Top-Off Injection and Higher Currents at the Stanford Synchrotron Radiation Lightsource
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauer, Johannes M.; Liu, James C.; Prinz, Alyssa A.
2011-04-05
The Stanford Synchrotron Radiation Lightsource (SSRL) at the SLAC National Accelerator Laboratory is a 234 m circumference storage ring for 3 GeV electrons with its synchrotron radiation serving currently 13 beamlines with about 27 experimental stations. It operated for long time with 100 mA peak current provided by usually three injections per day. In July 2009, the maximum beam current was raised to 200 mA. Over the period from June 2009 to March 2010, Top-Off operation started at every beamline. Top-Off, i.e., the injection of electrons into the storage ring with injection stoppers open, is necessary for SSRL to reachmore » its design current of 500 mA. In the future, the maximal power of the injection current will also soon be raised from currently 1.5 W to 5 W. The Radiation Protection Department at SLAC worked with SSRL on the specifications for the safety systems for operation with Top-Off injection and higher beam currents.« less
Intra-Beam Scattering, Impedance, and Instabilities in Ultimate Storage Rings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bane, Karl; /SLAC
We have investigated collective effects in an ultimate storage ring, i.e. one with diffraction limited emittances in both planes, using PEP-X as an example. In an ultimate ring intra-beam scattering (IBS) sets the limit of current that can be stored. In PEP-X, a 4.5 GeV ring running round beams at 200 mA in 3300 bunches, IBS doubles the emittances to 11.5 pm at the design current. The Touschek lifetime is 11 hours. Impedance driven collective effects tend not to be important since the beam current is relatively low. We have investigated collective effects in PEP-X, an ultimate storage ring, i.e.more » one with diffraction limited emittances (at one angstrom wavelength) in both planes. In an ultimate ring intra-beam scattering (IBS) sets the limit of current that can be stored. In PEP-X, IBS doubles the emittances to 11.5 pm at the design current of 200 mA, assuming round beams. The Touschek lifetime is quite large in PEP-X, 11.6 hours, and - near the operating point - increases with decreasing emittance. It is, however, a very sensitive function of momentum acceptance. In an ultimate ring like PEP-X impedance driven collective effects tend not to be important since the beam current is relatively low. Before ultimate PEP-X can be realized, the question of how to run a machine with round beams needs serious study. For example, in this report we assumed that the vertical emittance is coupling dominated. It may turn out that using vertical dispersion is a preferable way to generate round beams. The choice will affect IBS and the Touschek effect.« less
High current polarized electron source for future eRHIC
NASA Astrophysics Data System (ADS)
Wang, Erdong
2018-05-01
The high current and high bunch charge polarized electron source is essential for cost reduction of Linac-Ring (L-R) eRHIC. In the baseline design, electron beam from multiple guns (probably 4-8) will be combined using deflection plates or accumulate ring. Each gun aims to deliver electron beam with 10 mA average current and 5.3 nC bunch charge. With total 50 mA and 5.3 nC electron beam, this beam combining design could use for generating positron too. The gun has been designed, fabricated and expected to start commissioning by the mid of this year. In this paper, we will present the DC gun design parameters and beam combine schemes. Also, we will describe the details of gun design and the strategies to demonstrate high current high charge polarized electron beam from this source.
Field-Aligned Currents in Saturn's Magnetosphere: Observations From the F-Ring Orbits
NASA Astrophysics Data System (ADS)
Hunt, G. J.; Provan, G.; Bunce, E. J.; Cowley, S. W. H.; Dougherty, M. K.; Southwood, D. J.
2018-05-01
We investigate the azimuthal magnetic field signatures associated with high-latitude field-aligned currents observed during Cassini's F-ring orbits (October 2016-April 2017). The overall ionospheric meridional current profiles in the northern and southern hemispheres, that is, the regions poleward and equatorward of the field-aligned currents, differ most from the 2008 observations. We discuss these differences in terms of the seasonal change between data sets and local time (LT) differences, as the 2008 data cover the nightside while the F-ring data cover the post-dawn and dusk sectors in the northern and southern hemispheres, respectively. The F-ring field-aligned currents typically have a similar four current sheet structure to those in 2008. We investigate the properties of the current sheets and show that the field-aligned currents in a hemisphere are modulated by that hemisphere's "planetary period oscillation" (PPO) systems. We separate the PPO-independent and PPO-related currents in both hemispheres using their opposite symmetry. The average PPO-independent currents peak at 1.5 MA/rad just equatorward of the open closed field line boundary, similar to the 2008 observations. However, the PPO-related currents in both hemispheres are reduced by 50% to 0.4 MA/rad. This may be evidence of reduced PPO amplitudes, similar to the previously observed weaker equatorial oscillations at similar dayside LTs. We do not detect the PPO current systems' interhemispheric component, likely a result of the weaker PPO-related currents and their closure within the magnetosphere. We also do not detect previously proposed lower latitude discrete field-aligned currents that act to "turn off" the PPOs.
NASA Astrophysics Data System (ADS)
Xu, Wei; Li, Jing-Yi; Huang, Sen-Lin; Z. Wu, W.; Hao, H.; P., Wang; K. Wu, Y.
2014-10-01
The Duke storage ring is a dedicated driver for the storage ring based oscillator free-electron lasers (FELs), and the High Intensity Gamma-ray Source (HIGS). It is operated with a beam current ranging from about 1 mA to 100 mA per bunch for various operations and accelerator physics studies. High performance operations of the FEL and γ-ray source require a stable electron beam orbit, which has been realized by the global orbit feedback system. As a critical part of the orbit feedback system, the electron beam position monitors (BPMs) are required to be able to precisely measure the electron beam orbit in a wide range of the single-bunch current. However, the high peak voltage of the BPM pickups associated with high single-bunch current degrades the performance of the BPM electronics, and can potentially damage the BPM electronics. A signal conditioning method using low pass filters is developed to reduce the peak voltage to protect the BPM electronics, and to make the BPMs capable of working with a wide range of single-bunch current. Simulations and electron beam based tests are performed. The results show that the Duke storage ring BPM system is capable of providing precise orbit measurements to ensure highly stable FEL and HIGS operations.
Experimental evidence of ion-induced instabilities in the NSLS-II storage ring
Cheng, Weixing; Li, Yongjun; Podobedov, Boris
2017-03-12
Fast ion instability has been identified as one of the most prominent instabilities in the recently constructed NSLS-II storage ring at Brookhaven National Laboratory. At a relatively low beam current (~ 25 mA) multi-bunch fills, ion-induced instabilities have already been observed during the early stages of machine commissioning. At present user operation with 250 mA in ~1000 bunches, the fast ion still remains the dominant instability, even after months of vacuum conditioning at high current. Ion-induced dipole motions of the electron beam have been suppressed using the transverse bunch-by-bunch (BxB) feedback system. However other adverse effects of this instability, suchmore » as the vertical beam size increase along the bunch train cannot be cured by the feedback system. Therefore, to achieve the NSLS-II design current of 500 mA while maintaining a small vertical beam emittance, it is important to further understand the fast ion instability and develop mitigation techniques. This paper reports on a series of ion-instability observations at various fill patterns and beam currents using start-of-art NSLS-II diagnostic tools.« less
Experimental evidence of ion-induced instabilities in the NSLS-II storage ring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Weixing; Li, Yongjun; Podobedov, Boris
Fast ion instability has been identified as one of the most prominent instabilities in the recently constructed NSLS-II storage ring at Brookhaven National Laboratory. At a relatively low beam current (~ 25 mA) multi-bunch fills, ion-induced instabilities have already been observed during the early stages of machine commissioning. At present user operation with 250 mA in ~1000 bunches, the fast ion still remains the dominant instability, even after months of vacuum conditioning at high current. Ion-induced dipole motions of the electron beam have been suppressed using the transverse bunch-by-bunch (BxB) feedback system. However other adverse effects of this instability, suchmore » as the vertical beam size increase along the bunch train cannot be cured by the feedback system. Therefore, to achieve the NSLS-II design current of 500 mA while maintaining a small vertical beam emittance, it is important to further understand the fast ion instability and develop mitigation techniques. This paper reports on a series of ion-instability observations at various fill patterns and beam currents using start-of-art NSLS-II diagnostic tools.« less
CLEARING MAGNET DESIGN FOR APS-U
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abliz, M.; Grimmer, J.; Jaski, Y.
2017-06-25
The Advanced Photon Source is in the process of developing an upgrade (APS-U) of the storage ring. The upgrade will be converting the current double bend achromat (DBA) lattice to a multi-bend achromat (MBA) lattice. In addition, the storage ring will be operated at 6 GeV and 200 mA with regular swap-out injection to keep the stored beam current constant [1]. The swap-out injection will take place with beamline shutters open. For radiation safety to ensure that no electrons can exit the storage ring, a passive method of protecting the beamline and containing the electrons inside the storage ring ismore » proposed. A clearing magnet will be located in all beamline front ends inside the storage ring tunnel. This article will discuss the features and design of the clearing magnet scheme for APS-U.« less
K/T age for the popigai impact event
NASA Technical Reports Server (NTRS)
Deino, A. L.; Garvin, J. B.; Montanari, S.
1991-01-01
The multi-ringed POPIGAI structure, with an outer ring diameter of over 100 km, is the largest impact feature currently recognized on Earth with an Phanerozoic age. The target rocks in this relatively unglaciated region consist of upper Proterozoic through Mesozoic platform sediments and igneous rocks overlying Precambrian crystalline basement. The reported absolute age of the Popigai impact event ranges from 30.5 to 39 Ma. With the intent of refining this age estimate, a melt-breccia (suevite) sample from the inner regions of the Popigai structure was prepared for total fusion and step-wise heating Ar-40/Ar-39 analysis. Although the total fusion and step-heating experiments suggest some degree of age heterogeneity, the recurring theme is an age of around 64 to 66 Ma.
Rotation Rate Sensing via Magnetostatic Surface Wave Propagation on a Thick Yig Ring.
1979-12-03
Introduction . . . . . . . . . . . 1 Background . . . . . . . . I Statement of the Problem. o o . 4 Plan of Attack. o. . o o o • 4 Sequence of...crystal growth process. It was subsequently suggested that the thin film disfiguration problem could be avoided by ma- chining the desired ring...sensor provide any practical advantages that would make it a better choice over current rate sensing schemes? Plan of Attack This thesis concerns itself
Plasma contactor design for electrodynamic tether applications
NASA Technical Reports Server (NTRS)
Wilbur, Paul J.; Laupa, Thomas G.
1988-01-01
The plasma contacting process is described and experiments are discussed that suggest the key role that cold ions play in establishing a low impedance plasma bridge that can conduct current in either direction between a contactor electrode and a dilute plasma. A ring cusp contactor is shown to provide from 1000-mA of electron emission to 500-mA of electron collection as its bias relative to a simulated space plasma is varied through an 80-v range.
Merging-compression formation of high temperature tokamak plasma
NASA Astrophysics Data System (ADS)
Gryaznevich, M. P.; Sykes, A.
2017-07-01
Merging-compression is a solenoid-free plasma formation method used in spherical tokamaks (STs). Two plasma rings are formed and merged via magnetic reconnection into one plasma ring that then is radially compressed to form the ST configuration. Plasma currents of several hundred kA and plasma temperatures in the keV-range have been produced using this method, however until recently there was no full understanding of the merging-compression formation physics. In this paper we explain in detail, for the first time, all stages of the merging-compression plasma formation. This method will be used to create ST plasmas in the compact (R ~ 0.4-0.6 m) high field, high current (3 T/2 MA) ST40 tokamak. Moderate extrapolation from the available experimental data suggests the possibility of achieving plasma current ~2 MA, and 10 keV range temperatures at densities ~1-5 × 1020 m-3, bringing ST40 plasmas into a burning plasma (alpha particle heating) relevant conditions directly from the plasma formation. Issues connected with this approach for ST40 and future ST reactors are discussed
Circular lasers for telecommunications and rf/photonics applications
NASA Astrophysics Data System (ADS)
Griffel, Giora
2000-04-01
Following a review of ring resonator research in the past decade we shall report a novel bi-level etching technique that permits the use of standard photolithography for coupling to deeply-etched ring resonator structures. The technique is employed to demonstrate InGaAsP laterally- coupled racetrack ring resonators laser with record low threshold currents of 66 mA. The racetrack laser have curved sections of 150 micrometers radius with negligible bending loss. The lasers operate CW single mode up to nearly twice threshold with a 26 dB side-mode-suppression ratio. We shall also present a transfer matrix formalism for the analysis of ring resonator arrays and indicate application examples for flat band filter synthesis.
SIN accelerator, operational experience and improvement programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joho, W.; Olivo, M.; Stammbach, T.
1977-06-01
The SIN meson facility, in operation since 1974, consists of a 590 MeV ring cyclotron for protons and a 72 MeV injector cyclotron. The average beam current on target is presently about 50 ..mu..A, the peak being 112 ..mu..A. Extraction efficiency, once considered a severe handicap for cyclotrons, is now 99.6 to 99.9% for the ring cyclotron and about 90% for the injector. Many improvements in both accelerators allow single turn extraction in the ring cyclotron. The present current limit is given by the injector, while the ring itself could accept now a 600 ..mu..A beam, with 2 to 4more » mA as an ultimate limit. Some muon experiments require a pulsed beam with on-off times in the order of the lifetime of the muon. First trials with beam pulse frequencies of 200 and 400 kHz and a 50% duty cycle have been successful.« less
Minhas, Preet; Bansal, Varun; Patel, Jinal; Ho, Johnson S; Diaz, Julian; Datta, Abhishek; Bikson, Marom
2010-07-15
Transcutaneous electrical stimulation is applied in a range of biomedical applications including transcranial direct current stimulation (tDCS). tDCS is a non-invasive procedure where a weak direct current (<2 mA) is applied across the scalp to modulate brain function. High-definition tDCS (HD-tDCS) is a technique used to increase the spatial focality of tDCS by passing current across the scalp using <12 mm diameter electrodes. The purpose of this study was to design and optimize "high-definition" electrode-gel parameters for electrode durability, skin safety and subjective pain. Anode and cathode electrode potential, temperature, pH and subjective sensation over time were assessed during application of 2 mA direct current, for up to 22 min on agar gel or subject forearms. A selection of five types of solid-conductors (Ag pellet, Ag/AgCl pellet, rubber pellet, Ag/AgCl ring and Ag/AgCl disc) and seven conductive gels (Signa, Spectra, Tensive, Redux, BioGel, Lectron and CCNY-4) were investigated. The Ag/AgCl ring in combination with CCNY-4 gel resulted in the most favorable outcomes. Under anode stimulations, electrode potential and temperature rises were generally observed in all electrode-gel combinations except for Ag/AgCl ring and disc electrodes. pH remained constant for all solid-conductors except for both Ag and rubber pellet electrodes with Signa and CCNY-4 gels. Sensation ratings were independent of stimulation polarity. Ag/AgCl ring electrodes were found to be the most comfortable followed by Ag, rubber and Ag/AgCl pellet electrodes across all gels. Copyright 2010 Elsevier B.V. All rights reserved.
Minhas, Preet; Bansal, Varun; Patel, Jinal; Ho, Johnson S.; Diaz, Julian; Datta, Abhishek; Bikson, Marom
2010-01-01
Transcutaneous electrical stimulation is applied in a range of biomedical applications including Transcranial Direct Current Stimulation (tDCS). tDCS is a non-invasive procedure where a weak direct current (<2 mA) is applied across the scalp to modulate brain function. High-Definition tDCS (HD-tDCS) is a technique used to increase the spatial focality of tDCS by passing current across the scalp using <12 mm diameter electrodes. The purpose of this study was to design and optimize “high-definition” electrode-gel parameters for electrode durability, skin safety, and subjective pain. Anode and cathode electrode potential, temperature, pH, and subjective sensation over time were assessed during application of 2 mA direct current, for up to 22 minutes on agar gel or subject forearms. A selection of 5 types of solid-conductors (Ag pellet, Ag/AgCl pellet, Rubber pellet, Ag/AgCl ring, and Ag/AgCl disc) and 7 conductive gels (Signa, Spectra, Tensive, Redux, BioGel, Lectron, and CCNY-4) were investigated. The Ag/AgCl ring in combination with CCNY-4 gel resulted in the most favorable outcomes. Under anode stimulations, electrode potential and temperature rises were generally observed in all electrode-gel combinations except for Ag/AgCl ring and disc electrodes. pH remained constant for all solid-conductors except for both Ag and Rubber pellet electrodes with Signa and CCNY-4 gels. Sensation ratings were independent of stimulation polarity. Ag/AgCl ring electrodes were found to be the most comfortable followed by Ag, Rubber, and Ag/AgCl pellet electrodes across all gels. PMID:20488204
Status of NSLS-II Storage Ring Vacuum Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doom,L.; Hseuh,H.; Ferreira, M.
2009-05-04
National Synchrotron Light Source II (NSLS-II), being constructed at Brookhaven National Laboratory, is a 3-GeV, high-flux and high- brightness synchrotron radiation facility with a nominal current of 500 mA. The storage ring vacuum system will have extruded aluminium chambers with ante-chamber for photon fans and distributed NEG strip pumping. Discrete photon absorbers will be used to intercept the un-used bending magnet radiation. In-situ bakeout will be implemented to achieve fast conditioning during initial commissioning and after interventions.
Hollow cathode plasma coupling study, 1986
NASA Technical Reports Server (NTRS)
Wilbur, Paul J.
1986-01-01
The electron collection and emission characteristics of a simple hollow cathode contactor, an extended anode hollow cathode contactor supplied by JSC, and a ring cusp magnetic field contactor are presented and the effects of discharge power and argon or xenon expellant flowrate on these characteristics are examined. All of the contactors are shown to exhibit good electron emission performance over a wide range of discharge power and expellant type and flowrate. Good electron performance is shown to be more difficult to achieve. Results suggest that the extended anode and ring cusp contactors should perform satisfactorily to electron emission currents beyond 1000 mA and electron collection currents beyond 500 mA. All contactors performed better on xenon than argon. A general theory of plasma contactor operation in both the electron collection and electron emission modes, which describes the current-limiting effects of space-charge phenomena is given. This current-limiting and collecting phenomenon is shown to be a function of driving potential differences and emitting and collecting surface radius ratio for the case of a spherical geometry. Discharge power did not appear to influence the electron collection current substantially in the experiments so it is suggested in light of the model that the contactors are generally not limited by their ion production capabilities under conditions at which they were tested.
Commissioning and Early Operation Experience of the NSLS-II Storage Ring RF System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, F.; Rose, J.; Cupolo, J.
2015-05-03
The National Synchrotron Light Source II (NSLS-II) is a 3 GeV electron X-ray user facility commissioned in 2014. The storage ring RF system, essential for replenishing energy loss per turn of the electrons, consists of digital low level RF controllers, 310 kW CW klystron transmitters, CESR-B type superconducting cavities, as well as a supporting cryogenic system. Here we will report on RF commissioning and early operation experience of the system for beam current up to 200mA.
National Synchrotron Light Source II storage ring vacuum systems
Hseuh, Hsiao-Chaun; Hetzel, Charles; Leng, Shuwei; ...
2016-04-05
The National Synchrotron Light Source II, completed in 2014, is a 3-GeV synchrotron radiation (SR) facility at Brookhaven National Laboratory and has been in steady operation since. With a design electron current of 500 mA and subnanometer radians horizontal emittance, this 792-m circumference storage ring is providing the highest flux and brightness x-ray beam for SR users. Also, the majority of the storage ring vacuum chambers are made of extruded aluminium. Chamber sections are interconnected using low-impedance radiofrequency shielded bellows. SR from the bending magnets is intercepted by water-cooled compact photon absorbers resided in the storage ring chambers. Finally, thismore » paper presents the design of the storage ring vacuum system, the fabrication of vacuum chambers and other hardware, the installation, the commissioning, and the continuing beam conditioning of the vacuum systems.« less
An Ionosphere/Magnetosphere Coupling Current System Located in the Gap Between Saturn and its Rings
NASA Astrophysics Data System (ADS)
Khurana, K. K.; Dougherty, M. K.; Cao, H.; Hunt, G. J.; Provan, G.
2017-12-01
The Grand Finale Orbits of the Cassini spacecraft traversed through Saturn's D ring and brought the spacecraft to within 3000 km of Saturn's cloud tops. The closest approaches (CA) were near the equatorial plane of Saturn and were distributed narrowly around the local noon. The difference field (observations - internal field - magnetospheric ring current field) obtained from the Grand Finale orbits show persistent residual fields centered around the CA which diminish at higher latitudes on field lines that connect to the ring. Modeling of this perturbation in terms of internal harmonics shows that the perturbation is not of internal origin but is produced by external currents that couple the ionosphere to the magnetosphere. The sense of the current system suggests that the southern feet of the field lines in the ionosphere lead their northern footprints. We show that the observed field perturbations are consistent with a meridional Pedersen current whose strength is 1 MA/radian, i.e. comparable in strength to the Planetary-period-oscillation related current systems observed in the auroral zone. We show that the implied Lorentz force in the ionosphere extracts momentum from the faster moving southern ionosphere and passes it on to the northern ionosphere. We discuss several ideas for generating this current system. In particular, we highlight a mechanism that involves shears in the neutral winds in the thermospheric region to generate the observed magnetic field.
Control Circuit For Two Stepping Motors
NASA Technical Reports Server (NTRS)
Ratliff, Roger; Rehmann, Kenneth; Backus, Charles
1990-01-01
Control circuit operates two independent stepping motors, one at a time. Provides following operating features: After selected motor stepped to chosen position, power turned off to reduce dissipation; Includes two up/down counters that remember at which one of eight steps each motor set. For selected motor, step indicated by illumination of one of eight light-emitting diodes (LED's) in ring; Selected motor advanced one step at time or repeatedly at rate controlled; Motor current - 30 mA at 90 degree positions, 60 mA at 45 degree positions - indicated by high or low intensity of LED that serves as motor-current monitor; Power-on reset feature provides trouble-free starts; To maintain synchronism between control circuit and motors, stepping of counters inhibited when motor power turned off.
Cabling design of booster and storage ring construction progress of TPS
NASA Astrophysics Data System (ADS)
Wong, Y.-S.; Liu, K.-B.; Liu, C.-Y.; Wang, b.-S.
2017-06-01
The 2012 Taiwan Photon Source (TPS) cable construction project started after 10 months to complete the cable laying and installation of power supply. The circumference of the booster ring (BR) is 496.8 m, whereas that of the storage ring (SR) is 518.4 m. Beam current is set to 500 mA at 3.3 GeV. The paper on grounding systems discusses the design of the ground wire (< 0.2 Ω) with low impedance, power supply of the accelerator and cabling tray. The flow and size of the ground current are carefully evaluated to avoid grounded current from flowing everywhere, which causes interference problems. In the design of the TPS, special shielding will be established to isolate the effects of electromagnetic interference on the magnet and ground current. Booster ring dipoles are connected by a series of 54-magnet bending dipole; the cable size of its stranded wire measures 250 mm2, with a total length of 5000 m. Booster ring and storage ring quadrupoles have 150 magnets; the cable size of their stranded wire is 250 mm2, with a total length of 17000 m. Storage ring dipole consists of 48 magnets; the cable size of its stranded wire is 325 mm2, with a total length of 6000 m. This study discusses the power supply cabling design of the storage ring and booster ring construction progress of TPS. The sections of this paper are divided into discussions of the construction of the control and instrument area, cabling layout of booster ring and storage ring, as well as the installation and commission machine. This study also discusses the use of a high-impedance meter to determine the effect of cabling insulation and TPS power supply machine on energy transfer to ensure the use of safe and correct magnet.
Injector for the University of Maryland Electron Ring (UMER)
NASA Astrophysics Data System (ADS)
Kehne, D.; Godlove, T.; Haldemann, P.; Bernal, S.; Guharay, S.; Kishek, R.; Li, Y.; O'Shea, P.; Reiser, M.; Yun, V.; Zou, Y.; Haber, I.
2001-05-01
The electron beam injector constructed by FM technologies for the University of Maryland Electron Ring (UMER) program is described. The program will use an electron beam to model space-charge-dominated ion beams in a recirculating linac for heavy ion inertial fusion, as well as for high-current muon colliders. The injector consists of a 10 keV, 100 mA electron gun with 50-100 nsec pulse width and a repetition rate of 120 Hz. The e-gun system includes a 6-mask, rotatable aperture plate, a Rogowski current monitor, an ion pump, and a gate valve. The injector beamline consists of a solenoid, a five-quadrupole matching section, two diagnostic chambers, and a fast current monitor. An independent diagnostic chamber also built for UMER will be used to measure horizontal and vertical emittance, current, energy, energy spread, and the evolution of the beam envelope and profile along the injector beamline.
Status of The Indian SRS Indus-2
NASA Astrophysics Data System (ADS)
Sahni, V. C.
2009-07-01
Raja Ramanna Centre for Advanced Technology (RRCAT, formerly called Centre for Advanced Technology) is a prime R&D laboratory of Indian Department of Atomic Energy devoted to developing technologies related to accelerators and lasers as well as their applications. RRCAT is home to 2 synchrotron radiation sources (SRS): Indus-1 (a 100 mA, 450 MeV storage ring) & Indus-2 (a 2.5 GeV booster cum storage ring designed for a current of up to 300 mA), sharing a common injector system, comprising of 20 MeV microtron & 450-700 MeV range booster synchrotron. Most of the accelerator hardware has been built indigenously. Normally beam is injected into Indus-2 (and accumulated) at 550 MeV, and ramped to 2 or 2.5 GeV depending on the user needs. At present we have permission from Atomic Energy Regulatory Board (Indian agency charged with radiation protection responsibility in the country) to operate Indus-2 at 2.5 GeV with up to 50 mA & in the next stage we will get authorization to go up to 100 mA. Currently 5 beam lines on Indus-1 and 3 on Indus-2 are operational and work is going on 4 more beam lines on Indus-2 & is progressing well. The 3 completed beam lines on Indus-2 are: high resolution XRD, position sensitive detector based multi channel EXAFS (Extended X-ray Absorption Fine Structure) and EDXRD (Energy Dispersive X-ray Diffraction). The paper gives an overview of how the SRS program at RRCAT has evolved over the years, where we stand today and also some of our future plans.
Present limits for the luminosity, the beam current and the beam lifetime in Doris II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nesemann, H.; Sarau, B.
1985-10-01
The e e storage ring DORIS II has been operating for high energy physics experiments in the region of the Y resonances around 2x5 GeV and as a source for synchrotron radiation near 3.7 GeV. A luminosity of nearly 3x10T cm Ssec or more than 1500 (nb) /day has been achieved. For synchrotron radiation e -currents of about 100 mA are stored in 4 bunches (out of 480 buckets). As long as the beam-beam interaction does not limit the luminosity the optimum performance of the ring is obtained for both modes of operation if the currents stored are large, themore » cross section of the beam is small and the lifetime is long. Thus we concentrate the discussion on these subjects.« less
Osaki, Tomohiro; Takagi, Satoshi; Hoshino, Yuki; Okumura, Masahiro; Kadosawa, Tsuyoshi; Fujinaga, Toru
2009-02-01
Antivascular photodynamic therapy (PDT) suppresses tumor growth and prolonged the survival in solid tumor-bearing mice. The purpose of this study was to assess the efficacy of antivascular PDT using BPD-MA for treatment of oral and nasal tumors in 14 dogs. At 15 min after initiating intravenous infusion of 0.5 mg/kg benzoporphyrin derivative monoacid ring A, tumors were irradiated with laser light at 690 nm emitted by a diode laser. The 1-year survival rate of 7 dogs with oral tumors was 71%. The 1-year survival rate of 7 dogs with nasal tumors was 57%. Imaging of each tumor was performed by using angiographic computed tomography before and after each antivascular PDT. Contrast-enhanced tumors were observed before antivascular PDT, but these tumors were not enhanced with contrast medium following antivascular PDT. Antivascular PDT is suggested to be a promising method for dogs with oral and nasal tumors that cannot be effectively treated with current antitumor therapies.
Bassi, G.; Blednykh, A.; Cheng, W.; ...
2015-12-11
We present the NSLS-II storage ring that is designed to operate with superconducting RF-cavities with the aim to store an average current of 500 mA distributed in 1080 bunches, with a gap in the uniform filling for ion clearing. At the early stage of the commissioning (phase 1), characterized by a bare lattice without damping wigglers and without Landau cavities, a normal conducting 7-cell PETRA-III RF-cavity structure has been installed with the goal to store an average current of 25 mA. In this paper we discuss our analysis of coupled-bunch instabilities driven by the Higher Order Modes (HOMs) of themore » 7-cell PETRA-III RF-cavity. As a cure of the instabilities, we apply a well-known scheme based on a proper detuning of the HOMs frequencies based upon cavity temperature change, and the use of the beneficial effect of the slow head–tail damping at positive chromaticity to increase the transverse coupled-bunch instability thresholds. In addition, we discuss measurements of coupled-bunch instabilities observed during the phase 1 commissioning of the NSLS-II storage ring. In our analysis we rely, in the longitudinal case, on the theory of coupled-bunch instability for uniform fillings, while in the transverse case we complement our studies with numerical simulations with OASIS, a novel parallel particle tracking code for self-consistent simulations of collective effects driven by short and long-range wakefields.« less
Influence of the substorm current wedge on the Dst index
NASA Astrophysics Data System (ADS)
Friedrich, Erena; Rostoker, Gordon; Connors, Martin G.; McPherron, R. L.
1999-03-01
One of the major questions confronting researchers studying the nature of the solar-terrestrial interaction centers around whether or not the substorm expansive phase has any causal effect on the growth of the storm time ring current. This question is often addressed by using the Dst index as a proxy for the storm time ring current and inspecting the main phase growth of Dst in the context of the substorm expansive phases which occur in the same time frame as the ring current growth. In the past it has been assumed that the magnetic effects of the substorm current wedge have little influence on the Dst index because the current wedge is an asymmetric current system, while Dst is supposed to reflect changes in the symmetric component of the ring current. In this paper we shall shown that the substorm current wedge can have a significant effect on the present Dst index, primarily as a consequence of the fact that only four stations are presently used to formulate the index. Calculations are made assuming the instantaneous magnitude of the wedge current is constant at 1 MA. Hourly values of Dst may be as much as 50° smaller than those presented here because of variation of the wedge current over the hour. We shall show how the effect of the current wedge depends on the UT of the expansive phase onset, the angular extent of the current wedge, and the locale of the closure current in the magnetosphere. The fact that the substorm current wedge is a conjugate phenomenon has an important influence on the magnitude of the expansive phase effect in the Dst index.
NASA Astrophysics Data System (ADS)
Yeh, Chien-Hung; Chow, Chi-Wai; Lu, Shao-Sheng
2014-05-01
In this work, we propose and demonstrate a multi-wavelength laser source produced by utilizing a C-band reflective semiconductor optical amplifier (RSOA) with a dual-ring fiber cavity. Here, the laser cavity consists of an RSOA, a 1 × 2 optical coupler, a 2 × 2 optical coupler and a polarization controller. As a result, thirteen to eighteen wavelengths around the L band could be generated simultaneously when the bias current of the C-band RSOA was driven at 30-70 mA. In addition, the output stabilities of the power and wavelength are also discussed.
Ultra-low current beams in UMER to model space-charge effects in high-energy proton and ion machines
NASA Astrophysics Data System (ADS)
Bernal, S.; Beaudoin, B.; Baumgartner, H.; Ehrenstein, S.; Haber, I.; Koeth, T.; Montgomery, E.; Ruisard, K.; Sutter, D.; Yun, D.; Kishek, R. A.
2017-03-01
The University of Maryland Electron Ring (UMER) has operated traditionally in the regime of strong space-charge dominated beam transport, but small-current beams are desirable to significantly reduce the direct (incoherent) space-charge tune shift as well as the tune depression. This regime is of interest to model space-charge effects in large proton and ion rings similar to those used in nuclear physics and spallation neutron sources, and also for nonlinear dynamics studies of lattices inspired on the Integrable Optics Test Accelerator (IOTA). We review the definitions of beam vs. space-charge intensities and discuss three methods for producing very small beam currents in UMER. We aim at generating 60µA - 1.0mA, 100 ns, 10 keV beams with normalized rms emittances of the order of 0.1 - 1.0µm.
Development Status of Ion Source at J-PARC Linac Test Stand
NASA Astrophysics Data System (ADS)
Yamazaki, S.; Takagi, A.; Ikegami, K.; Ohkoshi, K.; Ueno, A.; Koizumi, I.; Oguri, H.
The Japan Proton Accelerator Research Complex (J-PARC) linac power upgrade program is now in progress in parallel with user operation. To realize a nominal performance of 1 MW at 3 GeV Rapid Cycling Synchrotron and 0.75 MW at the Main Ring synchrotron, we need to upgrade the peak beam current (50 mA) of the linac. For the upgrade program, we are testing a new front-end system, which comprises a cesiated RF-driven H- ion source and a new radio -frequency quadrupole linac (RFQ). The H- ion source was developed to satisfy the J-PARC upgrade requirements of an H- ion-beam current of 60 mA and a lifetime of more than 50 days. On February 6, 2014, the first 50 mA H- beams were accelerated by the RFQ during a beam test. To demonstrate the performance of the ion source before its installation in the summer of 2014, we tested the long-term stability through continuous beam operation, which included estimating the lifetime of the RF antenna and evaluating the cesium consumption.
Wang, Hongwei; Ou, Junjie; Lin, Hui; Liu, Zhongshan; Huang, Guang; Dong, Jing; Zou, Hanfa
2014-11-07
Two kinds of hybrid monolithic columns were prepared by using methacrylate epoxy cyclosiloxane (epoxy-MA) as functional monomer, containing three epoxy moieties and one methacrylate group. One column was in situ fabricated by ring-opening polymerization of epoxy-MA and 1,10-diaminodecane (DAD) using a porogenic system consisting of isopropanol (IPA), H2O and ethanol at 65°C for 12h. The other was prepared by free radical polymerization of epoxy-MA and ethylene dimethacrylate (EDMA) using 1-propanol and 1,4-butanediol as the porogenic solvents at 60°C for 12h. Two hybrid monoliths were investigated on the morphology and chromatographic assessment. Although two kinds of monolithic columns were prepared with epoxy-MA, their morphologies looked rather different. It could be found that the epoxy-MA-DAD monolith possessed higher column efficiencies (25,000-34,000plates/m) for the separation of alkylbenzenes than the epoxy-MA-EDMA monolith (12,000-13,000plates/m) in reversed-phase nano-liquid chromatography (nano-LC). Depending on the remaining epoxy or methacrylate groups on the surface of two pristine monoliths, the epoxy-MA-EDMA monolith could be easily modified with 1-octadecylamine (ODA) via ring-opening reaction, while the epoxy-MA-DAD monolith could be modified with stearyl methacrylate (SMA) via free radical reaction. The chromatographic performance for the separation of alkylbenzenes on SMA-modified epoxy-MA-DAD monolith was remarkably improved (42,000-54,000 plates/m) when compared with that on pristine epoxy-MA-DAD monolith, while it was not obviously enhanced on ODA-modified epoxy-MA-EDMA monolith when compared with that on pristine epoxy-MA-EDMA monolith. The enhancement of the column efficiency of epoxy-MA-DAD monolith after modification might be ascribed to the decreased mass-transfer resistence. The two kinds of hybrid monoliths were also applied for separations of six phenols and seven basic compounds in nano-LC. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Knaster, J.; Evans, D.; Rajainmaki, H.
2012-06-01
The pre-compression rings (PCRs) for the International Thermonuclear Experimental Reactor (ITER) represent one of the largest and most highly stressed composite structures ever designed for long term operation at 4K. Three rings, each 5m in diameter and 337 × 288 mm in cross-section, will be installed at the top and bottom of the eighteen "D" shaped Toroidal Field (TF) coils to apply a total centripetal load of 70 MN per TF coil. The interaction of the 68 kA conductor current circulating in the coil (for a total of 9.1MA) with the required magnetic field to confine the plasma during operation will result in Lorentz forces that build in-plane and out-of-plane loads. The PCRs are essential to keep the stresses below the acceptable level for the ITER magnets structural materials.
BEAM DYNAMICS ANALYSIS FOR THE ULTRA-FAST KICKER IN CIRCULAR COOLER RING OF JLEIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Yulu; Wang, Haipeng; Rimmer, Robert A.
An ultra-fast kicker system consisting of four quarter wavelength resonator based deflecting cavities was developed that simultaneously resonates at 10 subharmonic modes of the 476.3MHz bunch repetition frequency. Thus every 10th bunch in the bunch train will experience a transverse kick while all the other bunches are undisturbed. This fast kicker is being developed for the Energy Recovery Linac (ERL) based electron Circular Cooler Ring (CCR) in the proposed Jefferson Lab Electron Ion Collider (JLEIC, previously MEIC). The electron bunches can be reused 10-30 turns thus the beam current in the ERL can be reduced to 1/10 - 1/30 (150mAmore » - 50mA) of the cooling bunch current (1.5A). In this paper, several methods to synthesize such a kicker waveform and the comparison made by the beam dynamics tracking in Elegant will be discussed.« less
NATIONAL SYNCHROTRON LIGHT SOURCE ACTIVITY REPORT 1998.
DOE Office of Scientific and Technical Information (OSTI.GOV)
ROTHMAN,E.
1999-05-01
In FY 1998, following the 50th Anniversary Year of Brookhaven National Laboratory, Brookhaven Science Associates became the new Managers of BNL. The new start is an appropriate time to take stock of past achievements and to renew or confirm future goals. During the 1998 NSLS Annual Users Meeting (described in Part 3 of this Activity Report), the DOE Laboratory Operations Board, Chaired by the Under Secretary for Energy, Ernest Moniz met at BNL. By chance all the NSLS Chairmen except Martin Blume (acting NSLS Chair 84-85) were present as recorded in the picture. Under their leadership the NSLS has improvedmore » dramatically: (1) The VUV Ring current has increased from 100 mA in October 1982 to nearly 1 A today. For the following few years 10 Ahrs of current were delivered most weeks - NSLS now exceeds that every day. (2) When the first experiments were performed on the X-ray ring during FY1985 the electron energy was 2 GeV and the current up to 100 mA - the X-Ray Ring now runs routinely at 2.5 GeV and at 2.8 GeV with up to 350 mA of current, with a very much longer beam half-life and improved reliability. (3) Starting in FY 1984 the proposal for the Phase II upgrade, mainly for a building extension and a suite of insertion devices and their associated beamlines, was pursued - the promises were delivered in full so that for some years now the NSLS has been running with two undulators in the VUV Ring and three wigglers and an undulator in the X-Ray Ring. In addition two novel insertion devices have been commissioned in the X13 straight. (4) At the start of FY 1998 the NSLS welcomed its 7000th user - attracted by the opportunity for pursuing research with high quality beams, guaranteed not to be interrupted by 'delivery failures', and welcomed by an efficient and caring user office and first class teams of PRT and NSLS staff. R & D have lead to the possibility of running the X-Ray Ring at the higher energy of 2.8 GeV. Figure 1 shows the first user beam, which was provided thereafter for half of the running time in FY 1998. In combination with the development of narrow gap undulators this mode opens the possibility of new undulators which could produce hard X-rays in the fundamental, perhaps up to 10 keV. On 27 September 1998, a low horizontal emittance lattice became operational at 2.584 GeV. This results in approximately a 50% decrease in the horizontal beam-size on dipole bending magnet beamlines, and somewhat less of a decrease on the insertion device lines. The beam lifetime is not degraded by the low emittance lattice. This represents an important achievement, enhancing for all users the x-ray ring brightness. The reduced horizontal emittance electron beam will produce brighter x-ray beams for all the beamlines, both bending magnets and insertion devices, adding to other recent increases in the X-Ray ring brightness. During FY 1999 users will gain experience of the new running mode and plans are in place to do the same at 2.8GeV during further studies sessions. Independent evidence of the reduced emittance is shown in Figure 2. This is a pinhole camera scan showing the X-ray beam profile, obtained on the diagnostic beamline X28. Finally, work has begun to update and refine the proposal of the Phase III upgrade endorsed by the Birgeneau panel and BESAC last year. With the whole NSLS facility in teenage years and with many demonstrated enhancements available, the time has come to herald in the next stage of life at the Light Source.« less
Han, Yan-Hong; Xiang, Hai-Ying; Wang, Qian; Li, Yuan-Yuan; Wu, Wen-Qi; Han, Cheng-Gui; Li, Da-Wei; Yu, Jia-Lin
2010-10-10
Melon aphid-borne yellows virus (MABYV) is a newly identified polerovirus occurring in China. Here, we demonstrate that the MABYV encoded P0 (P0(MA)) protein is a strong suppressor of post-transcriptional gene silencing (PTGS) with activity comparable to tobacco etch virus (TEV) HC-Pro. In addition we have shown that the LP F-box motif present at the N-terminus of P0(MA) is required for suppressor activity. Detailed mutational analyses on P0(MA) revealed that changing the conserved Trp 212 with non-ring structured amino acids altered silencing suppressor functions. Ala substitutions at positions 12 and 211 for Phe had no effect on P0 suppression-activity, whereas Arg and Glu substitutions had greatly decreased suppressor activity. Furthermore, substitutions targeting Phe at position 30 also resulted in reduced P0 suppression-activity. Altogether, these results suggest that ring structured Trp/Phe residues in P0 have important roles in suppressor activity. Copyright © 2010 Elsevier Inc. All rights reserved.
High current, high bandwidth laser diode current driver
NASA Technical Reports Server (NTRS)
Copeland, David J.; Zimmerman, Robert K., Jr.
1991-01-01
A laser diode current driver has been developed for free space laser communications. The driver provides 300 mA peak modulation current and exhibits an optical risetime of less than 400 ps. The current and optical pulses are well behaved and show minimal ringing. The driver is well suited for QPPM modulation at data rates up to 440 Mbit/s. Much previous work has championed current steering circuits; in contrast, the present driver is a single-ended on/off switch. This results in twice the power efficiency as a current steering driver. The driver electrical efficiency for QPPM data is 34 percent. The high speed switch is realized with a Ku-band GaAsFET transistor, with a suitable pre-drive circuit, on a hybrid microcircuit adjacent to the laser diode.
Ion Source Development at the SNS
NASA Astrophysics Data System (ADS)
Welton, R. F.; Stockli, M. P.; Murray, S. N.; Carr, J.; Carmichael, J.; Goulding, R. H.; Baity, F. W.
2007-08-01
The US Spallation Neutron Source (SNS) has recently begun producing neutrons and is currently on track to becoming a world-leading facility for material science based on neutron scattering. The facility is comprised of an H- ion source, a linear accelerator, an accumulator ring, a liquid-Hg target and a suite of neutron scattering instruments. Over the next several years the average H- current from the ion source will be increased in order to meet the baseline facility requirement of providing 1.4 MW of beam-power to the target and the SNS power upgrade power requirement of 2+ MW on target. Meeting the latter goal will require H- currents of 70-100 mA with an RMS emittance of 0.20-0.35 π mm mrad and a ˜7% duty-factor. To date, the RF-driven-multicusp SNS ion source has only been able to demonstrate sustained operation at 33 mA of beam current at a ˜7% duty-factor. This report details our efforts to develop variations of the current ion source which can meet these requirements. Designs and experimental results are presented for helicon plasma drivers, high-power external antennas, glow-discharge plasma guns and advanced Cs systems.
Conceptual design of front ends for the advanced photon source multi-bend achromats upgrade
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaski, Y., E-mail: jaskiy@aps.anl.gov; Westferro, F., E-mail: westferr@aps.anl.gov; Lee, S. H., E-mail: shlee@aps.anl.gov
2016-07-27
The proposed Advanced Photon Source (APS) upgrade from a double-bend achromats (DBA) to multi-bend achromats (MBA) lattice with ring energy change from 7 GeV to 6 GeV and beam current from 100 mA to 200 mA poses new challenges for front ends. All front ends must be upgraded to fulfill the following requirements: 1) handle the high heat load from two insertion devices in either inline or canted configuration, 2) include a clearing magnet in the front end to deflect and dump any electrons in case the electrons escape from the storage ring during swap-out injection with the safety shuttersmore » open, 3) incorporate the next generation x-ray beam position monitors (XBPMs) into the front end to meet the new stringent beam stability requirements. This paper presents the evaluation of the existing APS front ends and standardizes the insertion device (ID) front ends into two types: one for the single beam and one for the canted beams. The conceptual design of high heat load front end (HHLFE) and canted undulator front end (CUFE) for APS MBA upgrade is presented.« less
Conceptual Design of Front Ends for the Advanced Photon Source Multi-bend Achromats Upgrade
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaski, Y.; Westferro, F.; Lee, S. H.
2016-07-27
The proposed Advanced Photon Source (APS) upgrade from a double-bend achromats (DBA) to multi-bend achromats (MBA) lattice with ring energy change from 7 GeV to 6 GeV and beam current from 100 mA to 200 mA poses new challenges for front ends. All front ends must be upgraded to fulfill the following requirements: 1) handle the high heat load from two insertion devices in either inline or canted configuration, 2) include a clearing magnet in the front end to deflect and dump any electrons in case the electrons escape from the storage ring during swap-out injection with the safety shuttersmore » open, 3) incorporate the next generation x-ray beam position monitors (XBPMs) into the front end to meet the new stringent beam stability requirements. This paper presents the evaluation of the existing APS front ends and standardizes the insertion device (ID) front ends into two types: one for the single beam and one for the canted beams. The conceptual design of high heat load front end (HHLFE) and canted undulator front end (CUFE) for APS MBA upgrade is presented.« less
Lin, Shu-Ling; Wang, Chih-Chieh; Fuh, Ming-Ren
2016-10-05
In this study, divinylbenzene (DVB) was used as the cross-linker to prepare alkyl methacrylate (AlMA) monoliths for incorporating π-π interactions between the aromatic analytes and AlMA-DVB monolithic stationary phases in capillary LC analysis. Various AlMA/DVB ratios were investigated to prepare a series of 30% AlMA-DVB monolithic stationary phases in fused-silica capillaries (250-μm i.d.). The physical properties (such as porosity, permeability, and column efficiency) of the synthesized AlMA-DVB monolithic columns were investigated for characterization. Isocratic elution of phenol derivatives was first employed to evaluate the suitability of the prepared AlMA-DVB columns for small molecule separation. The run-to-run (0.16-1.20%, RSD; n = 3) and column-to-column (0.26-2.95%, RSD; n = 3) repeatabilities on retention times were also examined using the selected AlMA-DVB monolithic columns. The π-π interactions between the aromatic ring and the DVB-based stationary phase offered better recognition on polar analytes with aromatic moieties, which resulted in better separation resolution of aromatic analytes on the AlMA-DVB monolithic columns. In order to demonstrate the capability of potential environmental and/or food safety applications, eight phenylurea herbicides with single benzene ring and seven sulfonamide antibiotics with polyaromatic moieties were analyzed using the selected AlMA-DVB monolithic columns. Copyright © 2016. Published by Elsevier B.V.
Latest experiences and future plans on NSLS-II insertion devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanabe, T.; Hidaka, Y.; Kitegi, C.
National Synchrotron Light Source-II (NSLS-II) is the latest storage ring of 3 GeV energy at the Brookhaven National Laboratory (BNL). The horizontal emittance of the electron beam with the currently installed six damping wigglers is 0.9 nm.rad, which could be further reduced to 0.5 nm.rad with more insertion devices (IDs). With only one RF cavity the beam current is restricted to 200 mA. Five hundred mA operation is envisaged for next year with an addition of the second cavity. Six (plus two branches) beamlines have been commissioned in the initial phase of the project. In July 2015, three NIH fundedmore » beamlines called “Advanced Beamlines for Biological Investigations with X-rays” (ABBIX) will be added for operation. This paper describes the experiences of ID development, installation, and commissioning for the NSLS-II project as well as our future plans to improve the performance of the facility in terms of source development.« less
Spectrum study on unsteadiness of shock wave-vortex ring interaction
NASA Astrophysics Data System (ADS)
Dong, Xiangrui; Yan, Yonghua; Yang, Yong; Dong, Gang; Liu, Chaoqun
2018-05-01
Shock oscillation with low-frequency unsteadiness commonly occurs in supersonic flows and is a top priority for the control of flow separation caused by shock wave and boundary layer interaction. In this paper, the interaction of the shock caused by the compression ramp and the vortex rings generated by a micro-vortex generator (MVG) in a supersonic flow at Ma = 2.5 is simulated by the implicit large eddy simulation method. The analysis of observation and the frequency of both the vortex ring motion and the shock oscillation is carried out. The results show that the shock produced by a compression ramp flow at Ma = 2.5 has a dominant non-dimensional low frequency, which is around St = 0.002, while the vortex rings behind the MVG have a dominant high frequency which is around St = 0.038. The dominant low frequency of the shock, which is harmful, can be removed or weakened through the shock-vortex ring interaction by the vortex rings which generate high frequency fluctuations. In the shock and vortex ring interaction region, a dominant high frequency St = 0.037-0.038 has been detected rather than the low frequency St = 0.002, which indicates that the vortex ring is stiff enough to break or weaken the shock. This analysis could provide an effective tool to remove or weaken the low frequency pressure fluctuation below 500 Hz, which has a negative effect on the flight vehicle structures and the environmental protection, through the high frequency vortex generation.
Manufacturing of diamond windows for synchrotron radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schildkamp, W.; Nikitina, L.
2012-09-15
A new diamond window construction is presented and explicit manufacturing details are given. This window will increase the power dissipation by about a factor of 4 over present day state of the art windows to absorb 600 W of power. This power will be generated by in-vacuum undulators with the storage ring ALBA operating at a design current of 400 mA. Extensive finite element (FE) calculations are included to predict the windows behavior accompanied by explanations for the chosen boundary conditions. A simple linear model was used to cross-check the FE calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klingler, S., E-mail: stefan.klingler@wmi.badw.de; Maier-Flaig, H.; Weiler, M.
Microfocused Brillouin light scattering (BLS) and microwave absorption (MA) are used to study magnon-photon coupling in a system consisting of a split-ring microwave resonator and an yttrium iron garnet (YIG) film. The split-ring resonator is defined by optical lithography and loaded with a 1 μm-thick YIG film grown by liquid phase epitaxy. BLS and MA spectra of the hybrid system are simultaneously recorded as a function of the applied magnetic field magnitude and microwave excitation frequency. Strong coupling of the magnon and microwave resonator modes is found with a coupling strength of g{sub eff} /2π = 63 MHz. The combined BLS and MA datamore » allow us to study the continuous transition of the hybridized modes from a purely magnonic to a purely photonic mode by varying the applied magnetic field and microwave frequency. Furthermore, the BLS data represent an up-conversion of the microwave frequency coupling to optical frequencies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shoup, R.W.; Long, F.; Martin, T.H.
Sandia has developed PBFA-Z, a 20-MA driver for z-pinch experiments by replacing the water lines, insulator stack. and MITLs on PBFA II with hardware of a new design. The PBFA-Z accelerator was designed to deliver 20 MA to a 15-mg z-pinch load in 100 ns. The accelerator was modeled using circuit codes to determine the time-dependent voltage and current waveforms at the input and output of the water lines, the insulator stack, and the MITLs. The design of the vacuum insulator stack was dictated by the drive voltage, the electric field stress and grading requirements, the water line and MITLmore » interface requirements, and the machine operations and maintenance requirements. The insulator stack consists of four separate modules, each of a different design because of different voltage drive and hardware interface requirements. The shape of the components in each module, i.e., grading rings, insulator rings, flux excluders, anode and cathode conductors, and the design of the water line and MITL interfaces, were optimized by using the electrostatic analysis codes, ELECTRO and JASON. The time-dependent performance of the insulator stacks was evaluated using IVORY, a 2-D PIC code. This paper will describe the insulator stack design, present the results of the ELECTRO and IVORY analyses, and show the results of the stack measurements.« less
NASA Astrophysics Data System (ADS)
Montelli, A.; Dowdeswell, J. A.; Ottesen, D.; Johansen, S. E.
2018-07-01
Quaternary architectural evolution and sedimentary processes on the mid-Norwegian continental slope are investigated using margin-wide three- and two-dimensional seismic datasets. Of ∼100,000 km3 sediments delivered to the mid-Norwegian shelf and slope over the Quaternary, ∼75,000 km3 comprise the slope succession. The structural high of the Vøring Plateau, characterised by initially low (∼1-2°) slope gradients and reduced accommodation space, exerted a strong control over the long-term architectural evolution of the margin. Slope sediment fluxes were higher on the Vøring Plateau area, increasing up to ∼32 km3 ka-1 during the middle Pleistocene, when fast-flowing ice streams advanced to the palaeo-shelf edge. Resulted in a more rapid slope progradation on the Vøring Plateau, these rates of sediment delivery are high compared to the maximum of ∼7 km3 ka-1 in the adjacent sectors of the slope, characterised by steeper slope (∼3-5°), more available accommodation space and smaller or no palaeo-ice streams on the adjacent shelves. In addition to the broad-scale architectural evolution, identification of more than 300 buried slope landforms provides an unprecedented level of detailed, process-based palaeoenvironmental reconstruction. Channels dominate the Early Pleistocene record (∼2.7-0.8 Ma), during which glacimarine sedimentation on the slope was influenced by dense bottom-water flow and turbidity currents. Morphologic signature of glacigenic debris-flows appear within the Middle-Late Pleistocene (∼0.8-0 Ma) succession. Their abundance increases towards Late Pleistocene, marking a decreasing role for channelized turbidity currents and dense water flows. This broad-scale palaeo-environmental shift coincides with the intensification of Northern Hemispheric glaciations, highlighting first-order climate control on the sedimentary processes in high-latitude continental slopes.
Segawa, Hiroki; T Iwata, Yuko; Yamamuro, Tadashi; Kuwayama, Kenji; Tsujikawa, Kenji; Kanamori, Tatsuyuki; Inoue, Hiroyuki
2017-03-01
Chromatographic differentiation of the ring-substituted regioisomers of amphetamine (AMP) and methamphetamine (MA) was performed by supercritical fluid chromatography (SFC). The behaviour of the retention against the changes of column temperature and co-solvent proportion was studied. The obtained information facilitated the optimization of the each regioisomer. As a result, 2-, 3-, and 4-ring-substituted analogues of AMP and MA with methyl, methoxy, fluoro, chloro, and bromo groups were separated, generally within 6 min. In addition, we found that the separation pattern of the examined regioisomers was classified into two, which depended on the electron donating/withdrawing effect of the substituent. Our results indicate that SFC could be used in forensic drug analysis for fast, reliable identification of structurally similar drugs of abuse. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Tucker, D.; Hildreth, W.; Ullrich, T.; Friedman, R.
2007-01-01
Contiguous ring faults of the 8 ?? 3.5 km Hannegan caldera enclose the Hannegan volcanics in the Cascade arc of northern Washington. The caldera collapsed in two phases, which each erupted rhyolitic ignimbrite (72.3%-75.2% SiO2). The first collapse phase, probably trap-door style, erupted the ???900-m-thick ignimbrite of Hannegan Peak at 3.722 ?? 0.020 Ma. This single cooling unit, generally welded, has an uppermost facies of nonwelded ignimbrite and fine ash. A short period of localized sedimentation followed. Eruption of the ignimbrite of Ruth Mountain then led to a second trap-door collapse as the first-phase partial ring fault propagated to the south to completely enclose the caldera. Wallrock breccias are intercalated as lenses and megabreccia blocks in both ignimbrites. The minimum intracaldera volume is 55-60 km3. No base is exposed, nor are outflow sheets preserved. Caldera collapse and glacial erosion have removed precaldera volcanic rocks, which survive only as intracaldera breccias. Rhyolite dikes and pods, one of which yielded a 40Ar/39Ar age of 3.72 ?? 0.34 Ma, intrude the ring fault and caldera fill. Dacite-andesite domes, dikes, and lava flows were emplaced subsequently; one lava flow gives a 40Ar/39Ar age of 2.96 ?? 0.20 Ma. The quartz diorite of Icy Peak and the granite of Nooksack Cirque (plutons with 206Pb/238U zircon ages of 3.42 ?? 0.10 Ma and 3.36 ?? 0.20 Ma, respectively) intrude caldera fill and basement rocks on the southwest margin of the caldera. Both plutons are now exceptionally well expose on high, glacially sculpted peaks within the caldera, indicating erosion of at least 1 km of intracaldera fill. Hannegan caldera anchors the northeast end of a linear NE-SW age-progressive migration of magmatic focus from the Chilliwack batholith to the active Mount Baker volcano. ?? 2006 Geological Society of America.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-03
... military, aerospace, industrial, commercial, medical, telecommunications, computer, radar and..., MA 01460. rings. Roll rings transfer power, data and signals over rotary interfaces. They are custom... procedures set forth in Section 315.9 of EDA's final rule (71 FR 56704) for procedures for requesting a...
NASA Astrophysics Data System (ADS)
Lu, Lun; Gao, Yan-Li; Yang, Zhi-Zheng; Wang, Cheng; Wang, Jin-Guo; Wang, Hui-Yuan; Jiang, Qi-Chuan
2018-04-01
Mesoporous nanoring-like Zn-Co mixed oxides are synthesized via a simple template-free solvothermal method with a subsequent annealing process. The ring-like nanostructures with hollow interiors are formed under the complexing effects of potassium sodium tartrate. Numerous mesopores are generated after the precursor is annealed at 500 °C. When applied as anode materials, the mesoporous nanoring-like Zn-Co mixed oxides can deliver a high discharge capacity of 1102 mAh g-1 after 200 cycles at 500 mA g-1. Even when the current density is increased to 2 A g-1, the mixed oxides can still retain a reversible capacity of 761 mAh g-1. Such high cycling stability and rate capability are mainly derived from the unique mesoporous ring-like nanostructures and the synergistic effects between Zn and Co based oxides.
Beam Loss Simulation and Collimator System Configurations for the Advanced Photon Source Upgrade
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, A.; Borland, M.
The proposed multi-bend achromat lattice for the Advanced Photon Source upgrade (APS-U) has a design emittance of less than 70 pm. The Touschek loss rate is high: compared with the current APS ring, which has an average beam lifetime ~ 10 h, the simulated beam lifetime for APS-U is only ~2 h when operated in the high flux mode (I=200 mA in 48 bunches). An additional consequence of the short lifetime is that injection must be more frequent, which provides another potential source of particle loss. In order to provide information for the radiation shielding system evaluation and to avoidmore » particle loss in sensitive locations around the ring (for example, insertion device straight sections), simulations of the detailed beam loss distribution have been performed. Several possible collimation configurations have been simulated and compared.« less
NASA Astrophysics Data System (ADS)
Hunt, David W. C.; King, Diane E.; Levy, Julia G.
1997-05-01
The impact of bensoporphyrin derivative monoacid ring A, and visible light was determined for mouse splenic dendritic cells (DC), potent antigen-presenting cells (APC) of the immune system. It was discovered that sub-lethal doses of BPD-MA and light significantly altered the surface receptor pattern of DC as well as diminishing the capacity of these cells to activate allogeneic T cells. Treatment of highly purified DC with BPD-MA and 690 nm wavelength light decreased DC expression of major histocompatibility (MHC) Class I and II antigens, leukocyte common antigen CD45, intercellular adhesion molecule-1 (ICAM-1, CD54), the co- stimulatory molecules CD80 and CD86, CD95 as well as integrin CD11c. In contrast, DC expression of leukocyte function-associated-1 (LFA-1, CD11a), CD11b, CD18, CD40, and the DC DEC-205 receptor increased after the treatment. Changes in receptor levels occurred rapidly. DC MHC Class I and ICAM-1 expression declined to 40 percent of control levels by 2 hours post-PDT. DC treated with BPD-MA and light were poor stimulators of allogeneic T cells in the mixed leukocyte reaction. BPD-MA, in the absence of light, had no effect on the immunostimulatory properties of these cells. The changes in DC receptor expression pattern produced by BPD-MA and light were comparable to those produced by ultraviolet B light, a treatment known to alter the immunostimulatory characteristics of DC. Photodynamic therapy with BPD-MA represents an innovative approach for the modification of immune reactivity.
An ultra-low-power RF transceiver for WBANs in medical applications
NASA Astrophysics Data System (ADS)
Qi, Zhang; Xiaofei, Kuang; Nanjian, Wu
2011-06-01
A 2.4 GHz ultra-low-power RF transceiver with a 900 MHz auxiliary wake-up link for wireless body area networks (WBANs) in medical applications is presented. The RF transceiver with an asymmetric architecture is proposed to achieve high energy efficiency according to the asymmetric communication in WBANs. The transceiver consists of a main receiver (RX) with an ultra-low-power free-running ring oscillator and a high speed main transmitter (TX) with fast lock-in PLL. A passive wake-up receiver (WuRx) for wake-up function with a high power conversion efficiency (PCE) CMOS rectifier is designed to offer the sensor node the capability of work-on-demand with zero standby power. The chip is implemented in a 0.18 μm CMOS process. Its core area is 1.6 mm2. The main RX achieves a sensitivity of -55 dBm at a 100 kbps OOK data rate while consuming just 210 μA current from the 1 V power supply. The main TX achieves +3 dBm output power with a 4 Mbps/500 kbps/200 kbps data rate for OOK/4 FSK/2 FSK modulation and dissipates 3.25 mA/6.5 mA/6.5 mA current from a 1.8 V power supply. The minimum detectable RF input energy for the wake-up RX is -15 dBm and the PCE is more than 25%.
Data-based Modeling of the Dynamical Inner Magnetosphere During Strong Geomagnetic Storms
NASA Astrophysics Data System (ADS)
Tsyganenko, N.; Sitnov, M.
2004-12-01
This work builds on and extends our previous effort [Tsyganenko et al., 2003] to develop a dynamical model of the storm-time geomagnetic field in the inner magnetosphere, using space magnetometer data taken during 37 major events in 1996--2000 and concurrent observations of the solar wind and IMF. The essence of the approach is to derive from the data the temporal variation of all major current systems contributing to the geomagnetic field during the entire storm cycle, using a simple model of their growth and decay. Each principal source of the external magnetic field (magnetopause, cross-tail current sheet, axisymmetric and partial ring currents, Birkeland currents) is controlled by a separate driving variable that includes a combination of geoeffective parameters in the form Nλ Vβ Bsγ , where N, V, and Bs are the solar wind density, speed, and the magnitude of the southward component of the IMF, respectively. Each source was also assumed to have an individual relaxation timescale and residual quiet-time strength, so that its partial contribution to the total field was calculated for any moment as a time integral, taking into account the entire history of the external driving of the magnetosphere during each storm. In addition, the magnitudes of the principal field sources were assumed to saturate during extremely large storms with abnormally strong external driving. All the parameters of the model field sources, including their magnitudes, geometrical characteristics, solar wind/IMF driving functions, decay timescales, and saturation thresholds were treated as free variables, to be derived from the data by the least squares. The relaxation timescales of the individual magnetospheric field sources were found to largely differ between each other, from as large as ˜30 hours for the symmetrical ring current to only ˜50 min for the region~1 Birkeland current. The total magnitudes of the currents were also found to dramatically vary in the course of major storms, with the peak values as large as 5--8 MA for the symmetric ring current and region 1 field-aligned current. At the peak of the main phase, the total partial ring current can largely exceed the symmetric one, reaching ˜10 MA and even more, but it quickly subsides as the external solar wind driving disappears, with the relaxation time ≤2 hours. The tail current dramatically increases during the main phase and shifts earthward, so that the peak current concentrates at unusually close distances ˜4-6RE. This is accompanied by a significant thinning of the current sheet and enormous tailward stretching of the inner geomagnetic field lines. As an independent consistency test, we calculated the expected Dst-variation based on the model output at Earth's surface and compared it with the actual observed Dst. A good agreement (cumulative correlation coefficient R=0.92) was found, in spite of that ˜90% of the spacecraft data used in the fitting were taken at synchronous orbit and beyond, while only 3.7% of those data came from distances 2.5≤ R≤4 RE. The obtained results demonstrate the possibility to develop a dynamical model of the magnetic field, based on magnetospheric and interplanetary data and allowing one to reproduce and forecast the entire process of a geomagnetic storm, as it unfolds in time and space. Reference: N. A. Tsyganenko, H. J. Singer, J. C. Kasper, Storm-time distortion of the inner magnetosphere: How severe can it get ? J. Geophys. Res., v. 108(A5), 1209, 2003.
Magmatic development of the outer Vøring margin from seismic data
NASA Astrophysics Data System (ADS)
Breivik, Asbjørn; Faleide, Jan Inge; Mjelde, Rolf; Flueh, Ernst; Murai, Yoshio
2014-09-01
The Vøring Plateau off mid-Norway is a volcanic passive margin, located north of the East Jan Mayen Fracture Zone (EJMFZ). Large volumes of magmatic rocks were emplaced during Early Eocene margin formation. In 2003, an ocean bottom seismometer survey was acquired over the margin. One profile crosses from the Vøring Plateau to the Vøring Spur, a bathymetric high north of the EJMFZ. The P wave data were ray traced into a 2-D crustal velocity model. The velocity structure of the Vøring Spur indicates up to 15 km igneous crustal thickness. Magmatic processes can be estimated by comparing seismic velocity (VP) with igneous thickness (H). This and two other profiles show a positive H-VP correlation at the Vøring Plateau, consistent with elevated mantle temperature at breakup. However, during the first 2 Ma magma production was augmented by a secondary process, possibly small-scale convection. From ˜51.5 Ma excess melting may be caused by elevated mantle temperature alone. Seismic stratigraphy around the Vøring Spur shows that it was created by at least two uplift events, with the main episode close to the Miocene/Pliocene boundary. Low H-VP correlation of the spur is consistent with renewed igneous growth by constant, moderate-degree mantle melting, not related to the breakup magmatism. The admittance function between bathymetry and free-air gravity shows that the high is near local isostatic equilibrium, precluding that compressional flexure at the EJMFZ uplifted the high. We find a proposed Eocene triple junction model for the margin to be inconsistent with observations.
NASA Astrophysics Data System (ADS)
Takada, M.; Kamada, S.; Suda, M.; Fujii, R.; Nakamura, M.; Hoshi, M.; Sato, H.; Endo, S.; Hamano, T.; Arai, S.; Higashimata, A.
2012-10-01
We developed a real-time and non-destructive method of beam profile measurement on a target under large beam current irradiation, and without any complex radiation detectors or electrical circuits. We measured the beam profiles on a target by observing the target temperature using an infrared-radiation thermometer camera. The target temperatures were increased and decreased quickly by starting and stopping the beam irradiation within 1 s in response speed. Our method could trace beam movements rapidly. The beam size and position were calibrated by measuring O-ring heat on the target. Our method has the potential to measure beam profiles at beam current over 1 mA for proton and deuteron with the energy around 3 MeV and allows accelerator operators to adjust the beam location during beam irradiation experiments without decreasing the beam current.
Zuo, Yicong; Liu, Xiaolu; Wei, Dan; Sun, Jing; Xiao, Wenqian; Zhao, Huan; Guo, Likun; Wei, Qingrong; Fan, Hongsong; Zhang, Xingdong
2015-05-20
Modular tissue engineering holds great potential in regenerating natural complex tissues by engineering three-dimensional modular scaffolds with predefined geometry and biological characters. In modular tissue-like construction, a scaffold with an appropriate mechanical rigidity for assembling fabrication and high biocompatibility for cell survival is the key to the successful bioconstruction. In this work, a series of composite hydrogels (GH0, GH1, GH2, and GH3) based on a combination of methacrylated gelatin (GelMA) and hydroxyapatite (HA) was exploited to enhance hydrogel mechanical rigidity and promote cell functional expression for osteon biofabrication. These composite hydrogels presented a lower swelling ratio, higher mechanical moduli, and better biocompatibility when compared to the pure GelMA hydrogel. Furthermore, on the basis of the composite hydrogel and photolithograph technology, we successfully constructed an osteon-like concentric double-ring structure in which the inner ring encapsulating human umbilical vascular endothelial cells (HUVECs) was designed to imitate blood vessel tubule while the outer ring encapsulating human osteoblast-like cells (MG63s) acts as part of bone. During the coculture period, MG63s and HUVECs exhibited not only satisfying growth status but also the enhanced genic expression of osteogenesis-related and angiogenesis-related differentiations. These results demonstrate this GelMA-HA composite hydrogel system is promising for modular tissue engineering.
NASA Astrophysics Data System (ADS)
Shin, Jungwoo; Park, Kyusung; Ryu, Won-Hee; Jung, Ji-Won; Kim, Il-Doo
2014-10-01
Carbon nanofibers encapsulating Si nanoparticles (CNFs/SiNPs) were prepared via an electrospinning method and chemically functionalized with 3-aminopropyltriethoxysilane (APS) to be grafted onto graphene oxide (GO). As a result, the thin and flexible GO, which exhibits a negative charge in aqueous solution, fully wrapped around the APS-functionalized CNFs with a positive surface charge via electrostatic self-assembly. After the formation of chemical bonds between the epoxy groups on GO and the amine groups in APS via an epoxy ring opening reaction, the GO was chemically reduced to a reduced graphene oxide (rGO). Electrochemical and morphological characterizations showed that capacity loss by structural degradation and electrolyte decomposition on Si surface were significantly suppressed in the rGO-wrapped CNFs/SiNPs (CNFs/SiNPs@rGO). Superior capacities were consequently maintained for up to 200 cycles at a high current density (1048 mA h g-1 at 890 mA g-1) compared to CNFs/SiNPs without the rGO wrapping (304 mA h g-1 at 890 mA g-1). Moreover, the resistance of the SEI layer and charge transfer resistance were also considerably reduced by 24% and 88%, respectively. The described graphene wrapping offers a versatile way to enhance the mechanical integrity and electrochemical stability of Si composite anode materials.Carbon nanofibers encapsulating Si nanoparticles (CNFs/SiNPs) were prepared via an electrospinning method and chemically functionalized with 3-aminopropyltriethoxysilane (APS) to be grafted onto graphene oxide (GO). As a result, the thin and flexible GO, which exhibits a negative charge in aqueous solution, fully wrapped around the APS-functionalized CNFs with a positive surface charge via electrostatic self-assembly. After the formation of chemical bonds between the epoxy groups on GO and the amine groups in APS via an epoxy ring opening reaction, the GO was chemically reduced to a reduced graphene oxide (rGO). Electrochemical and morphological characterizations showed that capacity loss by structural degradation and electrolyte decomposition on Si surface were significantly suppressed in the rGO-wrapped CNFs/SiNPs (CNFs/SiNPs@rGO). Superior capacities were consequently maintained for up to 200 cycles at a high current density (1048 mA h g-1 at 890 mA g-1) compared to CNFs/SiNPs without the rGO wrapping (304 mA h g-1 at 890 mA g-1). Moreover, the resistance of the SEI layer and charge transfer resistance were also considerably reduced by 24% and 88%, respectively. The described graphene wrapping offers a versatile way to enhance the mechanical integrity and electrochemical stability of Si composite anode materials. Electronic supplementary information (ESI) available: SEM images and XRD pattern of CNFs/SiNPs; photographs of CNFs/SiNPs@rGO solutions; SEM images of CNFs/SiNPs@rGO at different graphene concentrations; SEM images of CNFs@SiNPs@rGO without APS functionalization; Electrochemical cell performance of CNFs@SiNPs@rGO with different wrapping concentrations; and electrochemical impendence spectroscopy data for CNFs@SiNPs and CNFs@SiNPs@rGO after the first discharge. See DOI: 10.1039/c4nr03173c
Low Power Transmitter for Wireless Capsule Endoscope
NASA Astrophysics Data System (ADS)
Lioe, D. X.; Shafie, S.; Ramiah, H.; Sulaiman, N.; Halin, I. A.
2013-04-01
This paper presents the transmitter circuit designed for the application of wireless capsule endoscope to overcome the limitation of conventional endoscope. The design is performed using CMOS 0.13 μm technology. The transmitter is designed to operate at centre frequency of 433.92 MHz, which is one of the ISM band. Active mixer and ring oscillator made up the transmitter and it consumes 1.57 mA of current using a supply voltage of 1.2 V, brings the dc power consumption of the transmitter to be 1.88 mW. Data rate of 3.5 Mbps ensure it can transmit high quality medical imaging.
Antifouling leaching technique for optical lenses
Strahle, William J.; Perez, C. L.; Martini, Marinna A.
1994-01-01
The effectiveness of optical lenses deployed in water less than 100 m deep is significantly reduced by biofouling caused by the settlement of macrofauna, such as barnacles, hydroids, and tunicates. However, machineable porous plastic rings can be used to dispense antifoulant into the water in front of the lens to retard macrofaunal growth without obstructing the light path. Unlike coatings which can degrade the optical performance, antifouling rings do not interfere with the instrument optics. The authors have designed plastic, reusable cup-like antifouling rings to slip over the optical lenses of a transmissometer. These rings have been used for several deployments on shallow moorings in Massachusetts Bay, MA and have increased the time before fouling degrades optical characteristics
Hard X-ray Wiggler Front End Filter Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schulte-Schrepping, Horst; Hahn, Ulrich
2007-01-19
The front end filter design and implementation for the new HARWI-II hard X-ray wiggler at DORIS-III at HASYLAB/DESY is presented. The device emits a total power of 30 kW at 150mA storage ring current. The beam has a horizontal width of 3.8mrad and a central power density of 54 W/mm2 at 26m distance to the source. The filter section located in the ring tunnel has been introduced to tailor the thermal loads at the downstream optical components. The high power density and the high total power at the filter section are handled with a layered design. Glassy carbon filters convertmore » the absorbed power into thermal radiation to lower the heat load to an acceptable level for water cooled copper filters. The requirements in beam size and filtering are addressed by separating the filter functions in three units which are switched individually into the beam.« less
Physicochemical and crystal structure analyses of the antidiabetic agent troglitazone.
Kobayashi, Katsuhiro; Fukuhara, Hiroshi; Hata, Tadashi; Sekine, Akiko; Uekusa, Hidehiro; Ohashi, Yuji
2003-07-01
The antidiabetic agent troglitazone has two asymmetric carbons located at the chroman ring and the thiazolidine ring and is produced as a mixture of equal amounts of four optical isomers, 2R-5S, 2S-5R, 2R-5R, and 2S-5S. The crystalline powdered drug substance consists of two diastereomer pairs, 2R-5R/2S-5S and 2R-5S/2S-5R. There are many types of crystals obtained from various crystallization conditions. The X-ray structure analysis and the physicochemical analyses of troglitazone were performed. The solvated crystals of the 2R-5R/2S-5S pair were crystallized from several solutions: methanol, ethanol, acetonitrile, and dichloromethane. The ratio of solvent and troglitazone was 1 : 2 (L1/2-form). The monohydrate crystals were obtained from aqueous acetone solution (L1-form). On the other hand, only an anhydrate crystal of the 2R-5S/2S-5R pair was crystallized from various solutions (H0-form). The dihydrous mixed crystal (MA2-form) was obtained from a mixture of the two diastereomer pairs of 2R-5R/2S-5S and 2R-5S/2S-5R in equal amounts by the slow evaporation of aqueous acetone solution. The crystal structure of the MA2-form is similar to the H0-form. When the MA2 crystal was kept under low humidity, it was converted into the dehydrated form (MA0-form) with retention of the single crystal form. The structure of the MA0-form is isomorphous to the H0-form. The MA2-form was converted into the MA0-form and vice versa with retention of the single crystal under low and high humidity, respectively. The crystallization and storage conditions of the drug substances were successfully analyzed.
Campos, Michel Leandro; Cerqueira, Letícia Bonancio; Silva, Bruna Cristina Ulian; Franchin, Taísa Busaranho; Galdino-Pitta, Marina Rocha; Pitta, Ivan Rocha; Peccinini, Rosângela Gonçalves; Pontarolo, Roberto
2018-06-01
Thiazolidinediones (TZDs) are drugs used to treat type 2 diabetes mellitus; however, several safety concerns remain regarding the available drugs in this class. Therefore, the search for new TZD candidates is ongoing; metabolism studies play a crucial step in the development of new candidates. Pioglitazone, one of the most commonly used TZDs, and GQ-11, a new N -substituted TZD, were investigated in terms of their metabolic activity in rat and human liver microsomes to assess their metabolic stability and investigate their metabolites. Methods for preparation of samples were based on liquid-liquid extraction and protein precipitation. Quantitation was performed using liquid chromatography (LC)-tandem mass spectrometry, and the metabolite investigation was performed using ultraperformance LC coupled to a hybrid quadrupole-time of flight mass spectrometer. The predicted intrinsic clearance of GQ-11 was 70.3 and 46.1 ml/kg per minute for rats and humans, respectively. The predicted intrinsic clearance of pioglitazone was 24.1 and 15.9 ml/kg per minute for rats and humans, respectively. The pioglitazone metabolite investigation revealed two unpublished metabolites (M-D and M-A). M-A is a hydration product and may be related to the mechanism of ring opening and the toxicity of pioglitazone. The metabolites of GQ-11 are products of oxidation; no ring-opening metabolite was observed for GQ-11. In conclusion, under the same experimental conditions, a ring-opening metabolite was observed only for pioglitazone. The resistance of GQ-11 to the ring opening is probably related to N -substitution in the TZD ring. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.
Superconducting YBa2Cu3O7- δ Thin Film Detectors for Picosecond THz Pulses
NASA Astrophysics Data System (ADS)
Probst, P.; Scheuring, A.; Hofherr, M.; Wünsch, S.; Il'in, K.; Semenov, A.; Hübers, H.-W.; Judin, V.; Müller, A.-S.; Hänisch, J.; Holzapfel, B.; Siegel, M.
2012-06-01
Ultra-fast THz detectors from superconducting YBa2Cu3O7- δ (YBCO) thin films were developed to monitor picosecond THz pulses. YBCO thin films were optimized by the introduction of CeO2 and PrBaCuO buffer layers. The transition temperature of 10 nm thick films reaches 79 K. A 15 nm thick YBCO microbridge (transition temperature—83 K, critical current density at 77 K—2.4 MA/cm2) embedded in a planar log-spiral antenna was used to detect pulsed THz radiation of the ANKA storage ring. First time resolved measurements of the multi-bunch filling pattern are presented.
