Sample records for mab purification process

  1. Recovery and purification process development for monoclonal antibody production

    PubMed Central

    Ma, Junfen; Winter, Charles; Bayer, Robert

    2010-01-01

    Hundreds of therapeutic monoclonal antibodies (mAbs) are currently in development, and many companies have multiple antibodies in their pipelines. Current methodology used in recovery processes for these molecules are reviewed here. Basic unit operations such as harvest, Protein A affinity chromatography and additional polishing steps are surveyed. Alternative processes such as flocculation, precipitation and membrane chromatography are discussed. We also cover platform approaches to purification methods development, use of high throughput screening methods, and offer a view on future developments in purification methodology as applied to mAbs. PMID:20647768

  2. Affinity-based precipitation via a bivalent peptidic hapten for the purification of monoclonal antibodies.

    PubMed

    Handlogten, Michael W; Stefanick, Jared F; Deak, Peter E; Bilgicer, Basar

    2014-09-07

    In a previous study, we demonstrated a non-chromatographic affinity-based precipitation method, using trivalent haptens, for the purification of mAbs. In this study, we significantly improved this process by using a simplified bivalent peptidic hapten (BPH) design, which enables facile and rapid purification of mAbs while overcoming the limitations of the previous trivalent design. The improved affinity-based precipitation method (ABP(BPH)) combines the simplicity of salt-induced precipitation with the selectivity of affinity chromatography for the purification of mAbs. The ABP(BPH) method involves 3 steps: (i) precipitation and separation of protein contaminants larger than immunoglobulins with ammonium sulfate; (ii) selective precipitation of the target-antibody via BPH by inducing antibody-complex formation; (iii) solubilization of the antibody pellet and removal of BPH with membrane filtration resulting in the pure antibody. The ABP(BPH) method was evaluated by purifying the pharmaceutical antibody trastuzumab from common contaminants including CHO cell conditioned media, DNA, ascites fluid, other antibodies, and denatured antibody with >85% yield and >97% purity. Importantly, the purified antibody demonstrated native binding activity to cell lines expressing the target protein, HER2. Combined, the ABP(BPH) method is a rapid and scalable process for the purification of antibodies with the potential to improve product quality while decreasing purification costs.

  3. Automated high throughput microscale antibody purification workflows for accelerating antibody discovery

    PubMed Central

    Luan, Peng; Lee, Sophia; Paluch, Maciej; Kansopon, Joe; Viajar, Sharon; Begum, Zahira; Chiang, Nancy; Nakamura, Gerald; Hass, Philip E.; Wong, Athena W.; Lazar, Greg A.

    2018-01-01

    ABSTRACT To rapidly find “best-in-class” antibody therapeutics, it has become essential to develop high throughput (HTP) processes that allow rapid assessment of antibodies for functional and molecular properties. Consequently, it is critical to have access to sufficient amounts of high quality antibody, to carry out accurate and quantitative characterization. We have developed automated workflows using liquid handling systems to conduct affinity-based purification either in batch or tip column mode. Here, we demonstrate the capability to purify >2000 antibodies per day from microscale (1 mL) cultures. Our optimized, automated process for human IgG1 purification using MabSelect SuRe resin achieves ∼70% recovery over a wide range of antibody loads, up to 500 µg. This HTP process works well for hybridoma-derived antibodies that can be purified by MabSelect SuRe resin. For rat IgG2a, which is often encountered in hybridoma cultures and is challenging to purify via an HTP process, we established automated purification with GammaBind Plus resin. Using these HTP purification processes, we can efficiently recover sufficient amounts of antibodies from mammalian transient or hybridoma cultures with quality comparable to conventional column purification. PMID:29494273

  4. A comparison of protein A chromatographic stationary phases: performance characteristics for monoclonal antibody purification.

    PubMed

    Liu, Zhuo; Mostafa, Sigma S; Shukla, Abhinav A

    2015-01-01

    Protein A chromatography remains the dominant capture step used during the downstream purification of monoclonal antibodies (mAbs). With the recent expiry of the Repligen patent on recombinant Protein A, a variety of new Protein A resins have been introduced in the market. Given productivity limitations during downstream processing that have come into sharper focus with the recent increase in cell culture titers for mAbs, the selection of an appropriate Protein A resin has direct implications on the overall process economics of mAb production. The performance of seven different Protein A chromatographic resins was compared with respect to static binding capacity and dynamic binding capacity as a function of flow rate. This data was translated into a comparison of productivity (g mAb purified per unit resin volume per unit time) for the seven stationary phases. In addition, elution pH and host cell protein impurity levels after product capture on each of these resins were determined. The current article provides an effective methodology and dataset for the selection of the optimal Protein A chromatographic resin. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  5. An integrated precipitation and ion-exchange chromatography process for antibody manufacturing: Process development strategy and continuous chromatography exploration.

    PubMed

    Großhans, Steffen; Wang, Gang; Fischer, Christian; Hubbuch, Jürgen

    2018-01-19

    In the past decades, research was carried out to find cost-efficient alternatives to Protein A chromatography as a capture step in monoclonal antibody (mAb) purification processes. In this work, polyethylene glycol (PEG) precipitation has shown promising results in the case of mAb yield and purity. Especially with respect to continuous processing, PEG precipitation has many advantages, like low cost of goods, simple setup, easy scalability, and the option to handle perfusion reactors. Nevertheless, replacing Protein A has the disadvantage of renouncing a platform unit operation as well. Furthermore, PEG precipitation is not capable of reducing high molecular weight impurities (HMW) like aggregates or DNA. To overcome these challenges, an integrated process strategy combining PEG precipitation with cation-exchange chromatography (CEX) for purification of a mAb is presented. This work discusses the process strategy as well as the associated fast, easy, and material-saving process development platform. These were implemented through the combination of high-throughput methods with empirical and mechanistic modeling. The strategy allows the development of a common batch process. Additionally, it is feasible to develop a continuous process. In the presented case study, a mAb provided from cell culture fluid (HCCF) was purified. The precipitation and resolubilization conditions as well as the chromatography method were optimized, and the mutual influence of all steps was investigated. A mAb yield of over 95.0% and a host cell protein (HCP) reduction of over 99.0% could be shown. At the same time, the aggregate level was reduced from 3.12% to 1.20% and the DNA level was reduced by five orders of magnitude. Furthermore, the mAb was concentrated three times to a final concentration of 11.9mg/mL. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Effects of antibody disulfide bond reduction on purification process performance and final drug substance stability

    PubMed Central

    Russell, Brian; Yang, Yanhong; Handlogten, Michael; Hudak, Suzanne; Cao, Mingyan; Wang, Jihong; Robbins, David; Ahuja, Sanjeev; Zhu, Min

    2017-01-01

    ABSTRACT Antibody disulfide bond reduction during monoclonal antibody (mAb) production is a phenomenon that has been attributed to the reducing enzymes from CHO cells acting on the mAb during the harvest process. However, the impact of antibody reduction on the downstream purification process has not been studied. During the production of an IgG2 mAb, antibody reduction was observed in the harvested cell culture fluid (HCCF), resulting in high fragment levels. In addition, aggregate levels increased during the low pH treatment step in the purification process. A correlation between the level of free thiol in the HCCF (as a result of antibody reduction) and aggregation during the low pH step was established, wherein higher levels of free thiol in the starting sample resulted in increased levels of aggregates during low pH treatment. The elevated levels of free thiol were not reduced over the course of purification, resulting in carry‐over of high free thiol content into the formulated drug substance. When the drug substance with high free thiols was monitored for product degradation at room temperature and 2–8°C, faster rates of aggregation were observed compared to the drug substance generated from HCCF that was purified immediately after harvest. Further, when antibody reduction mitigations (e.g., chilling, aeration, and addition of cystine) were applied, HCCF could be held for an extended period of time while providing the same product quality/stability as material that had been purified immediately after harvest. Biotechnol. Bioeng. 2017;114: 1264–1274. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals Inc. PMID:28186329

  7. Customization of copolymers to optimize selectivity and yield in polymer-driven antibody purification processes.

    PubMed

    Capito, Florian; Skudas, Romas; Stanislawski, Bernd; Kolmar, Harald

    2013-01-01

    This manuscript describes customization of copolymers to be used for polymer-driven protein purification in bioprocessing. To understand how copolymer customization can be used for fine-tuning, precipitation behavior was analyzed for five target antibodies (mAbs) and BSA as model impurity protein, at ionic strength similar to undiluted cell culture fluid. In contrast to the use of standardized homopolymers, customized copolymers, composed of 2-acrylamido-2-methylpropane sulfonic acid (AMPS) and 4-(acryloylamino)benzoic acid (ABZ), exhibited antibody precipitation yields exceeding 90%. Additionally, copolymer average molecular weight (Mw ) was varied and its influence on precipitation yield and contaminant coprecipitation was investigated. Results revealed copolymer composition as the major driving force for precipitation selectivity, which was also dependent on protein hydrophobicity. By adjusting ABZ content and Mw of the precipitant for each of the mAbs, conditions were found that allowed for high precipitation yield and selectivity. These findings may open up new avenues for using polymers in antibody purification processes. © 2013 American Institute of Chemical Engineers.

  8. Single pass tangential flow filtration to debottleneck downstream processing for therapeutic antibody production.

    PubMed

    Dizon-Maspat, Jemelle; Bourret, Justin; D'Agostini, Anna; Li, Feng

    2012-04-01

    As the therapeutic monoclonal antibody (mAb) market continues to grow, optimizing production processes is becoming more critical in improving efficiencies and reducing cost-of-goods in large-scale production. With the recent trends of increasing cell culture titers from upstream process improvements, downstream capacity has become the bottleneck in many existing manufacturing facilities. Single Pass Tangential Flow Filtration (SPTFF) is an emerging technology, which is potentially useful in debottlenecking downstream capacity, especially when the pool tank size is a limiting factor. It can be integrated as part of an existing purification process, after a column chromatography step or a filtration step, without introducing a new unit operation. In this study, SPTFF technology was systematically evaluated for reducing process intermediate volumes from 2× to 10× with multiple mAbs and the impact of SPTFF on product quality, and process yield was analyzed. Finally, the potential fit into the typical 3-column industry platform antibody purification process and its implementation in a commercial scale manufacturing facility were also evaluated. Our data indicate that using SPTFF to concentrate protein pools is a simple, flexible, and robust operation, which can be implemented at various scales to improve antibody purification process capacity. Copyright © 2011 Wiley Periodicals, Inc.

  9. Industrialization of mAb production technology The bioprocessing industry at a crossroads

    PubMed Central

    2009-01-01

    Manufacturing processes for therapeutic monoclonal antibodies (mAbs) have evolved tremendously since the first licensed mAb product in 1986. The rapid growth in product demand for mAbs triggered parallel efforts to increase production capacity through construction of large bulk manufacturing plants as well as improvements in cell culture processes to raise product titers. This combination has led to an excess of manufacturing capacity, and together with improvements in conventional purification technologies, promises nearly unlimited production capacity in the foreseeable future. The increase in titers has also led to a marked reduction in production costs, which could then become a relatively small fraction of sales price for future products which are sold at prices at or near current levels. The reduction of capacity and cost pressures for current state-of-the-art bulk production processes may shift the focus of process development efforts and have important implications for both plant design and product development strategies for both biopharmaceutical and contract manufacturing companies. PMID:20065641

  10. A robust robotic high-throughput antibody purification platform.

    PubMed

    Schmidt, Peter M; Abdo, Michael; Butcher, Rebecca E; Yap, Min-Yin; Scotney, Pierre D; Ramunno, Melanie L; Martin-Roussety, Genevieve; Owczarek, Catherine; Hardy, Matthew P; Chen, Chao-Guang; Fabri, Louis J

    2016-07-15

    Monoclonal antibodies (mAbs) have become the fastest growing segment in the drug market with annual sales of more than 40 billion US$ in 2013. The selection of lead candidate molecules involves the generation of large repertoires of antibodies from which to choose a final therapeutic candidate. Improvements in the ability to rapidly produce and purify many antibodies in sufficient quantities reduces the lead time for selection which ultimately impacts on the speed with which an antibody may transition through the research stage and into product development. Miniaturization and automation of chromatography using micro columns (RoboColumns(®) from Atoll GmbH) coupled to an automated liquid handling instrument (ALH; Freedom EVO(®) from Tecan) has been a successful approach to establish high throughput process development platforms. Recent advances in transient gene expression (TGE) using the high-titre Expi293F™ system have enabled recombinant mAb titres of greater than 500mg/L. These relatively high protein titres reduce the volume required to generate several milligrams of individual antibodies for initial biochemical and biological downstream assays, making TGE in the Expi293F™ system ideally suited to high throughput chromatography on an ALH. The present publication describes a novel platform for purifying Expi293F™-expressed recombinant mAbs directly from cell-free culture supernatant on a Perkin Elmer JANUS-VariSpan ALH equipped with a plate shuttle device. The purification platform allows automated 2-step purification (Protein A-desalting/size exclusion chromatography) of several hundred mAbs per week. The new robotic method can purify mAbs with high recovery (>90%) at sub-milligram level with yields of up to 2mg from 4mL of cell-free culture supernatant. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Evaluation of immobilized metal-ion affinity chromatography (IMAC) as a technique for IgG(1) monoclonal antibodies purification: the effect of chelating ligand and support.

    PubMed

    Bresolin, I T L; Borsoi-Ribeiro, M; Tamashiro, W M S C; Augusto, E F P; Vijayalakshmi, M A; Bueno, S M A

    2010-04-01

    Monoclonal antibodies (MAbs) have been used for therapies and some analytical procedures as highly purified molecules. Many techniques have been applied and studied, focusing on monoclonal antibodies purification. In this study, an immobilized metal affinity chromatography membrane was developed and evaluated for the purification of anti-TNP IgG(1) mouse MAbs from cell culture supernatant after precipitation with a 50% saturated ammonium sulfate solution. The chelating ligands iminodiacetic acid, carboxymethylated aspartic acid (CM-Asp), nitrilotriacetic acid, and tris (carboxymethyl) ethylenediamine in agarose gels with immobilized Ni(II) and Zn(II) ions were compared for the adsorption and desorption of MAbs. The most promising chelating ligand--CM-Asp--was then coupled to poly(ethylene vinyl alcohol) (PEVA) hollow fiber membranes. According to SDS-PAGE and ELISA analyses, a higher selectivity and a purification factor of 85.9 (fraction eluted at 500 mM Tris) were obtained for IgG(1) using PEVA-CM-Asp-Zn(II). The anti-TNP MAb could be eluted under mild pH conditions causing no loss of antigen binding capacity.

  12. On-Line Ion Exchange Liquid Chromatography as a Process Analytical Technology for Monoclonal Antibody Characterization in Continuous Bioprocessing.

    PubMed

    Patel, Bhumit A; Pinto, Nuno D S; Gospodarek, Adrian; Kilgore, Bruce; Goswami, Kudrat; Napoli, William N; Desai, Jayesh; Heo, Jun H; Panzera, Dominick; Pollard, David; Richardson, Daisy; Brower, Mark; Richardson, Douglas D

    2017-11-07

    Combining process analytical technology (PAT) with continuous production provides a powerful tool to observe and control monoclonal antibody (mAb) fermentation and purification processes. This work demonstrates on-line liquid chromatography (on-line LC) as a PAT tool for monitoring a continuous biologics process and forced degradation studies. Specifically, this work focused on ion exchange chromatography (IEX), which is a critical separation technique to detect charge variants. Product-related impurities, including charge variants, that impact function are classified as critical quality attributes (CQAs). First, we confirmed no significant differences were observed in the charge heterogeneity profile of a mAb through both at-line and on-line sampling and that the on-line method has the ability to rapidly detect changes in protein quality over time. The robustness and versatility of the PAT methods were tested by sampling from two purification locations in a continuous mAb process. The PAT IEX methods used with on-line LC were a weak cation exchange (WCX) separation and a newly developed shorter strong cation exchange (SCX) assay. Both methods provided similar results with the distribution of percent acidic, main, and basic species remaining unchanged over a 2 week period. Second, a forced degradation study showed an increase in acidic species and a decrease in basic species when sampled on-line over 7 days. These applications further strengthen the use of on-line LC to monitor CQAs of a mAb continuously with various PAT IEX analytical methods. Implementation of on-line IEX will enable faster decision making during process development and could potentially be applied to control in biomanufacturing.

  13. Identification of an IgG CDR sequence contributing to co-purification of the host cell protease cathepsin D.

    PubMed

    Bee, Jared S; Machiesky, LeeAnn M; Peng, Li; Jusino, Kristin C; Dickson, Matthew; Gill, Jeffrey; Johnson, Douglas; Lin, Hung-Yu; Miller, Kenneth; Heidbrink Thompson, Jenny; Remmele, Richard L

    2017-01-01

    Recombinant therapeutic monoclonal antibodies (mAbs) must be purified from host cell proteins (HCPs), DNA, and other impurities present in Chinese hamster ovary (CHO) cell culture media. HCPs can potentially result in adverse clinical responses in patients and, in specific cases, have caused degradation of the final mAb product. As reported previously, residual traces of cathepsin D caused particle formation in the final product of mAb-1. The current work was focused on identification of a primary sequence in mAb-1 responsible for the binding and consequent co-purification of trace levels of CHO cathepsin D. Surface plasmon resonance (SPR) was used to detect binding between immobilized CHO cathepsin D and a panel of mAbs. Out of 13 mAbs tested, only mAb-1 and mAb-6 bound to cathepsin D. An LYY motif in the HC CDR2 was common, yet unique, to only these two mAbs. Mutation of LYY to AAA eliminated binding of mAb-1 to cathepsin D providing confirmation that this sequence motif was involved in the binding to CHO cathepsin D. Interestingly, the binding between mAb-1 and cathepsin D was weaker than that of mAb-6, which may be related to the fact that two aspartic acid residues near the LYY motif in mAb-1 are replaced with neutral serine residues in mAb-6. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:140-145, 2017. © 2016 American Institute of Chemical Engineers.

  14. Optimization of a micro-scale, high throughput process development tool and the demonstration of comparable process performance and product quality with biopharmaceutical manufacturing processes.

    PubMed

    Evans, Steven T; Stewart, Kevin D; Afdahl, Chris; Patel, Rohan; Newell, Kelcy J

    2017-07-14

    In this paper, we discuss the optimization and implementation of a high throughput process development (HTPD) tool that utilizes commercially available micro-liter sized column technology for the purification of multiple clinically significant monoclonal antibodies. Chromatographic profiles generated using this optimized tool are shown to overlay with comparable profiles from the conventional bench-scale and clinical manufacturing scale. Further, all product quality attributes measured are comparable across scales for the mAb purifications. In addition to supporting chromatography process development efforts (e.g., optimization screening), comparable product quality results at all scales makes this tool is an appropriate scale model to enable purification and product quality comparisons of HTPD bioreactors conditions. The ability to perform up to 8 chromatography purifications in parallel with reduced material requirements per run creates opportunities for gathering more process knowledge in less time. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Weak partitioning chromatography for anion exchange purification of monoclonal antibodies.

    PubMed

    Kelley, Brian D; Tobler, Scott A; Brown, Paul; Coffman, Jonathan L; Godavarti, Ranga; Iskra, Timothy; Switzer, Mary; Vunnum, Suresh

    2008-10-15

    Weak partitioning chromatography (WPC) is an isocratic chromatographic protein separation method performed under mobile phase conditions where a significant amount of the product protein binds to the resin, well in excess of typical flowthrough operations. The more stringent load and wash conditions lead to improved removal of more tightly binding impurities, although at the cost of a reduction in step yield. The step yield can be restored by extending the column load and incorporating a short wash at the end of the load stage. The use of WPC with anion exchange resins enables a two-column cGMP purification platform to be used for many different mAbs. The operating window for WPC can be easily established using high throughput batch-binding screens. Under conditions that favor very strong product binding, competitive effects from product binding can give rise to a reduction in column loading capacity. Robust performance of WPC anion exchange chromatography has been demonstrated in multiple cGMP mAb purification processes. Excellent clearance of host cell proteins, leached Protein A, DNA, high molecular weight species, and model virus has been achieved. (c) 2008 Wiley Periodicals, Inc.

  16. Purification of HBsAg produced by the human hepatoma cell line PLC/PRE/5 by affinity chromatography using monoclonal antibodies and application for ELISA diagnostic.

    PubMed

    Merten, O W; Reiter, S; Scheirer, W; Katinger, H

    1983-01-01

    The human cell line PLC/PRF/5 (5) was used for the production of hepatitis B surface antigen subtype ad (HBsAg ad) and purified by affinity chromatography (AC) with monoclonal antibodies (mAb). mAb to HBsAg from mouse ascites have been purified by Protein A - AC prior coupling to AH-Sepharose 4B (Pharmacia). The combined procedure of ammonium-sulphate-precipitation of HBsAg from culture supernatants and immunosorbent-AC leads to approx. 700-fold purification. ELISA results using the mAb and the HBsAg for diagnostics of human serum, positive for anti-HBsAg-antibodies correlate with the RIA (AUSAB, Abbott).

  17. Optimization of elution salt concentration in stepwise elution of protein chromatography using linear gradient elution data. Reducing residual protein A by cation-exchange chromatography in monoclonal antibody purification.

