr, well before ice forms again at Enceladus' location (several 10,000 yr). However, the D/H ratio measured by the Ion and Neutral Mass Spectrometer aboard the Cassini spacecraft in Saturn's satellite Enceladus is remarkably similar to the values observed in the nearly-isotropic comets. Hence the building blocks of Enceladus formed in the solar nebula. Nearly-isotropic comets originate from the Oort cloud. Delivery of material into the Oort cloud reservoir is controlled by Uranus-Neptune scattering. The D/H ratio in comets is therefore representative of that of the location of Uranus-Neptune at the time of formation of the Oort cloud. Since D/H strongly depends on heliocentric distance in the solar nebula, the similarity of D/H ratios links the primordial source region of the nearly-isotropic comets with the formation location of Enceladus. This precludes these comets from having formed beyond ~15 AU from the Sun. which in turn implies that Uranus and Neptune were originally closer to Saturn's location during the feeding of the Oort cloud, likely in the 12-15 AU region. Such a configuration is consistent with the Nice model of evolution of the outer Solar System. 103P/Hartley 2 being D-poor compared to these bodies questions the current models. A fraction of ecliptic comets could have formed at closer distances from the Sun than assumed here and has been ejected outward and then display a low R/H ratio. However, they would only represent a small fraction of all ecliptic comets. The high level of deuteration predicted in ecliptic comets from the description of the isotopic exchange between H2 and H2O in the gas phase of the disk is based on classical models of the solar nebula (the alpha-turbulent model) in which the disk's temperature, pressure and density decrease monotonically with increasing heliocentric distance. These models do not consider the possible presence of sporadic and local phenomena such as shock waves that have been invoked to speed up the formation of planetesimals and trigger the crystallization of initially amorphous silicates prior to their incorporation in comets. Shock waves in the outer nebula could have locally increased the disk's temperature and pressure conditions and might have significantly decreased the deuteration level of the H2O ice formed at this place. A possibly extended, both in time and space, major heating could have been induced by the inflow of the presolar cloud or envelop onto the outer part of the accretion disk at the time of the disk's formation. The influence of this mechanism on the outer disk's thermodynamic conditions and chemistry remains to be investigated.

  9. The warped disk of Centaurus A in the near-infrared

    NASA Technical Reports Server (NTRS)

    Quillen, A. C.; Graham, James R.; Frogel, Jay A.

    1993-01-01

    We present infrared images of Cen A (NGC 5128) in the J, H, and K bands. The infrared morphology is primarily determined by the presence of a thin absorptive warped disk. By integrating the light of the underlying prolate galaxy through such a disk, we construct models which we compare with infrared and X-ray data. The geometry of the warped disk needed to fit the IR data is consistent with a warped disk which has evolved as a result of differential precession in a prolate potential. The disk has an inclination, with respect to the principal axis of the underlying elliptical galaxy, that is higher at larger radii than in the inner region. A scenario is proposed where a small gas-rich galaxy infalling under the force of dynamical friction is tidally stripped. Stripping occurs at different times during its infall. The orientation of the resulting gas disk depends upon the angular momentum of the infalling galaxy. We find that the resulting precession angle of the disk is well described by the precession model, but that the inclination angle may vary as a function of radius. We propose an orbit for the infalling galaxy that is consistent with the geometry of the warped disk needed to fit our infrared data, and rotation observed in the outer part of the galaxy.

  10. Investigating FP Tau’s protoplanetary disk structure through modeling

    NASA Astrophysics Data System (ADS)

    Brinjikji, Marah; Espaillat, Catherine

    2017-01-01

    This project presents a study aiming to understand the structure of the protoplanetary disk around FP Tau, a very young, very low mass star in the Taurus star-forming region. We have gathered existing optical, Spitzer, Herschel and submillimeter observations to construct the spectral energy distribution (SED) of FP Tau. We have used the D’Alessio et al (2006) physically self-consistent irradiated accretion disk model including dust settling to model the disk of FP Tau. Using this method, the best fit for the SED of FP Tau is a model that includes a gap located 10-20 AU away from the star. This gap is filled with optically thin dust that separates the optically thick dust in the outer disk from the optically thick dust in the inner disk. These characteristics indicate that FP Tau’s protostellar system is best classified as a pre-transitional disk. Near-infrared interferometry in the K-Band from Willson et al 2016 indicates that FP Tau has a small gap located 10-20 AU from the star, which is consistent with the model we produced, lending further support to the pre-transitional disk interpretation. The most likely explanation for the existence of a gap in the disk is a forming planet.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shahamat, Narjes; Abbassi, Shahram, E-mail: abbassi@um.ac.ir

    In the present work we study self-gravity effects on the vertical structure of a magnetized neutrino-dominated accretion disk as a central engine for gamma-ray bursts (GRBs). Some of the disk physical timescales that are supposed to play a pivotal role in the late-time evolutions of the disk, such as viscous, cooling, and diffusion timescales, have been studied. We are interested in investigating the possibility of the occurrence of X-ray flares, observed in late-time GRBs’ extended emission through the “magnetic barrier” and “fragmentation” processes in our model. The results lead us to interpret self-gravity as an amplifier for Blandford–Payne luminosity (BPmore » power) and the generated magnetic field, but a suppressor for neutrino luminosity and magnetic barrier processes via highlighting the fragmentation mechanism in the outer disk, especially for the higher mass accretion rates.« less

  12. Constraining the mass of the planet(s) sculpting a disk cavity. The intriguing case of 2MASS J16042165-2130284

    NASA Astrophysics Data System (ADS)

    Canovas, H.; Hardy, A.; Zurlo, A.; Wahhaj, Z.; Schreiber, M. R.; Vigan, A.; Villaver, E.; Olofsson, J.; Meeus, G.; Ménard, F.; Caceres, C.; Cieza, L. A.; Garufi, A.

    2017-02-01

    Context. The large cavities observed in the dust and gas distributions of transition disks may be explained by planet-disk interactions. At 145 pc, 2MASS J16042165-2130284 (J1604) is a 5-12 Myr old transitional disk with different gap sizes in the mm- and μm-sized dust distributions (outer edges at 79 and at 63 au, respectively). Its 12CO emission shows a 30 au cavity. This radial structure suggests that giant planets are sculpting this disk. Aims: We aim to constrain the masses and locations of plausible giant planets around J1604. Methods: We observed J1604 with the Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) at the Very Large Telescope (VLT), in IRDIFS_EXT, pupil-stabilized mode, obtaining YJH-band images with the integral field spectrograph (IFS) and K1K2-band images with the Infra-Red Dual-beam Imager and Spectrograph (IRDIS). The dataset was processed exploiting the angular differential imaging (ADI) technique with high-contrast algorithms. Results: Our observations reach a contrast of ΔK,ΔYH 12 mag from 0".15 to 0".80 ( 22 to 115 au), but no planet candidate is detected. The disk is directly imaged in scattered light at all bands from Y to K, and it shows a red color. This indicates that the dust particles in the disk surface are mainly ≳0.3 μm-sized grains. We confirm the sharp dip/decrement in scattered light in agreement with polarized light observations. Comparing our images with a radiative transfer model we argue that the southern side of the disk is most likely the nearest. Conclusions: This work represents the deepest search yet for companions around J1604. We reach a mass sensitivity of ≳2-3 MJup from 22 to 115 au according to a hot start scenario. We propose that a brown dwarf orbiting inside of 15 au and additional Jovian planets at larger radii could account for the observed properties of J1604 while explaining our lack of detection. Based on observations made with the VLT, program 095.C-0673(A).The reduced images (FITS files) are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/598/A43

  13. Radiation transfer of models of massive star formation. III. The evolutionary sequence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yichen; Tan, Jonathan C.; Hosokawa, Takashi, E-mail: yichen.zhang@yale.edu, E-mail: jt@astro.ufl.edu, E-mail: takashi.hosokawa@phys.s.u-tokyo.ac.jp

    2014-06-20

    We present radiation transfer simulations of evolutionary sequences of massive protostars forming from massive dense cores in environments of high mass surface densities, based on the Turbulent Core Model. The protostellar evolution is calculated with a multi-zone numerical model, with the accretion rate regulated by feedback from an evolving disk wind outflow cavity. The disk evolution is calculated assuming a fixed ratio of disk to protostellar mass, while the core envelope evolution assumes an inside-out collapse of the core with a fixed outer radius. In this framework, an evolutionary track is determined by three environmental initial conditions: the core massmore » M{sub c} , the mass surface density of the ambient clump Σ{sub cl}, and the ratio of the core's initial rotational to gravitational energy β {sub c}. Evolutionary sequences with various M{sub c} , Σ{sub cl}, and β {sub c} are constructed. We find that in a fiducial model with M{sub c} = 60 M {sub ☉}, Σ{sub cl} = 1 g cm{sup –2}, and β {sub c} = 0.02, the final mass of the protostar reaches at least ∼26 M {sub ☉}, making the final star formation efficiency ≳ 0.43. For each of the evolutionary tracks, radiation transfer simulations are performed at selected stages, with temperature profiles, spectral energy distributions (SEDs), and multiwavelength images produced. At a given stage, the envelope temperature depends strongly on Σ{sub cl}, with higher temperatures in a higher Σ{sub cl} core, but only weakly on M{sub c} . The SED and MIR images depend sensitively on the evolving outflow cavity, which gradually widens as the protostar grows. The fluxes at ≲ 100 μm increase dramatically, and the far-IR peaks move to shorter wavelengths. The influence of Σ{sub cl} and β {sub c} (which determines disk size) are discussed. We find that, despite scatter caused by different M{sub c} , Σ{sub cl}, β {sub c}, and inclinations, sources at a given evolutionary stage appear in similar regions of color-color diagrams, especially when using colors with fluxes at ≳ 70 μm, where scatter due to inclination is minimized, implying that such diagrams can be useful diagnostic tools for identifying the evolutionary stages of massive protostars. We discuss how intensity profiles along or perpendicular to the outflow axis are affected by environmental conditions and source evolution and can thus act as additional diagnostics of the massive star formation process.« less

  14. A Resolved and Asymmetric Ring of PAHs within the Young Circumstellar Disk of IRS 48

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schworer, Guillaume; Lacour, Sylvestre; Du Foresto, Vincent Coudé

    2017-06-20

    For one decade, the spectral type and age of the ρ Oph object IRS-48 were subject to debate and mystery. Modeling its disk with mid-infrared to millimeter observations led to various explanations to account for the complex intricacy of dust holes and gas-depleted regions. We present multi-epoch high-angular-resolution interferometric near-infrared data of spatially resolved emissions in the first 15 au of IRS-48, known to have very strong polycyclic aromatic hydrocarbon (PAH) emissions within this dust-depleted region. We make use of new Sparse-Aperture-Masking data to instruct a revised radiative-transfer model, where spectral energy distribution fluxes and interferometry are jointly fitted. Neutralmore » and ionized PAH, very small grains (VSG), and classical silicates are incorporated into the model; new stellar parameters and extinction laws are explored. A bright (42 L {sub ⊙}) and hence large (2.5 R {sub ⊙}) central star with A {sub v} = 12.5 mag and R {sub v} = 6.5 requires less near-infrared excess: the inner-most disk at ≈1 au is incompatible with the interferometric data. The revised stellar parameters place this system on a 4 Myr evolutionary track, four times younger than the previous estimations, which is in better agreement with the surrounding ρ Oph region and disk-lifetime observations. The disk-structure solution converges to a classical-grain outer disk from 55 au combined with an unsettled and fully resolved VSG and PAH ring, between 11 and 26 au. We find two overluminosities in the PAH ring at color-temperatures consistent with the radiative transfer simulations; one follows a Keplerian circular orbit at 14 au. We show a depletion of a factor of ≈5 of classical dust grains up to 0.3 mm compared to very small particles: the IRS-48 disk is nearly void of dust grains in the first 55 au. A 3.5 M {sub Jup} planet on a 40 au orbit can qualitatively explain the new disk structure.« less

  15. Identifying Likely Disk-hosting M dwarfs with Disk Detective

    NASA Astrophysics Data System (ADS)

    Silverberg, Steven; Wisniewski, John; Kuchner, Marc J.; Disk Detective Collaboration

    2018-01-01

    M dwarfs are critical targets for exoplanet searches. Debris disks often provide key information as to the formation and evolution of planetary systems around higher-mass stars, alongside the planet themselves. However, less than 300 M dwarf debris disks are known, despite M dwarfs making up 70% of the local neighborhood. The Disk Detective citizen science project has identified over 6000 new potential disk host stars from the AllWISE catalog over the past three years. Here, we present preliminary results of our search for new disk-hosting M dwarfs in the survey. Based on near-infrared color cuts and fitting stellar models to photometry, we have identified over 500 potential new M dwarf disk hosts, nearly doubling the known number of such systems. In this talk, we present our methodology, and outline our ongoing work to confirm systems as M dwarf disks.