NASA Astrophysics Data System (ADS)
Sun, Yan-Hui; Liu, Shan; Zhou, Feng-Chen; Nan, Jun-Min
2016-12-01
Core-shell nano-ring α-Fe2O3@Carbon (CSNR) composites with different carbon content (CSNR-5%C and CSNR-13%C) are synthesized using a hydrothermal method by controlling different amounts of glucose and α-Fe2O3 nano-rings with further annealing. The CSNR electrodes exhibit much improved specific capacity, cycling stability and rate capability compared with that of bare nano-ring α-Fe2O3 (BNR), which is attributed to the core-shell nano-ring structure of CSNR. The carbon shell in the inner and outer surface of CSNR composite can increase electron conductivity of the electrode and inhibit the volume change of α-Fe2O3 during discharge/charge processes, and the nano-ring structure of CSNR can buffer the volume change too. The CSNR-5%C electrode shows super high initial discharge/charge capacities of 1570/1220 mAh g-1 and retains 920/897 mAh g-1 after 200 cycles at 500 mA g-1 (0.5C). Even at 2000 mA g-1 (2C), the electrode delivers the initial capacities of 1400/900 mAh g-1, and still maintains 630/610 mAh g-1 after 200 cycles. The core-shell nano-rings opened during cycling and rebuilt a new flower-like structure consisting of α-Fe2O3@Carbon nano-sheets. The space among the nano-sheet networks can further buffer the volume expansion of α-Fe2O3 and facilitate the transportation of electrons and Li+ ions during the charge/discharge processes, which increases the capacity and rate capability of the electrode. It is the first time that the evolution of core-shell α-Fe2O3@Carbon changing to flower-like networks during lithiation/de-lithiation has been reported.
Distinct agonist responsibilities of the first and second branches of mouse mesenteric artery.
Nobe, Koji; Hagiwara, Chiharu; Nezu, Yumiko; Honda, Kazuo
2006-03-01
The mesenteric artery (MA) is suitable for consideration as a typical micro-resistant artery for examination of arteriosclerosis. The MA is comprised of the first (MA1), second (MA2), and additional fine structural branches; however, differences in terms of responsibilities of these branches have not been assessed. The objective of this study was to differentiate contractile responses in the MAs of mice. MA2 rings (100 microm diameter, 1 mm length) displayed maximal force development (846.8 +/- 55.6 microN; n = 5) upon stimulation with 50 mM KCl under 400 microN resting tension. However, both MA1 and aorta required resting tension exceeding 600 microN. Treatment of MA2 with phenylephrine (PE; 10 microM), norepinephrine (NE; 10 microM), thromboxane A(2) (analog U46619; 100 nM), or prostaglandin F(2a) (PG; 10 microM) induced sustained contractions. Responses were 1507.8 +/- 88.8, 1543 + 5 +/- 149.6, 2088.6 +/- 151.6, and 1441.9 +/- 103.6 microN (n = 7), respectively. These values were markedly larger than those of the KCl-induced response. In MA1 and aorta, PE-induced and NE-induced responses were indistinct from the KCl response. This investigation revealed that MA1 exhibits responsibilities similar to those of the aorta, whereas MA2 possesses distinct responsibilities. MA2 might serve as a micro-resistant artery model.
Relationship between the Porco, Bolivia, Ag-Zn-Pb-Sn deposit and the Porco Caldera
Cunningham, C.G.
1994-01-01
The Porco Ag-Zn-Pb-Sn deposit, a major Ag producer in the 16th century and currently the major Zn producer in Bolivia, consists of a swarm of fissure-filling veins in the newly recognized Porco caldera. The caldera measures 5 km by 3 km and formed in response to the eruption of the 12 Ma crystal-rich dacitic Porco Tuff. The mineralization is associated with, and is probably genetically related to, the 8.6 Ma Huayna Porco stock. The Porco deposit consists of steeply dipping irregular and curvilinear veins that cut the intracaldera Porco Tuff about 1 km east of the Huayna Porco stock. Most of the veins are aligned along the structural margin (ring fracture) of the caldera. The ore deposit is zoned around the Huayna Porco stock. The primary Ag minerals are most abundant in the upper parts of the viens. Fluid inclusions in sphalerite stalactites have homogenization temperatures of about 225??C and salinities of about 8 wt% NaCl equiv. The stalactites and the presence of sparse vapor-rich inclusions suggest deposition of sphalerite under boiling conditions. -from Authors
On the influence of monochromator thermal deformations on X-ray focusing
Antimonov, M. A.; Khounsary, A. M.; Sandy, A. R.; ...
2016-03-02
A cooled double crystal monochromator system is used on many high heat load X-ray synchrotron radiation beamlines in order to select, by diffraction, a narrow spectrum of the beam. Thermal deformation of the first crystal monochromator – and the potential loss of beam brightness – is often a concern. However, if downstream beam focusing is planned, the lensing effect of the monochromator must be considered even if thermal deformations are small. In this paper we report on recent experiments at an Advanced Photon Source (APS) beamline that focuses the X-ray beam using compound refractive lenses downstream of an X-ray monochromatormore » system. Increasing the X-ray beam power by increasing the storage ring current from 100 mA to 130 mA resulted in an effective doubling of the focal distance. We show quantitatively that this is due to a lensing effect of the distorted monochromator that results in the creation of a virtual source downstream of the actual source. Lastly, an analysis of the defocusing and options to mitigate this effect are explored.« less
The Construction of the Siam Photon Laboratory and Its Ripple Effects
NASA Astrophysics Data System (ADS)
Ishii, Takehiko
2004-03-01
The Siam Photon Laboratory of the National Synchrotron Research Center(NSRC) is a synchrotron radiation research facility built for promoting the scientific and technological research activity of the country and enhancing the human resources development. The accelerator complex was originally owned by the SORTEC Laboratory in Tsukuba and transferred to NSRC gratis. The storage ring design was renewed and the construction of the whole accelerator complex with the reformed storage ring was completed two years ago. In the course of the construction, we found many problems distinctive of second hand machines. The maximum stored current and the beam lifetime at present are 210mA and 6hr at 100mA, respectively. One beam line for photoemission experiments has been opened to outside users. First experimental studies made on Ni(111) by our staff members has been completed. Since the project started from scratch, NSRC was asked to carry out all work necessary for opening the facility to outside users, The work includes collecting users and setting up the users organization. In industrial applications, for instance, we have to find either some government or private sectors who are interested in the fundamantal technological research using synchrotorn radiation. Then, the training of users from the relevant organizations will start. After the establishment of the Siam Photon Laboratory, the trend of the promotion of pertinent research has increased. More fundamental human resources development including the graduate school education is underway around the Siam Photon Laboratory. The growth of enterprises as a part of the infrastructure is slow but steady.
Acid-Catalyzed Degradation of Poly(2-Butyl-1,3,6-Trioxocane)
1986-01-10
was not studied. The "detailed investigation of ring formation by Illuminati and his coworkers" " show that formation of 8-membered rings is highly...with oxygen atom lowers the strain. Thus a trioxocane should be less destabilized relative 11 linear polymer than is cyclooctane. Illuminati et al...I, 1. 4, tw 29 11. G. Illuminati and L. Mandolini, Acct. Chem. Res. ,14. 95. 12. M.A. Casadel, C. Galli and L. Mandolini, 4, . hem. Soc. i123, 10.6
Development of an Inflatable Head/Neck Restraint System for Ejection Seats (Update)
1978-12-19
REPORT NO. NADC-78213-60 DEVELOPMENT OF AN INFLATABLE HEAD /NECK RESTRAINT SYSTEM FOR EJECTION SEATS (UPD ATE) Thomas J. Zenobi Aircraft and Crew...olde if necsesey anid dentlif hr bl0ck ma11,0s.) t Inflatable neck collar Inflatable neck ring Neck injury Head rotation ý2 .AeSSRACT (Continus on...toenes side It nec~essary mod identl)_* by block naob..) F1 A ring-shaped inflatable head /neck restraint system for ejection seats is be- ing developed at
Yun, Ruida; Sthalekar, Chirag; Joyner, Valencia M
2011-01-01
This paper presents the design and measurement results of two avalanche photodiode structures (APDs) and a novel frequency-mixing transimpedance amplifier (TIA), which are key building blocks towards a monolithically integrated optical sensor front end for near-infrared (NIR) spectroscopy applications. Two different APD structures are fabricated in an unmodified 0.18 \\im CMOS process, one with a shallow trench isolation (STI) guard ring and the other with a P-well guard ring. The APDs are characterized in linear mode. The STI bounded APD demonstrates better performance and exhibits 3.78 A/W responsivity at a wavelength of 690 nm and bias voltage of 10.55 V. The frequency-mixing TIA (FM-TIA) employs a T-feedback network incorporating gate-controlled transistors for resistance modulation, enabling the simultaneous down-conversion and amplification of the high frequency modulated photodiode (PD) current. The TIA achieves 92 dS Ω conversion gain with 0.5 V modulating voltage. The measured IIP(3) is 10.6/M. The amplifier together with the 50 Ω output buffer draws 23 mA from a1.8 V power supply.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zisman, M.S.
An investigation of collective effects has been undertaken to assess the possibilities for using the low emittance operating mode of the PEP storage ring as a dedicated source of synchrotron radiation. Beam current limitations associated with longitudinal and transverse instabilities, and the expected emittance growth due to intrabeam scattering have been studied as a function of beam energy. Calculations of the beam lifetime due to Touschek and gas scattering are presented, and the growth times of coupled-bunch instabilities are estimated. In general, the results are encouraging, and no fundamental problems have been uncovered. It appears that beam currents up tomore » about 10 mA per bunch should be achievable, and that the emittance growth is not a severe problem at an energy of about 8 GeV. A feedback system to deal with coupled-bunch instabilities is likely to be required. 7 refs., 13 figs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kessel, C. E.; Poli, F. M.
2014-03-04
The conservative physics and conservative technology tokamak power plant ARIES-ACT2 has a major radius of 9.75 m at aspect ratio of 4.0, strong shaping with elongation of 2.2 and triangularity of 0.63. The no wall βN reaches ~ 2.4, limited by n=1 external kink mode, and can be extended to 3.2 with a stabilizing shell behind the ring structure shield. The bootstrap current fraction is 77% with a q95 of 8.0, requiring about ~ 4.0 MA of external current drive. This current is supplied with 30 MW of ICRF/FW and 80 MW of negative ion NB. Up to 1.0 MAmore » can be driven with LH with no wall, and 1.5 or more MA can be driven with a stabilizing shell. EC was examined and is most effective for safety factor control over ρ ~ 0.2-0.6 with 20 MW. The pedestal density is ~ 0.65x10 20/m 3 and the temperature is ~ 9.0 keV. The H98 factor is 1.25, n/n Gr = 1.3, and the net power to LH threshold power is 1.3-1.4 in the flattop. Due to the high toroidal field and high central temperature the cyclotron radiation loss was found to be high depending on the first wall reflectivity.« less
Zhao, H.; Li, X.; Baker, D. N.; ...
2016-04-16
Based on comprehensive measurements from Helium, Oxygen, Proton, and Electron Mass Spectrometer Ion Spectrometer, Relativistic Electron-Proton Telescope, and Radiation Belt Storm Probes Ion Composition Experiment instruments on the Van Allen Probes, comparative studies of ring current electrons and ions are performed and the role of energetic electrons in the ring current dynamics is investigated. The deep injections of tens to hundreds of keV electrons and tens of keV protons into the inner magnetosphere occur frequently; after the injections the electrons decay slowly in the inner belt but protons in the low L region decay very fast. Intriguing similarities between lowermore » energy protons and higher-energy electrons are also found. The evolution of ring current electron and ion energy densities and energy content are examined in detail during two geomagnetic storms, one moderate and one intense. Here, the results show that the contribution of ring current electrons to the ring current energy content is much smaller than that of ring current ions (up to ~12% for the moderate storm and ~7% for the intense storm), and <35 keV electrons dominate the ring current electron energy content at the storm main phases. Though the electron energy content is usually much smaller than that of ions, the enhancement of ring current electron energy content during the moderate storm can get to ~30% of that of ring current ions, indicating a more dynamic feature of ring current electrons and important role of electrons in the ring current buildup. Lastly, the ring current electron energy density is also shown to be higher at midnight and dawn while lower at noon and dusk.« less
Quantum control of coherent π -electron ring currents in polycyclic aromatic hydrocarbons
NASA Astrophysics Data System (ADS)
Mineo, Hirobumi; Fujimura, Yuichi
2017-12-01
We present results for quantum optimal control (QOC) of the coherent π electron ring currents in polycyclic aromatic hydrocarbons (PAHs). Since PAHs consist of a number of condensed benzene rings, in principle, there exist various coherent ring patterns. These include the ring current localized to a designated benzene ring, the perimeter ring current that flows along the edge of the PAH, and the middle ring current of PAHs having an odd number of benzene rings such as anthracene. In the present QOC treatment, the best target wavefunction for generation of the ring current through a designated path is determined by a Lagrange multiplier method. The target function is integrated into the ordinary QOC theory. To demonstrate the applicability of the QOC procedure, we took naphthalene and anthracene as the simplest examples of linear PAHs. The mechanisms of ring current generation were clarified by analyzing the temporal evolutions of the electronic excited states after coherent excitation by UV pulses or (UV+IR) pulses as well as those of electric fields of the optimal laser pulses. Time-dependent simulations of the perimeter ring current and middle ring current of anthracene, which are induced by analytical electric fields of UV pulsed lasers, were performed to reproduce the QOC results.
Ring complexes and related rocks in Africa
NASA Astrophysics Data System (ADS)
Vail, J. R.
Over 625 igneous complexes throughout Africa and Arabia have been selected and classified on the basis of petrographic association and chronology into six broad age groups forming 29 provinces. The groups range from Mid-Proterozoic to Tertiary and include gabbro, granite, syenite, foid syenite and carbonatite plutonic rocks, the majority in the form of ring-dykes, cone-sheets, plugs, circular intrusions, and their associated extrusive phases. Pan-African late or post-orogenic complexes (720-490 Ma) are common in the Arabian-Nubian and Tuareg shields of north Africa originating from subduction zone derived magmatism. Anorogenic complexes in Egypt, NE and central Sudan, Niger, Nigeria, Cameroon, Zaïre-Burundi, Malawi, Mozambique, Zimbabwe, Namibia and Angola span 550 to 50 Ma and are dominantly alkali granites and foid syenites. Many groups occur as en-echelon bands within linear arrays, and show migrating centres of intrusion in variable directions. In W. Africa there was a progressive shift of emplacement southwards during early Ordovician to Mid-Cretaceous times. Distribution patterns suggest thatdeep seated features, such as shear zones associated with lithospheric plate movements,controlled melting, and the resultant location of the complexes. Economic mineralization is not widespread in the rocks of the African ring complexes and is mainly restricted to small deposits of Sn, W, F, U and Nb.
Magnetic Field Observations of Partial Ring Current during Storm Recovery Phase
NASA Technical Reports Server (NTRS)
Le, Guan; Russell, C. T.; Slavin, J. A.; Lucek, E. A.
2007-01-01
We present results of an extensive survey of the magnetic field observations in the inner magnetosphere using 30 years of magnetospheric magnetic field data from Polar, Cluster, ISEE, and AMPTE/CCE missions. The purpose of this study is to understand the magnetic field evolution during the recovery phase of geomagnetic storms, and its implication to the ring current recovery and loss mechanisms of ring current particles. Our previous work on global ring current distribution [Le et al., 2004] has shown that a significant partial ring current is always present at all Dst levels (regardless of storm phases) even for quiet time ring current. The total current carried by the partial ring current is much stronger than (during stormtime) or at least comparable to (during quiet time) the symmetric ring current. It is now commonly believed that a strong partial ring current is formed during the storm main phase due to the enhanced earthward convection of energetic ions from nightside plasma sheet. But the presence of a strong partial ring current throughout the recovery phase remains controversial. The magnetic field generated by the ring current inflates the inner magnetosphere and causes magnetic field depressions in the equatorial magnetosphere. During the storm recovery phase, we find that the distribution of the equatorial magnetic field depression exhibits similar local time dependence as the ring current distribution obtained from the combined dataset in the earlier study. It shows that a strong partial ring current is a permanent feature throughout the recovery phase. In the early recovery phase, the partial ring current peaks near the dusk terminator as indicated by the peak of the magnetic field depression. As the recovery phase progresses, the partial ring current decays most quickly near the dusk and results in a dusk-to-midnight moving of the peak of the partial ring current. Thus the loss mechanisms work most effectively near the dusk. The magnetic field depression increases the gyroradius of ring current protons to a scale greater or comparable to the thickness of the magnetopause, which increases the chance of ion drift loss near the dusk magnetopause at larger L-shell (L>5). But the drift loss mechanism alone cannot explain the loss of ring current ions especially in the smaller L-shell (L<5). The precipitation loss due to wave-particle interaction is most likely the dominant loss mechanism in the small L-shell as it works most effectively at the same local time.
DeMonte, Tim P; Wang, Dinghui; Ma, Weijing; Gao, Jia-Hong; Joy, Michael L G
2009-01-01
Current density imaging (CDI) is a magnetic resonance imaging (MRI) technique used to quantitatively measure current density vectors throughout the volume of an object/subject placed in the MRI system. Electrical current pulses are applied externally to the object/subject and are synchronized with the MRI sequence. In this work, CDI is used to measure average current density magnitude in the torso region of an in-vivo piglet for applied current pulse amplitudes ranging from 10 mA to 110 mA. The relationship between applied current amplitude and current density magnitude is linear in simple electronic elements such as wires and resistors; however, this relationship may not be linear in living tissue. An understanding of this relationship is useful for research in defibrillation, human electro-muscular incapacitation (e.g. TASER(R)) and other bioelectric stimulation devices. This work will show that the current amplitude to current density magnitude relationship is slightly nonlinear in living tissue in the range of 10 mA to 110 mA.
Absorbed dose-to-water protocol applied to synchrotron-generated x-rays at very high dose rates
NASA Astrophysics Data System (ADS)
Fournier, P.; Crosbie, J. C.; Cornelius, I.; Berkvens, P.; Donzelli, M.; Clavel, A. H.; Rosenfeld, A. B.; Petasecca, M.; Lerch, M. L. F.; Bräuer-Krisch, E.
2016-07-01
Microbeam radiation therapy (MRT) is a new radiation treatment modality in the pre-clinical stage of development at the ID17 Biomedical Beamline of the European synchrotron radiation facility (ESRF) in Grenoble, France. MRT exploits the dose volume effect that is made possible through the spatial fractionation of the high dose rate synchrotron-generated x-ray beam into an array of microbeams. As an important step towards the development of a dosimetry protocol for MRT, we have applied the International Atomic Energy Agency’s TRS 398 absorbed dose-to-water protocol to the synchrotron x-ray beam in the case of the broad beam irradiation geometry (i.e. prior to spatial fractionation into microbeams). The very high dose rates observed here mean the ion recombination correction factor, k s , is the most challenging to quantify of all the necessary corrections to apply for ionization chamber based absolute dosimetry. In the course of this study, we have developed a new method, the so called ‘current ramping’ method, to determine k s for the specific irradiation and filtering conditions typically utilized throughout the development of MRT. Using the new approach we deduced an ion recombination correction factor of 1.047 for the maximum ESRF storage ring current (200 mA) under typical beam spectral filtering conditions in MRT. MRT trials are currently underway with veterinary patients at the ESRF that require additional filtering, and we have estimated a correction factor of 1.025 for these filtration conditions for the same ESRF storage ring current. The protocol described herein provides reference dosimetry data for the associated Treatment Planning System utilized in the current veterinary trials and anticipated future human clinical trials.
The Magnetic and Shielding Effects of Ring Current on Radiation Belt Dynamics
NASA Technical Reports Server (NTRS)
Fok, Mei-Ching
2012-01-01
The ring current plays many key roles in controlling magnetospheric dynamics. A well-known example is the magnetic depression produced by the ring current, which alters the drift paths of radiation belt electrons and may cause significant electron flux dropout. Little attention is paid to the ring current shielding effect on radiation belt dynamics. A recent simulation study that combines the Comprehensive Ring Current Model (CRCM) with the Radiation Belt Environment (RBE) model has revealed that the ring current-associated shielding field directly and/or indirectly weakens the relativistic electron flux increase during magnetic storms. In this talk, we will discuss how ring current magnetic field and electric shielding moderate the radiation belt enhancement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsalafoutas, Ioannis A.; Varsamidis, Athanasios; Thalassinou, Stella
Purpose: To investigate the utility of the nested polymethylacrylate (PMMA) phantom (which is available in many CT facilities for CTDI measurements), as a tool for the presentation and comparison of the ways that two different CT automatic exposure control (AEC) systems respond to a phantom when various scan parameters and AEC protocols are modified.Methods: By offsetting the two phantom's components (the head phantom and the body ring) half-way along their longitudinal axis, a phantom with three sections of different x-ray attenuation was created. Scan projection radiographs (SPRs) and helical scans of the three-section phantom were performed on a Toshiba Aquilionmore » 64 and a Philips Brilliance 64 CT scanners, with different scan parameter selections [scan direction, pitch factor, slice thickness, and reconstruction interval (ST/RI), AEC protocol, and tube potential used for the SPRs]. The dose length product (DLP) values of each scan were recorded and the tube current (mA) values of the reconstructed CT images were plotted against the respective Z-axis positions on the phantom. Furthermore, measurements of the noise levels at the center of each phantom section were performed to assess the impact of mA modulation on image quality.Results: The mA modulation patterns of the two CT scanners were very dissimilar. The mA variations were more pronounced for Aquilion 64, where changes in any of the aforementioned scan parameters affected both the mA modulations curves and DLP values. However, the noise levels were affected only by changes in pitch, ST/RI, and AEC protocol selections. For Brilliance 64, changes in pitch affected the mA modulation curves but not the DLP values, whereas only AEC protocol and SPR tube potential selection variations affected both the mA modulation curves and DLP values. The noise levels increased for smaller ST/RI, larger weight category AEC protocol, and larger SPR tube potential selection.Conclusions: The nested PMMA dosimetry phantom can be effectively utilized for the comprehension of CT AEC systems performance and the way that different scan conditions affect the mA modulation patterns, DLP values, and image noise. However, in depth analysis of the reasons why these two systems exhibited such different behaviors in response to the same phantom requires further investigation which is beyond the scope of this study.« less
Geophysical characterization of the Chicxulub impact structure
NASA Astrophysics Data System (ADS)
Gulick, S. P.; Christeson, G. L.; Barton, P. J.; Grieve, R. A.; Morgan, J. V.; Fucugauchi, J. U.
2013-05-01
The Chicxulub impact structure, conclusively linked to the 65.5 Ma mass extinction, includes three sets of inward dipping, ring faults, between 70 and 130 km radially with a topographically elevated inner rim, at the inner edge of these faults except in the northeast where such a rim is absent. Slump blocks offset by large faults result in a terrace zone, that steps down from the inner rim into the annular trough. The inner blocks underlie the peak ring --an internal topographic ring of topography that exhibits variable relief due to target asymmetries and bounds the coherent melt sheet within the central basin. Impact breccias lie within the annular trough above the slump blocks and proximal ejecta and within the central basin above the melt sheet. Beneath the melt sheet is the top of the central uplift, displaced by >10 km vertically, and an upwarped Moho, displaced by 1-2 km. These interpretations and hydrocode models support the following working hypothesis for the formation of Chicxulub: a 50 km radius transient cavity, lined with melt and impact breccia, formed within 10s of seconds of the 65.5 Ma impact and within minutes, weakened rebounding crust rose above kilometers above the surface, the transient crater rim underwent localized, brittle deformation and collapsed into large slump blocks resulting in a inner rim being preserved 70-85 km from crater center, and ring faults forming farther outwards. The overheightened central uplift of weakened crust collapsed outwards forming the peak ring, and buried the inner slump blocks. Most impact melt that lined the transient cavity was transported on top of the central uplift, ultimately emplaced as a coherent <3-km thick melt sheet that shallows within the inner regions of the peak ring. Smaller pockets of melt flowed into the annular trough. During and likely for sometime after these events, slope collapse, proximal ejecta, ground surge, and tsunami waves infilled the annular trough with sediments up to 3 km thick and the central basin with sediments up to 900 m thick. Testing this working hypothesis requires direct observation and measurements on the impact materials, especially within and adjacent to the peak ring and central basin.
NSLS-II storage ring insertion device and front-end commissioning and operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, G., E-mail: gwang@bnl.gov; Shaftan, T.; Amundsen, C.
The National Synchrotron Light Source II (NSLS-II) is a state of the art 3 GeV third generation light source at Brookhaven National Laboratory. During spring/ summer of 2014, the storage ring was commissioned up to 50 mA without insertion devices. In the fall of 2014, we began commissioning of the project beamlines, which included seven insertion devices on six ID ports. Beamlines IXS, HXN, CSX-1, CSX-2, CHX, SRX, and XPD-1 consist of elliptically polarized undulator (EPU), damping wigglers (DW) and in-vacuum undulators (IVU) covering from VUV to hard x-ray range. In this paper, experience with commissioning and operation is discussed.more » We focus on reaching storage ring performance with IDs, including injection, design emittance, compensation of orbit distortions caused by ID residual field, source point stability, beam alignment and tools for control, monitoring and protection of the ring chambers from ID radiation.« less
Application of long-circulating liposomes to cancer photodynamic therapy.
Oku, N; Saito, N; Namba, Y; Tsukada, H; Dolphin, D; Okada, S
1997-06-01
Photodynamic therapy (PDT) as a cancer treatment is notable for its quite low side effects in comparison with those of chemotherapy and radiotherapy. However, the accumulation of porphyrin derivatives used in PDT into tumor tissues is rather low. Since long-circulating liposomes are known to accumulate passively into tumor tissues, we liposomalized a porphyrin derivative, benzoporphyrin derivative monoacid ring A (BPD-MA), and used these liposomes to investigate the usefulness of PDT for tumor-bearing mice. BPD-MA was liposomalized into glucuronate-modified liposomes, which are known to be long-circulating. These liposomes were injected i.v. into Balb/c mice bearing Meth A sarcoma, and tumor regression and survival time were monitored after irradiation with laser light. Tumor regression and complete curing of tumor (80% cure rate by the treatment with 6 mg/kg BPD-MA) were observed when long circulating liposomalized BPD-MA was injected and laser-irradiated. In contrast, only a 20% cure rate was obtained when the animals were treated with BPD-MA solution or BPD-MA entrapped in conventional liposomes. These results suggest that a long-circulating liposomal formulation of photo-sensitive agents is useful for PDT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, H.; Li, X.; Baker, D. N.
Based on comprehensive measurements from Helium, Oxygen, Proton, and Electron Mass Spectrometer Ion Spectrometer, Relativistic Electron-Proton Telescope, and Radiation Belt Storm Probes Ion Composition Experiment instruments on the Van Allen Probes, comparative studies of ring current electrons and ions are performed and the role of energetic electrons in the ring current dynamics is investigated. The deep injections of tens to hundreds of keV electrons and tens of keV protons into the inner magnetosphere occur frequently; after the injections the electrons decay slowly in the inner belt but protons in the low L region decay very fast. Intriguing similarities between lowermore » energy protons and higher-energy electrons are also found. The evolution of ring current electron and ion energy densities and energy content are examined in detail during two geomagnetic storms, one moderate and one intense. Here, the results show that the contribution of ring current electrons to the ring current energy content is much smaller than that of ring current ions (up to ~12% for the moderate storm and ~7% for the intense storm), and <35 keV electrons dominate the ring current electron energy content at the storm main phases. Though the electron energy content is usually much smaller than that of ions, the enhancement of ring current electron energy content during the moderate storm can get to ~30% of that of ring current ions, indicating a more dynamic feature of ring current electrons and important role of electrons in the ring current buildup. Lastly, the ring current electron energy density is also shown to be higher at midnight and dawn while lower at noon and dusk.« less
The earth's ring current - Present situation and future thrusts
NASA Technical Reports Server (NTRS)
Williams, D. J.
1987-01-01
Particle distributions, currents, and the ring current situation prior to the August 1984 launch of the AMPTE Charge Composition Explorer (CCE) are discussed. CCE results which demonstrate the capability of these new measurements to pursue questions of ring current sources, energization, and transport are presented. Consideration is given to various ring current generation mechanisms which have been discussed in the literature, and a two-step generation process which to a certain extent unifies the previous mechanisms is presented. The first in-situ global observations of ring current decay as obtained through the detection of energetic neutral atoms generated by charge exchange interactions between the ring current and hydrogen geocorona are discussed, as well as the possibility of using the detection of energetic neutral atoms to obtain global images of the earth's ring current.
National synchrotron light source. Activity report, October 1, 1995--September 30, 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rothman, E.Z.; Hastings, J.B.
1997-05-01
The hard work done by the synchrotron radiation community, in collaboration with all those using large-scale central facilities during 1995, paid off in FY 1996 through the DOE`s Presidential Scientific Facilities Initiative. In comparison with the other DOE synchrotron radiation facilities, the National Synchrotron Light Source benefited least in operating budgets because it was unable to increase running time beyond 100%-nevertheless, the number of station hours was maintained. The major thrust at Brookhaven came from a 15% increase in budget which allowed the recruitment of seven staff in the beamlines support group and permitted a step increment in the fundingmore » of the extremely long list of upgrades; both to the sources and to the beamlines. During the December 1995 shutdown, the VUV Ring quadrant around U10-U12 was totally reconstructed. New front ends, enabling apertures up to 90 mrad on U10 and U12, were installed. During the year new PRTs were in formation for the infrared beamlines, encouraged by the investment the lab was able to commit from the initiative funds and by awards from the Scientific Facilities Initiative. A new PRT, specifically for small and wide angle x-ray scattering from polymers, will start work on X27C in FY 1997 and existing PRTs on X26C and X9B working on macromolecular crystallography will be joined by new members. Plans to replace aging radio frequency cavities by an improved design, originally a painfully slow six or eight year project, were brought forward so that the first pair of cavities (half of the project for the X-Ray Ring) will now be installed in FY 1997. Current upgrades to 350 mA initially and to 438 mA later in the X-Ray Ring were set aside due to lack of funds for the necessary thermally robust beryllium windows. The Scientific Facilities Initiative allowed purchase of all 34 windows in FY 1996 so that the power upgrade will be achieved in FY 1997.« less
Space Weather Effects Produced by the Ring Current Particles
NASA Astrophysics Data System (ADS)
Ganushkina, Natalia; Jaynes, Allison; Liemohn, Michael
2017-11-01
One of the definitions of space weather describes it as the time-varying space environment that may be hazardous to technological systems in space and/or on the ground and/or endanger human health or life. The ring current has its contributions to space weather effects, both in terms of particles, ions and electrons, which constitute it, and magnetic and electric fields produced and modified by it at the ground and in space. We address the main aspects of the space weather effects from the ring current starting with brief review of ring current discovery and physical processes and the Dst-index and predictions of the ring current and storm occurrence based on it. Special attention is paid to the effects on satellites produced by the ring current electrons. The ring current is responsible for several processes in the other inner magnetosphere populations, such as the plasmasphere and radiation belts which is also described. Finally, we discuss the ring current influence on the ionosphere and the generation of geomagnetically induced currents (GIC).
Memory characteristics of ring-shaped ceramic superconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takeoka, A.; Hasunuma, M.; Sakaiya, S.
1989-03-01
For the practical application of ceramic superconductors, the authors investigated the residual magnetic field characteristics of ring-shaped ceramic superconductors in a Y-Ba-Cu-O system with high Tc. The residual magnetic field of a ring with asymmetric current paths, supplied by external currents, appeared when one of the branch currents was above the critical current. The residual magnetic field saturated when both brach currents exceeded the critical current of the ring and showed hysteresis-like characteristics. The saturated magnetic field is subject to the critical current of the ring. A superconducting ring with asymmetric current paths suggests a simple and quite new persistent-currentmore » type memory device.« less
Source of polarized ions for the JINR accelerator complex
NASA Astrophysics Data System (ADS)
Belov, A. S.; Donets, D. E.; Fimushkin, V. V.; Kovalenko, A. D.; Kutuzova, L. V.; Prokofichev, Yu V.; Shutov, V. B.; Turbabin, A. V.; Zubets, V. N.
2017-12-01
The JINR atomic beam type polarized ion source is described. Results of tests of the plasma ionizer with a storage cell and of tuning of high frequency transition units are presented. The source was installed in a linac injector hall of NUCLOTRON in May 2016. The source has been commissioned and used in the NUCLOTRON runs in 2016 and February - March 2017. Polarized and unpolarized deuteron beams were produced as well as polarized protons for acceleration in the NUCLOTRON. Polarized deuteron beam with pulsed current up to 2 mA has been produced. Deuteron beam polarization of 0.6-0.9 of theoretical values for different modes of high frequency transition units operation has been measured with the NUCLOTRON ring internal polarimeter for the accelerated deuteron and proton beams.
Shielding calculations for the National Synchrotron Light Source-II experimental beamlines
NASA Astrophysics Data System (ADS)
Job, Panakkal K.; Casey, William R.
2013-01-01
Brookhaven National Laboratory is in the process of building a new Electron storage ring for scientific research using synchrotron radiation. This facility, called the "National Synchrotron Light Source II" (NSLS-II), will provide x-ray radiation of ultra-high brightness and exceptional spatial and energy resolution. It will also provide advanced insertion devices, optics, detectors, and robotics, designed to maximize the scientific output of the facility. The project scope includes the design of an electron storage ring and the experimental beamlines, which stores a maximum of 500 mA electron beam current at an energy of 3.0 GeV. When fully built there will be at least 58 beamlines using synchrotron radiation for experimental programs. It is planned to operate the facility primarily in a top-off mode, thereby maintaining the maximum variation in the synchrotron radiation flux to <1%. Because of the very demanding requirements for synchrotron radiation brilliance for the experiments, each of the 58 beamlines will be unique in terms of the source properties and experimental configuration. This makes the shielding configuration of each of the beamlines unique. The shielding calculation methodology and the results for five representative beamlines of NSLS-II, have been presented in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Champion, Mark S; Dean, Robert A; Galambos, John D
The Proton Power Upgrade Project is underway at the Spallation Neutron Source at Oak Ridge National Labor-atory and will double the proton beam power capability from 1.4 MW to 2.8 MW to provide increased neutron intensity at the first target station and to support future operation of the second target station. This will be ac-complished by increasing the beam energy to 1.3 GeV and the beam current to 38 mA (average during the macropulse). Installation of 28 additional superconduct-ing cavities and their associated technical systems will provide for the energy increase. Increased beam loading throughout the accelerator will be accommodatedmore » primar-ily through the use of existing margin in the RF systems and the installation of 700 kW klystrons to power the new superconducting cavities. Upgrades of a few existing RF stations may also be needed. The injection and ex-traction regions of the accumulator ring will be upgraded, a ring to second target station tunnel stub will be con-structed, and a 2 MW target will be developed for the first target station. The project anticipates attainment of Criti-cal Decision 1 in 2017 to ratify the project conceptual design and cost range.« less
Original Size of the Sudbury Structure: Evidence from Field Investigations and Imaging Radar
NASA Technical Reports Server (NTRS)
Lowmman, Paul D., Jr.
1999-01-01
This paper summarizes results of continuing studies of the original size of the Sudbury impact structure, including imaging radar and field investigations of supposed "Sudbury breccia" north of the Sudbury Igneous Comples (SIC). Imaging radar acquired from Canada Centre for Remote Sensing (CCRS) aircraft, European Space Agency Remote Sensing Satellite (ERS-1), and RADARSAT shows no evidence of outer rings concentric with the North Range. Illumination directions are such that these rings, presumably extension fractures, would be conspicuous by look azimuth highlighting if they existed. Field mapping supports this interpretation, showing that supposed ring fractures occupied by Huronian sediments are essentially synclines older than the 1850 Ma impact and are not related to the impact. Field investigations of "Sudbury breccia" north of the SIC shows that most if not all of it is inside or along contacts with diabase dykes of the Sudbury Swarm (ca. 1238 Ma), and hence is far too young to be related to the impact. A recently-discovered occurrence of "Sudbury breccia" south of the SIC, near Creighton, is similarly associated with a NW-trending diabase dyke cutting the SIC, supporting the post-impact age of the breccia. It is concluded that the original north rim of the Sudbury crater was not more than 5 to 10 km north of the present North Range SIC contact, and that published estimates of the crater size (ca 200 km diameter) are incorrect.
Integration of RAM-SCB into the Space Weather Modeling Framework
Welling, Daniel; Toth, Gabor; Jordanova, Vania Koleva; ...
2018-02-07
We present that numerical simulations of the ring current are a challenging endeavor. They require a large set of inputs, including electric and magnetic fields and plasma sheet fluxes. Because the ring current broadly affects the magnetosphere-ionosphere system, the input set is dependent on the ring current region itself. This makes obtaining a set of inputs that are self-consistent with the ring current difficult. To overcome this challenge, researchers have begun coupling ring current models to global models of the magnetosphere-ionosphere system. This paper describes the coupling between the Ring current Atmosphere interaction Model with Self-Consistent Magnetic field (RAM-SCB) tomore » the models within the Space Weather Modeling Framework. Full details on both previously introduced and new coupling mechanisms are defined. Finally, the impact of self-consistently including the ring current on the magnetosphere-ionosphere system is illustrated via a set of example simulations.« less
Integration of RAM-SCB into the Space Weather Modeling Framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Welling, Daniel; Toth, Gabor; Jordanova, Vania Koleva
We present that numerical simulations of the ring current are a challenging endeavor. They require a large set of inputs, including electric and magnetic fields and plasma sheet fluxes. Because the ring current broadly affects the magnetosphere-ionosphere system, the input set is dependent on the ring current region itself. This makes obtaining a set of inputs that are self-consistent with the ring current difficult. To overcome this challenge, researchers have begun coupling ring current models to global models of the magnetosphere-ionosphere system. This paper describes the coupling between the Ring current Atmosphere interaction Model with Self-Consistent Magnetic field (RAM-SCB) tomore » the models within the Space Weather Modeling Framework. Full details on both previously introduced and new coupling mechanisms are defined. Finally, the impact of self-consistently including the ring current on the magnetosphere-ionosphere system is illustrated via a set of example simulations.« less
Exploring the ring current of carbon nanotubes by first-principles calculations.
Ren, Pengju; Zheng, Anmin; Xiao, Jianping; Pan, Xiulian; Bao, Xinhe
2015-02-01
Ring current is a fundamental concept to understand the nuclear magnetic resonance (NMR) properties and aromaticity for conjugated systems, such as carbon nanotubes (CNTs). Employing the recently developed gauge including projector augmented wave (GIPAW) method, we studied the ring currents of CNTs systematically and visualized their distribution. The ring current patterns are determined by the semiconducting or metallic properties of CNTs. The discrepancy is mainly caused by the axial component of external magnetic fields, whereas the radial component induced ring currents are almost independent of the electronic structures of CNTs, where the intensities of the ring currents are linearly related to the diameters of the CNTs. Although the ring currents induced by the radial component are more intense than those by the axial component, only the latter determines the overall NMR responses and aromaticity of the CNTs as well. Furthermore, the semiconducting CNTs are more aromatic than their metallic counterparts due to the existence of delocalized ring currents on the semiconducting CNTs. These fundamental features are of vital importance for the development of CNT-based nanoelectronics and applications in magnetic fields.
Exploring the ring current of carbon nanotubes by first-principles calculations
Ren, Pengju; Zheng, Anmin; Xiao, Jianping; Pan, Xiulian
2015-01-01
Ring current is a fundamental concept to understand the nuclear magnetic resonance (NMR) properties and aromaticity for conjugated systems, such as carbon nanotubes (CNTs). Employing the recently developed gauge including projector augmented wave (GIPAW) method, we studied the ring currents of CNTs systematically and visualized their distribution. The ring current patterns are determined by the semiconducting or metallic properties of CNTs. The discrepancy is mainly caused by the axial component of external magnetic fields, whereas the radial component induced ring currents are almost independent of the electronic structures of CNTs, where the intensities of the ring currents are linearly related to the diameters of the CNTs. Although the ring currents induced by the radial component are more intense than those by the axial component, only the latter determines the overall NMR responses and aromaticity of the CNTs as well. Furthermore, the semiconducting CNTs are more aromatic than their metallic counterparts due to the existence of delocalized ring currents on the semiconducting CNTs. These fundamental features are of vital importance for the development of CNT-based nanoelectronics and applications in magnetic fields. PMID:29560175
NASA Technical Reports Server (NTRS)
Buzulukova, N.; Fok, M.-C.; Goldstein, J.; Valek, P.; McComas, D. J.; Brandt, P. C.
2010-01-01
We present a comparative study of ring current dynamics during strong and moderate storms. The ring current during the strong storm is studied with IMAGE/HENA data near the solar cycle maximum in 2000. The ring current during the moderate storm is studied using energetic neutral atom (ENA) data from the Two Wide-Angle Imaging Neutral- Atom Spectrometers (TWINS) mission during the solar minimum in 2008. For both storms, the local time distributions of ENA emissions show signatures of postmidnight enhancement (PME) during the main phases. To model the ring current and ENA emissions, we use the Comprehensive Ring Current Model (CRCM). CRCM results show that the main-phase ring current pressure peaks in the premidnight-dusk sector, while the most intense CRCM-simulated ENA emissions show PME signatures. We analyze two factors to explain this difference: the dependence of charge-exchange cross section on energy and pitch angle distributions of ring current. We find that the IMF By effect (twisting of the convection pattern due to By) is not needed to form the PME. Additionally, the PME is more pronounced for the strong storm, although relative shielding and hence electric field skewing is well developed for both events.
NASA Astrophysics Data System (ADS)
Mineo, H.; Lin, S. H.; Fujimura, Y.
2013-02-01
The results of a theoretical investigation of coherent π-electron dynamics for nonplanar (P)-2,2'-biphenol induced by ultrashort linearly polarized UV pulses are presented. Expressions for the time-dependent coherent angular momentum and ring current are derived by using the density matrix method. The time dependence of these coherences is determined by the off-diagonal density matrix element, which can be obtained by solving the coupled equations of motion of the electronic-state density matrix. Dephasing effects on coherent angular momentum and ring current are taken into account within the Markov approximation. The magnitudes of the electronic angular momentum and current are expressed as the sum of expectation values of the corresponding operators in the two phenol rings (L and R rings). Here, L (R) denotes the phenol ring in the left (right)-hand side of (P)-2,2'-biphenol. We define the bond current between the nearest neighbor carbon atoms Ci and Cj as an electric current through a half plane perpendicular to the Ci-Cj bond. The bond current can be expressed in terms of the inter-atomic bond current. The inter-atomic bond current (bond current) depends on the position of the half plane on the bond and has the maximum value at the center. The coherent ring current in each ring is defined by averaging over the bond currents. Since (P)-2,2'-biphenol is nonplanar, the resultant angular momentum is not one-dimensional. Simulations of the time-dependent coherent angular momentum and ring current of (P)-2,2'-biphenol excited by ultrashort linearly polarized UV pulses are carried out using the molecular parameters obtained by the time-dependent density functional theory (TD-DFT) method. Oscillatory behaviors in the time-dependent angular momentum (ring current), which can be called angular momentum (ring current) quantum beats, are classified by the symmetry of the coherent state, symmetric or antisymmetric. The bond current of the bridge bond linking the L and R rings is zero for the symmetric coherent state, while it is nonzero for the antisymmetric coherent state. The magnitudes of ring current and ring current-induced magnetic field are also evaluated, and their possibility as a control parameter in ultrafast switching devices is discussed. The present results give a detailed description of the theoretical treatment reported in our previous paper [H. Mineo, M. Yamaki, Y. Teranish, M. Hayashi, S. H. Lin, and Y. Fujimura, J. Am. Chem. Soc. 134, 14279 (2012), 10.1021/ja3047848].
Mineo, H; Lin, S H; Fujimura, Y
2013-02-21
The results of a theoretical investigation of coherent π-electron dynamics for nonplanar (P)-2,2'-biphenol induced by ultrashort linearly polarized UV pulses are presented. Expressions for the time-dependent coherent angular momentum and ring current are derived by using the density matrix method. The time dependence of these coherences is determined by the off-diagonal density matrix element, which can be obtained by solving the coupled equations of motion of the electronic-state density matrix. Dephasing effects on coherent angular momentum and ring current are taken into account within the Markov approximation. The magnitudes of the electronic angular momentum and current are expressed as the sum of expectation values of the corresponding operators in the two phenol rings (L and R rings). Here, L (R) denotes the phenol ring in the left (right)-hand side of (P)-2,2'-biphenol. We define the bond current between the nearest neighbor carbon atoms Ci and Cj as an electric current through a half plane perpendicular to the Ci-Cj bond. The bond current can be expressed in terms of the inter-atomic bond current. The inter-atomic bond current (bond current) depends on the position of the half plane on the bond and has the maximum value at the center. The coherent ring current in each ring is defined by averaging over the bond currents. Since (P)-2,2'-biphenol is nonplanar, the resultant angular momentum is not one-dimensional. Simulations of the time-dependent coherent angular momentum and ring current of (P)-2,2'-biphenol excited by ultrashort linearly polarized UV pulses are carried out using the molecular parameters obtained by the time-dependent density functional theory (TD-DFT) method. Oscillatory behaviors in the time-dependent angular momentum (ring current), which can be called angular momentum (ring current) quantum beats, are classified by the symmetry of the coherent state, symmetric or antisymmetric. The bond current of the bridge bond linking the L and R rings is zero for the symmetric coherent state, while it is nonzero for the antisymmetric coherent state. The magnitudes of ring current and ring current-induced magnetic field are also evaluated, and their possibility as a control parameter in ultrafast switching devices is discussed. The present results give a detailed description of the theoretical treatment reported in our previous paper [H. Mineo, M. Yamaki, Y. Teranish, M. Hayashi, S. H. Lin, and Y. Fujimura, J. Am. Chem. Soc. 134, 14279 (2012)].
NASA Astrophysics Data System (ADS)
Mouikis, C.; Bingham, S.; Kistler, L. M.; Farrugia, C. J.; Spence, H. E.; Gkioulidou, M.
2016-12-01
The ring current responds differently to the different solar and interplanetary storm drivers such as coronal mass injections, (CME's), co-rotating interaction regions (CIR's), high-speed streamers and other structures. The resulting changes in the ring current particle pressure change the global magnetic field, which affects the transport of the radiation belts. In order to determine the field changes during a storm, it is necessary to understand the transport, sources and losses of the particles that contribute to the ring current. The source population of the storm time ring current is the night side plasma sheet. We use Van Allen Probes observations to determine the ring current pressure contribution of the convecting plasma sheet H+ and O+ particles in the storm time development of the ring current. We compare storms that are related to different interplanetary drivers, CMEs and CIRs, as observed at different local times. We find that during the storm main phase most of the ring current pressure in the pre-midnight inner magnetosphere is contributed by particles on open drift paths that cause the development of a strong partial ring current that causes most of the main phase Dst drop. These particles can reach as deep as L 2 and their pressure compares to the local magnetic field pressure as deep as L 3. During the recovery phase, if these particles are not lost at the magnetopause, will become trapped and will contribute to the symmetric ring current. However, the largest difference between the CME and CIR ring current responses during the storm main and early recovery phases is caused by how the 15 - 60 keV O+ responds to these drivers.
Magnetic Field Observations of Partial Ring Current during Storm Recovery Phase
NASA Technical Reports Server (NTRS)
Le, G.; Russell, C. T.; Slavin, J. A.; Lucek, E. A.
2008-01-01
We present results of an extensive survey of the magnetic field observations in the inner magnetosphere using 30 years of magnetospheric magnetic field data from Polar, Cluster, ISEE, and AMPTE/CCE missions. The purpose of this study is to understand the magnetic field evolution during the recovery phase of geomagnetic storms, and its implication to the ring current recovery and loss mechanisms of ring current particles. It is now commonly believed that a strong partial ring current is formed during the storm main phase due to the enhanced earthward convection of energetic ions from nightside plasma sheet. But the presence of a strong partial ring current throughout the recovery phase remains controversial. The magnetic field generated by the ring current inflates the inner magnetosphere and causes magnetic field depressions in the equatorial magnetosphere. During the storm recovery phase, we find that the distribution of the equatorial magnetic field depression exhibits similar local time dependence as the ring current distribution obtained from the combined dataset in the earlier study. It shows that a strong partial ring current is a permanent feature throughout the recovery phase. In the early recovery phase, the partial ring current peaks near the dusk terminator as indicated by the peak of the magnetic field depression. As the recovery phase progresses, the partial ring current decays most quickly near the dusk and results in a dusk-to-midnight moving of the peak of the partial ring current. Thus the loss mechanisms work most effectively near the dusk. The magnetic field depression increases the gyroradius of ring current protons to a scale greater or comparable to the thickness of the magnetopause, which increases the chance of ion drift loss near the dusk magnetopause at larger L-shell (L greater than 5). But the drift loss mechanism alone cannot explain the loss of ring current ions especially in the smaller L-shell (L less than 5). The precipitation loss due to wave-particle interaction is most likely the dominant loss mechanism in the small L-shell as it works most effectively at the same local time.
NASA Astrophysics Data System (ADS)
Cousens, B. L.; Henry, C. D.; Pauly, B. D.
2007-12-01
The Lake Tahoe region of the northern Sierra Nevada consists of Mesozoic plutonic rocks blanketed by Mio- Pliocene arc volcanic rocks and locally overlain by < 2.5 Ma post-arc lavas. Several volcanic features along the Lake Tahoe shoreline indicate that magmas commonly erupted into shallow regions of the lake during the last 2.5 Ma, including the Eagle Rock vent (Kortemeier and Schweickert 2007), Tahoe City pillow lavas and palagonite layers, and the Lake Forest tuff ring (Sylvester et al., 2007). Here we report on the age and composition of the rocks at Lake Forest, aiming to identify the source of the volcanic rocks compared to arc and post-arc lavas in the area. The low-relief Lake Forest tuff ring, located on the lakeshore west of Dollar Point, consists of radially outward-dipping layers composed primarily of loosely-cemented angular, microvesicular lava fragments with minor basaltic bombs and a scoria pile at the east end of the exposed ring. Most fragments are poorly phyric, and two samples are andesites similar to post-arc lavas sampled at higher elevations. The bombs are vesicular, poorly olivine/plagioclase-phyric basaltic andesites with chilled margins and glassy matrices. Scoria in the scoria pile, which we tentatively interpret as a slump, are similar texturally to the bombs but are more silica-rich. Chemically, the fragments, bombs and scoria are more primitive (higher Mg number) than local post-arc and arc lavas, and have trace element ratios and normalized incompatible element patterns similar to, but not identical to, local post-arc lava flows. Thus the Lake Forest tuff ring was the product of a shoreline eruptive event and did not form from lavas flowing downslope into the water. The fragments, bombs and scoria each have different radiogenic isotopic compositions and incompatible element ratios, indicating that primary magma compositions varied during the eruption(s) that produced the tuff ring. Our ongoing geochronological analyses will help constrain the timing of magmatism and the formation of Lake Tahoe.
Ring current dynamics and plasma sheet sources. [magnetic storms
NASA Technical Reports Server (NTRS)
Lyons, L. R.
1984-01-01
The source of the energized plasma that forms in geomagnetic storm ring currents, and ring current decay are discussed. The dominant loss processes for ring current ions are identified as charge exchange and resonant interactions with ion-cyclotron waves. Ring current ions are not dominated by protons. At L4 and energies below a few tens of keV, O+ is the most abundant ion, He+ is second, and protons are third. The plasma sheet contributes directly or indirectly to the ring current particle population. An important source of plasma sheet ions is earthward streaming ions on the outer boundary of the plasma sheet. Ion interactions with the current across the geomagnetic tail can account for the formation of this boundary layer. Electron interactions with the current sheet are possibly an important source of plasma sheet electrons.
Sahakyan, Aleksandr B; Vendruscolo, Michele
2013-02-21
Ring current and electric field effects can considerably influence NMR chemical shifts in biomolecules. Understanding such effects is particularly important for the development of accurate mappings between chemical shifts and the structures of nucleic acids. In this work, we first analyzed the Pople and the Haigh-Mallion models in terms of their ability to describe nitrogen base conjugated ring effects. We then created a database (DiBaseRNA) of three-dimensional arrangements of RNA base pairs from X-ray structures, calculated the corresponding chemical shifts via a hybrid density functional theory approach and used the results to parametrize the ring current and electric field effects in RNA bases. Next, we studied the coupling of the electric field and ring current effects for different inter-ring arrangements found in RNA bases using linear model fitting, with joint electric field and ring current, as well as only electric field and only ring current approximations. Taken together, our results provide a characterization of the interdependence of ring current and electric field geometric factors, which is shown to be especially important for the chemical shifts of non-hydrogen atoms in RNA bases.
Sundholm, Dage; Berger, Raphael J F; Fliegl, Heike
2016-06-21
Magnetically induced current susceptibilities and current pathways have been calculated for molecules consisting of two pentalene groups annelated with a benzene (1) or naphthalene (2) moiety. Current strength susceptibilities have been obtained by numerically integrating separately the diatropic and paratropic contributions to the current flow passing planes through chosen bonds of the molecules. The current density calculations provide novel and unambiguous current pathways for the unusual molecules with annelated aromatic and antiaromatic hydrocarbon moieties. The calculations show that the benzene and naphthalene moieties annelated with two pentalene units as in molecules 1 and 2, respectively, are unexpectedly antiaromatic sustaining only a local paratropic ring current around the ring, whereas a weak diatropic current flows around the C-H moiety of the benzene ring. For 1 and 2, the individual five-membered rings of the pentalenes are antiaromatic and a slightly weaker semilocal paratropic current flows around the two pentalene rings. Molecules 1 and 2 do not sustain any net global ring current. The naphthalene moiety of the molecule consisting of a naphthalene annelated with two pentalene units (3) does not sustain any strong ring current that is typical for naphthalene. Instead, half of the diatropic current passing the naphthalene moiety forms a zig-zag pattern along the C-C bonds of the naphthalene moiety that are not shared with the pentalene moieties and one third of the current continues around the whole molecule partially cancelling the very strong paratropic semilocal ring current of the pentalenes. For molecule 3, the pentalene moieties and the individual five-membered rings of the pentalenes are more antiaromatic than for 1 and 2. The calculated current patterns elucidate why the compounds with formally [4n + 2] π-electrons have unusual aromatic properties violating the Hückel π-electron count rule. The current density calculations also provide valuable information for interpreting the measured (1)H NMR spectra.
Tran, Ngoc Tuan; Liu, Han; Jakovlić, Ivan; Wang, Wei-Min
2015-01-01
MyD88 and TRAF6 play an essential role in the innate immune response in most animals. This study reports the full-length MaMyD88 and MaTRAF6 genes identified from the blunt snout bream (Megalobrama amblycephala) transcriptome profile. MaMyD88 is 2501 base pairs (bp) long, encoding a putative protein of 284 amino acids (aa), including the N-terminal DEATH domain of 78 aa and the C-terminal TIR domain of 138 aa. MaTRAF6 is 2252 bp long, encoding a putative protein of 542 aa, including the N-terminal low-complexity region, RING domain (40 aa), a coiled-coil region (64 aa) and C-terminal MATH domain (147 aa). Coding regions of MaMyD88 and MaTRAF6 genomic sequences consisted of five and six exons, respectively. Physicochemical and functional characteristics of the proteins were analysed. Alpha helices were dominant in the secondary structure of the proteins. Homology models of the MaMyD88 and MaTRAF6 domains were constructed applying the comparative modelling method. RT-qPCR was used to analyse the expression of MaMyD88 and MaTRAF6 mRNA transcripts in response to Aeromonas hydrophila challenge. Both genes were highly upregulated in the liver, spleen and kidney during the first 24 h after the challenge. While MyD88 and TRAF6 have been reported in various aquatic species, this is the first report and characterisation of these genes in blunt snout bream. This research also provides evidence of the important roles of these two genes in the blunt snout bream innate immune system. PMID:25830478
Foda, Abd AlRahman M; AbdelAziz, Azza; El-Hawary, Amira K; Hosni, Ali; Zalata, Khalid R; Gado, Asmaa I
2015-08-01
Previous studies have shown conflicting results on epidermal growth factor receptor (EGFR) and E-cadherin expression in colorectal carcinoma and their prognostic significance. To the best of our knowledge, this study is the first to investigate EGFR and E-cadherin expression, interrelation and relation to clinicopathologic, histologic parameters, and survival in rare colorectal mucinous adenocarcinoma (MA). In this study, we studied tumor tissue specimens from 150 patients with colorectal MA and nonmucinous adenocarcinoma (NMA). High-density manual tissue microarrays were constructed using modified mechanical pencil tips technique, and immunohistochemistry for EGFR and E-cadherin was performed. All relations were analyzed using established statistical methodologies. NMA expressed EGFR and E-cadherin in significantly higher rates with significant heterogenous pattern than MA. EGFR and E-cadherin positivity rates were significantly interrelated in both NMA and MA groups. In the NMA group, high EGFR expression was associated with old age, male sex, multiplicity of tumors, lack of mucinous component, and association with schistosomiasis. However, in the MA group, high EGFR expression was associated only with old age and MA subtype rather than signet ring carcinoma subtype. Conversely, high E-cadherin expression in MA cases was associated with old age, fungating tumor configuration, MA subtype, and negative intratumoral lymphocytic response. However, in the NMA cases, none of these factors was statistically significant. In a univariate analysis, neither EGFR nor E-cadherin expression showed a significant impact on disease-free or overall survival. Targeted therapy against EGFR and E-cadherin may not be useful in patients with MA. Neither EGFR nor E-cadherin is an independent prognostic factor in NMA or MA.
Zone-forming fungi experiment MA-147
NASA Technical Reports Server (NTRS)
Rogers, T. D.; Taylor, G. R.; Brower, M. E.
1976-01-01
Streptomyces levoris was used as an experimental microorganism during the Apollo Soyuz Test Project to study specific biological considerations that may be influenced by space flight factors. Preflight, inflight, and postflight growth rates of the cultures were compared by photographing the specimens at regular intervals. Preliminary results based on visual comparison of the photographic data indicate that an increased growth rate occurred during space flight in two of eight flight specimens. The increased growth rate continued in the two specimens during the postflight period until termination of the experiment. Radiation effects may be responsible for the absence of spores in two areas of the last spore ring that was formed during the inflight period in one of the flight cultures; however, the radiation studies related to this experiment have not been completed. Distinct morphological differences in spore rings were observed when postflight spore rings were compared with inflight spore rings. Factors that are related to space flight recovery and reentry into earth gravity may have effected these alterations.
Performance of the LANSCE H^- Source and Low Energy Transport at Higher Peak Current
NASA Astrophysics Data System (ADS)
Pillai, Chandra; Stevens, Ralph; Fitzgerald, Daniel; Garnett, Robert; Ingllas, William; Merrill, Frank; Rybarcyk, Larry; Sander, Oscar
1997-05-01
The Los Alamos Neutron Science Center (LANSCE) 800 MeV linac facility uses a multicusp field, surface ion source to produce H^- beam for delivery to the Proton Storage Ring (PSR) and to the Weapon Neutron Research (WNR) areas. The source typically operates at a duty factor of 9.4% delivering a peak current of about 14 mA into the 750 keV LEBT. Each beam macropulse is chopped to create a sequence of 360 ns pulse, each with a 100 ns ``extraction notch'' for injection into PSR. The average current delivered to the short-pulse spallation target is nominally 70μA. One goal of the present PSR upgrade projects is an increase in the average beam current to 200μA. This will be accomplished by a combination of increased repetition rate (to 30 Hz), upgraded PSR bunchers, and a brighter H^- ion source that will produce higher peak current with lower beam emittance. The present ion source and injector system was studied to investigate the beam qualities of the source and the performance of the low energy transpot. The performance of the ion source at higher currents and the change in beam parameters in the low energy transport compared to those in the standard source conditions will be presented.
Recent Simulation Results on Ring Current Dynamics Using the Comprehensive Ring Current Model
NASA Technical Reports Server (NTRS)
Zheng, Yihua; Zaharia, Sorin G.; Lui, Anthony T. Y.; Fok, Mei-Ching
2010-01-01
Plasma sheet conditions and electromagnetic field configurations are both crucial in determining ring current evolution and connection to the ionosphere. In this presentation, we investigate how different conditions of plasma sheet distribution affect ring current properties. Results include comparative studies in 1) varying the radial distance of the plasma sheet boundary; 2) varying local time distribution of the source population; 3) varying the source spectra. Our results show that a source located farther away leads to a stronger ring current than a source that is closer to the Earth. Local time distribution of the source plays an important role in determining both the radial and azimuthal (local time) location of the ring current peak pressure. We found that post-midnight source locations generally lead to a stronger ring current. This finding is in agreement with Lavraud et al.. However, our results do not exhibit any simple dependence of the local time distribution of the peak ring current (within the lower energy range) on the local time distribution of the source, as suggested by Lavraud et al. [2008]. In addition, we will show how different specifications of the magnetic field in the simulation domain affect ring current dynamics in reference to the 20 November 2007 storm, which include initial results on coupling the CRCM with a three-dimensional (3-D) plasma force balance code to achieve self-consistency in the magnetic field.
Ring Current Pressure Estimation withRAM-SCB using Data Assimilation and VanAllen Probe Flux Data
NASA Astrophysics Data System (ADS)
Godinez, H. C.; Yu, Y.; Henderson, M. G.; Larsen, B.; Jordanova, V.
2015-12-01
Capturing and subsequently modeling the influence of tail plasma injections on the inner magnetosphere is particularly important for understanding the formation and evolution of Earth's ring current. In this study, the ring current distribution is estimated with the Ring Current-Atmosphere Interactions Model with Self-Consistent Magnetic field (RAM-SCB) using, for the first time, data assimilation techniques and particle flux data from the Van Allen Probes. The state of the ring current within the RAM-SCB is corrected via an ensemble based data assimilation technique by using proton flux from one of the Van Allen Probes, to capture the enhancement of ring current following an isolated substorm event on July 18 2013. The results show significant improvement in the estimation of the ring current particle distributions in the RAM-SCB model, leading to better agreement with observations. This newly implemented data assimilation technique in the global modeling of the ring current thus provides a promising tool to better characterize the effect of substorm injections in the near-Earth regions. The work is part of the Space Hazards Induced near Earth by Large, Dynamic Storms (SHIELDS) project in Los Alamos National Laboratory.
Universal size properties of a star-ring polymer structure in disordered environments
NASA Astrophysics Data System (ADS)
Haydukivska, K.; Blavatska, V.
2018-03-01
We consider the complex polymer system, consisting of a ring polymer connected to the f1-branched starlike structure, in a good solvent in the presence of structural inhomogeneities. In particular cases f1=1 and f1=2 , such a system restores the synthesized tadpole-shaped polystyrenes [Doi et al., Macromolecules 46, 1075 (2013), 10.1021/ma302511j]. We assume that structural defects are correlated at large distances x according to a power law x-a. Applying the direct polymer renormalization approach, we evaluate the universal size characteristics such as the ratio of the radii of gyration of star-ring and star topologies, and compare the effective sizes of single arms in complex structures and isolated polymers of the same total molecular weight. The nontrivial impact of disorder on these quantities is analyzed.
Higher order mode couplers for normal conducting DORIS 5-cell cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dewersteg, B.; Seesselberg, E.; Zolfaghari, A.
1985-10-01
The beam intensity of the DORIS e -e storage ring is limited to about 100 mA average circulation current as a result of instabilities driven by higher order rf cavity modes. Thus an investigation has been made of the higher order mode impedances of the DORIS rf accelerator cavities. These cavities are the same as the normally conducting inductively coupled 500 MHz 5-cell structures used in PETRA. The results of the investigation were applied for the construction of inductive and capacitive attenuation antennae corresponding to specific mode spectra and mode impedances. The antennae must fit into the existing 35 mmmore » pick up flanges of the cavities and in spite of these size and position limitations they must be efficient in reducing the shunt impedances of the dangerous modes.« less
Development of a fluorescent x-ray source for medical imaging
NASA Astrophysics Data System (ADS)
Toyofuku, F.; Tokumori, K.; Nishimura, K.; Saito, T.; Takeda, T.; Itai, Y.; Hyodo, K.; Ando, M.; Endo, M.; Naito, H.; Uyama, C.
1995-02-01
A fluorescent x-ray source for medical imaging, such as K-edge subtraction angiography and monochromatic x-ray CT, has been developed. Using a 6.5 GeV accumulation ring in Tsukuba, fluorescent x rays, which range from about 30 to 70 keV are generated by irradiating several target materials. Measurements have been made of output intensities and energy spectra for different target angles and extraction angles. The intensities of fluorescent x rays at a 30 mA beam current are on the order of 1-3×106 photons/mm2/s at 30 cm from the local spot where the incident beam is collimated to 1 mm2. A phantom which contains three different contrast media (iodine, barium, gadolinium) was used for the K-edge energy subtraction, and element selective CT images were obtained.
A strong-lensing elliptical galaxy in the MaNGA survey
NASA Astrophysics Data System (ADS)
Smith, Russell J.
2017-01-01
I report discovery of a new galaxy-scale gravitational lens system, identified using public data from the Mapping Galaxies at Apache Point Observatory (MaNGA) survey, as part of a systematic search for lensed background line emitters. The lens is SDSS J170124.01+372258.0, a giant elliptical galaxy with velocity dispersion σ = 256 km s-1, at a redshift of zl = 0.122. After modelling and subtracting the target galaxy light, the integral-field data cube reveals [O II], [O III] and Hβ emission lines corresponding to a source at zs = 0.791, forming an identifiable ring around the galaxy centre. If the ring is formed by a single lensed source, then the Einstein radius is REin ≈ 2.3 arcsec, projecting to ˜5 kpc at the distance of the lens. The total projected lensing mass is MEin = (3.6 ± 0.6) × 1011 M⊙, and the total J-band mass-to-light ratio is 3.0 ± 0.7 solar units. Plausible estimates of the likely dark matter content could reconcile this with a Milky Way-like initial mass function (IMF), for which M/L ≈ 1.5 is expected, but heavier IMFs are by no means excluded with the present data. An alternative interpretation of the system, with a more complex source plane, is also discussed. The discovery of this system bodes well for future lens searches based on MaNGA and other integral-field spectroscopic surveys.
NASA Astrophysics Data System (ADS)
Jiao, Yi; Duan, Zhe
2017-01-01
In a diffraction-limited storage ring, half integer resonances can have strong effects on the beam dynamics, associated with the large detuning terms from the strong focusing and strong sextupoles as required for an ultralow emittance. In this study, the limitation of half integer resonances on the available momentum acceptance (MA) was statistically analyzed based on one design of the High Energy Photon Source (HEPS). It was found that the probability of MA reduction due to crossing of half integer resonances is closely correlated with the level of beta beats at the nominal tunes, but independent of the error sources. The analysis indicated that for the presented HEPS lattice design, the rms amplitude of beta beats should be kept below 1.5% horizontally and 2.5% vertically to reach a small MA reduction probability of about 1%.
Multi-band microwave metamaterial absorber based on coplanar Jerusalem crosses
NASA Astrophysics Data System (ADS)
Wang, Guo-Dong; Liu, Ming-Hai; Hu, Xi-Wei; Kong, Ling-Hua; Cheng, Li-Li; Chen, Zhao-Quan
2014-01-01
The influence of the gap on the absorption performance of the conventional split ring resonator (SRR) absorber is investigated at microwave frequencies. Our simulated results reveal that the geometry of the square SRR can be equivalent to a Jerusalem cross (JC) resonator and its corresponding metamaterial absorber (MA) is changed to a JC absorber. The JC MA exhibits an experimental absorption peak of 99.1% at 8.72 GHz, which shows an excellent agreement with our simulated results. By simply assembling several JCs with slightly different geometric parameters next to each other into a unit cell, a perfect multi-band absorption can be effectively obtained. The experimental results show that the MA has four distinct and strong absorption peaks at 8.32 GHz, 9.8 GHz, 11.52 GHz and 13.24 GHz. Finally, the multi-reflection interference theory is introduced to interpret the absorption mechanism.
NASA Astrophysics Data System (ADS)
Bingham, S.; Mouikis, C.; Kistler, L. M.; Fok, M. C. H.; Glocer, A.; Farrugia, C. J.; Gkioulidou, M.; Spence, H. E.
2016-12-01
The ring current responds differently to the different solar and interplanetary storm drivers such as coronal mass injections, (CMEs), and co-rotating interaction regions (CIRs). Delineating the differences in the ring current development between these two drivers will aid our understanding of the ring current dynamics. Using Van Allen Probes observations, we develop an empirical ring current model of the ring current pressure, the pressure anisotropy and the current density development during the storm phases for both types of storm drivers and for all MLTs inside L 6. In addition, we identify the populations (energy and species) responsible. We find that during the storm main phase and the early recovery phase the plasma sheet particles (10-80 keV) convecting from the nightside contribute the most on the ring current pressure and current density. However, during these phases, the main difference between CMEs and CIRs is in the O+ contribution. This empirical model is compared to the results of CIMI simulations of CMEs and CIRs where the model input is comprised of the superposed epoch solar wind conditions of the storms that comprise the empirical model, while different inner magnetosphere boundary conditions will be tested in order to match the empirical model results. Comparing the model and simulation results will fill our understanding of the ring current dynamics as part of the highly coupled inner magnetosphere system.
The two-way relationship between ionospheric outflow and the ring current
DOE Office of Scientific and Technical Information (OSTI.GOV)
Welling, Daniel T.; Jordanova, Vania Koleva; Glocer, Alex
It is now well established that the ionosphere, because it acts as a significant source of plasma, plays a critical role in ring current dynamics. However, because the ring current deposits energy into the ionosphere, the inverse may also be true: the ring current can play a critical role in the dynamics of ionospheric outflow. This study uses a set of coupled, first-principles-based numerical models to test the dependence of ionospheric outflow on ring current-driven region 2 field-aligned currents (FACs). A moderate magnetospheric storm event is modeled with the Space Weather Modeling Framework using a global MHD code (Block Adaptivemore » Tree Solar wind Roe-type Upwind Scheme, BATS-R-US), a polar wind model (Polar Wind Outflow Model), and a bounce-averaged kinetic ring current model (ring current atmosphere interaction model with self-consistent magnetic field, RAM-SCB). Initially, each code is two-way coupled to all others except for RAM-SCB, which receives inputs from the other models but is not allowed to feed back pressure into the MHD model. The simulation is repeated with pressure coupling activated, which drives strong pressure gradients and region 2 FACs in BATS-R-US. It is found that the region 2 FACs increase heavy ion outflow by up to 6 times over the non-coupled results. The additional outflow further energizes the ring current, establishing an ionosphere-magnetosphere mass feedback loop. This study further demonstrates that ionospheric outflow is not merely a plasma source for the magnetosphere but an integral part in the nonlinear ionosphere-magnetosphere-ring current system.« less
The two-way relationship between ionospheric outflow and the ring current
Welling, Daniel T.; Jordanova, Vania Koleva; Glocer, Alex; ...
2015-06-01
It is now well established that the ionosphere, because it acts as a significant source of plasma, plays a critical role in ring current dynamics. However, because the ring current deposits energy into the ionosphere, the inverse may also be true: the ring current can play a critical role in the dynamics of ionospheric outflow. This study uses a set of coupled, first-principles-based numerical models to test the dependence of ionospheric outflow on ring current-driven region 2 field-aligned currents (FACs). A moderate magnetospheric storm event is modeled with the Space Weather Modeling Framework using a global MHD code (Block Adaptivemore » Tree Solar wind Roe-type Upwind Scheme, BATS-R-US), a polar wind model (Polar Wind Outflow Model), and a bounce-averaged kinetic ring current model (ring current atmosphere interaction model with self-consistent magnetic field, RAM-SCB). Initially, each code is two-way coupled to all others except for RAM-SCB, which receives inputs from the other models but is not allowed to feed back pressure into the MHD model. The simulation is repeated with pressure coupling activated, which drives strong pressure gradients and region 2 FACs in BATS-R-US. It is found that the region 2 FACs increase heavy ion outflow by up to 6 times over the non-coupled results. The additional outflow further energizes the ring current, establishing an ionosphere-magnetosphere mass feedback loop. This study further demonstrates that ionospheric outflow is not merely a plasma source for the magnetosphere but an integral part in the nonlinear ionosphere-magnetosphere-ring current system.« less
Ring Current Response to Different Storm Drivers. Van Allen Probes and Cluster Observations.
NASA Astrophysics Data System (ADS)
Bingham, S.; Mouikis, C.; Kistler, L. M.; Spence, H. E.; Gkioulidou, M.; Claudepierre, S. G.; Farrugia, C. J.
2015-12-01
The ring current responds differently to the different solar and interplanetary storm drivers such as coronal mass injections, (CME's), co-rotating interaction regions (CIR's), high-speed streamers and other structures. The resulting changes in the ring current particle pressure change the global magnetic field, which affects the transport of the radiation belts. In order to determine the field changes during a storm it is necessary to understand the transport, sources and losses of the particles that contribute to the ring current. The source population of the storm time ring current is the night side plasma sheet. However, it is not clear how these convecting particles affect the storm time ring current pressure development. We use Van Allen Probes and Cluster observations together with the Volland-Stern and dipole magnetic field models to determine the contribution in the ring current pressure of the plasma sheet particles convecting from the night side that are on open drift paths, during the storm evolution. We compare storms that are related to different interplanetary drivers, CME and CIR, as observed at different local times.
NASA Astrophysics Data System (ADS)
Mouikis, Christopher; Bingham, Samuel; Kistler, Lynn; Spence, Harlan; Gkioulidou, Matina
2017-04-01
The ring current responds differently to the different solar and interplanetary storm drivers such as coronal mass injections, (CME's), and co-rotating interaction regions (CIR's). Using Van Allen Probes observations, we develop an empirical ring current model of the ring current pressure, the pressure anisotropy and the current density development during the storm phases for both types of storm drivers and for all MLTs inside L 6. Delineating the differences in the ring current development between these two drivers will aid our understanding of the ring current dynamics. We find that during the storm main phase most of the ring current pressure in the pre-midnight inner magnetosphere is contributed by particles on open drift paths that cause the development of a strong partial ring current that causes most of the main phase Dst drop. These particles can reach as deep as L 2 and their pressure compares to the local magnetic field pressure as deep as L 3. During the recovery phase, if these particles are not lost at the magnetopause, will become trapped and will contribute to the symmetric ring current. However, the largest difference between the CME and CIR ring current responses during the storm main and early recovery phases is caused by how the 15 - 60 keV O+ responds to these drivers. This empirical model is compared to the results of CIMI simulations of a CMEs and a CIRs where the model input is comprised of the superposed epoch solar wind conditions of the storms that comprise the empirical model. Different inner magnetosphere boundary conditions are tested in order to match the empirical model results. Comparing the model and simulation results improves our understanding of the ring current dynamics as part of the highly coupled inner magnetosphere system. In addition, within the framework of this empirical model, the prediction of the EMIC wave generation linear theory is tested using the observed plasma parameters and comparing with the observations of EMIC waves.
Topological ring currents in the "empty" ring of benzo-annelated perylenes.
Dickens, Timothy K; Mallion, Roger B
2011-01-27
Cyclic conjugation in benzo-annelated perylenes is examined by means of the topological π-electron ring currents calculated for each of their constituent rings, in a study that is an exact analogy of a recent investigation by Gutman et al. based on energy-effect values for the corresponding rings in each of these structures. "Classical" approaches, such as Kekulé structures, Clar "sextet" formulas, and circuits of conjugation, predict that the central ring in perylene is "empty" and thus contributes negligibly to cyclic conjugation. However, conclusions from the present calculations of topological ring currents agree remarkably with those arising from the earlier study involving energy-effect values in that, contrary to what would be predicted from the classical approaches, rings annelated in an angular fashion relative to the central ring of these perylene structures materially increase the extent of that ring's involvement in cyclic conjugation. It is suggested that such close quantitative agreement between the predictions of these two superficially very different indices (energy effect and topological ring current) might be due to the fact that, ultimately, both depend, albeit in ostensibly quite different ways, only on an adjacency matrix that contains information about the carbon-carbon connectivity of the conjugated system in question.
NASA Astrophysics Data System (ADS)
LLera, K.; Goldstein, J.; McComas, D. J.; Valek, P. W.
2016-12-01
The two major loss processes for ring current decay are precipitation and energetic neutral atoms (ENAs). Since the exospheric neutral density increases with decreasing altitudes, precipitating ring current ions (reaching down to 200 - 800 km in altitude) also produce low-altitude ENA signatures that can be stronger than the ring current emission at equatorial distances ( 2 - 9 Re). The higher density results in multiple collisions between the ring current ions and exospheric oxygen. The affect on hydrogen ions is the focus of this study. Since the H particle sustains energy loss ( 36 eV) at each neutralizing or re-ionizing interaction, the escaped ENAs do not directly reflect the ring current properties. We model the energy loss due to multiple charge exchange and electron stripping interactions of 1 - 100 keV precipitating ring current ions undergo before emerging as low-altitude ENAs. The H particle is either an ion or an ENA throughout the simulation. Their lifetime is analytically determined by the length of one mean free path. We track the ion state with Lorentz motion while the ENA travels ballistically across the geomagnetic field. Our simulations show the energy loss is greater than 20% for hydrogen ring current ions below 30 keV (60 keV for the simulations that wander equatorward). This is the first quantification of the energy loss associated with the creation of low-altitude ENAs. Our model (currently constrained in the meridional plane) has revealed characteristics on how precipitation is affected by the near-Earth neutral exosphere. This ion-neutral interaction removes particles from the loss cone but promotes loss through ENA generation. These findings should be implemented in models predicting the ring current decay and used as an analysis tool to reconstruct the ring current population from observed low-altitude ENAs.
Low-noise sub-harmonic injection locked multiloop ring oscillator
NASA Astrophysics Data System (ADS)
Weilin, Xu; Di, Wu; Xueming, Wei; Baolin, Wei; Jihai, Duan; Fadi, Gui
2016-09-01
A three-stage differential voltage-controlled ring oscillator is presented for wide-tuning and low-phase noise requirement of clock and data recovery circuit in ultra wideband (UWB) wireless body area network. To improve the performance of phase noise of delay cell with coarse and fine frequency tuning, injection locked technology together with pseudo differential architecture are adopted. In addition, a multiloop is employed for frequency boosting. Two RVCOs, the standard RVCO without the IL block and the proposed IL RVCO, were fabricated in SMIC 0.18 μm 1P6M Salicide CMOS process. The proposed IL RVCO exhibits a measured phase noise of -112.37 dBc/Hz at 1 MHz offset from the center frequency of 1 GHz, while dissipating a current of 8 mA excluding the buffer from a 1.8-V supply voltage. It shows a 16.07 dB phase noise improvement at 1 MHz offset compared to the standard topology. Project supported by the National Natural Science Foundation of China (No. 61264001), the Guangxi Natural Science Foundation (Nos. 2013GXNSFAA019333, 2015GXNSFAA139301, 2014GXNSFAA118386), the Graduate Education Innovation Program of GUET (No. GDYCSZ201457), the Project of Guangxi Education Department (No. LD14066B) and the High-Level-Innovation Team and Outstanding Scholar Project of Guangxi Higher Education Institutes.
