Top-Off Injection and Higher Currents at the Stanford Synchrotron Radiation Lightsource
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauer, Johannes M.; Liu, James C.; Prinz, Alyssa A.
2011-04-05
The Stanford Synchrotron Radiation Lightsource (SSRL) at the SLAC National Accelerator Laboratory is a 234 m circumference storage ring for 3 GeV electrons with its synchrotron radiation serving currently 13 beamlines with about 27 experimental stations. It operated for long time with 100 mA peak current provided by usually three injections per day. In July 2009, the maximum beam current was raised to 200 mA. Over the period from June 2009 to March 2010, Top-Off operation started at every beamline. Top-Off, i.e., the injection of electrons into the storage ring with injection stoppers open, is necessary for SSRL to reachmore » its design current of 500 mA. In the future, the maximal power of the injection current will also soon be raised from currently 1.5 W to 5 W. The Radiation Protection Department at SLAC worked with SSRL on the specifications for the safety systems for operation with Top-Off injection and higher beam currents.« less
Tawfik, Wael Z; Lee, June Key
2018-03-01
The influence of temperature on the characteristics of a GaN-based 460-nm light-emitting diode (LED) prepared on sapphire substrate was simulated using the SiLENSe and SpeCLED software programs. High temperatures impose negative effects on the performance of GaN-based LEDs. As the temperature increases, electrons acquire higher thermal energies, and therefore LEDs may suffer more from high-current loss mechanisms, which in turn causes a reduction in the radiative recombination rate in the active region. The internal quantum efficiency was reduced by about 24% at a current density of 35 A/cm2, and the electroluminescence spectral peak wavelength was redshifted. The LED operated at 260 K and exhibited its highest light output power of ~317.5 mW at a maximum injection current of 350 mA, compared to 212.2 mW for an LED operated at 400 K. However, increasing temperature does not cause a droop in efficiency under high injection conditions. The peak efficiency at 1 mA of injection current decreases more rapidly by ~15% with increasing temperature from 260 to 400 K than the efficiency at high injection current of 350 mA by ~11%.
Intensity dynamics in a waveguide array laser
NASA Astrophysics Data System (ADS)
Feng, Mingming; Williams, Matthew O.; Kutz, J. Nathan; Silverman, Kevin L.; Mirin, Richard P.; Cundiff, Steven T.
2011-02-01
We consider experimentally and theoretically the optical field dynamics of a five-emitter laser array subject to a ramped injection current. We have achieved experimentally an array that produces a robust oscillatory power output with a nearly constant π phase shift between the oscillations from each waveguide. The output power also decreases linearly as a function of waveguide number. Those behaviors persisted for pump currents varying between 380 and 500 mA with only a slight change in phase. Of note is the fact that the fundamental frequency of oscillation increases with injection current, and higher harmonics are produced above a threshold current of approximately 380 mA. Experimental observations and theoretical predictions are in agreement. A low dimensional model was also developed and the impact of the nonuniform injection current studied. A nonuniform injection current is capable of shifting the bifurcations of the waveguide array providing a valuable method of array tuning without additional gain or structural alterations to the array.
Booster Synchrotron RF System Upgrade for SPEAR3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Sanghyun; /SLAC; Corbett, Jeff
2012-07-06
Recent progress at the SPEAR3 includes the increase in stored current from 100 mA to 200 mA and top-off injection to allow beamlines to stay open during injection. Presently the booster injects 3.0 GeV beam to SPEAR3 three times a day. The stored beam decays to about 150 mA between the injections. The growing user demands are to increase the stored current to the design value of 500 mA, and to maintain it at a constant value within a percent or so. To achieve this goal the booster must inject once every few minutes. For improved injection efficiency, all RFmore » systems at the linac, booster and SPEAR3 need to be phase-locked. The present booster RF system is basically a copy of the SPEAR2 RF system with 358.5 MHz and 40 kW peak RF power driving a 5-cell RF cavity for 1.0 MV gap voltage. These requirements entail a booster RF system upgrade to a scaled down version of the SPEAR3 RF system of 476.3 MHz with 1.2 MW cw klystron output power capabilities. We will analyze each subsystem option for their merits within budgetary and geometric space constraints. A substantial portion of the system will come from the decommissioned PEP-II RF stations.« less
High efficiency single transverse mode photonic band crystal lasers with low vertical divergence
NASA Astrophysics Data System (ADS)
Zhao, Shaoyu; Qu, Hongwei; Liu, Yun; Li, Lunhua; Chen, Yang; Zhou, Xuyan; Lin, Yuzhe; Liu, Anjin; Qi, Aiyi; Zheng, Wanhua
2016-10-01
High efficiency 980 nm longitudinal photonic band crystal (PBC) edge emitting laser diodes are designed and fabricated. The calculated results show that eight periods of Al0.1Ga0.9As and Al0.25Ga0.75As layer pairs can reduce the vertical far field divergence to 10.6° full width at half maximum (FWHM). The broad area (BA) lasers show a very high internal quantum efficiency ηi of 98% and low internal loss αi of 1.92 cm-1. Ridge waveguide (RW) lasers with 3 mm cavity length and 5um strip width provide 430 mW stable single transverse mode output at 500 mA injection current with power conversion efficiency (PCE) of 47% under continuous wave (CW) mode. A maximum PCE of 50% is obtained at the 300 mA injection current. A very low vertical far field divergence of 9.4° is obtained at 100 mA injection. At 500 mA injection, the vertical far field divergence increases to 11°, the beam quality factors M2 values are 1.707 in vertical direction and 1.769 in lateral direction.
NASA Astrophysics Data System (ADS)
Lin, Jia-Yong; Pei, Yan-Li; Zhuo, Yi; Chen, Zi-Min; Hu, Rui-Qin; Cai, Guang-Shuo; Wang, Gang
2016-11-01
In this study, the high performance of InGaN/GaN multiple quantum well light-emitting diodes (LEDs) with Al-doped ZnO (AZO) transparent conductive layers (TCLs) has been demonstrated. The AZO-TCLs were fabricated on the n+-InGaN contact layer by metal organic chemical vapor deposition (MOCVD) using H2O as an oxidizer at temperatures as low as 400 °C without any post-deposition annealing. It shows a high transparency (98%), low resistivity (510-4 Ω·cm), and an epitaxial-like excellent interface on p-GaN with an n+-InGaN contact layer. A forward voltage of 2.82 V @ 20 mA was obtained. Most importantly, the power efficiencies can be markedly improved by 53.8%@20 mA current injection and 39.6%@350 mA current injection compared with conventional LEDs with indium tin oxide TCL (LED-III), and by 28.8%@20 mA current injection and 4.92%@350 mA current injection compared with LEDs with AZO-TCL prepared by MOCVD using O2 as an oxidizer (LED-II), respectively. The results indicate that the AZO-TCL grown by MOCVD using H2O as an oxidizer is a promising TCL for a low-cost and high-efficiency GaN-based LED application. Project supported by the National Natural Science Foundation of China (Grant Nos. 61204091, 61404177, 51402366, and U1201254) and the Science and Technology Planning Project of Guangdong Province, China (Grant No. 2015B010132006).
NASA Astrophysics Data System (ADS)
Pan, Honggang; Zhang, Ailing; Tong, Zhengrong; Zhang, Yue; Song, Hongyun; Yao, Yuan
2018-03-01
A width-tunable pulse laser via an optical injection induced gain modulation of a semiconductor optical amplifier (SOA) is demonstrated. When the pump current of the SOA is 330 mA or 400 mA and a continuous wave is injected into the laser cavity with different powers, bright or dark pulses with different pulse widths and frequency repetition rates are obtained. The bright and dark pulses are formed by the effect of gain dispersion and cross-gain modulation of the SOA.
GaInAsP/InP lateral-current-injection distributed feedback laser with a-Si surface grating.
Shindo, Takahiko; Okumura, Tadashi; Ito, Hitomi; Koguchi, Takayuki; Takahashi, Daisuke; Atsumi, Yuki; Kang, Joonhyun; Osabe, Ryo; Amemiya, Tomohiro; Nishiyama, Nobuhiko; Arai, Shigehisa
2011-01-31
We fabricated a novel lateral-current-injection-type distributed feedback (DFB) laser with amorphous-Si (a-Si) surface grating as a step to realize membrane lasers. This laser consists of a thin GaInAsP core layer grown on a semi-insulating InP substrate and a 30-nm-thick a-Si surface layer for DFB grating. Under a room-temperature continuous-wave condition, a low threshold current of 7.0 mA and high efficiency of 43% from the front facet were obtained for a 2.0-μm stripe width and 300-μm cavity length. A small-signal modulation bandwidth of 4.8 GHz was obtained at a bias current of 30 mA.
Tokamak startup using point-source dc helicity injection.
Battaglia, D J; Bongard, M W; Fonck, R J; Redd, A J; Sontag, A C
2009-06-05
Startup of a 0.1 MA tokamak plasma is demonstrated on the ultralow aspect ratio Pegasus Toroidal Experiment using three localized, high-current density sources mounted near the outboard midplane. The injected open field current relaxes via helicity-conserving magnetic turbulence into a tokamaklike magnetic topology where the maximum sustained plasma current is determined by helicity balance and the requirements for magnetic relaxation.
NASA Astrophysics Data System (ADS)
Horng, Ray-Hua; Hu, Hung-Lieh; Tang, Li-Shen; Ou, Sin-Liang
2013-03-01
For LEDs with original structure and copper heat spreader, the highest surface temperatures of 3×3 array LEDs modules were 52.6 and 42.67 °C (with 1050 mA injection current), while the highest surface temperatures of 4×4 array LEDs modules were 58.55 and 48.85 °C (with 1400 mA injection current), respectively. As the 5×5 array LEDs modules with original structure and copper heat spreader were fabricated, the highest surface temperatures at 1750 mA injection current were 68.51 and 56.73 °C, respectively. The thermal resistance of optimal LEDs array module with copper heat spreader on heat sink using compound solder is reduced obviously. On the other hand, the output powers of 3×3, 4×4 and 5×5 array LEDs modules with original structure were 3621.7, 6346.3 and 9760.4 mW at injection currents of 1050, 1400 and 1750 mA, respectively. Meanwhile, the output powers of these samples with copper heat spreader can be improved to 4098.5, 7150.3 and 10919.6 mW, respectively. The optical and thermal characteristics of array LEDs module have been improved significantly using the cup-shaped copper structure. Furthermore, various types of epoxy-packaged LEDs with cup-shaped structure were also fabricated. It is found that the light extraction efficiency of LED with semicircle package has 55% improvement as compared to that of LED with flat package. The cup-shaped copper structure was contacted directly with sapphire to enhance heat dissipation. In addition to efficient heat dissipation, the light extraction of the lateral emitting in high-power LEDs can be improved.
Development of a 20 mA negative hydrogen ion source for cyclotrons
NASA Astrophysics Data System (ADS)
Etoh, H.; Onai, M.; Arakawa, Y.; Aoki, Y.; Mitsubori, H.; Sakuraba, J.; Kato, T.; Mitsumoto, T.; Yajima, S.; Hatayama, A.; Okumura, Y.
2017-08-01
A cesiated DC negative ion source has been developed for proton cyclotrons in medical applications. A continuous H- beam of 23 mA was stably extracted at an arc power of 3 kW. The beam current gradually decreases with a constant arc power and without additional Cs injection and the decay rate was about 0.03 mA (0.14%) per hour. A feed-back control system that automatically adjusts the arc power to stabilize the beam current is able to keep the beam current constant at ±0.04 mA (±0.2%).
Paul, Arghya; Hasan, Anwarul; Kindi, Hamood Al; Gaharwar, Akhilesh K; Rao, Vijayaraghava T S; Nikkhah, Mehdi; Shin, Su Ryon; Krafft, Dorothee; Dokmeci, Mehmet R; Shum-Tim, Dominique; Khademhosseini, Ali
2014-08-26
The objective of this study was to develop an injectable and biocompatible hydrogel which can efficiently deliver a nanocomplex of graphene oxide (GO) and vascular endothelial growth factor-165 (VEGF) pro-angiogenic gene for myocardial therapy. For the study, an efficient nonviral gene delivery system using polyethylenimine (PEI) functionalized GO nanosheets (fGO) complexed with DNAVEGF was formulated and incorporated in the low-modulus methacrylated gelatin (GelMA) hydrogel to promote controlled and localized gene therapy. It was hypothesized that the fGOVEGF/GelMA nanocomposite hydrogels can efficiently transfect myocardial tissues and induce favorable therapeutic effects without invoking cytotoxic effects. To evaluate this hypothesis, a rat model with acute myocardial infarction was used, and the therapeutic hydrogels were injected intramyocardially in the peri-infarct regions. The secreted VEGF from in vitro transfected cardiomyocytes demonstrated profound mitotic activities on endothelial cells. A significant increase in myocardial capillary density at the injected peri-infarct region and reduction in scar area were noted in the infarcted hearts with fGOVEGF/GelMA treatment compared to infarcted hearts treated with untreated sham, GelMA and DNAVEGF/GelMA groups. Furthermore, the fGOVEGF/GelMA group showed significantly higher (p < 0.05, n = 7) cardiac performance in echocardiography compared to other groups, 14 days postinjection. In addition, no significant differences were noticed between GO/GelMA and non-GO groups in the serum cytokine levels and quantitative PCR based inflammatory microRNA (miRNA) marker expressions at the injected sites. Collectively, the current findings suggest the feasibility of a combined hydrogel-based gene therapy system for ischemic heart diseases using nonviral hybrid complex of fGO and DNA.
Non-Solenoidal Tokamak Startup via Inboard Local Helicity Injection on the Pegasus ST
NASA Astrophysics Data System (ADS)
Perry, J. M.; Barr, J. L.; Bodner, G. M.; Bongard, M. W.; Fonck, R. J.; Pachicano, J. L.; Reusch, J. A.; Rodriguez Sanchez, C.; Richner, N. J.; Schlossberg, D. J.
2016-10-01
Local helicity injection (LHI) is a non-solenoidal startup technique utilizing small injectors at the plasma edge to source current along helical magnetic field lines. Unstable injected current streams relax to a tokamak-like configuration with high toroidal current multiplication. Flexible placement of injectors permits tradeoffs between helicity injection rate, poloidal field induction, and magnetic geometry requirements for initial relaxation. Experiments using a new set of large-area injectors in the lower divertor explore the efficacy of high-field-side (HFS) injection. The increased area (4 cm2) current source is functional up to full Pegasus toroidal field (BT , inj = 0.23 T). However, relaxation to a tokamak state is increasingly frustrated for BT , inj > 0.15 T with uniform vacuum vertical field. Paths to relaxation at increased field include: manipulation of vacuum poloidal field geometry; increased injector current; and plasma initiation with outboard injectors, subsequently transitioning to divertor injector drive. During initial tests of HFS injectors, achieved Vinj was limited to 600 V by plasma-material interactions on the divertor plate, which may be mitigated by increasing injector elevation. In experiments with helicity injection as the dominant current drive Ip 0.13 MA has been attained, with T̲e > 100 eV and ne 1019 m-3. Extrapolation to full BT, longer pulse length, and Vinj 1 kV suggest Ip > 0.25 MA should be attainable in a plasma dominated by helicity drive. Work supported by US DOE Grant DE-FG02-96ER54375.
Advancing High Current Startup via Localized Helicity Injection in the PEGASUS Toroidal Experiment
NASA Astrophysics Data System (ADS)
Hinson, E. T.; Barr, J. L.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Perry, J. M.; Redd, A. J.; Schlossberg, D. J.
2013-10-01
Non-solenoidal startup via local helicity injection (LHI) and poloidal field induction is used to produce Ip = 0 . 17 MA tokamak discharges. Impurity contamination has been reduced to negligible levels by use of conical frustum cathode geometry and local scraper limiters. Attainable currents are governed by global limits of helicity and energy balance, and Taylor relaxation. A simple lumped parameter model based on these limits is used to project discharge evolution, and indicates that attaining 1 MA in NSTX-U will require LHI-driven effective loop voltages to dominate contributions from dLp / dt . This regime contrasts with results to date and will be tested at 0.3 MA in PEGASUS with a new integrated multi-injector array. Injector impedance characteristics are consistent with magnetically-limited regimes observed in higher-power foilless diodes. Bursts of MHD are measured on time scales of order ~ 100 μ s, and correlate with rapid equilibrium changes, discrete rises in Ip, redistribution of the toroidal current, ion heating (Ti ~ 1 keV), transient drops in injector voltage, and apparent n = 1 line-tied kink activity at the injector. NIMROD simulations of high-field-side HI discharges in PEGASUS are in qualitative agreement, suggesting Ip buildup results from inward propagating toroidal current loops created by intermittent reconnection of injected current streams. Work supported by US DOE Grant DE-FG02-96ER54375.
Optical intensity dynamics in a five-emitter semiconductor array laser
NASA Astrophysics Data System (ADS)
Williams, Matthew O.; Kutz, J. Nathan
2009-06-01
The intensity dynamics of a five-emitter laser array subject to a linearly decreasing injection current are examined numerically. We have matched the results of the numerical model to an experimental AlGaAs quantum-dot array laser and have achieved the same robust oscillatory power output with a nearly π phase shift between emitters that was observed in experiments. Due to the linearly decreasing injection current, the output power of the waveguide decreases as a function of waveguide number. For injection currents ranging from 380 to 500 mA, the oscillatory behavior persists with only a slight change in phase difference. However, the fundamental frequency of oscillation increases with injection current, and higher harmonics as well as some fine structures are produced.
Orange a-plane InGaN/GaN light-emitting diodes grown on r-plane sapphire substrates.
Seo, Yong Gon; Baik, Kwang Hyeon; Song, Hooyoung; Son, Ji-Su; Oh, Kyunghwan; Hwang, Sung-Min
2011-07-04
We report on orange a-plane light-emitting diodes (LEDs) with InGaN single quantum well (SQW) grown on r-plane sapphire substrates by metal organic chemical vapor deposition (MOCVD). The peak wavelength and the full-width at half maximum (FWHM) at a drive current of 20mA were 612.2 nm and 72 nm, respectively. The device demonstrated a blue shift in emission wavelength from 614.6 nm at 10 mA to 607.5 nm at 100 mA, representing a net shift of 7.1 nm over a 90 mA range, which is the longest wavelength compared with reported values in nonpolar LEDs. The polarization ratio values obtained from the orange LED varied between 0.36 and 0.44 from 10 to 100mA and a weak dependence of the polarization ratio on the injection current was observed.
NASA Astrophysics Data System (ADS)
Fu, Yi-Keng; Lu, Yu-Hsuan; Jiang, Ren-Hao; Chen, Bo-Chun; Fang, Yen-Hsiang; Xuan, Rong; Su, Yan-Kuin; Lin, Chia-Feng; Chen, Jebb-Fang
2011-08-01
Near ultraviolet light-emitting diodes (LEDs) with quaternary AlInGaN quantum barriers (QBs) are grown by atmospheric pressure metalorganic vapor phase epitaxy. The indium mole fraction of AlInGaN QB could be enhanced as we increased the TMG flow rate. Both the wavelength shift in EL spectra and forward voltage at 20 mA current injection were reduced by using AlInGaN QB. Under 100 mA current injection, the LED output power with Al 0.089In 0.035Ga 0.876N QB can be enhanced by 15.9%, compared to LED with GaN QB. It should be attributed to a reduction of lattice mismatch induced polarization mismatch in the active layer.
Integrated optoelectronic oscillator.
Tang, Jian; Hao, Tengfei; Li, Wei; Domenech, David; Baños, Rocio; Muñoz, Pascual; Zhu, Ninghua; Capmany, José; Li, Ming
2018-04-30
With the rapid development of the modern communication systems, radar and wireless services, microwave signal with high-frequency, high-spectral-purity and frequency tunability as well as microwave generator with light weight, compact size, power-efficient and low cost are increasingly demanded. Integrated microwave photonics (IMWP) is regarded as a prospective way to meet these demands by hybridizing the microwave circuits and the photonics circuits on chip. In this article, we propose and experimentally demonstrate an integrated optoelectronic oscillator (IOEO). All of the devices needed in the optoelectronic oscillation loop circuit are monolithically integrated on chip within size of 5×6cm 2 . By tuning the injection current to 44 mA, the output frequency of the proposed IOEO is located at 7.30 GHz with phase noise value of -91 dBc/Hz@1MHz. When the injection current is increased to 65 mA, the output frequency can be changed to 8.87 GHz with phase noise value of -92 dBc/Hz@1MHz. Both of the oscillation frequency can be slightly tuned within 20 MHz around the center oscillation frequency by tuning the injection current. The method about improving the performance of IOEO is carefully discussed at the end of in this article.
Sexual and Injection Risk among Women who Inject Methamphetamine in San Francisco
Martinez, Alexis; Gee, Lauren; Kral, Alex H.
2006-01-01
Methamphetamine (MA) use is on the rise in the United States, with many cities reporting increases of 100% or more in MA-related Emergency Department (ED) mentions. Women are keeping pace with this trend: in 2003, 40% of ED mentions and 45% of MA-related treatment admissions were female. Although there have been extensive examinations of MA use and HIV/STI risk among gay men in recent years, literature regarding female MA users is scarce. This paper examines female methamphetamine injectors in San Francisco, CA, from 2003–2005. We assessed sexual and injection related risk behaviors, comparing female MA injectors to female injectors of other drugs. We also examined whether MA use was independently associated with specific sexual and injection risk behaviors. We found that female MA injectors were significantly more likely than non-MA injectors to report unprotected anal intercourse, multiple sexual partners, receptive syringe sharing and sharing of syringes with more than one person in the past six months. In multivariate analysis, MA use among female injectors was significantly associated with anal sex, more than five sexual partners, receptive syringe sharing, and more than one syringe-sharing partner in the past six months. Deeper exploration of the relationship between MA use and sexual risk among women would benefit HIV/STI prevention efforts. In addition, existing interventions for drug-injecting women may need to be adapted to better meet the risks of female MA injectors. PMID:16739050
Marshall, Brandon D L; Galea, Sandro; Wood, Evan; Kerr, Thomas
2011-12-01
Methamphetamine (MA) use is a growing public health concern in many settings around the world. While some physical and mental health effects associated with injection MA use have been well described, little is known about the relationship between injecting MA and suicidal behavior. We sought to determine whether MA injection was associated with an increased risk of attempting suicide among a prospective cohort of injection drug users (IDUs) in Vancouver, Canada. Between 2001 and 2008, eligible participants enrolled in the Vancouver Injection Drug Users Study (VIDUS) completed semi-annual questionnaires that elicited information regarding sociodemographics, drug use patterns, and mental health problems including suicidal behavior. We used Cox proportional hazards models with time-dependent covariates to determine whether self-reported MA injection was an independent predictor of attempting suicide at subsequent time points. Of 1873 eligible participants, 149 (8.0%) reported a suicide attempt, resulting in an incidence density of 2.5 per 100 person-years. Participants who attempted suicide were more likely to be younger (median: 35 vs. 40, p<0.01), female (48.3% vs. 35.1%, p<0.01), and of Aboriginal ancestry (43.6% vs. 31.3%, p<0.01). In a Cox proportional hazards model, MA injection was associated with an 80% increase in the risk of attempting suicide (adjusted hazard ratio=1.80, 95% CI: 1.08-2.99, p=0.02). These findings suggest that IDUs who inject MA should be monitored for suicidal behavior. Improved integration of mental health and suicide prevention interventions within harm reduction and drug treatment programs may be fruitful. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Sevgi, Eser Başak; Erdener, Sefik Evren; Demirci, Mehmet; Topcuoglu, Mehmet Akif; Dalkara, Turgay
2012-01-01
Background Although controversial, paradoxical embolism via patent foramen ovale (PFO) may account for some of the migraine attacks in a subset of migraine with aura (MA) patients. Induction of MA attacks with air bubble injection during transcranial Doppler ultrasound in MA patients with PFO supports this view. It is likely that cerebral embolism in patients with right-to-left shunt induces bioelectrical abnormalities to initiate MA under some conditions. Methods and Results We investigated changes in cerebral bioelectrical activity after intravenous microbubble injection in 10 MA patients with large PFO and right-to-left cardiac shunt. Eight PFO patients without migraine but with large right-to-left shunt and 12 MA patients without PFO served as controls. Four MA patients with PFO were reexamined with sham injections of saline without microbubbles. Bioelectrical activity was evaluated using spectral electroencephalography and, passage of microbubbles through cerebral arteries was monitored with transcranial Doppler ultrasound. Microbubble embolism caused significant electroencephalographic power increase in MA+PFO patients but not in control groups including the sham-injected MA+PFO patients. Headache developed in 2 MA with PFO patients after microbubble injection. Conclusions These findings demonstrate that air microembolism through large PFOs may cause cerebral bioelectrical disturbances and, occasionally, headache in MA patients, which may reflect an increased reactivity of their brain to transient subclinical hypoxia–ischemia, and suggest that paradoxical embolism is not a common cause of migraine but may induce headache in the presence of a large PFO and facilitating conditions. PMID:23316313
Refined beam measurements on the SNS H- injector
NASA Astrophysics Data System (ADS)
Han, B. X.; Welton, R. F.; Murray, S. N.; Pennisi, T. R.; Santana, M.; Stinson, C. M.; Stockli, M. P.
2017-08-01
The H- injector for the SNS RFQ accelerator consists of an RF-driven, Cs-enhanced H- ion source and a compact, two-lens electrostatic LEBT. The LEBT output and the RFQ input beam current are measured by deflecting the beam on to an annular plate at the RFQ entrance. Our method and procedure have recently been refined to improve the measurement reliability and accuracy. The new measurements suggest that earlier measurements tended to underestimate the currents by 0-2 mA, but essentially confirm H- beam currents of 50-60 mA being injected into the RFQ. Emittance measurements conducted on a test stand featuring essentially the same H- injector setup show that the normalized rms emittance with 0.5% threshold (99% inclusion of the total beam) is in a range of 0.25-0.4 mm.mrad for a 50-60 mA beam. The RFQ output current is monitored with a BCM toroid. Measurements as well as simulations with the PARMTEQ code indicate an underperforming transmission of the RFQ since around 2012.
Predictive Power-balance Modeling of PEGASUS and NSTX-U Local Helicity Injection Discharges
NASA Astrophysics Data System (ADS)
Barr, J. L.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Hinson, E. T.; Perry, J. M.; Redd, A. J.; Schlossberg, D. J.
2013-10-01
Local helicity injection (LHI) with outer poloidal-field (PF) induction for solenoid-free startup is being studied on PEGASUS, reaching Ip <= 0 . 175 MA with 6 kA of injected current. A lumped-parameter circuit model for predicting the performance of LHI initiated plasmas is under development. The model employs energy and helicity balance, and includes applied PF ramping and the inductive effects of shape evolution. Low- A formulations for both the plasma external inductance and a uniform equilibrium-field are used to estimate inductive voltages. PEGASUS LHI plasmas are created near the outboard injectors with aspect ratio (A) ~ 5-6.5 and grow inward to fill the confinement region at A <= 1 . 3 . Initial results match experimental Ip (t) trajectories within 15 kA with a prescribed geometry evolution. Helicity injection is the largest driving term in the initial phase, but in the later phase is reduced to 20-45% of the total drive as PF induction and decreasing plasma inductance become dominant. In contrast, attaining ~1 MA non-solenoidal startup via LHI on NSTX-U will require operation in the regime where helicity injection drive exceeds inductive and geometric changes at full size. A large-area multi-injector array will increase available helicity injection by 3-4 times and allow exploration of this helicity-dominated regime at Ip ~ 0 . 3 MA in PEGASUS. Comparison of model predictions with time-evolving magnetic equilibria is in progress for model validation. Work supported by US DOE Grant DE-FG02-96ER54375.
Bipolar Cascade Emitters for Radio-Frequency and Electro-Optical Applications
2008-05-01
conduction band of the subsequent stage. (2) At the 50 mA bias , the p-doped OA tunneling region is ∼0.5 eV and the n-doped OA tunneling region is ∼0.1...bands are forward biased at an injection current of 50 mA except for the 3-stage p-doped OA BC LED which at a low voltage bias of 4.3 V, which...Resonant Cavity Light Emitting Diode . . . . . . . 40 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.2 Tunnel Junction
Freeman, Kevin B; Wang, Zhixia; Woolverton, William L
2010-04-01
(+)-Methamphetamine (MA) is an illicit psychostimulant that can be synthesized from the nonprescription nasal decongestant, (+)-pseudoephedrine (PE). While MA is widely abused, PE appears to have little or no abuse liability in currently available formulations. However, PE produces centrally-mediated dopaminergic effects that are linked to the reinforcing effects of MA and other illicit psychostimulants and has been reported to function as a positive reinforcer in non-human primates. There has yet to be an assessment of the relative reinforcing effects of MA and PE. Therefore, the current study compared the reinforcing potency and strength of MA and PE, alone and combined, in four rhesus monkeys that were allowed to self-administer MA (0.003-0.3 mg/kg/inj), PE (0.1-3.0 mg/kg/inj), or combinations of the two under a progressive-ratio schedule of reinforcement. (+)-Methamphetamine functioned as a positive reinforcer in a dose-dependent manner. (+)-Pseudoephedrine also functioned as a positive reinforcer, but was less potent than MA. There were no differences in maximum injections between MA, PE, or any of the combinations of the two. Dose-addition analysis and the interaction index indicated that combinations of PE and MA were either additive or sub-additive in their reinforcing effects. These results suggest that, while MA is a more potent reinforcer than PE, the two drugs are comparable in terms of reinforcing strength. However, MA and PE do not appear to interact in a manner that enhances their relative reinforcing effects. Published by Elsevier Inc.
Freeman, Kevin B.; Wang, Zhixia; Woolverton, William L.
2010-01-01
(+)-Methamphetamine (MA) is an illicit psychostimulant that can be synthesized from the nonprescription nasal decongestant, (+)-pseudoephedrine (PE). While MA is widely abused, PE appears to have little or no abuse liability in currently available formulations. However, PE produces centrally-mediated dopaminergic effects that are linked to the reinforcing effects of MA and other illicit psychostimulants and has been reported to function as a positive reinforcer in non-human primates. There has yet to be an assessment of the relative reinforcing effects of MA and PE. Therefore, the current study compared the reinforcing potency and strength of MA and PE, alone and combined, in four rhesus monkeys that were allowed to self-administer MA (0.003-0.3 mg/kg/inj), PE (0.1-3.0 mg/kg/inj), or combinations of the two under a progressive-ratio schedule of reinforcement. (+)-Methamphetamine functioned as a positive reinforcer in a dose-dependent manner. (+)-Pseudoephedrine also functioned as a positive reinforcer, but was less potent than MA. There were no differences in maximum injections between MA, PE, or any of the combinations of the two. Dose-addition analysis and the interaction index indicated that combinations of PE and MA were either additive or sub-additive in their reinforcing effects. These results suggest that, while MA is a more potent reinforcer than PE, the two drugs are comparable in terms of reinforcing strength. However, MA and PE do not appear to interact in a manner that enhances their relative reinforcing effects. PMID:20100506
Graphene as current spreading layer on AlGaInP light emitting diodes
NASA Astrophysics Data System (ADS)
Guo, Xia; Feng, Yajie; Liu, Qiaoli; Hu, Anqi; He, Xiaoying; Hu, Zonghai
2018-05-01
Due to high transmittance and high mobility, graphene is one of the promising candidates for a current spreading layer, which is crucial to light emitting diode (LED) performance. In this paper, improved AlGaInP LED performance was reported after graphene was applied on the GaP surface. Due to its lowered work function difference than with the GaN material, the electrical properties remain the same without additional voltage bias. The light output power is enhanced by about 40% under the current injection of 5 mA at room temperature, which was confirmed by the light emission profile analysis in this study. Such results indicate that raphene is a promising candidate as a current spreading layer under low current injection.
NASA Technical Reports Server (NTRS)
Grandal, B.; Troim, J.; Maehlum, B.; Holtet, J. A.; Pran, B.
1980-01-01
Observations of waves stimulated by artificial injection inside an auroral arc by an electron accelerator mounted on the POLAR 5 sounding rocket are presented. The accelerator produced a pulsed electron beam with currents up to 130 mA and energies up to 10 keV; emissions after the end of beam injection were generated by perturbations in the ambient plasma near the accelerator during beam injection. These emissions were independent of the electron beam direction along the geomagnetic field. The high frequency emission observed after beam injection correlated with the passage through an auroral arc; the low frequency emissions after beam injection were concentrated in two bands below the lower hybrid frequency.
Exploration of spherical torus physics in the NSTX device
NASA Astrophysics Data System (ADS)
Ono, M.; Kaye, S. M.; Peng, Y.-K. M.; Barnes, G.; Blanchard, W.; Carter, M. D.; Chrzanowski, J.; Dudek, L.; Ewig, R.; Gates, D.; Hatcher, R. E.; Jarboe, T.; Jardin, S. C.; Johnson, D.; Kaita, R.; Kalish, M.; Kessel, C. E.; Kugel, H. W.; Maingi, R.; Majeski, R.; Manickam, J.; McCormack, B.; Menard, J.; Mueller, D.; Nelson, B. A.; Nelson, B. E.; Neumeyer, C.; Oliaro, G.; Paoletti, F.; Parsells, R.; Perry, E.; Pomphrey, N.; Ramakrishnan, S.; Raman, R.; Rewoldt, G.; Robinson, J.; Roquemore, A. L.; Ryan, P.; Sabbagh, S.; Swain, D.; Synakowski, E. J.; Viola, M.; Williams, M.; Wilson, J. R.; NSTX Team
2000-03-01
The National Spherical Torus Experiment (NSTX) is being built at Princeton Plasma Physics Laboratory to test the fusion physics principles for the spherical torus concept at the MA level. The NSTX nominal plasma parameters are R0 = 85 cm, a = 67 cm, R/a >= 1.26, Bt = 3 kG, Ip = 1 MA, q95 = 14, elongation κ <= 2.2, triangularity δ <= 0.5 and a plasma pulse length of up to 5 s. The plasma heating/current drive tools are high harmonic fast wave (6 MW, 5 s), neutral beam injection (5 MW, 80 keV, 5 s) and coaxial helicity injection. Theoretical calculations predict that NSTX should provide exciting possibilities for exploring a number of important new physics regimes, including very high plasma β, naturally high plasma elongation, high bootstrap current fraction, absolute magnetic well and high pressure driven sheared flow. In addition, the NSTX programme plans to explore fully non-inductive plasma startup as well as a dispersive scrape-off layer for heat and particle flux handling.
Survey of heating and current drive for K-DEMO
NASA Astrophysics Data System (ADS)
Mikkelsen, D. R.; Kessel, C. E.; Poli, F. M.; Bertelli, N.; Kim, K.
2018-03-01
We present calculations of heating and current drive by neutral injection and by electromagnetic waves in the ion cyclotron, helicon, lower hybrid, and electron cyclotron frequency ranges for the steady state burn conditions in a K-DEMO configuration with I_p=12.3 MA, a = 2.1 m, R_o=6.8 m, B_o=7.4 T, \
Progress of long pulse operation with high performance plasma in KSTAR
NASA Astrophysics Data System (ADS)
Bae, Young; Kstar Team
2015-11-01
Recent KSTAR experiments showed the sustained H-mode operation up to the pulse duration of 46 s at the plasma current of 600 kA. The long-pulse H-mode operation has been supported by long-pulse capable neutral beam injection (NBI) system with high NB current drive efficiency attributed by highly tangential injections of three beam sources. In next phase, aiming to demonstrate the long pulse stationary high performance plasma operation, we are attempting the long pulse inductive operation at the higher performance (MA plasma current, high normalized beta, and low q95) for the final goal of demonstration of ITER-like baseline scenario in KSTAR with progressive improvement of the plasma shape control and higher neutral beam injection power. This paper presents the progress of long pulse operation and the analysis of energy confinement time and non-inductive current drive in KSTAR.
Demonstrating H- beam focusing using an elliptical einzel lens
NASA Astrophysics Data System (ADS)
Lawrie, S. R.; Faircloth, D. C.; Letchford, A. P.; Whitehead, M. O.; Wood, T.
2017-08-01
H- ion source research is being performed at the ISIS spallation neutron and muon facility on a dedicated Vessel for Extraction and Source Plasma Analyses (VESPA). The ion extraction and optics system presently being used on ISIS is centered on a combined-function sector dipole magnet. This traps cesium vapor escaping the ion source; mass-separates co-extracted electrons and stripped neutrals, and weak-focusses the highly asymmetric slit-shaped ion beam. Unfortunately the added drift length through the magnet under strong space-charge forces means up to 50% of the beam is collimated on the magnet. The VESPA has shown that the ISIS ion source actually produces 80 mA of beam current at standard settings, but because of magnet collimation only 55 mA is injected into the solenoid Low Energy Beam Transport (LEBT). A new purely electrostatic post-extraction system incorporating an einzel lens with an elliptical aperture is currently under test. This allows much greater flexibility of perveance and phase space matching for injection into the LEBT and Radio Frequency Quadrupole (RFQ). This paper discusses high voltage breakdown mitigation strategies and presents the first results of the novel elliptical transport system. So far, 70 mA of beam has been transported through the new system with a normalized transverse RMS emittance of 0.2 π mm mrad.
Thibodeau, Rachel B; Ornelas, Laura C; Romero, Jordan; Memos, Nicoletta; Scheible, Matthew; Avila, Alfred; Schumacher, Abby; Navarro, April; Zimmermann, Karen; Cuenod, Bethany A; Frohardt, Russell J; Guarraci, Fay A
2013-02-01
The present study was designed to investigate the long-term effects of repeated methamphetamine (MA) exposure on sexual motivation in female rats tested after a period of drug abstinence. In Experiment 1, female subjects received three injections of MA (1.0mg/kg/day, every other day) or saline and were tested for paced mating behavior (where females could control the receipt of sexual stimulation from one male rat) 21 days after their last injection. In Experiment 2, female subjects received 12 consecutive injections of MA (1.0mg/kg/day) or saline and were tested for mate choice (where females could control the receipt of sexual stimulation from two male rats simultaneously) 6 days after their last injection. Experiment 3 was identical to Experiment 2 except that female subjects received no baseline mating test and were tested for mate choice 24h and 6 days after their last injection. Open field tests were conducted in each experiment to measure locomotor activity after repeated exposure to MA. Although repeated MA exposure increased locomotor activity, mating behavior was not facilitated after either a short (6 days) or long (21 days) period of drug abstinence. Nevertheless, sexual behavior was disrupted during the 24h acute withdrawal period. Therefore, although the present study found no evidence of cross-sensitization between female sexual behavior and MA after either a short or a long period of drug abstinence, sexual behavior in sexually naïve female rats is sensitive to the depressive state associated with acute withdrawal from MA. In conclusion, the results of the present study suggest that MA acts differently from other psychomotor stimulants, and that the effects of MA withdrawal on sexual behavior differ between male and female rats. Copyright © 2012 Elsevier Inc. All rights reserved.
Survey of heating and current drive for K-DEMO
Mikkelsen, D. R.; Kessel, C. E.; Poli, F. M.; ...
2018-01-22
Here, we present calculations of heating and current drive by neutral injection and by electromagnetic waves in the ion cyclotron, helicon, lower hybrid, and electron cyclotron frequency ranges for the steady state burn conditions in a K-DEMO configuration withmore » $$I_{\\rm p}=12.3$$ MA, a = 2.1 m, $$R_{\\rm o}=6.8$$ m, $$B_{\\rm o}=7.4$$ T, $$ \
Survey of heating and current drive for K-DEMO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mikkelsen, D. R.; Kessel, C. E.; Poli, F. M.
Here, we present calculations of heating and current drive by neutral injection and by electromagnetic waves in the ion cyclotron, helicon, lower hybrid, and electron cyclotron frequency ranges for the steady state burn conditions in a K-DEMO configuration withmore » $$I_{\\rm p}=12.3$$ MA, a = 2.1 m, $$R_{\\rm o}=6.8$$ m, $$B_{\\rm o}=7.4$$ T, $$ \
Microdisk Injection Lasers for the 1.27-μm Spectral Range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kryzhanovskaya, N. V.; Maximov, M. V.; Blokhin, S. A.
2016-03-15
Microdisk injection lasers on GaAs substrates, with a minimum diameter of 15 μm and an active region based on InAs/InGaAs quantum dots, are fabricated. The lasers operate in the continuous-wave mode at room temperature without external cooling. The lasing wavelength is around 1.27 μm at a minimum threshold current of 1.6 mA. The specific thermal resistance is estimated to be 5 × 10–3 °C cm{sup 2}/W.
InGaN-Based Light-Emitting Diodes Grown on a Micro/Nanoscale Hybrid Patterned Sapphire Substrate.
Ke, Wen-Cheng; Lee, Fang-Wei; Chiang, Chih-Yung; Liang, Zhong-Yi; Chen, Wei-Kuo; Seong, Tae-Yeon
2016-12-21
A hybrid patterned sapphire substrate (hybrid-PSS) was prepared using an anodic aluminum oxide etching mask to transfer nanopatterns onto a conventional patterned sapphire substrate with microscale patterns (bare-PSS). The threading dislocation (TD) suppression of light-emitting diodes (LEDs) grown on a hybrid-PSS (HP-LED) exhibits a smaller reverse leakage current compared with that of LEDs grown on a bare-PSS (BP-LED). The strain-free GaN buffer layer and fully strained InGaN active layer were evidenced by cross-sectional Raman spectra and reciprocal space mapping of the X-ray diffraction intensity for both samples. The calculated piezoelectric fields for both samples are close, implying that the quantum-confined Stark effect was not a dominant mechanism influencing the electroluminescence (EL) peak wavelength under a high injection current. The bandgap shrinkage effect of the InGaN well layer was considered to explain the large red-shifted EL peak wavelength under high injection currents. The estimated LED chip temperatures rise from room temperature to 150 °C and 75 °C for BP-LED and HP-LED, respectively, at a 600-mA injection current. This smaller temperature rise of the LED chip is attributed to the increased contact area between the sapphire and the LED structural layer because of the embedded nanopattern. Although the chip generates more heat at high injection currents, the accumulated heat can be removed to outside the chip effectively. The high diffuse reflection (DR) rate of hybrid-PSS increases the escape probability of photons, resulting in an increase in the viewing angle of the LEDs from 130° to 145°. The efficiency droop was reduced from 46% to 35%, effects which can be attributed to the elimination of TDs and strain relaxation by embedded nanopatterns. In addition, the light output power of HP-LED at 360-mA injection currents exhibits a ∼ 22.3% enhancement, demonstrating that hybrid-PSSs are beneficial to apply in high-power LEDs.
GaN-based superluminescent diodes with long lifetime
NASA Astrophysics Data System (ADS)
Castiglia, A.; Rossetti, M.; Matuschek, N.; Rezzonico, R.; Duelk, M.; Vélez, C.; Carlin, J.-F.; Grandjean, N.
2016-02-01
We report on the reliability of GaN-based super-luminescent light emitting diodes (SLEDs) emitting at a wavelength of 405 nm. We show that the Mg doping level in the p-type layers has an impact on both the device electro-optical characteristics and their reliability. Optimized doping levels allow decreasing the operating voltage on single-mode devices from more than 6 V to less than 5 V for an injection current of 100 mA. Furthermore, maximum output powers as high as 350 mW (for an injection current of 500 mA) have been achieved in continuous-wave operation (CW) at room temperature. Modules with standard and optimized p-type layers were finally tested in terms of lifetime, at a constant output power of 10 mW, in CW operation and at a case temperature of 25 °C. The modules with non-optimized p-type doping showed a fast and remarkable increase in the drive current during the first hundreds of hours together with an increase of the device series resistance. No degradation of the electrical characteristics was observed over 2000 h on devices with optimized p-type layers. The estimated lifetime for those devices was longer than 5000 h.
Design of photonic crystal surface emitting lasers with indium-tin-oxide top claddings
NASA Astrophysics Data System (ADS)
Huang, Shen-Che; Hong, Kuo-Bin; Chiu, Han-Lun; Lan, Shao-Wun; Chang, Tsu-Chi; Li, Heng; Lu, Tien-Chang
2018-02-01
Electrically pumped GaAs-based photonic crystal surface emitting lasers were fabricated using a simple fabrication process by directly capping the indium-tin-oxide transparent conducting thin film as the top cladding layer upon a photonic crystal layer. Optimization of the separate-confinement heterostructures of a laser structure is crucial to improving characteristics by providing advantageous optical confinements. The turn-on voltage, series resistance, threshold current, and slope efficiency of the laser with a 100 × 100 μm2 photonic crystal area operated at room temperature were 1.3 V, 1.5 Ω, 121 mA, and 0.2 W/A, respectively. Furthermore, we demonstrated a single-lobed lasing wavelength of 928.6 nm at 200 mA and a wavelength redshift rate of 0.05 nm/K in temperature-dependent measurements. The device exhibited the maximum output power of approximately 400 mW at an injection current of 2 A; moreover, divergence angles of less than 1° for the unpolarized circular-shaped laser beam were measured at various injection currents. Overall, the low threshold current, excellent beam quality, small divergence, high output power, and high-operating-temperature (up to 343 K) of our devices indicate that they can potentially fill the requirements for next-generation light sources and optoelectronic devices.
Local Helicity Injection Systems for Non-solenoidal Startup in the PEGASUS Toroidal Experiment
NASA Astrophysics Data System (ADS)
Perry, J. M.; Barr, J. L.; Bongard, M. W.; Fonck, R. J.; Hinson, E. T.; Lewicki, B. T.; Redd, A. J.
2013-10-01
Local helicity injection is being developed in the PEGASUS Toroidal Experiment for non-solenoidal startup in spherical tokamaks. The effective loop voltage due to helicity injection scales with the area of the injectors, requiring the development of electron current injectors with areas much larger than the 2 cm2 plasma arc injectors used to date. Solid and gas-effused metallic electrodes were found to be unusable due to reduced injector area utilization from localized cathode spots and narrow operational regimes. An integrated array of 8 compact plasma arc sources is thus being developed for high current startup. It employs two monolithic power systems, for the plasma arc sources and the bias current extraction system. The array effectively eliminates impurity fueling from plasma-material interaction by incorporating a local scraper-limiter and conical-frustum bias electrodes to mitigate the effects of cathode spots. An energy balance model of helicity injection indicates that the resulting 20 cm2 of total injection area should provide sufficient current drive to reach 0.3 MA. At that level, helicity injection drive exceeds that from poloidal induction, which is the relevant operational regime for large-scale spherical tokamaks. Future placement of the injector array near an expanded boundary divertor region will test simultaneous optimization of helicity drive and the Taylor relaxation current limit. Work supported by US DOE Grant DE-FG02-96ER54375.
NASA Astrophysics Data System (ADS)
Zhao, Jian-Yi; Chen, Xin; Zhou, Ning; Huang, Xiao-Dong; Cao, Ming-De; Liu, Wen
2014-07-01
A 16-channel distributed-feedback (DFB) laser array with a monolithic integrated arrayed waveguide grating multiplexer for a wavelength division multiplex-passive optical network system is fabricated by using the butt-joint metal organic chemical vapor deposition technology and nanoimpirnt technology. The results show that the threshold current is about 20-30 mA at 25°C. The DFB laser side output power is about 16 mW with a 150 mA injection current. The lasing wavelength is from 1550 nm to 1575 nm covering a more than 25 nm range with 200 GHz channel space. A more than 55 dB sidemode suppression ratio is obtained.
Marshall, B.D.L.; Grafstein, E.; Buxton, J.A.; Qi, J.; Wood, E.; Shoveller, J.A.; Kerr, T.
2011-01-01
SUMMARY Objectives Methamphetamine (MA) use has been associated with health problems that commonly present in the emergency department (ED). This study sought to determine whether frequent MA injection was a risk factor for ED utilization among street-involved youth. Study design Prospective cohort study. Methods Data were derived from a street-involved youth cohort known as the ‘At Risk Youth Study’. Behavioural data including MA use were linked to ED records at a major inner-city hospital. Kaplan-Meier and Cox proportional hazards methods were used to determine the risk factors for ED utilization. Results Between September 2005 and January 2007, 427 eligible participants were enrolled, among whom the median age was 21 (interquartile range 19–23) years and 154 (36.1%) were female. Within 1 year, 163 (38.2%) visited the ED, resulting in an incidence density of 53.7 per 100 person-years. ED utilization was significantly higher among frequent (i.e. ≥daily) MA injectors (log-rank P=0.004). In multivariate analysis, frequent MA injection was associated with an increased hazard of ED utilization (adjusted hazard ratio=1.84, 95% confidence interval 1.04–3.25; P=0.036). Conclusions Street-involved youth who frequently inject MA appear to be at increased risk of ED utilization. The integration of MA-specific addiction treatment services within emergency care settings for high-risk youth is recommended. PMID:22133669
Cheng, W Susan; Garfein, Richard S; Semple, Shirley J; Strathdee, Steffanie A; Zians, James K; Patterson, Thomas L
2010-01-01
This study identified sociodemographic factors, drug using practices, sexual behaviors, and motivational factors associated with binge (a period of uninterrupted) methamphetamine (MA) use among heterosexual MA users. The FASTLANE study provided cross-sectional data collected by audio computer-assisted self-interview (ACASI) between June 2001 and August 2004 from 451 HIV-negative MA users in San Diego, California, USA who had engaged in unprotected sex and used MA in the previous two months. The study sample was 67.8% male, 49.4% Caucasian, 26.8% African-American, and 12.8% Hispanic with a mean age of 36.6 years; 183 (40.5%) reported binge use in the past 2 months. Compared with non-binge users, binge users of MA were more likely to report risky drug use and sex behaviors and differed in motivations to initiate and currently use MA. The final logistic regression model for binge use included more days of MA use in the last month, ever treated for MA use, injection drug use, higher Beck Depression Inventory score, "experimentation" as a motivation for initiating MA use, and engaging in sex marathons while high on MA. HIV prevention efforts should differentiate and address these differences in motivations for MA use and the associated HIV-risk sex and drug use behaviors as key targets for effective intervention.
NASA Astrophysics Data System (ADS)
Perry, J. M.; Barr, J. L.; Bodner, G. M.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Hinson, E. T.; Lewicki, B. T.; Reusch, J. A.; Schlossberg, D. J.; Winz, G. R.
2015-11-01
Local helicity injection (LHI) is a non-solenoidal startup technique under development on the Pegasus ST. Plasma currents up to 0.18 MA have been initiated by LHI in conjunction with poloidal field induction. A 0-D power balance model has been developed to predict plasma current evolution by balancing helicity input against resistive dissipation. The model is being validated against a set of experimental measurements and magnetic reconstructions with radically varied plasma geometric evolutions. Outstanding physics issues with LHI startup are the scalings of confinement and MHD activity with helicity injection rate and toroidal field strength, as well as injector behavior at high field. Preliminary results from the newly-installed Thomson scattering system suggest core temperatures of a few hundred eV during LHI startup. Measurements are being expanded to multiple spatial points for ongoing confinement studies. A set of larger-area injectors is being installed in the lower divertor region, where increased toroidal field will provide a helicity injection rate over 3 times that of outboard injectors. In this regime helicity injection will be the dominant current drive. Experiments with divertor injectors will permit experimental differentiation of several possible confinement models, and demonstrate the feasibility of LHI startup at high field. Work supported by US DOE grant DE-FG02-96ER54375.
NASA Astrophysics Data System (ADS)
Ha, JaeUn; Yoon, Seongwon; Lee, Jong-Soo; Chung, Dae Sung
2016-03-01
In this study, the strategy of using an organic-inorganic hybrid planar heterojunction consisting of polymeric semiconductors and inorganic nanocrystals is introduced to realize a high-performance hybrid photodiode (HPD) with low dark current and high detectivity. To prevent undesired charge injection under the reverse bias condition, which is the major dark current source of the photodiode, a well-defined planar heterojunction is strategically constructed via smart solution process techniques. The optimized HPD renders a low dark current of ˜10-5 mA cm-2 at -5 V and ˜10-6 mA cm-2 at -1 V, as well as a high detectivity ˜1012 Jones across the entire visible wavelength range. Furthermore, excellent photocurrent stability is demonstrated under continuous light exposure. We believe that the solution-processed planar heterojunction with inverted structure can be an attractive alternative diode structure for fabricating high-performance HPDs, which usually suffer from high dark current issues.
Structural determinants of NH3 and NH4+ transport by mouse Rhbg, a renal Rh glycoprotein.
Abdulnour-Nakhoul, Solange; Le, Trang; Rabon, Edd; Hamm, L Lee; Nakhoul, Nazih L
2016-12-01
Renal Rhbg is localized to the basolateral membrane of intercalated cells and is involved in NH 3 /NH 4 + transport. The structure of Rhbg is not yet resolved; however, a high-resolution crystal structure of AmtB, a bacterial homolog of Rh, has been determined. We aligned the sequence of Rhbg to that of AmtB and identified important sites of Rhbg that may affect transport. Our analysis positioned three conserved amino acids, histidine 183 (H183), histidine 342 (H342), and tryptophan 230 (W230), within the hydrophobic pore where they presumably serve to control NH 3 transport. A fourth residue, phenylalanine 128 (F128) was positioned at the upper vestibule, presumably contributing to recruitment of NH 4 + We generated three mutations each of H183, H342, W230, and F128 and expressed them in frog oocytes. Immunolabeling showed that W230 and F128 mutants were localized to the cell membrane, whereas H183 and H342 staining was diffuse and mostly intracellular. To determine function, we compared measurements of NH 3 /NH 4 + and methyl amine (MA)/methyl ammonium (MA + )-induced currents, intracellular pH, and surface pH (pHs) among oocytes expressing the mutants, Rhbg, or injected with H 2 O. In H183 and W230 mutants, NH 4 + -induced current and intracellular acidification were inhibited compared with that of Rhbg, and MA-induced intracellular alkalinization was completely absent. Expression of H183A or W230A mutants inhibited NH 3 /NH 4 + - and MA/MA + -induced decrease in pHs to the level observed in H 2 O-injected oocytes. Mutations of F128 did not significantly affect transport of NH 3 or NH 4 + These data demonstrated that mutating H183 or W230 caused loss of function but not F128. H183 and H342 may affect membrane expression of the transporter.
Structural determinants of NH3 and NH4+ transport by mouse Rhbg, a renal Rh glycoprotein
Abdulnour-Nakhoul, Solange; Le, Trang; Rabon, Edd; Hamm, L. Lee
2016-01-01
Renal Rhbg is localized to the basolateral membrane of intercalated cells and is involved in NH3/NH4+ transport. The structure of Rhbg is not yet resolved; however, a high-resolution crystal structure of AmtB, a bacterial homolog of Rh, has been determined. We aligned the sequence of Rhbg to that of AmtB and identified important sites of Rhbg that may affect transport. Our analysis positioned three conserved amino acids, histidine 183 (H183), histidine 342 (H342), and tryptophan 230 (W230), within the hydrophobic pore where they presumably serve to control NH3 transport. A fourth residue, phenylalanine 128 (F128) was positioned at the upper vestibule, presumably contributing to recruitment of NH4+. We generated three mutations each of H183, H342, W230, and F128 and expressed them in frog oocytes. Immunolabeling showed that W230 and F128 mutants were localized to the cell membrane, whereas H183 and H342 staining was diffuse and mostly intracellular. To determine function, we compared measurements of NH3/NH4+ and methyl amine (MA)/methyl ammonium (MA+)-induced currents, intracellular pH, and surface pH (pHs) among oocytes expressing the mutants, Rhbg, or injected with H2O. In H183 and W230 mutants, NH4+-induced current and intracellular acidification were inhibited compared with that of Rhbg, and MA-induced intracellular alkalinization was completely absent. Expression of H183A or W230A mutants inhibited NH3/NH4+- and MA/MA+-induced decrease in pHs to the level observed in H2O-injected oocytes. Mutations of F128 did not significantly affect transport of NH3 or NH4+. These data demonstrated that mutating H183 or W230 caused loss of function but not F128. H183 and H342 may affect membrane expression of the transporter. PMID:27681563
NASA Astrophysics Data System (ADS)
Rodrigues, G.; Becker, R.; Hamm, R. W.; Baskaran, R.; Kanjilal, D.; Roy, A.
2014-02-01
The ion current achievable from high intensity ECR sources for highly charged ions is limited by the high space charge. This makes classical extraction systems for the transport and subsequent matching to a radio frequency quadrupole (RFQ) accelerator less efficient. The direct plasma injection (DPI) method developed originally for the laser ion source avoids these problems and uses the combined focusing of the gap between the ion source and the RFQ vanes (or rods) and the focusing of the rf fields from the RFQ penetrating into this gap. For high performance ECR sources that use superconducting solenoids, the stray magnetic field of the source in addition to the DPI scheme provides focusing against the space charge blow-up of the beam. A combined extraction/matching system has been designed for a high performance ECR ion source injecting into an RFQ, allowing a total beam current of 10 mA from the ion source for the production of highly charged 238U40+ (1.33 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ion source extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of an ion beam. The stray magnetic field is shown to be critical in the case of a matched beam.
Rodrigues, G; Becker, R; Hamm, R W; Baskaran, R; Kanjilal, D; Roy, A
2014-02-01
The ion current achievable from high intensity ECR sources for highly charged ions is limited by the high space charge. This makes classical extraction systems for the transport and subsequent matching to a radio frequency quadrupole (RFQ) accelerator less efficient. The direct plasma injection (DPI) method developed originally for the laser ion source avoids these problems and uses the combined focusing of the gap between the ion source and the RFQ vanes (or rods) and the focusing of the rf fields from the RFQ penetrating into this gap. For high performance ECR sources that use superconducting solenoids, the stray magnetic field of the source in addition to the DPI scheme provides focusing against the space charge blow-up of the beam. A combined extraction/matching system has been designed for a high performance ECR ion source injecting into an RFQ, allowing a total beam current of 10 mA from the ion source for the production of highly charged (238)U(40+) (1.33 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ion source extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of an ion beam. The stray magnetic field is shown to be critical in the case of a matched beam.
Quite a lot of smoke but very limited fire--the use of methamphetamine in Europe.
Griffiths, Paul; Mravcik, Viktor; Lopez, Dominique; Klempova, Danica
2008-05-01
This paper provides an overview of the historical development, current situation and potential future diffusion of methamphetamine (MA) use in Europe. The analysis is based on a review of published and grey literature, as well as data collected as part of the ongoing monitoring of the drug situation in Europe. Some qualitative surveys among high-risk populations do exist, but overall the general low prevalence of methamphetamine use in most of Europe means that the data available to explore patterns of use are limited. In many parts of Europe, amphetamine use is well established and the injecting of amphetamines has historically constituted an important component of the drug problem in many Nordic countries. Methamphetamine problems are long documented in the Czech and Slovak republics, but there is no current evidence of widespread use of MA elsewhere in Europe. Concern that MA use is spreading in Europe is prompted by some reports of use among high-risk groups. However, the evidence available suggests that even in high-risk populations, the use of MA currently remains uncommon. Europe accounted for less than 1% of worldwide MA seizures in 2005, and over the period 2004-05 European ephedrine seizures amounted for 6% of the global figure. The spread of MA use is limited and no strong evidence exists that significant diffusion is occurring. It appears likely that methamphetamine diffusion in Europe is impeded by a strong market for other stimulant drugs [cocaine, amphetamine and methylenedioxymethamphetamine (MDMA)]. The future potential for the diffusion of MA may be influenced by factors such as: the relative availability and popularity of other drugs; possible 'leakage' from areas of historical high prevalence; travel by young Europeans to areas of high prevalence; and how users perceive MA as a desirable, suitable and cost-effective alternative to other stimulants available on the European illicit drug market.
4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication.
Lee, Changmin; Zhang, Chong; Cantore, Michael; Farrell, Robert M; Oh, Sang Ho; Margalith, Tal; Speck, James S; Nakamura, Shuji; Bowers, John E; DenBaars, Steven P
2015-06-15
We demonstrate high-speed data transmission with a commercial high power GaN laser diode at 450 nm. 2.6 GHz bandwidth was achieved at an injection current of 500 mA using a high-speed visible light communication setup. Record high 4 Gbps free-space data transmission rate was achieved at room temperature.
High performance of Ga-doped ZnO transparent conductive layers using MOCVD for GaN LED applications.
Horng, Ray-Hua; Shen, Kun-Ching; Yin, Chen-Yang; Huang, Chiung-Yi; Wuu, Dong-Sing
2013-06-17
High performance of Ga-doped ZnO (GZO) prepared using metalorganic chemical vapor deposition (MOCVD) was employed in GaN blue light-emitting diodes (LEDs) as transparent conductive layers (TCL). By the post-annealing process, the annealed 800°C GZO films exhibited a high transparency above 97% at wavelength of 450 nm. The contact resistance of GZO decreased with the annealing temperature increasing. It was attributed to the improvement of the GZO crystal quality, leading to an increase in electron concentration. It was also found that some Zn atom caused from the decomposition process diffused into the p-GaN surface of LED, which generated a stronger tunneling effect at the GZO/p-GaN interface and promoted the formation of ohmic contact. Moreover, contrast to the ITO-LED, a high light extraction efficiency of 77% was achieved in the GZO-LED at injection current of 20 mA. At 350 mA injection current, the output power of 256.51 mW of GZO-LEDs, corresponding to a 21.5% enhancement as compared to ITO-LEDs was obtained; results are promising for the development of GZO using the MOCVD technique for GaN LED applications.
NASA Astrophysics Data System (ADS)
Kang, Chun Hong; Shen, Chao; M. Saheed, M. Shuaib; Mohamed, Norani Muti; Ng, Tien Khee; Ooi, Boon S.; Burhanudin, Zainal Arif
2016-08-01
Transparent conductive electrodes (TCE) made of carbon nanotube (CNT) and graphene composite for GaN-based light emitting diodes (LED) are presented. The TCE with 533-Ω/□ sheet resistance and 88% transmittance were obtained when chemical-vapor-deposition grown graphene was fused across CNT networks. With an additional 2-nm thin NiOx interlayer between the TCE and top p-GaN layer of the LED, the forward voltage was reduced to 5.12 V at 20-mA injection current. Four-fold improvement in terms of light output power was observed. The improvement can be ascribed to the enhanced lateral current spreading across the hybrid CNT-graphene TCE before injection into the p-GaN layer.
mA beam acceleration efforts on 100 MeV H- cyclotron at CIAE
NASA Astrophysics Data System (ADS)
Zhang, Tianjue; An, Shizhong; Lv, Yinlong; Ge, Tao; Jia, Xianlu; Ji, Bin; Yin, Zhiguo; Pan, Gaofeng; Cao, Lei; Guan, Fengping; Yang, Jianjun; Li, Zhenguo; Zhao, Zhenlu; Wu, Longcheng; Zhang, He; Wang, Jingfeng; Zhang, Yiwang; Liu, Jingyuan; Li, Shiqiang; Lu, Xiaotong; Liu, Zhenwei; Li, Yaoqian; Guo, Juanjuan; Cao, Xuelong; Guan, Leilei; Wang, Fei; Wang, Yang; Yang, Guang; Zhang, Suping; Hou, Shigang; Wang, Feng
2017-09-01
Various technologies for high current compact H- cyclotron have been developed at CIAE since 1990s. A 375 μA proton beam was extracted from a 30 MeV compact H- cyclotron CYCIAE-30 at the end of 1994. A central region model cyclotron CYCIAE-CRM was developed for the design verification of a 100 MeV high current compact H- cyclotron CYCIAE-100. It is also a 10 MeV proton machine as a prototype for PET application. A 430 μA beam was achieved in 2009. The first beam was extracted from the CYCIAE-100 cyclotron on July 4, 2014, the operation stability has been improved and beam current has been increased gradually. A 1.1 mA proton beam was measured on the internal target in July 2016. The effort for an increasing of proton beam has continued till now. In this paper, the effort on several aspects for mA beam development will be presented, including the multi-cusp source, buncher, matching from the energy of the injected beam, vertical beam line and central region, beam loading of the RF system and instrumentation for beam diagnostics etc.
Room-temperature lasing operation of a quantum-dot vertical-cavity surface-emitting laser
NASA Astrophysics Data System (ADS)
Saito, Hideaki; Nishi, Kenichi; Ogura, Ichiro; Sugou, Shigeo; Sugimoto, Yoshimasa
1996-11-01
Self-assembled growth of quantum dots by molecular-beam epitaxy is used to form the active region of a vertical-cavity surface-emitting laser (VCSEL). Ten layers of InGaAs quantum dots are stacked in order to increase the gain. This quantum-dot VCSEL has a continuous-wave operating current of 32 mA at room temperature. Emission spectra at various current injections demonstrate that the lasing action is associated with a higher-order transition in the quantum dots.
Nasr, Marwan W; Jabbour, Samer F; Haber, Roger N; Kechichian, Elio G; El Hachem, Lena
2017-02-01
Primary focal axillary hyperhidrosis is a disorder of excessive sweating that can strongly impact quality of life. The objective if this study was to compare microwave ablation (MA), botulinum toxin (BT) injection, and liposuction-curettage (LC) in the treatment of primary axillary hyperhidrosis based on subjective and objective criteria. A systematic review of the literature published in French or English between 1 January 1991 and 1 February 2015 was completed using PubMed and Embase databases. 16 of 775 articles were selected based on relevance and criteria of inclusion and exclusion. The three methods proved to be efficient and safe; however, MA and BT had better results when compared to LC in the short term. Both MA and LC showed longer lasting results when compared to BT. However, in the long term, MA was superior to LC. MA, LC, and BT injections are safe and efficient minimally invasive alternatives for the treatment of axillary hyperhidrosis. Well-designed randomized controlled trials are needed to further compare the efficacy of these techniques.
[Methamphetamine - just another stimulant or a more complex problem?].
Lecomte, Tania; Massé, Marjolaine
2014-01-01
Methamphetamine (MA) has recently become very popular in the media, due in part to its increasing popularity as well as its psychotropic effects and the negative consequences of its use. Is it a stimulant like any other, or does methamphetamine use lead to specific difficulties in its users? The aim of this article is to provide a brief review of the literature by explaining some of the reasons for its popularity in Canada as well as the physical, dental, psychiatric, cognitive and legal problems associated with its use. MA's popularity: Regarding its popularity, MA has benefitted from multiple factors, namely its low cost for users and manufacturers, its quick and intense psychotropic effects (increased energy, sexual arousal, rapid thinking, sleeplessness, lack of appetite), its easy access, as well as its various methods of ingestion (nasal, oral, injection). MA abuse also results in a multitude of negative effects, both physical and mental. MA's physical effects: In terms of negative physical effects, cardiac problems, skin infections, sexually transmitted (and injection-related) diseases as well as meth mouth are described. MA's mental effects: In terms of mental consequences, two recently published Canadian studies revealing high rates of depression symptoms and of sustained psychotic symptoms in a subgroup of MA users are presented. Studies reporting various cognitive deficits in MA user are also reviewed, including reports of high prevalence of childhood attention deficit and hyperactivity disorder diagnoses among adult MA users. Furthermore, MA abusers are documented as having been highly exposed to trauma in their lives, with many presenting with post-traumatic stress disorder criteria. This manuscript also explores the reasons behind the forensic profiles of individuals using MA, particularly the increased tendency toward violent acts, the high incarceration rates of the homeless users and the high percentage of individuals diagnosed with antisocial personality disorder reported in studies. In terms of user profiles, various methods of ingestion, frequency of use as well as combination with other drugs are described, with a special focus on the frequent polysubstance abuse found in MA users and the reality of bingers. This manuscript describes specific treatments designed for stimulant users such as MA abusers, namely the MATRIX program, as well as modifications piloted for those with comorbid depression. Pharmacological treatments, as well as antioxidant supplements, are also discussed although they have not yielded positive results with humans to date. Overall, our goal in this manuscript is to highlight the complexity of the difficulties faced by MA users as well as the limited ability of currently available treatments to address the multiple needs associated with this complexity.
Non-Solenoidal Startup Research Directions on the Pegasus Toroidal Experiment
NASA Astrophysics Data System (ADS)
Fonck, R. J.; Bongard, M. W.; Lewicki, B. T.; Reusch, J. A.; Winz, G. R.
2017-10-01
The Pegasus research program has been focused on developing a physical understanding and predictive models for non-solenoidal tokamak plasma startup using Local Helicity Injection (LHI). LHI employs strong localized electron currents injected along magnetic field lines in the plasma edge that relax through magnetic turbulence to form a tokamak-like plasma. Pending approval, the Pegasus program will address a broader, more comprehensive examination of non-solenoidal tokamak startup techniques. New capabilities may include: increasing the toroidal field to 0.6 T to support critical scaling tests to near-NSTX-U field levels; deploying internal plasma diagnostics; installing a coaxial helicity injection (CHI) capability in the upper divertor region; and deploying a modest (200-400 kW) electron cyclotron RF capability. These efforts will address scaling of relevant physics to higher BT, separate and comparative studies of helicity injection techniques, efficiency of handoff to consequent current sustainment techniques, and the use of ECH to synergistically improve the target plasma for consequent bootstrap and neutral beam current drive sustainment. This has an ultimate goal of validating techniques to produce a 1 MA target plasma in NSTX-U and beyond. Work supported by US DOE Grant DE-FG02-96ER54375.
Lai, Yu-Ting; Tsai, Yen-Ping N; Cherng, Chianfang G; Ke, Jing-Jer; Ho, Ming-Che; Tsai, Chia-Wen; Yu, Lung
2009-04-01
Systemic lipopolysaccharide (LPS) treatment may affect methamphetamine (MA)-induced nigrostriatal dopamine (DA) depletion. This study was undertaken to determine the critical time window for the protective effects of LPS treatment and the underlying mechanisms. An LPS injection (1 mg/kg) 72 h before or 2 h after MA treatment [three consecutive, subcutaneous injections of MA (10 mg/kg each) at 2-h intervals] diminished the MA-induced DA depletion in mouse striatum. Such an LPS-associated effect was independent of MA-produced hyperthermia. TNF-alpha, IL-1beta, IL-6 expressions were all elevated in striatal tissues following a systemic injection with LPS, indicating that peripheral LPS treatment affected striatal pro-inflammatory cytokine expression. Striatal TNF-alpha expression was dramatically increased at 72 and 96 h after the MA treatment, while such TNF-alpha elevation was abolished by the LPS pretreatment protocol. Moreover, MA-produced activation of nuclear NFkappaB, a transcription factor following TNF-alpha activation, in striatum was abolished by the LPS (1 mg/kg) pretreatment. Furthermore, thalidomide, a TNF-alpha antagonist, treatment abolished the LPS pretreatment-associated protective effects. Pretreatment with mouse recombinant TNF-alpha in striatum diminished the MA-produced DA depletion. Finally, single LPS treatment caused a rapid down-regulation of dopamine transporter (DAT) in striatum. Taken together, we conclude that peripheral LPS treatment protects nigrostriatal DA neurons against MA-induced toxicity, in part, by reversing elevated TNF-alpha expression and subsequent signaling cascade and causing a rapid DAT down-regulation in striatum.
Improvements to the internal and external antenna H(-) ion sources at the Spallation Neutron Source.
Welton, R F; Dudnikov, V G; Han, B X; Murray, S N; Pennisi, T R; Pillar, C; Santana, M; Stockli, M P; Turvey, M W
2014-02-01
The Spallation Neutron Source (SNS), a large scale neutron production facility, routinely operates with 30-40 mA peak current in the linac. Recent measurements have shown that our RF-driven internal antenna, Cs-enhanced, multi-cusp ion sources injects ∼55 mA of H(-) beam current (∼1 ms, 60 Hz) at 65-kV into a Radio Frequency Quadrupole (RFQ) accelerator through a closely coupled electrostatic Low-Energy Beam Transport system. Over the last several years a decrease in RFQ transmission and issues with internal antennas has stimulated source development at the SNS both for the internal and external antenna ion sources. This report discusses progress in improving internal antenna reliability, H(-) yield improvements which resulted from modifications to the outlet aperture assembly (applicable to both internal and external antenna sources) and studies made of the long standing problem of beam persistence with the external antenna source. The current status of the external antenna ion source will also be presented.
Nine-channel wavelength tunable single mode laser array based on slots.
Guo, Wei-Hua; Lu, Qiaoyin; Nawrocka, Marta; Abdullaev, Azat; O'Callaghan, James; Donegan, John F
2013-04-22
A 9-channel wavelength tunable single-mode laser array based on slots is presented. The fabricated laser array demonstrated a threshold current in a range of 19~21 mA with the SOA unbiased at 20°C under continuous wave condition. Stable single mode performances have been observed with side-mode suppression-ratio (SMSR) > 50 dB. The output power higher than 37 mW was obtained at the SOA injected current of 70 mA for all the 9 channels within the laser array. A wavelength quasi-continuous tuning range of about 27 nm has been achieved for the laser array with the temperature variations from 10°C to 45°C. This array platform is of a single growth and monolithically integrable. It can be easily fabricated by standard photolithography. In addition, it potentially removes the yield problem due to the uncertainty of the facet cleaving.
1.55 µm high speed low chirp electroabsorption modulated laser arrays based on SAG scheme.
Cheng, Yuanbing; Wang, Qi Jie; Pan, Jiaoqing
2014-12-15
We demonstrate a cost-effective 1.55 µm low chirp 4 × 25 Gbit/s electroabsorption modulated laser (EML) array with 0.8 nm channel spacing by varying ridge width of the lasers and using selective area growth (SAG) integration scheme. The devices for all the 4 channels within the EML array show uniform threshold currents around 18 mA and high SMSRs over 45 dB. The output optical power of each channel is about 9 mW at an injection current of 100 mA. The typical chirp value of single EML measured by a fiber resonance method varied from 2.2 to -4 as the bias voltage was increased from 0 V to 2.5 V. These results show that the EML array is a suitable light source for 100 Gbit/s optical transmissions.
CLEARING MAGNET DESIGN FOR APS-U
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abliz, M.; Grimmer, J.; Jaski, Y.
2017-06-25
The Advanced Photon Source is in the process of developing an upgrade (APS-U) of the storage ring. The upgrade will be converting the current double bend achromat (DBA) lattice to a multi-bend achromat (MBA) lattice. In addition, the storage ring will be operated at 6 GeV and 200 mA with regular swap-out injection to keep the stored beam current constant [1]. The swap-out injection will take place with beamline shutters open. For radiation safety to ensure that no electrons can exit the storage ring, a passive method of protecting the beamline and containing the electrons inside the storage ring ismore » proposed. A clearing magnet will be located in all beamline front ends inside the storage ring tunnel. This article will discuss the features and design of the clearing magnet scheme for APS-U.« less
NASA Astrophysics Data System (ADS)
Cornelissen, L. J.; Liu, J.; van Wees, B. J.; Duine, R. A.
2018-03-01
Efficient manipulation of magnon spin transport is crucial for developing magnon-based spintronic devices. In this Letter, we provide proof of principle of a method for modulating the diffusive transport of thermal magnons in an yttrium iron garnet channel between injector and detector contacts. The magnon spin conductance of the channel is altered by increasing or decreasing the magnon chemical potential via spin Hall injection of magnons by a third modulator electrode. We obtain a modulation efficiency of 1.6 %/mA at T =250 K . Finite element modeling shows that this could be increased to well above 10 %/mA by reducing the thickness of the channel, providing interesting prospects for the development of thermal-magnon-based logic circuits.
Silver, R B
1986-06-01
Monospecific antibodies to the calcium transport enzyme (alpha-Ca pump) inhibit mitosis when microinjected into sand dollar embryos. Immunoglobulins were raised against the calcium transport enzyme (Ca pump) of sarcoplasmic reticulum (SR) from rat skeletal muscle and guinea pig ileum smooth muscle. Specific antibodies were further isolated from IgG fractions by using electrophoretically purified SR Ca-pump protein as the immobilized ligand for immunoaffinity chromatography. ELISA demonstrated that common antigenic determinants are shared by SR, SR Ca pump (of rat skeletal and guinea pig ileum smooth muscle), and isolated membrane containing "native" mitotic apparatus (MA). Preimmune sera gave negative results in identical control assays. Triton X-100 extraction of MA removes the Ca-pump antigen. SR Ca pump and the MA Ca pump have nearly identical molecular masses as determined by NaDodSO4/PAGE. These alpha-SR Ca-pump IgGs inhibit ATP-dependent Ca2+ sequestration by purified SR and MA membranes. Indirect immunofluorescence of isolated native MA demonstrated coincident localization of the MA Ca pump, sequestered calcium, and membrane vesicles. Fluorescent foci were regionally concentrated within the volumes of the asters and spindle. Microinjection of the anti-Ca-pump IgGs into one of two sister blastomeres at second metaphase resulted in mitotic arrest of the injected cell accompanied by a rapid loss of spindle birefringence. Karyomeres formed and fused to form nuclei either at the site of the metaphase plate or at the position the chromosomes occupied during anaphase A. The cleavage furrow did not develop in the injected cell, while the sister and neighbor cells continued normal mitotic cycling. Injection later in mitosis yielded cells with two nuclei whose cleavage furrow relaxed completely. Routine control injections of boiled immune IgG, preimmune IgG, Wesson oil, buffer, or goat anti-rabbit IgG did not affect mitosis, birefringence of the MA, or cleavage furrow activity.
Silver, R B
1986-01-01
Monospecific antibodies to the calcium transport enzyme (alpha-Ca pump) inhibit mitosis when microinjected into sand dollar embryos. Immunoglobulins were raised against the calcium transport enzyme (Ca pump) of sarcoplasmic reticulum (SR) from rat skeletal muscle and guinea pig ileum smooth muscle. Specific antibodies were further isolated from IgG fractions by using electrophoretically purified SR Ca-pump protein as the immobilized ligand for immunoaffinity chromatography. ELISA demonstrated that common antigenic determinants are shared by SR, SR Ca pump (of rat skeletal and guinea pig ileum smooth muscle), and isolated membrane containing "native" mitotic apparatus (MA). Preimmune sera gave negative results in identical control assays. Triton X-100 extraction of MA removes the Ca-pump antigen. SR Ca pump and the MA Ca pump have nearly identical molecular masses as determined by NaDodSO4/PAGE. These alpha-SR Ca-pump IgGs inhibit ATP-dependent Ca2+ sequestration by purified SR and MA membranes. Indirect immunofluorescence of isolated native MA demonstrated coincident localization of the MA Ca pump, sequestered calcium, and membrane vesicles. Fluorescent foci were regionally concentrated within the volumes of the asters and spindle. Microinjection of the anti-Ca-pump IgGs into one of two sister blastomeres at second metaphase resulted in mitotic arrest of the injected cell accompanied by a rapid loss of spindle birefringence. Karyomeres formed and fused to form nuclei either at the site of the metaphase plate or at the position the chromosomes occupied during anaphase A. The cleavage furrow did not develop in the injected cell, while the sister and neighbor cells continued normal mitotic cycling. Injection later in mitosis yielded cells with two nuclei whose cleavage furrow relaxed completely. Routine control injections of boiled immune IgG, preimmune IgG, Wesson oil, buffer, or goat anti-rabbit IgG did not affect mitosis, birefringence of the MA, or cleavage furrow activity. Images PMID:2940599
GaAs/AlGaAs core multishell nanowire-based light-emitting diodes on Si.
Tomioka, Katsuhiro; Motohisa, Junichi; Hara, Shinjiroh; Hiruma, Kenji; Fukui, Takashi
2010-05-12
We report on integration of GaAs nanowire-based light-emitting-diodes (NW-LEDs) on Si substrate by selective-area metalorganic vapor phase epitaxy. The vertically aligned GaAs/AlGaAs core-multishell nanowires with radial p-n junction and NW-LED array were directly fabricated on Si. The threshold current for electroluminescence (EL) was 0.5 mA (current density was approximately 0.4 A/cm(2)), and the EL intensity superlinearly increased with increasing current injections indicating superluminescence behavior. The technology described in this letter could help open new possibilities for monolithic- and on-chip integration of III-V NWs on Si.
NASA Astrophysics Data System (ADS)
Klir, D.; Shishlov, A. V.; Kokshenev, V. A.; Kubes, P.; Labetsky, A. Yu; Rezac, K.; Cikhardt, J.; Fursov, F. I.; Kovalchuk, B. M.; Kravarik, J.; Kurmaev, N. E.; Ratakhin, N. A.; Sila, O.; Stodulka, J.
2013-08-01
Experiments with deuterium (D2) triple shell gas puffs were carried out on the GIT-12 generator at a 3 MA current level and microsecond implosion times. The outer, middle and inner nozzle diameters were 160 mm, 80 mm and 30 mm, respectively. The influence of the mass of deuterium shells on neutron emission times, neutron yields and neutron energy spectra was studied. The injected linear mass of deuterium varied between 50 and 255 µg cm-1. Gas puffs imploded onto the axis before the peak of generator current at 700-1100 ns. Most of the neutrons were emitted during the second neutron pulse after the development of instabilities. Despite higher currents, heavier gas puffs produced lower neutron yields. Optimal mass and a short time delay between the valve opening and the generator triggering were more important than the better coincidence of stagnation with peak current. The peak neutron yield from D(d, n)3He reactions reached 3 × 1011 at 2.8 MA current, 90 µg cm-1 injected linear mass and 37 mm anode-cathode gap. In the case of lower mass shots, a large number of 10 MeV neutrons were produced either by secondary DT reactions or by DD reactions of deuterons with energies above 7 MeV. The average neutron yield ratio Y>10 MeV/Y2.5 MeV reached (6 ± 3) × 10-4. Such a result can be explained by a power law distribution for deuterons as \\rmd N_d/\\rmd E_d\\propto E_d^{-3} . The optimization of a D2 gas puff Z-pinch and similarities to a plasma focus and its drive parameter are described.
Voluntary inhalation of methamphetamine: a novel strategy for studying intake non-invasively.
Juarez-Portilla, C; Kim, R D; Robotham, M; Tariq, M; Pitter, M; LeSauter, J; Silver, R
2017-03-01
The abuse of the psychostimulant methamphetamine (MA) is associated with substantial costs and limited treatment options. To understand the mechanisms that lead to abuse, animal models of voluntary drug intake are crucial. We aimed to develop a protocol to study long-term non-invasive voluntary intake of MA in mice. Mice were maintained in their home cages and allowed daily 1 h access to an attached tunnel leading to a test chamber in which nebulized MA was available. Restated, if they went to the nebulizing chamber, they self-administered MA by inhalation. This protocol was compared to injected and to imposed exposure to nebulized MA, in a series of seven experiments. We established a concentration of nebulized MA at which motor activity increases following voluntary intake resembled that following MA injection and imposed inhalation. We found that mice regulated their exposure to MA, self-administering for shorter durations when concentrations of nebulized MA were increased. Mice acquire the available MA by repeatedly running in and out of the nebulizing chamber for brief bouts of intake. Such exposure to nebulized MA elevated plasma MA levels. There was limited evidence of sensitization of locomotor activity. Finally, blocking access to the wheel did not affect time spent in the nebulizing chamber. We conclude that administration of MA by nebulization is an effective route of self-administration, and our new protocol represents a promising tool for examining the transitions from first intake to long-term use and its behavioral and neural consequences in a non-invasive protocol.
NASA Astrophysics Data System (ADS)
Baryshev, V. I.; Golikova, E. G.; Duraev, V. P.; Kuchinskiĭ, V. I.; Kizhaev, K. Yu; Kuksenkov, D. V.; Portnoĭ, E. L.; Smirnitskiĭ, V. B.
1988-11-01
A study was made of stimulated emission from mesa-stripe distributed-feedback lasers in the form of double heterostructures with separate electron and optical confinement. A diffraction grating with a period Λ = 0.46 μm, formed on the surface of the upper waveguide layer by holographic lithography, ensured distributed feedback in the second order. The threshold current for cw operation at room temperature was 35-70 mA, the shift of the emission wavelength with temperature was ~ 0.08 nm/K, and the feedback coefficient deduced from the width of a "Bragg gap" was 110-150 cm- 1.