  16. A low mass for Mars from Jupiter's early gas-driven migration.

    PubMed

    Walsh, Kevin J; Morbidelli, Alessandro; Raymond, Sean N; O'Brien, David P; Mandell, Avi M

    2011-06-05

    Jupiter and Saturn formed in a few million years (ref. 1) from a gas-dominated protoplanetary disk, and were susceptible to gas-driven migration of their orbits on timescales of only ∼100,000 years (ref. 2). Hydrodynamic simulations show that these giant planets can undergo a two-stage, inward-then-outward, migration. The terrestrial planets finished accreting much later, and their characteristics, including Mars' small mass, are best reproduced by starting from a planetesimal disk with an outer edge at about one astronomical unit from the Sun (1 au is the Earth-Sun distance). Here we report simulations of the early Solar System that show how the inward migration of Jupiter to 1.5 au, and its subsequent outward migration, lead to a planetesimal disk truncated at 1 au; the terrestrial planets then form from this disk over the next 30-50 million years, with an Earth/Mars mass ratio consistent with observations. Scattering by Jupiter initially empties but then repopulates the asteroid belt, with inner-belt bodies originating between 1 and 3 au and outer-belt bodies originating between and beyond the giant planets. This explains the significant compositional differences across the asteroid belt. The key aspect missing from previous models of terrestrial planet formation is the substantial radial migration of the giant planets, which suggests that their behaviour is more similar to that inferred for extrasolar planets than previously thought. ©2011 Macmillan Publishers Limited. All rights reserved

  17. ON A GIANT IMPACT ORIGIN OF CHARON, NIX, AND HYDRA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Canup, Robin M., E-mail: robin@boulder.swri.edu

    It is generally believed that Charon was formed as a result of a large, grazing collision with Pluto that supplied the Pluto-Charon system with its high angular momentum. It has also been proposed that Pluto's small outer moons, Nix and Hydra, formed from debris from the Charon-forming impact, although the viability of this scenario remains unclear. Here I use smooth particle hydrodynamics impact simulations to show that it is possible to simultaneously form an intact Charon and an accompanying debris disk from a single impact. The successful cases involve colliding objects that are partially differentiated prior to impact, having thinmore » outer ice mantles overlying a uniform composition rock-ice core. The composition of the resulting debris disks varies from a mixture of rock and ice (similar to the bulk composition of Pluto and Charon) to a pure ice disk. If Nix and Hydra were formed from such an impact-generated disk, their densities should be less than or similar to that of Charon and Pluto, and the small moons could be composed entirely of ice. If they were instead formed from captured material, a mixed rock-ice composition and densities similar to that of Charon and Pluto would be expected. Improved constraints on the properties of Nix and Hydra through occultations and/or the New Horizons encounter may thus help to distinguish between these two modes of origin, particularly if the small moons are found to have ice-like densities.« less

  18. A TREND BETWEEN COLD DEBRIS DISK TEMPERATURE AND STELLAR TYPE: IMPLICATIONS FOR THE FORMATION AND EVOLUTION OF WIDE-ORBIT PLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballering, Nicholas P.; Rieke, George H.; Su, Kate Y. L.

    2013-09-20

    Cold debris disks trace the limits of planet formation or migration in the outer regions of planetary systems, and thus have the potential to answer many of the outstanding questions in wide-orbit planet formation and evolution. We characterized the infrared excess spectral energy distributions of 174 cold debris disks around 546 main-sequence stars observed by both the Spitzer Infrared Spectrograph and the Multiband Imaging Photometer for Spitzer. We found a trend between the temperature of the inner edges of cold debris disks and the stellar type of the stars they orbit. This argues against the importance of strictly temperature-dependent processesmore » (e.g., non-water ice lines) in setting the dimensions of cold debris disks. Also, we found no evidence that delayed stirring causes the trend. The trend may result from outward planet migration that traces the extent of the primordial protoplanetary disk, or it may result from planet formation that halts at an orbital radius limited by the efficiency of core accretion.« less

  19. THE PDS 66 CIRCUMSTELLAR DISK AS SEEN IN POLARIZED LIGHT WITH THE GEMINI PLANET IMAGER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolff, Schuyler G.; Greenbaum, Alexandra Z.; Perrin, Marshall

    2016-02-10

    We present H- and K-band imaging polarimetry for the PDS 66 circumstellar disk obtained during the commissioning of the Gemini Planet Imager (GPI). Polarization images reveal a clear detection of the disk in to the 0.″12 inner working angle (IWA) in the H band, almost three times closer to the star than the previous Hubble Space Telescope (HST) observations with NICMOS and STIS (0.″35 effective IWA). The centro-symmetric polarization vectors confirm that the bright inner disk detection is due to circumstellar scattered light. A more diffuse disk extends to a bright outer ring centered at 80 AU. We discuss several physicalmore » mechanisms capable of producing the observed ring + gap structure. GPI data confirm enhanced scattering on the east side of the disk that is inferred to be nearer to us. We also detect a lateral asymmetry in the south possibly due to shadowing from material within the IWA. This likely corresponds to a temporally variable azimuthal asymmetry observed in HST/STIS coronagraphic imaging.« less

  20. Radial Surface Density Profiles of Gas and Dust in the Debris Disk Around 49 Ceti

    NASA Technical Reports Server (NTRS)

    Hughes, A. Meredith; Lieman-Sifry, Jesse; Flaherty, Kevin M.; Daley, Cail M.; Roberge, Aki; Kospal, Agnes; Moor, Attila; Kamp, Inga; Wilner, David J.; Andrews, Sean M.; hide

    2017-01-01

    We present approximately 0".4 resolution images of CO(3-2) and associated continuum emission from the gas-bearing debris disk around the nearby A star 49 Ceti, observed with the Atacama Large Millimeter/Submillimeter Array (ALMA). We analyze the ALMA visibilities in tandem with the broadband spectral energy distribution to measure the radial surface density profiles of dust and gas emission from the system. The dust surface density decreases with radius between approximately 100 and 310 au, with a marginally significant enhancement of surface density at a radius of approximately 110 au. The SED requires an inner disk of small grains in addition to the outer disk of larger grains resolved by ALMA. The gas disk exhibits a surface density profile that increases with radius, contrary to most previous spatially resolved observations of circumstellar gas disks. While approximately 80% of the CO flux is well described by an axisymmetric power-law disk in Keplerian rotation about the central star, residuals at approximately 20% of the peak flux exhibit a departure from axisymmetry suggestive of spiral arms or a warp in the gas disk. The radial extent of the gas disk (approx. 220 au) is smaller than that of the dust disk (approx. 300 au), consistent with recent observations of other gasbearing debris disks. While there are so far only three broad debris disks with well characterized radial dust profiles at millimeter wavelengths, 49 Ceti's disk shows a markedly different structure from two radially resolved gas-poor debris disks, implying that the physical processes generating and sculpting the gas and dust are fundamentally different.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carraro, Giovanni; Vázquez, Rubén A.; Costa, Edgardo

    In the third Galactic quadrant (180{sup ∘}⩽l⩽270{sup ∘}) of the Milky Way, the Galactic thin disk exhibits a significant warp—shown both by gas and young stars—bending down a few kiloparsecs below the formal Galactic plane (b=0{sup ∘}). This warp shows its maximum at l∼240{sup ∘}, in the direction of the Canis Major constellation. In a series of papers, we have traced the detailed structure of this region using open star clusters, putting particular emphasis on the spiral structure of the outer disk. We noted a conspicuous accumulation of young star clusters within 2–3 kpc from the Sun and close tomore » b = 0°, which we interpreted as the continuation of the Local (Orion) arm toward the outer disk. While most clusters (and young stars in their background) closely follow the warp of the disk, our decade-old survey of the spiral structure of this region led us to identify three clusters, Haffner 18 (1 and 2) and Haffner 19, which remain very close to b = 0° and lie at distances (4.5, ∼8.0, and 6.4 kpc) where most of the material is already significantly warped. Here, we report on a search for clusters that share the same properties as Haffner 18 and 19, and investigate the possible reasons for such an unexpected occurrence. We present UBVRI photometry of five young clusters, namely NGC 2345, NGC 2374, Trumpler 9, Haffner 20, and Haffner 21, which also lie close to the formal Galactic plane. With the exception of Haffner 20, in the background of these clusters we detected young stars that appear close to b=0{sup ∘} and are located at distances up to ∼8 kpc from the Sun, thus deviating significantly from the warp. These populations define a structure that distributes over almost the entire third Galactic quadrant. We discuss this structure in the context of a possible thin disk flaring, similar to the Galactic thick disk.« less

  2. The great dichotomy of the Solar System: Small terrestrial embryos and massive giant planet cores

    NASA Astrophysics Data System (ADS)

    Morbidelli, A.; Lambrechts, M.; Jacobson, S.; Bitsch, B.

    2015-09-01

    The basic structure of the Solar System is set by the presence of low-mass terrestrial planets in its inner part and giant planets in its outer part. This is the result of the formation of a system of multiple embryos with approximately the mass of Mars in the inner disk and of a few multi-Earth-mass cores in the outer disk, within the lifetime of the gaseous component of the protoplanetary disk. What was the origin of this dichotomy in the mass distribution of embryos/cores? We show in this paper that the classic processes of runaway and oligarchic growth from a disk of planetesimals cannot explain this dichotomy, even if the original surface density of solids increased at the snowline. Instead, the accretion of drifting pebbles by embryos and cores can explain the dichotomy, provided that some assumptions hold true. We propose that the mass-flow of pebbles is two-times lower and the characteristic size of the pebbles is approximately ten times smaller within the snowline than beyond the snowline (respectively at heliocentric distance r rice , where rice is the snowline heliocentric distance), due to ice sublimation and the splitting of icy pebbles into a collection of chondrule-size silicate grains. In this case, objects of original sub-lunar mass would grow at drastically different rates in the two regions of the disk. Within the snowline these bodies would reach approximately the mass of Mars while beyond the snowline they would grow to ∼ 20 Earth masses. The results may change quantitatively with changes to the assumed parameters, but the establishment of a clear dichotomy in the mass distribution of protoplanets appears robust provided that there is enough turbulence in the disk to prevent the sedimentation of the silicate grains into a very thin layer.

  3. Near-resonant excitation and propagation of eccentric density waves by external forcing. [in accretion disks

    NASA Technical Reports Server (NTRS)

    Ostriker, Eve C.; Shu, Frank H.; Adams, Fred C.

    1992-01-01

    An overview is presented of the astronomical evidence that relatively massive, distended, gaseous disks form as a natural by-product of the process of star formation, and also the numerical evidence that SLING-amplified eccentric modes in the outer parts of such disks can drive one-armed spiral density waves in the inner parts by near-resonant excitation and propagation. An ordinary differential equation (ODE) of the second order that approximately governs the nonlocalized forcing of waves in a disk satisfying Lindblad resonance almost everywhere is derived. When transformed and appended with an extra model term, this ODE implies, for free waves, the usual asymptotic results of the WKBJ dispersion relationship and the propagation Goldreich-Tremaine (1978) formula for the resonant torque exerted on a localized Lindblad resonance. An analytical solution is given for the rate of energy and angular momentum transfer by nonlocalized near-resonant forcing in the case when the disk has power-law dependences on the radius of the surface density and temperature.

  4. The Minimum-Mass Surface Density of the Solar Nebula using the Disk Evolution Equation

    NASA Technical Reports Server (NTRS)

    Davis, Sanford S.

    2005-01-01

    The Hayashi minimum-mass power law representation of the pre-solar nebula (Hayashi 1981, Prog. Theo. Phys.70,35) is revisited using analytic solutions of the disk evolution equation. A new cumulative-planetary-mass-model (an integrated form of the surface density) is shown to predict a smoother surface density compared with methods based on direct estimates of surface density from planetary data. First, a best-fit transcendental function is applied directly to the cumulative planetary mass data with the surface density obtained by direct differentiation. Next a solution to the time-dependent disk evolution equation is parametrically adapted to the planetary data. The latter model indicates a decay rate of r -1/2 in the inner disk followed by a rapid decay which results in a sharper outer boundary than predicted by the minimum mass model. The model is shown to be a good approximation to the finite-size early Solar Nebula and by extension to extra solar protoplanetary disks.

  5. Prevalence of blaIMP, and blaVIM gene carriage in metallo-β-lactamase-producing burn isolates of Pseudomonas aeruginosa in Tehran.

    PubMed

    Salimi, Fatemeh; Eftekhar, Fereshteh

    2014-01-01

    To study the prevalence of blaVIM and blaIMP genes in metallo-β-lactamase (MBL)-producing burn isolates of Pseudomonas aeruginosa in relation with AmpC and extended-spectrum β-lactamase (ESBL) production. Thirty-two carbapenem-resistant MBL-producing P aeruginosa burn isolates from Shahid Motahari Burn Hospital in Tehran were employed. Antibiotic susceptibility was determined to 13 antibiotics including imipenem and meropenem by disk diffusion. AmpC and ESBL production was detected by the AmpC disk test and combined disk diffusion assay, respectively, blaIMP and blaVIM gene carriage was shown by polymerase chain reaction and type-specific primers. AmpC production was observed in 81% and ESBL production was detected in 12.5% of the isolates. blalMP carriage was observed in 56.25% and blaVIM gene in 46.8% of the isolates. Surprisingly, 43.5% of the isolates carried both blalMP and blaviM genes. We think that this is the first report on the cocarriage of blalMP and blavIM in P aeruginosa. There was also a strong association between MBL gene carriage and AmpC β-lactamase production.

  6. Interstellar Explorer Observations of the Solar System's Debris Disks

    NASA Astrophysics Data System (ADS)

    Lisse, C. M.; McNutt, R. L., Jr.; Brandt, P. C.