Quantum rings in magnetic fields and spin current generation.
Cini, Michele; Bellucci, Stefano
2014-04-09
We propose three different mechanisms for pumping spin-polarized currents in a ballistic circuit using a time-dependent magnetic field acting on an asymmetrically connected quantum ring at half filling. The first mechanism works thanks to a rotating magnetic field and produces an alternating current with a partial spin polarization. The second mechanism works by rotating the ring in a constant field; like the former case, it produces an alternating charge current, but the spin current is dc. Both methods do not require a spin-orbit interaction to achieve the polarized current, but the rotating ring could be used to measure the spin-orbit interaction in the ring using characteristic oscillations. On the other hand, the last mechanism that we propose depends on the spin-orbit interaction in an essential way, and requires a time-dependent magnetic field in the plane of the ring. This arrangement can be designed to pump a purely spin current. The absence of a charge current is demonstrated analytically. Moreover, a simple formula for the current is derived and compared with the numerical results.
Kitazumi, Yuki; Hamamoto, Katsumi; Noda, Tatsuo; Shirai, Osamu; Kano, Kenji
2015-01-01
The fabrication of ultrathin-ring electrodes with a diameter of 2 mm and a thickness of 100 nm is established. The ultrathin-ring electrodes provide a large density of pseudo-steady-state currents, and realize pseudo-steady-state amperometry under quiescent conditions without a Faraday cage. Under the limiting current conditions, the current response at the ultrathin-ring electrode can be well explained by the theory of the microband electrode response. Cyclic voltammograms at the ultrathin-ring electrode show sigmoidal characteristics with some hysteresis. Numerical simulation reveals that the hysteresis can be ascribed to the time-dependence of pseudo-steady-state current. The performance of amperometry with the ultrathin-ring electrode has been verified in its application to redox enzyme kinetic measurements.
Current-induced SQUID behavior of superconducting Nb nano-rings
NASA Astrophysics Data System (ADS)
Sharon, Omri J.; Shaulov, Avner; Berger, Jorge; Sharoni, Amos; Yeshurun, Yosef
2016-06-01
The critical temperature in a superconducting ring changes periodically with the magnetic flux threading it, giving rise to the well-known Little-Parks magnetoresistance oscillations. Periodic changes of the critical current in a superconducting quantum interference device (SQUID), consisting of two Josephson junctions in a ring, lead to a different type of magnetoresistance oscillations utilized in detecting extremely small changes in magnetic fields. Here we demonstrate current-induced switching between Little-Parks and SQUID magnetoresistance oscillations in a superconducting nano-ring without Josephson junctions. Our measurements in Nb nano-rings show that as the bias current increases, the parabolic Little-Parks magnetoresistance oscillations become sinusoidal and eventually transform into oscillations typical of a SQUID. We associate this phenomenon with the flux-induced non-uniformity of the order parameter along a superconducting nano-ring, arising from the superconducting leads (‘arms’) attached to it. Current enhanced phase slip rates at the points with minimal order parameter create effective Josephson junctions in the ring, switching it into a SQUID.
Global Magnetospheric Evolution Effected by Sudden Ring Current Injection
NASA Astrophysics Data System (ADS)
Park, Geunseok; No, Jincheol; Kim, Kap-Sung; Choe, Gwangson; Lee, Junggi
2016-04-01
The dynamical evolution of the Earth's magnetosphere loaded with a transiently enhanced ring current is investigated by global magnetohydrodynamic simulations. Two cases with different values of the primitive ring current are considered. In one case, the initial ring current is strong enough to create a magnetic island in the magnetosphere. The magnetic island readily reconnects with the earth-connected ambient field and is destroyed as the system approaches a steady equilibrium. In the other case, the initial ring current is not so strong, and the initial magnetic field configuration bears no magnetic island, but features a wake of bent field lines, which is smoothed out through the relaxing evolution of the magnetosphere. The relaxation time of the magnetosphere is found to be about five to six minutes, over which the ring current is reduced to about a quarter of its initial value. Before reaching a quasi-steady state, the magnetosphere is found to undergo an overshooting expansion and a subsequent contraction. Fast and slow magnetosonic waves are identified to play an important role in the relaxation toward equilibrium. Our study suggests that a sudden injection of the ring current can generate an appreciable global pulsation of the magnetosphere.
Global Evolution of the Earth's Magnetosphere in Response to a Sudden Ring Current Injection
NASA Astrophysics Data System (ADS)
No, Jincheol; Choe, Gwangson; Park, Geunseok
2014-05-01
The dynamical evolution of the Earth's magnetosphere loaded with a transiently enhanced ring current is investigated by global magnetohydrodynamic simulations. Two cases with different values of the primitive ring current are considered. In one case, the initial ring current is strong enough to create a magnetic island in the magnetosphere. The magnetic island readily reconnects with the earth-connected ambient field and is destroyed as the system approaches a steady equilibrium. In the other case, the initial ring current is not so strong, and the initial magnetic field configuration bears no magnetic island, but features a wake of bent field lines, which is smoothed out through the relaxing evolution of the magnetosphere. The relaxation time of the magnetosphere is found to be about five to six minutes, over which the ring current is reduced to about a quarter of its initial value. Before reaching a steady state, the magnetosphere is found to undergo an overshooting expansion and a subsequent contraction. Fast and slow magnetosonic waves are identified to play an important role in the relaxation toward equilibrium. Our study suggests that a sudden injection of the ring current can generate an appreciable global pulsation of the magnetosphere.
Ring current proton decay by charge exchange
NASA Technical Reports Server (NTRS)
Smith, P. H.; Hoffman, R. A.; Fritz, T.
1975-01-01
Explorer 45 measurements during the recovery phase of a moderate magnetic storm have confirmed that the charge exchange decay mechanism can account for the decay of the storm-time proton ring current. Data from the moderate magnetic storm of 24 February 1972 was selected for study since a symmetrical ring current had developed and effects due to asymmetric ring current losses could be eliminated. It was found that after the initial rapid decay of the proton flux, the equatorially mirroring protons in the energy range 5 to 30 keV decayed throughout the L-value range of 3.5 to 5.0 at the charge exchange decay rate calculated by Liemohn. After several days of decay, the proton fluxes reached a lower limit where an apparent equilibrium was maintained, between weak particle source mechanisms and the loss mechanisms, until fresh protons were injected into the ring current region during substorms. While other proton loss mechanisms may also be operating, the results indicate that charge exchange can entirely account for the storm-time proton ring current decay, and that this mechanism must be considered in all studies involving the loss of proton ring current particles.
SU-F-I-34: How Does Longitudinal Dose Profile Change with Tube Current Distribution in CT?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, X; Yang, K; Liu, B
Purpose: To investigate how longitudinal dose profile D{sub L}(z) in 30 cm-diameter water cylinder change with tube current (mA) distribution and scan length. Methods: A constant and four variable mA distributions from two previous papers [Dixon et al., Med. Phys. 40, 111920 (14pp.) (2013); Zhang et al., Med. Phys. 41, 091911 (9pp.) (2014)] were adopted in three scan lengths of 10, 28.6, and 50 cm, and all mA distributions had the same average mA over scan ranges. Using the symmetry based dose calculation algorithms and the previously published CT dose equilibration data [Li et al., Med. Phys. 40, 031903 (10pp.)more » (2013); 41, 111910 (5pp.) (2014)], the authors calculated DL(z) on the phantom central and peripheral axes. Kolmogorov-Smirnov (K-S) test was used to compare the lineshapes of two arbitrary distributions. Results: In constant mA scans, D{sub L}(z) was “bell-shaped”. In variable mA scans, D{sub L}(z) approximately followed the mA lineshape, and the K-S distance generally changed with mA distribution. The distance decreased with scan length, and was larger on the central axis than on the peripheral axis. However, the opposite trends were found in the K-S distance between the D{sub L}(z) distributions of constant and variable mA distributions. Conclusion: Radiation dose from TCM scan is best evaluated using the specific tube current distribution. A constant mA based evaluation may lead to inconsistent longitudinal dose profile with that of TCM scan. Their difference in lineshape is larger on the phantom peripheral axis than on the central axis and increases with scan length. This work confirms that radiation dose in CT depends on not only local mA but also the overall mA distribution and scan length. On the other hand, the concept of regional tube current may be useful when scan length is large, tube current peaks near scan range edge, or the target site is superficial.« less
Benchmarking of Touschek Beam Lifetime Calculations for the Advanced Photon Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, A.; Yang, B.
2017-06-25
Particle loss from Touschek scattering is one of the most significant issues faced by present and future synchrotron light source storage rings. For example, the predicted, Touschek-dominated beam lifetime for the Advanced Photon Source (APS) Upgrade lattice in 48-bunch, 200-mA timing mode is only ~ 2 h. In order to understand the reliability of the predicted lifetime, a series of measurements with various beam parameters was performed on the present APS storage ring. This paper first describes the entire process of beam lifetime measurement, then compares measured lifetime with the calculated one by applying the measured beam parameters. The resultsmore » show very good agreement.« less
The plasma environment, charge state, and currents of Saturn's C and D rings
NASA Technical Reports Server (NTRS)
Wilson, G. R.
1991-01-01
The charge state and associated currents of Saturn's C an D rings are studied by modeling the flow of ionospheric plasma from the mid- to low-latitude ionosphere to the vicinity of the rings. It is found that the plasma density near the C and D rings, at a given radial location, will experience a one to two order of magnitude diurnal variation. The surface charge density (SCD) of these rings can show significant radial and azimuthal variations due mainly to variation in the plasma density. The SCD also depends on structural features of the rings such as thickness and the nature of the particle size distribution. The associated azimuthal currents carried by these rings also show large diurnal variations resulting in field-aligned currents which close in the ionosphere. The resulting ionospheric electric field will probably not produce a significant amount of plasma convection in the topside ionosphere and inner plasmasphere.
Coupled low-energy - ring current plasma diffusion in the Jovian magnetosphere
NASA Technical Reports Server (NTRS)
Summers, D.; Siscoe, G. L.
1985-01-01
The outwardly diffusing Iogenic plasma and the simultaneously inwardly diffusing ring current plasma in the Jovian magnetosphere are described using a coupled diffusion model which incorporates the effects of the pressure gradient of the ring current into the cross-L diffusion coefficient. The coupled diffusion coefficient is derived by calculating the total energy available to drive the diffusion process. The condition is imposed that the diffusion coefficient takes on a local minimum value at some point in the region L = 7-8, at which point the gradient of the Io plasma density is specified as ramp value given by Siscoe et al. (1981). The hypothesis that the pressure gradient of the ring current causes the diminution of radial plasma transport is tested, and solution profiles for the Iogenic and ring current plasma densities are obtained which imply that the Io plasma ramp is caused by a high-density, low-energy component of the ring current hitherto unobserved directly.
Shekhawat, Giriraj Singh; Sundram, Frederick; Bikson, Marom; Truong, Dennis; De Ridder, Dirk; Stinear, Cathy M; Welch, David; Searchfield, Grant D
2016-05-01
Tinnitus is the perception of a phantom sound. The aim of this study was to compare current intensity (center anode 1 mA and 2 mA), duration (10 minutes and 20 minutes), and location (left temporoparietal area [LTA] and dorsolateral prefrontal cortex [DLPFC]) using 4 × 1 high-definition transcranial direct current stimulation (HD-tDCS) for tinnitus reduction. Twenty-seven participants with chronic tinnitus (>2 years) and mean age of 53.5 years underwent 2 sessions of HD-tDCS of the LTA and DLPFC in a randomized order with a 1 week gap between site of stimulation. During each session, a combination of 4 different settings were used in increasing dose (1 mA, 10 minutes; 1 mA, 20 minutes; 2 mA, 10 minutes; and 2 mA, 20 minutes). The impact of different settings on tinnitus loudness and annoyance was documented. Twenty-one participants (77.78%) reported a minimum of 1 point reduction on tinnitus loudness or annoyance scales. There were significant changes in loudness and annoyance for duration of stimulation,F(1, 26) = 10.08,P< .005, and current intensity,F(1, 26) = 14.24,P= .001. There was no interaction between the location, intensity, and duration of stimulation. Higher intensity (2 mA) and longer duration (20 minutes) of stimulation were more effective. A current intensity of 2 mA for 20-minute duration was the most effective setting used for tinnitus relief. The stimulation of the LTA and DLPFC were equally effective for suppressing tinnitus loudness and annoyance. © The Author(s) 2015.
The Ring Current Response to Solar and Interplanetary Storm Drivers
NASA Astrophysics Data System (ADS)
Mouikis, C.; Kistler, L. M.; Bingham, S.; Kronberg, E. A.; Gkioulidou, M.; Huang, C. L.; Farrugia, C. J.
2014-12-01
The ring current responds differently to the different solar and interplanetary storm drivers such as coronal mass injections, (CME's), corotating interaction regions (CIR's), high-speed streamers and other structures. The resulting changes in the ring current particle pressure, in turn, change the global magnetic field, controlling the transport of the radiation belts. To quantitatively determine the field changes during a storm throughout the magnetosphere, it is necessary to understand the transport, sources and losses of the particles that contribute to the ring current. Because the measured ring current energy spectra depend not only on local processes, but also on the history of the ions along their entire drift path, measurements of ring current energy spectra at two or more locations can be used to strongly constrain the time dependent magnetic and electric fields. In this study we use data predominantly from the Cluster and the Van Allen Probes, covering more than a full solar cycle (from 2001 to 2014). For the period 2001-2012, the Cluster CODIF and RAPID measurements of the inner magnetosphere are the primary data set used to monitor the storm time ring current variability. After 2012, the Cluster data set complements the data from the Van Allen Probes HOPE and RBSPICE instruments, providing additional measurements from different MLT and L shells. Selected storms from this periods, allow us to study the ring current dynamics and pressure changes, as a function of L shell, magnetic local time, and the type of interplanetary disturbances.
Saw, Yu Mon; Saw, Thu Nandar; Yasuoka, Junko; Chan, Nyein; Kham, Nang Pann Ei; Khine, Wint; Cho, Su Myat; Jimba, Masamine
2017-05-08
Globally, methamphetamine (MA) use is a significant public health concern due to unprecedented health effects of its use. However, gender similarities and differences in early age of MA initiation and its risk factors among current MA users have been understudied in a developing country setting. A community-based, cross-sectional study was conducted using a computer assisted self-interviewing program from January to March 2013 in Muse, Northern Shan State, Myanmar. A total of 1362 (775 male and 587 female) self-reported current MA users aged between 18 and 35 years were recruited using respondent-driven sampling. Two gender-stratified multiple logistic regression models (models I and II) were done for analysis. For similarities, 73.0% of males and 60.5% of females initiated MA before their 18th birthday. The early age of MA initiation was positively associated with the reasons and places of the first time MA use among both genders. For differences, males [hazard ratio 1.35; 95% confidence interval, 1.18-1.54] had a significantly higher risk than females to initiate MA at earlier age. Among male users, participants who had bisexual/homosexual preferences were more likely to initiate MA use earlier. In contrast, female users who exchanged sex for money and/or drugs were more likely to initiate MA in earlier age. More than 60.0% of male and female participants initiated MA use early; however, males initiated use earlier than females. Although similarities were found among both genders, differences found in key risk factors for early age MA initiation suggest that gender-specific, MA prevention programs are urgently needed in Myanmar.
The relevance and implications of signet-ring cell adenocarcinoma of the oesophagus.
Bleaney, Christopher William; Barrow, Mickhaiel; Hayes, Stephen; Ang, Yeng
2018-03-01
To review the current understanding of signet-ring type oesophageal adenocarcinoma including evidence for prognosis. We conducted a literature search of nine healthcare literature databases for articles detailing the biology and clinical outcomes of signet-ring cell adenocarcinoma of the oesophagus. The impact of signet-ring cell morphology was analysed and detailed in written text and tabular format. Current understanding of the biology of signet-ring cell adenocarcinoma of the oesophagus was summarised. Signet-ring cell carcinoma was represented in 7.61% of the 18 989 cases of oesophageal carcinoma reviewed in multiple studies. The presence of signet-ring cells conferred a worse prognosis and these tumours responded differently to conventional treatments as compared with typical adenocarcinoma. Little is known about the biological features of signet-ring cell adenocarcinoma of the oesophagus. Work in gastric lesions has identified potential targets for future treatments such as CDH1 and RHOA genes. Categorisation of signet-ring cell carcinomas by the proportion of signet-ring cells within tumours differs among clinicians despite WHO criteria for classification. The current UK guidelines for histopathological reporting of oesophageal tumours do not emphasise the importance of identifying signet-ring cells. The presence of signet-ring cells in oesophageal adenocarcinomas leads to poorer clinical outcomes. Current understanding of signet-ring cell biology in oesophageal cancer is limited. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Micron-scale intra-ring analyses of δ13C in early Eocene Arctic wood from Ellesmere Island
NASA Astrophysics Data System (ADS)
Schubert, B.; Jahren, H.; Eberle, J.; Sternberg, L.
2009-12-01
Early Eocene (ca. 53 Ma) fossil assemblages on Ellesmere Island (75 oN paleolatitude), provide rich information about the plant and animal life of the lush polar ecosystems of the time. Fossil wood recovered from Ellesmere Island is abundant and not permineralized; however, morphological features such as growth rings and resin canals have been obliterated by compression. We report on exceptionally high-resolution intra-ring analyses of δ13C within fossil wood, sampled at ~30 micron intervals across several centimeters of wood sample. Clear patterns in systematic seasonal increases and decreases in wood δ13C allowed us to identify at least 5 annual cycles in the wood. The patterns of increase and decrease in δ13C were consistent with patterns observed for evergreen wood, and distinct from the deciduous patterns we have observed for Metasequoia fossil wood from the middle Eocene (ca. 45 Ma) Arctic site on Axel Heiberg Island. We believe that the high point in the δ13C value of wood seen in each cycle corresponds to the highest environmental temperatures during the annual cycle, as has been seen for modern evergreens (e.g., Barbour et al., 2002). Modern studies have also noted that high temperature periods are correlated with the highest vapor-pressure and soil-water deficits of the annual cycle; these environmental factors would cause the plant to change its discrimination during photosynthesis. We will discuss the relatively low amplitude of δ13C fluctuations (0.5-1.0 ‰) clearly defined by Ellesmere fossil wood, in comparison to observations on modern common evergreens (2.0-4.0 ‰), and speculate that this difference implies greatly dampened seasonal temperature fluctuations in Eocene polar environments, relative to today. Barbour M.M., Walcroft A.S., Farquhar G.D., 2002, Seasonal variation in δ13C and δ18O of cellulose from growth rings of Pinus radiata. Plant, Cell and Environment: v. 25, p. 1483-1499.
NASA Astrophysics Data System (ADS)
Nava, Andrea; Giuliano, Rosa; Campagnano, Gabriele; Giuliano, Domenico
2016-11-01
Using the properties of the transfer matrix of one-dimensional quantum mechanical systems, we derive an exact formula for the persistent current across a quantum mechanical ring pierced by a magnetic flux Φ as a single integral of a known function of the system's parameters. Our approach provides exact results at zero temperature, which can be readily extended to a finite temperature T . We apply our technique to exactly compute the persistent current through p -wave and s -wave superconducting-normal hybrid rings, deriving full plots of the current as a function of the applied flux at various system's scales. Doing so, we recover at once a number of effects such as the crossover in the current periodicity on increasing the size of the ring and the signature of the topological phase transition in the p -wave case. In the limit of a large ring size, resorting to a systematic expansion in inverse powers of the ring length, we derive exact analytic closed-form formulas, applicable to a number of cases of physical interest.
NASA Astrophysics Data System (ADS)
Kozyra, J. U.; Liemohn, M. W.; Clauer, C. R.; Ridley, A. J.; Thomsen, M. F.; Borovsky, J. E.; Roeder, J. L.; Jordanova, V. K.; Gonzalez, W. D.
2002-08-01
The 4-6 June 1991 magnetic storm, which occurred during solar maximum conditions, is analyzed to investigate two observed features of magnetic storms that are not completely understood: (1) the mass-dependent decay of the ring current during the early recovery phase and (2) the role of preconditioning in multistep ring current development. A kinetic ring current drift-loss model, driven by dynamic fluxes at the nightside outer boundary, was used to simulate this storm interval. A strong partial ring current developed and persisted throughout the main and early recovery phases. The majority of ions in the partial ring current make one pass through the inner magnetosphere on open drift paths before encountering the dayside magnetopause. The ring current exhibited a three-phase decay in this storm. A short interval of charge-exchange loss constituted the first phase of the decay followed by a classical two-phase decay characterized by an abrupt transition between two very different decay timescales. The short interval dominated by charge-exchange loss occurred because an abrupt northward turning of the interplanetary magnetic field (IMF) trapped ring current ions on closed trajectories, and turned-off sources and ``flow-out'' losses. If this had been the end of the solar wind disturbance, decay timescales would have gradually lengthened as charge exchange preferentially removed the short-lived species; a distinctive two-phase decay would not have resulted. However, the IMF turned weakly southward, drift paths became open, and a standard two-phase decay ensued as the IMF rotated slowly northward again. As has been shown before, a two-phase decay is produced as open drift paths are converted to closed in a weakening convection electric field, driving a transition from the fast flow-out losses associated with the partial ring current to the slower charge-exchange losses associated with the trapped ring current. The open drift path geometry during the main phase and during phase 1 of the two-phase decay has important consequences for the evolution of ring current composition and for preconditioning issues. In this particular storm, ring current composition changes measured by the Combined Release and Radiation Effects Satellite (CRRES) during the main and recovery phase of the storm resulted largely from composition changes in the plasma sheet transmitted into the inner magnetosphere along open drift paths as the magnetic activity declined. Possible preconditioning elements were investigated during the multistep development of this storm, which was driven by the sequential arrival of three southward IMF Bz intervals of increasing peak strength. In each case, previous intensifications (preexisting ring currents) were swept out of the magnetosphere by the enhanced convection associated with the latest intensification and did not act as a significant preconditioning element. However, plasma sheet characteristics varied significantly between subsequent intensifications, altering the response of the magnetosphere to the sequential solar wind drivers. A denser plasma sheet (ring current source population) appeared during the second intensification, compensating for the weaker IMF Bz at this time and producing a minimum pressure-corrected Dst* value comparable to the third intensification (driven by stronger IMF Bz but a lower density plasma sheet source). The controlling influence of the plasma sheet dynamics on the ring current dynamics and its role in altering the inner magnetospheric response to solar wind drivers during magnetic storms adds a sense of urgency to understanding what processes produce time-dependent responses in the plasma sheet density, composition, and temperature.
Tungsten erosion by unipolar arcing in DIII-D
NASA Astrophysics Data System (ADS)
Bykov, I.; Chrobak, C. P.; Abrams, T.; Rudakov, D. L.; Unterberg, E. A.; Wampler, W. R.; Hollmann, E. M.; Moyer, R. A.; Boedo, J. A.; Stahl, B.; Hinson, E. T.; Yu, J. H.; Lasnier, C. J.; Makowski, M.; McLean, A. G.
2017-12-01
Unipolar arcing was an important mechanism of metal surface erosion during the recently conducted Metal Rings Campaign in DIII-D when two toroidally continuous tile rings with 5 cm wide W-coated TZM inserts were installed in graphite tiles in the lower divertor, one on the floor and one on the shelf. Most of the arc damage occurred on the shelf ring. The total amount of W removed by arcing from the affected ˜4% of the shelf ring area was estimated ˜0.8 × 1021 at., about half of the total amount of W eroded and redeposited outside the inserts (1.8 ± 0.9)×1021 at. The rings were exposed for a total of ˜480 discharges, an equivalent of plasma time on W surfaces (with {{I}}{{p}}> 0.5 MA) ˜103 s. Arcing was monitored in situ with WI (400.9 nm) filtered camera and photomultipliers and showed that: (i) arcing only occurred during ELMs and disruptions, (ii) arcing rate was much lower on the floor than on the shelf ring, and (iii) arcing had a low cut off power flux density about 2 MW m-2. About half of arc tracks had large {10}\\circ pitch angle and probably were produced during disruptions. Such tracks were only found on the shelf. Moderate toroidal variation of the arc track density and W erosion with nearly n = 1 pattern has been measured.
Scaling of X pinches from 1 MA to 6 MA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bland, Simon Nicholas; McBride, Ryan D.; Wenger, David Franklin
This final report for Project 117863 summarizes progress made toward understanding how X-pinch load designs scale to high currents. The X-pinch load geometry was conceived in 1982 as a method to study the formation and properties of bright x-ray spots in z-pinch plasmas. X-pinch plasmas driven by 0.2 MA currents were found to have source sizes of 1 micron, temperatures >1 keV, lifetimes of 10-100 ps, and densities >0.1 times solid density. These conditions are believed to result from the direct magnetic compression of matter. Physical models that capture the behavior of 0.2 MA X pinches predict more extreme parametersmore » at currents >1 MA. This project developed load designs for up to 6 MA on the SATURN facility and attempted to measure the resulting plasma parameters. Source sizes of 5-8 microns were observed in some cases along with evidence for high temperatures (several keV) and short time durations (<500 ps).« less
Metamaterial Absorber Based Multifunctional Sensor Application
NASA Astrophysics Data System (ADS)
Ozer, Z.; Mamedov, A. M.; Ozbay, E.
2017-02-01
In this study metamaterial based (MA) absorber sensor, integrated with an X-band waveguide, is numerically and experimentally suggested for important application including pressure, density sensing and marble type detecting applications based on rectangular split ring resonator, sensor layer and absorber layer that measures of changing in the dielectric constant and/or the thickness of a sensor layer. Changing of physical, chemical or biological parameters in the sensor layer can be detected by measuring the resonant frequency shifting of metamaterial absorber based sensor. Suggested MA based absorber sensor can be used for medical, biological, agricultural and chemical detecting applications in microwave frequency band. We compare the simulation and experimentally obtained results from the fabricated sample which are good agreement. Simulation results show that the proposed structure can detect the changing of the refractive indexes of different materials via special resonance frequencies, thus it could be said that the MA-based sensors have high sensitivity. Additionally due to the simple and tiny structures it could be adapted to other electronic devices in different sizes.
Middle atmosphere electrical energy coupling
NASA Technical Reports Server (NTRS)
Hale, L. C.
1989-01-01
The middle atmosphere (MA) has long been known as an absorber of radio waves, and as a region of nonlinear interactions among waves. The region of highest transverse conductivity near the top of the MA provides a common return for global thunderstorm, auroral Birkeland, and ionospheric dynamo currents, with possibilities for coupling among them. Their associated fields and other transverse fields map to lower altitudes depending on scale size. Evidence now exists for motion-driven aerosol generators, and for charge trapped at the base of magnetic field lines, both capable of producing large MA electric fields. Ionospheric Maxwell currents (curl H) parallel to the magnetic field appear to map to lower altitudes, with rapidly time-varying components appearing as displacement currents in the stratosphere. Lightning couples a (primarily ELF and ULF) current transient to the ionosphere and magnetosphere whose wave shape is largely dependent on the MA conductivity profile. Electrical energy is of direct significance mainly in the upper MA, but electrodynamic transport of minor constituents such as smoke particles or CN may be important at other altitudes.
Effect of a strong-current ion ring on spheromak stability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Litwin, C.; Sudan, R.N.
The stability of a spheromak with an energetic ion ring, carrying a current comparable to the plasma current, to the tilt mode is considered. For small departures from sphericity a perturbative approach is applied to an appropriate energy principle in order to calculate the lowest nontrivial kinetic contribution of the ion ring. An analytic stability criterion is obtained. It is seen that the prolate configuration becomes more stable while the oblate one is less stable than in the absence of the ring. The prolomak becomes stable when the ring kinetic energy exceeds the magnetic energy within the separatrix.
Impact of Ring Current Ions on Electromagnetic Ion Cyclotron Wave Dispersion Relation
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Gamayunov, K. V.
2007-01-01
Effect of the ring current ions in the real part of electromagnetic ion Cyclotron wave dispersion relation is studied on global scale. Recent Cluster observations by Engebretson et al. showed that although the temperature anisotropy of is energetic (> 10 keV) ring current protons was high during the entire 22 November 2003 perigee pass, electromagnetic ion cyclotron waves were observed only in conjunction with intensification of the ion fluxes below 1 keV by over an order of magnitude. To study the effect of the ring current ions on the wave dispersive properties and the corresponding global wave redistribution, we use a self-consistent model of interacting ring current and electromagnetic ion cyclotron waves, and simulate the May 1998 storm. The main findings of our simulation can be summarized as follows: First, the plasma density enhancement in the night MLT sector during the main and recovery storm phases is mostly caused by injection of suprathermal plasma sheet H + (approximately < 1 keV), which dominate the thermal plasma density. Second, during the recovery storm phases, the ring current modification of the wave dispersion relation leads to a qualitative change of the wave patterns in the postmidnight-dawn sector for L > 4.75. This "new" wave activity is well organized by outward edges of dense suprathermal ring current spots, and the waves are not observed if the ring current ions are not included in the real part of dispersion relation. Third, the most intense wave-induced ring current precipitation is located in the night MLT sector and caused by modification of the wave dispersion relation. The strongest precipitating fluxes of about 8 X 10(exp 6)/ (cm(exp 2) - s X st) are found near L=5.75, MLT=2 during the early recovery phase on 4 May. Finally, the nightside precipitation is more intense than the dayside fluxes, even if there are less intense waves, because the convection field moves ring current ions into the loss cone on the nightside, but drives them out of the loss cone on the dayside. So convection and wave scattering reinforce each other in the nightside, but interfere in the dayside sector.
Campbell, W.H.
1990-01-01
Two current rings have been observed in the equatorial plane of the earth at times of high geomagnetic activity. An eastward current exists between about 2 and 3.5 earth radii (Re) distant, and a larger, more variable companion current exists between about 4 and 9 Re. These current regions are loaded during geomagnetic substorms. They decay, almost exponentially, after the cessation of the particle influx that attends the solar wind disturbance. This review focuses upon characteristics needed for intelligent use of the ring current as a source for induction probing of the earth's mantle. Considerable difficulties are found with the assumption that Dst is a ring-current index. ?? 1990 Birkha??user Verlag.
Cai, Xiangran; Zhou, Qingchun; Yu, Juan; Xian, Zhaohui; Feng, Youzhen; Yang, Wencai; Mo, Xukai
2014-10-01
To evaluate the impact of reduced-radiation dual-energy (DE) protocols using 320-detector row computed tomography on the differentiation of urinary calculus components. A total of 58 urinary calculi were placed into the same phantom and underwent DE scanning with 320-detector row computed tomography. Each calculus was scanned 4 times with the DE protocols using 135 kV and 80 kV tube voltage and different tube current combinations, including 100 mA and 570 mA (group A), 50 mA and 290 mA (group B), 30 mA and 170 mA (group C), and 10 mA and 60 mA (group D). The acquisition data of all 4 groups were then analyzed by stone DE analysis software, and the results were compared with x-ray diffraction analysis. Noise, contrast-to-noise ratio, and radiation dose were compared. Calculi were correctly identified in 56 of 58 stones (96.6%) using group A and B protocols. However, only 35 stones (60.3%) and 16 stones (27.6%) were correctly diagnosed using group C and D protocols, respectively. Mean noise increased significantly and mean contrast-to-noise ratio decreased significantly from groups A to D (P <.05). In addition, the effective dose decreased markedly from groups A to D at 3.78, 1.81, 1.07, and 0.37 mSv, respectively. Decreasing the DE tube currents from 100 mA and 570 mA to 50 mA and 290 mA resulted in 96.6% accuracy for urinary calculus component analysis while reducing patient radiation exposure to 1.81 mSv. Further reduction of tube currents may compromise diagnostic accuracy. Copyright © 2014 Elsevier Inc. All rights reserved.
Magnetic forces and localized resonances in electron transfer through quantum rings.
Poniedziałek, M R; Szafran, B
2010-11-24
We study the current flow through semiconductor quantum rings. In high magnetic fields the current is usually injected into the arm of the ring preferred by classical magnetic forces. However, for narrow magnetic field intervals that appear periodically on the magnetic field scale the current is injected into the other arm of the ring. We indicate that the appearance of the anomalous-non-classical-current circulation results from Fano interference involving localized resonant states. The identification of the Fano interference is based on the comparison of the solution of the scattering problem with the results of the stabilization method. The latter employs the bound-state type calculations and allows us to extract both the energy of metastable states localized within the ring and the width of resonances by analysis of the energy spectrum of a finite size system as a function of its length. The Fano resonances involving states of anomalous current circulation become extremely narrow on both the magnetic field and energy scales. This is consistent with the orientation of the Lorentz force that tends to keep the electron within the ring and thus increases the lifetime of the electron localization within the ring. Absence of periodic Fano resonances in electron transfer probability through a quantum ring containing an elastic scatterer is also explained.
NASA Astrophysics Data System (ADS)
Zhou, Shengjun; Liu, Mengling; Hu, Hongpo; Gao, Yilin; Liu, Xingtong
2017-12-01
A ring-shaped SiO2 CBL underneath the p-electrode was employed to enhance current spreading of GaN-based light-emitting diodes (LEDs). Effects of ring-shaped SiO2 current blocking layer (CBL) thickness on optical and electrical characteristics of high power LEDs were investigated. A 190-nm-thick ring-shaped SiO2 CBL with inclined sidewalls was obtained using a combination of a thermally reflowed photoresist technique and an inductively coupled plasma (ICP) etching process, allowing for the deposition of conformal indium tin oxide (ITO) transparent conductive layer on sidewalls of ring-shaped SiO2 CBL. It was indicated that the external quantum efficiency (EQE) of high power LEDs increased with increasing thickness of ring-shaped SiO2 CBL. The EQE of high power LED with 190-nm-thick ring-shaped SiO2 CBL was 12.7% higher than that of high power LED without SiO2 CBL. Simulations performed with commercial SimuLED software package showed that the ring-shaped SiO2 CBL could significantly alleviate current crowding around p-electrode, resulting in enhanced current spreading over the entire high power LED structure.
Plasmasphere Modeling with Ring Current Heating
NASA Technical Reports Server (NTRS)
Guiter, S. M.; Fok, M.-C.; Moore, T. E.
1995-01-01
Coulomb collisions between ring current ions and the thermal plasma in the plasmasphere will heat the plasmaspheric electrons and ions. During a storm such heating would lead to significant changes in the temperature and density of the thermal plasma. This was modeled using a time- dependent, one-stream hydrodynamic model for plasmaspheric flows, in which the model flux tube is connected to the ionosphere. The model simultaneously solves the coupled continuity, momentum, and energy equations of a two-ion (H(+) and O(+) quasineutral, currentless plasma. Heating rates due to collisions with ring current ions were calculated along the field line using a kinetic ring current model. First, diurnally reproducible results were found assuming only photoelectron heating of the thermal electrons. Then results were found with heating of the H(+) ions by the ring current during the recovery phase of a magnetic storm.
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Gamayunov, K. V.; Jordanova, V. K.; Krivorutsky, E. N.
2002-01-01
Initial results from a newly developed model of the interacting ring current ions and ion cyclotron waves are presented. The model is based on the system of two kinetic equations: one equation describes the ring current ion dynamics, and another equation describes wave evolution. The system gives a self-consistent description of the ring current ions and ion cyclotron waves in a quasilinear approach. These equations for the ion phase space distribution function and for the wave power spectral density were solved on aglobal magnetospheric scale undernonsteady state conditions during the 2-5 May 1998 storm. The structure and dynamics of the ring current proton precipitating flux regions and the ion cyclotron wave-active zones during extreme geomagnetic disturbances on 4 May 1998 are presented and discussed in detail.
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Gamayunov, K. V.; Jordanova, V. K.; Krivorutsky, E. N.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
Initial results from the new developed model of the interacting ring current ions and ion cyclotron waves are presented. The model described by the system of two bound kinetic equations: one equation describes the ring current ion dynamics, and another one gives wave evolution. Such system gives a self-consistent description of the ring current ions and ion cyclotron waves in a quasilinear approach. Calculating ion-wave relationships, on a global scale under non steady-state conditions during May 2-5, 1998 storm, we presented the data at three time cuts around initial, main, and late recovery phases of May 4, 1998 storm phase. The structure and dynamics of the ring current proton precipitating flux regions and the wave active ones are discussed in detail.
NASA Astrophysics Data System (ADS)
Derder, M. E. M.; Maouche, S.; Liégeois, J. P.; Henry, B.; Amenna, M.; Ouabadi, A.; Bellon, H.; Bruguier, O.; Bayou, B.; Bestandji, R.; Nouar, O.; Bouabdallah, H.; Ayache, M.; Beddiaf, M.
2016-03-01
Intraplate deformation is most often linked to major stress applied on plate margins. When such intraplate events are accompanied by magmatism, the use of several dating methods integrated within a multidisciplinary approach can bring constraints on the age, nature and source mobilized for generating the magma and in turn on the nature of the intraplate deformation. This study focuses on the large gabbro Arrikine sill (35 km in extension) emplaced within the Silurian sediments of the western margin of the Murzuq cratonic basin in southeastern Algeria. Its emplacement is dated during the early Devonian (415-400 Ma) through the determination of a reliable paleomagnetic pole by comparison with the Gondwana Apparent Polar Wander Path (APWP). This age can be correlated with deep phreatic eruptions before Pragian time thought to be at the origin of sand injections and associated circular structures in Algeria and Libya. For the sill, the K-Ar age of 325.6 ± 7.7 Ma is related to a K-rich aplitic phase that has K-enriched by more than 20% the Devonian gabbro. Laser-ICP-MS U-Pb method dates only inherited zircons mostly at c. 2030 Ma with additional ages at c. 2700 Ma and younger ones in the 766-598 Ma age range. The Arrikine sill is a high-Ti alkaline gabbro having the geochemical composition of a hawaiite akin to several intraplate continental and oceanic provinces, including the contemporaneous Aïr ring complexes province in Niger, but also to the Mauna Loa volcano in Hawaii. This peculiar composition akin to that of the contemporaneous Aïr province is in agreement with a lower Devonian age for the Arrikine sill. The lower Devonian Arrikine sill emplacement is related to a "Caledonian" transtensive reactivation of the western metacratonic boundary of the Murzuq craton. This event also generated in the Saharan platform the so-called "Caledonian unconformity" of regional extension, the Aïr ring complexes and magmatic rocks that produced sand injections. It could be related to rifting of the Hun terranes that occurred at the plate margin to the north (Stampfli and Borel, 2002, Blackey, 2008 and references therein). The mid-Carboniferous (c. 326 Ma) reactivation corresponds to Variscan compression on NW Africa generating aplitic fluids, but also to the major "Hercynian unconformity" of regional extension. The generation of the Arrikine magma is attributed to partial melting through adiabatic pressure release of uprising asthenosphere along tectonically reactivated mega-shear zones, here bordering the relictual Murzuq craton enclosed in the Saharan metacraton.
On the Role of Global Magnetic Field Configuration in Affecting Ring Current Dynamics
NASA Technical Reports Server (NTRS)
Zheng, Y.; Zaharia, S. G.; Fok, M. H.
2010-01-01
Plasma and field interaction is one important aspect of inner magnetospheric physics. The magnetic field controls particle motion through gradient, curvature drifts and E cross B drift. In this presentation, we show how the global magnetic field affects dynamics of the ring current through simulations of two moderate geomagnetic storms (20 November 2007 and 8-9 March 2008). Preliminary results of coupling the Comprehensive Ring Current Model (CRCM) with a three-dimensional plasma force balance code (to achieve self-consistency in both E and B fields) indicate that inclusion of self-consistency in B tends to mitigate the intensification of the ring current as other similar coupling efforts have shown. In our approach, self-consistency in the electric field is already an existing capability of the CRCM. The magnetic self-consistency is achieved by computing the three-dimensional magnetic field in force balance with anisotropic ring current ion distributions. We discuss the coupling methodology and its further improvement. In addition, comparative studies by using various magnetic field models will be shown. Simulation results will be put into a global context by analyzing the morphology of the ring current, its anisotropy and characteristics ofthe interconnected region 2 field-aligned currents.
Electrode effects on temporal changes in electrolyte pH and redox potential for water treatment
Ciblak, Ali; Mao, Xuhui; Padilla, Ingrid; Vesper, Dorothy; Alshawabkeh, Iyad; Alshawabkeh, Akram N.
2012-01-01
The performance of electrochemical remediation methods could be optimized by controlling the physicochemical conditions of the electrochemical redox system. The effects of anode type (reactive or inert), current density and electrolyte composition on the temporal changes in pH and redox potential of the electrolyte were evaluated in divided and mixed electrolytes. Two types of electrodes were used: iron as a reactive electrode and mixed metal oxide coated titanium (MMO) as an inert electrode. Electric currents of 15, 30, 45 and 60 mA (37.5 mA L−1, 75 mA L−1, 112.5 mA L−1 and 150 mA L−1) were applied. Solutions of NaCl, Na2SO4 and NaHCO3 were selected to mimic different wastewater or groundwater composition. Iron anodes resulted in highly reducing electrolyte conditions compared to inert anodes. Electrolyte pH was dependent on electrode type, electrolyte composition and current density. The pH of mixed-electrolyte was stable when MMO electrodes were used. When iron electrodes were used, the pH of electrolyte with relatively low current density (37.5 mA L−1) did not show significant changes but the pH increased sharply for relatively high current density (150 mA L−1). Sulfate solution showed more basic and relatively more reducing electrolyte condition compared to bicarbonate and chloride solution. The study shows that a highly reducing environment could be achieved using iron anodes in divided or mixed electrolytes and the pH and redox potential could be optimized by using appropriate current and polarity reversal. PMID:22416866
Ma_MISS on ExoMars: Mineralogical Characterization of the Martian Subsurface
NASA Astrophysics Data System (ADS)
De Sanctis, Maria Cristina; Altieri, Francesca; Ammannito, Eleonora; Biondi, David; De Angelis, Simone; Meini, Marco; Mondello, Giuseppe; Novi, Samuele; Paolinetti, Riccardo; Soldani, Massimo; Mugnuolo, Raffaele; Pirrotta, Simone; Vago, Jorge L.; Ma_MISS Team
2017-07-01
The Ma_MISS (Mars Multispectral Imager for Subsurface Studies) experiment is the visible and near infrared (VNIR) miniaturized spectrometer hosted by the drill system of the ExoMars 2020 rover. Ma_MISS will perform IR spectral reflectance investigations in the 0.4-2.2 μm range to characterize the mineralogy of excavated borehole walls at different depths (between 0 and 2 m). The spectral sampling is about 20 nm, whereas the spatial resolution over the target is 120 μm. Making use of the drill's movement, the instrument slit can scan a ring and build up hyperspectral images of a borehole. The main goal of the Ma_MISS instrument is to study the martian subsurface environment. Access to the martian subsurface is crucial to our ability to constrain the nature, timing, and duration of alteration and sedimentation processes on Mars, as well as habitability conditions. Subsurface deposits likely host and preserve H2O ice and hydrated materials that will contribute to our understanding of the H2O geochemical environment (both in the liquid and in the solid state) at the ExoMars 2020 landing site. The Ma_MISS spectral range and sampling capabilities have been carefully selected to allow the study of minerals and ices in situ before the collection of samples. Ma_MISS will be implemented to accomplish the following scientific objectives: (1) determine the composition of subsurface materials, (2) map the distribution of subsurface H2O and volatiles, (3) characterize important optical and physical properties of materials (e.g., grain size), and (4) produce a stratigraphic column that will inform with regard to subsurface geological processes. The Ma_MISS findings will help to refine essential criteria that will aid in our selection of the most interesting subsurface formations from which to collect samples.
Wang, Ruishan; Chen, Ridao; Li, Jianhua; Liu, Xiao; Xie, Kebo; Chen, Dawei; Yin, Yunze; Tao, Xiaoyu; Xie, Dan; Zou, Jianhua; Yang, Lin; Dai, Jungui
2014-12-26
Prenylated flavonoids are attractive specialized metabolites with a wide range of biological activities and are distributed in several plant families. The prenylation catalyzed by prenyltransferases represents a Friedel-Crafts alkylation of the flavonoid skeleton in the biosynthesis of natural prenylated flavonoids and contributes to the structural diversity and biological activities of these compounds. To date, all identified plant flavonoid prenyltransferases (FPTs) have been identified in Leguminosae. In the present study two new FPTs, Morus alba isoliquiritigenin 3'-dimethylallyltransferase (MaIDT) and Cudrania tricuspidata isoliquiritigenin 3'-dimethylallyltransferase (CtIDT), were identified from moraceous plants M. alba and C. tricuspidata, respectively. MaIDT and CtIDT shared low levels of homology with the leguminous FPTs. MaIDT and CtIDT are predicted to be membrane-bound proteins with predicted transit peptides, seven transmembrane regions, and conserved functional domains that are similar to other homogentisate prenyltransferases. Recombinant MaIDT and CtIDT were able to regioselectively introduce dimethylallyl diphosphate into the A ring of three flavonoids with different skeleton types (chalcones, isoflavones, and flavones). Phylogenetic analysis revealed that MaIDT and CtIDT are distantly related to their homologs in Leguminosae, which suggests that FPTs in Moraceae and Leguminosae might have evolved independently. MaIDT and CtIDT represent the first two non-Leguminosae FPTs to be identified in plants and could thus lead to the identification of additional evolutionarily varied FPTs in other non-Leguminosae plants and could elucidate the biosyntheses of prenylated flavonoids in various plants. Furthermore, MaIDT and CtIDT might be used for regiospecific prenylation of flavonoids to produce bioactive compounds for potential therapeutic applications due to their high efficiency and catalytic promiscuity. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Wang, Ruishan; Chen, Ridao; Li, Jianhua; Liu, Xiao; Xie, Kebo; Chen, Dawei; Yin, Yunze; Tao, Xiaoyu; Xie, Dan; Zou, Jianhua; Yang, Lin; Dai, Jungui
2014-01-01
Prenylated flavonoids are attractive specialized metabolites with a wide range of biological activities and are distributed in several plant families. The prenylation catalyzed by prenyltransferases represents a Friedel-Crafts alkylation of the flavonoid skeleton in the biosynthesis of natural prenylated flavonoids and contributes to the structural diversity and biological activities of these compounds. To date, all identified plant flavonoid prenyltransferases (FPTs) have been identified in Leguminosae. In the present study two new FPTs, Morus alba isoliquiritigenin 3′-dimethylallyltransferase (MaIDT) and Cudrania tricuspidata isoliquiritigenin 3′-dimethylallyltransferase (CtIDT), were identified from moraceous plants M. alba and C. tricuspidata, respectively. MaIDT and CtIDT shared low levels of homology with the leguminous FPTs. MaIDT and CtIDT are predicted to be membrane-bound proteins with predicted transit peptides, seven transmembrane regions, and conserved functional domains that are similar to other homogentisate prenyltransferases. Recombinant MaIDT and CtIDT were able to regioselectively introduce dimethylallyl diphosphate into the A ring of three flavonoids with different skeleton types (chalcones, isoflavones, and flavones). Phylogenetic analysis revealed that MaIDT and CtIDT are distantly related to their homologs in Leguminosae, which suggests that FPTs in Moraceae and Leguminosae might have evolved independently. MaIDT and CtIDT represent the first two non-Leguminosae FPTs to be identified in plants and could thus lead to the identification of additional evolutionarily varied FPTs in other non-Leguminosae plants and could elucidate the biosyntheses of prenylated flavonoids in various plants. Furthermore, MaIDT and CtIDT might be used for regiospecific prenylation of flavonoids to produce bioactive compounds for potential therapeutic applications due to their high efficiency and catalytic promiscuity. PMID:25361766
Vasodilatory effects and underlying mechanisms of the ethyl acetate extracts from Gastrodia elata.
Dai, Rong; Wang, Ting; Si, Xiaoqin; Jia, Yuanyuan; Wang, Lili; Yuan, Yan; Lin, Qing; Yang, Cui
2017-05-01
The objective of this study was to assess the ethyl acetate extracts of Gastrodia elata Blume (GEB) on vascular tone and the mechanisms involved. GEB was extracted with 95% EtOH followed by a further extraction with ethyl acetate. The effects of GEB and its ingredients on the isometric tensions of the aortic rings from rats were measured. The ethyl acetate extract of GEB induced a vasodilatory effect on rat aorta, which was partially dependent on endothelium. Four chemical compounds isolated from GEB were identified as 3,4-dihydroxybenzaldehyde (DB), 4-hydroxybenzaldehyde (HB), 4-methoxybenzyl alcohol (MA), and 4,4'-dihydroxydiphenyl methane (DM), respectively. All of these compounds induced vasodilatations, which were dependent on the endothelium to different degrees. After pretreatment with N ω -nitro-l-arginine methyl ester, indomethacin, or methylene blue, the vasodilatations induced by DB, HB, and MA were significantly decreased. In addition, the contractions of the rat aortic rings due to Ca 2+ influx and intracellular Ca 2+ release were also inhibited by DM. Furthermore, the administration of DB significantly enhanced the productions of nitric oxide (NO) and the activities of the endothelial NO synthase in aorta and in endothelial cells. Thus, GEB may play an important role in the amelioration of hypertension by modulating vascular tones.
NASA Astrophysics Data System (ADS)
Jeffery, Rondo N.; Amiri, Farhang
2016-02-01
The classroom jumping ring demonstration is nearly always performed using alternating current (AC), in which the ring jumps or flies off the extended iron core when the switch is closed. The ring jumps higher when cooled with liquid nitrogen (LN2). We have performed experiments using DC to power the solenoid and find similarities and significant differences from the AC case. In particular, the ring does not fly off the core but rises a short distance and then falls back. If the ring jumps high enough, the rising and the falling motion of the ring does not follow simple vertical motion of a projectile. This indicates that there are additional forces on the ring in each part of its motion. Four possible stages of the motion of the ring with DC are identified, which result from the ring current changing directions during the jump in response to a changing magnetic flux through the moving ring.
NASA Astrophysics Data System (ADS)
Blanc, A.; Bernard-Griffiths, J.; Caby, R.; Caruba, C.; Caruba, R.; Dars, R.; Fourcade, S.; Peucat, J. J.
1992-04-01
In the West African fold belt of Mauritania, high-grade metamorphic series, similar to those of Amsaga (Reguibat shield-West African Craton), are exposed in a window. At Bou Naga-Mauritania (19° N, 13° 15' W) in the South of this window, an alkaline ring complex has intruded the metamorphic country rocks. This complex consists of two geological formations: the Eastern formation is mainly composed of red rhyolite sills, whereas the Western formation is made up of several kinds of alkaline rocks both saturated and under-saturated which cross cut the earlier saturated units. Three U-Pb zircon age measurements have been made on the alkaline complex, and one on an orthogneiss from the metamorphic country rocks. The syenite and the alkaline granite of the Western block are 676 ± 8 and 687 ± 5 Ma old. The orthogneiss is Archaean with an age of 2709 ± 136 Ma, but the lower intercept of discordia on concordia, shows an age of 756 ± 25 Ma linked with the genesis of the alkaline complex. A major crustal contribution is recorded by Nd and O isotopes in the SiO 2-saturated rocks. These results provide evidence for the correlation of the metamorphic country rocks with the Reguibat Archaean basement and for an early Pan-African continental rifting phase in this area before the tectonometamorphic events in the Mauritanide belt. Furthermore, with regards with previous geodynamic works of the West African Craton, our results leads us to suggest a significant diachronism between late Proterozoic crustal evolution to the West and to the East of the West African Craton. This is a further evidence for modern-type plate tectonics at this time.
NASA Technical Reports Server (NTRS)
Buzulukova, N.; Fok, M.-C.; Pulkkinen, A.; Kuznetsova, M.; Moore, T. E.; Glocer, A.; Brandt, P. C.; Toth, G.; Rastaetter, L.
2010-01-01
We present simulation results from a one-way coupled global MHD model (Block-Adaptive-Tree Solar-Wind Roe-Type Upwind Scheme, BATS-R-US) and kinetic ring current models (Comprehensive Ring Current Model, CRCM, and Fok Ring Current, FokRC). The BATS-R-US provides the CRCM/FokRC with magnetic field information and plasma density/temperature at the polar CRCM/FokRC boundary. The CRCM uses an electric potential from the BATS-R-US ionospheric solver at the polar CRCM boundary in order to calculate the electric field pattern consistent with the CRCM pressure distribution. The FokRC electric field potential is taken from BATS-R-US ionospheric solver everywhere in the modeled region, and the effect of Region II currents is neglected. We show that for an idealized case with southward-northward-southward Bz IMF turning, CRCM-BATS-R-US reproduces well known features of inner magnetosphere electrodynamics: strong/weak convection under the southward/northward Bz; electric field shielding/overshielding/penetration effects; an injection during the substorm development; Subauroral Ion Drift or Polarization Jet (SAID/PJ) signature in the dusk sector. Furthermore, we find for the idealized case that SAID/PJ forms during the substorm growth phase, and that substorm injection has its own structure of field-aligned currents which resembles a substorm current wedge. For an actual event (12 August 2000 storm), we calculate ENA emissions and compare with Imager for Magnetopause-to-Aurora Global Exploration/High Energy Neutral Atom data. The CRCM-BATS-R-US reproduces both the global morphology of ring current and the fine structure of ring current injection. The FokRC-BATS-R-US shows the effect of a realistic description of Region II currents in ring current-MHD coupled models.
NASA Astrophysics Data System (ADS)
Jiang, Fan
2016-02-01
Smooth tungsten coatings were prepared at current density below 70 mA cm-2 by electrodeposition on molybdenum substrate from Na2WO4-WO3 -melt at 1173 K in air atmosphere. As the current density reached up to 90 mA cm-2, many significant nodules were observed on the surface of the coating. Surface characterization, microstructure and mechanical properties were performed on the tungsten coatings. As the increasing of current density, the preferred orientation of the coatings changed to (2 0 0). All coatings exhibited columnar-grained-crystalline. There was about a 2 μm thick diffusion layer between tungsten coating and molybdenum substrate. The bending test revealed the tungsten coating had -good bonding strength with the molybdenum substrate. There is a down trend of the grain size of the coating on molybdenum as the current density increased from 30 mA cm-2 to 50 mA cm-2. The coating obtained at 50 mA cm-2 had a minimum grain size of 4.57 μm, while the microhardness of this coating reached to a maximum value of 495 HV.
The impact of exospheric neutral dynamics on ring current decay
NASA Astrophysics Data System (ADS)
Ilie, R.; Liemohn, M. W.; Skoug, R. M.; Funsten, H. O.; Gruntman, M.; Bailey, J. J.; Toth, G.
2015-12-01
The geocorona plays an important role in the energy budget of the Earth's inner magnetosphere since charge exchange of energetic ions with exospheric neutrals makes the exosphere act as an energy sink for ring current particles. Long-term ring current decay following a magnetic storm is mainly due to these electron transfer reactions, leading to the formation energetic neutral atoms (ENAs) that leave the ring current system on ballistic trajectories. The number of ENAs emitted from a given region of space depends on several factors, such as the energy and species of the energetic ion population in that region and the density of the neutral gas with which the ions undergo charge exchange. However, the density and structure of the exosphere are strongly dependent on changes in atmospheric temperature and density as well as charge exchange with the ions of plasmaspheric origin, which depletes the geocorona (by having a neutral removed from the system). Moreover, the radiation pressure exerted by solar far-ultraviolet photons pushes the geocoronal hydrogen away from the Earth in an anti-sunward direction to form a tail of neutral hydrogen. TWINS ENA images provide a direct measurement of these ENA losses and therefore insight into the dynamics of the ring current decay through interactions with the geocorona. We assess the influence of geocoronal neutrals on ring current formation and decay by analysis of the predicted ENA emissions using 6 different geocoronal models and simulations from the HEIDI ring current model during storm time. Comparison with TWINS ENA images shows that the location of the peak ENA enhancements is highly dependent on the distribution of geocoronal hydrogen density. We show that the neutral dynamics has a strong influence on the time evolution of the ring current populations as well as on the formation of energetic neutral atoms.
NASA Astrophysics Data System (ADS)
Lemon, C.; Chen, M.; O'Brien, T. P.; Toffoletto, F.; Sazykin, S.; Wolf, R.; Kumar, V.
2006-12-01
We present simulation results of the Rice Convection Model-Equilibrium (RCM-E) that test and compare the effect on the storm time ring current of varying the plasma sheet source population characteristics at 6.6 Re during magnetic storms. Previous work has shown that direct injection of ionospheric plasma into the ring current is not a significant source of ring current plasma, suggesting that the plasma sheet is the only source. However, storm time processes in the plasma sheet and inner magnetosphere are very complex, due in large part to the feedback interactions between the plasma distribution, magnetic field, and electric field. We are particularly interested in understanding the role of the plasma sheet entropy parameter (PV^{5/3}, where V=\\int ds/B) in determining the strength and distribution of the ring current in both the main and recovery phases of a storm. Plasma temperature and density can be measured from geosynchrorous orbiting satellites, and these are often used to provide boundary conditions for ring current simulations. However, magnetic field measurements in this region are less commonly available, and there is a relatively poor understanding of the interplay between the plasma and the magnetic field during magnetic storms. The entropy parameter is a quantity that incorporates both the plasma and the magnetic field, and understanding its role in the ring current injection and recovery is essential to describing the processes that are occuring during magnetic storms. The RCM-E includes the physics of feedback between the plasma and both the electric and magnetic fields, and is therefore a valuable tool for understanding these complex storm-time processes. By contrasting the effects of different plasma boundary conditions at geosynchronous orbit, we shed light on the physical processes involved in ring current injection and recovery.
A Self-Consistent Model of the Interacting Ring Current Ions with Electromagnetic ICWs
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Gamayunov, K. V.; Jordanova, V. K.; Krivorutsky, E. N.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
Initial results from a newly developed model of the interacting ring current ions and ion cyclotron waves are presented. The model is based on the system of two bound kinetic equations: one equation describes the ring current ion dynamics, and another equation describes wave evolution. The system gives a self-consistent description of ring current ions and ion cyclotron waves in a quasilinear approach. These two equations were solved on a global scale under non steady-state conditions during the May 2-5, 1998 storm. The structure and dynamics of the ring current proton precipitating flux regions and the wave active zones at three time cuts around initial, main, and late recovery phases of the May 4, 1998 storm phase are presented and discussed in detail. Comparisons of the model wave-ion data with the Polar/HYDRA and Polar/MFE instruments results are presented..
NASA Technical Reports Server (NTRS)
Lipatov, A. S.; Sibeck, D. G.
2016-01-01
We use a new hybrid kinetic model to simulate the response of ring current, outer radiation belt, and plasmaspheric particle populations to impulsive interplanetary shocks. Since particle distributions attending the interplanetary shock waves and in the ring current and radiation belts are non-Maxwellian, waveparticle interactions play a crucial role in energy transport within the inner magnetosphere. Finite gyroradius effects become important in mass loading the shock waves with the background plasma in the presence of higher energy ring current and radiation belt ions and electrons. Initial results show that shocks cause strong deformations in the global structure of the ring current, radiation belt, and plasmasphere. The ion velocity distribution functions at the shock front, in the ring current, and in the radiation belt help us determine energy transport through the Earth's inner magnetosphere.
Global, Energy-Dependent Ring Current Response During Two Large Storms
NASA Astrophysics Data System (ADS)
Goldstein, J.; Angelopoulos, V.; Burch, J. L.; De Pascuale, S.; Fuselier, S. A.; Genestreti, K. J.; Kurth, W. S.; LLera, K.; McComas, D. J.; Reeves, G. D.; Spence, H. E.; Valek, P. W.
2015-12-01
Two recent large (~200 nT) geomagnetic storms occurred during 17--18 March 2015 and 22--23 June 2015. The global, energy-dependent ring current response to these two extreme events is investigated using both global imaging and multi-point in situ observations. Energetic neutral atom (ENA) imaging by the Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) mission provides a global view of ring current ions. Local measurements are provided by two multi-spacecraft missions. The two Van Allen Probes measure in situ plasma (including ion composition) and fields at ring current and plasmaspheric L values. The recently launched Magnetospheric Multiscale (MMS) comprises four spacecraft that have just begun to measure particles (including ion composition) and fields at outer magnetospheric L-values. We analyze the timing and energetics of the stormtime evolution of ring current ions, both trapped and precipitating, using TWINS ENA images and in situ data by the Van Allen Probes and MMS.
Impact origin of the Avak Structure, Arctic Alaska, and genesis of the Barrow gas fields
Kirschner, C.E.; Grantz, A.; Mullen, M.W.
1992-01-01
Geophysical and subsurface geologic data suggest that the Avak structure, which underlies the Arctic Coastal Plain 12 km southeast of Barrow, Alaska, is a hypervelocity meteorite or comet impact structure. The structure is a roughly circular area of uplifted, chaotically deformed Upper Triassic to Lower Cretaceous sedimentary rocks 8 km in diameter that is bounded by a ring of anastomosing, inwardly dipping, listric normal faults 12 km in diameter. Examination of cores from the Barrow gas fields and data concerning the age of the Avak structure suggest that the Avak meteorite struck a Late Cretaceous or Tertiary marine shelf or coastal plain between the Cenomanian (ca. 95 Ma), and deposition of the basal beds of the overlying late Pliocene and Quaternary Gubik Formation (ca. 3 Ma). -from Authors
NASA Astrophysics Data System (ADS)
Vari, Sandor G.; Papazoglou, Theodore G.; Papaioannou, Thanassis; Stavridi, Marigo; Pergadia, Vani R.; Fishbein, Michael C.; van der Veen, Maurits J.; Thomas, Reem; Grundfest, Warren S.
1994-03-01
Laser induced fluorescence spectroscopy (LIFS) was used to detect the presence of PHOTOFRINR porfimer sodium and Benzoporphyrin derivative-monoacid, ring A (BPD-MA) in various tissues. Lobund Wistar rats (n equals 49) inoculated with rat prostatic adenocarcinoma (PA-III) were injected with PHOTOFRINR porfimer sodium (7.5 - 0.25 mg/kg) and BPD (0.50 - 25 mg/kg) intravenously. A Helium-Cadmium laser (442 nm) was used as an excitation source. Our study showed that the amount of PHOTOFRINR porfimer sodium and BPD-MA which localizes in the metastatic lymph nodes is higher than in tumor and all other healthy tissues. Laser induced fluorescence spectroscopy may be a feasible method to detect the distribution of photosensitizers or other fluorescent compounds in vivo.
NASA Technical Reports Server (NTRS)
Akasofu, S.-I.
1979-01-01
Akasofu (1979) has reported that the interplanetary parameter epsilon correlates reasonably well with the magnetospheric substorm index AE; in the first approximation, epsilon represents the solar wind coupled to the magnetosphere. The correlation between the interplanetary parameter, the auroral electrojet index and the ring current index is examined for three magnetic storms. It is shown that when the interplanetary parameter exceeds the amount that can be dissipated by the ionosphere in terms of the Joule heat production, the excess energy is absorbed by the ring current belt, producing an abnormal growth of the ring current index.
NASA Astrophysics Data System (ADS)
Buzulukova, Natalia; Fok, Mei-Ching; Glocer, Alex; Moore, Thomas E.
2013-04-01
We report studies of the storm time ring current and its influence on the radiation belts, plasmasphere and global magnetospheric dynamics. The near-Earth space environment is described by multiscale physics that reflects a variety of processes and conditions that occur in magnetospheric plasma. For a successful description of such a plasma, a complex solution is needed which allows multiple physics domains to be described using multiple physical models. A key population of the inner magnetosphere is ring current plasma. Ring current dynamics affects magnetic and electric fields in the entire magnetosphere, the distribution of cold ionospheric plasma (plasmasphere), and radiation belts particles. To study electrodynamics of the inner magnetosphere, we present a MHD model (BATSRUS code) coupled with ionospheric solver for electric field and with ring current-radiation belt model (CIMI code). The model will be used as a tool to reveal details of coupling between different regions of the Earth's magnetosphere. A model validation will be also presented based on comparison with data from THEMIS, POLAR, GOES, and TWINS missions. INVITED TALK
The plasmasheet H+ and O+ contribution on the storm time ring current
NASA Astrophysics Data System (ADS)
Mouikis, C.; Bingham, S.; Kistler, L. M.; Spence, H. E.; Gkioulidou, M.; Claudepierre, S. G.; Farrugia, C. J.
2015-12-01
The source population of the storm time ring current is the night side plasma sheet. We use Van Allen Probes and Cluster observations to determine the contribution of the convecting plasma sheet H+ and O+ particles in the storm time development of the ring current. Using the Volland-Stern model with a dipole magnetic field together with the identification of the observed energy cutoffs in the particle spectra, we specify the pressure contributed by H+ and O+ populations that are on open drift paths vs. the pressure contributed by the trapped populations, for different local times. We find that during the storm main phase most of the ring current pressure in the pre-midnight inner magnetosphere is contributed by particles on open drift paths that cause the development of a strong partial ring current that causes most of the main phase Dst drop. These particles can reach as deep as L~2 and their pressure compares to the local magnetic field pressure as deep as L~3. During the recovery phase, if these particles are not lost at the magnetopause, will become trapped and will contribute to the symmetric ring current.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordanova, Vania K
Understanding the response at Earth of the Sun's varying energy output and forecasting geomagnetic activity is of central interest to space science, since intense geomagnetic storms may cause severe damages on technological systems and affect communications. Episodes of southward (Bz
NASA Technical Reports Server (NTRS)
Jorgensen, A. M.; Henderson, M. G.; Roelof, E. C.; Reeves, G. D.; Spence, H. E.
2001-01-01
In this paper we calculate the contribution of charge exchange to the decay of the ring current. Past works have suggested that charge exchange of ring current protons is primarily responsible for the decay of the ring current during the late recovery phase, but there is still much debate about the fast decay of the early recovery phase. We use energetic neutral atom (ENA) measurements from Polar to calculate the total ENA energy escape. To get the total ENA escape we apply a forward modeling technique, and to estimate the total ring current energy escape we use the Dessler-Parker-Sckopke relationship. We find that during the late recovery phase of the March 10, 1998 storm ENAs with energies greater than 17.5 keV can account for 75% of the estimated energy loss from the ring current. During the fast recovery the measured ENAs can only account for a small portion of the total energy loss. We also find that the lifetime of the trapped ions is significantly shorter during the fast recovery phase than during the late recovery phase, suggesting that different processes are operating during the two phases.
Jenneskens, Leonardus W; Havenith, Remco W A; Soncini, Alessandro; Fowler, Patrick W
2011-10-06
Direct evaluation of the induced π current density in [5]paracyclophane (1) shows that, despite the significant non-planarity (α = 23.2°) enforced by the pentamethylene bridge, there is only a modest (ca. 17%) reduction in the π ring current, justifying the use of shielding-cone arguments for the assignment of (1)H NMR chemical shifts of 1 and the claim that the non-planar benzene ring in 1 retains its aromaticity (on the magnetic criterion).
Spin-dependent heat and thermoelectric currents in a Rashba ring coupled to a photon cavity
NASA Astrophysics Data System (ADS)
Abdullah, Nzar Rauf; Tang, Chi-Shung; Manolescu, Andrei; Gudmundsson, Vidar
2018-01-01
Spin-dependent heat and thermoelectric currents in a quantum ring with Rashba spin-orbit interaction placed in a photon cavity are theoretically calculated. The quantum ring is coupled to two external leads with different temperatures. In a resonant regime, with the ring structure in resonance with the photon field, the heat and the thermoelectric currents can be controlled by the Rashba spin-orbit interaction. The heat current is suppressed in the presence of the photon field due to contribution of the two-electron and photon replica states to the transport while the thermoelectric current is not sensitive to changes in parameters of the photon field. Our study opens a possibility to use the proposed interferometric device as a tunable heat current generator in the cavity photon field.
NASA Astrophysics Data System (ADS)
Antonova, E. E.; Kirpichev, I. P.; Vovchenko, V. V.; Stepanova, M. V.; Riazantseva, M. O.; Pulinets, M. S.; Ovchinnikov, I. L.; Znatkova, S. S.
2013-07-01
There are strong experimental evidences of the existence of plasma domain forming a closed plasma ring around the Earth at geocentric distances ∼7-10RE. In this work, we analyze the main properties of this ring, using the data of the THEMIS satellite mission, acquired between April 2007 and September 2011. We also analyze the contribution of this ring to the storm dynamics. In particular, it is shown that the distribution of plasma pressure at ∼7-10RE is nearly azimuthally symmetric. However, the daytime compression of the magnetic field lines and the shift of the minimal value of the magnetic field to higher latitudes lead to the spreading of the transverse current along field lines and splitting of the daytime integral transverse current into two branches in Z direction. The CRC is the high latitude continuation of the ordinary ring current (RC), generated by plasma pressure gradients, directed to the Earth. We evaluated the contribution of the azimuthally symmetric part of the plasma ring to the Dst index for strong geomagnetic storms using the AMPTE/CCE radial profiles of plasma pressure published before, and showed that the contribution of the ring current including both RC and CRC is sufficient to obtain the observed Dst variation without the necessity to include the tail current system.
Methamphetamine Vaccines: Improvement through Hapten Design.
Collins, Karen C; Schlosburg, Joel E; Bremer, Paul T; Janda, Kim D
2016-04-28
Methamphetamine (MA) addiction is a serious public health problem, and current methods to abate addiction and relapse are currently ineffective for mitigating this growing global epidemic. Development of a vaccine targeting MA would provide a complementary strategy to existing behavioral therapies, but this has proven challenging. Herein, we describe optimization of both hapten design and formulation, identifying a vaccine that elicited a robust anti-MA immune response in mice, decreasing methamphetamine-induced locomotor activity.
Huang, Yulu; Wang, Haipeng; Rimmer, Robert A.; ...
2016-08-01
An ultrafast kicker system is being developed for the energy recovery linac (ERL) based electron circulator cooler ring (CCR) in the proposed Jefferson Lab Electron Ion Collider (JLEIC, previously named MEIC). In the CCR, the injected electron bunches can be recirculated while performing ion cooling for 10–30 turns before the extraction, thus reducing the recirculation beam current in the ERL to 1/10–1/30 (150mA–50 mA) of the cooling beam current (up to 1.5 A). Assuming a bunch repetition rate of 476.3 MHz and a recirculating factor of 10 in the CCR, the kicker is required to operate at a pulse repetitionmore » rate of 47.63 MHz with pulse width of around 2 ns, so that only every 10th bunch in the CCR will experience a transverse kick while the rest of the bunches will not be disturbed. Such a kicker pulse can be synthesized by ten harmonic modes of the 47.63 MHz kicker pulse repetition frequency, using up to four quarter wavelength resonator (QWR) based deflecting cavities. In this paper, several methods to synthesize such a kicker waveform will be discussed and a comparison of their beam dynamics performance is made using ELEGANT. Four QWR cavities are envisaged with high transverse shunt impedance requiring less than 100 W of total rf power for a Flat-Top kick pulse. Multipole fields due to the asymmetry of this type of cavity are analyzed. The transverse emittance growth due to the sextupole component is simulated in ELEGANT. In conclusion, off-axis injection and extraction issues and beam optics using a multicavity kick-drift scheme will also be discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Yulu; Wang, Haipeng; Rimmer, Robert A.
An ultrafast kicker system is being developed for the energy recovery linac (ERL) based electron circulator cooler ring (CCR) in the proposed Jefferson Lab Electron Ion Collider (JLEIC, previously named MEIC). In the CCR, the injected electron bunches can be recirculated while performing ion cooling for 10–30 turns before the extraction, thus reducing the recirculation beam current in the ERL to 1/10–1/30 (150mA–50 mA) of the cooling beam current (up to 1.5 A). Assuming a bunch repetition rate of 476.3 MHz and a recirculating factor of 10 in the CCR, the kicker is required to operate at a pulse repetitionmore » rate of 47.63 MHz with pulse width of around 2 ns, so that only every 10th bunch in the CCR will experience a transverse kick while the rest of the bunches will not be disturbed. Such a kicker pulse can be synthesized by ten harmonic modes of the 47.63 MHz kicker pulse repetition frequency, using up to four quarter wavelength resonator (QWR) based deflecting cavities. In this paper, several methods to synthesize such a kicker waveform will be discussed and a comparison of their beam dynamics performance is made using ELEGANT. Four QWR cavities are envisaged with high transverse shunt impedance requiring less than 100 W of total rf power for a Flat-Top kick pulse. Multipole fields due to the asymmetry of this type of cavity are analyzed. The transverse emittance growth due to the sextupole component is simulated in ELEGANT. In conclusion, off-axis injection and extraction issues and beam optics using a multicavity kick-drift scheme will also be discussed.« less
Electromagnetic pulse-driven spin-dependent currents in semiconductor quantum rings.
Zhu, Zhen-Gang; Berakdar, Jamal
2009-04-08
We investigate the non-equilibrium charge and spin-dependent currents in a quantum ring with a Rashba spin-orbit interaction (SOI) driven by two asymmetric picosecond electromagnetic pulses. The equilibrium persistent charge and persistent spin-dependent currents are investigated as well. It is shown that the dynamical charge and the dynamical spin-dependent currents vary smoothly with a static external magnetic flux and the SOI provides a SU(2) effective flux that changes the phases of the dynamic charge and the dynamic spin-dependent currents. The period of the oscillation of the total charge current with the delay time between the pulses is larger in a quantum ring with a larger radius. The parameters of the pulse fields control to a certain extent the total charge and the total spin-dependent currents. The calculations are applicable to nanometre rings fabricated in heterojunctions of III-V and II-VI semiconductors containing several hundreds of electrons.
Ring Current Ion Coupling with Electromagnetic Ion Cyclotron Waves
NASA Technical Reports Server (NTRS)
Khazanov. G. V.; Gamayunov, K. V.; Jordanova, V. K.; Six, N. Frank (Technical Monitor)
2002-01-01
A new ring current global model has been developed that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic, and another equation describes wave evolution of electromagnetic ion cyclotron waves (EMIC). The coupled model is able to simulate, for the first time self-consistently calculated RC ion kinetic and evolution of EMIC waves that propagate along geomagnetic field lines and reflect from the ionosphere. Ionospheric properties affect the reflection index through the integral Pedersen and Hall conductivities. The structure and dynamics of the ring current proton precipitating flux regions, intensities of EMIC global RC energy balance, and some other parameters will be studied in detail for the selected geomagnetic storms.
Development of a 20 mA negative hydrogen ion source for cyclotrons
NASA Astrophysics Data System (ADS)
Etoh, H.; Onai, M.; Arakawa, Y.; Aoki, Y.; Mitsubori, H.; Sakuraba, J.; Kato, T.; Mitsumoto, T.; Yajima, S.; Hatayama, A.; Okumura, Y.
2017-08-01
A cesiated DC negative ion source has been developed for proton cyclotrons in medical applications. A continuous H- beam of 23 mA was stably extracted at an arc power of 3 kW. The beam current gradually decreases with a constant arc power and without additional Cs injection and the decay rate was about 0.03 mA (0.14%) per hour. A feed-back control system that automatically adjusts the arc power to stabilize the beam current is able to keep the beam current constant at ±0.04 mA (±0.2%).
Multi-MA reflex triode research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swanekamp, Stephen Brian; Commisso, Robert J.; Weber, Bruce V.
The Reflex Triode can efficiently produce and transmit medium energy (10-100 keV) x-rays. Perfect reflexing through thin converter can increase transmission of 10-100 keV x-rays. Gamble II experiment at 1 MV, 1 MA, 60 ns - maximum dose with 25 micron tantalum. Electron orbits depend on the foil thickness. Electron orbits from LSP used to calculate path length inside tantalum. A simple formula predicts the optimum foil thickness for reflexing converters. The I(V) characteristics of the diode can be understood using simple models. Critical current dominates high voltage triodes, bipolar current is more important at low voltage. Higher current (2.5more » MA), lower voltage (250 kV) triodes are being tested on Saturn at Sandia. Small, precise, anode-cathode gaps enable low impedance operation. Sample Saturn results at 2.5 MA, 250 kV. Saturn dose rate could be about two times greater. Cylindrical triode may improve x-ray transmission. Cylindrical triode design will be tested at 1/2 scale on Gamble II. For higher current on Saturn, could use two cylindrical triodes in parallel. 3 triodes in parallel require positive polarity operation. 'Triodes in series' would improve matching low impedance triodes to generator. Conclusions of this presentation are: (1) Physics of reflex triodes from Gamble II experiments (1 MA, 1 MV) - (a) Converter thickness 1/20 of CSDA range optimizes x-ray dose; (b) Simple model based on electron orbits predicts optimum thickness from LSP/ITS calculations and experiment; (c) I(V) analysis: beam dynamics different between 1 MV and 250 kV; (2) Multi-MA triode experiments on Saturn (2.5 MA, 250 kV) - (a) Polarity inversion in vacuum, (b) No-convolute configuration, accurate gap settings, (c) About half of current produces useful x-rays, (d) Cylindrical triode one option to increase x-ray transmission; and (3) Potential to increase Saturn current toward 10 MA, maintaining voltage and outer diameter - (a) 2 (or 3) cylindrical triodes in parallel, (b) Triodes in series to improve matching, (c) These concepts will be tested first on Gamble II.« less
Susceptibility of superconductor disks and rings with and without flux creep
NASA Astrophysics Data System (ADS)
Brandt, Ernst Helmut
1997-06-01
First some consequences of the Bean assumption of constant critical current Jc in type-II superconductors are listed and the Bean ac susceptibility of narrow rings is derived. Then flux creep is described by a nonlinear current-voltage law E~Jn, from which the saturated magnetic moment at constant ramp rate H-|Apa(t) is derived for rings with general hole radius a1 and general creep exponent n. Next the exact formulation for rings in a perpendicular applied field Ha(t) is presented in the form of an equation of motion for the current density in thick rings and disks or the sheet current in thin rings and disks. This method is used to compute general magnetization curves m(Ha) and ac susceptibilities χ of rings with and without creep, accounting also for nonconstant Jc(B). Typical current and field (B) profiles are depicted. The initial slope of m(Ha) (the ideal diamagnetic moment) and the field of full penetration are expressed as functions of the inner and outer ring radii a1 and a. A scaling law is derived which states that for arbitrary creep exponent n the complex nonlinear ac susceptibility χ(H0,ω) depends only on the combination Hn-10/ω of the ac amplitude H0 and the ac frequency ω/2π. This scaling law thus connects the known dependencies χ=χ(ω) in the ohmic limit (n=1) and χ=χ(H0) in the Bean limit (n-->∞).