Assessing the feasibility of harm reduction services for MSM: the late night breakfast buffet study
Rose, Valerie J; Raymond, H Fisher; Kellogg, Timothy A; McFarland, Willi
2006-01-01
Background Despite the leveling off in new HIV infections among men who have sex with men (MSM) in San Francisco, new evidence suggests that many recent HIV infections are linked with the use of Methamphetamine (MA). Among anonymous HIV testers in San Francisco, HIV incidence among MA users was 6.3% compared to 2.1% among non-MA users. Of particular concern for prevention programs are frequent users and HIV positive men who use MA. These MSM pose a particular challenge to HIV prevention efforts due to the need to reach them during very late night hours. Methods The purpose of the Late Night Breakfast Buffet (LNBB) was to determine the feasibility and uptake of harm reduction services by a late night population of MSM. The "buffet" of services included: needle exchange, harm reduction information, oral HIV testing, and urine based sexually transmitted infection (STI) testing accompanied by counseling and consent procedures. The study had two components: harm reduction outreach and a behavioral survey. For 4 months during 2004, we provided van-based harm reduction services in three neighborhoods in San Francisco from 1 – 5 a.m. for anyone out late at night. We also administered a behavioral risk and service utilization survey among MSM. Results We exchanged 2000 needles in 233 needle exchange visits, distributed 4500 condoms/lubricants and provided 21 HIV tests and 12 STI tests. Fifty-five MSM enrolled in the study component. The study population of MSM was characterized by low levels of income and education whose ages ranged from 18 – 55. Seventy-eight percent used MA in the last 3 months; almost 25% used MA every day in the same time frame. Of the 65% who ever injected, 97% injected MA and 13% injected it several times a day. MA and alcohol were strong influences in the majority of unprotected sexual encounters among both HIV negative and HIV positive MSM. Conclusion We reached a disenfranchised population of MA-using MSM who are at risk for acquiring or transmitting HIV infection through multiple high risk behaviors, and we established the feasibility and acceptability of late night harm reduction for MSM and MSM who inject drugs. PMID:17018154
NASA Astrophysics Data System (ADS)
Ghazavi, Atefeh; Cogan, Stuart F.
2018-06-01
Objective. With recent interest in kilohertz frequency electrical stimulation for nerve conduction block, understanding the electrochemistry and role of electrode material is important for assessing the safety of these stimulus protocols. Here we describe an approach to determining electrode polarization in response to continuous kilohertz frequency sinusoidal current waveforms. We have also investigated platinum, iridium oxide, and titanium nitride as coatings for high frequency electrodes. The current density distribution at 50 kHz at the electrode–electrolyte interface was also modeled to demonstrate the importance of the primary current distribution in supporting charge injection at high frequencies. Approach. We determined electrode polarization in response to sinusoidal currents with frequencies in the 1–50 kHz range and current amplitudes from 100 to 500 µA and 1–5 mA, depending on the electrode area. The current density distribution at the interface was modeled using the finite element method (FEM). Main results. At low frequencies, 1–5 kHz, polarization on the platinum electrode was significant, exceeding the water oxidation potential for high amplitude (5 mA) waveforms. At frequencies of 20 kHz or higher, the polarization was less than 300 mV from the electrode open circuit potential. The choice of electrode material did not play a significant role in electrode polarization at frequencies higher than 10 kHz. The current density distribution modeled at 50 kHz is non-uniform and this non-uniformity persists throughout charge delivery. Significance. At high frequencies (>10 kHz) electrode double-layer charging is the principal mechanism of charge-injection and selection of the electrode material has little effect on polarization, with platinum, iridium oxide, and titanium nitride exhibiting similar behavior. High frequency stimulation is dominated by a highly nonuniform primary current distribution.
NASA Astrophysics Data System (ADS)
Ansory, Achmad; Prajitno, Prawito; Wijaya, Sastra Kusuma
2018-02-01
Electrical Impedance Tomography (EIT) is an imaging method that is able to estimate electrical impedance distribution inside an object. This EIT system is developed by using 32 electrodes and microcontroller based module. From a pair of electrodes, sinusoidal current of 3 mA is injected and the voltage differences between other pairs of electrodes are measured. Voltage measurement data are then sent to MATLAB and EIDORS software; the data are used to reconstruct two dimensions image. The system can detect and determine the position of a phantom in the tank. The object's position is accurately reconstructed and determined with the average shifting of 0.69 cm but object's area cannot be accurately reconstructed. The object's image is more accurately reconstructed when the object is located near to electrodes, has a larger size, and when the current injected to the system has a frequency of 100 kHz or 200kHz.
Neutralization of beam-emitting spacecraft by plasma injection
NASA Technical Reports Server (NTRS)
Sasaki, S.; Kawashima, N.; Kuriki, K.; Yanagisawa, M.; Obayashi, T.; Roberts, W. T.; Reasoner, D. L.; Taylor, W. W. L.
1987-01-01
An impulsive plasma injection has been used to study charge neutralization of the Space Shuttle Orbiter while it was emitting an electron beam into space. This investigation was performed by Space Experiments with Particle Accelerators on Spacelab-1. A plasma consisting of 10 to the 19th argon ion-electron pairs was injected into space for 1 ms while an electron beam was also being emitted into space. The electron beam energy and current were as high as 5 keV and 300 mA. While the orbiter potential was positive before the plasma injection and began to decrease during the plasma injection, it was near zero for 6 to 20 ms after the plasma injection. The recovery time to the initial level of charging varied from 10 to 100 ms. In a laboratory test in a large space chamber using the same flight hardware, the neutralization time was 8-17 ms and the recovery time was 11-20 ms. The long duration of the neutralization effect in space can be explained by a model of diffusion of the cold plasma which is produced near the Orbiter by charge exchange between the neutral argon atoms and the energetic argon ions during plasma injection.
Physics Results from the National Spherical Torus Experiment
NASA Astrophysics Data System (ADS)
Kaye, S. M.
2000-10-01
The National Spherical Torus Experiment (NSTX) will produce plasmas with R/a=0.85/0.68 m 1.25, I_p= 1 MA, BT <=0.6 T, κ<=2.2, δ<=0.5, with 6 MW of High Harmonic Fast Wave (HHFW) heating and current drive, 5 MW of Neutral Beam Injection (NBI) and Co-axial Helicity Injection (CHI) for non-inductive startup to establish the physics principles of low aspect ratio. Outboard passive conducting plates aid vertical stability and suppression of low-n modes. During the initial set of physics experiments, studies of poloidal flux consumption indicated an optimal current ramp rate of 5 MA/sec, with higher ramp rates limited by m=2 oscillations and Internal Reconnection Events possibly related to impurity accumulation and double tearing modes. Flux consumption optimization and real-time plasma control led to the achievement of ohmic discharges with 1 MA plasma current and stored energies up to 48 kJ and βT 9%. Inboard limited and single and double-null diverted plasmas over a wide range of κ and δ were produced. The density limit, so far, is consistent with the Hugill limit, which is about 60% of the Greenwald limit, and it was characterized by growing and locking m=1 oscillations, followed by a series of Reconnection Events. The q-limit was manifest as growing and locking 2/1 perturbations leading to severe kinking of the plasma surface and subsequent discharge termination as q_cyl decreased below 2. Initial observations of edge turbulence indicated filamentary structures with λ_perp 10 cm. Up to 2 MW of HHFW power was coupled to the plasma, with increases in stored energy observed for waves with k_parallel=14 m-1, but not at higher phase velocity. CHI experiments on NSTX produced up to 130 kA of toroidal current for up to 100 msec. NBI heating is planned for late September 2000. This work has been supported at PPPL by U.S. DOE Contract # DE-AC02-76CH03073.
Cornelissen, L J; Liu, J; van Wees, B J; Duine, R A
2018-03-02
Efficient manipulation of magnon spin transport is crucial for developing magnon-based spintronic devices. In this Letter, we provide proof of principle of a method for modulating the diffusive transport of thermal magnons in an yttrium iron garnet channel between injector and detector contacts. The magnon spin conductance of the channel is altered by increasing or decreasing the magnon chemical potential via spin Hall injection of magnons by a third modulator electrode. We obtain a modulation efficiency of 1.6%/mA at T=250 K. Finite element modeling shows that this could be increased to well above 10%/mA by reducing the thickness of the channel, providing interesting prospects for the development of thermal-magnon-based logic circuits.
A non-inheritable maternal Cas9-based multiple-gene editing system in mice.
Sakurai, Takayuki; Kamiyoshi, Akiko; Kawate, Hisaka; Mori, Chie; Watanabe, Satoshi; Tanaka, Megumu; Uetake, Ryuichi; Sato, Masahiro; Shindo, Takayuki
2016-01-28
The CRISPR/Cas9 system is capable of editing multiple genes through one-step zygote injection. The preexisting method is largely based on the co-injection of Cas9 DNA (or mRNA) and guide RNAs (gRNAs); however, it is unclear how many genes can be simultaneously edited by this method, and a reliable means to generate transgenic (Tg) animals with multiple gene editing has yet to be developed. Here, we employed non-inheritable maternal Cas9 (maCas9) protein derived from Tg mice with systemic Cas9 overexpression (Cas9 mice). The maCas9 protein in zygotes derived from mating or in vitro fertilization of Tg/+ oocytes and +/+ sperm could successfully edit the target genome. The efficiency of such maCas9-based genome editing was comparable to that of zygote microinjection-based genome editing widely used at present. Furthermore, we demonstrated a novel approach to create "Cas9 transgene-free" gene-modified mice using non-Tg (+/+) zygotes carrying maCas9. The maCas9 protein in mouse zygotes edited nine target loci simultaneously after injection with nine different gRNAs alone. Cas9 mouse-derived zygotes have the potential to facilitate the creation of genetically modified animals carrying the Cas9 transgene, enabling repeatable genome engineering and the production of Cas9 transgene-free mice.
Power Balance Modeling and Validation for ST Startup Using Local Helicity Injection
NASA Astrophysics Data System (ADS)
Barr, J. L.; Bodner, G. M.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Hinson, E. T.; Perry, J. M.; Reusch, J. A.; Schlossberg, D. J.
2015-11-01
Local Helicity Injection (LHI) uses localized current injectors for routine Ip<0.18 MA non-solenoidal startup on the Pegasus ST. A power-balance model is under development for predictive Ip
Application of long-circulating liposomes to cancer photodynamic therapy.
Oku, N; Saito, N; Namba, Y; Tsukada, H; Dolphin, D; Okada, S
1997-06-01
Photodynamic therapy (PDT) as a cancer treatment is notable for its quite low side effects in comparison with those of chemotherapy and radiotherapy. However, the accumulation of porphyrin derivatives used in PDT into tumor tissues is rather low. Since long-circulating liposomes are known to accumulate passively into tumor tissues, we liposomalized a porphyrin derivative, benzoporphyrin derivative monoacid ring A (BPD-MA), and used these liposomes to investigate the usefulness of PDT for tumor-bearing mice. BPD-MA was liposomalized into glucuronate-modified liposomes, which are known to be long-circulating. These liposomes were injected i.v. into Balb/c mice bearing Meth A sarcoma, and tumor regression and survival time were monitored after irradiation with laser light. Tumor regression and complete curing of tumor (80% cure rate by the treatment with 6 mg/kg BPD-MA) were observed when long circulating liposomalized BPD-MA was injected and laser-irradiated. In contrast, only a 20% cure rate was obtained when the animals were treated with BPD-MA solution or BPD-MA entrapped in conventional liposomes. These results suggest that a long-circulating liposomal formulation of photo-sensitive agents is useful for PDT.
Dregelid, Einar
2012-01-01
During vascular surgical operations, there is a need for a simpler and more reliable method of temporary arterial occlusion than those currently employed, especially of heavily calcified arteries. A thermosensitive polymer, LeGoo (LG) (Pluromed, Woburn, MA), has been used successfully for temporary vascular occlusion. It has hitherto been injected by a cannula that has been introduced into the artery to be occluded, here henceforth called the “cannulation method.” Injection into arterial ostia without cannulation, using an injection device that arrests blood flow during the injection, here henceforth called “a retrograde method” may enable temporary hemostasis when ostial stenoses render it impossible to inject LG using the cannulation method. The objective of the present study was to study the feasibility of a retrograde method and to compare it with the cannulation method in an in vitro model, incorporating a narrow orifice to simulate ostial stenosis, using tap water at 37°C instead of blood. The retrograde method of LG injection, using a modified paediatric Foley catheter, turned out to be feasible to produce a durable LG plug more reliably, at higher water pressure and with less deep LG injection than with the cannulation method. PMID:22888352
NASA Astrophysics Data System (ADS)
Hao, Guo-Dong; Taniguchi, Manabu; Tamari, Naoki; Inoue, Shin-ichiro
2016-06-01
The current crowding is an especially severe issue in AlGaN-based deep-ultraviolet (DUV) light-emitting diodes (LEDs) because of the low conductivity of the n-AlGaN cladding layer that has a high Al fraction. We theoretically investigated the improvement in internal quantum efficiency and total resistances in DUV-LEDs with an emission wavelength of 265 nm by a well-designed p-electrode geometry to produce uniform current spreading. As a result, the wall-plug efficiency was enhanced by a factor of 60% at an injection current of 350 mA in the designed uniform-current-spreading p-electrode LED when compared with an LED with a conventional cross-bar p-electrode pattern.
Large-Eddy Simulation of Subsonic Jets
NASA Astrophysics Data System (ADS)
Vuorinen, Ville; Wehrfritz, Armin; Yu, Jingzhou; Kaario, Ossi; Larmi, Martti; Boersma, Bendiks Jan
2011-12-01
The present study deals with development and validation of a fully explicit, compressible Runge-Kutta-4 (RK4) Navier-Stokes solver in the opensource CFD programming environment OpenFOAM. The background motivation is to shift towards explicit density based solution strategy and thereby avoid using the pressure based algorithms which are currently proposed in the standard OpenFOAM release for Large-Eddy Simulation (LES). This shift is considered necessary in strongly compressible flows when Ma > 0.5. Our application of interest is related to the pre-mixing stage in direct injection gas engines where high injection pressures are typically utilized. First, the developed flow solver is discussed and validated. Then, the implementation of subsonic inflow conditions using a forcing region in combination with a simplified nozzle geometry is discussed and validated. After this, LES of mixing in compressible, round jets at Ma = 0.3, 0.5 and 0.65 are carried out. Respectively, the Reynolds numbers of the jets correspond to Re = 6000, 10000 and 13000. Results for two meshes are presented. The results imply that the present solver produces turbulent structures, resolves a range of turbulent eddy frequencies and gives also mesh independent results within satisfactory limits for mean flow and turbulence statistics.
Histamine-dependent behavioral response to methamphetamine in 12-month-old male mice
Acevedo, Summer F.; Raber, Jacob
2011-01-01
Methamphetamine (MA) use is a growing problem across the United States. Effects of MA include hyperactivity and increased anxiety. Using a mouse model system, we examined behavioral performance in the open field and elevated zero maze and shock-startle response of 12-month-old wild-type mice injected with MA once (1mg/kg) 30 min prior to behavioral testing. MA treatment resulted in behavioral sensitization in the open field, consistent with studies in younger mice. There was an increased activity in the elevated zero maze and an increased shock-startle response 30 and 60 min post-injection. Since histamine mediates some effects of MA in the brain, we assessed whether 12-month-old mice lacking histidine decarboxylase (Hdc−/−), the enzyme required to synthesize histamine, respond differently to MA than wild-type (Hdc+/+) mice. Compared to saline treatment, acute and repeated MA administration increased activity in the open field and measures of anxiety, though more so in Hdc−/− than Hdc+/+ mice. In the elevated zero maze, opposite effects of MA on activity and measures of anxiety were seen in Hdc+/+ mice. In contrast, MA similarly increased the shock-startle response in Hdc−/− and Hdc+/+ mice, compared to saline-treated genotype-matched mice. These results are similar to those in younger mice suggesting that the effects are not age-dependent. Overall, single or repeated MA treatment causes histamine-dependent changes in 12-month-old mice in the open field and elevated zero-maze, but not in the shock-startle response. PMID:21466792
Formation and termination of runaway beams in ITER disruptions
NASA Astrophysics Data System (ADS)
Martín-Solís, J. R.; Loarte, A.; Lehnen, M.
2017-06-01
A self-consistent analysis of the relevant physics regarding the formation and termination of runaway beams during mitigated disruptions by Ar and Ne injection is presented for selected ITER scenarios with the aim of improving our understanding of the physics underlying the runaway heat loads onto the plasma facing components (PFCs) and identifying open issues for developing and accessing disruption mitigation schemes for ITER. This is carried out by means of simplified models, but still retaining sufficient details of the key physical processes, including: (a) the expected dominant runaway generation mechanisms (avalanche and primary runaway seeds: Dreicer and hot tail runaway generation, tritium decay and Compton scattering of γ rays emitted by the activated wall), (b) effects associated with the plasma and runaway current density profile shape, and (c) corrections to the runaway dynamics to account for the collisions of the runaways with the partially stripped impurity ions, which are found to have strong effects leading to low runaway current generation and low energy conversion during current termination for mitigated disruptions by noble gas injection (particularly for Ne injection) for the shortest current quench times compatible with acceptable forces on the ITER vessel and in-vessel components ({τ\\text{res}}∼ 22~\\text{ms} ). For the case of long current quench times ({τ\\text{res}}∼ 66~\\text{ms} ), runaway beams up to ∼10 MA can be generated during the disruption current quench and, if the termination of the runaway current is slow enough, the generation of runaways by the avalanche mechanism can play an important role, increasing substantially the energy deposited by the runaways onto the PFCs up to a few hundreds of MJs. Mixed impurity (Ar or Ne) plus deuterium injection proves to be effective in controlling the formation of the runaway current during the current quench, even for the longest current quench times, as well as in decreasing the energy deposited on the runaway electrons during current termination.
Wang, Lan; Qu, Guoqiang; Dong, Xiyuan; Huang, Kai; Kumar, Molly; Ji, Licheng; Wang, Ya; Yao, Junning; Yang, Shulin; Wu, Ruxing; Zhang, Hanwang
2016-02-03
Currently, there is an increasing prevalence of adolescent exposure to methamphetamine (MA). However, there is a paucity of information concerning the long-term impact of early exposure to MA upon female fertility and ovarian reserve. The aim of this study was to investigate the effect of long-term MA exposure in adolescents on their ovarian reserve in adulthood. Adolescent mice received intraperitoneal injections of MA (5mg/kg, three times per week) or saline from the 21st postnatal day for an 8 week period. Morphological, histological, biochemical, hormonal and ethological parameters were evaluated. An impaired ovarian reserve and vitality was found in the group treated with MA, manifesting in morphological-apparent mitochondrial damage, an activated apoptosis pathway in the ovarian tissue, a downward expression of ovarian anti-Mullerian hormone (AMH), a decreased number of primordial and growing follicles, an increased number of atretic follicles, and a depressed secretion of AMH, estradiol and progesterone from granulosa cells. However, no significant difference was noticed regarding the estrous cycle, the mating ability and the fertility outcome in the reproductive age of the mice after a period of non-medication. The present results confirmed that a long term exposure to methamphetamine in adolescent mice does have an adverse impact on their ovarian reserve, which indicates that such an early abuse of MA might influence the fertility lifespan of the female mouse. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Chronic Methamphetamine Effects on Brain Structure and Function in Rats
Thanos, Panayotis K.; Kim, Ronald; Delis, Foteini; Ananth, Mala; Chachati, George; Rocco, Mark J.; Masad, Ihssan; Muniz, Jose A.; Grant, Samuel C.; Gold, Mark S.; Cadet, Jean Lud; Volkow, Nora D.
2016-01-01
Methamphetamine (MA) addiction is a growing epidemic worldwide. Chronic MA use has been shown to lead to neurotoxicity in rodents and humans. Magnetic resonance imaging (MRI) studies in MA users have shown enlarged striatal volumes and positron emission tomography (PET) studies have shown decreased brain glucose metabolism (BGluM) in the striatum of detoxified MA users. The present study examines structural changes of the brain, observes microglial activation, and assesses changes in brain function, in response to chronic MA treatment. Rats were randomly split into three distinct treatment groups and treated daily for four months, via i.p. injection, with saline (controls), or low dose (LD) MA (4 mg/kg), or high dose (HD) MA (8 mg/kg). Sixteen weeks into the treatment period, rats were injected with a glucose analog, [18F] fluorodeoxyglucose (FDG), and their brains were scanned with micro-PET to assess regional BGluM. At the end of MA treatment, magnetic resonance imaging at 21T was performed on perfused rats to determine regional brain volume and in vitro [3H]PK 11195 autoradiography was performed on fresh-frozen brain tissue to measure microglia activation. When compared with controls, chronic HD MA-treated rats had enlarged striatal volumes and increases in [3H]PK 11195 binding in striatum, the nucleus accumbens, frontal cortical areas, the rhinal cortices, and the cerebellar nuclei. FDG microPET imaging showed that LD MA-treated rats had higher BGluM in insular and somatosensory cortices, face sensory nucleus of the thalamus, and brainstem reticular formation, while HD MA-treated rats had higher BGluM in primary and higher order somatosensory and the retrosplenial cortices, compared with controls. HD and LD MA-treated rats had lower BGluM in the tail of the striatum, rhinal cortex, and subiculum and HD MA also had lower BGluM in hippocampus than controls. These results corroborate clinical findings and help further examine the mechanisms behind MA-induced neurotoxicity. PMID:27275601
Chronic Methamphetamine Effects on Brain Structure and Function in Rats.
Thanos, Panayotis K; Kim, Ronald; Delis, Foteini; Ananth, Mala; Chachati, George; Rocco, Mark J; Masad, Ihssan; Muniz, Jose A; Grant, Samuel C; Gold, Mark S; Cadet, Jean Lud; Volkow, Nora D
2016-01-01
Methamphetamine (MA) addiction is a growing epidemic worldwide. Chronic MA use has been shown to lead to neurotoxicity in rodents and humans. Magnetic resonance imaging (MRI) studies in MA users have shown enlarged striatal volumes and positron emission tomography (PET) studies have shown decreased brain glucose metabolism (BGluM) in the striatum of detoxified MA users. The present study examines structural changes of the brain, observes microglial activation, and assesses changes in brain function, in response to chronic MA treatment. Rats were randomly split into three distinct treatment groups and treated daily for four months, via i.p. injection, with saline (controls), or low dose (LD) MA (4 mg/kg), or high dose (HD) MA (8 mg/kg). Sixteen weeks into the treatment period, rats were injected with a glucose analog, [18F] fluorodeoxyglucose (FDG), and their brains were scanned with micro-PET to assess regional BGluM. At the end of MA treatment, magnetic resonance imaging at 21T was performed on perfused rats to determine regional brain volume and in vitro [3H]PK 11195 autoradiography was performed on fresh-frozen brain tissue to measure microglia activation. When compared with controls, chronic HD MA-treated rats had enlarged striatal volumes and increases in [3H]PK 11195 binding in striatum, the nucleus accumbens, frontal cortical areas, the rhinal cortices, and the cerebellar nuclei. FDG microPET imaging showed that LD MA-treated rats had higher BGluM in insular and somatosensory cortices, face sensory nucleus of the thalamus, and brainstem reticular formation, while HD MA-treated rats had higher BGluM in primary and higher order somatosensory and the retrosplenial cortices, compared with controls. HD and LD MA-treated rats had lower BGluM in the tail of the striatum, rhinal cortex, and subiculum and HD MA also had lower BGluM in hippocampus than controls. These results corroborate clinical findings and help further examine the mechanisms behind MA-induced neurotoxicity.
Effect of methamphetamine exposure and cross-fostering on cognitive function in adult male rats.
Hrubá, Lenka; Schutová, Barbora; Pometlová, Marie; Rokyta, Richard; Slamberová, Romana
2010-03-17
The aim of our study was to examine the effect of prenatal methamphetamine (MA) exposure and cross-fostering on cognitive functions of adult male rats tested in Morris water maze (MWM). Rat mothers were exposed daily to injection of MA (5mg/kg) or saline for 9 weeks: prior to impregnation, throughout gestation and lactation periods. Females without any injections were used as an absolute control. On postnatal day 1, pups were cross-fostered so that each mother raised 4 pups of her own and 8 pups from the mothers with the other two treatments. Four types of tests were used: (1) Place navigation test (Learning), (2) Probe test (Probe), (3) Retention memory test (Memory) and (4) Visible platform task. Our results demonstrate that the prenatal exposure to MA does not impact learning and memory, while postnatal exposure to MA shows impairments in cognition. In the test of learning, all animals fostered to MA-treated dams had longer latencies, bigger search error and used lower spatial strategies than the animals fostered to control or saline-treated mother, regardless of prenatal exposure. Regardless of postnatal exposure, the animals prenatally exposed to saline swam faster in all the tests than the animals prenatally exposed to MA and controls, respectively. This study indicates that postnatal but not prenatal exposure to MA affects learning in adult male rats. However, it is still not clear whether these impairments are due to a direct effect of MA on neuronal structure or due to an indirect effect of MA mediated by impaired maternal care. Copyright 2009 Elsevier B.V. All rights reserved.
Kwon, S G; Roh, D H; Yoon, S Y; Choi, S R; Choi, H S; Moon, J Y; Kang, S Y; Kim, H W; Han, H J; Beitz, A J; Oh, S B; Lee, J H
2016-04-01
The role of peripheral sigma-1 receptors (Sig-1Rs) in normal nociception and in pathologically induced pain conditions has not been thoroughly investigated. Since there is mounting evidence that Sig-1Rs modulate ischaemia-induced pathological conditions, we investigated the role of Sig-1Rs in ischaemia-induced mechanical allodynia (MA) and addressed their possible interaction with acid-sensing ion channels (ASICs) and P2X receptors at the ischaemic site. We used a rodent model of hindlimb thrombus-induced ischaemic pain (TIIP) to investigate their role. Western blot was performed to observe changes in Sig-1R expression in peripheral nervous tissues. MA was measured after intraplantar (i.pl.) injections of antagonists for the Sig-1, ASIC and P2X receptors in TIIP rats or agonists of each receptor in naïve rats. Sig-1R expression significantly increased in skin, sciatic nerve and dorsal root ganglia at 3 days post-TIIP surgery. I.pl. injections of the Sig-1R antagonist, BD-1047 on post-operative days 0-3 significantly attenuated the development of MA during the induction phase, but had no effect on MA when given during the maintenance phase (days 3-6 post-surgery). BD-1047 synergistically increased amiloride (an ASICs blocker)- and TNP-ATP (a P2X antagonist)-induced analgesic effects in TIIP rats. In naïve rats, i.pl. injection of Sig-1R agonist PRE-084 alone did not produce MA; but it did induce MA when co-administered with either an acidic pH solution or a sub-effective dose of αβmeATP. Peripheral Sig-1Rs contribute to the induction of ischaemia-induced MA via facilitation of ASICs and P2X receptors. Thus, peripheral Sig-1Rs represent a novel therapeutic target for the treatment of ischaemic pain. © 2015 European Pain Federation - EFIC®
LDRD final report on confinement of cluster fusion plasmas with magnetic fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Argo, Jeffrey W.; Kellogg, Jeffrey W.; Headley, Daniel Ignacio
2011-11-01
Two versions of a current driver for single-turn, single-use 1-cm diameter magnetic field coils have been built and tested at the Sandia National Laboratories for use with cluster fusion experiments at the University of Texas in Austin. These coils are used to provide axial magnetic fields to slow radial loss of electrons from laser-produced deuterium plasmas. Typical peak field strength achievable for the two-capacitor system is 50 T, and 200 T for the ten-capacitor system. Current rise time for both systems is about 1.7 {mu}s, with peak current of 500 kA and 2 MA, respectively. Because the coil must bemore » brought to the laser, the driver needs to be portable and drive currents in vacuum. The drivers are complete but laser-plasma experiments are still in progress. Therefore, in this report, we focus on system design, initial tests, and performance characteristics of the two-capacitor and ten-capacitors systems. The questions of whether a 200 T magnetic field can retard the breakup of a cluster-fusion plasma, and whether this field can enhance neutron production have not yet been answered. However, tools have been developed that will enable producing the magnetic fields needed to answer these questions. These are a two-capacitor, 400-kA system that was delivered to the University of Texas in 2010, and a 2-MA ten-capacitor system delivered this year. The first system allowed initial testing, and the second system will be able to produce the 200 T magnetic fields needed for cluster fusion experiments with a petawatt laser. The prototype 400-kA magnetic field driver system was designed and built to test the design concept for the system, and to verify that a portable driver system could be built that delivers current to a magnetic field coil in vacuum. This system was built copying a design from a fixed-facility, high-field machine at LANL, but made to be portable and to use a Z-machine-like vacuum insulator and vacuum transmission line. This system was sent to the University of Texas in Austin where magnetic fields up to 50 T have been produced in vacuum. Peak charge voltage and current for this system have been 100 kV and 490 kA. It was used this last year to verify injection of deuterium and surrogate clusters into these small, single-turn coils without shorting the coil. Initial test confirmed the need to insulate the inner surface of the coil, which requires that the clusters must be injected through small holes in an insulator. Tests with a low power laser confirmed that it is possible to inject clusters into the magnetic field coils through these holes without destroying the clusters. The university team also learned the necessity of maintaining good vacuum to avoid insulator, transmission line, and coil shorting. A 200-T, 2 MA system was also constructed using the experience from the first design to make the pulsed-power system more robust. This machine is a copy of the prototype design, but with ten 100-kV capacitors versus the two used in the prototype. It has additional inductance in the switch/capacitor unit to avoid breakdown seen in the prototype design. It also has slightly more inductance at the cable connection to the vacuum chamber. With this design we have been able to demonstrate 1 MA current into a 1 cm diameter coil with the vacuum chamber at air pressure. Circuit code simulations, including the additional inductance with the new design, agree well with the measured current at a charge voltage of 40 kV with a short circuit load, and at 50 kV with a coil. The code also predicts that with a charge voltage of 97 kV we will be able to get 2 MA into a 1 cm diameter coil, which will be sufficient for 200 T fields. Smaller diameter or multiple-turn coils will be able to achieve even higher fields, or be able to achieve 200-T fields with lower charge voltage. Work is now proceeding at the university under separate funding to verify operation at the 2-MA level, and to address issues of debris mitigation, measurement of the magnetic field, and operation in vacuum. We anticipate operation at full current with single-turn, magnetic field coils this fall, with 200 T experiments on the Texas Petawatt laser in the spring of 2012.« less
Results from a tethered rocket experiment (Charge-2)
NASA Astrophysics Data System (ADS)
Kawashima, N.; Sasaki, S.; Oyama, K. I.; Hirao, K.; Obayashi, T.; Raitt, W. J.; White, A. B.; Williamson, P. R.; Banks, P. M.; Sharp, W. F.
A tethered payload experiment (Charge-2) was carried out as an international program between Japan and the USA using a NASA sounding rocket at White Sands Missile Range. The objective of the experiment was to perform a new type of active experiment in space by injecting an electron beam from a mother-daughter rocket system connected with a long tether wire. The electron beam with voltage and current up to 1 kV and 80 mA (nominal) was injected from the mother payload. An insulated conductive wire of 426 m length connected the two payloads, the longest tether system flown so far. The electron gun system and diagnostic instruments (plasma, optical, particle and wave) functioned correctly throughout the flight. The potential rise of the mother payload during the electron beam emission was measured with respect to the daughter payload. The beam trajectory was detected by a camera onboard the mother rocket. Wave generation and current induction in the wire during the beam emission were also studied.
Lee, Byeong Ryong; Kim, Tae Geun
2017-01-01
This article reports the electrical and optical properties of the reduced graphene oxide (RGO)/single-walled carbon nanotube (SWCNT) films using various p-type dopants and their application to GaN-based light-emitting diodes. To enhance the current injection and spreading of the RGO/SWCNT films on the light-emitting diodes (LEDs), we increased the work function (Φ) of the films using chemical doping with AuCl₃, poly(3,4-ethylenedioxythiophene) oxidized with poly(4-styrenesulfonate) (PEDOT:PSS) and MoO₃; thereby reduced the Schottky barrier height between the RGO/SWCNT films and p-GaN. By comparison, LEDs fabricated with work-function-tuned RGO/SWCNT film doped with MoO₃ exhibited the decrease of the forward voltage from 5.3 V to 5.02 V at 20 mA and the increase of the output power up to 1.26 times. We also analyzed the current injection mechanism using ultraviolet photoelectron spectroscopy and X-ray photoelectron spectroscopy.
Initiatives in Non-Solenoidal Startup and H-mode Physics at Near-Unity A
NASA Astrophysics Data System (ADS)
Bongard, M. W.; Barr, J. L.; Burke, M. G.; Fonck, R. J.; Hinson, E. T.; Lewicki, B. T.; Perry, J. M.; Redd, A. J.; Schlossberg, D. J.; Thome, K. E.; Winz, G. R.
2014-10-01
Research on the A ~ 1 Pegasus ST is advancing the physics of non-solenoidal tokamak startup and the H-mode confinement regime. Local helicity injection (LHI) uses current sources in the plasma edge to initiate and drive Ip via DC helicity injection, subject to constraints from helicity conservation and Taylor relaxation. To date, Ip ~ 0 . 18 MA has been initiated with Iinj ~ 6 kA. A predictive 0-D power balance model of LHI Ip (t) evolution matches present discharges with strong PF induction. It projects Ip ~ 0 . 3 MA operation in Pegasus will achieve the LHI-dominated physics regime expected for 1 MA NSTX-U startup. Ohmic H-mode plasmas are routinely attained, due to the low Pth at the low BT of A --> 1 plasmas. However, both limited and favorable ∇B SN plasmas have Pth ~ 11 times higher than expected from high- A scalings. They have improved τe (H98 ~ 1) and a quiescent Jedge pedestal between edge localized modes (ELMs). Unique Jedge (t) measurements through a single Type I ELM show a complex, multimodal pedestal collapse and filament ejection. A proposed Pegasus-U initiative will upgrade the centerstack assembly and LHI injector systems, increasing BT to 1 T, Ohmic V-s by × 6 , and pulse length to 100 ms at A = 1 . 2 . This allows the physics and technology of LHI to be validated at NSTX-U relevant parameters, supports studies of nonlinear ELM dynamics, and will test high-βT tokamak stability. Work supported by US DOE Grant DE-FG02-96ER54375.
Lee, Byung Il; Oh, Suk Hoon; Woo, Eung Je; Lee, Soo Yeol; Cho, Min Hyeong; Kwon, Ohin; Seo, Jin Keun; Baek, Woon Sik
2003-05-01
In magnetic resonance electrical impedance tomography (MREIT) we inject currents through electrodes placed on the surface of a subject and try to reconstruct cross-sectional resistivity (or conductivity) images using internal magnetic flux density as well as boundary voltage measurements. In this paper we present a static resistivity image of a cubic saline phantom (50 x 50 x 50 mm3) containing a cylindrical sausage object with an average resistivity value of 123.7 ohms cm. Our current MREIT system is based on an experimental 0.3 T MRI scanner and a current injection apparatus. We captured MR phase images of the phantom while injecting currents of 28 mA through two pairs of surface electrodes. We computed current density images from magnetic flux density images that are proportional to the MR phase images. From the current density images and boundary voltage data we reconstructed a cross-sectional resistivity image within a central region of 38.5 x 38.5 mm2 at the middle of the phantom using the J-substitution algorithm. The spatial resolution of the reconstructed image was 64 x 64 and the reconstructed average resistivity of the sausage was 117.7 ohms cm. Even though the error in the reconstructed average resistivity value was small, the relative L2-error of the reconstructed image was 25.5% due to the noise in measured MR phase images. We expect improvements in the accuracy by utilizing an MRI scanner with higher SNR and increasing the size of voxels scarifying the spatial resolution.
Developing the OEIC solutions using two section light-emitting transistor
NASA Astrophysics Data System (ADS)
Liang, Shan-Fong; Hsu, Yuan-Fu; Cheng, Gong-Sheng; Wu, Chao-Hsin
2016-02-01
An integrated on-chip optical device composed of a multiple quantum-well light-emitter and photodetector in the lightemitting transistor (LET) platform is fabricated. The two devices are 400 μm in length and electrically isolated by dry etching with 4.9 μm gap. The two facets are formed by cleaving for optical output. In this report, we discuss the characteristics of the two-section device and demonstrate the optical detection by the heterojunction phototransistor (HPT) under different operation points (IB and VCE) and injected optical powers. The collector current of the HPT is 74.88 mA without illumination and 83.87 mA under illumination of 7.46μW at VCE = 3 V and IB = 12 mA, which exhibits 12% increment. The responsivity of the InGaP/GaAs HPT can reach to 711.74 A/W. At the electrical modulation bandwidth of phototransistor fT is enhanced from 1.4 GHz to 1.51 GHz under illumination. This is attributed to the Franz-Keldysh photon-assisted absorption at base-collector junction of light-emitting transistor, which produces additional holes and electrons to enhance the current gain. Through the analysis of small-signal equivalent circuit models, we can show the transit time by de-embedding the circuit parasitic effect. Extracting those parameters can clearly know the thermionic emission lifetime in the quantum well.
Diadenosine tetraphosphate reduces toxicity caused by high-dose methamphetamine administration.
Harvey, Brandon K; Chou, Jenny; Shen, Hui; Hoffer, Barry J; Wang, Yun
2009-05-01
Diadenosine tetraphosphate (AP(4)A), two adenosine moieties bridged by four phosphates, is an endogenous purinergic ligand found in brain. Previous studies have shown that AP(4)A reduced neurodegeneration caused by the dopaminergic neurotoxin 6-hydroxydopamine in rat striatum and substantia nigra. The purpose of this study was to determine whether AP(4)A is protective against methamphetamine (MA)-mediated toxicity. Primary neuronal cultures were prepared from rat embryonic (E14-E15) ventral mesencephalic tissue. Cultures treated with 2mM MA exhibited decreased tyrosine hydroxylase (TH) immunoreactivity and increased cleaved caspase-3 immunoreactivity and TUNEL labeling. All these changes were lessened by pretreatment with AP(4)A. The protective effect of AP(4)A was also found in vivo. Adult Sprague-Dawley rats were injected with AP(4)A (25 microg/20 microl) or vehicle intracerebroventricularly followed by 4 doses of MA (5 or 10 mg/kg), given subcutaneously every 2h. Administration of MA reduced locomotor activity 1 day after injection, which was significantly antagonized by the pretreatment with AP(4)A. Using immunohistochemical analysis, TH fiber density at the substantia nigra pars reticulata was found reduced while cleaved caspase-3 immunoreactivity in striatum was increased after MA treatment; these responses were also significantly antagonized by AP(4)A. Taken together, our data show that AP(4)A has protective effects against MA-mediated toxicity both in vitro and in vivo. The mechanism of action involves suppression of MA-induced apoptosis.
Diadenosine Tetraphosphate Reduces Toxicity caused by High-Dose Methamphetamine Administration
Harvey, Brandon K.; Chou, Jenny; Shen, Hui; Hoffer, Barry J.; Wang, Yun
2009-01-01
Diadenosine tetraphosphate (AP4A), two adenosine moieties bridged by four phosphates, is an endogenous purinergic ligand found in brain. Previous studies have shown that AP4A reduced neurodegeneration caused by the dopaminergic neurotoxin 6-hydroxydopamine in rat striatum and substantia nigra. The purpose of this study was to determine whether AP4A is protective against methamphetamine (MA) –mediated toxicity. Primary neuronal cultures were prepared from rat embryonic (E14- E15) ventral mesencephalic tissue. Cultures treated with 2 mM MA exhibited decreased tyrosine hydroxylase (TH) immunoreactivity and increased cleaved caspase-3 immunoreactivity and TUNEL labeling. All these changes were lessened by pretreatment with AP4A. The protective effect of AP4A was also found in vivo. Adult Sprague-Dawley rats were injected with AP4A (25 μg/ 20 μl) or vehicle intracerebroventricularly followed by 4 doses of MA (5 or 10 mg/ kg), given subcutaneously every two hours. Administration of MA reduced locomotor activity one day after injection, which was significantly antagonized by the pretreatment with AP4A. Using immunohistochemical analysis, TH fiber density at the substantia nigra pars reticulata was found reduced while cleaved caspase-3 immunoreactivity in striatum was increased after MA treatment; these responses were also significantly antagonized by AP4A. Taken together, our data show that AP4A has protective effects against MA-mediated toxicity both in vitro and in vivo. The mechanism of action involves suppression of MA -induced apoptosis. PMID:19442829
Slamberová, R; Hrubá, L; Bernásková, K; Matejovská, I; Rokyta, R
2010-10-01
Stimulant drugs are often associated with increased seizure susceptibility. Inhibitory gamma-aminobutyric acid (GABA) and excitatory N-methyl-D-aspartate (NMDA) systems play a role in the effect of stimulants in the genesis of epileptic seizures. Our previous studies showed that prenatal methamphetamine (MA) exposure induced long-term changes in seizure susceptibility. The aim of the present study was to investigate the effect of cross-fostering on the prenatal and postnatal MA-exposed rats, respectively, on their seizures in adulthood. Bicuculline (GABA(A) receptor antagonist), NMDA (NMDA receptor agonist) and flurothyl (a convulsant gas) were used to induce seizures in adult male offsprings. Female dams were injected with MA (5 mg/kg daily) or physiological saline (S) for approx. 9 week [about 3 week prior to impregnation, for the entire gestation period (22 days) and in preweaning period (21 days)]. Absolute controls (C) did not receive any injections. On postnatal day 1, pups were cross-fostered so that each mother received pups from all three treatments. Thus, nine groups (based on the prenatal and postnatal drug exposure) of adult male rats were tested in each seizure test: C/C; C/S; C/MA; S/C; S/S; S/MA; MA/C; MA/S; MA/MA. The present study demonstrates that the effect of prenatal and/or postnatal MA exposure is seizure model specific. In addition, our data show that there is an effect of cross-fostering on seizures; particularly, the effect of prenatal MA exposure shown in animals fostered by control mothers is no longer apparent in animals fostered postnatally by MA-treated mothers. Such effect of postnatal treatment is not manifested in prenatal controls. In summary, it seems that: (1) prenatal MA exposure alters seizure susceptibility more than postnatal MA exposure; (2) especially in seizures induced by chemicals that affect GABAergic system (bicuculline, flurothyl) notable effect of adoption (cross-fostering) is apparent; (3) in seizure models that are associated with NMDA system (NMDA, flurothyl), effect of prenatal stress seems to play a role. Copyright 2010 ISDN. Published by Elsevier Ltd. All rights reserved.
Plasma effects of active ion beam injections in the ionosphere at rocket altitudes
NASA Technical Reports Server (NTRS)
Arnoldy, R. L.; Cahill, L. J., Jr.; Kintner, P. M.; Moore, T. E.; Pollock, C. J.
1992-01-01
Data from ARCS rocket ion beam injection experiments are primarily discussed. There are three results from this series of active experiments that are of particular interest in space plasma physics. These are the transverse acceleration of ambient ions in the large beam volume, the scattering of beam ions near the release payload, and the possible acceleration of electrons very close to the plasma generator which produce intense high frequency waves. The ability of 100 ma ion beam injections into the upper E and F regions of the ionosphere to produce these phenomena appear to be related solely to the process by which the plasma release payload and the ion beam are neutralized. Since the electrons in the plasma release do not convect with the plasma ions, the neutralization of both the payload and beam must be accomplished by large field-aligned currents (milliamperes/square meter) which are very unstable to wave growth of various modes.
Silva-Correia, Joana; Gloria, Antonio; Oliveira, Mariana B; Mano, João F; Oliveira, Joaquim M; Ambrosio, Luigi; Reis, Rui L
2013-12-01
Tissue engineered hydrogels hold great potential as nucleus pulposus substitutes (NP), as they promote intervertebral disc (IVD) regeneration and re-establish its original function. But, the key to their success in future clinical applications greatly depends on its ability to replicate the native 3D micro-environment and circumvent their limitation in terms of mechanical performance. In the present study, we investigated the rheological/mechanical properties of both ionic- (iGG-MA) and photo-crosslinked methacrylated gellan gum (phGG-MA) hydrogels. Steady shear analysis, injectability and confined compression stress-relaxation tests were carried out. The injectability of the reactive solutions employed for the preparation of iGG-MA and phGG-MA hydrogels was first studied, then the zero-strain compressive modulus and permeability of the acellular hydrogels were evaluated. In addition, human intervertebral disc (hIVD) cells encapsulated in both iGG-MA and phGG-MA hydrogels were cultured in vitro, and its mechanical properties also investigated under dynamic mechanical analysis at 37°C and pH 7.4. After 21 days of culturing, hIVD cells were alive (Calcein AM) and the E' of ionic-crosslinked hydrogels and photo-crosslinked was higher than that observed for acellular hydrogels. Our study suggests that methacrylated gellan gum hydrogels present promising mechanical and biological performance as hIVD cells were producing extracellular matrix. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.
Jalili, Nima A; Jaiswal, Manish K; Peak, Charles W; Cross, Lauren M; Gaharwar, Akhilesh K
2017-10-19
"Smart" hydrogels are an emerging class of biomaterials that respond to external stimuli and have been investigated for a range of biomedical applications, including therapeutic delivery and regenerative engineering. Stimuli-responsive nanogels constructed of thermoresponsive polymers such as poly(N-isopropylacrylamide-co-acrylamide) (poly(NIPAM-co-AM)) and magnetic nanoparticles (MNPs) have been developed as "smart carriers" for on-demand delivery of therapeutic biomolecules via magneto-thermal activation. However, due to their small size and systemic introduction, these poly(NIPAM-co-AM)/MNP nanogels result in limited control over long-term, localized therapeutic delivery. Here, we developed an injectable nanoengineered hydrogel loaded with poly(NIPAM-co-AM)/MNPs for localized, on-demand delivery of therapeutics (doxorubicin (DOX)). We have engineered shear-thinning and self-recoverable hydrogels by modulating the crosslinking density of a gelatin methacrylate (GelMA) network. Poly(NIPAM-co-AM)/MNP nanogels loaded with DOX were entrapped within a GelMA pre-polymer solution prior to crosslinking. The temperature and magnetic field dependent release of loaded DOX was observed from the nanoengineered hydrogels (GelMA/(poly(NIPAM-co-AM)/MNPs)). Finally, the in vitro efficacy of DOX released from injectable nanoengineered hydrogels was investigated using preosteoblast and osteosarcoma cells. Overall, these results demonstrated that the injectable nanoengineered hydrogels could be used for on-demand and localized therapeutic delivery for biomedical applications.
Jalayeri-Darbandi, Zahra; Rajabzadeh, Aliakbar; Hosseini, Mahmoud; Beheshti, Farimah; Ebrahimzadeh-Bideskan, Alireza
2018-06-01
The aim of this study was to evaluate the effect of methamphetamine (MA) exposure during pregnancy and lactation on doublecortin (DCX) expression in the hippocampus of rat offspring and also on learning/memory. Thirty-five pregnant Wistar rats were randomly divided into seven groups of 5 rats each: three experimental groups, each receiving 5 mg/kg body weight (BW) intraperitoneal (i.p.) injections of MA during pregnancy or/and lactation; three sham groups, each receiving saline injections; one control group, receiving no injection. After the interventions, two male pups (1 and 22 days old) were randomly selected from each mother, sacrificed and their brains subjected to DCX immunohistochemistry. One additional male pup from each mother was randomly selected and maintained for 60 days for testing in the Morris water maze and passive avoidance tests. MA administration during pregnancy was found to have significantly decreased the number of DCX-positive cells in the CA1, CA3 and DG regions of the hippocampus in the 1-day pups (P ≤ 0.05) and to have significantly decreased the number of DCX-positive cells in only two regions of the hippocampus, the CA1 and DG regions, in 22-day old pups. In comparison, exposure to MA during lactation was only associated with a significant decrease in the number of DCX-positive cells in the DG. Exposure to MA during pregnancy had significant impact on the intensity of DCX expression in the hippocampus of 1- and 22-day pups (P ≤ 0.05). There was no significant difference in memory/learning among the study groups. Our results indicate the administration of MA during pregnancy had a greater effect that during the lactation period on DCX expression in the hippocampus of rat offspring.
Šlamberová, R; Pometlová, M; Schutová, B; Hrubá, L; Macúchová, E; Nová, E; Rokyta, R
2012-01-01
Drug abuse of pregnant women is a growing problem. The effect of prenatal drug exposure may have devastating effect on development of the offsprings that may be long-term or even permanent. One of the most common drug abused by pregnant women is methamphetamine (MA), which is also the most frequently abused illicit drug in the Czech Republic. Our previous studies demonstrated that prenatal MA exposure alters behavior, cognition, pain and seizures in adult rats in sex-specific manner. Our most recent studies demonstrate that prenatal MA exposure makes adult rats more sensitive to acute injection of the same or related drugs than their controls. The aim of the present study was to examine the effect of prenatal MA exposure on drug-seeking behavior of adult male rats tested in the Conditioned place preference (CPP). Adult male rats were divided to: prenatally MA-exposed (5 mg/kg daily for the entire prenatal period), prenatally saline-exposed (1 ml/kg of physiological saline) and controls (without maternal injections). The following drugs were used in the CPP test in adulthood: MA (5 mg/kg), amphetamine (5 mg/kg), cocaine (5 and 10 mg/kg), morphine (5 mg/kg), MDMA (5 mg/kg) and THC (2 mg/kg). Our data demonstrated that prenatally MA-exposed rats displayed higher amphetamine-seeking behavior than both controls. MA as well as morphine induced drug-seeking behavior of adult male rats, however this effect did not differ based on the prenatal MA exposure. In contrast, prenatal MA exposure induced rather tolerance to cocaine than sensitization after the conditioning in the CPP. MDMA and THC did not induce significant effects. Even though the present data did not fully confirmed our hypotheses, future studies are planned to test the drug-seeking behavior also in self-administration test.
Status of The Indian SRS Indus-2
NASA Astrophysics Data System (ADS)
Sahni, V. C.
2009-07-01
Raja Ramanna Centre for Advanced Technology (RRCAT, formerly called Centre for Advanced Technology) is a prime R&D laboratory of Indian Department of Atomic Energy devoted to developing technologies related to accelerators and lasers as well as their applications. RRCAT is home to 2 synchrotron radiation sources (SRS): Indus-1 (a 100 mA, 450 MeV storage ring) & Indus-2 (a 2.5 GeV booster cum storage ring designed for a current of up to 300 mA), sharing a common injector system, comprising of 20 MeV microtron & 450-700 MeV range booster synchrotron. Most of the accelerator hardware has been built indigenously. Normally beam is injected into Indus-2 (and accumulated) at 550 MeV, and ramped to 2 or 2.5 GeV depending on the user needs. At present we have permission from Atomic Energy Regulatory Board (Indian agency charged with radiation protection responsibility in the country) to operate Indus-2 at 2.5 GeV with up to 50 mA & in the next stage we will get authorization to go up to 100 mA. Currently 5 beam lines on Indus-1 and 3 on Indus-2 are operational and work is going on 4 more beam lines on Indus-2 & is progressing well. The 3 completed beam lines on Indus-2 are: high resolution XRD, position sensitive detector based multi channel EXAFS (Extended X-ray Absorption Fine Structure) and EDXRD (Energy Dispersive X-ray Diffraction). The paper gives an overview of how the SRS program at RRCAT has evolved over the years, where we stand today and also some of our future plans.
Development of high intensity linear accelerator for heavy ion inertial fusion driver
NASA Astrophysics Data System (ADS)
Lu, Liang; Hattori, Toshiyuki; Hayashizaki, Noriyosu; Ishibashi, Takuya; Okamura, Masahiro; Kashiwagi, Hirotsugu; Takeuchi, Takeshi; Zhao, Hongwei; He, Yuan
2013-11-01
In order to verify the direct plasma injection scheme (DPIS), an acceleration test was carried out in 2001 using a radio frequency quadrupole (RFQ) heavy ion linear accelerator (linac) and a CO2-laser ion source (LIS) (Okamura et al., 2002) [1]. The accelerated carbon beam was observed successfully and the obtained current was 9.22 mA for C4+. To confirm the capability of the DPIS, we succeeded in accelerating 60 mA carbon ions with the DPIS in 2004 (Okamura et al., 2004; Kashiwagi and Hattori, 2004) [2,3]. We have studied a multi-beam type RFQ with an interdigital-H (IH) cavity that has a power-efficient structure in the low energy region. We designed and manufactured a two-beam type RFQ linac as a prototype for the multi-beam type linac; the beam acceleration test of carbon beams showed that it successfully accelerated from 5 keV/u up to 60 keV/u with an output current of 108 mA (2×54 mA/channel) (Ishibashi et al., 2011) [4]. We believe that the acceleration techniques of DPIS and the multi-beam type IH-RFQ linac are technical breakthroughs for heavy-ion inertial confinement fusion (HIF). The conceptual design of the RF linac with these techniques for HIF is studied. New accelerator-systems using these techniques for the HIF basic experiment are being designed to accelerate 400 mA carbon ions using four-beam type IH-RFQ linacs with DPIS. A model with a four-beam acceleration cavity was designed and manufactured to establish the proof of principle (PoP) of the accelerator.
Analysis of Ignitor Discharges with Double X-point Magnetic Configurations
NASA Astrophysics Data System (ADS)
Airoldi, A.; Cenacchi, G.; Coppi, B.
2008-11-01
The Ignitor experiment was proposed and designed to achieve ignited and sub-ignited conditions in well confined deuterium-tritium plasmas. Thanks to its unique features (high magnetic field up to 13 T, high plasma current up to 11 MA, and high plasma density up to 5 x10^20 m-3), Ignitor is the only device capable of exploring plasma regimes that are relevant to a net power producing D-T reactor and are not accessible to other existing or planned machines. Double X-point scenarios with magnetic field up to 13 T and plasma current up to 9 MA are analyzed. In these configurations, the access to a high confinement state is assumed when the available plasma heating power, supported by the injected auxiliary power, is larger than the L-H threshold value, according to recent suggested scalings The H-regime is modeled by a global reduction of the thermal transport coefficients used for the L-regime. Situations in the presence and in the absence of sawtooth oscillations have been investigated. Quasi-stationary conditions can be attained when a process producing re- distribution of pressure and current profiles is active. B.Coppi, A.Airoldi, F.Bombarda, et al.,Nucl. Fusion 41, 1253 (2001) D.C. McDonald, A.J. Meakins, et al., PPCF 48, A439 (2006).
McDonnell-Dowling, Kate; Kelly, John P
2016-04-01
Many preclinical studies have aimed to elucidate the effects of methamphetamine (MA) exposure during pregnancy on the offspring in recent years. However, the severity of effects on the neonate may be related to the subcutaneous (sc) route of administration of the drug that is often employed (88% of preclinical studies) and consequently the delivered dose that the foetus is exposed to. To date there is a paucity of comparative studies investigating different routes of administration for MA during pregnancy and it is not known how these different routes compare when it comes to neonatal outcome. Thus, the aim of this study was to determine if the route of administration of MA (oral gavage or sc injection) during pregnancy at a pharmacological dose affects the magnitude of neurodevelopmental and behavioural effects in the resultant rat offspring. Pregnant Sprague-Dawley dams (n=10 dams/group) received MA (3.75 mg/kg) or control (distilled water) via oral gavage or sc injection from gestation day 7-21. A range of well-recognised neurodevelopmental parameters were examined in the offspring. When administered sc, MA significantly reduced maternal weight gain and altered maternal behaviour; mothers spent less time in the nest with pups and spent less time nursing compared to controls. Significant impairments in neurodevelopmental parameters were evident in both MA treatment groups. Somatic development such as pinna unfolding, fur appearance and eye opening were all delayed after MA exposure but these impairments were more pronounced in the MA sc group. Other somatic parameters such as ano-genital distance and body length were only impeded by sc MA. Behavioural development in the surface righting, inclined plane and forelimb grip tests were also altered for both MA treatment groups. This study demonstrates that prenatal MA can have a profound effect on neonatal outcome, but this can be exacerbated if given via the subcutaneous route, as well as producing additional effects not seen with the oral gavage route. Consequently, the route of administration should be considered when interpreting preclinical studies investigating prenatal MA exposure. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Araya, Million
2015-08-25
SPEAR3 is a 234 m circular storage ring at SLAC’s synchrotron radiation facility (SSRL) in which a 3 GeV electron beam is stored for user access. Typically the electron beam decays with a time constant of approximately 10hr due to electron lose. In order to replenish the lost electrons, a booster synchrotron is used to accelerate fresh electrons up to 3GeV for injection into SPEAR3. In order to maintain a constant electron beam current of 500mA, the injection process occurs at 5 minute intervals. At these times the booster synchrotron accelerates electrons for injection at a 10Hz rate. A 10Hzmore » 'injection ready' clock pulse train is generated when the booster synchrotron is operating. Between injection intervalswhere the booster is not running and hence the 10 Hz ‘injection ready’ signal is not present-a 10Hz clock is derived from the power line supplied by Pacific Gas and Electric (PG&E) to keep track of the injection timing. For this project I constructed a multiplexing circuit to 'switch' between the booster synchrotron 'injection ready' clock signal and PG&E based clock signal. The circuit uses digital IC components and is capable of making glitch-free transitions between the two clocks. This report details construction of a prototype multiplexing circuit including test results and suggests improvement opportunities for the final design.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Araya, Million
2015-08-21
SPEAR3 is a 234 m circular storage ring at SLAC’s synchrotron radiation facility (SSRL) in which a 3 GeV electron beam is stored for user access. Typically the electron beam decays with a time constant of approximately 10hr due to electron lose. In order to replenish the lost electrons, a booster synchrotron is used to accelerate fresh electrons up to 3GeV for injection into SPEAR3. In order to maintain a constant electron beam current of 500mA, the injection process occurs at 5 minute intervals. At these times the booster synchrotron accelerates electrons for injection at a 10Hz rate. A 10Hzmore » 'injection ready' clock pulse train is generated when the booster synchrotron is operating. Between injection intervals-where the booster is not running and hence the 10 Hz ‘injection ready’ signal is not present-a 10Hz clock is derived from the power line supplied by Pacific Gas and Electric (PG&E) to keep track of the injection timing. For this project I constructed a multiplexing circuit to 'switch' between the booster synchrotron 'injection ready' clock signal and PG&E based clock signal. The circuit uses digital IC components and is capable of making glitch-free transitions between the two clocks. This report details construction of a prototype multiplexing circuit including test results and suggests improvement opportunities for the final design.« less
Tsaryk, Roman; Silva-Correia, Joana; Oliveira, Joaquim Miguel; Unger, Ronald E; Landes, Constantin; Brochhausen, Christoph; Ghanaati, Shahram; Reis, Rui L; Kirkpatrick, C James
2017-03-01
Limitations of current treatments for intervertebral disc (IVD) degeneration have promoted interest in the development of tissue-engineering approaches. Injectable hydrogels loaded with cells can be used as a substitute material for the inner IVD part, the nucleus pulposus (NP), and provide an opportunity for minimally invasive treatment of IVD degeneration. The NP is populated by chondrocyte-like cells; therefore, chondrocytes and mesenchymal stem cells (MSCs), stimulated to differentiate along the chondrogenic lineage, could be used to promote NP regeneration. In this study, the in vitro and in vivo response of human bone marrow-derived MSCs and nasal chondrocytes (NCs) to modified gellan gum-based hydrogels was investigated. Both ionic- (iGG-MA) and photo-crosslinked (phGG-MA) methacrylated gellan gum hydrogels show no cytotoxicity in extraction assays with MSCs and NCs. Furthermore, the materials do not induce pro-inflammatory responses in endothelial cells. Moreover, MSCs and NCs can be encapsulated into the hydrogels and remain viable for at least 2 weeks, although apoptosis is observed in phGG-MA. Importantly, encapsulated MSCs and NCs show signs of in vivo chondrogenesis in a subcutaneous implantation of iGG-MA. Altogether, the data endorse the potential use of modified gellan gum-based hydrogel as a suitable material in NP tissue engineering. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Dixit, N. C.; Hanks, C. L.
2014-12-01
The Tertiary Nenana basin of Interior Alaska is currently the focus of both new oil exploration and coalbed methane exploitation and is being evaluated as a potential CO2sequestration site. The basin first formed as a Late Paleocene extensional rift with the deposition of oil and gas-prone, coal-bearing non-marine sediments with excellent source potential. Basin inversion during the Early Eocene-Early Oligocene times resulted in folding and erosion of higher stratigraphic levels, forming excellent structural and stratigraphic traps. Initiation of active faulting on its eastern margin in the middle Oligocene caused slow tectonic subsidence that resulted in the deposition of reservoir and seal rocks of the Usibelli Group. Onset of rapid tectonic subsidence in Pliocene that continues to the present-day has provided significant pressure and temperature gradient for the source rocks. Apatite fission-track and vitrinite reflectance data reveals two major paleo-thermal episodes: Late Paleocene to Early Eocene (60 Ma to 54.8 Ma) and Late Miocene to present-day (7 Ma to present). These episodes of maximum paleotemperatures have implications for the evolution of source rock maturity within the basin. In this study, we are also investigating the potential for coalbed methane production from the Late Paleocene coals via injection of CO2. Our preliminary analyses demonstrate that 150 MMSCF of methane could be produced while 33000 tonnes of CO2 per injection well (base case of ~9 years) can be sequestered in the vicinity of existing infrastructure. However, these volumes of sequestered CO2and coal bed methane recovery are estimates and are sensitive to the reservoir's geomechanical and flow properties. Keywords: extensional rift, seismic, subsidence, thermal history, fission track, vitrinite reflectance, coal bed methane, Nenana basin, CO2 sequestration
Electrically driven plasmon-exciton coupled random lasing in ZnO metal-semiconductor-metal devices
NASA Astrophysics Data System (ADS)
Suja, Mohammad; Debnath, Bishwajit; Bashar, Sunayna B.; Su, Longxing; Lake, Roger; Liu, Jianlin
2018-05-01
Electrically driven plasmon-exciton coupled random lasing is demonstrated by incorporating Ag nanoparticles on Cu-doped ZnO metal-semiconductor-metal (MSM) devices. Both photoluminescence and electroluminescence studies show that emission efficiencies have been enhanced significantly due to coupling between ZnO excitons and Ag surface plasmons. With the incorporation of Ag nanoparticles on ZnO MSM structures, internal quantum efficiency up to 6 times is demonstrated. Threshold current for lasing is decreased by as much as 30% while the output power is increased up to 350% at an injection current of 40 mA. A numerical simulation study reveals that hole carriers are generated in the ZnO MSM devices from impact ionization processes for subsequent plasmon-exciton coupled lasing.
NASA Astrophysics Data System (ADS)
Procházková, O.; Novotný, J.; Šrobár, F.
1988-11-01
The technology of growth of buried heterojunction lasers emitting at 1.3 μm and some of their physical properties are described. Mesa stripes 8-μm wide were formed on heteroepitaxial wafers grown by liquid phase epitaxy at 630°C. They were buried by a second process at a lower temperature (590°C). The threshold current was about 100 mA and the temperature sensitivity was characterized by a parameter amounting to about 60 K. Single-mode lasing was observed occasionally.
Stone, Victoria N; Baldock, Sara J; Croasdell, Laura A; Dillon, Leonard A; Fielden, Peter R; Goddard, Nick J; Thomas, C L Paul; Treves Brown, Bernard J
2007-07-06
An injection moulded free flow isotachophoresis (FFITP) microdevice with integrated carbon fibre loaded electrodes with a separation chamber of 36.4mm wide, 28.7 mm long and 100 microm deep is presented. The microdevice was completely fabricated by injection moulding in carbon fibre loaded polystyrene for the electrodes and crystal polystyrene for the remainder of the chip and was bonded together using ultrasonic welding. Two injection moulded electrode designs were compared, one with the electrode surface level with the separation chamber and one with a recessed electrode. Separations of two anionic dyes, 0.2mM each of amaranth and acid green and separations of 0.2mM each of amaranth, bromophenol blue and glutamate were performed on the microdevice. Flow rates of 1.25 ml min(-1) for the leading and terminating electrolytes were used and a flow rate of 0.63 ml min(-1) for the sample. Electric fields of up to 370 V cm(-1) were applied across the separation chamber. Joule heating was not found to be significant although out-gassing was observed at drive currents greater than 3 mA.
The high-β{sub N} hybrid scenario for ITER and FNSF steady-state missions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turco, F.; Petty, C. C.; Luce, T. C.
2015-05-15
New experiments on DIII-D have demonstrated the steady-state potential of the hybrid scenario, with 1 MA of plasma current driven fully non-inductively and β{sub N} up to 3.7 sustained for ∼3 s (∼1.5 current diffusion time, τ{sub R}, in DIII-D), providing the basis for an attractive option for steady-state operation in ITER and FNSF. Excellent confinement is achieved (H{sub 98y2} ∼ 1.6) without performance limiting tearing modes. The hybrid regime overcomes the need for off-axis current drive efficiency, taking advantage of poloidal magnetic flux pumping that is believed to be the result of a saturated 3/2 tearing mode. This allows for efficient currentmore » drive close to the axis, without deleterious sawtooth instabilities. In these experiments, the edge surface loop voltage is driven down to zero for >1 τ{sub R} when the poloidal β is increased above 1.9 at a plasma current of 1.0 MA and the ECH power is increased to 3.2 MW. Stationary operation of hybrid plasmas with all on-axis current drive is sustained at pressures slightly above the ideal no-wall limit, while the calculated ideal with-wall MHD limit is β{sub N} ∼ 4–4.5. Off-axis Neutral Beam Injection (NBI) power has been used to broaden the pressure and current profiles in this scenario, seeking to take advantage of higher predicted kink stability limits and lower values of the tearing stability index Δ′, as calculated by the DCON and PEST3 codes. Results based on measured profiles predict ideal limits at β{sub N} > 4.5, 10% higher than the cases with on-axis NBI. A 0-D model, based on the present confinement, β{sub N} and shape values of the DIII-D hybrid scenario, shows that these plasmas are consistent with the ITER 9 MA, Q = 5 mission and the FNSF 6.7 MA scenario with Q = 3.5. With collisionality and edge safety factor values comparable to those envisioned for ITER and FNSF, the high-β{sub N} hybrid represents an attractive high performance option for the steady-state missions of these devices.« less
Gilad, O; Horesh, L; Holder, D S
2007-07-01
For the novel application of recording of resistivity changes related to neuronal depolarization in the brain with electrical impedance tomography, optimal recording is with applied currents below 100 Hz, which might cause neural stimulation of skin or underlying brain. The purpose of this work was to develop a method for application of low frequency currents to the scalp, which delivered the maximum current without significant stimulation of skin or underlying brain. We propose a recessed electrode design which enabled current injection with an acceptable skin sensation to be increased from 100 muA using EEG electrodes, to 1 mA in 16 normal volunteers. The effect of current delivered to the brain was assessed with an anatomically realistic finite element model of the adult head. The modelled peak cerebral current density was 0.3 A/m(2), which was 5 to 25-fold less than the threshold for stimulation of the brain estimated from literature review.
NASA Technical Reports Server (NTRS)
Wilbur, P. J.
1976-01-01
Improvements in 15 cm diameter, SERT II, mercury ion thruster performance effected by the use of SHAG optics at 33 V discharge voltage were discussed. At a 200 eV/ion discharge power, 90 percent propellant utilization and 660 mA beam current condition a doubly-to-singly charged ion current ratio of about 4 percent was measured. Performance of the 15 cm multipole mercury thruster (optimized for length and the point of electron injection) was compared to that of divergent (SERT II) and cusped field designs and found to be comparable. The need for a magnetic baffle in the multipole thruster was identified and the preferred point of electron injection was at the upstream end of the discharge chamber. Results of preliminary tests on the effects of discharge voltage and total accelerating voltage on perveance and beam divergence characteristics of two grid ion optics were examined. Experimental data showing the effect of target temperature on sputtering rates in a mercury discharge environment were presented and a deficiency in the tests procedure was identified.
Lee, Byeong Ryong; Kim, Tae Geun
2016-06-01
This paper reports the electrical and optical properties of the reduced graphene oxide (RGO)/single-walled carbon nanotube (SWNT) films using various p-type dopants and its application to GaN-based light-emitting diodes. To enhance the current injection and spreading of the RGO/SWNT films on the light-emitting diodes (LEDs), we increased the work function (φ) of the films using chemical doping with AuCl3, poly(3,4-ethylenedioxythiophene) oxidized with poly(4-styrenesulfonate) ( PSS) and MoO3; thereby reduced the Schottky barrier height between the RGO/SWNT films and p-GaN. By comparison, LEDs fabricated with work-function-tuned RGO/SWNT film doped with MoO3 exhibited the decrease of the forward voltage from 5.3 V to 5.02 V at 20 mA and the increase of the output power up to 1.26 times. We also analyzed the current injection mechanism using ultraviolet photoelectron spectroscopy and X-ray photoelectron spectroscopy.
Methamphetamine enhances sexual behavior in female rats.
Winland, Carissa; Haycox, Charles; Bolton, Jessica L; Jampana, Sumith; Oakley, Benjamin J; Ford, Brittany; Ornelas, Laura; Burbey, Alexandra; Marquette, Amber; Frohardt, Russell J; Guarraci, Fay A
2011-06-01
The present study evaluated the effects of methamphetamine (MA) on sexual behavior in female rats. In Experiment 1, ovariectomized, hormone-primed rats were injected with MA (1.0mg/kg, i.p.) or saline prior to a test for mate choice wherein females could mate with two males simultaneously. Female rats treated with saline returned to their preferred mate faster after receiving intromissions and visited their preferred mate at a higher rate than their non-preferred mate. In contrast, MA-treated female rats spent a similar amount of time with their preferred and non-preferred mate and failed to return to their preferred mate faster than to their non-preferred mate following intromissions. Two weeks later, the females received the same drug treatment but were tested for partner preference wherein females could spend time near a male or female stimulus rat. All subjects spent more time near the male stimulus than the female stimulus. However, the MA-treated rats visited the male stimulus more frequently and spent less time near the female stimulus than the saline-treated rats. Similar to Experiment 1, female rats in Experiment 2 were tested for mate choice and then two weeks later tested for partner preference; however, females received three daily injections of MA (1.0mg/kg, i.p.) or saline. Females treated chronically with MA returned to both males faster following intromissions than females treated with saline, independent of preference (i.e., preferred mate and non-preferred mate). Furthermore, MA-treated rats were more likely to leave either male (i.e., preferred or non-preferred mate) than saline-treated rats after receiving sexual stimulation. Although MA-treated subjects spent more time near the male stimulus than the female stimulus, they spent less time near either when compared to saline-treated subjects. The present results demonstrate that MA affects sexual behavior in female rats partly by increasing locomotion and partly by directly affecting sexual behavior. Copyright © 2011 Elsevier Inc. All rights reserved.
High current liquid metal ion source using porous tungsten multiemitters.
Tajmar, M; Vasiljevich, I; Grienauer, W
2010-12-01
We recently developed an indium Liquid-Metal-Ion-Source that can emit currents from sub-μA up to several mA. It is based on a porous tungsten crown structure with 28 individual emitters, which is manufactured using Micro-Powder Injection Molding (μPIM) and electrochemical etching. The emitter combines the advantages of internal capillary feeding with excellent emission properties due to micron-size tips. Significant progress was made on the homogeneity of the emission over its current-voltage characteristic as well as on investigating its long-term stability. This LMIS seems very suitable for space propulsion as well as for micro/nano manufacturing applications with greatly increased milling/drilling speeds. This paper summarizes the latest developments on our porous multiemitters with respect to manufacturing, emission properties and long-term testing. Copyright © 2010 Elsevier B.V. All rights reserved.
Electron Temperature Evolution During Local Helicity Injection on the Pegasus Toroidal Experiment
NASA Astrophysics Data System (ADS)
Schlossberg, D. J.; Barr, J. L.; Bodner, G. M.; Bongard, M. W.; Fonck, R. J.; Perry, J. M.; Reusch, J. A.; Rodriguez Sanchez, C.
2016-10-01
Understanding the electron temperature (Te) evolution during local helicity injection (LHI) is critical for scaling up this non-solenoidal startup technique to MA-class devices. The first comprehensive Te measurements during LHI reveal centrally-peaked profiles with Te > 100 eV for plasma current Ip > 120 kA, toroidal field 0.15 T, and electron density ne 1019 m-3. Te rises and is sustained from just after magnetic relaxation through the plasma decoupling from edge-localized injectors. Results are presented for two injector edge locations: outboard midplane and inboard divertor. Outboard midplane injection couples LHI with inductive drive from poloidal field ramps and radial compression during inward plasma growth. Comparisons of Te at different LHI-to-inductive drive ratios show some profile flattening for higher LHI drive fraction. The latter, constant-shape discharges were necessarily lower performance, with Ip 50 kA and reduced Te , max. Inboard divertor injection achieves higher Ip using minimal inductive drive and thus isolates effects of LHI drive on Te. Initial results in this configuration show Te rising rapidly at the injector location as the discharge grows, settling to a roughly flat profile 100 eV. Thus far, both scenarios provide relatively stable discharges with moderate ne and high-Te, suitable for coupling to auxiliary current drive. Detailed studies of confinement dynamics and discharge optimization are planned for the near future. Work supported by US DOE Grant DE-FG02-96ER54375.
Baeg, Kang-Jun; Kim, Juhwan; Khim, Dongyoon; Caironi, Mario; Kim, Dong-Yu; You, In-Kyu; Quinn, Jordan R; Facchetti, Antonio; Noh, Yong-Young
2011-08-01
Ambipolar π-conjugated polymers may provide inexpensive large-area manufacturing of complementary integrated circuits (CICs) without requiring micro-patterning of the individual p- and n-channel semiconductors. However, current-generation ambipolar semiconductor-based CICs suffer from higher static power consumption, low operation frequencies, and degraded noise margins compared to complementary logics based on unipolar p- and n-channel organic field-effect transistors (OFETs). Here, we demonstrate a simple methodology to control charge injection and transport in ambipolar OFETs via engineering of the electrical contacts. Solution-processed caesium (Cs) salts, as electron-injection and hole-blocking layers at the interface between semiconductors and charge injection electrodes, significantly decrease the gold (Au) work function (∼4.1 eV) compared to that of a pristine Au electrode (∼4.7 eV). By controlling the electrode surface chemistry, excellent p-channel (hole mobility ∼0.1-0.6 cm(2)/(Vs)) and n-channel (electron mobility ∼0.1-0.3 cm(2)/(Vs)) OFET characteristics with the same semiconductor are demonstrated. Most importantly, in these OFETs the counterpart charge carrier currents are highly suppressed for depletion mode operation (I(off) < 70 nA when I(on) > 0.1-0.2 mA). Thus, high-performance, truly complementary inverters (high gain >50 and high noise margin >75% of ideal value) and ring oscillators (oscillation frequency ∼12 kHz) based on a solution-processed ambipolar polymer are demonstrated.
Ion source and injection line for high intensity medical cyclotron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, XianLu, E-mail: jiaxl@ciae.ac.cn; Guan, Fengping; Yao, Hongjuan
2014-02-15
A 14 MeV high intensity compact cyclotron, CYCIAE-14, was built at China Institute of Atomic Energy (CIAE). An injection system based on the external H− ion source was used on CYCIAE-14 so as to provide high intensity beam, while most positron emission tomography cyclotrons adopt internal ion source. A beam intensity of 100 μA/14 MeV was extracted from the cyclotron with a small multi-cusp H− ion source (CIAE-CH-I type) and a short injection line, which the H− ion source of 3 mA/25 keV H− beam with emittance of 0.3π mm mrad and the injection line of with only 1.2 m from themore » extraction of ion source to the medial plane of the cyclotron. To increase the extracted beam intensity of the cyclotron, a new ion source (CIAE-CH-II type) of 9.1 mA was used, with maximum of 500 μA was achieved from the cyclotron. The design and test results of the ion source and injection line optimized for high intensity acceleration will be given in this paper.« less
Electrohydrodynamic convective heat transfer in a square duct.
Grassi, Walter; Testi, Daniele
2009-04-01
Laminar to weakly turbulent forced convection in a square duct heated from the bottom is strengthened by ion injection from an array of high-voltage points opposite the heated strip. Both positive and negative ion injection are activated within the working liquid HFE-7100 (C(4)F(9)OCH(3)), with transiting electrical currents on the order of 0.1 mA. Local temperatures on the heated wall are measured by liquid crystal thermography. The tests are conducted in a Reynolds number range from 510 to 12,100. In any case, heat transfer is dramatically augmented, almost independently from the flow rate. The pressure drop increase caused by the electrohydrodynamically induced flow is also measured. A profitable implementation of the technique in the design of heat sinks and heat exchangers is foreseen; possible benefits are pumping power reduction, size reduction, and heat exchange capability augmentation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fortgang, C. M., E-mail: cfortgang@lanl.gov; Batygin, Y. K.; Draganic, I. N.
The 750-keV H{sup +} Cockcroft-Walton at LANSCE will be replaced with a recently fabricated 4-rod Radio Frequency Quadrupole (RFQ) with injection energy of 35 keV. The existing duoplasmatron source extraction optics need to be modified to produce up to 35 mA of H{sup +} current with an emittance <0.02 π-cm-mrad (rms, norm) for injection into the RFQ. Parts for the new source have been fabricated and assembly is in process. We will use the existing duoplasmatron source with a newly designed extraction system and low energy beam transport (LEBT) for beam injection into the RFQ. In addition to source modifications,more » we need a new LEBT for transport and matching into the RFQ. The LEBT uses two magnetic solenoids with enough drift space between them to accommodate diagnostics and a beam deflector. The LEBT is designed to work over a range of space-charge neutralized currents and emittances. The LEBT is optimized in the sense that it minimizes the beam size in both solenoids for a point design of a given neutralized current and emittance. Special attention has been given to estimating emittance growth due to source extraction optics and solenoid aberrations. Examples of source-to-RFQ matching and emittance growth (due to both non-linear space charge and solenoid aberrations) are presented over a range of currents and emittances about the design point. A mechanical layout drawing will be presented along with the status of the source and LEBT, design, and fabrication.« less
DeMonte, Tim P; Wang, Dinghui; Ma, Weijing; Gao, Jia-Hong; Joy, Michael L G
2009-01-01
Current density imaging (CDI) is a magnetic resonance imaging (MRI) technique used to quantitatively measure current density vectors throughout the volume of an object/subject placed in the MRI system. Electrical current pulses are applied externally to the object/subject and are synchronized with the MRI sequence. In this work, CDI is used to measure average current density magnitude in the torso region of an in-vivo piglet for applied current pulse amplitudes ranging from 10 mA to 110 mA. The relationship between applied current amplitude and current density magnitude is linear in simple electronic elements such as wires and resistors; however, this relationship may not be linear in living tissue. An understanding of this relationship is useful for research in defibrillation, human electro-muscular incapacitation (e.g. TASER(R)) and other bioelectric stimulation devices. This work will show that the current amplitude to current density magnitude relationship is slightly nonlinear in living tissue in the range of 10 mA to 110 mA.
Disruption avoidance by means of electron cyclotron waves
NASA Astrophysics Data System (ADS)
Esposito, B.; Granucci, G.; Maraschek, M.; Nowak, S.; Lazzaro, E.; Giannone, L.; Gude, A.; Igochine, V.; McDermott, R.; Poli, E.; Reich, M.; Sommer, F.; Stober, J.; Suttrop, W.; Treutterer, W.; Zohm, H.; ASDEX Upgrade, the; FTU Teams
2011-12-01
Disruptions are very challenging to ITER operation as they may cause damage to plasma facing components due to direct plasma heating, forces on structural components due to halo and eddy currents and the production of runaway electrons. Electron cyclotron (EC) waves have been demonstrated as a tool for disruption avoidance by a large set of recent experiments performed in ASDEX Upgrade and FTU using various disruption types, plasma operating scenarios and power deposition locations. The technique is based on the stabilization of magnetohydrodynamic (MHD) modes (mainly m/n = 2/1) through the localized injection of EC power on the resonant surface. This paper presents new results obtained in ASDEX Upgrade regarding stable operation above the Greenwald density achieved after avoidance of density limit disruptions by means of ECRH and suitable density feedback control (L-mode ohmic plasmas, Ip = 0.6 MA, Bt = 2.5 T) and NTM-driven disruptions at high-β limit delayed/avoided by means of both co-current drive (co-ECCD) and pure heating (ECRH) with power <=1.7 MW (H-mode NBI-heated plasmas, PNBI ~ 7.5 MW, Ip = 1 MA, Bt = 2.1 T, q95 ~ 3.6). The localized perpendicular injection of ECRH/ECCD onto a resonant surface leads to the delay and/or complete avoidance of disruptions. The experiments indicate the existence of a power threshold for mode stabilization to occur. An analysis of the MHD mode evolution using the generalized Rutherford equation coupled to the frequency and phase evolution equations shows that control of the modes is due to EC heating close to the resonant surface. The ECRH contribution (Δ'H term) is larger than the co-ECCD one in the initial and more important phase when the discharge is 'saved'. Future research and developments of the disruption avoidance technique are also discussed.
Lai, Fang-I; Yang, Jui-Fu
2013-05-17
In this paper, GaN-based light-emitting diodes (LEDs) with photonic quasi-crystal (PQC) structure on p-GaN surface and n-side roughing by nano-imprint lithography are fabricated and investigated. At an injection current of 20 mA, the LED with PQC structure on p-GaN surface and n-side roughing increased the light output power of the InGaN/GaN multiple quantum well LEDs by a factor of 1.42, and the wall-plug efficiency is 26% higher than the conventional GaN-based LED type. After 500-h life test (55°C/50 mA), it was found that the normalized output power of GaN-based LED with PQC structure on p-GaN surface and n-side roughing only decreased by 6%. These results offer promising potential to enhance the light output powers of commercial light-emitting devices using the technique of nano-imprint lithography.
NASA Astrophysics Data System (ADS)
Zhang, Changxin; Fang, Bin; Wang, Bochong; Zeng, Zhongming
2018-04-01
This paper presents a steady auto-oscillation in a spin-torque oscillator using MgO-based magnetic tunnel junction (MTJ) with a perpendicular polarizer and a perpendicular free layer. As the injected d.c. current varied from 1.5 to 3.0 mA under a weak magnetic field of 290 Oe, the oscillation frequency decreased from 1.85 to 1.3 GHz, and the integrated power increased from 0.1 to 74 pW. A narrow linewidth down to 7 MHz corresponding to a high Q factor of 220 was achieved at 2.7 mA, which was ascribed to the spatial coherent procession of the free layer magnetization. Moreover, the oscillation frequency was quite sensitive to the applied field, about 3.07 MHz/Oe, indicating the potential applications as a weak magnetic field detector. These results suggested that the MgO-based MTJ with perpendicular magnetic easy axis could be helpful for developing spin-torque oscillators with narrow-linewidth and high sensitive.
Impact and mitigation of disruptions with the ITER-like wall in JET
NASA Astrophysics Data System (ADS)
Lehnen, M.; Arnoux, G.; Brezinsek, S.; Flanagan, J.; Gerasimov, S. N.; Hartmann, N.; Hender, T. C.; Huber, A.; Jachmich, S.; Kiptily, V.; Kruezi, U.; Matthews, G. F.; Morris, J.; Plyusnin, V. V.; Reux, C.; Riccardo, V.; Sieglin, B.; de Vries, P. C.; EFDA Contributors, JET
2013-09-01
Disruptions are a critical issue for ITER because of the high thermal and magnetic energies that are released on short timescales, which results in extreme forces and heat loads. The choice of material of the plasma-facing components (PFCs) can have significant impact on the loads that arise during a disruption. With the ITER-like wall (ILW) in JET made of beryllium in the main chamber and tungsten in the divertor, the main finding is a low fraction of radiation. This has dropped significantly with the ILW from 50-100% of the total energy being dissipated during disruptions in CFC wall plasmas, to less than 50% on average and down to just 10% for vertical displacement events (VDEs). All other changes in disruption properties and loads are consequences of this low radiation: long current quenches (CQs), high vessel forces caused by halo currents and toroidal current asymmetries as well as severe heat loads. Temperatures close to the melting limit have been locally observed on upper first wall structures during deliberate VDE and even at plasma currents as low as 1.5 MA and thermal energy of about 1.5 MJ only. A high radiation fraction can be regained by massive injection of a mixture of 10% Ar with 90% D2. This accelerates the CQ thus reducing the halo current and sideways impulse. The temperature of PFCs stays below 400 °C. MGI is now a mandatory tool to mitigate disruptions in closed-loop operation for currents at and above 2.5 MA in JET.
Measurements on wave propagation characteristics of spiraling electron beams
NASA Technical Reports Server (NTRS)
Singh, A.; Getty, W. D.