    PubMed

    Ishihara, Takashi; Kadoya, Toshihiko; Endo, Naomi; Yamamoto, Shuichi

    2006-05-05

    Our simple method for optimization of the elution salt concentration in stepwise elution was applied to the actual protein separation system, which involves several difficulties such as detection of the target. As a model separation system, reducing residual protein A by cation-exchange chromatography in human monoclonal antibody (hMab) purification was chosen. We carried out linear gradient elution experiments and obtained the data for the peak salt concentration of hMab and residual protein A, respectively. An enzyme-linked immunosorbent assay was applied to the measurement of the residual protein A. From these data, we calculated the distribution coefficient of the hMab and the residual protein A as a function of salt concentration. The optimal salt concentration of stepwise elution to reduce the residual protein A from the hMab was determined based on the relationship between the distribution coefficient and the salt concentration. Using the optimized condition, we successfully performed the separation, resulting in high recovery of hMab and the elimination of residual protein A.

  18. In-column ATR-FTIR spectroscopy to monitor affinity chromatography purification of monoclonal antibodies

    NASA Astrophysics Data System (ADS)

    Boulet-Audet, Maxime; Kazarian, Sergei G.; Byrne, Bernadette

    2016-07-01

    In recent years many monoclonal antibodies (mAb) have entered the biotherapeutics market, offering new treatments for chronic and life-threatening diseases. Protein A resin captures monoclonal antibody (mAb) effectively, but the binding capacity decays over repeated purification cycles. On an industrial scale, replacing fouled Protein A affinity chromatography resin accounts for a large proportion of the raw material cost. Cleaning-in-place (CIP) procedures were developed to extend Protein A resin lifespan, but chromatograms cannot reliably quantify any remaining contaminants over repeated cycles. To study resin fouling in situ, we coupled affinity chromatography and Fourier transform infrared (FTIR) spectroscopy for the first time, by embedding an attenuated total reflection (ATR) sensor inside a micro-scale column while measuring the UV 280 nm and conductivity. Our approach quantified the in-column protein concentration in the resin bed and determined protein conformation. Our results show that Protein A ligand leached during CIP. We also found that host cell proteins bound to the Protein A resin even more strongly than mAbs and that typical CIP conditions do not remove all fouling contaminants. The insights derived from in-column ATR-FTIR spectroscopic monitoring could contribute to mAb purification quality assurance as well as guide the development of more effective CIP conditions to optimise resin lifespan.

  19. In-column ATR-FTIR spectroscopy to monitor affinity chromatography purification of monoclonal antibodies

    PubMed Central

    Boulet-Audet, Maxime; Kazarian, Sergei G.; Byrne, Bernadette

    2016-01-01

    In recent years many monoclonal antibodies (mAb) have entered the biotherapeutics market, offering new treatments for chronic and life-threatening diseases. Protein A resin captures monoclonal antibody (mAb) effectively, but the binding capacity decays over repeated purification cycles. On an industrial scale, replacing fouled Protein A affinity chromatography resin accounts for a large proportion of the raw material cost. Cleaning-in-place (CIP) procedures were developed to extend Protein A resin lifespan, but chromatograms cannot reliably quantify any remaining contaminants over repeated cycles. To study resin fouling in situ, we coupled affinity chromatography and Fourier transform infrared (FTIR) spectroscopy for the first time, by embedding an attenuated total reflection (ATR) sensor inside a micro-scale column while measuring the UV 280 nm and conductivity. Our approach quantified the in-column protein concentration in the resin bed and determined protein conformation. Our results show that Protein A ligand leached during CIP. We also found that host cell proteins bound to the Protein A resin even more strongly than mAbs and that typical CIP conditions do not remove all fouling contaminants. The insights derived from in-column ATR-FTIR spectroscopic monitoring could contribute to mAb purification quality assurance as well as guide the development of more effective CIP conditions to optimise resin lifespan. PMID:27470880

  20. High-throughput screening of chromatographic separations: IV. Ion-exchange.

    PubMed

    Kelley, Brian D; Switzer, Mary; Bastek, Patrick; Kramarczyk, Jack F; Molnar, Kathleen; Yu, Tianning; Coffman, Jon

    2008-08-01

    Ion-exchange (IEX) chromatography steps are widely applied in protein purification processes because of their high capacity, selectivity, robust operation, and well-understood principles. Optimization of IEX steps typically involves resin screening and selection of the pH and counterion concentrations of the load, wash, and elution steps. Time and material constraints associated with operating laboratory columns often preclude evaluating more than 20-50 conditions during early stages of process development. To overcome this limitation, a high-throughput screening (HTS) system employing a robotic liquid handling system and 96-well filterplates was used to evaluate various operating conditions for IEX steps for monoclonal antibody (mAb) purification. A screening study for an adsorptive cation-exchange step evaluated eight different resins. Sodium chloride concentrations defining the operating boundaries of product binding and elution were established at four different pH levels for each resin. Adsorption isotherms were measured for 24 different pH and salt combinations for a single resin. An anion-exchange flowthrough step was then examined, generating data on mAb adsorption for 48 different combinations of pH and counterion concentration for three different resins. The mAb partition coefficients were calculated and used to estimate the characteristic charge of the resin-protein interaction. Host cell protein and residual Protein A impurity levels were also measured, providing information on selectivity within this operating window. The HTS system shows promise for accelerating process development of IEX steps, enabling rapid acquisition of large datasets addressing the performance of the chromatography step under many different operating conditions. (c) 2008 Wiley Periodicals, Inc.

  1. Purification of an IgA Monoclonal Antibody Specific for the Acr Protein of Mycobacterium tuberculosis by Immunoaffinity Chromatography

    PubMed Central

    REYES, Fátima; OTERO, Oscar; CAMACHO, Frank; SARMIENTO, María Elena; ACOSTA, Armando

    2013-01-01

    Background: A monoclonal antibody (mAb) of the IgA isotype, designated TBA61, is specific for the Acr protein of Mycobacterium tuberculosis (MTB). TBA61 has been used in studies exploring protection against tuberculosis (TB), and its efficacy has been proven using different challenge models. To purify the mouse IgA isotype, a combination of methods, such as globulin precipitation, ion exchange, and gel filtration, is usually required to achieve a satisfactory degree of purity. Methods: To minimise the number of chromatographic steps, we proposed to employ immunoaffinity chromatography using the Acr protein of MTB as a specific ligand for this mAb. For this purpose, the HspX gene was cloned and expressed in Escherichia coli, and recombinant Acr (rAcr) was coupled to a cyanogen bromide-activated Sepharose 4B matrix, which was used to purify TBA61 mAb from ascites produced in mice in a single step. Results: The recovery from the purification procedure was 1.46 mg per mL of ascites. Analysis by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and western blot showed a high purity. The purified mAb retained its reactivity against the Acr protein based on enzyme-linked immunosorbent assay (ELISA) and western blot. Conclusion: The purification method used is rapid, simple, and specific and can be easily scaled up. PMID:24643305

  2. Application of a risk analysis method to different technologies for producing a monoclonal antibody employed in hepatitis B vaccine manufacturing.

    PubMed

    Milá, Lorely; Valdés, Rodolfo; Tamayo, Andrés; Padilla, Sigifredo; Ferro, Williams

    2012-03-01

    CB.Hep-1 monoclonal antibody (mAb) is used for a recombinant Hepatitis B vaccine manufacturing, which is included in a worldwide vaccination program against Hepatitis B disease. The use of this mAb as immunoligand has been addressed into one of the most efficient steps of active pharmaceutical ingredient purification process. Regarding this, Quality Risk Management (QRM) provides an excellent framework for the risk management use in pharmaceutical manufacturing and quality decision-making applications. Consequently, this study sought applying a prospective risk analysis methodology Failure Mode Effects Analysis (FMEA) as QRM tool for analyzing different CB.Hep-1 mAb manufacturing technologies. As main conclusions FMEA was successfully used to assess risks associated with potential problems in CB.Hep-1 mAb manufacturing processes. The severity and occurrence of risks analysis evidenced that the percentage of very high severe risks ranged 31.0-38.7% of all risks and the huge majority of risks have a very low occurrence level (61.9-83.3%) in all assessed technologies. Finally, additive Risk Priority Number, was descending ordered as follow: transgenic plants (2636), ascites (2577), transgenic animals (2046) and hollow fiber bioreactors (1654), which also corroborated that in vitro technology, should be the technology of choice for CB.Hep-1 mAb manufacturing in terms of risks and mAb molecule quality. Copyright © 2011 The International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  3. Process development for robust removal of aggregates using cation exchange chromatography in monoclonal antibody purification with implementation of quality by design.

    PubMed

    Xu, Zhihao; Li, Jason; Zhou, Joe X

    2012-01-01

    Aggregate removal is one of the most important aspects in monoclonal antibody (mAb) purification. Cation-exchange chromatography (CEX), a widely used polishing step in mAb purification, is able to clear both process-related impurities and product-related impurities. In this study, with the implementation of quality by design (QbD), a process development approach for robust removal of aggregates using CEX is described. First, resin screening studies were performed and a suitable CEX resin was chosen because of its relatively better selectivity and higher dynamic binding capacity. Second, a pH-conductivity hybrid gradient elution method for the CEX was established, and the risk assessment for the process was carried out. Third, a process characterization study was used to evaluate the impact of the potentially important process parameters on the process performance with respect to aggregate removal. Accordingly, a process design space was established. Aggregate level in load is the critical parameter. Its operating range is set at 0-3% and the acceptable range is set at 0-5%. Equilibration buffer is the key parameter. Its operating range is set at 40 ± 5 mM acetate, pH 5.0 ± 0.1, and acceptable range is set at 40 ± 10 mM acetate, pH 5.0 ± 0.2. Elution buffer, load mass, and gradient elution volume are non-key parameters; their operating ranges and acceptable ranges are equally set at 250 ± 10 mM acetate, pH 6.0 ± 0.2, 45 ± 10 g/L resin, and 10 ± 20% CV respectively. Finally, the process was scaled up 80 times and the impurities removal profiles were revealed. Three scaled-up runs showed that the size-exclusion chromatography (SEC) purity of the CEX pool was 99.8% or above and the step yield was above 92%, thereby proving that the process is both consistent and robust.

  4. Production and characterization of monoclonal antibodies to estrogen-related receptor alpha (ERRα) and use in immunoaffinity chromatography

    PubMed Central

    Esch, Amanda M.; Thompson, Nancy E.; Lamberski, Jennifer A.; Mertz, Janet E.

    2012-01-01

    Estrogen-related receptor alpha (ERRα) is an orphan nuclear receptor whose elevated expression is thought to contribute to breast, colon, and ovarian cancers. In order to investigate the role of ERRα in human disease, there is a need for immunological reagents suitable for detection and purification of ERRα. We expressed recombinant human ERRα in Escherichia coli, purified the protein, and used it to generate monoclonal antibodies (mAbs) to ERRα. Nine high-affinity mAbs were chosen for their abilities to detect overexpressed ERRα in enzyme-linked immunosorbent assays (ELISAs) and Western blots, after which isotyping and preliminary epitope mapping was performed. The mAbs were all IgG subtypes and reacted with several different regions of full-length ERRα. A majority of the mAbs were found to be useful for immunoprecipitation of ERRα, and several could detect DNA-bound ERRα in electrophoretic mobility supershift assays (EMSAs) and chromatin immunoprecipitation (ChIP). The suitability of mAbs to detect ERRα in immunofluorescence assays was assessed. One mAb in particular, 2ERR10, could specifically detect endogenous ERRα in mammary carcinoma cells. Finally, we performed assays to screen for mAbs that gently release ERRα in the presence of a low-molecular-weight polyhydroxylated compound (polyol) and nonchaotropic salt. Using gentle immunoaffinity chromatography, we were able to isolate ERRα from mammalian cells by eluting with a polyol-salt solution. Our characterization studies show that these monoclonal antibodies perform well in a variety of biochemical assays. We anticipate that these novel reagents will prove useful for the detection and purification of ERRα in research and clinical applications. PMID:22565152

  5. Advanced model-based control strategies for the intensification of upstream and downstream processing in mAb production.

    PubMed

    Papathanasiou, Maria M; Quiroga-Campano, Ana L; Steinebach, Fabian; Elviro, Montaña; Mantalaris, Athanasios; Pistikopoulos, Efstratios N

    2017-07-01

    Current industrial trends encourage the development of sustainable, environmentally friendly processes with minimal energy and material consumption. In particular, the increasing market demand in biopharmaceutical industry and the tight regulations in product quality necessitate efficient operating procedures that guarantee products of high purity. In this direction, process intensification via continuous operation paves the way for the development of novel, eco-friendly processes, characterized by higher productivity and lower production costs. This work focuses on the development of advanced control strategies for (i) a cell culture system in a bioreactor and (ii) a semicontinuous purification process. More specifically, we consider a fed-batch culture of GS-NS0 cells and the semicontinuous Multicolumn Countercurrent Solvent Gradient Purification (MCSGP) for the purification process. The controllers are designed following the PAROC framework/software platform and their capabilities are assessed in silico, against the process models. It is demonstrated that the proposed controllers efficiently manage to increase the system productivity, returning strategies that can lead to continuous, stable process operation. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:966-988, 2017. © 2017 American Institute of Chemical Engineers.

  6. A monoclonal antibody that distinguishes latent and active forms of the proteasome (multicatalytic proteinase complex)

    NASA Technical Reports Server (NTRS)

    Weitman, D.; Etlinger, J. D.

    1992-01-01

    Monoclonal antibodies (mAbs) were generated to proteasome purified from human erythrocytes. Five of six proteasome-specific mAbs reacted with three subunits in the molecular mass range of 25-28 kDa, indicating a common epitope. The other mAb (AP5C10) exhibited a more restricted reactivity, recognizing a 32-kDa subunit of the proteasome purified in its latent state. However, when the proteasome is isolated in its active state, AP5C10 reacts with a 28-kDa subunit, evidence for processing of the proteasome subunits during purification. Purified proteasome preparations which exhibited partial latency have both AP5C10 reactive subunits. Although the 32-kDa subunit appears required for latency, loss of this component and generation of the 28-kDa component are not obligatory for activation. The 32- and 28-kDa subunits can each be further resolved into three components by isoelectric focusing. The apparent loss of 4 kDa during the conversion of the 32- to 28-kDa subunit is accompanied by a shift to a more basic pI for each polypeptide. Western blots of the early steps of proteasome purification reveal an AP5C10-reactive protein at 41 kDa. This protein was separated from proteasomes by sizing chromatography and may represent a pool of precursor subunits. Since the 32-kDa subunit appears necessary for latency, it is speculated to play a regulatory role in ATP-dependent proteolytic activity.

  7. Multiple functions of caprylic acid-induced impurity precipitation for process intensification in monoclonal antibody purification.

    PubMed

    Trapp, Anja; Faude, Alexander; Hörold, Natalie; Schubert, Sven; Faust, Sabine; Grob, Thilo; Schmidt, Stefan

    2018-05-02

    New emerging technologies delivering benefits in terms of process robustness and economy are an inevitable prerequisite for monoclonal antibody purification processes intensification. Caprylic acid was proven as an effective precipitating agent enabling efficient precipitaton of product- and process-related impurities while leaving the antibody in solution. This purification step at mild acidic pH was therefore introduced in generic antibody platform approaches after Protein A capture and evaluated for its impact regarding process robustness and antibody stability. Comparison of 13 different monoclonal antibodies showed significant differences in antibody recovery between 65-95% during caprylic acid-induced impurity precipitation. Among six compared physicochemical properties, isoelectric point of the antibody domains was figured out to correlate with yield. Antibodies with mild acidic pI of the light chain were significantly susceptible to caprylic acid-induced precipitation resulting in lower yields. Virus clearance studies revealed that caprylic acid provided complete virus inactivation of an enveloped virus. Multiple process relevant factors such as pH range, caprylic acid concentration and antibody stability were investigated in this study to enable an intensified purification process including caprylic acid precipitation for HCP removal of up to 2 log 10 reduction values at mAb yields >90% while also contributing to the virus safety of the process. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Aqueous two-phase extraction as a platform in the biomanufacturing industry: economical and environmental sustainability.

    PubMed

    Rosa, P A J; Azevedo, A M; Sommerfeld, S; Bäcker, W; Aires-Barros, M R

    2011-01-01

    The biotech industry is, nowadays, facing unparalleled challenges due to the enhanced demand for biotechnology-based human therapeutic products, such as monoclonal antibodies (mAbs). This has led companies to improve substantially their upstream processes, with the yield of monoclonals increasing to titers never seen before. The downstream processes have, however, been overlooked, leading to a production bottleneck. Although chromatography remains the workhorse of most purification processes, several limitations, such as low capacity, scale-related packing problems, low chemical and proteolytic stability and resins' high cost, have arisen. Aqueous two-phase extraction (ATPE) has been successfully revisited as a valuable alternative for the capture of antibodies. One of the important remaining questions for this technology to be adopted by the biotech industries is, now, how it compares to the currently established platforms in terms of costs and environmental impact. In this report, the economical and environmental sustainability of the aqueous two-phase extraction process is evaluated and compared to the currently established protein A affinity chromatography. Accordingly, the ATPE process was shown to be considerably advantageous in terms of process economics, especially when processing high titer cell culture supernatants. This alternative process is able to purify continuously the same amount of mAbs reducing the annual operating costs from 14.4 to 8.5 million (US$/kg) when cell culture supernatants with mAb titers higher than 2.5 g/L are processed. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. A safe, effective, and facility compatible cleaning in place procedure for affinity resin in large-scale monoclonal antibody purification.

    PubMed

    Wang, Lu; Dembecki, Jill; Jaffe, Neil E; O'Mara, Brian W; Cai, Hui; Sparks, Colleen N; Zhang, Jian; Laino, Sarah G; Russell, Reb J; Wang, Michelle

    2013-09-20

    Cleaning-in-place (CIP) for column chromatography plays an important role in therapeutic protein production. A robust and efficient CIP procedure ensures product quality, improves column life time and reduces the cost of the purification processes, particularly for those using expensive affinity resins, such as MabSelect protein A resin. Cleaning efficiency, resin compatibility, and facility compatibility are the three major aspects to consider in CIP process design. Cleaning MabSelect resin with 50mM sodium hydroxide (NaOH) along with 1M sodium chloride is one of the most popular cleaning procedures used in biopharmaceutical industries. However, high concentration sodium chloride is a leading cause of corrosion in the stainless steel containers used in large scale manufacture. Corroded containers may potentially introduce metal contaminants into purified drug products. Therefore, it is challenging to apply this cleaning procedure into commercial manufacturing due to facility compatibility and drug safety concerns. This paper reports a safe, effective and environmental and facility-friendly cleaning procedure that is suitable for large scale affinity chromatography. An alternative salt (sodium sulfate) is used to prevent the stainless steel corrosion caused by sodium chloride. Sodium hydroxide and salt concentrations were optimized using a high throughput screening approach to achieve the best combination of facility compatibility, cleaning efficiency and resin stability. Additionally, benzyl alcohol is applied to achieve more effective microbial control. Based on the findings, the recommended optimum cleaning strategy is cleaning MabSelect resin with 25 mM NaOH, 0.25 M Na2SO4 and 1% benzyl alcohol solution every cycle, followed by a more stringent cleaning using 50 mM NaOH with 0.25 M Na2SO4 and 1% benzyl alcohol at the end of each manufacturing campaign. A resin life cycle study using the MabSelect affinity resin demonstrates that the new cleaning strategy prolongs resin life time and consistently delivers high purity drug products. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. The "New Polyethylene Glycol Dilemma": Polyethylene Glycol Impurities and Their Paradox Role in mAb Crystallization.

    PubMed

    Hildebrandt, Christian; Joos, Lea; Saedler, Rainer; Winter, Gerhard

    2015-06-01

    Polyethylene glycols (PEG) represent the most successful and frequently applied class of excipients used for protein crystallization. PEG auto-oxidation and formation of impurities such as peroxides and formaldehydes that foster protein drug degradation is known. However, their effect on mAb crystallization has not been studied in detail before. During the present study, a model IgG1 antibody (mAb1) was crystallized in PEG solutions. Aggregate formation was observed during crystallization and storage that was ascribed to PEG degradation products. Reduction of peroxide and formaldehyde levels prior to crystallization by vacuum and freeze-drying was investigated for its effect on protein degradation. Vacuum drying was superior in removal of peroxides but inferior in reducing formaldehyde residues. Consequently, double purification allowed extensive removal of both impurities. Applying of purified PEG led to 50% lower aggregate fractions. Surprisingly, PEG double purification or addition of methionine prior to crystallization prevented crystal formation. With increased PEG concentration or spiking with peroxides and formaldehydes, crystal formation could be recovered again. With these results, we demonstrate that minimum amounts of oxidizing impurities and thus in consequence chemically altered proteins are vital to initiate mAb1 crystallization. The present study calls PEG as good precipitant for therapeutic biopharmaceuticals into question. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  11. Optimization of Ammonium Sulfate Concentration for Purification of Colorectal Cancer Vaccine Candidate Recombinant Protein GA733-FcK Isolated from Plants.