2007-12-12
Like Earth, Saturn has an invisible ring of energetic ions trapped in its magnetic field. This feature is known as a "ring current." This ring current has been imaged with a special camera on Cassini sensitive to energetic neutral atoms. This is a false color map of the intensity of the energetic neutral atoms emitted from the ring current through a processed called charged exchange. In this process a trapped energetic ion steals and electron from cold gas atoms and becomes neutral and escapes the magnetic field. The Cassini Magnetospheric Imaging Instrument's ion and neutral camera records the intensity of the escaping particles, which provides a map of the ring current. In this image, the colors represent the intensity of the neutral emission, which is a reflection of the trapped ions. This "ring" is much farther from Saturn (roughly five times farther) than Saturn's famous icy rings. Red in the image represents the higher intensity of the particles, while blue is less intense. Saturn's ring current had not been mapped before on a global scale, only "snippets" or areas were mapped previously but not in this detail. This instrument allows scientists to produce movies (see PIA10083) that show how this ring changes over time. These movies reveal a dynamic system, which is usually not as uniform as depicted in this image. The ring current is doughnut shaped but in some instances it appears as if someone took a bite out of it. This image was obtained on March 19, 2007, at a latitude of about 54.5 degrees and radial distance 1.5 million kilometres (920,000 miles). Saturn is at the center, and the dotted circles represent the orbits of the moon's Rhea and Titan. The Z axis points parallel to Saturn's spin axis, the X axis points roughly sunward in the sun-spin axis plane, and the Y axis completes the system, pointing roughly toward dusk. The ion and neutral camera's field of view is marked by the white line and accounts for the cut-off of the image on the left. The image is an average of the activity over a (roughly) 3-hour period. http://photojournal.jpl.nasa.gov/catalog/PIA10094
Large transient fault current test of an electrical roll ring
NASA Technical Reports Server (NTRS)
Yenni, Edward J.; Birchenough, Arthur G.
1992-01-01
The space station uses precision rotary gimbals to provide for sun tracking of its photoelectric arrays. Electrical power, command signals and data are transferred across the gimbals by roll rings. Roll rings have been shown to be capable of highly efficient electrical transmission and long life, through tests conducted at the NASA Lewis Research Center and Honeywell's Satellite and Space Systems Division in Phoenix, AZ. Large potential fault currents inherent to the power system's DC distribution architecture, have brought about the need to evaluate the effects of large transient fault currents on roll rings. A test recently conducted at Lewis subjected a roll ring to a simulated worst case space station electrical fault. The system model used to obtain the fault profile is described, along with details of the reduced order circuit that was used to simulate the fault. Test results comparing roll ring performance before and after the fault are also presented.
Stabilizing windings for tilting and shifting modes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jardin, S.C.; Christensen, U.R.
1982-02-26
This invention provides simple, inexpensive, independent and passive, conducting loops for stabilizing a plasma ring having externally produced equilibrium fields on opposite sides of the plasma ring and internal plasma currents that interact to tilt and/or shift the plasma ring relative to the externally produced equilibrium field so as to produce unstable tilting and/or shifting modes in the plasma ring. More particularly this invention provides first and second passive conducting loops for containing first and second induced currents in first and second directions corresponding to the amplitude and directions of the unstable tilting and/or shifting modes in the plasma ring.more » To this end, the induced currents provide additional magnetic fields for producing restoring forces and/or restoring torques for counteracting the tilting and/or shifting modes when the conducting loops are held fixed in stationary positions relative to the externally produced equilibrium fields on opposite sides of the plasma ring.« less
NASA Astrophysics Data System (ADS)
Öncan, Mehmet; Koç, Fatih; Şahin, Mehmet; Köksal, Koray
2017-05-01
This work introduces an analysis of the relationship of first-principles calculations based on DFT method with the results of free particle model for ring-shaped aromatic molecules. However, the main aim of the study is to reveal the angular electronic band structure of the ring-shaped molecules. As in the case of spherical molecules such as fullerene, it is possible to observe a parabolic dispersion of electronic states with the variation of angular quantum number in the planar ring-shaped molecules. This work also discusses the transition probabilities between the occupied and virtual states by analyzing the angular electronic band structure and the possibility of ring currents in the case of spin angular momentum (SAM) or orbital angular momentum (OAM) carrying light. Current study focuses on the benzene molecule to obtain its angular electronic band structure. The obtained electronic band structure can be considered as a useful tool to see the transition probabilities between the electronic states and possible contribution of the states to the ring currents. The photoinduced current due to the transfer of SAM into the benzene molecule has been investigated by using analytical calculations within the frame of time-dependent perturbation theory.
Physical installation of Pelletron and electron cooling system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurh, P.
1997-09-01
Bremsstrahlung of 5 MeV electrons at a loss current of 50 microamp in the acceleration region is estimated to produce X-ray intensities of 7 Rad/sec. Radiation losses due to a misteer or sudden obstruction will of course be much higher still (estimated at 87,500 Rad/hr for a 0.5 mA beam current). It is estimated that 1.8 meters of concrete will be necessary to adequately shield the surrounding building areas at any possible Pelletron installation site. To satisfy our present electron cooling development plan, two Pelletron installations are required, the first at our development lab in the Lab B/NEF Enclosure areamore » and the second at the operational Main Injector service building, MI-30, in the main Injector ring. The same actual Pelletron and electron beam-line components will be used at both locations. The Lab B installation will allow experimentation with actual high energy electron beam to develop the optics necessary for the cooling straight while Main Injector/Recycler commissioning is taking place. The MI-30 installation is obviously the permanent home for the Pelletron when electron cooling becomes operational. Construction plans for both installations will be discussed here.« less
Bove, D.J.; Hon, Ken; Budding, K.E.; Slack, J.F.; Snee, L.W.; Yeoman, R.A.
2000-01-01
Twenty-five new 40Ar/39Ar ages from volcanic rocks and veins in the western San Juan Mountains clarify relationships between volcanism and mineralization in this classic area. Five calc-alkaline ash-flow sheets erupted from caldera sources (Ute Ridge, Blue Mesa, Dillon Mesa, Sapinero Mesa, and Crystal Lake Tuffs) from 28.6 to 27.6 Ma. This is a much more restricted time interval than previously thought and indicates that the underlying batholith rose and evolved very rapidly beneath the western San Juan Mountains. The new ages and geologic relations constrain the timing of joint resurgence of the Uncompahgre and San Juan calderas to between 28.2 and 27.6 Ma. The collapse of the Silverton caldera produced a set of strong ring fractures that intersected with graben faults on the earlier resurgent dome to produce the complex set of structures that localized the mid-Miocene epithermal gold veins. Later calc-alkaline monzonitic to quartz monzontic plutons solidified at 26.5-26.0 Ma as the underlying batholith rose through its volcanic cover. A new age from lavas near Uncompahgre Peak supports earlier interpretations that these lavas were fed by nearby 26 Ma monzonite intrusions. Nearly all of these intrusions are associated with subeconomic Mo and Cu mineralization and associated alteration, and new ages of 26.40 and 25.29 Ma from the Ute-Ulay and Lilly veins in the Lake City region show that some of the most important silver and base-metal veins were temporally and possibly genetically connected to these plutons. In addition, the Golden Fleece telluride vein cuts all of the post-Uncompahgre caldera volcanics in the area and is probably temporally related to this cycle, though its age of 27.5 ? 0.3 Ma was determined by less precise U/Pb methods. The 22.9 Ma Lake City caldera collapsed within the older Uncompahgre caldera structure but is petrologically unrelated to the older calc-alkaline activity. The distinctive suite of high-silica rhyolite tuff and alkaline resurgent intrusions indicates that it is closely related to the early stages of bimodal high-silica rhyolite-alkali basalt volcanism that accompanied the onset of extensional tectonism in the region. Both 40Ar/39Ar ages and paleomagnetic data confirm that the entire caldera sequence formed in less than 330,000 years. Only weak quartz vein mineralization is present in the center of the caldera, and it appears to be related to leaching of metals from the intracaldera tuffs above the resurgent intrusion. Massive alunitization and weak Mo and Cu mineralization along the eastern ring fracture are associated with calc-alkaline lavas and stocks related to late stages of the caldera cycle. These calc-alkaline stocks also appear to be genetically and temporally linked to a radial pattern of barite-precious metal veins on the northeastern margin of the Lake City caldera.
Characterization of the Hamamatsu H12700A-03 and R12699-03 multi-anode photomultiplier tubes
NASA Astrophysics Data System (ADS)
Calvi, M.; Carniti, P.; Cassina, L.; Gotti, C.; Maino, M.; Matteuzzi, C.; Pessina, G.
2015-09-01
The H12700 is a novel 64-channel 52 × 52 mm2 square Multi-Anode PhotoMultiplier Tube (MaPMT) produced by Hamamatsu. Its characteristics make this device suitable for high energy physics applications, such as in Ring Imaging Cherenkov (RICH) detectors. Hamamatsu provides the H12700 tube with an embedded socket connecting the anodes to the output pins and including an active voltage divider. A second device version, the R12699, is also available and differs from the former by the absence of the socket. This paper describes a complete characterization of both models, starting from the standard operating parameters (single photon spectra, average gain, anode uniformity and dark current value), investigating in detail the cross-talk effect among neighbouring pixels and considering the behaviour in critical environment conditions, such as in presence of a static magnetic field up to 100 Gauss, at different operating temperatures and after long exposure to intense light.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beaudoin, B.; Haber, I.; Kishek, R. A.
An induction cell has successfully been demonstrated to longitudinally confine a space-charge dominated bunch for over a thousand turns (>11.52 km) in the University of Maryland Electron Ring [Haber et al., Nucl. Instrum. Methods Phys. Res. A 606, 64 (2009) and R. A. Kishek et al., Int. J. Mod. Phys. A 22, 3838 (2007)]. With the use of synchronized periodic focusing fields, the beam is confined for multiple turns overcoming the longitudinal space-charge forces. Experimental results show that an optimum longitudinal match is obtained when the focusing frequency for containment of the 0.52 mA beam is applied at every fifthmore » turn. Containment of the beam bunch is achievable at lower focusing frequencies, at the cost of a reduction in the transported charge from the lack of sufficient focusing. Containment is also obtainable, if the confinement fields overfocus the bunch, exciting multiple waves at the bunch ends, which propagate into the central region of the beam, distorting the overall constant current beam shape.« less
Longitudinal confinement and matching of an intense electron beam
NASA Astrophysics Data System (ADS)
Beaudoin, B.; Haber, I.; Kishek, R. A.; Bernal, S.; Koeth, T.; Sutter, D.; O'Shea, P. G.; Reiser, M.
2011-01-01
An induction cell has successfully been demonstrated to longitudinally confine a space-charge dominated bunch for over a thousand turns (>11.52 km) in the University of Maryland Electron Ring [Haber et al., Nucl. Instrum. Methods Phys. Res. A 606, 64 (2009) and R. A. Kishek et al., Int. J. Mod. Phys. A 22, 3838 (2007)]. With the use of synchronized periodic focusing fields, the beam is confined for multiple turns overcoming the longitudinal space-charge forces. Experimental results show that an optimum longitudinal match is obtained when the focusing frequency for containment of the 0.52 mA beam is applied at every fifth turn. Containment of the beam bunch is achievable at lower focusing frequencies, at the cost of a reduction in the transported charge from the lack of sufficient focusing. Containment is also obtainable, if the confinement fields overfocus the bunch, exciting multiple waves at the bunch ends, which propagate into the central region of the beam, distorting the overall constant current beam shape.
Revisiting the West Clearwater Lake Impact Structure, Canada
NASA Technical Reports Server (NTRS)
Osinski, G. R.; Brunner, A.; Collins, G.; Cohen, B. A.; Coulter, A.; Elphic, R.; Grieve, R. A. F.; Hodges, K.; Horne, A.; Kerrigan, M.
2015-01-01
The West and East Clearwater Lake impact structures are two of the most distinctive and recognizable impact structures on Earth. Known regionally as the "Clearwater Lake Complex", these structures are located in northern Quebec, Canada (56 deg 10 N, 74 deg 20 W) approximately 125 km east of Hudson Bay. The currently accepted diameters are 36 km and 26 km for the West and East structures, respectively. Long thought to represent a rare example of a double impact, recent age dating has called this into question with ages of approximately 286 Ma and approximately 460-470 Ma being proposed for the West and East structures, respectively. Relatively little is known about the East Clearwater Lake structure. There is no surface exposure and what information there is comes from geophysics and two drill cores obtained in the 1960s. In contrast, the West Clearwater Lake structure is relatively well preserved with large ring of islands in the approximately 30 km diameter lake. Much of the work done on West Clearwater stems from field investigations carried out in 1977 driven by the Apollo program, with a focus on the impact melt rocks and other impactites, which are well exposed on the ring of islands. To our knowledge, the Clearwater Lake impact structures have not been the focus of detailed impact geology field investigations since the 1977 expedition and the only geological map that exists is from the 1960s and is at the reconnaissance level. Our knowledge of impact cratering processes have increased substantially since this time, as have the analytical techniques available for samples. This provided the motivation for a joint Canadian-US-UK expedition to the West Clearwater Lake impact structure in August and September 2015, under the auspices of the FINESSE (Field Investigations to Enable Solar System Science and Exploration) project, part of NASA's Solar System Exploration Research Virtual Institute (SSERVI). We focus here on the impactites of the West Clearwater Lake impact structure. Other ongoing studies, also presented at this conference, focus on central uplift formation, the impact-generated hydrothermal system, xxxx and using WCIS as an analog test site for crew studies of sampling protocols].
NASA Astrophysics Data System (ADS)
Geng, Hongbo; Ang, Huixiang; Ding, Xianguang; Tan, Huiteng; Guo, Guile; Qu, Genlong; Yang, Yonggang; Zheng, Junwei; Yan, Qingyu; Gu, Hongwei
2016-01-01
In this work, a one-dimensional Co3O4@TiO2 core-shell electrode material with superior electrochemical performance is fabricated by a convenient and controllable route. The approach involves two main steps: the homogeneous deposition of polydopamine and TiO2 layers in sequence on the cobalt coordination polymer and the thermal decomposition of the polymer matrix. The as-prepared electrode material can achieve excellent electrochemical properties and stability as an anode material for lithium ion batteries, such as a high specific capacity of 1279 mA h g-1, good cycling stability (around 803 mA h g-1 at a current density of 200 mA g-1 after 100 cycles), and stable rate performance (around 520 mA h g-1 at a current density of 1000 mA g-1). This dramatic electrochemical performance is mainly attributed to the excellent structural characteristics, which could improve the electrical conductivity and lithium ion mobility, as well as electrolyte permeability and architectural stability during cycling.In this work, a one-dimensional Co3O4@TiO2 core-shell electrode material with superior electrochemical performance is fabricated by a convenient and controllable route. The approach involves two main steps: the homogeneous deposition of polydopamine and TiO2 layers in sequence on the cobalt coordination polymer and the thermal decomposition of the polymer matrix. The as-prepared electrode material can achieve excellent electrochemical properties and stability as an anode material for lithium ion batteries, such as a high specific capacity of 1279 mA h g-1, good cycling stability (around 803 mA h g-1 at a current density of 200 mA g-1 after 100 cycles), and stable rate performance (around 520 mA h g-1 at a current density of 1000 mA g-1). This dramatic electrochemical performance is mainly attributed to the excellent structural characteristics, which could improve the electrical conductivity and lithium ion mobility, as well as electrolyte permeability and architectural stability during cycling. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08570e
Chew, Taariq; Ho, Kerrie-Anne; Loo, Colleen K
2015-01-01
Translation of transcranial direct current stimulation (tDCS) from research to clinical practice is hindered by a lack of consensus on optimal stimulation parameters, significant inter-individual variability in response, and in sufficient intra-individual reliability data. Inter-individual differences in response to anodal tDCS at a range of current intensities were explored. Intra-individual reliability in response to anodal tDCS across two identical sessions was also investigated. Twenty-nine subjects participated in a crossover study. Anodal-tDCS using four different current intensities (0.2, 0.5, 1 and 2 mA), with an anode size of 16 cm2, was tested. The 0.5 mA condition was repeated to assess intra-individual variability. TMS was used to elicit 40 motor-evoked potentials (MEPs) before 10 min of tDCS, and 20 MEPs at four time-points over 30 min following tDCS. ANOVA revealed no main effect of TIME for all conditions except the first 0.5 mA condition, and no differences in response between the four current intensities. Cluster analysis identified two clusters for the 0.2 and 2 mA conditions only. Frequency distributions based on individual subject responses (excitatory, inhibitory or no response) to each condition indicate possible differential responses between individuals to different current intensities. Test-retest reliability was negligible (ICC(2,1) = -0.50). Significant inter-individual variability in response to tDCS across a range of current intensities was found. 2 mA and 0.2 mA tDCS were most effective at inducing a distinct response. Significant intra-individual variability in response to tDCS was also found. This has implications for interpreting results of single-session tDCS experiments. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.
Tripling of Methamphetamine/Amphetamine Use among Homeless and Marginally Housed Persons, 1996–2003
Colfax, Grant; Moss, Andrew R.; Bangsberg, David R.; Hahn, Judith A.
2007-01-01
Methamphetamine/amphetamine (MA)-related morbidity and mortality has been increasing in the United States. MA use is associated with high-risk sexual behavior and syringe-sharing practices. Homeless and marginalized housed persons (H/M) have high rates of substance use and mental health disorders. Little is known about trends of MA use among the H/M. The objective of this study was to quantify increases in MA use among H/M in San Francisco and to determine which demographic and behavioral subgroups have experienced the greatest increases in MA use. We conducted serial cross-sectional population-based studies in three waves: 1996–1997, 1999–2000, and 2003 and studied 2,348 H/M recruited at shelters and lunch lines. The main outcome was self-reported current (30-day) MA use. We found a tripling of current MA use among H/M persons from 1996 to 2003, with a sevenfold increase in smoked MA use. MA use doubled to tripled in most demographic and behavioral subgroups, whereas it quadrupled in those under age 35, and there was a fivefold increase among HIV-infected persons. The increase in MA use among H/M places a vulnerable population at additional increased risk for HIV infection and MA-use related morbidity and mortality. Among HIV-infected H/M, the increase in MA use has important public health implications for the development and secondary transmission of drug-resistant HIV caused by synergistic neurocognitive decline, poor adherence to HIV medications, and increased sexual risk behavior. Clinicians caring for H/M persons should inquire about MA use, refer interested MA users to MA dependence treatment programs and provide targeted HIV sexual risk reduction counseling. For HIV-infected H/M MA users, clinicians should closely monitor adherence to HIV or other chronic medications, to avoid unnecessary morbidity and mortality. Further research is needed to elucidate the most effective prevention and treatment for MA use and dependence among the H/M. PMID:18163214
Comment on ``Unraveling the Causes of Radiation Belt Enhancements''
NASA Astrophysics Data System (ADS)
Campbell, Wallace H.
2008-09-01
The excellent article by M. W. Liemohn and A. A. Chan on the radiation belts (see Eos, 88(42), 16 October 2007) is misleading in its implication that the disturbance storm-time (Dst) index is an indicator of a magnetospheric ring current. That index is formed from an average of magnetic data from three or four low-latitude stations that have been fallaciously ``adjusted'' to a magnetic equatorial location under the 1960's assumption [Sugiura, 1964] that the fields arrive from the growth and decay of a giant ring of current in the magnetosphere. In truth, the index has a negative lognormal form [Campbell, 1996; Yago and Kamide, 2003] as a result of its composition from numerous negative ionospheric and magnetospheric disturbance field sources, each having normal field amplitude distributions [Campbell, 2004]. Some partial ring currents [Lui et al., 1987] and their associated field-aligned currents, as well as major ionospheric currents flowing from the auroral zone to equatorial latitudes, are the main contributors to the Dst index. No full magnetospheric ring of currents is involved, despite its false name (``Equatorial Dst Ring Current Index'') given by the index suppliers, the Geomagnetism Laboratory at Kyoto University, Japan.
NASA Astrophysics Data System (ADS)
Liu, Lilai; An, Maozhong; Yang, Peixia; Zhang, Jinqiu
2015-03-01
SnO2/graphene composite with superior cycle performance and high reversible capacity was prepared by a one-step microwave-hydrothermal method using a microwave reaction system. The SnO2/graphene composite was characterized by X-ray diffraction, thermogravimetric analysis, Fourier-transform infrared spectroscopy, Raman spectroscopy, scanning electron microscope, X-ray photoelectron spectroscopy, transmission electron microscopy and high resolution transmission electron microscopy. The size of SnO2 grains deposited on graphene sheets is less than 3.5 nm. The SnO2/graphene composite exhibits high capacity and excellent electrochemical performance in lithium-ion batteries. The first discharge and charge capacities at a current density of 100 mA g-1 are 2213 and 1402 mA h g-1 with coulomb efficiencies of 63.35%. The discharge specific capacities remains 1359, 1228, 1090 and 1005 mA h g-1 after 100 cycles at current densities of 100, 300, 500 and 700 mA g-1, respectively. Even at a high current density of 1000 mA g-1, the first discharge and charge capacities are 1502 and 876 mA h g-1, and the discharge specific capacities remains 1057 and 677 mA h g-1 after 420 and 1000 cycles, respectively. The SnO2/graphene composite demonstrates a stable cycle performance and high reversible capacity for lithium storage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Branitsky, A. V.; Grabovski, E. V.; Dzhangobegov, V. V.
The state of conductors carrying a megampere current from the generator to the load is studied experimentally. It is found that the plasma produced from cylindrical stainless-steel tubes during the passage of a submicrosecond current pulse with a linear density of 3 MA/cm expands with a velocity of 5.5 km/s. Numerical results on the diffusion of the magnetic field induced by a current with a linear density of 1–3MA/cm into metal electrodes agree with the experimental data on the penetration time of the magnetic field. For a linear current density of 3.1 MA/cm, the experimentally determined electric field strength onmore » the inner surface of the tube is 4 kV/cm. The calculated electric field strength on the inner surface of the tube turns out to be two times higher, which can be explained by plasma production on the outer and inner surfaces of the electrode.« less
Solar wind-magnetosphere coupling during intense magnetic storms (1978-1979)
NASA Technical Reports Server (NTRS)
Gonzalez, Walter D.; Gonzalez, Alicia L. C.; Tsurutani, Bruce T.; Smith, Edward J.; Tang, Frances
1989-01-01
The solar wind-magnetosphere coupling problem during intense magnetic storms was investigated for ten intense magnetic storm events occurring between August 16, 1978 to December 28, 1979. Particular attention was given to the dependence of the ring current energization on the ISEE-measured solar-wind parameters and the evolution of the ring current during the main phase of the intense storms. Several coupling functions were tested as energy input, and several sets of the ring current decay time-constant were searched for the best correlation with the Dst response. Results indicate that a large-scale magnetopause reconnection operates during an intense storm event and that the solar wind ram pressure plays an important role in the energization of the ring current.
Performance of an electron gun for a high-brightness X-ray generator.
Sugimura, Takashi; Ohsawa, Satoshi; Ikeda, Mitsuo
2008-05-01
A prototype thermionic electron gun for a high-brightness X-ray generator has been developed. Its extraction voltage and design current are 60 kV and 100 mA (DC), respectively. The X-ray generator aims towards a maximum brilliance of 60 kW mm(-2). The beam sizes at the rotating anticathode must therefore be within 1.0 mm x 0.1 mm and a small beam emittance is required. The fabricated electron gun optimizes an aperture grid and a Whenelt electrode. The performance of the prototype electron gun measured using pulsed-beam tests is as follows: maximum beam current, 85.7 mA; beam focus size at the rotating anticathode, 0.79 mm x 0.13 mm. In DC beam tests, FWHM beam sizes were measured to be 0.65 mm x 0.08 mm at the rotating anticathode with a beam current of 45 mA. The beam current recently reached approximately 60 mA with some thermal problems.
Freeman, Kevin B; Wang, Zhixia; Woolverton, William L
2010-04-01
(+)-Methamphetamine (MA) is an illicit psychostimulant that can be synthesized from the nonprescription nasal decongestant, (+)-pseudoephedrine (PE). While MA is widely abused, PE appears to have little or no abuse liability in currently available formulations. However, PE produces centrally-mediated dopaminergic effects that are linked to the reinforcing effects of MA and other illicit psychostimulants and has been reported to function as a positive reinforcer in non-human primates. There has yet to be an assessment of the relative reinforcing effects of MA and PE. Therefore, the current study compared the reinforcing potency and strength of MA and PE, alone and combined, in four rhesus monkeys that were allowed to self-administer MA (0.003-0.3 mg/kg/inj), PE (0.1-3.0 mg/kg/inj), or combinations of the two under a progressive-ratio schedule of reinforcement. (+)-Methamphetamine functioned as a positive reinforcer in a dose-dependent manner. (+)-Pseudoephedrine also functioned as a positive reinforcer, but was less potent than MA. There were no differences in maximum injections between MA, PE, or any of the combinations of the two. Dose-addition analysis and the interaction index indicated that combinations of PE and MA were either additive or sub-additive in their reinforcing effects. These results suggest that, while MA is a more potent reinforcer than PE, the two drugs are comparable in terms of reinforcing strength. However, MA and PE do not appear to interact in a manner that enhances their relative reinforcing effects. Published by Elsevier Inc.
Freeman, Kevin B.; Wang, Zhixia; Woolverton, William L.
2010-01-01
(+)-Methamphetamine (MA) is an illicit psychostimulant that can be synthesized from the nonprescription nasal decongestant, (+)-pseudoephedrine (PE). While MA is widely abused, PE appears to have little or no abuse liability in currently available formulations. However, PE produces centrally-mediated dopaminergic effects that are linked to the reinforcing effects of MA and other illicit psychostimulants and has been reported to function as a positive reinforcer in non-human primates. There has yet to be an assessment of the relative reinforcing effects of MA and PE. Therefore, the current study compared the reinforcing potency and strength of MA and PE, alone and combined, in four rhesus monkeys that were allowed to self-administer MA (0.003-0.3 mg/kg/inj), PE (0.1-3.0 mg/kg/inj), or combinations of the two under a progressive-ratio schedule of reinforcement. (+)-Methamphetamine functioned as a positive reinforcer in a dose-dependent manner. (+)-Pseudoephedrine also functioned as a positive reinforcer, but was less potent than MA. There were no differences in maximum injections between MA, PE, or any of the combinations of the two. Dose-addition analysis and the interaction index indicated that combinations of PE and MA were either additive or sub-additive in their reinforcing effects. These results suggest that, while MA is a more potent reinforcer than PE, the two drugs are comparable in terms of reinforcing strength. However, MA and PE do not appear to interact in a manner that enhances their relative reinforcing effects. PMID:20100506
NASA Astrophysics Data System (ADS)
Diddens, Heyke C.; Gillies, Robert; Hasan, Tayyaba
1994-08-01
Benzoporphyrin derivative, monoacid ring A (BPD-MA) is a second generation porphyrin photosensitizer, with a significant absorption at 692 nm. The ability of two different lasers (a high-intensity pulsed ruby laser, and a continuous wave (cw) argon-ion laser pumped dye laser) in producing photodynamic damage to human bladder carcinoma cells in vitro under similar conditions was compared. Cells incubated in 0.14 (mu) M BPD-MA for 3 hours were irradiated with 1 or 3 J/cm2 with either pulsed or cw irradiation at 694 nm. Cell survival was determined using an MTT assay. With the ruby laser essentially no phototoxicity was observed at the high intensity pulsed irradiances used, whereas 38% and 6% survival rates were observed for 1 and 3 J/cm2, respectively, using cw irradiation. Possible explanations for the lack of BPD-MA phototoxicity using the ruby laser are: rapid photodegradation, saturation and excitation into higher excited states of the sensitizer. No BPD-MA photodegradation was observed in 1.4 (mu) M BPD-MA in 10% fetal calf serum solutions using the ruby laser. However, an oxygen-dependent photodegradation with the formation of a chlorin-type photoproduct was observed in these solutions using cw irradiation. A simple calculation indicated that the high pulse irradiances used in this study (4.4 X 107 W/cm2) were approximately 3 orders of magnitude greater than required for the onset of saturation. If higher excited states (Sn or Tn) are populated, they do not undergo any photochemistry resulting in phototoxicity or in photoproduct formation. These results show that with the low saturation threshold of BPD-MA, the choice of source and irradiance are important considerations in planning a therapeutic regime.
2007-03-01
Cushman, Infoscitex Corporation, 303 Bear Hill Road, Waltham, MA 02451 Aluminum and titanium alloys are used as replacements for steel in gear...assess the susceptibility of selected substrates to wear. Initial testing utilized M50 steel rings as the counter surface to uncoated aluminum and...were recorded and plotted over the 4500 cycles, as shown in the right of Figure 3, depicting results of the best performing test substrate, M50 Steel
Lithospheric Shear Stresses Over And Around Africa
NASA Astrophysics Data System (ADS)
Greff-Lefftz, M.; Jean, B.; Vicente De Gouveia, S.
2017-12-01
We use a simple model for mantle dynamics combining contributions of subducted lithosphere, domes at the bottom of the mantle and upwelling plumes. A dominant feature of plate tectonics is the quasi permanence of a girdle of subductions around the Pacific ocean (or its ancestor), which creates large-wavelength positive topography anomaly within the ring they form. The superimposition of the resultant extension with the one induced by the dome leads to a permanent extensional regime over Africa and the future Indian ocean which creates faults with azimuth directions depending on the direction of the most active part of the ring of subductions. We thus obtain fractures with NW-SE azimuth during the period 275-165 Ma parallel to the strike of the subduction zone of the West South American active margin, which appears to be very active during this period. Between 155-95 Ma, subduction became more active along the Eastern Australian coast involving a change in the direction of the faults toward an E-W direction, in agreement with the observed fault systems between Africa and India, Antartica and Australia. During the Mesozoic and the Cenozoic, we correlate the permanent extensional regime over Africa and Indian ocean with the observed rift systems.Finally we emphasize the role of three primary hotspots as local additional contributors to the stress field imposed by our proposed subduction-doming system, which help in the opening of Indian and South Atlantic oceans.
Hughes, Nicola; Bennett, Michael I; Johnson, Mark I
2013-02-01
Strong nonpainful transcutaneous electrical nerve stimulation (TENS) is prerequisite to a successful analgesic outcome although the ease with which this sensation is achieved is likely to depend on the magnitude of current amplitude (mA) between sensory detection threshold (SDT) and pain threshold, that is, the current window. To measure the current window and participant's perception of the comfort of the TENS sensation at different body sites. A repeated measure cross-over study was conducted using 30 healthy adult volunteers. Current amplitudes (mA) of TENS [2 pulses per second (pps); 30 pps; 80 pps] at SDT, pain threshold, and strong nonpainful intensities were measured at the tibia (bone), knee joint (connective tissue), lower back [paraspinal (skeletal) muscle], volar surface of forearm (nerve) and waist (fat). The amplitude to achieve a strong nonpainful intensity was represented as a percentage of the current window. Data were analyzed using repeated measures analysis of variance. Effects were detected for body site and frequency for SDT (P<0.001, P=0.018, respectively), current window (P<0.001, P<0.001, respectively), and strong nonpainful TENS as a percentage of the current window (P=0.002, P<0.001, respectively). The current window was larger for the knee joint compared with tibia (difference [95% confidence interval]=12.76 mA [4.25, 21.28]; P=0.001) and forearm (10.33 mA [2.62, 18.40]; P=0.006), and for the lower back compared with tibia (12.10 mA [1.65, 22.52]; P=0.015) and forearm (9.65 mA [1.06, 18.24]; P=0.019). The current window was larger for 2 pps compared with 30 pps (P<0.001) and 80 pps (P<0.001). Participants rated strong nonpainful TENS as most comfortable at the lower back (P<0.001) and least comfortable at the tibia and forearm (P<0.001). TENS is most comfortable and easiest to titrate to a strong nonpainful intensity when applied over areas of muscle and soft tissue.
Little-Parks oscillations in superconducting ring with Josephson junctions
NASA Astrophysics Data System (ADS)
Sharon, Omri J.; Sharoni, Amos; Berger, Jorge; Shaulov, Avner; Yeshurun, Yosi
2018-03-01
Nb nano-rings connected serially by Nb wires exhibit, at low bias currents, the typical parabolic Little-Parks magnetoresistance oscillations. As the bias current increases, these oscillations become sinusoidal. This result is ascribed to the generation of Josephson junctions caused by the combined effect of current-induced phase slips and the non-uniformity of the order parameter along each ring due to the Nb wires attached to it. This interpretation is validated by further increasing the bias current, which results in magnetoresistance oscillations typical of a SQUID.
Superconducting fluctuation current caused by gravitational drag
NASA Astrophysics Data System (ADS)
Tsuchida, Satoshi; Kuratsuji, Hiroshi
2017-12-01
We examine a possible effect of the Lense-Thirring field or gravitational drag by calculating the fluctuation current through a superconducting ring. The gravitational drag is induced by a rotating sphere, on top of which the superconducting ring is placed. The formulation is based on the Landau-Ginzburg free-energy functional of linear form. The resultant fluctuation current is shown to be greatly enhanced in the vicinity of the transition temperature, and the current also increases on increasing the winding number of the ring. These effects would provide a modest step towards magnification of tiny gravity.
Magmatic development of the outer Vøring Margin
NASA Astrophysics Data System (ADS)
Breivik, Asbjorn; Faleide, Jan Inge; Mjelde, Rolf; Flueh, Ernst; Murai, Yoshio
2013-04-01
The Vøring Plateau off mid-Norway is a volcanic passive margin, located north of the East Jan Mayen Fracture Zone (EJMFZ). Large volumes of magmatic rocks were emplaced during Early Eocene margin formation. In 2003, an ocean bottom seismometer survey was acquired on the Vøring and Lofoten margins. One profile crosses from the Vøring Plateau to the Vøring Spur, an oceanic plateau north of the EJMFZ. The P-wave data were modeled by ray-tracing in a 2D velocity model of the crust. The process behind the excess magmatism can be estimated by comparing seismic velocity (VP) with igneous thickness (H). This profile and two other profiles farther north show a positive H-VP correlation, consistent with a hot mantle reservoir of finite extent under the margin at breakup. However, during the first two million years, magma production appears to be augmented by a secondary process. By 51-51.5 Ma melting may be caused by elevated mantle temperature alone. Seismic stratigraphy around the Vøring Spur shows at least two inversion events, with the main episode tentatively in the Upper Miocene, apparently through igneous growth to create the up to 15 km crustal thickness. The H-VP correlation of the spur is low, indicating constant and moderate-degree mantle melting not tied to the breakup magmatism. The admittance function between bathymetry and free-air gravity shows that the high is near local isostatic equilibrium, discounting that compressional flexure at the EJMFZ shaped the high. We also find no evidence for the proposed Early Eocene triple junction in the area.
Zhao, H.; Li, X.; Baker, D. N.; ...
2015-08-25
Enabled by the comprehensive measurements from the Magnetic Electron Ion Spectrometer (MagEIS), Helium Oxygen Proton Electron mass spectrometer (HOPE), and Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) instruments onboard Van Allen Probes in the heart of the radiation belt, the relative contributions of ions with different energies and species to the ring current energy density and their dependence on the phases of geomagnetic storms are quantified. The results show that lower energy (<50 keV) protons enhance much more often and also decay much faster than higher-energy protons. During the storm main phase, ions with energies <50 keV contribute moremore » significantly to the ring current than those with higher energies; while the higher-energy protons dominate during the recovery phase and quiet times. The enhancements of higher-energy proton fluxes as well as energy content generally occur later than those of lower energy protons, which could be due to the inward radial diffusion. For the 29 March 2013 storm we investigated in detail that the contribution from O + is ~25% of the ring current energy content during the main phase and the majority of that comes from <50 keV O +. This indicates that even during moderate geomagnetic storms the ionosphere is still an important contributor to the ring current ions. Using the Dessler-Parker-Sckopke relation, the contributions of ring current particles to the magnetic field depression during this geomagnetic storm are also calculated. In conclusion, the results show that the measured ring current ions contribute about half of the Dst depression.« less
Comparing Sources of Storm-Time Ring Current O+
NASA Astrophysics Data System (ADS)
Kistler, L. M.
2015-12-01
The first observations of the storm-time ring current composition using AMPTE/CCE data showed that the O+ contribution to the ring current increases significantly during storms. The ring current is predominantly formed from inward transport of the near-earth plasma sheet. Thus the increase of O+ in the ring current implies that the ionospheric contribution to the plasma sheet has increased. The ionospheric plasma that reaches the plasma sheet can come from both the cusp and the nightside aurora. The cusp outflow moves through the lobe and enters the plasma sheet through reconnection at the near-earth neutral line. The nightside auroral outflow has direct access to nightside plasma sheet. Using data from Cluster and the Van Allen Probes spacecraft, we compare the development of storms in cases where there is a clear input of nightside auroral outflow, and in cases where there is a significant cusp input. We find that the cusp input, which enters the tail at ~15-20 Re becomes isotropized when it crosses the neutral sheet, and becomes part of the hot (>1 keV) plasma sheet population as it convects inward. The auroral outflow, which enters the plasma sheet closer to the earth, where the radius of curvature of the field line is larger, does not isotropize or become significantly energized, but remains a predominantly field aligned low energy population in the inner magnetosphere. It is the hot plasma sheet population that gets accelerated to high enough energies in the inner magnetosphere to contribute strongly to the ring current pressure. Thus it appears that O+ that enters the plasma sheet further down the tail has a greater impact on the storm-time ring current than ions that enter closer to the earth.
Ring-slope interactions and the formation of the western boundary current in the Gulf of Mexico
NASA Astrophysics Data System (ADS)
Vidal, VíCtor M. V.; Vidal, Francisco V.; Meza, Eustorgio; Portilla, Josué; Zambrano, Lorenzo; Jaimes, BenjamíN.
1999-09-01
Hydrographic data from the Gulf of Mexico (gulf) provide evidence that a western boundary current was set up by the interaction of an anticyclonic Loop Current (LC) ring with the continental margin of the western gulf during March-August 1985. The March 1985 geostrophic circulation reveals a remnant anticyclonic ring colliding with the slope. During this collision, two cyclonic rings were shed as the anticyclone transferred vorticity to the surrounding slope water. During July-August 1985, the ring triad weakened and evolved into a ˜900-km-long, north flowing, along-slope, western boundary current and cyclonic-anticyclonic ring pairs distributed throughout the central and western gulf. This western boundary current attained maximum northward flow speeds of 25 cm s-1 and an 8.3-Sv mass transport between 94°-96°W at 25°N. Our March-August 1985 observations reveal that the residence time and decay period of LC anticyclones in the western gulf may exceed 150 days. Within this time period the western gulf's cyclonic-anticyclonic vorticity field decayed ˜50%. Thus the western boundary current's evolutionary period, from its gestation to its absolute decay, is estimated to be of the order of 300 days. Although the presence of a western boundary current in the gulf has been attributed to the annual wind stress curl cycle [Sturges, 1993], our analyses of the western gulf March and July-August 1985 ring-driven geostrophic circulation and corresponding (January, February and May, June 1985) monthly mean synoptic wind stress curl distributions reveal that these constitute competing forcing mechanisms for the gulf's regional circulation. However, when very strong local forcing such as large eddies are present, the wind-driven background circulation is overwhelmed by such eddy forcing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, H.; Li, X.; Baker, D. N.
Enabled by the comprehensive measurements from the Magnetic Electron Ion Spectrometer (MagEIS), Helium Oxygen Proton Electron mass spectrometer (HOPE), and Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) instruments onboard Van Allen Probes in the heart of the radiation belt, the relative contributions of ions with different energies and species to the ring current energy density and their dependence on the phases of geomagnetic storms are quantified. The results show that lower energy (<50 keV) protons enhance much more often and also decay much faster than higher-energy protons. During the storm main phase, ions with energies <50 keV contribute moremore » significantly to the ring current than those with higher energies; while the higher-energy protons dominate during the recovery phase and quiet times. The enhancements of higher-energy proton fluxes as well as energy content generally occur later than those of lower energy protons, which could be due to the inward radial diffusion. For the 29 March 2013 storm we investigated in detail that the contribution from O + is ~25% of the ring current energy content during the main phase and the majority of that comes from <50 keV O +. This indicates that even during moderate geomagnetic storms the ionosphere is still an important contributor to the ring current ions. Using the Dessler-Parker-Sckopke relation, the contributions of ring current particles to the magnetic field depression during this geomagnetic storm are also calculated. In conclusion, the results show that the measured ring current ions contribute about half of the Dst depression.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakar, Khomsaton Abu; Zulkafli,; Hashim, Siti A'aisah
2014-09-03
In this study, electron beam accelerator (EB) was used to treat textiles wastewater from Rawang Industrial Park, Selangor. The objectives were to determine effective energy, beam current and absorbed dose required for decoloration and degradation of the textiles effluent. The textiles effluent was irradiated in a batch with various energy of 1MeV to 3MeV at constant beam current of 30mA. It was observed that removal of color and COD increases with higher beam energy. The EB energy of 1MeV effectively to removed 58% color and 19% COD. For textile effluent sample irradiated at fix energy of 1MeV and 3Mev butmore » at different beam current 10mA, 20mA and 30mA. It was observed that removal of color and COD increases with the increased of beam current at each energy. However removal of color was significantly better at 1Mev as compared to 3Mev. In the case of textiles effluent, irradiated at doses of 17, 20,25,30, 35, 100 and 200kGy using 30 kW power of EB (1Mev, 30mA), results shows removal of BOD{sub 5}, COD and color were in the range 9%-33%, 14%-38% and 43%-78% respectively.« less
All-MOCVD-grown BH laser on P-InP substrates
NASA Astrophysics Data System (ADS)
Nishimura, Tadashi; Ishimura, E.; Nakajima, Yasuo; Tada, Hitoshi; Kimura, T.; Ohkura, Y.; Goto, Katsuhiko; Omura, Etsuji; Aiga, Masao
1993-07-01
A very low cw threshold current of 2.5 mA ( 25 degree(s)C) and 8.0 mA ( 80 degree(s)C) with high reliability has been realized in the all-MOCVD grown BH lasers on p-InP substrates. A strained MQW active layer of 1.3 micrometers wavelength and the precise carrier confinement buried structure by MOCVD is employed for the BH lasers. The excellent potential of long lifetime of the all-MOCVD grown laser has also been confirmed. After the high temperature and the high current (100 degree(s)C, 200 mA) aging test, no significant degradation is observed which is comparable with the well-established LPE grown lasers. The BH laser is also operating stably over 3700 hrs under the APC condition of 50 degree(s)C, 10 mW. Finally, an extremely uniform 10-element all-MOCVD grown LD array is demonstrated, which has the threshold current uniformity of 2.4 +/- 0.1 mA ( 25 degree(s)C) and 9.2 +/- 0.2 mA ( 80 degree(s)C). The growth mechanism in the MOCVD is also described.
IMAGE Observations of Plasmasphere/Ring Current Interactions
NASA Technical Reports Server (NTRS)
Gallagher, D. L.; Adrian, M. L.; Perez, J.; Sandel, B. R.
2003-01-01
Evidence has been found in IMAGE observations that overlap of the plasmasphere and the ring current may lead to enhanced loss of plasma into the ionosphere. It has long been anticipated that this mixing of plasma leads to coupling and resulting consequences on both populations. Wave generation, pitch angle scattering, and heating are some of the consequences that are anticipated. IMAGE plasmasphere ring current, and auroral observations will be presented and used to explore these interactions and their effects.
Low-power transcutaneous current stimulator for wearable applications.
Karpul, David; Cohen, Gregory K; Gargiulo, Gaetano D; van Schaik, André; McIntyre, Sarah; Breen, Paul P
2017-10-03
Peripheral neuropathic desensitization associated with aging, diabetes, alcoholism and HIV/AIDS, affects tens of millions of people worldwide, and there is little or no treatment available to improve sensory function. Recent studies that apply imperceptible continuous vibration or electrical stimulation have shown promise in improving sensitivity in both diseased and healthy participants. This class of interventions only has an effect during application, necessitating the design of a wearable device for everyday use. We present a circuit that allows for a low-power, low-cost and small form factor implementation of a current stimulator for the continuous application of subthreshold currents. This circuit acts as a voltage-to-current converter and has been tested to drive + 1 to - 1 mA into a 60 k[Formula: see text] load from DC to 1 kHz. Driving a 60 k[Formula: see text] load with a 2 mA peak-to-peak 1 kHz sinusoid, the circuit draws less than 21 mA from a 9 V source. The minimum operating current of the circuit is less than 12 mA. Voltage compliance is ± 60 V with just 1.02 mA drawn by the high voltage current drive circuitry. The circuit was implemented as a compact 46 mm × 21 mm two-layer PCB highlighting its potential for use in a body-worn device. No design to the best of our knowledge presents comparably low quiescent power with such high voltage compliance. This makes the design uniquely appropriate for low-power transcutaneous current stimulation in wearable applications. Further development of driving and instrumentation circuitry is recommended.
PIC simulation of the vacuum power flow for a 5 terawatt, 5 MV, 1 MA pulsed power system
NASA Astrophysics Data System (ADS)
Liu, Laqun; Zou, Wenkang; Liu, Dagang; Guo, Fan; Wang, Huihui; Chen, Lin
2018-03-01
In this paper, a 5 Terawatt, 5 MV, 1 MA pulsed power system based on vacuum magnetic insulation is simulated by the particle-in-cell (PIC) simulation method. The system consists of 50 100-kV linear transformer drive (LTD) cavities in series, using magnetically insulated induction voltage adder (MIVA) technology for pulsed power addition and transmission. The pulsed power formation and the vacuum power flow are simulated when the system works in self-limited flow and load-limited flow. When the pulsed power system isn't connected to the load, the downstream magnetically insulated transmission line (MITL) works in the self-limited flow, the maximum of output current is 1.14 MA and the amplitude of voltage is 4.63 MV. The ratio of the electron current to the total current is 67.5%, when the output current reached the peak value. When the impedance of the load is 3.0 Ω, the downstream MITL works in the self-limited flow, the maximums of output current and the amplitude of voltage are 1.28 MA and 3.96 MV, and the ratio of the electron current to the total current is 11.7% when the output current reached the peak value. In addition, when the switches are triggered in synchronism with the passage of the pulse power flow, it effectively reduces the rise time of the pulse current.
Do substorms energise the ring current?
NASA Astrophysics Data System (ADS)
Sandhu, J. K.; Rae, J.; Freeman, M. P.; Forsyth, C.; Jackman, C. M.; Lam, M. M.
2017-12-01
The substorm phenomenon is a highly dynamic and variable process that results in the global reconfiguration and redistribution of energy within the magnetosphere. There are many open questions surrounding substorms, particularly how the energy released during a substorm is distributed throughout the magnetosphere, and how the energy loss varies from one substorm to the next. In this study, we explore whether energy lost during the substorm plays a role in energising the ring current. Using observations of the particle energy flux from RBSPICE/RBSP, we are able to quantitatively observe how the energy is distributed spatially and across the different ion species (H+, He+, and O+). Furthermore, we can observe how the total energy content of the ring current changes during the substorm process, using substorm phases defined by the SOPHIE algorithm. This analysis provides information on how the energy released from a substorm is partitioned throughout the magnetosphere, and on the processes determining the energy provided to the ring current. Overall, our results show that the substorm-ring current coupling is more complex than originally thought, and we discuss the reasons behind this complex response.
NASA Astrophysics Data System (ADS)
Liu, Yang; Wang, Xuzhen; Wan, Wubo; Li, Lingli; Dong, Yanfeng; Zhao, Zongbin; Qiu, Jieshan
2016-01-01
Nitrogen-doped graphene nanoribbon aerogels (N-GNRAs) are fabricated through the self-assembly of graphene oxide nanoribbons (GONRs) combined with a thermal annealing process. Amino-groups are grafted to the surface of graphene nanoribbons (GNRs) by an epoxy ring-opening reaction. High nitrogen doping level (7.6 atm% as confirmed by elemental analysis) is achieved during thermal treatment resulting from functionalization and the rich edge structures of GNRs. The three dimensional (3D) N-GNRAs feature a hierarchical porous structure. The quasi-one dimensional (1D) GNRs act as the building blocks for the construction of fishnet-like GNR sheets, which further create 3D frameworks with micrometer-scale pores. The edge effect of GNRs combined with nitrogen doping and porosity give rise to good electrical conductivity, superhydrophilic, highly compressible and low density GNRAs. As a result, a high capacity of 910 mA h g-1 is achieved at a current density of 0.5 A g-1 when they are tested as anode materials for lithium ion batteries. Further cell culture experiments with the GNRAs as human medulloblastoma DAOY cell scaffolds demonstrate their good biocompatibility, inferring potential applications in the biomedical field.Nitrogen-doped graphene nanoribbon aerogels (N-GNRAs) are fabricated through the self-assembly of graphene oxide nanoribbons (GONRs) combined with a thermal annealing process. Amino-groups are grafted to the surface of graphene nanoribbons (GNRs) by an epoxy ring-opening reaction. High nitrogen doping level (7.6 atm% as confirmed by elemental analysis) is achieved during thermal treatment resulting from functionalization and the rich edge structures of GNRs. The three dimensional (3D) N-GNRAs feature a hierarchical porous structure. The quasi-one dimensional (1D) GNRs act as the building blocks for the construction of fishnet-like GNR sheets, which further create 3D frameworks with micrometer-scale pores. The edge effect of GNRs combined with nitrogen doping and porosity give rise to good electrical conductivity, superhydrophilic, highly compressible and low density GNRAs. As a result, a high capacity of 910 mA h g-1 is achieved at a current density of 0.5 A g-1 when they are tested as anode materials for lithium ion batteries. Further cell culture experiments with the GNRAs as human medulloblastoma DAOY cell scaffolds demonstrate their good biocompatibility, inferring potential applications in the biomedical field. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05909g
Optical control of spin-dependent thermal transport in a quantum ring
NASA Astrophysics Data System (ADS)
Abdullah, Nzar Rauf
2018-05-01
We report on calculation of spin-dependent thermal transport through a quantum ring with the Rashba spin-orbit interaction. The quantum ring is connected to two electron reservoirs with different temperatures. Tuning the Rashba coupling constant, degenerate energy states are formed leading to a suppression of the heat and thermoelectric currents. In addition, the quantum ring is coupled to a photon cavity with a single photon mode and linearly polarized photon field. In a resonance regime, when the photon energy is approximately equal to the energy spacing between two lowest degenerate states of the ring, the polarized photon field can significantly control the heat and thermoelectric currents in the system. The roles of the number of photon initially in the cavity, and electron-photon coupling strength on spin-dependent heat and thermoelectric currents are presented.
Wee, J Y; Hopman, W M
2008-01-01
A relationship between smoking and development of pain syndromes has been suggested in the literature. The present study examined associations between smoke exposure and other related variables, and pain response to suprathreshold electrical stimulation. Subjects were prospectively recruited from a population referred to an electrodiagnostic clinic. Information about age, smoke exposure, caffeine and alcohol consumption was obtained, as well as documented objective signs of stress through physical assessment. One investigator applied two standardized 0.1 ms electrical stimulations (50 mA followed by 100 mA) to asymptomatic extremities at the beginning of each electrodiagnostic session, using consistent technique. Subjects used a visual analogue scale to indicate the level of pain felt after each stimulation. Two hundred fifteen women were included. Current smokers and those currently exposed to second-hand smoke had significantly higher pain ratings (P=0.003 for 50 mA, P=0.005 for 100 mA) than those not currently exposed to smoke. Time since exposure was negatively associated with pain ratings. Those with objective signs of stress reported higher levels of pain, which was significant for the 100 mA stimulation (P=0.046). Linear regression modelling indicated that current smoke exposure and alcohol use were associated with higher pain ratings at both 50 mA and 100 mA, while stress was associated with higher pain ratings and older age was associated with lower pain ratings at 100 mA only. Exposure to cigarette smoke is significantly related to higher reported levels of pain experienced in response to electrical stimulation in this study population. Exposure to smoke can add 10 points to the 100-point visual analogue scale compared with subjects without exposure, with alcohol use adding another eight points. Reported pain decreases as length of time since previous exposure to smoke increases.
Ma, Menglin; Li, Jihong
2015-01-01
ABSTRACT The accessory growth regulator (Agr)-like quorum sensing (QS) system of Clostridium perfringens controls the production of many toxins, including beta toxin (CPB). We previously showed (J. E. Vidal, M. Ma, J. Saputo, J. Garcia, F. A. Uzal, and B. A. McClane, Mol Microbiol 83:179–194, 2012, http://dx.doi.org/10.1111/j.1365-2958.2011.07925.x) that an 8-amino-acid, AgrD-derived peptide named 8-R upregulates CPB production by this QS system. The current study synthesized a series of small signaling peptides corresponding to sequences within the C. perfringens AgrD polypeptide to investigate the C. perfringens autoinducing peptide (AIP) structure-function relationship. When both linear and cyclic ring forms of these peptides were added to agrB null mutants of type B strain CN1795 or type C strain CN3685, the 5-amino-acid peptides, whether in a linear or ring (thiolactone or lactone) form, induced better signaling (more CPB production) than peptide 8-R for both C. perfringens strains. The 5-mer thiolactone ring peptide induced faster signaling than the 5-mer linear peptide. Strain-related variations in sensing these peptides were detected, with CN3685 sensing the synthetic peptides more strongly than CN1795. Consistent with those synthetic peptide results, Transwell coculture experiments showed that CN3685 exquisitely senses native AIP signals from other isolates (types A, B, C, and D), while CN1795 barely senses even its own AIP. Finally, a C. perfringens AgrD sequence-based peptide with a 6-amino-acid thiolactone ring interfered with CPB production by several C. perfringens strains, suggesting potential therapeutic applications. These results indicate that AIP signaling sensitivity and responsiveness vary among C. perfringens strains and suggest C. perfringens prefers a 5-mer AIP to initiate Agr signaling. IMPORTANCE Clostridium perfringens possesses an Agr-like quorum sensing (QS) system that regulates virulence, sporulation, and toxin production. The current study used synthetic peptides to identify the structure-function relationship for the signaling peptide that activates this QS system. We found that a 5-mer peptide induces optimal signaling. Unlike other Agr systems, a linear version of this peptide (in addition to thiolactone and lactone versions) could induce signaling. Two C. perfringens strains were found to vary in sensitivity to these peptides. We also found that a 6-mer peptide can inhibit toxin production by some strains, suggesting therapeutic applications. PMID:25777675
Porous nitrogen-doped carbon microspheres as anode materials for lithium ion batteries.
Chen, Taiqiang; Pan, Likun; Loh, T A J; Chua, D H C; Yao, Yefeng; Chen, Qun; Li, Dongsheng; Qin, Wei; Sun, Zhuo
2014-10-28
Nitrogen-doped carbon microspheres (NCSs) were fabricated via a simple, fast and energy-saving microwave-assisted method followed by thermal treatment under an ammonia atmosphere. NCSs thermally treated at different temperatures were investigated as anode materials for lithium ion batteries (LIBs). The results show that NCSs treated at 900 °C exhibit a maximum reversible capacity of 816 mA h g(-1) at a current density of 50 mA g(-1) and preserve a capacity of 660 mA h g(-1) after 50 cycles, and even at a high current density of 1000 mA g(-1), a capacity of 255 mA h g(-1) is maintained. The excellent electrochemical performance of NCSs is due to their porous structure and nitrogen-doping. The present NCSs should be promising low-cost anode materials with a high capacity and good cycle stability for LIBs.
Orange a-plane InGaN/GaN light-emitting diodes grown on r-plane sapphire substrates.
Seo, Yong Gon; Baik, Kwang Hyeon; Song, Hooyoung; Son, Ji-Su; Oh, Kyunghwan; Hwang, Sung-Min
2011-07-04
We report on orange a-plane light-emitting diodes (LEDs) with InGaN single quantum well (SQW) grown on r-plane sapphire substrates by metal organic chemical vapor deposition (MOCVD). The peak wavelength and the full-width at half maximum (FWHM) at a drive current of 20mA were 612.2 nm and 72 nm, respectively. The device demonstrated a blue shift in emission wavelength from 614.6 nm at 10 mA to 607.5 nm at 100 mA, representing a net shift of 7.1 nm over a 90 mA range, which is the longest wavelength compared with reported values in nonpolar LEDs. The polarization ratio values obtained from the orange LED varied between 0.36 and 0.44 from 10 to 100mA and a weak dependence of the polarization ratio on the injection current was observed.
Transcranial current stimulation focality using disc and ring electrode configurations: FEM analysis
NASA Astrophysics Data System (ADS)
Datta, Abhishek; Elwassif, Maged; Battaglia, Fortunato; Bikson, Marom
2008-06-01
We calculated the electric fields induced in the brain during transcranial current stimulation (TCS) using a finite-element concentric spheres human head model. A range of disc electrode configurations were simulated: (1) distant-bipolar; (2) adjacent-bipolar; (3) tripolar; and three ring designs, (4) belt, (5) concentric ring, and (6) double concentric ring. We compared the focality of each configuration targeting cortical structures oriented normal to the surface ('surface-radial' and 'cross-section radial'), cortical structures oriented along the brain surface ('surface-tangential' and 'cross-section tangential') and non-oriented cortical surface structures ('surface-magnitude' and 'cross-section magnitude'). For surface-radial fields, we further considered the 'polarity' of modulation (e.g. superficial cortical neuron soma hyper/depolarizing). The distant-bipolar configuration, which is comparable with commonly used TCS protocols, resulted in diffuse (un-focal) modulation with bi-directional radial modulation under each electrode and tangential modulation between electrodes. Increasing the proximity of the two electrodes (adjacent-bipolar electrode configuration) increased focality, at the cost of more surface current. At similar electrode distances, the tripolar-electrodes configuration produced comparable peak focality, but reduced radial bi-directionality. The concentric-ring configuration resulted in the highest spatial focality and uni-directional radial modulation, at the expense of increased total surface current. Changing ring dimensions, or use of two concentric rings, allow titration of this balance. The concentric-ring design may thus provide an optimized configuration for targeted modulation of superficial cortical neurons.
Coulomb collisions of ring current particles: Indirect source of heat for the ionosphere
NASA Technical Reports Server (NTRS)
Cole, K. D.
1975-01-01
The additional energy requirements of the topside ionosphere during a magnetic storm are less than one quarter of the ring current energy. This energy is supplied largely by Coulomb collisions of ring current protons of energy less than about 20 keV with background thermal electrons which conduct the heat to the ionosphere. Past criticisms are discussed of this mechanism for the supply of energy to the SAR-arc and neighboring regions of the ionosphere.
Some Comments on Topological Approaches to the π-Electron Currents in Conjugated Systems.
Dickens, Timothy K; Gomes, José A N F; Mallion, Roger B
2011-11-08
Within the past two years, three sets of independent authors (Mandado, Ciesielski et al., and Randić) have proposed methods in which π-electron currents in conjugated systems are estimated by invoking the concept of circuits of conjugation. These methods are here compared with ostensibly similar approaches published more than 30 years ago by two of the present authors (Gomes and Mallion) and (likewise independently) by Gayoso. Patterns of bond currents and ring currents computed by these methods for the nonalternant isomer of coronene that was studied by Randić are also systematically compared with those calculated by the Hückel-London-Pople-McWeeny (HLPM) "topological" approach and with the ab initio, "ipso-centric" current-density maps of Balaban et al. These all agree that a substantial diamagnetic π-electron current flows around the periphery of the selected structure (which could be thought of as a "perturbed" [18]-annulene), and consideration is given to the differing trends predicted by these several methods for the π-electron currents around its central six-membered ring and in its internal bonds. It is observed that, for any method in which calculated π-electron currents respect Kirchhoff's Laws of current conservation at a junction, consideration of bond currents-as an alternative to the more-traditional ring currents-can give a different insight into the magnetic properties of conjugated systems. However, provided that charge/current conservation is guaranteed-or Kirchhoff's First Law holds for bond currents instead of the more-general current-densities-then ring currents represent a more efficient way of describing the molecular reaction to the external magnetic field: ring currents are independent quantities, while bond currents are not.
Sun, Z; Al Ghamdi, KS; Baroum, IH
2012-01-01
Purpose: To investigate whether the multislice CT scanning protocols of head, chest and abdomen are adjusted according to patient’s age in paediatric patients. Materials and Methods: Multislice CT examination records of paediatric patients undergoing head, chest and abdomen scans from three public hospitals during a one-year period were retrospectively reviewed. Patients were categorised into the following age groups: under 4 years, 5–8 years, 9–12 years and 13–16 years, while the tube current was classified into the following ranges: < 49 mA, 50–99 mA, 100–149 mA, 150–199 mA, > 200 mA and unknown. Results: A total of 4998 patient records, comprising a combination of head, chest and abdomen CT scans, were assessed, with head CT scans representing nearly half of the total scans. Age-based adjusted CT protocols were observed in most of the scans with higher tube current setting being used with increasing age. However, a high tube current (150–199 mA) was still used in younger patients (0–8 years) undergoing head CT scans. In one hospital, CT protocols remained constant across all age groups, indicating potential overexposure to the patients. Conclusion: This analysis shows that paediatric CT scans are adjusted according to the patient’s age in most of the routine CT examinations. This indicates increased awareness regarding radiation risks associated with CT. However, high tube current settings are still used in younger patient groups, thus, optimisation of paediatric CT protocols and implementation of current guidelines, such as age-and weight-based scanning, should be recommended in daily practice. PMID:22970059
DOE Office of Scientific and Technical Information (OSTI.GOV)
Branitskii, A. V.; Grabovskii, E. V.; Dzhangobegov, V. V.
The states of current-carrying elements at the transmission of megaampere current into load are studied. It is determined that the expansion velocity of plasma generated at the outer surface of cylindrical tubes produced of stainless steel, at flowing through them of submicrosecond current pulses with linear density of 3 MA/cm is 5.5 km/s. The evolution of various modes of instability is analyzed.
Electro-optical hybrid slip ring
NASA Astrophysics Data System (ADS)
Hong, En
2005-11-01
The slip ring is a rotary electrical interface, collector, swivel or rotary joint. It is a physical system that can perform continuous data transfer and data exchange between a stationary and a rotating structure. A slip ring is generally used to transfer data or power from an unrestrained, continuously rotating electro-mechanical system in real-time, thereby simplifying operations and eliminating damage-prone wires dangling from moving joints. Slip rings are widely used for testing, evaluating, developing and improving various technical equipment and facilities with rotating parts. They are widely used in industry, especially in manufacturing industries employing turbo machinery, as in aviation, shipbuilding, aerospace, defense, and in precise facilities having rotating parts such as medical Computerized Tomography (CT) and MRI scanners and so forth. Therefore, any improvement in slip ring technology can impact large markets. Research and development in this field will have broad prospects long into the future. The goal in developing the current slip ring technology is to improve and increase the reliability, stability, anti-interference, and high data fidelity between rotating and stationary structures. Up to now, there have been numerous approaches used for signal and data transfer utilizing a slip ring such as metal contacts, wires, radio transmission, and even liquid media. However, all suffer from drawbacks such as data transfer speed limitations, reliability, stability, electro-magnetic interference and durability. The purpose of the current research is to break through these basic limitations using an optical solution, thereby improving performance in current slip ring applications. This dissertation introduces a novel Electro-Optical Hybrid Slip Ring technology, which makes "through the air" digital-optical communication between stationary and rotating systems a reality with high data transfer speed, better reliability and low interference susceptibility. A laboratory scale non-contact Electro-Optical Hybrid Slip Ring system was successfully constructed, and its performance was determined. Experimental results affirmed the advantages of this new technology over current slip ring design.
The Effects of Bursty Bulk Flows on Global-Scale Current Systems
NASA Astrophysics Data System (ADS)
Yu, Y.; Cao, J.; Fu, H.; Lu, H.; Yao, Z.
2017-12-01
Using a global magnetospheric MHD model coupled with a kinetic ring current model, we investigate the effects of magnetotail dynamics, particularly the earthward bursty bulk flows (BBFs) produced by the tail reconnection, on the global-scale current systems. The simulation results indicate that after BBFs brake around X = -10 RE due to the dipolar "magnetic wall," vortices are generated on the edge of the braking region and inside the inner magnetosphere. Each pair of vortex in the inner magnetosphere disturbs the westward ring current to arc radially inward as well as toward high latitudes. The resultant pressure gradient on the azimuthal direction induces region-1 sense field-aligned component from the ring current, which eventually is diverted into the ionosphere at high latitudes, giving rise to a pair of field-aligned current (FAC) eddies in the ionosphere. On the edge of the flow braking region where vortices also emerge, a pair of region-1 sense FACs arises, diverted fromthe cross-tail duskward current, generating a substorm current wedge. This is again attributed to the increase of thermal pressure ahead of the bursty flows turning azimuthally. It is further found that when multiple BBFs, despite their localization, continually and rapidly impinge on the "wall," carrying sufficient tail plasma sheet population toward the Earth, they can lead to the formation of a new ring current. These results indicate the important role that BBFs play in bridging the tail and the inner magnetosphere ring current and bring new insight into the storm-substorm relation.
The effects of bursty bulk flows on global-scale current systems
NASA Astrophysics Data System (ADS)
Yu, Yiqun; Cao, Jinbin; Fu, Huishan; Lu, Haoyu; Yao, Zhonghua
2017-06-01
Using a global magnetospheric MHD model coupled with a kinetic ring current model, we investigate the effects of magnetotail dynamics, particularly the earthward bursty bulk flows (BBFs) produced by the tail reconnection, on the global-scale current systems. The simulation results indicate that after BBFs brake around X = -10 RE due to the dipolar "magnetic wall," vortices are generated on the edge of the braking region and inside the inner magnetosphere. Each pair of vortex in the inner magnetosphere disturbs the westward ring current to arc radially inward as well as toward high latitudes. The resultant pressure gradient on the azimuthal direction induces region-1 sense field-aligned component from the ring current, which eventually is diverted into the ionosphere at high latitudes, giving rise to a pair of field-aligned current (FAC) eddies in the ionosphere. On the edge of the flow braking region where vortices also emerge, a pair of region-1 sense FACs arises, diverted from the cross-tail duskward current, generating a substorm current wedge. This is again attributed to the increase of thermal pressure ahead of the bursty flows turning azimuthally. It is further found that when multiple BBFs, despite their localization, continually and rapidly impinge on the "wall," carrying sufficient tail plasma sheet population toward the Earth, they can lead to the formation of a new ring current. These results indicate the important role that BBFs play in bridging the tail and the inner magnetosphere ring current and bring new insight into the storm-substorm relation.
From Kites through Cold War: The Evolution of United States Air Force Manned Airborne ISR
2016-06-06
Spies: The Story of America’s First Spy Ring (New York, NY: Bantam Books, 2006). 4 Stephen W. Sears, Gettysburg (Boston, MA: Houghton Mifflin, 2003...When the war slipped into trench-based stalemate, manned airborne ISR became the unblinking eye that prevented freedom of movement for either side...of dried bamboo attached to them. When the wind blew through the bamboo, a sound similar to moans and screeches was created. According to the story
First operational experience with DORIS II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nesemann, H.; Wille, K.
1983-08-01
DORIS II is a completely new designed e/sup +/-e/sup -/ storage ring with a mini-beta scheme. After first runs with a 8 cm optic, the vertical amplitude functions in the interaction points were reduced to 4 cm. This yielded luminosities of L = 1.5 X 10/sup 31/ cm/sup -2/sec/sup -1/ with 2 X 27 mA at E = 5 GeV. Because of the short injection time, an integrated luminosity of more than 600 nb/sup -1/ per day has been obtained.
ERIC Educational Resources Information Center
Roth, Daniel
2017-01-01
Although vocabulary instruction is a pressing need for postsecondary reading instructors, a minimal amount of current postsecondary scholarship addresses this need, and almost no current scholarship addresses the textbook tradition of morphemic analysis (MA). The present article reviews the literature on MA instruction and argues for teaching MA…
Xu, Hui-Wei; Zhang, Xu; Yang, Shan-Shan; Li, Guang-He
2009-07-15
Microbial sulfate reduction rate is limited with H2 as electron donor. In order to improve hydrogenotrophic sulfate reduction under normal atmospheric H2 pressure, a bio-electrochemical system with direct current was designed and performed in this study. Results indicates that sulfate reduction rate (SRR) increases with the augment of current intensity under lower current intensity (I < or = 1.50 mA). When optimum current intensity of 1.50 mA is applied, the SRR is 1.7 to 2.1 times higher than that of the control reactor. The synergistic effect of electrochemistry and microbiology on sulfate reduction varies at different current intensity. Under the condition of I < or = 1.50 mA, the most probable mechanism of SRR increase is that electric or magnetic field stimulates the proliferation of sulfate-reducing bacteria (SRB) and the activity of the enzymes. When I is higher than 1.50 mA, the activity of SRB is inhibited, resulting in lower reduction rate compared with that at lower current. If controlling the cathode potential lower than -0.69 V and H2 partial pressure 1.01 x 10(5) Pa, electro-catalytic sulfate reduction process takes place with H2 as reductant in this bio-electrochemical system. However, the overall reduction rate is still lower than that when I = 1.50 mA is applied, and additionally the energy consumption is much higher. Therefore, electric field of low intensity can enhance hydrogenotrophic sulfate reduction in the presence of H2 under atmospheric pressure.
Krings, Michael; Taylor, Thomas N; Martin, Helmut
2016-01-01
Litter layers in the Lower Devonian (~ 410 Ma) Rhynie chert were inhabited by a wide variety of saprotrophic fungi, however, only a few of these organisms have been described formally. A new microfungus, Trewinomyces annulifer gen. et sp. nov., occurs as tufts on decaying land plant axes from the Rhynie chert. The fungus consists of an intramatrical rhizoidal system and an erect extramatrical hypha (stalk) that bears a single, terminal sporangium. One or two successive rings often are present in the stalk immediately below the sporangium base. Overall morphology of T. annulifer resembles the extant genera Macrochytrium (Chytridiomycota) and Blastocladiella (Blastocladiomycota). However, the rhizoids are septate or pseudoseptate, a feature not known in extant zoosporic fungi, and thus render the systematic affinities of T. annulifer unresolved. Trewinomyces annulifer offers a rare view of the morphology of a distinctive Early Devonian saprotrophic microfungus. © 2016 by The Mycological Society of America.
Ring Current Ion Coupling with Electromagnetic Ion Cyclotron Waves
NASA Technical Reports Server (NTRS)
Khazanov, George V.
2002-01-01
A new ring current global model has been developed for the first time that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic, and another equation describes wave evolution of electromagnetic ion cyclotron waves (EMIC). The coupled model is able to simulate, for the first time self-consistently calculated RC ion kinetic and evolution of EMIC waves that propagate along geomagnetic field lines and reflect from the ionosphere. Ionospheric properties affect the reflection index through the integral Pedersen and Hall coductivities. The structure and dynamics of the ring current proton precipitating flux regions, intensities of EMIC, global RC energy balance, and some other parameters will be studied in detail for the selected geomagnetic storms. The space whether aspects of RC modelling and comparison with the data will also be discussed.
The source of O+ in the storm time ring current
NASA Astrophysics Data System (ADS)
Kistler, L. M.; Mouikis, C. G.; Spence, H. E.; Menz, A. M.; Skoug, R. M.; Funsten, H. O.; Larsen, B. A.; Mitchell, D. G.; Gkioulidou, M.; Wygant, J. R.; Lanzerotti, L. J.
2016-06-01
A stretched and compressed geomagnetic field occurred during the main phase of a geomagnetic storm on 1 June 2013. During the storm the Van Allen Probes spacecraft made measurements of the plasma sheet boundary layer and observed large fluxes of O+ ions streaming up the field line from the nightside auroral region. Prior to the storm main phase there was an increase in the hot (>1 keV) and more isotropic O+ ions in the plasma sheet. In the spacecraft inbound pass through the ring current region during the storm main phase, the H+ and O+ ions were significantly enhanced. We show that this enhanced inner magnetosphere ring current population is due to the inward adiabatic convection of the plasma sheet ion population. The energy range of the O+ ion plasma sheet that impacts the ring current most is found to be from ~5 to 60 keV. This is in the energy range of the hot population that increased prior to the start of the storm main phase, and the ion fluxes in this energy range only increase slightly during the extended outflow time interval. Thus, the auroral outflow does not have a significant impact on the ring current during the main phase. The auroral outflow is transported to the inner magnetosphere but does not reach high enough energies to affect the energy density. We conclude that the more energetic O+ that entered the plasma sheet prior to the main phase and that dominates the ring current is likely from the cusp.
Can Steady Magnetospheric Convection Events Inject Plasma into the Ring Current?
NASA Astrophysics Data System (ADS)
Lemon, C.; Chen, M. W.; Guild, T. B.
2009-12-01
Steady Magnetospheric Convection (SMC) events are characterized by several-hour periods of enhanced convection that are devoid of substorm signatures. There has long been a debate about whether substorms are necessary to inject plasma into the ring current, or whether enhanced convection is sufficient. If ring current injections occur during SMC intervals, this would suggest that substorms are unnecessary. We use a combination of simulations and data observations to examine this topic. Our simulation model computes the energy-dependent plasma drift in a self-consistent electric and magnetic field, which allows us to accurately model the transport of plasma from the plasma sheet (where the plasma pressure is much larger than the magnetic pressure) into the inner magnetosphere (where plasma pressure is much less than the magnetic pressure). In regions where the two pressures are comparable (i.e. the inner plasma sheet), feedback between the plasma and magnetic field is critical for accurately modeling the physical evolution of the system. Our previous work has suggested that entropy losses in the plasma sheet (such as caused by substorms) may be necessary to inject a ring current. However, it is not yet clear whether other small-scale processes (e.g. bursty bulk flows) can provide sufficient entropy loss in the plasma sheet to allow for the penetration of plasma into the ring current. We combine our simulation results with data observations in order to better understand the physical processes required to inject a ring current.
Accaleration of Electrons of the Outer Electron Radiation Belt and Auroral Oval Dynamics
NASA Astrophysics Data System (ADS)
Antonova, Elizaveta; Ovchinnikov, Ilya; Riazantseva, Maria; Znatkova, Svetlana; Pulinets, Maria; Vorobjev, Viachislav; Yagodkina, Oksana; Stepanova, Marina
2016-07-01
We summarize the results of experimental observations demonstrating the role of auroral processes in the formation of the outer electron radiation belt and magnetic field distortion during magnetic storms. We show that the auroral oval does not mapped to the plasma sheet proper (region with magnetic field lines stretched in the tailward direction). It is mapped to the surrounding the Earth plasma ring in which transverse currents are closed inside the magnetosphere. Such currents constitute the high latitude continuation of the ordinary ring current. Mapping of the auroral oval to the region of high latitude continuation of the ordinary ring current explains the ring like shape of the auroral oval with finite thickness near noon and auroral oval dynamics during magnetic storms. The auroral oval shift to low latitudes during storms. The development of the ring current produce great distortion of the Earth's magnetic field and corresponding adiabatic variations of relativistic electron fluxes. Development of the asymmetric ring current produce the dawn-dusk asymmetry of such fluxes. We analyze main features of the observed processes including formation of sharp plasma pressure profiles during storms. The nature of observed pressure peak is analyzed. It is shown that the observed sharp pressure peak is directly connected with the creation of the seed population of relativistic electrons. The possibility to predict the position of new radiation belt during recovery phase of the magnetic storm using data of low orbiting and ground based observations is demonstrated.
NASA Technical Reports Server (NTRS)
Sheldon, R. B.
1994-01-01
We have studied the transport and loss of H(+), He(+), and He(++) ions in the Earth's quiet time ring current (1 to 300 keV/e, 3 to 7 R(sub E), Kp less than 2+, absolute value of Dst less than 11, 70 to 110 degs pitchangles, all LT) comparing the standard radial diffusion model developed for the higher-energy radiation belt particles with measurements of the lower energy ring current ions in a previous paper. Large deviations of that model, which fit only 50% of the data to within a factor of 10, suggested that another transport mechanism is operating in the ring current. Here we derive a modified diffusion coefficient corrected for electric field effects on ring current energy ions that fit nearly 80% of the data to within a factor of 2. Thus we infer that electric field fluctuations from the low-latitude to midlatitude ionosphere (ionospheric dynamo) dominated the ring current transport, rather than high-latitude or solar wind fluctuations. Much of the remaining deviation may arise from convective electric field transport of the E less than 30 keV particles. Since convection effects cannot be correctly treated with this azimuthally symmetric model, we defer treatment of the lowest-energy ions to a another paper. We give chi(exp 2) contours for the best fit, showing the dependence of the fit upon the internal/external spectral power of the predicted electric and magnetic field fluctuations.
NASA Astrophysics Data System (ADS)
Waldrop, L.; Cucho-Padin, G.; Ilie, R.
2017-12-01
Charge exchange collisions between ring current ions and hydrogen (H) atoms in the outer exosphere serve to dissipate magnetospheric energy, particularly during the slow recovery phase of geomagnetic storms, through the generation of energetic neutral atoms (ENAs) which escape the system. As a result, knowledge of the spatial distribution and temporal variability of exospheric H density is critical for reliable interpretation of ENA flux measurements as well as for accurate modeling of the ring current. Although numerous theoretical, numerical, and empirical H distributions have been used for such analyses, their reliance on ad hoc or unphysical assumptions, together with their inherently static formulations, is a source of significant uncertainty. Our recent development of a robust tomographic technique for the model-independent estimation of global exospheric H density from optical remote sensing data overcomes the limitations of past analysis and enables an unprecedented investigation of global exospheric and ring current dynamics. Here, we present sample results of our 3D, time-dependent reconstructions of exospheric structure, derived from measurements of resonantly scattered solar Lyman-alpha (121.6 nm) photons acquired by the Lyman-alpha detectors (LADs) onboard NASA's Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) mission. We use the Hot Electron and Ion Drift Integrator (HEIDI) kinetic model of the ring current to investigate the charge exchange interactions between the resulting H density distribution and ring current ions and generate synthetic images of ENA flux for comparison with those measured by TWINS.
High current DC negative ion source for cyclotron.
Etoh, H; Onai, M; Aoki, Y; Mitsubori, H; Arakawa, Y; Sakuraba, J; Kato, T; Mitsumoto, T; Hiasa, T; Yajima, S; Shibata, T; Hatayama, A; Okumura, Y
2016-02-01
A filament driven multi-cusp negative ion source has been developed for proton cyclotrons in medical applications. In Cs-free operation, continuous H(-) beam of 10 mA and D(-) beam of 3.3 mA were obtained stably at an arc-discharge power of 3 kW and 2.4 kW, respectively. In Cs-seeded operation, H(-) beam current reached 22 mA at a lower arc power of 2.6 kW with less co-extracted electron current. The optimum gas flow rate, which gives the highest H(-) current, was 15 sccm in the Cs-free operation, while it decreased to 4 sccm in the Cs-seeded operation. The relationship between H(-) production and the design/operating parameters has been also investigated by a numerical study with KEIO-MARC code, which gives a reasonable explanation to the experimental results of the H(-) current dependence on the arc power.