1976-01-01
Dispersion characteristics of cyclotron-harmonic waves propagating on a neutralized spiraling electron beam immersed in a uniform axial magnetic field are studied experimentally. The experimental setup consisted of a vacuum system, an electron-gun corkscrew assembly which produces a 110-eV beam with the desired delta-function velocity distribution, a measurement region where a microwave signal is injected onto the beam to measure wavelengths, and a velocity analyzer for measuring the axial electron velocity. Results of wavelength measurements made at beam currents of 0.15, 1.0, and 2.0 mA are compared with calculated values, and undesirable effects produced by increasing the beam current are discussed. It is concluded that a suitable electron beam for studies of cyclotron-harmonic waves can be generated by the corkscrew device.
NASA Astrophysics Data System (ADS)
Higuchi, Yu; Osaki, Shinji; Sasahata, Yoshifumi; Kitada, Takahiro; Shimomura, Satoshi; Ogura, Mutsuo; Hiyamizu, Satoshi
2007-02-01
We report the first demonstration of room temperature (RT) current injection lasing of vertical-cavity surface-emitting lasers (VCSELs), with self-organized InGaAs/(GaAs)6(AlAs)1 quantum wires (QWRs) in their active region, grown on (775)B-oriented GaAs substrates by molecular beam epitaxy. A (775)B InGaAs QWR-VCSEL with an aperture diameter of 4 μm lased at a wavelength of 829.7 nm and a threshold current of 0.7 mA at RT. The light output was linearly polarized in the direction parallel to the QWRs due to optical anisotropy of the self-organized (775)B InGaAs QWRs.
A tripolar current-steering stimulator ASIC for field shaping in deep brain stimulation.
Valente, Virgilio; Demosthenous, Andreas; Bayford, Richard
2012-06-01
A significant problem with clinical deep brain stimulation (DBS) is the high variability of its efficacy and the frequency of side effects, related to the spreading of current beyond the anatomical target area. This is the result of the lack of control that current DBS systems offer on the shaping of the electric potential distribution around the electrode. This paper presents a stimulator ASIC with a tripolar current-steering output stage, aiming at achieving more selectivity and field shaping than current DBS systems. The ASIC was fabricated in a 0.35-μ m CMOS technology occupying a core area of 0.71 mm(2). It consists of three current sourcing/sinking channels. It is capable of generating square and exponential-decay biphasic current pulses with five different time constants up to 28 ms and delivering up to 1.85 mA of cathodic current, in steps of 4 μA, from a 12 V power supply. Field shaping was validated by mapping the potential distribution when injecting current pulses through a multicontact DBS electrode in saline.
Recovery of polypropylene from spent lead-acid batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stout, M.E.
1995-12-31
The recovery of the constituent components of spent lead-acid batteries was pioneered in the early 1970`s by M.A. Industries, Inc. M.A.`s main reason for research and development in this area was to recover the polypropylene casings for use as feed stock in their injection molding plants. At that time spent and reject casings were either disposed of or being fed with the lead bearing materials into the smelting process. M.A. has since developed, built and operated a plant for the conversion of scrap casing into reusable copolymer resins. The system is composed of washing, sizing, extrusion and pelletizing the polymermore » into a form which is ready to be injection molded into new products.« less
Reprint of: High current liquid metal ion source using porous tungsten multiemitters.
Tajmar, M; Vasiljevich, I; Grienauer, W
2011-05-01
We recently developed an indium Liquid-Metal-Ion-Source that can emit currents from sub-μA up to several mA. It is based on a porous tungsten crown structure with 28 individual emitters, which is manufactured using Micro-Powder Injection Molding (μPIM) and electrochemical etching. The emitter combines the advantages of internal capillary feeding with excellent emission properties due to micron-size tips. Significant progress was made on the homogeneity of the emission over its current-voltage characteristic as well as on investigating its long-term stability. This LMIS seems very suitable for space propulsion as well as for micro/nano manufacturing applications with greatly increased milling/drilling speeds. This paper summarizes the latest developments on our porous multiemitters with respect to manufacturing, emission properties and long-term testing. Copyright © 2010 Elsevier B.V. All rights reserved.
Surface plasmon-enhanced light-emitting diodes using silver nanoparticles embedded in p-GaN.
Cho, Chu-Young; Kwon, Min-Ki; Lee, Sang-Jun; Han, Sang-Heon; Kang, Jang-Won; Kang, Se-Eun; Lee, Dong-Yul; Park, Seong-Ju
2010-05-21
We demonstrate the surface plasmon-enhanced blue light-emitting diodes (LEDs) using Ag nanoparticles embedded in p-GaN. A large increase in optical output power of 38% is achieved at an injection current of 20 mA due to an improved internal quantum efficiency of the LEDs. The enhancement of optical output power is dependent on the density of the Ag nanoparticles. This improvement can be attributed to an increase in the spontaneous emission rate through resonance coupling between the excitons in multiple quantum wells and localized surface plasmons in Ag nanoparticles embedded in p-GaN.
Chen, Jiun-Ting; Lai, Wei-Chih; Kao, Yu-Jui; Yang, Ya-Yu; Sheu, Jinn-Kong
2012-02-27
The laser-induced periodic surface structure technique was used to form simultaneously dual-scale rough structures (DSRS) with spiral-shaped nanoscale structure inside semi-spherical microscale holes on p-GaN surface to improve the light-extraction efficiency of light-emitting diodes (LEDs). The light output power of DSRS-LEDs was 30% higher than that of conventional LEDs at an injection current of 20 mA. The enhancement in the light output power could be attributed to the increase in the probability of photons to escape from the increased surface area of textured p-GaN surface.
Scibelli, Angela C.; McKinnon, Carrie S.; Reed, Cheryl; Burkhart-Kasch, Sue; Li, Na; Baba, Harue; Wheeler, Jeanna M.
2012-01-01
Rationale Genetically determined differences in susceptibility to drug-induced sensitization could be related to risk for drug consumption. Objectives Studies were performed to determine whether selective breeding could be used to create lines of mice with different magnitudes of locomotor sensitization to methamphetamine (MA). MA sensitization (MASENS) lines were also examined for genetically correlated responses to MA. Methods Beginning with the F2 cross of C57BL/6J and DBA/2J strains, mice were tested for locomotor sensitization to repeated injections of 1 mg/kg MA and bred based on magnitude of sensitization. Five selected offspring generations were tested. All generations were also tested for MA consumption, and some were tested for dose-dependent locomotor-stimulant responses to MA, consumption of saccharin, quinine, and potassium chloride as a measure of taste sensitivity, and MA clearance after acute and repeated MA. Results Selective breeding resulted in creation of two lines [MA high sensitization (MAHSENS) and MA low sensitization (MALSENS)] that differed in magnitude of MA-induced sensitization. Initially, greater MA consumption in MAHSENS mice reversed over the course of selection so that MALSENS mice consumed more MA. MAHSENS mice exhibited greater sensitivity to the acute stimulant effects of MA, but there were no significant differences between the lines in MA clearance from blood. Conclusions Genetic factors influence magnitude of MA-induced locomotor sensitization and some of the genes involved in magnitude of this response also influence MA sensitivity and consumption. Genetic factors leading to greater MA-induced sensitization may serve a protective role against high levels of MA consumption. PMID:21088960
NASA Astrophysics Data System (ADS)
Madsen, Steen J.; Christie, Catherine; Huynh, Khoi; Peng, Qian; Uzal, Francisco A.; Krasieva, Tatiana B.; Hirschberg, Henry
2018-02-01
Immunotherapy of brain tumors involves the stimulation of an antitumor immune response. This type of therapy can be targeted specifically to tumor cells thus sparing surrounding normal brain. Due to the presence of the blood-brain barrier, the brain is relatively isolated from the systemic circulation and, as such, the initiation of significant immune responses is more limited than other types of cancers. The purpose of this study was to show that the efficacy of tumor primed antigen presenting macrophage (MaF98) vaccines can be increased by: (1) photodynamic therapy (PDT) of the priming tumor cells and (2) intracranial injection of allogeneic glioma cells directly into the tumor site. Experiments were conducted in an in vivo brain tumor development model using Fischer rats and F98 (syngeneic) and BT4C (allogeneic) glioma cells. The results showed that immunization with Ma (acting as antigen-presenting cells), primed with PDT-treated tumor cells (MaF98), significantly slowed but did not prevent the growth of F98-induced tumors in the brain. Complete suppression of tumor development was obtained via MaF98 inoculation combined with direct intracranial injection of allogeneic glioma cells. No deleterious effects were noted in any of the animals during the 14-day observation period.
Power Balance Modeling of Local Helicity Injection for Non-Solenoidal ST Startup
NASA Astrophysics Data System (ADS)
Weberski, J. D.; Barr, J. L.; Bongard, M. W.; Fonck, R. J.; Perry, J. M.; Reusch, J. A.
2017-10-01
A zero-dimensional power balance model for predicting Ip(t) for Local Helicity Injection (LHI) discharges has been used to interpret experimental results from recent experimental campaigns using high-field-side (HFS) helicity injection. This model quantifies LHI's effective drive (Veff) through helicity balance while enforcing the Taylor relaxation current limit and tracking inductive effects to determine Ip(t) . Recent analysis of HFS LHI discharges indicate LHI is the dominant source of drive and provides Veff up to 1.3 V while geometric effects and inductive drive provide < 0.1 V throughout much of the discharge. In contrast to previous analysis of low-field-side (LFS) LHI discharges, which were driven by Veff = 0.3 V and 2.0 V from geometric effects and inductive drive. A significant remaining uncertainty in the model is the resistive dissipation of LHI discharges. This requires greater understanding of LHI confinement scaling and impurity content, which are currently under investigation. However, the model and experimental Ip(t) exhibit good agreement for parameters consistent with previous experimental findings. Extrapolation of plasma parameters and shaping from recent experiments allow for the model to project the performance of LHI systems. These projections indicate Ip 0.3 MA can be accessed on Pegasus via HFS LHI through changes to injector geometry to provide more Veff. This regime can be accessed via a LFS system by increasing the Taylor relaxation current limit early in the discharge. Work supported by US DOE Grants DE-FG02-96ER54375 and DE-SC0006928.
Electronics for fast ion extraction from EBIS devices
NASA Astrophysics Data System (ADS)
Höltermann, H.; Becker, R.; Kleinod, M.; Müller, I.
2004-05-01
Future synchrotrons for cancer therapy could profit from single turn injection in terms of size, costs, and ease of operation [O. Kester, R. Becker, and M. Kleinod, Rev. Sci. Instrum. 67 (1996)]. Short (˜1.5 μs) and intense (˜1.3 mA) pulses of highly charged light ions (C6+, N7+, O8+) are a requirement for these future therapy facilities which can be provided by an EBIS ion source. Such a medically dedicated EBIS has an electron beam of 400 mA at 5 keV and needs an electron current density of 100 A/cm2 for a repetition rate of 10 Hz. To obtain a 1.5 μs ion pulse it is necessary to switch the drift tube potentials up to 1.6 kV (for a ratio of beam to drift tube of 1/20) in some 100 ns. To avoid spreading out of the pulse due to the restoration of the full space charge depression at locations where ions have already been extracted, the potentials applied to the drift tubes are changed with time. They will be adjusted for each drift tube according to the transit time of the ion pulse. Furthermore, the drift tubes are fully interpenetrating each other with tapered fingers in order to locally distribute the action of the applied potentials. This provides a potential wall, which is following the extracted ion pulse and results in a compressed short ion pulse for single turn injection into a synchrotron.
Gaaz, Tayser Sumer; Sulong, Abu Bakar; Kadhum, Abdul Amir H.; Nassir, Mohamed H.; Al-Amiery, Ahmed A.
2016-01-01
Halloysite nanotubes-thermoplastic polyurethane (HNTs-TPU) nanocomposites are attractive products due to increasing demands for specialized materials. This study attempts to optimize the parameters for injection just before marketing. The study shows the importance of the preparation of the samples and how well these parameters play their roles in the injection. The control parameters for injection are carefully determined to examine the mechanical properties and the density of the HNTs-TPU nanocomposites. Three types of modified HNTs were used as untreated HNTs (uHNTs), sulfuric acid treated (aHNTs) and a combined treatment of polyvinyl alcohol (PVA)-sodium dodecyl sulfate (SDS)-malonic acid (MA) (treatment (mHNTs)). It was found that mHNTs have the most influential effect of producing HNTs-TPU nanocomposites with the best qualities. One possible reason for this extraordinary result is the effect of SDS as a disperser and MA as a crosslinker between HNTs and PVA. For the highest tensile strength, the control parameters are demonstrated at 150 °C (injection temperature), 8 bar (injection pressure), 30 °C (mold temperature), 8 min (injection time), 2 wt % (HNTs loading) and mHNT (HNTs type). Meanwhile, the optimized combination of the levels for all six control parameters that provide the highest Young’s modulus and highest density was found to be 150 °C (injection temperature), 8 bar (injection pressure), 32 °C (mold temperature), 8 min (injection time), 3 wt % (HNTs loading) and mHNT (HNTs type). For the best tensile strain, the six control parameters are found to be 160 °C (injection temperature), 8 bar (injection pressure), 32 °C (mold temperature), 8 min (injection time), 2 wt % (HNTs loading) and mHNT (HNTs type). For the highest hardness, the best parameters are 140 °C (injection temperature), 6 bar (injection pressure), 30 °C (mold temperature), 8 min (injection time), 2 wt % (HNTs loading) and mHNT (HNTs type). The analyses are carried out by coordinating Taguchi and ANOVA approaches. Seemingly, mHNTs has shown its very important role in the resulting product. PMID:28774069
Gaaz, Tayser Sumer; Sulong, Abu Bakar; Kadhum, Abdul Amir H; Nassir, Mohamed H; Al-Amiery, Ahmed A
2016-11-22
Halloysite nanotubes-thermoplastic polyurethane (HNTs-TPU) nanocomposites are attractive products due to increasing demands for specialized materials. This study attempts to optimize the parameters for injection just before marketing. The study shows the importance of the preparation of the samples and how well these parameters play their roles in the injection. The control parameters for injection are carefully determined to examine the mechanical properties and the density of the HNTs-TPU nanocomposites. Three types of modified HNTs were used as untreated HNTs ( u HNTs), sulfuric acid treated ( a HNTs) and a combined treatment of polyvinyl alcohol (PVA)-sodium dodecyl sulfate (SDS)-malonic acid (MA) (treatment ( m HNTs)). It was found that m HNTs have the most influential effect of producing HNTs-TPU nanocomposites with the best qualities. One possible reason for this extraordinary result is the effect of SDS as a disperser and MA as a crosslinker between HNTs and PVA. For the highest tensile strength, the control parameters are demonstrated at 150 °C (injection temperature), 8 bar (injection pressure), 30 °C (mold temperature), 8 min (injection time), 2 wt % (HNTs loading) and m HNT (HNTs type). Meanwhile, the optimized combination of the levels for all six control parameters that provide the highest Young's modulus and highest density was found to be 150 °C (injection temperature), 8 bar (injection pressure), 32 °C (mold temperature), 8 min (injection time), 3 wt % (HNTs loading) and m HNT (HNTs type). For the best tensile strain, the six control parameters are found to be 160 °C (injection temperature), 8 bar (injection pressure), 32 °C (mold temperature), 8 min (injection time), 2 wt % (HNTs loading) and m HNT (HNTs type). For the highest hardness, the best parameters are 140 °C (injection temperature), 6 bar (injection pressure), 30 °C (mold temperature), 8 min (injection time), 2 wt % (HNTs loading) and m HNT (HNTs type). The analyses are carried out by coordinating Taguchi and ANOVA approaches. Seemingly, m HNTs has shown its very important role in the resulting product.
ERIC Educational Resources Information Center
Sheridan, Philip
1978-01-01
A quick, simple method for preserving bird specimens using borax and a formalin solution is described. Procedures for injecting and mounting the specimens are given along with certain restrictions on preserving specimens. (MA)
Quality of life among treatment seeking methamphetamine-dependent individuals.
Gonzales, Rachel; Ang, Alfonso; Glik, Deborah C; Rawson, Richard A; Lee, Stella; Iguchi, Martin Y
2011-01-01
As the number of men and women entering treatment for substance use disorders continues to increase across the country, it becomes vitally important to understand their quality of life (QOL) or perceived health status, in order to inform treatment efforts for improving such outcomes. To date, QOL assessments among methamphetamine (MA) dependent users are limited. This paper examines QOL health status among a sample of 838 treatment seeking MA users at admission. Using regression analysis, predictors of QOL are examined among MA users. Predictors of poor QOL among MA users at treatment admission included being female, white, high school educated or more, married, experiencing psychosocial dysfunction (lifetime trauma, suicide, social conflict), reporting a high frequency of both MA and polydrugs for 15 days or more in the past month, chronicity of MA and polydrug use, injection use, and having co-morbid medical and psychiatric impairment. Employment status was the only factor related to better health status perceptions. This study expands the scope of scholarly examination of MA-dependent users entering treatment, as there has not been a development of coherent profiles of QOL among representative samples of clinical MA-abusing populations to date. © American Academy of Addiction Psychiatry.
NASA Astrophysics Data System (ADS)
Higuchi, Y.; Osaki, S.; Kitada, T.; Shimomura, S.; Takasuka, Y.; Ogura, M.; Hiyamizu, S.
2006-06-01
Self-organized GaAs/(GaAs) 4(AlAs) 2 quantum wires (QWRs) grown on (7 7 5) B-oriented GaAs substrates by molecular beam epitaxy have been applied to an active region of vertical-cavity surface-emitting lasers (VCSELs). The (7 7 5) B GaAs QWR-VCSEL with an aperture diameter of 3 μm lased at a wavelength of 765 nm with a threshold current of 0.38 mA at room temperature. This is the first demonstration of laser operation of the QWR-VCSEL by current injection. The light output was linearly polarized in the direction parallel to the QWRs due to the optical anisotropy of the self-organized (7 7 5) B GaAs QWRs.
Skin vaccination with live virus vectored microneedle arrays induce long lived CD8(+) T cell memory.
Becker, Pablo D; Hervouet, Catherine; Mason, Gavin M; Kwon, Sung-Yun; Klavinskis, Linda S
2015-09-08
A simple dissolvable microneedle array (MA) platform has emerged as a promising technology for vaccine delivery, due to needle-free injection with a formulation that preserves the immunogenicity of live viral vectored vaccines dried in the MA matrix. While recent studies have focused largely on design parameters optimized to induce primary CD8(+) T cell responses, the hallmark of a vaccine is synonymous with engendering long-lasting memory. Here, we address the capacity of dried MA vaccination to programme phenotypic markers indicative of effector/memory CD8(+) T cell subsets and also responsiveness to recall antigen benchmarked against conventional intradermal (ID) injection. We show that despite a slightly lower frequency of dividing T cell receptor transgenic CD8(+) T cells in secondary lymphoid tissue at an early time point, the absolute number of CD8(+) T cells expressing an effector memory (CD62L(-)CD127(+)) and central memory (CD62L(+)CD127(+)) phenotype during peak expansion were comparable after MA and ID vaccination with a recombinant human adenovirus type 5 vector (AdHu5) encoding HIV-1 gag. Similarly, both vaccination routes generated CD8(+) memory T cell subsets detected in draining LNs for at least two years post-vaccination capable of responding to secondary antigen. These data suggest that CD8(+) T cell effector/memory generation and long-term memory is largely unaffected by physical differences in vaccine delivery to the skin via dried MA or ID suspension. Copyright © 2015 Elsevier Ltd. All rights reserved.
Highly reliable Ag/Zn/Ag ohmic reflector for high-power GaN-based vertical light-emitting diode.
Yum, Woong-Sun; Jeon, Joon-Woo; Sung, Jun-Suk; Seong, Tae-Yeon
2012-08-13
We report the improved performance of InGaN/GaN-based light-emitting diodes (LEDs) through Ag reflectors combined with a Zn middle layer. It is shown that the Zn middle layer (5 nm thick) suppresses the agglomeration of Ag reflectors by forming ZnO and dissolving into Ag. The Ag/Zn/Ag contacts show a specific contact resistance of 6.2 × 10(-5) Ωcm(2) and reflectance of ~83% at a wavelength of 440 nm when annealed at 500 °C, which are much better than those of Ag only contacts. Blue LEDs fabricated with the 500 °C-annealed Ag/Zn/Ag reflectors show a forward voltage of 2.98 V at an injection current of 20 mA, which is lower than that (3.02 V) of LEDs with the annealed Ag only contacts. LEDs with the 500 °C-annealed Ag/Zn/Ag contacts exhibit 34% higher output power (at 20 mA) than LEDs with the annealed Ag only contacts.
2013-01-01
In this paper, GaN-based light-emitting diodes (LEDs) with photonic quasi-crystal (PQC) structure on p-GaN surface and n-side roughing by nano-imprint lithography are fabricated and investigated. At an injection current of 20 mA, the LED with PQC structure on p-GaN surface and n-side roughing increased the light output power of the InGaN/GaN multiple quantum well LEDs by a factor of 1.42, and the wall-plug efficiency is 26% higher than the conventional GaN-based LED type. After 500-h life test (55°C/50 mA), it was found that the normalized output power of GaN-based LED with PQC structure on p-GaN surface and n-side roughing only decreased by 6%. These results offer promising potential to enhance the light output powers of commercial light-emitting devices using the technique of nano-imprint lithography. PMID:23683526
RF synchronized short pulse laser ion source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuwa, Yasuhiro, E-mail: fuwa@kyticr.kuicr.kyoto-u.ac.jp; Iwashita, Yoshihisa; Tongu, Hiromu
A laser ion source that produces shortly bunched ion beam is proposed. In this ion source, ions are extracted immediately after the generation of laser plasma by an ultra-short pulse laser before its diffusion. The ions can be injected into radio frequency (RF) accelerating bucket of a subsequent accelerator. As a proof-of-principle experiment of the ion source, a RF resonator is prepared and H{sub 2} gas was ionized by a short pulse laser in the RF electric field in the resonator. As a result, bunched ions with 1.2 mA peak current and 5 ns pulse length were observed at themore » exit of RF resonator by a probe.« less
(oh'' ma se tax' een ) ... have ever had low HDL (high density lipoprotein; 'good cholesterol' that may lower the risk of heart ... or can't be awakened, immediately call emergency services at 911.Symptoms of overdose may include: nausea ...
2011-01-01
Background Methamphetamine (MA) use continues to be a major public health concern in many urban settings. We sought to assess potential relationships between MA use and individual, social, and structural HIV vulnerabilities among sexual minority (lesbian, gay, bisexual or transgendered) drug users. Methods Beginning in 2005 and ending in 2008, 2109 drug users were enroled into one of three cohort studies in Vancouver, Canada. We analysed longitudinal data from all self-identified sexual minority participants (n = 248). Logistic regression using generalized estimating equations (GEE) was used to examine the independent correlates of MA use over time. All analyses were stratified by biological sex at birth. Results At baseline, 104 (7.5%) males and 144 (20.4%) females reported sexual minority status, among whom 64 (62.1%) and 58 (40.3%) reported MA use in the past six months, respectively. Compared to heterosexual participants, sexual minority males (odds ratio [OR] = 3.74, p < 0.001) and females (OR = 1.80, p = 0.003) were more likely to report recent MA use. In multivariate analysis, MA use among sexual minority males was associated with younger age (adjusted odds ratio [AOR] = 0.93 per year older, p = 0.011), Aboriginal ancestry (AOR = 2.59, p = 0.019), injection drug use (AOR = 3.98, p < 0.001), having a legal order or area restriction (i.e., "no-go zone") impact access to services or influence where drugs are used or purchased (AOR = 4.18, p = 0.008), unprotected intercourse (AOR = 1.62, p = 0.048), and increased depressive symptoms (AOR = 1.67, p = 0.044). Among females, MA use was associated with injection drug use (AOR = 2.49, p = 0.002), Downtown South residency (i.e., an area known for drug use) (AOR = 1.60, p = 0.047), and unprotected intercourse with sex trade clients (AOR = 2.62, p = 0.027). Conclusions Methamphetamine use was more prevalent among sexual minority males and females and was associated with different sets of HIV risks and vulnerabilities. Our findings suggest that interventions addressing MA-related harms may need to be informed by more nuanced understandings of the intersection between drug use patterns, social and structural HIV vulnerabilities, and gender/sexual identities. In particular, MA-focused prevention and treatment programs tailored to disenfranchised male and female sexual minority youth are recommended. PMID:21214930
Materials to Engineer the Immune System
2011-04-01
alone (Lysate), or with GM-CSF and lysate (GM+Lys), and 14 days later 200,000 NT1 cells were injected into the mammary pad. Mice survival was...followed over time. Fig. 2. Therapeutic vaccination against NT1 transplantable tumors. NT1 cells (200,000) were injected into the mammary...Engineer the Immune System David Mooney Harvard College Cambridge, MA 02136 Dendritic cells , GM-CSF, CpG, poly(lactide-co-glycolide) The
Casting evaluation of U-Zr alloy system fuel slug for SFR prepared by injection casting method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Hoon; Kim, Jong-Hwan; Kim, Ki-Hwan
2013-07-01
Metal fuel slugs of U-Pu-Zr alloys for Sodium-cooled Fast Reactor (SFR) have conventionally been fabricated by a vacuum injection casting method. Recently, management of minor actinides (MA) became an important issue because direct disposal of the long-lived MA can be a long-term burden for a tentative repository up to several hundreds of thousand years. In order to recycle transuranic elements (TRU) retained in spent nuclear fuel, remote fabrication capability in a shielded hot cell should be prepared. Moreover, generation of long-lived radioactive wastes and loss of volatile species should be minimized during the recycled fuel fabrication step. In order tomore » prevent the evaporation of volatile elements such as Am, alternative fabrication methods of metal fuel slugs have been studied applying gravity casting, and improved injection casting in KAERI, including melting under inert atmosphere. And then, metal fuel slugs were examined with casting soundness, density, chemical analysis, particle size distribution and microstructural characteristics. Based on these results there is a high level of confidence that Am losses will also be effectively controlled by application of a modest amount of overpressure. A surrogate fuel slug was generally soundly cast by improved injection casting method, melted fuel material under inert atmosphere.« less
Li, Ruidong; Wang, Yaxin; Zhao, Ende; Wu, Ke; Li, Wei; Shi, Liang; Wang, Di; Xie, Gengchen; Yin, Yuping; Deng, Meizhou; Zhang, Peng; Tao, Kaixiong
2016-01-01
Maresin 1 (MaR 1) was recently reported to have protective properties in several different animal models of acute inflammation by inhibiting inflammatory response. However, its function in acute liver injury is still unknown. To address this question, we induced liver injury in BALB/c mice with intraperitoneal injection of carbon tetrachloride with or without treatment of MaR 1. Our data showed that MaR 1 attenuated hepatic injury, oxidative stress, and lipid peroxidation induced by carbon tetrachloride, as evidenced by increased thiobarbituric acid reactive substances and reactive oxygen species levels were inhibited by treatment of MaR 1. Furthermore, MaR 1 increased activities of antioxidative mediators in carbon tetrachloride-treated mice liver. MaR 1 decreased indices of inflammatory mediators such as tumor necrosis factor-α, interleukin-6, interleukin-1β, monocyte chemotactic protein 1, myeloperoxidase, cyclooxygenase-2, and inducible nitric oxide synthase. Administration of MaR 1 inhibited activation of nuclear factor kappa B (NF-κb) and mitogen-activated protein kinases (MAPKs) in the liver of CCl4 treated mice. In conclusion, these results suggested the antioxidative, anti-inflammatory properties of MaR 1 in CCl4 induced liver injury. The possible mechanism is partly implicated in its abilities to inhibit ROS generation and activation of NF-κb and MAPK pathway. PMID:26881046
Vieira, Jadina Santos; Toreti, Jéssica Aline; Carvalho, Ravena Carolina de; de Araújo, João Eduardo; Silva, Marcelo Lourenço; Silva, Josie Resende Torres
2018-05-31
The present study evaluates whether the injection of serotonin, acetylcholine, glutamate, bradykinin, histamine or substance P into the Zusanli (Stomach 36, ST 36) acupoint can also produce the acupuncture-induced antinociceptive effect on inflammatory or neuropathic pain. In this in vivo experimental study a total of 450 male Swiss mice were used. Mice were injected with saline or complete Freund's adjuvant (CFA) or subjected to sham or chronic constriction injury (CCI) surgery. After the establishment of the inflammatory (4 hours) or the neuropathic pain (3 days) the animals (n=6) received manual acupuncture (MA), sham acupuncture (OUT) or injection of saline, serotonin, acetylcholine, glutamate, bradykinin, histamine or substance P into the ST 36 and were evaluated for up to 24 hours. Mechanical threshold was evaluated and the L4-L6 dorsal root ganglion (DRG) was used for analysis of the transient receptor potential vanilloid type 1 (TRPV1) overexpression. The mice from both the CFA or CCI models and treated with MA had significant increases in the thresholds for more than 24 hours. OUT stimulation did not change the thresholds. In the mice injected with each of the mediators, the thresholds were significantly increased for all times in both the CFA and CCI models. TRPV1 overexpression in CFA and CCI mice was reduced at all times by injection of serotonin, acetylcholine or substance P but not by injection of glutamate, histamine or bradykinin. Our data suggests that the neuroactive mediators released by acupuncture-induced tissue injury may contribute to acupuncture-induced analgesia. Copyright © 2018. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Tuske, O.; Chauvin, N.; Delferriere, O.; Fils, J.; Gauthier, Y.
2018-05-01
The CEA at Saclay is in charge of developing and building the ion source and the low energy line of the proton linac of the FAIR (Facility for Antiproton and Ion Research) accelerator complex located at GSI (Darmstadt) in Germany. The FAIR facility will deliver stable and rare isotope beams covering a huge range of intensities and beam energies for experiments in the fields of atomic physics, plasma physics, nuclear physics, hadron physics, nuclear matter physics, material physics, and biophysics. A significant part of the experimental program at FAIR is dedicated to antiproton physics that requires an ultimate number 7 × 1010 cooled pbar/h. The high-intensity proton beam that is necessary for antiproton production will be delivered by a dedicated 75 mA/70 MeV proton linac. A 2.45 GHz microwave ion source will deliver a 100 mA H+ beam pulsed at 4 Hz with an energy of 95 keV. A 2 solenoids low energy beam transport line allows the injection of the proton beam into the radio frequency quadrupole (RFQ) within an acceptance of 0.3π mm mrad (norm. rms). An electrostatic chopper system located between the second solenoid and the RFQ is used to cut the beam macro-pulse from the source to inject 36 μs long beam pulses into the RFQ. At present time, a Ladder-RFQ is under construction at the University of Frankfurt. This article reports the first beam measurements obtained since mid of 2016. Proton beams have been extracted from the ECR ion source and analyzed just after the extraction column on a dedicated diagnostic chamber. Emittance measurements as well as extracted current and species proportion analysis have been performed in different configurations of ion source parameters, such as magnetic field profile, radio frequency power, gas injection, and puller electrode voltage.
NASA Astrophysics Data System (ADS)
Kong, Bo Hyun; Cho, Hyung Koun; Kim, Mi Yang; Choi, Rak Jun; Kim, Bae Kyun
2011-07-01
For the fabrication of InGaN/GaN multiple quantum well-based blue light emitting diodes (LEDs) showing large area emission, transparent Al-doped ZnO (AZO) films grown by atomic layer deposition at relatively low temperatures were introduced as current spreading layers. These AZO films with an Al content of 3 at% showed a low electrical resistivity of <10 -3-10 -4 Ω cm, a high carrier concentration of >10 20 cm -3, and an excellent optical transmittance of ˜85%, in spite of the low growth temperature. The deposition of the AZO film induced an intense blue emission from the whole surface of the p-GaN and weak ultraviolet emission from the n-AZO and p-GaN junction. At an injection current of 50 mA, the output powers of the blue LEDs were 1760 and 1440 mcd for the samples with AZO thicknesses of 100 and 300 nm, respectively.
NASA Astrophysics Data System (ADS)
Zhao, Guijuan; Wang, Lianshan; Li, Huijie; Meng, Yulin; Li, Fangzheng; Yang, Shaoyan; Wang, Zhanguo
2018-01-01
Semi-polar (11-22) InGaN multiple quantum well (MQW) green light-emitting diode (LED) structures have been realized by metal-organic chemical vapor deposition on an m-plane sapphire substrate. By introducing double GaN buffer layers, we improve the crystal quality of semi-polar (11-22) GaN significantly. The vertical alignment of the diffraction peaks in the (11-22) X-ray reciprocal space mapping indicates the fully strained MQW on the GaN layer. The photoluminescence spectra of the LED structure show stronger emission intensity along the [1-100] InGaN/GaN direction. The electroluminescence emission of the LED structure is very broad with peaks around 550 nm and 510 nm at the 100 mA current injection for samples A and B, respectively, and exhibits a significant blue-shift with increasing drive current.
Shaerzadeh, Fatemeh; Motamedi, Fereshteh; Khodagholi, Fariba
2014-11-01
3-Methyladenine (3-MA), as a PI3K inhibitor, is widely used for inhibition of autophagy. Inhibition of PI3K class I leads to inhibition of Akt phosphorylation, a central molecule involved in diverse arrays of intracellular cascades in nervous system. Accordingly, in the present study, we aimed to determine the alterations of specific mitochondrial biogenesis markers and mitochondrial function in 3-MA-injected rats following amyloid beta (Aβ) insult. Our data revealed that inhibition of Akt phosphorylation downregulates master regulator of mitochondrial biogenesis, peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). Our data also showed that decrease in PGC-1α level presumably is due to decrease in the phosphorylation of cAMP-response element binding and AMP-activated kinase, two upstream activators of PGC-1α. As a consequence, the level of some mitochondrial biogenesis factors including nuclear respiratory factor-1, mitochondrial transcription factor A, and Cytochrome c decreased significantly. Also, activities of tricarboxylic acid cycle (TCA) enzymes such as Aconitase, a-ketoglutarate dehydrogenase, and malate dehydrogenase reduced in the presence of 3-MA with or without Aβ insult. Decrease in mitochondrial biogenesis factors and TCA enzyme activity in the rats receiving 3-MA and Aβ were more compared to the rats that received either alone; indicating the additive destructive effects of these two agents. In agreement with our molecular results, data obtained from behavioral test (using novel objective recognition test) indicated that inhibition of Akt phosphorylation with or without Aβ injection impaired novel recognition (non-spatial) memory. Our results suggest that 3-MA amplified deleterious effects of Aβ by targeting central molecule Akt.
NASA Astrophysics Data System (ADS)
Sago, James Alan
Metal Injection Molding (MIM) is one of the most rapidly growing areas of powder metallurgy (P/M) but the growth of MIM into new markets and more demanding applications is limited by two fundamental barriers, the availability of low cost metal powders and a lack of knowledge and understanding of how mechanical properties, especially toughness, are affected by the many parameters in the MIM process. The goals of this study were to investigate solutions to these challenges for MIM. Mechanical alloying (MA) is a technique which can produce a wide variety of powder compositions in a size range suited to MIM and in smaller batches. However MA typically suffers from low production volumes and long milling times. This study will show that a saucer mill can produce sizable volumes of MA powders in times typically less than an hour. The MA process was also used to produce powders of 17-4PH stainless steel and the NiTi shape memory alloy for a MIM feedstock. This study shows that the MA powder characteristics led to successful MIM processing of parts. Previous studies have shown that the toughness of individual MIM parts can vary widely within a single production run and from one producer to another. In the last part of the study a Design of Experiments (DOE) approach was used to evaluate the effects of MIM processing parameters on the mechanical properties. Analysis of Variance produced mathematical models for Charpy impact toughness, hardness, density, and carbon content. Tensile properties did not produce a good model due to processing problems. The models and recommendations for improving both toughness and reproducibility of toughness are presented.
Wang, Yun; Gu, Yu-Han; Liu, Ming; Bai, Yang; Wang, Huai-Liang
2017-02-01
Methamphetamine (MA) abuse is a major public health and safety concern throughout the world and a growing burden on healthcare costs. The purpose of the present study was to investigate the protective effect of fluoxetine against MA‑induced chronic pulmonary inflammation and to evaluate the potential role of nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated antioxidative stress. Wistar rats were divided into control, MA and two fluoxetine‑treated groups. Rats in the MA and the two fluoxetine‑treated groups were treated daily with intraperitoneal injection of 10 mg/kg MA twice daily. Rats in the two fluoxetine‑treated groups were injected intragastrically with fluoxetine (2 and 10 mg/kg) once daily, respectively. After 5 weeks, the rats were euthanized and hematoxylin and eosin staining, immunohistochemistry, western blot analysis and redox assay were performed. It was demonstrated that chronic exposure to MA can induce pulmonary inflammation in rats, with the symptoms of inflammatory cell infiltration, crowded lung parenchyma, thickened septum and a reduced number of alveolar sacs. Fluoxetine attenuated pulmonary inflammation and the expression of interleukin‑6 and tumor necrosis factor‑α in rat lungs. Fluoxetine inhibited MA‑induced increases in the expression levels of serotonin transporter (SERT) and p‑p38 mitogen‑activated protein kinase (MAPK), and reversed the MA‑induced decrease in nuclear Nrf2 and human heme oxygenase‑1 in lungs. Fluoxetine at 10 mg/kg significantly reversed the reduced glutathione (GSH) level, the ratio of GSH/oxidized glutathione, and the reactive oxygen species level in rat lungs from the MA group. These findings suggested that fluoxetine, a SERT inhibitor, has a protective effect against MA‑induced lung inflammation by suppressing oxidative stress through the SERT/p38 MAPK/Nrf2 pathway in rats.
Electron injection by whistler waves in non-relativistic shocks
NASA Astrophysics Data System (ADS)
Riquelme, Mario A.; Spitkovsky, Anatoly
2012-04-01
Radio and X-ray observations of shocks in young supernova remnants (SNRs) reveal electron acceleration to non-thermal, ultra-relativistic energies (~ 10-100 TeV). This acceleration is usually assumed to happen via the diffusive shock acceleration (DSA) mechanism. However, the way in which electrons are initially energized or 'injected' into this acceleration process is an open question and the main focus of this work. We present our study of electron acceleration in nonrelativistic shocks using 2D and 3D particle-in-cell (PIC) plasma simulations. Our simulations show that significant non-thermal acceleration happens due to the growth of oblique whistler waves in the foot of quasi-perpendicular shocks. The obtained electron energy distributions show power law tails with spectral indices up to α ~ 3-4. Also, the maximum energies of the accelerated particles are consistent with the electron Larmor radii being comparable to that of the ions, indicating potential injection into the subsequent DSA process. This injection mechanism requires the shock waves to have fairly low Alfvénic Mach numbers, MA <20, which is consistent with the theoretical conditions for the growth of whistler waves in the shock foot (MA <(mi/me)1/2). Thus, if this mechanism is the only robust electron injection process at work in SNR shocks, then SNRs that display non-thermal emission must have significantly amplified upstream magnetic fields. Such field amplification is likely achieved by accelerated ions in these environments, so electron and ion acceleration in SNR shocks must be interconnected.
SU-F-I-34: How Does Longitudinal Dose Profile Change with Tube Current Distribution in CT?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, X; Yang, K; Liu, B
Purpose: To investigate how longitudinal dose profile D{sub L}(z) in 30 cm-diameter water cylinder change with tube current (mA) distribution and scan length. Methods: A constant and four variable mA distributions from two previous papers [Dixon et al., Med. Phys. 40, 111920 (14pp.) (2013); Zhang et al., Med. Phys. 41, 091911 (9pp.) (2014)] were adopted in three scan lengths of 10, 28.6, and 50 cm, and all mA distributions had the same average mA over scan ranges. Using the symmetry based dose calculation algorithms and the previously published CT dose equilibration data [Li et al., Med. Phys. 40, 031903 (10pp.)more » (2013); 41, 111910 (5pp.) (2014)], the authors calculated DL(z) on the phantom central and peripheral axes. Kolmogorov-Smirnov (K-S) test was used to compare the lineshapes of two arbitrary distributions. Results: In constant mA scans, D{sub L}(z) was “bell-shaped”. In variable mA scans, D{sub L}(z) approximately followed the mA lineshape, and the K-S distance generally changed with mA distribution. The distance decreased with scan length, and was larger on the central axis than on the peripheral axis. However, the opposite trends were found in the K-S distance between the D{sub L}(z) distributions of constant and variable mA distributions. Conclusion: Radiation dose from TCM scan is best evaluated using the specific tube current distribution. A constant mA based evaluation may lead to inconsistent longitudinal dose profile with that of TCM scan. Their difference in lineshape is larger on the phantom peripheral axis than on the central axis and increases with scan length. This work confirms that radiation dose in CT depends on not only local mA but also the overall mA distribution and scan length. On the other hand, the concept of regional tube current may be useful when scan length is large, tube current peaks near scan range edge, or the target site is superficial.« less
Neuropeptides in Experimental Head Injury.
1987-02-28
Harvard Apparatus, Milton, MA). Drugs were administered through a cannula placed in the inferior vena cava via the femoral vein, The femoral artery was...with a slightly flared end was placed in the left atrium via a thoracotomy (see reference 6), and the chest was sutured closed. Page 10 For each CBF...a vortex mixer, microspheres were injected into the left atrium over approximately 30 sec. The injection of this number of microspheres insured that
Studies on 405nm blue-violet diode laser with external grating cavity
NASA Astrophysics Data System (ADS)
Li, Bin; Gao, Jun; Zhao, Jun; Yu, Anlan; Luo, Shiwen; Xiong, Dongsheng; Wang, Xinbing; Zuo, Duluo
2016-03-01
Spectroscopy applications of free-running laser diodes (LD) are greatly restricted as its broad band spectral emission. And the power of a single blue-violet LD is around several hundred milliwatts by far, it is of great importance to obtain stable and narrow line-width laser diodes with high efficiency. In this paper, a high efficiency external cavity diode laser (ECDL) with high output power and narrow band emission at 405 nm is presented. The ECDL is based on a commercially available LD with nominal output power of 110 mW at an injection current of 100 mA. The spectral width of the free-running LD is about 1 nm (FWHM). A reflective holographic grating which is installed on a home-made compact adjustable stage is utilized for optical feedback in Littrow configuration. In this configuration, narrow line-width operation is realized and the effects of grating groove density as well as the groove direction related to the beam polarization on the performances of the ECDL are experimentally investigated. In the case of grating with groove density of 3600 g/mm, the threshold is reduced from 21 mA to 18.3 mA or 15.6 mA and the tuning range is 3.95 nm or 6.01 nm respectively when the grating is orientated in TE or TM polarization. In addition, an output beam with a line-width of 30 pm and output power of 92.7 mW is achieved in TE polarization. With these narrow line-width and high efficiency, the ECDL is capable to serve as a light source for spectroscopy application such as Raman scattering and laser induced fluorescence.
A neutron beam facility for radioactive ion beams and other applications
NASA Astrophysics Data System (ADS)
Tecchio, L. B.
1999-06-01
In the framework of the Italian participation in the project of a high intensity proton facility for the energy amplifier and nuclear waste transmutations, LNL is involved in the design and construction of same prototypes of the injection system of the 1 GeV linac that consists of a RFQ (5 MeV, 30 mA) followed by a 100 MeV linac. This program has already been supported financially and the work is in progress. In this context LNL has proposed a project for the construction of a second generation facility for the production of radioactive ion beams (RIBs) by means of the ISOL method. The final goal is the production of neutron rich RIBs with masses ranging from 30 to 150 by using primary beams of protons, deuterons and light ions with energy of 100 MeV and 100 kW power. This project is expected to be developed in about 10 years from new and intermediate milestones and experiments are foreseen and under consideration for the next INFN five year plan (1999-2003). During that period the construction of a proton/deuteron accelerator of 10 MeV energy and 10 mA current, consisting of a RFQ (5 MeV, 30 mA) and a linac (10 MeV, 10 mA), and of a neutron area dedicated to the RIBs production and to the neutron physics, is proposed. Some remarks on the production methods will be presented. The possibility of producing radioisotopes by means of the fission induced by neutrons will be investigated and the methods of production of neutrons will be discussed. Besides the RIBs production, neutron beams for the BNCT applications and neutron physics are also planned.
The radioactive ion beams facility project for the legnaro laboratories
NASA Astrophysics Data System (ADS)
Tecchio, Luigi B.
1999-04-01
In the frame work of the Italian participation to the project of a high intensity proton facility for the energy amplifier and nuclear waste transmutations, LNL is involving in the design and construction of prototypes of the injection system of the 1 GeV linac that consists of a RFQ (5 MeV, 30 mA) followed by a 100 MeV linac. This program has been already financially supported and the work is actually in progress. In this context, the LNL has been proposed a project for the construction of a second generation facility for the production of radioactive ion beams (RIBs) by using the ISOL method. The final goal consists in the production of neutron rich RIBs with masses ranging from 80 to 160 by using primary beams of protons, deuterons and light ions with energy of 100 MeV and 100 kW power. This project is proposed to be developed in about 10 years from now and intermediate milestones and experiments are foreseen and under consideration for the next INFN five year plan (1999-2003). In such period of time is proposed the construction of a proton/deuteron accelerator of 10 MeV energy and 10 mA current, consisting of a RFQ (5 MeV, 30 mA) and a linac (10 MeV, 10 mA), and of a neutron area dedicated to the RIBs production, to the BNCT applications and to the neutron physics. Some remarks on the production methods will be presented. The possibility of producing radioisotopes by means of the fission induced by neutrons will be investigated and the methods of production of neutrons will be discussed.
History of the methamphetamine problem.
Anglin, M D; Burke, C; Perrochet, B; Stamper, E; Dawud-Noursi, S
2000-01-01
Methamphetamine, called meth, crystal, or speed, is a central nervous system stimulant that can be injected, smoked, snorted, or ingested orally; prolonged use at high levels results in dependence. Methamphetamine (MA) is a derivative of amphetamine, which was widely prescribed in the 1950s and 1960s as a medication for depression and obesity, reaching a peak of 31 million prescriptions in the United States in 1967. Until the late 1980s, illicit use and manufacture of MA was endemic to California, but the MA user population has recently broadened in nature and in regional distribution, with increased use occurring in midwestern states. An estimated 4.7 million Americans (2.1% of the U.S. population) have tried MA at some time in their lives. Short- and long-term health effects of MA use include stroke, cardiac arrhythmia, stomach cramps, shaking, anxiety, insomnia, paranoia, hallucinations, and structural changes to the brain. Children of MA abusers are at risk of neglect and abuse, and the use of MA by pregnant women can cause growth retardation, premature birth, and developmental disorders in neonates and enduring cognitive deficits in children. MA-related deaths and admissions to hospital emergency rooms are increasing. Although inpatient hospitalization may be indicated to treat severe cases of long-term MA dependence, optimum treatment for MA abusers relies on an intensive outpatient setting with three to five visits per week of comprehensive counseling for at least the first three months. The burgeoning problems of increased MA use must be addressed by adequate treatment programs suitable for a variety of user types.
Shekhawat, Giriraj Singh; Sundram, Frederick; Bikson, Marom; Truong, Dennis; De Ridder, Dirk; Stinear, Cathy M; Welch, David; Searchfield, Grant D
2016-05-01
Tinnitus is the perception of a phantom sound. The aim of this study was to compare current intensity (center anode 1 mA and 2 mA), duration (10 minutes and 20 minutes), and location (left temporoparietal area [LTA] and dorsolateral prefrontal cortex [DLPFC]) using 4 × 1 high-definition transcranial direct current stimulation (HD-tDCS) for tinnitus reduction. Twenty-seven participants with chronic tinnitus (>2 years) and mean age of 53.5 years underwent 2 sessions of HD-tDCS of the LTA and DLPFC in a randomized order with a 1 week gap between site of stimulation. During each session, a combination of 4 different settings were used in increasing dose (1 mA, 10 minutes; 1 mA, 20 minutes; 2 mA, 10 minutes; and 2 mA, 20 minutes). The impact of different settings on tinnitus loudness and annoyance was documented. Twenty-one participants (77.78%) reported a minimum of 1 point reduction on tinnitus loudness or annoyance scales. There were significant changes in loudness and annoyance for duration of stimulation,F(1, 26) = 10.08,P< .005, and current intensity,F(1, 26) = 14.24,P= .001. There was no interaction between the location, intensity, and duration of stimulation. Higher intensity (2 mA) and longer duration (20 minutes) of stimulation were more effective. A current intensity of 2 mA for 20-minute duration was the most effective setting used for tinnitus relief. The stimulation of the LTA and DLPFC were equally effective for suppressing tinnitus loudness and annoyance. © The Author(s) 2015.
Studies on space charge neutralization and emittance measurement of beam from microwave ion source.
Misra, Anuraag; Goswami, A; Sing Babu, P; Srivastava, S; Pandit, V S
2015-11-01
A 2.45 GHz microwave ion source together with a beam transport system has been developed at VECC to study the problems related with the injection of high current beam into a compact cyclotron. This paper presents the results of beam profile measurement of high current proton beam at different degrees of space charge neutralisation with the introduction of neon gas in the beam line using a fine leak valve. The beam profiles have been measured at different pressures in the beam line by capturing the residual gas fluorescence using a CCD camera. It has been found that with space charge compensation at the present current level (∼5 mA at 75 keV), it is possible to reduce the beam spot size by ∼34%. We have measured the variation of beam profile as a function of the current in the solenoid magnet under the neutralised condition and used these data to estimate the rms emittance of the beam. Simulations performed using equivalent Kapchinsky-Vladimirsky beam envelope equations with space charge neutralization factor are also presented to interpret the experimental results.
Studies on space charge neutralization and emittance measurement of beam from microwave ion source
NASA Astrophysics Data System (ADS)
Misra, Anuraag; Goswami, A.; Sing Babu, P.; Srivastava, S.; Pandit, V. S.
2015-11-01
A 2.45 GHz microwave ion source together with a beam transport system has been developed at VECC to study the problems related with the injection of high current beam into a compact cyclotron. This paper presents the results of beam profile measurement of high current proton beam at different degrees of space charge neutralisation with the introduction of neon gas in the beam line using a fine leak valve. The beam profiles have been measured at different pressures in the beam line by capturing the residual gas fluorescence using a CCD camera. It has been found that with space charge compensation at the present current level (˜5 mA at 75 keV), it is possible to reduce the beam spot size by ˜34%. We have measured the variation of beam profile as a function of the current in the solenoid magnet under the neutralised condition and used these data to estimate the rms emittance of the beam. Simulations performed using equivalent Kapchinsky-Vladimirsky beam envelope equations with space charge neutralization factor are also presented to interpret the experimental results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Yao; Huang, Yang; Wang, Junxi
In this work, a novel carrier concentration adjusting insertion layer for InGaN/GaN multiple quantum wells light-emitting diodes was proposed to mitigate the efficiency droop and improve optical output properties at high current density. The band diagrams and carrier distributions were investigated numerically and experimentally. The results indicate that due to the newly formed electron barrier and the adjusted built-in field near the active region, the hole injection has been improved and a better radiative recombination can be achieved. Compared to the conventional LED, the light output power of our new structure with the carrier concentration adjusting layers is enhanced bymore » 127% at 350 mA , while the efficiency only droops to be 88.2% of its peak efficiency.« less
Hybrid silica coarse wavelength-division multiplexer transmitter optical subassembly
NASA Astrophysics Data System (ADS)
An, Jun-Ming; Zhang, Jia-Shun; Wang, Liang-Liang; Zhu, Kaiwu; Sun, Bingli; Li, Yong; Hou, Jie; Li, Jian-Guang; Wu, Yuan-Da; Wang, Yue; Yin, Xiao-Jie
2018-01-01
Based on silica arrayed waveguide grating technology, a hybrid integrated transmitter optical subassembly was developed. Four direct-modulating distributed feedback lasers and four focusing microlenses were integrated to a coarse wavelength-division multiplexer (CWDM) on a CuW substrate. The four-channel silica-on-silicon CWDM was fabricated with 1.5% refractive index difference and 20-nm wavelength spacing. The experimental results showed that the output optical power was >3 mW with 45 mA of injection current, the slope efficiency was >0.0833 W/A, and the 3-dB bandwidth was broader than 18.15 GHz. The 1-dB compress points were higher than 18 and 15.8 dBm for frequency of 10 and 18 GHz, respectively.
NASA Astrophysics Data System (ADS)
Prayuni, Kinasih; Dwivany, Fenny M.
2015-09-01
Banana is classified as a climateric fruit, whose ripening is regulated by ethylene. Ethylene is synthesized from ACC (1-aminocyclopropane-1-carboxylic acid) by ACC oxidase enzyme which is encoded by ACO gene. Controling an important gene expression in ethylene biosynthesis pathway has became a target to delay the ripening process. Therefore in the previous study we have designed a MaACO-RNAi construct to control MaACO gene expression. In this research, we study the effectiveness of different transient transformation methods to deliver the construct. Direct injection, with or no vaccum infiltration methods were used to deliver MaACO-RNAi construct. All of the methods succesfully deliver the construct into banana fruits based on RT-PCR result.
Saw, Yu Mon; Saw, Thu Nandar; Yasuoka, Junko; Chan, Nyein; Kham, Nang Pann Ei; Khine, Wint; Cho, Su Myat; Jimba, Masamine
2017-05-08
Globally, methamphetamine (MA) use is a significant public health concern due to unprecedented health effects of its use. However, gender similarities and differences in early age of MA initiation and its risk factors among current MA users have been understudied in a developing country setting. A community-based, cross-sectional study was conducted using a computer assisted self-interviewing program from January to March 2013 in Muse, Northern Shan State, Myanmar. A total of 1362 (775 male and 587 female) self-reported current MA users aged between 18 and 35 years were recruited using respondent-driven sampling. Two gender-stratified multiple logistic regression models (models I and II) were done for analysis. For similarities, 73.0% of males and 60.5% of females initiated MA before their 18th birthday. The early age of MA initiation was positively associated with the reasons and places of the first time MA use among both genders. For differences, males [hazard ratio 1.35; 95% confidence interval, 1.18-1.54] had a significantly higher risk than females to initiate MA at earlier age. Among male users, participants who had bisexual/homosexual preferences were more likely to initiate MA use earlier. In contrast, female users who exchanged sex for money and/or drugs were more likely to initiate MA in earlier age. More than 60.0% of male and female participants initiated MA use early; however, males initiated use earlier than females. Although similarities were found among both genders, differences found in key risk factors for early age MA initiation suggest that gender-specific, MA prevention programs are urgently needed in Myanmar.
Trace amine-associated receptor 1 regulation of methamphetamine-induced neurotoxicity.
Miner, Nicholas B; Elmore, Josh S; Baumann, Michael H; Phillips, Tamara J; Janowsky, Aaron
2017-12-01
Trace amine-associated receptor 1 (TAAR1) is activated by methamphetamine (MA) and modulates dopaminergic (DA) function. Although DA dysregulation is the hallmark of MA-induced neurotoxicity leading to behavioral and cognitive deficits, the intermediary role of TAAR1 has yet to be characterized. To investigate TAAR1 regulation of MA-induced neurotoxicity, Taar1 transgenic knock-out (KO) and wildtype (WT) mice were administered saline or a neurotoxic regimen of 4 i.p. injections, 2h apart, of MA (2.5, 5, or 10mg/kg). Temperature data were recorded during the treatment day. Additionally, striatal tissue was collected 2 or 7days following MA administration for analysis of DA, 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and tyrosine hydroxylase (TH) levels, as well as glial fibrillary acidic protein (GFAP) expression. MA elicited an acute hypothermic drop in body temperature in Taar1-WT mice, but not in Taar1-KO mice. Two days following treatment, DA and TH levels were lower in Taar1-KO mice compared to Taar1-WT mice, regardless of treatment, and were dose-dependently decreased by MA. GFAP expression was significantly increased by all doses of MA at both time points and greater in Taar1-KO compared to Taar1-WT mice receiving MA 2.5 or 5mg/kg. Seven days later, DA levels were decreased in a similar pattern: DA was significantly lower in Taar1-KO compared to Taar1-WT mice receiving MA 2.5 or 5mg/kg. TH levels were uniformly decreased by MA, regardless of genotype. These results indicate that activation of TAAR1 potentiates MA-induced hypothermia and TAAR1 confers sustained neuroprotection dependent on its thermoregulatory effects. Published by Elsevier B.V.
Does prenatal methamphetamine exposure affect the drug-seeking behavior of adult male rats?
Slamberová, Romana; Schutová, Barbora; Hrubá, Lenka; Pometlová, Marie
2011-10-10
Methamphetamine (MA) is one of the most frequently used illicit drugs worldwide and also one of the most common drugs abused by pregnant women. Repeated administration of psychostimulants induces behavioral sensitization in response to treatment of the same or related drugs in rodents. The effect of prenatal MA exposure on sensitivity to drugs in adulthood is not yet fully determined. Because our most recent studies demonstrated that prenatal MA (5mg/kg) exposure makes adult rats more sensitive to acute injection of the same drug, we were interested whether the increased sensitivity corresponds with the increased drug-seeking behavior. The aim of the present study was to examine the effect of prenatal MA exposure on drug-seeking behavior of adult male rats tested in the conditioned place preference (CPP). The following psychostimulant drugs were used as a challenge in adulthood: MA (5mg/kg), amphetamine (5mg/kg) and cocaine (10mg/kg). All psychostimulant drugs induced increased drug-seeking behavior in adult male rats. However, while MA and amphetamine-induced increase in drug-seeking behavior did not differ based on the prenatal drug exposure, prenatally MA-exposed rats displayed tolerance effect to cocaine in adulthood. In addition, prenatally MA-exposed rats had decreased weight gain after administration of MA or amphetamine, while the weight of prenatally MA-exposed rats stayed unchanged after cocaine administration. Defecation was increased by all the drugs (MA, amphetamine and cocaine), while only amphetamine increased the tail temperature. In conclusion, our results did not confirm our hypothesis that prenatal MA exposure increases drug-seeking behavior in adulthood in the CPP test. Copyright © 2011 Elsevier B.V. All rights reserved.
Scaling of X pinches from 1 MA to 6 MA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bland, Simon Nicholas; McBride, Ryan D.; Wenger, David Franklin
This final report for Project 117863 summarizes progress made toward understanding how X-pinch load designs scale to high currents. The X-pinch load geometry was conceived in 1982 as a method to study the formation and properties of bright x-ray spots in z-pinch plasmas. X-pinch plasmas driven by 0.2 MA currents were found to have source sizes of 1 micron, temperatures >1 keV, lifetimes of 10-100 ps, and densities >0.1 times solid density. These conditions are believed to result from the direct magnetic compression of matter. Physical models that capture the behavior of 0.2 MA X pinches predict more extreme parametersmore » at currents >1 MA. This project developed load designs for up to 6 MA on the SATURN facility and attempted to measure the resulting plasma parameters. Source sizes of 5-8 microns were observed in some cases along with evidence for high temperatures (several keV) and short time durations (<500 ps).« less
Towards a Predictive Capability for Local Helicity Injection Startup
NASA Astrophysics Data System (ADS)
Barr, J. L.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Hinson, E. T.; Lewicki, B. T.; Perry, J. M.; Redd, A. J.; Schlossberg, D. J.
2014-10-01
Local helicity injection (LHI) is a non-solenoidal tokamak startup technique under development on the Pegasus ST. New designs of the injector cathode geometry and plasma-facing shield rings support high-voltage operation up to 1.5 kV. This leads to reduced requirements in injector area for a given helicity input rate. Near-term experiments in Pegasus are testing the gain in Ip obtained with a 1 . 5 × increase in the helicity input rate and the efficacy of helicity injection in the lower divertor region. A predictive model for LHI is needed to project scalable scenarios for larger devices. A lumped-parameter circuit model using power and helicity balance is being developed for LHI on Pegasus-U and NSTX-U. The model indicates that MA-class startup on NSTX-U will require operating in a regime where the drive from LHI dominates the inductive effects arising from dynamically evolving plasma geometry. The physics of this new regime can be tested in Pegasus-U at Ip ~ 0 . 3 MA. The LHI systems on the proposed Pegasus-U will be expanded to provide 3 - 4 × helicity injection rate and the toroidal field doubled to reach this regime. Predictive models to be validated on Pegasus-U include the 0-D power balance model, NIMROD, and TSC. Work supported by US DOE Grants DE-FG02-96ER54375 and DE-SC0006928.
Middle atmosphere electrical energy coupling
NASA Technical Reports Server (NTRS)
Hale, L. C.
1989-01-01
The middle atmosphere (MA) has long been known as an absorber of radio waves, and as a region of nonlinear interactions among waves. The region of highest transverse conductivity near the top of the MA provides a common return for global thunderstorm, auroral Birkeland, and ionospheric dynamo currents, with possibilities for coupling among them. Their associated fields and other transverse fields map to lower altitudes depending on scale size. Evidence now exists for motion-driven aerosol generators, and for charge trapped at the base of magnetic field lines, both capable of producing large MA electric fields. Ionospheric Maxwell currents (curl H) parallel to the magnetic field appear to map to lower altitudes, with rapidly time-varying components appearing as displacement currents in the stratosphere. Lightning couples a (primarily ELF and ULF) current transient to the ionosphere and magnetosphere whose wave shape is largely dependent on the MA conductivity profile. Electrical energy is of direct significance mainly in the upper MA, but electrodynamic transport of minor constituents such as smoke particles or CN may be important at other altitudes.
Tibetan Plateau glacier and hydrological change under stratospheric aerosol injection
NASA Astrophysics Data System (ADS)
Ji, D.
2017-12-01
As an important inland freshwater resource, mountain glaciers are highly related to human life, they provide water for many large rivers and play a very important role in regional water cycles. The response of mountain glaciers to future climate change is a topic of concern especially to the many people who rely on glacier-fed rivers for purposes such as irrigation. Geoengineering by stratospheric aerosol injection is a method of offsetting the global temperature rise from greenhouse gases. How the geoengineering by stratospheric aerosol injection affects the mass balance of mountain glaciers and adjacent river discharge is little understood. In this study, we use regional climate model WRF and catchment-based river model CaMa-Flood to study the impacts of stratospheric aerosol injection to Tibetan Plateau glacier mass balance and adjacent river discharge. To facilitate mountain glacier mass balance study, we improve the description of mountain glacier in the land surface scheme of WRF. The improvements include: (1) a fine mesh nested in WRF horizontal grid to match the highly non-uniform spatial distribution of the mountain glaciers, (2) revising the radiation flux at the glacier surface considering the surrounding terrain. We use the projections of five Earth system models for CMIP5 rcp45 and GeoMIP G4 scenarios to drive the WRF and CaMa-Flood models. The G4 scenario, which uses stratospheric aerosols to reduce the incoming shortwave while applying the rcp4.5 greenhouse gas forcing, starts stratospheric sulfate aerosol injection at a rate of 5 Tg per year over the period 2020-2069. The ensemble projections suggest relatively slower glacier mass loss rates and reduced river discharge at Tibetan Plateau and adjacent regions under geoengineering scenario by stratospheric aerosol injection.
Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes
Zhang, Liuqi; Yang, Xiaolei; Jiang, Qi; Wang, Pengyang; Yin, Zhigang; Zhang, Xingwang; Tan, Hairen; Yang, Yang (Michael); Wei, Mingyang; Sutherland, Brandon R.; Sargent, Edward H.; You, Jingbi
2017-01-01
Inorganic perovskites such as CsPbX3 (X=Cl, Br, I) have attracted attention due to their excellent thermal stability and high photoluminescence quantum efficiency. However, the electroluminescence quantum efficiency of their light-emitting diodes was <1%. We posited that this low efficiency was a result of high leakage current caused by poor perovskite morphology, high non-radiative recombination at interfaces and perovskite grain boundaries, and also charge injection imbalance. Here, we incorporated a small amount of methylammonium organic cation into the CsPbBr3 lattice and by depositing a hydrophilic and insulating polyvinyl pyrrolidine polymer atop the ZnO electron-injection layer to overcome these issues. As a result, we obtained light-emitting diodes exhibiting a high brightness of 91,000 cd m−2 and a high external quantum efficiency of 10.4% using a mixed-cation perovskite Cs0.87MA0.13PbBr3 as the emitting layer. To the best of our knowledge, this is the brightest and most-efficient green perovskite light-emitting diodes reported to date. PMID:28589960
Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes
NASA Astrophysics Data System (ADS)
Zhang, Liuqi; Yang, Xiaolei; Jiang, Qi; Wang, Pengyang; Yin, Zhigang; Zhang, Xingwang; Tan, Hairen; Yang, Yang (Michael); Wei, Mingyang; Sutherland, Brandon R.; Sargent, Edward H.; You, Jingbi
2017-06-01
Inorganic perovskites such as CsPbX3 (X=Cl, Br, I) have attracted attention due to their excellent thermal stability and high photoluminescence quantum efficiency. However, the electroluminescence quantum efficiency of their light-emitting diodes was <1%. We posited that this low efficiency was a result of high leakage current caused by poor perovskite morphology, high non-radiative recombination at interfaces and perovskite grain boundaries, and also charge injection imbalance. Here, we incorporated a small amount of methylammonium organic cation into the CsPbBr3 lattice and by depositing a hydrophilic and insulating polyvinyl pyrrolidine polymer atop the ZnO electron-injection layer to overcome these issues. As a result, we obtained light-emitting diodes exhibiting a high brightness of 91,000 cd m-2 and a high external quantum efficiency of 10.4% using a mixed-cation perovskite Cs0.87MA0.13PbBr3 as the emitting layer. To the best of our knowledge, this is the brightest and most-efficient green perovskite light-emitting diodes reported to date.
Conceptual design of front ends for the advanced photon source multi-bend achromats upgrade
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaski, Y., E-mail: jaskiy@aps.anl.gov; Westferro, F., E-mail: westferr@aps.anl.gov; Lee, S. H., E-mail: shlee@aps.anl.gov
2016-07-27
The proposed Advanced Photon Source (APS) upgrade from a double-bend achromats (DBA) to multi-bend achromats (MBA) lattice with ring energy change from 7 GeV to 6 GeV and beam current from 100 mA to 200 mA poses new challenges for front ends. All front ends must be upgraded to fulfill the following requirements: 1) handle the high heat load from two insertion devices in either inline or canted configuration, 2) include a clearing magnet in the front end to deflect and dump any electrons in case the electrons escape from the storage ring during swap-out injection with the safety shuttersmore » open, 3) incorporate the next generation x-ray beam position monitors (XBPMs) into the front end to meet the new stringent beam stability requirements. This paper presents the evaluation of the existing APS front ends and standardizes the insertion device (ID) front ends into two types: one for the single beam and one for the canted beams. The conceptual design of high heat load front end (HHLFE) and canted undulator front end (CUFE) for APS MBA upgrade is presented.« less
Conceptual Design of Front Ends for the Advanced Photon Source Multi-bend Achromats Upgrade
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaski, Y.; Westferro, F.; Lee, S. H.
2016-07-27
The proposed Advanced Photon Source (APS) upgrade from a double-bend achromats (DBA) to multi-bend achromats (MBA) lattice with ring energy change from 7 GeV to 6 GeV and beam current from 100 mA to 200 mA poses new challenges for front ends. All front ends must be upgraded to fulfill the following requirements: 1) handle the high heat load from two insertion devices in either inline or canted configuration, 2) include a clearing magnet in the front end to deflect and dump any electrons in case the electrons escape from the storage ring during swap-out injection with the safety shuttersmore » open, 3) incorporate the next generation x-ray beam position monitors (XBPMs) into the front end to meet the new stringent beam stability requirements. This paper presents the evaluation of the existing APS front ends and standardizes the insertion device (ID) front ends into two types: one for the single beam and one for the canted beams. The conceptual design of high heat load front end (HHLFE) and canted undulator front end (CUFE) for APS MBA upgrade is presented.« less
Ma, Hongtao; Chen, Hongguang; Dong, Aili; Wang, Yanyan; Bian, Yingxue; Xie, Keliang
2017-02-01
To investigate the role of autophagy in hydrogen-rich saline attenuating post-herpetic neuralgia( PHN) in rats. A total of 100 male SD rats were randomly divided into the five groups( n = 20) : control group,PHN group,PHN group treated with hydrogen-rich saline( PHN-H2group),PHN group treated with hydrogen-rich saline and3-MA( PHN-H2-3-MA group),PHN group treated with hydrogen-rich saline and rapamycin( PHN-H2-Rap group). PHN models were established by varicella-zoster virus( VZV) inoculation. After modeling,15 mg / kg 3-MA or 10 mg / kg rapamycin were intraperitoneally injected in corresponding rats with PHN once two days for 3 times. Hydrogen-rich saline( 10 m L / kg)was injected intraperitoneally twice a day for 7 consecutive days in PHN-H2 group,PHN-H2-3-MA group and PHN-H2-Rap group after VZV injection. The paw withdrawal thresholds( PWT) of 50 rats were detected at 3,7,14 and 21 days after modeling. Spinal cord enlargements of the other 50 rats were collected to examine tumor necrosis factor α( TNF-α),interleukine 1β( IL-1β) and IL-6 by ELISA and autophagy protein microtubule-associated protein 1 light chain 3( LC3),beclin 1and P62 by Western blotting. Compared with the control group,the rats in the PHN group presented with decreased PWT,increased levels of TNF-α,IL-1β,IL-6,LC3Ⅱ and beclin 1,and down-regulated P62 expression. Compared with PHN group,the rats in the PHN-H2 group and PHN-H2-Rap group showed increased PWT,decreased levels of TNF-α,IL-1β and IL-6,further up-regulated expressions of LC3 and beclin 1 as wel as P62 expression. Compared with PHN-H2 group,the rats in the PHN-H2-3-MA group had reduced PWT,elevated expressions of TNF-α,IL-1β and IL-6,suppressed expressions of LC3 and beclin 1,and enhanced p62 expression. Hydrogen-rich saline attenuated PWT and inhibited the release of cytokines TNF-α,IL-1β,IL-6 in rats with PHN via activating autophagy.
Ma, Hongtao; Chen, Hongguang; Dong, Aili; Wang, Yanyan; Bian, Yingxue; Xie, Keliang
2017-02-01
Objective To investigate the role of autophagy in hydrogen-rich saline attenuating post-herpetic neuralgia (PHN) in rats. Methods A total of 100 male SD rats were randomly divided into the five groups (n=20): control group, PHN group, PHN group treated with hydrogen-rich saline (PHN-H 2 group), PHN group treated with hydrogen-rich saline and 3-MA (PHN-H 2 -3-MA group), PHN group treated with hydrogen-rich saline and rapamycin (PHN-H 2 -Rap group). PHN models were established by varicella-zoster virus (VZV) inoculation. After modeling, 15 mg/kg 3-MA or 10 mg/kg rapamycin were intraperitoneally injected in corresponding rats with PHN once two days for 3 times. Hydrogen-rich saline (10 mL/kg) was injected intraperitoneally twice a day for 7 consecutive days in PHN-H 2 group, PHN-H 2 -3-MA group and PHN-H 2 -Rap group after VZV injection. The paw withdrawal thresholds (PWT) of 50 rats were detected at 3, 7, 14 and 21 days after modeling. Spinal cord enlargements of the other 50 rats were collected to examine tumor necrosis factor α (TNF-α), interleukine 1β (IL-1β) and IL-6 by ELISA and autophagy protein microtubule-associated protein 1 light chain 3 (LC3), beclin 1 and P62 by Western blotting. Results Compared with the control group, the rats in the PHN group presented with decreased PWT, increased levels of TNF-α, IL-1β, IL-6, LC3II and beclin 1, and down-regulated P62 expression. Compared with PHN group, the rats in the PHN-H 2 group and PHN-H 2 -Rap group showed increased PWT, decreased levels of TNF-α, IL-1β and IL-6, further up-regulated expressions of LC3 and beclin 1 as well as P62 expression. Compared with PHN-H 2 group, the rats in the PHN-H 2 -3-MA group had reduced PWT, elevated expressions of TNF-α, IL-1β and IL-6, suppressed expressions of LC3 and beclin 1, and enhanced p62 expression. Conclusion Hydrogen-rich saline attenuated PWT and inhibited the release of cytokines TNF-α, IL-1β, IL-6 in rats with PHN via activating autophagy.
Cai, Xiangran; Zhou, Qingchun; Yu, Juan; Xian, Zhaohui; Feng, Youzhen; Yang, Wencai; Mo, Xukai
2014-10-01
To evaluate the impact of reduced-radiation dual-energy (DE) protocols using 320-detector row computed tomography on the differentiation of urinary calculus components. A total of 58 urinary calculi were placed into the same phantom and underwent DE scanning with 320-detector row computed tomography. Each calculus was scanned 4 times with the DE protocols using 135 kV and 80 kV tube voltage and different tube current combinations, including 100 mA and 570 mA (group A), 50 mA and 290 mA (group B), 30 mA and 170 mA (group C), and 10 mA and 60 mA (group D). The acquisition data of all 4 groups were then analyzed by stone DE analysis software, and the results were compared with x-ray diffraction analysis. Noise, contrast-to-noise ratio, and radiation dose were compared. Calculi were correctly identified in 56 of 58 stones (96.6%) using group A and B protocols. However, only 35 stones (60.3%) and 16 stones (27.6%) were correctly diagnosed using group C and D protocols, respectively. Mean noise increased significantly and mean contrast-to-noise ratio decreased significantly from groups A to D (P <.05). In addition, the effective dose decreased markedly from groups A to D at 3.78, 1.81, 1.07, and 0.37 mSv, respectively. Decreasing the DE tube currents from 100 mA and 570 mA to 50 mA and 290 mA resulted in 96.6% accuracy for urinary calculus component analysis while reducing patient radiation exposure to 1.81 mSv. Further reduction of tube currents may compromise diagnostic accuracy. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Berthon, Beatrice; Dansette, Pierre-Marc; Tanter, Mickaël; Pernot, Mathieu; Provost, Jean
2017-07-01
Direct imaging of the electrical activation of the heart is crucial to better understand and diagnose diseases linked to arrhythmias. This work presents an ultrafast acoustoelectric imaging (UAI) system for direct and non-invasive ultrafast mapping of propagating current densities using the acoustoelectric effect. Acoustoelectric imaging is based on the acoustoelectric effect, the modulation of the medium’s electrical impedance by a propagating ultrasonic wave. UAI triggers this effect with plane wave emissions to image current densities. An ultrasound research platform was fitted with electrodes connected to high common-mode rejection ratio amplifiers and sampled by up to 128 independent channels. The sequences developed allow for both real-time display of acoustoelectric maps and long ultrafast acquisition with fast off-line processing. The system was evaluated by injecting controlled currents into a saline pool via copper wire electrodes. Sensitivity to low current and low acoustic pressure were measured independently. Contrast and spatial resolution were measured for varying numbers of plane waves and compared to line per line acoustoelectric imaging with focused beams at equivalent peak pressure. Temporal resolution was assessed by measuring time-varying current densities associated with sinusoidal currents. Complex intensity distributions were also imaged in 3D. Electrical current densities were detected for injected currents as low as 0.56 mA. UAI outperformed conventional focused acoustoelectric imaging in terms of contrast and spatial resolution when using 3 and 13 plane waves or more, respectively. Neighboring sinusoidal currents with opposed phases were accurately imaged and separated. Time-varying currents were mapped and their frequency accurately measured for imaging frame rates up to 500 Hz. Finally, a 3D image of a complex intensity distribution was obtained. The results demonstrated the high sensitivity of the UAI system proposed. The plane wave based approach provides a highly flexible trade-off between frame rate, resolution and contrast. In conclusion, the UAI system shows promise for non-invasive, direct and accurate real-time imaging of electrical activation in vivo.
A novel pneumatic micropipette aspiration method using a balance pressure model.
Zhao, Qili; Wu, Ming; Cui, Maosheng; Qin, Yanding; Yu, Jin; Sun, Mingzhu; Zhao, Xin; Feng, Xizeng
2013-12-01
This paper presents a novel micropipette aspiration (MA) method based on a common pneumatic micro-injection system. This method is the first to quantify the influence of capillary effect on aspiration pressure using a balance pressure model, and in return, uses the capillary effect to quantify the aspiration pressure. Subsequently, the seal between the cell and the micropipette is detected to judge and exclude the ineffective MA attempts. The rationality of the balance pressure model is validated by the designed micropipette-filling experiments. Through applied to elasticity-determination of the cells with different sizes, the feasibility and versatility of this MA method are proved. With abilities to quantify aspiration pressures and detect the seam between the cell and the micropipette, our method is expected to advance the application of the commercial pneumatic injector in the MA of cells. Moreover, with the quantified volume of the liquid entering into the micropipette during MA process, our method also has a potential applicability to the study of the permeability of the cell membrane in the future.
Monoaminergic Psychomotor Stimulants: Discriminative Stimulus Effects and Dopamine Efflux
Desai, Rajeev I.; Paronis, Carol A.; Martin, Jared; Desai, Ramya
2010-01-01
The present studies were conducted to investigate the relationship between discriminative stimulus effects of indirectly acting monoaminergic psychostimulants and their ability to increase extracellular levels of dopamine (DA) in the nucleus accumbens (NAcb) shell. First, the behavioral effects of methamphetamine (MA), cocaine (COC), 1-[2-[bis(4-fluorophenyl-)methoxy]ethyl]-4-(3-phenylpropyl)piperazine (GBR 12909), d-amphetamine, and methylphenidate were established in rats trained to discriminate intraperitoneal injections of 0.3 mg/kg MA from saline. In other studies, in vivo microdialysis was used to determine the effects of MA, COC, and GBR 12909 on extracellular DA levels in the NAcb shell. Results show that all drugs produced dose-related and full substitution for the discriminative stimulus effects of 0.3 mg/kg MA. In microdialysis studies, cumulatively administered MA (0.3–3 mg/kg), COC (3–56 mg/kg), and GBR 12909 (3–30 mg/kg) produced dose-dependent increases in DA efflux in the NAcb shell to maxima of approximately 1200 to 1300% of control values. The increase in DA levels produced by MA and COC was rapid and short-lived, whereas the effect of GBR 12909 was slower and longer lasting. Dose-related increases in MA lever selection produced by MA, COC, and GBR 12909 corresponded with graded increases in DA levels in the NAcb shell. Doses of MA, COC, and GBR 12909 that produced full substitution increased DA levels to approximately 200 to 400% of control values. Finally, cumulatively administered MA produced comparable changes in DA levels in both naive and 0.3 mg/kg MA-trained rats. These latter results suggest that sensitization of DA release does not play a prominent role in the discriminative stimulus effects of psychomotor stimulants. PMID:20190012
Shen, Hui; Harvey, Brandon K; Chiang, Yung-Hsiao; Pick, Chaim G; Wang, Yun
2011-01-12
We previously demonstrated that high doses of methamphetamine (MA) exacerbate damage induced by severe brain trauma. The purpose of the present study was to examine if MA, at low dosage, affected abnormalities in locomotor activity and dopamine turnover in a mouse model of mild traumatic brain injury (mTBI). Adult male CD1 mice were treated with MA (5 mg/kgi.p.) or vehicle 30-min prior to mTBI, conducted by dropping a 30 g metal weight onto the temporal skull, anterior the right ear. At 15 min after mTBI, animals were put into locomotor activity chambers for up to 72 h. During the first 3 h, mTBI alone, compared with vehicle control, did not alter total distance travelled. Treatment with MA significantly increased locomotor activity in the control animals during the first 3 h; mTBI reduced MA-induced hyperactivity. In contrast, at 2 and 3 days after injury, mTBI or MA alone reduced locomotor activity. Co-treatment with MA and mTBI further reduced this activity, suggesting a differential and temporal behavioral interaction between MA and mTBI during acute and subacute phases after injury. Dopamine and DOPAC levels in striatal tissue were analyzed using HPLC-ECD. At 1h after mTBI or injection, DA was not altered but DOPAC level and DOPAC/DA turnover ratios were significantly reduced. Co-treatment with MA further reduced the DOPAC/DA ratio. At 36 h after injury, mTBI increased tissue DA levels, but reduced DOPAC levels and DOPAC/DA ratios. Co-treatment with MA further reduced DOPAC/DA ratios in striatum. In conclusion, our data suggest that low dosage of MA worsens the suppression of locomotor responses and striatal dopamine turnover after mTBI. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Guan, Zhuo
Glass fiber (GF) reinforced polypropylene (PP) has become a common composite material used for various applications. Previous reports indicated that grafting ratio and molecular weight (MW) of znaleic anhydride grafted polypropylene (PP-g-MA) are the two most significant factors affecting the mechanical properties of PP/PP-g-MA/GF composites, but the combined effect of these two factors remains controversial. The study of the importance of MA grafting ratio and MW is continued in this work using PPIPP-g MA/GF composites containing various grades and concentrations of PP-g MA compatibilizer. First, MFR and FT1R analyses were performed to characterize the physical and chemical properties- of each PP-g-MA resin. Then, premixed PP and PP-g-MA blend were compounded with GF via twin screw extrusion, with the compounds injection molded into tensile, flexural and Izod impact specimens (all ASTM standard) for mechanical properties testing. Generally speaking, at a given GF content, higher compatibilizer concentrations led to higher tensile, flexural and notched Izod impact strength up to an optimum MA concentrations above which these properties tended to level off PP-g-MA resins with higher grafting ratio were more efficient compatibilizers as indicated by improved tensile, flexural and impact properties at lower PP-g-MA contents. In addition, MW was expected to affect properties as well, with too high and too 16w MW values leading to reduced reinforcement. While the optimum MW values for tensile and impact strength were still not clear based on present results, the estimated optimum weight average MW for maximum flexural strength was 90,000 +/- 1,400 g/mol.
Electrode effects on temporal changes in electrolyte pH and redox potential for water treatment
Ciblak, Ali; Mao, Xuhui; Padilla, Ingrid; Vesper, Dorothy; Alshawabkeh, Iyad; Alshawabkeh, Akram N.
2012-01-01
The performance of electrochemical remediation methods could be optimized by controlling the physicochemical conditions of the electrochemical redox system. The effects of anode type (reactive or inert), current density and electrolyte composition on the temporal changes in pH and redox potential of the electrolyte were evaluated in divided and mixed electrolytes. Two types of electrodes were used: iron as a reactive electrode and mixed metal oxide coated titanium (MMO) as an inert electrode. Electric currents of 15, 30, 45 and 60 mA (37.5 mA L−1, 75 mA L−1, 112.5 mA L−1 and 150 mA L−1) were applied. Solutions of NaCl, Na2SO4 and NaHCO3 were selected to mimic different wastewater or groundwater composition. Iron anodes resulted in highly reducing electrolyte conditions compared to inert anodes. Electrolyte pH was dependent on electrode type, electrolyte composition and current density. The pH of mixed-electrolyte was stable when MMO electrodes were used. When iron electrodes were used, the pH of electrolyte with relatively low current density (37.5 mA L−1) did not show significant changes but the pH increased sharply for relatively high current density (150 mA L−1). Sulfate solution showed more basic and relatively more reducing electrolyte condition compared to bicarbonate and chloride solution. The study shows that a highly reducing environment could be achieved using iron anodes in divided or mixed electrolytes and the pH and redox potential could be optimized by using appropriate current and polarity reversal. PMID:22416866
Radiation response of oxide-dispersion-strengthened alloy MA956 after self-ion irradiation
NASA Astrophysics Data System (ADS)
Chen, Tianyi; Kim, Hyosim; Gigax, Jonathan G.; Chen, Di; Wei, Chao-Chen; Garner, F. A.; Shao, Lin
2017-10-01
We studied the radiation-induced microstructural evolution of an oxide-dispersion-strengthened (ODS) ferritic alloy, MA956, to 180 dpa using 3.5 MeV Fe2+ ions. Post-irradiation examination showed that voids formed rather early and almost exclusively at the particle-matrix interfaces. Surprisingly, voids formed even in the injected interstitial zone. Comparisons with studies on other ODS alloys with smaller and largely coherent dispersoids irradiated at similar conditions revealed that the larger and not completely coherent oxide particles in MA956 serve as defect collectors which promote nucleation of voids at their interface. The interface configuration, which is related to particle type, crystal structure and size, is one of the important factors determining the defect-sink properties of particle-matrix interfaces.
NASA Astrophysics Data System (ADS)
Jiang, Fan
2016-02-01
Smooth tungsten coatings were prepared at current density below 70 mA cm-2 by electrodeposition on molybdenum substrate from Na2WO4-WO3 -melt at 1173 K in air atmosphere. As the current density reached up to 90 mA cm-2, many significant nodules were observed on the surface of the coating. Surface characterization, microstructure and mechanical properties were performed on the tungsten coatings. As the increasing of current density, the preferred orientation of the coatings changed to (2 0 0). All coatings exhibited columnar-grained-crystalline. There was about a 2 μm thick diffusion layer between tungsten coating and molybdenum substrate. The bending test revealed the tungsten coating had -good bonding strength with the molybdenum substrate. There is a down trend of the grain size of the coating on molybdenum as the current density increased from 30 mA cm-2 to 50 mA cm-2. The coating obtained at 50 mA cm-2 had a minimum grain size of 4.57 μm, while the microhardness of this coating reached to a maximum value of 495 HV.