    PubMed

    Park, Se-Ra; Lim, Chae-Yeon; Kim, Deuk-Su; Ko, Kisung

    2015-01-01

    A protein purification procedure is required to obtain high-value recombinant injectable vaccine proteins produced in plants as a bioreactor. However, existing purification procedures for plant-derived recombinant proteins are often not optimized and are inefficient, with low recovery rates. In our previous study, we used 25-30% ammonium sulfate to precipitate total soluble proteins (TSPs) in purification process for recombinant proteins from plant leaf biomass which has not been optimized. Thus, the objective in this study is to optimize the conditions for plant-derived protein purification procedures. Various ammonium sulfate concentrations (15-80%) were compared to determine their effects on TSPs yield. With 50% ammonium sulfate, the yield of precipitated TSP was the highest, and that of the plant-derived colorectal cancer-specific surface glycoprotein GA733 fused to the Fc fragment of human IgG tagged with endoplasmic reticulum retention signal KDEL (GA733(P)-FcK) protein significantly increased 1.8-fold. SDS-PAGE analysis showed that the purity of GA733(P)-FcK protein band appeared to be similar to that of an equal dose of mammalian-derived GA733-Fc (GA733(M)-Fc). The binding activity of purified GA733(P)-FcK to anti-GA733 mAb was as efficient as the native GA733(M)-Fc. Thus, the purification process was effectively optimized for obtaining a high yield of plant-derived antigenic protein with good quality. In conclusion, the purification recovery rate of large quantities of recombinant protein from plant expression systems can be enhanced via optimization of ammonium sulfate concentration during downstream processes, thereby offering a promising solution for production of recombinant GA733-Fc protein in plants.

  12. Transfer of a three step mAb chromatography process from batch to continuous: Optimizing productivity to minimize consumable requirements.

    PubMed

    Gjoka, Xhorxhi; Gantier, Rene; Schofield, Mark

    2017-01-20

    The goal of this study was to adapt a batch mAb purification chromatography platform for continuous operation. The experiments and rationale used to convert from batch to continuous operation are described. Experimental data was used to design chromatography methods for continuous operation that would exceed the threshold for critical quality attributes and minimize the consumables required as compared to batch mode of operation. Four unit operations comprising of Protein A capture, viral inactivation, flow-through anion exchange (AEX), and mixed-mode cation exchange chromatography (MMCEX) were integrated across two Cadence BioSMB PD multi-column chromatography systems in order to process a 25L volume of harvested cell culture fluid (HCCF) in less than 12h. Transfer from batch to continuous resulted in an increase in productivity of the Protein A step from 13 to 50g/L/h and of the MMCEX step from 10 to 60g/L/h with no impact on the purification process performance in term of contaminant removal (4.5 log reduction of host cell proteins, 50% reduction in soluble product aggregates) and overall chromatography process yield of recovery (75%). The increase in productivity, combined with continuous operation, reduced the resin volume required for Protein A and MMCEX chromatography by more than 95% compared to batch. The volume of AEX membrane required for flow through operation was reduced by 74%. Moreover, the continuous process required 44% less buffer than an equivalent batch process. This significant reduction in consumables enables cost-effective, disposable, single-use manufacturing. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Mild hypothermic culture conditions affect residual host cell protein composition post-Protein A chromatography

    PubMed Central

    Goey, Cher Hui; Bell, David; Kontoravdi, Cleo

    2018-01-01

    ABSTRACT Host cell proteins (HCPs) are endogenous impurities, and their proteolytic and binding properties can compromise the integrity, and, hence, the stability and efficacy of recombinant therapeutic proteins such as monoclonal antibodies (mAbs). Nonetheless, purification of mAbs currently presents a challenge because they often co-elute with certain HCP species during the capture step of protein A affinity chromatography. A Quality-by-Design (QbD) strategy to overcome this challenge involves identifying residual HCPs and tracing their source to the harvested cell culture fluid (HCCF) and the corresponding cell culture operating parameters. Then, problematic HCPs in HCCF may be reduced by cell engineering or culture process optimization. Here, we present experimental results linking cell culture temperature and post-protein A residual HCP profile. We had previously reported that Chinese hamster ovary cell cultures conducted at standard physiological temperature and with a shift to mild hypothermia on day 5 produced HCCF of comparable product titer and HCP concentration, but with considerably different HCP composition. In this study, we show that differences in HCP variety at harvest cascaded to downstream purification where different residual HCPs were present in the two sets of samples post-protein A purification. To detect low-abundant residual HCPs, we designed a looping liquid chromatography-mass spectrometry method with continuous expansion of a preferred, exclude, and targeted peptide list. Mild hypothermic cultures produced 20% more residual HCP species, especially cell membrane proteins, distinct from the control. Critically, we identified that half of the potentially immunogenic residual HCP species were different between the two sets of samples. PMID:29381421

  14. Mild hypothermic culture conditions affect residual host cell protein composition post-Protein A chromatography.

    PubMed

    Goey, Cher Hui; Bell, David; Kontoravdi, Cleo

    2018-04-01

    Host cell proteins (HCPs) are endogenous impurities, and their proteolytic and binding properties can compromise the integrity, and, hence, the stability and efficacy of recombinant therapeutic proteins such as monoclonal antibodies (mAbs). Nonetheless, purification of mAbs currently presents a challenge because they often co-elute with certain HCP species during the capture step of protein A affinity chromatography. A Quality-by-Design (QbD) strategy to overcome this challenge involves identifying residual HCPs and tracing their source to the harvested cell culture fluid (HCCF) and the corresponding cell culture operating parameters. Then, problematic HCPs in HCCF may be reduced by cell engineering or culture process optimization. Here, we present experimental results linking cell culture temperature and post-protein A residual HCP profile. We had previously reported that Chinese hamster ovary cell cultures conducted at standard physiological temperature and with a shift to mild hypothermia on day 5 produced HCCF of comparable product titer and HCP concentration, but with considerably different HCP composition. In this study, we show that differences in HCP variety at harvest cascaded to downstream purification where different residual HCPs were present in the two sets of samples post-protein A purification. To detect low-abundant residual HCPs, we designed a looping liquid chromatography-mass spectrometry method with continuous expansion of a preferred, exclude, and targeted peptide list. Mild hypothermic cultures produced 20% more residual HCP species, especially cell membrane proteins, distinct from the control. Critically, we identified that half of the potentially immunogenic residual HCP species were different between the two sets of samples.

  15. Generation and characterization of monoclonal antibodies against Giardia muris trophozoites.

    PubMed

    Heyworth, M F; Ho, K E; Pappo, J

    1989-11-01

    Mouse monoclonal antibodies (mAb) were produced against Giardia muris trophozoite surface antigens. To generate B-cell hybridomas, P3/NS1/1-Ag4-1 myeloma cells were fused with splenic lymphocytes from BALB/c mice that had been immunized parenterally with G. muris trophozoites. Hybridoma culture supernatants were screened for mAb by flow cytometry of G. muris trophozoites incubated with culture supernatant followed by fluorescein-conjugated anti-mouse IgG and IgM. Flow cytometry showed three types of trophozoite staining by mAb: (i) bright staining of greater than 90% of trophozoites, with aggregation of the organisms; (ii) bright staining of approximately 90% of trophozoites, with little or no aggregation; (iii) dull staining of approximately 20% of trophozoites, without aggregation. Western blotting of mAb on G. muris trophozoite antigens separated by polyacrylamide gel electrophoresis showed that a mAb exhibiting the third of these flow cytometry staining patterns recognized trophozoite antigens of MW approximately 31,000 and 35,000. Immunoprecipitation studies indicated that the same mAb specifically precipitated two 125I-labelled trophozoite surface antigens of MW approximately 30,000. Monoclonal antibodies generated in this study may facilitate the purification and biochemical characterization of trophozoite antigens that are targets for protective intestinal antibody in G. muris-infected mice.

  16. Quality by design approach for viral clearance by protein a chromatography

    PubMed Central

    Zhang, Min; Miesegaes, George R; Lee, Michael; Coleman, Daniel; Yang, Bin; Trexler-Schmidt, Melody; Norling, Lenore; Lester, Philip; Brorson, Kurt A; Chen, Qi

    2014-01-01

    Protein A chromatography is widely used as a capture step in monoclonal antibody (mAb) purification processes. Antibodies and Fc fusion proteins can be efficiently purified from the majority of other complex components in harvested cell culture fluid (HCCF). Protein A chromatography is also capable of removing modest levels of viruses and is often validated for viral clearance. Historical data mining of Genentech and FDA/CDER databases systematically evaluated the removal of model viruses by Protein A chromatography. First, we found that for each model virus, removal by Protein A chromatography varies significantly across mAbs, while remains consistent within a specific mAb product, even across the acceptable ranges of the process parameters. In addition, our analysis revealed a correlation between retrovirus and parvovirus removal, with retrovirus data generally possessing a greater clearance factor. Finally, we describe a multivariate approach used to evaluate process parameter impacts on viral clearance, based on the levels of retrovirus-like particles (RVLP) present among process characterization study samples. It was shown that RVLP removal by Protein A is robust, that is, parameter effects were not observed across the ranges tested. Robustness of RVLP removal by Protein A also correlates with that for other model viruses such as X-MuLV, MMV, and SV40. The data supports that evaluating RVLP removal using process characterization study samples can establish multivariate acceptable ranges for virus removal by the protein A step for QbD. By measuring RVLP instead of a model retrovirus, it may alleviate some of the technical and economic challenges associated with performing large, design-of-experiment (DoE)—type virus spiking studies. This approach could also serve to provide useful insight when designing strategies to ensure viral safety in the manufacturing of a biopharmaceutical product. PMID:23860745

  17. Real‐time monitoring and control of the load phase of a protein A capture step

    PubMed Central

    Rüdt, Matthias; Brestrich, Nina; Rolinger, Laura

    2016-01-01

    ABSTRACT The load phase in preparative Protein A capture steps is commonly not controlled in real‐time. The load volume is generally based on an offline quantification of the monoclonal antibody (mAb) prior to loading and on a conservative column capacity determined by resin‐life time studies. While this results in a reduced productivity in batch mode, the bottleneck of suitable real‐time analytics has to be overcome in order to enable continuous mAb purification. In this study, Partial Least Squares Regression (PLS) modeling on UV/Vis absorption spectra was applied to quantify mAb in the effluent of a Protein A capture step during the load phase. A PLS model based on several breakthrough curves with variable mAb titers in the HCCF was successfully calibrated. The PLS model predicted the mAb concentrations in the effluent of a validation experiment with a root mean square error (RMSE) of 0.06 mg/mL. The information was applied to automatically terminate the load phase, when a product breakthrough of 1.5 mg/mL was reached. In a second part of the study, the sensitivity of the method was further increased by only considering small mAb concentrations in the calibration and by subtracting an impurity background signal. The resulting PLS model exhibited a RMSE of prediction of 0.01 mg/mL and was successfully applied to terminate the load phase, when a product breakthrough of 0.15 mg/mL was achieved. The proposed method has hence potential for the real‐time monitoring and control of capture steps at large scale production. This might enhance the resin capacity utilization, eliminate time‐consuming offline analytics, and contribute to the realization of continuous processing. Biotechnol. Bioeng. 2017;114: 368–373. © 2016 The Authors. Biotechnology and Bioengineering published by Wiley Periodicals, Inc. PMID:27543789

  18. Small scale affinity purification and high sensitivity reversed phase nanoLC-MS N-glycan characterization of mAbs and fusion proteins.

    PubMed

    Higel, Fabian; Seidl, Andreas; Demelbauer, Uwe; Sörgel, Fritz; Frieß, Wolfgang

    2014-01-01

    N-glycosylation is a complex post-translational modification with potential effects on the efficacy and safety of therapeutic proteins and known influence on the effector function of biopharmaceutical monoclonal antibodies (mAbs). Comprehensive characterization of N-glycosylation is therefore important in biopharmaceutical development. In early development, e.g. during pool or clone selection, however, only minute protein amounts of multiple samples are available for analytics. High sensitivity and high throughput methods are thus needed. An approach based on 96-well plate sample preparation and nanoLC-MS of 2- anthranilic acid or 2-aminobenzoic acid (AA) labeled N-glycans for the characterization of biopharmaceuticals in early development is reported here. With this approach, 192 samples can be processed simultaneously from complex matrices (e.g., cell culture supernatant) to purified 2-AA glycans, which are then analyzed by reversed phase nanoLC-MS. Attomolar sensitivity has been achieved by use of nanoelectrospray ionization, resulting in detailed glycan maps of mAbs and fusion proteins that are exemplarily shown in this work. Reproducibility, robustness and linearity of the approach are demonstrated, making use in a routine manner during pool or clone selection possible. Other potential fields of application, such as glycan biomarker discovery from serum samples, are also presented.

  19. Small scale affinity purification and high sensitivity reversed phase nanoLC-MS N-glycan characterization of mAbs and fusion proteins

    PubMed Central

    Higel, Fabian; Seidl, Andreas; Demelbauer, Uwe; Sörgel, Fritz; Frieß, Wolfgang

    2014-01-01

    N-glycosylation is a complex post-translational modification with potential effects on the efficacy and safety of therapeutic proteins and known influence on the effector function of biopharmaceutical monoclonal antibodies (mAbs). Comprehensive characterization of N-glycosylation is therefore important in biopharmaceutical development. In early development, e.g. during pool or clone selection, however, only minute protein amounts of multiple samples are available for analytics. High sensitivity and high throughput methods are thus needed. An approach based on 96-well plate sample preparation and nanoLC-MS of 2- anthranilic acid or 2-aminobenzoic acid (AA) labeled N-glycans for the characterization of biopharmaceuticals in early development is reported here. With this approach, 192 samples can be processed simultaneously from complex matrices (e.g., cell culture supernatant) to purified 2-AA glycans, which are then analyzed by reversed phase nanoLC-MS. Attomolar sensitivity has been achieved by use of nanoelectrospray ionization, resulting in detailed glycan maps of mAbs and fusion proteins that are exemplarily shown in this work. Reproducibility, robustness and linearity of the approach are demonstrated, making use in a routine manner during pool or clone selection possible. Other potential fields of application, such as glycan biomarker discovery from serum samples, are also presented. PMID:24848368

  20. Large Scale Generation and Characterization of Anti-Human CD34 Monoclonal Antibody in Ascetic Fluid of Balb/c Mice

    PubMed Central

    Aghebati Maleki, Leili; Majidi, Jafar; Baradaran, Behzad; Abdolalizadeh, Jalal; Kazemi, Tohid; Aghebati Maleki, Ali; Sineh sepehr, Koushan

    2013-01-01

    Purpose: Monoclonal antibodies or specific antibodies are now an essential tool of biomedical research and are of great commercial and medical value. The purpose of this study was to produce large scale of monoclonal antibody against CD34 in order to diagnostic application in leukemia and purification of human hematopoietic stem/progenitor cells. Methods: For large scale production of monoclonal antibody, hybridoma cells that produce monoclonal antibody against human CD34 were injected into the peritoneum of the Balb/c mice which have previously been primed with 0.5 ml Pristane. 5 ml ascitic fluid was harvested from each mouse in two times. Evaluation of mAb titration was assessed by ELISA method. The ascitic fluid was examined for class and subclasses by ELISA mouse mAb isotyping Kit. mAb was purified from ascitic fluid by affinity chromatography on Protein A-Sepharose. Purity of monoclonal antibody was monitored by SDS -PAGE and the purified monoclonal antibody was conjugated with FITC. Results: Monoclonal antibodies with high specificity and sensitivity against human CD34 by hybridoma technology were prepared. The subclass of antibody was IgG1 and its light chain was kappa. Conclusion: The conjugated monoclonal antibody could be a useful tool for isolation, purification and characterization of human hematopoietic stem cells. PMID:24312838

  1. Monoclonal antibodies for the identification and purification of vNAR domains and IgNAR immunoglobulins from the horn shark Heterodontus francisci.

    PubMed

    Juarez, Karla; Dubberke, Gudrun; Lugo, Pavel; Koch-Nolte, Friedrich; Buck, Friedrich; Haag, Friedrich; Licea, Alexei

    2011-08-01

    In addition to conventional antibodies, cartilaginous fish have evolved a distinctive type of immunoglobulin, designated as IgNAR, which lacks the light polypeptide chains and is composed entirely by heavy chains. IgNAR molecules can be manipulated by molecular engineering to produce the variable domain of a single heavy chain polypeptide (vNARs). These, together with the VHH camel domains, constitute the smallest naturally occurring domains able to recognize an antigen. Their special features, such as small size, long extended finger-like CDR3, and thermal and chemical stability, make them suitable candidates for biotechnological purposes. Here we describe the generation of two mouse monoclonal antibodies (MAbs), MAb 370-12 and MAb 533-10, that both specifically react with vNAR domains of the horn shark Heterodontus francisci. While the former recognizes a broad spectrum of recombinant vNAR proteins, the latter is more restricted. MAb 370-12 precipitated a single band from whole shark serum, which was identified as IgNAR by mass spectrometry. Additionally, we used MAb 370-12 to follow the IgNAR-mediated immune response of sharks during immunization protocols with two different antigens (complete cells and a synthethic peptide), thus corroborating that MAb 370-12 recognizes both isolated vNAR domains and whole IgNAR molecules. Both MAbs represent an affordable molecular, biochemical, and biotechnological tool in the field of shark single-domain antibodies.

  2. Generation and characterization of monoclonal antibodies against Giardia muris trophozoites.

    PubMed Central

    Heyworth, M F; Ho, K E; Pappo, J

    1989-01-01

    Mouse monoclonal antibodies (mAb) were produced against Giardia muris trophozoite surface antigens. To generate B-cell hybridomas, P3/NS1/1-Ag4-1 myeloma cells were fused with splenic lymphocytes from BALB/c mice that had been immunized parenterally with G. muris trophozoites. Hybridoma culture supernatants were screened for mAb by flow cytometry of G. muris trophozoites incubated with culture supernatant followed by fluorescein-conjugated anti-mouse IgG and IgM. Flow cytometry showed three types of trophozoite staining by mAb: (i) bright staining of greater than 90% of trophozoites, with aggregation of the organisms; (ii) bright staining of approximately 90% of trophozoites, with little or no aggregation; (iii) dull staining of approximately 20% of trophozoites, without aggregation. Western blotting of mAb on G. muris trophozoite antigens separated by polyacrylamide gel electrophoresis showed that a mAb exhibiting the third of these flow cytometry staining patterns recognized trophozoite antigens of MW approximately 31,000 and 35,000. Immunoprecipitation studies indicated that the same mAb specifically precipitated two 125I-labelled trophozoite surface antigens of MW approximately 30,000. Monoclonal antibodies generated in this study may facilitate the purification and biochemical characterization of trophozoite antigens that are targets for protective intestinal antibody in G. muris-infected mice. Images Figure 2 Figure 3 Figure 4 Figure 5 PMID:2592009

  3. Magnetic nanoparticle based purification and enzyme-linked immunosorbent assay using monoclonal antibody against enrofloxacin

    PubMed Central

    Kim, Nam-Gun; Kim, Myeong-Ae; Park, Young-Il; Jung, Tae-Sung; Son, Seong-Wan; So, ByungJae

    2015-01-01

    Monoclonal anti-enrofloxacin antibody was prepared for a direct competitive enzyme-linked immunosorbent assay (ELISA) and purification system using monoclonal antibody (mAb) coupled magnetic nanoparticles (MNPs). The IC50 values of the developed mAb for enrofloxacin (ENR), ciprofloxacin, difloxacin, sarafloxacin, pefloxacin, and norfloxacin were 5.0, 8.3, 9.7, 21.7, 36.0, and 63.7 ng/mL, respectively. The lowest detectable level of ENR was 0.7 ng/mL in the prepared ELISA system. To validate the developed ELISA in the food matrix, known amounts of ENR were spiked in meat and egg samples at 10, 20 and 30 ng/mL. Recoveries for ENR ranged from 72.9 to 113.16% with a coefficient of variation (CV) of 2.42 to 10.11%. The applicability of the mAb-MNP system was verified by testing the recoveries for ENR residue in three different matrices. Recoveries for ENR ranged from 75.16 to 86.36%, while the CV ranged from 5.08 to 11.53%. Overall, ENR-specific monoclonal antibody was prepared and developed for use in competitive to ELISAs for the detection of ENR in animal meat samples. Furthermore, we suggest that a purification system for ENR using mAb-coupled MNPs could be useful for determination of ENR residue in food. PMID:26040610

  4. Proteomic Analysis of Host Cell Protein Dynamics in the Culture Supernatants of Antibody-Producing CHO Cells

    PubMed Central

    Park, Jin Hyoung; Jin, Jong Hwa; Lim, Myung Sin; An, Hyun Joo; Kim, Jong Won; Lee, Gyun Min

    2017-01-01

    Chinese hamster ovary (CHO) cells are the most common cell line used for the production of therapeutic proteins including monoclonal antibodies (mAbs). Host cell proteins (HCPs), secreted and released from lysed cells, accumulate extracellularly during the cultures of recombinant CHO (rCHO) cells, potentially impairing product quality. In an effort to maintain good mAb quality during the cultures, HCPs accumulated extracellularly in batch and fed-batch cultures of a mAb-producing rCHO cell line were identified and quantified by nanoflow liquid chromatography-tandem mass spectrometry, followed by their gene ontology and functional analysis. Due to higher cell concentration and longer culture duration, more HCPs were identified and quantitated in fed-batch culture (2145 proteins identified and 1673 proteins quantified) than in batch culture (1934 proteins identified and 1486 proteins quantified). Clustering analysis of HCPs showed that the concentration profiles of HCPs affecting mAb quality (Lgmn, Ctsd, Gbl1, and B4galt1) correlated with changes in mAb quality attributes such as aggregation, charge variants, and N-glycosylation during the cultures. Taken together, the dataset of HCPs obtained in this study provides insights into determining the appropriate target proteins to be removed during both the cultures and purification steps for ensuring good mAb quality. PMID:28281648

  5. One-step purification of Enterocytozoon bieneusi spores from human stools by immunoaffinity expanded-bed adsorption.

    PubMed

    Accoceberry, I; Thellier, M; Datry, A; Desportes-Livage, I; Biligui, S; Danis, M; Santarelli, X

    2001-05-01

    An original, reliable, and reproducible method for the purification of Enterocytozoon bieneusi spores from human stools is described. We recently reported the production of a species-specific monoclonal antibody (MAb) 6E52D9 immunoglobulin G2a (IgG2a) raised against the exospore of E. bieneusi spore walls. The MAb was used as a ligand to develop an immunoaffinity matrix. The mouse IgG2a MAb was bound directly to a Streamline rProtein A adsorbent, used for expanded-bed adsorption of immunoglobulins, for optimal spatial orientation of the antibody and maximum binding efficiency of the antigen. The complex was then cross-linked covalently using dimethyl pimelimidate dihydrochloride. After incubation of the immunoaffinity matrix with filtered stool samples containing numerous E. bieneusi spores and before elution with 6 M guanidine HCl, the expansion of the adsorbent bed eliminated all the fecal contaminants. The presence of spores in the elution fractions was determined by an indirect immunofluorescence antibody test (IFAT). E. bieneusi spores were found in the elution fraction in all four experiments and were still highly antigenic as indicated by IFAT. Smears examined by light microscopy contained very clean spores with no fecal debris or background bacterial and fungal contaminants. However, spore recovery rates were relatively low: an average of 10(7) spores were purified per run. This technique for isolating E. bieneusi spores directly from human stool samples with a high degree of purity opens up new approaches for studying this parasite.