Makeyev, Oleksandr; Besio, Walter G.
2016-01-01
Noninvasive concentric ring electrodes are a promising alternative to conventional disc electrodes. Currently, the superiority of tripolar concentric ring electrodes over disc electrodes, in particular, in accuracy of Laplacian estimation, has been demonstrated in a range of applications. In our recent work, we have shown that accuracy of Laplacian estimation can be improved with multipolar concentric ring electrodes using a general approach to estimation of the Laplacian for an (n + 1)-polar electrode with n rings using the (4n + 1)-point method for n ≥ 2. This paper takes the next step toward further improving the Laplacian estimate by proposing novel variable inter-ring distances concentric ring electrodes. Derived using a modified (4n + 1)-point method, linearly increasing and decreasing inter-ring distances tripolar (n = 2) and quadripolar (n = 3) electrode configurations are compared to their constant inter-ring distances counterparts. Finite element method modeling and analytic results are consistent and suggest that increasing inter-ring distances electrode configurations may decrease the truncation error resulting in more accurate Laplacian estimates compared to respective constant inter-ring distances configurations. For currently used tripolar electrode configuration, the truncation error may be decreased more than two-fold, while for the quadripolar configuration more than a six-fold decrease is expected. PMID:27294933
Makeyev, Oleksandr; Besio, Walter G
2016-06-10
Noninvasive concentric ring electrodes are a promising alternative to conventional disc electrodes. Currently, the superiority of tripolar concentric ring electrodes over disc electrodes, in particular, in accuracy of Laplacian estimation, has been demonstrated in a range of applications. In our recent work, we have shown that accuracy of Laplacian estimation can be improved with multipolar concentric ring electrodes using a general approach to estimation of the Laplacian for an (n + 1)-polar electrode with n rings using the (4n + 1)-point method for n ≥ 2. This paper takes the next step toward further improving the Laplacian estimate by proposing novel variable inter-ring distances concentric ring electrodes. Derived using a modified (4n + 1)-point method, linearly increasing and decreasing inter-ring distances tripolar (n = 2) and quadripolar (n = 3) electrode configurations are compared to their constant inter-ring distances counterparts. Finite element method modeling and analytic results are consistent and suggest that increasing inter-ring distances electrode configurations may decrease the truncation error resulting in more accurate Laplacian estimates compared to respective constant inter-ring distances configurations. For currently used tripolar electrode configuration, the truncation error may be decreased more than two-fold, while for the quadripolar configuration more than a six-fold decrease is expected.
Makeyev, Oleksandr; Besio, Walter G
2016-08-01
Noninvasive concentric ring electrodes are a promising alternative to conventional disc electrodes. Currently, superiority of tripolar concentric ring electrodes over disc electrodes, in particular, in accuracy of Laplacian estimation has been demonstrated in a range of applications. In our recent work we have shown that accuracy of Laplacian estimation can be improved with multipolar concentric ring electrodes using a general approach to estimation of the Laplacian for an (n + 1)-polar electrode with n rings using the (4n + 1)-point method for n ≥ 2. This paper takes the next step toward further improving the Laplacian estimate by proposing novel variable inter-ring distances concentric ring electrodes. Derived using a modified (4n + 1)-point method, linearly increasing and decreasing inter-ring distances tripolar (n = 2) and quadripolar (n = 3) electrode configurations are compared to their constant inter-ring distances counterparts using finite element method modeling. Obtained results suggest that increasing inter-ring distances electrode configurations may decrease the estimation error resulting in more accurate Laplacian estimates compared to respective constant inter-ring distances configurations. For currently used tripolar electrode configuration the estimation error may be decreased more than two-fold while for the quadripolar configuration more than six-fold decrease is expected.
SU-G-206-08: How Should Focal Spot Be Chosen for Optimized CT Imaging with Dose Modulation?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bache, S; Liu, X; Rong, J
Purpose: To choose the preferred focal spot for achieving optimized CT image quality with balanced tube heating considerations. Methods: An anthropomorphic pelvic phantom was scanned using a GE Discovery CT750 HD at 120 and 140kVp, 0.8s rotation time, and pitch of 0.984. “Smart mA” was enabled to simulate a routine abdomen–pelvis CT scan. Permissible mA values at 120 and 140 kVp were obtained from the Serial Load Rating table (for mimicking a busy CT clinical operation) in the scanner Technical Reference Manual. At each kVp station and two Noise Index levels, the mA Upper Limit was set above/below the permissiblemore » mA values. Scanned mA values and focal spot (FS) used were obtained from the DICOM header of each image, and the FS-mA relationship was analyzed. For visual confirmation beyond recorded FS information, a CatPhan with a fat-ring attached for mimicking patient size/shape was scanned at 120kVp. A group of radiologists/physicists compared a pair of CatPhan images qualitatively. Lastly, a number of patient cases were evaluated to confirm the FS-mA relationship. Results: When preset Upper Limit values were above the permissible mA values, the Large FS (labeled 1.2) was used in scans, even if the maximum scanned mA values were much lower than the permissible values at both 120 and 140 kVp. Otherwise the Small FS (labeled 0.7) was used. Visual evaluation of the high contrast module of CatPhan and additional analysis of patient cases further confirmed that the preset Upper Limit determines which focal spot is to be used, not the actual maximum mA value to be scanned. Conclusion: Specific FS can be selected by setting up appropriate mA Upper Limit in a protocol. CT protocols could be optimized by selecting appropriate FS for improving patient image quality, especially benefiting the small size and pediatric patients.« less
The Consequences of Saturn’s Rotating Asymmetric Ring Current
NASA Astrophysics Data System (ADS)
Southwood, D. J.; Kivelson, M. G.
2009-12-01
The plasma and field behavior in the dipolar region of the Saturnian magnetosphere is described, based primarily on interpretation of the magnetic field behavior measured by the Cassini spacecraft. Previous authors, such as Provan and Khurana, have pointed out that the regular pulses in field strength at around 10.8 hrs period detected in this region imply the existence not only of a symmetric ring current but also of a partial ring current. Once spacecraft motion in local time has been allowed for, one finds a close to sinusoidal variation with azimuth and time of the magnetic signal. Hence the partial ring current appears to quasi-rigidly rotate about the planetary axis at the same 10.8 hr period as the pulsing of the Saturn kilometric radiation. We point out that, independent of whether the excess current is due to asymmetry in flux tube population or in plasma beta (pressure normalized to field pressure), such a current gives rise to a rotating circulation system. The compressional field pattern is consistent with an m = 1 pattern of circulation. The fairly uniform inner magnetosphere cam magnetic signature predicted on the basis of inner magnetosphere transverse field components in our past work is modified in a systematic way by the partial ring current effects. The circulation due to the partial ring current has its own set of distributed field aligned currents (FACs). The rotating transverse perturbation field components are twisted by the FACs so that the radial field is reduced at low L-shells and increased at larger L. Overall the cam field is depressed at low L and enhanced as one approaches the boundary of the cam region at L = 10-12. In practice the system must also respond to some local time effects. Loss of plasma is easier on the night-side and flanks than on the day-side and so a day-night asymmetry is imposed tending to increase the perturbation field amplitudes by night. The FACs driven by the asymmetric ring current should be broadly distributed throughout the cam region and correspondingly are associated with smaller current densities than those associated with the more narrowly confined cam current system on the outer edge of the cam. Accordingly the intense fluxes of electrons that give rise to the SKR signals are associated with the upward elements of the latter current system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joo, Youngdo, E-mail: Ydjoo77@postech.ac.kr; Yu, Inha; Park, Insoo
After three years of upgrading work, the Pohang Light Source-II (PLS-II) is now successfully operating. The final quantitative goal of PLS-II is a top-up user-service operation with beam current of 400 mA to be completed by the end of 2014. During the beam store test up to 400 mA in the storage ring (SR), it was observed that the vacuum pressure around the radio frequency (RF) window of the superconducting cavity rapidly increases over the interlock level limiting the availability of the maximum beam current storing. Although available beam current is enhanced by setting a higher RF accelerating voltage, it is bettermore » to keep the RF accelerating voltage as low as possible in the long time top-up operation. We investigated the cause of the window vacuum pressure increment by studying the changes in the electric field distribution at the superconducting cavity and waveguide according to the beam current. In our simulation, an equivalent physical modeling was developed using a finite-difference time-domain code. The simulation revealed that the electric field amplitude at the RF window is exponentially increased as the beam current increases, thus this high electric field amplitude causes a RF breakdown at the RF window, which comes with the rapid increase of window vacuum pressure. The RF accelerating voltage of PLS-II RF system was set to 4.95 MV, which was estimated using the maximum available beam current that works as a function of RF voltage, and the top-up operation test with the beam current of 400 mA was successfully carried out.« less
Development of movable mask system to cope with high beam current
NASA Astrophysics Data System (ADS)
Suetsugu, Y.; Shibata, K.; Sanami, T.; Kageyama, T.; Takeuchi, Y.
2003-07-01
The KEK B factory (KEKB), a high current electron-positron collider, has a movable mask (or collimator) system to reduce the background noise in the BELLE detector coming from spent particles. The early movable masks, however, had severe problems of heating, arcing, and vacuum leaks over the stored beam current of several hundred mA. The cause is intense trapped higher order modes (HOMs) excited at the mask head, where the cross section of the beam chamber changed drastically. The mask head, made of copper-tungsten alloy or pure copper, was frequently damaged by hitting of the high energy beam at the same time. Since the problems of the mask were revealed, several kinds of improved masks have been designed employing rf technologies in dealing with the HOM and installed to the ring step by step. Much progress has come from adopting a trapped-mode free structure, where the mask was a bent chamber itself. Recently the further improved mask with a reduced HOM design or HOM dampers was developed to suppress the heating of vacuum components near the mask due to the HOM traveling from the mask. To avoid damage to the mask head, on the other hand, a titanium mask head was tried. The latest masks are working as expected now at the stored beam current of 1.5 A. Presented are the problems and experiences on the movable mask system for the KEKB, which are characteristic of and common in a high intensity accelerator.
Sphagnum moss disperses spores with vortex rings.
Whitaker, Dwight L; Edwards, Joan
2010-07-23
Sphagnum spores, which have low terminal velocities, are carried by turbulent wind currents to establish colonies many kilometers away. However, spores that are easily kept aloft are also rapidly decelerated in still air; thus, dispersal range depends strongly on release height. Vascular plants grow tall to lift spores into sufficient wind currents for dispersal, but nonvascular plants such as Sphagnum cannot grow sufficiently high. High-speed videos show that exploding capsules of Sphagnum generate vortex rings to efficiently carry spores high enough to be dispersed by turbulent air currents. Spores launched ballistically at similar speeds through still air would travel a few millimeters and not easily reach turbulent air. Vortex rings are used by animals; here, we report vortex rings generated by plants.
GUARD RING SEMICONDUCTOR JUNCTION
Goulding, F.S.; Hansen, W.L.
1963-12-01
A semiconductor diode having a very low noise characteristic when used under reverse bias is described. Surface leakage currents, which in conventional diodes greatly contribute to noise, are prevented from mixing with the desired signal currents. A p-n junction is formed with a thin layer of heavily doped semiconductor material disposed on a lightly doped, physically thick base material. An annular groove cuts through the thin layer and into the base for a short distance, dividing the thin layer into a peripheral guard ring that encircles the central region. Noise signal currents are shunted through the guard ring, leaving the central region free from such currents. (AEC)
Highly Efficient Spin-Current Operation in a Cu Nano-Ring
NASA Astrophysics Data System (ADS)
Murphy, Benedict A.; Vick, Andrew J.; Samiepour, Marjan; Hirohata, Atsufumi
2016-11-01
An all-metal lateral spin-valve structure has been fabricated with a medial Copper nano-ring to split the diffusive spin-current path. We have demonstrated significant modulation of the non-local signal by the application of a magnetic field gradient across the nano-ring, which is up to 30% more efficient than the conventional Hanle configuration at room temperature. This was achieved by passing a dc current through a current-carrying bar to provide a locally induced Ampère field. We have shown that in this manner a lateral spin-valve gains an additional functionality in the form of three-terminal gate operation for future spintronic logic.
Three-dimensional ring current decay model
NASA Technical Reports Server (NTRS)
Fok, Mei-Ching; Moore, Thomas E.; Kozyra, Janet U.; Ho, George C.; Hamilton, Douglas C.
1995-01-01
This work is an extension of a previous ring current decay model. In the previous work, a two-dimensional kinetic model was constructed to study the temporal variations of the equatorially mirroring ring current ions, considering charge exchange and Coulomb drag losses along drift paths in a magnetic dipole field. In this work, particles with arbitrary pitch angle are considered. By bounce averaging the kinetic equation of the phase space density, information along magnetic field lines can be inferred from the equator. The three-dimensional model is used to simulate the recovery phase of a model great magnetic storm, similar to that which occurred in early February 1986. The initial distribution of ring current ions (at the minimum Dst) is extrapolated to all local times from AMPTE/CCE spacecraft observations on the dawnside and duskside of the inner magnetosphere spanning the L value range L = 2.25 to 6.75. Observations by AMPTE/CCE of ring current distributions over subsequent orbits during the storm recovery phase are compared to model outputs. In general, the calculated ion fluxes are consistent with observations, except for H(+) fluxes at tens of keV, which are always overestimated. A newly invented visualization idea, designated as a chromogram, is used to display the spatial and energy dependence of the ring current ion differential flux. Important features of storm time ring current, such as day-night asymmetry during injection and drift hole on the dayside at low energies (less than 10 keV), are manifested in the chromogram representation. The pitch angle distribution is well fit by the function, J(sub o)(1 + Ay(sup n)), where y is sine of the equatorial pitch angle. The evolution of the index n is a combined effect of charge exchange loss and particle drift. At low energies (less than 30 keV), both drift dispersion and charge exchange are important in determining n.
A three-dimensional ring current decay model
NASA Technical Reports Server (NTRS)
Fok, Mei-Ching; Moore, Thomas E.; Kozyra, Janet U.; Ho, George C.; Hamilton, Douglas C.
1994-01-01
This work is an extension of a previous ring current decay model. In the previous work, a two-dimensional kinetic model was constructed to study the temporal variations of the equatorially mirroring ring current ions, considering charge exchange and Coulomb drag losses along drift paths in a magnetic dipole field. In this work, particles with arbitrary pitch angle are considered. By bounce averaging the kinetic equation of the phase space density, information along magnetic field lines can be inferred from the equator. The three-dimensional model is used to simulate the recovery phase of a model great magnetic storm, similar to that which occurred in early February 1986. The initial distribution of ring current ions (at the minimum Dst) is extrapolated to all local times from AMPTE/CCE spacecraft observations on the dawn and dusk sides of the inner magnetosphere spanning the L value range L = 2.25 to 6.75. Observations by AMPTE/CCE of ring current distributions over subsequent orbits during the storm recovery phase are compared to model outputs. In general, the calculated ion fluxes are consistent with observations, except for H+ fluxes at tens of keV, which are always over-estimated. A newly-invented visualization idea, designated as a chromogram, is used to display the spatial and energy dependence of the ring current ion differential flux. Important features of storm-time ring current, such as day-night asymmetry during injection and drift hole on the dayside at low energies (less than 10 keV), are manifested in the chromogram representation. The pitch angle distribution is well fit by the function, j(sub o)(1+Ay(exp n)), where y is sine of the equatorial pitch angle. The evolution of the index n is a combined effect of charge exchange loss and particle drift. At low energies (less than 30 keV), both drift dispersion and charge exchange are important in determining n.
ERIC Educational Resources Information Center
Salo, Ruth; Gabay, Shai; Fassbender, Catherine; Henik, Avishai
2011-01-01
Objective: The goal of the present study was to examine distributed attentional functions in long-term but currently abstinent methamphetamine (MA) abusers using a task that measures attentional alertness, orienting, and conflict resolution. Methods: Thirty currently abstinent MA abusers (1 month-5 years) and 22 healthy non-substance using adults…
Determinants of Medicare plan choices: are beneficiaries more influenced by premiums or benefits?
Jacobs, Paul D; Buntin, Melinda B
2015-07-01
To evaluate the sensitivity of Medicare beneficiaries to premiums and benefits when selecting healthcare plans after the introduction of Part D. We matched respondents in the 2008 Medicare Current Beneficiary Survey to the Medicare Advantage (MA) plans available to them using the Bid Pricing Tool and previously unavailable data on beneficiaries' plan choices. We estimated a 2-stage nested logit model of Medicare plan choice decision making, including the decision to choose traditional fee-for-service (FFS) Medicare or an MA plan, and for those choosing MA, which specific plan they chose. Beneficiaries living in areas with higher average monthly rebates available from MA plans were more likely to choose MA rather than FFS. When choosing MA plans, beneficiaries are roughly 2 to 3 times more responsive to dollars spent to reduce cost sharing than reductions in their premium. We calculated an elasticity of plan choice with respect to the monthly MA premium of -0.20. Beneficiaries with lower incomes are more sensitive to plan premiums and cost sharing than higher-income beneficiaries. MA plans appear to have a limited incentive to aggressively price their products, and seem to compete primarily over reduced beneficiary cost sharing. Given the limitations of the current plan choice environment, policies designed to encourage the selection of lower-cost plans may require increasing premium differences between plans and providing the tools to enable beneficiaries to easily assess those differences.
Beam Loss Measurements at the Los Alamos Proton Storage Ring
NASA Astrophysics Data System (ADS)
Spickermann, Thomas
2005-06-01
During normal operation the Los Alamos Proton Storage Ring (PSR) accumulates up to 4ṡ1013 protons over 625μs with a repetition rate of 20 Hz, corresponding to a current of 125μA to the Lujan Neutron Science Center. Beam losses in the ring as well as in the extraction beam line and the subsequent activation of material are a limiting factor at these currents. Careful tuning of injection, ring and extraction line is paramount to limiting losses to acceptable levels. Losses are typically not uniform around the ring, but occur in significantly higher levels in certain "hot spots". Here I will report on losses related to the stripper foil which are the dominant source of losses in the ring. First results of a comparison with simulations will also be presented.
Makeyev, Oleksandr; Besio, Walter G
2016-08-01
Noninvasive concentric ring electrodes are a promising alternative to conventional disc electrodes. Currently, superiority of tripolar concentric ring electrodes over disc electrodes, in particular, in accuracy of Laplacian estimation has been demonstrated in a range of applications. In our recent work we have shown that accuracy of Laplacian estimation can be improved with multipolar concentric ring electrodes using a general approach to estimation of the Laplacian for an (n + 1)-polar electrode with n rings using the (4n + 1)-point method for n ≥ 2. This paper takes the next step toward further improving the Laplacian estimate by proposing novel variable inter-ring distances concentric ring electrodes. Derived using a modified (4n + 1)-point method, linearly increasing inter-ring distances tripolar (n = 2) and quadripolar (n = 3) electrode configurations are analytically compared to their constant inter-ring distances counterparts using coefficients of the Taylor series truncation terms. Obtained results suggest that increasing inter-ring distances electrode configurations may decrease the truncation error of the Laplacian estimation resulting in more accurate Laplacian estimates compared to respective constant inter-ring distances configurations. For currently used tripolar electrode configuration the truncation error may be decreased more than two-fold while for the quadripolar more than seven-fold decrease is expected.
The Role of Ring Current on Slot Region Penetration
NASA Technical Reports Server (NTRS)
Fok, Mei-Ching; Elkington, Scot
2006-01-01
During magnetic quiet times, the inner belt, slot region and the outer belt are well defined regions. However, during some major storms, outer belt particles penetrate inward and significantly fill the slot region. In some extreme events, the outer belt particles travel through the slot and create a new belt in the inner region that persists from months to years. In this paper, we examine the role of the ring current on this radiation belt penetration into the slot region. The storm-time intensification of the ring current produces strong magnetic depression in the inner magnetosphere. This perturbation and its fluctuation enhance the radial transport and diffusion of the outer radiation belt particles. We perform kinetic and test-particle calculations to quantitatively assess the effects of the ring current field on filling of the slot region. Simulation results during major storms will be presented and discussed.
NASA Technical Reports Server (NTRS)
Adrian, M. L.; Gallagher, D. L.; Khazanov, G. V.; Chsang, S. W.; Liemohn, M. W.; Perez, J. D.; Green, J. L.; Sandel, B. R.; Mitchell, D. G.; Mende, S. B.;
2002-01-01
During a geomagnetic storm on 24 May 2000, the IMAGE Extreme Ultraviolet (EUV) camera observed a plasmaspheric density trough in the evening sector at L-values inside the plasmapause. Forward modeling of this feature has indicated that plasmaspheric densities beyond the outer wall of the trough are well below model expectations. This diminished plasma condition suggests the presence of an erosion process due to the interaction of the plasmasphere with ring current plasmas. We present an overview of EUV, energetic neutral atom (ENA), and Far Ultraviolet (FUV) camera observations associated with the plasmaspheric density trough of 24 May 2000, as well as forward modeling evidence of the lie existence of a plasmaspheric erosion process during this period. FUV proton aurora image analysis, convolution of ENA observations, and ring current modeling are then presented in an effort to associate the observed erosion with coupling between the plasmasphere and ring-current plasmas.
Predicting electromagnetic ion cyclotron wave amplitude from unstable ring current plasma conditions
Fu, Xiangrong; Cowee, Misa M.; Jordanova, Vania K.; ...
2016-11-01
Electromagnetic ion cyclotron (EMIC) waves in the Earth's inner magnetosphere are enhanced fluctuations driven unstable by ring current ion temperature anisotropy. EMIC waves can resonate with relativistic electrons and play an important role in precipitation of MeV radiation belt electrons. In this study, we investigate the excitation and saturation of EMIC instability in a homogeneous plasma using both linear theory and nonlinear hybrid simulations. We have explored a four-dimensional parameter space, carried out a large number of simulations, and derived a scaling formula that relates the saturation EMIC wave amplitude to initial plasma conditions. Finally, such scaling can be usedmore » in conjunction with ring current models like ring current-atmosphere interactions model with self-consistent magnetic field to provide global dynamic EMIC wave maps that will be more accurate inputs for radiation belt modeling than statistical models.« less
NASA Astrophysics Data System (ADS)
Zhao, Jianyi; Chen, Xin; Zhou, Ning; Huang, Xiaodong; Cao, Mingde; Wang, Lei; Liu, Wen
2015-03-01
A 16-channel monolithically integrated distributed feedback (DFB) laser array with arrayed waveguide gratings (AWGs) multiplexer and semiconductor optical amplifier (SOA) has been fabricated using nanoimprint technology. Selective lasing wavelength with 200 GHz frequency space has been obtained. The typical threshold current is between 20 mA and 30 mA. The output power is higher than 1 mW with 350 mA current in SOA. The side mode suppression ratio (SMSR) of the spectrum is better than 40 dB.
1979-12-01
AM AM .m Itp 3MM"fvob 3MMopo" INA 7M 3M. St Z is pu~ e posep 3MM 3MMoar INA 3M 3MM St. 3M. Y" M3L-SINA1I 334IopAsoe * w*; INAt e M IM0NA .6.6.36...C or 20 ma current loop Current loop (60V. 60 ma) High level (±80V, 20 ma) INA Yes Yes Yes Same sIBM SELECTRIC Yes INA INA INA INA INA INA INA INA
Pioneer 10 and 11 (Jupiter and Saturn) magnetic field experiments
NASA Technical Reports Server (NTRS)
Jones, D. E.
1986-01-01
Magnet field data obtained by the vector helium magnetometer (VHM) during the encounters of Jupiter (Pioneer 10 and 11) and Saturn (Pioneer 11) was analyzed and interpreted. The puzzling characteristics of the Jovian and Saturnian magnetospheric magnetic fields were studied. An apparent substorm (including thinning of the dayside tail current sheet) was observed at Jupiter, as well as evidence suggesting that at the magnetopause the cusp is at an abnormally low latitude. The characteristics of Saturn's ring current as observed by Pioneer 11 were dramatically different from those suggested by the Voyager observations. Most importantly, very strong perturbations in the azimuthal ring current magnetic field suggest that the plane of the ring was not in the dipole equatorial plane, being tilted 5 to 10 deg. relative to the dipole and undergoing significant changes during the encounter. When these changing currents were corrected for, an improved planetary field determination was obtained. In addition, the ring and azimuthal currents at Saturn displayed significantly different time dependences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shoup, R.W.; Long, F.; Martin, T.H.
Sandia is developing PBFA-Z, a 20-MA driver for z-pinch experiments by replacing the water lines, insulator stack, and MITLs on PBFA II with new hardware. The design of the vacuum insulator stack was dictated by the drive voltage, the electric field stress and grading requirements, the water line and MITL interface requirements, and the machine operations and maintenance requirements. The insulator stack will consist of four separate modules, each of a different design because of different voltage drive and hardware interface requirements. The shape of the components in each module, i.e., grading rings, insulator rings, flux excluders, anode and cathodemore » conductors, and the design of the water line and MITL interfaces, were optimized by using the electrostatic analysis codes, ELECTRO and JASON. The time dependent performance of the insulator stack was evaluated using IVORY, a 2-D PIC code. This paper will describe the insulator stack design and present the results of the ELECTRO and IVORY analyses.« less
Cambrian nepheline syenite complex at Jabal Sawda, Midyan region, Kingdom of Saudi Arabia
Liddicoat, W.K.; Ramsay, C.R.; Hedge, C.E.
1986-01-01
The only nepheline syenite complex presently known in the Arabian Shield is at Jabal Sawda, about 30 km S of Haql in the extreme NW of Saudi Arabia. It is a post-tectonic, composite intrusion with a crudely concentric structure. A core of leuco-nepheline syenite, a partial ring of mela-nepheline syenite, and an almost complete outer ring of alkali-feldspar syenite are the main rock units. Several mega-inclusions of porphyritic nepheline syenite, nepheline monzosyenite, malignite and ijolite are present in the leuco-nepheline syenite. The chemical composition is notable for very high values of Al2O3, Na2O, Ba, La, Nb, Sr and Zr. U{single bond}Pb isotope dating indicates an emplacement age of 553 ?? 4 Ma, one of an increasing number of reliable Cambrian isotope dates in the northern Red Sea region. ?? 1986.
Cambrian nepheline syenite complex at Jabal Sawda, Midyan region, Kingdom of Saudi Arabia
NASA Astrophysics Data System (ADS)
Liddicoat, W. K.; Ramsay, C. R.; Hedge, C. E.
The only nepheline syenite complex presently known in the Arabian Shield is at Jabal Sawda, about 30 km S of Haql in the extreme NW of Saudi Arabia. It is a post-tectonic, composite intrusion with a crudely concentric structure. A core of leuco-nepheline syenite, a partial ring of mela-nepheline syenite, and an almost complete outer ring of alkali-feldspar syenite are the main rock units. Several mega-inclusions of porphyritic nepheline syenite, nepheline monzosyenite, malignite and ijolite are present in the leuco-nepheline syenite. The chemical composition is notable for very high values of Al 2O 3, Na 2O, Ba, La, Nb, Sr and Zr. U sbnd Pb isotope dating indicates an emplacement age of 553 ± 4 Ma, one of an increasing number of reliable Cambrian isotope dates in the northern Red Sea region.
Determination of ion mobility in EHD flow zone of plasma generator
NASA Astrophysics Data System (ADS)
Sumariyah, Kusminarto, Hermanto, Arief; Nuswantoro, Pekik
2015-12-01
Determination has been carried out for ion mobility in EHD flow zone generated using a pin-concentric multiple ring electrodes and a pin-single ring electrode used as a comparator. The pin needle was made from stainless steel with a tip diameter of 0.18 mm. The concentris multiple ring electrode in form three/two concentric ring electrodes which made of metal material connected to each other. Each ring of three concentric ring electrode has a diameter of 24 mm, 16 mm and 8 mm. And each ring of two concentric ring electrode has a diameter of 24 mm and 16 mm. Single ring electrode has a diameter24 mm. The all ring has same of width and thickness were 2 mm and 3 mm. EHD was generated by using a DC high voltage of 10 kV. Pin functional as an active electrode of corona discharge while the all ring electrodes acted as ions collector and passive electrodes. The experimental results show that the ion current is proportional to V2 according to calculations by Chouelo for hyperbolic-field approach. Ion mobility obtained from the quadratic polynomial fitting of experimental data were current and voltage as well as Choelo formulation. The results showed that the mobility of ions in the EHD flow zones utilizing pin-consentric multiple ring electrode larger than utilizing pin-single ring electrode. Pin-three Consentic ring electrode has the largest of ion mobility
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-13
...-AB55 Traffic Separation Schemes: In the Approaches to Portland, ME; Boston, MA; Narragansett Bay, RI... schemes in the approaches to Portland, ME; in the approaches to Boston, MA; in the approaches to... Coast Guard updates the current regulations for the traffic separation scheme in the approaches to...
Reconstruction of ionic currents in a molluscan photoreceptor.
Sakakibara, M.; Ikeno, H.; Usui, S.; Collin, C.; Alkon, D. L.
1993-01-01
Two-microelectrode voltage-clamp measurements were made to determine the kinetics and voltage dependence of ionic currents across the soma membrane of the Hermissenda type B photoreceptor. The voltage-dependent outward potassium currents, IA and ICa(2+)-K+, the inward voltage-dependent calcium current, ICa2+ and the light-induced current, IIgt, were then described with Hodgkin-Huxley-type equations. The fast-activating and inactivating potassium current, IA, was described by the equation; IA(t) = gA(max)(ma infinity[1-exp(-t/tau ma)])3 x (ha infinity [1-exp(-t/tau ha)] + exp(-t/tau ha)) (Vm-EK), where the parameters ma infinity, ha infinity, tau ma, and tau ha are functions of membrane potential, Vm, and ma infinity and ha infinity are steady-state activation and inactivation parameters. Similarly, the calcium-dependent outward potassium current, ICa(2+)-K+, was described by the equation, ICa(2+)-K+ (t) = gc(max)(mc infinity(VC)(1-exp[-t/tau mc (VC)]))pc (hc infinity(VC) [1-exp(-t/tau hc)] + exp(-t/tau hc(VC)])pc(VC-EK). In high external potassium, ICa(2+)-K+ could be measured in approximate isolation from other currents as a voltage-dependent inward tail current following a depolarizing command pulse from a holding potential of -60 mV. A voltage-dependent inward calcium current across the type B soma membrane, ICa2+, activated rapidly, showed little inactivation, and was described by the equation: ICa2+ = gCa(max) [1 + exp](-Vm-5)/7]-1 (Vm-ECa), where gCa(max) was 0.5 microS. The light-induced current with both fast and slow phases was described by: IIgt(t) = IIgt1 + IIgt2 + IIgt3, IIgti = gIgti [1-exp(- ton/tau mi)] exp(-ton/tau hi)(Vm-EIgti) (i = 1, 2). For i = 3, /Igt(t) = gigt3m33h3(Vm - Eigt3)exp(-ton/Ton) x exp(-tfoff/t Off). Based on these reconstructions of ionic currents, learning-induced enhancement of the long lasting depolarization (LLD) of the photoreceptor'slight response was shown to arise from progressive inactivation of /A, lca2+ -K+, and lCa2+. PMID:8369456
NASA Astrophysics Data System (ADS)
Kronberg, E. A.; Welling, D.; Kistler, L. M.; Mouikis, C.; Daly, P. W.; Grigorenko, E. E.; Klecker, B.; Dandouras, I.
2017-09-01
Magnetospheric plasma sheet ions drift toward the Earth and populate the ring current. The ring current plasma pressure distorts the terrestrial internal magnetic field at the surface, and this disturbance strongly affects the strength of a magnetic storm. The contribution of energetic ions (>40 keV) and of heavy ions to the total plasma pressure in the near-Earth plasma sheet is not always considered. In this study, we evaluate the contribution of low-energy and energetic ions of different species to the total plasma pressure for the storm observed by the Cluster mission from 27 September until 3 October 2002. We show that the contribution of energetic ions (>40 keV) and of heavy ions to the total plasma pressure is ≃76-98.6% in the ring current and ≃14-59% in the magnetotail. The main source of oxygen ions, responsible for ≃56% of the plasma pressure of the ring current, is located at distances earthward of XGSE ≃ -13.5 RE during the main phase of the storm. The contribution of the ring current particles agrees with the observed Dst index. We model the magnetic storm using the Space Weather Modeling Framework (SWMF). We assess the plasma pressure output in the ring current for two different ion outflow models in the SWMF through comparison with observations. Both models yield reasonable results. The model which produces the most heavy ions agrees best with the observations. However, the data suggest that there is still potential for refinement in the simulations.
Jiang, Guoxiang; Wu, Fuwang; Li, Zhiwei; Li, Taotao; Gupta, Vijai Kumar; Duan, Xuewu; Jiang, Yueming
2018-06-01
Sulfoxidation of methionine in proteins by reactive oxygen species can cause conformational alteration or functional impairment, and can be reversed by methionine sulfoxide reductase (Msr). Currently, only a few potential Msr substrates have been confirmed in higher plants. Here, we investigated Msr-mediated sulfoxidation regulation of calmodulin (CaM) and its underlying biological significance in relation to banana fruit ripening and senescence. Expression of MaCaM1 and MaMsrA7 was up-regulated with increased ripening and senescence. We verified that MaCaM1 interacts with MaMsrA7 in vitro and in vivo, and sulfoxidated MaCaM1 could be partly repaired by MaMsrA7 (MaMsrA7 reduces oxidized residues Met77 and Met110 in MaCaM1). Furthermore, we investigated two known CaM-binding proteins, catalase (MaCAT1) and MaHY5-1. MaHY5-1 acts as a transcriptional repressor of carotenoid biosynthesis-related genes (MaPSY1, MaPSY2 and MaPSY3) in banana fruit. MaCaM1 could enhance the catalytic activity of MaCAT1 and the transcriptional repression activity of MaHY5-1 toward MaPSY2. Mimicked sulfoxidation in MaCaM1 did not affect the physical interactions of the protein with MaHY5-1 and MaCAT1, but reduced the catalytic activity of MaCAT1 and the transcriptional repression activity of MaHY5-1. Our data suggest that sulfoxidation modification in MaCaM1 by MaMsrA7 regulates antioxidant response and gene transcription, thereby being involved in regulation of ripening and senescence of banana fruit.
High Anodic Performance of Co 1,3,5-Benzenetricarboxylate Coordination Polymers for Li-Ion Battery.
Li, Chao; Lou, Xiaobing; Shen, Ming; Hu, Xiaoshi; Guo, Zhi; Wang, Yong; Hu, Bingwen; Chen, Qun
2016-06-22
We report the designed synthesis of Co 1,3,5-benzenetricarboxylate coordination polymers (CPs) via a straightforward hydrothermal method, in which three kinds of reaction solvents are selected to form CPs with various morphologies and dimensions. When tested as anode materials in Li-ion battery, the cycling stabilities of the three CoBTC CPs at a current density of 100 mA g(-1) have not evident difference; however, the reversible capacities are widely divergent when the current density is increased to 2 A g(-1). The optimized product CoBTC-EtOH maintains a reversible capacity of 473 mAh g(-1) at a rate of 2 A g(-1) after 500 galvanostatic charging/discharging cycles while retaining a nearly 100% Coulombic efficiency. The hollow microspherical morphology, accessible specific area, and the absence of coordination solvent of CoBTC-EtOH might be responsible for such difference. Furthermore, the ex situ soft X-ray absorption spectroscopy studies of CoBTC-EtOH under different states-of-charge suggest that the Co ions remain in the Co(2+) state during the charging/discharging process. Therefore, Li ions are inserted to the organic moiety (including the carboxylate groups and the benzene ring) of CoBTC without the direct engagement of Co ions during electrochemical cycling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Sawy, Abdelhamid M.; Mosa, Islam M.; Su, Dong
Controlling active sites of metal-free catalysts is an important strategy to enhance activity of the oxygen evolution reaction (OER). We made many attempts have been made to develop metal-free catalysts, but the lack of understanding of active-sites at the atomic-level has slowed the design of highly active and stable metal-free catalysts. We also developed a sequential two-step strategy to dope sulfur into carbon nanotube–graphene nanolobes. This bidoping strategy introduces stable sulfur–carbon active-sites. Fluorescence emission of the sulfur K-edge by X-ray absorption near edge spectroscopy (XANES) and scanning transmission electron microscopy electron energy loss spectroscopy (STEM-EELS) mapping and spectra confirm thatmore » increasing the incorporation of heterocyclic sulfur into the carbon ring of CNTs not only enhances OER activity with an overpotential of 350 mV at a current density of 10 mA cm -2, but also retains 100% of stability after 75 h. Furthermore, the bidoped sulfur carbon nanotube–graphene nanolobes behave like the state-of-the-art catalysts for OER but outperform those systems in terms of turnover frequency (TOF) which is two orders of magnitude greater than (20% Ir/C) at 400 mV overpotential with very high mass activity 1000 mA cm -2 at 570 mV. Moreover, the sulfur bidoping strategy shows high catalytic activity for the oxygen reduction reaction (ORR). Stable bifunctional (ORR and OER) catalysts are low cost, and light-weight bidoped sulfur carbon nanotubes are potential candidates for next-generation metal-free regenerative fuel cells.« less
El-Sawy, Abdelhamid M.; Mosa, Islam M.; Su, Dong; ...
2015-12-03
Controlling active sites of metal-free catalysts is an important strategy to enhance activity of the oxygen evolution reaction (OER). We made many attempts have been made to develop metal-free catalysts, but the lack of understanding of active-sites at the atomic-level has slowed the design of highly active and stable metal-free catalysts. We also developed a sequential two-step strategy to dope sulfur into carbon nanotube–graphene nanolobes. This bidoping strategy introduces stable sulfur–carbon active-sites. Fluorescence emission of the sulfur K-edge by X-ray absorption near edge spectroscopy (XANES) and scanning transmission electron microscopy electron energy loss spectroscopy (STEM-EELS) mapping and spectra confirm thatmore » increasing the incorporation of heterocyclic sulfur into the carbon ring of CNTs not only enhances OER activity with an overpotential of 350 mV at a current density of 10 mA cm -2, but also retains 100% of stability after 75 h. Furthermore, the bidoped sulfur carbon nanotube–graphene nanolobes behave like the state-of-the-art catalysts for OER but outperform those systems in terms of turnover frequency (TOF) which is two orders of magnitude greater than (20% Ir/C) at 400 mV overpotential with very high mass activity 1000 mA cm -2 at 570 mV. Moreover, the sulfur bidoping strategy shows high catalytic activity for the oxygen reduction reaction (ORR). Stable bifunctional (ORR and OER) catalysts are low cost, and light-weight bidoped sulfur carbon nanotubes are potential candidates for next-generation metal-free regenerative fuel cells.« less
The fine structure of the Saturnian ring system
NASA Technical Reports Server (NTRS)
Houpis, H. L. F.; Mendis, D. A.
1983-01-01
A dust disk within a planetary magnetosphere constitutes a novel type of dust-ring current. Such an azimuthal current carrying dust disk is subject to the dusty plasma analog of the well known finite-resistivity 'tearing' mode instability in regular plasma current sheets, at long wavelengths. It is proposed that the presently observed fine ringlet of the Saturnian ring system is a relic of this process operating at cosmogonic times and breaking up the initial proto-ring (which may be regarded as an admixture of fine dust and plasma) into an ensemble of thin ringlets. It is shown that this instability develops at a rate that is many orders of magnitude faster than any other known instability, when the disk thickness reaches a value that is comparable to its present observed value.
NASA Astrophysics Data System (ADS)
Battipaglia, G.; Brand, W. A.; Linke, P.; Schaefer, I.; Noetzli, M.; Cherubini, P.
2009-04-01
Tree- ring growth and wood density have been used extensively as indicators of climate change, and tree-ring has been commonly applied as a proxy estimate for seasonal integration of temperatures and precipitation with annual resolution (Hughes 2002). While these relationships have been well established in temperate ecosystems (Fritts, 1976; Schweingruber, 1988, Briffa et al., 1998, 2004), in Mediterranean region dendrochronological studies are still scarce (Cherubini et al, 2003). In Mediterranean environment, trees may form intra-annual density fluctuations, also called "false rings" or "double rings" (Tingley 1937; Schulman 1938). They are usually induced by sudden drought events, occurring during the vegetative period, and, allowing intra-annual resolution, they may provide detailed information at a seasonal level, as well as species-specific sensitivity to drought. We investigated the variability of tree- ring width and carbon stable isotopes of a Mediterranean species, Arbutus unedo L., sampled on Elba island, (Tuscany, Italy). The samples were taken at two different sites, one characterized by wet and one by dry conditions. d13C was measured using Laser- Ablation- Combustion -GC-IRMS. Here, we present first results showing the impact of drought on tree growth and on false ring formation at the different sites and we underline the importance of using Laser Ablation to infer drought impact at the intra -annual level. Briffa KR, Schweingruber FH, Jones PD, Osborn TJ, Harris IC, Shiyatov SG, Vaganov EA, Grudd H (1998) Trees tell of past climates: but are they speaking less clearly today? Phil Transact Royal Soc London 353:65-73 Briffa KR, Osborn TJ, Schweingruber FH (2004) Large-scale temperature inferences from tree rings: a review. Glob Panet Change 40:11-26 Cherubini, P., B.L. Gartner, R. Tognetti, O.U. Bräker, W. Schoch & J.L. Innes. 2003. Identification, measurement and interpretation of tree rings in woody species from Mediterranean climates. Biol. Rev. 78: 119-14 Fritts, H.C. 1976. Tree rings and climate. Academic Press, London, UK. Hughes, M.K. 2002. Dendrochronology in climatology - the state of the art. Dendrochronologia 20: 95-116. Schulman, E. 1938. Classification of false annual rings in Monterey pine. Tree-Ring Bull. 4:4-7 Schweingruber FH (1988) Tree-ring: Basics and applications of dendrochronology. Reidel. Publ., Dordrecht, 276 p Tingley, M.A. 1937. Double growth rings in Red Astrachan. Proc. Am. Soc. Hort. Sci. 34: 61.
ERIC Educational Resources Information Center
Jeffery, Rondo N.; Farhang, Amiri
2016-01-01
The classroom jumping ring demonstration is nearly always performed using alternating current (AC), in which the ring jumps or flies off the extended iron core when the switch is closed. The ring jumps higher when cooled with liquid nitrogen (LN2). We have performed experiments using DC to power the solenoid and find similarities and significant…
Koch, Marcus A
2015-01-01
To take inventory of the current state of affairs of Market Access Launch Excellence in the life sciences industry. To identify key gaps and challenges for Market Access (MA) and discuss how they can be addressed. To generate a baseline for benchmarking MA launch excellence. An online survey was conducted with pharmaceutical executives primarily working in MA, marketing, or general management. The survey aimed to evaluate MA excellence prerequisites across the product life cycle (rated by importance and level of implementation) and to describe MA activity models in the respective companies. Composite scores were calculated from respondents' ratings and answers. Implementation levels of MA excellence prerequisites generally lagged behind their perceived importance. Item importance and the respective level of implementation correlated well, which can be interpreted as proof of the validity of the questionnaire. The following areas were shown to be particularly underimplemented: 1) early integration of MA and health economic considerations in research and development decision making, 2) developing true partnerships with payers, including the development of services 'beyond the pill', and 3) consideration of human resource and talent management. The concept of importance-adjusted implementation levels as a hybrid parameter was introduced and shown to be a viable tool for benchmarking purposes. More than 70% of respondents indicated that their companies will invest broadly in MA in terms of capital and headcount within the next 3 years. MA (launch) excellence needs to be further developed in order to close implementation gaps across the entire product life cycle. As MA is a comparatively young pharmaceutical discipline in a complex and dynamic environment, this effort will require strategic focus and dedication. The Market Access Launch Excellence Inventory benchmarking tool may help guide decision makers to prioritize their endeavors.
Bulmer, John; Bullard, Thomas; Dolasinski, Brian; Murphy, John; Sparkes, Martin; Pangovski, Krste; O’Neill, William; Powers, Peter; Haugan, Timothy
2015-01-01
An electromagnetic transmitter typically consists of individual components such as a waveguide, antenna, power supply, and an oscillator. In this communication we circumvent complications associated with connecting these individual components and instead combine them into a non-traditional, photonic enabled, compact transmitter device for tunable, ultrawide band (UWB) radiation. This device is a centimeter scale, continuous, thin film superconducting ring supporting a persistent super-current. An ultrafast laser pulse (required) illuminates the ring (either at a point or uniformly around the ring) and perturbs the super-current by the de-pairing and recombination of Cooper pairs. This generates a microwave pulse where both ring and laser pulse geometry dictates the radiated spectrum’s shape. The transmitting device is self contained and completely isolated from conductive components that are observed to interfere with the generated signal. A rich spectrum is observed that extends beyond 30 GHz (equipment limited) and illustrates the complex super-current dynamics bridging optical, THz, and microwave wavelengths. PMID:26659022
Zhao, Xiaolin; Qiu, Wujie; Ma, Chao; Zhao, Yingqin; Wang, Kaixue; Zhang, Wenqing; Kang, Litao; Liu, Jianjun
2018-01-24
Even though many organic cathodes have been developed and have made a significant improvement in energy density and reversibility, some organic materials always generate relatively low voltage and limited discharge capacity because their energy storage mechanism is solely based on redox reactions of limited functional groups [N-O, C═X (X = O, N, S)] linking to aromatic rings. Here, a series of cyclooctatetraene-based (C 8 H 8 ) organic molecules were demonstrated to have electrochemical activity of high-capacity and high-voltage from carbon rings by means of first-principles calculations and electronic structure analysis. Fused molecules of C 8 -C 4 -C 8 (C 16 H 12 ) and C 8 -C 4 -C 8 -C 4 -C 8 (C 24 H 16 ) contain, respectively, four and eight electron-deficient carbons, generating high-capacity by their multiple redox reactions. Our sodiation calculations predict that C 16 H 12 and C 24 H 16 exhibit discharge capacities of 525.3 and 357.2 mA h g -1 at the voltage change from 3.5 to 1.0 V and 3.7 to 1.3 V versus Na + /Na, respectively. Electronic structure analysis reveals that the high voltages are attributed to superposed electron stabilization mechanisms, including double-bond reformation and aromatization from carbon rings. High thermodynamic stability of these C 24 H 16 -based systems strongly suggests feasibility of experimental realization. The present work provides evidence that cyclooctatetraene-based organic molecules fused with the C 4 ring are promising in designing high-capacity and high-voltage organic rechargeable cathodes.
NASA Astrophysics Data System (ADS)
Kanda, Hiroyuki; Nakano, Yukari; Terasawa, Yasuo; Morimoto, Takeshi; Fujikado, Takashi
2017-10-01
Objective. Suprachoroidal-transretinal stimulation (STS) is a stimulation method for retinal prostheses. For STS-type retinal prostheses, we developed a new type of stimulating electrode called a femtosecond laser-induced porous electrode (FLiP electrode). To verify the safety of the FLiP electrode for STS, we investigated the characteristics of STS-induced retinal injury. Approach. Sixteen eyes of pigmented rabbits were studied in this in vivo study. For each examined eye, we implanted a single-channel FLiP electrode (diameter, 0.5 mm height, 0.3 mm geometric surface area, 0.43 mm2) in a scleral pocket created at the posterior pole of the eye. A return electrode (diameter, 0.5 mm length, 3 mm) was inserted into the vitreous cavity. The eyes were divided into five groups, and each group was stimulated with a different current intensity. The stimulus intensities and the number of eyes in each group were as follows: 1.0 mA (n = 2), 1.5 mA (n = 3), 2.0 mA (n = 3), 2.5 mA (n = 4), and 3.0 mA (n = 2). Continuous biphasic pulses (0.5 ms/phase) were applied under general anesthesia at a frequency of 20 Hz for 48 h. Fundus photography, fluorescein angiography (FA), and optical coherence tomography were performed before and after applying the electrical stimulation to evaluate the retinal injury. Main results. The 1.0 mA and 1.5 mA groups showed little or no retinal damage. Fluorescent dye leakage in FA and punctate pigmentation in the fundus were observed around the stimulation site with stimulation of 2.0 mA (1/3), 2.5 mA (1/4), and 3.0 mA (2/2). Significance. Our findings indicate that the threshold current for inducing retinal damage is greater than that for eliciting electrical phosphenes (<1 mA) with STS observed in human trials. Therefore, STS by the FLiP electrode is a safe and feasible stimulation method for retinal prostheses as long as it is used with these pulse parameters.
Loss-of-function and gain-of-function phenotypes of stomatocytosis mutant RhAG F65S
Stewart, Andrew K.; Shmukler, Boris E.; Vandorpe, David H.; Rivera, Alicia; Heneghan, John F.; Li, Xiaojin; Hsu, Ann; Karpatkin, Margaret; O'Neill, Allison F.; Bauer, Daniel E.; Heeney, Matthew M.; John, Kathryn; Kuypers, Frans A.; Gallagher, Patrick G.; Lux, Samuel E.; Brugnara, Carlo; Westhoff, Connie M.
2011-01-01
Four patients with overhydrated cation leak stomatocytosis (OHSt) exhibited the heterozygous RhAG missense mutation F65S. OHSt erythrocytes were osmotically fragile, with elevated Na and decreased K contents and increased cation channel-like activity. Xenopus oocytes expressing wild-type RhAG and RhAG F65S exhibited increased ouabain and bumetanide-resistant uptake of Li+ and 86Rb+, with secondarily increased 86Rb+ influx sensitive to ouabain and to bumetanide. Increased RhAG-associated 14C-methylammonium (MA) influx was severely reduced in RhAG F65S-expressing oocytes. RhAG-associated influxes of Li+, 86Rb+, and 14C-MA were pharmacologically distinct, and Li+ uptakes associated with RhAG and RhAG F65S were differentially inhibited by NH4+ and Gd3+. RhAG-expressing oocytes were acidified and depolarized by 5 mM bath NH3/NH4+, but alkalinized and depolarized by subsequent bath exposure to 5 mM methylammonium chloride (MA/MA+). RhAG F65S-expressing oocytes exhibited near-wild-type responses to NH4Cl, but MA/MA+ elicited attenuated alkalinization and strong hyperpolarization. Expression of RhAG or RhAG F65S increased steady-state cation currents unaltered by bath Li+ substitution or bath addition of 5 mM NH4Cl or MA/MA+. These oocyte studies suggest that 1) RhAG expression increases oocyte transport of NH3/NH4+ and MA/MA+; 2) RhAG F65S exhibits gain-of-function phenotypes of increased cation conductance/permeability, and loss-of-function phenotypes of decreased and modified MA/MA+ transport, and decreased NH3/NH4+-associated depolarization; and 3) RhAG transports NH3/NH4+ and MA/MA+ by distinct mechanisms, and/or the substrates elicit distinct cellular responses. Thus, RhAG F65S is a loss-of-function mutation for amine transport. The altered oocyte intracellular pH, membrane potential, and currents associated with RhAG or RhAG F65S expression may reflect distinct transport mechanisms. PMID:21849667
Ring Current Development During Storm Main Phase
NASA Technical Reports Server (NTRS)
Fok, Mei-Ching; Moore, Thomas E.; Greenspan, Marian E.
1996-01-01
The development of the ring current ions in the inner magnetosphere during the main phase of a magnetic storm is studied. The temporal and spatial evolution of the ion phase space densities in a dipole field are calculated using a three dimensional ring current model, considering charge exchange and Coulomb losses along drift paths. The simulation starts with a quiet time distribution. The model is tested by comparing calculated ion fluxes with Active Magnetospheric Particle Tracer Explorers/CCE measurement during the storm main phase on May 2, 1986. Most of the calculated omnidirectional fluxes are in good agreement with the data except on the dayside inner edge (L less than 2.5) of the ring current, where the ion fluxes are underestimated. The model also reproduces the measured pitch angle distributions of ions with energies below 10 keV. At higher energy, an additional diffusion in pitch angle is necessary in order to fit the data. The role of the induced electric field on the ring current dynamics is also examined by simulating a series of substorm activities represented by stretching and collapsing the magnetic field lines. In response to the impulsively changing fields, the calculated ion energy content fluctuates about a mean value that grows steadily with the enhanced quiescent field.
MgB2-based superconductors for fault current limiters
NASA Astrophysics Data System (ADS)
Sokolovsky, V.; Prikhna, T.; Meerovich, V.; Eisterer, M.; Goldacker, W.; Kozyrev, A.; Weber, H. W.; Shapovalov, A.; Sverdun, V.; Moshchil, V.
2017-02-01
A promising solution of the fault current problem in power systems is the application of fast-operating nonlinear superconducting fault current limiters (SFCLs) with the capability of rapidly increasing their impedance, and thus limiting high fault currents. We report the results of experiments with models of inductive (transformer type) SFCLs based on the ring-shaped bulk MgB2 prepared under high quasihydrostatic pressure (2 GPa) and by hot pressing technique (30 MPa). It was shown that the SFCLs meet the main requirements to fault current limiters: they possess low impedance in the nominal regime of the protected circuit and can fast increase their impedance limiting both the transient and the steady-state fault currents. The study of quenching currents of MgB2 rings (SFCL activation current) and AC losses in the rings shows that the quenching current density and critical current density determined from AC losses can be 10-20 times less than the critical current determined from the magnetization experiments.
Caustic stress corrosion cracking of alloys 600 and 690 with NaOH concentrations
NASA Astrophysics Data System (ADS)
Park, In-Gyu; Lee, Chang-Soon; Hwang, Seong-Sik; Kim, Hong-Pyo; Kim, Joung-Soo
2005-10-01
In order to evaluate the stress corrosion cracking resistance for commercial alloys (C600MA, C600TT, C690TT) and Korean-made alloys (K600MA, K690TT), C-ring tests were performed in a caustic environment of 4, 10, 20, 30, and 50% NaOH solution at 315°C, for 480 h with an applied potential of 125 mV vs. OCP. Different stress corrosion cracking phenomena were observed according to the NaOH concentration. The rate of caustic IGSCC attack did not appear to increase monotonically with caustic concentrations, but peaked at a concentration between 4 and 50% caustic, or approximately 30% NaOH. Intergranular stress corrosion cracking was found for C600MA in 10, 20, and 30% NaOH solutions, while no cracking was observed in the 4 and 50% NaOH solutions. In 30% NaOH solution, transgrnular stress corrosion cracking was detected in C690TT, which may be related with the large amount of plastic strain (150% yield) and the applied potential (125 mV vs. OCP). The overall data clearly indicate that C600MA has the worst SCC resistance while K690TT offers the best resistance. There is also fairly good correlation between the caustic SCC susceptibility and some metallurgical parameters, particularly the grain size and the yield strength at room temperature. Specifically, materials having larger grain size and lower yield strength exhibited higher caustic SCC resistance.
NASA Astrophysics Data System (ADS)
Boyle, P. R.; Romans, B.; Norris, R. D.; Tucholke, B. E.; Swift, S. A.; Sexton, P. F.
2014-12-01
In the North Atlantic Ocean, contour-following bottom currents have eroded regional unconformities and deposited contourite drifts that exceed two km in thickness and extend for 100s of km. The character of deep-water masses that are conveyed through ocean basins by such currents influence global heat transfer and ocean-atmosphere partitioning of CO2. The Newfoundland Ridge Drift Complex lies directly under the modern Deep Western Boundary Current southeast of Newfoundland, close to the site of overturning in the northwest Atlantic Ocean and at the intersection of the warm Gulf Stream and cool Labrador surface currents. To the south are regions of the western North Atlantic basin that are influenced by southern- as well as northern-sourced bottom waters. Here, we document the evolution of North Atlantic deep-water circulation by seismic-stratigraphic analysis of the long-lived and areally extensive Newfoundland Ridge Drift Complex. IODP Expedition 342 boreholes provide age control on seismic units, allowing sedimentation patterns to be placed in a temporal framework. We find three major phases of sedimentation: pre-contourite drift (~115-50 Ma), active contourite drift (~50-2.6 Ma), and late-contourite drift (~2.6-0 Ma). Bottom-current-controlled deposition of terrigenous-rich sediment began at ~50 Ma, which correlates to the onset of a long-term global cooling trend. A further change in deep circulation near the Eocene-Oligocene transition (~30 Ma) is indicated by more focused drift sedimentation with greatly increased accumulation rates and stratal architecture dominated by mud waves. At ~2.6 Ma to present the axis of drift accumulation shifted markedly towards shallower water depths, corresponding with the onset of Northern Hemisphere ice sheets. We discuss how these reorganizations of deep circulation correlate with results of other North Atlantic seismic stratigraphic studies to the north and south.
High current DC negative ion source for cyclotron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Etoh, H., E-mail: Hrh-Etoh@shi.co.jp; Aoki, Y.; Mitsubori, H.
2016-02-15
A filament driven multi-cusp negative ion source has been developed for proton cyclotrons in medical applications. In Cs-free operation, continuous H{sup −} beam of 10 mA and D{sup −} beam of 3.3 mA were obtained stably at an arc-discharge power of 3 kW and 2.4 kW, respectively. In Cs-seeded operation, H{sup −} beam current reached 22 mA at a lower arc power of 2.6 kW with less co-extracted electron current. The optimum gas flow rate, which gives the highest H{sup −} current, was 15 sccm in the Cs-free operation, while it decreased to 4 sccm in the Cs-seeded operation. Themore » relationship between H{sup −} production and the design/operating parameters has been also investigated by a numerical study with KEIO-MARC code, which gives a reasonable explanation to the experimental results of the H{sup −} current dependence on the arc power.« less
Reviewed approach to defining the Active Interlock Envelope for Front End ray tracing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seletskiy, S.; Shaftan, T.
To protect the NSLS-II Storage Ring (SR) components from damage from synchrotron radiation produced by insertion devices (IDs) the Active Interlock (AI) keeps electron beam within some safe envelope (a.k.a Active Interlock Envelope or AIE) in the transverse phase space. The beamline Front Ends (FEs) are designed under assumption that above certain beam current (typically 2 mA) the ID synchrotron radiation (IDSR) fan is produced by the interlocked e-beam. These assumptions also define how the ray tracing for FE is done. To simplify the FE ray tracing for typical uncanted ID it was decided to provide the Mechanical Engineering groupmore » with a single set of numbers (x,x’,y,y’) for the AIE at the center of the long (or short) ID straight section. Such unified approach to the design of the beamline Front Ends will accelerate the design process and save valuable human resources. In this paper we describe our new approach to defining the AI envelope and provide the resulting numbers required for design of the typical Front End.« less
A translation micromirror with large quasi-static displacement and high surface quality
NASA Astrophysics Data System (ADS)
Xue, Yuan; He, Siyuan
2017-01-01
A large displacement with high surface quality translation micromirror is presented. The micromirror consists of a magnetic actuator and a mirror plate. The actuator and the mirror plate are fabricated separately using two processes and then bonded together. The actuator consists of a moving film which is a 20 µm thick nickel film fabricated by MetalMUMPs and a solenoid located underneath the moving film. The moving film is designed to curve up through the residual stress gradient in the nickel film and a curve-up mechanism which includes four trapezoidal plates and anchoring springs. The mirror plate is simply diced from a polished silicon wafer and coated with a metal thin film. The mirror plate is bonded onto the central ring of the moving film. A solenoid attracts the moving film along with the mirror plate downwards to realize translation. A quasi-static displacement of 123 µm is achieved at a driving current of 400 mA. A high mirror surface quality is realized, e.g. 15.6 m of curvature radius and 2 nm surface roughness.
Red Sea Intermediate Water at the Agulhas Current termination
NASA Astrophysics Data System (ADS)
Roman, R. E.; Lutjeharms, J. R. E.
2007-08-01
The inter-ocean exchange of water masses at the Agulhas Current termination comes about through the shedding of rings, and this process plays an important role in the global thermohaline circulation. Using several hydrographic sections collected during the ARC (Agulhas Retroflection Cruise), MARE (Mixing of Agulhas Rings Experiment) and WOCE (World Ocean Circulation Experiment), this investigation aims to establish the degree to which Red Sea Intermediate Water (RSIW) is involved in this exchange and at what level of purity. To this end a wide range of hydrographic parameters were used. Upstream from the Agulhas Current retroflection water with clear RSIW origin is shown to move downstream on both the landward and seaward sides of the Agulhas Current with the highest water sample purity or water-mass content exceeding 15%. The least mixed water was found close to the continental shelf. At the retroflection the RSIW purity shows considerable variability that ranges between 5% and 20%. This suggests that RSIW moves down the current in patches of considerably varying degrees of previous mixing. This pattern was also observed in a ring sampled during the ARC experiment. The MARE sections in turn indicate that at times RSIW may be entirely absent in the Agulhas Current. RSIW is therefore shown to travel down the current as discontinuous filaments, and this intermittency is reflected in its presence in Agulhas Rings. From the sections investigated it is therefore clear that any calculation of RSIW fluxes involved in inter-ocean exchange can only be done on the basis of event scales. RSIW not trapped in Agulhas Rings flows east with the Agulhas Return Current.
Monolithic integration of a GaAlAs buried-heterostructure laser and a bipolar phototransistor
NASA Technical Reports Server (NTRS)
Bar-Chaim, N.; Harder, CH.; Margalit, S.; Yariv, A.; Katz, J.; Ury, I.
1982-01-01
A GaAlAs buried-heterostructure laser has been monolithically integrated with a bipolar phototransistor. The heterojunction transistor was formed by the regrowth of the burying layers of the laser. Typical threshold current values for the lasers were 30 mA. Common-emitter current gains for the phototransistor of 100-400 and light responsitivity of 75 A/W (for wavelengths of 0.82 micron) at collector current levels of 15 mA were obtained.
Popigai Impact Structure Modeling: Morphology and Worldwide Ejecta
NASA Technical Reports Server (NTRS)
Ivanov, B. A.; Artemieva, N. A.; Pierazzo, E.
2004-01-01
The approx. 100 km in diameter, 35.7 0.2 Ma old Popigai structure [1], northern Siberia (Russia), is the best-preserved of the large terrestrial complex crater structures containing a central-peak ring [2- 4]. Although remotely located, the excellent outcrops, large number of drill cores, and wealth of geochemical data make Popigai ideal for the general study of the cratering processes. It is most famous for its impact-diamonds [2,5]. Popigai is the best candidate for the source crater of the worldwide late Eocene ejecta [6,7].
A Case Study of Two NRL Pump Prototypes
1996-01-01
n messages messages ACK Pump Low High ACK MA buffer Figure 1. The simpli ed Pump architecture The Pump (see...I C A T I O N S Y S T E M S E R VICES Application Soft wa re Figure 4. STOP security ring structure The security kernel provides basic system...A D Y PUMP_TIMEOUT M O V _ A V G RECORD_AVAILABLE Ack A c k Ac k or N ac k Ack or Nack Legend IPC msg FIFO msg Data msg Process Object FIFO
NASA Astrophysics Data System (ADS)
Chambers, L.; Pringle, M.; Fitton, G.; Larsen, L. M.; Pedersen, A. K.; Parrish, R.
2003-04-01
In the current time scales (Cande and Kent, 95; Berggren et al, 95) the P-E Boundary is positioned at 55 Ma based primarily on the age of the -17 ash layer in Denmark. In the absence of a global stratigraphic section and point the boundary is an interval of 1 m.y. from 55.5 to 54.5 Ma that includes all of the different means of calibrating the boundary tie point, including the NP9/NP10 calcareous nannofossil zonal boundary, the planktonic foraminiferal P5/P6a zonal boundary, preliminary ages for the -17 and +19 ash layers (unpub.), the base of the London Clay Formation, and the δ13C spike. Here we present new Ar-Ar ages for the -17 and +19 ash layers in Denmark and combine this study with a calibration of the Ar-Ar with the U-Pb method. As Ar-Ar ages are relative to the known age of a standard or monitor, U-Pb ages on zircons from the same rocks from the British Tertiary Igneous Province provide an absolute age calibration for all of our Ar-Ar ages (including the monitors). An additional complication arises because the time scale is currently being revised (J. Ogg, Pers. Comm.). In the new time scale the P-E boundary will stay at 55 Ma and the K-T boundary will move by 0.5 m.y. to 65.5 Ma. Our results have a direct impact on the positioning of the P-E Boundary relative to the K-T boundary as definitive K-T tektite is used as one of our Ar-Ar standards. Ar-Ar ages and U-Pb ages for the same sample from the BTIP are indistinguishable when the ages used for the Ar-Ar monitor minerals are those recommended in Renne et al (98). This means that the K-T tektite is 65.78 ± 0.03 Ma, the -17 ash is 54.52 ± 0.05Ma, and the +19 ash is 54.04 ± 0.14 Ma. If the P-E boundary is taken to be between the -17 and +19 ash layers, as in DSDP Hole 550 (the ashes bracket the planktonic foraminiferal P5/P6a zonal boundary) then the current position at 55 Ma is too old. We therefore suggest that if the K-T boundary moves to 65.5 Ma, then the P-E boundary should not stay at 55 Ma, but move to 54.5 Ma (extending the Palaeocene by 1 m.y.). If the K-T boundary does not move by 0.5 m.y. then the P-E boundary would still have to move from its current position at 55 Ma and the ages used for the argon monitor minerals revised.
Quite a lot of smoke but very limited fire--the use of methamphetamine in Europe.
Griffiths, Paul; Mravcik, Viktor; Lopez, Dominique; Klempova, Danica
2008-05-01
This paper provides an overview of the historical development, current situation and potential future diffusion of methamphetamine (MA) use in Europe. The analysis is based on a review of published and grey literature, as well as data collected as part of the ongoing monitoring of the drug situation in Europe. Some qualitative surveys among high-risk populations do exist, but overall the general low prevalence of methamphetamine use in most of Europe means that the data available to explore patterns of use are limited. In many parts of Europe, amphetamine use is well established and the injecting of amphetamines has historically constituted an important component of the drug problem in many Nordic countries. Methamphetamine problems are long documented in the Czech and Slovak republics, but there is no current evidence of widespread use of MA elsewhere in Europe. Concern that MA use is spreading in Europe is prompted by some reports of use among high-risk groups. However, the evidence available suggests that even in high-risk populations, the use of MA currently remains uncommon. Europe accounted for less than 1% of worldwide MA seizures in 2005, and over the period 2004-05 European ephedrine seizures amounted for 6% of the global figure. The spread of MA use is limited and no strong evidence exists that significant diffusion is occurring. It appears likely that methamphetamine diffusion in Europe is impeded by a strong market for other stimulant drugs [cocaine, amphetamine and methylenedioxymethamphetamine (MDMA)]. The future potential for the diffusion of MA may be influenced by factors such as: the relative availability and popularity of other drugs; possible 'leakage' from areas of historical high prevalence; travel by young Europeans to areas of high prevalence; and how users perceive MA as a desirable, suitable and cost-effective alternative to other stimulants available on the European illicit drug market.
Decay of equatorial ring current ions and associated aeronomical consequences
NASA Technical Reports Server (NTRS)
Fok, M.-C.; Kozyra, J. U.; Nagy, A. F.; Rasmussen, C. E.; Khazanov, G. V.
1993-01-01
The decay of the major ion species which constitute the ring current is studied by solving the time evolution of their distribution functions during the recovery phase of a moderate geomagnetic storm. In this work, only equatorially mirroring particles are considered. Particles are assumed to move subject to E x B and gradient drifts. They also experience loses along their drift paths. Two loss mechanisms are considered: charge exchange with neutral hydrogen atoms and Coulomb collisions with thermal plasma in the plasmasphere. Thermal plasma densities are calculated with a plasmaspheric model employing a time-dependent convection electric field model. The drift-loss model successfully reproduces a number of important and observable features in the distribution function. Charge exchange is found to be the major loss mechanism for the ring current ions; however the important effects of Coulomb collisions on both the ring current and thermal populations are also presented. The model predicts the formation of a low-energy (less than 500 eV) ion population as a result of energy degradation caused by Coulomb collision of the ring current ions with the plasmaspheric electrons; this population may be one source of the low-energy ions observed during active and quiet periods in the inner magnetosphere. The energy transferred to plasmaspheric electrons through Coulomb collisions with ring current ions is believed to be the energy source for the electron temperature enhancement and the associated 6300 A (stable auroral red (SAR) arc) emission in the subauroral region. The calculated energy deposition rate is sufficient to produce a subauroral electron temperature enhancement and SAR arc emissions that are consistent with observations of these quantities during moderate magnetic activity levels.
NASA Technical Reports Server (NTRS)
Fok, Mei-Ching; Chen, Sheng-Hsien; Buzulukova, Natalia; Glocer, Alex
2010-01-01
Distinctive sources of ions reside in the plasmasphere, plasmasheet, and ring current regions at discrete energies constitute the major plasma populations in the inner/middle magnetosphere. They contribute to the electrodynamics of the ionosphere-magnetosphere system as important carriers of the global current system, in triggering; geomagnetic storm and substorms, as well as critical components of plasma instabilities such as reconnection and Kelvin-Helmholtz instability at the magnetospheric boundaries. Our preliminary analysis of in-situ measurements shoves the complexity of the plasmas pitch angle distributions at particularly the cold and warm plasmas, vary dramatically at different local times and radial distances from the Earth in response to changes in solar wind condition and Dst index. Using an MHD-ring current coupled code, we model the convection and interaction of cold, warm and energetic ions of plasmaspheric, plasmasheet, and ring current origins in the inner magnetosphere. We compare our simulation results with in-situ and remotely sensed measurements from recent instrumentation on Geotail, Cluster, THEMIS, and TWINS spacecraft.
Method and apparatus for the formation of a spheromak plasma
Jardin, Stephen C.; Yamada, Masaaki; Furth, Harold P.; Okabayashi, Mitcheo
1984-01-01
An inductive method and apparatus for forming detached spheromak plasma using a thin-walled metal toroidal ring, with external current leads and internal poloidal and toroidal field coils located inside a vacuum chamber filled with low density hydrogen gas and an external axial field generating coil. The presence of a current in the poloidal field coils, and an externally generated axial field sets up the initial poloidal field configuration in which the field is strongest toward the major axis of the toroid. The internal toroidal-field-generating coil is then pulsed on, ionizing the gas and inducing poloidal current and toroidal magnetic field into the plasma region in the sleeve exterior to and adjacent to the ring and causing the plasma to expand away from the ring and toward the major axis. Next the current in the poloidal field coils in the ring is reversed. This induces toroidal current into the plasma and causes the poloidal magnetic field lines to reconnect. The reconnection continues until substantially all of the plasma is formed in a separated spheromak configuration held in equilibrium by the initial external field.
Ion transport and loss in the earth's quiet ring current. I - Data and standard model
NASA Technical Reports Server (NTRS)
Sheldon, R. B.; Hamilton, D. C.
1993-01-01
A study of the transport and loss of ions in the earth's quiet time ring current, in which the standard radial diffusion model developed for the high-energy radiation belt particles is compared with the measurements of the lower-energy ring current ions, is presented. The data set provides ionic composition information in an energy range that includes the bulk of the ring current energy density, 1-300 keV/e. Protons are found to dominate the quiet time energy density at all altitudes, peaking near L of about 4 at 60 keV/cu cm, with much smaller contributions from O(+) (1-10 percent), He(+) (1-5 percent), and He(2+) (less than 1 percent). A minimization procedure is used to fit the amplitudes of the standard electric radial diffusion coefficient, yielding 5.8 x 10 exp -11 R(E-squared)/s. Fluctuation ionospheric electric fields are suggested as the source of the additional diffusion detected.
Photon-induced tunability of the thermospin current in a Rashba ring
NASA Astrophysics Data System (ADS)
Abdullah, Nzar Rauf; Arnold, Thorsten; Tang, Chi-Shung; Manolescu, Andrei; Gudmundsson, Vidar
2018-04-01
The goal of this work is to show how the thermospin polarization current in a quantum ring changes in the presence of Rashba spin-orbit coupling and a quantized single photon mode of a cavity the ring is placed in. Employing the reduced density operator and a general master equation formalism, we find that both the Rashba interaction and the photon field can significantly modulate the spin polarization and the thermospin polarization current. Tuning the Rashba coupling constant, degenerate energy levels are formed corresponding to the Aharonov-Casher destructive phase interference in the quantum ring system. Our analysis indicates that the maximum spin polarization can be observed at the points of degenerate energy levels due to spin accumulation in the system without the photon field. The thermospin current is thus suppressed. In the presence of the cavity, the photon field leads to an additional kinetic momentum of the electron. As a result the spin polarization can be enhanced by the photon field.
Simulations of phase space distributions of storm time proton ring current
NASA Technical Reports Server (NTRS)
Chen, Margaret W.; Lyons, Larry R.; Schulz, Michael
1994-01-01
We use results of guiding-center simulations of ion transport to map phase space densities of the stormtime proton ring current. We model a storm as a sequence of substorm-associated enhancements in the convection electric field. Our pre-storm phase space distribution is an analytical solution to a steady-state transport model in which quiet-time radial diffusion balances charge exchange. This pre-storm phase space spectra at L approximately 2 to 4 reproduce many of the features found in observed quiet-time spectra. Using results from simulations of ion transport during model storms having main phases of 3, 6, and 12 hr, we map phase space distributions from the pre-storm distribution in accordance with Liouville's theorem. We find stormtime enhancements in the phase space densities at energies E approximately 30-160 keV for L approximately 2.5 to 4. These enhancements agree well with the observed stormtime ring current. For storms with shorter main phases (approximately 3 hr), the enhancements are caused mainly by the trapping of ions injected from open night side trajectories, and diffusive transport of higher-energy (greater than or approximately 160 keV) ions contributes little to the stormtime ring current. However, the stormtime ring current is augmented also by the diffusive transport of higher-energy ions (E greater than or approximately 160 keV) durinng stroms having longer main phases (greater than or approximately 6 hr). In order to account for the increase in Dst associated with the formation of the stormtime ring current, we estimate the enhancement in particle-energy content that results from stormtime ion transport in the equatorial magnetosphere. We find that transport alone cannot account for the entire increase in absolute value of Dst typical of a major storm. However, we can account for the entire increase in absolute value of Dst by realistically increasing the stormtime outer boundary value of the phase space density relative to the quiet-time value. We compute the magnetic field produced by the ring current itself and find that radial profiles of the magnetic field depression resemble those obtained from observational data.
Hetts, S.W.; Saeed, M.; Martin, A.J.; Evans, L.; Bernhardt, A.F.; Malba, V.; Settecase, F.; Do, L.; Yee, E.J.; Losey, A.; Sincic, R.; Roy, S.; Arenson, R.L.; Wilson, M.W.
2013-01-01
BACKGROUND AND PURPOSE: Endovascular navigation under MR imaging guidance can be facilitated by a catheter with steerable microcoils on the tip. Not only do microcoils create visible artifacts allowing catheter tracking, but also they create a small magnetic moment permitting remote-controlled catheter tip deflection. A side product of catheter tip electrical currents, however, is the heat that might damage blood vessels. We sought to determine the upper boundary of electrical currents safely usable at 1.5T in a coil-tipped microcatheter system. MATERIALS AND METHODS: Alumina tubes with solenoid copper coils were attached to neurovascular microcatheters with heat shrink-wrap. Catheters were tested in carotid arteries of 8 pigs. The catheters were advanced under x-ray fluoroscopy and MR imaging. Currents from 0 mA to 700 mA were applied to test heating and potential vascular damage. Postmortem histologic analysis was the primary endpoint. RESULTS: Several heat-mitigation strategies demonstrated negligible vascular damage compared with control arteries. Coil currents ≤300 mA resulted in no damage (0/58 samples) compared with 9 (25%) of 36 samples for > 300-mA activations (P = .0001). Tip coil activation ≤1 minute and a proximal carotid guide catheter saline drip > 2 mL/minute also had a nonsignificantly lower likelihood of vascular damage. For catheter tip coil activations ≤300 mA for ≤1 minute in normal carotid flow, 0 of 43 samples had tissue damage. CONCLUSIONS: Activations of copper coils at the tip of microcatheters at low currents in 1.5T MR scanners can be achieved without significant damage to blood vessel walls in a controlled experimental setting. Further optimization of catheter design and procedure protocols is necessary for safe remote control magnetic catheter guidance. PMID:23846795
Contreras, Rubén H; dos Santos, Francisco P; Ducati, Lucas C; Tormena, Cláudio F
2010-12-01
Adequate analyses of canonical molecular orbitals (CMOs) can provide rather detailed information on the importance of different σ-Fermi contact (FC) coupling pathways (FC term transmitted through the σ-skeleton). Knowledge of the spatial distribution of CMOs is obtained by expanding them in terms of natural bond orbitals (NBOs). Their relative importance for transmitting the σ-FC contribution to a given spin-spin coupling constants (SSCCs) is estimated by resorting to the expression of the FC term given by the polarisation propagator formalism. In this way, it is possible to classify the effects affecting such couplings in two different ways: delocalisation interactions taking place in the neighbourhood of the coupling nuclei and 'round the ring' effects. The latter, associated with σ-ring currents, are observed to yield significant differences between the FC terms of (2)J(C2H3) and (2)J(C3H2) SSCCs which, consequently, are taken as probes to gauge the differences in σ-ring currents for the five-membered rings (furan, thiophene, selenophene and pyrrol) and also for the six-membered rings (benzene, pyridine, protonated pyridine and N-oxide pyridine) used in the present study. Copyright © 2010 John Wiley & Sons, Ltd.