    2017-12-01

    Planetesimal belts and debris disks full of dust are known as the "signposts of planet formation" in exosystems. The overall brightness of a disk provides information on the amount of sourcing planetesimal material, while asymmetries in the shape of the disk can be used to search for perturbing planets. The solar system is known to house two such belts, the Asteroid belt and the Kuiper Belt; and at least one debris cloud, the Zodiacal Cloud, sourced by planetisimal collisions and Kuiper Belt comet evaporative sublimation. However these are poorly understood in toto because we live inside of them. E.g., while we know of the two planetesimal belt systems, it is not clear how much, if any, dust is produced from the Kuiper belt since the near-Sun comet contributions dominate near-Earth space. Understanding how much dust is produced in the Kuiper belt would give us a much better idea of the total number of bodies in the belt, especially the smallest ones, and their dynamical collisional state. Even for the close in Zodiacal cloud, questions remain concerning its overall shape and orientation with respect to the ecliptic and invariable planes of the solar system - they aren't explainable from the perturbations caused by the known planets alone. In this paper we explore the possibilities of using an Interstellar Explorer telescope placed at 200 AU from the sun to observe the brightness, shape, and extent of the solar system's debris disk(s). We should be able to measure the entire extent of the inner, near-earth zodiacal cloud; whether it connects smoothly into an outer cloud, or if there is a second outer cloud sourced by the Kuiper belt and isolated by the outer planets, as predicted by Stark & Kuchner (2009, 2010) and Poppe et al. (2012, 2016; Figure 1). VISNIR imagery will inform about the dust cloud's density, while MIR cameras will provide thermal imaging photometry related to the cloud's dust particle size and composition. Observing at high phase angle by looking back towards the sun from 200 AU, we will be able to perform deep searches for the presence of rings and dust clouds around discrete sources, and thus we will be able to search for possible strong individual sources of the debris clouds - like the Haumea family collisional fragments, or the rings of the Centaur Chariklo, or dust emitted from spallation off the 6 known bodies of the Pluto system.

  7. Shaping Disk Galaxy Stellar Populations via Internal and External Processes

    NASA Astrophysics Data System (ADS)

    Roškar, Rok

    2015-03-01

    In recent years, effects such as the radial migration of stars in disks have been recognized as important drivers of the properties of stellar populations. Radial migration arises due to perturbative effects of disk structures such as bars and spiral arms, and can deposit stars formed in disks to regions far from their birthplaces. Migrant stars can significantly affect the demographics of their new locales, especially in low-density regions such as in the outer disks. However, in the cosmological environment, other effects such as mergers and filamentary gas accretion also influence the disk formation process. Understanding the relative importance of these processes on the detailed evolution of stellar population signatures is crucial for reconstructing the history of the Milky Way and other nearby galaxies. In the Milky Way disk in particular, the formation of the thickened component has recently attracted much attention due to its potential to serve as a diagnostic of the galaxy's early history. Some recent work suggests, however, that the vertical structure of Milky Way stellar populations is consistent with models that build up the thickened component through migration. I discuss these developments in the context of cosmological galaxy formation.

  8. Observation of the Central Part of the Beta-Pictoris Disk with an Anti-Blooming CCD

    NASA Astrophysics Data System (ADS)

    Lecavelier Des Etangs, A.; Perrin, G.; Ferlet, R.; Vidal Madjar, A.; Colas, F.; Buil, C.; Sevre, F.; Arlot, J. E.; Beust, H.; Lagrange Henri, A. M.; Lecacheux, J.; Deleuil, M.; Gry, C.

    1993-07-01

    β Pictoris (A5V) possesses a circumstellar disk of gas and dust which is oriented edge-on to Earth. Possibly a planet may be indirectly responsible for spectroscopic events, presently interpreted as the signature of the vaporisation of comet-like bodies when grazing the star, and may have cleared up dust particles in the inner zone. Previous coronographic studies coupled with IRAS and ground based IR observations also seem to indicate that the inner regions of the disk may be possibly dust free. We have extended the coronographic studies closer to the star in order to directly observe this zone, through a different observational technique based on the use of an anti- blooming CCD. These new observations, recorded at La Silla (Chile), revealed the structure of the disk down to two arcsec from the star (30 AU from the star). A different nature of dust particles seems to be present in the inner regions of the disk, in possible relation with a planetary formation process. Also an inverted asymmetry is observed in the inner region of the disk when compared to the outer one, a structure possibly related to a non homogeneous distribution of the dust within the disk.

  9. A New Paradigm for Gamma Ray Bursts: Long Term Accretion Rate Modulation by an External Accretion Disk

    NASA Technical Reports Server (NTRS)

    Cannizzo, John; Gehrels, Neil

    2009-01-01

    We present a new way of looking at the very long term evolution of GRBs in which the disk of material surrounding the putative black hole powering the GRB jet modulates the mass flow, and hence the efficacy of the process that extracts rotational energy from the black hole and inner accretion disk. The pre-Swift paradigm of achromatic, shallow-to-steep "breaks" in the long term GRB light curves has not been borne out by detailed Swift data amassed in the past several years. We argue that, given the initial existence of a fall-back disk near the progenitor, an unavoidable consequence will be the formation of an "external disk" whose outer edge continually moves to larger radii due to angular momentum transport and lack of a confining torque. The mass reservoir at large radii moves outward with time and gives a natural power law decay to the GRB light curves. In this model, the different canonical power law decay segments in the GRB identified by Zhang et al. and Nousek et al. represent different physical states of the accretion disk. We identify a physical disk state with each power law segment.

  10. Barred Ring Galaxy NGC 1291

    NASA Image and Video Library

    2005-05-05

    This ultraviolet image left and visual image right from NASA Galaxy Evolution Explorer is of the barred ring galaxy NGC 1291. The VIS image is dominated by the inner disk and bar. The UV image is dominated by the low surface brightness outer arms.

  11. THE EVOLUTION OF INNER DISK GAS IN TRANSITION DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoadley, K.; France, K.; McJunkin, M.

    2015-10-10

    Investigating the molecular gas in the inner regions of protoplanetary disks (PPDs) provides insight into how the molecular disk environment changes during the transition from primordial to debris disk systems. We conduct a small survey of molecular hydrogen (H{sub 2}) fluorescent emission, using 14 well-studied Classical T Tauri stars at two distinct dust disk evolutionary stages, to explore how the structure of the inner molecular disk changes as the optically thick warm dust dissipates. We simulate the observed Hi-Lyman α-pumped H{sub 2} disk fluorescence by creating a 2D radiative transfer model that describes the radial distributions of H{sub 2} emissionmore » in the disk atmosphere and compare these to observations from the Hubble Space Telescope. We find the radial distributions that best describe the observed H{sub 2} FUV emission arising in primordial disk targets (full dust disk) are demonstrably different than those of transition disks (little-to-no warm dust observed). For each best-fit model, we estimate inner and outer disk emission boundaries (r{sub in} and r{sub out}), describing where the bulk of the observed H{sub 2} emission arises in each disk, and we examine correlations between these and several observational disk evolution indicators, such as n{sub 13–31}, r{sub in,} {sub CO}, and the mass accretion rate. We find strong, positive correlations between the H{sub 2} radial distributions and the slope of the dust spectral energy distribution, implying the behavior of the molecular disk atmosphere changes as the inner dust clears in evolving PPDs. Overall, we find that H{sub 2} inner radii are ∼4 times larger in transition systems, while the bulk of the H{sub 2} emission originates inside the dust gap radius for all transitional sources.« less

  12. The near-infrared properties of compact binary systems

    NASA Astrophysics Data System (ADS)

    Froning, Cynthia Suzanne

    I present H- and K-band light curves of the dwarf nova cataclysmic variable (CV), IP Peg, and the novalike CV, RW Tri, and an H-band light curve of the novalike CV, SW Sex. All three systems showed contributions from the late-type secondary star and the accretion disk, including a primary eclipse of the accretion disk by the secondary star and a secondary eclipse of the star by the disk. The ellipsoidal variations of the secondary star in IP Peg were modeled and subtracted from the data. The subtracted light curves show a pronounced double-hump variation, resembling those seen in the dwarf novae WZ Sge and AL Com. The primary eclipse was modeled using maximum entropy disk mapping techniques. The accretion disk has a flat intensity distribution and a low brightness temperature (Tbr ~= 3000-4000 K). Superimposed on the face of the disk is the bright spot, where the mass accretion stream impacts the disk; the position of the bright spot is different from the range of positions seen at visible wavelengths. The near-infrared accretion disk flux is dominated by optically thin emission. The eclipse depth is too shallow to be caused by a fully opaque accretion disk. The NIR light curves in RW Tri show a deep primary eclipse of the accretion disk, ellipsoidal variations from the secondary star, a secondary eclipse, and strong flickering in the disk flux. The depth of the secondary eclipse indicates that the accretion disk is opaque. The light curve also has a hump extending from φ = 0.1-0.9 which was successfully modeled as flux from the inner face of the secondary star when heated by a ~0.2 L Lsolar source. The radial brightness temperature profile of the outer disk is consistent with models of a disk in steady-state for a mass transfer rate of M~=5×10- 10 Msolaryr- 1 . At small disk radii, however, the brightness temperature profile is flatter than the steady-state model. The H-band light curve of SW Sex is dominated by emission from the accretion disk. As in RW Tri, the light curve has a hump outside of primary eclipse which was modeled as flux from the secondary star when irradiated by a 0.2-0.3 Lsolar source. The light curve has a dip at φ = 0.5 which is consistent with an eclipse of the irradiated face of the secondary star by an opaque accretion disk. The accretion disk has a brightness temperature profile much flatter than the theoretical profile of a steady- state disk. The disk is asymmetric, with the front of the disk (the side facing the secondary star at mid-eclipse) hotter than the back. The bright spot, which appears in visible disk maps of SW Sex, is not seen in the NIR light curve. I also present H-band light curves of the X-ray binary system, A0620-00, and NIR spectra of two X-ray binaries, CI Cam, and the relativistic jet source, SS 433. (Abstract shortened by UMI.)

  13. Modeling MHD accretion-ejection: episodic ejections of jets triggered by a mean-field disk dynamo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stepanovs, Deniss; Fendt, Christian; Sheikhnezami, Somayeh, E-mail: deniss@stepanovs.org, E-mail: fendt@mpia.de

    2014-11-20

    We present MHD simulations exploring the launching, acceleration, and collimation of jets and disk winds. The evolution of the disk structure is consistently taken into account. Extending our earlier studies, we now consider the self-generation of the magnetic field by an α{sup 2}Ω mean-field dynamo. The disk magnetization remains on a rather low level, which helps to evolve the simulations for T > 10, 000 dynamical time steps on a domain extending 1500 inner disk radii. We find the magnetic field of the inner disk to be similar to the commonly found open field structure, favoring magneto-centrifugal launching. The outermore » disk field is highly inclined and predominantly radial. Here, differential rotation induces a strong toroidal component, which plays a key role in outflow launching. These outflows from the outer disk are slower, denser, and less collimated. If the dynamo action is not quenched, magnetic flux is continuously generated, diffuses outward through the disk, and fills the entire disk. We have invented a toy model triggering a time-dependent mean-field dynamo. The duty cycles of this dynamo lead to episodic ejections on similar timescales. When the dynamo is suppressed as the magnetization falls below a critical value, the generation of the outflows and also accretion is inhibited. The general result is that we can steer episodic ejection and large-scale jet knots by a disk-intrinsic dynamo that is time-dependent and regenerates the jet-launching magnetic field.« less

  14. Lunar and Planetary Science XXXV: Origin of Planetary Systems

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session titled Origin of Planetary Systems" included the following reports:Convective Cooling of Protoplanetary Disks and Rapid Giant Planet Formation; When Push Comes to Shove: Gap-opening, Disk Clearing and the In Situ Formation of Giant Planets; Late Injection of Radionuclides into Solar Nebula Analogs in Orion; Growth of Dust Particles and Accumulation of Centimeter-sized Objects in the Vicinity of a Pressure enhanced Region of a Solar Nebula; Fast, Repeatable Clumping of Solid Particles in Microgravity ; Chondrule Formation by Current Sheets in Protoplanetary Disks; Radial Migration of Phyllosilicates in the Solar Nebula; Accretion of the Outer Planets: Oligarchy or Monarchy?; Resonant Capture of Irregular Satellites by a Protoplanet ; On the Final Mass of Giant Planets ; Predicting the Atmospheric Composition of Extrasolar Giant Planets; Overturn of Unstably Stratified Fluids: Implications for the Early Evolution of Planetary Mantles; and The Evolution of an Impact-generated Partially-vaporized Circumplanetary Disk.

  15. Recent developments on SU UMa stars - theory vs. observation

    NASA Astrophysics Data System (ADS)

    Cannizzo, John K.

    2015-01-01

    Kepler light curves of short period dwarf novae have resparked interest in the nature of superoutbursts and led to the question: Is the thermal-tidal instability needed, or can the plain vanilla version of the accretion disk limit cycle do the job all by itself? A detailed time-resolved study of an eclipsing SU UMa system during superoutburst onset should settle the question - if there is a dramatic contraction of the disk at superoutburst onset, Osaki's thermal-tidal model would be preferred; if not, the plain disk instability model would be sufficient. I will present recent results that support the contention by Osaki & Kato that the time varying negative superhump frequencies can be taken as a surrogate for the outer disk radius variations. Finally, it may be necessaryto look beyond the short period dwarf novae to gain perspective on the nature of embedded precursors in long outbursts.