  6. Antitumour effects of single or combined monoclonal antibodies directed against membrane antigens expressed by human B cells leukaemia

    PubMed Central

    2011-01-01

    Background The increasing availability of different monoclonal antibodies (mAbs) opens the way to more specific biologic therapy of cancer patients. However, despite the significant success of therapy in breast and ovarian carcinomas with anti-HER2 mAbs as well as in non-Hodkin B cell lymphomas with anti-CD20 mAbs, certain B cell malignancies such as B chronic lymphocytic leukaemia (B-CLL) respond poorly to anti-CD20 mAb, due to the low surface expression of this molecule. Thus, new mAbs adapted to each types of tumour will help to develop personalised mAb treatment. To this aim, we analyse the biological and therapeutic properties of three mAbs directed against the CD5, CD71 or HLA-DR molecules highly expressed on B-CLL cells. Results The three mAbs, after purification and radiolabelling demonstrated high and specific binding capacity to various human leukaemia target cells. Further in vitro analysis showed that mAb anti-CD5 induced neither growth inhibition nor apoptosis, mAb anti-CD71 induced proliferation inhibition with no early sign of cell death and mAb anti-HLA-DR induced specific cell aggregation, but without evidence of apoptosis. All three mAbs induced various degrees of ADCC by NK cells, as well as phagocytosis by macrophages. Only the anti-HLA-DR mAb induced complement mediated lysis. Coincubation of different pairs of mAbs did not significantly modify the in vitro results. In contrast with these discrete and heterogeneous in vitro effects, in vivo the three mAbs demonstrated marked anti-tumour efficacy and prolongation of mice survival in two models of SCID mice, grafted either intraperitoneally or intravenously with the CD5 transfected JOK1-5.3 cells. This cell line was derived from a human hairy cell leukaemia, a type of malignancy known to have very similar biological properties as the B-CLL, whose cells constitutively express CD5. Interestingly, the combined injection of anti-CD5 with anti-HLA-DR or with anti-CD71 led to longer mouse survival, as compared to single mAb injection, up to complete inhibition of tumour growth in 100% mice treated with both anti-HLA-DR and anti-CD5. Conclusions Altogether these data suggest that the combined use of two mAbs, such as anti-HLA-DR and anti-CD5, may significantly enhance their therapeutic potential. PMID:21504579

  7. Optimal quality (131)I-monoclonal antibodies on high-dose labeling in a large reaction volume and temporarily coating the antibody with IODO-GEN.

    PubMed

    Visser, G W; Klok, R P; Gebbinck, J W; ter Linden, T; van Dongen, G A; Molthoff, C F

    2001-03-01

    A novel, facile procedure for efficient coupling of high doses of (131)I to monoclonal antibodies (MAbs) was developed with minimal chemical and radiation damage. To diminish the radiation and chemical burden during labeling, iodination was performed in a large reaction volume and by temporarily coating the MAb with a minimal amount of IODO-GEN. The MAb was coated by injection of IODO-GEN (dissolved in acetonitrile [MeCN]) into the aqueous MAb solution, and the coating was subsequently removed by addition of ascorbic acid. For chemoprotection before, during, and after PD-10 purification of the (131)I-MAbs, ascorbic acid and human serum albumin were used. The effects of autoradiolysis in the starting (131)I solution were countered by treatment with NaOH and ascorbic acid. For this so-called IODO-GEN-coated MAb method, the sensitive chimeric MAb MOv18 (c-MOv18) and the more robust murine MAbs K928 and E48 were used. The high-dose (131)I-labeled MAbs were characterized for radiochemical purity and MAb integrity by thin-layer chromatography, high-performance liquid chromatography, and sodium dodecyl sulfate polyacrylamide gel electrophoresis followed by phosphor imager quantification. The high-dose (131)I-labeled MAbs were also characterized for immunoreactivity. The radiopharmacokinetics and biodistribution of (131)I-c-MOv18 were analyzed in human tumor-bearing nude mice. For comparison, (131)I-c-MOv18 batches were made using the conventional chloramine-T or IODO-GEN-coated vial method. Conventional high-dose labeling of 5 mg c-MOv18 with 4.4 GBq (131)I resulted in a labeling yield of 60%, a radiochemical purity of 90%, an immunoreactive fraction of 25% (72% being the maximum in the assay used), and the presence of aggregation and degradation products. Using similar amounts of (131)I and MAb in the IODO-GEN-coated MAb method, 85%-89% overall radiochemical yield, at least 99.7% radiochemical purity, and full preservation of MAb integrity and immunoreactivity were achieved. For this labeling, 5 mg MAb were coated with 35 microg IODO-GEN during 3 min in a reaction volume of 6 mL. Also, biodistribution was optimal, and tumor accumulation was superior to that of coinjected (125)I-c-MOv18 labeled according to the conventional IODO-GEN-coated vial method. A new, facile, high-dose (131)I-labeling method was developed for production of (131)I-labeled MAbs with optimal quality for use in clinical radioimmunotherapy.

  8. [Screening of full human anthrax lethal factor neutralizing antibody in transgenic mice].

    PubMed

    Wang, Xiaolin; Chi, Xiangyang; Liu, Ju; Liu, Weicen; Liu, Shuling; Qiu, Shunfang; Wen, Zhonghua; Fan, Pengfei; Liu, Kun; Song, Xiaohong; Fu, Ling; Zhang, Jun; Yu, Changming

    2016-11-25

    Anthrax is a highly lethal infectious disease caused by the spore-forming bacterium Bacillus anthracis. The major virulence factor of B. anthracis consists of protective antigen (PA), lethal factor (LF) and edema factor (EF). PA binds with LF to form lethal toxin (LT), and PA binds with EF to form edema toxin (ET). Antibiotics is hard to work in advanced anthrax infections, because injuries and deaths of the infected are mainly caused by lethal toxin (LT). Thus, the therapeutic neutralizing antibody is the most effective treatment of anthrax. Currently most of the anthrax toxin antibodies are monoclonal antibodies (MAbs) for PA and US FDA has approved ABTHRAX humanized PA monoclonal antibody for the treatment of inhalational anthrax. Once B. anthracis was artificially reconstructed or PA had mutations within recognized neutralization epitopes, anti-PA MAbs would no longer be effective. Therefore, anti-LF MAbs is an important supplement for anthrax treatment. Most of the anti-LF antibodies are murine or chimeric antibodies. By contrast, fully human MAbs can avoid the high immunogenicity of murine antibodies. First, we used LF to immunize the transgenic mice and used fluorescent cell sorting to get antigen-specific memory B cells from transgenic mice spleen lymphocytes. By single cell PCR method, we quickly found two strains of anti-LF MAbs with binding activity, 1D7 and 2B9. Transiently transfected Expi 293F cells to obtain MAbs protein after purification. Both 1D7 and 2B9 efficiently neutralized LT in vitro, and had good synergistic effect when mixed with anti-PA MAbs. In summary, combining the advantages of transgenic mice, fluorescent cell sorting and single-cell PCR methods, this study shows new ideas and methods for the rapid screening of fully human monoclonal antibodies.

  9. Quantification of the IgG2/4 kappa Monoclonal Therapeutic Eculizumab from Serum Using Isotype Specific Affinity Purification and Microflow LC-ESI-Q-TOF Mass Spectrometry.

    PubMed

    Ladwig, Paula M; Barnidge, David R; Willrich, Maria A V

    2017-05-01

    As therapeutic monoclonal antibodies (mAbs) become more humanized, traditional tryptic peptide approaches used to measure biologics in serum become more challenging since unique clonotypic peptides used for quantifying the mAb may also be found in the normal serum polyclonal background. An alternative approach is to monitor the unique molecular mass of the intact light chain portion of the mAbs using liquid chromatography-mass spectrometry (LC-MS). Distinguishing a therapeutic mAb from a patient's normal polyclonal immunoglobulin (Ig) repertoire is the primary limiting factor when determining the limit of quantitation (LOQ) in serum. The ability to selectively extract subclass specific Igs from serum reduces the polyclonal background in a sample. We present here the development of an LC-MS method to quantify eculizumab in serum. Eculizumab is a complement component 5 (C5) binding mAb that is fully humanized and contains portions of both IgG2 and IgG4 subclasses. Our group developed a method that uses Life Technologies CaptureSelect IgG4 (Hu) affinity matrix. We show here the ability to quantitate eculizumab with a LOQ of 5 mcg/mL by removing the higher abundance IgG1, IgG2, and IgG3 from the polyclonal background, making this approach a simple and efficient procedure. Graphical Abstract ᅟ.

  10. Quantification of the IgG2/4 kappa Monoclonal Therapeutic Eculizumab from Serum Using Isotype Specific Affinity Purification and Microflow LC-ESI-Q-TOF Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Ladwig, Paula M.; Barnidge, David R.; Willrich, Maria A. V.

    2017-05-01

    As therapeutic monoclonal antibodies (mAbs) become more humanized, traditional tryptic peptide approaches used to measure biologics in serum become more challenging since unique clonotypic peptides used for quantifying the mAb may also be found in the normal serum polyclonal background. An alternative approach is to monitor the unique molecular mass of the intact light chain portion of the mAbs using liquid chromatography-mass spectrometry (LC-MS). Distinguishing a therapeutic mAb from a patient's normal polyclonal immunoglobulin (Ig) repertoire is the primary limiting factor when determining the limit of quantitation (LOQ) in serum. The ability to selectively extract subclass specific Igs from serum reduces the polyclonal background in a sample. We present here the development of an LC-MS method to quantify eculizumab in serum. Eculizumab is a complement component 5 (C5) binding mAb that is fully humanized and contains portions of both IgG2 and IgG4 subclasses. Our group developed a method that uses Life Technologies CaptureSelect IgG4 (Hu) affinity matrix. We show here the ability to quantitate eculizumab with a LOQ of 5 mcg/mL by removing the higher abundance IgG1, IgG2, and IgG3 from the polyclonal background, making this approach a simple and efficient procedure.

  11. One-Step Purification of Enterocytozoon bieneusi Spores from Human Stools by Immunoaffinity Expanded-Bed Adsorption

    PubMed Central

    Accoceberry, Isabelle; Thellier, Marc; Datry, Annick; Desportes-Livage, Isabelle; Biligui, Sylvestre; Danis, Martin; Santarelli, Xavier

    2001-01-01

    An original, reliable, and reproducible method for the purification of Enterocytozoon bieneusi spores from human stools is described. We recently reported the production of a species-specific monoclonal antibody (MAb) 6E52D9 immunoglobulin G2a (IgG2a) raised against the exospore of E. bieneusi spore walls. The MAb was used as a ligand to develop an immunoaffinity matrix. The mouse IgG2a MAb was bound directly to a Streamline rProtein A adsorbent, used for expanded-bed adsorption of immunoglobulins, for optimal spatial orientation of the antibody and maximum binding efficiency of the antigen. The complex was then cross-linked covalently using dimethyl pimelimidate dihydrochloride. After incubation of the immunoaffinity matrix with filtered stool samples containing numerous E. bieneusi spores and before elution with 6 M guanidine HCl, the expansion of the adsorbent bed eliminated all the fecal contaminants. The presence of spores in the elution fractions was determined by an indirect immunofluorescence antibody test (IFAT). E. bieneusi spores were found in the elution fraction in all four experiments and were still highly antigenic as indicated by IFAT. Smears examined by light microscopy contained very clean spores with no fecal debris or background bacterial and fungal contaminants. However, spore recovery rates were relatively low: an average of 107 spores were purified per run. This technique for isolating E. bieneusi spores directly from human stool samples with a high degree of purity opens up new approaches for studying this parasite. PMID:11326019

  12. PDADMAC flocculation of Chinese hamster ovary cells: enabling a centrifuge-less harvest process for monoclonal antibodies.

    PubMed

    McNerney, Thomas; Thomas, Anne; Senczuk, Anna; Petty, Krista; Zhao, Xiaoyang; Piper, Rob; Carvalho, Juliane; Hammond, Matthew; Sawant, Satin; Bussiere, Jeanine

    2015-01-01

    High titer (>10 g/L) monoclonal antibody (mAb) cell culture processes are typically achieved by maintaining high viable cell densities over longer culture durations. A corresponding increase in the solids and sub-micron cellular debris particle levels are also observed. This higher burden of solids (≥15%) and sub-micron particles typically exceeds the capabilities of a continuous centrifuge to effectively remove the solids without a substantial loss of product and/or the capacity of the harvest filtration train (depth filter followed by membrane filter) used to clarify the centrate. We discuss here the use of a novel and simple two-polymer flocculation method used to harvest mAb from high cell mass cell culture processes. The addition of the polycationic polymer, poly diallyldimethylammonium chloride (PDADMAC) to the cell culture broth flocculates negatively-charged cells and cellular debris via an ionic interaction mechanism. Incorporation of a non-ionic polymer such as polyethylene glycol (PEG) into the PDADMAC flocculation results in larger flocculated particles with faster settling rate compared to PDADMAC-only flocculation. PDADMAC also flocculates the negatively-charged sub-micron particles to produce a feed stream with a significantly higher harvest filter train throughput compared to a typical centrifuged harvest feed stream. Cell culture process variability such as lactate production, cellular debris and cellular densities were investigated to determine the effect on flocculation. Since PDADMAC is cytotoxic, purification process clearance and toxicity assessment were performed.

  13. PDADMAC flocculation of Chinese hamster ovary cells: Enabling a centrifuge-less harvest process for monoclonal antibodies

    PubMed Central

    McNerney, Thomas; Thomas, Anne; Senczuk, Anna; Petty, Krista; Zhao, Xiaoyang; Piper, Rob; Carvalho, Juliane; Hammond, Matthew; Sawant, Satin; Bussiere, Jeanine

    2015-01-01

    High titer (>10 g/L) monoclonal antibody (mAb) cell culture processes are typically achieved by maintaining high viable cell densities over longer culture durations. A corresponding increase in the solids and sub-micron cellular debris particle levels are also observed. This higher burden of solids (≥15%) and sub-micron particles typically exceeds the capabilities of a continuous centrifuge to effectively remove the solids without a substantial loss of product and/or the capacity of the harvest filtration train (depth filter followed by membrane filter) used to clarify the centrate. We discuss here the use of a novel and simple two-polymer flocculation method used to harvest mAb from high cell mass cell culture processes. The addition of the polycationic polymer, poly diallyldimethylammonium chloride (PDADMAC) to the cell culture broth flocculates negatively-charged cells and cellular debris via an ionic interaction mechanism. Incorporation of a non-ionic polymer such as polyethylene glycol (PEG) into the PDADMAC flocculation results in larger flocculated particles with faster settling rate compared to PDADMAC-only flocculation. PDADMAC also flocculates the negatively-charged sub-micron particles to produce a feed stream with a significantly higher harvest filter train throughput compared to a typical centrifuged harvest feed stream. Cell culture process variability such as lactate production, cellular debris and cellular densities were investigated to determine the effect on flocculation. Since PDADMAC is cytotoxic, purification process clearance and toxicity assessment were performed. PMID:25706650

  14. Virus elimination during the purification of monoclonal antibodies by column chromatography and additional steps.

    PubMed

    Roberts, Peter L

    2014-01-01

    The theoretical potential for virus transmission by monoclonal antibody based therapeutic products has led to the inclusion of appropriate virus reduction steps. In this study, virus elimination by the chromatographic steps used during the purification process for two (IgG-1 & -3) monoclonal antibodies (MAbs) have been investigated. Both the Protein G (>7log) and ion-exchange (5 log) chromatography steps were very effective for eliminating both enveloped and non-enveloped viruses over the life-time of the chromatographic gel. However, the contribution made by the final gel filtration step was more limited, i.e., 3 log. Because these chromatographic columns were recycled between uses, the effectiveness of the column sanitization procedures (guanidinium chloride for protein G or NaOH for ion-exchange) were tested. By evaluating standard column runs immediately after each virus spiked run, it was possible to directly confirm that there was no cross contamination with virus between column runs (guanidinium chloride or NaOH). To further ensure the virus safety of the product, two specific virus elimination steps have also been included in the process. A solvent/detergent step based on 1% triton X-100 rapidly inactivating a range of enveloped viruses by >6 log inactivation within 1 min of a 60 min treatment time. Virus removal by virus filtration step was also confirmed to be effective for those viruses of about 50 nm or greater. In conclusion, the combination of these multiple steps ensures a high margin of virus safety for this purification process. © 2014 American Institute of Chemical Engineers.

  15. Phase Behavior of an Intact Monoclonal Antibody

    PubMed Central

    Ahamed, Tangir; Esteban, Beatriz N. A.; Ottens, Marcel; van Dedem, Gijs W. K.; van der Wielen, Luuk A. M.; Bisschops, Marc A. T.; Lee, Albert; Pham, Christine; Thömmes, Jörg

    2007-01-01

    Understanding protein phase behavior is important for purification, storage, and stable formulation of protein drugs in the biopharmaceutical industry. Glycoproteins, such as monoclonal antibodies (MAbs) are the most abundant biopharmaceuticals and probably the most difficult to crystallize among water-soluble proteins. This study explores the possibility of correlating osmotic second virial coefficient (B22) with the phase behavior of an intact MAb, which has so far proved impossible to crystallize. The phase diagram of the MAb is presented as a function of the concentration of different classes of precipitants, i.e., NaCl, (NH4)2SO4, and polyethylene glycol. All these precipitants show a similar behavior of decreasing solubility with increasing precipitant concentration. B22 values were also measured as a function of the concentration of the different precipitants by self-interaction chromatography and correlated with the phase diagrams. Correlating phase diagrams with B22 data provides useful information not only for a fundamental understanding of the phase behavior of MAbs, but also for understanding the reason why certain proteins are extremely difficult to crystallize. The scaling of the phase diagram in B22 units also supports the existence of a universal phase diagram of a complex glycoprotein when it is recast in a protein interaction parameter. PMID:17449660

  16. Monoclonal Antibodies Production Platforms: An Opportunity Study of a Non-Protein-A Chromatographic Platform Based on Process Economics.

    PubMed

    Grilo, António L; Mateus, Marília; Aires-Barros, Maria R; Azevedo, Ana M

    2017-12-01

    Monoclonal antibodies currently dominate the biopharmaceutical market with growing sales having reached 80 billion USD in 2016. As most top-selling mAbs are approaching the end of their patent life, biopharmaceutical companies compete fiercely in the biosimilars market. These two factors present a strong motivation for alternative process strategies and process optimization. In this work a novel purification strategy for monoclonal antibodies comprising phenylboronic acid multimodal chromatography for capture followed by polishing by ion-exchange monolithic chromatography and packed bed hydrophobic interaction chromatography is presented and compared to the traditional protein-A-based process. Although the capital investment is similar for both processes, the operation cost is 20% lower for the novel strategy. This study shows that the new process is worthwhile investing in and could present a viable alternative to the platform process used by most industrial players. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Purification and characterization of monoclonal antibodies to alpha-linolenic acid.

    PubMed

    Buffière, F; Cook-Moreau, J; Gualde, N; Rigaud, M

    1989-01-01

    The covalently linked antigenic complex, bovine serum albumin-alpha-linolenic acid, was used to immunize Balb/c mice against the hapten. Hybridization between splenocytes and the myeloma cell line, P 3 X63 Ag 8,651, resulted in stable clones synthesizing monoclonal antibodies (Mab) that were subsequently purified and characterized. Four Mab (A, B, C, D) were retained and their specificities studied by ELISA. Antibody D only recognized 18-carbon fatty acids having a cis,cis,-cis-1,4,7 unsaturated system in the omega-3 position: it was specific for alpha-linolenic acid. B recognized all fatty acids containing the structure cis,cis,cis-1,4,7-octatriene. A and C recognized polyunsaturated fatty acids with a degree of unsaturation superior to two double bonds.