Lomonte, Andrea Barranjard Vannucci; de Morais, Marina Gonçalves Veras; de Carvalho, Lina Oliveira; Zerbini, Cristiano Augusto de Freitas
2015-09-01
Intraarticular (IA) corticosteroid injections are broadly used in knee osteoarthritis (OA); however, the best corticosteroid agent is not well defined. The aim of the present study was to compare the efficacy of triamcinolone hexacetonide (TH) and methylprednisolone acetate (MA) injections in knee OA. Patients with symptomatic knee OA and Kellgren-Lawrence grade II or III were randomized to receive 40 mg of IA TH or MA. Evaluations were performed at 4, 12, and 24 weeks. The primary outcome was a change in the patient's assessment of pain by visual analog scale from baseline to Week 4. Secondary outcomes included a global assessment of the disease by patients and physicians, Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Lequesne index (LI), and Outcome Measures in Rheumatology Clinical Trials and Osteoarthritis Research Society International (OMERACT-OARSI) criteria of response. Generalized estimating equations were used in statistical analysis. The intention-to-treat population included 100 patients; 50 in each study arm. A significant improvement in pain was observed at Week 4 for both groups (p < 0.0001), with no difference between them (p = 0.352). This improvement was sustained up to Week 24. A significant improvement from the baseline was observed for both the patient's and the physician's global assessments, WOMAC questionnaire, and LI, with no differences between the groups. Improvements in the secondary outcomes were sustained during the study. The OMERACT-OARSI criteria of response was achieved by 74% and 72% of patients in the TH and the MA groups, respectively. Both IA therapies are equally effective, and improvement in pain and function can be sustained for up to 24 weeks. Controlled-trials.com identifier: ISRCTN15077843.
Bryant, Camron D; Kole, Loren A; Guido, Michael A; Cheng, Riyan; Palmer, Abraham A
2012-01-01
The conditioned place preference (CPP) test is frequently used to evaluate the rewarding properties of drugs of abuse in mice. Despite its widespread use in transgenic and knockout experiments, there are few forward genetic studies using CPP to identify novel genes contributing to drug reward. In this study, we tested LG/J and SM/J inbred strains and the parents/offspring of 10 families of an F(45)/F(46) advanced intercross line (AIL) for methamphetamine-induced CPP (MA-CPP) once per week over 2 weeks. Both LG/J and SM/J mice exhibited significant MA-CPP that was not significantly different between the two strains. Furthermore, LG/J mice showed significantly less acute MA-induced locomotor activity as well as locomotor sensitization following subsequent MA injections. AIL mice (N = 105) segregating LG/J and SM/J alleles also demonstrated significant MA-CPP that was equal in magnitude between the first and second week of training. Importantly, MA-CPP in AIL mice did not correlate with drug-free or MA-induced locomotor activity, indicating that MA-CPP was not confounded by test session activity and implying that MA-CPP is genetically distinct from acute psychomotor sensitivity. We estimated the heritability of MA-CPP and locomotor phenotypes using midparent-offspring regression and maximum likelihood estimates derived from the kinship coefficients of the AIL pedigree. Heritability estimates of MA-CPP were low (0-0.21) and variable (SE = 0-0.33) which reflected our poor power to estimate heritability using only 10 midparent-offspring observations. In sum, we established a short-term protocol for MA-CPP in AIL mice that could reveal LG/J and SM/J alleles important for MA reward. The use of highly recombinant genetic populations like AIL should facilitate the identification of these genes and may have implications for understanding psychostimulant abuse in humans.
NASA Astrophysics Data System (ADS)
Bacis, Irina Bristena; Vasile, Alexandru; Ionescu, Ciprian; Marghescu, Cristina
2016-12-01
The purpose of this paper is to analyze different power devices - emitters of optical flow, from the point of view of optical coupling, emitted optical powers, optical fiber losses and receiver. The research and characterization of the transmission through a power optical system is done using a computer system specialized for the automotive industry. This system/platform can deliver current pulses that are controlled by a computer through a software (it is possible to set different parameters such as pulse repetition frequency, duty cycle, and current intensity). For the experiments a power Fabry Perot 1035 laser diode operating in pulse with μφ 1055 nm, Ith = 40 mA, and Iop =750 mA was used with a single-mode SFM 128 optical fiber and an EM type optical coupler connected through alignment. Two types of measurements were conducted to demonstrate the usefulness of the experimental structure. In the first case the amplitude of the voltage pulses was measured at the output of an optical detector with receiving diode in a built-in amplifier with a 50 kΩ load resistance. In the second stage measurements were conducted to determine the optical power injected in the optical fiber and received at the reception cell of a power meter. Another parameter of optical coupling that can be measured using the experimental structure is irradiation. This parameter is very important to determine the optimum cutting angle of the fiber for continuity welding.
Ion cyclotron resonance heating for tungsten control in various JET H-mode scenarios
NASA Astrophysics Data System (ADS)
Goniche, M.; Dumont, R. J.; Bobkov, V.; Buratti, P.; Brezinsek, S.; Challis, C.; Colas, L.; Czarnecka, A.; Drewelow, P.; Fedorczak, N.; Garcia, J.; Giroud, C.; Graham, M.; Graves, J. P.; Hobirk, J.; Jacquet, P.; Lerche, E.; Mantica, P.; Monakhov, I.; Monier-Garbet, P.; Nave, M. F. F.; Noble, C.; Nunes, I.; Pütterich, T.; Rimini, F.; Sertoli, M.; Valisa, M.; Van Eester, D.; Contributors, JET
2017-05-01
Ion cyclotron resonance heating (ICRH) in the hydrogen minority scheme provides central ion heating and acts favorably on the core tungsten transport. Full wave modeling shows that, at medium power level (4 MW), after collisional redistribution, the ratio of power transferred to the ions and the electrons vary little with the minority (hydrogen) concentration n H/n e but the high-Z impurity screening provided by the fast ions temperature increases with the concentration. The power radiated by tungsten in the core of the JET discharges has been analyzed on a large database covering the 2013-2014 campaign. In the baseline scenario with moderate plasma current (I p = 2.5 MA) ICRH modifies efficiently tungsten transport to avoid its accumulation in the plasma centre and, when the ICRH power is increased, the tungsten radiation peaking evolves as predicted by the neo-classical theory. At higher current (3-4 MA), tungsten accumulation can be only avoided with 5 MW of ICRH power with high gas injection rate. For discharges in the hybrid scenario, the strong initial peaking of the density leads to strong tungsten accumulation. When this initial density peaking is slightly reduced, with an ICRH power in excess of 4 MW,very low tungsten concentration in the core (˜10-5) is maintained for 3 s. MHD activity plays a key role in tungsten transport and modulation of the tungsten radiation during a sawtooth cycle is correlated to the fishbone activity triggered by the fast ion pressure gradient.
Zircon Zoning, Trace Elements and U-Pb Dates Reveal Crustal Foundering Beneath the Pamir
NASA Astrophysics Data System (ADS)
Hacker, B. R.; Shaffer, M. E. F.; Ratschbacher, L.; Kylander-Clark, A. R.
2017-12-01
Xenoliths that erupted in the SE Pamir of Tajikistan at 11.2 Ma from 1000-1050°C and 90 km depth illuminate what happens when crust founders into the mantle. The xenoliths are a broad range of crustal rock types and contain abundant xenoliths whose U-Pb isotopic ratios and trace-element contents were examined by laser-ablation split stream inductively coupled plasma mass spectrometry. Cathodoluminescence imaging of the grains shows igneous cores with oscillatory zoning overprinted by substantial recrystallization. The bulk of the U-Pb dates are concordant and range from 160 Ma to 11 Ma. The range of dates suggest that the xenoliths were likely derived from the Jurassic-Cretaceous Andean-style magmatic arc and its Proterozoic-Mesozoic host rocks along the southern margin of Asia. The zircons show distinct changes in Eu anomaly, Lu/Gd ratio, and Ti concentrations that are interpreted to indicate garnet growth and minimal heating at 22-20 Ma, and then 200-300°C of heating, 25 km of burial, and alkali-carbonate melt injection at 14-11 Ma. These changes are interpreted to coincide with: i) heat input due to Indian slab breakoff at 22‒20 Ma; ii) rapid thickening and foundering of the Pamir lithosphere at 14‒11 Ma, prior to and synchronous with collision between deep Indian and Asian lithospheres beneath the Pamir.
Jin, Kai; Ming, Yue; Xia, Yu Xian
2012-12-01
Fungal biocontrol agents have great potential in integrated pest management. However, poor efficacy and sensitivity to various adverse factors have hampered their wide application. In eukaryotic cells, Hog1 kinase plays a critical role in stress responses. In this study, MaHog1 (GenBank accession no. EFY85878), encoding a member of the Hog1/Sty1/p38 mitogen-activated protein kinase family in Metarhizium (Me.) acridum, was identified. Targeted gene disruption was used to analyse the role of MaHog1 in virulence and tolerance of adverse factors. Mutants with MaHog1 depletion showed increased sensitivity to high osmotic stress, high temperature and oxidative stress, and exhibited remarkable resistance to cell wall-disturbing agents. These results suggest that Hog1 kinase has a conserved function in regulating multistress responses among fungi, and that MaHog1 might influence cell wall biogenesis in Me. acridum. Bioassays conducted with topical inoculation and intrahaemocoel injection revealed that MaHog1 is required for both penetration and postpenetration development of Me. acridum. MaHog1 disruption resulted in a significant reduction in virulence, likely due to the combination of a decrease in conidial germination, a reduction in appressorium formation and a decline in growth rate in insect haemolymph, which might be caused by impairing fungal tolerance of various stresses during infection.
Semiconductor laser using multimode interference principle
NASA Astrophysics Data System (ADS)
Gong, Zisu; Yin, Rui; Ji, Wei; Wu, Chonghao
2018-01-01
Multimode interference (MMI) structure is introduced in semiconductor laser used in optical communication system to realize higher power and better temperature tolerance. Using beam propagation method (BPM), Multimode interference laser diode (MMI-LD) is designed and fabricated in InGaAsP/InP based material. As a comparison, conventional semiconductor laser using straight single-mode waveguide is also fabricated in the same wafer. With a low injection current (about 230 mA), the output power of the implemented MMI-LD is up to 2.296 mW which is about four times higher than the output power of the conventional semiconductor laser. The implemented MMI-LD exhibits stable output operating at the wavelength of 1.52 μm and better temperature tolerance when the temperature varies from 283.15 K to 293.15 K.
Diagnostic experiments at a 3 MeV test stand at Rutherford Appleton Laboratory (United Kingdom).
Gabor, C; Faircloth, D C; Lee, D A; Lawrie, S R; Letchford, A P; Pozimski, J K
2010-02-01
A front end is currently under construction consisting of a H(-) Penning ion source (65 keV, 60 mA), low energy beam transport (LEBT), and radio frequency quadrupole (3 MeV output energy) with a medium energy beam transport suitable for high power proton applications. Diagnostics can be divided either in destructive techniques such as beam profile monitor, pepperpot, slit-slit emittance scanner (preferably used during commissioning) or nondestructive, permanently installed devices such as photodetachment-based techniques. Another way to determine beam distributions is a scintillator with charge-coupled device camera. First experiments have been performed to control the beam injection into the LEBT. The influence of beam parameters such as particle energy and space-charge compensation on the two-dimensional distribution and profiles will be presented.
Autonomous osteogenic differentiation of hASCs encapsulated in methacrylated gellan-gum hydrogels.
Oliveira, Mariana B; Custódio, Catarina A; Gasperini, Luca; Reis, Rui L; Mano, João F
2016-09-01
Methacrylated gellan-gum (GG-MA) alone and combined with collagen type I (Coll) is suggested here for the first time as a cell-laden injectable biomaterial for bone regeneration. On-chip high-throughput studies allowed rapidly assessing the suitability of 15 biomaterials/media combinations for the osteodifferentiation of human adipose stem cells (hASCs). Hydrogels composed solely of GG-MA (GG100:0Coll) led hASCs from three different donors into the osteogenic lineage after 21days of cell culture, in the absence of any osteogenic or osteoconductive factors. Hydrogels containing more than 30% of Coll promoted increased cellular proliferation and led hASCs into osteogenic differentiation under basal conditions. Studies using isolated individual hydrogels - excluding eventual on-chip crosstalk - and standard biochemical assays corroborated such findings. The formation of focal adhesions of hASCs on GG100:0Coll hydrogels was verified. We hypothesize that the hydrogels osteogenic effect could be guided by mechanotransduction phenomena. Indeed, the hydrogels showed elastic modulus in ranges previously reported as osteoinductive and the inhibition of the actin-myosin contractility pathway impaired hASCs' osteodifferentiation. GG-MA hydrogels also did not promote hASCs' adipogenesis while used in basal conditions. Overall, GG-MA showed promising properties as an innovative and off-the shelf self-inducing osteogenic injectable biomaterial. Methacrylated gellan gum (GG-MA) is here suggested for the first time as a widely available polysaccharide to easily prepare hydrogels with cell adhesion properties and capability of inducing the autonomous osteogenic differentiation of human adipose-derived stem cells (hASCs). GG-MA was processed as stand-alone hydrogels or in different combinations with collage type I. All hydrogel formulations elicited the osteogenic differentiation of hASCs, independently of the addition of any osteoconductive or osteogenic stimuli, i.e. in basal/growth medium. Effective cellular adhesion to methacrylated gellan gum hydrogels in the absence of any cell-ligand peptide/protein was here proved for the first time. Moreover, we showed that the encapsulated hASCs underwent osteogenic differentiation due to a mechanotransduction phenomenon dependent on the actin-myosin contractility pathway. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Ozaki, Ken-ichi; Onoma, Mitsu; Muramatsu, Hiroyasu; Sudo, Hirokazu; Yoshida, Shoshin; Shiokawa, Rie; Yogo, Kenji; Kamei, Kenshi; Cynshi, Osamu; Kuromaru, Osamu; Peeters, Theo L; Takanashi, Hisanori
2009-08-01
The pharmacological properties of MA-2029, a selective and competitive motilin receptor antagonist, were investigated in conscious dogs after oral administration. Gastrointestinal contractile activity was recorded by chronically implanted force transducers. The proximal gastric volume was measured with a barostat under constant pressure. Gastric emptying was examined using the paracetamol absorption test. MA-2029 (0.3-10 mg/kg, p.o.) administered in the interdigestive state inhibited gastrointestinal contractions induced by motilin (3 microg/kg, i.v.) in a dose-dependent manner. MA-2029 (0.3-3 mg/kg, p.o.) also inhibited the occurrence of spontaneous phase III contractions, even though MA-2029 had no effect on basal gastrointestinal motility or basal gastric emptying even at 10 and 30 mg/kg p.o. The inhibitory effect of MA-2029 on motilin-induced gastrointestinal motility corresponded to its plasma concentration. Motilin (0.3 microg/kg/h, i.v. infusion) reduced the proximal gastric volume by about 50% of control during isobaric distension. This effect was also inhibited by MA-2029 (1-10 mg/kg, p.o.) in a dose-dependent manner. In the digestive state, injection of motilin (3 microg/kg, i.v.) induced diarrhea in 9 of 11 dogs. MA-2029 (1-30 mg/kg, p.o.) reduced the incidence of diarrhea induced by motilin in a dose-dependent manner. The results indicate that MA-2029 inhibits hypermotility induced by motilin in conscious dogs without having an effect on the basal gastrointestinal tone or gastric emptying rate. MA-2029 may be useful in treating gastrointestinal disorders in which the pathogenesis involves the elevation of circulating motilin.
Wei, Qinglv; Du, Yanru; Jin, Kai; Xia, Yuxian
2017-12-01
Homeodomain transcription factor Ste12 is a key target activated by the pathogenic mitogen-activated-protein kinase pathway, and the activated Ste12p protein regulates downstream gene expression levels to modulate phenotypes. However, the functions of Ste12-like genes in entomopathogenic fungi remain poorly understood and little is known about the downstream genes regulated by Ste12. In this study, we characterized the functions of a Ste12 orthologue in Metarhizium acridum, MaSte12, and identified its downstream target genes. The deletion mutant (ΔMaSte12) is defective in conidial germination but not in hyphal growth, conidiation, or stress tolerance. Bioassays showed that ΔMaSte12 had a dramatically decreased virulence in topical inoculations, but no significant difference was found in intrahemolymph injections when the penetration process was bypassed. The mature appressorium formation rate of ΔMaSte12 was less than 10% on locust wings, with the majority hyphae forming appressorium-like, curved but no swollen structures. Digital gene expression profiling revealed that some genes involved in cell wall synthesis and remodeling, appressorium development, and insect cuticle penetration were downregulated in ΔMaSte12. Thus, MaSte12 has critical roles in the pathogenicity of the entomopathogenic fungus M. acridum, and our study provides some explanations for the impairment of fungal virulence in ΔMaSte12. In addition, virulence is very important for fungal biocontrol agents to control insect pests effectively. This study demonstrated that MaSte12 is involved in fungal virulence but not conidial yield or fungal stress tolerance in M. acridum. Thus, MaSte12 and its downstream genes may be candidates for enhancing fungal virulence to improve mycoinsecticides.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castro, G., E-mail: Giuseppe.Castro@lns.infn.it; Celona, L.; Mascali, D.
2016-08-15
The versatile ion source is an off-resonance microwave discharge ion source which produces a slightly overdense plasma at 2.45 GHz of pumping wave frequency extracting more than 60 mA proton beams and 50 mA He{sup +} beams. DAEδALUS and IsoDAR experiments require high intensities for H{sub 2}{sup +} beams to be accelerated by high power cyclotrons for neutrinos generation. In order to fulfill the new requirements, a new plasma chamber and injection system has been designed and manufactured for increasing the H{sub 2}{sup +} beam intensity. In this paper the studies for the increasing of the H{sub 2}{sup +}/p ratiomore » and for the design of the new plasma chamber and injection system will be shown and discussed together with the experimental tests carried out at Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali del Sud (INFN-LNS) and at Best Cyclotron Systems test-bench in Vancouver, Canada.« less
Liu, Ying; Ye, Ling; Lin, Fang; Gomaa, Yasmine; Flyer, David; Carrion, Ricardo; Patterson, Jean L; Prausnitz, Mark R; Smith, Gale; Glenn, Gregory; Wu, Hua; Compans, Richard W; Yang, Chinglai
2018-06-08
In this study, we investigated immune responses induced by purified Ebola virus (EBOV) soluble glycoprotein (sGP) subunit vaccines via intradermal immunization with microneedle (MN) patches in comparison with intramuscular (IM) injection in mice. Our results showed that MN delivery of EBOV sGP was superior to IM injection in eliciting higher levels and longer lasting antibody responses against EBOV sGP and GP antigens. Moreover, sGP-specific immune responses induced by MN or IM immunizations were effectively augmented by formulating sGP with a saponin-based adjuvant, and they were shown to confer complete protection of mice against lethal mouse-adapted EBOV (MA-EBOV) challenge. In comparison, mice that received sGP without adjuvant by MN or IM immunizations succumbed to lethal MA-EBOV challenge. These results show that immunization with EBOV sGP subunit vaccines with adjuvant by MN patches, which have been shown to provide improved safety and thermal stability, is a promising approach to protect against EBOV infection.
NASA Astrophysics Data System (ADS)
Castro, G.; Torrisi, G.; Celona, L.; Mascali, D.; Neri, L.; Sorbello, G.; Leonardi, O.; Patti, G.; Castorina, G.; Gammino, S.
2016-08-01
The versatile ion source is an off-resonance microwave discharge ion source which produces a slightly overdense plasma at 2.45 GHz of pumping wave frequency extracting more than 60 mA proton beams and 50 mA He+ beams. DAEδALUS and IsoDAR experiments require high intensities for H2+ beams to be accelerated by high power cyclotrons for neutrinos generation. In order to fulfill the new requirements, a new plasma chamber and injection system has been designed and manufactured for increasing the H2+ beam intensity. In this paper the studies for the increasing of the H2+/p ratio and for the design of the new plasma chamber and injection system will be shown and discussed together with the experimental tests carried out at Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali del Sud (INFN-LNS) and at Best Cyclotron Systems test-bench in Vancouver, Canada.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xian, Wenjing; Wu, Yan; Xiong, Wei
Inflammation plays a crucial role in acute ischemic stroke pathogenesis. Macrophage-derived Maresin 1 (MaR1) is a newly uncovered mediator with potent anti-inflammatory abilities. Here, we investigated the effect of MaR1 on acute inflammation and neuroprotection in a mouse brain ischemia reperfusion (I/R) model. Male C57 mice were subjected to 1-h middle cerebral artery occlusion (MCAO) and reperfusion. By the methods of 2,3,5-triphenyltetrazolium chloride, haematoxylin and eosin or Fluoro-Jade B staining, neurological deficits scoring, ELISA detection, immunofluorescence assay and western blot analysis, we found that intracerebroventricular injection of MaR1 significantly reduced the infarct volume and neurological defects, essentially protected the brainmore » tissue and neurons from injury, alleviated pro-inflammatory reactions and NF-κB p65 activation and nuclear translocation. Taken together, our results suggest that MaR1 significantly protects against I/R injury probably by inhibiting pro-inflammatory reactions. - Highlights: • MaR1 significantly protects against ischemia reperfusion injury. • MaR1 inhibits pro-inflammatory cytokines and chemokines and reducing glial activation and neutrophil infiltration. • These effects at least partially occurred via suppression of the NF-κB p65 signalling pathway.« less
Neurocognitive deficits are associated with unemployment in chronic methamphetamine users
Weber, Erica; Blackstone, Kaitlin; Iudicello, Jennfer E.; Morgan, Erin E.; Grant, Igor; Moore, David J.; Woods, Steven Paul
2013-01-01
Background Unemployment rates are high among chronic methamphetamine (MA) users and carry a significant economic burden, yet little is known about the neurocognitive and psychiatric predictors of employment in this vulnerable population. Methods The present study examined this issue in 63 participants with recent MA dependence and 47 comparison subjects without histories of MA use disorders. All participants completed a comprehensive neurocognitive, psychiatric and neuromedical evaluation. Individuals with HIV infection, severe neuropsychological or psychiatric conditions that might affect cognition (e.g., seizure disorder, schizophrenia), or a positive Breathalyzer or urine toxicology screen on the day of testing were excluded. Results Consistent with previous research, a logistic regression revealed MA dependence as a significant, independent predictor of full-time unemployment status. Within the MA-dependent sample, greater impairment in global neurocognitive functioning and history of injection drug use emerged as significant independent predictors of unemployment status. The association between worse global cognitive functioning and unemployment was primarily driven by deficits in executive functions, learning, verbal fluency, and working memory. Conclusion These findings indicate that neurocognitive deficits play a significant role in the higher unemployment rates of MA-dependent individuals, and highlight the need for vocational rehabilitation and supported employment programs that assess and bolster cognitive skills in this population. PMID:22560676
Efficient Neutron Production from a Novel Configuration of Deuterium Gas-Puff Z-Pinch
NASA Astrophysics Data System (ADS)
Klir, D.; Kubes, P.; Rezac, K.; Cikhardt, J.; Kravarik, J.; Sila, O.; Shishlov, A. V.; Kovalchuk, B. M.; Ratakhin, N. A.; Kokshenev, V. A.; Labetsky, A. Yu.; Cherdizov, R. K.; Fursov, F. I.; Kurmaev, N. E.; Dudkin, G. N.; Nechaev, B. A.; Padalko, V. N.; Orcikova, H.; Turek, K.
2014-03-01
A novel configuration of a deuterium z pinch has been used to generate fusion neutrons. Injecting an outer hollow cylindrical plasma shell around an inner deuterium gas puff, neutron yields from DD reactions reached Yn=(2.9±0.3)×1012 at 700 ns implosion time and 2.7 MA current. Such a neutron yield means a tenfold increase in comparison with previous deuterium gas puff experiments at the same current generator. The increase of beam-target yields was obtained by a larger amount of current assembled on the z-pinch axis, and subsequently by higher induced voltage and higher energies of deuterons. A stack of CR-39 track detectors on the z-pinch axis showed hydrogen ions up to 38 MeV. Maximum neutron energies of 15 and 22 MeV were observed by radial and axial time-of-flight detectors, respectively. The number of DD neutrons per one joule of stored plasma energy approached 5×107. This implies that deuterium gas puff z pinches belong to the most efficient plasma-based sources of DD neutrons.
Role of TRPV1 in acupuncture modulation of reflex excitatory cardiovascular responses.
Guo, Zhi-Ling; Fu, Liang-Wu; Su, Hou-Fen; Tjen-A-Looi, Stephanie C; Longhurst, John C
2018-05-01
We have shown that acupuncture, including manual and electroacupuncture (MA and EA), at the P5-6 acupoints stimulates afferent fibers in the median nerve (MN) to modulate sympathoexcitatory cardiovascular reflexes through central regulation of autonomic function. However, the mechanisms underlying acupuncture activation of these sensory afferent nerves and their cell bodies in the dorsal root ganglia (DRG) are unclear. Transient receptor potential vanilloid type 1 (TRPV1) is present in sensory nerve fibers distributed in the general region of acupoints like ST36 and BL 40 located in the hindlimb. However, the contribution of TRPV1 to activation of sensory nerves by acupuncture, leading to modulation of pressor responses, has not been studied. We hypothesized that TRPV1 participates in acupuncture's activation of sensory afferents and their associated cell bodies in the DRG to modulate pressor reflexes. Local injection of iodoresiniferatoxin (Iodo-RTX; a selective TRPV1 antagonist), but not 5% DMSO (vehicle), into the P6 acupoint on the forelimb reversed the MA's inhibition of pressor reflexes induced by gastric distension (GD). Conversely, inhibition of GD-induced sympathoexcitatory responses by EA at P5-6 was unchanged after administration of Iodo-RTX into P5-6. Single-unit activity of Group III or IV bimodal afferents sensitive to both mechanical and capsaicin stimuli responded to MA stimulation at P6. MA-evoked activity was attenuated significantly ( P < 0.05) by local administration of Iodo-RTX ( n = 12) but not by 5% DMSO ( n = 12) into the region of the P6 acupoint in rats. Administration of Iodo-RTX into P5-6 did not reduce bimodal afferent activity evoked by EA stimulation ( n = 8). Finally, MA at P6 and EA at P5-6 induced phosphorylation of extracellular signal-regulated kinases (ERK; an intracellular signaling messenger involved in cellular excitation) in DRG neurons located at C 7-8 spinal levels receiving MN inputs. After TRPV1 was knocked down in the DRG at these spinal levels with intrathecal injection of TRPV1-siRNA, expression of phosphorylated ERK in the DRG neuron was reduced in MA-treated, but not EA-treated animals. These data suggest that TRPV1 in Group III and IV bimodal sensory afferent nerves contributes to acupuncture inhibition of reflex increases in blood pressure and specifically plays an important role during MA but not EA.
Lin, Gong-Ru; Chi, Yu-Chieh; Liao, Yu-Sheng; Kuo, Hao-Chung; Liao, Zhi-Wang; Wang, Hai-Lin; Lin, Gong-Cheng
2012-06-18
By spectrally slicing a single longitudinal-mode from a master weak-resonant-cavity Fabry-Perot laser diode with transient wavelength scanning and tracking functions, the broadened self-injection-locking of a slave weak-resonant-cavity Fabry-Perot laser diode is demonstrated to achieve bi-directional transmission in a 200-GHz array-waveguide-grating channelized dense-wavelength-division-multiplexing passive optical network system. Both the down- and up-stream slave weak-resonant-cavity Fabry-Perot laser diodes are non-return-to-zero modulated below threshold and coherently injection-locked to deliver the pulsed carrier for 25-km bi-directional 2.5 Gbits/s return-to-zero transmission. The master weak-resonant-cavity Fabry-Perot laser diode is gain-switched at near threshold condition and delivers an optical coherent pulse-train with its mode linewidth broadened from 0.2 to 0.8 nm by transient wavelength scanning, which facilitates the broadband injection-locking of the slave weak-resonant-cavity Fabry-Perot laser diodes with a threshold current reducing by 10 mA. Such a transient wavelength scanning induced spectral broadening greatly releases the limitation on wavelength injection-locking range required for the slave weak-resonant-cavity Fabry-Perot laser diode. The theoretical modeling and numerical simulation on the wavelength scanning and tracking effects of the master and slave weak-resonant-cavity Fabry-Perot laser diodes are performed. The receiving power sensitivity for back-to-back transmission at bit-error-rate <10(-10) is -25.6 dBm, and the power penalty added after 25-km transmission is less than 2 dB for all 16 channels.
Li, Yi-Cheng; Chi, Yu-Chieh; Cheng, Min-Chi; Lu, I-Cheng; Chen, Jason; Lin, Gong-Ru
2013-07-15
The coherent injection-locking and directly modulation of a long-cavity colorless laser diode with 1% end-facet reflectance and weak-resonant longitudinal modes is employed as an universal optical transmitter to demonstrated for optical 16-QAM OFDM transmission at 12 Gbit/s over 25 km in a DWDM-PON system. The optimized bias current of 30 mA (~1.5Ith) with corresponding extinction ratio (ER) of 6 dB and the external injection power of -9 dBm is (are) required for such a wavelength-locked universal transmitter to carry the 16-QAM and 122-subcarrier formatted OFDM and data-stream. By increasing external injection-locking from -9 dBm to 0 dBm, the peak-to-peak chirp of the OFDM data stream reduces from 7.7 to 5.4 GHz. The side mode suppression ratio (SMSR) of up to 50 dB is achieved with wider detuning range between -0.5 nm to 2.0 nm under an injection power of 0 dBm. By modulating such a colorless laser diode with an OFDM data stream of 122 subcarriers at a central carrier frequency of 1.5625 GHz and a total bandwidth of 3 GHz, the transmission data rate of up to 12 Gbit/s in standard single-mode fiber over 25 km is demonstrated to achieve an error vector magnitude (EVM) of 5.435%. Such a universal colorless DWDM-PON transmitter can deliver the optical OFDM data-stream at 12 Gbit/s QAM-OFDM data after 25-km transmission with a receiving power sensitivity of -7 dBm at BER of 3.6 × 10(-7) when pre-amplifying the OFDM data by 5 dB.
Accumulated phenocrysts and origin of feldspar porphyry in the Chanho area, western Yunnan, China
NASA Astrophysics Data System (ADS)
Xu, Xing-Wang; Jiang, Neng; Yang, Kai; Zhang, Bao-Lin; Liang, Guang-He; Mao, Qian; Li, Jin-Xiang; Du, Shi-Jun; Ma, Yu-Guang; Zhang, Yong; Qin, Ke-Zhang
2009-12-01
The No. 1 feldspar porphyry in the Chanho area, western Yunnan, China is characterized by the development of deformed glomeroporphyritic aggregates (GA) that contain diagnostic gravity settling textures. These textures include interlocking curved grain boundaries caused by compaction, bent twins, and arch-like structures. The GAs are accumulated phenocrysts (AP) and antecrysts. The unstable textural configurations such as extensive penetrative microfractures that are restricted within the AP and fractured cores of zircon grains, all suggest that the GAs are transported fragments of fractured cumulates that formed in a pre-emplacement magma chamber rather than form in situ at the current intrusion site. Compositions of minerals and melt as represented by different mineral aggregates formed at various stages of the magmatic process and their relations to the composition of porphyry bodies in the Chanho area indicate that the porphyritic melt for the No. 1 feldspar porphyry experienced two stages of melt mixing. Pulses of potassic melt flowed into a pre-emplacement magma chamber and mixed with crystallizing dioritic magma containing phenocrysts resulted in the first hybrid alkaline granitic melt. The mixing caused denser phenocrysts to settle and aggregate to form cumulates. Secondly, new dioritic melt was injected into the magma chamber and was mixed with the previously formed hybrid alkaline granitic melt to produce syenitic melt. Geochron data, including U-Pb age of zircon and 39Ar/ 40Ar age of hornblende and oligoclase phenocrysts, indicate that hornblende and oligoclase phenocrysts, as well as the core of zircon grains, were antecrysts that formed in a number of crystallization events between 36.3 and 32.78 Ma. Gravity settling of phenocrysts took place at about 33.1 to 32.78 Ma and melts with deformed GAs were transported upwards and emplaced into the current site at 32 Ma. Results of this research indicate that the No. 1 feldspar porphyry was a shallow intrusion of mixed melts that contained phenocrysts and GAs, both of which formed in a deeper transitional magma chamber.
The effect of kerosene injection on ignition probability of local ignition in a scramjet combustor
NASA Astrophysics Data System (ADS)
Bao, Heng; Zhou, Jin; Pan, Yu
2017-03-01
The spark ignition of kerosene is investigated in a scramjet combustor with a flight condition of Ma 4, 17 km. Based plentiful of experimental data, the ignition probabilities of the local ignition have been acquired for different injection setups. The ignition probability distributions show that the injection pressure and injection location have a distinct effect on spark ignition. The injection pressure has both upper and lower limit for local ignition. Generally, the larger mass flow rate will reduce the ignition probability. The ignition position also affects the ignition near the lower pressure limit. The reason is supposed to be the cavity swallow effect on upstream jet spray near the leading edge, which will make the cavity fuel rich. The corner recirculation zone near the front wall of the cavity plays a significant role in the stabilization of local flame.
[Influence of MnO3 on Photoelectric Performance in Organic Light Emitting Diodes].
Guan, Yun-xia; Chen, Li-jia; Chen, Ping; Fu, Xiao-qiang; Niu, Lian-bin
2016-03-01
Organic Light Emitting Diodes (OLEDs) has been a promising new research point that has received much attention recently. Emission in a conventional OLED originates from the recombination of carriers (electrons and holes) that are injected from external electrodes. In the device, Electrons, on the other hand, are injected from the Al cathode to an electron-transporting layer and travel to the same emissive zone. Holes are injected from the transparent ITO anode to a hole-transporting layer and holes reach an emitting zone through the holetransporting layer. Electrons and holes recombine at the emissive film to formsinglet excited states, followed by emissive light. It is because OLED is basically an optical device and its structure consists of organic or inorganic layers of sub-wavelength thickness with different refractive indices. When the electron and holes are injected through the electrodes, they combine in the emission zone emitting the photons. These photons will have the reflection and transmission at each interface and the interference will determine the intensity profile. The emissive light reflected at the interfaces or the metallic electrode returns to the emissive layer and affects the radiation current efficiency. Microcavity OLED can produce saturated colors and narrow the emission spetrum as a new kind of technique. In the paper, we fabricate microcavity OLED using glass substrate. Ag film acts as the anode reflector mirror; NPB serves as the hole-transporting material; Alq3 is electron-transporting material and organic emissive material; Ag film acts as cathode reflector mirror. The microcavity OLED structures named as A, B, C and D are glass/Ag(15 nm)/MoO3 (x nm)/NPB(50 nm)/Alq3 (60 nm)/A1(100 nm). Here, A, x = 4 nm; B, x = 7 nm; C, x = 10 nm; D, x = 13 nm. The characteristic voltage, brightness and current of these devices are investigated in the electric field. The luminance from the Devices A, B, C and D reaches the luminance of 928, 1 369, 2 550 and 2 035 cd x m(-2), respectively at 13 V. At 60 mA x cm(-2), the current efficiency of the microcavity OLEDs using MnO3 are about 2.2, 2.6, 3.1 and 2.6 cd x A(-2) respectively. It is found that electrons are majority carriers and holes are minority carriers in this microcavity OLEDs. MnO3 film can improve hole injection ability from 4 to 10 nm. In addition, hole injection ability is increased with the increasing thickness of the MnO3 film.
Anomalous auroral electron distributions due to an artificial ion beam in the ionosphere
NASA Technical Reports Server (NTRS)
Moore, T. E.; Arnoldy, R. L.; Kaufmann, R. L.; Cahill, L. J., Jr.; Kintner, P. M.; Walker, D. N.
1982-01-01
Results are reported for the perturbation of the auroral ionosphere by the operation of an ion gun which injected about 100 mA of 25-eV Ar(+) ions at upgoing pitch angles over a discrete auroral arc. The major effects observed were the excitation of intense broadband electric field fluctuations at zero-10 kHz, and the appearance of streaming and isotropic heating in different parts of superthermal electron velocity space. A scenario is explored in which electron runaway or streaming is expected between the trapping speed and the critical velocity for cyclotron interactions with the waves, where the streaming electrons carry the current that would be carried by thermals or energetic electrons in the absence of the waves. A current of about 1.0 microA/sq m is carried by the streaming electrons. The gun-associated electrons were anomalous in the sense that their anisotropy was the opposite of that observed in the natural aurora.
A transverse bunch by bunch feedback system for Pohang Light Source upgrade
NASA Astrophysics Data System (ADS)
Lee, E.-H.; Kim, D.-T.; Huang, J.-Y.; Shin, S.; Nakamura, T.; Kobayashi, K.
2014-12-01
The Pohang Light Source upgrade (PLS-II) project has successfully upgraded the Pohang Light Source (PLS). The main goals of the PLS-II project are to increase the beam energy to 3 GeV, increase the number of insertion devices by a factor of two (20 IDs), increase the beam current to 400 mA, and at the same time reduce the beam emittance to below 10 nm by using the existing PLS tunnel and injection system. Among 20 insertion devices, 10 narrow gap in-vacuum undulators are in operation now and two more in-vacuum undulators are to be installed later. Since these narrow gap in-vacuum undulators are most likely to produce coupled bunch instability by the resistive wall impedance and limit the stored beam current, a bunch by bunch feedback system is implemented to suppress coupled bunch instability in the PLS-II. This paper describes the scheme and performance of the PLS-II bunch by bunch feedback system.
Methamphetamine Vaccines: Improvement through Hapten Design.
Collins, Karen C; Schlosburg, Joel E; Bremer, Paul T; Janda, Kim D
2016-04-28
Methamphetamine (MA) addiction is a serious public health problem, and current methods to abate addiction and relapse are currently ineffective for mitigating this growing global epidemic. Development of a vaccine targeting MA would provide a complementary strategy to existing behavioral therapies, but this has proven challenging. Herein, we describe optimization of both hapten design and formulation, identifying a vaccine that elicited a robust anti-MA immune response in mice, decreasing methamphetamine-induced locomotor activity.
On-chip very low junction temperature GaN-based light emitting diodes by selective ion implantation
NASA Astrophysics Data System (ADS)
Cheng, Yun-Wei; Chen, Hung-Hsien; Ke, Min-Yung; Chen, Cheng-Pin; Huang, JianJang
2008-08-01
We propose an on-wafer heat relaxation technology by selectively ion-implanted in part of the p-type GaN to decrease the junction temperature in the LED structure. The Si dopant implantation energy and concentration are characterized to exhibit peak carrier density 1×1018 cm-3 at the depth of 137.6 nm after activation in nitrogen ambient at 750 °C for 30 minutes. The implantation schedule is designed to neutralize the selected region or to create a reverse p-n diode in the p-GaN layer, which acts as the cold zone for heat dissipation. The cold zone with lower effective carrier concentration and thus higher resistance is able to divert the current path. Therefore, the electrical power consumption through the cold zone was reduced, resulting in less optical power emission from the quantum well under the cold zone. Using the diode forward voltage method to extract junction temperature, when the injection current increases from 10 to 60 mA, the junction temperature of the ion-implanted LED increases from 34.3 °C to 42.3 °C, while that of the conventional one rises from 30.3 °C to 63.6 °C. At 100 mA, the output power of the ion-implanted device is 6.09 % higher than that of the conventional device. The slight increase of optical power is due to the increase of current density outside the cold zone region of the implanted device and reduced junction temperature. The result indicates that our approach improves thermal dissipation and meanwhile maintains the linearity of L-I curves.
Slotkin, Jonathan R; Ness, Jennifer K; Snyder, Kristin M; Skiles, Amanda A; Woodard, Eric J; OʼShea, Timothy; Layer, Rick T; Aimetti, Alex A; Toms, Steven A; Langer, Robert; Tapinos, Nikos
2016-04-01
A preclinical animal model of chronic ligation of the sciatic nerve was used to compare the effectiveness of a slow-release hydrogel carrying methylprednisolone to methylprednisolone injection alone, which simulates the current standard of care for chronic compressive radiculopathy (CR). To extend the short-term benefits of steroid injections by using a nonswelling, biodegradable hydrogel as carrier to locally release methylprednisolone in a regulated and sustained way at the site of nerve compression. CR affects millions worldwide annually, and is a cause of costly disability with significant societal impact. Currently, a leading nonsurgical therapy involves epidural injection of steroids to temporarily alleviate the pain associated with CR. However, an effective way to extend the short-term effect of steroid treatment to address the chronic component of CR does not exist. We induced chronic compression injury of the sciatic nerves of rats by permanent ligation. Forty-eight hours later we injected our methylprednisolone infused hydrogel and assessed the effectiveness of our treatment for 4 weeks. We quantified mechanical hyperalgesia using a Dynamic Plantar Aesthesiometer (Ugo Basile, Stoelting Co., IL, USA), whereas gait analysis was conducted using the Catwalk automated gait analysis platform (Noldus, Leesburg, VA, USA). Macrophage staining was performed with immunohistochemistry and quantification of monocyte chemoattractant protein-1 in sciatic nerve lysates was performed with multiplex immunoassay using a SECTOR Imager 2400A (Meso Scale Discovery, Rockville, MA, USA). We demonstrate that using the hydrogel to deliver methylprednisolone results in significant (P < 0.05) reduction of hyperalgesia and improvement in the gait pattern of animals with chronic lesions as compared with animals treated with steroid alone. In addition, animals treated with hydrogel plus steroid showed significant reduction in the number of infiltrating macrophages at the sciatic nerve and reduced expression of the neuroinflammatory chemokine monocyte chemoattractant protein-1 (P < 0.05). Use of hydrogels as carriers for sustained local release of steroids provides significantly better control of pain in an animal model of chronic CR. Our steroid-infused hydrogel could be an effective extender of the short-term benefits of epidural steroid injections for patients with chronic compression-induced radicular pain. N/A.
Performance of the LANSCE H^- Source and Low Energy Transport at Higher Peak Current
NASA Astrophysics Data System (ADS)
Pillai, Chandra; Stevens, Ralph; Fitzgerald, Daniel; Garnett, Robert; Ingllas, William; Merrill, Frank; Rybarcyk, Larry; Sander, Oscar
1997-05-01
The Los Alamos Neutron Science Center (LANSCE) 800 MeV linac facility uses a multicusp field, surface ion source to produce H^- beam for delivery to the Proton Storage Ring (PSR) and to the Weapon Neutron Research (WNR) areas. The source typically operates at a duty factor of 9.4% delivering a peak current of about 14 mA into the 750 keV LEBT. Each beam macropulse is chopped to create a sequence of 360 ns pulse, each with a 100 ns ``extraction notch'' for injection into PSR. The average current delivered to the short-pulse spallation target is nominally 70μA. One goal of the present PSR upgrade projects is an increase in the average beam current to 200μA. This will be accomplished by a combination of increased repetition rate (to 30 Hz), upgraded PSR bunchers, and a brighter H^- ion source that will produce higher peak current with lower beam emittance. The present ion source and injector system was studied to investigate the beam qualities of the source and the performance of the low energy transpot. The performance of the ion source at higher currents and the change in beam parameters in the low energy transport compared to those in the standard source conditions will be presented.
Use of microsecond current prepulse for dramatic improvements of wire array Z-pinch implosion
NASA Astrophysics Data System (ADS)
Calamy, H.; Lassalle, F.; Loyen, A.; Zucchini, F.; Chittenden, J. P.; Hamann, F.; Maury, P.; Georges, A.; Bedoch, J. P.; Morell, A.
2008-01-01
The Sphinx machine [F. Lassalle et al., "Status on the SPHINX machine based on the 1microsecond LTD technology"] based on microsecond linear transformer driver (LTD) technology is used to implode an aluminium wire array with an outer diameter up to 140mm and maximum current from 3.5to5MA. 700to800ns implosion Z-pinch experiments are performed on this driver essentially with aluminium. Best results obtained before the improvement described in this paper were 1-3TW radial total power, 100-300kJ total yield, and 20-30kJ energy above 1keV. An auxiliary generator was added to the Sphinx machine in order to allow a multi microsecond current to be injected through the wire array load before the start of the main current. Amplitude and duration of this current prepulse are adjustable, with maxima ˜10kA and 50μs. This prepulse dramatically changes the ablation phase leading to an improvement of the axial homogeneity of both the implosion and the final radiating column. Total power was multiplied by a factor of 6, total yield by a factor of 2.5 with a reproducible behavior. This paper presents experimental results, magnetohydrodynamic simulations, and analysis of the effect of such a long current prepulse.
Multi-MA reflex triode research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swanekamp, Stephen Brian; Commisso, Robert J.; Weber, Bruce V.
The Reflex Triode can efficiently produce and transmit medium energy (10-100 keV) x-rays. Perfect reflexing through thin converter can increase transmission of 10-100 keV x-rays. Gamble II experiment at 1 MV, 1 MA, 60 ns - maximum dose with 25 micron tantalum. Electron orbits depend on the foil thickness. Electron orbits from LSP used to calculate path length inside tantalum. A simple formula predicts the optimum foil thickness for reflexing converters. The I(V) characteristics of the diode can be understood using simple models. Critical current dominates high voltage triodes, bipolar current is more important at low voltage. Higher current (2.5more » MA), lower voltage (250 kV) triodes are being tested on Saturn at Sandia. Small, precise, anode-cathode gaps enable low impedance operation. Sample Saturn results at 2.5 MA, 250 kV. Saturn dose rate could be about two times greater. Cylindrical triode may improve x-ray transmission. Cylindrical triode design will be tested at 1/2 scale on Gamble II. For higher current on Saturn, could use two cylindrical triodes in parallel. 3 triodes in parallel require positive polarity operation. 'Triodes in series' would improve matching low impedance triodes to generator. Conclusions of this presentation are: (1) Physics of reflex triodes from Gamble II experiments (1 MA, 1 MV) - (a) Converter thickness 1/20 of CSDA range optimizes x-ray dose; (b) Simple model based on electron orbits predicts optimum thickness from LSP/ITS calculations and experiment; (c) I(V) analysis: beam dynamics different between 1 MV and 250 kV; (2) Multi-MA triode experiments on Saturn (2.5 MA, 250 kV) - (a) Polarity inversion in vacuum, (b) No-convolute configuration, accurate gap settings, (c) About half of current produces useful x-rays, (d) Cylindrical triode one option to increase x-ray transmission; and (3) Potential to increase Saturn current toward 10 MA, maintaining voltage and outer diameter - (a) 2 (or 3) cylindrical triodes in parallel, (b) Triodes in series to improve matching, (c) These concepts will be tested first on Gamble II.« less
Rodríguez, Silvia S.; Schwerdt, José I.; Barbeito, Claudio G.; Flamini, Mirta A.; Han, Ye; Bohn, Martha C.
2013-01-01
There is substantial evidence that age-related ovarian failure in rats is preceded by abnormal responsiveness of the neuroendocrine axis to estrogen positive feedback. Because IGF-I seems to act as a permissive factor for proper GnRH neuronal response to estrogen positive feedback and considering that the hypothalamic content of IGF-I declines in middle-aged (M-A) rats, we assessed the effectiveness of long-term IGF-I gene therapy in the mediobasal hypothalamus (MBH) of M-A female rats to extend regular cyclicity and preserve ovarian structure. We used 3 groups of M-A rats: 1 group of intact animals and 2 groups injected, at 36.2 weeks of age, in the MBH with either a bicistronic recombinant adeno-associated virus (rAAV) harboring the genes for IGF-I and the red fluorescent protein DsRed2, or a control rAAV expressing only DsRed2. Daily vaginal smears were taken throughout the study, which ended at 49.5 weeks of age. We measured serum levels of reproductive hormones and assessed ovarian histology at the end of the study. Although most of the rats injected with the IGF-I rAAV had, on the average, well-preserved estrous cyclicity as well as a generally normal ovarian histology, the intact and control rAAV groups showed a high percentage of acyclic rats at the end of the study and ovaries with numerous enlarged cysts and scarce corpora lutea. Serum LH was higher and hyperprolactinemia lower in the treated animals. These results suggest that overexpression of IGF-I in the MBH prolongs normal ovarian function in M-A female rats. PMID:23584855
Ji, Dong; Zhou, Yalan; Li, Shuangshuang; Li, Dai; Chen, Hui; Xiong, Yuanchang; Zhang, Yuqiu; Xu, Hua
2017-01-01
As a therapeutic target for neuropathic pain, the anti-nociceptive effects of α 2-adrenoceptors (α2AR) have attracted attention. Dexmedetomidine (DEX), a potent and highly selective α2AR agonist, has exhibited significant analgesic effects in neuropathic pain, but the underlying mechanism has remained elusive. The present study investigated the effect of DEX on Toll-like receptor (TLR)4 and nuclear factor (NF)-κB p65 expression, as well as the production of pro-inflammatory cytokines. The rat monoarthritis (MA) model was induced by intra-articular injection of complete Freund's adjuvant (CFA) at the ankle joint. After induction of MA, the rats were intrathecally treated with normal saline or DEX (2.5 µg) for 3 consecutive days. The concentration of interleukin-1β and −6 as well as tumor necrosis factor-α was examined by ELISA. The expression levels of TLR4 and NF-κB p65 were determined by western blot analysis and immunohistochemistry. The results indicated that the pro-inflammatory cytokines TLR4 and NF-κB p65 were significantly upregulated in MA rats. DEX treatment markedly reduced mechanical and thermal hyperalgesia, suppressed MA-induced elevation of the pro-inflammatory cytokines and inhibited the TLR4/NF-κB p65 pathway, while these effects were blocked by pre-treatment with the selective α2AR antagonist BRL44408 (15 µg) at 30 min prior to CFA injection. These results suggested that DEX has an anti-nociceptive effect via suppressing the TLR4/NF-κB p65 pathway. PMID:29201195
Janjua, Bilal; Sun, Haiding; Zhao, Chao; Anjum, Dalaver H; Priante, Davide; Alhamoud, Abdullah A; Wu, Feng; Li, Xiaohang; Albadri, Abdulrahman M; Alyamani, Ahmed Y; El-Desouki, Munir M; Ng, Tien Khee; Ooi, Boon S
2017-01-23
Currently the AlGaN-based ultraviolet (UV) solid-state lighting research suffers from numerous challenges. In particular, low internal quantum efficiency, low extraction efficiency, inefficient doping, large polarization fields, and high dislocation density epitaxy constitute bottlenecks in realizing high power devices. Despite the clear advantage of quantum-confinement nanostructure, it has not been widely utilized in AlGaN-based nanowires. Here we utilize the self-assembled nanowires (NWs) with embedding quantum-disks (Qdisks) to mitigate these issues, and achieve UV emission of 337 nm at 32 A/cm2 (80 mA in 0.5 × 0.5 mm2 device), a turn-on voltage of ~5.5 V and droop-free behavior up to 120 A/cm2 of injection current. The device was grown on a titanium-coated n-type silicon substrate, to improve current injection and heat dissipation. A narrow linewidth of 11.7 nm in the electroluminescence spectrum and a strong wavefunctions overlap factor of 42% confirm strong quantum confinement within uniformly formed AlGaN/AlGaN Qdisks, verified using transmission electron microscopy (TEM). The nitride-based UV nanowires light-emitting diodes (NWs-LEDs) grown on low cost and scalable metal/silicon template substrate, offers a scalable, environment friendly and low cost solution for numerous applications, such as solid-state lighting, spectroscopy, medical science and security.
SITE BULLETIN, ATTENUATED ANAEROBIC DECHLORINATION OF GROUNDWATER USING HRC MACTEC - HARDING ESE
A SITE demonstration of the Harding ESE permeable reactive barrier wall (PRBW) was conducted on the contaminated groundwater from the Fisherville Mill site in Grafton, MA beginning June 2000 to July 2003. Installation of the PRBW was accomplished by injecting HRC into a series of...
NASA Astrophysics Data System (ADS)
Geng, Hongbo; Ang, Huixiang; Ding, Xianguang; Tan, Huiteng; Guo, Guile; Qu, Genlong; Yang, Yonggang; Zheng, Junwei; Yan, Qingyu; Gu, Hongwei
2016-01-01
In this work, a one-dimensional Co3O4@TiO2 core-shell electrode material with superior electrochemical performance is fabricated by a convenient and controllable route. The approach involves two main steps: the homogeneous deposition of polydopamine and TiO2 layers in sequence on the cobalt coordination polymer and the thermal decomposition of the polymer matrix. The as-prepared electrode material can achieve excellent electrochemical properties and stability as an anode material for lithium ion batteries, such as a high specific capacity of 1279 mA h g-1, good cycling stability (around 803 mA h g-1 at a current density of 200 mA g-1 after 100 cycles), and stable rate performance (around 520 mA h g-1 at a current density of 1000 mA g-1). This dramatic electrochemical performance is mainly attributed to the excellent structural characteristics, which could improve the electrical conductivity and lithium ion mobility, as well as electrolyte permeability and architectural stability during cycling.In this work, a one-dimensional Co3O4@TiO2 core-shell electrode material with superior electrochemical performance is fabricated by a convenient and controllable route. The approach involves two main steps: the homogeneous deposition of polydopamine and TiO2 layers in sequence on the cobalt coordination polymer and the thermal decomposition of the polymer matrix. The as-prepared electrode material can achieve excellent electrochemical properties and stability as an anode material for lithium ion batteries, such as a high specific capacity of 1279 mA h g-1, good cycling stability (around 803 mA h g-1 at a current density of 200 mA g-1 after 100 cycles), and stable rate performance (around 520 mA h g-1 at a current density of 1000 mA g-1). This dramatic electrochemical performance is mainly attributed to the excellent structural characteristics, which could improve the electrical conductivity and lithium ion mobility, as well as electrolyte permeability and architectural stability during cycling. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08570e
Chew, Taariq; Ho, Kerrie-Anne; Loo, Colleen K
2015-01-01
Translation of transcranial direct current stimulation (tDCS) from research to clinical practice is hindered by a lack of consensus on optimal stimulation parameters, significant inter-individual variability in response, and in sufficient intra-individual reliability data. Inter-individual differences in response to anodal tDCS at a range of current intensities were explored. Intra-individual reliability in response to anodal tDCS across two identical sessions was also investigated. Twenty-nine subjects participated in a crossover study. Anodal-tDCS using four different current intensities (0.2, 0.5, 1 and 2 mA), with an anode size of 16 cm2, was tested. The 0.5 mA condition was repeated to assess intra-individual variability. TMS was used to elicit 40 motor-evoked potentials (MEPs) before 10 min of tDCS, and 20 MEPs at four time-points over 30 min following tDCS. ANOVA revealed no main effect of TIME for all conditions except the first 0.5 mA condition, and no differences in response between the four current intensities. Cluster analysis identified two clusters for the 0.2 and 2 mA conditions only. Frequency distributions based on individual subject responses (excitatory, inhibitory or no response) to each condition indicate possible differential responses between individuals to different current intensities. Test-retest reliability was negligible (ICC(2,1) = -0.50). Significant inter-individual variability in response to tDCS across a range of current intensities was found. 2 mA and 0.2 mA tDCS were most effective at inducing a distinct response. Significant intra-individual variability in response to tDCS was also found. This has implications for interpreting results of single-session tDCS experiments. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.
Tripling of Methamphetamine/Amphetamine Use among Homeless and Marginally Housed Persons, 1996–2003
Colfax, Grant; Moss, Andrew R.; Bangsberg, David R.; Hahn, Judith A.
2007-01-01
Methamphetamine/amphetamine (MA)-related morbidity and mortality has been increasing in the United States. MA use is associated with high-risk sexual behavior and syringe-sharing practices. Homeless and marginalized housed persons (H/M) have high rates of substance use and mental health disorders. Little is known about trends of MA use among the H/M. The objective of this study was to quantify increases in MA use among H/M in San Francisco and to determine which demographic and behavioral subgroups have experienced the greatest increases in MA use. We conducted serial cross-sectional population-based studies in three waves: 1996–1997, 1999–2000, and 2003 and studied 2,348 H/M recruited at shelters and lunch lines. The main outcome was self-reported current (30-day) MA use. We found a tripling of current MA use among H/M persons from 1996 to 2003, with a sevenfold increase in smoked MA use. MA use doubled to tripled in most demographic and behavioral subgroups, whereas it quadrupled in those under age 35, and there was a fivefold increase among HIV-infected persons. The increase in MA use among H/M places a vulnerable population at additional increased risk for HIV infection and MA-use related morbidity and mortality. Among HIV-infected H/M, the increase in MA use has important public health implications for the development and secondary transmission of drug-resistant HIV caused by synergistic neurocognitive decline, poor adherence to HIV medications, and increased sexual risk behavior. Clinicians caring for H/M persons should inquire about MA use, refer interested MA users to MA dependence treatment programs and provide targeted HIV sexual risk reduction counseling. For HIV-infected H/M MA users, clinicians should closely monitor adherence to HIV or other chronic medications, to avoid unnecessary morbidity and mortality. Further research is needed to elucidate the most effective prevention and treatment for MA use and dependence among the H/M. PMID:18163214
Methamphetamine Users Have Increased Dental Disease: A Propensity Score Analysis.
Shetty, V; Harrell, L; Clague, J; Murphy, D A; Dye, B A; Belin, T R
2016-07-01
Methamphetamine (MA) users are assumed to have a high burden of tooth decay. Less clear is how the distribution and severity of dental caries in MA users differ from the general population. Using a covariate-balancing propensity score strategy, we investigated the differential effects of MA use on dental caries by comparing the patterns of decayed, missing, and filled teeth in a community sample of 571 MA users with a subset of 2,755 demographically similar control individuals selected from a National Health and Nutrition Examination Survey (NHANES) cohort. Recruited over a 2-y period with a stratified sampling protocol, the MA users underwent comprehensive dental examinations by 3 trained and calibrated dentists using NHANES protocols. Propensity scores were estimated with logistic regression based on background characteristics, and a subset of closely matched subjects was stratified into quintiles for comparisons. MA users were twice as likely to have untreated caries (odds ratio [OR] = 2.08; 95% confidence interval [95% CI]: 1.55 to 2.78) and 4 times more likely to have caries experience (OR = 4.06; 95% CI: 2.24 to 7.34) than the control group of NHANES participants. Additionally, MA users were twice as likely to have 2 more decayed, missing, or filled teeth (OR = 2.08; 95% CI: 1.29 to 2.79) than the NHANES participants. The differential involvement of the teeth surfaces in MA users was quite distinctive, with carious surface involvement being highest for the maxillary central incisors, followed by maxillary posterior premolars and molars. Users injecting MA had significantly higher rates of tooth decay compared with noninjectors (P = 0.04). Although MA users experienced decayed and missing dental surfaces more frequently than NHANES participants, NHANES participants had more restored surfaces, especially on molars. The high rates and distinctive patterns of dental caries observed could be used 1) to alert dentists to covert MA use in their patients and 2) as the basis for comprehensive management strategies. © International & American Associations for Dental Research 2016.
NASA Astrophysics Data System (ADS)
Liu, Lilai; An, Maozhong; Yang, Peixia; Zhang, Jinqiu
2015-03-01
SnO2/graphene composite with superior cycle performance and high reversible capacity was prepared by a one-step microwave-hydrothermal method using a microwave reaction system. The SnO2/graphene composite was characterized by X-ray diffraction, thermogravimetric analysis, Fourier-transform infrared spectroscopy, Raman spectroscopy, scanning electron microscope, X-ray photoelectron spectroscopy, transmission electron microscopy and high resolution transmission electron microscopy. The size of SnO2 grains deposited on graphene sheets is less than 3.5 nm. The SnO2/graphene composite exhibits high capacity and excellent electrochemical performance in lithium-ion batteries. The first discharge and charge capacities at a current density of 100 mA g-1 are 2213 and 1402 mA h g-1 with coulomb efficiencies of 63.35%. The discharge specific capacities remains 1359, 1228, 1090 and 1005 mA h g-1 after 100 cycles at current densities of 100, 300, 500 and 700 mA g-1, respectively. Even at a high current density of 1000 mA g-1, the first discharge and charge capacities are 1502 and 876 mA h g-1, and the discharge specific capacities remains 1057 and 677 mA h g-1 after 420 and 1000 cycles, respectively. The SnO2/graphene composite demonstrates a stable cycle performance and high reversible capacity for lithium storage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Branitsky, A. V.; Grabovski, E. V.; Dzhangobegov, V. V.
The state of conductors carrying a megampere current from the generator to the load is studied experimentally. It is found that the plasma produced from cylindrical stainless-steel tubes during the passage of a submicrosecond current pulse with a linear density of 3 MA/cm expands with a velocity of 5.5 km/s. Numerical results on the diffusion of the magnetic field induced by a current with a linear density of 1–3MA/cm into metal electrodes agree with the experimental data on the penetration time of the magnetic field. For a linear current density of 3.1 MA/cm, the experimentally determined electric field strength onmore » the inner surface of the tube is 4 kV/cm. The calculated electric field strength on the inner surface of the tube turns out to be two times higher, which can be explained by plasma production on the outer and inner surfaces of the electrode.« less
Blocking Effects of Human Tau on Squid Giant Synapse Transmission and Its Prevention by T-817 MA
Moreno, Herman; Choi, Soonwook; Yu, Eunah; Brusco, Janaina; Avila, Jesus; Moreira, Jorge E.; Sugimori, Mutsuyuki; Llinás, Rodolfo R.
2011-01-01
Filamentous tau inclusions are hallmarks of Alzheimer's disease and related neurodegenerative tauopathies, but the molecular mechanisms involved in tau-mediated changes in neuronal function and their possible effects on synaptic transmission are unknown. We have evaluated the effects of human tau protein injected directly into the presynaptic terminal axon of the squid giant synapse, which affords functional, structural, and biochemical analysis of its action on the synaptic release process. Indeed, we have found that at physiological concentration recombinant human tau (h-tau42) becomes phosphorylated, produces a rapid synaptic transmission block, and induces the formation of clusters of aggregated synaptic vesicles in the vicinity of the active zone. Presynaptic voltage clamp recordings demonstrate that h-tau42 does not modify the presynaptic calcium current amplitude or kinetics. Analysis of synaptic noise at the post-synaptic axon following presynaptic h-tau42 microinjection revealed an initial phase of increase spontaneous transmitter release followed by a marked reduction in noise. Finally, systemic administration of T-817MA, a proposed neuro-protective agent, rescued tau-induced synaptic abnormalities. Our results show novel mechanisms of h-tau42 mediated synaptic transmission failure and identify a potential therapeutic agent to treat tau-related neurotoxicity. PMID:21629767
Performance of an electron gun for a high-brightness X-ray generator.
Sugimura, Takashi; Ohsawa, Satoshi; Ikeda, Mitsuo
2008-05-01
A prototype thermionic electron gun for a high-brightness X-ray generator has been developed. Its extraction voltage and design current are 60 kV and 100 mA (DC), respectively. The X-ray generator aims towards a maximum brilliance of 60 kW mm(-2). The beam sizes at the rotating anticathode must therefore be within 1.0 mm x 0.1 mm and a small beam emittance is required. The fabricated electron gun optimizes an aperture grid and a Whenelt electrode. The performance of the prototype electron gun measured using pulsed-beam tests is as follows: maximum beam current, 85.7 mA; beam focus size at the rotating anticathode, 0.79 mm x 0.13 mm. In DC beam tests, FWHM beam sizes were measured to be 0.65 mm x 0.08 mm at the rotating anticathode with a beam current of 45 mA. The beam current recently reached approximately 60 mA with some thermal problems.
NASA Astrophysics Data System (ADS)
Zhao, Ruipeng; Liu, Qing; Xia, Yudong; Tang, Hao; Lu, Yuming; Cai, Chuanbing; Tao, Bowan; Li, Yanrong
2018-01-01
A narrow channel reaction chamber is designed in our home-made MOCVD system and applied to deposit GdYBCO films on the template of LaMnO3/epitaxial MgO/IBAD-MgO/solution deposition planarization-Y2O3-buffered Hastelloy tapes. In the reaction chamber, metal organic sources are transferred from the inlet to the outlet along the direction of the tape movement. Thus, compared to the vertical injection way of metal organic sources, the residence time of metal organic sources on the surface of substrates would be extended through adopting the novel reaction chamber. Therefore, the utilization of metal organic sources, which is calculated according to the measured results of experiments, can reach 31%. Additionally, the utilization ratio of metal organic sources based on the novel reaction chamber is basically two times as much as that of the commonly used vertical injection slit shower. What is more, through adjusting the process, the critical current density of 300 nm thick GdYBCO film prepared the reel-to-reel way has reached 3.2 MA cm-2 (77 K, 0 T).
Foundering Triggered by the Collision of India and Asia Captured in Xenoliths
NASA Astrophysics Data System (ADS)
Shaffer, Madeline; Hacker, Bradley R.; Ratschbacher, Lothar; Kylander-Clark, Andrew R. C.
2017-10-01
Xenoliths that erupted in the SE Pamir of Tajikistan from 1000 to 1050°C and 90 km depth illuminate what happens when crust founders into the mantle. 40Ar/39Ar dating of minerals from the xenoliths and volcanic host rocks of the shoshonitic Dunkeldik pipe and dike field indicates eruption at 11.2 ± 0.2 Ma. U-Pb and trace element laser-ablation split stream inductively coupled plasma mass spectrometry of zircon shows that the igneous and metasedimentary xenoliths were likely derived from the crustal section into which they were intruded: the Jurassic-Cretaceous Andean-style magmatic arc and its Proterozoic-Mesozoic host rocks along the southern margin of Asia. Recrystallization of these zircons was extensive, yielding a range of dates down to 11 Ma. The zircons show distinct changes in Eu anomaly, Lu/Gd ratio, and Ti concentrations compatible with garnet growth and minimal heating at 22-20 Ma and then 200-300°C of heating, 25 km of burial, and alkali-carbonate melt injection at 14-11 Ma. These changes are interpreted to coincide with (i) heat input due to Indian slab breakoff at 22-20 Ma and (ii) rapid thickening and foundering of the Pamir lithosphere at 14-11 Ma, prior to and synchronous with collision between deep Indian and Asian lithospheres beneath the Pamir.
Hughes, Nicola; Bennett, Michael I; Johnson, Mark I
2013-02-01
Strong nonpainful transcutaneous electrical nerve stimulation (TENS) is prerequisite to a successful analgesic outcome although the ease with which this sensation is achieved is likely to depend on the magnitude of current amplitude (mA) between sensory detection threshold (SDT) and pain threshold, that is, the current window. To measure the current window and participant's perception of the comfort of the TENS sensation at different body sites. A repeated measure cross-over study was conducted using 30 healthy adult volunteers. Current amplitudes (mA) of TENS [2 pulses per second (pps); 30 pps; 80 pps] at SDT, pain threshold, and strong nonpainful intensities were measured at the tibia (bone), knee joint (connective tissue), lower back [paraspinal (skeletal) muscle], volar surface of forearm (nerve) and waist (fat). The amplitude to achieve a strong nonpainful intensity was represented as a percentage of the current window. Data were analyzed using repeated measures analysis of variance. Effects were detected for body site and frequency for SDT (P<0.001, P=0.018, respectively), current window (P<0.001, P<0.001, respectively), and strong nonpainful TENS as a percentage of the current window (P=0.002, P<0.001, respectively). The current window was larger for the knee joint compared with tibia (difference [95% confidence interval]=12.76 mA [4.25, 21.28]; P=0.001) and forearm (10.33 mA [2.62, 18.40]; P=0.006), and for the lower back compared with tibia (12.10 mA [1.65, 22.52]; P=0.015) and forearm (9.65 mA [1.06, 18.24]; P=0.019). The current window was larger for 2 pps compared with 30 pps (P<0.001) and 80 pps (P<0.001). Participants rated strong nonpainful TENS as most comfortable at the lower back (P<0.001) and least comfortable at the tibia and forearm (P<0.001). TENS is most comfortable and easiest to titrate to a strong nonpainful intensity when applied over areas of muscle and soft tissue.
Ranaldi, R; Anderson, K G; Carroll, F I; Woolverton, W L
2000-12-01
The neuronal actions of methamphetamine (MA) include an increase in extracellular levels of monoamines, presumably via reverse transport involving the monoamine transporters. This action is thought to play an important role in the effects of MA. Therefore, in the present experiment, it was hypothesized that a monoamine uptake blocker would block behavioral effects of MA related to its abuse. RTI 111, a newly synthesized 3-phenyltropane analog with high affinity for the dopamine, norepinephrine, and serotonin transporters, was evaluated alone and in combination with MA for its ability to block the reinforcing and discriminative stimulus effects of MA in rhesus monkeys. RTI 111 (0.0003-0.03 mg/kg, i.v.) was made available to four rhesus monkeys for self-administration under a fixed-ratio 25 (FR 25) schedule of reinforcement. RTI 111 (0.01-0.1 mg/kg, i.m.) was also administered as a pretreatment (15 min prior) to four monkeys self-administering MA (0.0-0.3 mg/kg per injection, i.v.) on a progressive-ratio schedule of reinforcement. MA (0.01-1.0 mg/kg, i.m.), RTI 111 (0.001-0.1 mg/kg, i.m.), or the combination of MA and RTI 111 were administered to four monkeys trained to discriminate (+)-amphetamine (AMPH; 1.0 or 1.7 mg/kg, intragastric) from saline. When RTI 111 was made available for self-administration under an FR 25 schedule it functioned as a positive reinforcer in all four monkeys tested. When RTI 111 was given as a pretreatment to monkeys self-administering MA under a progressive-ratio schedule, the MA dose-response function shifted to the left and down. When RTI 111 or MA were given to monkeys trained to discriminate AMPH from saline, full AMPH-like responding was observed for both drugs. Given in combination, RTI 111 shifted the MA dose-response function to the left. These data suggest that RTI 111 is behaviorally similar to traditional psychomotor stimulants that act at the DA transporter and that it increases, rather than blocks, the behavioral potency of MA.
Kang, Ji Hye; Kim, Hyung Gu; Chandramohan, S; Kim, Hyun Kyu; Kim, Hee Yun; Ryu, Jae Hyoung; Park, Young Jae; Beak, Yun Seon; Lee, Jeong-Sik; Park, Joong Seo; Lysak, Volodymyr V; Hong, Chang-Hee
2012-01-01
The effect of triangular air prism (TAP) arrays with different distance-to-width (d/w) ratios on the enhancement of light extraction efficiency (LEE) of InGaN light-emitting diodes (LEDs) is investigated. The TAP arrays embedded at the sapphire/GaN interface act as light reflectors and refractors, and thereby improve the light output power due to the redirection of light into escape cones on both the front and back sides of the LED. Enhancement in radiometric power as high as 117% and far-field angle as low as 129° are realized with a compact arrangement of TAP arrays compared with that of a conventional LED made without TAP arrays under an injection current of 20 mA. © 2012 Optical Society of America
NASA Astrophysics Data System (ADS)
Kuwano, Yuka; Kaga, Mitsuru; Morita, Takatoshi; Yamashita, Kouji; Yagi, Kouta; Iwaya, Motoaki; Takeuchi, Tetsuya; Kamiyama, Satoshi; Akasaki, Isamu
2013-08-01
We demonstrated lateral Mg activation along p-GaN layers underneath n-GaN surface layers in nitride-based light emitting diodes (LEDs) with GaInN tunnel junctions. A high temperature thermal annealing was effective for the lateral Mg activation when the p-GaN layers were partly exposed to an oxygen ambient as etched sidewalls. The activated regions gradually extended from the etched sidewalls to the centers with an increase of annealing time, observed as emission regions with current injection. These results suggest that hydrogen diffuses not vertically thorough the above n-GaN but laterally through the exposed portions of the p-GaN. The lowest voltage drop at the GaInN tunnel junction was estimated to be 0.9 V at 50 mA with the optimized annealing condition.
Effects of acepromazine or methadone on midazolam-induced behavioral reactions in dogs
Simon, Bradley T.; Scallan, Elizabeth M.; Siracusa, Carlo; Henderson, Amy; Sleeper, Meg M.; Larenza Menzies, M. Paula
2014-01-01
This study evaluated whether acepromazine or methadone reduced behavioral parameters, overall excitement, and activity associated with midazolam administration to healthy dogs. Dogs received midazolam (M) alone [M: 0.25 mg/kg body weight (BW)] or with methadone (MM) (MM: 0.75 mg/kg BW) or acepromazine (MA) (MA: 0.03 mg/kg BW) or saline (S) solution alone, all intramuscularly. Two blinded observers evaluated behavioral parameters using video recordings 30 min before and after injection of drugs. Accelerometery was used to evaluate “total activity counts” (TAC) at baseline and post-treatment. Post-treatment excitement scores were significantly higher in M and MA compared to baseline, M and MM compared to S, and M compared to MA. Behavioral parameters showed significantly higher proportions of “pacing” post-treatment in all groups receiving midazolam, and “restlessness,” “chewing/licking,” and “sniffing” in M. No significant differences were found for TAC at baseline and post-treatment. Midazolam-induced paradoxical behavioral changes (excitation, panting, pacing, restlessness, licking/chewing, and vocalization) were not prevented by acepromazine or methadone in healthy dogs. PMID:25183896
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakar, Khomsaton Abu; Zulkafli,; Hashim, Siti A'aisah
2014-09-03
In this study, electron beam accelerator (EB) was used to treat textiles wastewater from Rawang Industrial Park, Selangor. The objectives were to determine effective energy, beam current and absorbed dose required for decoloration and degradation of the textiles effluent. The textiles effluent was irradiated in a batch with various energy of 1MeV to 3MeV at constant beam current of 30mA. It was observed that removal of color and COD increases with higher beam energy. The EB energy of 1MeV effectively to removed 58% color and 19% COD. For textile effluent sample irradiated at fix energy of 1MeV and 3Mev butmore » at different beam current 10mA, 20mA and 30mA. It was observed that removal of color and COD increases with the increased of beam current at each energy. However removal of color was significantly better at 1Mev as compared to 3Mev. In the case of textiles effluent, irradiated at doses of 17, 20,25,30, 35, 100 and 200kGy using 30 kW power of EB (1Mev, 30mA), results shows removal of BOD{sub 5}, COD and color were in the range 9%-33%, 14%-38% and 43%-78% respectively.« less
All-MOCVD-grown BH laser on P-InP substrates
NASA Astrophysics Data System (ADS)
Nishimura, Tadashi; Ishimura, E.; Nakajima, Yasuo; Tada, Hitoshi; Kimura, T.; Ohkura, Y.; Goto, Katsuhiko; Omura, Etsuji; Aiga, Masao
1993-07-01
A very low cw threshold current of 2.5 mA ( 25 degree(s)C) and 8.0 mA ( 80 degree(s)C) with high reliability has been realized in the all-MOCVD grown BH lasers on p-InP substrates. A strained MQW active layer of 1.3 micrometers wavelength and the precise carrier confinement buried structure by MOCVD is employed for the BH lasers. The excellent potential of long lifetime of the all-MOCVD grown laser has also been confirmed. After the high temperature and the high current (100 degree(s)C, 200 mA) aging test, no significant degradation is observed which is comparable with the well-established LPE grown lasers. The BH laser is also operating stably over 3700 hrs under the APC condition of 50 degree(s)C, 10 mW. Finally, an extremely uniform 10-element all-MOCVD grown LD array is demonstrated, which has the threshold current uniformity of 2.4 +/- 0.1 mA ( 25 degree(s)C) and 9.2 +/- 0.2 mA ( 80 degree(s)C). The growth mechanism in the MOCVD is also described.
Low-power transcutaneous current stimulator for wearable applications.
Karpul, David; Cohen, Gregory K; Gargiulo, Gaetano D; van Schaik, André; McIntyre, Sarah; Breen, Paul P
2017-10-03
Peripheral neuropathic desensitization associated with aging, diabetes, alcoholism and HIV/AIDS, affects tens of millions of people worldwide, and there is little or no treatment available to improve sensory function. Recent studies that apply imperceptible continuous vibration or electrical stimulation have shown promise in improving sensitivity in both diseased and healthy participants. This class of interventions only has an effect during application, necessitating the design of a wearable device for everyday use. We present a circuit that allows for a low-power, low-cost and small form factor implementation of a current stimulator for the continuous application of subthreshold currents. This circuit acts as a voltage-to-current converter and has been tested to drive + 1 to - 1 mA into a 60 k[Formula: see text] load from DC to 1 kHz. Driving a 60 k[Formula: see text] load with a 2 mA peak-to-peak 1 kHz sinusoid, the circuit draws less than 21 mA from a 9 V source. The minimum operating current of the circuit is less than 12 mA. Voltage compliance is ± 60 V with just 1.02 mA drawn by the high voltage current drive circuitry. The circuit was implemented as a compact 46 mm × 21 mm two-layer PCB highlighting its potential for use in a body-worn device. No design to the best of our knowledge presents comparably low quiescent power with such high voltage compliance. This makes the design uniquely appropriate for low-power transcutaneous current stimulation in wearable applications. Further development of driving and instrumentation circuitry is recommended.
PIC simulation of the vacuum power flow for a 5 terawatt, 5 MV, 1 MA pulsed power system
NASA Astrophysics Data System (ADS)
Liu, Laqun; Zou, Wenkang; Liu, Dagang; Guo, Fan; Wang, Huihui; Chen, Lin
2018-03-01
In this paper, a 5 Terawatt, 5 MV, 1 MA pulsed power system based on vacuum magnetic insulation is simulated by the particle-in-cell (PIC) simulation method. The system consists of 50 100-kV linear transformer drive (LTD) cavities in series, using magnetically insulated induction voltage adder (MIVA) technology for pulsed power addition and transmission. The pulsed power formation and the vacuum power flow are simulated when the system works in self-limited flow and load-limited flow. When the pulsed power system isn't connected to the load, the downstream magnetically insulated transmission line (MITL) works in the self-limited flow, the maximum of output current is 1.14 MA and the amplitude of voltage is 4.63 MV. The ratio of the electron current to the total current is 67.5%, when the output current reached the peak value. When the impedance of the load is 3.0 Ω, the downstream MITL works in the self-limited flow, the maximums of output current and the amplitude of voltage are 1.28 MA and 3.96 MV, and the ratio of the electron current to the total current is 11.7% when the output current reached the peak value. In addition, when the switches are triggered in synchronism with the passage of the pulse power flow, it effectively reduces the rise time of the pulse current.
Wee, J Y; Hopman, W M
2008-01-01
A relationship between smoking and development of pain syndromes has been suggested in the literature. The present study examined associations between smoke exposure and other related variables, and pain response to suprathreshold electrical stimulation. Subjects were prospectively recruited from a population referred to an electrodiagnostic clinic. Information about age, smoke exposure, caffeine and alcohol consumption was obtained, as well as documented objective signs of stress through physical assessment. One investigator applied two standardized 0.1 ms electrical stimulations (50 mA followed by 100 mA) to asymptomatic extremities at the beginning of each electrodiagnostic session, using consistent technique. Subjects used a visual analogue scale to indicate the level of pain felt after each stimulation. Two hundred fifteen women were included. Current smokers and those currently exposed to second-hand smoke had significantly higher pain ratings (P=0.003 for 50 mA, P=0.005 for 100 mA) than those not currently exposed to smoke. Time since exposure was negatively associated with pain ratings. Those with objective signs of stress reported higher levels of pain, which was significant for the 100 mA stimulation (P=0.046). Linear regression modelling indicated that current smoke exposure and alcohol use were associated with higher pain ratings at both 50 mA and 100 mA, while stress was associated with higher pain ratings and older age was associated with lower pain ratings at 100 mA only. Exposure to cigarette smoke is significantly related to higher reported levels of pain experienced in response to electrical stimulation in this study population. Exposure to smoke can add 10 points to the 100-point visual analogue scale compared with subjects without exposure, with alcohol use adding another eight points. Reported pain decreases as length of time since previous exposure to smoke increases.
Zheng, Lei; ZhuGe, De-Li; Chen, Bin; Lu, Cui-Tao; Yuan, Jian-Jun; Zhao, Ying-Zheng
2017-01-01
The present study seeks to observe the preventive effects of doxorubicin-induced cardiomyopathy (DOX-CM) in rats using targeted non-mitogenic acidic fibroblast growth factor (MaFGF) mediated by nanoparticles (NP) combined with ultrasound-targeted MB destruction (UTMD). DOX-CM rats were induced by intraperitoneally injected doxorubicin. Six weeks after intervention, the indices from the transthoracic echocardiography and velocity vector imaging showed that the left ventricular function in the MaFGF-loaded NP (MaFGF-NP) + UTMD group was significantly improved compared with the DOX-CM group. The increased malondialdehyde and decreased superoxide dismutase were observed in the DOX-CM group, while a significant increase in superoxide dismutase and a decrease in malondialdehyde were detected in the groups treated with MaFGF-NP + UTMD. From the Masson staining, the MaFGF-NP + UTMD group showed a significant difference from the DOX-CM group. The cardiac collagen volume fraction and the ratio of the perivascular collagen area to the luminal area number of terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labelling positive cells in the MaFGF-NP + UTMD group decreased to 8.9%, 0.55-fold, compared with the DOX-CM group (26.5%, 1.7-fold). From terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labelling staining, the results showed the strongest inhibition of apoptosis progress in MaFGF-NP + UTMD group. The immunohistochemical staining of the TGF-β1 in MaFGF-NP + UTMD group reached 3.6%, which was much lower than that of the DOX-CM group (12.6%). These results confirmed that the abnormalities, including left ventricular dysfunction, myocardial fibrosis, cardiomyocytes apoptosis and oxidative stress, could be suppressed by twice weekly MaFGF treatments for 6 consecutive weeks (free MaFGF or MaFGF-NP+/UTMD), with the strongest improvements observed in the MaFGF-NP + UTMD group. Western blot analyses of the heart tissue further revealed the highest pAkt levels, highest anti-apoptosis protein (Bcl-2) levels and strongest reduction in proapoptosis protein (Bax) levels in the MaFGF-NP + UTMD group. This study confirmed the preventive effects of DOX-CM in the rats with MaFGF-NP and UTMD by retarding myocardial fibrosis, inhibiting oxidative stress, and decreasing cardiomyocyte apoptosis. PMID:29026304
Christopher J. Fettig; Roger E. Burnside; Mark E. Schultz
2013-01-01
Ambermarked birch leafminer, Profenusa thomsoni (Konow) (Hymenoptera: Tenthredinidae), is an exotic, invasive pest of urban and wildland birch. We initiated a study near Fairbanks, Alaska to determine the efficacy of emamectin benzoate (TREE-äge®, Arborjet Inc., Woburn, MA) for control of P. thomsoni on paper...
Holographic Memory Devices with Injection Lasers,
1981-02-09
0.1%. In addition, the large size of these lasers and the necessity of using high voltages for their charging make it more difficult to construct minia...IfflIaev ep*y isych kazeruw na woasoawimaj fazowych pwauuu, Kwant . Elekir., I (3974),1 .-. 12. M.A. Msjotcz . W.D. Samoiow, 1Pxd&**~W p pri zapial i
Tan, Xinyi; Zhong, Yue; He, Luying; Zhang, Yuanyuan; Jing, Guanghui; Li, Song; Wang, Jing; He, Haibing; Tang, Xing
2017-05-01
Many formulation and manufacturing processes can lead to morphological and crystalline transitions in many polycrystalline drugs, changing the properties of active pharmaceutical ingredients (APIs) such as solubility and physical stability which influence their therapeutic effects and safety and so limit their usefulness. Here, we report significant changes in crystal forms and morphology, including the shape and size of particles during the manufacture of off-white aripiprazole (APZ) dry powders used for long-acting and injectable suspensions. With the optimal top-down approach, powders were prepared by recrystallizing uniform monohydrous APZ (MA) and polycrystalline anhydrous APZ (AA) form III, characterized by thermal analysis, PXRD, and FT-IR. However, powders involving MA (MAP) with a lower mean size (2.126 μm), narrower distribution (span = 1.90), and higher stability compared with AA dry powders (AAP) were found to exhibit dehydration behavior and morphological changes after completion of the preparation processes based on the results of thermal analysis. In the case of APZ powders, we wished to obtain more information to guide in the industrial production and experimental design of suspensions in the future.