Direct numerical simulation of auto-ignition of a hydrogen vortex ring reacting with hot air
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doom, Jeff; Mahesh, Krishnan
2009-04-15
Direct numerical simulation (DNS) is used to study chemically reacting, laminar vortex rings. A novel, all-Mach number algorithm developed by Doom et al. [J. Doom, Y. Hou, K. Mahesh, J. Comput. Phys. 226 (2007) 1136-1151] is used. The chemical mechanism is a nine species, nineteen reaction mechanism for H{sub 2}/air combustion proposed by Mueller et al. [M.A. Mueller, T.J. Kim, R.A. Yetter, F.L. Dryer, Int. J. Chem. Kinet. 31 (1999) 113-125]. Diluted H{sub 2} at ambient temperature (300 K) is injected into hot air. The simulations study the effect of fuel/air ratios, oxidizer temperature, Lewis number and stroke ratio (ratiomore » of piston stroke length to diameter). Results show that auto-ignition occurs in fuel lean, high temperature regions with low scalar dissipation at a 'most reactive' mixture fraction, {zeta}{sub MR} (Mastorakos et al. [E. Mastorakos, T.A. Baritaud, T.J. Poinsot, Combust. Flame 109 (1997) 198-223]). Subsequent evolution of the flame is not predicted by {zeta}{sub MR}; a most reactive temperature T{sub MR} is defined and shown to predict both the initial auto-ignition as well as subsequent evolution. For stroke ratios less than the formation number, ignition in general occurs behind the vortex ring and propagates into the core. At higher oxidizer temperatures, ignition is almost instantaneous and occurs along the entire interface between fuel and oxidizer. For stroke ratios greater than the formation number, ignition initially occurs behind the leading vortex ring, then occurs along the length of the trailing column and propagates toward the ring. Lewis number is seen to affect both the initial ignition as well as subsequent flame evolution significantly. Non-uniform Lewis number simulations provide faster ignition and burnout time but a lower maximum temperature. The fuel rich reacting vortex ring provides the highest maximum temperature and the higher oxidizer temperature provides the fastest ignition time. The fuel lean reacting vortex ring has little effect on the flow and behaves similar to a non-reacting vortex ring. (author)« less
The Phase Shift in the Jumping Ring
ERIC Educational Resources Information Center
Jeffery, Rondo N.; Amiri, Farhang
2008-01-01
The popular physics demonstration experiment known as Thomson's Jumping Ring (JR) has been variously explained as a simple example of Lenz's law, or as the result of a phase shift of the ring current relative to the induced emf. The failure of the first-quadrant Lenz's law explanation is shown by the time the ring takes to jump and by levitation.…
Intrinsic defect oriented visible region absorption in zinc oxide films
NASA Astrophysics Data System (ADS)
Rakhesh, V.; Shankar, Balakrishnan
2018-05-01
Zinc Oxide films were deposited on the glass substrate using vacuum arc sputtering technology. Films were prepared in oxygen ambience for 10mA and 15 mA deposition current separately. The UV-Visible spectroscopy of the samples showed that both samples possess sharp absorption near 3.5eV which is the characteristic band gap absorption energy of ZnO films. The absorption coefficient were calculated for the samples and the (αℎϑ)2 vs energy plot is drawn. The plot suggested that in addition to the sharp band edge absorption, the sample prepared at 10mA deposition current showed sharp absorption edge near 1.51eV and that at 15 mA showed absorption edge near 1.47eV. This refers to the presence of an intrinsic defect level which is likely to be deep in the band gap.
Superfluid qubit systems with ring shaped optical lattices
Amico, Luigi; Aghamalyan, Davit; Auksztol, Filip; Crepaz, Herbert; Dumke, Rainer; Kwek, Leong Chuan
2014-01-01
We study an experimentally feasible qubit system employing neutral atomic currents. Our system is based on bosonic cold atoms trapped in ring-shaped optical lattice potentials. The lattice makes the system strictly one dimensional and it provides the infrastructure to realize a tunable ring-ring interaction. Our implementation combines the low decoherence rates of neutral cold atoms systems, overcoming single site addressing, with the robustness of topologically protected solid state Josephson flux qubits. Characteristic fluctuations in the magnetic fields affecting Josephson junction based flux qubits are expected to be minimized employing neutral atoms as flux carriers. By breaking the Galilean invariance we demonstrate how atomic currents through the lattice provide an implementation of a qubit. This is realized either by artificially creating a phase slip in a single ring, or by tunnel coupling of two homogeneous ring lattices. The single qubit infrastructure is experimentally investigated with tailored optical potentials. Indeed, we have experimentally realized scaled ring-lattice potentials that could host, in principle, n ~ 10 of such ring-qubits, arranged in a stack configuration, along the laser beam propagation axis. An experimentally viable scheme of the two-ring-qubit is discussed, as well. Based on our analysis, we provide protocols to initialize, address, and read-out the qubit. PMID:24599096
NASA Astrophysics Data System (ADS)
Mishin, E. V.; Burke, W. J.
2005-07-01
We compare plasma and field disturbances observed in the ring current/plasmasphere overlap region and in the conjugate ionosphere during the magnetic storm of 5 June 1991. Data come from the Combined Release and Radiation Effects Satellite (CRRES) flying in a geostationary transfer orbit and three satellites of the Defense Meteorological Satellite Program (DMSP) series in Sun-synchronous polar orbits. In the region between ring current nose structures and the electron plasma sheet, CRRES detected wave-like features in local electric and magnetic fields, embedded in structured cold plasmas. Mapped to the ionosphere, these fields should reflect structuring within subauroral plasma streams (SAPS). Indeed, during the period of interest, DMSP F8, F9, and F10 satellites observed highly structured SAPS in the evening ionosphere at topside altitudes. They were collocated with precipitating ring current ions, enhanced fluxes of suprathermal electrons and ions, elevated electron temperatures, and irregular plasma density troughs. Overall, these events are similar to electromagnetic structures observed by DMSP satellites within SAPS during recent geomagnetic storms (Mishin et al., 2003, 2004). Their features can be explained in terms of Alfvén and fast magnetosonic perturbations. We developed a scenario for the formation of elevated electron temperatures at the equatorward side of the SAPS. It includes a lower-hybrid drift instability driven by diamagnetic currents, consistent with strong lower- and upper-hybrid plasma wave activity and intense fluxes of the low-energy electrons and ions near the ring current's inner edge.
The Comprehensive Inner Magnetosphere-Ionosphere Model
NASA Technical Reports Server (NTRS)
Fok, M.-C.; Buzulukova, N. Y.; Chen, S.-H.; Glocer, A.; Nagai, T.; Valek, P.; Perez, J. D.
2014-01-01
Simulation studies of the Earth's radiation belts and ring current are very useful in understanding the acceleration, transport, and loss of energetic particles. Recently, the Comprehensive Ring Current Model (CRCM) and the Radiation Belt Environment (RBE) model were merged to form a Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model. CIMI solves for many essential quantities in the inner magnetosphere, including ion and electron distributions in the ring current and radiation belts, plasmaspheric density, Region 2 currents, convection potential, and precipitation in the ionosphere. It incorporates whistler mode chorus and hiss wave diffusion of energetic electrons in energy, pitch angle, and cross terms. CIMI thus represents a comprehensive model that considers the effects of the ring current and plasmasphere on the radiation belts. We have performed a CIMI simulation for the storm on 5-9 April 2010 and then compared our results with data from the Two Wide-angle Imaging Neutral-atom Spectrometers and Akebono satellites. We identify the dominant energization and loss processes for the ring current and radiation belts. We find that the interactions with the whistler mode chorus waves are the main cause of the flux increase of MeV electrons during the recovery phase of this particular storm. When a self-consistent electric field from the CRCM is used, the enhancement of MeV electrons is higher than when an empirical convection model is applied. We also demonstrate how CIMI can be a powerful tool for analyzing and interpreting data from the new Van Allen Probes mission.
The Phase Shift in the Jumping Ring
NASA Astrophysics Data System (ADS)
Jeffery, Rondo N.; Amiri, Farhang
2008-09-01
The popular physics demonstration experiment known as Thomson's Jumping Ring (JR) has been variously explained as a simple example of Lenz's law, or as the result of a phase shift of the ring current relative to the induced emf. The failure of the first-quadrant Lenz's law explanation is shown by the time the ring takes to jump and by levitation. A method is given for measuring the phase shift with results for aluminum and brass rings.
Interhemispheric currents in the ring current region as seen by the Cluster spacecraft
NASA Astrophysics Data System (ADS)
Tenfjord, P.; Ostgaard, N.; Haaland, S.; Laundal, K.; Reistad, J. P.
2013-12-01
The existence of interhemispheric currents has been predicted by several authors, but their extent in the ring current has to our knowledge never been studied systematically by using in-situ measurements. These currents have been suggested to be associated with observed asymmetries of the aurora. We perform a statistical study of current density and direction during ring current crossings using the Cluster spacecraft. We analyse the extent of the interhemispheric field aligned currents for a wide range of solar wind conditions. Direct estimations of equatorial current direction and density are achieved through the curlometer technique. The curlometer technique is based on Ampere's law and requires magnetic field measurements from all four spacecrafts. The use of this method requires careful study of factors that limit the accuracy, such as tetrahedron shape and configuration. This significantly limits our dataset, but is a necessity for accurate current calculations. Our goal is to statistically investigate the occurrence of interhemispheric currents, and determine if there are parameters or magnetospheric states on which the current magnitude and directions depend upon.
Geng, Hongbo; Ang, Huixiang; Ding, Xianguang; Tan, Huiteng; Guo, Guile; Qu, Genlong; Yang, Yonggang; Zheng, Junwei; Yan, Qingyu; Gu, Hongwei
2016-02-07
In this work, a one-dimensional Co3O4@TiO2 core-shell electrode material with superior electrochemical performance is fabricated by a convenient and controllable route. The approach involves two main steps: the homogeneous deposition of polydopamine and TiO2 layers in sequence on the cobalt coordination polymer and the thermal decomposition of the polymer matrix. The as-prepared electrode material can achieve excellent electrochemical properties and stability as an anode material for lithium ion batteries, such as a high specific capacity of 1279 mA h g(-1), good cycling stability (around 803 mA h g(-1) at a current density of 200 mA g(-1) after 100 cycles), and stable rate performance (around 520 mA h g(-1) at a current density of 1000 mA g(-1)). This dramatic electrochemical performance is mainly attributed to the excellent structural characteristics, which could improve the electrical conductivity and lithium ion mobility, as well as electrolyte permeability and architectural stability during cycling.
Jiang, Yinzhu; Yuan, Tianzhi; Sun, Wenping; Yan, Mi
2012-11-01
Porous SnO₂/graphene composite thin films are prepared as anodes for lithium ion batteries by the electrostatic spray deposition technique. Reticular-structured SnO₂ is formed on both the nickel foam substrate and the surface of graphene sheets according to the scanning electron microscopy (SEM) results. Such an assembly mode of graphene and SnO₂ is highly beneficial to the electrochemical performance improvement by increasing the electrical conductivity and releasing the volume change of the anode. The novel engineered anode possesses 2134.3 mA h g⁻¹ of initial discharge capacity and good capacity retention of 551.0 mA h g⁻¹ up to the 100th cycle at a current density of 200 mA g⁻¹. This anode also exhibits excellent rate capability, with a reversible capacity of 507.7 mA h g⁻¹ after 100 cycles at a current density of 800 mA g⁻¹. The results demonstrate that such a film-type hybrid anode shows great potential for application in high-energy lithium-ion batteries.
Ashkenazi, Sarit
2018-02-05
Current theoretical approaches suggest that mathematical anxiety (MA) manifests itself as a weakness in quantity manipulations. This study is the first to examine automatic versus intentional processing of numerical information using the numerical Stroop paradigm in participants with high MA. To manipulate anxiety levels, we combined the numerical Stroop task with an affective priming paradigm. We took a group of college students with high MA and compared their performance to a group of participants with low MA. Under low anxiety conditions (neutral priming), participants with high MA showed relatively intact number processing abilities. However, under high anxiety conditions (mathematical priming), participants with high MA showed (1) higher processing of the non-numerical irrelevant information, which aligns with the theoretical view regarding deficits in selective attention in anxiety and (2) an abnormal numerical distance effect. These results demonstrate that abnormal, basic numerical processing in MA is context related.
Energy and Mass Transport of Magnetospheric Plasmas during the November 2003 Magnetic Storm
NASA Technical Reports Server (NTRS)
Fok, Mei-Chging; Moore, Thomas
2008-01-01
Intensive energy and mass transport from the solar wind across the magnetosphere boundary is a trigger of magnetic storms. The storm on 20-21 November 2003 was elicited by a high-speed solar wind and strong southward component of interplanetary magnetic field. This storm attained a minimum Dst of -422 nT. During the storm, some of the solar wind particles enter the magnetosphere and eventually become part of the ring current. At the same time, the fierce solar wind powers strong outflow of H+ and O+ from the ionosphere, as well as from the plasmasphere. We examine the contribution of plasmas from the solar wind, ionosphere and plasmasphere to the storm-time ring current. Our simulation shows, for this particular storm, ionospheric O+ and solar wind ions are the major sources of the ring current particles. The polar wind and plasmaspheric H+ have only minor impacts. In the storm main phase, the strong penetration of solar wind electric field pushes ions from the geosynchronous orbit to L shells of 2 and below. Ring current is greatly intensified during the earthward transport and produces a large magnetic depression in the surface field. When the convection subsides, the deep penetrating ions experience strong charge exchange loss, causing rapid decay of the ring current and fast initial storm recovery. Our simulation reproduces very well the storm development indicated by the Dst index.
NASA Astrophysics Data System (ADS)
Gkioulidou, M.; Ukhorskiy, A. Y.; Mitchell, D. G.; Lanzerotti, L. J.
2015-12-01
The ring current energy budget plays a key role in the global electrodynamics of Earth's space environment. Pressure gradients developed in the inner magnetosphere can shield the near-Earth region from solar wind-induced electric fields. The distortion of Earth's magnetic field due to the ring current affects the dynamics of particles contributing both to the ring current and radiation belts. Therefore, understanding the long-term evolution of the inner magnetosphere energy content is essential. We have investigated the evolution of ring current proton pressure (7 - 600 keV) in the inner magnetosphere based on data from the Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) instrument aboard Van Allen Probe B throughout the year 2013. We find that although the low-energy component of the protons (< 80 keV) is governed by convective timescales and is very well correlated with the Dst index, the high-energy component (>100 keV) varies on much longer timescales and shows either no or anti-correlation with the Dst index. Interestingly, the contributions of the high- and low-energy protons to the total energy content are comparable. Our results indicate that the proton dynamics, and as a consequence the total energy budget in the inner magnetosphere (inside geosynchronous orbit), is not strictly controlled by storm-time timescales as those are defined by the Dst index.
New Way of Characterizing the State of the Ring Current
NASA Astrophysics Data System (ADS)
Wolf, R.; Bao, S.; Gkioulidou, M.; Yang, J.; Toffoletto, F.
2017-12-01
The flux tube entropy S is invariant in ideal MHD and is a good way to characterize the degree to which a closed flux tube is loaded with particle energy. Flux tube entropy generally increases with increasing geocentric distance. A flux tube that is injected from the plasma sheet into the ring current tends to be a bubble that has a lower S value than typical plasma sheet flux tubes, and it tends to penetrate to a position where the surroundings matches its S. From this point of view, a good way to characterize the state of the ring current is through the function dF/dS, which specifies how much magnetic flux is occupied by tubes with different degrees of loading. By displaying dF/dS curves before and during storm main phases simulated with the RCM-E code, we determine that, in the model, the injection of the stormtime ring current consists of replacing pre-storm low-S flux tubes with tubes from the plasma sheet that have a certain limited range of S, which is well below typical plasma-sheet values. We also display dF/dS curves for passes by the Van Allen Probes before and during storm main phases, and compare with the RCM-E-derived curves, to gain insight into the nature of the flux tubes that are injected to form the real storm-time ring current.
Two-dimensional quantum ring in a graphene layer in the presence of a Aharonov–Bohm flux
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amaro Neto, José; Bueno, M.J.; Furtado, Claudio, E-mail: furtado@fisica.ufpb.br
2016-10-15
In this paper we study the relativistic quantum dynamics of a massless fermion confined in a quantum ring. We use a model of confining potential and introduce the interaction via Dirac oscillator coupling, which provides ring confinement for massless Dirac fermions. The energy levels and corresponding eigenfunctions for this model in graphene layer in the presence of Aharonov–Bohm flux in the centre of the ring and the expression for persistent current in this model are derived. We also investigate the model for quantum ring in graphene layer in the presence of a disclination and a magnetic flux. The energy spectrummore » and wave function are obtained exactly for this case. We see that the persistent current depends on parameters characterizing the topological defect.« less
John, D.A.
1995-01-01
Steeply tilted late Oligocene caldera systems in the Stillwater caldera complex record a number of unusual features including extreme thickness of caldera-related deposits, lack of evidence for structural doming of the calderas and preservation of vertical compositional zoning in the plutonic rocks. The Stillwater caldera complex comprises three partly overlapping ash-flow calderas and subjacent plutonic rocks that were steeply tilted during early Miocene extension. The Job Canyon caldera, the oldest (ca. 29-28 Ma) caldera, consists of two structural blocks. The 25 to 23 Ma Poco Canyon and Elevenmile Canyon calderas and underlying Freeman Creek pluton overlap in time and space with each other. Caldera collapse occurred mostly along subvertical ring-fracture faults that penetrated to depths of >5 km and were repeatedly active during eruption of ash-flow tuffs. The calderas collapsed as large piston-like blocks, and there is no evidence for chaotic collapse. Preserved parts of caldera floors are relatively flat surfaces several kilometers across. -from Author
Ion extraction from a saddle antenna RF surface plasma source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dudnikov, V., E-mail: vadim@muonsinc.com; Johnson, R. P.; Han, B.
Existing RF Surface Plasma Sources (SPS) for accelerators have specific efficiencies for H{sup +} and H{sup −} ion generation around 3 to 5 mA/cm{sup 2} per kW, where about 50 kW of RF power is typically needed for 50 mA beam current production. The Saddle Antenna (SA) SPS described here was developed to improve H{sup −} ion production efficiency and SPS reliability and availability. At low RF power, the efficiency of positive ion generation in the plasma has been improved to 200 mA/cm{sup 2} per kW of RF power at 13.56 MHz. Initial cesiation of the SPS was performed bymore » heating cesium chromate cartridges by discharge as was done in the very first versions of the SPS. A small oven to decompose cesium compounds and alloys was developed and tested. After cesiation, the current of negative ions to the collector was increased from 1 mA to 10 mA with RF power ∼1.5 kW in the plasma (6 mm diameter emission aperture) and up to 30 mA with ∼4 kW RF power in the plasma and 250 Gauss longitudinal magnetic field. The ratio of electron current to negative ion current was improved from 30 to 2. Stable generation of H{sup −} beam without intensity degradation was demonstrated in the AlN discharge chamber for a long time at high discharge power in an RF SPS with an external antenna. Continuous wave (CW) operation of the SA SPS has been tested on the small test stand. The general design of the CW SA SPS is based on the pulsed version. Some modifications were made to improve the cooling and cesiation stability. The extracted collector current can be increased significantly by optimizing the longitudinal magnetic field in the discharge chamber. CW operation with negative ion extraction was tested with RF power up to 1.8 kW from the generator (∼1.2 kW in the plasma) with production up to Ic=7 mA. Long term operation was tested with 1.2 kW from the RF generator (∼0.8 kW in the plasma) with production of Ic=5 mA, Iex ∼15 mA (Uex=8 kV, Uc=14 kV)« less
Ion extraction from a saddle antenna RF surface plasma source
NASA Astrophysics Data System (ADS)
Dudnikov, V.; Johnson, R. P.; Han, B.; Murray, S.; Pennisi, T.; Piller, C.; Santana, M.; Stockli, M.; Welton, R.; Breitschopf, J.; Dudnikova, G.
2015-04-01
Existing RF Surface Plasma Sources (SPS) for accelerators have specific efficiencies for H+ and H- ion generation around 3 to 5 mA/cm2 per kW, where about 50 kW of RF power is typically needed for 50 mA beam current production. The Saddle Antenna (SA) SPS described here was developed to improve H- ion production efficiency and SPS reliability and availability. At low RF power, the efficiency of positive ion generation in the plasma has been improved to 200 mA/cm2 per kW of RF power at 13.56 MHz. Initial cesiation of the SPS was performed by heating cesium chromate cartridges by discharge as was done in the very first versions of the SPS. A small oven to decompose cesium compounds and alloys was developed and tested. After cesiation, the current of negative ions to the collector was increased from 1 mA to 10 mA with RF power ˜1.5 kW in the plasma (6 mm diameter emission aperture) and up to 30 mA with ˜4 kW RF power in the plasma and 250 Gauss longitudinal magnetic field. The ratio of electron current to negative ion current was improved from 30 to 2. Stable generation of H- beam without intensity degradation was demonstrated in the AlN discharge chamber for a long time at high discharge power in an RF SPS with an external antenna. Continuous wave (CW) operation of the SA SPS has been tested on the small test stand. The general design of the CW SA SPS is based on the pulsed version. Some modifications were made to improve the cooling and cesiation stability. The extracted collector current can be increased significantly by optimizing the longitudinal magnetic field in the discharge chamber. CW operation with negative ion extraction was tested with RF power up to 1.8 kW from the generator (˜1.2 kW in the plasma) with production up to Ic=7 mA. Long term operation was tested with 1.2 kW from the RF generator (˜0.8 kW in the plasma) with production of Ic=5 mA, Iex ˜15 mA (Uex=8 kV, Uc=14 kV).
NASA Astrophysics Data System (ADS)
Fagan, C. J.; Wilson, C. J.; Spinks, K. D.; Browne, P. R.; Simmons, S. F.
2006-12-01
A major part of the ca. 1.6 Myr history of the Taupo Volcanic Zone (TVZ) is represented by buried and hydrothermally altered rocks penetrated by geothermal exploration wells. The geothermal field at Mangakino is sited in the oldest TVZ caldera on the western edge of the TVZ. Four exploration wells into the field reveal a thick sequence of flat-lying ignimbrites. Basement Mesozoic greywacke metasediments were not reached by the deepest well, MA2 (3192 m), implying the presence of a thick caldera infill. Ignimbrites exposed at the surface nearby have distinct mineralogies and crystal contents, which enable correlation with down-hole lithologies. Five ignimbrites are identified in the wells: the 0.32 Ma Whakamaru, 0.93 Ma Marshall, 1.0 Ma Rocky Hill, 1.18 Ma Ahuroa and 1.25 Ma Ongatiti ignimbrites, two of which are >800m thick. The Whakamaru and Marshall units are separated by a thick sequence of lacustrine and volcaniclastic deposits related to infilling of the Mangakino caldera. The ignimbrite sequence is continuous between all wells, with no fault offset, and only well MA3 intersects two rhyolite intrusions at 1190 m and 1850 m that are thought to be feeder dikes to post-0.32 Ma rhyolite domes to the east of Mangakino. Alteration assemblages include epidote and wairakite in MA2 below 2200 m. Adularia occurs in MA2 and MA3 where it replaces, wholly or in part, primary andesine. Adularia is also locally replaced by illite, indicating a shift in hydrothermal conditions. Other minerals present are chlorite, quartz, calcite, titanite and pyrite. Secondary quartz and calcite veins are seen in thin section, with a first appearance in the lacustrine sediments at 550 m in both MA2 and MA3. Fluid inclusions in secondary calcite show high temperatures (300 and 315 °C) while inclusions in primary quartz show ca. 165 °C (the current temperature at the sampled depth), recording current conditions. The modern maximum temperature is 250 °C at 3000 m in MA2. Evidence for two different temperatures in the fluid inclusion data and a shift in alteration mineralogy may reflect an earlier thermal event, possibly related to dike intrusion nearby.
Zhu, Yun Guang; Wang, Ye; Han, Zhao Jun; Shi, Yumeng; Wong, Jen It; Huang, Zhi Xiang; Ostrikov, Kostya Ken; Yang, Hui Ying
2014-12-21
The catalytic role of germanium (Ge) was investigated to improve the electrochemical performance of tin dioxide grown on graphene (SnO(2)/G) nanocomposites as an anode material of lithium ion batteries (LIBs). Germanium dioxide (GeO(20) and SnO(2) nanoparticles (<10 nm) were uniformly anchored on the graphene sheets via a simple single-step hydrothermal method. The synthesized SnO(2)(GeO(2))0.13/G nanocomposites can deliver a capacity of 1200 mA h g(-1) at a current density of 100 mA g(-1), which is much higher than the traditional theoretical specific capacity of such nanocomposites (∼ 702 mA h g(-1)). More importantly, the SnO(2)(GeO(2))0.13/G nanocomposites exhibited an improved rate, large current capability (885 mA h g(-1) at a discharge current of 2000 mA g(-1)) and excellent long cycling stability (almost 100% retention after 600 cycles). The enhanced electrochemical performance was attributed to the catalytic effect of Ge, which enabled the reversible reaction of metals (Sn and Ge) to metals oxide (SnO(2) and GeO(2)) during the charge/discharge processes. Our demonstrated approach towards nanocomposite catalyst engineering opens new avenues for next-generation high-performance rechargeable Li-ion batteries anode materials.
Fan, Zhong-Qi; Chen, Jian-Ye; Kuang, Jian-Fei; Lu, Wang-Jin; Shan, Wei
2017-01-01
The regulation of ICE1 protein stability is important to ensure effective cold stress response, and is extensively studied in Arabidopsis . Currently, how ICE1 stability in fruits under cold stress is controlled remains largely unknown. Here, we reported the possible involvement of a SEVEN IN ABSENTIA (SINA) ubiquitin ligase MaSINA1 from banana fruit in affecting MaICE1 stability. MaSINA1 was identified based on a yeast two-hybrid screening using MaICE1 as bait. Further yeast two-hybrid, pull-down, bimolecular fluorescence complementation (BiFC) and co-immunoprecipitation (CoIP) assays confirmed that MaSINA1 interacted with MaICE1. The expression of MaSINA1 was repressed by cold stress. Subcellular localization analysis in tobacco leaves showed that MaSINA1 was localized predominantly in the nucleus. In vitro ubiquitination assay showed that MaSINA1 possessed E3 ubiquitin ligase activity. More importantly, in vitro and semi- in vivo experiments indicated that MaSINA1 can ubiquitinate MaICE1 for the 26S proteasome-dependent degradation, and therefore suppressed the transcriptional activation of MaICE1 to MaNAC1, an important regulator of cold stress response of banana fruit. Collectively, our data reveal a mechanism in banana fruit for control of the stability of ICE1 and for the negative regulation of cold stress response by a SINA E3 ligase via the ubiquitin proteasome system.
Fully reversible current driven by a dual marine photosynthetic microbial community.
Darus, Libertus; Lu, Yang; Ledezma, Pablo; Keller, Jürg; Freguia, Stefano
2015-11-01
The electrochemical activity of two seawater microbial consortia were investigated in three-electrode bioelectrochemical cells. Two seawater inocula - from the Sunshine Coast (SC) and Gold Coast (GC) shores of Australia - were enriched at +0.6 V vs. SHE using 12/12 h day/night cycles. After re-inoculation, the SC consortium developed a fully-reversible cathodic/anodic current, with a max. of -62 mA m(-2) during the day and +110 mA m(-2) at night, while the GC exhibited negligible daytime output but +98 mA m(-2) at night. Community analysis revealed that both enrichments were dominated by cyanobacteria, indicating their potential as biocatalysts for indirect light conversion to electricity. Moreover, the presence of γ-proteobacterium Congregibacter in SC biofilm was likely related to the cathodic reductive current, indicating its effectiveness at catalysing cathodic oxygen reduction at a surprisingly high potential. For the first time a correlation between a dual microbial community and fully reversible current is reported. Copyright © 2015 Elsevier Ltd. All rights reserved.
Refined beam measurements on the SNS H- injector
NASA Astrophysics Data System (ADS)
Han, B. X.; Welton, R. F.; Murray, S. N.; Pennisi, T. R.; Santana, M.; Stinson, C. M.; Stockli, M. P.
2017-08-01
The H- injector for the SNS RFQ accelerator consists of an RF-driven, Cs-enhanced H- ion source and a compact, two-lens electrostatic LEBT. The LEBT output and the RFQ input beam current are measured by deflecting the beam on to an annular plate at the RFQ entrance. Our method and procedure have recently been refined to improve the measurement reliability and accuracy. The new measurements suggest that earlier measurements tended to underestimate the currents by 0-2 mA, but essentially confirm H- beam currents of 50-60 mA being injected into the RFQ. Emittance measurements conducted on a test stand featuring essentially the same H- injector setup show that the normalized rms emittance with 0.5% threshold (99% inclusion of the total beam) is in a range of 0.25-0.4 mm.mrad for a 50-60 mA beam. The RFQ output current is monitored with a BCM toroid. Measurements as well as simulations with the PARMTEQ code indicate an underperforming transmission of the RFQ since around 2012.
High current polarized electron source
NASA Astrophysics Data System (ADS)
Suleiman, R.; Adderley, P.; Grames, J.; Hansknecht, J.; Poelker, M.; Stutzman, M.
2018-05-01
Jefferson Lab operates two DC high voltage GaAs photoguns with compact inverted insulators. One photogun provides the polarized electron beam at the Continuous Electron Beam Accelerator Facility (CEBAF) up to 200 µA. The other gun is used for high average current photocathode lifetime studies at a dedicated test facility up to 4 mA of polarized beam and 10 mA of un-polarized beam. GaAs-based photoguns used at accelerators with extensive user programs must exhibit long photocathode operating lifetime. Achieving this goal represents a significant challenge for proposed facilities that must operate in excess of tens of mA of polarized average current. This contribution describes techniques to maintain good vacuum while delivering high beam currents, and techniques that minimize damage due to ion bombardment, the dominant mechanism that reduces photocathode yield. Advantages of higher DC voltage include reduced space-charge emittance growth and the potential for better photocathode lifetime. Highlights of R&D to improve the performance of polarized electron sources and prolong the lifetime of strained-superlattice GaAs are presented.
A Plasma Focus Device with a 2-MA Discharge Current as a Hard X-Ray Source
NASA Astrophysics Data System (ADS)
Yurkov, D. I.; Dulatov, A. K.; Lemeshko, B. D.; Andreev, D. A.; Golikov, A. V.; Mikhailov, Yu. V.; Prokuratov, I. A.; Selifanov, A. N.; Fatiev, T. S.
2018-04-01
A device based on a pulsed current generator with capacitive energy storage loaded on a plasma focus (PF) chamber is described. The device provides a discharge current amplitude of up to 2 MA in the PF chamber at a stored energy in the capacitor bank of up to 150 kJ. The PF chamber is designed to study hard X-ray (HXR) emission. It has windows for output of HXR emission in the cathode direction, as well as a special insert for output of HXR emission into the anode cavity. A study of operation of the chamber as a part of the setup with the use of various X-ray targets on the anode has been carried out. At a discharge current of 1.5MA, an HXR pulse with an average duration of 16 ns and energy spectrum from 10 to 200 keV, which provides an absorbed dose in the irradiated samples on the order of 1 Sv, is generated in the PF chamber.
Next Generation H- Ion Sources for the SNS
NASA Astrophysics Data System (ADS)
Welton, R. F.; Stockli, M. P.; Murray, S. N.; Crisp, D.; Carmichael, J.; Goulding, R. H.; Han, B.; Tarvainen, O.; Pennisi, T.; Santana, M.
2009-03-01
The U.S. Spallation Neutron Source (SNS) is the leading accelerator-based, pulsed neutron-scattering facility, currently in the process of ramping up neutron production. In order to insure meeting operational requirements as well as providing for future facility beam power upgrades, a multifaceted H- ion source development program is ongoing. This work discusses several aspects of this program, specifically the design and first beam measurements of an RF-driven, external antenna H- ion source based on an A1N ceramic plasma chamber, elemental and chromate Cs-systems, and plasma ignition gun. Unanalyzed beam currents of up to ˜100 mA (60 Hz, 1 ms) have been observed and sustained currents >60 mA (60 Hz, 1 ms) have been demonstrated on the test stand. Accelerated beam currents of ˜40 mA have also been demonstrated into the SNS front end. Data are also presented describing the first H- beam extraction experiments from a helicon plasma generator based on the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) engine design.
Three-dimensional magnetohydrodynamic equilibrium of quiescent H-modes in tokamak systems
NASA Astrophysics Data System (ADS)
Cooper, W. A.; Graves, J. P.; Duval, B. P.; Sauter, O.; Faustin, J. M.; Kleiner, A.; Lanthaler, S.; Patten, H.; Raghunathan, M.; Tran, T.-M.; Chapman, I. T.; Ham, C. J.
2016-06-01
Three dimensional free boundary magnetohydrodynamic equilibria that recover saturated ideal kink/peeling structures are obtained numerically. Simulations that model the JET tokamak at fixed < β > =1.7% with a large edge bootstrap current that flattens the q-profile near the plasma boundary demonstrate that a radial parallel current density ribbon with a dominant m /n = 5/1 Fourier component at {{I}\\text{t}}=2.2 MA develops into a broadband spectrum when the toroidal current I t is increased to 2.5 MA.
Poag, C. Wylie; Plescia, J.B.; Molzer, P.C.
2002-01-01
Three ancient impact craters (Chesapeake Bay - 35.7 Ma; Toms Canyon - 35.7 Ma; Montagnais - 51 Ma) and one multiring impact basin (Chicxulub - 65 Ma) are currently known to be buried beneath modern continental shelves. All occur on the passive Atlantic margin of North America in regions extensively explored by seismic reflection surveys in the search for oil and gas reserves. We limit our discussion herein to the three youngest structures. These craters were created by submarine impacts, which produced many structural and morphological features similar in construction, composition, and variability to those documented in well-preserved subaerial and planetary impact craters. The subcircular Chesapeake Bay (diameter 85 km) and ovate Montagnais (diameter 45-50 km) structures display outer-rim scarps, annular troughs, peak rings, inner basins, and central peaks similar to those incorporated in the widely cited conceptual model of complex impact craters. These craters differ in several respects from the model, however. For example, the Montagnais crater lacks a raised lip on the outer rim, the Chesapeake Bay crater displays only small remnants of a raised lip, and both craters contain an unusually thick body of impact breccia. The subtriangular Toms Canyon crater (diameter 20-22 km), on the other hand, contains none of the internal features of a complex crater, nor is it typical of a simple crater. It displays a prominent raised lip on the outer rim, but the lip is present only on the western side of the crater. In addition, each of these craters contains some distinct features, which are not present in one or both of the others. For example, the central peak at Montagnais rises well above the elevation of the outer rim, whereas at Chesapeake Bay, the outer rim is higher than the central peak. The floor of the Toms Canyon crater is marked by parallel deep troughs and linear ridges formed of sedimentary rocks, whereas at Chesapeake Bay, the crater floor contains concentric faults and compression ridges formed in rocks of the crystalline basement. The Chesapeake Bay crater is distinguished further by its cluster of at least 23 adjacent secondary craters. The North American tektite strewn field, a widespread deposit of distal ejecta, is thought to be derived from the Chesapeake Bay impact, perhaps with a small contribution from the Toms Canyon impact. No ejecta field is known to be associated with the Montagnais impact. No immediate major extinction event is directly linked to any of these three impacts. There is evidence, however, that the Chesapeake Bay and Toms Canyon impacts helped initiate a long-term pulse of warm global climate, whose eventual dissipation coincided with an early Oligocene mass extinction event, 2 Ma after the impacts.
Synthesis and Characterization of Types A and B Gelatin Methacryloyl for Bioink Applications
Lee, Bae Hoon; Lum, Nathaniel; Seow, Li Yuan; Lim, Pei Qi; Tan, Lay Poh
2016-01-01
Gelatin methacryloyl (GelMA) has been increasingly considered as an important bioink material due to its tailorable mechanical properties, good biocompatibility, and ability to be photopolymerized in situ as well as printability. GelMA can be classified into two types: type A GelMA (a product from acid treatment) and type B GelMA (a product from alkali treatment). In current literature, there is little research on the comparison of type A GelMA and type B GelMA in terms of synthesis, rheological properties, and printability for bioink applications. Here, we report the synthesis, rheological properties, and printability of types A and B GelMA. Types A and B GelMA samples with different degrees of substitution (DS) were prepared in a controllable manner by a time-lapse loading method of methacrylic anhydride (MAA) and different feed ratios of MAA to gelatin. Type B GelMA tended to have a slightly higher DS compared to type A GelMA, especially in a lower feed ratio of MAA to gelatin. All the type A and type B GelMA solutions with different DS exhibited shear thinning behaviours at 37 °C. However, only GelMA with a high DS had an easy-to-extrude feature at room temperature. The cell-laden printed constructs of types A and B GelMA at 20% w/v showed around 75% cell viability. PMID:28773918
NASA Astrophysics Data System (ADS)
Mann, Ian; Murphy, Kyle; Rae, Jonathan; Ozeke, Louis; Milling, David
2013-04-01
Ultra-low frequency (ULF) waves in the Pc4-5 band can be excited in the magnetosphere by the solar wind. Much recent work has shown how ULF wave power is strongly correlated with solar wind speed. However, little attention has been paid the dynamics of ULF wave power penetration onto low L-shells in the inner magnetosphere. We use more than a solar cycle of ULF wave data, derived from ground-based magnetometer networks, to examine this ULF wave power penetration and its dependence on solar wind and geomagnetic activity indices. In time domain data, we show very clearly that dayside ULF wave power, spanning more than 4 orders of magnitude, follows solar wind speed variations throughout the whole solar cycle - during periods of sporadic solar maximum ICMEs, during declining phase fast solar wind streams, and at solar minimum, alike. We also show that time domain ULF wave power increases during magnetic storms activations, and significantly demonstrate that a deeper ULF wave power penetration into the inner magnetosphere occurs during larger negative excursions in Dst. We discuss potential explanations for this low-L ULF wave power penetration, including the role of plasma mass density (such as during plasmaspheric erosion), or ring current ion instabilities during near-Earth ring current penetration. Interestingly, we also show that both ULF wave power and SAMPEX MeV electron flux show a remarkable similarity in their penetration to low-L, which suggests that ULF wave power penetration may be important for understanding and explaining radiation belt dynamics. Moreover, the correlation of ULF wave power with Dst, which peaks at one day lag, suggests the ULF waves might also be important for the inward transport of ions into the ring current. Current ring current models, which exclude long period ULF wave transport, under-estimate the ring current during fast solar wind streams which is consistent with a potential role for ULF waves in ring current energisation. The combination of data from ground arrays such as CARISMA and the contemporaneous operation of the NASA Van Allen Probes (VAP) mission offers an excellent basis for understanding this cross-energy plasma coupling which spans more than 6 orders of magnitude in energy. Explaining the casual connections between plasmas in the plasmasphere (eV), ring current (keV), and radiation belt (MeV), via the intermediaries of plasma waves, is key to understanding inner magnetosphere dynamics. This work has received funding from the European Union under the Seventh Framework Programme (FP7-Space) under grant agreement n 284520 for the MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Energization and Loss) collaborative research project.
Role of ULF Waves in Radiation Belt and Ring Current Dynamics
NASA Astrophysics Data System (ADS)
Mann, I. R.; Murphy, K. R.; Rae, I. J.; Ozeke, L.; Milling, D. K.
2013-12-01
Ultra-low frequency (ULF) waves in the Pc4-5 band can be excited in the magnetosphere by the solar wind. Much recent work has shown how ULF wave power is strongly correlated with solar wind speed. However, little attention has been paid the dynamics of ULF wave power penetration onto low L-shells in the inner magnetosphere. We use more than a solar cycle of ULF wave data, derived from ground-based magnetometer networks, to examine this ULF wave power penetration and its dependence on solar wind and geomagnetic activity indices. In time domain data, we show very clearly that dayside ULF wave power, spanning more than 4 orders of magnitude, follows solar wind speed variations throughout the whole solar cycle - during periods of sporadic solar maximum ICMEs, during declining phase fast solar wind streams, and at solar minimum, alike. We also show that time domain ULF wave power increases during magnetic storms activations, and significantly demonstrate that a deeper ULF wave power penetration into the inner magnetosphere occurs during larger negative excursions in Dst. We discuss potential explanations for this low-L ULF wave power penetration, including the role of plasma mass density (such as during plasmaspheric erosion), or ring current ion instabilities during near-Earth ring current penetration. Interestingly, we also show that both ULF wave power and SAMPEX MeV electron flux show a remarkable similarity in their penetration to low-L, which suggests that ULF wave power penetration may be important for understanding and explaining radiation belt dynamics. Moreover, the correlation of ULF wave power with Dst, which peaks at one day lag, suggests the ULF waves might also be important for the inward transport of ions into the ring current. Current ring current models, which exclude long period ULF wave transport, under-estimate the ring current during fast solar wind streams which is consistent with a potential role for ULF waves in ring current energisation. The combination of data from ground arrays such as CARISMA and the contemporaneous operation of the NASA Van Allen Probes (VAP) mission offers an excellent basis for understanding this cross-energy plasma coupling which spans more than 6 orders of magnitude in energy. Explaining the casual connections between plasmas in the plasmasphere (eV), ring current (keV), and radiation belt (MeV), via the intermediaries of plasma waves, is key to understanding inner magnetosphere dynamics. This work has received funding from the European Union under the Seventh Framework Programme (FP7-Space) under grant agreement n 284520 for the MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Energization and Loss) collaborative research project.
Koch, Marcus A.
2015-01-01
Objectives To take inventory of the current state of affairs of Market Access Launch Excellence in the life sciences industry. To identify key gaps and challenges for Market Access (MA) and discuss how they can be addressed. To generate a baseline for benchmarking MA launch excellence. Methodology An online survey was conducted with pharmaceutical executives primarily working in MA, marketing, or general management. The survey aimed to evaluate MA excellence prerequisites across the product life cycle (rated by importance and level of implementation) and to describe MA activity models in the respective companies. Composite scores were calculated from respondents’ ratings and answers. Results Implementation levels of MA excellence prerequisites generally lagged behind their perceived importance. Item importance and the respective level of implementation correlated well, which can be interpreted as proof of the validity of the questionnaire. The following areas were shown to be particularly underimplemented: 1) early integration of MA and health economic considerations in research and development decision making, 2) developing true partnerships with payers, including the development of services ‘beyond the pill’, and 3) consideration of human resource and talent management. The concept of importance-adjusted implementation levels as a hybrid parameter was introduced and shown to be a viable tool for benchmarking purposes. More than 70% of respondents indicated that their companies will invest broadly in MA in terms of capital and headcount within the next 3 years. Conclusions MA (launch) excellence needs to be further developed in order to close implementation gaps across the entire product life cycle. As MA is a comparatively young pharmaceutical discipline in a complex and dynamic environment, this effort will require strategic focus and dedication. The Market Access Launch Excellence Inventory benchmarking tool may help guide decision makers to prioritize their endeavors. PMID:29785250
Provenance history of detrital diamond deposits, West Coast of Namaqualand, South Africa
NASA Astrophysics Data System (ADS)
Phillips, David; Harris, Jeffrey W.; de Wit, Michiel C. J.; Matchan, Erin L.
2018-05-01
The West Coast of Namaqualand in South Africa hosts extensive detrital diamond deposits, but considerable debate exists as to the provenance of these diamonds. Some researchers have suggested derivation of the diamonds from Cretaceous-Jurassic kimberlites (also termed Group I kimberlites) and orangeites (also termed Group II kimberlites) located on the Kaapvaal Craton. However, others favour erosion of diamonds from the ca.300 Ma Dwyka Group sediments, with older, pre-Karoo kimberlites being the original source(s). Previous work has demonstrated that 40Ar/39Ar analyses of clinopyroxene inclusions, extracted from diamonds, yield ages approaching the time(s) of source kimberlite emplacement, which can be used to constrain the provenance of placer diamond deposits. In the current study, 40Ar/39Ar analyses were conducted on clinopyroxene inclusions from two similar batches of Namaqualand detrital diamonds, yielding (maximum) ages ranging from 117.5 ± 43.6 Ma to 3684 ± 191 Ma (2σ) and 120.6 ± 15.4 Ma to 688.8 ± 4.9 Ma (2σ), respectively. The vast majority of inclusions (88%) produced ages younger than 500 Ma, indicating that most Namaqualand diamonds originated from Cretaceous-Jurassic kimberlites/orangeites, with few, if any, derived from the Dwyka tillites. The provenance of the Namaqualand diamonds from ca.115-200 Ma orangeites is consistent with Late Cretaceous paleo-drainage reconstructions, as these localities could have been sampled by the `paleo-Karoo' River and transported to the West Coast via an outlet close to the current Olifants River mouth. At ca.90 Ma, this drainage system appears to have been captured by the `paleo-Kalahari' River, a precursor to the modern Orange River system. This latter drainage is considered to have transported diamonds eroded from both ca.80-90 Ma kimberlites and ca.115-200 Ma orangeites to the West Coast, which were subsequently reworked along the Namibian coast, forming additional placer deposits.
Updated folate data in the Dutch Food Composition Database and implications for intake estimates
Westenbrink, Susanne; Jansen-van der Vliet, Martine; van Rossum, Caroline
2012-01-01
Background and objective Nutrient values are influenced by the analytical method used. Food folate measured by high performance liquid chromatography (HPLC) or by microbiological assay (MA) yield different results, with in general higher results from MA than from HPLC. This leads to the question of how to deal with different analytical methods in compiling standardised and internationally comparable food composition databases? A recent inventory on folate in European food composition databases indicated that currently MA is more widely used than HPCL. Since older Dutch values are produced by HPLC and newer values by MA, analytical methods and procedures for compiling folate data in the Dutch Food Composition Database (NEVO) were reconsidered and folate values were updated. This article describes the impact of this revision of folate values in the NEVO database as well as the expected impact on the folate intake assessment in the Dutch National Food Consumption Survey (DNFCS). Design The folate values were revised by replacing HPLC with MA values from recent Dutch analyses. Previously MA folate values taken from foreign food composition tables had been recalculated to the HPLC level, assuming a 27% lower value from HPLC analyses. These recalculated values were replaced by the original MA values. Dutch HPLC and MA values were compared to each other. Folate intake was assessed for a subgroup within the DNFCS to estimate the impact of the update. Results In the updated NEVO database nearly all folate values were produced by MA or derived from MA values which resulted in an average increase of 24%. The median habitual folate intake in young children was increased by 11–15% using the updated folate values. Conclusion The current approach for folate in NEVO resulted in more transparency in data production and documentation and higher comparability among European databases. Results of food consumption surveys are expected to show higher folate intakes when using the updated values. PMID:22481900
Energy transfer, orbital angular momentum, and discrete current in a double-ring fiber array
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexeyev, C. N.; Volyar, A. V.; Yavorsky, M. A.
We study energy transfer and orbital angular momentum of supermodes in a double-ring array of evanescently coupled monomode optical fibers. The structure of supermodes and the spectra of their propagation constants are obtained. The geometrical parameters of the array, at which the energy is mostly confined within the layers, are determined. The developed method for finding the supermodes of concentric arrays is generalized for the case of multiring arrays. The orbital angular momentum carried by a supermode of a double-ring array is calculated. The discrete lattice current is introduced. It is shown that the sum of discrete currents over themore » array is a conserved quantity. The connection of the total discrete current with orbital angular momentum of discrete optical vortices is made.« less
Gridded thermionic gun and integral superconducting ballistic bunch compression cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schultheiss, Thomas
Electron-Ion colliders such as the Medium energy Electron Ion Collider (MEIC) being developed by JLAB require high current electrons with low energy spread for electron cooling of the collider ring. Accelerator techniques for improving bunch charge, average current, emittance, and energy spread are required for Energy Recovery Linacs (ERLs) and Circulator Rings (CR) for next generation colliders for nuclear physics experiments. Example candidates include thermionic-cathode electron guns with RF accelerating structures. Thermionic cathodes are known to produce high currents and have excellent lifetime. The success of the IR and THz Free-Electron Laser (FEL) designed and installed by Advanced Energy Systemsmore » at the Fritz Haber Institute (FHI) of the Max Planck Society in Berlin [1,2] demonstrates that gridded thermionic cathodes and rf systems be considered for next generation collider technology. In Phase 1 Advanced Energy Systems (AES) developed and analyzed a design concept using a superconducting cavity pair and gridded thermionic cathode. Analysis included Beam Dynamics and thermal analysis to show that a design of this type is feasible. The latest design goals for the MEIC electron cooler were for electron bunches of 420 pC at a frequency of 952.6 MHz with a magnetic field on the cathode of 2kG. This field magnetizes the beam imparting angular momentum that provides for helical motion of the electrons in the cooling solenoid. The helical motion increases the interaction time and improves the cooling efficiency. A coil positioned around the cathode providing 2kG field was developed. Beam dynamics simulations were run to develop the particle dynamics near the cathode and grid. Lloyd Young added capability to Tstep to include space charge effects between two plates and include image charge effects from the grid. He also added new pepper-pot geometry capability to account for honeycomb grids. These additions were used to develop the beam dynamics for this gun. The general design is a modified ballistic compression cavity pair with two independently powered cells [3]. The first is a cathode cell that includes the thermionic cathode and grid to provide for beam bunching. The second is a full cell with independent phasing and field levels designed to minimize energy spread. The primary goal for Phase II is to manufacture a superconducting gun with a thermionic cathode and imbedded coil. The system developed here is applicable to many high current electron accelerators. The analysis and design constraints imposed by the magnetized cathode make the cathode system developed here more complicated and limited than one without the magnetized beam constraints. High power ERLs would benefit by a gun with the capabilities shown here, 400 mA or more of current. ERLs hold great promise for electron cooling experiments, advanced light sources and Free Electron Lasers. This high current electron injector is a technological advance that will place the requirements for an ERL capable of providing quality bunches needed for cooling within the MEIC circulator ring within reach. This injector would have application to future ERLs around the world.« less
Kistler, R.W.; Swanson, S.E.
1981-01-01
Metamorphosed Mesozoic volcanic rocks from the E-central Sierra Nevada range in composition from basalt to rhyolite and have ages, based on whole rock Rb-Sr and U-Pb zircon dating, of about 237- 224, 185, 163, 134, and 100Ma. The major plutons of the batholith in this area are of Triassic (215-200Ma) and Cretaceous (94-80Ma) ages. Initial 87Sr/86Sr values for the metamorphosed volcanic rocks of the area are in the range from 0.7042 to 0.7058 and are generally different from the values for the surrounding batholithic rocks (0.7056-0.7066). A circular, zoned granitic pluton, with an outcrop area of 2.5km2, similar in appearance to a ring dike complex, was apparently a conduit for some or possibly all of the middle-Cretaceous metamorphosed volcanic rocks exposed about 5km to the S in the western part of the Ritter Range. Samples from the metamorphosed volcanic rocks and the pluton yield a Rb/Sr whole rock isochron age of 99.9+ or -2.2Ma with an intitial 87Sr/86Sr of 0.7048+ or -0.00001. Major element variation diagrams of the pluton and volcanic rocks define coincident compositional trends. The ages of volcanic events relative to the ages of the major intrusive epochs and the major element and isotopic compositions of the volcanic rocks relative to the major plutons indicate that the volcanic rocks are not simply or directly related to the major plutons in the Sierra Nevada. -from Authors
NASA Technical Reports Server (NTRS)
Manista, E. J.
1972-01-01
The effect of collector, guard-ring potential imbalance on the observed collector-current-density J, collector-to-emitter voltage V characteristic was evaluated in a planar, fixed-space, guard-ringed thermionic converter. The J,V characteristic was swept in a period of 15 msec by a variable load. A computerized data acquisition system recorded test parameters. The results indicate minimal distortion of the J,V curve in the power output quadrant for the nominal guard-ring circuit configuration. Considerable distortion, along with a lowering of the ignited-mode striking voltage, was observed for the configuration with the emitter shorted to the guard ring. A limited-range performance map of an etched-rhenium, niobium, planar converter was obtained by using an improved computer program for the data acquisition system.
Bunch Length Measurements at the ATF Damping Ring in April 2000
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bane, K.L.F.; /SLAC; Naito, T.
We want to accurately know the energy spread and bunch length dependence on current in the ATF damping ring. One reason is to know the strength of the impedance: From the energy spread measurements we know whether or not we are above the threshold to the microwave instability, and from the energy spread and bunch length measurements we find out the extent of potential-well bunch lengthening (PWBL). Another reason for these measurements is to help in our understanding of the intra-beam scattering (IBS) effect in the ATF. The ATF as it is now, running below design energy and with themore » wigglers turned off, is strongly affected by IBS. To check for consistency with IBS theory of, for example, the measured vertical beam size, we need to know all dimensions of the beam, including the longitudinal one. But beyond this practical reason for studying IBS, IBS is currently a hot research topic at many accelerators around the world (see e.g. Ref. [1]), and the effect in actual machines is not well understood. Typically, when comparing theory with measurements fudge factors are needed to get agreement (see e.g. Ref. [1]). With its strong IBS effect, the ATF is an ideal machine for studying IBS, and an indispensable ingredient for this study is a knowledge of the longitudinal phase space of the beam. The results of earlier bunch lengthening measurements in the ATF can be found in Refs. [2]-[4]. Measurements of current dependent effects, especially bunch length measurements using a streak camera, can be difficult to perform accurately. For example, space charge in the camera itself can lead to systematic errors in the measurement results. It is important the results be accurate and reproducible. In the measurements of both December 1998[3] and December 1999[4], by using light filters, the authors first checked that space charge in the streak camera was not significant. And then the Dec 99 authors show that their results agree with those Dec 98, i.e. on the dates of the two measurements the results were reproducible. Since IBS is so strong in the ATF, in the Dec 99 measurements an attempt was made to estimate the impedance effect using the following method: First, from the form of the energy spread vs. current measurements it was concluded that the threshold to the microwave instability was beyond 2 mA. Then, by dividing the bunch length vs. current curve by the energy spread vs. current curve the effect of IBS was divided out, and PWBL was approximated. The assumption is that PWBL can be treated as a perturbation on top of IBS. The result was that this component of bunch lengthening was found to grow by 7-15% (depending on the rf voltage) between the currents of .5 mA and 2 mA, about a factor of 3 less than the total bunch length growth. The conclusion was that the inductive component of the impedance was small, in fact much smaller than had been concluded earlier in Ref. [2]. Electron machines generally run in a parameter regime where IBS is an insignificant effect, and impedance measurements and calculations have also normally been performed for machines where IBS is unimportant. To simplify the interpretation of the impedance from bunch length measurements, in April 2000 the energy spread and bunch length measurements of Dec 99 were repeated, but now with the beam on a linear (difference) coupling resonance, where the horizontal and vertical emittances were approximately equal. For this case the effect of IBS was expected to be very small. An energy spread vs. current measurement under such conditions will also allow us to more clearly see whether we reach the threshold to the microwave instability. As part of the April data taking we, in addition, repeated the earlier off-coupling measurements, in order to check the reproducibility of the earlier results. In this report we present and analyze this recent set of data, and compare it with the results of the earlier measurements, particularly those of Dec 99. The measurements and analysis of data in this report follow essentially the same procedure as was used in Ref. [4]. In the present report we will try to be relatively brief. The comparison of our results with IBS theory will be given in a following report. For more details about the measurement and analysis techniques presented in this report, the reader should consult Ref. [4].« less
Paramagnetic or diamagnetic persistent currents? A topological point of view
NASA Astrophysics Data System (ADS)
Waintal, Xavier
2009-03-01
A persistent current flows at low temperatures in small conducting rings when they are threaded by a magnetic flux. I will discuss the sign of this persistent current (diamagnetic or paramagnetic response) in the special case of N electrons in a one dimensional ring [1]. One dimension is very special in the sense that the sign of the persistent current is entirely controlled by the topology of the system. I will establish lower bounds for the free energy in the presence of arbitrary electron-electron interactions and external potentials. Those bounds are the counterparts of upper bounds derived by Leggett using another topological argument. Rings with odd (even) numbers of polarized electrons are always diamagnetic (paramagnetic). The situation is more interesting with unpolarized electrons where Leggett upper bound breaks down: rings with N=4n exhibit either paramagnetic behavior or a superconductor-like current-phase relation. The topological argument provides a rigorous justification for the phenomenological Huckel rule which states that cyclic molecules with 4n + 2 electrons like benzene are aromatic while those with 4n electrons are not. [4pt] [1] Xavier Waintal, Geneviève Fleury, Kyryl Kazymyrenko, Manuel Houzet, Peter Schmitteckert, and Dietmar Weinmann Phys. Rev. Lett.101, 106804 (2008).
Persistent current and zero-energy Majorana modes in a p -wave disordered superconducting ring
NASA Astrophysics Data System (ADS)
Nava, Andrea; Giuliano, Rosa; Campagnano, Gabriele; Giuliano, Domenico
2017-04-01
We discuss the emergence of zero-energy Majorana modes in a disordered finite-length p -wave one-dimensional superconducting ring, pierced by a magnetic flux Φ tuned at an appropriate value Φ =Φ* . In the absence of fermion parity conservation, we evidence the emergence of the Majorana modes by looking at the discontinuities in the persistent current I [Φ ] at Φ =Φ* . By monitoring the discontinuities in I [Φ ] , we map out the region in parameter space characterized by the emergence of Majorana modes in the disordered ring.
ERIC Educational Resources Information Center
McDermott, Irene E.
1999-01-01
Describes the development and current status of WebRing, a service that links related Web sites into a central hub. Discusses it as a viable alternative to other search engines and examines issues of free speech, use by the business sector, and implications for WebRing after its purchase by Yahoo! (LRW)
The International Tree-Ring Database is a valuable resource for studying climate change and its effects on terrestrial ecosystems over time and space. We examine the statistical methods in current use in dendroclimatology and dendroecology to process the tree-ring data and make ...
NASA Astrophysics Data System (ADS)
Bulgakov, S. N.; Cruz Gomez, R. C.
2007-05-01
The North Brazil Current Rings (NBCR) penetration into the Caribbean Sea is being investigated employing a merged altimeter-derived sea height anomaly (TOPEX/Poseidon, Jason-1 and ERS-1,2), the ocean surface color data (SeaWiFS) and Global Drifter Program information. Four strategies are being applied to process the data: (1) calculations of Okubo-Weiss parameter for NBCR identification, (2) longitude-time plots (also known as Hovmöller diagrams), (3) two-dimensional Radon transforms and (4) two-dimensional Fourier transforms. A twofold NBCR structure has been detected in the region under investigation. The results have shown that NBC rings mainly propagate into the Caribbean Sea along two principal pathways (near 12ºN and 17ºN) in the ring translation corridor. Thus, rings following the southern pathway in the fall-winter period can enter through very shallow southern straits as non-coherent structures. A different behavior is observed near the northern pathway (near 17ºN), where NBC rings are thought to have a coherent structure during their squeezing into the eastern Caribbean, i.e. conserving the principal characteristics of the incident rings. We attribute this difference in the rings' behavior to the vertical scales of the rings and to the bottom topography features in the vicinity of the Lesser Antilles.
MaNGA: Mapping Nearby Galaxies at Apache Point Observatory
NASA Astrophysics Data System (ADS)
Weijmans, A.-M.; MaNGA Team
2016-10-01
MaNGA (Mapping Nearby Galaxies at APO) is a galaxy integral-field spectroscopic survey within the fourth generation Sloan Digital Sky Survey (SDSS-IV). It will be mapping the composition and kinematics of gas and stars in 10,000 nearby galaxies, using 17 differently sized fiber bundles. MaNGA's goal is to provide new insights in galaxy formation and evolution, and to deliver a local benchmark for current and future high-redshift studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ben-Zvi, Ilan
Energy Recovery Linacs (ERL) are important for a variety of applications, from high-power Free-Electron Lasers (FEL) to polarized-electron polarized-proton colliders. The ERL current is arguably the most important characteristic of ERLs for such applications. With that in mind, the Collider-Accelerator Department at Brookhaven National Laboratory embarked on the development of a 300 mA ERL to serve as an R and D test-bed for high-current ERL technologies. These include high-current, extremely well damped superconducting accelerating cavities, high-current superconducting laser-photocathode electron guns and high quantum-efficiency photocathodes. In this presentation I will cover these ERL related developments.
NASA Astrophysics Data System (ADS)
Ozaki, Toshihiro; Hirose, Tetsuya; Asano, Hiroki; Kuroki, Nobutaka; Numa, Masahiro
2017-04-01
In this paper, we present a 151 nA quiescent and 6.8 mA maximum-output-current low-dropout (LDO) linear regulator for micropower battery management. The LDO regulator employs self-biasing and multiple-stacked cascode techniques to achieve efficient, accurate, and high-voltage-input-tolerant operation. Measurement results demonstrated that the proposed LDO regulator operates with an ultralow quiescent current of 151 nA. The maximum output currents with a 4.16 V output were 1.0 and 6.8 mA when the input voltages were 4.25 and 5.0 V, respectively.
Investigating EMIC Wave Dynamics with RAM-SCB-E
NASA Astrophysics Data System (ADS)
Jordanova, V. K.; Fu, X.; Henderson, M. G.; Morley, S.; Welling, D. T.; Yu, Y.
2017-12-01
The distribution of ring current ions and electrons in the inner magnetosphere depends strongly on their transport in realistic electric (E) and magnetic (B) fields and concurrent energization or loss. To investigate the high variability of energetic particle (H+, He+, O+, and electron) fluxes during storms selected by the GEM Surface Charging Challenge, we use our kinetic ring current model (RAM) two-way coupled with a 3-D magnetic field code (SCB). This model was just extended to include electric field calculations, making it a unique, fully self-consistent, anisotropic ring current-atmosphere interactions model, RAM-SCB-E. Recently we investigated electromagnetic ion cyclotron (EMIC) instability in a local plasma using both linear theory and nonlinear hybrid simulations and derived a scaling formula that relates the saturation EMIC wave amplitude to initial plasma conditions. Global dynamic EMIC wave maps obtained with our RAM-SCB-E model using this scaling will be presented and compared with statistical models. These plasma waves can affect significantly both ion and electron precipitation into the atmosphere and the subsequent patterns of ionospheric conductance, as well as the global ring current dynamics.
A unified theory of stable auroral red arc formation at the plasmapause
NASA Technical Reports Server (NTRS)
Cornwall, J. M.; Coroniti, F. V.; Thorne, R. M.
1970-01-01
A theory is proposed that SAR-arcs are generated at the plasmapause as a consequence of the turbulent dissipation of ring current energy. During the recovery phase of a geomagnetic storm, the plasmapause expands outward into the symmetric ring current. When the cold plasma densities reach about 100/cu cm, ring current protons become unstable and generate intense ion cyclotron wave turbulence in a narrow region 1/2 earth radius wide (just inside the plasmapause). Approximately one-half of the ring current energy is dissipated into wave turbulence which in turn is absorbed through a Landau resonant interaction with plasma spheric electrons. The combined thermal heat flux to the ionosphere due to Landau absorption of the wave energy and proton-electron Coulomb dissipation is sufficient to drive SAR-arcs at the observed intensities. It is predicted that the arcs should be localized to a narrow latitudinal range just within the stormtime plasmapause. They should occur at all local times and persist for the 10 to 20 hour duration of the plasma-pause expansion.
Makeyev, Oleksandr; Lee, Colin; Besio, Walter G
2017-07-01
Tripolar concentric ring electrodes are showing great promise in a range of applications including braincomputer interface and seizure onset detection due to their superiority to conventional disc electrodes, in particular, in accuracy of surface Laplacian estimation. Recently, we proposed a general approach to estimation of the Laplacian for an (n + 1)-polar electrode with n rings using the (4n + 1)-point method for n ≥ 2 that allows cancellation of all the truncation terms up to the order of 2n. This approach has been used to introduce novel multipolar and variable inter-ring distances concentric ring electrode configurations verified using finite element method. The obtained results suggest their potential to improve Laplacian estimation compared to currently used constant interring distances tripolar concentric ring electrodes. One of the main limitations of the proposed (4n + 1)-point method is that the radius of the central disc and the widths of the concentric rings are not included and therefore cannot be optimized. This study incorporates these two parameters by representing the central disc and both concentric rings as clusters of points with specific radius and widths respectively as opposed to the currently used single point and concentric circles. A proof of concept Laplacian estimate is derived for a tripolar concentric ring electrode with non-negligible radius of the central disc and non-negligible widths of the concentric rings clearly demonstrating how both of these parameters can be incorporated into the (4n + 1)-point method.
Ardell, Jeffrey L; Rajendran, Pradeep S; Nier, Heath A; KenKnight, Bruce H; Armour, J Andrew
2015-11-15
Using vagus nerve stimulation (VNS), we sought to determine the contribution of vagal afferents to efferent control of cardiac function. In anesthetized dogs, the right and left cervical vagosympathetic trunks were stimulated in the intact state, following ipsilateral or contralateral vagus nerve transection (VNTx), and then following bilateral VNTx. Stimulations were performed at currents from 0.25 to 4.0 mA, frequencies from 2 to 30 Hz, and a 500-μs pulse width. Right or left VNS evoked significantly greater current- and frequency-dependent suppression of chronotropic, inotropic, and lusitropic function subsequent to sequential VNTx. Bradycardia threshold was defined as the current first required for a 5% decrease in heart rate. The threshold for the right vs. left vagus-induced bradycardia in the intact state (2.91 ± 0.18 and 3.47 ± 0.20 mA, respectively) decreased significantly with right VNTx (1.69 ± 0.17 mA for right and 3.04 ± 0.27 mA for left) and decreased further following bilateral VNTx (1.29 ± 0.16 mA for right and 1.74 ± 0.19 mA for left). Similar effects were observed following left VNTx. The thresholds for afferent-mediated effects on cardiac parameters were 0.62 ± 0.04 and 0.65 ± 0.06 mA with right and left VNS, respectively, and were reflected primarily as augmentation. Afferent-mediated tachycardias were maintained following β-blockade but were eliminated by VNTx. The increased effectiveness and decrease in bradycardia threshold with sequential VNTx suggest that 1) vagal afferents inhibit centrally mediated parasympathetic efferent outflow and 2) the ipsilateral and contralateral vagi exert a substantial buffering capacity. The intact threshold reflects the interaction between multiple levels of the cardiac neural hierarchy. Copyright © 2015 the American Physiological Society.
Rajendran, Pradeep S.; Nier, Heath A.; KenKnight, Bruce H.; Armour, J. Andrew
2015-01-01
Using vagus nerve stimulation (VNS), we sought to determine the contribution of vagal afferents to efferent control of cardiac function. In anesthetized dogs, the right and left cervical vagosympathetic trunks were stimulated in the intact state, following ipsilateral or contralateral vagus nerve transection (VNTx), and then following bilateral VNTx. Stimulations were performed at currents from 0.25 to 4.0 mA, frequencies from 2 to 30 Hz, and a 500-μs pulse width. Right or left VNS evoked significantly greater current- and frequency-dependent suppression of chronotropic, inotropic, and lusitropic function subsequent to sequential VNTx. Bradycardia threshold was defined as the current first required for a 5% decrease in heart rate. The threshold for the right vs. left vagus-induced bradycardia in the intact state (2.91 ± 0.18 and 3.47 ± 0.20 mA, respectively) decreased significantly with right VNTx (1.69 ± 0.17 mA for right and 3.04 ± 0.27 mA for left) and decreased further following bilateral VNTx (1.29 ± 0.16 mA for right and 1.74 ± 0.19 mA for left). Similar effects were observed following left VNTx. The thresholds for afferent-mediated effects on cardiac parameters were 0.62 ± 0.04 and 0.65 ± 0.06 mA with right and left VNS, respectively, and were reflected primarily as augmentation. Afferent-mediated tachycardias were maintained following β-blockade but were eliminated by VNTx. The increased effectiveness and decrease in bradycardia threshold with sequential VNTx suggest that 1) vagal afferents inhibit centrally mediated parasympathetic efferent outflow and 2) the ipsilateral and contralateral vagi exert a substantial buffering capacity. The intact threshold reflects the interaction between multiple levels of the cardiac neural hierarchy. PMID:26371171
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duan, X; Grimes, J; Yu, L
Purpose: Focal spot blooming is an increase in the focal spot size at increased tube current and/or decreased tube potential. In this work, we evaluated the influence of tube current on the focal spot size at low kV for two CT systems, one of which used a tube designed to reduce blooming effects. Methods: A slit camera (10 micron slit) was used to measure focal spot size on two CT scanners from the same manufacturer (Siemens Somatom Force and Definition Flash) at 70 kV and low, medium and maximum tube currents, according to the capabilities of each system (Force: 100,more » 800 and 1300 mA; Flash: 100, 200 and 500 mA). Exposures were made with a stationary tube in service mode using a raised stand without table movement or flying focal spot technique. Focal spot size, nominally 0.8 and 1.2 mm, respectively, was measured parallel and perpendicular to the cathode-anode axis by calculating the full-width-at-half-maximum of the slit profile recording using computed radiographic plates. Results: Focal spot sizes perpendicular to the anode-cathode axis increased at the maximum mA by 5.7% on the Force and 39.1% on the Flash relative to that at the minimal mA, even though the mA was increased 13-fold on the Force and only 5- fold on the Flash. Focal spot size increased parallel to the anode-cathode axis by 70.4% on Force and 40.9% on Flash. Conclusion: For CT protocols using low kV, high mA is typically required. These protocols are relevant in children and smaller adults, and for dual-energy scanning. Technical measures to limit focal spot blooming are important in these settings to avoid reduced spatial resolution. The x-ray tube on a recently-introduced scanner appears to greatly reduce blooming effects, even at very high mA values. CHM has research support from Siemens Healthcare.« less
Modeling the Inner Magnetosphere: Radiation Belts, Ring Current, and Composition
NASA Technical Reports Server (NTRS)
Glocer, Alex
2011-01-01
The space environment is a complex system defined by regions of differing length scales, characteristic energies, and physical processes. It is often difficult, or impossible, to treat all aspects of the space environment relative to a particular problem with a single model. In our studies, we utilize several models working in tandem to examine this highly interconnected system. The methodology and results will be presented for three focused topics: 1) Rapid radiation belt electron enhancements, 2) Ring current study of Energetic Neutral Atoms (ENAs), Dst, and plasma composition, and 3) Examination of the outflow of ionospheric ions. In the first study, we use a coupled MHD magnetosphere - kinetic radiation belt model to explain recent Akebono/RDM observations of greater than 2.5 MeV radiation belt electron enhancements occurring on timescales of less than a few hours. In the second study, we present initial results of a ring current study using a newly coupled kinetic ring current model with an MHD magnetosphere model. Results of a dst study for four geomagnetic events are shown. Moreover, direct comparison with TWINS ENA images are used to infer the role that composition plays in the ring current. In the final study, we directly model the transport of plasma from the ionosphere to the magnetosphere. We especially focus on the role of photoelectrons and and wave-particle interactions. The modeling methodology for each of these studies will be detailed along with the results.
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Gamayunov, K. V.; Jordanova, V. K.
2003-01-01
A complete description of a self-consistent model of magnetospheric ring current interacting with electromagnetic ion cyclotron waves is presented. The model is based on the system of two kinetic equations; one equation describes the ring current ion dynamics, and another equation describes the wave evolution. The effects on ring current ions interacting with electromagnetic ion cyclotron waves and back on waves are considered self-consistently by solving both equations on a global magnetospheric scale under nonsteady state conditions. The developed model is employed to simulate the entire 2-7 May 1998 storm period. First, the trapped number fluxes of the ring current protons are calculated and presented along with comparison with the data measured by the three- dimensional hot plasma instrument Polar/HYDRA. Incorporating in the model the wave-particle interaction leads to much better agreement between the experimental data and the model results. Second, examining of the wave (MLT, L shell) distributions produced by the model during the storm progress reveals an essential intensification of the wave emission about 2 days after the main phase of the storm. This result is well consistent with the earlier ground-based observations. Finally, the theoretical shapes and the occurrence rates of the wave power spectral densities are studied. It is found that about 2 days after the storm s main phase on 4 May, mainly non-Gaussian shapes of power spectral densities are produced.
Optical heterodyne detection for cavity ring-down spectroscopy
Levenson, Marc D.; Paldus, Barbara A.; Zare, Richard N.
2000-07-25
A cavity ring-down system for performing cavity ring-down spectroscopy (CRDS) using optical heterodyne detection of a ring-down wave E.sub.RD during a ring-down phase or a ring-up wave E.sub.RU during a ring up phase. The system sends a local oscillator wave E.sub.LO and a signal wave E.sub.SIGNAL to the cavity, preferably a ring resonator, and derives an interference signal from the combined local oscillator wave E.sub.LO and the ring-down wave E.sub.RD (or ring-up wave E.sub.RU). The local oscillator wave E.sub.LO has a first polarization and the ring-down wave E.sub.RD has a second polarization different from the first polarization. The system has a combining arrangement for combining or overlapping local oscillator wave E.sub.LO and the ring-down wave E.sub.RD at a photodetector, which receives the interference signal and generates a heterodyne current I.sub.H therefrom. Frequency and phase differences between the waves are adjustable.
The Role of Ionospheric Outflow Preconditioning in Determining Storm Geoeffectiveness
NASA Astrophysics Data System (ADS)
Welling, D. T.; Liemohn, M. W.; Ridley, A. J.
2012-12-01
It is now well accepted that ionospheric outflow plays an important role in the development of the plasma sheet and ring current during geomagnetic storms. Furthermore, even during quiet times, ionospheric plasma populates the magnetospheric lobes, producing a reservoir of hydrogen and oxygen ions. When the Interplanetary Magnetic Field (IMF) turns southward, this reservoir is connected to the plasma sheet and ring current through magnetospheric convection. Hence, the conditions of the ionosphere and magnetospheric lobes leading up to magnetospheric storm onset have important implications for storm development. Despite this, there has been little research on this preconditioning; most global simulations begin just before storm onset, neglecting preconditioning altogether. This work explores the role of preconditioning in determining the geoeffectiveness of storms using a coupled global model system. A model of ionospheric outflow (the Polar Wind Outflow Model, PWOM) is two-way coupled to a global magnetohydrodynamic model (the Block-Adaptive Tree Solar wind Roe-type Upwind Scheme, BATS-R-US), which in turn drives a ring current model (the Ring current Atmosphere interactions Model, RAM). This unique setup is used to simulate an idealized storm. The model is started at many different times, from 1 hour before storm onset to 12 hours before. The effects of storm preconditioning are examined by investigating the total ionospheric plasma content in the lobes just before onset, the total ionospheric contribution in the ring current just after onset, and the effects on Dst, magnetic elevation angle at geosynchronous, and total ring current energy density. This experiment is repeated for different solar activity levels as set by F10.7 flux. Finally, a synthetic double-dip storm is constructed to see how two closely spaced storms affect each other by changing the preconditioning environment. It is found that preconditioning of the magnetospheric lobes via ionospheric outflow greatly influences the geoeffectiveness of magnetospheric storms.
NASA Astrophysics Data System (ADS)
Anan'ev, S. S.; Bakshaev, Yu. L.; Bartov, A. V.; Blinov, P. I.; Dan'ko, S. A.; Zhuzhunashvili, A. I.; Kazakov, E. D.; Kalinin, Yu. G.; Kingsep, A. S.; Korolev, V. D.; Mizhiritskii, V. I.; Smirnov, V. P.; Tkachenko, S. I.; Chernenko, A. S.
2008-07-01
Results are presented from experimental studies of a section of a magnetically insulated transmission line (MITL) with a current density of up to 500 MA/cm2 and linear current density of up to 7 MA/cm (the parameters close to those in a fast-Z-pinch-driven fusion reactor projected at Sandia Laboratories). The experiments were performed in the S-300 facility (3 MA, 0.15 Ω, 100 ns). At high linear current densities, the surface of the ohmically heated MITL electrode can explode and a plasma layer can form near the electrode surface. As a result, the MITL can lose its transmission properties due to the shunting of the vacuum gap by the plasma produced. In this series of experiments, the dynamics of the electrode plasma and the dependence of the transmission properties of the MITL on the material and cleanness of the electrode surface were studied. It is shown experimentally that, when the current with a linear density of up to 7 MA/cm begins to flow along a model MITL, the input and output currents differ by less than 10% over a time interval of up to 230 ns for nickel electrodes and up to 350 ns for a line with a gold central electrode. No effect of the oil film present on the electrode surface on the loss of the transmission properties of the line was observed. It is also shown that electron losses insignificantly contribute to the total current balance. The experimental results are compared with calculations of the electrode explosion and the subsequent expansion of the plasma layer. A conclusion is made that the life-time of the model MITL satisfies the requirements imposed on the transmission lines intended for use in the projected thermonuclear reactor.
NASA Astrophysics Data System (ADS)
Chen, Yani; Zhao, Hongbin; Sheng, Leimei; Yu, Liming; An, Kang; Xu, Jiaqiang; Ando, Yoshinori; Zhao, Xinluo
2012-06-01
Large-scale production of graphene sheets has been achieved by direct current arc discharge evaporation of pure graphite electrodes in various H2-inert gas mixtures. The as-prepared few-layer graphene sheets have high purity, high crystallinity and high oxidation resistance temperature. Their electrochemical characteristics have been evaluated in coin-type cells versus metallic lithium. The first cell discharge capacity reached 1332 mA h g-1 at a current density of 50 mA g-1. After 350 cycles, the discharge capacity still remained at 323 mA h g-1. Graphene sheets produced by this method should be a promising candidate for the electrode material of lithium-ion batteries.
NASA Astrophysics Data System (ADS)
Li, Xiang; Samei, Ehsan; DeLong, David M.; Jones, Robert P.; Colsher, James G.; Frush, Donald P.
2008-03-01
The purpose of this study is to evaluate the effect of reduced tube current, as a surrogate for radiation dose, on lung nodule detection in pediatric chest multi-detector CT (MDCT). Normal chest MDCT images of 13 patients aged 1 to 7 years old were used as templates for this study. The original tube currents were between 70 mA and 180 mA. Using proprietary noise addition software, noise was added to the images to create 13 cases at the lowest common mA (i.e. 70 mA), 13 cases at 35 mA (50% reduction), and 13 cases at 17.5 mA (75% reduction). Three copies of each case were made for a total of 117 series for simulated nodule insertion. A technique for three-dimensional simulation of small lung nodules was developed, validated through an observer study, and used to add nodules to the series. Care was taken to ensure that each of three lung zones (upper, middle, lower) contained 0 or 1 nodule. The series were randomized and the presence of a nodule in each lung zone was rated independently and blindly by three pediatric radiologists on a continuous scale between 0 (definitely absent) and 100 (definitely present). Receiver operating characteristic analysis of the data showed no general significant difference in diagnostic accuracy between the reduced mA values and 70 mA, suggesting a potential for dose reduction with preserved diagnostic quality. To our knowledge, this study is the first controlled, systematic, and task-specific assessment of the influence of dose reduction in pediatric chest CT.
Deep drilling at the Siljan Ring impact structure: oxygen-isotope geochemistry of granite
Komor, S.C.; Valley, J.W.