  16. Course 6: Star Formation

    NASA Astrophysics Data System (ADS)

    Natta, A.

    Contents 1 Introduction 2 Collapse of molecular cores 2.1 Giant molecular clouds and cores 2.2 Conditions for collapse 2.3 Free-fall collapse 2.4 Collapse of an isothermal sphere of gas 2.5 Collapse of a slowly rotating core 3 Observable properties of protostars 3.1 Evidence of infall from molecular line profiles 3.2 SEDs of protostars 3.3 The line spectrumof a protostar 4 Protostellar and pre-main-sequence evolution 4.1 The protostellar phase 4.2 Pre-main-sequence evolution 4.3 The birthline 5 Circumstellar disks 5.1 Accretion disks 5.2 Properties of steady accretion disks 5.3 Reprocessing disks 5.4 Disk-star interaction 6 SEDs of disks 6.1 Power-law disks 6.2 Long-wavelength flux and disk mass 6.3 Comparison with TTS observations: Heating mechanism 7 Disk properties from observations 7.1 Mass accretion rate 7.2 Inner radius 7.3 Masses 7.4 Sizes 8 Disk lifetimes 8.1 Ground-based near and mid-infrared surveys 8.2 Mid-infrared ISOCAMsurveys 8.3 ISOPHOT 60 microm survey 8.4 Surveys at millimeter wavelengths 9 Disk evolution 9.1 Can we observe the early planet formation phase? 9.2 Evidence for grain growth 9.3 Evidence of planetesimals 9.4 Where is the diskmass? 10 Secondary or debris disks 11 Summary

  17. Exploring the Surface Brightness Breaks and Star Formation in Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Malko, Bradley Ann; Hunter, Deidre Ann

    2018-06-01

    Stellar surface brightness profiles of both spirals and dwarf irregular galaxies often show breaks in which the exponential fall-off abruptly changes slope. Most often the profile is down-bending (Type II) in the outer disk, but sometimes it is up-bending (Type III). Stellar disks extend a long ways beyond the profile breaks, but we do not understand what happens physically at the breaks. To explore this we are examining the star formation activity, as traced with FUV emission, interior to the break compared to that exterior to the break in both dwarf irregulars and spiral galaxies. We present the results for the spiral galaxy NGC 2500 and compare it to the LITTLE THINGS dwarf irregular galaxies.

  18. Refractive index sensing with Fano resonances in silicon oligomers

    PubMed Central

    Chong, Katie E.; Orton, Henry W.; Decker, Manuel; Miroshnichenko, Andrey E.; Brener, Igal; Kivshar, Yuri S.

    2017-01-01

    We demonstrate experimentally refractive index sensing with localized Fano resonances in silicon oligomers, consisting of six disks surrounding a central one of slightly different diameter. Owing to the low absorption and narrow Fano-resonant spectral features appearing as a result of the interference of the modes of the outer and the central disks, we demonstrate refractive index sensitivity of more than 150 nm RIU−1 with a figure of merit of 3.8. This article is part of the themed issue ‘New horizons for nanophotonics’. PMID:28220001

  19. Inner disk clearing around the Herbig Ae star HD 139614: Evidence for a planet-induced gap?

    NASA Astrophysics Data System (ADS)

    Matter, A.; Labadie, L.; Augereau, J. C.; Kluska, J.; Crida, A.; Carmona, A.; Gonzalez, J. F.; Thi, W. F.; Le Bouquin, J.-B.; Olofsson, J.; Lopez, B.

    2016-02-01

    Spatially resolving the inner dust cavity (or gap) of the so-called (pre-)transitional disks is a key to understanding the connection between the processes of planetary formation and disk dispersal. The disk around the Herbig star HD 139614 is of particular interest since it presents a pretransitional nature with an au-sized gap structure that is spatially resolved by mid-infrared interferometry in the dust distribution. With the aid of new near-infrared interferometric observations, we aim to characterize the 0.1-10 au region of the HD 139614 disk further and then identify viable mechanisms for the inner disk clearing. We report the first multiwavelength modeling of the interferometric data acquired on HD 139614 with the VLTI instruments PIONIER, AMBER, and MIDI, complemented by Herschel/PACS photometric measurements. We first performed a geometrical modeling of the new near-infrared interferometric data, followed by radiative transfer modeling of the complete dataset using the code RADMC3D. We confirm the presence of a gap structure in the warm μm-sized dust distribution, extending from about 2.5 au to 6 au, and constrained the properties of the inner dust component: e.g., a radially increasing dust surface density profile, and a depletion in dust of ~103 relative to the outer disk. Since self-shadowing and photoevaporation appears unlikely to be responsible for the au-sized gap of HD 139614, we thus tested if dynamical clearing could be a viable mechanism using hydrodynamical simulations to predict the structure of the gaseous disk. Indeed, a narrow au-sized gap is consistent with the expected effect of the interaction between a single giant planet and the disk. Assuming that small dust grains are well coupled to the gas, we found that an approximately 3 Mjup planet located at ~4.5 au from the star could, in less than 1 Myr, reproduce most of the aspects of the dust surface density profile, while no significant depletion (in gas) occurred in the inner disk, in contrast to the dust. However, this "dust-depleted" inner disk could be explained by the expected dust filtration by the gap and the efficient dust growth/fragmentation occurring in the inner disk regions. Our results support the hypothesis of a giant planet opening a gap and shaping the inner region of the HD 139614 disk. This makes HD 139614 an exciting candidate specifically for witnessing planet-disk interaction. Based on observations collected at the European Southern Observatory, Chile (ESO IDs : 385.C-0886, 087.C-0811, 089.C-0456, and 190.C-0963).

  20. 77 FR 11017 - Airworthiness Directives; Pratt & Whitney (PW) Models PW4074 and PW4077 Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-24

    ... (BSI) or eddy current inspection (ECI) of the disk outer rim front rail for cracks prior to... date of this AD. (ii) Perform a borescope inspection (BSI) or eddy current inspection (ECI) of the...

  1. Featured Image: A New Look at Fomalhaut

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-06-01

    ALMA continuum image overlaid as contours on the Hubble STIS image of Fomalhaut. [MacGregor et al. 2017]This stunning image of the Fomalhaut star system was taken by the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile. This image maps the 1.3-mm continuum emission from the dust around the central star, revealing a ring that marks the outer edge of the planet-forming debris disk surrounding the star. In a new study, a team of scientists led by Meredith MacGregor (Harvard-Smithsonian Center for Astrophysics) examines these ALMA observations of Fomalhaut, which beautifully complement former Hubble images of the system. ALMAs images provide the first robust detection of apocenter glow the brightening of the ring at the point farthest away from the central star, a side effect of the rings large eccentricity. The authors use ALMAsobservations to measure properties of the disk, such as its span (roughly 136 x 14 AU), eccentricity (e 0.12), and inclination angle ( 66). They then explore the implications for Fomalhaut b, the planet located near the outer disk. To read more about the teams observations, check out the paper below.CitationMeredith A. MacGregor et al 2017 ApJ 842 8. doi:10.3847/1538-4357/aa71ae

  2. The simulation of the outer Oort cloud formation. The first giga-year of the evolution

    NASA Astrophysics Data System (ADS)

    Dybczyński, P. A.; Leto, G.; Jakubík, M.; Paulech, T.; Neslušan, L.

    2008-08-01

    Aims: Considering a model of an initial disk of planetesimals that consists of 10 038 test particles, we simulate the formation of distant-comet reservoirs for the first 1 Gyr. Since only the outer part of the Oort cloud can be formed within this period, we analyse the efficiency of the formation process and describe approximately the structure of the part formed. Methods: The dynamical evolution of the particles is followed by numerical integration of their orbits. We consider the perturbations by four giant planets on their current orbits and with their current masses, in addition to perturbations by the Galactic tide and passing stars. Results: In our simulation, the population size of the outer Oort cloud reaches its maximum value at about 210 Myr. After a subsequent, rapid decrease, it becomes almost stable (with only a moderate decrease) from about 500 Myr. At 1 Gyr, the population size decreases to about 40% of its maximum value. The efficiency of the formation is low. Only about 0.3% of the particles studied still reside in the outer Oort cloud after 1 Gyr. The space density of particles in the comet cloud, beyond the heliocentric distance, r, of 25 000 AU is proportional to r-s, where s = 4.08 ± 0.34. From about 50 Myr to the end of the simulation, the orbits of the Oort cloud comets are not distributed randomly, but high galactic inclinations of the orbital planes are strongly dominant. Among all of the outer perturbers considered, this is most likely caused by the dominant, disk component of the Galactic tide. Movies (cf. caption to Fig. 1) are only available at http://www.aanda.org

  3. DEEP IMAGING OF M51: A NEW VIEW OF THE WHIRLPOOL’S EXTENDED TIDAL DEBRIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watkins, Aaron E.; Mihos, J. Christopher; Harding, Paul

    We present deep, wide-field imaging of the M51 system using CWRU’s Burrell Schmidt Telescope at KPNO to study the faint tidal features that constrain its interaction history. Our images trace M51's tidal morphology down to a limiting surface brightness of μ{sub B,lim} ∼ 30 mag arcsec{sup −2} and provide accurate colors (σ{sub B−V}<0.1) down to μ{sub B} ∼ 28. We identify two new tidal streams in the system (the south and northeast plumes) with surface brightnesses of μ{sub B} = 29 and luminosities of ∼10{sup 6}L{sub ⊙,B}. While the northeast plume may be a faint outer extension of the tidalmore » “crown” north of NGC 5195 (M51b), the south plume has no analog in any existing M51 simulation and may represent a distinct tidal stream or disrupted dwarf galaxy. We also trace the extremely diffuse northwest plume out to a total extent of 20′ (43 kpc) from NGC 5194 (M51a) and show it to be physically distinct from the overlapping bright tidal streams from M51b. The northwest plume’s morphology and red color (B−V=0.8) instead argue that it originated from tidal stripping of M51a’s extreme outer disk. Finally, we confirm the strong segregation of gas and stars in the southeast tail and do not detect any diffuse stellar component in the H i portion of the tail. Extant simulations of M51 have difficulty matching both the wealth of tidal structure in the system and the lack of stars in the H i tail, motivating new modeling campaigns to study the dynamical evolution of this classic interacting system.« less

  4. An inducible amphipathic helix within the intrinsically disordered C terminus can participate in membrane curvature generation by peripherin-2/rds.

    PubMed

    Milstein, Michelle L; Kimler, Victoria A; Ghatak, Chiranjib; Ladokhin, Alexey S; Goldberg, Andrew F X

    2017-05-12

    Peripherin-2/rds is required for biogenesis of vertebrate photoreceptor outer segment organelles. Its localization at the high-curvature rim domains of outer segment disk membranes suggests that it may act to shape these structures; however, the molecular function of this protein is not yet resolved. Here, we apply biochemical, biophysical, and imaging techniques to elucidate the role(s) played by the protein's intrinsically disordered C-terminal domain and an incipient amphipathic α-helix contained within it. We investigated a deletion mutant lacking only this α-helix in stable cell lines and Xenopus laevis photoreceptors. We also studied a soluble form of the full-length ∼7-kDa cytoplasmic C terminus in cultured cells and purified from Escherichia coli The α-helical motif was not required for protein biosynthesis, tetrameric subunit assembly, tetramer polymerization, localization at disk rims, interaction with GARP2, or the generation of membrane curvature. Interestingly, however, loss of the helical motif up-regulated membrane curvature generation in cellulo , introducing the possibility that it may regulate this activity in photoreceptors. Furthermore, the incipient α-helix (within the purified soluble C terminus) partitioned into membranes only when its acidic residues were neutralized by protonation. This suggests that within the context of full-length peripherin-2/rds, partitioning would most likely occur at a bilayer interfacial region, potentially adjacent to the protein's transmembrane domains. In sum, this study significantly strengthens the evidence that peripherin-2/rds functions directly to shape the high-curvature rim domains of the outer segment disk and suggests that the protein's C terminus may modulate membrane curvature-generating activity present in other protein domains. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Quantification of the association between intervertebral disk calcification and disk herniation in Dachshunds.

    PubMed

    Jensen, Vibeke F; Beck, Sarah; Christensen, Knud A; Arnbjerg, Jens

    2008-10-01

    To quantify the association between intervertebral disk calcification and disk herniation in Dachshunds. Longitudinal study. 61 Dachshunds that had been radiographically screened for calcification of intervertebral disks at 2 years of age in other studies. Thirty-seven of the dogs had survived to the time of the present study and were > or = 8 years of age; 24 others had not survived. Radiographic examination of 36 surviving dogs was performed, and information on occurrence of disk calcification at 2 years of age were obtained from records of all 61 Dachshunds. Information on occurrence of disk herniation between 2 and 8 years of age was obtained from owners via questionnaire. Associations between numbers of calcified disks and disk herniation were analyzed via maximum likelihood logistic regression. Disk calcification at 2 years of age was a significant predictor of clinical disk herniation (odds ratio per calcified disk, 1.42; 95% confidence interval, 1.19 to 1.81). Number of calcified disks in the full vertebral column was a better predictor than number of calcified disks between vertebrae T10 and L3. Numbers of calcified disks at > or = 8 years of age and at 2 years of age were significantly correlated. Number of calcified disks at 2 years of age was a good predictor of clinical disk herniation in Dachshunds. Because of the high heritability of disk calcification, it is possible that an effective reduction in occurrence of severe disk herniation in Dachshunds could be obtained by selective breeding against high numbers of calcified disks at 2 years of age.