  18. Isolation of 1E4 IgM Anti-Fasciola hepatica Rediae Monoclonal Antibody from Ascites: Comparison of Two Purification Protocols.

    PubMed

    Alba, Annia; Marcet, Ricardo; Otero, Oscar; Hernández, Hilda M; Figueredo, Mabel; Sarracent, Jorge

    2016-02-01

    Purification of immunoglobulin M (IgM) antibodies could be challenging, and is often characterized by the optimization of the purification protocol to best suit the particular features of the molecule. Here, two different schemes were compared to purify, from ascites, the 1E4 IgM monoclonal antibody (mAb) previously raised against the stage of redia of the trematode Fasciola hepatica. This immunoglobulin is used as capture antibody in an immunoenzymatic assay to detect parasite ongoing infection in its intermediate hosts. The first purification protocol of the 1E4 mAb involved two chromatographic steps: an affinity chromatography on a Concanavalin A matrix followed by size exclusion chromatography. An immunoaffinity chromatography was selected as the second protocol for one-step purification of the antibody using the crude extract of adult parasites coupled to a commercial matrix. Immunoreactivity of the fractions during purification schemes was assessed by indirect immunoenzymatic assays against the crude extract of F. hepatica rediae, while purity was estimated by protein electrophoresis. Losses on the recovery of the antibody isolated by the first purification protocol occurred due to protein precipitation during the concentration of the sample and to low resolution of the size exclusion molecular chromatography step regarding this particular immunoglobulin. The immunoaffinity chromatography using F. hepatica antigens as ligands proved to be the most suitable protocol yielding a pure and immunoreactive antibody. The purification protocols used are discussed regarding efficiency and difficulties.

  19. Rational design of peptide affinity ligands for the purification of therapeutic enzymes.

    PubMed

    Trasatti, John P; Woo, James; Ladiwala, Asif; Cramer, Steven; Karande, Pankaj

    2018-04-25

    Non-mAb biologics represent a growing class of therapeutics under clinical development. Although affinity chromatography is a potentially attractive approach for purification, the development of platform technologies, such as Protein A for mAbs, has been challenging due to the inherent chemical and structural diversity of these molecules. Here, we present our studies on the rapid development of peptide affinity ligands for the purification of biologics using a prototypical enzyme therapeutic in clinical use. Employing a suite of de novo rational and combinatorial design strategies we designed and screened a library of peptides on microarray platforms for their ability to bind to the target with high affinity and selectivity in cell culture fluid. Lead peptides were evaluated on resin in batch conditions and compared with a commercially available resin to evaluate their efficacy. Two lead candidates identified from microarray studies provided high binding capacity to the target while demonstrating high selectivity against culture contaminants and product variants compared to a commercial resin system. These findings provide a proof-of-concept for developing affinity peptide-based bioseparations processes for a target biologic. Peptide affinity ligand design and screening approaches presented in this work can also be easily translated to other biologics of interest. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018. © 2018 American Institute of Chemical Engineers.

  20. Multicapillary SDS-gel electrophoresis for the analysis of fluorescently labeled mAb preparations: a high throughput quality control process for the production of QuantiPlasma and PlasmaScan mAb libraries.

    PubMed

    Székely, Andrea; Szekrényes, Akos; Kerékgyártó, Márta; Balogh, Attila; Kádas, János; Lázár, József; Guttman, András; Kurucz, István; Takács, László

    2014-08-01

    Molecular heterogeneity of mAb preparations is the result of various co- and post-translational modifications and to contaminants related to the production process. Changes in molecular composition results in alterations of functional performance, therefore quality control and validation of therapeutic or diagnostic protein products is essential. A special case is the consistent production of mAb libraries (QuantiPlasma™ and PlasmaScan™) for proteome profiling, quality control of which represents a challenge because of high number of mAbs (>1000). Here, we devise a generally applicable multicapillary SDS-gel electrophoresis process for the analysis of fluorescently labeled mAb preparations for the high throughput quality control of mAbs of the QuantiPlasma™ and PlasmaScan™ libraries. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Blocking monocyte transmigration in in vitro system by a human antibody scFv anti-CD99. Efficient large scale purification from periplasmic inclusion bodies in E. coli expression system.

    PubMed

    Moricoli, Diego; Muller, William Anthony; Carbonella, Damiano Cosimo; Balducci, Maria Cristina; Dominici, Sabrina; Watson, Richard; Fiori, Valentina; Weber, Evan; Cianfriglia, Maurizio; Scotlandi, Katia; Magnani, Mauro

    2014-06-01

    Migration of leukocytes into site of inflammation involves several steps mediated by various families of adhesion molecules. CD99 play a significant role in transendothelial migration (TEM) of leukocytes. Inhibition of TEM by specific monoclonal antibody (mAb) can provide a potent therapeutic approach to treating inflammatory conditions. However, the therapeutic utilization of whole IgG can lead to an inappropriate activation of Fc receptor-expressing cells, inducing serious adverse side effects due to cytokine release. In this regard, specific recombinant antibody in single chain variable fragments (scFvs) originated by phage library may offer a solution by affecting TEM function in a safe clinical context. However, this consideration requires large scale production of functional scFv antibodies and the absence of toxic reagents utilized for solubilization and refolding step of inclusion bodies that may discourage industrial application of these antibody fragments. In order to apply the scFv anti-CD99 named C7A in a clinical setting, we herein describe an efficient and large scale production of the antibody fragments expressed in E. coli as periplasmic insoluble protein avoiding gel filtration chromatography approach, and laborious refolding step pre- and post-purification. Using differential salt elution which is a simple, reproducible and effective procedure we are able to separate scFv in monomer format from aggregates. The purified scFv antibody C7A exhibits inhibitory activity comparable to an antagonistic conventional mAb, thus providing an excellent agent for blocking CD99 signaling. This protocol can be useful for the successful purification of other monomeric scFvs which are expressed as periplasmic inclusion bodies in bacterial systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Fluorescence dye-based detection of mAb aggregates in CHO culture supernatants.

    PubMed

    Paul, Albert Jesuran; Schwab, Karen; Prokoph, Nina; Haas, Elena; Handrick, René; Hesse, Friedemann

    2015-06-01

    Product yields, efficacy, and safety of monoclonal antibodies (mAbs) are reduced by the formation of higher molecular weight aggregates during upstream processing. In-process characterization of mAb aggregate formation is a challenge since there is a lack of a fast detection method to identify mAb aggregates in cell culture. In this work, we present a rapid method to characterize mAb aggregate-containing Chinese hamster ovary (CHO) cell culture supernatants. The fluorescence dyes thioflavin T (ThT) and 4-4-bis-1-phenylamino-8-naphthalene sulfonate (Bis-ANS) enabled the detection of soluble as well as large mAb aggregates. Partial least square (PLS) regression models were used to evaluate the linearity of the dye-based mAb aggregate detection in buffer down to a mAb aggregate concentration of 2.4 μg mL(-1). Furthermore, mAb aggregates were detected in bioprocess medium using Bis-ANS and ThT. Dye binding to aggregates was stable for 60 min, making the method robust and reliable. Finally, the developed method using 10 μmol L(-1) Bis-ANS enabled discrimination between CHO cell culture supernatants containing different levels of mAb aggregates. The method can be adapted for high-throughput screening, e.g., to screen for cell culture conditions influencing mAb product quality, and hence can contribute to the improvement of production processes of biopharmaceuticals in mammalian cell culture.

  3. Development of a general method for quantifying IgG-based therapeutic monoclonal antibodies in human plasma using protein G purification coupled with a two internal standard calibration strategy using LC-MS/MS.

    PubMed

    Chiu, Huai-Hsuan; Liao, Hsiao-Wei; Shao, Yu-Yun; Lu, Yen-Shen; Lin, Ching-Hung; Tsai, I-Lin; Kuo, Ching-Hua

    2018-08-17

    Monoclonal antibody (mAb) drugs have generated much interest in recent years for treating various diseases. Immunoglobulin G (IgG) represents a high percentage of mAb drugs that have been approved by the Food and Drug Administration (FDA). To facilitate therapeutic drug monitoring and pharmacokinetic/pharmacodynamic studies, we developed a general liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to quantify the concentration of IgG-based mAbs in human plasma. Three IgG-based drugs (bevacizumab, nivolumab and pembrolizumab) were selected to demonstrate our method. Protein G beads were used for sample pretreatment due to their universal ability to trap IgG-based drugs. Surrogate peptides that were obtained after trypsin digestion were quantified by using LC-MS/MS. To calibrate sample preparation errors and matrix effects that occur during LC-MS/MS analysis, we used two internal standards (IS) method that include the IgG-based drug-IS tocilizumab and post-column infused IS. Using two internal standards was found to effectively improve quantification accuracy, which was within 15% for all mAb drugs that were tested at three different concentrations. This general method was validated in term of its precision, accuracy, linearity and sensitivity for 3 demonstration mAb drugs. The successful application of the method to clinical samples demonstrated its' applicability in clinical analysis. It is anticipated that this general method could be applied to other mAb-based drugs for use in precision medicine and clinical studies. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Monoclonal antibody production using a new supermacroporous cryogel bioreactor.

    PubMed

    Nilsang, Suthasinee; Nandakumar, Kutty Selva; Galaev, Igor Yu; Rakshit, Sudip Kumar; Holmdahl, Rikard; Mattiasson, Bo; Kumar, Ashok

    2007-01-01

    A supermacroporous cryogel bioreactor has been developed to culture hybridoma cells for long-term continuous production of monoclonal antibodies (mAb). Hybridoma clone M2139, secreting antibodies against J1 epitope (GERGAAGIAGPK; amino acids, 551-564) of collagen type II, are immobilized in the porous bed matrix of a cryogel column (10 mL bed volume). The cells got attached to the matrix within 48 h after inoculation and grew as a confluent sheet inside the cryogel matrix. Cells were in the lag phase for 15 days and secreted mAb into the circulation medium. Glucose consumption and lactic acid production were also monitored, and during the exponential phase (approximately 20 days), the hybridoma cell line consumed 0.75 mM day-1 glucose, produced 2.48 mM day-1 lactic acid, and produced 6.5 microg mL-1 day-1 mAb during the exponential phase. The mAb concentration reached 130 microg mL-1 after continuous run of the cryogel column for 36 days. The yield of the mAb after purification was 67.5 mg L-1, which was three times greater than the mAb yield obtained from T-flask batch cultivation. Even after the exchange of medium reservoir, cells in the cryogel column were still active and had relatively stable mAb production for an extended period of time. The bioreactor was operated continuously for 55 days without any contamination. The results from ELISA as well as arthritis experiments demonstrate that the antibodies secreted by cells grown on the cryogel column did not differ from antibodies purified from the cells grown in commercial CL-1000 culture flasks. Thus, supermacroporous cryogels can be useful as a supporting material for productive hybridoma cell culture. Cells were found to be viable inside the porous matrix of the cryogel during the study period and secreted antibodies continuously. The antibodies thus obtained from the cryogel reactor were found to be functionally active in vivo, as demonstrated by their capacity to induce arthritis in mice.

  5. A novel monoclonal antibody-based enzyme-linked immunosorbent assay to determine luteinizing hormone in bovine plasma.

    PubMed

    Borromeo, V; Berrini, A; De Grandi, F; Cremonesi, F; Fiandanese, N; Pocar, P; Secchi, C

    2014-07-01

    The development of a novel enzyme-linked immunosorbent assay (ELISA) for determining luteinizing hormone (LH) in bovine plasma is described. Anti-bovine LH (bLH) monoclonal antibodies (mAbs) were produced and characterized. One mAb recognizing the bLH β subunit was used for immunoaffinity purification of substantial amounts of biologically active bLH from pituitary glands. The purified bLH in combination with 2 anti-bLH β subunit mAbs was used to develop a sandwich ELISA, which satisfied all the criteria required to investigate LH secretory patterns in the bovine species. The ELISA standard curve was linear over the range 0.05 to 2.5 ng/mL, and the assay proved suitable for measuring bLH in plasma without any prior treatment of samples. Cross-reactivity and recovery tests confirmed the specificity of the method. The intra- and inter-assay coefficients of variation ranged between 3.41% and 9.40%, and 9.29% and 15.84%, respectively. The analytical specificity of the method was validated in vivo by provocative tests for LH in heifers, using the LH releasing peptide gonadotropin-releasing hormone. In conclusion, the adoption of mAbs for this ELISA for coating the wells and labeling, combined with the easy one-step production of reference bLH, ensures long-term continuity in large-scale measurements of LH in the bovine species. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. In Vitro and In Vivo Analysis of Indocyanine Green-Labeled Panitumumab for Optical Imaging—A Cautionary Tale

    PubMed Central

    2015-01-01

    Indocyanine green (IC-Green), the only FDA approved near-infrared (NIR) fluorophore for clinical use, is attractive to researchers for the development of targeted optical imaging agents by modification of its structure and conjugation to monoclonal antibodies (mAbs) or their fragments. IC-Green derivative, ICG-sulfo-OSu (ICG-sOSu), is frequently used for antibody conjugation. However, ICG-sOSu is amphiphilic and readily facilitates aggregation of mAbs that is not easily separable from the desired immunoconjugates. Complications originating from this behavior are frequently overlooked by researchers. This study examined detailed chemical and biological characteristics of an ICG-sOSu-labeled mAb, panitumumab, and provided a clinically applicable strategy to deliver a pure conjugation product. Size-exclusion high-performance liquid chromatography (SE-HPLC) analysis of conjugation reactions, performed at molar reaction ratios of ICG-sOSu: mAb of 5, 10, or 20, resulted in isolable desired ICG-sOSu-panitumumab conjugation product in 72%, 53%, and 19% yields, respectively, with the remainder consisting of high molecular weight aggregates (>150 kDa) 14%, 30%, and 51%, respectively. The HPLC-purified ICG-sOSu-panitumumab products were analyzed by native and SDS polyacrylamide gel electrophoresis (PAGE) followed by optical imaging. Results indicated that the interaction between ICG-sOSu and panitumumab was due to both covalent and noncovalent binding of the ICG-sOSu to the protein. Noncovalently bound dye in the ICG-sOSu-panitumumab conjugate products was removed by extraction with ethyl acetate to further purify the HPLC-isolated conjugation products. With conserved immunoreactivity, excellent target-specific uptake of the doubly purified bioconjugates was observed with minimal liver retention in athymic nude mice bearing HER1-expressing tumor xenografts. In summary, the preparation of well-defined bioconjugate products labeled with commercial ICG-sOSu dye is not a simple process and control of the conjugation reaction ratio and conditions is crucial. Furthermore, absolute purification and characterization of the products is necessitated prior to in vivo optical imaging. Use of validated and characterized dye conjugate products should facilitate the development of clinically viable and reproducible IC-Green derivative and other NIR dye mAb conjugates for optical imaging applications. PMID:25243604

  7. In vitro and in vivo analysis of indocyanine green-labeled panitumumab for optical imaging-a cautionary tale.

    PubMed

    Zhou, Yang; Kim, Young-Seung; Milenic, Diane E; Baidoo, Kwamena E; Brechbiel, Martin W

    2014-10-15

    Indocyanine green (IC-Green), the only FDA approved near-infrared (NIR) fluorophore for clinical use, is attractive to researchers for the development of targeted optical imaging agents by modification of its structure and conjugation to monoclonal antibodies (mAbs) or their fragments. IC-Green derivative, ICG-sulfo-OSu (ICG-sOSu), is frequently used for antibody conjugation. However, ICG-sOSu is amphiphilic and readily facilitates aggregation of mAbs that is not easily separable from the desired immunoconjugates. Complications originating from this behavior are frequently overlooked by researchers. This study examined detailed chemical and biological characteristics of an ICG-sOSu-labeled mAb, panitumumab, and provided a clinically applicable strategy to deliver a pure conjugation product. Size-exclusion high-performance liquid chromatography (SE-HPLC) analysis of conjugation reactions, performed at molar reaction ratios of ICG-sOSu: mAb of 5, 10, or 20, resulted in isolable desired ICG-sOSu-panitumumab conjugation product in 72%, 53%, and 19% yields, respectively, with the remainder consisting of high molecular weight aggregates (>150 kDa) 14%, 30%, and 51%, respectively. The HPLC-purified ICG-sOSu-panitumumab products were analyzed by native and SDS polyacrylamide gel electrophoresis (PAGE) followed by optical imaging. Results indicated that the interaction between ICG-sOSu and panitumumab was due to both covalent and noncovalent binding of the ICG-sOSu to the protein. Noncovalently bound dye in the ICG-sOSu-panitumumab conjugate products was removed by extraction with ethyl acetate to further purify the HPLC-isolated conjugation products. With conserved immunoreactivity, excellent target-specific uptake of the doubly purified bioconjugates was observed with minimal liver retention in athymic nude mice bearing HER1-expressing tumor xenografts. In summary, the preparation of well-defined bioconjugate products labeled with commercial ICG-sOSu dye is not a simple process and control of the conjugation reaction ratio and conditions is crucial. Furthermore, absolute purification and characterization of the products is necessitated prior to in vivo optical imaging. Use of validated and characterized dye conjugate products should facilitate the development of clinically viable and reproducible IC-Green derivative and other NIR dye mAb conjugates for optical imaging applications.

  8. Expression of a recombinant human sperm-agglutinating mini-antibody in tobacco (Nicotiana tabacum L.).

    PubMed

    Xu, Bingfang; Copolla, Michael; Herr, John C; Timko, Michael P

    2007-01-01

    The murine monoclonal antibody (mAB) S19 recognizes an N-linked carbohydrate antigen designated sperm agglutination antigen-1 (SAGA1) located on the membrane protein CD52. This antigen is added to the sperm surface during epididymal maturation. Binding of the S19 mAB to SAGA-1 causes the rapid agglutination of sperm and blocks pre-fertilization events. Previous studies indicated that the S19 mAB may be a potential specific spermicidal agent (termed a spermistatic) capable of replacing current spermicidal products that contain harsh detergents with harmful side effects. The nucleotide sequences encoding the heavy (H) and light (L) chains of the S19 antibody were cloned. A chimeric gene was constructed using the nucleotide sequences encoding the variable regions of both the H and L chains, and this gene (scFv1 9) was expressed in transgenic tobacco (Nicotiana tabacum L.) to produce a recombinant anti-sperm antibody (RASA). Highest levels of RASA expression were observed in BY-2 plant cell suspension cultures and regenerated N. tabacum cv. Xanthi plants transformant in which the RASA coding sequences were expressed under the control of the Cauliflower Mosaic Virus 35S promoter containing a double-enhancer sequence (2X CaMV 35S). Subsequent modifications of the transgene including the addition of a 5'-untranslated sequence from the tobacco etch virus (TEV leader sequence), N-terminal fusion of the coding region with an endoplasmic reticulum targeting signal of patatin (pat) and C-terminal fusion with the endoplasmic reticulum retention signal peptide KDEL showed further enhancement of RASA expression. The plant-expressed RASA formed intrachain disulfide bonds and was primarily soluble in the cytoplasmic fraction of the cells. Introduction of a poly-histidine (6xHIS) tag in the recombinant RASA protein allowed for rapid purification of the recombinant protein using Ni-NTA chromatography. Optimization of scale-up production and purification of this plant-derived recombinant protein should provide large quantities of an inexpensive spermistatic plantibody.

  9. Evolving trends in mAb production processes

    PubMed Central

    Wolfe, Leslie S.; Mostafa, Sigma S.; Norman, Carnley

    2017-01-01

    Abstract Monoclonal antibodies (mAbs) have established themselves as the leading biopharmaceutical therapeutic modality. The establishment of robust manufacturing platforms are key for antibody drug discovery efforts to seamlessly translate into clinical and commercial successes. Several drivers are influencing the design of mAb manufacturing processes. The advent of biosimilars is driving a desire to achieve lower cost of goods and globalize biologics manufacturing. High titers are now routinely achieved for mAbs in mammalian cell culture. These drivers have resulted in significant evolution in process platform approaches. Additionally, several new trends in bioprocessing have arisen in keeping with these needs. These include the consideration of alternative expression systems, continuous biomanufacturing and non‐chromatographic separation formats. This paper discusses these drivers in the context of the kinds of changes they are driving in mAb production processes. PMID:29313024

  10. Manufacturing of High-Concentration Monoclonal Antibody Formulations via Spray Drying-the Road to Manufacturing Scale.