1990-01-01
The Siljan Ring is a 362-Ma-old impact structure formed in 1700-Ma-old I-type granites. A 6.8-km-deep borehole provides a vertical profile through granites and isolated horizontal diabase sills. Fluid-inclusion thermometry, and oxygen-isotope compositions of vein quartz, granite, diabase, impact melt, and pseudotachylite, reveal a complex history of fluid activity in the Siljan Ring, much of which can be related to the meteorite impact. In granites from the deep borehole, ??18O values of matrix quartz increase with depth from near 8.0 at the surface to 9.5??? at 5760 m depth. In contrast, feldspar ??18O values decrease with depth from near 10 at the surface to 7.1??? at 5760 m, forming a pattern opposite to the one defined by quartz isotopic compositions. Values of ??18O for surface granites outside the impact structure are distinct from those in near-surface samples from the deep borehole. In the deep borehole, feldspar coloration varies from brick-red at the surface to white at 5760 m, and the abundances of crack-healing calcite and other secondary minerals decrease over the same interval. Superimposed on the overall decrease in alteration intensity with depth are localized fracture zones at 4662, 5415, and 6044 m depth that contain altered granites, and which provided pathways for deep penetration of surface water. The antithetic variation of quartz and feldspar ??18O values, which can be correlated with mineralogical evidence of alteration, provides evidence for interaction between rocks and impact-heated fluids (100-300?? C) in the upper 2 km of the pluton. Penetration of water to depths below 2 km was restricted by a general decrease in impact-fracturing with depth, and by a 60-m-thick diabase sill at 1500 m depth that may have been an aquitard. At depths below 4 km in the pluton, where water/rock ratios were low, oxygen isotopic compositions preserve evidence for limited high-temperature (>500?? C) exchange between alkali feldspar and fluids. The high-temperature exchange may have been a post-impact event involving impact-heated fluids, or a post-magmatic event. ?? 1990 Springer-Verlag.
NSLS-II beamline scattered gas bremsstrahlung radiation shielding calculation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popescu, Razvan; Xia, Zhenghua, E-mail: xiazhenghuacn@hotmail.com; Job, Panakkal
2016-07-27
National Synchrotron Light Source II (NSLS-II) is a new state-of-the-art 3rd generation synchrotron. The NSLS-II facility is shielded up to 3 GeV electron beam energy at 500 mA. When the gas bremsstrahlung (GB) from the storage ring is scattered by the beamline components in the first optical enclosure (FOE), the scattered radiation will pose additional radiation hazard (bypassing primary GB collimators and stops) and challenge the FOE shielding. The scattered GB radiation hazard can be mitigated by supplementary shielding or with an exclusion zone downstream of the FOE.
Status of PLS-II Upgrade Program
NASA Astrophysics Data System (ADS)
Kim, Kyung-Ryul; Wiedemann, Helmut; Park, Sung-Ju; Kim, Dong-Eon; Park, Chong-Do; Park, Sung-Soo; Kim, Seong-Hwan; Kim, Bongsoo; Namkung, Won; Nam, Sanghoon; Ree, Moonhor
2010-06-01
The Pohang Light Source (PLS) at the Pohang Accelerator Laboratory has been operated first at 2.0 GeV since 1995, and later was upgraded to 2.5 GeV. During this time, 6 insertion devices like undulators and multipole wigglers have been put into operation to produce special photon beams, with a total of 27 beamlines installed and 3 beamlines under construction. Recently, Korea synchrotron user's community is demanding high beam stability, higher photon energies as well as more straight sections for insertion devices in the PLS. To meet the user requirements, the PLS-II upgrade program has been launched in January, 2009, incorporating a modified chromatic version of Double Bend Achromat (DBA) to achieve almost twice as many straight sections as the current PLS with a design goal of the relatively low emittance, ɛ, of 5.9 nmṡrad. In the PLS-II, the top-up injection using full energy linac is planned for much higher stable beam as well and thus the production of hard x-ray undulator radiation of 8 to 13 keV is anticipated to allow for the successful research program namely Protein Crystallography. The PLS-II machine components of storage ring, linear accelerator and photon beamlines will be partly dismantled and reinstalled in a 6-months shutdown beginning January, 2011 and then the PLS-II upgrade be started the initial commissioning with a 100 mA beam current from July in 2011.
Radiological considerations for bulk shielding calculations of national synchrotron light source-II
NASA Astrophysics Data System (ADS)
Job, Panakkal K.; Casey, William R.
2011-12-01
Brookhaven National Laboratory is designing a new electron synchrotron for scientific research using synchrotron radiation. This facility, called the “National Synchrotron Light Source II” (NSLS-II), will provide x-ray radiation of ultra-high brightness and exceptional spatial and energy resolution. It will also provide advanced insertion devices, optics, detectors and robotics, and a suite of scientific instruments designed to maximize the scientific output of the facility. The project scope includes the design, construction, installation, and commissioning of the following accelerators: a 200 MeV linac, a booster synchrotron operating from 200 MeV to 3.0 GeV, and the storage ring which stores a maximum of 500 mA current of electrons at an energy of 3.0 GeV. It is planned to operate the facility primarily in a top-off mode, thereby maintaining the maximum variation in stored beam current to <1%. Because of the very demanding requirements for beam emittance and synchrotron radiation brilliance, the beam life-time is expected to be quite low, on the order of 2 h. Analysis of the bulk shielding for operating this facility and the input parameters used for this analysis have been discussed in this paper. The characteristics of each of the accelerators and their operating modes have been summarized with the input assumptions for the bulk shielding analysis.
Evaluation of ion collection area in Faraday probes.
Brown, Daniel L; Gallimore, Alec D
2010-06-01
A Faraday probe with three concentric rings was designed and fabricated to assess the effect of gap width and collector diameter in a systematic study of the diagnostic ion collection area. The nested Faraday probe consisted of two concentric collector rings and an outer guard ring, which enabled simultaneous current density measurements on the inner and outer collectors. Two versions of the outer collector were fabricated to create gaps of 0.5 and 1.5 mm between the rings. Distribution of current density in the plume of a low-power Hall thruster ion source was measured in azimuthal sweeps at constant radius from 8 to 20 thruster diameters downstream of the exit plane with variation in facility background pressure. A new analytical technique is proposed to account for ions collected in the gap between the Faraday probe collector and guard ring. This method is shown to exhibit excellent agreement between all nested Faraday probe configurations, and to reduce the magnitude of integrated ion beam current to levels consistent with Hall thruster performance analyses. The technique is further studied by varying the guard ring bias potential with a fixed collector bias potential, thereby controlling ion collection in the gap. Results are in agreement with predictions based on the proposed analytical technique. The method is applied to a past study comparing the measured ion current density profiles of two Faraday probe designs. These findings provide new insight into the nature of ion collection in Faraday probe diagnostics, and lead to improved accuracy with a significant reduction in measurement uncertainty.
Hwang, Jaeuk; Lyoo, In Kyoon; Kim, Seog Ju; Sung, Young Hoon; Bae, Soojeong; Cho, Sung-Nam; Lee, Ho Young; Lee, Dong Soo; Renshaw, Perry F
2006-04-28
The aim of the current study was to explore changes of relative regional cerebral blood flow (rCBF) in short-term and long-term abstinent methamphetamine (MA) users. Relative rCBF in 40 abstinent MA users and 23 healthy comparison subjects was compared by the technetium-99m-hexamethyl-propylene amine oxime ((99m)Tc-HMPAO) single photon emission computed tomography (SPECT). Relative rCBF in areas that were found to differ significantly was also compared in groups of MA users with short-term (<6 months) and long-term (>or=6 months) abstinence. MA users showed decreased relative rCBF in the right anterior cingulate cortex (Brodmann area 32) relative to healthy comparison subjects. Long-term abstinent MA users had significantly greater rCBF than short-term abstinent MA users. We report that abstinent MA users have decreased rCBF in the anterior cingulate cortex with smaller relative decreases in subjects with prolonged abstinence.
Network Management and FDIR for SpaceWire Networks (N-MaSS)
NASA Astrophysics Data System (ADS)
Montano, Giuseppe; Jameux, David; Cook, Barry; Peel, Rodger; McCormick, Ecaterina; Walker, Paul; Kollias, Vangelis; Pogkas, Nikos
2014-08-01
The SpaceWire network management layer, which manages network topology and routing, is not yet standardised. This paper presents the European Space Agency (ESA) N-MaSS study, which focuses on implementation and standardisation of Fault Detection, Isolation and Recovery (FDIR) functions within the SpaceWire network management layer. N-MaSS provides an autonomous FDIR solution. It is defined at the SpaceWire network layer in order to achieve efficient re-use for heterogeneous missions, allowing for the incorporation of legacy equipment. The N-MaSS FDIR functions identify SpaceWire link and node failures and provide recovery using redundant nodes.This paper provides an overview of the overall N- MaSS study. In particular, the following topics are discussed: (a) how user requirements have been captured from the industry, SpaceWire Working Group and ESA; (b) how the N-MaSS architecture was organically shaped on the basis of the requirements captured; (c) how the N-MaSS concept is currently being implemented in a demonstrator and verified.
NASA Technical Reports Server (NTRS)
Malone, Roy W., Jr.
2010-01-01
The presentation slides examine: The Journey, Current Safety and Mission Assurance (S and MA) Oversight/Insight, The Change, The Issue, Potential NASA relationship with Commercial Partners, and Commercial "X" FRR - Are you Go.
Pushilina, Natalia; Syrtanov, Maxim; Murashkina, Tatyana; Kudiiarov, Viktor; Lider, Andrey; Koptyug, Andrey
2018-01-01
Influence of manufacturing parameters (beam current from 13 to 17 mA, speed function 98 and 85) on microstructure and hydrogen sorption behavior of electron beam melted (EBM) Ti-6Al-4V parts was investigated. Optical and scanning electron microscopies as well as X-ray diffraction were used to investigate the microstructure and phase composition of EBM Ti-6Al-4V parts. The average α lath width decreases with the increase of the speed function at the fixed beam current (17 mA). Finer microstructure was formed at the beam current 17 mA and speed function 98. The hydrogenation of EBM Ti-6Al-4V parts was performed at the temperatures 500 and 650 °С at the constant pressure of 1 atm up to 0.3 wt %. The correlation between the microstructure and hydrogen sorption kinetics by EBM Ti-6Al-4V parts was demonstrated. Lower average hydrogen sorption rate at 500 °C was in the sample with coarser microstructure manufactured at the beam current 17 mA and speed function 85. The difference of hydrogen sorption kinetics between the manufactured samples at 650 °C was insignificant. The shape of the kinetics curves of hydrogen sorption indicates the phase transition αH + βH→βH. PMID:29747471
Pushilina, Natalia; Syrtanov, Maxim; Kashkarov, Egor; Murashkina, Tatyana; Kudiiarov, Viktor; Laptev, Roman; Lider, Andrey; Koptyug, Andrey
2018-05-10
Influence of manufacturing parameters (beam current from 13 to 17 mA, speed function 98 and 85) on microstructure and hydrogen sorption behavior of electron beam melted (EBM) Ti-6Al-4V parts was investigated. Optical and scanning electron microscopies as well as X-ray diffraction were used to investigate the microstructure and phase composition of EBM Ti-6Al-4V parts. The average α lath width decreases with the increase of the speed function at the fixed beam current (17 mA). Finer microstructure was formed at the beam current 17 mA and speed function 98. The hydrogenation of EBM Ti-6Al-4V parts was performed at the temperatures 500 and 650 °С at the constant pressure of 1 atm up to 0.3 wt %. The correlation between the microstructure and hydrogen sorption kinetics by EBM Ti-6Al-4V parts was demonstrated. Lower average hydrogen sorption rate at 500 °C was in the sample with coarser microstructure manufactured at the beam current 17 mA and speed function 85. The difference of hydrogen sorption kinetics between the manufactured samples at 650 °C was insignificant. The shape of the kinetics curves of hydrogen sorption indicates the phase transition α H + β H →β H .
Composite of K-doped (NH4)2V3O8/graphene as an anode material for sodium-ion batteries.
Liu, Xin; Li, Zhiwei; Fei, Hailong; Wei, Mingdeng
2015-11-21
A layer structured K-doped (NH4)2V3O8/graphene (K-NVG) was prepared via a hydrothermal route and then used as an anode material for sodium-ion batteries for the first time. The K-NVG nanosheets have a diameter in the range of 200-500 nm. The K-NVG electrode exhibited stable cycling and a good rate performance with a reversible capacity of 235.4 mA h g(-1), which is much higher than the 90.5 mA h g(-1) value of the (NH4)2V3O8/graphene electrode after 100 cycles at a current density of 100 mA g(-1). Simultaneously, the retention rate was maintained at 82% even after 250 cycles at the current density of 300 mA g(-1). Such good electrochemical properties may be attributed to the K-NVG's stable layered structure.
A novel compensation method for the anode gain non-uniformity of multi-anode photomultiplier tubes
NASA Astrophysics Data System (ADS)
Lee, Chan Mi; Kwon, Sun Il; Ko, Guen Bae; Ito, Mikiko; Yoon, Hyun Suk; Lee, Dong Soo; Jong Hong, Seong; Lee, Jae Sung
2012-01-01
The position-sensitive multi-anode photomultiplier tube (MA-PMT) is widely used in high-resolution scintillation detectors. However, the anode gain non-uniformity of this device is a limiting factor that degrades the intrinsic performance of the detector module. The aim of this work was to develop a gain compensation method for the MA-PMT and evaluate the resulting enhancement in the performance of the detector. The method employs a circuit that is composed only of resistors and is placed between the MA-PMT and a resistive charge division network (RCN) used for position encoding. The goal of the circuit is to divide the output current from each anode, so the same current flows into the RCN regardless of the anode gain. The current division is controlled by the combination of a fixed-value series resistor with an output impedance that is much larger than the input impedance of the RCN, and a parallel resistor, which detours part of the current to ground. PSpice simulations of the compensation circuit and the RCN were performed to determine optimal values for the compensation resistors when used with Hamamatsu H8500 MA-PMTs. The intrinsic characteristics of a detector module consisting of this MA-PMT and a lutetium-gadolinium-oxyorthosilicate (LGSO) crystal array were tested with and without the gain compensation method. In simulation, the average coefficient of variation and max/min ratio decreased from 15.7% to 2.7% and 2.0 to 1.2, respectively. In the flood map of the LGSO-H8500 detector, the uniformity of the photopeak position for individual crystals and the energy resolution were much improved. The feasibility of the method was shown by applying it to an octagonal prototype positron emission tomography scanner.
NASA Astrophysics Data System (ADS)
Lin, Jia-Yong; Pei, Yan-Li; Zhuo, Yi; Chen, Zi-Min; Hu, Rui-Qin; Cai, Guang-Shuo; Wang, Gang
2016-11-01
In this study, the high performance of InGaN/GaN multiple quantum well light-emitting diodes (LEDs) with Al-doped ZnO (AZO) transparent conductive layers (TCLs) has been demonstrated. The AZO-TCLs were fabricated on the n+-InGaN contact layer by metal organic chemical vapor deposition (MOCVD) using H2O as an oxidizer at temperatures as low as 400 °C without any post-deposition annealing. It shows a high transparency (98%), low resistivity (510-4 Ω·cm), and an epitaxial-like excellent interface on p-GaN with an n+-InGaN contact layer. A forward voltage of 2.82 V @ 20 mA was obtained. Most importantly, the power efficiencies can be markedly improved by 53.8%@20 mA current injection and 39.6%@350 mA current injection compared with conventional LEDs with indium tin oxide TCL (LED-III), and by 28.8%@20 mA current injection and 4.92%@350 mA current injection compared with LEDs with AZO-TCL prepared by MOCVD using O2 as an oxidizer (LED-II), respectively. The results indicate that the AZO-TCL grown by MOCVD using H2O as an oxidizer is a promising TCL for a low-cost and high-efficiency GaN-based LED application. Project supported by the National Natural Science Foundation of China (Grant Nos. 61204091, 61404177, 51402366, and U1201254) and the Science and Technology Planning Project of Guangdong Province, China (Grant No. 2015B010132006).
BPM Breakdown Potential in the PEP-II B-factory Storage Ring Collider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weathersby, Stephen; Novokhatski, Alexander; /SLAC
2010-02-10
High current B-Factory BPM designs incorporate a button type electrode which introduces a small gap between the button and the beam chamber. For achievable currents and bunch lengths, simulations indicate that electric potentials can be induced in this gap which are comparable to the breakdown voltage. This study characterizes beam induced voltages in the existing PEP-II storage ring collider BPM as a function of bunch length and beam current.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-23
... (``CITA'') has determined that an acceptable substitute for certain compacted, plied, ring spun cotton... to remove or restrict (``Request'') certain compacted, plied, ring spun cotton yarns, currently on... Spun Cotton Yarns Compacted, plied, ring spun cotton yarns, with yarn counts in the range from 42 to...
Development of dapivirine vaginal ring for HIV prevention.
Devlin, Bríd; Nuttall, Jeremy; Wilder, Susan; Woodsong, Cynthia; Rosenberg, Zeda
2013-12-01
In the continuing effort to develop effective HIV prevention methods for women, a vaginal ring containing the non-nucleoside reverse transcriptase inhibitor dapivirine is currently being tested in two safety and efficacy trials. This paper reviews dapivirine ring's pipeline development process, including efforts to determine safe and effective dosing levels as well as identify delivery platforms with the greatest likelihood of success for correct and consistent use. Dapivirine gel and other formulations were developed and tested in preclinical and clinical studies. Multiple vaginal ring prototypes were also tested, resulting in the current ring design as well as additional designs under consideration for future testing. Efficacy results from clinical trials are expected in 2015. Through ongoing consultations with national regulatory authorities, licensure requirements for dapivirine vaginal ring approval have been defined. This article is based on a presentation at the "Product Development Workshop 2013: HIV and Multipurpose Prevention Technologies," held in Arlington, Virginia on February 21-22, 2013. It forms part of a special supplement to Antiviral Research. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Durganandini, P.
2015-03-01
We consider thin planar charged quantum rings on the surface of a three dimensional topological insulator coated with a thin ferromagnetic layer. We show theoretically, that when the ring is threaded by a magnetic field, then, due to the Aharanov-Bohm effect, there are not only the well known circulating persistent currents in the ring but also oscillating persistent Hall voltages across the thin ring. Such oscillating persistent Hall voltages arise due to the topological magneto-electric effect associated with the axion electrodynamics exhibited by the surface electronic states of the three dimensional topological insulator when time reversal symmetry is broken. We further generalize to the case of dipole currents and show that analogous Hall dipole voltages arise. We also discuss the robustness of the effect and suggest possible experimental realizations in quantum rings made of semiconductor heterostructures. Such experiments could also provide new ways of observing the predicted topological magneto-electric effect in three dimensional topological insulators with time reversal symmetry breaking. I thank BCUD, Pune University, Pune for financial support through research grant.
NASA Astrophysics Data System (ADS)
Zhou, Shengjun; Zheng, Chenju; Lv, Jiajiang; Gao, Yilin; Wang, Ruiqing; Liu, Sheng
2017-07-01
We demonstrate GaN-based double-layer electrode flip-chip light-emitting diodes (DLE-FCLED) with highly reflective indium-tin oxide (ITO)/distributed bragg reflector (DBR) p-type contact and via hole-based n-type contacts. Transparent thin ITO in combination with TiO2/SiO2 DBR is used for reflective p-type ohmic contact, resulting in a significant reduction in absorption of light by opaque metal electrodes. The finely distributed via hole-based n-type contacts are formed on the n-GaN layer by etching via holes through p-GaN and multiple quantum well (MQW) active layer, leading to reduced lateral current spreading length, and hence alleviated current crowding effect. The forward voltage of the DLE-FCLED is 0.31 V lower than that of the top-emitting LED at 90 mA. The light output power of DLE-FCLED is 15.7% and 80.8% higher than that of top-emitting LED at 90 mA and 300 mA, respectively. Compared to top- emitting LED, the external quantum efficiency (EQE) of DLE-FCLED is enhanced by 15.4% and 132% at 90 mA and 300 mA, respectively. The maximum light output power of the DLE-FCLED obtained at 195.6 A/cm2 is 1.33 times larger than that of the top-emitting LED obtained at 93 A/cm2.
2011-01-01
Background Mandelic acid (MA), an important component in pharmaceutical syntheses, is currently produced exclusively via petrochemical processes. Growing concerns over the environment and fossil energy costs have inspired a quest to develop alternative routes to MA using renewable resources. Herein we report the first direct route to optically pure MA from glucose via genetic modification of the L-phenylalanine pathway in E. coli. Results The introduction of hydroxymandelate synthase (HmaS) from Amycolatopsis orientalis into E. coli led to a yield of 0.092 g/L S-MA. By combined deletion of competing pathways, further optimization of S-MA production was achieved, and the yield reached 0.74 g/L within 24 h. To produce R-MA, hydroxymandelate oxidase (Hmo) from Streptomyces coelicolor and D-mandelate dehydrogenase (DMD) from Rhodotorula graminis were co-expressed in an S-MA-producing strain, and the resulting strain was capable of producing 0.68 g/L R-MA. Finally, phenylpyruvate feeding experiments suggest that HmaS is a potential bottleneck to further improvement in yields. Conclusions We have constructed E. coli strains that successfully accomplished the production of S- and R-MA directly from glucose. Our work provides the first example of the completely fermentative production of S- and R-MA from renewable feedstock. PMID:21910908
Electric currents induced by twisted light in Quantum Rings.
Quinteiro, G F; Berakdar, J
2009-10-26
We theoretically investigate the generation of electric currents in quantum rings resulting from the optical excitation with twisted light. Our model describes the kinetics of electrons in a two-band model of a semiconductor-based mesoscopic quantum ring coupled to light having orbital angular momentum (twisted light). We find the analytical solution, which exhibits a "circular" photon-drag effect and an induced magnetization, suggesting that this system is the circular analog of that of a bulk semiconductor excited by plane waves. For realistic values of the electric field and material parameters, the computed electric current can be as large as microA; from an applied perspective, this opens new possibilities to the optical control of the magnetization in semiconductors.
The effect of guard ring on leakage current and spectroscopic performance of TlBr planar detectors
NASA Astrophysics Data System (ADS)
Kargar, Alireza; Kim, Hadong; Cirignano, Leonard; Shah, Kanai
2014-09-01
Four thallium bromide planar detectors were fabricated from materials grown at RMD Inc. The TlBr samples were prepared to investigate the effect of guard ring on device gamma-ray spectroscopy performance, and to investigate the leakage current through surface and bulk. The devices' active area in planar configuration were 4.4 × 4.4 × 1.0 mm3. In this report, the detector fabrication process is described and the resulting energy spectra are discussed. It is shown that the guard ring improves device spectroscopic performance by shielding the sensing electrode from the surface leakage current, and by making the electric filed more uniform in the active region of the device.
Enhanced lithium storage in Fe2O3-SnO2-C nanocomposite anode with a breathable structure
NASA Astrophysics Data System (ADS)
Rahman, Md Mokhlesur; Glushenkov, Alexey M.; Ramireddy, Thrinathreddy; Tao, Tao; Chen, Ying
2013-05-01
A novel nanocomposite architecture of a Fe2O3-SnO2-C anode, based on clusters of Fe2O3 and SnO2 nanoparticles dispersed along the conductive chains of Super P Li™ carbon black (Timcal Ltd.), is presented as a breathable structure in this paper for lithium-ion batteries. The synthesis of the nanocomposite is achieved by combining a molten salt precipitation process and a ball milling method for the first time. The crystalline structure, morphology, and electrochemical characterization of the synthesised product are investigated systematically. Electrochemical results demonstrate that the reversible capacity of the composite anode is 1110 mA h g-1 at a current rate of 158 mA g-1 with only 31% of initial irreversible capacity in the first cycle. A high reversible capacity of 502 mA h g-1 (higher than the theoretical capacity of graphite, ~372 mA h g-1) can be obtained at a high current rate of 3950 mA g-1. The electrochemical performance is compared favourably with those of Fe2O3-SnO2 and Fe2O3-SnO2-C composite anodes for lithium-ion batteries reported in the literature. This work reports a promising method for the design and preparation of nanocomposite electrodes for lithium-ion batteries.A novel nanocomposite architecture of a Fe2O3-SnO2-C anode, based on clusters of Fe2O3 and SnO2 nanoparticles dispersed along the conductive chains of Super P Li™ carbon black (Timcal Ltd.), is presented as a breathable structure in this paper for lithium-ion batteries. The synthesis of the nanocomposite is achieved by combining a molten salt precipitation process and a ball milling method for the first time. The crystalline structure, morphology, and electrochemical characterization of the synthesised product are investigated systematically. Electrochemical results demonstrate that the reversible capacity of the composite anode is 1110 mA h g-1 at a current rate of 158 mA g-1 with only 31% of initial irreversible capacity in the first cycle. A high reversible capacity of 502 mA h g-1 (higher than the theoretical capacity of graphite, ~372 mA h g-1) can be obtained at a high current rate of 3950 mA g-1. The electrochemical performance is compared favourably with those of Fe2O3-SnO2 and Fe2O3-SnO2-C composite anodes for lithium-ion batteries reported in the literature. This work reports a promising method for the design and preparation of nanocomposite electrodes for lithium-ion batteries. Electronic supplementary information (ESI) available: Electrochemical Impedance Spectroscopy (EIS). See DOI: 10.1039/c3nr00690e
NASA Astrophysics Data System (ADS)
Mingming, SUN; Yanhui, JIA; Yongjie, HUANG; Juntai, YANG; Xiaodong, WEN; Meng, WANG
2018-04-01
In order to study the influence of three-grid assembly thermal deformation caused by heat accumulation on breakdown times and an ion extraction process, a hot gap test and a breakdown time test are carried out to obtain thermal deformation of the grids when the thruster is in 5 kW operation mode. Meanwhile, the fluid simulation method and particle-in-cell-Monte Carlo collision (PIC-MCC) method are adopted to simulate the ion extraction process according to the previous test results. The numerical calculation results are verified by the ion thruster performance test. The results show that after about 1.2 h operation, the hot gap between the screen grid and the accelerator grid reduce to 0.25–0.3 mm, while the hot gap between the accelerator grid and the decelerator grid increase from 1 mm to about 1.4 mm when the grids reach thermal equilibrium, and the hot gap is almost unchanged. In addition, the breakdown times experiment shows that 0.26 mm is the minimal safe hot gap for the grid assembly as the breakdown times improves significantly when the gap is smaller than this value. Fluid simulation results show that the plasma density of the screen grid is in the range 6 × 1017–6 × 1018 m13 and displays a parabolic characteristic, while the electron temperature gradually increases along the axial direction. The PIC-MCC results show that the current falling of an ion beam through a single aperture is significant. Meanwhile, the intercepted current of the accelerator grid and the decelerator grid both increase with the change in the hot gap. The ion beam current has optimal perveance status without thermal deformation, and the intercepted current of the accelerator grid and the decelerator grid are 3.65 mA and 6.26 mA, respectively. Furthermore, under the effect of thermal deformation, the ion beam current has over-perveance status, and the intercepted current of the accelerator grid and the decelerator grid are 10.46 mA and 18.24 mA, respectively. Performance test results indicate that the breakdown times increase obviously. The intercepted current of the accelerator grid and the decelerator grid increases to 13 mA and 16.5 mA, respectively, due to the change in the hot gap after 1.5 h operation. The numerical calculation results are well consistent with performance test results, and the error comes mainly from the test uncertainty of the hot gap.
NASA Astrophysics Data System (ADS)
Xu, Deru; Kusiak, Monika A.; Wang, Zhilin; Chen, Huayong; Bakun-Czubarow, Nonna; Wu, Chuanjun; Konečný, Patrik; Hollings, Peter
2015-02-01
New monazite chemical U-Th-total-Pb (CHIME) ages, combined with microstructural observations, mineral compositions, and whole-rock geochemistry, indicate that the large-scale, banded iron formation (BIF)-type Shilu Fe-Co-Cu ore district in Hainan Province, South China is a multistage product of sedimentation, metamorphism, and hydrothermal-metasomatic alteration associated with multiple orogenies. Two types of monazite, i.e. "polygenetic" and "metamorphic", were identified. The "polygenetic monazite" comprises a magmatic and/or metamorphic core surrounded by a metamorphic rim, and shows complex zoning. Breakdown corona structure, with a core of monazite surrounded by a mantle of fluorapatite, allanite, and/or epidote as concentric growth rings, is commonly observed. This type of monazite yielded three main CHIME-age peaks at ca. 980 Ma, ca. 880 Ma and ca. 450 Ma. The ages which range up to ca. 880 Ma for detrital cores, record a pre-deformational magmatic and/or metamorphic event(s), and is considered to be the depositional time-interval of the Shilu Group and interbedded BIFs in a marine, back-arc foreland basin likely due to the Grenvillian or South China Sibao orogeny. After deposition, the Shilu district was subjected to an orogenic event, which is recorded by the syndeformational metamorphic monazite with ca. 560-450 Ma population. Probably this event not only caused amphibolite facies metamorphism and associated regional foliation S1 but also enriched the original BIFs, and most likely corresponds to the "Pan-African" and/or the South China Caledonian orogeny. The post-deformational "metamorphic" monazite occurs mostly as inclusions in garnet and shows ca. 260 Ma age. It likely represents the Late Permian post-magmatic hydrothermal and related retrograde event(s) initiated by the Indosinian orogeny due to the closure of the Paleo-Tethys. The breakdown of monazite to secondary coronal mineral phases as well as the Fe-remobilization and associated skarnization of the Shilu BIF ore source rocks might also be induced during this retrograde greenschist-facies metamorphism.
Nativ, Nir I; Chen, Alvin I; Yarmush, Gabriel; Henry, Scot D; Lefkowitch, Jay H; Klein, Kenneth M; Maguire, Timothy J; Schloss, Rene; Guarrera, James V; Berthiaume, Francois; Yarmush, Martin L
2014-02-01
Large-droplet macrovesicular steatosis (ld-MaS) in more than 30% of liver graft hepatocytes is a major risk factor for liver transplantation. An accurate assessment of the ld-MaS percentage is crucial for determining liver graft transplantability, which is currently based on pathologists' evaluations of hematoxylin and eosin (H&E)-stained liver histology specimens, with the predominant criteria being the relative size of the lipid droplets (LDs) and their propensity to displace a hepatocyte's nucleus to the cell periphery. Automated image analysis systems aimed at objectively and reproducibly quantifying ld-MaS do not accurately differentiate large LDs from small-droplet macrovesicular steatosis and do not take into account LD-mediated nuclear displacement; this leads to a poor correlation with pathologists' assessments. Here we present an improved image analysis method that incorporates nuclear displacement as a key image feature for segmenting and classifying ld-MaS from H&E-stained liver histology slides. 52,000 LDs in 54 digital images from 9 patients were analyzed, and the performance of the proposed method was compared against the performance of current image analysis methods and the ld-MaS percentage evaluations of 2 trained pathologists from different centers. We show that combining nuclear displacement and LD size information significantly improves the separation between large and small macrovesicular LDs (specificity = 93.7%, sensitivity = 99.3%) and the correlation with pathologists' ld-MaS percentage assessments (linear regression coefficient of determination = 0.97). This performance vastly exceeds that of other automated image analyzers, which typically underestimate or overestimate pathologists' ld-MaS scores. This work demonstrates the potential of automated ld-MaS analysis in monitoring the steatotic state of livers. The image analysis principles demonstrated here may help to standardize ld-MaS scores among centers and ultimately help in the process of determining liver graft transplantability. © 2013 American Association for the Study of Liver Diseases.
Cheng, W Susan; Garfein, Richard S; Semple, Shirley J; Strathdee, Steffanie A; Zians, James K; Patterson, Thomas L
2010-01-01
This study identified sociodemographic factors, drug using practices, sexual behaviors, and motivational factors associated with binge (a period of uninterrupted) methamphetamine (MA) use among heterosexual MA users. The FASTLANE study provided cross-sectional data collected by audio computer-assisted self-interview (ACASI) between June 2001 and August 2004 from 451 HIV-negative MA users in San Diego, California, USA who had engaged in unprotected sex and used MA in the previous two months. The study sample was 67.8% male, 49.4% Caucasian, 26.8% African-American, and 12.8% Hispanic with a mean age of 36.6 years; 183 (40.5%) reported binge use in the past 2 months. Compared with non-binge users, binge users of MA were more likely to report risky drug use and sex behaviors and differed in motivations to initiate and currently use MA. The final logistic regression model for binge use included more days of MA use in the last month, ever treated for MA use, injection drug use, higher Beck Depression Inventory score, "experimentation" as a motivation for initiating MA use, and engaging in sex marathons while high on MA. HIV prevention efforts should differentiate and address these differences in motivations for MA use and the associated HIV-risk sex and drug use behaviors as key targets for effective intervention.
Mc Conville, Christopher; Major, Ian; Friend, David R; Clark, Meredith R; Woolfson, A David; Malcolm, R Karl
2012-05-01
Vaginal rings are currently being investigated for delivery of HIV microbicides. However, vaginal rings are currently manufactured form hydrophobic polymers such as silicone elastomer and polyethylene vinyl acetate (PEVA), which do not permit release of hydrophilic microbicides such as the nucleotide reverse transcriptase inhibitor tenofovir. Biodegradable polymers such as polylactide (PLA) may help increase release rates by controlling polymer degradation rather than diffusion of the drug through the polymer. However, biodegradable polymers have limited flexibility making them unsuitable for use in the manufacture of vaginal rings. This study demonstrates that by blending PLA and PEVA together it is possible to achieve a blend that has flexibility similar to native PEVA but also allows for the release of tenofovir. Copyright © 2011 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Mineo, Hirobumi; Fujimura, Yuichi
2015-06-01
We propose an ultrafast quantum switching method of π-electron rotations, which are switched among four rotational patterns in a nonplanar chiral aromatic molecule (P)-2,2’- biphenol and perform the sequential switching among four rotational patterns which are performed by the overlapped pump-dump laser pulses. Coherent π-electron dynamics are generated by applying the linearly polarized UV pulse laser to create a pair of coherent quasidegenerated excited states. We also plot the time-dependent π-electron ring current, and discussed ring current transfer between two aromatic rings.
Social networks and alcohol use among older adults: a comparison with middle-aged adults.
Kim, Seungyoun; Spilman, Samantha L; Liao, Diana H; Sacco, Paul; Moore, Alison A
2018-04-01
This study compared the association between social networks and alcohol consumption among middle-aged (MA) and older adults (OA) to better understand the nature of the relationship between those two factors among OA and MA. We examined Wave 2 of the National Epidemiologic Survey on Alcohol and Related Conditions. Current drinkers aged over 50 were subdivided into two age groups: MA (50-64, n = 5214) and OA (65 and older, n = 3070). Each age group was stratified into drinking levels (low-risk vs. at-risk) based on alcohol consumption. The size and diversity of social networks were measured. Logistic regression models were used to examine age differences in the association between the social networks (size and diversity) and the probability of at-risk drinking among two age groups. A significant association between the social networks diversity and lower odds of at-risk drinking was found among MA and OA. However, the relationship between the diversity of social networks and the likelihood of at-risk drinking was weaker for OA than for MA. The association between social networks size and at-risk drinking was not significant among MA and OA. The current study suggests that the association between social networks diversity and alcohol use among OA differs from the association among MA, and few social networks were associated with alcohol use among OA. In the future, research should consider an in-depth exploration of the nature of social networks and alcohol consumption by using longitudinal designs and advanced methods of exploring drinking networks.
Social networks and alcohol use among older adults: a comparison with middle-aged adults
Kim, Seungyoun; Spilman, Samantha L.; Liao, Diana H.; Sacco, Paul; Moore, Alison A.
2017-01-01
Objectives This study compared the association between social networks and alcohol consumption among middle-aged (MA) and older adults (OA) to better understand the nature of the relationship between those two factors among OA and MA. Method We examined Wave 2 of the National Epidemiologic Survey on Alcohol and Related Conditions. Current drinkers aged over 50 were subdivided into two age groups: MA (50–64, n = 5214) and OA (65 and older, n = 3070). Each age group was stratified into drinking levels (low-risk vs. at-risk) based on alcohol consumption. The size and diversity of social networks were measured. Logistic regression models were used to examine age differences in the association between the social networks (size and diversity) and the probability of at-risk drinking among two age groups. Results A significant association between the social networks diversity and lower odds of at-risk drinking was found among MA and OA. However, the relationship between the diversity of social networks and the likelihood of at-risk drinking was weaker for OA than for MA. The association between social networks size and at-risk drinking was not significant among MA and OA. Conclusion The current study suggests that the association between social networks diversity and alcohol use among OA differs from the association among MA, and few social networks were associated with alcohol use among OA. In the future, research should consider an in-depth exploration of the nature of social networks and alcohol consumption by using longitudinal designs and advanced methods of exploring drinking networks. PMID:28006983
ULF Waves in the Earth's Inner Magnetosphere: Role in Radiation Belt and Ring Current Dynamics
NASA Astrophysics Data System (ADS)
Mann, I. R.; Murphy, K. R.; Rae, J.; Claudepierre, S. G.; Fennell, J. F.; Baker, D. N.; Reeves, G. D.; Spence, H. E.; Ozeke, L.; Milling, D. K.
2013-05-01
Ultra-low frequency (ULF) waves in the Pc4-5 band can be excited in the magnetosphere by the solar wind. Much recent work has shown how ULF wave power is strongly correlated with solar wind speed. However, little attention has been paid the dynamics of ULF wave power penetration onto low L-shells in the inner magnetosphere. We use more than a solar cycle of ULF wave data, derived from ground-based magnetometer networks, to examine this ULF wave power penetration and its dependence on solar wind and geomagnetic activity indices. In time domain data, we show very clearly that dayside ULF wave power, spanning more than 4 orders of magnitude, follows solar wind speed variations throughout the whole solar cycle - during periods of sporadic solar maximum ICMEs, during declining phase fast solar wind streams, and at solar minimum, alike. We also show that time domain ULF wave power increases during magnetic storms activations, and significantly demonstrate that a deeper ULF wave power penetration into the inner magnetosphere occurs during larger negative excursions in Dst. We discuss potential explanations for this low-L ULF wave power penetration, including the role of plasma mass density (such as during plasmaspheric erosion), or ring current ion instabilities during near-Earth ring current penetration. Interestingly, we also show that both ULF wave power and SAMPEX MeV electron flux show a remarkable similarity in their penetration to low-L, which suggests that ULF wave power penetration may be important for understanding and explaining radiation belt dynamics. Moreover, the correlation of ULF wave power with Dst, which peaks at one day lag, suggests the ULF waves might also be important for the inward transport of ions into the ring current. Current ring current models, which exclude long period ULF wave transport, under-estimate the ring current during fast solar wind streams which is consistent with a potential role for ULF waves in ring current energisation. Finally, the combination of data from ground arrays such as CARISMA and the contemporaneous operation of the NASA Van Allen Probes mission offers an excellent basis for understanding this cross-energy plasma coupling which spans more than 6 orders of magnitude in energy; we present an initial example of ULF-wave particle interaction using early mission data. This work has received funding from the European Union under the Seventh Framework Programme (FP7-Space) under grant agreement n 284520 for the MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Energization and Loss) collaborative research project.
Scientific Achievements of Global ENA Imaging and Future Outlook
NASA Astrophysics Data System (ADS)
Brandt, P. C.; Stephens, G. K.; Hsieh, S. Y. W.; Demajistre, R.; Gkioulidou, M.
2017-12-01
Energetic Neutral Atom (ENA) imaging is the only technique that can capture the instantaneous global state of energetic ion distributions in planetary magnetospheres and from the heliosheath. In particular at Earth, ENA imaging has been used to diagnose the morphology and dynamics of the ring current and plasma sheet down to several minutes time resolution and is therefore a critical tool to validate global ring current physics models. However, this requires a detailed understanding for how ENAs are produced from the ring current and inversion techniques that are thoroughly validated against in-situ measurements. To date, several missions have carried out planetary and heliospheric ENA imaging including Cassini, JUICE, IBEX of the heliosphere, and POLAR, Astrid-1, Double Star, TWINS and IMAGE of the terrestrial magnetosphere. Because of their path-finding successes, a future global-imaging mission concept, MEDICI, has been recommended in the Heliophysics Decadal Survey. Its core mission consists of two satellites in one circular, near-polar orbit beyond the radiation belts at around 8 RE, with ENA, EUV and FUV cameras. This recommendation has driven the definition of smaller mission concepts that address specific science aspects of the MEDICI concept. In this presentation, we review the past scientific achievements of ENA imaging with a focus on the terrestrial magnetosphere from primarily the NASA IMAGE and the TWINS missions. The highlighted achievements include the storm, sub-storm and quiet-time morphology, dynamics and pitch-angle distributions of the ring current, global differential acceleration of protons versus O+ ions, the structure of the global electrical current systems associated with the plasma pressure of protons and O+ ions up to around 200 keV, and the relation between ring current and plasmasphere. We discuss the need for future global observations of the ring current, plasma sheet and magnetosheath ion distributions based and derive their measurement requirements, of which high-angular resolution (≤2˚) is critical. A significant aspect of the future science definition is the stability and accessibility of inversion algorithms that retrieve the 3D distribution from the 2D ENA images, that will also be discussed.
Geomagnetic storms, the Dst ring-current myth and lognormal distributions
Campbell, W.H.
1996-01-01
The definition of geomagnetic storms dates back to the turn of the century when researchers recognized the unique shape of the H-component field change upon averaging storms recorded at low latitude observatories. A generally accepted modeling of the storm field sources as a magnetospheric ring current was settled about 30 years ago at the start of space exploration and the discovery of the Van Allen belt of particles encircling the Earth. The Dst global 'ring-current' index of geomagnetic disturbances, formulated in that period, is still taken to be the definitive representation for geomagnetic storms. Dst indices, or data from many world observatories processed in a fashion paralleling the index, are used widely by researchers relying on the assumption of such a magnetospheric current-ring depiction. Recent in situ measurements by satellites passing through the ring-current region and computations with disturbed magnetosphere models show that the Dst storm is not solely a main-phase to decay-phase, growth to disintegration, of a massive current encircling the Earth. Although a ring current certainly exists during a storm, there are many other field contributions at the middle-and low-latitude observatories that are summed to show the 'storm' characteristic behavior in Dst at these observatories. One characteristic of the storm field form at middle and low latitudes is that Dst exhibits a lognormal distribution shape when plotted as the hourly value amplitude in each time range. Such distributions, common in nature, arise when there are many contributors to a measurement or when the measurement is a result of a connected series of statistical processes. The amplitude-time displays of Dst are thought to occur because the many time-series processes that are added to form Dst all have their own characteristic distribution in time. By transforming the Dst time display into the equivalent normal distribution, it is shown that a storm recovery can be predicted with remarkable accuracy from measurements made during the Dst growth phase. In the lognormal formulation, the mean, standard deviation and field count within standard deviation limits become definitive Dst storm parameters.
High power single mode 980 nm AlGaInAs/AlGaAs quantum well lasers with a very low threshold current
NASA Astrophysics Data System (ADS)
Zhen, Dong; Cuiluan, Wang; Hongqi, Jing; Suping, Liu; Xiaoyu, Ma
2013-11-01
To achieve low threshold current as well as high single mode output power, a graded index separate confinement heterostructure (GRIN-SCH) AlGaInAs/AlGaAs quantum well laser with an optimized ridge waveguide was fabricated. The threshold current was reduced to 8 mA. An output power of 76 mW was achieved at 100 mA current at room temperature, with a slope efficiency of 0.83 W/A and a horizon divergent angle of 6.3°. The maximum single mode output power of the device reached as high as 450 mW.
Modelling and simulation of a thermally induced optical transparency in a dual micro-ring resonator
2017-01-01
This paper introduces the simulation and modelling of a novel dual micro-ring resonator. The geometric configuration of the resonators, and the implementation of a simulated broadband excitation source, results in the realization of optical transparencies in the combined through port output spectrum. The 130 nm silicon on insulator rib fabrication process is adopted for the simulation of the dual-ring configuration. Two titanium nitride heaters are positioned over the coupling regions of the resonators, which can be operated independently, to control the spectral position of the optical transparency. A third heater, centrally located above the dual resonator rings, can be used to red shift the entire spectrum to a required reference resonant wavelength. The free spectral range with no heater currents applied is 4.29 nm. For a simulated heater current of 7 mA (55.7 mW heater power) applied to one of the through coupling heaters, the optical transparency exhibits a red shift of 1.79 nm from the reference resonant wavelength. The ring-to-ring separation of approximately 900 nm means that it can be assumed that there is a zero ring-to-ring coupling field in this model. This novel arrangement has potential applications as a gas mass airflow sensor or a gas species identification sensor. PMID:28791167
Modelling and simulation of a thermally induced optical transparency in a dual micro-ring resonator.
Lydiate, Joseph
2017-07-01
This paper introduces the simulation and modelling of a novel dual micro-ring resonator. The geometric configuration of the resonators, and the implementation of a simulated broadband excitation source, results in the realization of optical transparencies in the combined through port output spectrum. The 130 nm silicon on insulator rib fabrication process is adopted for the simulation of the dual-ring configuration. Two titanium nitride heaters are positioned over the coupling regions of the resonators, which can be operated independently, to control the spectral position of the optical transparency. A third heater, centrally located above the dual resonator rings, can be used to red shift the entire spectrum to a required reference resonant wavelength. The free spectral range with no heater currents applied is 4.29 nm. For a simulated heater current of 7 mA (55.7 mW heater power) applied to one of the through coupling heaters, the optical transparency exhibits a red shift of 1.79 nm from the reference resonant wavelength. The ring-to-ring separation of approximately 900 nm means that it can be assumed that there is a zero ring-to-ring coupling field in this model. This novel arrangement has potential applications as a gas mass airflow sensor or a gas species identification sensor.
Origin of Saturn's rings and inner moons by mass removal from a lost Titan-sized satellite.
Canup, Robin M
2010-12-16
The origin of Saturn's rings has not been adequately explained. The current rings are more than 90 to 95 per cent water ice, which implies that initially they were almost pure ice because they are continually polluted by rocky meteoroids. In contrast, a half-rock, half-ice mixture (similar to the composition of many of the satellites in the outer Solar System) would generally be expected. Previous ring origin theories invoke the collisional disruption of a small moon, or the tidal disruption of a comet during a close passage by Saturn. These models are improbable and/or struggle to account for basic properties of the rings, including their icy composition. Saturn has only one large satellite, Titan, whereas Jupiter has four large satellites; additional large satellites probably existed originally but were lost as they spiralled into Saturn. Here I report numerical simulations of the tidal removal of mass from a differentiated, Titan-sized satellite as it migrates inward towards Saturn. Planetary tidal forces preferentially strip material from the satellite's outer icy layers, while its rocky core remains intact and is lost to collision with the planet. The result is a pure ice ring much more massive than Saturn's current rings. As the ring evolves, its mass decreases and icy moons are spawned from its outer edge with estimated masses consistent with Saturn's ice-rich moons interior to and including Tethys.
Tawfik, Wael Z; Lee, June Key
2018-03-01
The influence of temperature on the characteristics of a GaN-based 460-nm light-emitting diode (LED) prepared on sapphire substrate was simulated using the SiLENSe and SpeCLED software programs. High temperatures impose negative effects on the performance of GaN-based LEDs. As the temperature increases, electrons acquire higher thermal energies, and therefore LEDs may suffer more from high-current loss mechanisms, which in turn causes a reduction in the radiative recombination rate in the active region. The internal quantum efficiency was reduced by about 24% at a current density of 35 A/cm2, and the electroluminescence spectral peak wavelength was redshifted. The LED operated at 260 K and exhibited its highest light output power of ~317.5 mW at a maximum injection current of 350 mA, compared to 212.2 mW for an LED operated at 400 K. However, increasing temperature does not cause a droop in efficiency under high injection conditions. The peak efficiency at 1 mA of injection current decreases more rapidly by ~15% with increasing temperature from 260 to 400 K than the efficiency at high injection current of 350 mA by ~11%.
On the propagation and decay of North Brazil Current rings
NASA Astrophysics Data System (ADS)
Jochumsen, Kerstin; Rhein, Monika; Hüttl-Kabus, Sabine; BöNing, Claus W.
2010-10-01
Near the western boundary of the tropical North Atlantic, where the North Brazil Current (NBC) retroflects into the North Equatorial Countercurrent, large anticyclonic rings are shed. After separating from the retroflection region, the so-called NBC rings travel northwestward along the Brazilian coast, until they reach the island chain of the Lesser Antilles and disintegrate. These rings contribute substantially to the upper limb return flow of the Atlantic Meridional Overturning Circulation by carrying South Atlantic Water into the northern subtropical gyre. Their relevance for the northward transport of South Atlantic Water depends on the frequency of their generation as well as on their horizontal and vertical structure. The ring shedding and propagation and the complex interaction of the rings with the Lesser Antilles are investigated in the ? Family of Linked Atlantic Model Experiments (FLAME) model. The ring properties simulated in FLAME reach the upper limit of the observed rings in diameter and agree with recent observations on seasonal variability, which indicates a maximum shedding during the first half of the year. When the rings reach the shallow topography of the Lesser Antilles, they are trapped by the island triangle of St. Lucia, Barbados and Tobago and interact with the island chain. The model provides a resolution that is capable of resolving the complex topographic conditions at the islands and illuminates various possible fates for the water contained in the rings. It also reproduces laboratory experiments that indicate that both cyclones and anticyclones are formed after a ring passes through a topographic gap. Trajectories of artificial floats, which were inserted into the modeled velocity field, are used to investigate the pathways of the ring cores and their fate after they encounter the Lesser Antilles. The majority of the floats entered the Caribbean, while the northward Atlantic pathway was found to be of minor importance. No prominent pathway was found east of Barbados, where a ring could avoid the interaction with the islands and migrate toward the northern Lesser Antilles undisturbed.
Study of the Martian Subsurface with a Fiber Optics Spectrometer: the Ma_Miss Experiment
NASA Astrophysics Data System (ADS)
Coradini, A.; de Sanctis, M. C.; Ammannito, E.; Boccaccini, A.; Battistelli, E.; Capanni, A.
2009-04-01
In this presentation is described the investigation that we intend to do with a small imaging spectrometer that will be inserted in the drill of the Exomars- Pasteur rover. This spectrometer is named Ma_miss (Mars Multispectral Imager for Subsurface Studies ). The Ma_Miss experiment is located in the drill ,that will be able to make a hole in the Mars soil and rock up to 2 m. Ma_Miss includes the optical head of the spectrometer, a lamp to illuminate the borehole walls, and the optical fiber that brings the signal to the spectrometer. The multispectral images are acquired by means of a sapphire window placed on the lateral wall of the drill tool, as close as possible to the drill head. The images are gathered by means of an optical fibre system and analyzed using the spectrometer. The Ma_Miss gathered light containing the scientific information is transferred to the array detector and electronics of the instrument by means of an optical rotary joint implemented in the roto-translation group of the drill, as shown in the next pictures In the figure is schematically represented the Ma_Miss- Dibs architecture. This experiment will be extremely valuable since it will allow, for the first time, to have an idea of the mineralogical composition of the Martian subsurface and to study freshly cut rocks. The study of surface and subsurface mineralogy of Martian soil and rocks is the key for understanding the chemico-physical processes that led to the formation and evolution of the Red Planet. The history of the water and other volatiles, as well as the signatures of weathering processes are important to understand present and past environmental conditions associated with the possibility of life. Surface samples are highly influenced by exogenous processes (weathering, erosion, sedimentation, impact) that alter their original properties. So, the analyses of uncontaminated samples by means of instrumented drills and in situ analytic stations are the key for unambiguous interpretation of the original environment that leading to the formation of rocks. Analysis of subsurface layers is the only approach that warranties measurements on samples close to their original composition. The upper few meters of the surface materials on Mars play a crucial role in its history, providing important constraints geologic, hydrologic, and climatic to the history of the planet. Drilling into the near-surface crust will provide an opportunity to assess variations in composition, texture, stratification, unconformities, etc. that will help define its lithology and structure, and provide important clues regarding its origin and subsequent evolution. The subsurface material can give information on the evolution of surface sediments (erosion, transport, deposition), on the relation between sediments and bedrock, on the relation between environmental conditions and surface processes permitting to "investigate planetary processes that influence habitability." Investigation of mineralogical composition of near-surface geological materials is needed to fully characterize the geology of the regions that will be visited by the Rover at all appropriate spatial scales, and to interpret the processes that have formed and modified rocks and regolith. Subsurface access, sampling material below the oxidized layer, can be the key to "assess the biological potential of the target environment (past or present)". To date, we have direct observations relative only to the Martian surface. Little is known about the characteristics of the first subsurface layers. The possibility to sample subsurface materials to be delivered to other instruments, and to record the context of the sampled soil doing in situ borehole mineralogical analysis, is fundamental to search for traces of past or present life on Mars. The spectrometer observes a single point target, having 0.1 mm diameter, on the borehole wall surface. Depending on the surface features we are interested in, the observation window can scan the borehole's surface by means of drill tip rotation or translation. When the drill is translated, a "Column Image" is acquired. This translation step can be equal to the observation spot (0.1 mm). The "Ring Image" can be obtained by rotation of the drill tip; a rotation step of about 0.5Ë (corresponding to 720 acquisitions in the ring) is sufficient to assure the full coverage of the ring.
The effects of normal current density and the plasma spatial structuring in argon DBDs
NASA Astrophysics Data System (ADS)
Shkurenkov, I. A.; Mankelevich, Y. A.; Rakhimova, T. V.
2011-01-01
This paper presents the results of theoretical studies of high-pressure dielectric barrier discharges (DBD) in argon. Two different DBDs at the megahertz and the kilohertz power frequency range were simulated. The effect of normal current density was obtained in the numerical model for both types of the discharge. The discharge of megahertz range was uniform over the radius. The increase in the discharge current is accompanied by increase in the discharge area. The discharge of kilohertz range is not uniform over the radius. The concentric ring formation was observed during calculations. The increase in the discharge current occurs due to increase in the number of rings and as a result in the discharge area. The developed 2D model is able to describe only the first stage of the filament formation - the formation of concentric plasma rings. The filament formation starts at the edge of the current channel and spreads to its centre. Both the effect of normal current density and the filaments formation are caused by the nonstationarity at the current channel boundary.
NASA Astrophysics Data System (ADS)
Leybourne, Bruce; Smoot, Christian; Longhinos, Biju
2014-05-01
Interplanetary Magnetic Field (IMF) coupling to south polar magnetic ring currents transfers induction energy to the Southern Geostream ringing Antarctica and underlying its encircling mid-ocean ridge structure. Magnetic reconnection between the southward interplanetary magnetic field and the magnetic field of the earth is the primary energy transfer mechanism between the solar wind and the magnetosphere. Induced telluric currents focused within joule spikes along Geostreams heat the southern Pacific. Alignment of the Australian Antarctic Discordance to other tectonic vortexes along the Western Pacific Rim, provide electrical connections to Earths core that modulate global telluric currents. The Banda Sea Triple Junction, a mantle vortex north of Australia, and the Lake Baikal Continental Rift vortex in the northern hemisphere modulate atmospheric Jetstream patterns gravitationally linked to internal density oscillations induced by these telluric currents. These telluric currents are driven by solar magnetic power, rotation and orbital dynamics. A solar rotation 40 day power spectrum in polarity controls north-south migration of earthquakes along the Western Pacific Rim and manifest as the Madden Julian Oscillation a well-documented climate cycle. Solar plasma turbulence cycles related to Hale flares trigger El Nino Southern Oscillations (ENSO's), while solar magnetic field strength frequencies dominate global warming and cooling trends indexed to the Pacific Decadal Oscillation. These Pacific climate anomalies are solar-electro-tectonically modulated via coupling to tropical geostream vortex streets. Particularly the section along the Central Pacific Megatrend connecting the Banda Sea Triple Junction (up welling mantle vortex) north of Australia with the Easter Island & Juan Fernandez twin rotating micro-plates (twin down welling mantle vortexes) along the East Pacific Rise modulating ENSO. Solar eruptions also enhance the equatorial ring current located approximately at the boundary of the plasmasphere and the outer magnetosphere. Induction power of geo-magnetic storms, are linked to ring current strength, and depend on the speed of solar eruptions, along with the dynamic pressure, strength and orientation of the IMF.
11.72 sq cm SiC Wafer-scale Interconnected 64 kA PiN Diode
2012-01-30
drop of 10.3 V. The dissipated energy was 382 J and the calculated action exceeded 1.7 MA2 -s. Preliminary development of high voltage interconnection...scale diode action (surge current integral), a key reliability parameter, exceeded 1.7 MA2 -s. Figure 6: The wafer-scale interconnected diode...scale diode was 382 J and the calculated action exceeded 1.7 MA2 -sec. High voltage operation of PiN diodes, thyristors, and other semiconductor
Auroral electrojets and evening sector electron dropouts at synchronous orbit
NASA Technical Reports Server (NTRS)
Erickson, K. N.; Winckler, J. R.
1973-01-01
Evidence is presented in support of the concept that, during magnetospheric substorms, ionospheric auroral electrojet currents are directly coupled to the proton partial ring current in the outer magnetosphere. It has been found that for sufficiently isolated substorms the timing of the start of the electron dropout and of its maximum depression is in good agreement with the start and maximum of electrojet activity as indicated by the auroral electrojet index. This correlation suggests a direct coupling between the electrojet currents and the proton partial ring current.
Ocean eddy structure by satellite radar altimetry required for iceberg towing
Campbell, W.J.; Cheney, R.E.; Marsh, J.G.; Mognard, N.M.
1980-01-01
Models for the towing of large tabular icebergs give towing speeds of 0.5 knots to 1.0 knots relative to the ambient near surface current. Recent oceanographic research indicates that the world oceans are not principally composed of large steady-state current systems, like the Gulf Stream, but that most of the ocean momentum is probably involved in intense rings, formed by meanders of the large streams, and in mid-ocean eddies. These rings and eddies have typical dimensions on the order of 200 km with dynamic height anomalies across them of tens-of-centimeters to a meter. They migrate at speeds on the order of a few cm/sec. Current velocities as great as 3 knots have been observed in rings, and currents of 1 knot are common. Thus, the successful towing of icebergs is dependent on the ability to locate, measure, and track ocean rings and eddies. To accomplish this systematically on synoptic scales appears to be possible only by using satelliteborne radar altimeters. Ocean current and eddy structures as observed by the radar altimeters on the GEOS-3 and Seasat-1 satellites are presented and compared. Several satellite programs presently being planned call for flying radar altimeters in polar or near-polar orbits in the mid-1980 time frame. Thus, by the time tows of large icebergs will probably be attempted, it is possible synoptic observations of ocean rings and eddies which can be used to ascertain their location, size, intensity, and translation velocity will be a reality. ?? 1980.
Intensity limits of the PSI Injector II cyclotron
NASA Astrophysics Data System (ADS)
Kolano, A.; Adelmann, A.; Barlow, R.; Baumgarten, C.
2018-03-01
We investigate limits on the current of the PSI Injector II high intensity separate-sector isochronous cyclotron, in its present configuration and after a proposed upgrade. Accelerator Driven Subcritical Reactors, neutron and neutrino experiments, and medical isotope production all benefit from increases in current, even at the ∼ 10% level: the PSI cyclotrons provide relevant experience. As space charge dominates at low beam energy, the injector is critical. Understanding space charge effects and halo formation through detailed numerical modelling gives clues on how to maximise the extracted current. Simulation of a space-charge dominated low energy high intensity (9.5 mA DC) machine, with a complex collimator set up in the central region shaping the bunch, is not trivial. We use the OPAL code, a tool for charged-particle optics calculations in large accelerator structures and beam lines, including 3D space charge. We have a precise model of the present (production) Injector II, operating at 2.2 mA current. A simple model of the proposed future (upgraded) configuration of the cyclotron is also investigated. We estimate intensity limits based on the developed models, supported by fitted scaling laws and measurements. We have been able to perform more detailed analysis of the bunch parameters and halo development than any previous study. Optimisation techniques enable better matching of the simulation set-up with Injector II parameters and measurements. We show that in the production configuration the beam current scales to the power of three with the beam size. However, at higher intensities, 4th power scaling is a better fit, setting the limit of approximately 3 mA. Currents of over 5 mA, higher than have been achieved to date, can be produced if the collimation scheme is adjusted.
Switching Characteristics of a 4H-SiC Based Bipolar Junction Transistor to 200 C
NASA Technical Reports Server (NTRS)
Niedra, Janis M.
2006-01-01
Static curves and resistive load switching characteristics of a 600 V, 4 A rated, SiC-based NPN bipolar power transistor (BJT) were observed at selected temperatures from room to 200 C. All testing was done in a pulse mode at low duty cycle (approx.0.1 percent). Turn-on was driven by an adjustable base current pulse and turn-off was accelerated by a negative base voltage pulse of 7 V. These base drive signals were implemented by 850 V, gated power pulsers, having rise-times of roughly 10 ns, or less. Base charge sweep-out with a 7 V negative pulse did not produce the large reverse base current pulse seen in a comparably rated Si-based BJT. This may be due to a very low charge storage time. The decay of the collector current was more linear than its exponential-like rise. Switching observations were done at base drive currents (I(sub B)) up to 400 mA and collector currents (I(sub C)) up to 4 A, using a 100 Omega non-inductive load. At I(sub B) = 400 mA and I(sub C) = 4 A, turn-on times typically varied from 80 to 94 ns, over temperatures from 23 to 200 C. As expected, lowering the base drive greatly extended the turn-on time. Similarly, decreasing the load current to I(sub C) = 1 A with I(sub B) = 400 mA produced turn-on times as short as 34 ns. Over the 23 to 200 C range, with I(sub B) = 400 mA and I(sub C) = 4 A, turn-off times were in the range of 72 to 84 ns with the 7 V sweep-out.
Laser diodes using InAlGaAs multiple quantum wells intermixed to varying extent
NASA Astrophysics Data System (ADS)
Alahmadi, Yousef; LiKam Wa, Patrick
2018-02-01
Bandgap-modified InAlGaAs/InP multi-quantum well lasers have been demonstrated using an impurity-free disordering technique. Varying degrees of disordering are achieved by rapidly annealing silicon nitride-capped samples at temperatures ranging from 730°C to 830°C for 20 s. The lasing wavelength shift resulting from the intermixing, ranges between 28.2 nm and 147.2 nm. As the annealing temperature is increased, the lasing threshold currents of the fabricated waveguide lasers increase from 25mA to 45mA, while the slope efficiency decrease from 0.101 W/A to 0.068 W/A, compared to a threshold current of 27.8 mA and a slope efficiency of 0.121 W/A for an as-grown laser diode.
Kinetic Simulation and Energetic Neutral Atom Imaging of the Magnetosphere
NASA Technical Reports Server (NTRS)
Fok, Mei-Ching H.
2011-01-01
Advanced simulation tools and measurement techniques have been developed to study the dynamic magnetosphere and its response to drivers in the solar wind. The Comprehensive Ring Current Model (CRCM) is a kinetic code that solves the 3D distribution in space, energy and pitch-angle information of energetic ions and electrons. Energetic Neutral Atom (ENA) imagers have been carried in past and current satellite missions. Global morphology of energetic ions were revealed by the observed ENA images. We have combined simulation and ENA analysis techniques to study the development of ring current ions during magnetic storms and substorms. We identify the timing and location of particle injection and loss. We examine the evolution of ion energy and pitch-angle distribution during different phases of a storm. In this talk we will discuss the findings from our ring current studies and how our simulation and ENA analysis tools can be applied to the upcoming TRIO-CINAMA mission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kline, Josh; /SLAC
2006-08-28
The testing of the upgrade prototype for the bunch current monitors (BCMs) in the PEP-II storage rings at the Stanford Linear Accelerator Center (SLAC) is the topic of this paper. Bunch current monitors are used to measure the charge in the electron/positron bunches traveling in particle storage rings. The BCMs in the PEP-II storage rings need to be upgraded because components of the current system have failed and are known to be failure prone with age, and several of the integrated chips are no longer produced making repairs difficult if not impossible. The main upgrade is replacing twelve old (1995)more » field programmable gate arrays (FPGAs) with a single Virtex II FPGA. The prototype was tested using computer synthesis tools, a commercial signal generator, and a fast pulse generator.« less
Decadal Survey: Planetary Rings Panel
NASA Astrophysics Data System (ADS)
Gordon, M. K.; Cuzzi, J. N.; Lissauer, J. J.; Poulet, F.; Brahic, A.; Charnoz, S.; Ferrari, C.; Burns, J. A.; Nicholson, P. D.; Durisen, R. H.; Rappaport, N. J.; Spilker, L. J.; Yanamandra-Fisher, P.; Bosh, A. S.; Olkin, C.; Larson, S. M.; Graps, A. L.; Krueger, H.; Black, G. J.; Festou, M.; Karjalainen, R.; Salo, H. J.; Murray, C. D.; Showalter, M. R.; Dones, L.; Levison, H. F.; Namouni, F.; Araki, S.; Lewis, M. C.; Brooks, S.; Colwell, J. E.; Esposito, L. W.; Horanyi, M.; Stewart, G. R.; Krivov, A.; Schmidt, J.; Spahn, F.; Hamilton, D. P.; Giuliatti-Winter, S.; French, R. G.
2001-11-01
The National Research Council's Committee on Planetary and Lunar Exploration(COMPLEX) met earlier this year to begin the organization of a major activity, "A New Strategy for Solar System Exploration." Several members of the planetary rings community formed an ad hoc panel to discuss the current state and future prospects for the study of planetary rings. In this paper we summarize fundamental questions of ring science, list the key science questions expected to occupy the planetary rings community for the decade 2003-2013, outline the initiatives, missions, and other supporting activities needed to address those questions, and recommend priorities.
Divertor for use in fusion reactors
Christensen, Uffe R.
1979-01-01
A poloidal divertor for a toroidal plasma column ring having a set of poloidal coils co-axial with the plasma ring for providing a space for a thick shielding blanket close to the plasma along the entire length of the plasma ring cross section and all the way around the axis of rotation of the plasma ring. The poloidal coils of this invention also provide a stagnation point on the inside of the toroidal plasma column ring, gently curving field lines for vertical stability, an initial plasma current, and the shaping of the field lines of a separatrix up and around the shielding blanket.
Inner Magnetosphere Modeling at the CCMC: Ring Current, Radiation Belt and Magnetic Field Mapping
NASA Astrophysics Data System (ADS)
Rastaetter, L.; Mendoza, A. M.; Chulaki, A.; Kuznetsova, M. M.; Zheng, Y.
2013-12-01
Modeling of the inner magnetosphere has entered center stage with the launch of the Van Allen Probes (RBSP) in 2012. The Community Coordinated Modeling Center (CCMC) has drastically improved its offerings of inner magnetosphere models that cover energetic particles in the Earth's ring current and radiation belts. Models added to the CCMC include the stand-alone Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model by M.C. Fok, the Rice Convection Model (RCM) by R. Wolf and S. Sazykin and numerous versions of the Tsyganenko magnetic field model (T89, T96, T01quiet, TS05). These models join the LANL* model by Y. Yu hat was offered for instant run earlier in the year. In addition to these stand-alone models, the Comprehensive Ring Current Model (CRCM) by M.C. Fok and N. Buzulukova joined as a component of the Space Weather Modeling Framework (SWMF) in the magnetosphere model run-on-request category. We present modeling results of the ring current and radiation belt models and demonstrate tracking of satellites such as RBSP. Calculations using the magnetic field models include mappings to the magnetic equator or to minimum-B positions and the determination of foot points in the ionosphere.
The UAH Spinning Terrella Experiment: A Laboratory Analog for the Earth's Magnetosphere
NASA Technical Reports Server (NTRS)
Sheldon, R. B.; Gallagher, D. L.; Craven, P. D.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
The UAH Spinning Terrella Experiment has been modified to include the effect of a second magnet. This is a simple laboratory demonstration of the well-known double-dipole approximation to the Earth's magnetosphere. In addition, the magnet has been biassed $\\sim$-400V which generates a DC glow discharge and traps it in a ring current around the magnet. This ring current is easily imaged with a digital camera and illustrates several significant topological properties of a dipole field. In particular, when the two dipoles are aligned, and therefore repel, they emulate a northward IMF Bz magnetosphere. Such a geometry traps plasma in the high latitude cusps as can be clearly seen in the movies. Likewise, when the two magnets are anti-aligned, they emulate a southward IMF Bz magnetosphere with direct feeding of plasma through the x-line. We present evidence for trapping and heating of the plasma, comparing the dipole-trapped ring current to the cusp-trapped population. We also present a peculiar asymmetric ring current produced in by the plasma at low plasma densities. We discuss the similarities and dissimilarities of the laboratory analog to the collisionless Earth plasma, and implications for the interpretation of IMAGE data.
Non-invasive diagnostics of ion beams in strong toroidal magnetic fields with standard CMOS cameras
NASA Astrophysics Data System (ADS)
Ates, Adem; Ates, Yakup; Niebuhr, Heiko; Ratzinger, Ulrich
2018-01-01
A superconducting Figure-8 stellarator type magnetostatic Storage Ring (F8SR) is under investigation at the Institute for Applied Physics (IAP) at Goethe University Frankfurt. Besides numerical simulations on an optimized design for beam transport and injection a scaled down (0.6T) experiment with two 30°toroidal magnets is set up for further investigations. A great challenge is the development of a non-destructive, magnetically insensitive and flexible detector for local investigations of an ion beam propagating through the toroidal magnetostatic field. This paper introduces a new way of beam path measurement by residual gas monitoring. It uses a single board camera connected to a standard single board computer by a camera serial interface all placed inside the vacuum chamber. First experiments with one camera were done and in a next step two under 90 degree arranged cameras were installed. With the help of the two cameras which are moveable along the beam pipe the theoretical predictions are experimentally verified successfully. Previous experimental results have been confirmed. The transport of H+ and H2+ ion beams with energies of 7 keV and at beam currents of about 1 mA is investigated successfully.
Nocturnality in synapsids predates the origin of mammals by over 100 million years
Angielczyk, K. D.; Schmitz, L.
2014-01-01
Nocturnality is widespread among extant mammals and often considered the ancestral behavioural pattern for all mammals. However, mammals are nested within a larger clade, Synapsida, and non-mammalian synapsids comprise a rich phylogenetic, morphological and ecological diversity. Even though non-mammalian synapsids potentially could elucidate the early evolution of diel activity patterns and enrich the understanding of synapsid palaeobiology, data on their diel activity are currently unavailable. Using scleral ring and orbit dimensions, we demonstrate that nocturnal activity was not an innovation unique to mammals but a character that appeared much earlier in synapsid history, possibly several times independently. The 24 Carboniferous to Jurassic non-mammalian synapsid species in our sample featured eye morphologies consistent with all major diel activity patterns, with examples of nocturnality as old as the Late Carboniferous (ca 300 Ma). Carnivores such as Sphenacodon ferox and Dimetrodon milleri, but also the herbivorous cynodont Tritylodon longaevus were likely nocturnal, whereas most of the anomodont herbivores are reconstructed as diurnal. Recognizing the complexity of diel activity patterns in non-mammalian synapsids is an important step towards a more nuanced picture of the evolutionary history of behaviour in the synapsid clade. PMID:25186003
Kan, Bin; Feng, Huanran; Wan, Xiangjian; Liu, Feng; Ke, Xin; Wang, Yanbo; Wang, Yunchuang; Zhang, Hongtao; Li, Chenxi; Hou, Jianhui; Chen, Yongsheng
2017-04-05
A new nonfullerene small molecule with acceptor-donor-acceptor (A-D-A) structure, namely, NFBDT, based on a heptacyclic benzodi(cyclopentadithiophene) (FBDT) unit using benzo[1,2-b:4,5-b']dithiophene as the core unit, was designed and synthesized. Its absorption ability, energy levels, thermal stability, as well as photovoltaic performances were fully investigated. NFBDT exhibits a low optical bandgap of 1.56 eV resulting in wide and efficient absorption that covered the range from 600 to 800 nm, and suitable energy levels as an electron acceptor. With the widely used and successful wide bandgap polymer PBDB-T selected as the electron donor material, an optimized PCE of 10.42% was obtained for the PBDB-T:NFBDT-based device with an outstanding short-circuit current density of 17.85 mA cm -2 under AM 1.5G irradiation (100 mW cm -2 ), which is so far among the highest performance of NF-OSC devices. These results demonstrate that the BDT unit could also be applied for designing NF-acceptors, and the fused-ring benzodi(cyclopentadithiophene) unit is a prospective block for designing new NF-acceptors with excellent performance.
Safety parameter considerations of anodal transcranial Direct Current Stimulation in rats.
Jackson, Mark P; Truong, Dennis; Brownlow, Milene L; Wagner, Jessica A; McKinley, R Andy; Bikson, Marom; Jankord, Ryan
2017-08-01
A commonly referenced transcranial Direct Current Stimulation (tDCS) safety threshold derives from tDCS lesion studies in the rat and relies on electrode current density (and related electrode charge density) to support clinical guidelines. Concerns about the role of polarity (e.g. anodal tDCS), sub-lesion threshold injury (e.g. neuroinflammatory processes), and role of electrode montage across rodent and human studies support further investigation into animal models of tDCS safety. Thirty-two anesthetized rats received anodal tDCS between 0 and 5mA for 60min through one of three epicranial electrode montages. Tissue damage was evaluated using hemotoxylin and eosin (H&E) staining, Iba-1 immunohistochemistry, and computational brain current density modeling. Brain lesion occurred after anodal tDCS at and above 0.5mA using a 25.0mm 2 electrode (electrode current density: 20.0A/m 2 ). Lesion initially occurred using smaller 10.6mm 2 or 5.3mm 2 electrodes at 0.25mA (23.5A/m 2 ) and 0.5mA (94.2A/m 2 ), respectively. Histological damage was correlated with computational brain current density predictions. Changes in microglial phenotype occurred in higher stimulation groups. Lesions were observed using anodal tDCS at an electrode current density of 20.0A/m 2 , which is below the previously reported safety threshold of 142.9A/m 2 using cathodal tDCS. The lesion area is not simply predicted by electrode current density (and so not by charge density as duration was fixed); rather computational modeling suggests average brain current density as a better predictor for anodal tDCS. Nonetheless, under the assumption that rodent epicranial stimulation is a hypersensitive model, an electrode current density of 20.0A/m 2 represents a conservative threshold for clinical tDCS, which typically uses an electrode current density of 2A/m 2 when electrodes are placed on the skin (resulting in a lower brain current density). Copyright © 2017 Elsevier Inc. All rights reserved.
Type II GaSb quantum ring solar cells under concentrated sunlight.
Tsai, Che-Pin; Hsu, Shun-Chieh; Lin, Shih-Yen; Chang, Ching-Wen; Tu, Li-Wei; Chen, Kun-Cheng; Lay, Tsong-Sheng; Lin, Chien-chung
2014-03-10
A type II GaSb quantum ring solar cell is fabricated and measured under the concentrated sunlight. The external quantum efficiency confirms the extended absorption from the quantum rings at long wavelength coinciding with the photoluminescence results. The short-circuit current of the quantum ring devices is 5.1% to 9.9% more than the GaAs reference's under various concentrations. While the quantum ring solar cell does not exceed its GaAs counterpart in efficiency under one-sun, the recovery of the open-circuit voltages at higher concentration helps to reverse the situation. A slightly higher efficiency (10.31% vs. 10.29%) is reported for the quantum ring device against the GaAs one.
Channon, H A; Walker, P J; Kerr, M G; Baud, S R
2003-12-01
This study examined the effectiveness of a constant current, low voltage electrical stimulation system on improving pork quality when applied to pigs at 2 min post-exsanguination. A total of 48 female Duroc×Large White/Landrace pigs of 85-90 kg liveweight were randomly allocated immediately prior to slaughter to one of four constant current electrical stimulation treatments: control (no electrical stimulation), 50, 200 and 400 mA. Stimulation was applied to pig carcasses at 2 min post-exsanguination for 30 s. No differences (P>0.05) in WB shear force values, muscle lightness or PSE incidence of pork M. longissimus lumborum (LL) was found due to electrical stimulation treatment. Muscle pH of the LL muscle was lower (P<0.001) in carcasses in the 200 and 400 mA treatments compared to those from carcasses in both the 50 mA and control treatment groups, when measured at the various time points from 40 min to 8 h post-slaughter. Although carcasses stimulated with 200 and 400 mA had higher percentage drip loss (P<0.05) and purge (P<0.001), this was not found to impact WB shear force values, muscle lightness or PSE incidence.
NASA Astrophysics Data System (ADS)
Xu, Shixing; Cen, Dingcheng; Gao, Peibo; Tang, Huang; Bao, Zhihao
2018-03-01
Three-dimensional (3D) free-standing nanostructured materials have been proven to be one of the most promising electrodes for energy storage due to their enhanced electrochemical performance. And they are also widely studied for the wearable energy storage systems. In this work, interconnected V6O13 nanosheets were grown on the flexible carbonized textile (c-textile) via a seed-assisted hydrothermal method to form a 3D free-standing electrode for lithium-ion batteries (LIBs). The electrode exhibited a specific capacity of 170 mA h g-1 at a specific current of 300 mA g-1. With carbon nanotube (CNT) coating, its specific capacities further increased 12-40% at the various current rates. It could retain a reversible capacity of 130 mA h g-1, 74% of the initial capacity after 300 cycles at the specific current of 300 mA g-1. It outperformed most of the mixed-valence vanadium oxides. The improved electrochemical performance was ascribed to the synergistic effect of the 3D nanostructure of V6O13 for feasible Li+ diffusion and transport and highly conductive hierarchical conductive network formed by CNT and carbon fiber in c-textile.
Hendrich, C; Hüttmann, G; Vispo-Seara, J L; Houserek, S; Siebert, W E
2000-01-01
Photodynamic laser therapy has been shown to be a new method for the treatment of synovitis in various animal models. Its principle is the accumulation of a photosensitizing drug in the inflamed synovium which is destroyed by photoactivation of the drug. In the present animal study we demonstrate the effect of a second-generation photosensitizer and suggest a concept for light dosimetry within the joint. We used 38 inbred rabbits for the IgG-induced arthritis model; 2 mg/kg of the benzoporphyrin derivative monoacid ring-A (BPD-MA) Verteporfin were administered 3 h before irradiation, which was performed using a 690-nm diode laser coupled to quartz glass fiber with a cylinder diffusor tip at a total light energy of either 180 or 470 J. During irradiation specific fluorescence of BPD-MA was monitored using a spectroscopy unit. The effect of the photodynamic laser therapy was documented grossly and histologically after 1 week. Within the 470 J-group a complete necrosis of the inflamed synovium was observed. The bradytrophic structures of the joint, however, remained unchanged. Throughout the 180 J-group the extent of necrosis was minor. During irradiation the tissue fluorescence of BPD-MA showed a dose-dependent decrease. Using BPD-MA as a photosensitizer a highly selective and minimal invasive synoviorthesis can be performed. At a dose of 2 mg/kg the histological effect depends on the light dose. For optimum efficacy a total energy of 470 J seems favorable. Online fluorescence detection can be used to monitor the effect of light administration. For dosimetry therefore an online tissue fluorescence detection may represent a technical solution.
Lechuga, Thomas J.; Zhang, Hong-hai; Sheibani, Lili; Karim, Muntarin; Jia, Jason; Magness, Ronald R.; Rosenfeld, Charles R.