  6. ALMA Dust Polarization Observations of Two Young Edge-on Protostellar Disks

    NASA Astrophysics Data System (ADS)

    Lee, Chin-Fei; Li, Zhi-Yun; Ching, Tao-Chung; Lai, Shih-Ping; Yang, Haifeng

    2018-02-01

    Polarized emission is detected in two young nearly edge-on protostellar disks in 343 GHz continuum at ∼50 au (∼0.″12) resolution with Atacama Large Millimeter/submillimeter Array. One disk is in HH 212 (Class 0) and the other in the HH 111 (early Class I) protostellar system. The polarization fraction is ∼1%. The disk in HH 212 has a radius of ∼60 au. The emission is mainly detected from the nearside of the disk. The polarization orientations are almost perpendicular to the disk major axis, consistent with either self-scattering or emission by grains aligned with a poloidal field around the outer edge of the disk because of the optical depth effect and temperature gradient; the presence of a poloidal field would facilitate the launching of a disk wind, for which there is already tentative evidence in the same source. The disk of HH 111 VLA 1 has a larger radius of ∼220 au and is thus more resolved. The polarization orientations are almost perpendicular to the disk major axis in the nearside, but more along the major axis in the farside, forming roughly half of an elliptical pattern there. It appears that toroidal and poloidal magnetic field may explain the polarization on the near and far sides of the disk, respectively. However, it is also possible that the polarization is due to self-scattering. In addition, alignment of dust grains by radiation flux may play a role in the farside. Our observations reveal a diversity of disk polarization patterns that should be taken into account in future modeling efforts.

  7. ON THE STAR FORMATION LAW FOR SPIRAL AND IRREGULAR GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elmegreen, Bruce G., E-mail: bge@us.ibm.com

    2015-12-01

    A dynamical model for star formation on a galactic scale is proposed in which the interstellar medium is constantly condensing to star-forming clouds on the dynamical time of the average midplane density, and the clouds are constantly being disrupted on the dynamical timescale appropriate for their higher density. In this model, the areal star formation rate scales with the 1.5 power of the total gas column density throughout the main regions of spiral galaxies, and with a steeper power, 2, in the far outer regions and in dwarf irregular galaxies because of the flaring disks. At the same time, theremore » is a molecular star formation law that is linear in the main and outer parts of disks and in dIrrs because the duration of individual structures in the molecular phase is also the dynamical timescale, canceling the additional 0.5 power of surface density. The total gas consumption time scales directly with the midplane dynamical time, quenching star formation in the inner regions if there is no accretion, and sustaining star formation for ∼100 Gyr or more in the outer regions with no qualitative change in gas stability or molecular cloud properties. The ULIRG track follows from high densities in galaxy collisions.« less

  8. Modeling the Flexural Rigidity of Rod Photoreceptors

    PubMed Central

    Haeri, Mohammad; Knox, Barry E.; Ahmadi, Aphrodite

    2013-01-01

    In vertebrate eyes, the rod photoreceptor has a modified cilium with an extended cylindrical structure specialized for phototransduction called the outer segment (OS). The OS has numerous stacked membrane disks and can bend or break when subjected to mechanical forces. The OS exhibits axial structural variation, with extended bands composed of a few hundred membrane disks whose thickness is diurnally modulated. Using high-resolution confocal microscopy, we have observed OS flexing and disruption in live transgenic Xenopus rods. Based on the experimental observations, we introduce a coarse-grained model of OS mechanical rigidity using elasticity theory, representing the axial OS banding explicitly via a spring-bead model. We calculate a bending stiffness of ∼105 nN⋅μm2, which is seven orders-of-magnitude larger than that of typical cilia and flagella. This bending stiffness has a quadratic relation to OS radius, so that thinner OS have lower fragility. Furthermore, we find that increasing the spatial frequency of axial OS banding decreases OS rigidity, reducing its fragility. Moreover, the model predicts a tendency for OS to break in bands with higher spring number density, analogous to the experimental observation that transgenic rods tended to break preferentially in bands of high fluorescence. We discuss how pathological alterations of disk membrane properties by mutant proteins may lead to increased OS rigidity and thus increased breakage, ultimately contributing to retinal degeneration. PMID:23442852

  9. A pebbles accretion model with chemistry and implications for the solar system in the lights of Juno

    NASA Astrophysics Data System (ADS)

    Ali-Dib, Mohamad

    2016-10-01

    The chemical compositions of the solar system giant planets are a major source of informations on their origins. Since the measurements by the Galileo probe, multiple models have been put forward to try and explain the noble gases enrichment in Jupiter. The most discussed among these are its formation in the outer cold nebula and its formation in a partially photoevaporated disk. In this work I couple a pebbles accretion model to the disk's chemistry and photoevaporation in order to make predictions from both scenarios and compare them to the upcoming Juno measurements. The model include pebbles and gas accretion, type I and II migration, photoevaporation and chemical measurements from meteorites, comets and disks. Population synthesis simulations are used to explore the models free parameters (planets initial conditions), where then the results are narrowed down using the planets chemical, dynamical and core mass costraints. We end up with a population that fits all of the constrains. These are then used to predict the oxygen abundance and core mass in Jupiter, to be compared to results of Juno. Same calculations are also done for Saturn and Neptune for comparison. I will present the results from these simulations as well as the predictions from all of the different models.Ali-Dib, M. (2016ab, submitted to MNRAS)

  10. A NEWLY FORMING COLD FLOW PROTOGALACTIC DISK, A SIGNATURE OF COLD ACCRETION FROM THE COSMIC WEB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, D. Christopher; Matuszewski, Mateusz; Morrissey, Patrick

    How galaxies form from, and are fueled by, gas from the intergalactic medium (IGM) remains one of the major unsolved problems in galaxy formation. While the classical Cold Dark Matter paradigm posits galaxies forming from cooling virialized gas, recent theory and numerical simulations have highlighted the importance of cold accretion flows—relatively cool ( T ∼ few × 104 K) unshocked gas streaming along filaments into dark matter halos, including hot, massive, high-redshift halos. These flows are thought to deposit gas and angular momentum into the circumgalactic medium resulting in disk- or ring-like structures, eventually coalescing into galaxies forming at filamentarymore » intersections. We earlier reported a bright, Ly α emitting filament near the QSO HS1549+19 at redshift z = 2.843 discovered with the Palomar Cosmic Web Imager. We now report that the bright part of this filament is an enormous ( R > 100 kpc) rotating structure of hydrogen gas with a disk-like velocity profile consistent with a 4 × 10{sup 12} M {sub ⊙} halo. The orbital time of the outer part of the what we term a “protodisk” is comparable to the virialization time and the age of the universe at this redshift. We propose that this protodisk can only have recently formed from cold gas flowing directly from the cosmic web.« less

  11. Uranus and Neptune: Refugees from the Jupiter-Saturn zone?

    NASA Astrophysics Data System (ADS)

    Thommes, E. W.; Duncan, M. J.; Levison, H. F.

    1999-09-01

    Plantesimal accretion models of planet formation have been quite successful at reproducing the terrestrial region of the Solar System. However, in the outer Solar System these models run into problems, and it becomes very difficult to grow bodies to the current mass of the ``ice giants," Uranus and Neptune. Here we present an alternative scenario to in-situ formation of the ice giants. In addition to the Jupiter and Saturn solid cores, several more bodies of mass ~ 10 MEarth or more are likely to have formed in the region between 4 and 10 AU. As Jupiter's core, and perhaps Saturn's, accreted nebular gas, the other nearby bodies must have been scattered outward. Dynamical friction with the trans-Saturnian part of the planetesimal disk would have acted to decouple these ``failed cores" from their scatterer, and to circularize their orbits. Numerical simulations presented here show that systems very similar to our outer Solar System (including Uranus, Neptune, the Kuiper belt, and the scattered disk) are a natural product of this process.

  12. OUTER GALACTIC DISKS AND A QUANTITATIVE TEST OF GRAVITY AT LOW ACCELERATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaritsky, Dennis; Psaltis, Dimitrios, E-mail: dzaritsky@as.arizona.ed, E-mail: psaltis@as.arizona.ed

    We use the recent measurement of the velocity dispersion of star-forming, outer-disk knots by Herbert-Fort et al. in the nearly face-on galaxy NGC 628, in combination with other data from the literature, to execute a straightforward test of gravity at low accelerations. Specifically, the rotation curve at large radius sets the degree of non-standard acceleration and then the predicted scale height of the knots at that radius provides the test of the scenario. For our demonstration, we presume that the H{alpha} knots, which are young (age < 10 Myr), are distributed like the gas from which they have recently formedmore » and find a marginal (>97% confidence) discrepancy with a modified gravity scenario given the current data. More interestingly, we demonstrate that there is no inherent limitation that prevents such a test from reaching possible discrimination at the >4{sigma} level with a reasonable investment of observational resources.« less

  13. The ATCA CABB Line Survey on Centaurus A: Properties of the Molecular Gas from the Dust Lanes to the Central Engine

    NASA Astrophysics Data System (ADS)

    Ott, Juergen; Koribalski, Baerbel; Henkel, Christian; Edwards, Philip; Norris, Ray; Meier, David; Feain, Ilana; Curran, Steve; Martin-Pintado, Jesus; Beelen, Alexandre; Aalto, Susanne; Combes, Francoise; Israel, Frank; Muller, Sebastien; Espada, Daniel; Guelin, Michel; Black, John Harry; V-Trung, Dinh; Impellizzeri, Caterina M. V.; Persson, Carina

    2011-10-01

    Centaurus A with its host NGC5128 is the most nearby radio galaxy. Its molecular spectrum exhibits three prominent features: a) gas that is located in the outer disk and dust lanes, b) absorption lines that are supposedly close to the central AGN, and c) gas in emission from the nucleus. We propose to perform an extensive line survey toward CenA using the exciting new capabilities of CABB. The broad basebands and narrow zoom bands of CABB are ideal to capture the full breath of the CenA spectral features. Our multi-band line observations will allow us to derive the exact physical conditions of each component as well as the chemistry involved. We will therefore obtain a comprehensive view of the physics imprinted on the molecular spectrum of a radio galaxy and its host, reaching from the central supermassive black hole, through the accretion region and the inner disk to the outer dust lanes.

  14. Polluted White Dwarf (Artist's Concept)

    NASA Image and Video Library

    2017-11-01

    This artist's concept shows an exoplanet and debris disk orbiting a polluted white dwarf. White dwarfs are dim, dense remnants of stars similar to the Sun that have exhausted their nuclear fuel and blown off their outer layers. By "pollution," astronomers mean heavy elements invading the photospheres -- the outer atmospheres -- of these stars. The leading explanation is that exoplanets could push small rocky bodies toward the star, whose powerful gravity would pulverize them into dust. That dust, containing heavy elements from the torn-apart body, would then fall on the star. NASA's Spitzer Space Telescope has been instrumental in expanding the field of polluted white dwarfs orbited by hot, dusty disks. Since launch in 2004, Spitzer has confirmed about 40 of these special stars. Another space telescope, NASA's Wide-field Infrared Survey Explorer (WISE), also detected a handful, bringing the total up to about four dozen known today. Because these objects are so faint, infrared light is crucial to identifying them. https://photojournal.jpl.nasa.gov/catalog/PIA22084

  15. Comparison of comet 81P/Wild 2 dust with interplanetary dust from comets.

    PubMed

    Ishii, Hope A; Bradley, John P; Dai, Zu Rong; Chi, Miaofang; Kearsley, Anton T; Burchell, Mark J; Browning, Nigel D; Molster, Frank

    2008-01-25

    The Stardust mission returned the first sample of a known outer solar system body, comet 81P/Wild 2, to Earth. The sample was expected to resemble chondritic porous interplanetary dust particles because many, and possibly all, such particles are derived from comets. Here, we report that the most abundant and most recognizable silicate materials in chondritic porous interplanetary dust particles appear to be absent from the returned sample, indicating that indigenous outer nebula material is probably rare in 81P/Wild 2. Instead, the sample resembles chondritic meteorites from the asteroid belt, composed mostly of inner solar nebula materials. This surprising finding emphasizes the petrogenetic continuum between comets and asteroids and elevates the astrophysical importance of stratospheric chondritic porous interplanetary dust particles as a precious source of the most cosmically primitive astromaterials.

  16. Radial Surface Density Profiles of Gas and Dust in the Debris Disk around 49 Ceti

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, A. Meredith; Lieman-Sifry, Jesse; Flaherty, Kevin M.