Li, Jiyu; Liu, Bin; Zhou, Yingying; Chen, Zhipeng; Jiang, Lelun; Yuan, Wei; Liang, Liang
2017-01-01
Microneedle arrays (MA) have been extensively investigated in recent decades for transdermal drug delivery due to their pain-free delivery, minimal skin trauma, and reduced risk of infection. However, porous MA received relatively less attention due to their complex fabrication process and ease of fracturing. Here, we present a titanium porous microneedle array (TPMA) fabricated by modified metal injection molding (MIM) technology. The sintering process is simple and suitable for mass production. TPMA was sintered at a sintering temperature of 1250°C for 2 h. The porosity of TPMA was approximately 30.1% and its average pore diameter was about 1.3 μm. The elements distributed on the surface of TPMA were only Ti and O, which may guarantee the biocompatibility of TPMA. TPMA could easily penetrate the skin of a human forearm without fracture. TPMA could diffuse dry Rhodamine B stored in micropores into rabbit skin. The cumulative permeated flux of calcein across TPMA with punctured skin was 27 times greater than that across intact skin. Thus, TPMA can continually and efficiently deliver a liquid drug through open micropores in skin.
Porous nitrogen-doped carbon microspheres as anode materials for lithium ion batteries.
Chen, Taiqiang; Pan, Likun; Loh, T A J; Chua, D H C; Yao, Yefeng; Chen, Qun; Li, Dongsheng; Qin, Wei; Sun, Zhuo
2014-10-28
Nitrogen-doped carbon microspheres (NCSs) were fabricated via a simple, fast and energy-saving microwave-assisted method followed by thermal treatment under an ammonia atmosphere. NCSs thermally treated at different temperatures were investigated as anode materials for lithium ion batteries (LIBs). The results show that NCSs treated at 900 °C exhibit a maximum reversible capacity of 816 mA h g(-1) at a current density of 50 mA g(-1) and preserve a capacity of 660 mA h g(-1) after 50 cycles, and even at a high current density of 1000 mA g(-1), a capacity of 255 mA h g(-1) is maintained. The excellent electrochemical performance of NCSs is due to their porous structure and nitrogen-doping. The present NCSs should be promising low-cost anode materials with a high capacity and good cycle stability for LIBs.
Sun, Z; Al Ghamdi, KS; Baroum, IH
2012-01-01
Purpose: To investigate whether the multislice CT scanning protocols of head, chest and abdomen are adjusted according to patient’s age in paediatric patients. Materials and Methods: Multislice CT examination records of paediatric patients undergoing head, chest and abdomen scans from three public hospitals during a one-year period were retrospectively reviewed. Patients were categorised into the following age groups: under 4 years, 5–8 years, 9–12 years and 13–16 years, while the tube current was classified into the following ranges: < 49 mA, 50–99 mA, 100–149 mA, 150–199 mA, > 200 mA and unknown. Results: A total of 4998 patient records, comprising a combination of head, chest and abdomen CT scans, were assessed, with head CT scans representing nearly half of the total scans. Age-based adjusted CT protocols were observed in most of the scans with higher tube current setting being used with increasing age. However, a high tube current (150–199 mA) was still used in younger patients (0–8 years) undergoing head CT scans. In one hospital, CT protocols remained constant across all age groups, indicating potential overexposure to the patients. Conclusion: This analysis shows that paediatric CT scans are adjusted according to the patient’s age in most of the routine CT examinations. This indicates increased awareness regarding radiation risks associated with CT. However, high tube current settings are still used in younger patient groups, thus, optimisation of paediatric CT protocols and implementation of current guidelines, such as age-and weight-based scanning, should be recommended in daily practice. PMID:22970059
DOE Office of Scientific and Technical Information (OSTI.GOV)
Branitskii, A. V.; Grabovskii, E. V.; Dzhangobegov, V. V.
The states of current-carrying elements at the transmission of megaampere current into load are studied. It is determined that the expansion velocity of plasma generated at the outer surface of cylindrical tubes produced of stainless steel, at flowing through them of submicrosecond current pulses with linear density of 3 MA/cm is 5.5 km/s. The evolution of various modes of instability is analyzed.
NASA Astrophysics Data System (ADS)
Movahednejad, E.; Ommi, F.; Nekofar, K.
2013-04-01
The structures of the port injector spray dominates the mixture preparation process and strongly affect the subsequent engine combustion characteristics over a wide range of operating conditions in port-injection gasoline engines. All these spray characteristics are determined by particular injector design and operating conditions. In this paper, an experimental study is made to characterize the breakup mechanism and spray characteristics of a injector with multi-disc nozzle (SAGEM,D2159MA). A comparison was made on injection characteristics of the multi-hole injectors and its effects on various fuel pressure and temperature. The distributions of the droplet size and velocity and volume flux were characterized using phase Doppler anemometry (PDA) technique. Through this work, it was found that the injector produces a finer spray with a wide spray angle in higher fuel pressure and temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Provoost, A.P.; Van Aken, M.
1984-01-01
In the healthy kidney Tc-99m DMSA accumulates in the proximal tubular cells. Consequently, impairment of the reabsorptive function of these cells may alter the renal handling of this static renal imaging agent. The authors investigated in rats the effects of a sodiummaleate (Ma) (2mmol/kg iv) induced proximal tubular dysfunction on the renal accumulation and excretion of Tc-99m DMSA. Such a treatment results in a moderate fall of the glomerular filtration rate, glycosuria, aminoaciduria and a tubular proteinuria. In 7 adult male Wistar rats, Tc-99m DMSA scans were taken before Ma, on the day of treatment, and 1 week thereafter. Themore » accumulation of Tc-99m DMSA in kidneys (Ki) and bladder (Bl) was determined at 1, 2, 4, and 24 hours after i.v. injection. The results, expressed as a percentage of the injected dose, are presented. The findings show that a reversible Ma induced impairment of the proximal reabsorptive capacity severely alters the renal tubular handling of Tc-99m DMSA. In contrast to the control situation, only a small fraction of the DMSA is retained in the kidney and the majority is transported directly to the urinary bladder. When similar alterations are observed in clinical Tc-99m DMSA scans, this may be an indication of an impairment of the proximal tubular function.« less
ERIC Educational Resources Information Center
Roth, Daniel
2017-01-01
Although vocabulary instruction is a pressing need for postsecondary reading instructors, a minimal amount of current postsecondary scholarship addresses this need, and almost no current scholarship addresses the textbook tradition of morphemic analysis (MA). The present article reviews the literature on MA instruction and argues for teaching MA…
Xu, Hui-Wei; Zhang, Xu; Yang, Shan-Shan; Li, Guang-He
2009-07-15
Microbial sulfate reduction rate is limited with H2 as electron donor. In order to improve hydrogenotrophic sulfate reduction under normal atmospheric H2 pressure, a bio-electrochemical system with direct current was designed and performed in this study. Results indicates that sulfate reduction rate (SRR) increases with the augment of current intensity under lower current intensity (I < or = 1.50 mA). When optimum current intensity of 1.50 mA is applied, the SRR is 1.7 to 2.1 times higher than that of the control reactor. The synergistic effect of electrochemistry and microbiology on sulfate reduction varies at different current intensity. Under the condition of I < or = 1.50 mA, the most probable mechanism of SRR increase is that electric or magnetic field stimulates the proliferation of sulfate-reducing bacteria (SRB) and the activity of the enzymes. When I is higher than 1.50 mA, the activity of SRB is inhibited, resulting in lower reduction rate compared with that at lower current. If controlling the cathode potential lower than -0.69 V and H2 partial pressure 1.01 x 10(5) Pa, electro-catalytic sulfate reduction process takes place with H2 as reductant in this bio-electrochemical system. However, the overall reduction rate is still lower than that when I = 1.50 mA is applied, and additionally the energy consumption is much higher. Therefore, electric field of low intensity can enhance hydrogenotrophic sulfate reduction in the presence of H2 under atmospheric pressure.
Demonstration and properties of a planar heterojunction bipolar transistor with lateral current flow
NASA Astrophysics Data System (ADS)
Thornton, Robert L.; Mosby, William J.; Chung, Harlan F.
1989-10-01
The authors present fabrication techniques and device performance for a novel transistor structure, the lateral heterojunction bipolar transistor. The lateral heterojunctions are formed by impurity-induced disordering of a GaAs base layer sandwiched between two AlGaAs layers. These transistor structures exhibit current gains of 14 for base widths of 0.74 micron. Transistor action in this device occurs parallel to the surface of the device structure. The active base region of the structure is completely submerged, resulting in a reduction of surface recombination as a mechanism for gain reduction in the device. Impurity-induced disordering is used to widen the bandgap of the alloy in the emitter and collector, resulting in an improvement of the emitter injection efficiency. Since the device is based entirely on a surface diffusion process, the device is completely planar and has no steps involving etching of the III-V alloy material. These advantages lead this device to be considered as a candidate for optoelectronic integration applications. The transistor device functions as a buried heterostructure laser, with a threshold current as low as 6 mA for a 1.4-micron stripe.
High current DC negative ion source for cyclotron.
Etoh, H; Onai, M; Aoki, Y; Mitsubori, H; Arakawa, Y; Sakuraba, J; Kato, T; Mitsumoto, T; Hiasa, T; Yajima, S; Shibata, T; Hatayama, A; Okumura, Y
2016-02-01
A filament driven multi-cusp negative ion source has been developed for proton cyclotrons in medical applications. In Cs-free operation, continuous H(-) beam of 10 mA and D(-) beam of 3.3 mA were obtained stably at an arc-discharge power of 3 kW and 2.4 kW, respectively. In Cs-seeded operation, H(-) beam current reached 22 mA at a lower arc power of 2.6 kW with less co-extracted electron current. The optimum gas flow rate, which gives the highest H(-) current, was 15 sccm in the Cs-free operation, while it decreased to 4 sccm in the Cs-seeded operation. The relationship between H(-) production and the design/operating parameters has been also investigated by a numerical study with KEIO-MARC code, which gives a reasonable explanation to the experimental results of the H(-) current dependence on the arc power.
Constraints on the magnitude and rate of CO2 dissolution at Bravo Dome natural gas field
Sathaye, Kiran J.; Hesse, Marc A.; Cassidy, Martin; Stockli, Daniel F.
2014-01-01
The injection of carbon dioxide (CO2) captured at large point sources into deep saline aquifers can significantly reduce anthropogenic CO2 emissions from fossil fuels. Dissolution of the injected CO2 into the formation brine is a trapping mechanism that helps to ensure the long-term security of geological CO2 storage. We use thermochronology to estimate the timing of CO2 emplacement at Bravo Dome, a large natural CO2 field at a depth of 700 m in New Mexico. Together with estimates of the total mass loss from the field we present, to our knowledge, the first constraints on the magnitude, mechanisms, and rates of CO2 dissolution on millennial timescales. Apatite (U-Th)/He thermochronology records heating of the Bravo Dome reservoir due to the emplacement of hot volcanic gases 1.2–1.5 Ma. The CO2 accumulation is therefore significantly older than previous estimates of 10 ka, which demonstrates that safe long-term geological CO2 storage is possible. Integrating geophysical and geochemical data, we estimate that 1.3 Gt CO2 are currently stored at Bravo Dome, but that only 22% of the emplaced CO2 has dissolved into the brine over 1.2 My. Roughly 40% of the dissolution occurred during the emplacement. The CO2 dissolved after emplacement exceeds the amount expected from diffusion and provides field evidence for convective dissolution with a rate of 0.1 g/(m2y). The similarity between Bravo Dome and major US saline aquifers suggests that significant amounts of CO2 are likely to dissolve during injection at US storage sites, but that convective dissolution is unlikely to trap all injected CO2 on the 10-ky timescale typically considered for storage projects. PMID:25313084
PIP-II Injector Test Warm Front End: Commissioning Update
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prost, Lionel R.; et al.
The Warm Front End (WFE) of the Proton Improvement Plan II Injector Test [1] at Fermilab has been constructed to its full length. It includes a 15-mA DC, 30-keV H- ion source, a 2 m-long Low Energy Beam Transport (LEBT) with a switching dipole magnet, a 2.1 MeV CW RFQ, followed by a Medium Energy Beam Transport (MEBT) with various diagnostics and a dump. This report presents the commissioning status, focusing on beam measurements in the MEBT. In particular, a beam with the parameters required for injection into the Booster (5 mA, 0.55 ms macro-pulse at 20 Hz) was transportedmore » through the WFE.« less
Bacteriophage PRD1 and silica colloids were co-injected into
sewage-contaminated and uncontaminated zones of an iron oxide-coated sand
aquifer on Cape Cod, MA, and their transport was monitored over distances up to
6 m in three arrays. After deposition, the attache...
A large-area RF source for negative hydrogen ions
NASA Astrophysics Data System (ADS)
Frank, P.; Feist, J. H.; Kraus, W.; Speth, E.; Heinemann, B.; Probst, F.; Trainham, R.; Jacquot, C.
1998-08-01
In a collaboration with CEA Cadarache, IPP is presently developing an rf source, in which the production of negative ions (H-/D-) is being investigated. It utilizes PINI-size rf sources with an external antenna and for the first step a small size extraction system with 48 cm2 net extraction area. First results from BATMAN (Ba¯varian T_est Ma¯chine for N_egative Ions) show (without Cs) a linear dependence of the negative ion yield with rf power, without any sign of saturation. At elevated pressure (1.6 Pa) a current density of 4.5 mA/cm2 H- (without Cs) has been found so far. At medium pressure (0.6 Pa) the current density is lower by approx. a factor of 5, but preliminary results with Cesium injection show a relative increase by almost the same factor in this pressure range. Langmuir probe measurements indicate an electron temperature Te>2 eV close to the plasma grid with a moderate magnetic filter (700 Gcm). Attempts to improve the performance by using different magnetic configurations and different wall materials are under way.
Native and sodium dodecyl sulfate-capillary gel electrophoresis of proteins on a single microchip.
Tsai, Shuo-Wen; Loughran, Michael; Suzuki, Hiroaki; Karube, Isao
2004-02-01
Simultaneous electrophoresis of both native and Sodium dodecyl sulfate (SDS) proteins was observed on a single microchip within 20 min. The capillary array prevented lateral diffusion of SDS components and avoided cross contamination of native protein samples. The planar sputtered electrode format provided a more uniform distribution of separation voltage into each of the 36 parallel microchannel capillaries than platinum wire electrodes commonly used in conventional electrophoresis. The customized geometry of the stacking capillary machined into the cover plate of the microchip facilitated reproducible sample injection without the requirement for stacking gel. Polyimide served as a mask and facilitated insulation of the anode and cathode to prevent electrode lift off and deterioration during continuous electrophoresis, even at a constant current of 8 mA. Improved protein separation was observed during capillary electrophoresis at lower currents. Ferguson plot analysis confirmed the electrophoretic mobility of native globular proteins in accordance with their charge and size. Corresponding Ferguson plot analysis of SDS-associated proteins on the same chip confirmed separation of marker proteins according to their molecular weight.
H- beam transport experiments in a solenoid low energy beam transport.
Gabor, C; Back, J J; Faircloth, D C; Izaola, Z; Lawrie, S R; Letchford, A P
2012-02-01
The Front End Test Stand (FETS) is located at Rutherford Appleton Laboratory and aims for a high current, fast chopped 3 MeV H(-) ion beam suitable for future high power proton accelerators like ISIS upgrade. The main components of the front end are the Penning ion source, a low energy beam transport line, an radio-frequency quadrupole (RFQ) and a medium energy beam transport (MEBT) providing also a chopper section and rebuncher. FETS is in the stage of commissioning its low energy beam transport (LEBT) line consisting of three solenoids. The LEBT has to transport an H(-) high current beam (up to 60 mA) at 65 keV. This is the injection energy of the beam into the RFQ. The main diagnostics are slit-slit emittance scanners for each transversal plane. For optimizing the matching to the RFQ, experiments have been performed with a variety of solenoid settings to better understand the actual beam transport. Occasionally, source parameters such as extractor slit width and beam energy were varied as well. The paper also discusses simulations based on these measurements.
Relativistic-electron-beam/target interaction in plasma channels
NASA Astrophysics Data System (ADS)
Halbleib, J. A., Sr.; Wright, T. P.
1980-08-01
A model describing the transport of relativistic electron beams in plasma channels and their subsequent interaction with solid targets is developed and applied to single-beam and multiple-beam configurations. For single beams the targets consist of planar tantalum foils and, in some cases, cusp fields on the transmission side of the foils are employed to improve beam/target coupling efficiency. In the multi-beam configurations, several beams are arranged in wagon-wheel fashion so as to converge upon cylindrical targets, consisting of either hollow tantalum or solid graphite cylinders, located at the hub. For 0.3-cm beam radii that are less than or equal to the channel radii, mean specific power depositions up to about 17 TW/g per MA of injected beam current are obtained for single beams; 12-beam results are typically an order-of-magnitude less. The corresponding enhancements are up to five times the collisional stopping power for either single or multiple beams. Substantial improvement is predicted for the multi-beam interaction should future channel technology permit transport at higher current densities in smaller channels.
ERIC Educational Resources Information Center
Salo, Ruth; Gabay, Shai; Fassbender, Catherine; Henik, Avishai
2011-01-01
Objective: The goal of the present study was to examine distributed attentional functions in long-term but currently abstinent methamphetamine (MA) abusers using a task that measures attentional alertness, orienting, and conflict resolution. Methods: Thirty currently abstinent MA abusers (1 month-5 years) and 22 healthy non-substance using adults…
Determinants of Medicare plan choices: are beneficiaries more influenced by premiums or benefits?
Jacobs, Paul D; Buntin, Melinda B
2015-07-01
To evaluate the sensitivity of Medicare beneficiaries to premiums and benefits when selecting healthcare plans after the introduction of Part D. We matched respondents in the 2008 Medicare Current Beneficiary Survey to the Medicare Advantage (MA) plans available to them using the Bid Pricing Tool and previously unavailable data on beneficiaries' plan choices. We estimated a 2-stage nested logit model of Medicare plan choice decision making, including the decision to choose traditional fee-for-service (FFS) Medicare or an MA plan, and for those choosing MA, which specific plan they chose. Beneficiaries living in areas with higher average monthly rebates available from MA plans were more likely to choose MA rather than FFS. When choosing MA plans, beneficiaries are roughly 2 to 3 times more responsive to dollars spent to reduce cost sharing than reductions in their premium. We calculated an elasticity of plan choice with respect to the monthly MA premium of -0.20. Beneficiaries with lower incomes are more sensitive to plan premiums and cost sharing than higher-income beneficiaries. MA plans appear to have a limited incentive to aggressively price their products, and seem to compete primarily over reduced beneficiary cost sharing. Given the limitations of the current plan choice environment, policies designed to encourage the selection of lower-cost plans may require increasing premium differences between plans and providing the tools to enable beneficiaries to easily assess those differences.
InGaN/GaN multilayer quantum dots yellow-green light-emitting diode with optimized GaN barriers.
Lv, Wenbin; Wang, Lai; Wang, Jiaxing; Hao, Zhibiao; Luo, Yi
2012-11-07
InGaN/GaN multilayer quantum dot (QD) structure is a potential type of active regions for yellow-green light-emitting diodes (LEDs). The surface morphologies and crystalline quality of GaN barriers are critical to the uniformity of InGaN QD layers. While GaN barriers were grown in multi-QD layers, we used improved growth parameters by increasing the growth temperature and switching the carrier gas from N2 to H2 in the metal organic vapor phase epitaxy. As a result, a 10-layer InGaN/GaN QD LED is demonstrated successfully. The transmission electron microscopy image shows the uniform multilayer InGaN QDs clearly. As the injection current increases from 5 to 50 mA, the electroluminescence peak wavelength shifts from 574 to 537 nm.
Lee, Kwang Jae; Chun, Jaeyi; Kim, Sang-Jo; Oh, Semi; Ha, Chang-Soo; Park, Jung-Won; Lee, Seung-Jae; Song, Jae-Chul; Baek, Jong Hyeob; Park, Seong-Ju
2016-03-07
We report the growth of InGaN/GaN multiple quantum wells blue light-emitting diodes (LEDs) on a silicon (111) substrate with an embedded nanoporous (NP) GaN layer. The NP GaN layer is fabricated by electrochemical etching of n-type GaN on the silicon substrate. The crystalline quality of crack-free GaN grown on the NP GaN layer is remarkably improved and the residual tensile stress is also decreased. The optical output power is increased by 120% at an injection current of 20 mA compared with that of conventional LEDs without a NP GaN layer. The large enhancement of optical output power is attributed to the reduction of threading dislocation, effective scattering of light in the LED, and the suppression of light propagation into the silicon substrate by the NP GaN layer.
InGaN/GaN multilayer quantum dots yellow-green light-emitting diode with optimized GaN barriers
2012-01-01
InGaN/GaN multilayer quantum dot (QD) structure is a potential type of active regions for yellow-green light-emitting diodes (LEDs). The surface morphologies and crystalline quality of GaN barriers are critical to the uniformity of InGaN QD layers. While GaN barriers were grown in multi-QD layers, we used improved growth parameters by increasing the growth temperature and switching the carrier gas from N2 to H2 in the metal organic vapor phase epitaxy. As a result, a 10-layer InGaN/GaN QD LED is demonstrated successfully. The transmission electron microscopy image shows the uniform multilayer InGaN QDs clearly. As the injection current increases from 5 to 50 mA, the electroluminescence peak wavelength shifts from 574 to 537 nm. PMID:23134721
NASA Astrophysics Data System (ADS)
Li, Ling; Zhang, Yuantao; Yan, Long; Jiang, Junyan; Han, Xu; Deng, Gaoqiang; Chi, Chen; Song, Junfeng
2016-12-01
n-ZnO/p-GaN heterojunction light-emitting diodes with a p-GaN/Al0.1Ga0.9N/n+-GaN polarization-induced tunneling junction (PITJ) were fabricated by metal-organic chemical vapor deposition. An intense and sharp ultraviolet emission centered at ˜396 nm was observed under forward bias. Compared with the n-ZnO/p-GaN reference diode without PITJ, the light intensity of the proposed diode is increased by ˜1.4-folds due to the improved current spreading. More importantly, the studied diode operates continuously for eight hours with the decay of only ˜3.5% under 20 mA, suggesting a remarkable operating stability. The results demonstrate the feasibility of using PITJ as hole injection layer for high-performance ZnO-based light-emitting devices.
Beam Loss Simulation and Collimator System Configurations for the Advanced Photon Source Upgrade
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, A.; Borland, M.
The proposed multi-bend achromat lattice for the Advanced Photon Source upgrade (APS-U) has a design emittance of less than 70 pm. The Touschek loss rate is high: compared with the current APS ring, which has an average beam lifetime ~ 10 h, the simulated beam lifetime for APS-U is only ~2 h when operated in the high flux mode (I=200 mA in 48 bunches). An additional consequence of the short lifetime is that injection must be more frequent, which provides another potential source of particle loss. In order to provide information for the radiation shielding system evaluation and to avoidmore » particle loss in sensitive locations around the ring (for example, insertion device straight sections), simulations of the detailed beam loss distribution have been performed. Several possible collimation configurations have been simulated and compared.« less
NASA Astrophysics Data System (ADS)
Zhao, Jianyi; Chen, Xin; Zhou, Ning; Huang, Xiaodong; Cao, Mingde; Wang, Lei; Liu, Wen
2015-03-01
A 16-channel monolithically integrated distributed feedback (DFB) laser array with arrayed waveguide gratings (AWGs) multiplexer and semiconductor optical amplifier (SOA) has been fabricated using nanoimprint technology. Selective lasing wavelength with 200 GHz frequency space has been obtained. The typical threshold current is between 20 mA and 30 mA. The output power is higher than 1 mW with 350 mA current in SOA. The side mode suppression ratio (SMSR) of the spectrum is better than 40 dB.
1979-12-01
AM AM .m Itp 3MM"fvob 3MMopo" INA 7M 3M. St Z is pu~ e posep 3MM 3MMoar INA 3M 3MM St. 3M. Y" M3L-SINA1I 334IopAsoe * w*; INAt e M IM0NA .6.6.36...C or 20 ma current loop Current loop (60V. 60 ma) High level (±80V, 20 ma) INA Yes Yes Yes Same sIBM SELECTRIC Yes INA INA INA INA INA INA INA INA
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-13
...-AB55 Traffic Separation Schemes: In the Approaches to Portland, ME; Boston, MA; Narragansett Bay, RI... schemes in the approaches to Portland, ME; in the approaches to Boston, MA; in the approaches to... Coast Guard updates the current regulations for the traffic separation scheme in the approaches to...
Reconstruction of ionic currents in a molluscan photoreceptor.
Sakakibara, M.; Ikeno, H.; Usui, S.; Collin, C.; Alkon, D. L.
1993-01-01
Two-microelectrode voltage-clamp measurements were made to determine the kinetics and voltage dependence of ionic currents across the soma membrane of the Hermissenda type B photoreceptor. The voltage-dependent outward potassium currents, IA and ICa(2+)-K+, the inward voltage-dependent calcium current, ICa2+ and the light-induced current, IIgt, were then described with Hodgkin-Huxley-type equations. The fast-activating and inactivating potassium current, IA, was described by the equation; IA(t) = gA(max)(ma infinity[1-exp(-t/tau ma)])3 x (ha infinity [1-exp(-t/tau ha)] + exp(-t/tau ha)) (Vm-EK), where the parameters ma infinity, ha infinity, tau ma, and tau ha are functions of membrane potential, Vm, and ma infinity and ha infinity are steady-state activation and inactivation parameters. Similarly, the calcium-dependent outward potassium current, ICa(2+)-K+, was described by the equation, ICa(2+)-K+ (t) = gc(max)(mc infinity(VC)(1-exp[-t/tau mc (VC)]))pc (hc infinity(VC) [1-exp(-t/tau hc)] + exp(-t/tau hc(VC)])pc(VC-EK). In high external potassium, ICa(2+)-K+ could be measured in approximate isolation from other currents as a voltage-dependent inward tail current following a depolarizing command pulse from a holding potential of -60 mV. A voltage-dependent inward calcium current across the type B soma membrane, ICa2+, activated rapidly, showed little inactivation, and was described by the equation: ICa2+ = gCa(max) [1 + exp](-Vm-5)/7]-1 (Vm-ECa), where gCa(max) was 0.5 microS. The light-induced current with both fast and slow phases was described by: IIgt(t) = IIgt1 + IIgt2 + IIgt3, IIgti = gIgti [1-exp(- ton/tau mi)] exp(-ton/tau hi)(Vm-EIgti) (i = 1, 2). For i = 3, /Igt(t) = gigt3m33h3(Vm - Eigt3)exp(-ton/Ton) x exp(-tfoff/t Off). Based on these reconstructions of ionic currents, learning-induced enhancement of the long lasting depolarization (LLD) of the photoreceptor'slight response was shown to arise from progressive inactivation of /A, lca2+ -K+, and lCa2+. PMID:8369456
Zheng, Xuerong; Han, Xiaopeng; Liu, Hui; Chen, Jianjun; Fu, Dongju; Wang, Jihui; Zhong, Cheng; Deng, Yida; Hu, Wenbin
2018-04-25
The development of earth-abundant, highly active, and corrosion-resistant electrocatalysts to promote the oxygen reduction reaction (ORR) and oxygen and hydrogen evolution reactions (OER/HER) for rechargeable metal-air batteries and water-splitting devices is urgently needed. In this work, Ni x Se (0.5 ≤ x ≤ 1) nanocrystals with different crystal structures and compositions have been controllably synthesized and investigated as potential electrocatalysts for multifunctional ORR, OER, and HER in alkaline conditions. A novel hot-injection process at ambient pressure was developed to control the phase and composition of a series of Ni x Se by simply adjusting the added molar ratio of the nickel resource to triethylenetetramine. Electrochemical analysis reveals that Ni 0.5 Se nanocrystalline exhibits superior OER activity compared to its counterparts and is comparable to RuO 2 in terms of the low overpotential required to reach a current density of 10 mA cm -2 (330 mV), which may benefit from the pyrite-type crystal structure and Se enrichment in Ni 0.5 Se. For the ORR and HER, Ni 0.75 Se nanoparticles achieve the best performance including lower overpotentials and larger apparent current densities. Further investigations demonstrate that Ni 0.75 Se could not only provide an enhanced electrochemical active area but also facilitate electron transfer during the electrocatalytic process, thus contributing to the remarkable catalytic activity. As a practical application, the Ni 0.75 Se electrode enables rechargeable Zn-air battery with a considerable performance including a long cycling lifetime (200 cycles), high specific capacity (609 mA h g -1 based on the consumed Zn), and low overpotential (0.75 V) at 10 mA cm -2 . Meanwhile, the water-splitting cell setup with an anode of Ni 0.5 Se for the HER and a cathode of Ni 0.75 Se for the OER exhibits a considerable performance with low decay in activity of 12.9% under continuous polarization for 10 h. These results suggest the promising potential of nickel selenide nanocrystals as earth-abundant and high-performance electrocatalysts for metal-air batteries and alkaline water splitting.
NASA Astrophysics Data System (ADS)
Shrestha, Niraj M.; Li, Yiming; Chang, E. Y.
2016-07-01
Normally-off AlGaN/GaN high electron mobility transistors (HEMTs) are indispensable devices for power electronics as they can greatly simplify circuit designs in a cost-effective way. In this work, the electrical characteristics of p-type InAlN gate normally-off AlGaN/GaN HEMTs with a step buffer layer of Al0.25Ga0.75N/Al0.1Ga0.9N is studied numerically. Our device simulation shows that a p-InAlN gate with a step buffer layer allows the transistor to possess normally-off behavior with high drain current and high breakdown voltage simultaneously. The gate modulation by the p-InAlN gate and the induced holes appearing beneath the gate at the GaN/Al0.25Ga0.75N interface is because a hole appearing in the p-InAlN layer can effectively vary the threshold voltage positively. The estimated threshold voltage of the normally-off HEMTs explored is 2.5 V at a drain bias of 25 V, which is 220% higher than the conventional p-AlGaN normally-off AlGaN/GaN gate injection transistor (GIT). Concurrently, the maximum current density of the explored HEMT at a drain bias of 10 V slightly decreases by about 7% (from 240 to 223 mA mm-1). At a drain bias of 15 V, the current density reached 263 mA mm-1. The explored structure is promising owing to tunable positive threshold voltage and the maintenance of similar current density; notably, its breakdown voltage significantly increases by 36% (from 800 V, GIT, to 1086 V). The engineering findings of this study indicate that novel p-InAlN for both the gate and the step buffer layer can feature a high threshold voltage, large current density and high operating voltage for advanced AlGaN/GaN HEMT devices.
Jiang, Guoxiang; Wu, Fuwang; Li, Zhiwei; Li, Taotao; Gupta, Vijai Kumar; Duan, Xuewu; Jiang, Yueming
2018-06-01
Sulfoxidation of methionine in proteins by reactive oxygen species can cause conformational alteration or functional impairment, and can be reversed by methionine sulfoxide reductase (Msr). Currently, only a few potential Msr substrates have been confirmed in higher plants. Here, we investigated Msr-mediated sulfoxidation regulation of calmodulin (CaM) and its underlying biological significance in relation to banana fruit ripening and senescence. Expression of MaCaM1 and MaMsrA7 was up-regulated with increased ripening and senescence. We verified that MaCaM1 interacts with MaMsrA7 in vitro and in vivo, and sulfoxidated MaCaM1 could be partly repaired by MaMsrA7 (MaMsrA7 reduces oxidized residues Met77 and Met110 in MaCaM1). Furthermore, we investigated two known CaM-binding proteins, catalase (MaCAT1) and MaHY5-1. MaHY5-1 acts as a transcriptional repressor of carotenoid biosynthesis-related genes (MaPSY1, MaPSY2 and MaPSY3) in banana fruit. MaCaM1 could enhance the catalytic activity of MaCAT1 and the transcriptional repression activity of MaHY5-1 toward MaPSY2. Mimicked sulfoxidation in MaCaM1 did not affect the physical interactions of the protein with MaHY5-1 and MaCAT1, but reduced the catalytic activity of MaCAT1 and the transcriptional repression activity of MaHY5-1. Our data suggest that sulfoxidation modification in MaCaM1 by MaMsrA7 regulates antioxidant response and gene transcription, thereby being involved in regulation of ripening and senescence of banana fruit.
Koch, Marcus A
2015-01-01
To take inventory of the current state of affairs of Market Access Launch Excellence in the life sciences industry. To identify key gaps and challenges for Market Access (MA) and discuss how they can be addressed. To generate a baseline for benchmarking MA launch excellence. An online survey was conducted with pharmaceutical executives primarily working in MA, marketing, or general management. The survey aimed to evaluate MA excellence prerequisites across the product life cycle (rated by importance and level of implementation) and to describe MA activity models in the respective companies. Composite scores were calculated from respondents' ratings and answers. Implementation levels of MA excellence prerequisites generally lagged behind their perceived importance. Item importance and the respective level of implementation correlated well, which can be interpreted as proof of the validity of the questionnaire. The following areas were shown to be particularly underimplemented: 1) early integration of MA and health economic considerations in research and development decision making, 2) developing true partnerships with payers, including the development of services 'beyond the pill', and 3) consideration of human resource and talent management. The concept of importance-adjusted implementation levels as a hybrid parameter was introduced and shown to be a viable tool for benchmarking purposes. More than 70% of respondents indicated that their companies will invest broadly in MA in terms of capital and headcount within the next 3 years. MA (launch) excellence needs to be further developed in order to close implementation gaps across the entire product life cycle. As MA is a comparatively young pharmaceutical discipline in a complex and dynamic environment, this effort will require strategic focus and dedication. The Market Access Launch Excellence Inventory benchmarking tool may help guide decision makers to prioritize their endeavors.
Low-noise sub-harmonic injection locked multiloop ring oscillator
NASA Astrophysics Data System (ADS)
Weilin, Xu; Di, Wu; Xueming, Wei; Baolin, Wei; Jihai, Duan; Fadi, Gui
2016-09-01
A three-stage differential voltage-controlled ring oscillator is presented for wide-tuning and low-phase noise requirement of clock and data recovery circuit in ultra wideband (UWB) wireless body area network. To improve the performance of phase noise of delay cell with coarse and fine frequency tuning, injection locked technology together with pseudo differential architecture are adopted. In addition, a multiloop is employed for frequency boosting. Two RVCOs, the standard RVCO without the IL block and the proposed IL RVCO, were fabricated in SMIC 0.18 μm 1P6M Salicide CMOS process. The proposed IL RVCO exhibits a measured phase noise of -112.37 dBc/Hz at 1 MHz offset from the center frequency of 1 GHz, while dissipating a current of 8 mA excluding the buffer from a 1.8-V supply voltage. It shows a 16.07 dB phase noise improvement at 1 MHz offset compared to the standard topology. Project supported by the National Natural Science Foundation of China (No. 61264001), the Guangxi Natural Science Foundation (Nos. 2013GXNSFAA019333, 2015GXNSFAA139301, 2014GXNSFAA118386), the Graduate Education Innovation Program of GUET (No. GDYCSZ201457), the Project of Guangxi Education Department (No. LD14066B) and the High-Level-Innovation Team and Outstanding Scholar Project of Guangxi Higher Education Institutes.
Teng, Kok-Hin; Wu, Tong; Liu, Xiayun; Yang, Zhi; Heng, Chun-Huat
2017-06-01
An 8-channel wireless neural signal processing IC, which can perform real-time spike detection, alignment, and feature extraction, and wireless data transmission is proposed. A reconfigurable BFSK/QPSK transmitter (TX) at MICS/MedRadio band is incorporated to support different data rate requirement. By using an Exponential Component-Polynomial Component (EC-PC) spike processing unit with an incremental principal component analysis (IPCA) engine, the detection of neural spikes with poor SNR is possible while achieving 625× data reduction. For the TX, a dual-channel at 401 MHz and 403.8 MHz are supported by applying sequential injection locked techniques while attaining phase noise of -102 dBc/Hz at 100 kHz offset. From the measurement, error vector magnitude (EVM) of 4.60%/9.55% with power amplifier (PA) output power of -15 dBm is achieved for the QPSK at 8 Mbps and the BFSK at 12.5 kbps. Fabricated in 65 nm CMOS with an active area of 1 mm 2 , the design consumes a total current of 5 ∼ 5.6 mA with a maximum energy efficiency of 0.7 nJ/b.
NASA Astrophysics Data System (ADS)
Kanda, Hiroyuki; Nakano, Yukari; Terasawa, Yasuo; Morimoto, Takeshi; Fujikado, Takashi
2017-10-01
Objective. Suprachoroidal-transretinal stimulation (STS) is a stimulation method for retinal prostheses. For STS-type retinal prostheses, we developed a new type of stimulating electrode called a femtosecond laser-induced porous electrode (FLiP electrode). To verify the safety of the FLiP electrode for STS, we investigated the characteristics of STS-induced retinal injury. Approach. Sixteen eyes of pigmented rabbits were studied in this in vivo study. For each examined eye, we implanted a single-channel FLiP electrode (diameter, 0.5 mm height, 0.3 mm geometric surface area, 0.43 mm2) in a scleral pocket created at the posterior pole of the eye. A return electrode (diameter, 0.5 mm length, 3 mm) was inserted into the vitreous cavity. The eyes were divided into five groups, and each group was stimulated with a different current intensity. The stimulus intensities and the number of eyes in each group were as follows: 1.0 mA (n = 2), 1.5 mA (n = 3), 2.0 mA (n = 3), 2.5 mA (n = 4), and 3.0 mA (n = 2). Continuous biphasic pulses (0.5 ms/phase) were applied under general anesthesia at a frequency of 20 Hz for 48 h. Fundus photography, fluorescein angiography (FA), and optical coherence tomography were performed before and after applying the electrical stimulation to evaluate the retinal injury. Main results. The 1.0 mA and 1.5 mA groups showed little or no retinal damage. Fluorescent dye leakage in FA and punctate pigmentation in the fundus were observed around the stimulation site with stimulation of 2.0 mA (1/3), 2.5 mA (1/4), and 3.0 mA (2/2). Significance. Our findings indicate that the threshold current for inducing retinal damage is greater than that for eliciting electrical phosphenes (<1 mA) with STS observed in human trials. Therefore, STS by the FLiP electrode is a safe and feasible stimulation method for retinal prostheses as long as it is used with these pulse parameters.
Loss-of-function and gain-of-function phenotypes of stomatocytosis mutant RhAG F65S
Stewart, Andrew K.; Shmukler, Boris E.; Vandorpe, David H.; Rivera, Alicia; Heneghan, John F.; Li, Xiaojin; Hsu, Ann; Karpatkin, Margaret; O'Neill, Allison F.; Bauer, Daniel E.; Heeney, Matthew M.; John, Kathryn; Kuypers, Frans A.; Gallagher, Patrick G.; Lux, Samuel E.; Brugnara, Carlo; Westhoff, Connie M.
2011-01-01
Four patients with overhydrated cation leak stomatocytosis (OHSt) exhibited the heterozygous RhAG missense mutation F65S. OHSt erythrocytes were osmotically fragile, with elevated Na and decreased K contents and increased cation channel-like activity. Xenopus oocytes expressing wild-type RhAG and RhAG F65S exhibited increased ouabain and bumetanide-resistant uptake of Li+ and 86Rb+, with secondarily increased 86Rb+ influx sensitive to ouabain and to bumetanide. Increased RhAG-associated 14C-methylammonium (MA) influx was severely reduced in RhAG F65S-expressing oocytes. RhAG-associated influxes of Li+, 86Rb+, and 14C-MA were pharmacologically distinct, and Li+ uptakes associated with RhAG and RhAG F65S were differentially inhibited by NH4+ and Gd3+. RhAG-expressing oocytes were acidified and depolarized by 5 mM bath NH3/NH4+, but alkalinized and depolarized by subsequent bath exposure to 5 mM methylammonium chloride (MA/MA+). RhAG F65S-expressing oocytes exhibited near-wild-type responses to NH4Cl, but MA/MA+ elicited attenuated alkalinization and strong hyperpolarization. Expression of RhAG or RhAG F65S increased steady-state cation currents unaltered by bath Li+ substitution or bath addition of 5 mM NH4Cl or MA/MA+. These oocyte studies suggest that 1) RhAG expression increases oocyte transport of NH3/NH4+ and MA/MA+; 2) RhAG F65S exhibits gain-of-function phenotypes of increased cation conductance/permeability, and loss-of-function phenotypes of decreased and modified MA/MA+ transport, and decreased NH3/NH4+-associated depolarization; and 3) RhAG transports NH3/NH4+ and MA/MA+ by distinct mechanisms, and/or the substrates elicit distinct cellular responses. Thus, RhAG F65S is a loss-of-function mutation for amine transport. The altered oocyte intracellular pH, membrane potential, and currents associated with RhAG or RhAG F65S expression may reflect distinct transport mechanisms. PMID:21849667
Arroyo, Daniela S; Gaviglio, Emilia A; Peralta Ramos, Javier M; Bussi, Claudio; Avalos, Maria P; Cancela, Liliana M; Iribarren, Pablo
2018-01-01
Acute brain injury leads to the recruitment and activation of immune cells including resident microglia and infiltrating peripheral myeloid cells (MC), which contribute to the inflammatory response involved in neuronal damage. We previously reported that TLR2 stimulation by peptidoglycan (PGN) from Staphylococcus aureus, in vitro and in vivo , induced microglial cell activation followed by autophagy induction. In this report, we evaluated if phosphatidyl-inositol-3 kinase (PI3K) pharmacological inhibitors LY294200 and 3-methyladenine (3-MA) can modulate the innate immune response to PGN in the central nervous system. We found that injection of PGN into the mouse brain parenchyma (caudate putamen) triggered an inflammatory reaction, which involved activation of microglial cells, recruitment of infiltrating MC to injection site, production of pro-inflammatory mediators, and neuronal injury. In addition, we observed the accumulation of LC3B + CD45 + cells and colocalization of LC3B and lysosomal-associated membrane protein 1 in brain cells. Besides, we found that pharmacological inhibitors of PI3K, including the classical autophagy inhibitor 3-MA, reduced the recruitment of MC, microglial cell activation, and neurotoxicity induced by brain PGN injection. Collectively, our results suggest that PI3K pathways and autophagic response may participate in the PGN-induced microglial activation and MC recruitment to the brain. Thus, inhibition of these pathways could be therapeutically targeted to control acute brain inflammatory conditions.
Arroyo, Daniela S.; Gaviglio, Emilia A.; Peralta Ramos, Javier M.; Bussi, Claudio; Avalos, Maria P.; Cancela, Liliana M.; Iribarren, Pablo
2018-01-01
Acute brain injury leads to the recruitment and activation of immune cells including resident microglia and infiltrating peripheral myeloid cells (MC), which contribute to the inflammatory response involved in neuronal damage. We previously reported that TLR2 stimulation by peptidoglycan (PGN) from Staphylococcus aureus, in vitro and in vivo, induced microglial cell activation followed by autophagy induction. In this report, we evaluated if phosphatidyl-inositol-3 kinase (PI3K) pharmacological inhibitors LY294200 and 3-methyladenine (3-MA) can modulate the innate immune response to PGN in the central nervous system. We found that injection of PGN into the mouse brain parenchyma (caudate putamen) triggered an inflammatory reaction, which involved activation of microglial cells, recruitment of infiltrating MC to injection site, production of pro-inflammatory mediators, and neuronal injury. In addition, we observed the accumulation of LC3B+ CD45+ cells and colocalization of LC3B and lysosomal-associated membrane protein 1 in brain cells. Besides, we found that pharmacological inhibitors of PI3K, including the classical autophagy inhibitor 3-MA, reduced the recruitment of MC, microglial cell activation, and neurotoxicity induced by brain PGN injection. Collectively, our results suggest that PI3K pathways and autophagic response may participate in the PGN-induced microglial activation and MC recruitment to the brain. Thus, inhibition of these pathways could be therapeutically targeted to control acute brain inflammatory conditions. PMID:29719536
Qin, Na; Wei, Liwei; Li, Wuyin; Yang, Wei; Cai, Litao; Qian, Zhuang; Wu, Shufang
2017-07-01
Autophagy is an essential cellular homeostasis mechanism that was found to be compromised in aging and osteoarthritis (OA) cartilage. Previous studies showed that resveratrol can effectively regulate autophagy in other cells. The purpose of this study was to determine whether the chondroprotective effect of resveratrol was related to chondrocyte autophagy and to elucidate underlying mechanisms. OA model was induced by destabilization of the medial meniscus (DMM) in 10-week-old male mice. OA mice were treated with resveratrol with/without 3-MA for 8 weeks beginning 4 weeks after surgery. The local intra-articular injection of resveratrol delayed articular cartilage degradation in DMM-induced OA by OARSI scoring systems and Safranin O-fast green. Resveratrol treatment increased Unc-51-like kinase1, Beclin1, microtubule-associated protein light chain 3, hypoxia inducible factor-1α, phosphorylated AMPK, collagen-2A1, Aggrecan expressions, but decreased hypoxia inducible factor-2α, phosphorylated mTOR, matrix metalloproteinases13 and a disintegrin and metalloproteinase with thrombospondin motifs 5 expressions. The effects of resveratrol were obviously blunted by 3-MA except HIF and AMPK. These findings indicate that resveratrol intra-articular injection delayed articular cartilage degeneration and promoted chondrocyte autophagy in an experimental model of surgical DMM-induced OA, in part via balancing HIF-1α and HIF-2α expressions and thereby regulating AMPK/mTOR signaling pathway. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Boyle, P. R.; Romans, B.; Norris, R. D.; Tucholke, B. E.; Swift, S. A.; Sexton, P. F.
2014-12-01
In the North Atlantic Ocean, contour-following bottom currents have eroded regional unconformities and deposited contourite drifts that exceed two km in thickness and extend for 100s of km. The character of deep-water masses that are conveyed through ocean basins by such currents influence global heat transfer and ocean-atmosphere partitioning of CO2. The Newfoundland Ridge Drift Complex lies directly under the modern Deep Western Boundary Current southeast of Newfoundland, close to the site of overturning in the northwest Atlantic Ocean and at the intersection of the warm Gulf Stream and cool Labrador surface currents. To the south are regions of the western North Atlantic basin that are influenced by southern- as well as northern-sourced bottom waters. Here, we document the evolution of North Atlantic deep-water circulation by seismic-stratigraphic analysis of the long-lived and areally extensive Newfoundland Ridge Drift Complex. IODP Expedition 342 boreholes provide age control on seismic units, allowing sedimentation patterns to be placed in a temporal framework. We find three major phases of sedimentation: pre-contourite drift (~115-50 Ma), active contourite drift (~50-2.6 Ma), and late-contourite drift (~2.6-0 Ma). Bottom-current-controlled deposition of terrigenous-rich sediment began at ~50 Ma, which correlates to the onset of a long-term global cooling trend. A further change in deep circulation near the Eocene-Oligocene transition (~30 Ma) is indicated by more focused drift sedimentation with greatly increased accumulation rates and stratal architecture dominated by mud waves. At ~2.6 Ma to present the axis of drift accumulation shifted markedly towards shallower water depths, corresponding with the onset of Northern Hemisphere ice sheets. We discuss how these reorganizations of deep circulation correlate with results of other North Atlantic seismic stratigraphic studies to the north and south.
Neurostimulation in ultrasound-guided infraclavicular block: a prospective randomized trial.
Dingemans, Emmanuel; Williams, Stephan R; Arcand, Geneviève; Chouinard, Philippe; Harris, Patrick; Ruel, Monique; Girard, François
2007-05-01
Ultrasound guidance (USG) for infraclavicular blocks provides real time visualization of the advancing needle and local anesthetic distribution. Whether visualization of local anesthetic spread can supplant neurostimulation as the end point for local anesthetic injection during USG block has never been formally evaluated. Therefore, for this prospective randomized study, we recruited 72 patients scheduled for hand or forearm surgery and compared the speed of execution and quality of USG infraclavicular block with either USG alone (Group U) or USG combined with neurostimulation (Group S). In Group U, local anesthetic was deposited in a U-shaped distribution posterior and to each side of the axillary artery using as few injections as possible (1, 2, and 3 injections in 29, 6, and 3 patients, respectively). In Group S, a single injection was made after obtaining a distal motor response with a stimulating current between 0.3 and 0.6 mA. The anesthetic solution consisted of 0.5 mL/kg of lidocaine 1.5%, bupivacaine 0.125%, and epinephrine 1:200 000 (final concentrations). Procedure times were significantly shorter in Group U compared with Group S (3.1 +/- 1.6 min and 5.2 +/- 4.7 min, respectively; P = 0.006). In Group S, anesthetic spread was mainly anterior to the axillary artery in 37% of patients and mainly posterior in 63% of patients. Thirty minutes after the injection, 86% of patients in Group U had complete sensory block in the musculocutaneous, median, radial, and ulnar nerve territories compared with 57% in Group S (P = 0.007). Patients blocked in Group U with a single injection had the same rate of complete block (86%) as those blocked with more than one injection (86%). Block supplementation rates were 8% in Group U versus 26% in Group S (P = 0.049). Block failure occurred in one patient in Group S because of an inability to obtain a distal stimulation after 20 min. We conclude that USG infraclavicular block is more rapidly performed and yields a higher success rate when visualization of local anesthetic spread is used as the end point for injection. Posterolateral spread of local anesthetic around the axillary artery predicts successful block, circumventing the need for direct nerve visualization.
Potential source of cerebral embolism in migraine with aura: a transcranial Doppler study.
Anzola, G P; Magoni, M; Guindani, M; Rozzini, L; Dalla Volta, G
1999-05-12
The recently found association between patent foramen ovale (PFO) and transient global amnesia (TGA) has suggested that paradoxical microembolization in the terminal vertebrobasilar territory might underlie at least some TGA cases. Migraine with visual aura is another paroxysmal disturbance in which a sudden dysfunction of cortical areas fed by the terminal branches of the basilar artery is believed to trigger the attack. Therefore we investigated the prevalence of PFO in a consecutive unselected cohort of migraine patients. To investigate the prevalence of PFO in a consecutive unselected cohort of migraine patients to search for a possible mechanism for the reported association of migraine with stroke. A total of 113 patients, consecutively referred by the Headache Outpatient Clinic for migraine with aura (MA+, mean age 34+/-12 years) were compared with 53 patients with migraine without aura (MA-, mean age 36+/-13 years) and with 25 age-matched nonmigraine subjects (mean age 31+/-10 years) selected from the hospital staff. PFO was assessed with transcranial Doppler sonography with IV injection of agitated saline, a technique that is 90% sensitive and 100% specific. The prevalence of PFO was 48% (54/113) in MA+ patients, 23% (12/53) in MA- patients, and 20% (5/25) in control subjects. The difference between MA+ and MA- patients was significant (odds ratio [OR] = 3.13, 95% confidence interval [CI] = 1.41 to 7.04, chi2 = 9.52,p = 0.002) as was the difference between MA+ patients and controls (OR = 3.66, 95% CI = 1.21 to 13.25, chi2 = 6.46, p = 0.01), whereas MA- patients did not differ from controls (OR = 1.17, 95% CI = 0.32 to 4.45, chi2 = 0.07). MRI was negative in 22 MA+ and 8 MA- patients. Patency of the foramen ovale is associated with migraine with aura but not with migraine without aura. The increased risk of stroke found in epidemiologic studies in patients with migraine with aura may be explained by an increased propensity to paradoxical cerebral embolism.
High current DC negative ion source for cyclotron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Etoh, H., E-mail: Hrh-Etoh@shi.co.jp; Aoki, Y.; Mitsubori, H.
2016-02-15
A filament driven multi-cusp negative ion source has been developed for proton cyclotrons in medical applications. In Cs-free operation, continuous H{sup −} beam of 10 mA and D{sup −} beam of 3.3 mA were obtained stably at an arc-discharge power of 3 kW and 2.4 kW, respectively. In Cs-seeded operation, H{sup −} beam current reached 22 mA at a lower arc power of 2.6 kW with less co-extracted electron current. The optimum gas flow rate, which gives the highest H{sup −} current, was 15 sccm in the Cs-free operation, while it decreased to 4 sccm in the Cs-seeded operation. Themore » relationship between H{sup −} production and the design/operating parameters has been also investigated by a numerical study with KEIO-MARC code, which gives a reasonable explanation to the experimental results of the H{sup −} current dependence on the arc power.« less
Li, Jiyu; Liu, Bin; Zhou, Yingying; Chen, Zhipeng; Jiang, Lelun; Yuan, Wei; Liang, Liang
2017-01-01
Microneedle arrays (MA) have been extensively investigated in recent decades for transdermal drug delivery due to their pain-free delivery, minimal skin trauma, and reduced risk of infection. However, porous MA received relatively less attention due to their complex fabrication process and ease of fracturing. Here, we present a titanium porous microneedle array (TPMA) fabricated by modified metal injection molding (MIM) technology. The sintering process is simple and suitable for mass production. TPMA was sintered at a sintering temperature of 1250°C for 2 h. The porosity of TPMA was approximately 30.1% and its average pore diameter was about 1.3 μm. The elements distributed on the surface of TPMA were only Ti and O, which may guarantee the biocompatibility of TPMA. TPMA could easily penetrate the skin of a human forearm without fracture. TPMA could diffuse dry Rhodamine B stored in micropores into rabbit skin. The cumulative permeated flux of calcein across TPMA with punctured skin was 27 times greater than that across intact skin. Thus, TPMA can continually and efficiently deliver a liquid drug through open micropores in skin. PMID:28187179
Monolithic integration of a GaAlAs buried-heterostructure laser and a bipolar phototransistor
NASA Technical Reports Server (NTRS)
Bar-Chaim, N.; Harder, CH.; Margalit, S.; Yariv, A.; Katz, J.; Ury, I.
1982-01-01
A GaAlAs buried-heterostructure laser has been monolithically integrated with a bipolar phototransistor. The heterojunction transistor was formed by the regrowth of the burying layers of the laser. Typical threshold current values for the lasers were 30 mA. Common-emitter current gains for the phototransistor of 100-400 and light responsitivity of 75 A/W (for wavelengths of 0.82 micron) at collector current levels of 15 mA were obtained.
NASA Astrophysics Data System (ADS)
Chambers, L.; Pringle, M.; Fitton, G.; Larsen, L. M.; Pedersen, A. K.; Parrish, R.
2003-04-01
In the current time scales (Cande and Kent, 95; Berggren et al, 95) the P-E Boundary is positioned at 55 Ma based primarily on the age of the -17 ash layer in Denmark. In the absence of a global stratigraphic section and point the boundary is an interval of 1 m.y. from 55.5 to 54.5 Ma that includes all of the different means of calibrating the boundary tie point, including the NP9/NP10 calcareous nannofossil zonal boundary, the planktonic foraminiferal P5/P6a zonal boundary, preliminary ages for the -17 and +19 ash layers (unpub.), the base of the London Clay Formation, and the δ13C spike. Here we present new Ar-Ar ages for the -17 and +19 ash layers in Denmark and combine this study with a calibration of the Ar-Ar with the U-Pb method. As Ar-Ar ages are relative to the known age of a standard or monitor, U-Pb ages on zircons from the same rocks from the British Tertiary Igneous Province provide an absolute age calibration for all of our Ar-Ar ages (including the monitors). An additional complication arises because the time scale is currently being revised (J. Ogg, Pers. Comm.). In the new time scale the P-E boundary will stay at 55 Ma and the K-T boundary will move by 0.5 m.y. to 65.5 Ma. Our results have a direct impact on the positioning of the P-E Boundary relative to the K-T boundary as definitive K-T tektite is used as one of our Ar-Ar standards. Ar-Ar ages and U-Pb ages for the same sample from the BTIP are indistinguishable when the ages used for the Ar-Ar monitor minerals are those recommended in Renne et al (98). This means that the K-T tektite is 65.78 ± 0.03 Ma, the -17 ash is 54.52 ± 0.05Ma, and the +19 ash is 54.04 ± 0.14 Ma. If the P-E boundary is taken to be between the -17 and +19 ash layers, as in DSDP Hole 550 (the ashes bracket the planktonic foraminiferal P5/P6a zonal boundary) then the current position at 55 Ma is too old. We therefore suggest that if the K-T boundary moves to 65.5 Ma, then the P-E boundary should not stay at 55 Ma, but move to 54.5 Ma (extending the Palaeocene by 1 m.y.). If the K-T boundary does not move by 0.5 m.y. then the P-E boundary would still have to move from its current position at 55 Ma and the ages used for the argon monitor minerals revised.
NASA Astrophysics Data System (ADS)
Derder, M. E. M.; Maouche, S.; Liégeois, J. P.; Henry, B.; Amenna, M.; Ouabadi, A.; Bellon, H.; Bruguier, O.; Bayou, B.; Bestandji, R.; Nouar, O.; Bouabdallah, H.; Ayache, M.; Beddiaf, M.
2016-03-01
Intraplate deformation is most often linked to major stress applied on plate margins. When such intraplate events are accompanied by magmatism, the use of several dating methods integrated within a multidisciplinary approach can bring constraints on the age, nature and source mobilized for generating the magma and in turn on the nature of the intraplate deformation. This study focuses on the large gabbro Arrikine sill (35 km in extension) emplaced within the Silurian sediments of the western margin of the Murzuq cratonic basin in southeastern Algeria. Its emplacement is dated during the early Devonian (415-400 Ma) through the determination of a reliable paleomagnetic pole by comparison with the Gondwana Apparent Polar Wander Path (APWP). This age can be correlated with deep phreatic eruptions before Pragian time thought to be at the origin of sand injections and associated circular structures in Algeria and Libya. For the sill, the K-Ar age of 325.6 ± 7.7 Ma is related to a K-rich aplitic phase that has K-enriched by more than 20% the Devonian gabbro. Laser-ICP-MS U-Pb method dates only inherited zircons mostly at c. 2030 Ma with additional ages at c. 2700 Ma and younger ones in the 766-598 Ma age range. The Arrikine sill is a high-Ti alkaline gabbro having the geochemical composition of a hawaiite akin to several intraplate continental and oceanic provinces, including the contemporaneous Aïr ring complexes province in Niger, but also to the Mauna Loa volcano in Hawaii. This peculiar composition akin to that of the contemporaneous Aïr province is in agreement with a lower Devonian age for the Arrikine sill. The lower Devonian Arrikine sill emplacement is related to a "Caledonian" transtensive reactivation of the western metacratonic boundary of the Murzuq craton. This event also generated in the Saharan platform the so-called "Caledonian unconformity" of regional extension, the Aïr ring complexes and magmatic rocks that produced sand injections. It could be related to rifting of the Hun terranes that occurred at the plate margin to the north (Stampfli and Borel, 2002, Blackey, 2008 and references therein). The mid-Carboniferous (c. 326 Ma) reactivation corresponds to Variscan compression on NW Africa generating aplitic fluids, but also to the major "Hercynian unconformity" of regional extension. The generation of the Arrikine magma is attributed to partial melting through adiabatic pressure release of uprising asthenosphere along tectonically reactivated mega-shear zones, here bordering the relictual Murzuq craton enclosed in the Saharan metacraton.
NASA Astrophysics Data System (ADS)
Bodner, G. M.; Bongard, M. W.; Fonck, R. J.; Perry, J. M.; Reusch, J. A.; Rodriguez Sanchez, C.
2017-10-01
Understanding the electron confinement of local helicity injection (LHI) is critical in order to evaluate its scalability as a startup technique to MA-class devices. Electron confinement in the Pegasus Toroidal Experiment is investigated using multi-point Thomson scattering (TS). The Pegasus TS system utilizes a set of high-throughput transmission gratings and intensified CCDs to measure Te and ne profiles. Previous TS measurements indicated peaked Te profiles 120 eV in outboard injector discharges characterized by strong inductive drive and low LHI drive. Injectors designed to have dominant non-inductive drive have recently been installed in the divertor region of Pegasus to understand the relationship between effective drive voltage, Veff, and plasma performance. At low Veff and reduced plasma current, Ip 60 kA, TS measurements reveal a flat Te profile 50 eV, with a peaked ne profile 1 ×1019 m-3, resulting in a slightly peaked pe profile. As current drive is increased, the Te profiles become hollow with a core Te 50 eV and an edge Te 120 -150 eV. These hollow profiles appear after the start of the Ip flattop and are sustained until the discharge terminates. The ne profiles drop in magnitude to < 1 ×1019 m-3 but remain somewhat peaked. Initial results suggest a weak scaling between input power and core Te. Additional studies are planned to identify the mechanisms behind the anomalous profile features. Work supported by US DOE Grant DE-FG02-96ER54375.
Hetts, S.W.; Saeed, M.; Martin, A.J.; Evans, L.; Bernhardt, A.F.; Malba, V.; Settecase, F.; Do, L.; Yee, E.J.; Losey, A.; Sincic, R.; Roy, S.; Arenson, R.L.; Wilson, M.W.
2013-01-01
BACKGROUND AND PURPOSE: Endovascular navigation under MR imaging guidance can be facilitated by a catheter with steerable microcoils on the tip. Not only do microcoils create visible artifacts allowing catheter tracking, but also they create a small magnetic moment permitting remote-controlled catheter tip deflection. A side product of catheter tip electrical currents, however, is the heat that might damage blood vessels. We sought to determine the upper boundary of electrical currents safely usable at 1.5T in a coil-tipped microcatheter system. MATERIALS AND METHODS: Alumina tubes with solenoid copper coils were attached to neurovascular microcatheters with heat shrink-wrap. Catheters were tested in carotid arteries of 8 pigs. The catheters were advanced under x-ray fluoroscopy and MR imaging. Currents from 0 mA to 700 mA were applied to test heating and potential vascular damage. Postmortem histologic analysis was the primary endpoint. RESULTS: Several heat-mitigation strategies demonstrated negligible vascular damage compared with control arteries. Coil currents ≤300 mA resulted in no damage (0/58 samples) compared with 9 (25%) of 36 samples for > 300-mA activations (P = .0001). Tip coil activation ≤1 minute and a proximal carotid guide catheter saline drip > 2 mL/minute also had a nonsignificantly lower likelihood of vascular damage. For catheter tip coil activations ≤300 mA for ≤1 minute in normal carotid flow, 0 of 43 samples had tissue damage. CONCLUSIONS: Activations of copper coils at the tip of microcatheters at low currents in 1.5T MR scanners can be achieved without significant damage to blood vessel walls in a controlled experimental setting. Further optimization of catheter design and procedure protocols is necessary for safe remote control magnetic catheter guidance. PMID:23846795
Intrinsic defect oriented visible region absorption in zinc oxide films
NASA Astrophysics Data System (ADS)
Rakhesh, V.; Shankar, Balakrishnan
2018-05-01
Zinc Oxide films were deposited on the glass substrate using vacuum arc sputtering technology. Films were prepared in oxygen ambience for 10mA and 15 mA deposition current separately. The UV-Visible spectroscopy of the samples showed that both samples possess sharp absorption near 3.5eV which is the characteristic band gap absorption energy of ZnO films. The absorption coefficient were calculated for the samples and the (αℎϑ)2 vs energy plot is drawn. The plot suggested that in addition to the sharp band edge absorption, the sample prepared at 10mA deposition current showed sharp absorption edge near 1.51eV and that at 15 mA showed absorption edge near 1.47eV. This refers to the presence of an intrinsic defect level which is likely to be deep in the band gap.
Wang, Zhaohui; Witte, Russell S.
2015-01-01
Ultrasound current source density imaging (UCSDI), which has application to the heart and brain, exploits the acoustoelectric (AE) effect and Ohm's law to detect and map an electrical current distribution. In this study, we describe 4-D UCSDI simulations of a dipole field for comparison and validation with bench-top experiments. The simulations consider the properties of the ultrasound pulse as it passes through a conductive medium, the electric field of the injected dipole, and the lead field of the detectors. In the simulation, the lead fields of detectors and electric field of the dipole were calculated by the finite element (FE) method, and the convolution and correlation in the computation of the detected AE voltage signal were accelerated using 3-D fast Fourier transforms. In the bench-top experiment, an electric dipole was produced in a bath of 0.9% NaCl solution containing two electrodes, which injected an ac pulse (200 Hz, 3 cycles) ranging from 0 to 140 mA. Stimulating and recording electrodes were placed in a custom electrode chamber made on a rapid prototype printer. Each electrode could be positioned anywhere on an x-y grid (5 mm spacing) and individually adjusted in the depth direction for precise control of the geometry of the current sources and detecting electrodes. A 1-MHz ultrasound beam was pulsed and focused through a plastic film to modulate the current distribution inside the saline-filled tank. AE signals were simultaneously detected at a sampling frequency of 15 MHz on multiple recording electrodes. A single recording electrode is sufficient to form volume images of the current flow and electric potentials. The AE potential is sensitive to the distance from the dipole, but is less sensitive to the angle between the detector and the dipole. Multi-channel UCSDI potentially improves 4-D mapping of bioelectric sources in the body at high spatial resolution, which is especially important for diagnosing and guiding treatment of cardiac and neurologic disorders, including arrhythmia and epilepsy. PMID:24569247
Geng, Hongbo; Ang, Huixiang; Ding, Xianguang; Tan, Huiteng; Guo, Guile; Qu, Genlong; Yang, Yonggang; Zheng, Junwei; Yan, Qingyu; Gu, Hongwei
2016-02-07
In this work, a one-dimensional Co3O4@TiO2 core-shell electrode material with superior electrochemical performance is fabricated by a convenient and controllable route. The approach involves two main steps: the homogeneous deposition of polydopamine and TiO2 layers in sequence on the cobalt coordination polymer and the thermal decomposition of the polymer matrix. The as-prepared electrode material can achieve excellent electrochemical properties and stability as an anode material for lithium ion batteries, such as a high specific capacity of 1279 mA h g(-1), good cycling stability (around 803 mA h g(-1) at a current density of 200 mA g(-1) after 100 cycles), and stable rate performance (around 520 mA h g(-1) at a current density of 1000 mA g(-1)). This dramatic electrochemical performance is mainly attributed to the excellent structural characteristics, which could improve the electrical conductivity and lithium ion mobility, as well as electrolyte permeability and architectural stability during cycling.
Jiang, Yinzhu; Yuan, Tianzhi; Sun, Wenping; Yan, Mi
2012-11-01
Porous SnO₂/graphene composite thin films are prepared as anodes for lithium ion batteries by the electrostatic spray deposition technique. Reticular-structured SnO₂ is formed on both the nickel foam substrate and the surface of graphene sheets according to the scanning electron microscopy (SEM) results. Such an assembly mode of graphene and SnO₂ is highly beneficial to the electrochemical performance improvement by increasing the electrical conductivity and releasing the volume change of the anode. The novel engineered anode possesses 2134.3 mA h g⁻¹ of initial discharge capacity and good capacity retention of 551.0 mA h g⁻¹ up to the 100th cycle at a current density of 200 mA g⁻¹. This anode also exhibits excellent rate capability, with a reversible capacity of 507.7 mA h g⁻¹ after 100 cycles at a current density of 800 mA g⁻¹. The results demonstrate that such a film-type hybrid anode shows great potential for application in high-energy lithium-ion batteries.
Ashkenazi, Sarit
2018-02-05
Current theoretical approaches suggest that mathematical anxiety (MA) manifests itself as a weakness in quantity manipulations. This study is the first to examine automatic versus intentional processing of numerical information using the numerical Stroop paradigm in participants with high MA. To manipulate anxiety levels, we combined the numerical Stroop task with an affective priming paradigm. We took a group of college students with high MA and compared their performance to a group of participants with low MA. Under low anxiety conditions (neutral priming), participants with high MA showed relatively intact number processing abilities. However, under high anxiety conditions (mathematical priming), participants with high MA showed (1) higher processing of the non-numerical irrelevant information, which aligns with the theoretical view regarding deficits in selective attention in anxiety and (2) an abnormal numerical distance effect. These results demonstrate that abnormal, basic numerical processing in MA is context related.
Overview of physics results from the conclusive operation of the National Spherical Torus Experiment
NASA Astrophysics Data System (ADS)
Sabbagh, S. A.; Ahn, J.-W.; Allain, J.; Andre, R.; Balbaky, A.; Bastasz, R.; Battaglia, D.; Bell, M.; Bell, R.; Beiersdorfer, P.; Belova, E.; Berkery, J.; Betti, R.; Bialek, J.; Bigelow, T.; Bitter, M.; Boedo, J.; Bonoli, P.; Boozer, A.; Bortolon, A.; Boyle, D.; Brennan, D.; Breslau, J.; Buttery, R.; Canik, J.; Caravelli, G.; Chang, C.; Crocker, N.; Darrow, D.; Davis, B.; Delgado-Aparicio, L.; Diallo, A.; Ding, S.; D'Ippolito, D.; Domier, C.; Dorland, W.; Ethier, S.; Evans, T.; Ferron, J.; Finkenthal, M.; Foley, J.; Fonck, R.; Frazin, R.; Fredrickson, E.; Fu, G.; Gates, D.; Gerhardt, S.; Glasser, A.; Gorelenkov, N.; Gray, T.; Guo, Y.; Guttenfelder, W.; Hahm, T.; Harvey, R.; Hassanein, A.; Heidbrink, W.; Hill, K.; Hirooka, Y.; Hooper, E. B.; Hosea, J.; Humphreys, D.; Indireshkumar, K.; Jaeger, F.; Jarboe, T.; Jardin, S.; Jaworski, M.; Kaita, R.; Kallman, J.; Katsuro-Hopkins, O.; Kaye, S.; Kessel, C.; Kim, J.; Kolemen, E.; Kramer, G.; Krasheninnikov, S.; Kubota, S.; Kugel, H.; La Haye, R. J.; Lao, L.; LeBlanc, B.; Lee, W.; Lee, K.; Leuer, J.; Levinton, F.; Liang, Y.; Liu, D.; Lore, J.; Luhmann, N., Jr.; Maingi, R.; Majeski, R.; Manickam, J.; Mansfield, D.; Maqueda, R.; Mazzucato, E.; McLean, A.; McCune, D.; McGeehan, B.; McKee, G.; Medley, S.; Meier, E.; Menard, J.; Menon, M.; Meyer, H.; Mikkelsen, D.; Miloshevsky, G.; Mueller, D.; Munsat, T.; Myra, J.; Nelson, B.; Nishino, N.; Nygren, R.; Ono, M.; Osborne, T.; Park, H.; Park, J.; Park, Y. S.; Paul, S.; Peebles, W.; Penaflor, B.; Perkins, R. J.; Phillips, C.; Pigarov, A.; Podesta, M.; Preinhaelter, J.; Raman, R.; Ren, Y.; Rewoldt, G.; Rognlien, T.; Ross, P.; Rowley, C.; Ruskov, E.; Russell, D.; Ruzic, D.; Ryan, P.; Schaffer, M.; Schuster, E.; Scotti, F.; Shaing, K.; Shevchenko, V.; Shinohara, K.; Sizyuk, V.; Skinner, C. H.; Smirnov, A.; Smith, D.; Snyder, P.; Solomon, W.; Sontag, A.; Soukhanovskii, V.; Stoltzfus-Dueck, T.; Stotler, D.; Stratton, B.; Stutman, D.; Takahashi, H.; Takase, Y.; Tamura, N.; Tang, X.; Taylor, G.; Taylor, C.; Tritz, K.; Tsarouhas, D.; Umansky, M.; Urban, J.; Untergberg, E.; Walker, M.; Wampler, W.; Wang, W.; Whaley, J.; White, R.; Wilgen, J.; Wilson, R.; Wong, K. L.; Wright, J.; Xia, Z.; Youchison, D.; Yu, G.; Yuh, H.; Zakharov, L.; Zemlyanov, D.; Zimmer, G.; Zweben, S. J.
2013-10-01
Research on the National Spherical Torus Experiment, NSTX, targets physics understanding needed for extrapolation to a steady-state ST Fusion Nuclear Science Facility, pilot plant, or DEMO. The unique ST operational space is leveraged to test physics theories for next-step tokamak operation, including ITER. Present research also examines implications for the coming device upgrade, NSTX-U. An energy confinement time, τE, scaling unified for varied wall conditions exhibits a strong improvement of BTτE with decreased electron collisionality, accentuated by lithium (Li) wall conditioning. This result is consistent with nonlinear microtearing simulations that match the experimental electron diffusivity quantitatively and predict reduced electron heat transport at lower collisionality. Beam-emission spectroscopy measurements in the steep gradient region of the pedestal indicate the poloidal correlation length of turbulence of about ten ion gyroradii increases at higher electron density gradient and lower Ti gradient, consistent with turbulence caused by trapped electron instabilities. Density fluctuations in the pedestal top region indicate ion-scale microturbulence compatible with ion temperature gradient and/or kinetic ballooning mode instabilities. Plasma characteristics change nearly continuously with increasing Li evaporation and edge localized modes (ELMs) stabilize due to edge density gradient alteration. Global mode stability studies show stabilizing resonant kinetic effects are enhanced at lower collisionality, but in stark contrast have almost no dependence on collisionality when the plasma is off-resonance. Combined resistive wall mode radial and poloidal field sensor feedback was used to control n = 1 perturbations and improve stability. The disruption probability due to unstable resistive wall modes (RWMs) was surprisingly reduced at very high βN/li > 10 consistent with low frequency magnetohydrodynamic spectroscopy measurements of mode stability. Greater instability seen at intermediate βN is consistent with decreased kinetic RWM stabilization. A model-based RWM state-space controller produced long-pulse discharges exceeding βN = 6.4 and βN/li = 13. Precursor analysis shows 96.3% of disruptions can be predicted with 10 ms warning and a false positive rate of only 2.8%. Disruption halo currents rotate toroidally and can have significant toroidal asymmetry. Global kinks cause measured fast ion redistribution, with full-orbit calculations showing redistribution from the core outward and towards V∥/V = 1 where destabilizing compressional Alfvén eigenmode resonances are expected. Applied 3D fields altered global Alfvén eigenmode characteristics. High-harmonic fast-wave (HHFW) power couples to field lines across the entire width of the scrape-off layer, showing the importance of the inclusion of this phenomenon in designing future RF systems. The snowflake divertor configuration enhanced by radiative detachment showed large reductions in both steady-state and ELM heat fluxes (ELMing peak values down from 19 MW m-2 to less than 1.5 MW m-2). Toroidal asymmetry of heat deposition was observed during ELMs or by 3D fields. The heating power required for accessing H-mode decreased by 30% as the triangularity was decreased by moving the X-point to larger radius, consistent with calculations of the dependence of E × B shear in the edge region on ion heat flux and X-point radius. Co-axial helicity injection reduced the inductive start-up flux, with plasmas ramped to 1 MA requiring 35% less inductive flux. Non-inductive current fraction (NICF) up to 65% is reached experimentally with neutral beam injection at plasma current Ip = 0.7 MA and between 70-100% with HHFW application at Ip = 0.3 MA. NSTX-U scenario development calculations project 100% NICF for a large range of 0.6 < Ip(MA) < 1.35.
Ion extraction from a saddle antenna RF surface plasma source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dudnikov, V., E-mail: vadim@muonsinc.com; Johnson, R. P.; Han, B.
Existing RF Surface Plasma Sources (SPS) for accelerators have specific efficiencies for H{sup +} and H{sup −} ion generation around 3 to 5 mA/cm{sup 2} per kW, where about 50 kW of RF power is typically needed for 50 mA beam current production. The Saddle Antenna (SA) SPS described here was developed to improve H{sup −} ion production efficiency and SPS reliability and availability. At low RF power, the efficiency of positive ion generation in the plasma has been improved to 200 mA/cm{sup 2} per kW of RF power at 13.56 MHz. Initial cesiation of the SPS was performed bymore » heating cesium chromate cartridges by discharge as was done in the very first versions of the SPS. A small oven to decompose cesium compounds and alloys was developed and tested. After cesiation, the current of negative ions to the collector was increased from 1 mA to 10 mA with RF power ∼1.5 kW in the plasma (6 mm diameter emission aperture) and up to 30 mA with ∼4 kW RF power in the plasma and 250 Gauss longitudinal magnetic field. The ratio of electron current to negative ion current was improved from 30 to 2. Stable generation of H{sup −} beam without intensity degradation was demonstrated in the AlN discharge chamber for a long time at high discharge power in an RF SPS with an external antenna. Continuous wave (CW) operation of the SA SPS has been tested on the small test stand. The general design of the CW SA SPS is based on the pulsed version. Some modifications were made to improve the cooling and cesiation stability. The extracted collector current can be increased significantly by optimizing the longitudinal magnetic field in the discharge chamber. CW operation with negative ion extraction was tested with RF power up to 1.8 kW from the generator (∼1.2 kW in the plasma) with production up to Ic=7 mA. Long term operation was tested with 1.2 kW from the RF generator (∼0.8 kW in the plasma) with production of Ic=5 mA, Iex ∼15 mA (Uex=8 kV, Uc=14 kV)« less
Ion extraction from a saddle antenna RF surface plasma source
NASA Astrophysics Data System (ADS)
Dudnikov, V.; Johnson, R. P.; Han, B.; Murray, S.; Pennisi, T.; Piller, C.; Santana, M.; Stockli, M.; Welton, R.; Breitschopf, J.; Dudnikova, G.
2015-04-01
Existing RF Surface Plasma Sources (SPS) for accelerators have specific efficiencies for H+ and H- ion generation around 3 to 5 mA/cm2 per kW, where about 50 kW of RF power is typically needed for 50 mA beam current production. The Saddle Antenna (SA) SPS described here was developed to improve H- ion production efficiency and SPS reliability and availability. At low RF power, the efficiency of positive ion generation in the plasma has been improved to 200 mA/cm2 per kW of RF power at 13.56 MHz. Initial cesiation of the SPS was performed by heating cesium chromate cartridges by discharge as was done in the very first versions of the SPS. A small oven to decompose cesium compounds and alloys was developed and tested. After cesiation, the current of negative ions to the collector was increased from 1 mA to 10 mA with RF power ˜1.5 kW in the plasma (6 mm diameter emission aperture) and up to 30 mA with ˜4 kW RF power in the plasma and 250 Gauss longitudinal magnetic field. The ratio of electron current to negative ion current was improved from 30 to 2. Stable generation of H- beam without intensity degradation was demonstrated in the AlN discharge chamber for a long time at high discharge power in an RF SPS with an external antenna. Continuous wave (CW) operation of the SA SPS has been tested on the small test stand. The general design of the CW SA SPS is based on the pulsed version. Some modifications were made to improve the cooling and cesiation stability. The extracted collector current can be increased significantly by optimizing the longitudinal magnetic field in the discharge chamber. CW operation with negative ion extraction was tested with RF power up to 1.8 kW from the generator (˜1.2 kW in the plasma) with production up to Ic=7 mA. Long term operation was tested with 1.2 kW from the RF generator (˜0.8 kW in the plasma) with production of Ic=5 mA, Iex ˜15 mA (Uex=8 kV, Uc=14 kV).
Psychomotor stimulant effects of beta-phenylethylamine in monkeys treated with MAO-B inhibitors.
Bergman, J; Yasar, S; Winger, G
2001-12-01
Sufficiently high doses of beta-phenylethylamine (beta-PEA), a trace amine that is rapidly metabolized by monoamine oxidase-type B (MAO-B), can produce effects comparable to those of cocaine or methamphetamine (MA). The present experiments were conducted to study how the discriminative-stimulus (S(D)) and reinforcing-stimulus (S(R)) effects of beta-PEA in monkeys are modified by treatment with inhibitors of MAO-B [R-(-)-deprenyl and MDL 72974]. In studies of its S(D) effects, doses of beta-PEA up to 30 mg/kg engendered only sporadic responding on the drug-associated lever in squirrel monkeys that discriminated intramuscular injections of 0.3 mg/kg MA from vehicle whereas lower doses of 0.3-1.0 mg/kg beta-PEA produced full substitution when administered after either R-(-)-deprenyl or MDL 72974 (0.3 mg/kg). The MA-like S(D) effects of beta-PEA were attenuated by either dopamine D(1) or D(2) receptor blockers. In studies of its S(R) effects, high doses of beta-PEA maintained responding in two of three monkeys under a second-order fixed-interval schedule (3.0 or 10 mg/kg per injection) and two of three monkeys under a simple fixed ratio (FR) schedule (0.3-1.0 mg/kg per injection) of intravenous (i.v.) self-administration. MAO-B inhibition by R-(-)-deprenyl or MDL 72974 enhanced the S(R) effects of beta-PEA in all monkeys and, under the FR schedule, induced a 30-fold or greater leftward shift in the dose-response function for its i.v. self-administration. Based on time-course determinations, the enhanced S(R) effects of beta-PEA under the FR schedule were long-lasting and dissipated gradually over 3-7 days. These results show that inhibition of MAO-B enhances S(D) and S(R) effects of beta-PEA in monkeys, presumably by delaying its inactivation. MAO-B inhibition leading to increased levels of beta-PEA may be useful, alone or in combination with other therapeutic agents, in the pharmacological management of selected aspects of drug dependence.
Leicht, Simon F; Kernt, Marcus; Neubauer, Aljoscha; Wolf, Armin; Oliveira, Carlos Manta; Ulbig, Michael; Haritoglou, Christos
2014-01-01
To evaluate the influence of a ranibizumab treatment on microaneurysm (MA) turnover in diabetic retinopathy. Sixty-nine eyes were included in this retrospective study. We compared a group of 33 eyes with ranibizumab treatment for diabetic macular edema to 36 eyes with nonproliferative diabetic retinopathy only. Nonmydriatic ultra-widefield scanning laser ophthalmoscopy (Optomap) images were obtained at a mean 4.76 ± 1.69 days prior to the first ranibizumab injection (baseline) and again 35.94 ± 2.44 days after the third consecutive injection in a 4-week interval. In untreated controls, images were obtained at baseline and 97.81 ± 3.16 days thereafter. Images were analyzed using the RetmarkerDR software (Critical Health SA, Coimbra, Portugal), and the turnover of MAs was documented and analyzed. Thereafter, MA turnover was correlated with central retinal thickness (CRT) as assessed by OCT. At baseline, patients in the treatment group had 5.64 ± 0.75 MAs. One month after 3 ranibizumab injections, measured MAs decreased to 4.03 ± 0.66. In the untreated control group, the initial number of 3.36 ± 0.6 MAs remained almost unchanged over 3-4 months (2.89 ± 0.57 MAs). Dynamic analysis showed that after ranibizumab treatment 3.06 ± 0.5 new MAs appeared, while 5.09 ± 0.79 disappeared. In the control group, 2.11 ± 0.4 new MAs appeared and 2.61 ± 0.48 disappeared. MA turnover was significantly higher with ranibizumab compared to the control group (8.15 ± 1.14 vs. 4.72 ± 0.81, p < 0.001). Consistently, CRT decreased from 444 to 330 µm in the ranibizumab group, while there was no change in the control group (291 vs. 288 µm). The treatment of macular edema using ranibizumab does not only reduce macular thickness, but also has an impact on the turnover of MAs in diabetic retinopathy. RetmarkerDR analysis showed that more pre-existent MAs disappeared than new MAs developed, and the absolute number of MAs also decreased. © 2014 S. Karger AG, Basel.
Cossio, Alexandra; Saravia, Nancy Gore; Castro, Maria del Mar; Prada, Sergio; Bartlett, Allison H.; Pho, Mai T.