2015-01-01
Estrogens dramatically dilate numerous vascular beds with the greatest response in the uterus. Endogenous hydrogen sulfide (H2S) is a potent vasodilator and proangiogenic second messenger, which is synthesized from L-cysteine by cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE). We hypothesized that estrogen replacement therapy (ERT) selectively stimulates H2S biosynthesis in uterine artery (UA) and other systemic arteries. Intact and endothelium-denuded UA, mesenteric artery (MA), and carotid artery (CA) were obtained from ovariectomized nonpregnant ewes (n = 5/group) receiving vehicle or estradiol-17β replacement therapy (ERT). Total RNA and protein were extracted for measuring CBS and CSE, and H2S production was determined by the methylene blue assay. Paraffin-embedded UA rings were used to localize CBS and CSE proteins by immunofluorescence microscopy. ERT significantly stimulated CBS mRNA and protein without altering CSE mRNA or protein in intact and denuded UA. Quantitative immunofluorescence microscopic analyses showed CBS and CSE protein localization in endothelium and smooth muscle and confirmed that ERT stimulated CBS but not CSE protein expression in UA endothelium and smooth muscle. ERT also stimulated CBS, but not CSE, mRNA and protein expression in intact and denuded MA but not CA in ovariectomized ewes. Concomitantly, ERT stimulated UA and MA but not CA H2S production. ERT-stimulated UA H2S production was completely blocked by a specific CBS but not CSE inhibitor. Thus, ERT selectively stimulates UA and MA but not CA H2S biosynthesis by specifically up-regulating CBS expression, implicating a role of H2S in estrogen-induced vasodilation and postmenopausal women's health. PMID:25825818
Lechuga, Thomas J; Zhang, Hong-hai; Sheibani, Lili; Karim, Muntarin; Jia, Jason; Magness, Ronald R; Rosenfeld, Charles R; Chen, Dong-bao
2015-06-01
Estrogens dramatically dilate numerous vascular beds with the greatest response in the uterus. Endogenous hydrogen sulfide (H2S) is a potent vasodilator and proangiogenic second messenger, which is synthesized from L-cysteine by cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE). We hypothesized that estrogen replacement therapy (ERT) selectively stimulates H2S biosynthesis in uterine artery (UA) and other systemic arteries. Intact and endothelium-denuded UA, mesenteric artery (MA), and carotid artery (CA) were obtained from ovariectomized nonpregnant ewes (n = 5/group) receiving vehicle or estradiol-17β replacement therapy (ERT). Total RNA and protein were extracted for measuring CBS and CSE, and H2S production was determined by the methylene blue assay. Paraffin-embedded UA rings were used to localize CBS and CSE proteins by immunofluorescence microscopy. ERT significantly stimulated CBS mRNA and protein without altering CSE mRNA or protein in intact and denuded UA. Quantitative immunofluorescence microscopic analyses showed CBS and CSE protein localization in endothelium and smooth muscle and confirmed that ERT stimulated CBS but not CSE protein expression in UA endothelium and smooth muscle. ERT also stimulated CBS, but not CSE, mRNA and protein expression in intact and denuded MA but not CA in ovariectomized ewes. Concomitantly, ERT stimulated UA and MA but not CA H2S production. ERT-stimulated UA H2S production was completely blocked by a specific CBS but not CSE inhibitor. Thus, ERT selectively stimulates UA and MA but not CA H2S biosynthesis by specifically up-regulating CBS expression, implicating a role of H2S in estrogen-induced vasodilation and postmenopausal women's health.
NASA Astrophysics Data System (ADS)
Liu, J.; Wang, Z. A.; Wu, X. W.; Yuan, X. H.; Hu, J. P.; Zhou, Q. M.; Liu, Z. H.; Wu, Y. P.
2015-12-01
Functional porous carbon (PC) derived from bio-friendly shaddock peel has been firstly explored as catalyst for vanadium redox flow battery (VRB). The prepared PC is micro-mesoporous with high BET surface area of 882.7 m2 g-1, has some surface oxygen-containing functional groups, and is doped with N and P heteroatoms. These three factors greatly favor the electrochemical reactions of VO2+/VO2+ on the PC modified glass carbon (PC-GC). Compared with the naked GC and graphite modified GC, the PC-GC presents a lower peak separation (66 mV), higher anodic current density (17.1 mA cm-2) and cathodic current density (15.0 mA cm-2). The VRB using PC modified graphite felt (GF) as positive electrode demonstrates an enhanced voltage efficiency of 82.7% at the current density of 60 mA cm-2, and a better rate performance than that from the virginal GF.
Co3O4 nanowire@NiO nanosheet arrays for high performance asymmetric supercapacitors.
Xing, Lei; Dong, Yidi; Hu, Fang; Wu, Xiang; Umar, Ahmad
2018-04-24
Herein, we report a simple and facile sequential hydrothermal process for the synthesis of Co3O4 nanowire@NiO nanosheet arrays (CNAs). The as-synthesized CNAs were characterized in detail using various analytical techniques, which confirmed the high crystallinity, purity, and high-density growth of these nanomaterials. From an application point of view, the as-synthesized CNAs were directly used as supercapacitor electrodes, revealing a specific capacitance of up to 2018 mF cm-2 at a current density of 2 mA cm-2. Furthermore, a flexible asymmetric supercapacitor was fabricated using the as-synthesized CNAs as the anode and activated carbon as the cathode, which revealed a specific capacitance of 134.6 mF cm-2 at a current density of 2 mA cm-2. In addition, the supercapacitor showed excellent capacity retention of 73.5% after 10 000 cycles at a current density of 10 mA cm-2.
Inference of the ring current ion composition by means of charge exchange decay
NASA Technical Reports Server (NTRS)
Smith, P. H.; Hoffman, R. A.; Bewtra, N. K.
1981-01-01
The analysis of data from the Explorer 45 (S3-A) electrostatic analyzer in the energy range 5-30 keV has provided some new results on the ring current ion composition. It has been well established that the storm time ring current has a decay time of several days, during which the particle fluxes decrease nearly monotonically. By analyzing the measured ion fluxes during the several day storm recovery period and assuming that beside hydrogen other ions were present and that the decays were exponential in nature, three separate lifetimes for the ions were established. These fitted decay lifetimes are in excellent agreement with the expected charge exchange decay lifetimes for H(+), O(+) and He(+) in the energy and L value range of the data.
Particle simulation of ion heating in the ring current
NASA Technical Reports Server (NTRS)
Qian, S.; Hudson, M. K.; Roth, I.
1990-01-01
Heating of heavy ions has been observed in the equatorial magnetosphere in GEOS 1 and 2 and ATS 6 data due to ion cyclotron waves generated by anisotropic hot ring current ions. A one-dimensional hybrid-Darwin code has been developed to study ion heating in the ring current. Here, a strong instability and heating of thermal ions is investigated in a plasma with a los cone distribution of hot ions. The linear growth rate calculation and particle simulations are conducted for cases with different loss cones and relative ion densities. The linear instability of the waves, the quasi-linear heating of cold ions and dependence on the thermal H(+)/He(+) density ratio are analyzed, as well as nonlinear parallel heating of thermal ions. Effects of thermal oxygen and hot oxygen are also studied.
Qian, Cheng; Fan, Jiajie; Fang, Jiayi; Yu, Chaohua; Ren, Yi; Fan, Xuejun; Zhang, Guoqi
2017-10-16
By solving the problem of very long test time on reliability qualification for Light-emitting Diode (LED) products, the accelerated degradation test with a thermal overstress at a proper range is regarded as a promising and effective approach. For a comprehensive survey of the application of step-stress accelerated degradation test (SSADT) in LEDs, the thermal, photometric, and colorimetric properties of two types of LED chip scale packages (CSPs), i.e., 4000 °K and 5000 °K samples each of which was driven by two different levels of currents (i.e., 120 mA and 350 mA, respectively), were investigated under an increasing temperature from 55 °C to 150 °C and a systemic study of driving current effect on the SSADT results were also reported in this paper. During SSADT, junction temperatures of the test samples have a positive relationship with their driving currents. However, the temperature-voltage curve, which represents the thermal resistance property of the test samples, does not show significant variance as long as the driving current is no more than the sample's rated current. But when the test sample is tested under an overdrive current, its temperature-voltage curve is observed as obviously shifted to the left when compared to that before SSADT. Similar overdrive current affected the degradation scenario is also found in the attenuation of Spectral Power Distributions (SPDs) of the test samples. As used in the reliability qualification, SSADT provides explicit scenes on color shift and correlated color temperature (CCT) depreciation of the test samples, but not on lumen maintenance depreciation. It is also proved that the varying rates of the color shift and CCT depreciation failures can be effectively accelerated with an increase of the driving current, for instance, from 120 mA to 350 mA. For these reasons, SSADT is considered as a suitable accelerated test method for qualifying these two failure modes of LED CSPs.
Yu, Chaohua; Fan, Xuejun; Zhang, Guoqi
2017-01-01
By solving the problem of very long test time on reliability qualification for Light-emitting Diode (LED) products, the accelerated degradation test with a thermal overstress at a proper range is regarded as a promising and effective approach. For a comprehensive survey of the application of step-stress accelerated degradation test (SSADT) in LEDs, the thermal, photometric, and colorimetric properties of two types of LED chip scale packages (CSPs), i.e., 4000 °K and 5000 °K samples each of which was driven by two different levels of currents (i.e., 120 mA and 350 mA, respectively), were investigated under an increasing temperature from 55 °C to 150 °C and a systemic study of driving current effect on the SSADT results were also reported in this paper. During SSADT, junction temperatures of the test samples have a positive relationship with their driving currents. However, the temperature-voltage curve, which represents the thermal resistance property of the test samples, does not show significant variance as long as the driving current is no more than the sample’s rated current. But when the test sample is tested under an overdrive current, its temperature-voltage curve is observed as obviously shifted to the left when compared to that before SSADT. Similar overdrive current affected the degradation scenario is also found in the attenuation of Spectral Power Distributions (SPDs) of the test samples. As used in the reliability qualification, SSADT provides explicit scenes on color shift and correlated color temperature (CCT) depreciation of the test samples, but not on lumen maintenance depreciation. It is also proved that the varying rates of the color shift and CCT depreciation failures can be effectively accelerated with an increase of the driving current, for instance, from 120 mA to 350 mA. For these reasons, SSADT is considered as a suitable accelerated test method for qualifying these two failure modes of LED CSPs. PMID:29035300
Gillick, Bernadette T.; Kirton, Adam; Carmel, Jason B.; Minhas, Preet; Bikson, Marom
2014-01-01
Background: Transcranial direct current stimulation (tDCS) has been investigated mainly in adults and doses may not be appropriate in pediatric applications. In perinatal stroke where potential applications are promising, rational adaptation of dosage for children remains under investigation. Objective: Construct child-specific tDCS dosing parameters through case study within a perinatal stroke tDCS safety and feasibility trial. Methods: 10-year-old subject with a diagnosis of presumed perinatal ischemic stroke and hemiparesis was identified. T1 magnetic resonance imaging (MRI) scans used to derive computerized model for current flow and electrode positions. Workflow using modeling results and consideration of dosage in previous clinical trials was incorporated. Prior ad hoc adult montages vs. de novo optimized montages provided distinct risk benefit analysis. Approximating adult dose required consideration of changes in both peak brain current flow and distribution which further tradeoff between maximizing efficacy and adding safety factors. Electrode size, position, current intensity, compliance voltage, and duration were controlled independently in this process. Results: Brain electric fields modeled and compared to values previously predicted models (Datta et al., 2011; Minhas et al., 2012). Approximating conservative brain current flow patterns and intensities used in previous adult trials for comparable indications, the optimal current intensity established was 0.7 mA for 10 min with a tDCS C3/C4 montage. Specifically 0.7 mA produced comparable peak brain current intensity of an average adult receiving 1.0 mA. Electrode size of 5 × 7 cm2 with 1.0 mA and low-voltage tDCS was employed to maximize tolerability. Safety and feasibility confirmed with subject tolerating the session well and no serious adverse events. Conclusion: Rational approaches to dose customization, with steps informed by computational modeling, may improve guidance for pediatric stroke tDCS trials. PMID:25285077
NASA Astrophysics Data System (ADS)
Bradley, T. J.; Cowley, S. W. H.; Provan, G.; Hunt, G. J.; Bunce, E. J.; Wharton, S. J.; Alexeev, I. I.; Belenkaya, E. S.; Kalegaev, V. V.; Dougherty, M. K.
2018-05-01
We newly analyze Cassini magnetic field data from the 2012/2013 Saturn northern spring interval of highly inclined orbits and compare them with similar data from late southern summer in 2008, thus providing unique information on the seasonality of the currents that couple momentum between Saturn's ionosphere and magnetosphere. Inferred meridional ionospheric currents in both cases consist of a steady component related to plasma subcorotation, together with the rotating current systems of the northern and southern planetary period oscillations (PPOs). Subcorotation currents during the two intervals show opposite north-south polar region asymmetries, with strong equatorward currents flowing in the summer hemispheres but only weak currents flowing to within a few degrees of the open-closed boundary (OCB) in the winter hemispheres, inferred due to weak polar ionospheric conductivities. Currents peak at 1 MA rad-1 in both hemispheres just equatorward of the open-closed boundary, associated with total downward polar currents 6 MA, then fall across the narrow auroral upward current region to small values at subauroral latitudes. PPO-related currents have a similar form in both summer and winter with principal upward and downward field-aligned currents peaking at 1.25 MA rad-1 being essentially collocated with the auroral upward current and approximately equal in strength. Though northern and southern PPO currents were approximately equal during both intervals, the currents in both hemispheres were dual modulated by both systems during 2012/2013, with approximately half the main current closing in the opposite ionosphere and half cross field in the magnetosphere, while only the northern hemisphere currents were similarly dual modulated in 2008.
Ethernet ring protection with managed FDB using APS payload
NASA Astrophysics Data System (ADS)
Im, Jinsung; Ryoo, Jeong-dong; Joo, Bheom Soon; Rhee, J.-K. Kevin
2007-11-01
Ethernet ring protection (ERP) is a new technology based on OAM (operations, administration, and maintenance) being standardized by the ITU-T G.8032 working group. In this paper, we present the recent development of Ethernet ring protection which is called FDB (filtering database) flush scheme and propose a new Ethernet ring protection technique introducing a managed FDB using APS to deliver information how to fix FDB selectively. We discuss the current development of the ERP technology at ITU-T and performance comparisons between different proposals.
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Gamayunov, K. V.; Gallagher, D. L.; Kozyra, J. U.; Liemohn, M. W.
2007-01-01
This paper continues presentation and discussion of the results from our new global self-consistent theoretical model of interacting ring current ions and propagating electromagnetic ion cyclotron waves [Khazanov et al., 2006]. To study the effects of electromagnetic ion cyclotron wave propagation and refraction on the wave induced ring current precipitation and heating of the thermal plasmaspheric electrons, we simulate the May 1998 storm. The main findings after a simulation can be summarized as follows. Firstly, the wave induced ring current precipitation exhibits quite a lot of fine structure, and is highly organized by location of the plasmapause gradient. The strongest fluxes of about 4 x 10(exp 6) (cm(raised dot) s(raised dot) sr(raised dot) (sup -1)) are observed during the maill and early recovery phases of the storm. The very interesting and probably more important finding is that in a number of cases the most intense precipitating fluxes are not connected to the most intense waves in simple manner. The characteristics of the wave power spectral density distribution over the wave normal angle are extremely crucial for the effectiveness of the ring current ion scattering. Secondly, comparison of the global proton precipitating patterns with the results from RAM [Kozyra et al., 1997a] reveals that although we observe a qualitative agreement between the localizations of the wave induced precipitations in the models, there is no quantitative agreement between the magnitudes of the fluxes. The quantitative differences are mainly due to a qualitative difference between the characteristics of the wave power spectral density distributions over the wave normal angle in RAM and in our model. Thirdly, the heat fluxes to plasmaspheric electrons caused by Landau resonate energy absorption from electromagnetic ion cyclotron waves are observed in the postnoon-premidnight MLT sector, and can reach the magnitude of 10(exp 11) eV/(cm(sup 2)(raised dot)s). The Coulomb energy degradation of the RC H(+) and O(+) ions maximizes at about 10(exp 11) (eV/(cm(sup 2) (raised dot) s), and typically leads to electron energy deposition rates of about 2(raised dot) 10(exp 10) (eV/(cm(sup 2)(raised dot)s) which are observed during two periods; 32-48 hours, and 76-86 hours after 1 May, 0000 UT. The theoretically derived spatial structure of the thermal electron heating caused by interaction of the ring current with the plasmasphere is strongly supported by concurrent and conjugate plasma measurements from the plasmasphere, ring current, and topside ionosphere [Gurgiolo et al., 2005]. Finally, the wave induced intense electron heating has a structure of the spot-like patches along the most enhanced density gradients in the plasmasphere boundary layer and can be a possible driver to the observed but still not explained small-scale structures of enhanced emissions in the stable auroral red arcs.
Mesoscopic Vortex–Meissner currents in ring ladders
NASA Astrophysics Data System (ADS)
Haug, Tobias; Amico, Luigi; Dumke, Rainer; Kwek, Leong-Chuan
2018-07-01
Recent experimental progress have revealed Meissner and Vortex phases in low-dimensional ultracold atoms systems. Atomtronic setups can realize ring ladders, while explicitly taking the finite size of the system into account. This enables the engineering of quantized chiral currents and phase slips in between them. We find that the mesoscopic scale modifies the current. Full control of the lattice configuration reveals a reentrant behavior of Vortex and Meissner phases. Our approach allows a feasible diagnostic of the currents’ configuration through time-of-flight measurements.
Review: magnetically assisted resistance spot welding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Y. B.; Li, D. L.; Lin, Z. Q.
2016-02-25
Currently, the use of advanced high strength steels (AHSSs) is the most cost effective means of reducing vehicle body weight and maintaining structural integrity at the same time. However, AHSSs present a big challenge to the traditional resistance spot welding (RSW) widely applied in automotive industries because the rapid heating and cooling procedures during RSW produce hardened weld microstructures, which lower the ductility and fatigue properties of welded joints and raise the probability of interfacial failure under external loads. Changing process parameters or post-weld heat treatment may reduce the weld brittleness, but those traditional quality control methods also increase energymore » consumption and prolong cycle time. In recent years, a magnetically assisted RSW (MA-RSW) method was proposed, in which an externally applied magnetic field would interact with the conduction current to produce a Lorentz force that would affect weld nugget formation. This paper is a review of an experimental MA-RSW platform, the mode of the external magnetic field and the mechanism that controls nugget shape, weld microstructures and joint performance. In conclusion, the advantages of the MA-RSW method in improving the weldability of AHSSs are given, a recent application of the MA-RSW process to light metals is described and the outlook for the MA-RSW process is presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujii, K; UCLA School of Medicine, Los Angeles, CA; McMillan, K
2015-06-15
Purpose: The aim of this study is to evaluate the difference in radiation doses from adult Brain-Neck CT angiography (CTA) between two CT scanners. Methods: We collected CT dose index data (CTDIvol, DLP) from adult Brain-Neck CTA performed with two CT scanners (Sensation 64 (S64) and Definition AS (AS), Siemens Healthcare) performed at two of our facilities from Jan 1st to Dec 31th, 2014. X-ray dose management software (Radmetrics, Bayer Healthcare) was used to mine these data. All exams were performed with Tube Current Modulation (Care Dose 4D), tube voltage of 120 kVp, quality reference mAs of 300, beam collimationmore » of 64*0.6 mm. The rotation time was set to 0.5 sec for S64 and 1.0 sec for AS. We also scanned an anthropomorphic skull and chest phantom under routine Brain-Neck CTA protocol with the two scanners and extracted the tube current values from the raw projection data. Results: The mean CTDIvol and DLP in Brain-Neck CTA was 72 mGy and 2554 mGy*cm for AS, which was substantially larger than the mean values of 46 mGy and 1699 mGy*cm for S64. The maximum tube current was 583 mA for most cases on the S64 while the maximum was 666 mA for AS even though the rotation time set for AS was 1.0 sec. Measurements obtained with the anthropomorphic phantom showed that the tube current reached 583 mA at the shoulder region for S64 while it reached to 666 mA for AS. Conclusion: The results of this study showed that substantially different CT doses can Result from Brain-Neck CTA protocols even when similar scanners and similar settings are used. Though both scanners have a similar maximum mA rating, differences in mA were observed through the shoulders, resulting in substantially different CTDIvol values.« less
NASA Technical Reports Server (NTRS)
Dietrich, David E.; Mehra, Avichal; Haney, Robert L.; Bowman, Malcolm J.; Tseng, Yu-Heng
2003-01-01
Gulf Stream (GS) separation near its observed Cape Hatteras (CH) separation location, and its ensuing path and dynamics, is a challenging ocean modeling problem. If a model GS separates much farther north than CH, then northward GS meanders, which pinch off warm core eddies (rings), are not possible or are strongly constrained by the Grand Banks shelfbreak. Cold core rings pinch off the southward GS meanders. The rings are often re-absorbed by the GS. The important warm core rings enhance heat exchange and, especially, affect the northern GS branch after GS bifurcation near the New England Seamount Chain. This northern branch gains heat by contact with the southern branch water upstream of bifurcation, and warms the Arctic Ocean and northern seas, thus playing a major role in ice dynamics, thermohaline circulation and possible global climate warming. These rings transport heat northward between the separated GS and shelf slope/Deep Western Boundary Current system (DWBC). This region has nearly level time mean isopycnals. The eddy heat transport convergence/divergence enhances the shelfbreak and GS front intensities and thus also increases watermass transformation. The fronts are maintained by warm advection by the Florida Current and cool advection by the DWBC. Thus, the GS interaction with the DWBC through the intermediate eddy field is climatologically important.
Seasonal sea ice cover during the warm Pliocene: Evidence from the Iceland Sea (ODP Site 907)
NASA Astrophysics Data System (ADS)
Clotten, Caroline; Stein, Ruediger; Fahl, Kirsten; De Schepper, Stijn
2018-01-01
Sea ice is a critical component in the Arctic and global climate system, yet little is known about its extent and variability during past warm intervals, such as the Pliocene (5.33-2.58 Ma). Here, we present the first multi-proxy (IP25, sterols, alkenones, palynology) sea ice reconstructions for the Late Pliocene Iceland Sea (ODP Site 907). Our interpretation of a seasonal sea ice cover with occasional ice-free intervals between 3.50-3.00 Ma is supported by reconstructed alkenone-based summer sea surface temperatures. As evidenced from brassicasterol and dinosterol, primary productivity was low between 3.50 and 3.00 Ma and the site experienced generally oligotrophic conditions. The East Greenland Current (and East Icelandic Current) may have transported sea ice into the Iceland Sea and/or brought cooler and fresher waters favoring local sea ice formation. Between 3.00 and 2.40 Ma, the Iceland Sea is mainly sea ice-free, but seasonal sea ice occurred between 2.81 and 2.74 Ma. Sea ice extending into the Iceland Sea at this time may have acted as a positive feedback for the build-up of the Greenland Ice Sheet (GIS), which underwent a major expansion ∼2.75 Ma. Thereafter, most likely a stable sea ice edge developed close to Greenland, possibly changing together with the expansion and retreat of the GIS and affecting the productivity in the Iceland Sea.
NASA Astrophysics Data System (ADS)
Jing, Mao-xiang; Li, Jing-quan; Han, Chong; Yao, Shan-shan; Zhang, Ji; Zhai, Hong-ai; Chen, Li-li; Shen, Xiang-qian; Xiao, Ke-song
2017-07-01
Improving the specific capacity and electronic conductivity of TiO2 can boost its practical application as a promising anode material for lithium ion batteries. In this work, a three-dimensional networking oxygen-deficient nano TiO2-x/carbon fibre membrane was achieved by combining the electrospinning process with a hot-press sintering method and directly used as a self-standing anode. With the synergistic effects of three-dimensional conductive networks, surface oxygen deficiency, high specific surface area and high porosity, binder-free and self-standing structure, etc., the nano TiO2-x/carbon fibre membrane electrode displays a high electrochemical reaction kinetics and a high specific capacity. The reversible capacity could be jointly generated from porous carbon, full-lithiation of TiO2 and interfacial lithium storage. At a current density of 100 mA g-1, the reversible discharge capacity can reach 464 mA h g-1. Even at 500 mA g-1, the discharge capacity still remains at 312 mA h g-1. Compared with pure carbon fibre and TiO2 powder, the TiO2-x/C fibre membrane electrode also exhibits an excellent cycle performance with a discharge capacity of 209 mA h g-1 after 700 cycles at the current density of 300 mA g-1, and the coulombic efficiency always remains at approximately 100%.
Endowing CuTCNQ with a new role: a high-capacity cathode for K-ion batteries.
Ma, Jing; Zhou, En; Fan, Cong; Wu, Bo; Li, Chao; Lu, Zheng-Hong; Li, Jingze
2018-05-29
Herein, copper-tetracyanoquinodimethane (CuTCNQ) with phase-I kinetics character has been proposed as an effective cathode for potassium-ion batteries. In a voltage range of 2-4.1 V (vs. K+/K), both cuprous cations (Cu+) and organic anions (TCNQ-) are electrochemically active, and they render a three-electron redox mechanism, thereby enabling CuTCNQ to yield a high specific discharge capacity of 244 mA h g-1. Even after 50 cycles, the discharge capacity of 170 mA h g-1 is retained at 50 mA g-1. In addition, when the current density is elevated to 1000 mA g-1, the discharge capacity is still maintained at 125 mA h g-1. These test data are among the best results reported for high-potential cathodes of potassium-ion batteries.
Evaluation of constant current alternating current iontophoresis for transdermal drug delivery.
Yan, Guang; Li, S Kevin; Higuchi, William I
2005-12-10
Previous studies in our laboratory have demonstrated that alternating current (AC) iontophoresis can significantly decrease skin electric resistance and enhance the transport of charged permeants across skin. Flux variability of neutral permeants during AC iontophoresis was also found to be less than that of conventional direct current (DC) iontophoresis. The objectives of the present study were to evaluate flux enhancement of constant current AC transdermal iontophoresis and compare the AC flux with that of constant current DC iontophoresis. Iontophoresis studies of AC amplitude of 1, 2, and 5 mA were conducted in side-by-side diffusion cells with donor solution of 0.015, 0.15, and 1.0 M tetraethylammonium (TEA) chloride and receiver solution of phosphate buffered saline (PBS) using human epidermal membrane (HEM). Conventional constant current DC iontophoresis of 0.2 mA was also performed under similar conditions. TEA and mannitol were the model permeants. The following are the major findings in the present study. The flux of TEA increased proportionally with the AC current for all three TEA chloride concentrations and at the AC frequency used in the present study. When the permeant and its counter ion were the only ionic species in the donor chamber, the fluxes during DC iontophoresis were weakly dependent of its donor concentration. The fluxes of TEA during constant current AC iontophoresis were moderately related to the donor concentration with the highest TEA flux observed under the 1.0 M TEA chloride condition although the relationship between flux and donor concentration was not linear. A trend of decreasing electroosmotic transport with increasing donor TEA chloride concentration was observed with significant sample-to-sample variability during DC iontophoresis. Mannitol permeability was also observed to decrease with increasing TEA chloride concentration in the donor under the AC conditions, but data variability under AC was significantly smaller than that under DC. The results in the present study indicate that constant current AC iontophoresis under conditions tolerable to human (2 and 5 mA) can provide predictable fluxes that were lower than but of comparable magnitude as those of conventional constant current DC iontophoresis (0.2 mA).
Tang, T.; Oh, Sungho; Sadleir, R. J.
2010-01-01
We compared two 16-electrode electrical impedance tomography (EIT) current patterns on their ability to reconstruct and quantify small amounts of bleeding inside a neonatal human head using both simulated and phantom data. The current patterns used were an adjacent injection RING pattern (with electrodes located equidistantly on the equator of a sphere) and an EEG current pattern based on the 10–20 EEG electrode layout. Structures mimicking electrically important structures in the infant skull were included in a spherical numerical forward model and their effects on reconstructions were determined. The EEG pattern was found to be a better topology to localize and quantify anomalies within lateral ventricular regions. The RING electrode pattern could not reconstruct anomaly location well, as it could not distinguish different axial positions. The quantification accuracy of the RING pattern was as good as the EEG pattern in noise-free environments. However, the EEG pattern showed better quantification ability than the RING pattern when noise was added. The performance of the EEG pattern improved further with respect to the RING pattern when a fontanel was included in forward models. Significantly better resolution and contrast of reconstructed anomalies was achieved when generated from a model containing such an opening and 50 dB added noise. The EEG method was further applied to reconstruct data from a realistic neonatal head model. Overall, acceptable reconstructions and quantification results were obtained using this model and the homogeneous spherical forward model. PMID:20238166
Preliminary geologic map of the Murrieta 7.5' quadrangle, Riverside County, California
Kennedy, Michael P.; Morton, Douglas M.
2003-01-01
The Murrieta quadrangle is located in the northern part of the Peninsular Ranges Province and includes parts of two structural blocks, or structural subdivisions of the province. The quadrangle is diagonally crossed by the active Elsinore fault zone, a major fault zone of the San Andreas fault system, and separates the Santa Ana Mountains block to the west from the Perris block to the east. Both blocks are relatively stable internally and within the quadrangle are characterized by the presence of widespread erosional surfaces of low relief. The Santa Ana Mountains block, in the Murrieta quadrangle, is underlain by undifferentiated, thick-layered, granular, impure quartzite and well-layered, fissile, phyllitic metamorphic rock of low metamorphic grade. Both quartzite and phyllitic rocks are Mesozoic. Unconformably overlying the metamorphic rocks are remnants of basalt flows having relatively unmodified flow surfaces. The age of the basalt is about 7-8Ma. Large shallow depressions on the surface of the larger basalt remnants form vernal ponds that contain an endemic flora. Beneath the basalt the upper part of the metamorphic rocks is deeply weathered. The weathering appears to be the same as the regional Paleocene saprolitic weathering in southern California. West of the quadrangle a variable thickness sedimentary rock, physically resembling Paleogene rocks, occurs between the basalt and metamorphic rock. Where not protected by the basalt, the weathered rock has been removed by erosion. The dominant feature on the Perris block in the Murrieta quadrangle is the south half of the Paloma Valley ring complex, part of the composite Peninsular Ranges batholith. The complex is elliptical in plan view and consists of an older ring-dike with two subsidiary short-arced dikes that were emplaced into gabbro by magmatic stoping. Small to large stoped blocks of gabbro are common within the ring-dikes. A younger ring-set of hundreds of thin pegmatite dikes occur largely within the central part of the complex. These pegmatite dikes were emplaced into a domal fracture system, apparently produced by cauldron subsidence, and include in the center of the complex, a number of flat-floored granophyre bodies. The granophyre is interpreted to be the result of pressure quenching of pegmatite magma. Along the eastern edge of the quadrangle is the western part of a large septum of medium metamorphic grade Mesozoic schist. A dissected basalt flow caps the Hogbacks northeast of Temecula, and represents remnants of a channel filling flow. Beneath the basalt is a thin deposit of stream gravel. Having an age of about 10Ma, this basalt is about 2-3Ma older than the basalt flows in the Santa Ana Mountains. The Elsinore fault zone forms a complex of pull-apart basins. The west edge of the fault zone, the Willard Fault, is marked by the high, steep eastern face of the Santa Ana Mountains. The east side of the zone, the Wildomar Fault, forms a less pronounced physiographic step. In the center of the quadrangle a major splay of the fault zone, the Murrieta Hot Springs Fault, strikes east. Branching of the fault zone causes the development of a broad alluvial valley between the Willard Fault and the Murrieta Hot Springs Fault. All but the axial part of the zone between the Willard and Wildomar Faults consist of dissected Pleistocene sedimentary units. The axial part of the zone is underlain by Holocene and latest Pleistocene sedimentary units.
MA transmutation performance in the optimized MYRRHA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malambu, E.; Van den Eynde, G.; Fernandez, R.
MYRRHA (multi-purpose hybrid research reactor for high-tech applications) is a multipurpose research facility currently being developed at SCK-CEN. It will be able to work in both critical and subcritical modes and, cooled by lead-bismuth eutectic. In this paper the minor actinides (MA) transmutation capabilities of MYRRHA are investigated. (Pu + Am, U) MOX fuel and (Np + Am + Cm, Pu) Inert Matrix Fuel test samples have been loaded in the central channel of the MYRRHA critical core and have been irradiated during five cycles, each one consisting of 90 days of operation at 100 MWth and 30 days ofmore » shutdown. The reactivity worth of the test fuel assembly was about 1.1 dollar. A wide range of burn-up level has been achieved, extending from 42 to 110 MWd/kg HM, the samples with lower MA-to-Pu ratios reaching the highest burn-up. This study has highlighted the importance of the initial MA content, expressed in terms of MA/Pu ratio, on the transmutation rate of MA elements. For (Pu + Am, U) MOX fuel samples, a net build-up of MA is observed when the initial content of MA is very low (here, 1.77 wt% MA/Pu) while a net decrease in MA is observed in the sample with an initial content of 5 wt%. This suggests the existence of some 'equilibrium' initial MA content value beyond which a net transmutation is achievable.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patra, Moumita; Maiti, Santanu K., E-mail: santanu.maiti@isical.ac.in
In the present work we investigate the behavior of all three components of persistent spin current in a quasi-periodic Fibonacci ring subjected to Rashba and Dresselhaus spin–orbit interactions. Analogous to persistent charge current in a conducting ring where electrons gain a Berry phase in presence of magnetic flux, spin Berry phase is associated during the motion of electrons in presence of a spin–orbit field which is responsible for the generation of spin current. The interplay between two spin–orbit fields along with quasi-periodic Fibonacci sequence on persistent spin current is described elaborately, and from our analysis, we can estimate the strengthmore » of any one of two spin–orbit couplings together with on-site energy, provided the other is known. - Highlights: • Determination of Rashba and Dresselhaus spin–orbit fields is discussed. • Characteristics of all three components of spin current are explored. • Possibility of estimating on-site energy is given. • Results can be generalized to any lattice models.« less
Fowler, Patrick W.; Gibson, Christopher M.; Bean, David E.
2014-01-01
Alternating partial hydrogenation of the interior region of a polycyclic aromatic hydrocarbon gives a finite model system representing systems on the pathway from graphene to the graphane modification of the graphene sheet. Calculations at the DFT and coupled Hartree–Fock levels confirm that sp2 cycles of bare carbon centres isolated by selective hydrogenation retain the essentially planar geometry and electron delocalization of the annulene that they mimic. Delocalization is diagnosed by the presence of ring currents, as detected by ipsocentric calculation and visualization of the current density induced in the π system by a perpendicular external magnetic field. These induced ‘ring’ currents have essentially the same sense, strength and orbital origin as in the free hydrocarbon. Subjected to the important experimental proviso of the need for atomic-scale control of hydrogenation, this finding predicts the possibility of writing single, multiple and concentric diatropic and/or paratropic ring currents on the graphene/graphane sheet. The implication is that pathways for free flow of ballistic current can be modelled in the same way. PMID:24611026
NASA Astrophysics Data System (ADS)
Frigeri, A.; Cardellini, C.; Chiodini, G.; Frondini, F.; Bagnato, E.; Aiuppa, A.; Fischer, T. P.; Lehnert, K. A.
2014-12-01
The study of the main pathways of carbon flux from the deep Earth requires the analysis of a large quantity and variety of data on volcanic and non-volcanic gas emissions. Hence, there is need for common frameworks to aggregate available data and insert new observations. Since 2010 we have been developing the Mapping Gas emissions (MaGa) web-based database to collect data on carbon degassing form volcanic and non-volcanic environments. MaGa uses an Object-relational model, translating the experience of field surveyors into the database schema. The current web interface of MaGa allows users to browse the data in tabular format or by browsing an interactive web-map. Enabled users can insert information as measurement methods, instrument details as well as the actual values collected in the field. Measurements found in the literature can be inserted as well as direct field observations made by human-operated instruments. Currently the database includes fluxes and gas compositions from active craters degassing, diffuse soil degassing and fumaroles both from dormant volcanoes and open-vent volcanoes from literature survey and data about non-volcanic emission of the Italian territory. Currently, MaGa holds more than 1000 volcanic plume degassing fluxes, data from 30 sites of diffuse soil degassing from italian volcanoes, and about 60 measurements from fumarolic and non volcanic emission sites. For each gas emission site, the MaGa holds data, pictures, descriptions on gas sampling, analysis and measurement methods, together with bibliographic references and contacts to researchers having experience on each site. From 2012, MaGa developments started to be focused towards the framework of the Deep Earth Carbon Degassing research initiative of the Deep Carbon Observatory. Whithin the DECADE initiative, there are others data systems, as EarthChem and the Smithsonian Institution's Global Volcanism Program. An interoperable interaction between the DECADE data systems is being planned. MaGa is showing good potentials to improve the knowledge on Earth degassing firstly by making data more accessible and encouraging participation among researchers, and secondly by allowing to observe and explore, for the first time, a gas emission dataset with spatial and temporal extents never analyzed before.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sampath, Sujatha; Isdebski, Thomas; Jenkins, Janelle E.
Synchrotron X-ray micro-diffraction experiments were carried out on Nephila clavipes (NC) and Argiope aurantia (AA) major (MA) and minor ampullate (MiA) fibers that make up dragline spider silk. The diffraction patterns show a semi-crystalline structure with {beta}-poly(L-alanine) nanocrystallites embedded in a partially oriented amorphous matrix. A superlattice reflection 'S' diffraction ring is observed, which corresponds to a crystalline component larger in size and is poorly oriented, when compared to the {beta}-poly(L-alanine) nanocrystallites that are commonly observed in dragline spider silks. Crystallite size, crystallinity and orientation about the fiber axis have been determined from the wide-angle X-ray diffraction (WAXD) patterns. Inmore » both NC and AA, the MiA silks are found to be more highly crystalline, when compared with the corresponding MA silks. Detailed analysis on the amorphous matrix shows considerable differences in the degree of order of the oriented amorphous component between the different silks studied and may play a crucial role in determining the mechanical properties of the silks.« less
A WAO - ARIA - GA²LEN consensus document on molecular-based allergy diagnostics
2013-01-01
Molecular-based allergy (MA) diagnostics is an approach used to map the allergen sensitization of a patient at a molecular level, using purified natural or recombinant allergenic molecules (allergen components) instead of allergen extracts. Since its introduction, MA diagnostics has increasingly entered routine care, with currently more than 130 allergenic molecules commercially available for in vitro specific IgE (sIgE) testing. MA diagnostics allows for an increased accuracy in allergy diagnosis and prognosis and plays an important role in three key aspects of allergy diagnosis: (1) resolving genuine versus cross-reactive sensitization in poly-sensitized patients, thereby improving the understanding of triggering allergens; (2) assessing, in selected cases, the risk of severe, systemic versus mild, local reactions in food allergy, thereby reducing unnecessary anxiety for the patient and the need for food challenge testing; and (3) identifying patients and triggering allergens for specific immunotherapy (SIT). Singleplex and multiplex measurement platforms are available for MA diagnostics. The Immuno-Solid phase Allergen Chip (ISAC) is the most comprehensive platform currently available, which involves a biochip technology to measure sIgE antibodies against more than one hundred allergenic molecules in a single assay. As the field of MA diagnostics advances, future work needs to focus on large-scale, population-based studies involving practical applications, elucidation and expansion of additional allergenic molecules, and support for appropriate test interpretation. With the rapidly expanding evidence-base for MA diagnosis, there is a need for allergists to keep abreast of the latest information. The aim of this consensus document is to provide a practical guide for the indications, determination, and interpretation of MA diagnostics for clinicians trained in allergology. PMID:24090398
Chen, Ailian; Li, Caixia; Tang, Rui; Yin, Longwei; Qi, Yongxin
2013-08-28
A novel hybrid of MoO2-ordered mesoporous carbon (MoO2-OMC) was prepared through a two-step solvothermal chemical reaction route. The electrochemical performances of the mesoporous MoO2-OMC hybrids were examined using galvanostatical charge-discharge, cyclic voltammetry, and electrochemical impedance spectroscopy (EIS) techniques. The MoO2-OMC hybrid exhibits significantly improved electrochemical performance of high reversible capacity, high-rate capability, and excellent cycling performance as an anode electrode material for Li ion batteries. It is revealed that the MoO2-OMC hybrid could deliver the first discharge capacity of 1641.8 mA h g(-1) with an initial Coulombic efficiency of 63.6%, and a reversible capacity as high as 1049.1 mA h g(-1) even after 50 cycles at a current density of 100 mA g(-1), much higher than the theoretical capacity of MoO2 (838 mA h g(-1)) and OMC materials. The MoO2-OMC hybrid demonstrates an excellent high rate capability with capacity of ∼600 mA h g(-1) even at a charge current density of 1600 mA g(-1) after 50 cycles, which is approximately 11.1 times higher than that of the OMC (54 mA h g(-1)) materials. The improved rate capability and reversible capacity of the MoO2-OMC hybrid are attributed to a synergistic reaction between the MoO2 nanoparticles and mesoporous OMC matrices. It is noted that the electrochemical performance of the MoO2-OMC hybrid is evidently much better than the previous MoO2-based hybrids.
A WAO - ARIA - GA²LEN consensus document on molecular-based allergy diagnostics.
Canonica, Giorgio Walter; Ansotegui, Ignacio J; Pawankar, Ruby; Schmid-Grendelmeier, Peter; van Hage, Marianne; Baena-Cagnani, Carlos E; Melioli, Giovanni; Nunes, Carlos; Passalacqua, Giovanni; Rosenwasser, Lanny; Sampson, Hugh; Sastre, Joaquin; Bousquet, Jean; Zuberbier, Torsten
2013-10-03
Molecular-based allergy (MA) diagnostics is an approach used to map the allergen sensitization of a patient at a molecular level, using purified natural or recombinant allergenic molecules (allergen components) instead of allergen extracts. Since its introduction, MA diagnostics has increasingly entered routine care, with currently more than 130 allergenic molecules commercially available for in vitro specific IgE (sIgE) testing.MA diagnostics allows for an increased accuracy in allergy diagnosis and prognosis and plays an important role in three key aspects of allergy diagnosis: (1) resolving genuine versus cross-reactive sensitization in poly-sensitized patients, thereby improving the understanding of triggering allergens; (2) assessing, in selected cases, the risk of severe, systemic versus mild, local reactions in food allergy, thereby reducing unnecessary anxiety for the patient and the need for food challenge testing; and (3) identifying patients and triggering allergens for specific immunotherapy (SIT).Singleplex and multiplex measurement platforms are available for MA diagnostics. The Immuno-Solid phase Allergen Chip (ISAC) is the most comprehensive platform currently available, which involves a biochip technology to measure sIgE antibodies against more than one hundred allergenic molecules in a single assay. As the field of MA diagnostics advances, future work needs to focus on large-scale, population-based studies involving practical applications, elucidation and expansion of additional allergenic molecules, and support for appropriate test interpretation. With the rapidly expanding evidence-base for MA diagnosis, there is a need for allergists to keep abreast of the latest information. The aim of this consensus document is to provide a practical guide for the indications, determination, and interpretation of MA diagnostics for clinicians trained in allergology.
New U-Pb zircon ages and the duration and division of Devonian time
Tucker, R.D.; Bradley, D.C.; Ver Straeten, C.A.; Harris, A.G.; Ebert, J.R.; McCutcheon, S.R.
1998-01-01
Newly determined U-Pb zircon ages of volcanic ashes closely tied to biostratigraphic zones are used to revise the Devonian time-scale. They are: 1) 417.6 ?? 1.0 Ma for an ash within the conodont zone of Icriodus woschmidti/I. w. hesperius Lochkovian); 2) 408.3 ?? 1.9 Ma for an ash of early Emsian age correlated with the conodont zones of Po. dehiscens--Lower Po. inversus; 3) 391.4 ?? 1.8 Ma for an ash within the Po. c. costatus Zone and probably within the upper half of the zone (Eifelian); and 4) 381.1 ?? 1.3 Ma for an ash within the range of the Frasnian conodont Palmatolepis punctata (Pa. punctata Zone to Upper Pa. hassi Zone). U-Pb zircon ages for two rhyolites bracketing a palyniferous bed of the pusillites-lepidophyta spore zone, are dated at 363.8 ?? 2.2 Ma and 363 ?? 2.2 Ma and 363.4 ?? 1.8 Ma, respectively, suggesting an age of ~363 Ma for a level within the late Famennian Pa. g. expansa Zone. These data, together with other published zircon ages, suggest that the base and top of the Devonian lie close to 418 Ma and 362 Ma, respectively, thus lengthening the period of ~20% over current estimates. We suggest that the duration of the Middle Devonian (Eifelian and Givitian) is rather brief, perhaps no longer than 11.5 Myr (394 Ma-382.5 Ma), and that the Emsian and Famennian are the longest stages in the period with estimated durations of ~15.5 Myr and 14.5 Myr, respectively.
2012-01-01
Background Mathematics anxiety (MA), a state of discomfort associated with performing mathematical tasks, is thought to affect a notable proportion of the school age population. Some research has indicated that MA negatively affects mathematics performance and that girls may report higher levels of MA than boys. On the other hand some research has indicated that boys’ mathematics performance is more negatively affected by MA than girls’ performance is. The aim of the current study was to measure girls’ and boys’ mathematics performance as well as their levels of MA while controlling for test anxiety (TA) a construct related to MA but which is typically not controlled for in MA studies. Methods Four-hundred and thirty three British secondary school children in school years 7, 8 and 10 completed customised mental mathematics tests and MA and TA questionnaires. Results No gender differences emerged for mathematics performance but levels of MA and TA were higher for girls than for boys. Girls and boys showed a positive correlation between MA and TA and a negative correlation between MA and mathematics performance. TA was also negatively correlated with mathematics performance, but this relationship was stronger for girls than for boys. When controlling for TA, the negative correlation between MA and performance remained for girls only. Regression analyses revealed that MA was a significant predictor of performance for girls but not for boys. Conclusions Our study has revealed that secondary school children experience MA. Importantly, we controlled for TA which is typically not controlled for in MA studies. Girls showed higher levels of MA than boys and high levels of MA were related to poorer levels of mathematics performance. As well as potentially having a detrimental effect on ‘online’ mathematics performance, past research has shown that high levels of MA can have negative consequences for later mathematics education. Therefore MA warrants attention in the mathematics classroom, particularly because there is evidence that MA develops during the primary school years. Furthermore, our study showed no gender difference in mathematics performance, despite girls reporting higher levels of MA. These results might suggest that girls may have had the potential to perform better than boys in mathematics however their performance may have been attenuated by their higher levels of MA. Longitudinal research is needed to investigate the development of MA and its effect on mathematics performance. PMID:22769743
Devine, Amy; Fawcett, Kayleigh; Szűcs, Dénes; Dowker, Ann
2012-07-09
Mathematics anxiety (MA), a state of discomfort associated with performing mathematical tasks, is thought to affect a notable proportion of the school age population. Some research has indicated that MA negatively affects mathematics performance and that girls may report higher levels of MA than boys. On the other hand some research has indicated that boys' mathematics performance is more negatively affected by MA than girls' performance is. The aim of the current study was to measure girls' and boys' mathematics performance as well as their levels of MA while controlling for test anxiety (TA) a construct related to MA but which is typically not controlled for in MA studies. Four-hundred and thirty three British secondary school children in school years 7, 8 and 10 completed customised mental mathematics tests and MA and TA questionnaires. No gender differences emerged for mathematics performance but levels of MA and TA were higher for girls than for boys. Girls and boys showed a positive correlation between MA and TA and a negative correlation between MA and mathematics performance. TA was also negatively correlated with mathematics performance, but this relationship was stronger for girls than for boys. When controlling for TA, the negative correlation between MA and performance remained for girls only. Regression analyses revealed that MA was a significant predictor of performance for girls but not for boys. Our study has revealed that secondary school children experience MA. Importantly, we controlled for TA which is typically not controlled for in MA studies. Girls showed higher levels of MA than boys and high levels of MA were related to poorer levels of mathematics performance. As well as potentially having a detrimental effect on 'online' mathematics performance, past research has shown that high levels of MA can have negative consequences for later mathematics education. Therefore MA warrants attention in the mathematics classroom, particularly because there is evidence that MA develops during the primary school years. Furthermore, our study showed no gender difference in mathematics performance, despite girls reporting higher levels of MA. These results might suggest that girls may have had the potential to perform better than boys in mathematics however their performance may have been attenuated by their higher levels of MA. Longitudinal research is needed to investigate the development of MA and its effect on mathematics performance.
Current scaling of radiated power for 40-mm diameter single wire arrays on Z
NASA Astrophysics Data System (ADS)
Nash, T. J.; Cuneo, M. E.; Spielman, R. B.; Chandler, G. A.; Leeper, R. J.; Seaman, J. F.; McGurn, J.; Lazier, S.; Torres, J.; Jobe, D.; Gilliland, T.; Nielsen, D.; Hawn, R.; Bailey, J. E.; Lake, P.; Carlson, A. L.; Seamen, H.; Moore, T.; Smelser, R.; Pyle, J.; Wagoner, T. C.; LePell, P. D.; Deeney, C.; Douglas, M. R.; McDaniel, D.; Struve, K.; Mazarakis, M.; Stygar, W. A.
2004-11-01
In order to estimate the radiated power that can be expected from the next-generation Z-pinch driver such as ZR at 28 MA, current-scaling experiments have been conducted on the 20 MA driver Z. We report on the current scaling of single 40 mm diameter tungsten 240 wire arrays with a fixed 110 ns implosion time. The wire diameter is decreased in proportion to the load current. Reducing the charge voltage on the Marx banks reduces the load current. On one shot, firing only three of the four levels of the Z machine further reduced the load current. The radiated energy scaled as the current squared as expected but the radiated power scaled as the current to the 3.52±0.42 power due to increased x-ray pulse width at lower current. As the current is reduced, the rise time of the x-ray pulse increases and at the lowest current value of 10.4 MA, a shoulder appears on the leading edge of the x-ray pulse. In order to determine the nature of the plasma producing the leading edge of the x-ray pulse at low currents further shots were taken with an on-axis aperture to view on-axis precursor plasma. This aperture appeared to perturb the pinch in a favorable manner such that with the aperture in place there was no leading edge to the x-ray pulses at lower currents and the radiated power scaled as the current squared ±0.75. For a full-current shot we will present x-ray images that show precursor plasma emitting on-axis 77 ns before the main x-ray burst.
Making Medicare Advantage a Middle-Class Program
Glazer, Jacob; McGuire, Thomas
2013-01-01
This paper studies the role of Medicare's premium policy in sorting beneficiaries between traditional Medicare (TM) and managed care plans in the Medicare Advantage (MA) program. Beneficiaries vary in their demand for care. TM fully accommodates demand but creates a moral hazard inefficiency. MA rations care but disregards some elements of the demand. We describe an efficient assignment of beneficiaries to these two options, and argue that efficiency requires an MA program oriented to serve the large middle part of the distribution of demand: the “middle class.” Current Medicare policy of a “single premium” for MA plans cannot achieve efficient sorting. We characterize the demand-based premium policy that can implement the efficient assignment of enrollees to plans. If only a single premium is feasible, the second-best policy involves too many of the low-demand individuals in MA and a too low level of services relative to the first best. We identify approaches to using premium policy to revitalize MA and improve the efficiency of Medicare. PMID:23454916
Making Medicare advantage a middle-class program.
Glazer, Jacob; McGuire, Thomas G
2013-03-01
This paper studies the role of Medicare's premium policy in sorting beneficiaries between traditional Medicare (TM) and managed care plans in the Medicare advantage (MA) program. Beneficiaries vary in their demand for care. TM fully accommodates demand but creates a moral hazard inefficiency. MA rations care but disregards some elements of the demand. We describe an efficient assignment of beneficiaries to these two options, and argue that efficiency requires an MA program oriented to serve the large middle part of the distribution of demand: the "middle class." Current Medicare policy of a "single premium" for MA plans cannot achieve efficient sorting. We characterize the demand-based premium policy that can implement the efficient assignment of enrollees to plans. If only a single premium is feasible, the second-best policy involves too many of the low-demand individuals in MA and a too low level of services relative to the first best. We identify approaches to using premium policy to revitalize MA and improve the efficiency of Medicare. Copyright © 2012 Elsevier B.V. All rights reserved.
Saito, Nobuo; Komori, Kazuhiro; Suzuki, Motoi; Morimoto, Kounosuke; Kishikawa, Takayuki; Yasaka, Takahiro; Ariyoshi, Koya
2017-01-23
Accumulating evidences indicate that repeated influenza vaccination has negative impact on the vaccine effectiveness (VE). However no published studies considered past influenza infection when assessing the VE of repeated vaccination. Prospective surveillance was conducted from 2009 to 2012 at a community hospital on a small island in Japan. The study included all outpatients with an influenza-like illness (ILI) who attended the hospital, and a rapid diagnostic test (RDT) was used to diagnose influenza A/B infection. The VE of trivalent inactivated influenza vaccine (TIV) against medically attended influenza A (MA-fluA) was estimated using a test-negative case-control study design. The influence of TIV in the prior season on VE in the current season was investigated in the context of MA-fluA during the prior season. During the three influenza seasons, 5838 ILI episodes (4127 subjects) were analysed. Subjects who had an episode of MA-fluA in the prior season were at a significantly lower risk of MA-fluA in the current season (adjusted odds ratio: 0.38, 95% CI: 0.30-0.50). The overall adjusted VE was 28% (95% CI, 14-40). VE was substantially lower in subjects vaccinated in the prior season compared to those who had not been vaccinated in prior season (19%; 95% CI: 0-35 vs 46%; 95% CI: 26-60, test for interaction, P value <0.05). In subjects who did not have MA-fluA in the prior season showed the attenuation of VE due to repeated vaccination (13%; 95% CI: -7 to 30 vs 44%; 95% CI: 24-59, test for interaction, P<0.05). However this effect was not detected in subjects who had contracted MA-fluA in the prior season. Negative effects of repeated vaccination were significant among those without history of MA-fluA in the prior season. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
A 60 mA DC H- multi cusp ion source developed at TRIUMF
NASA Astrophysics Data System (ADS)
Jayamanna, K.; Ames, F.; Bylinskii, I.; Lovera, M.; Minato, B.
2018-07-01
This paper describes the latest high-current multi cusp type ion source developed at TRIUMF, which is capable of producing a negative hydrogen ion beam (H-) of 60 mA of direct current at 140V and 90A arc. The results achieved to date including emittance measurements and filament lifetime issues are presented. The low current version of this ion source is suitable for medical cyclotrons as well as accelerators and the high current version is intended for producing large neutral hydrogen beams for fusion research. The description of the source magnetic configuration, the electron filter profile and the differential pumping techniques given in the paper will allow the building of an arc discharge H- ion source with similar properties.
GaInAsP/InP lateral-current-injection distributed feedback laser with a-Si surface grating.
Shindo, Takahiko; Okumura, Tadashi; Ito, Hitomi; Koguchi, Takayuki; Takahashi, Daisuke; Atsumi, Yuki; Kang, Joonhyun; Osabe, Ryo; Amemiya, Tomohiro; Nishiyama, Nobuhiko; Arai, Shigehisa
2011-01-31
We fabricated a novel lateral-current-injection-type distributed feedback (DFB) laser with amorphous-Si (a-Si) surface grating as a step to realize membrane lasers. This laser consists of a thin GaInAsP core layer grown on a semi-insulating InP substrate and a 30-nm-thick a-Si surface layer for DFB grating. Under a room-temperature continuous-wave condition, a low threshold current of 7.0 mA and high efficiency of 43% from the front facet were obtained for a 2.0-μm stripe width and 300-μm cavity length. A small-signal modulation bandwidth of 4.8 GHz was obtained at a bias current of 30 mA.
An efficient estimator to monitor rapidly changing forest conditions
Raymond L. Czaplewski; Michael T. Thompson; Gretchen G. Moisen
2012-01-01
Extensive expanses of forest often change at a slow pace. In this common situation, FIA produces informative estimates of current status with the Moving Average (MA) method and post-stratification with a remotely sensed map of forest-nonforest cover. However, MA "smoothes out" estimates over time, which confounds analyses of temporal trends; and post-...
We measured concentrations of polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in eggs from breeding colonies in Buzzards Bay, MA, USA. Eggs from two piscivorous bird species, common (Sterna hirundo) and roseate (Sterna dougallii) terns, were collected...
NASA Technical Reports Server (NTRS)
Sears, Derek W. G.; Benoit, Paul; Batchelor, J. David
1991-01-01
Antarctic H chondrites show a different range of induced thermoluminescence properties compared with those of H chondrites that have fallen elsewhere in the world. Recent noble gas data of Schultz et al. (1991) show that this difference is displayed most dramatically by meteorites with cosmic-ray exposure ages less than 20 Ma, and they confirm that the differences cannot be attributed to weathering or to the presence of a great many fragments of an unusual Antarctic meteorite. Annealing experiments on an H5 chondrite, and other measurements on a variety of ordinary chondrites, have shown that induced TL properties are sensitive to the thermal histories of the meteorities. It is concluded that the events(s) that released the less than 20 Ma samples, which are predominantly those with exposure ages of 8 + or - 2 Ma, produced two groups with different thermal histories, one that came to earth several 100,000 years ago and that are currently only found in Antarctica, and one that is currently falling on the earth.
NASA Astrophysics Data System (ADS)
Qin, Mulan; Liang, Qiang; Pan, Anqiang; Liang, Shuquan; Zhang, Qing; Tang, Yan; Tan, Xiaoping
2014-12-01
A facile hydrothermal route has been developed to fabricate the metastable VO2 (B) ultra-thin nanobelt arrays, which can be converted into V2O5 porous nanobelt arrays after calcinating VO2 (B) in air at 400 °C for 1 h. The influence of hydrothermal time to the crystallinity and morphology of the VO2 phase has been studied. A possible mechanism for the formation of VO2 nanobelt arrays has been proposed in this paper. As a cathode material for lithium ion batteries, the V2O5 nanobelt arrays show excellent rate capability and cycling stability. An initial discharge capacity of 142 mA h g-1 can be delivered at a current density of 50 mA g-1 with almost no capacity fading after 100 cycles. Even at a current density of 1000 mA g-1, they still exhibit the capacity of 130 mA h g-1 and superior capacity retention capability. The excellent electrochemical properties are attributed to the ultra-thin thickness and the porous structures of the nanobelts.
Electronic States and Persistent Currents in Nanowire Quantum Ring
NASA Astrophysics Data System (ADS)
Kokurin, I. A.
2018-04-01
The new model of a quantum ring (QR) defined inside a nanowire (NW) is proposed. The one-particle Hamiltonian for electron in [111]-oriented NW QR is constructed taking into account both Rashba and Dresselhaus spin-orbit coupling (SOC). The energy levels as a function of magnetic field are found using the exact numerical diagonalization. The persistent currents (both charge and spin) are calculated. The specificity of SOC and arising anticrossings in energy spectrum lead to unusual features in persistent current behavior. The variation of magnetic field or carrier concentration by means of gate can lead to pure spin persistent current with the charge current being zero.
NASA Astrophysics Data System (ADS)
Arthur, N. A.; Foster, J. E.; Barnat, E. V.
2018-05-01
Two-dimensional electron density measurements are made in a magnetic ring cusp discharge using laser collisional induced fluorescence. The magnet rings are isolated from the anode structure such that they can be biased independently in order to modulate electron flows through the magnetic cusps. Electron density images are captured as a function of bias voltage in order to assess the effects of current flow through the cusp on the spatial extent of the cusp. We anticipated that for a fixed current density being funneled through the magnetic cusp, the leak width would necessarily increase. Unexpectedly, the leak width, as measured by LCIF images, does not increase. This suggests that the current density is not constant, and that possibly either electrons are being heated or additional ionization events are occurring within the cusp. Spatially resolving electron temperature would be needed to determine if electrons are being heated within the cusp. We also observe breakdown of the anode magnetosheath and formation of anode spots at high bias voltage.
New synthesis of maleic anhydride modified polyolefins and their applications
NASA Astrophysics Data System (ADS)
Lu, Bing
Maleic anhydride (MA) modified polyolefins are the most useful commercial functional polyolefins. The current technology of producing MA modified polyolefins, mainly free radical modification, usually results in low MA graft contents, extensive side reactions, and poor control of graft structures. In this thesis, we show a new synthetic route for preparing MA modified polyolefins with excellent control of polymer structures and MA concentrations. The synthesis is based on the "reactive" polyolefin copolymers, i.e. polyolefins containing p-methylstyrene or alkylborane groups. The p-methylstyrene copolymers lead to selectively grafting reactions on the p-methyl groups, greatly reducing the side reactions on the polyolefin backbone. The MA graft content was proportional to the concentration of p-methylstyrene. In the borane approach, under controlled selective oxidation, the alkylborane containing PP polymers formed the "stable" polymeric radical in situ which initiated the graft-from reaction. By varying the monomer concentrations of MA and styrene, reaction time and temperature, a broad range of MA modified PP polymers were prepared from a single MA terminated or grafted PP to a very long SMA segment blocked or grafted PP, and there is no detectable side reaction on the PP backbone. MA modified polyolefins were investigated in the applications of glass fiber reinforced PP, elastomer toughened Nylon, and polyolefin/Nylon blends. The MA modified polyolefin compatibilizers showed the significant improved mechanical properties and morphology of the blends. The effectiveness of compatibilization depends on the MA concentration, molecular weight of the polyolefin segments, the structure of the compatibilizers, and the composition of the blend. By amidation or imidation reaction of MA modified PP with amine terminated PP, long chain branched PP polymers were also prepared. The results of IR, GPC, intrinsic viscosity and DSC studies clearly indicate the formation of long chain branched PP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esswein, AJ; Surendranath, Y; Reece, SY
A high surface area electrode is functionalized with cobalt-based oxygen evolving catalysts (Co-OEC = electrodeposited from pH 7 phosphate, Pi, pH 8.5 methylphosphonate, MePi, and pH 9.2 borate electrolyte, Bi). Co-OEC prepared from MePi and operated in Pi and Bi achieves a current density of 100 mA cm(-2) for water oxidation at 442 and 363 mV overpotential, respectively. The catalyst retains activity in near-neutral pH buffered electrolyte in natural waters such as those from the Charles River (Cambridge, MA) and seawater (Woods Hole, MA). The efficacy and ease of operation of anodes functionalized with Co-OEC at appreciable current density togethermore » with its ability to operate in near neutral pH buffered natural water sources bodes well for the translation of this catalyst to a viable renewable energy storage technology.« less
Valencia-Islas, N; Zambrano, A; Rojas, J L
2007-08-01
Lichen secondary metabolites putatively protect lichens from a variety of environmental stress factors, but it is unknown whether these substances respond to air pollution. To assess such a possibility, the three major phenolics of two epiphytic lichen species with contrasting tolerance to chronic air pollution from Mexico City were studied by combining experimental reactivity data and measured field contents. The antioxidant activity and antiradical power of boninic (BO), 2-O-methylsekikaic (MA), and usnic (US) acids, isolated from the tolerant Ramalina asahinae and salazinic acid (SA), atranorin (AT), and chloroatranorin (CA), from the sensitive Parmotrema stuppeum, were determined in vitro by kinetic experiments with ozone and the free radical diphenyl picryl hidrazyl (DPPH*), respectively. In addition, the field contents of these phenolics in the lichens, and the potential antioxidant capacity (PAC) they provide, were compared among three forested sites exposed to urban emissions and a similar, relatively clean site. The six phenolics had antioxidant activity and antiradical power according to these trends: CA > AT > US > SA > or = BO > or = MA for O(3); and CA > AT > US > MA > SA = BO for DPPH*. The three most reactive phenolics are cortical compounds, located in the lichen portion most exposed to the surrounding environment. In contrast, the less reactive SA, BO, and MA are medullary. Such reactivity patterns indicate that some phenolics may provide antioxidative protection at the air-lichen interface. The higher antioxidant power of CA and AT may be due to the reactive hydroxyl groups at positions 2 and 4 of ring A, instead of the less reactive methoxyl at the same positions in both BO and MA. In the field comparisons, total quantified phenolics were significantly higher near Mexico City for both lichens, except for the tolerant R. asahinae at one site. Nevertheless, only the latter species had significantly increased PAC values at all sites near the city. This result is explained by species-dependent changes in individual phenolics. At the polluted sites, R. asahinae had consistently higher contents of its most reactive phenolic, US, with values approximately twice that of the control site. In contrast, P. stuppeum only increased its less reactive SA (26-35%), but this was counteracted by CA and, to a lesser extent, AT degradation. Thus, the substantial increase in US at the polluted sites appears to be associated with the current ecological success of R. asahinae near the city. On the other hand, the inability of P. stuppeum to overcome degradation of its most reactive phenolic (CA) at the same sites seems to partially explain the declining status of this lichen. These results provide evidence for a protective mechanism in lichens against air pollution based on secondary metabolites, which may eventually determine which species survive in forests stressed by oxidative air pollution.
Optical ferris wheel for ultracold atoms
NASA Astrophysics Data System (ADS)
Franke-Arnold, S.; Leach, J.; Padgett, M. J.; Lembessis, V. E.; Ellinas, D.; Wright, A. J.; Girkin, J. M.; Ohberg, P.; Arnold, A. S.
2007-07-01
We propose a versatile optical ring lattice suitable for trapping cold and quantum degenerate atomic samples. We demonstrate the realisation of intensity patterns from pairs of Laguerre-Gauss (exp(iℓө) modes with different ℓ indices. These patterns can be rotated by introducing a frequency shift between the modes. We can generate bright ring lattices for trapping atoms in red-detuned light, and dark ring lattices suitable for trapping atoms with minimal heating in the optical vortices of blue-detuned light. The lattice sites can be joined to form a uniform ring trap, making it ideal for studying persistent currents and the Mott insulator transition in a ring geometry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferreira, M.; Doom, L.; Hseuh, H.
2009-09-13
National Synchrotron Light Source II, being constructed at Brookhaven, is a 3-GeV, 500 mA, 3rd generation synchrotron radiation facility with ultra low emittance electron beams. The storage ring vacuum system has a circumference of 792 m and consists of over 250 vacuum chambers with a simulated average operating pressure of less than 1 x 10{sup -9} mbar. A summary of the update design of the vacuum system including girder supports of the chambers, gauges, vacuum pumps, bellows, beam position monitors and simulation of the average pressure will be shown. A brief description of the techniques and procedures for cleaning andmore » mounting the chambers are given.« less
Modeling the superstorm in November 2003
NASA Astrophysics Data System (ADS)
Fok, Mei-Ching; Moore, Thomas E.; Slinker, Steve P.; Fedder, Joel A.; Delcourt, Dominique C.; Nosé, Masahito; Chen, Sheng-Hsien
2011-01-01
The superstorm on 20-21 November 2003 was the largest geomagnetic storm in solar cycle 23 as measured by Dst, which attained a minimum value of -422 nT. We have simulated this storm to understand how particles originating from the solar wind and ionosphere get access to the magnetosphere and how the subsequent transport and energization processes contribute to the buildup of the ring current. The global electromagnetic configuration and the solar wind H+ distribution are specified by the Lyon-Fedder-Mobarry (LFM) magnetohydrodynamics model. The outflow of H+ and O+ ions from the ionosphere are also considered. Their trajectories in the magnetosphere are followed by a test-particle code. The particle distributions at the inner plasma sheet established by the LFM model and test-particle calculations are then used as boundary conditions for a ring current model. Our simulations reproduce the rapid decrease of Dst during the storm main phase and the fast initial phase of recovery. Shielding in the inner magnetosphere is established at early main phase. This shielding field lasts several hours and then breaks down at late main phase. At the peak of the storm, strong penetration of ions earthward to L shell of 1.5 is revealed in the simulation. It is surprising that O+ is significant but not the dominant species in the ring current in our calculation for this major storm. It is very likely that substorm effects are not well represented in the models and O+ energization is underestimated. Ring current simulation with O+ energy density at the boundary set comparable to Geotail observations produces excellent agreement with the observed symH. As expected in superstorms, ring current O+ is the dominant species over H+ during the main to midrecovery phase of the storm.
Impact of Near-Earth Plasma Sheet Dynamics on the Ring Current Composition
NASA Astrophysics Data System (ADS)
Kistler, L. M.; Mouikis, C.; Menz, A.; Spence, H. E.; Mitchell, D. G.; Gkioulidou, M.; Lanzerotti, L. J.; Skoug, R. M.; Larsen, B.; Claudepierre, S. G.; Fennell, J. F.; Blake, J. B.
2014-12-01
How the dynamics in the near-earth plasma sheet affects the heavy ion content, and therefore the ion pressure, of the ring current in Earth's magnetosphere is an outstanding question. Substorms accelerate plasma in the near-earth region and drive outflow from the aurora, and both these processes can preferentially enhance the population of heavy ions in this region. These heavy ions are then driven into the inner magnetosphere during storms. Thus understanding how the composition of the ring current changes requires simultaneous observations in the near-earth plasma sheet and in the inner magnetosphere. We use data from the CODIF instrument on Cluster and HOPE, RBSPICE, and MagEIS instruments on the Van Allen Probes to study the acceleration and transport of ions from the plasma sheet into the ring current. During the main phase of a geomagnetic storm on Aug 4-6, 2013, the Cluster spacecraft were moving inbound in the midnight central plasma sheet, while the apogees of the two Van Allen Probes were located on the duskside. The Cluster spacecraft measure the composition and spectral changes in the plasma sheet, while the Van Allen Probes measure the ions that reach the inner magnetosphere. A strong increase in 1-40 keV O+ was observed at the Cluster location during the storm main phase, and the Van Allen Probes observed both H+ and O+ being driven deep into the inner magnetosphere. By comparing the variations in phase space density (PSD) vs. magnetic moment at the Cluster and the Van Allen Probes locations, we examine how the composition changes non-adiabatically in the near-earth plasma sheet, and how those changes are propagated into the inner magnetosphere, populating the hto ion ring current.
Loss of ring current O+ ions due to interaction with Pc 5 waves
NASA Astrophysics Data System (ADS)
Hudson, Mary; Chan, Anthony; Roth, Ilan
1993-01-01
The behavior of ring current ions in low-frequency geomagnetic pulsations is investigated analytically and numerically. We focus primarily on ring current O+ ions, whose flux increases dramatically during geomagnetic storms and decays at a rate which is not fully explained by collisional processes. This paper presents a new loss mechanism for the O+ ions due to the combined effects of convection and corotation electric fields and interaction with Pc 5 waves (wave period: 150-600 s) via a magnetic drift-bounce resonance. A test particle code has been developed to calculate the motion of the ring current O+ ions in a time-independent dipole magnetic field, and convection and corotation electric fields, plus Pc 5 wave fields, for which a simple analytical model has been formulated based on spacecraft observations. For given fields, whether a particle gains or loses energy depends on its initial kinetic energy, pitch angle at the equatorial plane, and the position of its guiding center with respect to the azimuthal phase of the wave. The ring current O+ ions show a dispersion in energies and L values with decreasing local time across the dayside, and a bulk shift to lower energies and higher L values. The former is due to the wave-particle interaction causing the ion to gain or lose energy, while the latter is due to the convection electric field. Our simulations show that, due to the interaction with the Pc 5 waves, the particle's kinetic energy can drop below that required to overcome the convection potential and the particle will be lost to the dayside magnetopause by a sunward E×B drift. This may contribute to the loss of O+ ions at intermediate energies (tens of keV) observed during the recovery phase of geomagnetic storms.
NASA Technical Reports Server (NTRS)
Yentsch, C. S.; Phinney, D. A.
1985-01-01
The term 'ring' is generally used in the case of a subdivision of ocean eddies. in the present investigation, it denotes mesoscale features which are spawned by the Gulf Stream. This investigation is concerned with the mechanism involved in the regulation of the growth of phytoplankton by the physical oceanographic features of rings. Gulf Stream rings were first observed by Parker (1971) and Fuglister (1972) as a result of extensive temperature measurements from ships in the Gulf Stream. Attention is given to changes in density boundaries associated with the rotation of rings, a synthetic model of a newly formed warm core ring, convection-stabilization, the role of light, the influence of convective overturn in adding nutrients to surface waters of warm core rings, and two major areas which require study.
Li, Weijie; Chou, Shu-Lei; Wang, Jia-Zhao; Kim, Jung Ho; Liu, Hua-Kun; Dou, Shi-Xue
2014-06-25
Sn4+x P3 @ amorphous Sn-P composites are a promising cheap anode material for sodium-ion batteries with high capacity (502 mA h g(-1) at a current density of 100 mA g(-1)), long cycling stability (92.6% capacity retention up to 100 cycles), and high rate capability (165 mA h g(-1) at the 10C rate). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
BioMaS: a modular pipeline for Bioinformatic analysis of Metagenomic AmpliconS.
Fosso, Bruno; Santamaria, Monica; Marzano, Marinella; Alonso-Alemany, Daniel; Valiente, Gabriel; Donvito, Giacinto; Monaco, Alfonso; Notarangelo, Pasquale; Pesole, Graziano
2015-07-01
Substantial advances in microbiology, molecular evolution and biodiversity have been carried out in recent years thanks to Metagenomics, which allows to unveil the composition and functions of mixed microbial communities in any environmental niche. If the investigation is aimed only at the microbiome taxonomic structure, a target-based metagenomic approach, here also referred as Meta-barcoding, is generally applied. This approach commonly involves the selective amplification of a species-specific genetic marker (DNA meta-barcode) in the whole taxonomic range of interest and the exploration of its taxon-related variants through High-Throughput Sequencing (HTS) technologies. The accessibility to proper computational systems for the large-scale bioinformatic analysis of HTS data represents, currently, one of the major challenges in advanced Meta-barcoding projects. BioMaS (Bioinformatic analysis of Metagenomic AmpliconS) is a new bioinformatic pipeline designed to support biomolecular researchers involved in taxonomic studies of environmental microbial communities by a completely automated workflow, comprehensive of all the fundamental steps, from raw sequence data upload and cleaning to final taxonomic identification, that are absolutely required in an appropriately designed Meta-barcoding HTS-based experiment. In its current version, BioMaS allows the analysis of both bacterial and fungal environments starting directly from the raw sequencing data from either Roche 454 or Illumina HTS platforms, following two alternative paths, respectively. BioMaS is implemented into a public web service available at https://recasgateway.ba.infn.it/ and is also available in Galaxy at http://galaxy.cloud.ba.infn.it:8080 (only for Illumina data). BioMaS is a friendly pipeline for Meta-barcoding HTS data analysis specifically designed for users without particular computing skills. A comparative benchmark, carried out by using a simulated dataset suitably designed to broadly represent the currently known bacterial and fungal world, showed that BioMaS outperforms QIIME and MOTHUR in terms of extent and accuracy of deep taxonomic sequence assignments.
Application of Arrester Simulation Device in Training
NASA Astrophysics Data System (ADS)
Baoquan, Zhang; Ziqi, Chai; Genghua, Liu; Wei, Gao; Kaiyue, Wu
2017-12-01
Combining with the arrester simulation device put into use successfully, this paper introduces the application of arrester test in the insulation resistance measurement, counter test, Leakage current test under DC 1mA voltage and leakage current test under 0.75U1mA. By comparing with the existing training, this paper summarizes the arrester simulation device’s outstanding advantages including real time monitoring, multi-type fault data analysis and acousto-optic simulation. It effectively solves the contradiction between authenticity and safety in the existing test training, and provides a reference for further training.
2012-08-01
HMMWV for the current given inputs based on the current vehicle speed, acceleration pedal , and brake pedal . From this driver requested power at the...HMMWV engine, b) base HMMWV gear ratios of the 4 speed transmission, c) acceleration and brake pedal pressed for the hybrid vehicle and d) Torque...coefficient. µb: Threshold for detecting brake pedal pressed ? 2 tanE4FGH 2 tanE4 I [K ρ: Air mass density, ρ = ma/Va where ma is mass of air
Bottom current deposition in the Antarctic Wilkes Land margin during the Oligocene
NASA Astrophysics Data System (ADS)
Salabarnada, Ariadna; Escutia, Carlota; Nelson, Hans C.; Evangelinos, Dimitris; López-Quirós, Adrián
2017-04-01
Sediment cores collected from the Antarctic Wilkes Land continental rise at IODP site 1356 provide evidence for bottom current sedimentation taking place since the early Oligocene (i.e., 33.6 Ma) (Escutia et al., 2011). Correlation between site 1356 sediments and the regional grid of multichannel seismic reflection profiles, complemented with bathymetric data, allow us to differentiate a variety of contourite deposits resulting from the interaction between bottom currents and seafloor paleomorphologies. Contourite deposits are identified based on the seismic signature, reflector configuration and geometry of the depositional bodies as elongated-mounded drifts, giant mounded drifts, confined drifts, infill drifts, plastered drifts, sediment waves, and moats. Based on the spatial and temporal distribution of these deposits, we differentiate three phases in contourite deposition in this margin: Phase 1) from 33.6-28 Ma sheeted drift morphologies dominate, related to high-energy deposits associated with fast flowing currents during the early Oligocene; Phase 2) At around 28 Ma, mounded drift morphologies and moat channels start forming. Continued intensification of contour currents results in larger contourite morphologies such as giant mounded drifts and moats forming around structural heights present in the Wilkes Land basin (e.g, the Adelie Rift Block). Phase 3) A shift in current configuration is recorded at around 15 Ma above regional unconformity WL-U5, which marks the Oligocene-Miocene Transition. This change is shown by a migration to the North of the drift crests and by a dominance of down-slope sedimentation processes that is indicated by mass transport deposits and channel levee formation. We interpret the evolution of the contourite deposits during the Oligocene in this margin to be driven by changes in the intensity of bottom current activity over time resulting from ice sheet growth, evolution of bottom morphology and related changes in paleoceanographic configuration in the Southern Ocean. This contribution results from work funded by the Spanish Ministry of Economy and Competitivity Grant CTM2014-60451-C2-1-P and FEDER funds.
NASA Technical Reports Server (NTRS)
Krimigis, S. M.; Mcentire, R. W.; Potemra, T. A.; Gloeckler, G.; Scarf, F. L.; Shelley, E. G.
1985-01-01
Compositional studies of the equatorial distributions of ring current ions during the September 4, 1984 magnetic storm have been made possible by comprehensive energy, charge state, and mass coverage data from the Charge Composition Explorer satellite. An examination of ion spectra at an L value of about 4 on September 5, in the local evening sector, shows that energy density was dominated by protons, with O ions contributing about 27 percent at the peak of about 150 keV, while He ions contributed less than about 2 percent. September 6 ion spectra, taken during the recovery phase of the storm, indicate that ion densities at more than 20 keV had decreased markedly, and that the ring current energy density was primarily provided by protons.