    We present ∼0.″4 resolution images of CO(3–2) and associated continuum emission from the gas-bearing debris disk around the nearby A star 49 Ceti, observed with the Atacama Large Millimeter/Submillimeter Array (ALMA). We analyze the ALMA visibilities in tandem with the broadband spectral energy distribution to measure the radial surface density profiles of dust and gas emission from the system. The dust surface density decreases with radius between ∼100 and 310 au, with a marginally significant enhancement of surface density at a radius of ∼110 au. The SED requires an inner disk of small grains in addition to the outer diskmore » of larger grains resolved by ALMA. The gas disk exhibits a surface density profile that increases with radius, contrary to most previous spatially resolved observations of circumstellar gas disks. While ∼80% of the CO flux is well described by an axisymmetric power-law disk in Keplerian rotation about the central star, residuals at ∼20% of the peak flux exhibit a departure from axisymmetry suggestive of spiral arms or a warp in the gas disk. The radial extent of the gas disk (∼220 au) is smaller than that of the dust disk (∼300 au), consistent with recent observations of other gas-bearing debris disks. While there are so far only three broad debris disks with well characterized radial dust profiles at millimeter wavelengths, 49 Ceti’s disk shows a markedly different structure from two radially resolved gas-poor debris disks, implying that the physical processes generating and sculpting the gas and dust are fundamentally different.« less

  17. The Dynamics of Truncated Black Hole Accretion Disks. I. Viscous Hydrodynamic Case

    NASA Astrophysics Data System (ADS)

    Hogg, J. Drew; Reynolds, Christopher S.

    2017-07-01

    Truncated accretion disks are commonly invoked to explain the spectro-temporal variability in accreting black holes in both small systems, I.e., state transitions in galactic black hole binaries (GBHBs), and large systems, I.e., low-luminosity active galactic nuclei (LLAGNs). In the canonical truncated disk model of moderately low accretion rate systems, gas in the inner region of the accretion disk occupies a hot, radiatively inefficient phase, which leads to a geometrically thick disk, while the gas in the outer region occupies a cooler, radiatively efficient phase that resides in the standard geometrically thin disk. Observationally, there is strong empirical evidence to support this phenomenological model, but a detailed understanding of the dynamics of truncated disks is lacking. We present a well-resolved viscous, hydrodynamic simulation that uses an ad hoc cooling prescription to drive a thermal instability and, hence, produce the first sustained truncated accretion disk. With this simulation, we perform a study of the dynamics, angular momentum transport, and energetics of a truncated disk. We find that the time variability introduced by the quasi-periodic transition of gas from efficient cooling to inefficient cooling impacts the evolution of the simulated disk. A consequence of the thermal instability is that an outflow is launched from the hot/cold gas interface, which drives large, sub-Keplerian convective cells into the disk atmosphere. The convective cells introduce a viscous θ - ϕ stress that is less than the generic r - ϕ viscous stress component, but greatly influences the evolution of the disk. In the truncated disk, we find that the bulk of the accreted gas is in the hot phase.

  18. The Dynamics of Truncated Black Hole Accretion Disks. I. Viscous Hydrodynamic Case

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogg, J. Drew; Reynolds, Christopher S.

    Truncated accretion disks are commonly invoked to explain the spectro-temporal variability in accreting black holes in both small systems, i.e., state transitions in galactic black hole binaries (GBHBs), and large systems, i.e., low-luminosity active galactic nuclei (LLAGNs). In the canonical truncated disk model of moderately low accretion rate systems, gas in the inner region of the accretion disk occupies a hot, radiatively inefficient phase, which leads to a geometrically thick disk, while the gas in the outer region occupies a cooler, radiatively efficient phase that resides in the standard geometrically thin disk. Observationally, there is strong empirical evidence to supportmore » this phenomenological model, but a detailed understanding of the dynamics of truncated disks is lacking. We present a well-resolved viscous, hydrodynamic simulation that uses an ad hoc cooling prescription to drive a thermal instability and, hence, produce the first sustained truncated accretion disk. With this simulation, we perform a study of the dynamics, angular momentum transport, and energetics of a truncated disk. We find that the time variability introduced by the quasi-periodic transition of gas from efficient cooling to inefficient cooling impacts the evolution of the simulated disk. A consequence of the thermal instability is that an outflow is launched from the hot/cold gas interface, which drives large, sub-Keplerian convective cells into the disk atmosphere. The convective cells introduce a viscous θ − ϕ stress that is less than the generic r − ϕ viscous stress component, but greatly influences the evolution of the disk. In the truncated disk, we find that the bulk of the accreted gas is in the hot phase.« less

  19. ECCENTRICITY TRAP: TRAPPING OF RESONANTLY INTERACTING PLANETS NEAR THE DISK INNER EDGE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogihara, Masahiro; Ida, Shigeru; Duncan, Martin J., E-mail: ogihara@geo.titech.ac.j, E-mail: ida@geo.titech.ac.j, E-mail: duncan@astro.queensu.c

    2010-10-01

    Using orbital integration and analytical arguments, we have found a new mechanism (an 'eccentricity trap') to halt type I migration of planets near the inner edge of a protoplanetary disk. Because asymmetric eccentricity damping due to disk-planet interaction on the innermost planet at the disk edge plays a crucial role in the trap, this mechanism requires continuous eccentricity excitation and hence works for a resonantly interacting convoy of planets. This trap is so strong that the edge torque exerted on the innermost planet can completely halt type I migrations of many outer planets through mutual resonant perturbations. Consequently, the convoymore » stays outside the disk edge, as a whole. We have derived a semi-analytical formula for the condition for the eccentricity trap and predict how many planets are likely to be trapped. We found that several planets or more should be trapped by this mechanism in protoplanetary disks that have cavities. It can be responsible for the formation of non-resonant, multiple, close-in super-Earth systems extending beyond 0.1 AU. Such systems are being revealed by radial velocity observations to be quite common around solar-type stars.« less

  20. The Effect of Varied Initial Conditions on the Evolution of Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Michael, Scott A.; Durisen, R. H.; Boley, A. C.

    2006-12-01

    We present a series of three-dimensional hydrodynamics simulations of gravitationally unstable protoplanetary disks with globally constant cooling times. The purpose of these simulations is to study the effects of varying the initial surface density profile, equation of state, and cooling time. All non-fragmenting disks exhibit the same phases of evolution described by Mejía et al. (2005) axisymmetric cooling, a burst in a well-defined multi-armed mode, and a transition to an asymptotic behavior in which heating and cooling are roughly balanced over much of the disk. The burst tends to be weaker for initial surface density profiles that fall more steeply with r. Regardless of initial surface density profile, the outer disk redistributes its mass to follow an approximate Σ ∝ r-5/2 power law. Comparison of different equations of state show that, for a given cooling time, a disk with γ = 7/5 is more likely to fragment than one with γ = 5/3. By varying the cooling time with both equations of state, we are able to confirm the tcoolΩ < 8.25 and 5.14 fragmentation criterion for γ = 7/5 and 5/3, respectively, as found by Rice et al. (2005).

  1. The fate of scattered planets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bromley, Benjamin C.; Kenyon, Scott J., E-mail: bromley@physics.utah.edu, E-mail: skenyon@cfa.harvard.edu

    2014-12-01

    As gas giant planets evolve, they may scatter other planets far from their original orbits to produce hot Jupiters or rogue planets that are not gravitationally bound to any star. Here, we consider planets cast out to large orbital distances on eccentric, bound orbits through a gaseous disk. With simple numerical models, we show that super-Earths can interact with the gas through dynamical friction to settle in the remote outer regions of a planetary system. Outcomes depend on planet mass, the initial scattered orbit, and the evolution of the time-dependent disk. Efficient orbital damping by dynamical friction requires planets atmore » least as massive as the Earth. More massive, longer-lived disks damp eccentricities more efficiently than less massive, short-lived ones. Transition disks with an expanding inner cavity can circularize orbits at larger distances than disks that experience a global (homologous) decay in surface density. Thus, orbits of remote planets may reveal the evolutionary history of their primordial gas disks. A remote planet with an orbital distance ∼100 AU from the Sun is plausible and might explain correlations in the orbital parameters of several distant trans-Neptunian objects.« less

  2. Gas Cavities inside Dust Cavities in Disks Inferred from ALMA Observations

    NASA Astrophysics Data System (ADS)

    van der Marel, Nienke; van Dishoeck, Ewine F.; Bruderer, Simon; Pinilla, Paola; van Kempen, Tim; Perez, Laura; Isella, Andrea

    2016-01-01

    Protoplanetary disks with cavities in their dust distribution, also named transitional disks, are expected to be in the middle of active evolution and possibly planet formation. In recent years, millimeter-dust rings observed by ALMA have been suggested to have their origin in dust traps, caused by pressure bumps. One of the ways to generate these is by the presence of planets, which lower the gas density along their orbit and create pressure bumps at the edge. We present spatially resolved ALMA Cycle 0 and Cycle 1 observations of CO and CO isotopologues of several famous transitional disks. Gas is found to be present inside the dust cavities, but at a reduced level compared with the gas surface density profile of the outer disk. The dust and gas emission are quantified using the physical-chemical modeling code DALI. In the majority of these disks we find clear evidence for a drop in gas density of at least a factor of 10 inside the cavity, whereas the dust density drops by at least a factor 1000. The CO isotopologue observations reveal that the gas cavities are significantly smaller than the dust cavities. These gas structures suggest clearing by one or more planetary-mass companions.

  3. ALMA continuum observations of the protoplanetary disk AS 209. Evidence of multiple gaps opened by a single planet

    NASA Astrophysics Data System (ADS)

    Fedele, D.; Tazzari, M.; Booth, R.; Testi, L.; Clarke, C. J.; Pascucci, I.; Kospal, A.; Semenov, D.; Bruderer, S.; Henning, Th.; Teague, R.

    2018-02-01

    This paper presents new high angular resolution ALMA 1.3 mm dust continuum observations of the protoplanetary system AS 209 in the Ophiuchus star forming region. The dust continuum emission is characterized by a main central core and two prominent rings at r = 75 au and r = 130 au intervaled by two gaps at r = 62 au and r = 103 au. The two gaps have different widths and depths, with the inner one being narrower and shallower. We determined the surface density of the millimeter dust grains using the 3D radiative transfer disk code DALI. According to our fiducial model the inner gap is partially filled with millimeter grains while the outer gap is largely devoid of dust. The inferred surface density is compared to 3D hydrodynamical simulations (FARGO-3D) of planet-disk interaction. The outer dust gap is consistent with the presence of a giant planet (Mplanet 0.7 MSaturn); the planet is responsible for the gap opening and for the pile-up of dust at the outer edge of the planet orbit. The simulations also show that the same planet could be the origin of the inner gap at r = 62 au. The relative position of the two dust gaps is close to the 2:1 resonance and we have investigated the possibility of a second planet inside the inner gap. The resulting surface density (including location, width and depth of the two dust gaps) are in agreement with the observations. The properties of the inner gap pose a strong constraint to the mass of the inner planet (Mplanet < 0.1 MJ). In both scenarios (single or pair of planets), the hydrodynamical simulations suggest a very low disk viscosity (α < 10‑4). Given the young age of the system (0.5-1 Myr), this result implies that the formation of giant planets occurs on a timescale of ≲1 Myr. The reduced image (FITS file) is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A24

  4. Multiwavelength search for protoplanetary disks

    NASA Technical Reports Server (NTRS)

    Neuhaeuser, Ralph; Schmidt-Kaler, Theodor

    1994-01-01

    Infrared emission of circumstellar dust was observed for almost one hundred T Tauri stars. This dust is interpreted to be part of a protoplanetary disk orbiting the central star. T Tauri stars are young stellar objects and evolve into solar type stars. Planets are believed to form in these disks. The spectral energy distribution of a disk depends on its temperature profile. Different disk regions emit at different wavelengths. The disk-star boundary layer is hot and emits H(alpha) radiation. Inner disk regions at around 1 AU with a temperature of a few hundred Kelvin can be probed in near infrared wavelength regimes. Outer disk regions at around 100 AU distance from the star are colder and emit far infrared and sub-millimeter radiation. Also, X-ray emission from the stellar surface can reveal information on disk properties. Emission from the stellar surface and the boundary layer may be shielded by circumstellar gas and dust. T Tauri stars with low H(alpha) emission, i.e. no boundary layer, show stronger X-ray emission than classical T Tauri stars, because the inner disk regions of weak emission-line T Tauri stars may be clear of material. In this paper, first ROSAT all sky survey results on the X-ray emission of T Tauri stars and correlations between X-ray luminosity and properties of T Tauri disks are presented. Due to atmospheric absorption, X-ray and most infrared observations cannot be carried out on Earth, but from Earth orbiting satellites (e.g. IRAS, ROSAT, ISO) or from lunar based observatories, which would have special advantages such as a stable environment.

  5. The Role of the Outer Boundary Condition in Accretion Disk Models: Theory and Application

    NASA Astrophysics Data System (ADS)

    Yuan, Feng; Peng, Qiuhe; Lu, Ju-fu; Wang, Jianmin

    2000-07-01

    In a previous paper, we find that the outer boundary conditions (OBCs) of an optically thin accretion flow play an important role in determining the structure of the flow. Here in this paper, we further investigate the influence of OBCs on the dynamics and radiation of the accretion flow on a more detailed level. Bremsstrahlung and synchrotron radiations amplified by Comptonization are taken into account, and two-temperature plasma assumption is adopted. The three OBCs we adopted are the temperatures of the electrons and ions and the specific angular momentum of the accretion flow at a certain outer boundary. We investigate the individual role of each of the three OBCs on the dynamical structure and the emergent spectrum. We find that when the general parameters such as the mass accretion rate M and the viscous parameter α are fixed the peak flux at various bands such as radio, IR, and X-ray can differ by as much as several orders of magnitude under different OBCs in our example. Our results indicate that the OBC is both dynamically and radiatively important and therefore should be regarded as a new ``parameter'' in accretion disk models. As an illustrative example, we further apply the above results to the compact radio source Sgr A* located at the center of our Galaxy. The advection-dominated accretion flow (ADAF) model has turned out to be a great success in explaining its luminosity and spectrum. However, there exists a discrepancy between the mass accretion rate favored by ADAF models in the literature and that favored by the three-dimensional hydrodynamical simulation, with the former being 10-20 times smaller than the latter. By seriously considering the outer boundary condition of the accretion flow, we find that because of the low specific angular momentum of the accretion gas the accretion in Sgr A* should belong to a new accretion pattern, which is characterized by the possession of a very large sonic radius. This accretion pattern can significantly reduce the discrepancy between the mass accretion rates. We argue that the accretion occurred in some detached binary systems; the core of nearby elliptical galaxies and active galactic nuclei very possibly belongs to this accretion pattern.