2017-01-01
Background Oral miltefosine has been shown to be non-inferior to first-line, injectable meglumine antimoniate (MA) for the treatment of cutaneous leishmaniasis (CL) in children. Miltefosine may be administered via in-home caregiver Directly Observed Therapy (cDOT), while patients must travel to clinics to receive MA. We performed a cost-effectiveness analysis comparing miltefosine by cDOT versus MA for pediatric CL in southwest Colombia. Methodology/Principle findings We developed a Monte Carlo model comparing the cost-per-cure of miltefosine by cDOT compared to MA from patient, government payer, and societal perspectives (societal = sum of patient and government payer perspective costs). Drug effectiveness and adverse events were estimated from clinical trials. Healthcare utilization and costs of travel were obtained from surveys of providers and published sources. The primary outcome was cost-per-cure reported in 2015 USD. Treatment efficacy, costs, and adherence were varied in sensitivity analysis to assess robustness of results. Treatment with miltefosine resulted in substantially lower cost-per-cure from a societal and patient perspective, and slightly higher cost-per-cure from a government payer perspective compared to MA. Mean societal cost-per-cure were $531 (SD±$239) for MA and $188 (SD±$100) for miltefosine, a mean cost-per-cure difference of +$343. Mean cost-per-cure from a patient perspective were $442 (SD ±$233) for MA and $30 (SD±$16) for miltefosine, a mean difference of +$412. Mean cost-per-cure from a government perspective were $89 (SD±$55) for MA and $158 (SD±$98) for miltefosine, with a mean difference of -$69. Results were robust across a variety of assumptions in univariate and multi-way analysis. Conclusions/Significance Treatment of pediatric cutaneous leishmaniasis with miltefosine via cDOT is cost saving from patient and societal perspectives, and moderately more costly from the government payer perspective compared to treatment with MA. Results were robust over a range of sensitivity analyses. Lower drug price for miltefosine could result in cost saving from a government perspective. PMID:28384261
NASA Astrophysics Data System (ADS)
Fagan, C. J.; Wilson, C. J.; Spinks, K. D.; Browne, P. R.; Simmons, S. F.
2006-12-01
A major part of the ca. 1.6 Myr history of the Taupo Volcanic Zone (TVZ) is represented by buried and hydrothermally altered rocks penetrated by geothermal exploration wells. The geothermal field at Mangakino is sited in the oldest TVZ caldera on the western edge of the TVZ. Four exploration wells into the field reveal a thick sequence of flat-lying ignimbrites. Basement Mesozoic greywacke metasediments were not reached by the deepest well, MA2 (3192 m), implying the presence of a thick caldera infill. Ignimbrites exposed at the surface nearby have distinct mineralogies and crystal contents, which enable correlation with down-hole lithologies. Five ignimbrites are identified in the wells: the 0.32 Ma Whakamaru, 0.93 Ma Marshall, 1.0 Ma Rocky Hill, 1.18 Ma Ahuroa and 1.25 Ma Ongatiti ignimbrites, two of which are >800m thick. The Whakamaru and Marshall units are separated by a thick sequence of lacustrine and volcaniclastic deposits related to infilling of the Mangakino caldera. The ignimbrite sequence is continuous between all wells, with no fault offset, and only well MA3 intersects two rhyolite intrusions at 1190 m and 1850 m that are thought to be feeder dikes to post-0.32 Ma rhyolite domes to the east of Mangakino. Alteration assemblages include epidote and wairakite in MA2 below 2200 m. Adularia occurs in MA2 and MA3 where it replaces, wholly or in part, primary andesine. Adularia is also locally replaced by illite, indicating a shift in hydrothermal conditions. Other minerals present are chlorite, quartz, calcite, titanite and pyrite. Secondary quartz and calcite veins are seen in thin section, with a first appearance in the lacustrine sediments at 550 m in both MA2 and MA3. Fluid inclusions in secondary calcite show high temperatures (300 and 315 °C) while inclusions in primary quartz show ca. 165 °C (the current temperature at the sampled depth), recording current conditions. The modern maximum temperature is 250 °C at 3000 m in MA2. Evidence for two different temperatures in the fluid inclusion data and a shift in alteration mineralogy may reflect an earlier thermal event, possibly related to dike intrusion nearby.
Zhu, Yun Guang; Wang, Ye; Han, Zhao Jun; Shi, Yumeng; Wong, Jen It; Huang, Zhi Xiang; Ostrikov, Kostya Ken; Yang, Hui Ying
2014-12-21
The catalytic role of germanium (Ge) was investigated to improve the electrochemical performance of tin dioxide grown on graphene (SnO(2)/G) nanocomposites as an anode material of lithium ion batteries (LIBs). Germanium dioxide (GeO(20) and SnO(2) nanoparticles (<10 nm) were uniformly anchored on the graphene sheets via a simple single-step hydrothermal method. The synthesized SnO(2)(GeO(2))0.13/G nanocomposites can deliver a capacity of 1200 mA h g(-1) at a current density of 100 mA g(-1), which is much higher than the traditional theoretical specific capacity of such nanocomposites (∼ 702 mA h g(-1)). More importantly, the SnO(2)(GeO(2))0.13/G nanocomposites exhibited an improved rate, large current capability (885 mA h g(-1) at a discharge current of 2000 mA g(-1)) and excellent long cycling stability (almost 100% retention after 600 cycles). The enhanced electrochemical performance was attributed to the catalytic effect of Ge, which enabled the reversible reaction of metals (Sn and Ge) to metals oxide (SnO(2) and GeO(2)) during the charge/discharge processes. Our demonstrated approach towards nanocomposite catalyst engineering opens new avenues for next-generation high-performance rechargeable Li-ion batteries anode materials.
Fan, Zhong-Qi; Chen, Jian-Ye; Kuang, Jian-Fei; Lu, Wang-Jin; Shan, Wei
2017-01-01
The regulation of ICE1 protein stability is important to ensure effective cold stress response, and is extensively studied in Arabidopsis . Currently, how ICE1 stability in fruits under cold stress is controlled remains largely unknown. Here, we reported the possible involvement of a SEVEN IN ABSENTIA (SINA) ubiquitin ligase MaSINA1 from banana fruit in affecting MaICE1 stability. MaSINA1 was identified based on a yeast two-hybrid screening using MaICE1 as bait. Further yeast two-hybrid, pull-down, bimolecular fluorescence complementation (BiFC) and co-immunoprecipitation (CoIP) assays confirmed that MaSINA1 interacted with MaICE1. The expression of MaSINA1 was repressed by cold stress. Subcellular localization analysis in tobacco leaves showed that MaSINA1 was localized predominantly in the nucleus. In vitro ubiquitination assay showed that MaSINA1 possessed E3 ubiquitin ligase activity. More importantly, in vitro and semi- in vivo experiments indicated that MaSINA1 can ubiquitinate MaICE1 for the 26S proteasome-dependent degradation, and therefore suppressed the transcriptional activation of MaICE1 to MaNAC1, an important regulator of cold stress response of banana fruit. Collectively, our data reveal a mechanism in banana fruit for control of the stability of ICE1 and for the negative regulation of cold stress response by a SINA E3 ligase via the ubiquitin proteasome system.
Nedredal, Geir I; Elvevold, Kjetil; Chedid, Marcio F; Ytrebø, Lars M; Rose, Christopher F; Sen, Sambit; Smedsrød, Bård; Jalan, Rajiv; Revhaug, Arthur
2016-01-01
Pulmonary complications are common in acute liver failure (ALF). The role of the lungs in the uptake of harmful soluble endogenous macromolecules was evaluated in a porcine model of ALF induced by hepatic devascularization (n = 8) vs. controls (n = 8). In additional experiments, pulmonary uptake was investigated in healthy pigs. Fluorochrome-labeled modified albumin (MA) was applied to investigate the cellular uptake. As compared to controls, the ALF group displayed a 4-fold net increased lung uptake of hyaluronan, and 5-fold net increased uptake of both tissue plasminogen activator and lysosomal enzymes. Anatomical distribution experiments in healthy animals revealed that radiolabeled MA uptake (taken up by the same receptor as hyaluronan) was 53% by the liver, and 24% by the lungs. The lung uptake of LPS was 14% whereas 60% remained in the blood. Both fluorescence and electron microscopy revealed initial uptake of MA by pulmonary endothelial cells (PECs) with later translocation to pulmonary intravascular macrophages (PIMs). Moreover, the presence of PIMs was evident 10 min after injection. Systemic inflammatory markers such as leukopenia and increased serum TNF-α levels were evident after 20 min in the MA and LPS groups. Significant lung uptake of harmful soluble macromolecules compensated for the defect liver scavenger function in the ALF-group. Infusion of MA induced increased TNF-α serum levels and leukopenia, similar to the effect of the known inflammatory mediator LPS. These observations suggest a potential mechanism that may contribute to lung damage secondary to liver disease.
Fully reversible current driven by a dual marine photosynthetic microbial community.
Darus, Libertus; Lu, Yang; Ledezma, Pablo; Keller, Jürg; Freguia, Stefano
2015-11-01
The electrochemical activity of two seawater microbial consortia were investigated in three-electrode bioelectrochemical cells. Two seawater inocula - from the Sunshine Coast (SC) and Gold Coast (GC) shores of Australia - were enriched at +0.6 V vs. SHE using 12/12 h day/night cycles. After re-inoculation, the SC consortium developed a fully-reversible cathodic/anodic current, with a max. of -62 mA m(-2) during the day and +110 mA m(-2) at night, while the GC exhibited negligible daytime output but +98 mA m(-2) at night. Community analysis revealed that both enrichments were dominated by cyanobacteria, indicating their potential as biocatalysts for indirect light conversion to electricity. Moreover, the presence of γ-proteobacterium Congregibacter in SC biofilm was likely related to the cathodic reductive current, indicating its effectiveness at catalysing cathodic oxygen reduction at a surprisingly high potential. For the first time a correlation between a dual microbial community and fully reversible current is reported. Copyright © 2015 Elsevier Ltd. All rights reserved.
High current polarized electron source
NASA Astrophysics Data System (ADS)
Suleiman, R.; Adderley, P.; Grames, J.; Hansknecht, J.; Poelker, M.; Stutzman, M.
2018-05-01
Jefferson Lab operates two DC high voltage GaAs photoguns with compact inverted insulators. One photogun provides the polarized electron beam at the Continuous Electron Beam Accelerator Facility (CEBAF) up to 200 µA. The other gun is used for high average current photocathode lifetime studies at a dedicated test facility up to 4 mA of polarized beam and 10 mA of un-polarized beam. GaAs-based photoguns used at accelerators with extensive user programs must exhibit long photocathode operating lifetime. Achieving this goal represents a significant challenge for proposed facilities that must operate in excess of tens of mA of polarized average current. This contribution describes techniques to maintain good vacuum while delivering high beam currents, and techniques that minimize damage due to ion bombardment, the dominant mechanism that reduces photocathode yield. Advantages of higher DC voltage include reduced space-charge emittance growth and the potential for better photocathode lifetime. Highlights of R&D to improve the performance of polarized electron sources and prolong the lifetime of strained-superlattice GaAs are presented.
A Plasma Focus Device with a 2-MA Discharge Current as a Hard X-Ray Source
NASA Astrophysics Data System (ADS)
Yurkov, D. I.; Dulatov, A. K.; Lemeshko, B. D.; Andreev, D. A.; Golikov, A. V.; Mikhailov, Yu. V.; Prokuratov, I. A.; Selifanov, A. N.; Fatiev, T. S.
2018-04-01
A device based on a pulsed current generator with capacitive energy storage loaded on a plasma focus (PF) chamber is described. The device provides a discharge current amplitude of up to 2 MA in the PF chamber at a stored energy in the capacitor bank of up to 150 kJ. The PF chamber is designed to study hard X-ray (HXR) emission. It has windows for output of HXR emission in the cathode direction, as well as a special insert for output of HXR emission into the anode cavity. A study of operation of the chamber as a part of the setup with the use of various X-ray targets on the anode has been carried out. At a discharge current of 1.5MA, an HXR pulse with an average duration of 16 ns and energy spectrum from 10 to 200 keV, which provides an absorbed dose in the irradiated samples on the order of 1 Sv, is generated in the PF chamber.
Next Generation H- Ion Sources for the SNS
NASA Astrophysics Data System (ADS)
Welton, R. F.; Stockli, M. P.; Murray, S. N.; Crisp, D.; Carmichael, J.; Goulding, R. H.; Han, B.; Tarvainen, O.; Pennisi, T.; Santana, M.
2009-03-01
The U.S. Spallation Neutron Source (SNS) is the leading accelerator-based, pulsed neutron-scattering facility, currently in the process of ramping up neutron production. In order to insure meeting operational requirements as well as providing for future facility beam power upgrades, a multifaceted H- ion source development program is ongoing. This work discusses several aspects of this program, specifically the design and first beam measurements of an RF-driven, external antenna H- ion source based on an A1N ceramic plasma chamber, elemental and chromate Cs-systems, and plasma ignition gun. Unanalyzed beam currents of up to ˜100 mA (60 Hz, 1 ms) have been observed and sustained currents >60 mA (60 Hz, 1 ms) have been demonstrated on the test stand. Accelerated beam currents of ˜40 mA have also been demonstrated into the SNS front end. Data are also presented describing the first H- beam extraction experiments from a helicon plasma generator based on the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) engine design.
Three-dimensional magnetohydrodynamic equilibrium of quiescent H-modes in tokamak systems
NASA Astrophysics Data System (ADS)
Cooper, W. A.; Graves, J. P.; Duval, B. P.; Sauter, O.; Faustin, J. M.; Kleiner, A.; Lanthaler, S.; Patten, H.; Raghunathan, M.; Tran, T.-M.; Chapman, I. T.; Ham, C. J.
2016-06-01
Three dimensional free boundary magnetohydrodynamic equilibria that recover saturated ideal kink/peeling structures are obtained numerically. Simulations that model the JET tokamak at fixed < β > =1.7% with a large edge bootstrap current that flattens the q-profile near the plasma boundary demonstrate that a radial parallel current density ribbon with a dominant m /n = 5/1 Fourier component at {{I}\\text{t}}=2.2 MA develops into a broadband spectrum when the toroidal current I t is increased to 2.5 MA.
Studies of beam injection with a compensated bump and uncompensated bump in a synchrotron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akbar Fakhri, Ali; Prajapati, S. K.; Ghodke, A. D.
2013-08-15
Synchrotron radiation sources Indus-1 and Indus-2 have a synchrotron as the common injector. A three kicker compensated bump injection scheme was employed for beam injection into this synchrotron. The stored beam current in the synchrotron is higher, when all the three kickers are operated at the same current than when kickers are operated at currents required to generate compensated bump. Beam dynamics studies have been done to understand why this happens. Theoretical studies indicate that higher stored current in the later case is attributed to smaller residual oscillations of injected beam. These studies also reveal that if the angle ofmore » the injected beam during beam injection is kept varying, the performance could be further improved. This is experimentally confirmed by injecting the beam on rising part of the injection septum magnet current pulse.« less
Synthesis and Characterization of Types A and B Gelatin Methacryloyl for Bioink Applications
Lee, Bae Hoon; Lum, Nathaniel; Seow, Li Yuan; Lim, Pei Qi; Tan, Lay Poh
2016-01-01
Gelatin methacryloyl (GelMA) has been increasingly considered as an important bioink material due to its tailorable mechanical properties, good biocompatibility, and ability to be photopolymerized in situ as well as printability. GelMA can be classified into two types: type A GelMA (a product from acid treatment) and type B GelMA (a product from alkali treatment). In current literature, there is little research on the comparison of type A GelMA and type B GelMA in terms of synthesis, rheological properties, and printability for bioink applications. Here, we report the synthesis, rheological properties, and printability of types A and B GelMA. Types A and B GelMA samples with different degrees of substitution (DS) were prepared in a controllable manner by a time-lapse loading method of methacrylic anhydride (MAA) and different feed ratios of MAA to gelatin. Type B GelMA tended to have a slightly higher DS compared to type A GelMA, especially in a lower feed ratio of MAA to gelatin. All the type A and type B GelMA solutions with different DS exhibited shear thinning behaviours at 37 °C. However, only GelMA with a high DS had an easy-to-extrude feature at room temperature. The cell-laden printed constructs of types A and B GelMA at 20% w/v showed around 75% cell viability. PMID:28773918
Koch, Marcus A.
2015-01-01
Objectives To take inventory of the current state of affairs of Market Access Launch Excellence in the life sciences industry. To identify key gaps and challenges for Market Access (MA) and discuss how they can be addressed. To generate a baseline for benchmarking MA launch excellence. Methodology An online survey was conducted with pharmaceutical executives primarily working in MA, marketing, or general management. The survey aimed to evaluate MA excellence prerequisites across the product life cycle (rated by importance and level of implementation) and to describe MA activity models in the respective companies. Composite scores were calculated from respondents’ ratings and answers. Results Implementation levels of MA excellence prerequisites generally lagged behind their perceived importance. Item importance and the respective level of implementation correlated well, which can be interpreted as proof of the validity of the questionnaire. The following areas were shown to be particularly underimplemented: 1) early integration of MA and health economic considerations in research and development decision making, 2) developing true partnerships with payers, including the development of services ‘beyond the pill’, and 3) consideration of human resource and talent management. The concept of importance-adjusted implementation levels as a hybrid parameter was introduced and shown to be a viable tool for benchmarking purposes. More than 70% of respondents indicated that their companies will invest broadly in MA in terms of capital and headcount within the next 3 years. Conclusions MA (launch) excellence needs to be further developed in order to close implementation gaps across the entire product life cycle. As MA is a comparatively young pharmaceutical discipline in a complex and dynamic environment, this effort will require strategic focus and dedication. The Market Access Launch Excellence Inventory benchmarking tool may help guide decision makers to prioritize their endeavors. PMID:29785250
Provenance history of detrital diamond deposits, West Coast of Namaqualand, South Africa
NASA Astrophysics Data System (ADS)
Phillips, David; Harris, Jeffrey W.; de Wit, Michiel C. J.; Matchan, Erin L.
2018-05-01
The West Coast of Namaqualand in South Africa hosts extensive detrital diamond deposits, but considerable debate exists as to the provenance of these diamonds. Some researchers have suggested derivation of the diamonds from Cretaceous-Jurassic kimberlites (also termed Group I kimberlites) and orangeites (also termed Group II kimberlites) located on the Kaapvaal Craton. However, others favour erosion of diamonds from the ca.300 Ma Dwyka Group sediments, with older, pre-Karoo kimberlites being the original source(s). Previous work has demonstrated that 40Ar/39Ar analyses of clinopyroxene inclusions, extracted from diamonds, yield ages approaching the time(s) of source kimberlite emplacement, which can be used to constrain the provenance of placer diamond deposits. In the current study, 40Ar/39Ar analyses were conducted on clinopyroxene inclusions from two similar batches of Namaqualand detrital diamonds, yielding (maximum) ages ranging from 117.5 ± 43.6 Ma to 3684 ± 191 Ma (2σ) and 120.6 ± 15.4 Ma to 688.8 ± 4.9 Ma (2σ), respectively. The vast majority of inclusions (88%) produced ages younger than 500 Ma, indicating that most Namaqualand diamonds originated from Cretaceous-Jurassic kimberlites/orangeites, with few, if any, derived from the Dwyka tillites. The provenance of the Namaqualand diamonds from ca.115-200 Ma orangeites is consistent with Late Cretaceous paleo-drainage reconstructions, as these localities could have been sampled by the `paleo-Karoo' River and transported to the West Coast via an outlet close to the current Olifants River mouth. At ca.90 Ma, this drainage system appears to have been captured by the `paleo-Kalahari' River, a precursor to the modern Orange River system. This latter drainage is considered to have transported diamonds eroded from both ca.80-90 Ma kimberlites and ca.115-200 Ma orangeites to the West Coast, which were subsequently reworked along the Namibian coast, forming additional placer deposits.
Updated folate data in the Dutch Food Composition Database and implications for intake estimates
Westenbrink, Susanne; Jansen-van der Vliet, Martine; van Rossum, Caroline
2012-01-01
Background and objective Nutrient values are influenced by the analytical method used. Food folate measured by high performance liquid chromatography (HPLC) or by microbiological assay (MA) yield different results, with in general higher results from MA than from HPLC. This leads to the question of how to deal with different analytical methods in compiling standardised and internationally comparable food composition databases? A recent inventory on folate in European food composition databases indicated that currently MA is more widely used than HPCL. Since older Dutch values are produced by HPLC and newer values by MA, analytical methods and procedures for compiling folate data in the Dutch Food Composition Database (NEVO) were reconsidered and folate values were updated. This article describes the impact of this revision of folate values in the NEVO database as well as the expected impact on the folate intake assessment in the Dutch National Food Consumption Survey (DNFCS). Design The folate values were revised by replacing HPLC with MA values from recent Dutch analyses. Previously MA folate values taken from foreign food composition tables had been recalculated to the HPLC level, assuming a 27% lower value from HPLC analyses. These recalculated values were replaced by the original MA values. Dutch HPLC and MA values were compared to each other. Folate intake was assessed for a subgroup within the DNFCS to estimate the impact of the update. Results In the updated NEVO database nearly all folate values were produced by MA or derived from MA values which resulted in an average increase of 24%. The median habitual folate intake in young children was increased by 11–15% using the updated folate values. Conclusion The current approach for folate in NEVO resulted in more transparency in data production and documentation and higher comparability among European databases. Results of food consumption surveys are expected to show higher folate intakes when using the updated values. PMID:22481900
NASA Astrophysics Data System (ADS)
Schlossberg, D. J.; Bodner, G. M.; Bongard, M. W.; Fonck, R. J.; Winz, G. R.
2014-10-01
A multipoint Thomson scattering diagnostic has recently been installed on the Pegasus ST. The system utilizes a frequency-doubled Nd:YAG laser (λ0 ~ 532 nm), spectrometers with volume phase holographic gratings, and a gated, intensified CCD camera. It provides measurements of Te and ne at 8 spatial locations for each spectrometer once per discharge. A new multiple aperture and beam dump system has been implemented to mitigate interference from stray light. This system has provided initial measurements in the core region of plasmas initiated by local helicity injection (LHI), as well as conventional Ohmic L- and H-mode discharges. Multi-shot averages of low-density (ne ~ 3 ×1018 m-3) , Ip ~ 0 . 1 MA LHI discharges show central Te ~ 75 eV at the end of the helicity injection phase. Ip ~ 0 . 13 MA Ohmic plasmas at moderate densities (ne ~ 2 ×1019 m-3) have core Te ~ 150 eV in L-mode. Generally, these plasmas do not reach transport equilibrium in the short 25 ms pulse length available. After an L-H transition, strong spectral broadening indicates increasing Te, to values above the range of the present spectrometer system with a high-dispersion VPH grating. Near-term system upgrades will focus on deploying a second spectrometer, with a lower-dispersion grating capable of measuring the 0.1-1.0 keV range. The second spectrometer system will also increase the available number of spatial channels, enabling study of H-mode pedestal structure. Work supported by US DOE Grant DE-FG02-96ER54375.
NASA Astrophysics Data System (ADS)
Robinson, F. A.; Bonin, B.; Pease, V.; Anderson, J. L.
2017-03-01
The transition from late-orogenic to post-orogenic magmatism following major orogenic episodes such as the Neoproterozoic to Cambrian East African Orogen (EAO) is an important, yet not well-understood geological event marking the cessation of subduction-controlled magmatism between buoyant lithospheric fragments. Forming the northern part of the EAO in the Arabian-Nubian Shield are three granitic suites that successively intruded the same northeastern area and post-date the 640 Ma major orogenic episode: (1) 620-600 Ma alkali feldspar (hypersolvous) granite with alkaline/ferroan/A-type geochemistry, (2) 599 Ma granite cumulates (some garnet-bearing) with calc-alkaline/magnesian affinities, and (3) 584-566 Ma alkali feldspar (hypersolvous) granite (aegirine-bearing) with a distinctive peralkaline/ferroan/A-type signature. Combining whole-rock geochemistry from the southern and northern Arabian Shield, suites 1 and 2 are suggested to be products of late-orogenic slab tear/rollback inducing asthenospheric mantle injection and lower crustal melting/fractionation toward A-type/ferroan geochemistry. Suite 3, however, is suggested to be produced by post-orogenic lithospheric delamination, which replaced the older mantle with new asthenospheric (rare earth element-enriched) mantle that ultimately becomes the thermal boundary layer of the new lithosphere. Major shear zones, such as the 620-540 Ma Najd Fault System (NFS), are some of the last tectonic events recorded across the Arabian Shield. Data presented here suggest that the NFS is directly related to the late-orogenic (620-600 Ma) slab tear/rollback in the northeastern Shield as it met with opposing subduction polarity in the southern Shield. Furthermore, this study infers that east and west Gondwana amalgamation interacted with opposing convergence reflected by the NFS.
NASA Astrophysics Data System (ADS)
Vari, Sandor G.; Papazoglou, Theodore G.; Papaioannou, Thanassis; Stavridi, Marigo; Pergadia, Vani R.; Fishbein, Michael C.; van der Veen, Maurits J.; Thomas, Reem; Grundfest, Warren S.
1994-03-01
Laser induced fluorescence spectroscopy (LIFS) was used to detect the presence of PHOTOFRINR porfimer sodium and Benzoporphyrin derivative-monoacid, ring A (BPD-MA) in various tissues. Lobund Wistar rats (n equals 49) inoculated with rat prostatic adenocarcinoma (PA-III) were injected with PHOTOFRINR porfimer sodium (7.5 - 0.25 mg/kg) and BPD (0.50 - 25 mg/kg) intravenously. A Helium-Cadmium laser (442 nm) was used as an excitation source. Our study showed that the amount of PHOTOFRINR porfimer sodium and BPD-MA which localizes in the metastatic lymph nodes is higher than in tumor and all other healthy tissues. Laser induced fluorescence spectroscopy may be a feasible method to detect the distribution of photosensitizers or other fluorescent compounds in vivo.
Henry, C.D.; Kunk, Michael J.; Muehlberger, W.R.; McIntosh, W.C.
1997-01-01
The Solitario is a large, combination laccolith and caldera (herein termed "laccocaldera"), with a 16-km-diameter dome over which developed a 6 x 2 km caldera. This laccocaldera underwent a complex sequence of predoming sill, laccolith, and dike intrusion and concurrent volcanism; doming with emplacement of a main laccolith; ash-flow eruption and caldera collapse; intracaldera sedimentation and volcanism; and late intrusion. Detailed geologic mapping and 40Ar/39Ar dating reveal that the Solitario evolved over an interval of approximately 1 m.y. in three distinct pulses at 36.0, 35.4, and 35.0 Ma. The size, duration, and episodicity of Solitario magmatism are more typical of large ash-flow calderas than of most previously described laccoliths. Small volumes of magma intruded as abundant rhyolitic to trachytic sills and small laccoliths and extruded as lavas and tuffs during the first pulse at 36.0 Ma. Emplacement of the main laccolith, doming, ash-flow eruption, and caldera collapse occurred at 35.4 Ma during the most voluminous pulse. A complex sequence of debris-flow and debris-avalanche deposits, megabreccia, trachyte lava, and minor ash-flow tuff subsequently filled the caldera. The final magmatic pulse at 35.0 Ma consisted of several small laccoliths or stocks and numerous dikes in caldera fill and along the ring fracture. Solitario rocks appear to be part of a broadly cogenetic, metaluminous suite. Peralkaline rhyolite lava domes were emplaced north and west of the Solitario at approximately 35.4 Ma, contemporaneous with laccolith emplacement and the main pulse in the Solitario. The spatial and temporal relation along with sparse geochemical data suggest that the peralkaline rhyolites are crustal melts related to the magmatic-thermal flux represented by the main pulse of Solitario magmatism. Current models of laccolith emplacement and evolution suggest a continuum from initial sill emplacement through growth of the main laccolith. Although the Solitario laccocaldera followed this sequence of events, our field and 40Ar/39Ar data demonstrate that it developed through repeated, episodic magma injections, separated by 0.4 to 0.6 m.y. intervals of little or no activity. This evolution requires a deep, long-lived magma source, well below the main laccolith. Laccoliths are commonly thought to be small, shallow features that are not representative of major, silicic magmatic systems such as calderas and batholiths. In contrast, we suggest that magma chambers beneath many ashflow calderas are tabular, floored intrusions, including laccoliths. Evidence for this conclusion includes the following: (1) many large plutons are recognized to be laccoliths or at least tabular, (2) the Solitario and several larger calderas are known to have developed over laccoliths, and (3) magma chambers beneath calderas, which are as much as 80 km in diameter, cannot be as deep as they are wide or some would extend into the upper mantle. The Solitario formed during a tectonically neutral period following Laramide deformation and preceding Basin and Range extension. Therefore, space for the main laccolith was made by uplift of its roof and possibly subsidence of the floor, not by concurrent faulting. Laccolith-type injection is probably a common way that space is made for magma bodies of appreciable areal extent in the upper crust.
Sanchez-Albisua, I; Borell-Kost, S; Mau-Holzmann, U A; Licht, P; Krägeloh-Mann, I
2007-02-01
The neurodevelopmental outcome of children born after intracytoplasmic sperm injection (ICSI) is controversial. We compared the medical and developmental outcome of 34 singletons born after ICSI (20 males, 14 females; mean ages of 18 mo and 40 mo [SD 9 mo]; range 2 y 10 mo-4 y 8 mo) with 39 case control studies (21 males, 18 females; mean ages of 18 mo and 40 mo [SD 4 mo]; range 3 y-4 y 1 mo). Each child was assessed physically and tested in three development domains (fine motor, gross motor, and language). Five children born after ICSI versus two control children (p=0.2) had major congenital anomalies (MaCAs). Four children born after ICSI versus no control children had severe MaCAs (p=0.04). These were defined as having a significant impact on development or causing chronic disease: Angelman syndrome (n=1), lissencephaly (n=1), Hanhart syndrome (n=1), and persistent hyperinsulinemic hypoglycaemia of infancy (n=1). Karyotyping in 23 children born after ICSI revealed no abnormalities. An imprinting defect was found in the child with Angelman syndrome. Results of developmental assessment were in all cases normal at the age of 18 months except for the three children with Angelman and Hanhart syndromes, and lissencephaly. At the second assessment, five more children born after ICSI and four control children showed abnormalities in one or more developmental domains. We conclude that there seems to be a higher frequency of severe major anomalies in children born after ICSI. An increased risk for imprinting defects cannot be excluded. If we exclude children with severe MaCAs, the incidence of an abnormal somatic or neurodevelopmental outcome in the fourth year of life in children born after ICSI is similar to that of spontaneously conceived children.
MaNGA: Mapping Nearby Galaxies at Apache Point Observatory
NASA Astrophysics Data System (ADS)
Weijmans, A.-M.; MaNGA Team
2016-10-01
MaNGA (Mapping Nearby Galaxies at APO) is a galaxy integral-field spectroscopic survey within the fourth generation Sloan Digital Sky Survey (SDSS-IV). It will be mapping the composition and kinematics of gas and stars in 10,000 nearby galaxies, using 17 differently sized fiber bundles. MaNGA's goal is to provide new insights in galaxy formation and evolution, and to deliver a local benchmark for current and future high-redshift studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ben-Zvi, Ilan
Energy Recovery Linacs (ERL) are important for a variety of applications, from high-power Free-Electron Lasers (FEL) to polarized-electron polarized-proton colliders. The ERL current is arguably the most important characteristic of ERLs for such applications. With that in mind, the Collider-Accelerator Department at Brookhaven National Laboratory embarked on the development of a 300 mA ERL to serve as an R and D test-bed for high-current ERL technologies. These include high-current, extremely well damped superconducting accelerating cavities, high-current superconducting laser-photocathode electron guns and high quantum-efficiency photocathodes. In this presentation I will cover these ERL related developments.
NASA Astrophysics Data System (ADS)
Ozaki, Toshihiro; Hirose, Tetsuya; Asano, Hiroki; Kuroki, Nobutaka; Numa, Masahiro
2017-04-01
In this paper, we present a 151 nA quiescent and 6.8 mA maximum-output-current low-dropout (LDO) linear regulator for micropower battery management. The LDO regulator employs self-biasing and multiple-stacked cascode techniques to achieve efficient, accurate, and high-voltage-input-tolerant operation. Measurement results demonstrated that the proposed LDO regulator operates with an ultralow quiescent current of 151 nA. The maximum output currents with a 4.16 V output were 1.0 and 6.8 mA when the input voltages were 4.25 and 5.0 V, respectively.
An Overview of NSTX Research Facility and Recent Experimental Results
NASA Astrophysics Data System (ADS)
Ono, Masayuki
2006-10-01
The 2006 NSTX experimental campaign yielded significant new experimental results in many areas. Improved plasma control achieved the highest elongation of 2.9 and plasma shape factor q95Ip/aBT = 42 MA/m.T. Active feedback correction of error fields sustained the plasma rotation and increased the pulse length of high beta discharges. Active feedback stabilization of the resistive wall mode in high-beta, low-rotation plasmas was demonstrated for ˜100 resistive wall times. Operation at higher toroidal field showed favorable plasma confinement and HHFW heating efficiency trends with the field. A broader current profile, measured by the 12-channel MSE diagnostic in high beta discharges revealed an outward anomalous diffusivity of energetic ions due to the n=1 MHD modes. A tangential microwave scattering diagnostic measured localized electron gyro-scale fluctuations in L-mode, H-mode and reversed-shear plasmas. Evaporation of lithium onto plasma facing surfaces yielded lower density, higher temperature and improved confinement. A strong dependence of the divertor heat load and ELM behavior on the plasma triangularity was observed. Coaxial helicity injection produced a start-up current of 160 kA on closed flux surfaces.
NASA Astrophysics Data System (ADS)
Santos, Joao M. M.; Jones, Brynmor E.; Schlosser, Peter J.; Watson, Scott; Herrnsdorf, Johannes; Guilhabert, Benoit; McKendry, Jonathan J. D.; De Jesus, Joel; Garcia, Thor A.; Tamargo, Maria C.; Kelly, Anthony E.; Hastie, Jennifer E.; Laurand, Nicolas; Dawson, Martin D.
2015-03-01
The rapid emergence of gallium-nitride (GaN) light-emitting diodes (LEDs) for solid-state lighting has created a timely opportunity for optical communications using visible light. One important challenge to address this opportunity is to extend the wavelength coverage of GaN LEDs without compromising their modulation properties. Here, a hybrid source for emission at 540 nm consisting of a 450 nm GaN micro-sized LED (micro-LED) with a micron-thick ZnCdSe/ZnCdMgSe multi-quantum-well color-converting membrane is reported. The membrane is liquid-capillary-bonded directly onto the sapphire window of the micro-LED for full hybridization. At an injection current of 100 mA, the color-converted power was found to be 37 μW. At this same current, the -3 dB optical modulation bandwidth of the bare GaN and hybrid micro-LEDs were 79 and 51 MHz, respectively. The intrinsic bandwidth of the color-converting membrane was found to be power-density independent over the range of the micro-LED operation at 145 MHz, which corresponds to a mean carrier lifetime of 1.9 ns.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Ruijun; Liu Duo; Zuo Zhiyuan
2012-03-15
We report metal-assisted electroless fabrication of nanoporous p-GaN to improve the light extraction efficiency of GaN-based light emitting diodes (LEDs). Although it has long been believed that p-GaN cannot be etched at room temperature, in this study we find that Ag nanocrystals (NCs) on the p-GaN surface enable effective etching of p-GaN in a mixture of HF and K{sub 2}S{sub 2}O{sub 8} under ultraviolet (UV) irradiation. It is further shown that the roughened GaN/air interface enables strong scattering of photons emitted from the multiple quantum wells (MQWs). The light output power measurements indicate that the nanoporous LEDs obtained after 10more » min etching show a 32.7% enhancement in light-output relative to the conventional LEDs at an injection current of 20 mA without significant increase of the operating voltage. In contrast, the samples etched for 20 min show performance degradation when compared with those etched for 10 min, this is attributed to the current crowding effect and increased surface recombination rate.« less
Tsakpinis, Dimitrios; Nasr, Mayssa B; Tranos, Paris; Krassas, Nikos; Giannopoulos, Theodoros; Symeonidis, Chrysanthos; Dimitrakos, Stavros A; Konstas, Anastasios GP
2011-01-01
Purpose The evaluation of long-term visual outcome after the use of bevacizumab for the management of multilevel hemorrhage due to retinal arterial macroaneurysm (MA). Case report A 71-year-old hypertensive female presented with sudden reduction of visual acuity in her left eye (OS). Fundoscopy revealed an arterial macroaneurysm with preretinal and subretinal hemorrhage in the eye. Due to significant macular involvement, the patient received two intravitreal injections of bevacizumab within 2 months. Results Significant visual and anatomical recovery was observed 2 months later, which was confirmed by fluorescein angiography. At the end of a follow-up period (39 months) visual acuity and visual field were at normal levels. Conclusion Retinal MA is a relatively rare condition. Anti-vascular endothelial growth factor therapy appears a safe and effective treatment option for selected symptomatic individuals that may offer faster visual rehabilitation. Herein we report, for the first time, a 39-month follow-up of a retinal MA treated with anti-vascular endothelial growth factor therapy. PMID:22069349
High duty factor plasma generator for CERN's Superconducting Proton Linac.
Lettry, J; Kronberger, M; Scrivens, R; Chaudet, E; Faircloth, D; Favre, G; Geisser, J-M; Küchler, D; Mathot, S; Midttun, O; Paoluzzi, M; Schmitzer, C; Steyaert, D
2010-02-01
CERN's Linac4 is a 160 MeV linear accelerator currently under construction. It will inject negatively charged hydrogen ions into CERN's PS-Booster. Its ion source is a noncesiated rf driven H(-) volume source directly inspired from the one of DESY and is aimed to deliver pulses of 80 mA of H(-) during 0.4 ms at a 2 Hz repetition rate. The Superconducting Proton Linac (SPL) project is part of the luminosity upgrade of the Large Hadron Collider. It consists of an extension of Linac4 up to 5 GeV and is foreseen to deliver protons to a future 50 GeV synchrotron (PS2). For the SPL high power option (HP-SPL), the ion source would deliver pulses of 80 mA of H(-) during 1.2 ms and operate at a 50 Hz repetition rate. This significant upgrade motivates the design of the new water cooled plasma generator presented in this paper. Its engineering is based on the results of a finite element thermal study of the Linac4 H(-) plasma generator that identified critical components and thermal barriers. A cooling system is proposed which achieves the required heat dissipation and maintains the original functionality. Materials with higher thermal conductivity are selected and, wherever possible, thermal barriers resulting from low pressure contacts are removed by brazing metals on insulators. The AlN plasma chamber cooling circuit is inspired from the approach chosen for the cesiated high duty factor rf H(-) source operating at SNS.
Ardell, Jeffrey L; Rajendran, Pradeep S; Nier, Heath A; KenKnight, Bruce H; Armour, J Andrew
2015-11-15
Using vagus nerve stimulation (VNS), we sought to determine the contribution of vagal afferents to efferent control of cardiac function. In anesthetized dogs, the right and left cervical vagosympathetic trunks were stimulated in the intact state, following ipsilateral or contralateral vagus nerve transection (VNTx), and then following bilateral VNTx. Stimulations were performed at currents from 0.25 to 4.0 mA, frequencies from 2 to 30 Hz, and a 500-μs pulse width. Right or left VNS evoked significantly greater current- and frequency-dependent suppression of chronotropic, inotropic, and lusitropic function subsequent to sequential VNTx. Bradycardia threshold was defined as the current first required for a 5% decrease in heart rate. The threshold for the right vs. left vagus-induced bradycardia in the intact state (2.91 ± 0.18 and 3.47 ± 0.20 mA, respectively) decreased significantly with right VNTx (1.69 ± 0.17 mA for right and 3.04 ± 0.27 mA for left) and decreased further following bilateral VNTx (1.29 ± 0.16 mA for right and 1.74 ± 0.19 mA for left). Similar effects were observed following left VNTx. The thresholds for afferent-mediated effects on cardiac parameters were 0.62 ± 0.04 and 0.65 ± 0.06 mA with right and left VNS, respectively, and were reflected primarily as augmentation. Afferent-mediated tachycardias were maintained following β-blockade but were eliminated by VNTx. The increased effectiveness and decrease in bradycardia threshold with sequential VNTx suggest that 1) vagal afferents inhibit centrally mediated parasympathetic efferent outflow and 2) the ipsilateral and contralateral vagi exert a substantial buffering capacity. The intact threshold reflects the interaction between multiple levels of the cardiac neural hierarchy. Copyright © 2015 the American Physiological Society.
Rajendran, Pradeep S.; Nier, Heath A.; KenKnight, Bruce H.; Armour, J. Andrew
2015-01-01
Using vagus nerve stimulation (VNS), we sought to determine the contribution of vagal afferents to efferent control of cardiac function. In anesthetized dogs, the right and left cervical vagosympathetic trunks were stimulated in the intact state, following ipsilateral or contralateral vagus nerve transection (VNTx), and then following bilateral VNTx. Stimulations were performed at currents from 0.25 to 4.0 mA, frequencies from 2 to 30 Hz, and a 500-μs pulse width. Right or left VNS evoked significantly greater current- and frequency-dependent suppression of chronotropic, inotropic, and lusitropic function subsequent to sequential VNTx. Bradycardia threshold was defined as the current first required for a 5% decrease in heart rate. The threshold for the right vs. left vagus-induced bradycardia in the intact state (2.91 ± 0.18 and 3.47 ± 0.20 mA, respectively) decreased significantly with right VNTx (1.69 ± 0.17 mA for right and 3.04 ± 0.27 mA for left) and decreased further following bilateral VNTx (1.29 ± 0.16 mA for right and 1.74 ± 0.19 mA for left). Similar effects were observed following left VNTx. The thresholds for afferent-mediated effects on cardiac parameters were 0.62 ± 0.04 and 0.65 ± 0.06 mA with right and left VNS, respectively, and were reflected primarily as augmentation. Afferent-mediated tachycardias were maintained following β-blockade but were eliminated by VNTx. The increased effectiveness and decrease in bradycardia threshold with sequential VNTx suggest that 1) vagal afferents inhibit centrally mediated parasympathetic efferent outflow and 2) the ipsilateral and contralateral vagi exert a substantial buffering capacity. The intact threshold reflects the interaction between multiple levels of the cardiac neural hierarchy. PMID:26371171
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duan, X; Grimes, J; Yu, L
Purpose: Focal spot blooming is an increase in the focal spot size at increased tube current and/or decreased tube potential. In this work, we evaluated the influence of tube current on the focal spot size at low kV for two CT systems, one of which used a tube designed to reduce blooming effects. Methods: A slit camera (10 micron slit) was used to measure focal spot size on two CT scanners from the same manufacturer (Siemens Somatom Force and Definition Flash) at 70 kV and low, medium and maximum tube currents, according to the capabilities of each system (Force: 100,more » 800 and 1300 mA; Flash: 100, 200 and 500 mA). Exposures were made with a stationary tube in service mode using a raised stand without table movement or flying focal spot technique. Focal spot size, nominally 0.8 and 1.2 mm, respectively, was measured parallel and perpendicular to the cathode-anode axis by calculating the full-width-at-half-maximum of the slit profile recording using computed radiographic plates. Results: Focal spot sizes perpendicular to the anode-cathode axis increased at the maximum mA by 5.7% on the Force and 39.1% on the Flash relative to that at the minimal mA, even though the mA was increased 13-fold on the Force and only 5- fold on the Flash. Focal spot size increased parallel to the anode-cathode axis by 70.4% on Force and 40.9% on Flash. Conclusion: For CT protocols using low kV, high mA is typically required. These protocols are relevant in children and smaller adults, and for dual-energy scanning. Technical measures to limit focal spot blooming are important in these settings to avoid reduced spatial resolution. The x-ray tube on a recently-introduced scanner appears to greatly reduce blooming effects, even at very high mA values. CHM has research support from Siemens Healthcare.« less
Admissions of injection drug users to drug abuse treatment following HIV counseling and testing.
McCusker, J; Willis, G; McDonald, M; Lewis, B F; Sereti, S M; Feldman, Z T
1994-01-01
The outcomes of counseling and testing programs related to human immunodeficiency virus (HIV) infection and risk of infection among injection drug users (IDUs) are not well known or understood. A counseling and testing outcome of potential public health importance is attaining admission to drug abuse treatment by those IDUs who are either infected or who are at high risk of becoming infected. The authors investigated factors related to admission to drug abuse treatment among 519 IDUs who received HIV counseling and testing from September 1987 through December 1990 at a men's prison and at community-based testing sites in Worcester, MA. By June 1991, 123 of the 519 IDUs (24 percent) had been admitted to treatment. Variables associated with their admission included a long history of drug injection, frequent recent drug injection, cleaning injection equipment using bleach, prior drug treatment, and a positive HIV test result. Logistic regression analyses, controlling for effects of recruitment site, year, sex, and area of residence, generally confirmed the associations. IDUs in the study population who were HIV-infected sought treatment or were admitted to treatment more frequently than those who were not infected. The results indicate that access to drug abuse treatment should be facilitated for high-risk IDUs and for those who have begun to inject drugs recently.
Characterization of kerosene distribution around the ignition cavity in a scramjet combustor
NASA Astrophysics Data System (ADS)
Li, Xipeng; Liu, Weidong; Pan, Yu; Yang, Leichao; An, Bin; Zhu, Jiajian
2017-05-01
Kerosene distribution before its ignition in a scramjet combustor with dual cavity was measured using kerosene-PLIF under transverse injection upstream of the cavity and different injection pressures. The simulated flight condition is Ma 5.5, and the isolator entrance has a Mach number of 2.52, a total pressure of 1.6 MPa and a stagnation temperature of 1486 K. Effects of injection pressure on fuel distribution characteristics were analyzed. The majority of kerosene is present in the cavity shear layer as well as its upper region. Kerosene extends gradually into the cavity, almost, at a constant angle. Large scale structures are evident on the windward side of kerosene. The cavity shear layer plays an important role in determining the kerosene distribution and its entrainment into the cavity. The middle part of cavity is the most suitable location for ignition as a result of a favorable local equivalent ratio. As the injection pressure increases, the penetration height gets higher with the rate of increase getting slower at higher injection pressure. Meanwhile, the portion of kerosene entrained into cavity through shear layer becomes smaller as injection pressure increases. However, the kerosene entrained into cavity still increase due to the increased mass flow rate of kerosene.
Axial magnetic field injection in magnetized liner inertial fusion
NASA Astrophysics Data System (ADS)
Gourdain, P.-A.; Adams, M. B.; Davies, J. R.; Seyler, C. E.
2017-10-01
MagLIF is a fusion concept using a Z-pinch implosion to reach thermonuclear fusion. In current experiments, the implosion is driven by the Z-machine using 19 MA of electrical current with a rise time of 100 ns. MagLIF requires an initial axial magnetic field of 30 T to reduce heat losses to the liner wall during compression and to confine alpha particles during fusion burn. This field is generated well before the current ramp starts and needs to penetrate the transmission lines of the pulsed-power generator, as well as the liner itself. Consequently, the axial field rise time must exceed hundreds of microseconds. Any coil capable of being submitted to such a field for that length of time is inevitably bulky. The space required to fit the coil near the liner, increases the inductance of the load. In turn, the total current delivered to the load decreases since the voltage is limited by driver design. Yet, the large amount of current provided by the Z-machine can be used to produce the required 30 T field by tilting the return current posts surrounding the liner, eliminating the need for a separate coil. However, the problem now is the field penetration time, across the liner wall. This paper discusses why skin effect arguments do not hold in the presence of resistivity gradients. Numerical simulations show that fields larger than 30 T can diffuse across the liner wall in less than 60 ns, demonstrating that external coils can be replaced by return current posts with optimal helicity.
NASA Astrophysics Data System (ADS)
Anan'ev, S. S.; Bakshaev, Yu. L.; Bartov, A. V.; Blinov, P. I.; Dan'ko, S. A.; Zhuzhunashvili, A. I.; Kazakov, E. D.; Kalinin, Yu. G.; Kingsep, A. S.; Korolev, V. D.; Mizhiritskii, V. I.; Smirnov, V. P.; Tkachenko, S. I.; Chernenko, A. S.
2008-07-01
Results are presented from experimental studies of a section of a magnetically insulated transmission line (MITL) with a current density of up to 500 MA/cm2 and linear current density of up to 7 MA/cm (the parameters close to those in a fast-Z-pinch-driven fusion reactor projected at Sandia Laboratories). The experiments were performed in the S-300 facility (3 MA, 0.15 Ω, 100 ns). At high linear current densities, the surface of the ohmically heated MITL electrode can explode and a plasma layer can form near the electrode surface. As a result, the MITL can lose its transmission properties due to the shunting of the vacuum gap by the plasma produced. In this series of experiments, the dynamics of the electrode plasma and the dependence of the transmission properties of the MITL on the material and cleanness of the electrode surface were studied. It is shown experimentally that, when the current with a linear density of up to 7 MA/cm begins to flow along a model MITL, the input and output currents differ by less than 10% over a time interval of up to 230 ns for nickel electrodes and up to 350 ns for a line with a gold central electrode. No effect of the oil film present on the electrode surface on the loss of the transmission properties of the line was observed. It is also shown that electron losses insignificantly contribute to the total current balance. The experimental results are compared with calculations of the electrode explosion and the subsequent expansion of the plasma layer. A conclusion is made that the life-time of the model MITL satisfies the requirements imposed on the transmission lines intended for use in the projected thermonuclear reactor.
NASA Astrophysics Data System (ADS)
Chen, Yani; Zhao, Hongbin; Sheng, Leimei; Yu, Liming; An, Kang; Xu, Jiaqiang; Ando, Yoshinori; Zhao, Xinluo
2012-06-01
Large-scale production of graphene sheets has been achieved by direct current arc discharge evaporation of pure graphite electrodes in various H2-inert gas mixtures. The as-prepared few-layer graphene sheets have high purity, high crystallinity and high oxidation resistance temperature. Their electrochemical characteristics have been evaluated in coin-type cells versus metallic lithium. The first cell discharge capacity reached 1332 mA h g-1 at a current density of 50 mA g-1. After 350 cycles, the discharge capacity still remained at 323 mA h g-1. Graphene sheets produced by this method should be a promising candidate for the electrode material of lithium-ion batteries.
NASA Astrophysics Data System (ADS)
Li, Xiang; Samei, Ehsan; DeLong, David M.; Jones, Robert P.; Colsher, James G.; Frush, Donald P.
2008-03-01
The purpose of this study is to evaluate the effect of reduced tube current, as a surrogate for radiation dose, on lung nodule detection in pediatric chest multi-detector CT (MDCT). Normal chest MDCT images of 13 patients aged 1 to 7 years old were used as templates for this study. The original tube currents were between 70 mA and 180 mA. Using proprietary noise addition software, noise was added to the images to create 13 cases at the lowest common mA (i.e. 70 mA), 13 cases at 35 mA (50% reduction), and 13 cases at 17.5 mA (75% reduction). Three copies of each case were made for a total of 117 series for simulated nodule insertion. A technique for three-dimensional simulation of small lung nodules was developed, validated through an observer study, and used to add nodules to the series. Care was taken to ensure that each of three lung zones (upper, middle, lower) contained 0 or 1 nodule. The series were randomized and the presence of a nodule in each lung zone was rated independently and blindly by three pediatric radiologists on a continuous scale between 0 (definitely absent) and 100 (definitely present). Receiver operating characteristic analysis of the data showed no general significant difference in diagnostic accuracy between the reduced mA values and 70 mA, suggesting a potential for dose reduction with preserved diagnostic quality. To our knowledge, this study is the first controlled, systematic, and task-specific assessment of the influence of dose reduction in pediatric chest CT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, H. D.; Fiorito, R. B.; Corbett, J.
The 3GeV SPEAR3 synchrotron light source operates in top-up injection mode with up to 500 mA circulating in the storage ring (equivalently 392 nC). Each injection pulse contains 40–80 pC producing a contrast ratio between total stored charge and injected charge of about 6500:1. In order to study transient injected beam dynamics during user operations, it is desirable to optically image the injected pulse in the presence of the bright stored beam. In the present work this is done by imaging the visible component of the synchrotron radiation onto a digital micro-mirror-array device (DMD), which is then used as anmore » optical mask to block out light from the bright central core of the stored beam. The physical masking, together with an asynchronously-gated, ICCD imaging camera, makes it possible to observe the weak injected beam component on a turn-by-turn basis. The DMD optical masking system works similar to a classical solar coronagraph but has some distinct practical advantages: i.e. rapid adaption to changes in the shape of the stored beam, a high extinction ratio for unwanted light and minimum scattering from the primary beam into the secondary optics. In this paper we describe the DMD masking method, features of the high dynamic range point spread function for the SPEAR3 optical beam line and measurements of the injected beam in the presence of the stored beam.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Hao; Fiorito, Ralph; Corbett, Jeff
The 3GeV SPEAR3 synchrotron light source operates in top-up injection mode with up to 500mA circulating in the storage ring (equivalently 392nC). Each injection pulse contains only 40-80 pC producing a contrast ratio between total stored charge and injected charge of about 6500:1. In order to study transient injected beam dynamics during User operations, it is desirable to optically image the injected pulse in the presence of the bright stored beam. In the present work this is done by re-imaging visible synchrotron radiation onto a digital micro-mirror-array device (DMD), which is then used as an optical mask to block outmore » light from the bright central core of the stored beam. The physical masking, together with an asynchronously-gated, ICCD imaging camera makes it is possible to observe the weak injected beam component on a turn-by-turn basis. The DMD optical masking system works similar to a classical solar coronagraph but has some distinct practical advantages: i.e. rapid adaption to changes in the shape of the stored beam, high extinction ratio for unwanted light and minimum scattering from the primary beam into the secondary optics. In this paper we describe the DMD masking method, features of the high dynamic range point spread function for the SPEAR3 optical beam line and measurements of the injected beam in the presence of the stored beam.« less
Hwang, Jaeuk; Lyoo, In Kyoon; Kim, Seog Ju; Sung, Young Hoon; Bae, Soojeong; Cho, Sung-Nam; Lee, Ho Young; Lee, Dong Soo; Renshaw, Perry F
2006-04-28
The aim of the current study was to explore changes of relative regional cerebral blood flow (rCBF) in short-term and long-term abstinent methamphetamine (MA) users. Relative rCBF in 40 abstinent MA users and 23 healthy comparison subjects was compared by the technetium-99m-hexamethyl-propylene amine oxime ((99m)Tc-HMPAO) single photon emission computed tomography (SPECT). Relative rCBF in areas that were found to differ significantly was also compared in groups of MA users with short-term (<6 months) and long-term (>or=6 months) abstinence. MA users showed decreased relative rCBF in the right anterior cingulate cortex (Brodmann area 32) relative to healthy comparison subjects. Long-term abstinent MA users had significantly greater rCBF than short-term abstinent MA users. We report that abstinent MA users have decreased rCBF in the anterior cingulate cortex with smaller relative decreases in subjects with prolonged abstinence.
Network Management and FDIR for SpaceWire Networks (N-MaSS)
NASA Astrophysics Data System (ADS)
Montano, Giuseppe; Jameux, David; Cook, Barry; Peel, Rodger; McCormick, Ecaterina; Walker, Paul; Kollias, Vangelis; Pogkas, Nikos
2014-08-01
The SpaceWire network management layer, which manages network topology and routing, is not yet standardised. This paper presents the European Space Agency (ESA) N-MaSS study, which focuses on implementation and standardisation of Fault Detection, Isolation and Recovery (FDIR) functions within the SpaceWire network management layer. N-MaSS provides an autonomous FDIR solution. It is defined at the SpaceWire network layer in order to achieve efficient re-use for heterogeneous missions, allowing for the incorporation of legacy equipment. The N-MaSS FDIR functions identify SpaceWire link and node failures and provide recovery using redundant nodes.This paper provides an overview of the overall N- MaSS study. In particular, the following topics are discussed: (a) how user requirements have been captured from the industry, SpaceWire Working Group and ESA; (b) how the N-MaSS architecture was organically shaped on the basis of the requirements captured; (c) how the N-MaSS concept is currently being implemented in a demonstrator and verified.
NASA Technical Reports Server (NTRS)
Malone, Roy W., Jr.
2010-01-01
The presentation slides examine: The Journey, Current Safety and Mission Assurance (S and MA) Oversight/Insight, The Change, The Issue, Potential NASA relationship with Commercial Partners, and Commercial "X" FRR - Are you Go.
Pushilina, Natalia; Syrtanov, Maxim; Murashkina, Tatyana; Kudiiarov, Viktor; Lider, Andrey; Koptyug, Andrey
2018-01-01
Influence of manufacturing parameters (beam current from 13 to 17 mA, speed function 98 and 85) on microstructure and hydrogen sorption behavior of electron beam melted (EBM) Ti-6Al-4V parts was investigated. Optical and scanning electron microscopies as well as X-ray diffraction were used to investigate the microstructure and phase composition of EBM Ti-6Al-4V parts. The average α lath width decreases with the increase of the speed function at the fixed beam current (17 mA). Finer microstructure was formed at the beam current 17 mA and speed function 98. The hydrogenation of EBM Ti-6Al-4V parts was performed at the temperatures 500 and 650 °С at the constant pressure of 1 atm up to 0.3 wt %. The correlation between the microstructure and hydrogen sorption kinetics by EBM Ti-6Al-4V parts was demonstrated. Lower average hydrogen sorption rate at 500 °C was in the sample with coarser microstructure manufactured at the beam current 17 mA and speed function 85. The difference of hydrogen sorption kinetics between the manufactured samples at 650 °C was insignificant. The shape of the kinetics curves of hydrogen sorption indicates the phase transition αH + βH→βH. PMID:29747471
Pushilina, Natalia; Syrtanov, Maxim; Kashkarov, Egor; Murashkina, Tatyana; Kudiiarov, Viktor; Laptev, Roman; Lider, Andrey; Koptyug, Andrey
2018-05-10
Influence of manufacturing parameters (beam current from 13 to 17 mA, speed function 98 and 85) on microstructure and hydrogen sorption behavior of electron beam melted (EBM) Ti-6Al-4V parts was investigated. Optical and scanning electron microscopies as well as X-ray diffraction were used to investigate the microstructure and phase composition of EBM Ti-6Al-4V parts. The average α lath width decreases with the increase of the speed function at the fixed beam current (17 mA). Finer microstructure was formed at the beam current 17 mA and speed function 98. The hydrogenation of EBM Ti-6Al-4V parts was performed at the temperatures 500 and 650 °С at the constant pressure of 1 atm up to 0.3 wt %. The correlation between the microstructure and hydrogen sorption kinetics by EBM Ti-6Al-4V parts was demonstrated. Lower average hydrogen sorption rate at 500 °C was in the sample with coarser microstructure manufactured at the beam current 17 mA and speed function 85. The difference of hydrogen sorption kinetics between the manufactured samples at 650 °C was insignificant. The shape of the kinetics curves of hydrogen sorption indicates the phase transition α H + β H →β H .
Composite of K-doped (NH4)2V3O8/graphene as an anode material for sodium-ion batteries.
Liu, Xin; Li, Zhiwei; Fei, Hailong; Wei, Mingdeng
2015-11-21
A layer structured K-doped (NH4)2V3O8/graphene (K-NVG) was prepared via a hydrothermal route and then used as an anode material for sodium-ion batteries for the first time. The K-NVG nanosheets have a diameter in the range of 200-500 nm. The K-NVG electrode exhibited stable cycling and a good rate performance with a reversible capacity of 235.4 mA h g(-1), which is much higher than the 90.5 mA h g(-1) value of the (NH4)2V3O8/graphene electrode after 100 cycles at a current density of 100 mA g(-1). Simultaneously, the retention rate was maintained at 82% even after 250 cycles at the current density of 300 mA g(-1). Such good electrochemical properties may be attributed to the K-NVG's stable layered structure.
A novel compensation method for the anode gain non-uniformity of multi-anode photomultiplier tubes
NASA Astrophysics Data System (ADS)
Lee, Chan Mi; Kwon, Sun Il; Ko, Guen Bae; Ito, Mikiko; Yoon, Hyun Suk; Lee, Dong Soo; Jong Hong, Seong; Lee, Jae Sung
2012-01-01
The position-sensitive multi-anode photomultiplier tube (MA-PMT) is widely used in high-resolution scintillation detectors. However, the anode gain non-uniformity of this device is a limiting factor that degrades the intrinsic performance of the detector module. The aim of this work was to develop a gain compensation method for the MA-PMT and evaluate the resulting enhancement in the performance of the detector. The method employs a circuit that is composed only of resistors and is placed between the MA-PMT and a resistive charge division network (RCN) used for position encoding. The goal of the circuit is to divide the output current from each anode, so the same current flows into the RCN regardless of the anode gain. The current division is controlled by the combination of a fixed-value series resistor with an output impedance that is much larger than the input impedance of the RCN, and a parallel resistor, which detours part of the current to ground. PSpice simulations of the compensation circuit and the RCN were performed to determine optimal values for the compensation resistors when used with Hamamatsu H8500 MA-PMTs. The intrinsic characteristics of a detector module consisting of this MA-PMT and a lutetium-gadolinium-oxyorthosilicate (LGSO) crystal array were tested with and without the gain compensation method. In simulation, the average coefficient of variation and max/min ratio decreased from 15.7% to 2.7% and 2.0 to 1.2, respectively. In the flood map of the LGSO-H8500 detector, the uniformity of the photopeak position for individual crystals and the energy resolution were much improved. The feasibility of the method was shown by applying it to an octagonal prototype positron emission tomography scanner.
Constraints on the magnitude and rate of CO 2 dissolution at Bravo Dome natural gas field
Sathaye, Kiran J.; Hesse, Marc A.; Cassidy, M.; ...
2014-10-13
The injection of carbon dioxide (CO 2) captured at large point sources into deep saline aquifers can significantly reduce anthropogenic CO 2 emissions from fossil fuels. Dissolution of the injected CO 2 into the formation brine is a trapping mechanism that helps to ensure the long-term security of geological CO 2 storage. We use thermochronology to estimate the timing of CO 2 emplacement at Bravo Dome, a large natural CO 2 field at a depth of 700 m in New Mexico. Together with estimates of the total mass loss from the field we present, to our knowledge, the first constraintsmore » on the magnitude, mechanisms, and rates of CO 2 dissolution on millennial timescales. Apatite (U-Th)/He thermochronology records heating of the Bravo Dome reservoir due to the emplacement of hot volcanic gases 1.2–1.5 Ma. The CO 2 accumulation is therefore significantly older than previous estimates of 10 ka, which demonstrates that safe long-term geological CO 2 storage is possible. Here, integrating geophysical and geochemical data, we estimate that 1.3 Gt CO 2 are currently stored at Bravo Dome, but that only 22% of the emplaced CO 2 has dissolved into the brine over 1.2 My. Roughly 40% of the dissolution occurred during the emplacement. The CO 2 dissolved after emplacement exceeds the amount expected from diffusion and provides field evidence for convective dissolution with a rate of 0.1 g/(m 2y). Finally, the similarity between Bravo Dome and major US saline aquifers suggests that significant amounts of CO 2 are likely to dissolve during injection at US storage sites, but that convective dissolution is unlikely to trap all injected CO 2 on the 10-ky timescale typically considered for storage projects.« less
Non-solenoidal Startup via Local Helicity Injection on Pegasus: Progress and Plans
NASA Astrophysics Data System (ADS)
Reusch, J. A.; Barr, J. L.; Bodner, G. M.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Hinson, E. T.; Lewicki, B. T.; Perry, J. M.; Schlossberg, D. J.
2015-11-01
Non-solenoidal plasma startup via local helicity injection (LHI) at the Pegasus toroidal experiment now provides routine operation at Ip ~ 0.17MA with Iinj ~ 5kA and Vinj ~ 1kV from four active arc injectors. Experiments in the past year have advanced the understanding of the governing physics of LHI and its supporting technology. Injector impedance scales as Vinj3/ 2 and is governed by two effects: a quasineutrality constraint on electron beam propagation, related to the tokamak edge density, and double-layer sheath expansion, related to narc. Injector design improvements permit operation at Vinj >= 1 kV without deleterious PMI or impurity generation. Discharges with varied shape, Ip(t), and helicity input test a predictive 0D power-balance model for LHI startup. Anomalous, reconnection-driven Ti >800 eV and strong MHD activity localized near the injectors are observed during LHI. Preliminary core Thomson scattering measurements indicate surprisingly high Te >300 eV, which if verified may indicate the dominance of high-energy electron fueling from the injector current streams. A new divertor injector system has been designed to substantially increase the available helicity input rate and support critical studies of confinement during LHI and reconnection activity at high Ip. A proposed upgrade to the Pegasus experiment will extend these studies to NSTX-U relevant parameters. Support: US DOE grants DE-FG02-96ER54375; and DE-SC0006928.
NASA Astrophysics Data System (ADS)
Zhou, Shengjun; Zheng, Chenju; Lv, Jiajiang; Gao, Yilin; Wang, Ruiqing; Liu, Sheng
2017-07-01
We demonstrate GaN-based double-layer electrode flip-chip light-emitting diodes (DLE-FCLED) with highly reflective indium-tin oxide (ITO)/distributed bragg reflector (DBR) p-type contact and via hole-based n-type contacts. Transparent thin ITO in combination with TiO2/SiO2 DBR is used for reflective p-type ohmic contact, resulting in a significant reduction in absorption of light by opaque metal electrodes. The finely distributed via hole-based n-type contacts are formed on the n-GaN layer by etching via holes through p-GaN and multiple quantum well (MQW) active layer, leading to reduced lateral current spreading length, and hence alleviated current crowding effect. The forward voltage of the DLE-FCLED is 0.31 V lower than that of the top-emitting LED at 90 mA. The light output power of DLE-FCLED is 15.7% and 80.8% higher than that of top-emitting LED at 90 mA and 300 mA, respectively. Compared to top- emitting LED, the external quantum efficiency (EQE) of DLE-FCLED is enhanced by 15.4% and 132% at 90 mA and 300 mA, respectively. The maximum light output power of the DLE-FCLED obtained at 195.6 A/cm2 is 1.33 times larger than that of the top-emitting LED obtained at 93 A/cm2.
Machine Protection System Research and Development for the Fermilab PIP-II Proton Linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warner, Arden; Carmichael, Linden; Harrison, Beau
PIP-II is a high intensity proton linac being design to support a world-leading physics program at Fermilab. Initially it will provide high intensity beams for Fermilab's neutrino program with a future extension to other applications requiring an upgrade to CW linac operation (e.g. muon experiments). The machine is conceived to be 2 mA CW, 800 MeV H⁻ linac capable of working initially in a pulse (0.55 ms, 20 Hz) mode for injection into the existing Booster. The planned upgrade to CW operation implies that the total beam current and damage potential will be greater than in any present HEP hadronmore » linac. To mitigate the primary technical risk and challenges associated PIP-II an integrated system test for the PIP-II front-end technology is being developed. As part of the R&D a robust machine protection system (MPS) is being designed. This paper describes the progress and challenges associated with the MPS.« less
Impurity transport in enhanced confinement regimes in RFX-mod Reversed Field Pinch
NASA Astrophysics Data System (ADS)
Carraro, Lorella; Menmuir, Sheena; Fassina, Alessandro
2010-11-01
The results of impurity transport studies in RFX-mod enhanced confinement quasi-single helicity (QSH) and single helical axis (SHAx) regimes are presented and discussed. The impurity diffusion coefficient and pinch velocity are obtained through comparing experimental emission pattern (line emission and SXR time evolutions, SXR profiles) with the results of a 1-D impurity transport code. Previous analysis [S. Menmuir et al. to be published in Plasma Phys. Contr. Fus.] of impurity transport in RFX-mod standard discharges showed that the impurity pinch velocity, always directed outwards, features a barrier with high values around r/a = 0.8, where the diffusion coefficient decreases by one order of magnitude. In the QSH regime, the transition region in D and v is more internal and the barrier in velocity is wider and stronger. New results have been obtained in experiments with Ni laser blow-off (LBO) injection in high current discharges (Ip>1.5 MA) with long lasting QSH, to better characterize the Ni behavior inside the helical magnetic topology.
2011-01-01
Background Mandelic acid (MA), an important component in pharmaceutical syntheses, is currently produced exclusively via petrochemical processes. Growing concerns over the environment and fossil energy costs have inspired a quest to develop alternative routes to MA using renewable resources. Herein we report the first direct route to optically pure MA from glucose via genetic modification of the L-phenylalanine pathway in E. coli. Results The introduction of hydroxymandelate synthase (HmaS) from Amycolatopsis orientalis into E. coli led to a yield of 0.092 g/L S-MA. By combined deletion of competing pathways, further optimization of S-MA production was achieved, and the yield reached 0.74 g/L within 24 h. To produce R-MA, hydroxymandelate oxidase (Hmo) from Streptomyces coelicolor and D-mandelate dehydrogenase (DMD) from Rhodotorula graminis were co-expressed in an S-MA-producing strain, and the resulting strain was capable of producing 0.68 g/L R-MA. Finally, phenylpyruvate feeding experiments suggest that HmaS is a potential bottleneck to further improvement in yields. Conclusions We have constructed E. coli strains that successfully accomplished the production of S- and R-MA directly from glucose. Our work provides the first example of the completely fermentative production of S- and R-MA from renewable feedstock. PMID:21910908
Enhanced lithium storage in Fe2O3-SnO2-C nanocomposite anode with a breathable structure
NASA Astrophysics Data System (ADS)
Rahman, Md Mokhlesur; Glushenkov, Alexey M.; Ramireddy, Thrinathreddy; Tao, Tao; Chen, Ying
2013-05-01
A novel nanocomposite architecture of a Fe2O3-SnO2-C anode, based on clusters of Fe2O3 and SnO2 nanoparticles dispersed along the conductive chains of Super P Li™ carbon black (Timcal Ltd.), is presented as a breathable structure in this paper for lithium-ion batteries. The synthesis of the nanocomposite is achieved by combining a molten salt precipitation process and a ball milling method for the first time. The crystalline structure, morphology, and electrochemical characterization of the synthesised product are investigated systematically. Electrochemical results demonstrate that the reversible capacity of the composite anode is 1110 mA h g-1 at a current rate of 158 mA g-1 with only 31% of initial irreversible capacity in the first cycle. A high reversible capacity of 502 mA h g-1 (higher than the theoretical capacity of graphite, ~372 mA h g-1) can be obtained at a high current rate of 3950 mA g-1. The electrochemical performance is compared favourably with those of Fe2O3-SnO2 and Fe2O3-SnO2-C composite anodes for lithium-ion batteries reported in the literature. This work reports a promising method for the design and preparation of nanocomposite electrodes for lithium-ion batteries.A novel nanocomposite architecture of a Fe2O3-SnO2-C anode, based on clusters of Fe2O3 and SnO2 nanoparticles dispersed along the conductive chains of Super P Li™ carbon black (Timcal Ltd.), is presented as a breathable structure in this paper for lithium-ion batteries. The synthesis of the nanocomposite is achieved by combining a molten salt precipitation process and a ball milling method for the first time. The crystalline structure, morphology, and electrochemical characterization of the synthesised product are investigated systematically. Electrochemical results demonstrate that the reversible capacity of the composite anode is 1110 mA h g-1 at a current rate of 158 mA g-1 with only 31% of initial irreversible capacity in the first cycle. A high reversible capacity of 502 mA h g-1 (higher than the theoretical capacity of graphite, ~372 mA h g-1) can be obtained at a high current rate of 3950 mA g-1. The electrochemical performance is compared favourably with those of Fe2O3-SnO2 and Fe2O3-SnO2-C composite anodes for lithium-ion batteries reported in the literature. This work reports a promising method for the design and preparation of nanocomposite electrodes for lithium-ion batteries. Electronic supplementary information (ESI) available: Electrochemical Impedance Spectroscopy (EIS). See DOI: 10.1039/c3nr00690e
Huang, Yulu; Wang, Haipeng; Rimmer, Robert A.; ...
2016-08-01
An ultrafast kicker system is being developed for the energy recovery linac (ERL) based electron circulator cooler ring (CCR) in the proposed Jefferson Lab Electron Ion Collider (JLEIC, previously named MEIC). In the CCR, the injected electron bunches can be recirculated while performing ion cooling for 10–30 turns before the extraction, thus reducing the recirculation beam current in the ERL to 1/10–1/30 (150mA–50 mA) of the cooling beam current (up to 1.5 A). Assuming a bunch repetition rate of 476.3 MHz and a recirculating factor of 10 in the CCR, the kicker is required to operate at a pulse repetitionmore » rate of 47.63 MHz with pulse width of around 2 ns, so that only every 10th bunch in the CCR will experience a transverse kick while the rest of the bunches will not be disturbed. Such a kicker pulse can be synthesized by ten harmonic modes of the 47.63 MHz kicker pulse repetition frequency, using up to four quarter wavelength resonator (QWR) based deflecting cavities. In this paper, several methods to synthesize such a kicker waveform will be discussed and a comparison of their beam dynamics performance is made using ELEGANT. Four QWR cavities are envisaged with high transverse shunt impedance requiring less than 100 W of total rf power for a Flat-Top kick pulse. Multipole fields due to the asymmetry of this type of cavity are analyzed. The transverse emittance growth due to the sextupole component is simulated in ELEGANT. In conclusion, off-axis injection and extraction issues and beam optics using a multicavity kick-drift scheme will also be discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Yulu; Wang, Haipeng; Rimmer, Robert A.
An ultrafast kicker system is being developed for the energy recovery linac (ERL) based electron circulator cooler ring (CCR) in the proposed Jefferson Lab Electron Ion Collider (JLEIC, previously named MEIC). In the CCR, the injected electron bunches can be recirculated while performing ion cooling for 10–30 turns before the extraction, thus reducing the recirculation beam current in the ERL to 1/10–1/30 (150mA–50 mA) of the cooling beam current (up to 1.5 A). Assuming a bunch repetition rate of 476.3 MHz and a recirculating factor of 10 in the CCR, the kicker is required to operate at a pulse repetitionmore » rate of 47.63 MHz with pulse width of around 2 ns, so that only every 10th bunch in the CCR will experience a transverse kick while the rest of the bunches will not be disturbed. Such a kicker pulse can be synthesized by ten harmonic modes of the 47.63 MHz kicker pulse repetition frequency, using up to four quarter wavelength resonator (QWR) based deflecting cavities. In this paper, several methods to synthesize such a kicker waveform will be discussed and a comparison of their beam dynamics performance is made using ELEGANT. Four QWR cavities are envisaged with high transverse shunt impedance requiring less than 100 W of total rf power for a Flat-Top kick pulse. Multipole fields due to the asymmetry of this type of cavity are analyzed. The transverse emittance growth due to the sextupole component is simulated in ELEGANT. In conclusion, off-axis injection and extraction issues and beam optics using a multicavity kick-drift scheme will also be discussed.« less
Profiling of the injected charge drift current transients by cross-sectional scanning technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaubas, E., E-mail: eugenijus.gaubas@ff.vu.lt; Ceponis, T.; Pavlov, J.
2014-02-07
The electric field distribution and charge drift currents in Si particle detectors are analyzed. Profiling of the injected charge drift current transients has been implemented by varying charge injection position within a cross-sectional boundary of the particle detector. The obtained profiles of the induction current density and duration of the injected charge drift pulses fit well the simulated current variations. Induction current transients have been interpreted by different stages of the bipolar and monopolar drift of the injected carriers. Profiles of the injected charge current transients registered in the non-irradiated and neutron irradiated Si diodes are compared. It has beenmore » shown that the mixed regime of the competing processes of drift, recombination, and diffusion appears in the measured current profiles on the irradiated samples. The impact of the avalanche effects can be ignored based on the investigations presented. It has been shown that even a simplified dynamic model enabled us to reproduce the main features of the profiled transients of induced charge drift current.« less
NASA Astrophysics Data System (ADS)
Mingming, SUN; Yanhui, JIA; Yongjie, HUANG; Juntai, YANG; Xiaodong, WEN; Meng, WANG
2018-04-01
In order to study the influence of three-grid assembly thermal deformation caused by heat accumulation on breakdown times and an ion extraction process, a hot gap test and a breakdown time test are carried out to obtain thermal deformation of the grids when the thruster is in 5 kW operation mode. Meanwhile, the fluid simulation method and particle-in-cell-Monte Carlo collision (PIC-MCC) method are adopted to simulate the ion extraction process according to the previous test results. The numerical calculation results are verified by the ion thruster performance test. The results show that after about 1.2 h operation, the hot gap between the screen grid and the accelerator grid reduce to 0.25–0.3 mm, while the hot gap between the accelerator grid and the decelerator grid increase from 1 mm to about 1.4 mm when the grids reach thermal equilibrium, and the hot gap is almost unchanged. In addition, the breakdown times experiment shows that 0.26 mm is the minimal safe hot gap for the grid assembly as the breakdown times improves significantly when the gap is smaller than this value. Fluid simulation results show that the plasma density of the screen grid is in the range 6 × 1017–6 × 1018 m13 and displays a parabolic characteristic, while the electron temperature gradually increases along the axial direction. The PIC-MCC results show that the current falling of an ion beam through a single aperture is significant. Meanwhile, the intercepted current of the accelerator grid and the decelerator grid both increase with the change in the hot gap. The ion beam current has optimal perveance status without thermal deformation, and the intercepted current of the accelerator grid and the decelerator grid are 3.65 mA and 6.26 mA, respectively. Furthermore, under the effect of thermal deformation, the ion beam current has over-perveance status, and the intercepted current of the accelerator grid and the decelerator grid are 10.46 mA and 18.24 mA, respectively. Performance test results indicate that the breakdown times increase obviously. The intercepted current of the accelerator grid and the decelerator grid increases to 13 mA and 16.5 mA, respectively, due to the change in the hot gap after 1.5 h operation. The numerical calculation results are well consistent with performance test results, and the error comes mainly from the test uncertainty of the hot gap.
Nativ, Nir I; Chen, Alvin I; Yarmush, Gabriel; Henry, Scot D; Lefkowitch, Jay H; Klein, Kenneth M; Maguire, Timothy J; Schloss, Rene; Guarrera, James V; Berthiaume, Francois; Yarmush, Martin L
2014-02-01
Large-droplet macrovesicular steatosis (ld-MaS) in more than 30% of liver graft hepatocytes is a major risk factor for liver transplantation. An accurate assessment of the ld-MaS percentage is crucial for determining liver graft transplantability, which is currently based on pathologists' evaluations of hematoxylin and eosin (H&E)-stained liver histology specimens, with the predominant criteria being the relative size of the lipid droplets (LDs) and their propensity to displace a hepatocyte's nucleus to the cell periphery. Automated image analysis systems aimed at objectively and reproducibly quantifying ld-MaS do not accurately differentiate large LDs from small-droplet macrovesicular steatosis and do not take into account LD-mediated nuclear displacement; this leads to a poor correlation with pathologists' assessments. Here we present an improved image analysis method that incorporates nuclear displacement as a key image feature for segmenting and classifying ld-MaS from H&E-stained liver histology slides. 52,000 LDs in 54 digital images from 9 patients were analyzed, and the performance of the proposed method was compared against the performance of current image analysis methods and the ld-MaS percentage evaluations of 2 trained pathologists from different centers. We show that combining nuclear displacement and LD size information significantly improves the separation between large and small macrovesicular LDs (specificity = 93.7%, sensitivity = 99.3%) and the correlation with pathologists' ld-MaS percentage assessments (linear regression coefficient of determination = 0.97). This performance vastly exceeds that of other automated image analyzers, which typically underestimate or overestimate pathologists' ld-MaS scores. This work demonstrates the potential of automated ld-MaS analysis in monitoring the steatotic state of livers. The image analysis principles demonstrated here may help to standardize ld-MaS scores among centers and ultimately help in the process of determining liver graft transplantability. © 2013 American Association for the Study of Liver Diseases.
Social networks and alcohol use among older adults: a comparison with middle-aged adults.
Kim, Seungyoun; Spilman, Samantha L; Liao, Diana H; Sacco, Paul; Moore, Alison A
2018-04-01
This study compared the association between social networks and alcohol consumption among middle-aged (MA) and older adults (OA) to better understand the nature of the relationship between those two factors among OA and MA. We examined Wave 2 of the National Epidemiologic Survey on Alcohol and Related Conditions. Current drinkers aged over 50 were subdivided into two age groups: MA (50-64, n = 5214) and OA (65 and older, n = 3070). Each age group was stratified into drinking levels (low-risk vs. at-risk) based on alcohol consumption. The size and diversity of social networks were measured. Logistic regression models were used to examine age differences in the association between the social networks (size and diversity) and the probability of at-risk drinking among two age groups. A significant association between the social networks diversity and lower odds of at-risk drinking was found among MA and OA. However, the relationship between the diversity of social networks and the likelihood of at-risk drinking was weaker for OA than for MA. The association between social networks size and at-risk drinking was not significant among MA and OA. The current study suggests that the association between social networks diversity and alcohol use among OA differs from the association among MA, and few social networks were associated with alcohol use among OA. In the future, research should consider an in-depth exploration of the nature of social networks and alcohol consumption by using longitudinal designs and advanced methods of exploring drinking networks.
Social networks and alcohol use among older adults: a comparison with middle-aged adults
Kim, Seungyoun; Spilman, Samantha L.; Liao, Diana H.; Sacco, Paul; Moore, Alison A.
2017-01-01
Objectives This study compared the association between social networks and alcohol consumption among middle-aged (MA) and older adults (OA) to better understand the nature of the relationship between those two factors among OA and MA. Method We examined Wave 2 of the National Epidemiologic Survey on Alcohol and Related Conditions. Current drinkers aged over 50 were subdivided into two age groups: MA (50–64, n = 5214) and OA (65 and older, n = 3070). Each age group was stratified into drinking levels (low-risk vs. at-risk) based on alcohol consumption. The size and diversity of social networks were measured. Logistic regression models were used to examine age differences in the association between the social networks (size and diversity) and the probability of at-risk drinking among two age groups. Results A significant association between the social networks diversity and lower odds of at-risk drinking was found among MA and OA. However, the relationship between the diversity of social networks and the likelihood of at-risk drinking was weaker for OA than for MA. The association between social networks size and at-risk drinking was not significant among MA and OA. Conclusion The current study suggests that the association between social networks diversity and alcohol use among OA differs from the association among MA, and few social networks were associated with alcohol use among OA. In the future, research should consider an in-depth exploration of the nature of social networks and alcohol consumption by using longitudinal designs and advanced methods of exploring drinking networks. PMID:28006983
Liu, Zonghao; Xiong, Dehua; Xu, Xiaobao; Arooj, Qudsia; Wang, Huan; Yin, Liyuan; Li, Wenhui; Wu, Huaizhi; Zhao, Zhixin; Chen, Wei; Wang, Mingkui; Wang, Feng; Cheng, Yi-Bing; He, Hongshan
2014-03-12
In this study, new pull-push arylamine-fluorene based organic dyes zzx-op1, zzx-op2, and zzx-op3 have been designed and synthesized for p-type dye-sensitized solar cells (p-DSCs). In zzx-op1, a di(p-carboxyphenyl)amine (DCPA) was used as an electron donor, a perylenemonoimide (PMID) as an electron acceptor, and a fluorene (FLU) unit with two aliphatic hexyl chains as a π-conjugated linker. In zzx-op2 and zzx-op3, a 3,4-ethylenedioxythiophene (EDOT) and a thiophene were inserted consecutively between PMID and FLU to tune the energy levels of the frontier molecular orbitals of the dyes. The structural modification broadened the spectral coverage from an onset of 700 nm for zzx-op1 to 750 nm for zzx-op3. The electron-rich EDOT and thiophene lifted up the HOMO (highest occupied molecular orbital) levels of zzx-op2 and zzx-op3, making their potential more negative than zzx-op1. When three dyes were employed in p-type DSCs with I(-)/I3(-) as a redox couple and NiO nanoparticles as hole materials, zzx-op1 exhibited impressive energy conversion efficiency of 0.184% with the open-circuit voltage (VOC) of 112 mV and the short-circuit current density (JSC) of 4.36 mA cm(-2) under AM 1.5G condition. Density functional theory calculations, transient photovoltage decay measurements, and electrochemical impedance spectroscopic studies revealed that zzx-op1 sensitized solar cell exhibited much higher charge injection efficiency (90.3%) than zzx-op2 (53.9%) and zzx-op3 (39.0%), indicating a trade-off between spectral broadening and electron injection driving force in p-type DSCs.