    PubMed

    Gikanga, Benson; Turok, Robert; Hui, Ada; Bowen, Mayumi; Stauch, Oliver B; Maa, Yuh-Fun

    2015-01-01

    Spray-dried monoclonal antibody (mAb) powders may offer applications more versatile than the freeze-dried cake, including preparing high-concentration formulations for subcutaneous administration. Published studies on this topic, however, are generally scarce. This study evaluates a pilot-scale spray dryer against a laboratory-scale dryer to spray-dry multiple mAbs in consideration of scale-up, impact on mAb stability, and feasibility of a high-concentration preparation. Under similar conditions, both dryers produced powders of similar properties-for example, water content, particle size and morphology, and mAb stability profile-despite a 4-fold faster output by the pilot-scale unit. All formulations containing arginine salt or a combination of arginine salt and trehalose were able to be spray-dried with high powder collection efficiency (>95%), but yield was adversely affected in formulations with high trehalose content due to powder sticking to the drying chamber. Spray-drying production output was dictated by the size of the dryer operated at an optimal liquid feed rate. Spray-dried powders could be reconstituted to high-viscosity liquids, >300 cP, substantially beyond what an ultrafiltration process can achieve. The molar ratio of trehalose to mAb needed to be reduced to 50:1 in consideration of isotonicity of the formulation with mAb concentration at 250 mg/mL. Even with this low level of sugar protection, long-term stability of spray-dried formulations remained superior to their liquid counterparts based on size variant and potency data. This study offers a commercially viable spray-drying process for biological bulk storage and an option for high-concentration mAb manufacturing. This study evaluates a pilot-scale spray dryer against a laboratory-scale dryer to spray-dry multiple monoclonal antibodies (mAbs) from the perspective of scale-up, impact on mAb stability, and feasibility of a high-concentration preparation. The data demonstrated that there is no process limitation in solution viscosity when high-concentration mAb formulations are prepared from spray-dried powder reconstitution compared with concentration via the conventional ultrafiltration process. This study offers a commercially viable spray-drying process for biological bulk storage and a high-concentration mAb manufacturing option for subcutaneous administration. The outcomes of this study will benefit scientists and engineers who develop high-concentration mAb products by providing a viable manufacturing alternative. © PDA, Inc. 2015.

  11. Generation and Characterization of Anti-CD34 Monoclonal Antibodies that React with Hematopoietic Stem Cells

    PubMed Central

    Aghebati Maleki, Leili; Majidi, Jafar; Baradaran, Behzad; Movassaghpour, Aliakbar; Abdolalizadeh, Jalal

    2014-01-01

    CD34 is a type I membrane protein with a molecular mass of approximately 110 kDa. This antigen is associated with human hematopoietic progenitor cells and is a differentiation stage-specific leukocyte antigen. In this study we have generated and characterized monoclonal antibodies (mAbs) directed against a CD34 marker. Mice were immunized with two keyhole lympet hemocyanin (KLH)-conjugated CD34 peptides. Fused cells were grown in hypoxanthine, aminopterine and thymidine (HAT) selective medium and cloned by the limiting dilution (L.D) method. Several monoclones were isolated by three rounds of limited dilutions. From these, we chose stable clones that presented sustained antibody production for subsequent characterization. Antibodies were tested for their reactivity and specificity to recognize the CD34 peptides and further screened by enzyme-linked immunosorbent assay (ELISA) and Western blotting analyses. One of the mAbs (3D5) was strongly reactive against the CD34 peptide and with native CD34 from human umbilical cord blood cells (UCB) in ELISA and Western blotting analyses. The results have shown that this antibody is highly specific and functional in biomedical applications such as ELISA and Western blot assays. This monoclonal antibodies (mAb) can be a useful tool for isolation and purification of human hematopoietic stem cells (HSCs). PMID:24611141

  12. Rapid Transient Production of a Monoclonal Antibody Neutralizing the Porcine Epidemic Diarrhea Virus (PEDV) in Nicotiana benthamiana and Lactuca sativa.

    PubMed

    Rattanapisit, Kaewta; Srijangwad, Anchalee; Chuanasa, Taksina; Sukrong, Suchada; Tantituvanont, Angkana; Mason, Hugh S; Nilubol, Dachrit; Phoolcharoen, Waranyoo

    2017-12-01

    Porcine epidemic diarrhea virus (PEDV) causes acute diarrhea, vomiting, dehydration, weight loss, and high mortality rate in neonatal piglets. Porcine epidemic diarrhea (PED) has been reported in Europe, America, and Asia including Thailand. The disease causes substantial losses to the swine industry in many countries. Presently, there is no effective PEDV vaccine available. In this study, we developed a plant-produced monoclonal antibody (mAb) 2C10 as a prophylactic candidate to prevent the PEDV infection. Recently, plant expression systems have gained interest as an alternative for the production of antibodies because of many advantages, such as low production cost, lack of human and animal pathogen, large scalability, etc. The 2C10 mAb was transiently expressed in Nicotiana benthamiana and lettuce using geminiviral vector. After purification by protein A affinity chromatography, the antibody was tested for the binding and neutralizing activity against PEDV. Our result showed that the plant produced 2C10 mAb can bind to the virus and also inhibit PEDV infection in vitro . These results show excellent potential for a plant-expressed 2C10 as a PEDV prophylaxis and a diagnostic for PEDV infection. Georg Thieme Verlag KG Stuttgart · New York.

  13. Model-directed engineering of "difficult-to-express" monoclonal antibody production by Chinese hamster ovary cells.

    PubMed

    Pybus, Leon P; Dean, Greg; West, Nathan R; Smith, Andrew; Daramola, Olalekan; Field, Ray; Wilkinson, Stephen J; James, David C

    2014-02-01

    Despite improvements in volumetric titer for monoclonal antibody (MAb) production processes using Chinese hamster ovary (CHO) cells, some "difficult-to-express" (DTE) MAbs inexplicably reach much lower process titers. These DTE MAbs require intensive cell line and process development activity, rendering them more costly or even unsuitable to manufacture. To rapidly and rationally identify an optimal strategy to improve production of DTE MAbs, we have developed an engineering design platform combining high-yielding transient production, empirical modeling of MAb synthesis incorporating an unfolded protein response (UPR) regulatory loop with directed expression and cell engineering approaches. Utilizing a panel of eight IgG1 λ MAbs varying >4-fold in volumetric titer, we showed that MAb-specific limitations on folding and assembly rate functioned to induce a proportionate UPR in host CHO cells with a corresponding reduction in cell growth rate. Derived from comparative empirical modeling of cellular constraints on the production of each MAb we employed two strategies to increase production of DTE MAbs designed to avoid UPR induction through an improvement in the rate/cellular capacity for MAb folding and assembly reactions. Firstly, we altered the transfected LC:HC gene ratio and secondly, we co-expressed a variety of molecular chaperones, foldases or UPR transactivators (BiP, CypB, PDI, and active forms of ATF6 and XBP1) with recombinant MAbs. DTE MAb production was significantly improved by both strategies, although the mode of action was dependent upon the approach employed. Increased LC:HC ratio or CypB co-expression improved cell growth with no effect on qP. In contrast, BiP, ATF6c and XBP1s co-expression increased qP and reduced cell growth. This study demonstrates that expression-engineering strategies to improve production of DTE proteins in mammalian cells should be product specific, and based on rapid predictive tools to assess the relative impact of different engineering interventions. © 2013 Wiley Periodicals, Inc.

  14. Molecular cloning, expression and first antigenic characterization of human astrovirus VP26 structural protein and a C-terminal deleted form.

    PubMed

    Royuela, Enrique; Sánchez-Fauquier, Alicia

    2010-01-01

    The open reading frame 2 (ORF2) of human astrovirus (HAstV) encodes the structural VP26 protein that seems to be the main antigenic viral protein. However, its functional role remains unclear. Bioinformatic predictions revealed that VP29 and VP26 proteins could be involved in virus-cell interaction. In this study, we describe for the first time the cloning and expression in Escherichia coli (E. coli) of a recombinant VP26 (rVP26) protein and a VP26 C-terminal truncated form (VP26 Delta C), followed by purification by NTA-Ni(2+) agarose affinity chromatography. Protein expression and purification were evaluated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot (WB). Then, the purified proteins were evaluated for antigenic properties in enzyme linked immunosorbent assay (ELISA) using a polyclonal antibody (PAb) and a neutralizing monoclonal antibody (nMAb) named PL2, both of them directed to HAstV. The results presented herein indicate that the C-terminal end of the VP26 protein is essential to maintain the neutralizing epitope recognized by nMAb PL2 and that the N-terminus of VP26 protein may contain antigenic lineal-epitopes recognized by PAb. Thus, these recombinant proteins can be ideal tools for further antigenic, biochemical, structural and functional VP26 protein characterization, in order to evaluate its potential role in immunodiagnosis and vaccine studies.

  15. Blocking monocyte transmigration in in vitro system by an anti-CD99 human antibody in single chain fragment variable (scFv) format. Efficient large scale purification of biological active scFv from inclusion bodies in E. coli expression system

    PubMed Central

    Moricoli, Diego; Muller, William A.; Carbonella, Damiano Cosimo; Balducci, Maria Cristina; Dominici, Sabrina; Fiori, Valentina; Watson, Richard; Weber, Evan; Cianfriglia, Maurizio; Scotlandi, Katia; Magnani, Mauro

    2015-01-01

    Migration of leukocytes into a site of inflammation involves several steps mediated by various families of adhesion molecules. CD99 play a significant role in transendothelial migration (TEM) of leukocytes. Inhibition of TEM by specific monoclonal antibody (mAb) can provide a potent therapeutic approach to treating inflammatory conditions. However, the therapeutic utilization of whole IgG can lead to an inappropriate activation of Fc receptor-expressing cells inducing serious adverse side effects due to cytokine release. In this regard, specific recombinant antibody in single chain variable fragments (scFvs) originated by phage library may offer a solution by affecting TEM function in a safe clinical context. However, this consideration requires large scale production of functional scFv antibodies under GMP conditions and hence, the absence of toxic reagents utilized for the solubilization and refolding steps of inclusion bodies that may discourage industrial application of these antibody fragments. In order to apply the scFv anti-CD99 named C7A in a clinical setting we herein describe an efficient and large scale production of the antibody fragments expressed in E.coli as insoluble protein avoiding gel filtration chromatography approach, and laborious refolding step pre- and post-purification. Using differential salt elution which is a simple, reproducible and effective procedure we are able to separate scFv in monomer format from aggregates. The purified scFv antibody C7A exhibits inhibitory activity comparable to an antagonistic conventional mAb, thus providing an excellent agent for blocking CD99 signalling. Thanks to the original purification protocol that can be extended to other scFvs that are expressed as inclusion bodies in bacterial systems, the scFv anti-CD99 C7A herein described represents the first step towards the construction of new antibody therapeutic. PMID:24798881

  16. Towards the implementation of quality by design to the production of therapeutic monoclonal antibodies with desired glycosylation patterns.

    PubMed

    del Val, Ioscani Jimenez; Kontoravdi, Cleo; Nagy, Judit M

    2010-01-01

    Quality by design (QbD) is a scheme for the development, manufacture, and approval of pharmaceutical products. The end goal of QbD is to ensure product quality by building it into the manufacturing process. The main regulatory bodies are encouraging its implementation to the manufacture of all new pharmaceuticals including biological products. Monoclonal antibodies (mAbs) are currently the leading products of the biopharmaceutical industry. It has been widely reported that glycosylation directly influences the therapeutic mechanisms by which mAbs function in vivo. In addition, glycosylation has been identified as one of the main sources of monoclonal antibody heterogeneity, and thus, a critical parameter to follow during mAb manufacture. This article reviews the research on glycosylation of mAbs over the past 2 decades under the QbD scope. The categories presented under this scope are: (a) definition of the desired clinical effects of mAbs, (b) definition of the glycosylation-associated critical quality attributes (glycCQAs) of mAbs, (c) assessment of process parameters that pose a risk for mAb glycCQAs, and (d) methods for accurately quantifying glycCQAs of mAbs. The information available in all four areas leads us to conclude that implementation of QbD to the manufacture of mAbs with specific glycosylation patterns will be a reality in the near future. We also foresee that the implementation of QbD will lead to the development of more robust and efficient manufacturing processes and to a new generation of mAbs with increased clinical efficacy. Copyright © 2010 American Institute of Chemical Engineers (AIChE).

  17. Preparation and characterization of monoclonal antibody against digoxin.

    PubMed

    Kashanian, S; Rasaee, M J; Paknejad, M; Omidfar, K; Pour-Amir, M; Rajabi, Bazl M

    2002-10-01

    Mouse-mouse hybridoma cell lines producing stable, highly specific and with good affinity monoclonal antibody (MAb) against the cardiac glycoside digoxin were established. Balb/c mice were immunized via injection of digoxin-3'-bovine serum albumin (BSA). The spleens of which were fused with myeloma cells of SP2/0 origin. Three clones designated as BBA, MBE, and BMG producing good antibodies displayed different patterns of fine specificity for digoxin and low cross-reaction with several digoxin analogues as elucidated by inhibition enzyme-linked immunosorbant assay (ELISA). All three MAbs were of the same class and subclass (IgG(1)). Affinity purification was performed for the selected clone BBA displaying the highest affinity and nearly no cross-reactivity with any of the structurally related molecules. Ultrafiltered concentrated hybrid cell supernatant was also purified by polyethylene glycol (PEG) 6000 precipitation for large-scale preparation and coated onto the wells of microtiter plates. The standard curve was constructed with a sensitivity of 10 pg/well covering up to 10 ng/well.

  18. Specific B-cell Epitope of Per a 1: A Major Allergen of American Cockroach (Periplaneta americana) and Anatomical Localization.

    PubMed

    Sookrung, Nitat; Khetsuphan, Thanyathon; Chaisri, Urai; Indrawattana, Nitaya; Reamtong, Onrapak; Chaicumpa, Wanpen; Tungtrongchitr, Anchalee

    2014-07-01

    Cockroach (CR) is a common source of indoor allergens, and Per a 1 is a major American CR (Periplaneta americana) allergen; however, several attributes of this protein remain unknown. This study identifies a novel specific B cell epitope and anatomical locations of Per a 1.0105. Recombinant Per a 1.0105 (rPer a 1.0105) was used as BALB/c mouse immunogen for the production of monoclonal antibodies (MAb). The MAb specific B cell epitope was identified by determining phage mimotopic peptides and pair-wise alignment of the peptides with the rPer a 1.0105 amino acid sequence. Locations of the Per a 1.0105 in P. americana were investigated by immunohistochemical staining. The rPer a 1.0105 (~13 kDa) had 100%, 98% and ≥90% identity to Per a 1.0105, Per a 1.0101, and Cr-PII, respectively. The B-cell epitope of the Per a 1.0105 specific-MAb was located at residues(99) QDLLLQLRDKGV(110) contained in all 5 Per a 1.01 isoforms and Per a 1.02. The epitope was analogous to the Bla g 1.02 epitope; however, this B-cell epitope was not an IgE inducer. Per a 1.0105 was found in the midgut and intestinal content of American CR but not in the other organs. The amount of the Per a 1 was ~544 ℃g per gram of feces. The novel Per a 1 B-cell epitope described in this study is a useful target for allergen quantification in samples; however, the specific MAb can be used as an allergen detection reagent. The MAb based-affinity resin can be made for allergen purification, and the so-purified protein can serve as a standard and diagnostic allergen as well as a therapeutic vaccine component. The finding that the Per a 1 is contained in the midgut and feces is useful to increase yield and purity when preparing this allergen.

  19. Pharmacokinetics and pharmacokinetic-pharmacodynamic relationships of monoclonal antibodies in children.

    PubMed

    Edlund, Helena; Melin, Johanna; Parra-Guillen, Zinnia P; Kloft, Charlotte

    2015-01-01

    Monoclonal antibodies (mAbs) constitute a therapeutically and economically important drug class with increasing use in both adult and paediatric patients. The rather complex pharmacokinetic and pharmacodynamic properties of mAbs have been extensively reviewed in adults. In children, however, limited information is currently available. This paper aims to comprehensively review published pharmacokinetic and pharmacokinetic-pharmacodynamic studies of mAbs in children. The current status of mAbs in the USA and in Europe is outlined, including a critical discussion of the dosing strategies of approved mAbs. The pharmacokinetic properties of mAbs in children are exhaustively summarised along with comparisons to reports in adults: for each pharmacokinetic process, we discuss the general principles and mechanisms of the pharmacokinetic/pharmacodynamic characteristics of mAbs, as well as key growth and maturational processes in children that might impact these characteristics. Throughout this review, considerable knowledge gaps are identified, especially regarding children-specific properties that influence pharmacokinetics, pharmacodynamics and immunogenicity. Furthermore, the large heterogeneity in the presentation of pharmacokinetic/pharmacodynamic data limited clinical inferences in many aspects of paediatric mAb therapy. Overall, further studies are needed to fully understand the impact of body size and maturational changes on drug exposure and response. To maximise future knowledge gain, we propose a 'Guideline for Best Practice' on how to report pharmacokinetic and pharmacokinetic-pharmacodynamic results from mAb studies in children which also facilitates comparisons. Finally, we advocate the use of more sophisticated modelling strategies (population analysis, physiology-based approaches) to appropriately characterise pharmacokinetic-pharmacodynamic relationships of mAbs and, thus, allow for a more rational use of mAb in the paediatric population.

  20. A Unique Report: Development of Super Anti-Human IgG Monoclone with Optical Density Over Than 3

    PubMed Central

    Aghebati Maleki, Leili; Baradaran, Behzad; Abdolalizadeh, Jalal; Ezzatifar, Fatemeh; Majidi, Jafar

    2013-01-01

    Purpose: Monoclonal antibodies and related conjugates are key reagents used in biomedical researches as well as, in treatment, purification and diagnosis of infectious and non- infectious diseases. Methods: Balb/c mice were immunized with purified human IgG. Spleen cells of the most immune mouse were fused with SP2/0 in the presence of Poly Ethylene Glycol (PEG). Supernatant of hybridoma cells was screened for detection of antibody by ELISA. Then, the sample was assessed for cross-reactivity with IgM & IgA by ELISA and confirmed by immunoblotting. The subclasses of the selected mAbs were determined. The best clone was injected intraperitoneally to some pristane-injected mice. Anti-IgG mAb was purified from the animals' ascitic fluid by Ion exchange chromatography and then, mAb was conjugated with HRP. Results: In the present study, over than 50 clones were obtained that 1 clone had optical density over than 3. We named this clone as supermonoclone which was selected for limiting dilution. The result of the immunoblotting, showed sharp band in IgG position and did not show any band in IgM&IgA position. Conclusion: Based on the findings of this study, the conjugated monoclonal antibody could have application in diagnosis of infectious diseases like Toxoplasmosis, Rubella and IgG class of other infectious and non- infectious diseases. PMID:24312857

  1. Preparation and characterization of a monoclonal antibody against mannoprotein of Candida albicans.

    PubMed

    Farahnejad, Z; Rasaee, M J; Moghadam, M Frozandeh; Paknejad, M; Kashanian, S; Rajabi, M

    2005-06-01

    BALB/c mice were immunized via injection with whole cell of Candida albicans serotype A. The spleens were fused with myeloma cells of SP2/0 origin. A mannoprotein-reactive monoclonal antibody (MAb) was selected and characterized by ELISA technique. This MAb reacted with strains of Candida such as C. albicans, C. tropicalis, and C. albicans of the Persian Type Culture Collection (PTCC). However, our antibody did not react with other Candida species such as C. parapsilosis, C. glabrata, C. stellatoidae, C. lusitania, C. krusei, and S. cervisiae. These antibodies also did not recognize extracts of other fungal species such as Aspergillus fumigatus and Aspergillus flavus, and bacterial strains such as Staphylococcus aureus and Pseudomonas aeruginosa. Polyclonal antibody produced in this study could not differentiate the above species and was reactive towards all fungal species mentioned above except bacterial strains of S. aureus and P. aeruginosa. Western blot analysis of ligand affinity-purified mannoproteins of C. albicans wall protein using this MAb showed reactivity toward a single protein band in the region of 55-65 kDa molecular weight. The same antibody, when examined with unpurified C. albicans extract, reacted with a broad band in the region of 55-105 kDa, which we concluded was due to a possible different glycosylation pattern of mannoprotein in crude extract in which the higher molecular weight protein was eliminated by ligand-binding affinity purification.

  2. Immunologic analysis of human breast cancer progesterone receptors. 1. Immunonaffinity purification of transformed receptors and production of monoclonal antibodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Estes, P.A.; Suba, E.J.; Lawler-Heavner, J.