  6. Mineralogy and petrology of comet 81P/wild 2 nucleus samples

    USGS Publications Warehouse

    Zolensky, M.E.; Zega, T.J.; Yano, H.; Wirick, S.; Westphal, A.J.; Weisberg, M.K.; Weber, I.; Warren, J.L.; Velbel, M.A.; Tsuchiyama, A.; Tsou, P.; Toppani, A.; Tomioka, N.; Tomeoka, K.; Teslich, N.; Taheri, M.; Susini, J.; Stroud, R.; Stephan, T.; Stadermann, F.J.; Snead, C.J.; Simon, S.B.; Simionovici, A.; See, T.H.; Robert, F.; Rietmeijer, F.J.M.; Rao, W.; Perronnet, M.C.; Papanastassiou, D.A.; Okudaira, K.; Ohsumi, K.; Ohnishi, I.; Nakamura-Messenger, K.; Nakamura, T.; Mostefaoui, S.; Mikouchi, T.; Meibom, A.; Matrajt, G.; Marcus, M.A.; Leroux, H.; Lemelle, L.; Le, L.; Lanzirotti, A.; Langenhorst, F.; Krot, A.N.; Keller, L.P.; Kearsley, A.T.; Joswiak, D.; Jacob, D.; Ishii, H.; Harvey, R.; Hagiya, K.; Grossman, L.; Grossman, J.H.; Graham, G.A.; Gounalle, M.; Gillet, P.; Genge, M.J.; Flynn, G.; Ferroir, T.; Fallon, S.; Ebel, D.S.; Dai, Z.R.; Cordier, P.; Clark, B.; Chi, M.; Butterworth, Anna L.; Brownlee, D.E.; Bridges, J.C.; Brennan, S.; Brearley, A.; Bradley, J.P.; Bleuet, P.; Bland, P.A.; Bastien, R.

    2006-01-01

    The bulk of the comet 81P/Wild 2 (hereafter Wild 2) samples returned to Earth by the Stardust spacecraft appear to be weakly constructed mixtures of nanometer-scale grains, with occasional much larger (over 1 micrometer) ferromagnesian silicates, Fe-Ni sulfides, Fe-Ni metal, and accessory phases. The very wide range of olivine and low-Ca pyroxene compositions in comet Wild 2 requires a wide range of formation conditions, probably reflecting very different formation locations in the protoplanetary disk. The restricted compositional ranges of Fe-Ni sulfides, the wide range for silicates, and the absence of hydrous phases indicate that comet Wild 2 experienced little or no aqueous alteration. Less abundant Wild 2 materials include a refractory particle, whose presence appears to require radial transport in the early protoplanetary disk.

  7. The Transitional Protoplanetary Disk Frequency as a Function of Age: Disk Evolution In the Coronet Cluster, Taurus, and Other 1-8 Myr Old Regions

    NASA Astrophysics Data System (ADS)

    Currie, Thayne; Sicilia-Aguilar, Aurora

    2011-05-01

    We present Spitzer 3.6-24 μm photometry and spectroscopy for stars in the 1-3 Myr old Coronet Cluster, expanding upon the survey of Sicilia-Aguilar et al. Using sophisticated radiative transfer models, we analyze these new data and those from Sicilia-Aguilar et al. to identify disks with evidence for substantial dust evolution consistent with disk clearing: transitional disks. We then analyze data in Taurus and others young clusters—IC 348, NGC 2362, and η Cha—to constrain the transitional disk frequency as a function of time. Our analysis confirms previous results finding evidence for two types of transitional disks—those with inner holes and those that are homologously depleted. The percentage of disks in the transitional phase increases from ~15%-20% at 1-2 Myr to >=50% at 5-8 Myr the mean transitional disk lifetime is closer to ~1 Myr than 0.1-0.5 Myr, consistent with previous studies by Currie et al. and Sicilia-Aguilar et al. In the Coronet Cluster and IC 348, transitional disks are more numerous for very low mass M3-M6 stars than for more massive K5-M2 stars, while Taurus lacks a strong spectral-type-dependent frequency. Assuming standard values for the gas-to-dust ratio and other disk properties, the lower limit for the masses of optically thick primordial disks is M disk ≈ 0.001-0.003 M sstarf. We find that single color-color diagrams do not by themselves uniquely identify transitional disks or primordial disks. Full spectral energy distribution modeling is required to accurately assess disk evolution for individual sources and inform statistical estimates of the transitional disk population in large samples using mid-IR colors.

  8. Overgrazing of a large seagrass bed by the sea urchin Lytechinus variegatus in Outer Florida Bay

    USGS Publications Warehouse

    Rose, C.D.; Sharp, W.C.; Kenworthy, W.J.; Hunt, J.H.; Lyons, W.G.; Prager, E.J.; Valentine, J.F.; Hall, M.O.; Whitfield, P.E.; Fourqurean, J.W.

    1999-01-01

    Unusually dense aggregations of the sea urchin Lytechinus variegatus overgrazed at least 0.81 km2 of seagrass habitat in Outer Florida Bay (USA) between August 1997 and May 1998. Initially, sea-urchin densities were as high as 364 sea urchins m-2, but they steadily declined to within a range of 20 to 50 sea urchins m-2 by December 1998. Prior to this event, sea-urchin densities were 95% of the short-shoot apical meristems were removed by sea-urchin grazing in our study area. Such extensive loss may severely limit recovery of this seagrass community by vegetative reproduction. Effects of the removal of seagrass biomass have already resulted in the depletion of epifaunal-infaunal mollusk assemblages and resuspension of fine-grained (<64 ??m) surface sediments - which have caused significant changes in community structure and in the physical properties of the sediments. These changes, coupled with the loss of essential fishery habitat, reductions in primary and secondary production, and degradation of water quality, may lead to additional, longer-term, indirect effects that may extend beyond the boundaries of the grazed areas and into adjacent coastal ecosystems.

  9. A comparative study of single-temperature and two-temperature accretion flows around black holes

    NASA Astrophysics Data System (ADS)

    Dihingia, Indu Kalpa; Das, Santabrata; Mandal, Samir

    2018-02-01

    We study the properties of sub-Keplerian accretion disk around a stationary black hole, considering bremsstrahlung, synchrotron and Comptonization of synchrotron photons as radiative cooling mechanisms active in the disk. We obtain the solutions of two-temperature global accretion flow (TTAF) and compare it with the results obtained from single-temperature (STAF) model. We observe that flow properties, in particular, the radial profile of electron and ion temperatures differ noticeably in the adopted models for flows with identical boundary conditions fixed at the outer edge of the disk. Since the electron temperature is one of the key factors to regulate the radiative processes, we argue that physically motivated description of electron temperature needs to be considered in studying the astrophysical phenomena around black holes.

  10. The Architecture of the LkCa 15 Transitional Disk Revealed by High-contrast Imaging

    NASA Technical Reports Server (NTRS)

    Thalmann, C.; Mulders, G. D.; Hodapp, K.; Janson, M.; Grady, C. A.; Min, M.; deJuanOvelar, M.; Carson, J.; Brandt, T.; Bonnefoy, M.; hide

    2014-01-01

    We present four new epochs of Ks-band images of the young pre-transitional disk around LkCa 15, and perform extensive forward modeling to derive the physical parameters of the disk. We find indications of strongly anisotropic scattering (Henyey-Greenstein g = 0.67+0.18 -0.11) and a significantly tapered gap edge ('round wall'), but see no evidence that the inner disk, whose existence is predicted by the spectral energy distribution, shadows the outer regions of the disk visible in our images. We marginally confirm the existence of an offset between the disk center and the star along the line of nodes; however, the magnitude of this offset (x = 27+19 -20 mas) is notably lower than that found in our earlier H-band images (Thalmann et al. 2010). Intriguingly, we also find, at high significance, an offset of y = 69+49 -25 mas perpendicular to the line of nodes. If confirmed by future observations, this would imply a highly elliptical- or otherwise asymmetric-disk gap with an effective eccentricity of e ˜ 0.3. Such asymmetry would most likely be the result of dynamical sculpting by one or more unseen planets in the system. Finally, we find that the bright arc of scattered light we see in direct imaging observations originates from the near side of the disk, and appears brighter than the far side because of strong forward scattering.

  11. The Architecture of the LkCa 15 Transitional Disk Revealed By High-Contrast Imaging

    NASA Technical Reports Server (NTRS)

    Thalmann, C.; Mulders, G. D.; Hodapp, K.; Janson, M.; Grady, C.A.; Min, M.; de Juan Ovelar, M.; Carson, J.; Brandt, T.; Bonnefoy, M.; hide

    2014-01-01

    We present four new epochs of Ks-band images of the young pre-transitional disk around LkCa 15 and perform extensive forward modeling to derive the physical parameters of the disk. We find indications of strongly anisotropic scattering (Henyey-Greenstein g = 0.67 (+0.18/-0.11)) and a significantly tapered gap edge ("round wall") but see no evidence that the inner disk, whose existence is predicted by the spectral energy distribution, shadows the outer regions of the disk visible in our images.We marginally confirm the existence of an offset between the disk center and the star along the line of nodes; however, the magnitude of this offset (x = 27 (+19/-20) mas) is notably lower than that found in our earlier H-band images. Intriguingly, we also find an offset of y = 69 (+49/-25) mas perpendicular to the line of nodes at high significance. If confirmed by future observations, this would imply a highly elliptical - or otherwise asymmetric - disk gap with an effective eccentricity of e ˜ 0.3. Such asymmetry would most likely be the result of dynamical sculpting by one or more unseen planets in the system. Finally, we find that the bright arc of scattered light we see in direct imaging observations originates from the near side of the disk and appears brighter than the far side because of strong forward scattering.

  12. The detection and study of pre-planetary disks

    NASA Technical Reports Server (NTRS)

    Sargent, A. I.; Beckwith, S. V. W.

    1994-01-01

    A variety of evidence suggests that at least 50% of low-mass stars are surrounded by disks of the gas and dust similar to the nebula that surrounded the Sun before the formation of the planets. The properties of these disks may bear strongly on the way in which planetary systems form and evolve. As a result of major instrumental developments over the last decade, it is now possible to detect and study the circumstellar environments of the very young, solar-type stars in some detail, and to compare the results with theoretical models of the early solar system. For example, millimeter-wave aperture synthesis imaging provides a direct means of studying in detail the morphology, temperature and density distributions, velocity field and chemical constituents in the outer disks, while high resolution, near infrared spectroscopy probes the inner, warmer parts; the emergence of gaps in the disks, possibly reflecting the formation of planets, may be reflected in the variation of their dust continuum emission with wavelength. We review progress to date and discuss likely directions for future research.

  13. An inner warp in the DoAr 44 T Tauri transition disk

    NASA Astrophysics Data System (ADS)

    Casassus, Simon; Avenhaus, Henning; Pérez, Sebastián; Navarro, Víctor; Cárcamo, Miguel; Marino, Sebastián; Cieza, Lucas; Quanz, Sascha P.; Alarcón, Felipe; Zurlo, Alice; Osses, Axel; Rannou, Fernando R.; Román, Pablo E.; Barraza, Marcelo

    2018-04-01

    Optical/IR images of transition disks (TDs) have revealed deep intensity decrements in the rings of HAeBes HD 142527 and HD 100453, that can be interpreted as shadowing from sharply tilted inner disks, such that the outer disks are directly exposed to stellar light. Here we report similar dips in SPHERE+IRDIS differential polarized imaging (DPI) of TTauri DoAr 44. With a fairly axially symmetric ring in the sub mm radio continuum, DoAr 44 is likely also a warped system. We constrain the warp geometry by comparing radiative transfer predictions with the DPI data in H band (Qϕ(H)) and with a re-processing of archival 336 GHz ALMA observations. The observed DPI shadows have coincident radio counterparts, but the intensity drops are much deeper in Qϕ(H) (˜88%), compared to the shallow drops at 336 GHz (˜24%). Radiative transfer predictions with an inner disk tilt of ˜30 ± 5 deg approximately account for the observations. ALMA long-baseline observations should allow the observation of the warped gas kinematics inside the cavity of DoAr 44.

  14. A Candidate Young Massive Planet in Orbit around the Classical T Tauri Star CI Tau

    NASA Astrophysics Data System (ADS)

    Johns-Krull, Christopher M.; McLane, Jacob N.; Prato, L.; Crockett, Christopher J.; Jaffe, Daniel T.; Hartigan, Patrick M.; Beichman, Charles A.; Mahmud, Naved I.; Chen, Wei; Skiff, B. A.; Cauley, P. Wilson; Jones, Joshua A.; Mace, G. N.