Moens, Yves; Lanz, Francisca; Doherr, Marcus G; Schatzmann, Urs
2003-07-01
To study the analgesic potency of the alpha2-agonist romifidine in the horse using both an electrical current and a mechanical pressure model for nociceptive threshold testing. In addition, a comparison was made with doses of detomidine and xylazine that produce equivalent degrees of sedation. Randomized, placebo-controlled, blinded cross-over study. Six adult Swiss warmblood horses, one mare and five geldings, weighing from 530 to 650 kg and aged 6-15 years. Nociceptive thresholds were measured using an electrical stimulus applied to the coronary band and using a pneumatically operated pin pressing on the cannon bone. Measurements were made immediately before and every 15 minutes for 2 hours after IV injection of the test substances. Lifting of the foot indicated the test end point. The three alpha2-agonists caused a temporary increase in nociceptive thresholds with a maximal effect within 15 minutes and a return to baseline levels within 1 hour. Using electrical current testing nociceptive thresholds were significantly different from placebo (mean +/- SD) for detomidine at 15 minutes (from control 5.8 +/- 0.9 to 23.3 +/- 3.9 mA, p = 0.0066) and 30 minutes (from control 6.6 +/- 1.1 to 18.8 +/- 3.3 mA, p = 0.0091). The difference was significant for romifidine at 15 minutes only (from control 5.8 +/- 0.9 to 18.7 +/- 3.8 mA, p = 0.0066). With mechanical pressure testing nociceptive thresholds were significantly different from control for detomidine at 15 minutes (from 3.2 +/- 0.2 to 6.2 +/- 0.5 N, p = 0.00076) and 30 minutes (from 3.2 +/- 0.7 to 5.7 +/- 0.8 N, p = 0.0167). The difference was significant for xylazine at 15 minutes (from control 3.2 +/- 0.2 to 5.6 +/- 0.7 N, p = 0.0079). At 15 minutes the order of magnitude of the measured antinociceptive effect was significantly different between the two pain tests for both romifidine and detomidine, but not for xylazine. For romifidine, the increase of mean thresholds compared to placebo was 4.0 +/- 1.3 times placebo levels with the electrical current test compared to 1.3 +/- 0.3 times for the mechanical pressure test (p = 0.037). For detomidine, the increase of mean thresholds compared to placebo was 5.4 +/- 1.7 times control levels with the electrical current test compared to 2.0 +/- 0.2 times for the mechanical pressure test (p = 0.040). This represents a 2.7 (romifidine) and 3.4 times (detomidine) greater increase in thresholds using electrical current testing compared to the use of mechanical pressure testing. This study demonstrates the analgesic potential of alpha2-agonists in the horse for somatic pain and that they can have quantitatively different antinociceptive effects according to the antinociceptive test used.
NASA Astrophysics Data System (ADS)
Akhbari, D.; Hesse, M. A.; Larson, T.
2014-12-01
The Bravo Dome field in northeast New Mexico is one of the largest gas accumulations worldwide and the largest natural CO2 accumulation in North America. The field is only 580-900 m deep and located in the Permian Tubb sandstone that unconformably overlies the granitic basement. Sathaye et al. (2014) estimated that 1.3 Gt of CO2 is stored at the reservoir. A major increase in the pore pressure relative to the hydrostatic pressure is expected due to the large amount of CO2 injected into the reservoir. However, the pre-production gas pressures indicate that most parts of the reservoir are approximately 5 MPa below hydrostatic pressure. Three processes could explain the under pressure in the Bravo Dome reservoir; 1) erosional unloading, 2) CO2 dissolution into the ambient brine, 3) cooling of CO2after injection. Analytical solutions suggest that an erosion rate of 180 m/Ma is required to reduce the pore pressures to the values observed at Bravo Dome. Given that the current erosion rate is only 5 m/Ma (Nereson et al. 2013); the sub-hydrostatic pressures at Bravo Dome are likely due to CO2dissolution and cooling. To investigate the impact of CO2 dissolution on the pore pressure we have developed new analytical solutions and conducted laboratory experiments. We assume that gaseous CO2 was confined to sandstones during emplacement due to the high entry pressure of the siltstones. After emplacement the CO2 dissolves in to the brine contained in the siltstones and the pressure in the sandstones declines. Assuming the sandstone-siltstone system is closed, the pressure decline due to CO2 dissolution is controlled by a single dimensionless number, η = KHRTVw /Vg. Herein, KH is Henry's constant, R is ideal gas constant, T is temperature, Vw is water volume, and Vg is CO2 volume. The pressure drop is controlled by the ratio of water volume to CO2 volume and η varies between 0.1 to 8 at Bravo Dome. This corresponds to pressure drops between 0.8-7.5 MPa and can therefore account for the observed 5 MPa drop in pore pressures at Bravo Dome. This is consistent with geochemical observation suggesting significant dissolution of CO2 at Bravo Dome (Gilfillan 2009). The observation of sub-hydrostatic pressures in CO2 reservoirs is important because they illustrate that CO2 dissolution may mitigate problems due to injection induced overpressure in the long-term.
High power single mode 980 nm AlGaInAs/AlGaAs quantum well lasers with a very low threshold current
NASA Astrophysics Data System (ADS)
Zhen, Dong; Cuiluan, Wang; Hongqi, Jing; Suping, Liu; Xiaoyu, Ma
2013-11-01
To achieve low threshold current as well as high single mode output power, a graded index separate confinement heterostructure (GRIN-SCH) AlGaInAs/AlGaAs quantum well laser with an optimized ridge waveguide was fabricated. The threshold current was reduced to 8 mA. An output power of 76 mW was achieved at 100 mA current at room temperature, with a slope efficiency of 0.83 W/A and a horizon divergent angle of 6.3°. The maximum single mode output power of the device reached as high as 450 mW.
Summers, Phillip J; Struve, Isabelle A; Wilkes, Michael S; Rees, Vaughan W
2017-01-01
Injection-site vein loss and skin abscesses impose significant morbidity on people who inject drugs (PWID). The two common forms of street heroin available in the USA include black tar and powder heroin. Little research has investigated these different forms of heroin and their potential implications for health outcomes. A multiple-choice survey was administered to a sample of 145 participants seeking services at reduction facilities in both Sacramento, CA and greater Boston, MA, USA. Multivariate regression models for reporting one or more abscesses in one year, injection-site veins lost in six months, and soft tissue injection. Participants in Sacramento exclusively used black tar (99%), while those in Boston used powder heroin (96%). Those who used black tar heroin lost more injection-site veins (β=2.34, 95% CI: 0.66-4.03) and were more likely to report abscesses (AOR=7.68, 95% CI: 3.01-19.60). Soft tissue injection was also associated with abscesses (AOR=4.68, 95% CI: 1.84-11.93). Consistent venous access (AOR: 0.088, 95% CI: 0.011-0.74) and losing more injection sites (AOR: 1.22, 95% CI: 1.03-1.45) were associated with soft tissue injection. Use of black tar heroin is associated with more frequent abscesses and more extensive vein loss. Poor venous access predisposes people who inject drugs to soft tissue injection, which may constitute a causal pathway between black tar heroin injection and abscess formation. The mechanisms by which black tar heroin contributes to vein loss and abscess formation must be further elucidated in order to develop actionable interventions for maintaining vein health and decreasing the abscess burden. Potential interventions include increased access to clean injection equipment and education, supervised injection facilities, opioid substitution therapy, and supply chain interventions targeting cutting agents. Copyright © 2016 Elsevier B.V. All rights reserved.
11.72 sq cm SiC Wafer-scale Interconnected 64 kA PiN Diode
2012-01-30
drop of 10.3 V. The dissipated energy was 382 J and the calculated action exceeded 1.7 MA2 -s. Preliminary development of high voltage interconnection...scale diode action (surge current integral), a key reliability parameter, exceeded 1.7 MA2 -s. Figure 6: The wafer-scale interconnected diode...scale diode was 382 J and the calculated action exceeded 1.7 MA2 -sec. High voltage operation of PiN diodes, thyristors, and other semiconductor
Bachy, Veronique; Hervouet, Catherine; Becker, Pablo D.; Chorro, Laurent; Carlin, Leo M.; Herath, Shanthi; Papagatsias, Timos; Barbaroux, Jean-Baptiste; Oh, Sea-Jin; Benlahrech, Adel; Athanasopoulos, Takis; Dickson, George; Patterson, Steven; Kwon, Sung-Yun; Geissmann, Frederic; Klavinskis, Linda S.
2013-01-01
Stabilization of virus protein structure and nucleic acid integrity is challenging yet essential to preserve the transcriptional competence of live recombinant viral vaccine vectors in the absence of a cold chain. When coupled with needle-free skin delivery, such a platform would address an unmet need in global vaccine coverage against HIV and other global pathogens. Herein, we show that a simple dissolvable microneedle array (MA) delivery system preserves the immunogenicity of vaccines encoded by live recombinant human adenovirus type 5 (rAdHu5). Specifically, dried rAdHu5 MA immunization induced CD8+ T-cell expansion and multifunctional cytokine responses equipotent with conventional injectable routes of immunization. Intravital imaging demonstrated MA cargo distributed both in the epidermis and dermis, with acquisition by CD11c+ dendritic cells (DCs) in the dermis. The MA immunizing properties were attributable to CD11c+ MHCIIhi CD8αneg epithelial cell adhesion molecule (EpCAMneg) CD11b+ langerin (Lang; CD207)neg DCs, but neither Langerhans cells nor Lang+ DCs were required for CD8+ T-cell priming. This study demonstrates an important technical advance for viral vaccine vectors progressing to the clinic and provides insights into the mechanism of CD8+ T-cell priming by live rAdHu5 MAs. PMID:23386724
Bachy, Veronique; Hervouet, Catherine; Becker, Pablo D; Chorro, Laurent; Carlin, Leo M; Herath, Shanthi; Papagatsias, Timos; Barbaroux, Jean-Baptiste; Oh, Sea-Jin; Benlahrech, Adel; Athanasopoulos, Takis; Dickson, George; Patterson, Steven; Kwon, Sung-Yun; Geissmann, Frederic; Klavinskis, Linda S
2013-02-19
Stabilization of virus protein structure and nucleic acid integrity is challenging yet essential to preserve the transcriptional competence of live recombinant viral vaccine vectors in the absence of a cold chain. When coupled with needle-free skin delivery, such a platform would address an unmet need in global vaccine coverage against HIV and other global pathogens. Herein, we show that a simple dissolvable microneedle array (MA) delivery system preserves the immunogenicity of vaccines encoded by live recombinant human adenovirus type 5 (rAdHu5). Specifically, dried rAdHu5 MA immunization induced CD8(+) T-cell expansion and multifunctional cytokine responses equipotent with conventional injectable routes of immunization. Intravital imaging demonstrated MA cargo distributed both in the epidermis and dermis, with acquisition by CD11c(+) dendritic cells (DCs) in the dermis. The MA immunizing properties were attributable to CD11c(+) MHCII(hi) CD8α(neg) epithelial cell adhesion molecule (EpCAM(neg)) CD11b(+) langerin (Lang; CD207)(neg) DCs, but neither Langerhans cells nor Lang(+) DCs were required for CD8(+) T-cell priming. This study demonstrates an important technical advance for viral vaccine vectors progressing to the clinic and provides insights into the mechanism of CD8(+) T-cell priming by live rAdHu5 MAs.
On-demand anakinra treatment is effective in mevalonate kinase deficiency.
Bodar, E J; Kuijk, L M; Drenth, J P H; van der Meer, J W M; Simon, A; Frenkel, J
2011-12-01
Mevalonate kinase deficiency (MKD) is a hereditary autoinflammatory syndrome marked by recurrent attacks of fever and inflammation. Severe enzyme deficiency results in mevalonic aciduria (MA) and milder deficiency in hyperimmunoglobulin D syndrome (HIDS). Treatment remains a challenge. To observe the effect of the recombinant interleukin-1 receptor antagonist anakinra in patients with MKD. A prospective observational study was undertaken. Two patients with MA started continuous treatment with anakinra (1-2 mg/kg/day) and nine patients with HIDS chose between continuous treatment and on-demand treatment (starting at first symptoms of attack, 100 mg/day or 1 mg/kg/day for 5-7 days). Anakinra induced partial remission in one patient with MA but there was no response in the other patient with MA. In one patient with HIDS continuous treatment induced complete remission for 7 months but was stopped because of side effects. Eight patients with HIDS preferred on-demand treatment from the start. This induced a clinical response (≥50% reduction in duration) in 8 of 12 treated attacks without a change in attack frequency. Anakinra prevented fever attacks due to vaccination without inhibiting antibody induction. No major side effects were seen. On-demand treatment with anakinra in HIDS decreases the duration and severity of fever attacks. Because of the burden of daily injections and relatively long asymptomatic intervals of HIDS, all patients with HIDS preferred on-demand treatment.
Intensity limits of the PSI Injector II cyclotron
NASA Astrophysics Data System (ADS)
Kolano, A.; Adelmann, A.; Barlow, R.; Baumgarten, C.
2018-03-01
We investigate limits on the current of the PSI Injector II high intensity separate-sector isochronous cyclotron, in its present configuration and after a proposed upgrade. Accelerator Driven Subcritical Reactors, neutron and neutrino experiments, and medical isotope production all benefit from increases in current, even at the ∼ 10% level: the PSI cyclotrons provide relevant experience. As space charge dominates at low beam energy, the injector is critical. Understanding space charge effects and halo formation through detailed numerical modelling gives clues on how to maximise the extracted current. Simulation of a space-charge dominated low energy high intensity (9.5 mA DC) machine, with a complex collimator set up in the central region shaping the bunch, is not trivial. We use the OPAL code, a tool for charged-particle optics calculations in large accelerator structures and beam lines, including 3D space charge. We have a precise model of the present (production) Injector II, operating at 2.2 mA current. A simple model of the proposed future (upgraded) configuration of the cyclotron is also investigated. We estimate intensity limits based on the developed models, supported by fitted scaling laws and measurements. We have been able to perform more detailed analysis of the bunch parameters and halo development than any previous study. Optimisation techniques enable better matching of the simulation set-up with Injector II parameters and measurements. We show that in the production configuration the beam current scales to the power of three with the beam size. However, at higher intensities, 4th power scaling is a better fit, setting the limit of approximately 3 mA. Currents of over 5 mA, higher than have been achieved to date, can be produced if the collimation scheme is adjusted.
Switching Characteristics of a 4H-SiC Based Bipolar Junction Transistor to 200 C
NASA Technical Reports Server (NTRS)
Niedra, Janis M.
2006-01-01
Static curves and resistive load switching characteristics of a 600 V, 4 A rated, SiC-based NPN bipolar power transistor (BJT) were observed at selected temperatures from room to 200 C. All testing was done in a pulse mode at low duty cycle (approx.0.1 percent). Turn-on was driven by an adjustable base current pulse and turn-off was accelerated by a negative base voltage pulse of 7 V. These base drive signals were implemented by 850 V, gated power pulsers, having rise-times of roughly 10 ns, or less. Base charge sweep-out with a 7 V negative pulse did not produce the large reverse base current pulse seen in a comparably rated Si-based BJT. This may be due to a very low charge storage time. The decay of the collector current was more linear than its exponential-like rise. Switching observations were done at base drive currents (I(sub B)) up to 400 mA and collector currents (I(sub C)) up to 4 A, using a 100 Omega non-inductive load. At I(sub B) = 400 mA and I(sub C) = 4 A, turn-on times typically varied from 80 to 94 ns, over temperatures from 23 to 200 C. As expected, lowering the base drive greatly extended the turn-on time. Similarly, decreasing the load current to I(sub C) = 1 A with I(sub B) = 400 mA produced turn-on times as short as 34 ns. Over the 23 to 200 C range, with I(sub B) = 400 mA and I(sub C) = 4 A, turn-off times were in the range of 72 to 84 ns with the 7 V sweep-out.
Laser diodes using InAlGaAs multiple quantum wells intermixed to varying extent
NASA Astrophysics Data System (ADS)
Alahmadi, Yousef; LiKam Wa, Patrick
2018-02-01
Bandgap-modified InAlGaAs/InP multi-quantum well lasers have been demonstrated using an impurity-free disordering technique. Varying degrees of disordering are achieved by rapidly annealing silicon nitride-capped samples at temperatures ranging from 730°C to 830°C for 20 s. The lasing wavelength shift resulting from the intermixing, ranges between 28.2 nm and 147.2 nm. As the annealing temperature is increased, the lasing threshold currents of the fabricated waveguide lasers increase from 25mA to 45mA, while the slope efficiency decrease from 0.101 W/A to 0.068 W/A, compared to a threshold current of 27.8 mA and a slope efficiency of 0.121 W/A for an as-grown laser diode.
Safety parameter considerations of anodal transcranial Direct Current Stimulation in rats.
Jackson, Mark P; Truong, Dennis; Brownlow, Milene L; Wagner, Jessica A; McKinley, R Andy; Bikson, Marom; Jankord, Ryan
2017-08-01
A commonly referenced transcranial Direct Current Stimulation (tDCS) safety threshold derives from tDCS lesion studies in the rat and relies on electrode current density (and related electrode charge density) to support clinical guidelines. Concerns about the role of polarity (e.g. anodal tDCS), sub-lesion threshold injury (e.g. neuroinflammatory processes), and role of electrode montage across rodent and human studies support further investigation into animal models of tDCS safety. Thirty-two anesthetized rats received anodal tDCS between 0 and 5mA for 60min through one of three epicranial electrode montages. Tissue damage was evaluated using hemotoxylin and eosin (H&E) staining, Iba-1 immunohistochemistry, and computational brain current density modeling. Brain lesion occurred after anodal tDCS at and above 0.5mA using a 25.0mm 2 electrode (electrode current density: 20.0A/m 2 ). Lesion initially occurred using smaller 10.6mm 2 or 5.3mm 2 electrodes at 0.25mA (23.5A/m 2 ) and 0.5mA (94.2A/m 2 ), respectively. Histological damage was correlated with computational brain current density predictions. Changes in microglial phenotype occurred in higher stimulation groups. Lesions were observed using anodal tDCS at an electrode current density of 20.0A/m 2 , which is below the previously reported safety threshold of 142.9A/m 2 using cathodal tDCS. The lesion area is not simply predicted by electrode current density (and so not by charge density as duration was fixed); rather computational modeling suggests average brain current density as a better predictor for anodal tDCS. Nonetheless, under the assumption that rodent epicranial stimulation is a hypersensitive model, an electrode current density of 20.0A/m 2 represents a conservative threshold for clinical tDCS, which typically uses an electrode current density of 2A/m 2 when electrodes are placed on the skin (resulting in a lower brain current density). Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ramos, Victor A.; Folguera, Andrés
2011-04-01
The Southern Volcanic Zone of the Andes has a Quaternary basaltic province along the retroarc which has a unique tectonic setting. The Payenia volcanic province covers an area larger than 40,000 km 2 between 33°30' and 38° South latitudes, with an estimated volcanic volume of about 8387 km 3 erupted through more than 800 volcanic centers in the last ~ 2 Ma. The mainly basaltic province developed above the San Rafael Block is subdivided in three segments characterized by the Cerro Nevado, Llancanelo, Payún Matru, Tromen and Auca Mahuida volcanic fields, together with hundreds of minor monogenetic basaltic centers. The analysis of the different segments shows the formation of a common basalt plateau with intraplate signature from south to north between 2.0 and 1.7 Ma, which reached the 35°S to the north. Above this plateau monogenetic centers as Nihuil Vn. 1.433 Ma and Cerro Chato at 1.352 Ma are developed, followed by the large polygenetic center of Cerro Nevado (3980 m a.s.l.) at 1.320 Ma. This plateau was broken by a series of normal faults that produced volcanic cone alignments such as the NNW-trending Mancha Jarilla lineament in the central part at about 1.0 Ma. Extension shifted to the eastern margin of the San Rafael Block, which concentrates tens of monogenetic centers between 0.9 and 0.7 Ma. Extension then migrated towards the foothills in the west, where many monogenetic cones were erupted through NW-trending normal faults between 0.5 and 0.435 Ma. The collapse of the large Diamante Caldera at 0.445 Ma coincides with that period. Subsequent volcanism was concentrated in (1) the Payún Matru volcanic field, with the eruption of Cerro Payén between 0.272 and 0.261 Ma; the Payún Matru shield volcano, with polygenetic eruptions at least since the last 0.233 Ma and with the caldera formation bracketed between 0.168 ± 0.004 Ma and 0.082 ± 0.001 Ma, followed by several eruptions until 7000 yrs, and even historical ones; and in (2) the Tromen volcano, where younger than 0.2 Ma eruptions took place and historical eruptions were reported. The understanding of these eruptions in time and space, combined with geophysical data, indicates the geometry of an important crustal attenuation beneath Payenia, associated with a hot sublithosphere. The Late Miocene uplifted San Rafael Block collapsed in the Early Pleistocene as a consequence of the steepening of the subducted slab, and the injection of hot asthenosphere produced the Quaternary Payenia volcanic province. Melts of the lower crust along the Principal Cordillera at these latitudes are responsible for the Quaternary calderas, ignimbritic flows and rhyolitic volcanism that express the crustal delamination of the Andes. The Payún Matru volcanic field concentrates this asthenospheric flow in the Present.
Channon, H A; Walker, P J; Kerr, M G; Baud, S R
2003-12-01
This study examined the effectiveness of a constant current, low voltage electrical stimulation system on improving pork quality when applied to pigs at 2 min post-exsanguination. A total of 48 female Duroc×Large White/Landrace pigs of 85-90 kg liveweight were randomly allocated immediately prior to slaughter to one of four constant current electrical stimulation treatments: control (no electrical stimulation), 50, 200 and 400 mA. Stimulation was applied to pig carcasses at 2 min post-exsanguination for 30 s. No differences (P>0.05) in WB shear force values, muscle lightness or PSE incidence of pork M. longissimus lumborum (LL) was found due to electrical stimulation treatment. Muscle pH of the LL muscle was lower (P<0.001) in carcasses in the 200 and 400 mA treatments compared to those from carcasses in both the 50 mA and control treatment groups, when measured at the various time points from 40 min to 8 h post-slaughter. Although carcasses stimulated with 200 and 400 mA had higher percentage drip loss (P<0.05) and purge (P<0.001), this was not found to impact WB shear force values, muscle lightness or PSE incidence.
NASA Astrophysics Data System (ADS)
Xu, Shixing; Cen, Dingcheng; Gao, Peibo; Tang, Huang; Bao, Zhihao
2018-03-01
Three-dimensional (3D) free-standing nanostructured materials have been proven to be one of the most promising electrodes for energy storage due to their enhanced electrochemical performance. And they are also widely studied for the wearable energy storage systems. In this work, interconnected V6O13 nanosheets were grown on the flexible carbonized textile (c-textile) via a seed-assisted hydrothermal method to form a 3D free-standing electrode for lithium-ion batteries (LIBs). The electrode exhibited a specific capacity of 170 mA h g-1 at a specific current of 300 mA g-1. With carbon nanotube (CNT) coating, its specific capacities further increased 12-40% at the various current rates. It could retain a reversible capacity of 130 mA h g-1, 74% of the initial capacity after 300 cycles at the specific current of 300 mA g-1. It outperformed most of the mixed-valence vanadium oxides. The improved electrochemical performance was ascribed to the synergistic effect of the 3D nanostructure of V6O13 for feasible Li+ diffusion and transport and highly conductive hierarchical conductive network formed by CNT and carbon fiber in c-textile.
NASA Astrophysics Data System (ADS)
Liu, J.; Wang, Z. A.; Wu, X. W.; Yuan, X. H.; Hu, J. P.; Zhou, Q. M.; Liu, Z. H.; Wu, Y. P.
2015-12-01
Functional porous carbon (PC) derived from bio-friendly shaddock peel has been firstly explored as catalyst for vanadium redox flow battery (VRB). The prepared PC is micro-mesoporous with high BET surface area of 882.7 m2 g-1, has some surface oxygen-containing functional groups, and is doped with N and P heteroatoms. These three factors greatly favor the electrochemical reactions of VO2+/VO2+ on the PC modified glass carbon (PC-GC). Compared with the naked GC and graphite modified GC, the PC-GC presents a lower peak separation (66 mV), higher anodic current density (17.1 mA cm-2) and cathodic current density (15.0 mA cm-2). The VRB using PC modified graphite felt (GF) as positive electrode demonstrates an enhanced voltage efficiency of 82.7% at the current density of 60 mA cm-2, and a better rate performance than that from the virginal GF.
Co3O4 nanowire@NiO nanosheet arrays for high performance asymmetric supercapacitors.
Xing, Lei; Dong, Yidi; Hu, Fang; Wu, Xiang; Umar, Ahmad
2018-04-24
Herein, we report a simple and facile sequential hydrothermal process for the synthesis of Co3O4 nanowire@NiO nanosheet arrays (CNAs). The as-synthesized CNAs were characterized in detail using various analytical techniques, which confirmed the high crystallinity, purity, and high-density growth of these nanomaterials. From an application point of view, the as-synthesized CNAs were directly used as supercapacitor electrodes, revealing a specific capacitance of up to 2018 mF cm-2 at a current density of 2 mA cm-2. Furthermore, a flexible asymmetric supercapacitor was fabricated using the as-synthesized CNAs as the anode and activated carbon as the cathode, which revealed a specific capacitance of 134.6 mF cm-2 at a current density of 2 mA cm-2. In addition, the supercapacitor showed excellent capacity retention of 73.5% after 10 000 cycles at a current density of 10 mA cm-2.
Qian, Cheng; Fan, Jiajie; Fang, Jiayi; Yu, Chaohua; Ren, Yi; Fan, Xuejun; Zhang, Guoqi
2017-10-16
By solving the problem of very long test time on reliability qualification for Light-emitting Diode (LED) products, the accelerated degradation test with a thermal overstress at a proper range is regarded as a promising and effective approach. For a comprehensive survey of the application of step-stress accelerated degradation test (SSADT) in LEDs, the thermal, photometric, and colorimetric properties of two types of LED chip scale packages (CSPs), i.e., 4000 °K and 5000 °K samples each of which was driven by two different levels of currents (i.e., 120 mA and 350 mA, respectively), were investigated under an increasing temperature from 55 °C to 150 °C and a systemic study of driving current effect on the SSADT results were also reported in this paper. During SSADT, junction temperatures of the test samples have a positive relationship with their driving currents. However, the temperature-voltage curve, which represents the thermal resistance property of the test samples, does not show significant variance as long as the driving current is no more than the sample's rated current. But when the test sample is tested under an overdrive current, its temperature-voltage curve is observed as obviously shifted to the left when compared to that before SSADT. Similar overdrive current affected the degradation scenario is also found in the attenuation of Spectral Power Distributions (SPDs) of the test samples. As used in the reliability qualification, SSADT provides explicit scenes on color shift and correlated color temperature (CCT) depreciation of the test samples, but not on lumen maintenance depreciation. It is also proved that the varying rates of the color shift and CCT depreciation failures can be effectively accelerated with an increase of the driving current, for instance, from 120 mA to 350 mA. For these reasons, SSADT is considered as a suitable accelerated test method for qualifying these two failure modes of LED CSPs.
Yu, Chaohua; Fan, Xuejun; Zhang, Guoqi
2017-01-01
By solving the problem of very long test time on reliability qualification for Light-emitting Diode (LED) products, the accelerated degradation test with a thermal overstress at a proper range is regarded as a promising and effective approach. For a comprehensive survey of the application of step-stress accelerated degradation test (SSADT) in LEDs, the thermal, photometric, and colorimetric properties of two types of LED chip scale packages (CSPs), i.e., 4000 °K and 5000 °K samples each of which was driven by two different levels of currents (i.e., 120 mA and 350 mA, respectively), were investigated under an increasing temperature from 55 °C to 150 °C and a systemic study of driving current effect on the SSADT results were also reported in this paper. During SSADT, junction temperatures of the test samples have a positive relationship with their driving currents. However, the temperature-voltage curve, which represents the thermal resistance property of the test samples, does not show significant variance as long as the driving current is no more than the sample’s rated current. But when the test sample is tested under an overdrive current, its temperature-voltage curve is observed as obviously shifted to the left when compared to that before SSADT. Similar overdrive current affected the degradation scenario is also found in the attenuation of Spectral Power Distributions (SPDs) of the test samples. As used in the reliability qualification, SSADT provides explicit scenes on color shift and correlated color temperature (CCT) depreciation of the test samples, but not on lumen maintenance depreciation. It is also proved that the varying rates of the color shift and CCT depreciation failures can be effectively accelerated with an increase of the driving current, for instance, from 120 mA to 350 mA. For these reasons, SSADT is considered as a suitable accelerated test method for qualifying these two failure modes of LED CSPs. PMID:29035300
Gillick, Bernadette T.; Kirton, Adam; Carmel, Jason B.; Minhas, Preet; Bikson, Marom
2014-01-01
Background: Transcranial direct current stimulation (tDCS) has been investigated mainly in adults and doses may not be appropriate in pediatric applications. In perinatal stroke where potential applications are promising, rational adaptation of dosage for children remains under investigation. Objective: Construct child-specific tDCS dosing parameters through case study within a perinatal stroke tDCS safety and feasibility trial. Methods: 10-year-old subject with a diagnosis of presumed perinatal ischemic stroke and hemiparesis was identified. T1 magnetic resonance imaging (MRI) scans used to derive computerized model for current flow and electrode positions. Workflow using modeling results and consideration of dosage in previous clinical trials was incorporated. Prior ad hoc adult montages vs. de novo optimized montages provided distinct risk benefit analysis. Approximating adult dose required consideration of changes in both peak brain current flow and distribution which further tradeoff between maximizing efficacy and adding safety factors. Electrode size, position, current intensity, compliance voltage, and duration were controlled independently in this process. Results: Brain electric fields modeled and compared to values previously predicted models (Datta et al., 2011; Minhas et al., 2012). Approximating conservative brain current flow patterns and intensities used in previous adult trials for comparable indications, the optimal current intensity established was 0.7 mA for 10 min with a tDCS C3/C4 montage. Specifically 0.7 mA produced comparable peak brain current intensity of an average adult receiving 1.0 mA. Electrode size of 5 × 7 cm2 with 1.0 mA and low-voltage tDCS was employed to maximize tolerability. Safety and feasibility confirmed with subject tolerating the session well and no serious adverse events. Conclusion: Rational approaches to dose customization, with steps informed by computational modeling, may improve guidance for pediatric stroke tDCS trials. PMID:25285077
Baker, A; Kochan, N; Dixon, J; Wodak, A; Heather, N
1995-04-01
This study compares the injecting and sexual risk-taking behaviour among injecting drug users (IDUs) currently, previously and never enrolled in methadone maintenance treatment (MMT). All subjects had injected during the 6 months prior to the day of interview. The current MMT group showed significantly lower injecting risk-taking behaviour subscale scores on the HIV Risk-taking Behaviour Scale (HRBS) of the Opiate Treatment Index than the previous MMT and non-MMT groups together. The current MMT group differed from the other two groups in the frequency of injecting and cleaning of injection equipment with bleach. There was no difference between the current MMT group and the other two groups combined in sexual risk-taking behaviour scores on the HRBS. There were no differences between the previous MMT and non-MMT groups in injecting and sexual risk-taking behaviour. HIV seroprevalence was low and there was no difference in seroprevalence between groups. Thus, IDUs currently enrolled in MMT are at reduced risk for HIV infection when compared with IDUs who have previously or never been enrolled in MMT. However, the absence of a difference between the current MMT and other two groups in frequency of sharing behaviours suggests the need for additional strategies among MMT clients to reduce needle-sharing. Possible strategies include the application of relapse prevention interventions and the availability of sterile injecting equipment in MMT clinics. Further research is needed to identify factors which increase attraction and retention of IDUs to MMT.
NASA Astrophysics Data System (ADS)
Chelle-Michou, Cyril; Chiaradia, Massimo; Ovtcharova, Maria; Ulianov, Alexey; Wotzlaw, Jörn-Frederik
2014-06-01
We present zircon geochronologic (LA-ICPMS and ID-TIMS), trace element and Hf isotopic evidence for a complex evolution of the plutonic roots of the Eocene Coroccohuayco porphyry system, southern Peru. LA-ICPMS U-Pb dating has initially been carried out to optimize grain selection for subsequent high-precision ID-TIMS dating and to characterize crustal assimilation (xenocrystic cores). This combined in-situ and whole-grain U-Pb dating of the same grains has been further exploited to derive a robust temporal interpretation of the complex magmatic system associated with the Coroccohuayco porphyry-skarn deposit. Our data reveal that a heterogeneous gabbrodioritic complex was emplaced at ca. 40.4 Ma and was followed by a nearly 5 Ma-long magmatic lull until the emplacement of dacitic porphyry stocks and dykes associated with the mineralizing event at ca. 35.6 Ma. However, at the sample scale, zircons from the porphyries provide insight into a 2 Ma-long lived “hidden” magmatism (probably at 4-9 km paleodepth) prior to porphyry intrusion and mineralization for which no other evidence can be found on the surface today. These dates together with zircon trace element analysis and Hf isotopes argue for the development of a long-lived magmatic system dominated by amphibole fractionation with an increasing amount of crustal assimilation and the development of a large and sustained thermal anomaly. The system was probably rejuvenated at an increasing rate from 37.5 to 35.6 Ma with injection of fresh and oxidized magma from the lower crust, which caused cannibalism and remelting of proto-plutons. The porphyry intrusions at Coroccohuayco were emplaced at the peak thermal conditions of this upper crustal magma chamber, which subsequently cooled and expelled ore fluids. Zircon xenocrysts and Hf isotopes in the porphyritic rocks suggest that this large upper crustal system evolved at stratigraphic levels corresponding to Triassic sediments similar to the Mitu group that may be present below the district. Using the zircon Ce anomaly as a proxy for oxidation state of the magma through time, we show that the high oxidation state of the porphyries is not the result of upper-crustal processes but is rather controlled by magmatic processes occurring at deeper levels. A comparison of our data with available high-precision geochronologic data at other porphyry systems suggests that such deposits may form when injection rate, volume and heat of their long-lived upper crustal magmatic system reach their peaks. These features might be diagnostic of a productive deposit.
NASA Astrophysics Data System (ADS)
Bradley, T. J.; Cowley, S. W. H.; Provan, G.; Hunt, G. J.; Bunce, E. J.; Wharton, S. J.; Alexeev, I. I.; Belenkaya, E. S.; Kalegaev, V. V.; Dougherty, M. K.
2018-05-01
We newly analyze Cassini magnetic field data from the 2012/2013 Saturn northern spring interval of highly inclined orbits and compare them with similar data from late southern summer in 2008, thus providing unique information on the seasonality of the currents that couple momentum between Saturn's ionosphere and magnetosphere. Inferred meridional ionospheric currents in both cases consist of a steady component related to plasma subcorotation, together with the rotating current systems of the northern and southern planetary period oscillations (PPOs). Subcorotation currents during the two intervals show opposite north-south polar region asymmetries, with strong equatorward currents flowing in the summer hemispheres but only weak currents flowing to within a few degrees of the open-closed boundary (OCB) in the winter hemispheres, inferred due to weak polar ionospheric conductivities. Currents peak at 1 MA rad-1 in both hemispheres just equatorward of the open-closed boundary, associated with total downward polar currents 6 MA, then fall across the narrow auroral upward current region to small values at subauroral latitudes. PPO-related currents have a similar form in both summer and winter with principal upward and downward field-aligned currents peaking at 1.25 MA rad-1 being essentially collocated with the auroral upward current and approximately equal in strength. Though northern and southern PPO currents were approximately equal during both intervals, the currents in both hemispheres were dual modulated by both systems during 2012/2013, with approximately half the main current closing in the opposite ionosphere and half cross field in the magnetosphere, while only the northern hemisphere currents were similarly dual modulated in 2008.
NASA Astrophysics Data System (ADS)
Wang, Liyang; Tian, Guohui; Chen, Yajie; Xiao, Yuting; Fu, Honggang
2016-04-01
In this study, a ZnO/ZnSe nanonail array was prepared via a two-step sequential hydrothermal synthetic route. In this synthetic process, the ZnO nanorod array was first grown on a fluorine-doped tin oxide (FTO) substrate using a seed-mediated growth approach via the hydrothermal process. Then, the ZnO nanonail array was obtained via in situ growth of ZnSe nano caps onto the ZnO nanorod array via a hydrothermal process in the presence of a Se source. The surface morphology and amount of ZnSe grown on the surface of the ZnO nanorods can be regulated by varying the reaction time and reactant concentration. Compared with pure ZnO nanorods, this unique nanonail array heterostructure exhibits enhanced visible light absorption. The transient photocurrent condition, in combination with steady-state and time-resolved photoluminescence spectroscopy, reveals that the ZnO/ZnSe nanonail array electrode has the highest charge separation rate, highest electron injection efficiency, and highest chemical stability. The photocurrent density of the ZnO/ZnSe nanonail array heterostructure reaches 1.01 mA cm-2 at an applied potential of 0.1 V (vs. Ag/AgCl), which is much higher than that of the ZnO/ZnSe nanorod array (0.71 mA cm-2), the pristine ZnO nanorod array (0.39 mA cm-2), and the ZnSe electrode (0.21 mA cm-2), indicating its significant visible light driven activities for photoelectrochemical water oxidation. This unique morphology of nail-capped nanorods might be important for providing better insight into the correlation between heterostructure and photoelectrochemical activity.In this study, a ZnO/ZnSe nanonail array was prepared via a two-step sequential hydrothermal synthetic route. In this synthetic process, the ZnO nanorod array was first grown on a fluorine-doped tin oxide (FTO) substrate using a seed-mediated growth approach via the hydrothermal process. Then, the ZnO nanonail array was obtained via in situ growth of ZnSe nano caps onto the ZnO nanorod array via a hydrothermal process in the presence of a Se source. The surface morphology and amount of ZnSe grown on the surface of the ZnO nanorods can be regulated by varying the reaction time and reactant concentration. Compared with pure ZnO nanorods, this unique nanonail array heterostructure exhibits enhanced visible light absorption. The transient photocurrent condition, in combination with steady-state and time-resolved photoluminescence spectroscopy, reveals that the ZnO/ZnSe nanonail array electrode has the highest charge separation rate, highest electron injection efficiency, and highest chemical stability. The photocurrent density of the ZnO/ZnSe nanonail array heterostructure reaches 1.01 mA cm-2 at an applied potential of 0.1 V (vs. Ag/AgCl), which is much higher than that of the ZnO/ZnSe nanorod array (0.71 mA cm-2), the pristine ZnO nanorod array (0.39 mA cm-2), and the ZnSe electrode (0.21 mA cm-2), indicating its significant visible light driven activities for photoelectrochemical water oxidation. This unique morphology of nail-capped nanorods might be important for providing better insight into the correlation between heterostructure and photoelectrochemical activity. Electronic supplementary information (ESI) available: SEM, EDS, XPS and photocurrent test. See DOI: 10.1039/c6nr01969b
Review: magnetically assisted resistance spot welding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Y. B.; Li, D. L.; Lin, Z. Q.
2016-02-25
Currently, the use of advanced high strength steels (AHSSs) is the most cost effective means of reducing vehicle body weight and maintaining structural integrity at the same time. However, AHSSs present a big challenge to the traditional resistance spot welding (RSW) widely applied in automotive industries because the rapid heating and cooling procedures during RSW produce hardened weld microstructures, which lower the ductility and fatigue properties of welded joints and raise the probability of interfacial failure under external loads. Changing process parameters or post-weld heat treatment may reduce the weld brittleness, but those traditional quality control methods also increase energymore » consumption and prolong cycle time. In recent years, a magnetically assisted RSW (MA-RSW) method was proposed, in which an externally applied magnetic field would interact with the conduction current to produce a Lorentz force that would affect weld nugget formation. This paper is a review of an experimental MA-RSW platform, the mode of the external magnetic field and the mechanism that controls nugget shape, weld microstructures and joint performance. In conclusion, the advantages of the MA-RSW method in improving the weldability of AHSSs are given, a recent application of the MA-RSW process to light metals is described and the outlook for the MA-RSW process is presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujii, K; UCLA School of Medicine, Los Angeles, CA; McMillan, K
2015-06-15
Purpose: The aim of this study is to evaluate the difference in radiation doses from adult Brain-Neck CT angiography (CTA) between two CT scanners. Methods: We collected CT dose index data (CTDIvol, DLP) from adult Brain-Neck CTA performed with two CT scanners (Sensation 64 (S64) and Definition AS (AS), Siemens Healthcare) performed at two of our facilities from Jan 1st to Dec 31th, 2014. X-ray dose management software (Radmetrics, Bayer Healthcare) was used to mine these data. All exams were performed with Tube Current Modulation (Care Dose 4D), tube voltage of 120 kVp, quality reference mAs of 300, beam collimationmore » of 64*0.6 mm. The rotation time was set to 0.5 sec for S64 and 1.0 sec for AS. We also scanned an anthropomorphic skull and chest phantom under routine Brain-Neck CTA protocol with the two scanners and extracted the tube current values from the raw projection data. Results: The mean CTDIvol and DLP in Brain-Neck CTA was 72 mGy and 2554 mGy*cm for AS, which was substantially larger than the mean values of 46 mGy and 1699 mGy*cm for S64. The maximum tube current was 583 mA for most cases on the S64 while the maximum was 666 mA for AS even though the rotation time set for AS was 1.0 sec. Measurements obtained with the anthropomorphic phantom showed that the tube current reached 583 mA at the shoulder region for S64 while it reached to 666 mA for AS. Conclusion: The results of this study showed that substantially different CT doses can Result from Brain-Neck CTA protocols even when similar scanners and similar settings are used. Though both scanners have a similar maximum mA rating, differences in mA were observed through the shoulders, resulting in substantially different CTDIvol values.« less
Seasonal sea ice cover during the warm Pliocene: Evidence from the Iceland Sea (ODP Site 907)
NASA Astrophysics Data System (ADS)
Clotten, Caroline; Stein, Ruediger; Fahl, Kirsten; De Schepper, Stijn
2018-01-01
Sea ice is a critical component in the Arctic and global climate system, yet little is known about its extent and variability during past warm intervals, such as the Pliocene (5.33-2.58 Ma). Here, we present the first multi-proxy (IP25, sterols, alkenones, palynology) sea ice reconstructions for the Late Pliocene Iceland Sea (ODP Site 907). Our interpretation of a seasonal sea ice cover with occasional ice-free intervals between 3.50-3.00 Ma is supported by reconstructed alkenone-based summer sea surface temperatures. As evidenced from brassicasterol and dinosterol, primary productivity was low between 3.50 and 3.00 Ma and the site experienced generally oligotrophic conditions. The East Greenland Current (and East Icelandic Current) may have transported sea ice into the Iceland Sea and/or brought cooler and fresher waters favoring local sea ice formation. Between 3.00 and 2.40 Ma, the Iceland Sea is mainly sea ice-free, but seasonal sea ice occurred between 2.81 and 2.74 Ma. Sea ice extending into the Iceland Sea at this time may have acted as a positive feedback for the build-up of the Greenland Ice Sheet (GIS), which underwent a major expansion ∼2.75 Ma. Thereafter, most likely a stable sea ice edge developed close to Greenland, possibly changing together with the expansion and retreat of the GIS and affecting the productivity in the Iceland Sea.
NASA Astrophysics Data System (ADS)
Jing, Mao-xiang; Li, Jing-quan; Han, Chong; Yao, Shan-shan; Zhang, Ji; Zhai, Hong-ai; Chen, Li-li; Shen, Xiang-qian; Xiao, Ke-song
2017-07-01
Improving the specific capacity and electronic conductivity of TiO2 can boost its practical application as a promising anode material for lithium ion batteries. In this work, a three-dimensional networking oxygen-deficient nano TiO2-x/carbon fibre membrane was achieved by combining the electrospinning process with a hot-press sintering method and directly used as a self-standing anode. With the synergistic effects of three-dimensional conductive networks, surface oxygen deficiency, high specific surface area and high porosity, binder-free and self-standing structure, etc., the nano TiO2-x/carbon fibre membrane electrode displays a high electrochemical reaction kinetics and a high specific capacity. The reversible capacity could be jointly generated from porous carbon, full-lithiation of TiO2 and interfacial lithium storage. At a current density of 100 mA g-1, the reversible discharge capacity can reach 464 mA h g-1. Even at 500 mA g-1, the discharge capacity still remains at 312 mA h g-1. Compared with pure carbon fibre and TiO2 powder, the TiO2-x/C fibre membrane electrode also exhibits an excellent cycle performance with a discharge capacity of 209 mA h g-1 after 700 cycles at the current density of 300 mA g-1, and the coulombic efficiency always remains at approximately 100%.
Endowing CuTCNQ with a new role: a high-capacity cathode for K-ion batteries.
Ma, Jing; Zhou, En; Fan, Cong; Wu, Bo; Li, Chao; Lu, Zheng-Hong; Li, Jingze
2018-05-29
Herein, copper-tetracyanoquinodimethane (CuTCNQ) with phase-I kinetics character has been proposed as an effective cathode for potassium-ion batteries. In a voltage range of 2-4.1 V (vs. K+/K), both cuprous cations (Cu+) and organic anions (TCNQ-) are electrochemically active, and they render a three-electron redox mechanism, thereby enabling CuTCNQ to yield a high specific discharge capacity of 244 mA h g-1. Even after 50 cycles, the discharge capacity of 170 mA h g-1 is retained at 50 mA g-1. In addition, when the current density is elevated to 1000 mA g-1, the discharge capacity is still maintained at 125 mA h g-1. These test data are among the best results reported for high-potential cathodes of potassium-ion batteries.
Evaluation of constant current alternating current iontophoresis for transdermal drug delivery.
Yan, Guang; Li, S Kevin; Higuchi, William I
2005-12-10
Previous studies in our laboratory have demonstrated that alternating current (AC) iontophoresis can significantly decrease skin electric resistance and enhance the transport of charged permeants across skin. Flux variability of neutral permeants during AC iontophoresis was also found to be less than that of conventional direct current (DC) iontophoresis. The objectives of the present study were to evaluate flux enhancement of constant current AC transdermal iontophoresis and compare the AC flux with that of constant current DC iontophoresis. Iontophoresis studies of AC amplitude of 1, 2, and 5 mA were conducted in side-by-side diffusion cells with donor solution of 0.015, 0.15, and 1.0 M tetraethylammonium (TEA) chloride and receiver solution of phosphate buffered saline (PBS) using human epidermal membrane (HEM). Conventional constant current DC iontophoresis of 0.2 mA was also performed under similar conditions. TEA and mannitol were the model permeants. The following are the major findings in the present study. The flux of TEA increased proportionally with the AC current for all three TEA chloride concentrations and at the AC frequency used in the present study. When the permeant and its counter ion were the only ionic species in the donor chamber, the fluxes during DC iontophoresis were weakly dependent of its donor concentration. The fluxes of TEA during constant current AC iontophoresis were moderately related to the donor concentration with the highest TEA flux observed under the 1.0 M TEA chloride condition although the relationship between flux and donor concentration was not linear. A trend of decreasing electroosmotic transport with increasing donor TEA chloride concentration was observed with significant sample-to-sample variability during DC iontophoresis. Mannitol permeability was also observed to decrease with increasing TEA chloride concentration in the donor under the AC conditions, but data variability under AC was significantly smaller than that under DC. The results in the present study indicate that constant current AC iontophoresis under conditions tolerable to human (2 and 5 mA) can provide predictable fluxes that were lower than but of comparable magnitude as those of conventional constant current DC iontophoresis (0.2 mA).
Liposomal Bupivacaine as a Single-Injection Peripheral Nerve Block: A Dose-Response Study
Ilfeld, Brian M.; Malhotra, Nisha; Furnish, Timothy J.; Donohue, Michael C.; Madison, Sarah J.
2013-01-01
Background Currently available local anesthetics approved for single-injection peripheral nerve blocks have a maximum duration less than 24 hours. A liposomal bupivacaine formulation (EXPAREL®, Pacira Pharmaceuticals, Inc., San Diego, California), releasing bupivacaine over 96 hours, recently gained Food and Drug Administration approval exclusively for wound infiltration, but not peripheral nerve blocks. Methods Bilateral single-injection femoral nerve blocks were administered in healthy volunteers (n=14). For each block, liposomal bupivacaine (0–80 mg) was mixed with normal saline to produce 30 mL of study fluid. Each subject received two different doses, one on each side, applied randomly in a double-masked fashion. The end points included the maximum voluntary isometric contraction (MVIC) of the quadriceps femoris muscle and tolerance to cutaneous electrical current in the femoral nerve distribution. Measurements were performed from baseline until quadriceps MVIC returned to 80% of baseline bilaterally. Results There were statistically significant dose responses in MVIC (0.09% / mg, SE = 0.03, 95% CI 0.04 to 0.14, p = 0.002) and tolerance to cutaneous current (−0.03 mA / mg, SE = 0.01, 95% CI −0.04 to 0.02, p < 0.001), however, in the opposite direction than expected (the higher the dose, the lower the observed effect). This inverse relationship is biologically implausible, and most likely due to the limited sample size and the subjective nature of the measurement instruments. While peak effects occurred within 24 hours after block administration in 75% of cases (95% CI 43 to 93%), block duration usually lasted much longer: for bupivacaine doses above 40 mg, tolerance to cutaneous current did not return to within 20% above baseline until after 24 h in 100% of subjects (95% CI 56 to 100). MVIC did not consistently return to within 20% of baseline until after 24 hours in 90% of subjects (95% CI 54 to 100%). Motor block duration was not correlated with bupivacaine dose (0.06 h/mg, SE = 0.14, 95% CI −0.27 to 0.39, p = 0.707). Conclusions The results of this investigation suggest that deposition of a liposomal bupivacaine formulation adjacent to the femoral nerve results in a partial sensory and motor block of more than 24 hours for the highest doses examined. However, the high variability of block magnitude among subjects and inverse relationship of dose and response magnitude attests to the need for a Phase 3 study with a far larger sample size, and these results should be viewed as suggestive, requiring confirmation in a future trial. PMID:24108252
A first characterization of the NIO1 particle beam by means of a diagnostic calorimeter
NASA Astrophysics Data System (ADS)
Pimazzoni, A.; Cavenago, M.; Cervaro, V.; Fasolo, D.; Serianni, G.; Tollin, M.; Veltri, P.
2017-08-01
Powerful neutral beam injectors (NBI) are required as heating and current drive systems for tokamaks like ITER. The development of negative ion sources and accelerators (40 A; 1 MeV D- beam) in particular, is a crucial point and many issues still require a better understanding. In this framework, the experiment NIO1 (9 beamlets of 15 mA H- each, 60 kV) operated at Consorzio RFX started operation in 2014[1]. Both its RF negative ion source (up to 2.5 kW) and its beamline are equipped with many diagnostics [2]. For the early tests on the extraction system, oxygen has been used as well as hydrogen due to its higher electronegativity, which allows reaching currents large enough to test the beam diagnostics even without caesium injection. In particular a 1D-CFC (carbon-fibre-carbon composite) tile is used as a calorimeter to determine the beam power deposition by observing the rear surface of the tile with an infra-red camera; the same design is applied as for STRIKE [3], one of the diagnostics of SPIDER (the ITER-like ion source prototype [4]) whose facility is currently under construction at Consorzio RFX. From this diagnostic it is also possible to assess the beam divergence and thus the beam optics. The present contribution describes the characterization of the NIO1 particle beam by means of temperature and current measurements with different source and accelerator parameters.
NASA Astrophysics Data System (ADS)
Baumann, Thomas M.; Lapierre, Alain; Kittimanapun, Kritsada; Schwarz, Stefan; Leitner, Daniela; Bollen, Georg
2014-07-01
The Electron Beam Ion Trap (EBIT) of the National Superconducting Cyclotron Laboratory at Michigan State University is used as a charge booster and injector for the currently commissioned rare isotope re-accelerator facility ReA. This EBIT charge breeder is equipped with a unique superconducting magnet configuration, a combination of a solenoid and a pair of Helmholtz coils, allowing for a direct observation of the ion cloud while maintaining the advantages of a long ion trapping region. The current density of its electron beam is a key factor for efficient capture and fast charge breeding of continuously injected, short-lived isotope beams. It depends on the radius of the magnetically compressed electron beam. This radius is measured by imaging the highly charged ion cloud trapped within the electron beam with a pinhole camera, which is sensitive to X-rays emitted by the ions with photon energies between 2 keV and 10 keV. The 80%-radius of a cylindrical 800 mA electron beam with an energy of 15 keV is determined to be r_{80%}=(212± 19)μm in a 4 T magnetic field. From this, a current density of j = (454 ± 83)A/cm2 is derived. These results are in good agreement with electron beam trajectory simulations performed with TriComp and serve as a test for future electron gun design developments.
MA transmutation performance in the optimized MYRRHA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malambu, E.; Van den Eynde, G.; Fernandez, R.
MYRRHA (multi-purpose hybrid research reactor for high-tech applications) is a multipurpose research facility currently being developed at SCK-CEN. It will be able to work in both critical and subcritical modes and, cooled by lead-bismuth eutectic. In this paper the minor actinides (MA) transmutation capabilities of MYRRHA are investigated. (Pu + Am, U) MOX fuel and (Np + Am + Cm, Pu) Inert Matrix Fuel test samples have been loaded in the central channel of the MYRRHA critical core and have been irradiated during five cycles, each one consisting of 90 days of operation at 100 MWth and 30 days ofmore » shutdown. The reactivity worth of the test fuel assembly was about 1.1 dollar. A wide range of burn-up level has been achieved, extending from 42 to 110 MWd/kg HM, the samples with lower MA-to-Pu ratios reaching the highest burn-up. This study has highlighted the importance of the initial MA content, expressed in terms of MA/Pu ratio, on the transmutation rate of MA elements. For (Pu + Am, U) MOX fuel samples, a net build-up of MA is observed when the initial content of MA is very low (here, 1.77 wt% MA/Pu) while a net decrease in MA is observed in the sample with an initial content of 5 wt%. This suggests the existence of some 'equilibrium' initial MA content value beyond which a net transmutation is achievable.« less
Current-limited electron beam injection
NASA Technical Reports Server (NTRS)
Stenzel, R. L.
1977-01-01
The injection of an electron beam into a weakly collisional, magnetized background plasma was investigated experimentally. The injected beam was energetic and cold, the background plasma was initially isothermal. Beam and plasma dimensions were so large that the system was considered unbounded. The temporal and spatial evolution of the beam-plasma system was dominated by collective effects. High-frequency electrostatic instabilities rapidly thermalized the beam and heated the background electrons. The injected beam current was balanced by a return current consisting of background electrons drifting toward the beam source. The drift between electrons and ions gave rise to an ion acoustic instability which developed into strong three-dimensional turbulence. It was shown that the injected beam current was limited by the return current which is approximately given by the electron saturation current. Non-Maxwellian electron distribution functions were observed.
NASA Astrophysics Data System (ADS)
Frigeri, A.; Cardellini, C.; Chiodini, G.; Frondini, F.; Bagnato, E.; Aiuppa, A.; Fischer, T. P.; Lehnert, K. A.
2014-12-01
The study of the main pathways of carbon flux from the deep Earth requires the analysis of a large quantity and variety of data on volcanic and non-volcanic gas emissions. Hence, there is need for common frameworks to aggregate available data and insert new observations. Since 2010 we have been developing the Mapping Gas emissions (MaGa) web-based database to collect data on carbon degassing form volcanic and non-volcanic environments. MaGa uses an Object-relational model, translating the experience of field surveyors into the database schema. The current web interface of MaGa allows users to browse the data in tabular format or by browsing an interactive web-map. Enabled users can insert information as measurement methods, instrument details as well as the actual values collected in the field. Measurements found in the literature can be inserted as well as direct field observations made by human-operated instruments. Currently the database includes fluxes and gas compositions from active craters degassing, diffuse soil degassing and fumaroles both from dormant volcanoes and open-vent volcanoes from literature survey and data about non-volcanic emission of the Italian territory. Currently, MaGa holds more than 1000 volcanic plume degassing fluxes, data from 30 sites of diffuse soil degassing from italian volcanoes, and about 60 measurements from fumarolic and non volcanic emission sites. For each gas emission site, the MaGa holds data, pictures, descriptions on gas sampling, analysis and measurement methods, together with bibliographic references and contacts to researchers having experience on each site. From 2012, MaGa developments started to be focused towards the framework of the Deep Earth Carbon Degassing research initiative of the Deep Carbon Observatory. Whithin the DECADE initiative, there are others data systems, as EarthChem and the Smithsonian Institution's Global Volcanism Program. An interoperable interaction between the DECADE data systems is being planned. MaGa is showing good potentials to improve the knowledge on Earth degassing firstly by making data more accessible and encouraging participation among researchers, and secondly by allowing to observe and explore, for the first time, a gas emission dataset with spatial and temporal extents never analyzed before.
A WAO - ARIA - GA²LEN consensus document on molecular-based allergy diagnostics
2013-01-01
Molecular-based allergy (MA) diagnostics is an approach used to map the allergen sensitization of a patient at a molecular level, using purified natural or recombinant allergenic molecules (allergen components) instead of allergen extracts. Since its introduction, MA diagnostics has increasingly entered routine care, with currently more than 130 allergenic molecules commercially available for in vitro specific IgE (sIgE) testing. MA diagnostics allows for an increased accuracy in allergy diagnosis and prognosis and plays an important role in three key aspects of allergy diagnosis: (1) resolving genuine versus cross-reactive sensitization in poly-sensitized patients, thereby improving the understanding of triggering allergens; (2) assessing, in selected cases, the risk of severe, systemic versus mild, local reactions in food allergy, thereby reducing unnecessary anxiety for the patient and the need for food challenge testing; and (3) identifying patients and triggering allergens for specific immunotherapy (SIT). Singleplex and multiplex measurement platforms are available for MA diagnostics. The Immuno-Solid phase Allergen Chip (ISAC) is the most comprehensive platform currently available, which involves a biochip technology to measure sIgE antibodies against more than one hundred allergenic molecules in a single assay. As the field of MA diagnostics advances, future work needs to focus on large-scale, population-based studies involving practical applications, elucidation and expansion of additional allergenic molecules, and support for appropriate test interpretation. With the rapidly expanding evidence-base for MA diagnosis, there is a need for allergists to keep abreast of the latest information. The aim of this consensus document is to provide a practical guide for the indications, determination, and interpretation of MA diagnostics for clinicians trained in allergology. PMID:24090398
Chen, Ailian; Li, Caixia; Tang, Rui; Yin, Longwei; Qi, Yongxin
2013-08-28
A novel hybrid of MoO2-ordered mesoporous carbon (MoO2-OMC) was prepared through a two-step solvothermal chemical reaction route. The electrochemical performances of the mesoporous MoO2-OMC hybrids were examined using galvanostatical charge-discharge, cyclic voltammetry, and electrochemical impedance spectroscopy (EIS) techniques. The MoO2-OMC hybrid exhibits significantly improved electrochemical performance of high reversible capacity, high-rate capability, and excellent cycling performance as an anode electrode material for Li ion batteries. It is revealed that the MoO2-OMC hybrid could deliver the first discharge capacity of 1641.8 mA h g(-1) with an initial Coulombic efficiency of 63.6%, and a reversible capacity as high as 1049.1 mA h g(-1) even after 50 cycles at a current density of 100 mA g(-1), much higher than the theoretical capacity of MoO2 (838 mA h g(-1)) and OMC materials. The MoO2-OMC hybrid demonstrates an excellent high rate capability with capacity of ∼600 mA h g(-1) even at a charge current density of 1600 mA g(-1) after 50 cycles, which is approximately 11.1 times higher than that of the OMC (54 mA h g(-1)) materials. The improved rate capability and reversible capacity of the MoO2-OMC hybrid are attributed to a synergistic reaction between the MoO2 nanoparticles and mesoporous OMC matrices. It is noted that the electrochemical performance of the MoO2-OMC hybrid is evidently much better than the previous MoO2-based hybrids.
A WAO - ARIA - GA²LEN consensus document on molecular-based allergy diagnostics.
Canonica, Giorgio Walter; Ansotegui, Ignacio J; Pawankar, Ruby; Schmid-Grendelmeier, Peter; van Hage, Marianne; Baena-Cagnani, Carlos E; Melioli, Giovanni; Nunes, Carlos; Passalacqua, Giovanni; Rosenwasser, Lanny; Sampson, Hugh; Sastre, Joaquin; Bousquet, Jean; Zuberbier, Torsten
2013-10-03
Molecular-based allergy (MA) diagnostics is an approach used to map the allergen sensitization of a patient at a molecular level, using purified natural or recombinant allergenic molecules (allergen components) instead of allergen extracts. Since its introduction, MA diagnostics has increasingly entered routine care, with currently more than 130 allergenic molecules commercially available for in vitro specific IgE (sIgE) testing.MA diagnostics allows for an increased accuracy in allergy diagnosis and prognosis and plays an important role in three key aspects of allergy diagnosis: (1) resolving genuine versus cross-reactive sensitization in poly-sensitized patients, thereby improving the understanding of triggering allergens; (2) assessing, in selected cases, the risk of severe, systemic versus mild, local reactions in food allergy, thereby reducing unnecessary anxiety for the patient and the need for food challenge testing; and (3) identifying patients and triggering allergens for specific immunotherapy (SIT).Singleplex and multiplex measurement platforms are available for MA diagnostics. The Immuno-Solid phase Allergen Chip (ISAC) is the most comprehensive platform currently available, which involves a biochip technology to measure sIgE antibodies against more than one hundred allergenic molecules in a single assay. As the field of MA diagnostics advances, future work needs to focus on large-scale, population-based studies involving practical applications, elucidation and expansion of additional allergenic molecules, and support for appropriate test interpretation. With the rapidly expanding evidence-base for MA diagnosis, there is a need for allergists to keep abreast of the latest information. The aim of this consensus document is to provide a practical guide for the indications, determination, and interpretation of MA diagnostics for clinicians trained in allergology.
New U-Pb zircon ages and the duration and division of Devonian time
Tucker, R.D.; Bradley, D.C.; Ver Straeten, C.A.; Harris, A.G.; Ebert, J.R.; McCutcheon, S.R.
1998-01-01
Newly determined U-Pb zircon ages of volcanic ashes closely tied to biostratigraphic zones are used to revise the Devonian time-scale. They are: 1) 417.6 ?? 1.0 Ma for an ash within the conodont zone of Icriodus woschmidti/I. w. hesperius Lochkovian); 2) 408.3 ?? 1.9 Ma for an ash of early Emsian age correlated with the conodont zones of Po. dehiscens--Lower Po. inversus; 3) 391.4 ?? 1.8 Ma for an ash within the Po. c. costatus Zone and probably within the upper half of the zone (Eifelian); and 4) 381.1 ?? 1.3 Ma for an ash within the range of the Frasnian conodont Palmatolepis punctata (Pa. punctata Zone to Upper Pa. hassi Zone). U-Pb zircon ages for two rhyolites bracketing a palyniferous bed of the pusillites-lepidophyta spore zone, are dated at 363.8 ?? 2.2 Ma and 363 ?? 2.2 Ma and 363.4 ?? 1.8 Ma, respectively, suggesting an age of ~363 Ma for a level within the late Famennian Pa. g. expansa Zone. These data, together with other published zircon ages, suggest that the base and top of the Devonian lie close to 418 Ma and 362 Ma, respectively, thus lengthening the period of ~20% over current estimates. We suggest that the duration of the Middle Devonian (Eifelian and Givitian) is rather brief, perhaps no longer than 11.5 Myr (394 Ma-382.5 Ma), and that the Emsian and Famennian are the longest stages in the period with estimated durations of ~15.5 Myr and 14.5 Myr, respectively.
2012-01-01
Background Mathematics anxiety (MA), a state of discomfort associated with performing mathematical tasks, is thought to affect a notable proportion of the school age population. Some research has indicated that MA negatively affects mathematics performance and that girls may report higher levels of MA than boys. On the other hand some research has indicated that boys’ mathematics performance is more negatively affected by MA than girls’ performance is. The aim of the current study was to measure girls’ and boys’ mathematics performance as well as their levels of MA while controlling for test anxiety (TA) a construct related to MA but which is typically not controlled for in MA studies. Methods Four-hundred and thirty three British secondary school children in school years 7, 8 and 10 completed customised mental mathematics tests and MA and TA questionnaires. Results No gender differences emerged for mathematics performance but levels of MA and TA were higher for girls than for boys. Girls and boys showed a positive correlation between MA and TA and a negative correlation between MA and mathematics performance. TA was also negatively correlated with mathematics performance, but this relationship was stronger for girls than for boys. When controlling for TA, the negative correlation between MA and performance remained for girls only. Regression analyses revealed that MA was a significant predictor of performance for girls but not for boys. Conclusions Our study has revealed that secondary school children experience MA. Importantly, we controlled for TA which is typically not controlled for in MA studies. Girls showed higher levels of MA than boys and high levels of MA were related to poorer levels of mathematics performance. As well as potentially having a detrimental effect on ‘online’ mathematics performance, past research has shown that high levels of MA can have negative consequences for later mathematics education. Therefore MA warrants attention in the mathematics classroom, particularly because there is evidence that MA develops during the primary school years. Furthermore, our study showed no gender difference in mathematics performance, despite girls reporting higher levels of MA. These results might suggest that girls may have had the potential to perform better than boys in mathematics however their performance may have been attenuated by their higher levels of MA. Longitudinal research is needed to investigate the development of MA and its effect on mathematics performance. PMID:22769743
Devine, Amy; Fawcett, Kayleigh; Szűcs, Dénes; Dowker, Ann
2012-07-09
Mathematics anxiety (MA), a state of discomfort associated with performing mathematical tasks, is thought to affect a notable proportion of the school age population. Some research has indicated that MA negatively affects mathematics performance and that girls may report higher levels of MA than boys. On the other hand some research has indicated that boys' mathematics performance is more negatively affected by MA than girls' performance is. The aim of the current study was to measure girls' and boys' mathematics performance as well as their levels of MA while controlling for test anxiety (TA) a construct related to MA but which is typically not controlled for in MA studies. Four-hundred and thirty three British secondary school children in school years 7, 8 and 10 completed customised mental mathematics tests and MA and TA questionnaires. No gender differences emerged for mathematics performance but levels of MA and TA were higher for girls than for boys. Girls and boys showed a positive correlation between MA and TA and a negative correlation between MA and mathematics performance. TA was also negatively correlated with mathematics performance, but this relationship was stronger for girls than for boys. When controlling for TA, the negative correlation between MA and performance remained for girls only. Regression analyses revealed that MA was a significant predictor of performance for girls but not for boys. Our study has revealed that secondary school children experience MA. Importantly, we controlled for TA which is typically not controlled for in MA studies. Girls showed higher levels of MA than boys and high levels of MA were related to poorer levels of mathematics performance. As well as potentially having a detrimental effect on 'online' mathematics performance, past research has shown that high levels of MA can have negative consequences for later mathematics education. Therefore MA warrants attention in the mathematics classroom, particularly because there is evidence that MA develops during the primary school years. Furthermore, our study showed no gender difference in mathematics performance, despite girls reporting higher levels of MA. These results might suggest that girls may have had the potential to perform better than boys in mathematics however their performance may have been attenuated by their higher levels of MA. Longitudinal research is needed to investigate the development of MA and its effect on mathematics performance.
Current scaling of radiated power for 40-mm diameter single wire arrays on Z
NASA Astrophysics Data System (ADS)
Nash, T. J.; Cuneo, M. E.; Spielman, R. B.; Chandler, G. A.; Leeper, R. J.; Seaman, J. F.; McGurn, J.; Lazier, S.; Torres, J.; Jobe, D.; Gilliland, T.; Nielsen, D.; Hawn, R.; Bailey, J. E.; Lake, P.; Carlson, A. L.; Seamen, H.; Moore, T.; Smelser, R.; Pyle, J.; Wagoner, T. C.; LePell, P. D.; Deeney, C.; Douglas, M. R.; McDaniel, D.; Struve, K.; Mazarakis, M.; Stygar, W. A.
2004-11-01
In order to estimate the radiated power that can be expected from the next-generation Z-pinch driver such as ZR at 28 MA, current-scaling experiments have been conducted on the 20 MA driver Z. We report on the current scaling of single 40 mm diameter tungsten 240 wire arrays with a fixed 110 ns implosion time. The wire diameter is decreased in proportion to the load current. Reducing the charge voltage on the Marx banks reduces the load current. On one shot, firing only three of the four levels of the Z machine further reduced the load current. The radiated energy scaled as the current squared as expected but the radiated power scaled as the current to the 3.52±0.42 power due to increased x-ray pulse width at lower current. As the current is reduced, the rise time of the x-ray pulse increases and at the lowest current value of 10.4 MA, a shoulder appears on the leading edge of the x-ray pulse. In order to determine the nature of the plasma producing the leading edge of the x-ray pulse at low currents further shots were taken with an on-axis aperture to view on-axis precursor plasma. This aperture appeared to perturb the pinch in a favorable manner such that with the aperture in place there was no leading edge to the x-ray pulses at lower currents and the radiated power scaled as the current squared ±0.75. For a full-current shot we will present x-ray images that show precursor plasma emitting on-axis 77 ns before the main x-ray burst.
Making Medicare Advantage a Middle-Class Program
Glazer, Jacob; McGuire, Thomas
2013-01-01
This paper studies the role of Medicare's premium policy in sorting beneficiaries between traditional Medicare (TM) and managed care plans in the Medicare Advantage (MA) program. Beneficiaries vary in their demand for care. TM fully accommodates demand but creates a moral hazard inefficiency. MA rations care but disregards some elements of the demand. We describe an efficient assignment of beneficiaries to these two options, and argue that efficiency requires an MA program oriented to serve the large middle part of the distribution of demand: the “middle class.” Current Medicare policy of a “single premium” for MA plans cannot achieve efficient sorting. We characterize the demand-based premium policy that can implement the efficient assignment of enrollees to plans. If only a single premium is feasible, the second-best policy involves too many of the low-demand individuals in MA and a too low level of services relative to the first best. We identify approaches to using premium policy to revitalize MA and improve the efficiency of Medicare. PMID:23454916
Making Medicare advantage a middle-class program.
Glazer, Jacob; McGuire, Thomas G
2013-03-01
This paper studies the role of Medicare's premium policy in sorting beneficiaries between traditional Medicare (TM) and managed care plans in the Medicare advantage (MA) program. Beneficiaries vary in their demand for care. TM fully accommodates demand but creates a moral hazard inefficiency. MA rations care but disregards some elements of the demand. We describe an efficient assignment of beneficiaries to these two options, and argue that efficiency requires an MA program oriented to serve the large middle part of the distribution of demand: the "middle class." Current Medicare policy of a "single premium" for MA plans cannot achieve efficient sorting. We characterize the demand-based premium policy that can implement the efficient assignment of enrollees to plans. If only a single premium is feasible, the second-best policy involves too many of the low-demand individuals in MA and a too low level of services relative to the first best. We identify approaches to using premium policy to revitalize MA and improve the efficiency of Medicare. Copyright © 2012 Elsevier B.V. All rights reserved.
Saito, Nobuo; Komori, Kazuhiro; Suzuki, Motoi; Morimoto, Kounosuke; Kishikawa, Takayuki; Yasaka, Takahiro; Ariyoshi, Koya
2017-01-23
Accumulating evidences indicate that repeated influenza vaccination has negative impact on the vaccine effectiveness (VE). However no published studies considered past influenza infection when assessing the VE of repeated vaccination. Prospective surveillance was conducted from 2009 to 2012 at a community hospital on a small island in Japan. The study included all outpatients with an influenza-like illness (ILI) who attended the hospital, and a rapid diagnostic test (RDT) was used to diagnose influenza A/B infection. The VE of trivalent inactivated influenza vaccine (TIV) against medically attended influenza A (MA-fluA) was estimated using a test-negative case-control study design. The influence of TIV in the prior season on VE in the current season was investigated in the context of MA-fluA during the prior season. During the three influenza seasons, 5838 ILI episodes (4127 subjects) were analysed. Subjects who had an episode of MA-fluA in the prior season were at a significantly lower risk of MA-fluA in the current season (adjusted odds ratio: 0.38, 95% CI: 0.30-0.50). The overall adjusted VE was 28% (95% CI, 14-40). VE was substantially lower in subjects vaccinated in the prior season compared to those who had not been vaccinated in prior season (19%; 95% CI: 0-35 vs 46%; 95% CI: 26-60, test for interaction, P value <0.05). In subjects who did not have MA-fluA in the prior season showed the attenuation of VE due to repeated vaccination (13%; 95% CI: -7 to 30 vs 44%; 95% CI: 24-59, test for interaction, P<0.05). However this effect was not detected in subjects who had contracted MA-fluA in the prior season. Negative effects of repeated vaccination were significant among those without history of MA-fluA in the prior season. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
A 60 mA DC H- multi cusp ion source developed at TRIUMF
NASA Astrophysics Data System (ADS)
Jayamanna, K.; Ames, F.; Bylinskii, I.; Lovera, M.; Minato, B.
2018-07-01
This paper describes the latest high-current multi cusp type ion source developed at TRIUMF, which is capable of producing a negative hydrogen ion beam (H-) of 60 mA of direct current at 140V and 90A arc. The results achieved to date including emittance measurements and filament lifetime issues are presented. The low current version of this ion source is suitable for medical cyclotrons as well as accelerators and the high current version is intended for producing large neutral hydrogen beams for fusion research. The description of the source magnetic configuration, the electron filter profile and the differential pumping techniques given in the paper will allow the building of an arc discharge H- ion source with similar properties.
An efficient estimator to monitor rapidly changing forest conditions
Raymond L. Czaplewski; Michael T. Thompson; Gretchen G. Moisen
2012-01-01
Extensive expanses of forest often change at a slow pace. In this common situation, FIA produces informative estimates of current status with the Moving Average (MA) method and post-stratification with a remotely sensed map of forest-nonforest cover. However, MA "smoothes out" estimates over time, which confounds analyses of temporal trends; and post-...
We measured concentrations of polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in eggs from breeding colonies in Buzzards Bay, MA, USA. Eggs from two piscivorous bird species, common (Sterna hirundo) and roseate (Sterna dougallii) terns, were collected...
Increased Sensitivity to Thermal Pain and Reduced Subcutaneous Lidocaine Efficacy in Redheads
Liem, Edwin B.; Joiner, Teresa V.; Tsueda, Kentaro; Sessler, Daniel I.
2005-01-01
Background: Anesthetic requirement in redheads is exaggerated, suggesting that redheads may be especially sensitive to pain. We therefore tested the hypotheses that women with natural red hair are more sensitive to pain, and that redheads are resistant to topical and subcutaneous lidocaine. Methods: We evaluated pain sensitivity in red-haired (n=30) or dark-haired (n=30) women by determining the electrical current perception threshold, pain perception, and maximum pain tolerance with a Neurometer CPT/C (Neurotron, Inc., Baltimore, MD). We evaluated the analogous warm and cold temperature thresholds with the TSA-II Neurosensory Analyzer (Medoc Ltd., Minneapolis, MN). Volunteers were tested with both devices at baseline and with the Neurometer after 1-hour exposure to 4% liposomal lidocaine and after subcutaneous injection of 1% lidocaine. Data are presented as medians [interquartile ranges]. Results: Current perception, pain perception, and pain tolerance thresholds were similar in the red-haired and dark-haired women at 2000, 250, and 5 Hz. In contrast, redheads were more sensitive to cold pain perception (22.6°C [15.1, 26.1] vs. 12.6°C [0, 20], P=0.004), cold pain tolerance (6.0°C [0, 9.7] vs. 0.0°C [0.0, 2.0], P=0.001), and heat pain (46.3°C [45.7, 47.5] vs. 47.7°C [46.6, 48.7], P=0.009). Subcutaneous, lidocaine was significantly less effective in redheads, e.g., pain tolerance threshold at 2000 Hz stimulation in redheads was 11.0 mA [8.5, 16.5] vs. >20.0 mA [14.5, >20] in others, P=0.005). Conclusion: Red hair is the phenotype for mutations of the melanocortin 1 receptor. Our results indicate that redheads are more sensitive to thermal pain and are resistant to the analgesic effects of subcutaneous lidocaine. Mutations of the melanocortin 1 receptor, or a consequence thereof, thus modulate pain sensitivity. PMID:15731586
NASA Technical Reports Server (NTRS)
Sears, Derek W. G.; Benoit, Paul; Batchelor, J. David
1991-01-01
Antarctic H chondrites show a different range of induced thermoluminescence properties compared with those of H chondrites that have fallen elsewhere in the world. Recent noble gas data of Schultz et al. (1991) show that this difference is displayed most dramatically by meteorites with cosmic-ray exposure ages less than 20 Ma, and they confirm that the differences cannot be attributed to weathering or to the presence of a great many fragments of an unusual Antarctic meteorite. Annealing experiments on an H5 chondrite, and other measurements on a variety of ordinary chondrites, have shown that induced TL properties are sensitive to the thermal histories of the meteorities. It is concluded that the events(s) that released the less than 20 Ma samples, which are predominantly those with exposure ages of 8 + or - 2 Ma, produced two groups with different thermal histories, one that came to earth several 100,000 years ago and that are currently only found in Antarctica, and one that is currently falling on the earth.
NASA Astrophysics Data System (ADS)
Qin, Mulan; Liang, Qiang; Pan, Anqiang; Liang, Shuquan; Zhang, Qing; Tang, Yan; Tan, Xiaoping
2014-12-01
A facile hydrothermal route has been developed to fabricate the metastable VO2 (B) ultra-thin nanobelt arrays, which can be converted into V2O5 porous nanobelt arrays after calcinating VO2 (B) in air at 400 °C for 1 h. The influence of hydrothermal time to the crystallinity and morphology of the VO2 phase has been studied. A possible mechanism for the formation of VO2 nanobelt arrays has been proposed in this paper. As a cathode material for lithium ion batteries, the V2O5 nanobelt arrays show excellent rate capability and cycling stability. An initial discharge capacity of 142 mA h g-1 can be delivered at a current density of 50 mA g-1 with almost no capacity fading after 100 cycles. Even at a current density of 1000 mA g-1, they still exhibit the capacity of 130 mA h g-1 and superior capacity retention capability. The excellent electrochemical properties are attributed to the ultra-thin thickness and the porous structures of the nanobelts.
Verdun di Cantogno, Elisabetta; Russell, Susan; Snow, Tom
2011-01-01
Background: All established disease-modifying drugs for multiple sclerosis require parenteral administration, which can cause difficulties for some patients, sometimes leading to suboptimal adherence. A new electronic autoinjection device has been designed to address these issues. Methods: Patients with relapsing multiple sclerosis currently receiving subcutaneous or intramuscular interferon beta-1a, interferon beta-1b, or glatiramer acetate completed an online questionnaire (July 4–25, 2008) that surveyed current injection practices, experiences with current injection methods, and impressions and appeal of the new device. Results: In total, 422 patients completed the survey, of whom 44% used autoinjectors, 43% prefilled syringes, and 13% syringes and vials; overall, 66% currently self-injected. Physical and psychological barriers to self-injection included difficulty with injections, needle phobia, and concerns over correct injection technique. Only 40% of respondents were “very satisfied” with their current injection method. The new electronic autoinjector was rated as “very appealing” by 65% of patients. The benefits of the new device included the ability to customize injection settings and to review dosing history. Conclusion: New technologies may help patients overcome physical and psychological barriers to self-injection. The combination of a reliable and flexible autoinjection device with dose-monitoring technology may improve communication between health care professionals and patients, and improve treatment adherence. PMID:21573048
New synthesis of maleic anhydride modified polyolefins and their applications
NASA Astrophysics Data System (ADS)
Lu, Bing
Maleic anhydride (MA) modified polyolefins are the most useful commercial functional polyolefins. The current technology of producing MA modified polyolefins, mainly free radical modification, usually results in low MA graft contents, extensive side reactions, and poor control of graft structures. In this thesis, we show a new synthetic route for preparing MA modified polyolefins with excellent control of polymer structures and MA concentrations. The synthesis is based on the "reactive" polyolefin copolymers, i.e. polyolefins containing p-methylstyrene or alkylborane groups. The p-methylstyrene copolymers lead to selectively grafting reactions on the p-methyl groups, greatly reducing the side reactions on the polyolefin backbone. The MA graft content was proportional to the concentration of p-methylstyrene. In the borane approach, under controlled selective oxidation, the alkylborane containing PP polymers formed the "stable" polymeric radical in situ which initiated the graft-from reaction. By varying the monomer concentrations of MA and styrene, reaction time and temperature, a broad range of MA modified PP polymers were prepared from a single MA terminated or grafted PP to a very long SMA segment blocked or grafted PP, and there is no detectable side reaction on the PP backbone. MA modified polyolefins were investigated in the applications of glass fiber reinforced PP, elastomer toughened Nylon, and polyolefin/Nylon blends. The MA modified polyolefin compatibilizers showed the significant improved mechanical properties and morphology of the blends. The effectiveness of compatibilization depends on the MA concentration, molecular weight of the polyolefin segments, the structure of the compatibilizers, and the composition of the blend. By amidation or imidation reaction of MA modified PP with amine terminated PP, long chain branched PP polymers were also prepared. The results of IR, GPC, intrinsic viscosity and DSC studies clearly indicate the formation of long chain branched PP.
Direct current microhollow cathode discharges on silicon devices operating in argon and helium
NASA Astrophysics Data System (ADS)
Michaud, R.; Felix, V.; Stolz, A.; Aubry, O.; Lefaucheux, P.; Dzikowski, S.; Schulz-von der Gathen, V.; Overzet, L. J.; Dussart, R.
2018-02-01
Microhollow cathode discharges have been produced on silicon platforms using processes usually used for MEMS fabrication. Microreactors consist of 100 or 150 μm-diameter cavities made from Ni and SiO2 film layers deposited on a silicon substrate. They were studied in the direct current operating mode in two different geometries: planar and cavity configuration. Currents in the order of 1 mA could be injected in microdischarges operating in different gases such as argon and helium at a working pressure between 130 and 1000 mbar. When silicon was used as a cathode, the microdischarge operation was very unstable in both geometry configurations. Strong current spikes were produced and the microreactor lifetime was quite short. We evidenced the fast formation of blisters at the silicon surface which are responsible for the production of these high current pulses. EDX analysis showed that these blisters are filled with argon and indicate that an implantation mechanism is at the origin of this surface modification. Reversing the polarity of the microdischarge makes the discharge operate stably without current spikes, but the discharge appearance is quite different from the one obtained in direct polarity with the silicon cathode. By coating the silicon cathode with a 500 nm-thick nickel layer, the microdischarge becomes very stable with a much longer lifetime. No current spikes are observed and the cathode surface remains quite smooth compared to the one obtained without coating. Finally, arrays of 76 and 576 microdischarges were successfully ignited and studied in argon. At a working pressure of 130 mbar, all microdischarges are simultaneously ignited whereas they ignite one by one at higher pressure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esswein, AJ; Surendranath, Y; Reece, SY
A high surface area electrode is functionalized with cobalt-based oxygen evolving catalysts (Co-OEC = electrodeposited from pH 7 phosphate, Pi, pH 8.5 methylphosphonate, MePi, and pH 9.2 borate electrolyte, Bi). Co-OEC prepared from MePi and operated in Pi and Bi achieves a current density of 100 mA cm(-2) for water oxidation at 442 and 363 mV overpotential, respectively. The catalyst retains activity in near-neutral pH buffered electrolyte in natural waters such as those from the Charles River (Cambridge, MA) and seawater (Woods Hole, MA). The efficacy and ease of operation of anodes functionalized with Co-OEC at appreciable current density togethermore » with its ability to operate in near neutral pH buffered natural water sources bodes well for the translation of this catalyst to a viable renewable energy storage technology.« less
Void formation in INCONEL MA-754 by high temperature oxidation
NASA Astrophysics Data System (ADS)
Rosenstein, Alan H.; Tien, John K.; Nix, William D.
1986-01-01
Subsurface void formation in oxide dispersion strengthened MA-754 caused by high temperature oxidation was investigated at temperatures of 1100, 1150, and 1200 °C for times of 1, 10, 50, and 100 hours. Material exposed at 1200 °C was examined using microprobe, SEM, and optical microscopy techniques. After exposure in air at 1200 °C for 100 hours, chromium depletion by as much as 10 wt pct was observed near the surface, and voids of various sizes up to 15 µm in diameter were found to depths of 300 µm. The fraction of voids increases with exposure time and, with the exception of anomalous values near the surface, decreases with depth. The maximum area fraction of voids observed was approximately 8 pct. Correlation of the void area fraction profile with the measured chromium depletion through a diffusion analysis shows that void formation is due to vacancy injection. Similar void formation in Ni-Cr alloys without oxide dispersions suggests that void formation is not dependent upon the presence of oxide dispersions. The diffusion coefficient for chromium in MA-754 at 1200 °C was computed from microprobe data to be 4 × 10-10 cm2 per second.
Li, Weijie; Chou, Shu-Lei; Wang, Jia-Zhao; Kim, Jung Ho; Liu, Hua-Kun; Dou, Shi-Xue
2014-06-25
Sn4+x P3 @ amorphous Sn-P composites are a promising cheap anode material for sodium-ion batteries with high capacity (502 mA h g(-1) at a current density of 100 mA g(-1)), long cycling stability (92.6% capacity retention up to 100 cycles), and high rate capability (165 mA h g(-1) at the 10C rate). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
BioMaS: a modular pipeline for Bioinformatic analysis of Metagenomic AmpliconS.