    1987-09-22

    A monoclonal antibody (MAb), designated PR-6, produced against chick oviduct progesterone receptors cross-reacts with the M/sub r/ 120,000 human B receptors. An immunomatrix prepared with PR-6 was used to purify progesterone receptors (PR) from T47D human breast cancer cells. Single-step immunoaffinity chromatography results in enrichment of B receptors (identified by immunoblot with PR-6 and by photoaffinity labeling with (/sup 3/H)promegestone) to a specific activity of 1915 pmol/mg of protein (or 23% purity) and with 27% yield. Purity and yields as judged by gel electrophoresis and densitometric scanning of the B protein were approximately 1.7-fold higher due to partial loss inmore » hormone binding activity at the elution step. B receptors purified under these conditions are transformed and biologically active. They were maintained as undergraded 120-kDa doublets and retained both hormone and DNA binding activities. These purified B receptors were used as immunogen for production of four monoclonal antibodies against human PR. Three of the MAbs, designated as B-30 (IgG/sub 1/), B-64 (IgG/sub 1/), and B-11 (IgM), are specific for B receptors. The fourth MAb, A/B-52 (IgG/sub 1/), reacts with both A and B receptors. The IgG MAbs are monospecific for human PR since they recognize and absorb native receptor-hormone complexes, displace the sedimentation of 4S receptors on salt containing sucrose gradients, and, by immunoblot assay of crude T47D cytosol, react only with receptor polypeptides. Although mice were injected with B receptors only, production of A/B-52 which recognized both A and B receptors provides evidence that these two proteins share regions of structural homology.« less

  3. Specific B-cell Epitope of Per a 1: A Major Allergen of American Cockroach (Periplaneta americana) and Anatomical Localization

    PubMed Central

    Sookrung, Nitat; Khetsuphan, Thanyathon; Chaisri, Urai; Indrawattana, Nitaya; Reamtong, Onrapak; Chaicumpa, Wanpen

    2014-01-01

    Purpose Cockroach (CR) is a common source of indoor allergens, and Per a 1 is a major American CR (Periplaneta americana) allergen; however, several attributes of this protein remain unknown. This study identifies a novel specific B cell epitope and anatomical locations of Per a 1.0105. Methods Recombinant Per a 1.0105 (rPer a 1.0105) was used as BALB/c mouse immunogen for the production of monoclonal antibodies (MAb). The MAb specific B cell epitope was identified by determining phage mimotopic peptides and pair-wise alignment of the peptides with the rPer a 1.0105 amino acid sequence. Locations of the Per a 1.0105 in P. americana were investigated by immunohistochemical staining. Results The rPer a 1.0105 (~13 kDa) had 100%, 98% and ≥90% identity to Per a 1.0105, Per a 1.0101, and Cr-PII, respectively. The B-cell epitope of the Per a 1.0105 specific-MAb was located at residues99 QDLLLQLRDKGV110 contained in all 5 Per a 1.01 isoforms and Per a 1.02. The epitope was analogous to the Bla g 1.02 epitope; however, this B-cell epitope was not an IgE inducer. Per a 1.0105 was found in the midgut and intestinal content of American CR but not in the other organs. The amount of the Per a 1 was ~544 ℃g per gram of feces. Conclusions The novel Per a 1 B-cell epitope described in this study is a useful target for allergen quantification in samples; however, the specific MAb can be used as an allergen detection reagent. The MAb based-affinity resin can be made for allergen purification, and the so-purified protein can serve as a standard and diagnostic allergen as well as a therapeutic vaccine component. The finding that the Per a 1 is contained in the midgut and feces is useful to increase yield and purity when preparing this allergen. PMID:24991456

  4. [Identification and production of monoclonal antibody of Siberian tiger's immunoglobulin].

    PubMed

    Zhang, Yaonglong; Zhang, Duanling; Zhou, Ming; Xue, Yuan; Hua, Yuping; Ma, Jianzhang

    2010-03-01

    To purify immunoglobulin (Ig) of Siberian Tiger and prepare monoclonal antibody (mAb) against the Ig,which can be used to develop immunological diagnostic kits for diagnosing infectious disease in Siberian Tiger. The Ig of Siberian tigers was purified with saturated ammonium sulfate combined with recombinant Protein G. The C57BL/6 mice were immunized with the purified Ig. Spleno-cytes of the mice immunized were collected and fused with the mouse myeloma cell line (Sp2/0-Ag14). The positive hybridoma clones were selected by ELISA and were identified by western blot. The sandwich ELISA was used to detect immunocompetence of the purified Ig and the mAb. We obtained three mouse hybridoma clones that produced mAbs against Ig of Siberian Tiger. The derived McAbs could recognize Ig heavy chain of Siberian Tiger specifically. The biological activity of the Ig and obtained McAbs also could be identified by detecting the antibody induced by panleukopenia virus (FPV-HLJ) vaccine in Siberian Tiger. The antibody also would be useful for assess the vaccine efficacy against the infectious disease on the Siberian Tiger. Protein G can be used in Ig purification of Siberian Tiger. The obtained McAbs from the hybridoma ADT11 in this study owned strong ability to bind Ig of Siberian Tiger and have a stable immunocompetence. They can be used to develop diagnostic methods for detecting infectious disease in Siberian Tiger and vaccine research.

  5. Protein A affinity chromatography of Chinese hamster ovary (CHO) cell culture broths containing biopharmaceutical monoclonal antibody (mAb): Experiments and mechanistic transport, binding and equilibrium modeling.

    PubMed

    Grom, Matic; Kozorog, Mirijam; Caserman, Simon; Pohar, Andrej; Likozar, Blaž

    2018-04-15

    Protein A-based affinity chromatography is a highly-efficient separation method to capture, purify and isolate biosimilar monoclonal antibodies (mAb) - an important medical product of biopharmaceutical industrial manufacturing. It is considered the most expensive step in purification downstream operations; therefore, its performance optimization offers a great cost saving in the overall production expenditure. The biochemical mixture-separating specific interaction experiments with Chinese hamster ovary (CHO) cell culture harvest, containing glycosylated extracellular immunoglobulins (Ig), were made using five different state-of-the-art commercial resins. Packing breakthrough curves were recorded at an array of prolonged residence times. A mathematical simulation model was developed, applied and validated in combination with non-linear regression algorithms on bed effluent concentrations to determine the previously-unknown binding properties of stationary phase materials. Apart from the columns' differential partitioning, the whole external system was also integrated. It was confirmed that internal pore diffusion is the global rate-limiting resistance of the compound retention process. Immobilizing substrate characteristics, obtained in this engineering study, are indispensable for the scale-up of the periodic counter-current control with mechanistic load, elution and wash reduction. Furthermore, unit's volumetric flow screening measurements revealed dynamic effect correlation to eluate quality parameters, like the presence of aggregates, the host cell-related impurities at supernatant's extended feeding, and titre. Numerical sensitivity outputs demonstrated the impacts of fluidics (e.g. axial dispersion coefficient), thermodynamics (Langmuir adsorption) and mass transfer fluxes. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Quantification of Histidine-Rich Protein 3 of Plasmodium falciparum.

    PubMed

    Palani, Balraj

    2018-04-01

    Malaria is a life-threatening infectious disease and continues to be a major public health crisis in many parts of the tropical world. Plasmodium falciparum is responsible for the majority of mortality and morbidity associated with malaria. During the intraerythrocytic cycle, P. falciparum releases three proteins with high histidine content as follows: histidine-rich protein 1 (HRP1), histidine-rich protein 2 (HRP2), and histidine-rich protein 3 (HRP3). Currently, most of the diagnostic tests of P. falciparum infection target HRP2, and a number of monoclonal antibodies (mAbs) against HRP2 have been developed for use in HRP2 detection and quantification. When parasites have HRP2 deletions, the detection of HRP3 could augment the sensitivity of the detection system. The combination of both HRP2 and HRP3 mAbs in the detection system will enhance the test sensitivity. In the HRP quantitative enzyme-linked immunosorbent assay (ELISA), both HRP2 and HRP3 contribute to the result, but the relative contribution of HRP2 and HRP3 was unable to investigate, because of the nonavailability of HRP3 specific antibody ELISA. Hence an ELISA test system based on HRP3 is also essential for detection and quantification. There is not much documented in the literature on HRP3 antigen and HRP3 specific mAbs and polyclonal antibodies (pAbs). In the present study, recombinant HRP3 was expressed in Escherichia coli and purified with Ni-NTA agarose column. The purified rHRP3 was used for the generation and characterization of monoclonal and pAbs. The purification of monoclonal and pAbs was done using a mixed-mode chromatography sorbent, phenylpropylamine HyperCel™. With the purified antibodies, a sandwich ELISA was developed. The sandwich ELISA method was explored to detect and quantify HRP3 of P. falciparum in the spent medium. The generated mAbs could be potentially used for the detection and quantification of P. falciparum HRP3.

  7. Identification of secreted and membrane-bound bat immunoglobulin using a Microchiropteran-specific mouse monoclonal antibody.

    PubMed

    Lee, William T; Jones, Derek D; Yates, Jennifer L; Winslow, Gary M; Davis, April D; Rudd, Robert J; Barron, Christopher T; Cowan, Cailyn

    2016-12-01

    Bat immunity has received increasing attention because some bat species are being decimated by the fungal disease, White Nose Syndrome, while other species are potential reservoirs of zoonotic viruses. Identifying specific immune processes requires new specific tools and reagents. In this study, we describe a new mouse monoclonal antibody (mAb) reactive with Eptesicus fuscus immunoglobulins. The epitope recognized by mAb BT1-4F10 was localized to immunoglobulin light (lambda) chains; hence, the mAb recognized serum immunoglobulins and B lymphocytes. The BT1-4F10 epitope appeared to be restricted to Microchiropteran immunoglobulins and absent from Megachiropteran immunoglobulins. Analyses of sera and other E. fuscus fluids showed that most, if not all, secreted immunoglobulins utilized lambda light chains. Finally, mAb BT1-4F10 permitted the identification of B cell follicles in splenic white pulp. This Microchiropteran-specific mAb has potential utility in seroassays; hence, this reagent may have both basic and practical applications for studying immune process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Chemical modification of protein a chromatography ligands with polyethylene glycol. II: Effects on resin robustness and process selectivity.

    PubMed

    Weinberg, Justin; Zhang, Shaojie; Kirkby, Allison; Shachar, Enosh; Carta, Giorgio; Przybycien, Todd

    2018-04-20

    We have proposed chemical modification of Protein A (ProA) chromatography ligands with polyethylene glycol (PEGylation) as a strategy to increase the resin selectivity and robustness by providing the ligand with a steric repulsion barrier against non-specific binding. Here, we report on robustness and selectivity benefits for Repligen CaptivA PriMAB resin with ligands modified with 5.2 kDa and 21.5 kDa PEG chains, respectively. PEGylation of ProA ligands allowed the resin to retain a higher percentage of static binding capacity relative to the unmodified resin upon digestion with chymotrypsin, a representative serine protease. The level of protection against digestion was independent of the PEG molecular weight or modification extent for the PEGylation chemistry used. Additionally, PEGylation of the ligands was found to decrease the level of non-specific binding of fluorescently labeled bovine serum albumin (BSA) aggregates to the surface of the resin particles as visualized via confocal laser scanning microscopy (CLSM). The level of aggregate binding decreased as the PEG molecular weight increased, but increasing the extent of modification with 5.2 kDa PEG chains had no effect. Further examination of resin particles via CLSM confirmed that the PEG chains on the modified ligands were capable of blocking the "hitchhiking" association of BSA, a mock contaminant, to an adsorbed mAb that is prone to BSA binding. Ligands modified with 21.5 kDa PEG chains were effective at blocking the association, while ligands modified with 5.2 kDa PEG chains were not. Finally, ligands with 21.5 kDa PEG chains increased the selectivity of the resin against host cell proteins (HCPs) produced by Chinese Hamster Ovary (CHO) cells by up to 37% during purification of a monoclonal antibody (mAb) from harvested cell culture fluid (HCCF) using a standard ProA chromatography protocol. The combined work suggests that PEGylating ProA chromatography media is a viable pathway for increasing both resin lifetime and host cell impurity clearance in downstream bioprocessing. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Cytoskeleton in trichomonads: I. Immunological and biochemical comparative study of costal proteins in the genus Tritrichomonas.

    PubMed

    Viscogliosi, E; Brugerolle, G

    1993-05-28

    Proteins of the whole cytoskeleton fraction obtained by Triton X-100 action on several Tritrichomonas species have been analyzed by gel electrophoresis. In addition to tubulins, several major protein components with molecular weights between 100 and 150 kDa were separated and presumably represent costal proteins. The partial purification of the costae from the whole cytoskeleton fraction of Tritrichomonas foetus treated with 0.3 M KI confirmed the presence of costal proteins in the 100-150 kDa zone. Costa fibres could be solubilized in 8 M urea. These characteristics indicate that costal proteins may represent a novel class of striated root proteins. A library of 7 monoclonal antibodies (MAbs) raised in mice immunized with the whole cytoskeleton fraction of Tritrichomonas foetus labelled the costa by immunofluorescence and recognize five polypeptides at 135,127,114, 88 and 47 kDa by immunoblotting. Two of these MAbs cross-react by immunofluorescence and immunoblotting with the three other Tritrichomonas species tested, i.e. T. mobilensis, T. augusta, T. muris. However, these 7 MAbs do not show immunological cross-reactivity with other trichomonad genera indicating that the costae are not identical in their biochemical composition; this corresponds to the differences observed in their respective fine structure. Nonetheless, a polyclonal antibody produced against the 118 kDa protein of the costa of Trichomonas vaginalis also labels a 118 kDa protein and the costa by IF in Tritrichomonas species indicating common epitopes. Copyright © 1993 Gustav Fischer Verlag · Stuttgart · Jena · New York. Published by Elsevier GmbH.. All rights reserved.

  10. Antigenic characterisation of yeast-expressed lyssavirus nucleoproteins.

    PubMed

    Kucinskaite, Indre; Juozapaitis, Mindaugas; Serva, Andrius; Zvirbliene, Aurelija; Johnson, Nicholas; Staniulis, Juozas; Fooks, Anthony R; Müller, Thomas; Sasnauskas, Kestutis; Ulrich, Rainer G

    2007-12-01

    In Europe, three genotypes of the genus Lyssavirus, family Rhabdoviridae, are present, classical rabies virus (RABV, genotype 1), European bat lyssavirus type 1 (EBLV-1, genotype 5) and European bat lyssavirus type 2 (EBLV-2, genotype 6). The entire authentic nucleoprotein (N protein) encoding sequences of RABV (challenge virus standard, CVS, strain), EBLV-1 and EBLV-2 were expressed in yeast Saccharomyces cerevisiae at high level. Purification of recombinant N proteins by caesium chloride gradient centrifugation resulted in yields between 14-17, 25-29 and 18-20 mg/l of induced yeast culture for RABV-CVS, EBLV-1 and EBLV-2, respectively. The purified N proteins were evaluated by negative staining electron microscopy, which revealed the formation of nucleocapsid-like structures. The antigenic conformation of the N proteins was investigated for their reactivity with monoclonal antibodies (mAbs) directed against different lyssaviruses. The reactivity pattern of each mAb was virtually identical between immunofluorescence assay with virus-infected cells, and ELISA and dot blot assay using the corresponding recombinant N proteins. These observations lead us to conclude that yeast-expressed lyssavirus N proteins share antigenic properties with naturally expressed virus protein. These recombinant proteins have the potential for use as components of serological assays for lyssaviruses.

  11. High-throughput screening of chromatographic separations: II. Hydrophobic interaction.

    PubMed

    Kramarczyk, Jack F; Kelley, Brian D; Coffman, Jonathan L

    2008-07-01

    A high-throughput screen (HTS) was developed to evaluate the selectivity of various hydrophobic interaction chromatography (HIC) resins for separating a mAb from aggregate species. Prior to the resin screen, the solubility of the protein was assessed to determine the allowable HIC operating region by examining 384 combinations of pH, salt, and protein concentration. The resin screen then incorporated 480 batch-binding and elution conditions with eight HIC resins in combination with six salts. The results from the screen were reproducible, and demonstrated quantitative recovery of the mAb and aggregate. The translation of the HTS batch-binding data to lab-scale chromatography columns was tested for four conditions spanning the range of product binding and selectivity. After accounting for the higher number of theoretical plates in the columns, the purity and recovery of the lab-scale column runs agreed with the HTS results demonstrating the predictive power of the filterplate system. The HTS data were further analyzed by the calculation of pertinent thermodynamic parameters such as the partition coefficient, K(P), and the separation factor, alpha. The separation factor was used to rank the purification capabilities of the resin and salt conditions explored. (c) 2008 Wiley Periodicals, Inc.

  12. Development of an anti-ferret CD4 monoclonal antibody for the characterisation of ferret T lymphocytes.

    PubMed

    Layton, Daniel S; Xiao, Xiaowen; Bentley, John D; Lu, Louis; Stewart, Cameron R; Bean, Andrew G D; Adams, Timothy E

    2017-05-01

    The ferret is an established animal model for a number of human respiratory viral infections, such as influenza virus and more recently, Ebola virus. However, a paucity of immunological reagents has hampered the study of cellular immune responses. Here we describe the development and characterisation of a novel monoclonal antibody (mAb) against the ferret CD4 antigen and the characterisation of ferret CD4 T lymphocytes. Recombinant production and purification of the ferret CD4 ectodomain soluble protein allowed hybridoma generation and the generation of a mAb (FeCD4) showing strong binding to ferret CD4 protein and lymphoid cells by flow cytometry. FeCD4 bound to its cognate antigen post-fixation with paraformaldehyde (PFA) which is routinely used to inactivate highly pathogenic viruses. We have also used FeCD4 in conjunction with other immune cell markers to characterise ferret T cells in both primary and secondary lymphoid organs. In summary, we have developed an important reagent for the study of cellular immunological responses in the ferret model of infectious disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Monoclonal antibodies specific to heat-treated porcine blood.

    PubMed

    Raja Nhari, Raja Mohd Hafidz; Hamid, Muhajir; Rasli, Nurmunirah Mohamad; Omar, Abdul Rahman; El Sheikha, Aly Farag; Mustafa, Shuhaimi

    2016-05-01

    Porcine blood is potentially being utilized in food as a binder, gelling agent, emulsifier or colorant. However, for certain communities, the usage of animal blood in food is strictly prohibited owing to religious concerns and health reasons. This study reports the development of monoclonal antibodies (MAbs) against heat-treated soluble proteins (HSPs) of autoclaved porcine blood; characterization of MAbs against blood, non-blood and plasma from different animal species using qualitative indirect non-competitive enzyme-linked immunosorbent assay (ELISA); and immunoblotting of antigenic components in HSPs of porcine blood. Fifteen MAbs are specific to heat-treated and raw porcine blood and not cross-reacted with other animal blood and non-blood proteins (meat and non-meat). Twelve MAbs are specific to porcine plasma, while three MAbs specific to porcine plasma are cross-reacted with chicken plasma. Immunoblotting revealed antigenic protein bands (∼60, ∼85-100 and ∼250 kDa) in porcine blood and plasma recognized by the MAbs. Selection of MAbs that recognized 60 kDa HSPs of porcine blood and plasma as novel monoclonal antibodies would be useful for detection of porcine plasma in processed food using the immunoassay method. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  14. Bridging the gap: facilities and technologies for development of early stage therapeutic mAb candidates.

    PubMed

    Munro, Trent P; Mahler, Stephen M; Huang, Edwin P; Chin, David Y; Gray, Peter P

    2011-01-01

    Therapeutic monoclonal antibodies (mAbs) currently dominate the biologics marketplace. Development of a new therapeutic mAb candidate is a complex, multistep process and early stages of development typically begin in an academic research environment. Recently, a number of facilities and initiatives have been launched to aid researchers along this difficult path and facilitate progression of the next mAb blockbuster. Complementing this, there has been a renewed interest from the pharmaceutical industry to reconnect with academia in order to boost dwindling pipelines and encourage innovation. In this review, we examine the steps required to take a therapeutic mAb from discovery through early stage preclinical development and toward becoming a feasible clinical candidate. Discussion of the technologies used for mAb discovery, production in mammalian cells and innovations in single-use bioprocessing is included. We also examine regulatory requirements for product quality and characterization that should be considered at the earliest stages of mAb development. We provide details on the facilities available to help researchers and small-biotech build value into early stage product development, and include examples from within our own facility of how technologies are utilized and an analysis of our client base.

  15. Very High Density of Chinese Hamster Ovary Cells in Perfusion by Alternating Tangential Flow or Tangential Flow Filtration in WAVE Bioreactor™—Part II: Applications for Antibody Production and Cryopreservation

    PubMed Central

    Clincke, Marie-Françoise; Mölleryd, Carin; Samani, Puneeth K; Lindskog, Eva; Fäldt, Eric; Walsh, Kieron; Chotteau, Véronique

    2013-01-01

    A high cell density perfusion process of monoclonal antibody (MAb) producing Chinese hamster ovary (CHO) cells was developed in disposable WAVE Bioreactor™ using external hollow fiber (HF) filter as cell separation device. Tangential flow filtration (TFF) and alternating tangential flow (ATF) systems were compared and process applications of high cell density perfusion were studied here: MAb production and cryopreservation. Operations by perfusion using microfiltration (MF) or ultrafiltration (UF) with ATF or TFF and by fed-batch were compared. Cell densities higher than 108 cells/mL were obtained using UF TFF or UF ATF. The cells produced comparable amounts of MAb in perfusion by ATF or TFF, MF or UF. MAbs were partially retained by the MF using ATF or TFF but more severely using TFF. Consequently, MAbs were lost when cell broth was discarded from the bioreactor in the daily bleeds. The MAb cell-specific productivity was comparable at cell densities up to 1.3 × 108 cells/mL in perfusion and was comparable or lower in fed-batch. After 12 days, six times more MAbs were harvested using perfusion by ATF or TFF with MF or UF, compared to fed-batch and 28× more in a 1-month perfusion at 108 cells/mL density. Pumping at a recirculation rate up to 2.75 L/min did not damage the cells with the present TFF settings with HF short circuited. Cell cryopreservation at 0.5 × 108 and 108 cells/mL was performed using cells from a perfusion run at 108 cells/mL density. Cell resuscitation was very successful, showing that this system was a reliable process for cell bank manufacturing. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:768–777, 2013 PMID:23436783

  16. Inhibitory Monoclonal Antibodies against Mouse Proteases Raised in Gene-Deficient Mice Block Proteolytic Functions in vivo

    PubMed Central

    Lund, Ida K.; Rasch, Morten G.; Ingvarsen, Signe; Pass, Jesper; Madsen, Daniel H.; Engelholm, Lars H.; Behrendt, Niels; Høyer-Hansen, Gunilla

    2012-01-01

    Identification of targets for cancer therapy requires the understanding of the in vivo roles of proteins, which can be derived from studies using gene-targeted mice. An alternative strategy is the administration of inhibitory monoclonal antibodies (mAbs), causing acute disruption of the target protein function(s). This approach has the advantage of being a model for therapeutic targeting. mAbs for use in mouse models can be obtained through immunization of gene-deficient mice with the autologous protein. Such mAbs react with both species-specific epitopes and epitopes conserved between species. mAbs against proteins involved in extracellular proteolysis, including plasminogen activators urokinase plasminogen activator (uPA), tissue-type plasminogen activator (tPA), their inhibitor PAI-1, the uPA receptor (uPAR), two matrix metalloproteinases (MMP9 and MMP14), as well as the collagen internalization receptor uPARAP, have been developed. The inhibitory mAbs against uPA and uPAR block plasminogen activation and thereby hepatic fibrinolysis in vivo. Wound healing, another plasmin-dependent process, is delayed by an inhibitory mAb against uPA in the adult mouse. Thromboembolism can be inhibited by anti-PAI-1 mAbs in vivo. In conclusion, function-blocking mAbs are well-suited for targeted therapy in mouse models of different diseases, including cancer. PMID:22754528

  17. [Techniques for rapid production of monoclonal antibodies for use with antibody technology].