    2016-08-01

    The ˜2 Myr old classical T Tauri star CI Tau shows periodic variability in its radial velocity (RV) variations measured at infrared (IR) and optical wavelengths. We find that these observations are consistent with a massive planet in a ˜9 day period orbit. These results are based on 71 IR RV measurements of this system obtained over five years, and on 26 optical RV measurements obtained over nine years. CI Tau was also observed photometrically in the optical on 34 nights over ˜one month in 2012. The optical RV data alone are inadequate to identify an orbital period, likely the result of star spot and activity-induced noise for this relatively small data set. The infrared RV measurements reveal significant periodicity at ˜9 days. In addition, the full set of optical and IR RV measurements taken together phase coherently and with equal amplitudes to the ˜9 day period. Periodic RV signals can in principle be produced by cool spots, hotspots, and reflection of the stellar spectrum off the inner disk, in addition to resulting from a planetary companion. We have considered each of these and find the planet hypothesis most consistent with the data. The RV amplitude yields an M\\sin I of ˜8.1 M Jup; in conjunction with a 1.3 mm continuum emission measurement of the circumstellar disk inclination from the literature, we find a planet mass of ˜11.3 M Jup, assuming alignment of the planetary orbit with the disk. This paper includes data taken at The McDonald Observatory of The University of Texas at Austin.

  15. Exploring the Milky Way stellar disk. A detailed elemental abundance study of 714 F and G dwarf stars in the solar neighbourhood

    NASA Astrophysics Data System (ADS)

    Bensby, T.; Feltzing, S.; Oey, M. S.

    2014-02-01

    Aims: The aim of this paper is to explore and map the age and abundance structure of the stars in the nearby Galactic disk. Methods: We have conducted a high-resolution spectroscopic study of 714 F and G dwarf and subgiant stars in the Solar neighbourhood. The star sample has been kinematically selected to trace the Galactic thin and thick disks to their extremes, the metal-rich stellar halo, sub-structures in velocity space such as the Hercules stream and the Arcturus moving group, as well as stars that cannot (kinematically) be associated with either the thin disk or the thick disk. The determination of stellar parameters and elemental abundances is based on a standard analysis using equivalent widths and one-dimensional, plane-parallel model atmospheres calculated under the assumption of local thermodynamical equilibrium (LTE). The spectra have high resolution (R = 40 000-110 000) and high signal-to-noise (S/N = 150-300) and were obtained with the FEROS spectrograph on the ESO 1.5 m and 2.2 m telescopes, the SOFIN and FIES spectrographs on the Nordic Optical Telescope, the UVES spectrograph on the ESO Very Large Telescope, the HARPS spectrograph on the ESO 3.6 m telescope, and the MIKE spectrograph on the Magellan Clay telescope. The abundances from individual Fe i lines were were corrected for non-LTE effects in every step of the analysis. Results: We present stellar parameters, stellar ages, kinematical parameters, orbital parameters, and detailed elemental abundances for O, Na, Mg, Al, Si, Ca, Ti, Cr, Fe, Ni, Zn, Y, and Ba for 714 nearby F and G dwarf stars. Our data show that there is an old and α-enhanced disk population, and a younger and less α-enhanced disk population. While they overlap greatly in metallicity between -0.7 < [Fe/H] ≲ +0.1, they show a bimodal distribution in [α/Fe]. This bimodality becomes even clearer if stars where stellar parameters and abundances show larger uncertainties (Teff ≲ 5400 K) are discarded, showing that it is important to constrain the data set to a narrow range in the stellar parameters if small differences between stellar populations are to be revealed. In addition, we find that the α-enhanced population has orbital parameters placing the stellar birthplaces in the inner Galactic disk while the low-α stars mainly come from the outer Galactic disk, fully consistent with the recent claims of a short scale-length for the α-enhanced Galactic thick disk. We have also investigated the properties of the Hercules stream and the Arcturus moving group and find that neither of them presents chemical or age signatures that could suggest that they are disrupted clusters or extragalactic accretion remnants from ancient merger events. Instead, they are most likely dynamical features originating within the Galaxy. We have also discovered that a standard 1D, LTE analysis, utilising ionisation and excitation balance of Fe i and Fe ii lines produces a flat lower main sequence. As the exact cause for this effect is unclear we chose to apply an empirical correction. Turn-off stars and more evolved stars appear to be unaffected. This paper includes data gathered with the 6.5 m Magellan Telescopes located at the Las Campanas Observatory, Chile; the Nordic Optical Telescope (NOT) on La Palma, Spain; the Very Large Telescope (VLT) at the European Southern Observatory (ESO) on Paranal, Chile (ESO Proposal ID 69.B-0277 and 72.B-0179); the ESO 1.5 m, 2.2 m, and 3.6 m telescopes on La Silla, Chile (ESO Proposal ID 65.L-0019, 67.B-0108, 76.B-0416, 82.B-0610); and data from the UVES Paranal Observatory Project (ESO DDT Program ID 266.D-5655).Full Tables C.1-C.3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/562/A71Appendices are available in electronic form at http://www.aanda.org

  16. Near-infrared observations of galaxies in Pisces-Perseus. I. vec H-band surface photometry of 174 spiral

    NASA Astrophysics Data System (ADS)

    Moriondo, G.; Baffa, C.; Casertano, S.; Chincarini, G.; Gavazzi, G.; Giovanardi, C.; Hunt, L. K.; Pierini, D.; Sperandio, M.; Trinchieri, G.

    1999-05-01

    We present near-infrared, H-band (1.65 $() μm), surface photometry of 174 spiral galaxies in the area of the Pisces-Perseus supercluster. The images, acquired with the ARNICA camera mounted on various telescopes, are used to derive radial profiles of surface brightness, ellipticities, and position angles, together with global parameters such as H-band magnitudes and diameters Radial profiles in tabular form and images FITS files are also available upon request from gmorio@arcetri.astro.it.}. The mean relation between H-band isophotal diameter D_{21.5} and the B-band D25 implies a B-H color of the outer disk bluer than 3.5; moreover, D_{21.5}/D25 depends on (global) color and absolute luminosity. The correlations among the various photometric parameters suggest a ratio between isophotal radius D_{21.5}/2 and disk scale length of ~ m3.5 and a mean disk central brightness ~ meq 17.5 H-mag arcsec^{-2}. We confirm the trend of the concentration index C31$ with absolute luminosity and, to a lesser degree, with morphological type. We also assess the influence of non-axisymmetric structures on the radial profiles and on the derived parameters. Based on observations at the TIRGO, NOT, and VATT telescopes. TIRGO (Gornergrat, CH) is operated by CAISMI-CNR, Arcetri, Firenze. NOT (La Palma, Canary Islands) is operated by NOTSA, the Nordic Observatory Scientific Association. VATT (Mt. Graham, Az) is operated by VORG, the Vatican Observatory Research Group Table 3 and Fig. 4 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html.

  17. Calibration of echocardiographic tissue doppler velocity, using simple universally applicable methods

    NASA Astrophysics Data System (ADS)

    Dhutia, Niti M.; Zolgharni, Massoud; Willson, Keith; Cole, Graham; Nowbar, Alexandra N.; Manisty, Charlotte H.; Francis, Darrel P.

    2014-03-01

    Some of the challenges with tissue Doppler measurement include: apparent inconsistency between manufacturers, uncertainty over which part of the trace to make measurements and a lack of calibration of measurements. We develop and test tools to solve these problems in echocardiography laboratories. We designed and constructed an actuator and phantom setup to produce automatic reproducible motion, and used it to compare velocities measured using 3 echocardiographic modalities: M-mode, speckle tracking, and tissue Doppler, against a non-ultrasound, optical gold standard. In the clinical phase, 25 patients underwent M-mode, speckle tracking and tissue Doppler measurements of tissue velocities. In-vitro, the M-mode and speckle tracking velocities were concordant with optical assessment. Of the three possible tissue Doppler measurement conventions (outer, middle and inner line) only the middle line agreed with the optical assessment (discrepancy -0.20 (95% confidence interval -0.44 to 0.03)cm/s, p=0.11, outer +5.19(4.65 to 5.73)cm/s, p<0.0001, inner -6.26(-6.87 to -5.65)cm/s, p<0.0001). All 4 studied manufacturers showed a similar pattern. M-mode was therefore chosen as the in-vivo gold standard. Clinical measurements of tissue velocities by speckle tracking and the middle line of the tissue Doppler were concordant with M-mode, while the outer line significantly overestimated (+1.27(0.96 to 1.59)cm/s, p<0.0001) and the inner line underestimated (-1.81(-2.11 to -1.52)cm/s, p<0.0001). Echocardiographic velocity measurements can be calibrated by simple, inexpensive tools. We found that the middle of the tissue Doppler trace represents velocity correctly. Echocardiographers requiring velocities to match between different equipment, settings or modalities should use the middle line as the "guideline".

  18. Hubble Space Telescope Scattered-light Imaging and Modeling of the Edge-on Protoplanetary Disk ESO-Hα 569

    NASA Astrophysics Data System (ADS)

    Wolff, Schuyler G.; Perrin, Marshall D.; Stapelfeldt, Karl; Duchêne, Gaspard; Ménard, Francois; Padgett, Deborah; Pinte, Christophe; Pueyo, Laurent; Fischer, William J.

    2017-12-01

    We present new Hubble Space Telescope (HST) Advanced Camera for Surveys observations and detailed models for a recently discovered edge-on protoplanetary disk around ESO-Hα 569 (a low-mass T Tauri star in the Cha I star-forming region). Using radiative transfer models, we probe the distribution of the grains and overall shape of the disk (inclination, scale height, dust mass, flaring exponent, and surface/volume density exponent) by model fitting to multiwavelength (F606W and F814W) HST observations together with a literature-compiled spectral energy distribution. A new tool set was developed for finding optimal fits of MCFOST radiative transfer models using the MCMC code emcee to efficiently explore the high-dimensional parameter space. It is able to self-consistently and simultaneously fit a wide variety of observables in order to place constraints on the physical properties of a given disk, while also rigorously assessing the uncertainties in those derived properties. We confirm that ESO-Hα 569 is an optically thick nearly edge-on protoplanetary disk. The shape of the disk is well-described by a flared disk model with an exponentially tapered outer edge, consistent with models previously advocated on theoretical grounds and supported by millimeter interferometry. The scattered-light images and spectral energy distribution are best fit by an unusually high total disk mass (gas+dust assuming a ratio of 100:1) with a disk-to-star mass ratio of 0.16.

  19. Galactic Warps in Triaxial Halos

    NASA Astrophysics Data System (ADS)

    Jeon, Myoungwon; Kim, Sungsoo S.; Ann, Hong Bae

    2009-05-01

    We study the behavior of galactic disks in triaxial halos both numerically and analytically to see if warps can be excited and sustained in triaxial potentials. We consider the following two scenarios: (1) galactic disks that are initially tilted relative to the equatorial plane of the halo (for a pedagogical purpose), and (2) tilted infall of dark matter relative to the equatorial plane of the disk and the halo. With numerical simulations of 100,000 disk particles in a fixed halo potential, we find that in triaxial halos, warps can be excited and sustained just as in spherical or axisymmetric halos but they show some oscillatory behavior and even can be transformed to a polar-ring system if the halo has a prolate-like triaxiality. The nonaxisymmetric component of the halo causes the disk to nutate, and the differential nutation between the inner and outer parts of the disk generally makes the magnitude of the warp slightly diminish and fluctuate. We also find that warps are relatively weaker in oblate and oblate-like triaxial halos, and since these halos are the halo configurations of disk galaxies inferred by cosmological simulations, our results are consistent with the fact that most of the observed warps are quite weak. We derive approximate formulae for the torques exerted on the disk by the triaxial halo and the dark matter torus, and with these formulae we successfully describe the behavior of the disks in our simulations. The techniques used in deriving these formulae could be applied for realistic halos with more complex structures.

  20. Metallicity Distribution of Disk Stars and the Formation History of the Milky Way

    NASA Astrophysics Data System (ADS)

    Toyouchi, Daisuke; Chiba, Masashi

    2018-03-01

    We investigate the formation history of the stellar disk component in the Milky Way (MW) based on our new chemical evolution model. Our model considers several fundamental baryonic processes, including gas infall, reaccretion of outflowing gas, and radial migration of disk stars. Each of these baryonic processes in the disk evolution is characterized by model parameters that are determined by fitting to various observational data of the stellar disk in the MW, including the radial dependence of the metallicity distribution function (MDF) of the disk stars, which has recently been derived in the APOGEE survey. We succeeded to obtain the best set of model parameters that well reproduces the observed radial dependences of the mean, standard deviation, skewness, and kurtosis of the MDFs for the disk stars. We analyze the basic properties of our model results in detail to gain new insights into the important baryonic processes in the formation history of the MW. One of the remarkable findings is that outflowing gas, containing many heavy elements, preferentially reaccretes onto the outer disk parts, and this recycling process of metal-enriched gas is a key ingredient for reproducing the observed narrower MDFs at larger radii. Moreover, important implications for the radial dependence of gas infall and the influence of radial migration on the MDFs are also inferred from our model calculation. Thus, the MDF of disk stars is a useful clue for studying the formation history of the MW.

Top