Fosso, Bruno; Santamaria, Monica; Marzano, Marinella; Alonso-Alemany, Daniel; Valiente, Gabriel; Donvito, Giacinto; Monaco, Alfonso; Notarangelo, Pasquale; Pesole, Graziano
2015-07-01
Substantial advances in microbiology, molecular evolution and biodiversity have been carried out in recent years thanks to Metagenomics, which allows to unveil the composition and functions of mixed microbial communities in any environmental niche. If the investigation is aimed only at the microbiome taxonomic structure, a target-based metagenomic approach, here also referred as Meta-barcoding, is generally applied. This approach commonly involves the selective amplification of a species-specific genetic marker (DNA meta-barcode) in the whole taxonomic range of interest and the exploration of its taxon-related variants through High-Throughput Sequencing (HTS) technologies. The accessibility to proper computational systems for the large-scale bioinformatic analysis of HTS data represents, currently, one of the major challenges in advanced Meta-barcoding projects. BioMaS (Bioinformatic analysis of Metagenomic AmpliconS) is a new bioinformatic pipeline designed to support biomolecular researchers involved in taxonomic studies of environmental microbial communities by a completely automated workflow, comprehensive of all the fundamental steps, from raw sequence data upload and cleaning to final taxonomic identification, that are absolutely required in an appropriately designed Meta-barcoding HTS-based experiment. In its current version, BioMaS allows the analysis of both bacterial and fungal environments starting directly from the raw sequencing data from either Roche 454 or Illumina HTS platforms, following two alternative paths, respectively. BioMaS is implemented into a public web service available at https://recasgateway.ba.infn.it/ and is also available in Galaxy at http://galaxy.cloud.ba.infn.it:8080 (only for Illumina data). BioMaS is a friendly pipeline for Meta-barcoding HTS data analysis specifically designed for users without particular computing skills. A comparative benchmark, carried out by using a simulated dataset suitably designed to broadly represent the currently known bacterial and fungal world, showed that BioMaS outperforms QIIME and MOTHUR in terms of extent and accuracy of deep taxonomic sequence assignments.
Association between prescription drug misuse and injection among runaway and homeless youth
Al-Tayyib, Alia A; Rice, Eric; Rhoades, Harmony; Riggs, Paula
2013-01-01
Background The nonmedical use of prescription drugs is the fastest growing drug problem in the United States, disproportionately impacting youth. Furthermore, the population prevalence of injection drug use among youth is also on the rise. This short communication examines the association between current prescription drug misuse (PDM) and injection among runaway and homeless youth. Methods Homeless youth were surveyed between October, 2011 and February, 2012 at two drop-in service agencies in Los Angeles, CA. Prevalence ratios (PR) and 95% confidence intervals (CI) for the association between current PDM and injection behavior were estimated. The outcome of interest was use of a needle to inject any illegal drug into the body during the past 30 days. Results Of 380 homeless youth (median age, 21; IQR, 17-25; 72% male), 84 (22%) reported current PDM and 48 (13%) reported currently injecting. PDM during the past 30 days was associated with a 7.7 (95% CI: 4.4, 13.5) fold increase in the risk of injecting during that same time. Among those reporting current PDM with concurrent heroin, cocaine, and methamphetamine use, the PR with injection was 15.1 (95% CI: 8.5, 26.8). Conclusions Runaway and homeless youth are at increased risk for a myriad of negative outcomes. Our preliminary findings are among the first to show the strong association between current PDM and injection in this population. Our findings provide the basis for additional research to delineate specific patterns of PDM and factors that enable or inhibit transition to injection among homeless and runaway youth. PMID:24300900
Association between prescription drug misuse and injection among runaway and homeless youth.
Al-Tayyib, Alia A; Rice, Eric; Rhoades, Harmony; Riggs, Paula
2014-01-01
The nonmedical use of prescription drugs is the fastest growing drug problem in the United States, disproportionately impacting youth. Furthermore, the population prevalence of injection drug use among youth is also on the rise. This short communication examines the association between current prescription drug misuse (PDM) and injection among runaway and homeless youth. Homeless youth were surveyed between October 2011 and February 2012 at two drop-in service agencies in Los Angeles, CA. Prevalence ratios (PR) and 95% confidence intervals (CI) for the association between current PDM and injection behavior were estimated. The outcome of interest was use of a needle to inject any illegal drug into the body during the past 30 days. Of 380 homeless youth (median age, 21; IQR, 17-25; 72% male), 84 (22%) reported current PDM and 48 (13%) reported currently injecting. PDM during the past 30 days was associated with a 7.7 (95% CI: 4.4, 13.5) fold increase in the risk of injecting during that same time. Among those reporting current PDM with concurrent heroin, cocaine, and methamphetamine use, the PR with injection was 15.1 (95% CI: 8.5, 26.8). Runaway and homeless youth are at increased risk for a myriad of negative outcomes. Our preliminary findings are among the first to show the strong association between current PDM and injection in this population. Our findings provide the basis for additional research to delineate specific patterns of PDM and factors that enable or inhibit transition to injection among homeless and runaway youth. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Application of Arrester Simulation Device in Training
NASA Astrophysics Data System (ADS)
Baoquan, Zhang; Ziqi, Chai; Genghua, Liu; Wei, Gao; Kaiyue, Wu
2017-12-01
Combining with the arrester simulation device put into use successfully, this paper introduces the application of arrester test in the insulation resistance measurement, counter test, Leakage current test under DC 1mA voltage and leakage current test under 0.75U1mA. By comparing with the existing training, this paper summarizes the arrester simulation device’s outstanding advantages including real time monitoring, multi-type fault data analysis and acousto-optic simulation. It effectively solves the contradiction between authenticity and safety in the existing test training, and provides a reference for further training.
2012-08-01
HMMWV for the current given inputs based on the current vehicle speed, acceleration pedal , and brake pedal . From this driver requested power at the...HMMWV engine, b) base HMMWV gear ratios of the 4 speed transmission, c) acceleration and brake pedal pressed for the hybrid vehicle and d) Torque...coefficient. µb: Threshold for detecting brake pedal pressed ? 2 tanE4FGH 2 tanE4 I [K ρ: Air mass density, ρ = ma/Va where ma is mass of air
Bottom current deposition in the Antarctic Wilkes Land margin during the Oligocene
NASA Astrophysics Data System (ADS)
Salabarnada, Ariadna; Escutia, Carlota; Nelson, Hans C.; Evangelinos, Dimitris; López-Quirós, Adrián
2017-04-01
Sediment cores collected from the Antarctic Wilkes Land continental rise at IODP site 1356 provide evidence for bottom current sedimentation taking place since the early Oligocene (i.e., 33.6 Ma) (Escutia et al., 2011). Correlation between site 1356 sediments and the regional grid of multichannel seismic reflection profiles, complemented with bathymetric data, allow us to differentiate a variety of contourite deposits resulting from the interaction between bottom currents and seafloor paleomorphologies. Contourite deposits are identified based on the seismic signature, reflector configuration and geometry of the depositional bodies as elongated-mounded drifts, giant mounded drifts, confined drifts, infill drifts, plastered drifts, sediment waves, and moats. Based on the spatial and temporal distribution of these deposits, we differentiate three phases in contourite deposition in this margin: Phase 1) from 33.6-28 Ma sheeted drift morphologies dominate, related to high-energy deposits associated with fast flowing currents during the early Oligocene; Phase 2) At around 28 Ma, mounded drift morphologies and moat channels start forming. Continued intensification of contour currents results in larger contourite morphologies such as giant mounded drifts and moats forming around structural heights present in the Wilkes Land basin (e.g, the Adelie Rift Block). Phase 3) A shift in current configuration is recorded at around 15 Ma above regional unconformity WL-U5, which marks the Oligocene-Miocene Transition. This change is shown by a migration to the North of the drift crests and by a dominance of down-slope sedimentation processes that is indicated by mass transport deposits and channel levee formation. We interpret the evolution of the contourite deposits during the Oligocene in this margin to be driven by changes in the intensity of bottom current activity over time resulting from ice sheet growth, evolution of bottom morphology and related changes in paleoceanographic configuration in the Southern Ocean. This contribution results from work funded by the Spanish Ministry of Economy and Competitivity Grant CTM2014-60451-C2-1-P and FEDER funds.
NASA Astrophysics Data System (ADS)
Gunawan, R.; Sugiarti, E.; Isnaeni; Purawiardi, R. I.; Widodo, H.; Muslimin, A. N.; Yuliasari; Ronaldus, C. E.; Prastomo, N.; Hastuty, S.
2018-03-01
The optical, electrical and structural characteristics of InGaN-based blue light-emitting diodes (LEDs) were investigated to identify the degradation of LED before and after current injection. The sample was injected by high current of 200 A/cm2 for 5 and 20 minutes. It was observed that injection of current shifts light intensity and wavelength characteristics that indicated defect generation. Transmission Electron Microscopy (TEM) characterization was carried out in order to clarify the structure degradation caused by defect in active layer which consisted of 14 quantum well with thickness of about 5 nm and confined with barrier layer with thickness of about 12 nm. TEM results showed pre-existing defect in LED before injection with high current. Furthermore, discontinue and edge defect was found in dark spot region of LED after injection with high current.
The Neuronal Control of Flying Prey Interception in Dragonflies
2014-08-19
Gonzalez-Bellido’s fluorescent dye ( Lucifer -yellow) injections illuminated for the first time the anatomy of the output regions of the TSDNs...out in Cape Cod (MA) to test the effect of bead size(C), and in the Olberg Laboratory (Union College, NY) to test the effect of bead speed by...AFRL-OSR-VA-TR-2014-0193 THE NEURONAL CONTROL OF FLYING PREY INTERCEPTION IN DRAGONFLIES Robert Olberg TRUSTEES OF UNION COLLEGE IN THE TOWN OF
NASA Astrophysics Data System (ADS)
Kim, Hwankyo; Kim, Dae-Hyun; Seong, Tae-Yeon
2017-11-01
We investigated the electrical performance of near ultraviolet (NUV) (390 nm) light-emitting diodes (LEDs) fabricated with various semi-transparent Cr/ITO n-type contacts. It was shown that after annealing at 400 °C, Cr/ITO (10 nm/40 nm) contact was ohmic with a specific contact resistance of 9.8 × 10-4 Ωcm2. NUV AlGaN-based LEDs fabricated with different Cr/ITO (6-12 nm/40 nm) electrodes exhibited forward-bias voltages of 3.27-3.30 V at an injection current of 20 mA, which are similar to that of reference LED with Cr/Ni/Au (20 nm/25 nm/200 nm) electrode (3.29 V). The LEDs with the Cr/ITO electrodes gave series resistances of 10.69-11.98 Ω, while the series resistance is 10.84 Ohm for the reference LED. The transmittance of the Cr/ITO samples significantly improved when annealed at 400 °C. The transmittance (25.8-45.2% at 390 nm) of the annealed samples decreased with increasing Cr layer thickness. The LEDs with the Cr/ITO electrodes exhibited higher light output power than reference LED (with Cr/Ni/Au electrode). In particular, the LED with the Cr/ITO (12 nm/40 nm) electrode showed 9.3% higher light output power at 100 mA than reference LED. Based on the X-ray photoemission spectroscopy (XPS) and electrical results, the ohmic formation mechanism is described and discussed.
Horton, Forrest; Lee, Jeffrey; Hacker, Bradley; Bowman-Kamaha'o, Meilani; Cosca, Michael A.
2015-01-01
A general lack of consensus about the origin of Himalayan gneiss domes hinders accurate thermomechanical modeling of the orogen. To test whether doming resulted from tectonic contraction (e.g., thrust duplex formation, antiformal bending above a thrust ramp, etc.), channel flow, or via the buoyant rise of anatectic melts, this study investigates the depth and timing of doming processes for Gianbul dome in the western Himalaya. The dome is composed of Greater Himalayan Sequence migmatite, Paleozoic orthogneiss, and metasedimentary rock cut by multiple generations of leucogranite dikes. These rocks record a major penetrative D2 deformational event characterized by a domed foliation and associated NE-SW–trending stretching lineation, and they are flanked by the top-down-to-the-SW (normal-sense) Khanjar shear zone and the top-down-to-the-NE (normal sense) Zanskar shear zone (the western equivalent of the South Tibetan detachment system). Monazite U/Th-Pb geochronology records (1) Paleozoic emplacement of the Kade orthogneiss and associated granite dikes; (2) prograde Barrovian metamorphism from 37 to 33 Ma; (3) doming driven by upper-crustal extension and positive buoyancy of decompression melts between 26 and 22 Ma; and (4) the injection of anatectic melts into the upper levels of the dome—neutralizing the effects of melt buoyancy and potentially adding strength to the host rock—by ca. 22.6 Ma on the southwestern flank and ca. 21 Ma on the northeastern flank. As shown by a northeastward decrease in 40Ar/39Ar muscovite dates from 22.4 to 20.2 Ma, ductile normal-sense displacement within the Zanskar shear zone ended by ca. 22 Ma, after which the Gianbul dome was exhumed as part of a rigid footwall block below the brittle Zanskar normal fault, tilting an estimated 5°–10°SW into its present orientation.
NASA Astrophysics Data System (ADS)
Cai, Keda; Sun, Min; Buslov, M. M.; Jahn, Bor-ming; Xiao, Wenjiao; Long, Xiaoping; Chen, Huayong; Wan, Bo; Chen, Ming; Rubanova, E. S.; Kulikova, A. V.; Voytishek, E. E.
2016-04-01
The Central Asian Orogenic Belt is a gigantic tectonic collage of numerous accreted terranes. However, its geodynamic evolution has been hotly debated primarily due to incomplete knowledge on the nature of these enigmatic terranes. This work presents new detrital zircon U-Pb and Hf isotopic data to constrain the crustal nature and origin of the Russian Altai, a critical segment of Altai-Mongolian terrane. The youngest zircon 206Pb/238U ages of 470 Ma constrain that the Terekta Formation, previously envisaged as Precambrian basement, was actually deposited after the Middle Ordovician. As for the three more sedimentary sequences above the Terekta Formation, they have youngest zircon 206Pb/238U ages of 425 Ma, 440 Ma and 380 Ma, respectively, indicating their depositions likely in the Late Silurian to Devonian. From all analyses, it is noted that many zircon U-Pb ages cluster at ca. 520 Ma and ca. 800 Ma, and these zircons display oscillatory zoning and have subhedral to euhedral morphology, which, collectively, suggests that adjacent Neoproterozoic to Paleozoic igneous rocks were possibly dominant in the sedimentary provenance. Additionally, a few rounded Archean to Mesoproterozoic zircon grains are characterized by complex texture, which are interpreted as recycling materials probably derived from the Tuva-Mongolian microcontinent. Precambrian rocks have not been identified in the Russian Altai, Chinese Altai and Mongolian Altai so far, therefore, Precambrian basement may not exist in the Altai-Mongolian terrane, but this terrane probably represents a large subduction-accretion complex built on the margin of the Tuva-Mongolian microcontinent in the Early Paleozoic. Multiple episodes of ridge-trench interaction may have caused inputs of mantle-derived magmas to trigger partial melting of the newly accreted crustal materials, which contributed to the accretionary complex. During accretionary orogenesis of the CAOB, formation of such subduction-accretion complex is likely ubiquitous, indicating continental crust growth by both lateral accumulation and vertical basaltic injection.
Calvopiña, Manuel; Cevallos, William; Paredes, Yolanda; Puebla, Edison; Flores, Jessica; Loor, Richard; Padilla, José
2017-11-01
Meglumine Antimoniate (MA), administered intramuscularly for 21 continuous days is the recommended treatment of leishmaniases in Ecuador. However, because of its toxicity and requirement for intramuscular injections, treatment is frequently abandoned before completion. In addition, therapeutic failure and reactivation are not uncommon. Here we evaluate the efficacy and safety of MA administered intralesionally (IL) in leishmaniasis recidiva cutis (LRC). LRC is a special clinical variant of cutaneous leishmaniasis, characterized by reactivation at the edges of a primary cured lesion, presenting with active papules around the scar. Twenty-one patients were included in the study. All were diagnosed parasitologically by one of three diagnostic methods (smear, culture, and Leishmanin skin test). Each patient received MA intralesionally weekly for 4 weeks. Each papule was infiltrated until complete saturation. On average, patients received 1 mL of MA per administration. The criterion of cure was the complete resolution of the papules. Follow up was performed at 30, 90, and 180 days after treatment. At day 30 after treatment, 19 (90.5%) of 21 patients were clinically cured. The two patients, who did not heal by the fourth application, were cured on the seventh and eighth dose, achieving a clinical cure of 100% without subsequent reactivation. Mild to moderate local pain during infiltration was the only adverse reaction experienced by 81% of patients. In one case, subsequent infiltrations were discontinued because of a local allergic reaction. Complete compliance of patients to treatment and the small volume of drug administered make this method of administering MA an effective, safe, and inexpensive alternative. Consequently, IL could replace intramuscular administration in the treatment of LRC in Ecuador.
Rottlerin impairs the formation and maintenance of psychostimulant-supported memory.
Liao, Tien You; Tzeng, Wen-Yu; Wu, Hsin-Hua; Cherng, Chianfang G; Wang, Ching-Yi; Hu, Sherry S-J; Yu, Lung
2016-04-01
Since brain proteins such as protein kinase C (PKC), brain-derived neurotrophic factor (BDNF), and mammalian target of rapamycin (mTOR) are involved in the establishment and maintenance of psychostimulant memory, we sought to determine if systemic treatment with rottlerin, a natural compound affecting all these proteins, may modulate stimulant-supported memory. Stimulant-induced conditioned place preference (CPP) was used in modeling stimulant-supported memory. Three cocaine (10 mg/kg; COC) or three methamphetamine (1 mg/kg; MA) conditioning trials reliably established the drug-induced CPP in male C57BL/6 mice. An intra-peritoneal rottlerin injection (5 mg/kg) at least 24 h prior to the first COC or first MA conditioning trial prevented the establishment of CPP. Following the establishment of the COC- or MA-induced CPP, saline conditioning trial was used to extinguish the CPP. Rottlerin (5 mg/kg, intra-peritoneal (i.p.)) administered 20 h prior to the first saline conditioning trial diminished subsequent drug- and stressor-primed reinstatement of the extinguished CPP. Rottlerin (5 mg/kg, i.p.) produced a fast-onset and long-lasting increase in hippocampal BDNF levels. However, treatment with a BDNF tropomyosin receptor kinase B (TrkB) receptor antagonist, K252a (5 μg/kg), did not affect rottlerin's suppressing effect on COC-induced CPP and treatment with 7,8-dihydroxyflavone (10 mg/kg x 6, 7,8-DHF), a selective TrkB agonist, prior to each conditioning trial did not affect COC-induced CPP. These results suggest that systemic rottlerin treatment may impair the formation of COC- and MA-supported memory. Importantly, such a treatment may advance our understanding of the underlying mechanism through which extinction training resulted in the "forgetting" of the COC- and MA-supported memory.
Srisurapanont, Manit; Arunpongpaisal, Suwanna; Wada, Kiyoshi; Marsden, John; Ali, Robert; Kongsakon, Ronnachai
2011-06-01
The concept of negative symptoms in methamphetamine (MA) psychosis (e.g., poverty of speech, flatten affect, and loss of drive) is still uncertain. This study aimed to use differential item functioning (DIF) statistical techniques to differentiate the severity of psychotic symptoms between MA psychotic and schizophrenic patients. Data of MA psychotic and schizophrenic patients were those of the participants in the WHO Multi-Site Project on Methamphetamine-Induced Psychosis (or WHO-MAIP study) and the Risperidone Long-Acting Injection in Thai Schizophrenic Patients (or RLAI-Thai study), respectively. To confirm the unidimensionality of psychotic syndromes, we applied the exploratory and confirmatory factor analyses (EFA and CFA) on the eight items of Manchester scale. We conducted the DIF analysis of psychotic symptoms observed in both groups by using nonparametric kernel-smoothing techniques of item response theory. A DIF composite index of 0.30 or greater indicated the difference of symptom severity. The analyses included the data of 168 MA psychotic participants and the baseline data of 169 schizophrenic patients. For both data sets, the EFA and CFA suggested a three-factor model of the psychotic symptoms, including negative syndrome (poverty of speech, psychomotor retardation and flatten/incongruous affect), positive syndrome (delusions, hallucinations and incoherent speech) and anxiety/depression syndrome (anxiety and depression). The DIF composite indexes comparing the severity differences of all eight psychotic symptoms were lower than 0.3. The results suggest that, at the same level of syndrome severity (i.e., negative, positive, and anxiety/depression syndromes), the severity of psychotic symptoms, including the negative ones, observed in MA psychotic and schizophrenic patients are almost the same. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Cody, B. M.; Gonzalez-Nicolas, A.; Bau, D. A.
2011-12-01
Carbon capture and storage (CCS) has been proposed as a method of reducing global carbon dioxide (CO2) emissions. Although CCS has the potential to greatly retard greenhouse gas loading to the atmosphere while cleaner, more sustainable energy solutions are developed, there is a possibility that sequestered CO2 may leak and intrude into and adversely affect groundwater resources. It has been reported [1] that, while CO2 intrusion typically does not directly threaten underground drinking water resources, it may cause secondary effects, such as the mobilization of hazardous inorganic constituents present in aquifer minerals and changes in pH values. These risks must be fully understood and minimized before CCS project implementation. Combined management of project resources and leakage risk is crucial for the implementation of CCS. In this work, we present a method of: (a) minimizing the total CCS cost, the summation of major project costs with the cost associated with CO2 leakage; and (b) maximizing the mass of injected CO2, for a given proposed sequestration site. Optimization decision variables include the number of CO2 injection wells, injection rates, and injection well locations. The capital and operational costs of injection wells are directly related to injection well depth, location, injection flow rate, and injection duration. The cost of leakage is directly related to the mass of CO2 leaked through weak areas, such as abandoned oil wells, in the cap rock layers overlying the injected formation. Additional constraints on fluid overpressure caused by CO2 injection are imposed to maintain predefined effective stress levels that prevent cap rock fracturing. Here, both mass leakage and fluid overpressure are estimated using two semi-analytical models based upon work by [2,3]. A multi-objective evolutionary algorithm coupled with these semi-analytical leakage flow models is used to determine Pareto-optimal trade-off sets giving minimum total cost vs. maximum mass of CO2 sequestered. This heuristic optimization method is chosen because of its robustness in optimizing large-scale, highly non-linear problems. Trade-off curves are developed for multiple fictional sites with the intent of clarifying how variations in domain characteristics (aquifer thickness, aquifer and weak cap rock permeability, the number of weak cap rock areas, and the number of aquifer-cap rock layers) affect Pareto-optimal fronts. Computational benefits of using semi-analytical leakage models are explored and discussed. [1] Birkholzer, J. (2008) "Research Project on CO2 Geological Storage and Groundwater Resources: Water Quality Effects Caused by CO2 Intrusion into Shallow Groundwater" Berkeley (CA): Lawrence Berkeley National Laboratory (US); 2008 Oct. 473 p. Report No.: 510-486-7134. [2] Celia, M.A. and Nordbotten, J.M. (2011) "Field-scale application of a semi-analytical model for estimation of CO2 and brine leakage along old wells" International Journal of Greenhouse Gas Control, 5 (2011), 257-269. [3] Nordbotten, J.M. and Celia, M.A. (2009) "Model for CO2 leakage including multiple geological layers and multiple leaky wells" Environ. Sci. Technol., 43, 743-749.
Experimental evidence of ion-induced instabilities in the NSLS-II storage ring
Cheng, Weixing; Li, Yongjun; Podobedov, Boris
2017-03-12
Fast ion instability has been identified as one of the most prominent instabilities in the recently constructed NSLS-II storage ring at Brookhaven National Laboratory. At a relatively low beam current (~ 25 mA) multi-bunch fills, ion-induced instabilities have already been observed during the early stages of machine commissioning. At present user operation with 250 mA in ~1000 bunches, the fast ion still remains the dominant instability, even after months of vacuum conditioning at high current. Ion-induced dipole motions of the electron beam have been suppressed using the transverse bunch-by-bunch (BxB) feedback system. However other adverse effects of this instability, suchmore » as the vertical beam size increase along the bunch train cannot be cured by the feedback system. Therefore, to achieve the NSLS-II design current of 500 mA while maintaining a small vertical beam emittance, it is important to further understand the fast ion instability and develop mitigation techniques. This paper reports on a series of ion-instability observations at various fill patterns and beam currents using start-of-art NSLS-II diagnostic tools.« less
Experimental evidence of ion-induced instabilities in the NSLS-II storage ring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Weixing; Li, Yongjun; Podobedov, Boris
Fast ion instability has been identified as one of the most prominent instabilities in the recently constructed NSLS-II storage ring at Brookhaven National Laboratory. At a relatively low beam current (~ 25 mA) multi-bunch fills, ion-induced instabilities have already been observed during the early stages of machine commissioning. At present user operation with 250 mA in ~1000 bunches, the fast ion still remains the dominant instability, even after months of vacuum conditioning at high current. Ion-induced dipole motions of the electron beam have been suppressed using the transverse bunch-by-bunch (BxB) feedback system. However other adverse effects of this instability, suchmore » as the vertical beam size increase along the bunch train cannot be cured by the feedback system. Therefore, to achieve the NSLS-II design current of 500 mA while maintaining a small vertical beam emittance, it is important to further understand the fast ion instability and develop mitigation techniques. This paper reports on a series of ion-instability observations at various fill patterns and beam currents using start-of-art NSLS-II diagnostic tools.« less
NASA Astrophysics Data System (ADS)
Nash, Tom
2009-11-01
Simulations of a z-pinch compressing an applied 100 kG Bz field onto an on-axis DT fiber tamped with beryllium show the field reaching over 100 MG in the tamp, sufficient to confine DT alpha particles and to form a thermal barrier. The barrier allows the DT plasma to burn at a rho*r value as low as 0.045 g/cm^2, and at temperatures over 50 keV for a 63 MA drive current. Driving currents between 21 and 63 MA are considered with cryogenic DT fiber diameters between 600 μm and 1.6 mm. Pinch implosion times are 120 ns with a peak implosion velocity of 35 cm/μs. 1D simulations are of a foil pinch, but for improved stability we propose a nested wire-array. Simulated fusion yields with this system scale as the sixth power of the current, with burn fractions scaling as the fourth power of the current. At 63 MA the simulated yield is 521 MJ from 4.2 mg/cm of DT with a 37% burn fraction at a rho*r of only 0.18 g/cm^2.
Murray, Lynda M; Edwards, Dylan J; Ruffini, Giulio; Labar, Douglas; Stampas, Argyrios; Pascual-Leone, Alvaro; Cortes, Mar
2015-04-01
To investigate the effects of anodal transcranial direct current stimulation (a-tDCS) intensity on corticospinal excitability and affected muscle activation in individuals with chronic spinal cord injury (SCI). Single-blind, randomized, sham-controlled, crossover study. Medical research institute and rehabilitation hospital. Volunteers (N = 9) with chronic SCI and motor dysfunction in wrist extensor muscles. Three single session exposures to 20 minutes of a-tDCS (anode over the extensor carpi radialis [ECR] muscle representation on the left primary motor cortex, cathode over the right supraorbital area) using 1 mA, 2 mA, or sham stimulation, delivered at rest, with at least 1 week between sessions. Corticospinal excitability was assessed with motor-evoked potentials (MEPs) from the ECR muscle using surface electromyography after transcranial magnetic stimulation. Changes in spinal excitability, sensory threshold, and muscle strength were also investigated. Mean MEP amplitude significantly increased by approximately 40% immediately after 2mA a-tDCS (pre: 0.36 ± 0.1 mV; post: 0.47 ± 0.11 mV; P = .001), but not with 1 mA or sham. Maximal voluntary contraction measures remained unaltered across all conditions. Sensory threshold significantly decreased over time after 1mA (P = .002) and 2mA (P = .039) a-tDCS and did not change with sham. F-wave persistence showed a nonsignificant trend for increase (pre: 32% ± 12%; post: 41% ± 10%; follow-up: 46% ± 12%) after 2 mA stimulation. No adverse effects were reported with any of the experimental conditions. The a-tDCS can transiently raise corticospinal excitability to affected muscles in patients with chronic SCI after 2 mA stimulation. Sensory perception can improve with both 1 and 2 mA stimulation. This study gives support to the safe and effective use of a-tDCS using small electrodes in patients with SCI and highlights the importance of stimulation intensity. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Ramp compression of a metallic liner driven by a shaped 5 MA current on the SPHINX machine
NASA Astrophysics Data System (ADS)
d'Almeida, T.; Lassalle, F.; Morell, A.; Grunenwald, J.; Zucchini, F.; Loyen, A.; Maysonnave, T.; Chuvatin, A.
2014-05-01
SPHINX is a 6MA, 1-us Linear Transformer Driver operated by the CEA Gramat (France) and primarily used for imploding Z-pinch loads for radiation effects studies. A method for performing magnetic ramp compression experiments was developed using a compact Dynamic Load Current Multiplier inserted between the convolute and the load, to shape the initial current pulse. We present the overall experimental configuration chosen for these experiments and initial results obtained over a set of experiments on an aluminum cylindrical liner. Current profiles measured at various critical locations across the system, are in good agreement with simulated current profiles. The liner inner free surface velocity measurements agree with the hydrocode results obtained using the measured load current as the input. The potential of the technique in terms of applications and achievable ramp pressure levels lies in the prospects for improving the DLCM efficiency.
Heating and current drive requirements towards steady state operation in ITER
NASA Astrophysics Data System (ADS)
Poli, Francesca; Kessel, Charles; Bonoli, Paul; Batchelor, Donald; Harvey, Bob
2013-10-01
Steady state scenarios envisaged for ITER aim at optimizing the bootstrap current, while maintaining sufficient confinement and stability. Non-inductive scenarios will need to operate with Internal Transport Barriers (ITBs) to reach adequate fusion gain at typical currents of 9 MA. Scenarios are established as relaxed flattop states with time-dependent transport simulations with TSC. The E × B flow shear from toroidal plasma rotation is expected to be low in ITER, with a major role in the ITB dynamics being played by magnetic geometry. Combinations of external sources that maintain weakly reversed shear profiles and ρ (qmin >= 0 . 5 are the focus of this work. Simulations indicate that, with a trade-off of the EC equatorial and upper launcher, the formation and sustainment of ITBs could be demonstrated with the baseline configuration. However, with proper constraints from peeling-ballooning theory on the pedestal width and height, the fusion gain and the maximum non-inductive current (6.2MA) are below the target. Upgrades of the heating and current drive system, like the use of Lower Hybrid current drive, could overcome these limitations. With 30MW of coupled LH in the flattop and operating at the Greenwald density, plasmas can sustain ~ 9 MA and achieve Q ~ 4 . Work supported by the US Department of Energy under DE-AC02-CH0911466.
Operation and development status of the J-PARC ion source
NASA Astrophysics Data System (ADS)
Yamazaki, S.; Ikegami, K.; Ohkoshi, K.; Ueno, A.; Koizumi, I.; Takagi, A.; Oguri, H.
2014-02-01
A cesium-free H- ion source driven with a LaB6 filament is being operated at the Japan Proton Accelerator Research Complex (J-PARC) without any serious trouble since the restoration from the March 2011 earthquake. The H- ion current from the ion source is routinely restricted approximately 19 mA for the lifetime of the filament. In order to increase the beam power at the linac beam operation (January to February 2013), the beam current from the ion source was increased to 22 mA. At this operation, the lifetime of the filament was estimated by the reduction in the filament current. According to the steep reduction in the filament current, the break of the filament was predicted. Although the filament has broken after approximately 10 h from the steep current reduction, the beam operation was restarted approximately 8 h later by the preparation for the exchange of new filament. At the study time for the 3 GeV rapid cycling synchrotron (April 2013), the ion source was operated at approximately 30 mA for 8 days. As a part of the beam current upgrade plan for the J-PARC, the front end test stand consisting of the ion source and the radio frequency quadrupole is under preparation. The RF-driven H- ion source developed for the J-PARC 2nd stage requirements will be tested at this test stand.
Blackstone, K.; Iudicello, J. E.; Morgan, E. E.; Weber, E.; Moore, D. J.; Franklin, D. R.; Ellis, R. J.; Grant, I.; Woods, S. P.
2013-01-01
Objectives The causes of disability among chronic methamphetamine (MA) users are multifactorial. The current study examined the additive adverse impact of human immunodeficiency virus (HIV) infection, a common comorbidity in MA users, on functional dependence. Methods A large cohort of participants (N=798) stratified by lifetime MA dependence diagnoses (i.e., MA+ or MA−) and HIV serostatus (i.e., HIV+ or HIV−) underwent comprehensive baseline neuromedical, neuropsychiatric, and functional research evaluations, including assessment of neurocognitive symptoms in daily life, instrumental and basic activities of daily living, and employment status. Results Independent, additive effects of MA and HIV were observed across all measures of functional dependence, independent of other demographic, psychiatric, and substance use factors. The prevalence of global functional dependence increased in the expected stepwise fashion across the cohort, with the lowest rates in the MA−/HIV− group (29%) and the highest rates in the MA+/HIV+ sample (69%). The impact of HIV on MA-associated functional dependence was moderated by nadir CD4 count, such that MA use was associated with greater disability among those HIV-infected persons with higher, but not lower nadir CD4. Within the MA+/HIV+ cohort, functional dependence was reliably associated with neurocognitive impairment, lower cognitive reserve, polysubstance use, and major depressive disorder. Conclusions HIV infection confers an increased concurrent risk of MA-associated disability, particularly among HIV-infected persons without histories of immune compromise. Directed referrals, earlier HIV treatment, and compensatory strategies aimed at counteracting the effects of low cognitive reserve, neurocognitive impairment, and psychiatric comorbidities on functional dependence in MA+/HIV+ individuals may be warranted. PMID:23648641
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-26
...-AB55 Traffic Separation Schemes: In the Approaches to Portland, ME; Boston, MA; Narragansett Bay, RI..., interim rule codifying traffic separation schemes in the approaches to Portland, ME; in the approaches to... Cape Fear River, NC, and updating the then-current regulations for the traffic separation scheme in the...
Huang, Shucai; Zhang, Zhixue; Dai, Yuanyuan; Zhang, Changcun; Yang, Cheng; Fan, Lidan; Liu, Jun; Hao, Wei; Chen, Hongxian
2018-01-01
Studies utilizing functional magnetic resonance imaging (fMRI) cue-reactivity paradigms have demonstrated that short-term abstinent or current methamphetamine (MA) users have increased brain activity in the ventral striatum, caudate nucleus and medial frontal cortex, when exposed to MA-related visual cues. However, patterns of brain activity following cue-reactivity in subjects with long-term MA abstinence, especially long-term compulsory drug rehabilitation, have not been well studied. To enrich knowledge in this field, functional brain imaging was conducted during a cue-reactivity paradigm task in 28 individuals with MA use disorder following long-term compulsory drug rehabilitation, and 27 healthy control subjects. The results showed that, when compared with controls, individuals with MA use disorder displayed elevated activity in the bilateral medial prefrontal cortex (mPFC) and right lateral posterior cingulate cortex in response to MA-related images. Additionally, the anterior cingulate region of mPFC activation during the MA-related cue-reactivity paradigm was positively correlated with craving alterations and previous frequency of drug use. No significant differences in brain activity in response to pornographic images were found between the two groups. Compared to MA cues, individuals with MA use disorder had increased activation in the occipital lobe when exposed to pornographic cues. In conclusion, the present study indicates that, even after long-term drug rehabilitation, individuals with MA use disorder have unique brain activity when exposed to MA-related cues. Additionally, our results illustrate that the libido brain response might be restored, and that sexual demand might be more robust than drug demand, in individuals with MA use disorder following long-term drug rehabilitation. PMID:29725310
Huang, Shucai; Zhang, Zhixue; Dai, Yuanyuan; Zhang, Changcun; Yang, Cheng; Fan, Lidan; Liu, Jun; Hao, Wei; Chen, Hongxian
2018-01-01
Studies utilizing functional magnetic resonance imaging (fMRI) cue-reactivity paradigms have demonstrated that short-term abstinent or current methamphetamine (MA) users have increased brain activity in the ventral striatum, caudate nucleus and medial frontal cortex, when exposed to MA-related visual cues. However, patterns of brain activity following cue-reactivity in subjects with long-term MA abstinence, especially long-term compulsory drug rehabilitation, have not been well studied. To enrich knowledge in this field, functional brain imaging was conducted during a cue-reactivity paradigm task in 28 individuals with MA use disorder following long-term compulsory drug rehabilitation, and 27 healthy control subjects. The results showed that, when compared with controls, individuals with MA use disorder displayed elevated activity in the bilateral medial prefrontal cortex (mPFC) and right lateral posterior cingulate cortex in response to MA-related images. Additionally, the anterior cingulate region of mPFC activation during the MA-related cue-reactivity paradigm was positively correlated with craving alterations and previous frequency of drug use. No significant differences in brain activity in response to pornographic images were found between the two groups. Compared to MA cues, individuals with MA use disorder had increased activation in the occipital lobe when exposed to pornographic cues. In conclusion, the present study indicates that, even after long-term drug rehabilitation, individuals with MA use disorder have unique brain activity when exposed to MA-related cues. Additionally, our results illustrate that the libido brain response might be restored, and that sexual demand might be more robust than drug demand, in individuals with MA use disorder following long-term drug rehabilitation.
A strong-focusing 800 MeV cyclotron for high-current applications
NASA Astrophysics Data System (ADS)
Pogue, N.; Assadi, S.; Badgley, K.; Comeaux, J.; Kellams, J.; McInturff, A.; McIntyre, P.; Sattarov, A.
2013-04-01
A superconducting strong-focusing cyclotron (SFC) is being developed for high-current applications. It incorporates four innovations. Superconducting quarter-wave cavities are used to provide >20 MV/turn acceleration. The orbit separation is thereby opened so that bunch-bunch interactions between successive orbits are eliminated. Quadrapole focusing channels are incorporated within the sectors so that alternating-gradient strong-focusing transport is maintained throughout. Dipole windings on the inner and outer orbits provide enhanced control for injection and extraction of bunches. Finally each sector magnet is configured as a flux-coupled stack of independent apertures, so that any desired number of independent cyclotrons can be integrated within a common footprint. Preliminary simulations indicate that each SFC should be capable of accelerating 10 mA CW to 800 MeV with very low loss and >50% energy efficiency. A primary motivation for SFC is as a proton driver for accelerator-driven subcritical fission in a molten salt core. The cores are fueled solely with the transuranics from spent nuclear fuel from a conventional nuclear power plant. The beams from one SFC stack would destroy all of the transuranics and long-lived fission products that are produced by a GWe reactor [1]. This capability offers the opportunity to close the nuclear fuel cycle and provide a path to green nuclear energy.
NASA Astrophysics Data System (ADS)
Myers, Neil Brubaker
The CHARGE-2 sounding rocket payload was designed to measure the transient and steady-state electrical charging of a space vehicle at low-Earth-orbit altitudes during the emission of a low-power electron beam from the vehicle. In addition to the electron gun, the payload contained several diagnostics to monitor plasma and waves resulting from the beam/space/vehicle interaction. The payload was separated into two sections, the larger section carried a 1-keV electron gun and was referred to as the mother vehicle. The smaller section, referred to as the daughter, was connected to the mother by an insulated, conducting tether and was deployed to a distance of up to 426 m across the geomagnetic field. Payload stabilization was obtained using thrusters that released cold nitrogen gas. In addition to performing electron beam experiments, the mother vehicle contained a high-voltage power supply capable of applying up to +450 V and 28 mA to the daughter through the tether. The 1-keV electron beam was generated at beam currents of 1 mA to 48 mA, measured at the exit aperture of the electron gun. Steady-state potentials of up to 560 V were measured for the mother vehicle. The daughter attained potentials of up to 1000 V relative to the background ionosphere and collected currents up to 6.5 mA. Thruster firings increased the current collection to the vehicle firing the thrusters and resulted in neutralization of the payload. The CHARGE-2 experiment was unique in that for the first time a comparison was made of the current collection between an electron beam-emitting vehicle and a non-emitting vehicle at high potential (400 V to 1000 V). The daughter current collection agreed well with the Parker-Murphy model, while the mother current collection always exceeded the Parker-Murphy limit and even exceeded the Langmuir-Blodgett predicted current below 240 km. The additional current collection of the mother is attributed to beam-plasma interaction. This additional source of collected current may be very important for successful electron beam emission at altitudes below 240 km.
Effect of current injection into thin-film Josephson junctions
Kogan, V. G.; Mints, R. G.
2014-11-11
New thin-film Josephson junctions have recently been tested in which the current injected into one of the junction banks governs Josephson phenomena. One thus can continuously manage the phase distribution at the junction by changing the injected current. Our method of calculating the distribution of injected currents is also proposed for a half-infinite thin-film strip with source-sink points at arbitrary positions at the film edges. The strip width W is assumed small relative to Λ=2λ 2/d;λ is the bulk London penetration depth of the film material and d is the film thickness.
Dark Currents and Their Effect on the Primary Beam in an X-band Linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bane, K.L.F.; Dolgashev, V.A.; Raubenheimer, T.
2005-05-27
We numerically study properties of primary dark currents in an X-band accelerating structure. For the H60VG3 structure considered for the Next Linear Collider (NLC) we first perform a fairly complete (with some approximations) calculation of dark current trajectories. These results are used to study properties of the dark current leaving the structure. For example, at accelerating gradient of 65 MV/m, considering two very different assumptions about dark current emission around the irises, we find that the fraction of emitted current leaving the structure to be a consistent {approx} 1%. Considering that {approx} 1 mA outgoing dark current is seen inmore » measurement, this implies that {approx} 100 mA (or 10 pC per period) is emitted within the structure itself. Using the formalism of the Lienard-Wiechert potentials, we then perform a systematic calculation of the transverse kick of dark currents on a primary linac bunch. The result is {approx} 1 V kick per mA (or per 0.1 pC per period) dark current emitted from an iris. For an entire structure we estimate the total kick on a primary bunch to be {approx} 15 V. For the NLC linac this translates to a ratio of (final) vertical beam offset to beam size of about 0.2. However, with the assumptions that needed to be made--particularly the number of emitters and their distribution within a structure--the accuracy of this result may be limited to the order of magnitude.« less
Liang, Chaowei; Fang, Dong; Cao, Yunhe; Li, Guangzhong; Luo, Zhiping; Zhou, Qunhua; Xiong, Chuanxi; Xu, Weilin
2015-02-01
Precursors of ammonium vanadium bronze (NH4V4O10) nanowires assembled on a conductive substrate were prepared by a hydrothermal method. After calcination at 360°C, the NH4V4O10 precursor transformed to vanadium pentoxide (V2O5) nanowires, which presented a high initial capacity of 135.0mA h g(-1) at a current density of 50mA g(-1) in 5M LiNO3 aqueous solution; while the specific capacity faded quickly over 50 cycles. By coating the surface of V2O5 nanowires with water-insoluble polypyrrole (PPy), the formed nanocomposite electrode exhibited a specific discharge capacity of 89.9mA h g(-1) at 50mA g(-1) (after 100 cycles). A V2O5@PPy //LiMn2O4 rechargeable lithium battery exhibited an initial discharge capacity of 95.2mA h g(-1); and after 100 cycles, a specific discharge capacity of 81.5mA h g(-1) could retain at 100mA g(-1). Copyright © 2014 Elsevier Inc. All rights reserved.
MaRIE theory, modeling and computation roadmap executive summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lookman, Turab
The confluence of MaRIE (Matter-Radiation Interactions in Extreme) and extreme (exascale) computing timelines offers a unique opportunity in co-designing the elements of materials discovery, with theory and high performance computing, itself co-designed by constrained optimization of hardware and software, and experiments. MaRIE's theory, modeling, and computation (TMC) roadmap efforts have paralleled 'MaRIE First Experiments' science activities in the areas of materials dynamics, irradiated materials and complex functional materials in extreme conditions. The documents that follow this executive summary describe in detail for each of these areas the current state of the art, the gaps that exist and the road mapmore » to MaRIE and beyond. Here we integrate the various elements to articulate an overarching theme related to the role and consequences of heterogeneities which manifest as competing states in a complex energy landscape. MaRIE experiments will locate, measure and follow the dynamical evolution of these heterogeneities. Our TMC vision spans the various pillar science and highlights the key theoretical and experimental challenges. We also present a theory, modeling and computation roadmap of the path to and beyond MaRIE in each of the science areas.« less
Formation and dissipation of runaway current by MGI on J-TEXT
NASA Astrophysics Data System (ADS)
Wei, Yunong; Chen, Zhongyong; Huang, Duwei; Tong, Ruihai; Zhang, Xiaolong
2017-10-01
Plasma disruptions are one of the major concern for ITER. A large fraction of runaway current may be formed due to the avalanche generation of runaway electrons (REs) during disruptions and ruin the device structure. Experiments of runaway current formation and dissipation have been done on J-TEXT. Two massive gas injection (MGI) valves are used to form and dissipate the runaway current. Hot tail RE generation caused by the fast thermal quench leads to an abnormal formation of runaway current when the pre-TQ electron density increases in a range of 0.5-2-10 19m-3. 1020-22 quantities of He, Ne, Ar or Kr impurities are injected by MGI2 to dissipate the runaway current. He injection shows no obvious effect on runaway current dissipation in the experiments and Kr injection shows the best. The kinetic energy of REs and the magnetic energy of RE beam will affect the dissipation efficiency to a certain extent. Runaway current decay rate is found increasing quickly with the increase of the gas injection when the quantity is moderate, and then reaches to a saturation value with large quantity injection. A possible reason to explain the saturation of dissipation effect is the saturation of gas assimilation efficiency.
Matsumura, M; Mashima, H
1976-01-01
Ca ions were ionophoretically injected through an intracellular microelectrode into the single muscle fiber of a crayfish, and the resulting contraction sphere was observed under a microscope and photographed with a movie camera. The minimum contraction produced by the threshold current involved usually three or four, sometimes two, sarcomers on both sides of the injecting pipette but contraction involving only one sarcomere was not observered. The rheobase of the Ca-injecting current was 3.2 X 10(-9) A. The strength-duration curves were determined for Ca-, Sr-, and Ba-injecting currents; all fitted a similar hyperbolic equation. The threshold amount of Ca above rheobasic injection was 2.1 X 10(-15)mol, and the ratios between threshold amounts were Ca: Sr: Ba=1: 1.9: 3.0. The effects of Ca and Sr were additive for the contraction. More current was required for the Ca-injection to produce the contraction in the K-depolarized-or 15mM-procaine-treated muscle, although less current was sufficient for the muscle treated with 0.5-1.0 mM of caffeine. The participation of the Ca-induced Ca release mechanism in the contraction produced by Ca injection and the role of Sr or Ba as a substitute for Ca were discussed.
New compact hohlraum configuration research at the 1.7 MA Z-pinch generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kantsyrev, V. L., E-mail: victor@unr.edu; Shrestha, I. K.; Esaulov, A. A.
A new compact Z-pinch x-ray hohlraum design with parallel-driven x-ray sources was experimentally demonstrated in a full configuration with a central target and tailored shine shields (to provide a symmetric temperature distribution on the target) at the 1.7 MA Zebra generator. This presentation reports on the joint success of two independent lines of research. One of these was the development of new sources – planar wire arrays (PWAs). PWAs turned out to be a prolific radiator. Another success was the drastic improvement in energy efficiency of pulsed-power systems, such as the Load Current Multiplier (LCM). The Zebra/LCM generator almost doubledmore » the plasma load current to 1.7 MA. The two above-mentioned innovative approaches were used in combination to produce a new compact hohlraum design for ICF, as jointly proposed by SNL and UNR. Good agreement between simulated and measured radiation temperature of the central target is shown. Experimental comparison of PWAs with planar foil liners (PFL) - another viable alternative to wire array loads at multi-MA generators show promising data. Results of research at the University of Nevada Reno allowed for the study of hohlraum coupling physics at University-scale generators. The advantages of new hohlraum design applications for multi-MA facilities with W or Au double PWAs or PFL x-ray sources are discussed.« less
Saddle antenna radio frequency ion sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dudnikov, V., E-mail: vadim@muonsinc.com; Johnson, R.; Murray, S.
Existing RF ion sources for accelerators have specific efficiencies for H{sup +} and H{sup −} ion generation ∼3–5 mA/cm{sup 2} kW, where about 50 kW of RF power is typically needed for 50 mA beam current production. The Saddle Antenna (SA) surface plasma source (SPS) described here was developed to improve H{sup −} ion production efficiency, reliability, and availability. In SA RF ion source, the efficiency of positive ion generation in the plasma has been improved to 200 mA/cm{sup 2} kW. After cesiation, the current of negative ions to the collector was increased from 1 mA to 10 mA withmore » RF power ∼1.5 kW in the plasma (6 mm diameter emission aperture) and up to 30 mA with ∼4 kW RF. Continuous wave (CW) operation of the SA SPS has been tested on the test stand. The general design of the CW SA SPS is based on the pulsed version. Some modifications were made to improve the cooling and cesiation stability. CW operation with negative ion extraction was tested with RF power up to ∼1.2 kW in the plasma with production up to Ic = 7 mA. A stable long time generation of H{sup −} beam without degradation was demonstrated in RF discharge with AlN discharge chamber.« less
John, William S; Banala, Ashwini K; Newman, Amy H; Nader, Michael A
2015-04-01
The dopamine (DA) D2 and D3 receptors have been associated with cocaine abuse. A recent study with the D3 receptor (D3R) partial agonist PG619 found that it attenuated cocaine-induced reinstatement and the D2-like receptor antagonist buspirone has shown positive outcomes in two studies of cocaine abuse in monkeys. However, a recent clinical trial indicated that buspirone did not improve abstinence in treatment-seeking cocaine abusers. The objective of the study was to examine PG619 and buspirone under a food-drug choice paradigm in order to better model the clinical findings. In addition, we extended the characterization of both compounds to include methamphetamine (MA) self-administration (SA). Six adult male rhesus monkeys were trained to respond under a concurrent food (1.0-g pellets) and drug (0.01-0.3 mg/kg/injection cocaine or MA) choice paradigm in which complete SA dose-response curves were determined each session (N = 3/group). Monkeys received 5 days of treatment with either PG619 (0.1-3.0 mg/kg, i.v.) or buspirone (0.01-1.0 mg/kg, i.m.). In a follow-up study, the SA doses were reduced (0.003-0.1 mg/kg/injection) to increase reinforcement frequency and buspirone was retested. PG619 did not affect cocaine or MA choice, while buspirone increased low-dose cocaine choice. Changing the SA doses increased the number of reinforcers received each session, but buspirone did not decrease drug choice. Consistent with clinical findings, these results do not support the use of buspirone for psychostimulant abuse and suggest that food-drug choice paradigms may have greater predictive validity than the use of other schedules of reinforcement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bott-Suzuki, S. C.; Cordaro, S. W.; Caballero Bendixsen, L. S.
We present a study of the time varying current density distribution in solid metallic liner experiments at the 1MA level. Measurements are taken using an array of magnetic field probes which provide 2D triangulation of the average centroid of the drive current in the load at 3 discrete axial positions. These data are correlated with gated optical self-emission imaging which directly images the breakdown and plasma formation region. Results show that the current density is azimuthally non-uniform, and changes significantly throughout the 100ns experimental timescale. Magnetic field probes show clearly motion of the current density around the liner azimuth overmore » 10ns timescales. If breakdown is initiated at one azimuthal location, the current density remains non-uniform even over large spatial extents throughout the current drive. The evolution timescales are suggestive of a resistive diffusion process or uneven current distributions among simultaneously formed but discrete plasma conduction paths.« less
Bott-Suzuki, S. C.; Cordaro, S. W.; Caballero Bendixsen, L. S.; ...
2016-09-01
We present a study of the time varying current density distribution in solid metallic liner experiments at the 1MA level. Measurements are taken using an array of magnetic field probes which provide 2D triangulation of the average centroid of the drive current in the load at 3 discrete axial positions. These data are correlated with gated optical self-emission imaging which directly images the breakdown and plasma formation region. Results show that the current density is azimuthally non-uniform, and changes significantly throughout the 100ns experimental timescale. Magnetic field probes show clearly motion of the current density around the liner azimuth overmore » 10ns timescales. If breakdown is initiated at one azimuthal location, the current density remains non-uniform even over large spatial extents throughout the current drive. The evolution timescales are suggestive of a resistive diffusion process or uneven current distributions among simultaneously formed but discrete plasma conduction paths.« less
NASA Astrophysics Data System (ADS)
Xu, Junli; Kjos, Ole Sigmund; Osen, Karen Sende; Martinez, Ana Maria; Kongstein, Ole Edvard; Haarberg, Geir Martin
2016-11-01
A new kind of membrane free liquid metal battery was developed. The battery employs liquid sodium and zinc as electrodes both in liquid state, and NaCl-CaCl2 molten salts as electrolyte. The discharge flat voltage is in the range of about 1.4 V-1.8 V, and the cycle efficiency achieved is about 90% at low discharge current densities (below 40 mA cm-2). Moreover, this battery can also be charged and discharged at high current density with good performance. The discharge flat voltage is above 1.1 V when it is discharged at 100 mA cm-2, while it is about 0.8 V with 100% cycle efficiency when it is discharged at 200 mA cm-2. Compared to other reported liquid metal battery, this battery has lower cost, which suggests broad application prospect in energy storage systems for power grid.
NASA Astrophysics Data System (ADS)
Zhao, Tianliang; Liu, Zhiyong; Hu, Shanshan; Du, Cuiwei; Li, Xiaogang
2017-05-01
The effect of hydrogen charging on the stress corrosion cracking (SCC) behavior of 2205 duplex stainless steel (DSS) under 3.5 wt.% NaCl thin electrolyte layer was investigated on precharged samples through hydrogen determination, electrochemical measurement, and slow strain rate tensile test. Results show that hydrogen charging weakens the passive film without inducing any obvious trace of localized anodic dissolution. Therefore, hydrogen charging increases the SCC susceptibility of 2205 DSS mainly through mechanism of hydrogen embrittlement rather than mechanism of localized anodic dissolution. 2205 DSS shows a more susceptibility to hydrogen under the TEL when hydrogen charging current density (HCCD) is between 20 and 50 mA cm-2. The increasing trend is remarkable when hydrogen charging current density increases from 20 to 50 mA cm-2 and fades after 50 mA cm-2.
The continued development of the Spallation Neutron Source external antenna H- ion sourcea)
NASA Astrophysics Data System (ADS)
Welton, R. F.; Carmichael, J.; Desai, N. J.; Fuga, R.; Goulding, R. H.; Han, B.; Kang, Y.; Lee, S. W.; Murray, S. N.; Pennisi, T.; Potter, K. G.; Santana, M.; Stockli, M. P.
2010-02-01
The U.S. Spallation Neutron Source (SNS) is an accelerator-based, pulsed neutron-scattering facility, currently in the process of ramping up neutron production. In order to ensure that the SNS will meet its operational commitments as well as provide for future facility upgrades with high reliability, we are developing a rf-driven, H- ion source based on a water-cooled, ceramic aluminum nitride (AlN) plasma chamber. To date, early versions of this source have delivered up to 42 mA to the SNS front end and unanalyzed beam currents up to ˜100 mA (60 Hz, 1 ms) to the ion source test stand. This source was operated on the SNS accelerator from February to April 2009 and produced ˜35 mA (beam current required by the ramp up plan) with availability of ˜97%. During this run several ion source failures identified reliability issues, which must be addressed before the source re-enters production: plasma ignition, antenna lifetime, magnet cooling, and cooling jacket integrity. This report discusses these issues, details proposed engineering solutions, and notes progress to date.
NASA Astrophysics Data System (ADS)
Kipp, Dylan; Ganesan, Venkat
2013-06-01
We develop a kinetic Monte Carlo model for photocurrent generation in organic solar cells that demonstrates improved agreement with experimental illuminated and dark current-voltage curves. In our model, we introduce a charge injection rate prefactor to correct for the electrode grid-size and electrode charge density biases apparent in the coarse-grained approximation of the electrode as a grid of single occupancy, charge-injecting reservoirs. We use the charge injection rate prefactor to control the portion of dark current attributed to each of four kinds of charge injection. By shifting the dark current between electrode-polymer pairs, we align the injection timescales and expand the applicability of the method to accommodate ohmic energy barriers. We consider the device characteristics of the ITO/PEDOT/PSS:PPDI:PBTT:Al system and demonstrate the manner in which our model captures the device charge densities unique to systems with small injection energy barriers. To elucidate the defining characteristics of our model, we first demonstrate the manner in which charge accumulation and band bending affect the shape and placement of the various current-voltage regimes. We then discuss the influence of various model parameters upon the current-voltage characteristics.
First operational experience with DORIS II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nesemann, H.; Wille, K.
1983-08-01
DORIS II is a completely new designed e/sup +/-e/sup -/ storage ring with a mini-beta scheme. After first runs with a 8 cm optic, the vertical amplitude functions in the interaction points were reduced to 4 cm. This yielded luminosities of L = 1.5 X 10/sup 31/ cm/sup -2/sec/sup -1/ with 2 X 27 mA at E = 5 GeV. Because of the short injection time, an integrated luminosity of more than 600 nb/sup -1/ per day has been obtained.
2012-06-01
effects, but vomiting , arthralgias, and injection site pain have been reported in humans.7,26,38,39 In addition, animal studies have reported a higher...treatment of acute cyanide poisoning in adult beagle dogs . Clin Toxicol (Phila). 2006;44(suppl 1):5-15. 15. Posner MA, Tobey RE, McElroy H...cobalamine and acute cyanide poisoning in dogs . Life Sci. 1965;4:1785-1789. 18. Borron SW, Baud FJ, Barriot P, et al. Prospective study of hydroxocobalamin
NASA Astrophysics Data System (ADS)
Hao, Pengfei; Zhu, Ting; Su, Qiong; Lin, Jiande; Cui, Rong; Cao, Xinxin; Wang, Yaping; Pan, Anqiang
2018-06-01
Single crystalline fork-like potassium vanadate (K2V8O21) has been successfully prepared through electrospinning combined with a subsequent annealing process. The as-obtained K2V8O21 forks show a unique layer-by-layer stacked structure with conductive carbon. When used as cathode materials for lithium-ion batteries, the as-prepared fork-like materials exhibit high specific discharge capacity and excellent cyclic stability. High specific discharge capacity of 200.2 mA h g-1 and 131.5 mA h g-1 can be delivered at the current densities of 50 mA g-1 and 500 mA g-1, respectively. Furthermore, the K2V8O21 electrodes exhibit excellent long-term cycling stability that maintain a capacity of 108.3 mA h g-1 after 300 cycles at 500 mA g-1 with a fading rate of only 0.054% per cycle, revealing their potential applications in next generation high-performance lithium-ion batteries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panneer Chelvam, Prem Kumar; Raja, Laxminarayan L.
2015-12-28
Electron emission from the electrode surface plays an important role in determining the structure of a direct-current microdischarge. Here we have developed a computational model of a direct-current microdischarge to study the effect of external electron injection from the cathode surface into the discharge to manipulate its properties. The model provides a self-consistent, multi-species, multi-temperature fluid representation of the plasma. A microdischarge with a metal-insulator-metal configuration is chosen for this study. The effect of external electron injection on the structure and properties of the microdischarge is described. The transient behavior of the microdischarge during the electron injection is examined. Themore » nonlinearities in the dynamics of the plasma result in a large increase of conduction current after active electron injection. For the conditions simulated a switching time of ∼100 ns from a low-current to high-current discharge state is realized.« less
NASA Astrophysics Data System (ADS)
Wang, Jingrui; Li, Peng; Cai, Ting; Yang, Dan-Dan; Xiong, Wei-Wei
2018-07-01
A series of two-dimensional ternary selenides, [NH4]2[Ga2Sn2Se8] (1), [NH4]2[In2Ge2Se8] (2), [NH4]2[In2Sn2Se8] (3), [NH4]2[Ga2Ge2Se8] (4), have been solvothermally synthesized and characterized by single crystal X-ray diffraction, energy dispersive X-ray (EDX) spectroscopy, solid-state UV-Vis diffuse reflectance spectroscopy, and thermogravimetric analyses. The solid-state optical absorption spectra indicated that these compounds were semiconductors with band gaps of 1.71 eV for 1, 1.95 eV for 2, 1.85 eV for 3, and 1.83 eV for 4. In addition, compound 2 was employed as an anode material for lithium ion battery application, which exhibited a high specific capacity of 479 mA h g-1 over 200 cycles at a current density of 200 mA g-1, and an excellent rate capability of 425.2 mA h g-1 at a current density of 1000 mA g-1. Our results suggest that crystalline chalcogenides could be an alternative anode material for high performance LIBs application.
Zuckerman, Stephen; Skopec, Laura; Guterman, Stuart
2017-12-01
Medicare Advantage (MA), the program that allows people to receive their Medicare benefits through private health plans, uses a benchmark-and-bidding system to induce plans to provide benefits at lower costs. However, prior research suggests medical costs, profits, and other plan costs are not as low under this system as they might otherwise be. To examine how well the current system encourages MA plans to bid their lowest cost by examining the relationship between costs and bonuses (rebates) and the benchmarks Medicare uses in determining plan payments. Regression analysis using 2015 data for HMO and local PPO plans. Costs and rebates are higher for MA plans in areas with higher benchmarks, and plan costs vary less than benchmarks do. A one-dollar increase in benchmarks is associated with 32-cent-higher plan costs and a 52-cent-higher rebate, even when controlling for market and plan factors that can affect costs. This suggests the current benchmark-and-bidding system allows plans to bid higher than local input prices and other market conditions would seem to warrant. To incentivize MA plans to maximize efficiency and minimize costs, Medicare could change the way benchmarks are set or used.
Tsui, B C
2014-04-01
Using a simple surface nerve stimulation system, I examined the effects of general anaesthesia on rheobase (the minimum current required to stimulate nerve activity) and chronaxie (the minimum time for a stimulus twice the rheobase to elicit nerve activity). Nerve stimulation was used to elicit a motor response from the ulnar nerve at varying pulse widths before and after induction of general anaesthesia. Mean (SD) rheobase before and after general anaesthesia was 0.91 (0.37) mA (95% CI 0.77-1.04 mA) and 1.11 (0.53) mA (95% CI 0.92-1.30 mA), respectively. Mean (SD) chronaxie measured before and after general anaesthesia was 0.32 (0.17) ms (95% CI 0.26-0.38 ms) and 0.29 (0.13) ms (95% CI 0.24-0.33 ms), respectively. Under anaesthesia, rheobase values increased by an average of 20% (p = 0.05), but chronaxie values did not change significantly (p = 0.39). These results suggest that threshold currents used for motor response from nerve stimulation under general anaesthesia might be higher than those used in awake patients. © 2014 The Association of Anaesthetists of Great Britain and Ireland.
Optimal design strategy of switching converters employing current injected control
NASA Astrophysics Data System (ADS)
Lee, F. C.; Fang, Z. D.; Lee, T. H.
1985-01-01
This paper analyzes a buck/boost regulator employing current-injected control (CIC). It reveals the complex interactions between the dc loop and the current-injected loop and underlines the fundamental principle that governs the loop gain determination. Three commonly used compensation techniques are compared. The integral and lead/lag compensation are shown to be most desirable for performance optimization and stability.
Modification of the argon stripping target of the tandem accelerator.
Makarov, A; Ostreinov, Yu; Taskaev, S; Vobly, P
2015-12-01
The tandem accelerator with vacuum insulation has been proposed and developed in Budker Institute of Nuclear Physics. Negative hydrogen ions are accelerated by the positive 1MV potential of the high-voltage electrode, converted into protons in the gas stripping target inside the electrode, and then protons are accelerated again by the same potential. A stationary proton beam with 2 MeV energy, 1.6 mA current, 0.1% energy monochromaticity, and 0.5% current stability is obtained now. To conduct Boron Neutron Capture Therapy it is planned to increase the proton beam current to at least 3 mA. The paper presents the results of experimental studies clarifying the reasons for limiting the current, and gives suggestions for modifying the gas stripping target in order to increase the proton beam current along with the stability of the accelerator. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mid-Atomic-Number Cylindrical Wire Array Precursor Plasma Studies on Zebra
Stafford, A; Safronova, A. S.; Kantsyrev, V. L.; ...
2014-12-30
The precursor plasmas from low wire number cylindrical wire arrays (CWAs) were previously shown to radiate at temperatures >300 eV for Ni-60 (94% Cu and 6% Ni) wires in experiments on the 1-MA Zebra generator. Continued research into precursor plasmas has studied additional midatomic-number materials including Cu and Alumel (95% Ni, 2% Al, 2% Mn, and 1% Si) to determine if the >300 eV temperatures are common for midatomic-number materials. Additionally, current scaling effects were observed by performing CWA precursor experiments at an increased current of 1.5 MA using a load current multiplier. Our results show an increase in amore » linear radiation yield of ~50% (16 versus 10 kJ/cm) for the experiments at increased current. However, plasma conditions inferred through the modeling of X-ray time-gated spectra are very similar for the precursor plasma in both current conditions.« less
Health conditions in methamphetamine-dependent adults 3 years after treatment.
Mooney, Larissa J; Glasner-Edwards, Suzette; Marinelli-Casey, Patricia; Hillhouse, Maureen; Ang, Alfonso; Hunter, Jeremy; Haning, William; Colescott, Paula; Ling, Walter; Rawson, Richard
2009-09-01
: Medical conditions in methamphetamine (MA) users have not been well characterized. Using both self-report and physical examination data, the aims of this study were to (1) describe the frequency of medical conditions in a sample of MA users 3 years posttreatment; (2) evaluate the association between medical conditions and MA use frequency; and (3) examine the relationship of route of administration with medical outcomes. : MA-dependent adults (N = 301) who participated in the Methamphetamine Treatment Project were interviewed and examined 3 years after treatment. Medical, demographic, and substance use characteristics were assessed using the Addiction Severity Index and Life Experiences Timeline. Current and lifetime medical conditions, electrocardiogram characteristics, and physical examination abnormalities were assessed. : Among the most frequently reported lifetime conditions were wounds and burns (40.5%, N = 122) and severe dental problems (33%, N = 99), and a significant proportion of the sample evidenced prolonged corrected QT interval (19.6%, N = 43). Although health conditions were not associated with MA use frequency during follow-up, intravenous MA use was significantly associated with missing teeth (odds ratio = 2.4; 95% confidence interval, 1.2-4.7) and hepatitis C antibodies (odds ratio = 13.1; confidence interval, 5.6-30.1). : In this sample of MA users, dental problems and corrected QT prolongation were observed at elevated rates. Although posttreatment MA use frequency was not associated with a majority of medical outcomes, intravenous MA use exacerbated risk for dental pathology and hepatitis C. Longer term follow-up research is needed to elucidate health trajectories of MA users.
Measuring coding intensity in the Medicare Advantage program.
Kronick, Richard; Welch, W Pete
2014-01-01
In 2004, Medicare implemented a system of paying Medicare Advantage (MA) plans that gave them greater incentive than fee-for-service (FFS) providers to report diagnoses. Risk scores for all Medicare beneficiaries 2004-2013 and Medicare Current Beneficiary Survey (MCBS) data, 2006-2011. Change in average risk score for all enrollees and for stayers (beneficiaries who were in either FFS or MA for two consecutive years). Prevalence rates by Hierarchical Condition Category (HCC). Each year the average MA risk score increased faster than the average FFS score. Using the risk adjustment model in place in 2004, the average MA score as a ratio of the average FFS score would have increased from 90% in 2004 to 109% in 2013. Using the model partially implemented in 2014, the ratio would have increased from 88% to 102%. The increase in relative MA scores appears to largely reflect changes in diagnostic coding, not real increases in the morbidity of MA enrollees. In survey-based data for 2006-2011, the MA-FFS ratio of risk scores remained roughly constant at 96%. Intensity of coding varies widely by contract, with some contracts coding very similarly to FFS and others coding much more intensely than the MA average. Underpinning this relative growth in scores is particularly rapid relative growth in a subset of HCCs. Medicare has taken significant steps to mitigate the effects of coding intensity in MA, including implementing a 3.4% coding intensity adjustment in 2010 and revising the risk adjustment model in 2013 and 2014. Given the continuous relative increase in the average MA risk score, further policy changes will likely be necessary.
Morgan, Erin E.; Woods, Steven Paul; Poquette, Amelia J.; Vigil, Ofilio; Heaton, Robert K.; Grant, Igor
2012-01-01
Objective Chronic use of methamphetamine (MA) has moderate effects on neurocognitive functions associated with frontal systems, including the executive aspects of verbal episodic memory. Extending this literature, the current study examined the effects of MA on visual episodic memory with the hypothesis that a profile of deficient strategic encoding and retrieval processes would be revealed for visuospatial information (i.e., simple geometric designs), including possible differential effects on source versus item recall. Method The sample comprised 114 MA-dependent (MA+) and 110 demographically-matched MA-nondependent comparison participants (MA−) who completed the Brief Visuospatial Memory Test – Revised (BVMT-R), which was scored for standard learning and memory indices, as well as novel item (i.e., figure) and source (i.e., location) memory indices. Results Results revealed a profile of impaired immediate and delayed free recall (p < .05) in the context of preserved learning slope, retention, and recognition discriminability in the MA+ group. The MA+ group also performed more poorly than MA− participants on Item visual memory (p < .05) but not Source visual memory (p > .05), and no group by task-type interaction was observed (p > .05). Item visual memory demonstrated significant associations with executive dysfunction, deficits in working memory, and shorter length of abstinence from MA use (p < 0.05). Conclusions These visual memory findings are commensurate with studies reporting deficient strategic verbal encoding and retrieval in MA users that are posited to reflect the vulnerability of frontostriatal circuits to the neurotoxic effects of MA. Potential clinical implications of these visual memory deficits are discussed. PMID:22311530
Prognostic health monitoring in switch-mode power supplies with voltage regulation
NASA Technical Reports Server (NTRS)
Hofmeister, James P (Inventor); Judkins, Justin B (Inventor)
2009-01-01
The system includes a current injection device in electrical communication with the switch mode power supply. The current injection device is positioned to alter the initial, non-zero load current when activated. A prognostic control is in communication with the current injection device, controlling activation of the current injection device. A frequency detector is positioned to receive an output signal from the switch mode power supply and is able to count cycles in a sinusoidal wave within the output signal. An output device is in communication with the frequency detector. The output device outputs a result of the counted cycles, which are indicative of damage to an a remaining useful life of the switch mode power supply.
NASA Astrophysics Data System (ADS)
Liu, Yongchang; Kang, Hongyan; Jiao, Lifang; Chen, Chengcheng; Cao, Kangzhe; Wang, Yijing; Yuan, Huatang
2015-01-01
Designed as a high-capacity, high-rate, and long-cycle life anode for sodium ion batteries, exfoliated-SnS2 restacked on graphene is prepared by the hydrolysis of lithiated SnS2 followed by a facile hydrothermal method. Structural and morphological characterizations demonstrate that ultrasmall SnS2 nanoplates (with a typical size of 20-50 nm) composed of 2-5 layers are homogeneously decorated on the surface of graphene, while the hybrid structure self-assembles into a three-dimensional (3D) network architecture. The obtained SnS2/graphene nanocomposite delivers a remarkable capacity as high as 650 mA h g-1 at a current density of 200 mA g-1. More impressively, the capacity can reach 326 mA h g-1 even at 4000 mA g-1 and remains stable at ~610 mA h g-1 without fading up to 300 cycles when the rate is brought back to 200 mA g-1. The excellent electrochemical performance is attributed to the synergetic effects between the ultrasmall SnS2 and the highly conductive graphene network. The unique structure can simultaneously facilitate Na+ ion diffusion, provide more reaction sites, and suppress aggregation and volume fluctuation of the active materials during prolonged cycling.Designed as a high-capacity, high-rate, and long-cycle life anode for sodium ion batteries, exfoliated-SnS2 restacked on graphene is prepared by the hydrolysis of lithiated SnS2 followed by a facile hydrothermal method. Structural and morphological characterizations demonstrate that ultrasmall SnS2 nanoplates (with a typical size of 20-50 nm) composed of 2-5 layers are homogeneously decorated on the surface of graphene, while the hybrid structure self-assembles into a three-dimensional (3D) network architecture. The obtained SnS2/graphene nanocomposite delivers a remarkable capacity as high as 650 mA h g-1 at a current density of 200 mA g-1. More impressively, the capacity can reach 326 mA h g-1 even at 4000 mA g-1 and remains stable at ~610 mA h g-1 without fading up to 300 cycles when the rate is brought back to 200 mA g-1. The excellent electrochemical performance is attributed to the synergetic effects between the ultrasmall SnS2 and the highly conductive graphene network. The unique structure can simultaneously facilitate Na+ ion diffusion, provide more reaction sites, and suppress aggregation and volume fluctuation of the active materials during prolonged cycling. Electronic supplementary information (ESI) available: Scheme S1, Fig. S1-S4. See DOI: 10.1039/c4nr05106h
Premo, Wayne R.; Morton, Douglas M.
2014-01-01
Twenty-four samples were collected from prebatholithic metasedimentary rocks along Searl Ridge, the north rim of the Diamond Valley Reservoir, Domenigoni Valley, centrally located in the northern Peninsular Ranges of southern California. These rocks exhibit progressive metamorphism from west to east across fundamental structural discontinuities now referred to as a “transition zone.” Documented structural and mineralogical changes occur across this metamorphic gradient. Sensitive high-resolution ion microprobe–reverse geometry (SHRIMP-RG) U-Pb ages were obtained from detrital zircons from metasedimentary rocks through the transition zone. To the west, metapelitic and minor metasandstone units yielded numerous concordant 206Pb/238U ages between 210 and 240 Ma, and concordant 207Pb/206Pb ages at 1075–1125 Ma, 1375–1430 Ma, and 1615–1735 Ma, although distinct differences in provenance were noted between units. A few older 207Pb/206Pb ages obtained were ca. 2250 Ma and ca. 2800 Ma. Rocks of the eastern part of the transition zone include high-grade paragneisses that yielded numerous concordant 206Pb/238U ages between 103 and 123 Ma and between 200 and 255 Ma, and concordant 207Pb/206Pb ages at 1060–1150 Ma, 1375–1435 Ma, and 1595–1710 Ma. Some zircon results from these high-grade gneisses are marked by distinct Pb-loss discordia with lower-intercept ages of ca. 215 Ma and Paleoproterozoic upper-intercept ages. Younger ages between 100 and 105 Ma are mainly obtained from rims of some zircon grains that are characterized by low Th/U values (<0.1) and high U contents (>1000 ppm), indicating the likelihood of metamorphic zircon growth at that time. The similarity of zircon age populations between western and eastern units through the transition zone indicates that this fundamental structure probably dissects sediments of the same basin. This supposition is further supported by initial whole-rock Pb-Sr-Nd isotopic data that show similar average initial 206Pb/204Pb (18.65 to 18.9), 87Sr/86Sr (0.713 to 0.718), and εNd (−7 to −12) values for both the western and eastern units—values that also indicate the presence of significantly older crustal material in their provenance.Magmatic zircons from a diorite dike that crosscuts the foliation, but is itself subsequently metamorphosed, yielded a SHRIMP-RG concordia age of 103.3 ± 0.73 Ma, which is within agreement of an isotope dilution–thermal ionization mass spectrometry (ID-TIMS) U-Pb age of 103.37 ± 0.25 Ma. A postmetamorphic, cross-cutting pegmatite yielded discordant U-Pb zircon age data, but euhedral, glassy monazite from the pegmatite yielded a slightly discordant 207Pb/235U age of 101.85 ± 0.35 Ma and a Th-Pb age of 97.53 ± 0.18 Ma, suggesting that this pegmatite was injected during or just after deformation ceased. The age and initial Pb-Sr-Nd signature for the dioritic dike indicate it was produced during the transition zone plutonism elsewhere in the northern Peninsular Ranges batholith, whereas the pegmatitic dike was derived from crustal anatexis.Collectively, these results indicate that this sequence of metasedimentary rocks was derived from mainly a Late Permian to Early Triassic igneous provenance that probably intruded Proterozoic crust. The sequence was subsequently metamorphosed during deformation of the Cretaceous continental margin at ca. 105 to 97 Ma.
NASA Astrophysics Data System (ADS)
Chen, P. H.; Chen, Yu An; Chang, L. C.; Lai, W. C.; Kuo, Cheng Huang
2015-07-01
Al-doped ZnO (AZO) film was evaporated on double-side polished sapphire, p-GaN layers, n+-InGaN-GaN short-period superlattice (SPS) structures, and GaN-based light-emitting diodes (LEDs) by e-beam. The AZO film on the p-GaN layer after thermal annealing exhibited an extremely high transparency (98% at 450 nm) and a small specific contact resistance of 2.19 × 10-2 Ω cm2, which was almost the same as that of as-deposited AZO on n+-SPS structure. With 20 mA injection current, the forward voltages were 3.30 and 3.27 V, whereas the output powers were 4.32 and 4.07 mW for the LED with AZO on insert n+-SPS upper contact and the LED with AZO on p-GaN upper contact (without insert layer), respectively. The small specific contact resistance and low operation voltage of LED with AZO on p-GaN upper contact was achieved by rapid thermal annealing (RTA) process.
NASA Astrophysics Data System (ADS)
Chen, Chun-Yen; Chen, Wei-Cheng; Chang, Ching-Hong; Lee, Yu-Lin; Liu, Wen-Chau
2018-05-01
Textured-sidewall GaN-based light-emitting diodes (LEDs) with various sidewall angles (15-90°) and convex or concave sidewalls prepared using an inductively-coupled-plasma approach are comprehensively fabricated and studied. The device with 45° sidewalls (Device F) and that with convex sidewalls (Device B) show significant improvements in optical properties. Experiments show that, at an injection current of 350 mA, the light output power, external quantum efficiency, wall-plug efficiency, and luminous flux of Device F (Device B) are greatly improved by 18.3% (18.2%), 18.2% (18.2%), 17.3% (19.8%), and 16.6% (18.4%), respectively, compared to those of a conventional LED with flat sidewalls. In addition, negligible degradation in electrical properties is found. The enhanced optical performance is mainly attributed to increased light extraction in the horizontal direction due to a significant reduction in total internal reflection at the textured sidewalls. Therefore, the reported specific textured-sidewall structures (Devices B and F) are promising for high-power GaN-based LED applications.
Light coupling for on-chip optical interconnects
NASA Astrophysics Data System (ADS)
Gao, Xumin; Yuan, Jialei; Yang, Yongchao; Li, Yuanhang; Cai, Wei; Li, Xin; Wang, Yongjin
2017-12-01
An on-chip optical interconnect of a light emitter, waveguide and photodetector based on p-n junction InGaN/GaN multiple quantum wells (MQWs) is fabricated to investigate the light coupling efficiency of suspended waveguides connecting the light emitter and photodetector. Optical characterizations indicate that the photocurrent of the photodetector is mainly induced by the emitted light that is transmitted through the waveguides. Suspended waveguides with and without air gaps are reported in this paper. A 1 mA current injection into the light emitter induces a photocurrent of 17.3 nA and 205.5 nA for the photodetector connected to the waveguides that with 10 μm air gaps and without air gaps, respectively. Finite-difference time-domain simulations are performed to analyze the gap effect on the coupling efficiency of the light transmission. Both the gap distance and the index variation of the gap materials are analyzed to verify the potential optical sensing functions of the on-chip optical interconnect. A possible strategy for increasing the light coupling efficiency is proven by simulations.
Ten-channel InP-based large-scale photonic integrated transmitter fabricated by SAG technology
NASA Astrophysics Data System (ADS)
Zhang, Can; Zhu, Hongliang; Liang, Song; Cui, Xiao; Wang, Huitao; Zhao, Lingjuan; Wang, Wei
2014-12-01
A 10-channel InP-based large-scale photonic integrated transmitter was fabricated by selective area growth (SAG) technology combined with butt-joint regrowth (BJR) technology. The SAG technology was utilized to fabricate the electroabsorption modulated distributed feedback (DFB) laser (EML) arrays at the same time. The design of coplanar electrodes for electroabsorption modulator (EAM) was used for the flip-chip bonding package. The lasing wavelength of DFB laser could be tuned by the integrated micro-heater to match the ITU grids, which only needs one electrode pad. The average output power of each channel is 250 μW with an injection current of 200 mA. The static extinction ratios of the EAMs for 10 channels tested are ranged from 15 to 27 dB with a reverse bias of 6 V. The frequencies of 3 dB bandwidth of the chip for each channel are around 14 GHz. The novel design and simple fabrication process show its enormous potential in reducing the cost of large-scale photonic integrated circuit (LS-PIC) transmitter with high chip yields.
NASA Astrophysics Data System (ADS)
Lee, Soo Hyun; Guan, Xiang-Yu; Jeon, Soo-Kun; Yu, Jae Su
2017-09-01
We investigated the package effect on the temperature-dependent optical and spectral characteristics of InGaN/GaN near-ultraviolet (NUV) lateral light-emitting diodes (LLEDs) on the metal heatsink (MH) and package (PKG) in the injection current range of 0 - 500 mA at 298 and 358 K. For the NUV LLEDs on the MH, the device characteristics reflected directly its chip performance. For the NUV LLEDs on the PKG, the rapidly varied spectral shift as well as the reduced device efficiency was observed due to the increased number of layers with relatively low thermal conductivities. The junction temperature ( T j ) and thermal resistance of the NUV LLEDs on the PKG were also significantly increased compared to the NUV LLEDs on the MH. The three-dimensional heat transfer simulations for both the devices were carried out to obtain the temperature distributions by finite element method. The theoretically calculated T j values showed a good agreement with the experimentally measured T j values.
Ameen, Sadia; Nazim, M; Akhtar, M Shaheer; Nazeeruddin, Mohammad Khaja; Shin, Hyung-Shik
2017-11-16
This work highlights the utilization of a novel hole-transporting material (HTM) derived from benzothiadiazole: 4-(3,5-bis(trifluoromethyl)phenyl)-7-(5'-hexyl-[2,2'-bithiophen]-5-yl)benzo[c][1,2,5]thiadiazole (CF-BTz-ThR) and aligned TiO 2 nano-bundles (TiO 2 NBs) as the electron transporting layer (ETL) for perovskite solar cells (PSCs). The aligned TiO 2 NBs were grown on titanium (Ti)-coated FTO substrates using a facile hydrothermal method. The newly designed CF-BTz-ThR molecule with suitable highest occupied molecular orbital (HOMO) favored the effective hole injection from perovskite deposited aligned TiO 2 NBs thin film. The PSCs demonstrated a power conversion efficiency (PCE) of ∼15.4% with a short circuit current density (J sc ) of ∼22.42 mA cm -2 and an open circuit voltage (V oc ) of ∼1.02 V. The efficiency data show the importance of proper molecular engineering whilst highlighting the advantages of dopant-free HTMs in PSCs.
ZnO/CdS bi-layer nanostructures photoelectrode for dye-sensitized solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dalal, Paresh V., E-mail: paresh10dalal@gmail.com; Deshpande, Milind P., E-mail: vishwadeshpande@yahoo.co.in; Solanki, Bharat G., E-mail: bhrt.solanki17@gmail.com
2016-05-06
Simple chemical deposition method for the synthesis of ZnO/CdS bilayer photoelectrode on fluorine doped tin oxide (FTO) coated glass substrate in aqueous medium at low temperature (< 373K) is described. The different preparative parameters such as deposition time, bath temperature, concentration of precursor solution and, pH of the bath etc. were optimized. Nanograined ZnO was deposited on FTO coated glass substrates by dip-coating method, whereas CdS nanorods were successfully synthesized on pre-deposited ZnO film by Chemical Bath Deposition (CBD) method. The Photovoltaic properties of FTO/ZnO/CdS bilayer photo electrodes were also studied. A maximum short circuit current density of 9.1 mA cm-2more » and conversion efficiency 1.05% are observed for ZnO/CdS-10min. Layer, which supports fast electron injection kinetics due to hetero structured nanorod, while minimum values of 0.53mA cm-2 and 0.01% respectively are observed for only ZnO deposited layer.« less