    PubMed

    Kamada, Haruhiko

    2012-01-01

    A monoclonal antibody (Mab), due to its specific binding ability to a target protein, can potentially be one of the most useful tools for the functional analysis of proteins in recent proteomics-based research. However, the production of Mab is a very time-consuming and laborious process (i.e., preparation of recombinant antigens, immunization of animals, preparation of hybridomas), making it the rate-limiting step in using Mabs in high-throughput proteomics research, which heavily relies on comprehensive and rapid methods. Therefore, there is a great demand for new methods to efficiently generate Mabs against a group of proteins identified by proteome analysis. Here, we describe a useful method called "Antibody proteomic technique" for the rapid generations of Mabs to pharmaceutical target, which were identified by proteomic analyses of disease samples (ex. tumor tissue, etc.). We also introduce another method to find profitable targets on vasculature, which is called "Vascular proteomic technique". Our results suggest that this method for the rapid generation of Mabs to proteins may be very useful in proteomics-based research as well as in clinical applications.

  18. Developing recombinant antibodies for biomarker detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baird, Cheryl L.; Fischer, Christopher J.; Pefaur, Noah B.

    2010-10-01

    Monoclonal antibodies (mAbs) have an essential role in biomarker validation and diagnostic assays. A barrier to pursuing these applications is the reliance on immunization and hybridomas to produce mAbs, which is time-consuming and may not yield the desired mAb. We recommend a process flow for affinity reagent production that utilizes combinatorial protein display systems (eg, yeast surface display or phage display) rather than hybridomas. These systems link a selectable phenotype-binding conferred by an antibody fragment-with a means for recovering the encoding gene. Recombinant libraries obtained from immunizations can produce high-affinity antibodies (<10 nM) more quickly than other methods. Non-immune librariesmore » provide an alternate route when immunizations are not possible, or when suitable mAbs are not recovered from an immune library. Directed molecular evolution (DME) is an integral part of optimizing mAbs obtained from combinatorial protein display, but can also be used on hybridoma-derived mAbs. Variants can easily be obtained and screened to increase the affinity of the parent mAb (affinity maturation). We discuss examples where DME has been used to tailor affinity reagents to specific applications. Combinatorial protein display also provides an accessible method for identifying antibody pairs, which are necessary for sandwich-type diagnostic assays.« less

  19. Inhibitory and blocking monoclonal antibody epitopes on merozoite surface protein 1 of the malaria parasite Plasmodium falciparum.

    PubMed

    Uthaipibull, C; Aufiero, B; Syed, S E; Hansen, B; Guevara Patiño, J A; Angov, E; Ling, I T; Fegeding, K; Morgan, W D; Ockenhouse, C; Birdsall, B; Feeney, J; Lyon, J A; Holder, A A

    2001-04-13

    Merozoite surface protein 1 (MSP-1) is a precursor to major antigens on the surface of Plasmodium spp. merozoites, which are involved in erythrocyte binding and invasion. MSP-1 is initially processed into smaller fragments; and at the time of erythrocyte invasion one of these of 42 kDa (MSP-1(42)) is subjected to a second processing, producing 33 kDa and 19 kDa fragments (MSP-1(33) and MSP-1(19)). Certain MSP-1-specific monoclonal antibodies (mAbs) react with conformational epitopes contained within the two epidermal growth factor domains that comprise MSP-1(19), and are classified as either inhibitory (inhibit processing of MSP-1(42) and erythrocyte invasion), blocking (block the binding and function of the inhibitory mAb), or neutral (neither inhibitory nor blocking). We have mapped the epitopes for inhibitory mAbs 12.8 and 12.10, and blocking mAbs such as 1E1 and 7.5 by using site-directed mutagenesis to change specific amino acid residues in MSP-1(19) and abolish antibody binding, and by using PEPSCAN to measure the reaction of the antibodies with every octapeptide within MSP-1(42). Twenty-six individual amino acid residue changes were made and the effect of each on the binding of mAbs was assessed by Western blotting and BIAcore analysis. Individual changes had either no effect, or reduced, or completely abolished the binding of individual mAbs. No two antibodies had an identical pattern of reactivity with the modified proteins. Using PEPSCAN each mAb reacted with a number of octapeptides, most of which were derived from within the first epidermal growth factor domain, although 1E1 also reacted with peptides spanning the processing site. When the single amino acid changes and the reactive peptides were mapped onto the three-dimensional structure of MSP-1(19), it was apparent that the epitopes for the mAbs could be defined more fully by using a combination of both mutagenesis and PEPSCAN than by either method alone, and differences in the fine specificity of binding for all the different antibodies could be distinguished. The incorporation of several specific amino acid changes enabled the design of proteins that bound inhibitory but not blocking antibodies. These may be suitable for the development of MSP-1-based vaccines against malaria. Copyright 2001 Academic Press.

  20. High-throughput process development: determination of dynamic binding capacity using microtiter filter plates filled with chromatography resin.

    PubMed

    Bergander, Tryggve; Nilsson-Välimaa, Kristina; Oberg, Katarina; Lacki, Karol M

    2008-01-01

    Steadily increasing demand for more efficient and more affordable biomolecule-based therapies put a significant burden on biopharma companies to reduce the cost of R&D activities associated with introduction of a new drug to the market. Reducing the time required to develop a purification process would be one option to address the high cost issue. The reduction in time can be accomplished if more efficient methods/tools are available for process development work, including high-throughput techniques. This paper addresses the transitions from traditional column-based process development to a modern high-throughput approach utilizing microtiter filter plates filled with a well-defined volume of chromatography resin. The approach is based on implementing the well-known batch uptake principle into microtiter plate geometry. Two variants of the proposed approach, allowing for either qualitative or quantitative estimation of dynamic binding capacity as a function of residence time, are described. Examples of quantitative estimation of dynamic binding capacities of human polyclonal IgG on MabSelect SuRe and of qualitative estimation of dynamic binding capacity of amyloglucosidase on a prototype of Capto DEAE weak ion exchanger are given. The proposed high-throughput method for determination of dynamic binding capacity significantly reduces time and sample consumption as compared to a traditional method utilizing packed chromatography columns without sacrificing the accuracy of data obtained.

  1. The interplay of non-specific binding, target-mediated clearance and FcRn interactions on the pharmacokinetics of humanized antibodies

    PubMed Central

    Datta-Mannan, Amita; Lu, Jirong; Witcher, Derrick R; Leung, Donmienne; Tang, Ying; Wroblewski, Victor J

    2015-01-01

    The application of protein engineering technologies toward successfully improving antibody pharmacokinetics has been challenging due to the multiplicity of biochemical factors that influence monoclonal antibody (mAb) disposition in vivo. Physiological factors including interactions with the neonatal Fc receptor (FcRn) and specific antigen binding properties of mAbs, along with biophysical properties of the mAbs themselves play a critical role. It has become evident that applying an integrated approach to understand the relative contribution of these factors is critical to rationally guide and apply engineering strategies to optimize mAb pharmacokinetics. The study presented here evaluated the influence of unintended non-specific interactions on the disposition of mAbs whose clearance rates are governed predominantly by either non-specific (FcRn) or target-mediated processes. The pharmacokinetics of 8 mAbs representing a diverse range of these properties was evaluated in cynomolgus monkeys. Results revealed complementarity-determining region (CDR) charge patch engineering to decrease charge-related non-specific binding can have a significant impact on improving the clearance. In contrast, the influence of enhanced in vitro FcRn binding was mixed, and related to both the strength of charge interaction and the general mechanism predominant in governing the clearance of the particular mAb. Overall, improved pharmacokinetics through enhanced FcRn interactions were apparent for a CDR charge-patch normalized mAb which was affected by non-specific clearance. The findings in this report are an important demonstration that mAb pharmacokinetics requires optimization on a case-by-case basis to improve the design of molecules with increased therapeutic application. PMID:26337808

  2. Aggregation of a Monoclonal Antibody Induced by Adsorption to Stainless Steel

    PubMed Central

    Bee, Jared S.; Davis, Michele; Freund, Erwin; Carpenter, John F.; Randolph, Theodore W.

    2014-01-01

    Stainless steel is a ubiquitous surface in therapeutic protein production equipment and is also present as the needle in some pre-filled syringe biopharmaceutical products. Stainless steel microparticles can cause of aggregation of a monoclonal antibody (mAb). The initial rate of mAb aggregation was second-order in steel surface area and zero-order in mAb concentration, generally consistent with a bimolecular surface aggregation being the rate-limiting step. Polysorbate 20 (PS20) suppressed the aggregation yet was unable to desorb the firmly bound first layer of protein that adsorbs to the stainless steel surface. Also, there was no exchange of mAb from the first adsorbed layer to the bulk phase, suggesting that the aggregation process actually occurs on subsequent adsorption layers. No oxidized Met residues were detected in the mass spectrum of a digest of a highly aggregated mAb, although there was five-fold increase in carbonyl groups due to protein oxidation. PMID:19725039

  3. Bridging the gap

    PubMed Central

    Mahler, Stephen M; Huang, Edwin P; Chin, David Y; Gray, Peter P

    2011-01-01

    Therapeutic monoclonal antibodies (mAbs) currently dominate the biologics marketplace. Development of a new therapeutic mAb candidate is a complex, multistep process and early stages of development typically begin in an academic research environment. Recently, a number of facilities and initiatives have been launched to aid researchers along this difficult path and facilitate progression of the next mAb blockbuster. Complementing this, there has been a renewed interest from the pharmaceutical industry to reconnect with academia in order to boost dwindling pipelines and encourage innovation. In this review, we examine the steps required to take a therapeutic mAb from discovery through early stage preclinical development and toward becoming a feasible clinical candidate. Discussion of the technologies used for mAb discovery, production in mammalian cells and innovations in single-use bioprocessing is included. We also examine regulatory requirements for product quality and characterization that should be considered at the earliest stages of mAb development. We provide details on the facilities available to help researchers and small-biotech build value into early stage product development, and include examples from within our own facility of how technologies are utilized and an analysis of our client base. PMID:21822050

  4. Genome-wide analyses of the bZIP family reveal their involvement in the development, ripening and abiotic stress response in banana

    PubMed Central

    Hu, Wei; Wang, Lianzhe; Tie, Weiwei; Yan, Yan; Ding, Zehong; Liu, Juhua; Li, Meiying; Peng, Ming; Xu, Biyu; Jin, Zhiqiang

    2016-01-01

    The leucine zipper (bZIP) transcription factors play important roles in multiple biological processes. However, less information is available regarding the bZIP family in the important fruit crop banana. In this study, 121 bZIP transcription factor genes were identified in the banana genome. Phylogenetic analysis showed that MabZIPs were classified into 11 subfamilies. The majority of MabZIP genes in the same subfamily shared similar gene structures and conserved motifs. The comprehensive transcriptome analysis of two banana genotypes revealed the differential expression patterns of MabZIP genes in different organs, in various stages of fruit development and ripening, and in responses to abiotic stresses, including drought, cold, and salt. Interaction networks and co-expression assays showed that group A MabZIP-mediated networks participated in various stress signaling, which was strongly activated in Musa ABB Pisang Awak. This study provided new insights into the complicated transcriptional control of MabZIP genes and provided robust tissue-specific, development-dependent, and abiotic stress-responsive candidate MabZIP genes for potential applications in the genetic improvement of banana cultivars. PMID:27445085

  5. Next generation and biosimilar monoclonal antibodies

    PubMed Central

    2011-01-01

    The Next Generation and Biosimilar Monoclonal Antibodies: Essential Considerations Towards Regulatory Acceptance in Europe workshop, organized by the European Centre of Regulatory Affairs Freiburg (EUCRAF), was held February 3–4, 2011 in Freiburg, Germany. The workshop attracted over 100 attendees from 15 countries, including regulators from 11 agencies, who interacted over the course of two days. The speakers presented their authoritative views on monoclonal antibodies (mAbs) as attractive targets for development, the experience to date with the regulatory process for biosimilar medicinal products, the European Medicines Agency draft guideline on biosimilar mAbs, as well as key elements in the development of mAbs. Participants engaged in many lively discussions, and much speculation on the nature of the quality, non-clinical and clinical requirements for authorization of biosimilar mAbs. PMID:21487235

  6. Ultrasonic atomization and subsequent desolvation for monoclonal antibody (mAb) to the glycoprotein (GP) IIIa receptor into drug eluting stent.

    PubMed

    Wang, G X; Luo, L L; Yin, T Y; Li, Y; Jiang, T; Ruan, C G; Guidoin, R; Chen, Y P; Guzman, R

    2010-01-01

    An eluting-stent system with mAb dispersed in the PLLA (poly (L-lactic acid)) was validated in vitro. Specifically designed spray equipment based on the principle of ultrasonic atomization was used to produce a thin continuous PLLA (poly (L-lactic acid)) polymer coating incorporating monoclonal antibody (mAb). This PLLA coating was observed in light microscopy (LM) and scanning electron microscopy (SEM). The concentration of the monoclonal antibody (mAb) to the platelet glycoprotein (GP) IIIa receptor and the eluting rate were then measured by a radioisotope technique with (125)I-labelled GP IIIa mAb. An in vitro perfusion circuit was designed to evaluate the release rates at different velocities (10 or 20 ml min(-1)). The PLLA coating was thin and transparent, uniformly distributed on the surface of the stent. Three factors influenced its thickness: PLLA concentration, duration and gas pressure. The concentration of mAb was influenced by the duration of absorption and the concentration of the mAb solution; the maximum was 1662.23 + or - 38.83 ng. The eluting rate was fast for the first 2 h, then decreased slowly and attained 80% after 2 weeks. This ultrasonic atomization spray equipment and technological process to prepare protein eluting-stents were proved to be effective and reliable.

  7. Model-based investigation of intracellular processes determining antibody Fc-glycosylation under mild hypothermia.

    PubMed

    Sou, Si Nga; Jedrzejewski, Philip M; Lee, Ken; Sellick, Christopher; Polizzi, Karen M; Kontoravdi, Cleo

    2017-07-01

    Despite the positive effects of mild hypothermic conditions on monoclonal antibody (mAb) productivity (q mAb ) during mammalian cell culture, the impact of reduced culture temperature on mAb Fc-glycosylation and the mechanism behind changes in the glycan composition are not fully established. The lack of knowledge about the regulation of dynamic intracellular processes under mild hypothermia restricts bioprocess optimization. To address this issue, a mathematical model that quantitatively describes Chinese hamster ovary (CHO) cell behavior and metabolism, mAb synthesis and mAb N-linked glycosylation profile before and after the induction of mild hypothermia is constructed. Results from this study show that the model is capable of representing experimental results well in all of the aspects mentioned above, including the N-linked glycosylation profile of mAb produced under mild hypothermia. Most importantly, comparison between model simulation results for different culture temperatures suggests the reduced rates of nucleotide sugar donor production and galactosyltransferase (GalT) expression to be critical contributing factors that determine the variation in Fc-glycan profiles between physiological and mild hypothermic conditions in stable CHO transfectants. This is then confirmed using experimental measurements of GalT expression levels, thereby closing the loop between the experimental and the computational system. The identification of bottlenecks within CHO cell metabolism under mild hypothermic conditions will aid bioprocess optimization, for example, by tailoring feeding strategies to improve NSD production, or manipulating the expression of specific glycosyltransferases through cell line engineering. Biotechnol. Bioeng. 2017;114: 1570-1582. © 2016 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals Inc. © 2016 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals Inc.

  8. Mammalian cell culture process for monoclonal antibody production: nonlinear modelling and parameter estimation.

    PubMed

    Selişteanu, Dan; Șendrescu, Dorin; Georgeanu, Vlad; Roman, Monica

    2015-01-01

    Monoclonal antibodies (mAbs) are at present one of the fastest growing products of pharmaceutical industry, with widespread applications in biochemistry, biology, and medicine. The operation of mAbs production processes is predominantly based on empirical knowledge, the improvements being achieved by using trial-and-error experiments and precedent practices. The nonlinearity of these processes and the absence of suitable instrumentation require an enhanced modelling effort and modern kinetic parameter estimation strategies. The present work is dedicated to nonlinear dynamic modelling and parameter estimation for a mammalian cell culture process used for mAb production. By using a dynamical model of such kind of processes, an optimization-based technique for estimation of kinetic parameters in the model of mammalian cell culture process is developed. The estimation is achieved as a result of minimizing an error function by a particle swarm optimization (PSO) algorithm. The proposed estimation approach is analyzed in this work by using a particular model of mammalian cell culture, as a case study, but is generic for this class of bioprocesses. The presented case study shows that the proposed parameter estimation technique provides a more accurate simulation of the experimentally observed process behaviour than reported in previous studies.

  9. Processing of complex N-glycans in IgG Fc-region is affected by core fucosylation

    PubMed Central

    Castilho, Alexandra; Gruber, Clemens; Thader, Andreas; Oostenbrink, Chris; Pechlaner, Maria; Steinkellner, Herta; Altmann, Friedrich

    2015-01-01

    We investigated N-glycan processing of immunoglobulin G1 using the monoclonal antibody cetuximab (CxMab), which has a glycosite in the Fab domain in addition to the conserved Fc glycosylation, as a reporter. Three GlcNAc (Gn) terminating bi-antennary glycoforms of CxMab differing in core fucosylation (α1,3- and α1,6-linkage) were generated in a plant-based expression platform. These GnGn, GnGnF3, and GnGnF6 CxMab variants were subjected in vivo to further processing toward sialylation and GlcNAc diversification (bisected and branching structures). Mass spectrometry-based glycan analyses revealed efficient processing of Fab glycans toward envisaged structures. By contrast, Fc glycan processing largely depend on the presence of core fucose. A particularly strong support of glycan processing in the presence of plant-specific core α1,3-fucose was observed. Consistently, molecular modeling suggests changes in the interactions of the Fc carbohydrate chain depending on the presence of core fucose, possibly changing the accessibility. Here, we provide data that reveal molecular mechanisms of glycan processing of IgG antibodies, which may have implications for the generation of glycan-engineered therapeutic antibodies with improved efficacies. PMID:26067753

  10. Mammalian Cell Culture Process for Monoclonal Antibody Production: Nonlinear Modelling and Parameter Estimation

    PubMed Central

    Selişteanu, Dan; Șendrescu, Dorin; Georgeanu, Vlad

    2015-01-01

    Monoclonal antibodies (mAbs) are at present one of the fastest growing products of pharmaceutical industry, with widespread applications in biochemistry, biology, and medicine. The operation of mAbs production processes is predominantly based on empirical knowledge, the improvements being achieved by using trial-and-error experiments and precedent practices. The nonlinearity of these processes and the absence of suitable instrumentation require an enhanced modelling effort and modern kinetic parameter estimation strategies. The present work is dedicated to nonlinear dynamic modelling and parameter estimation for a mammalian cell culture process used for mAb production. By using a dynamical model of such kind of processes, an optimization-based technique for estimation of kinetic parameters in the model of mammalian cell culture process is developed. The estimation is achieved as a result of minimizing an error function by a particle swarm optimization (PSO) algorithm. The proposed estimation approach is analyzed in this work by using a particular model of mammalian cell culture, as a case study, but is generic for this class of bioprocesses. The presented case study shows that the proposed parameter estimation technique provides a more accurate simulation of the experimentally observed process behaviour than reported in previous studies. PMID:25685797

  11. Determination of the Acceptable Ambient Light Exposure during Drug Product Manufacturing for Long Term Stability of Monoclonal Antibodies.

    PubMed

    Luis, Lin M; Hu, Yuzhe; Zamiri, Camellia; Sreedhara, Alavattam

    2018-05-31

    Monoclonal antibodies (mAbs) are exposed to light during drug product (DP) manufacturing and the acceptable levels of light exposure needs to be determined based on the impact on product quality. In this study, a mild and more representative light model consisting of ambient light instead of stress light as prescribed by ICH Q1B was used to evaluate the impact of light exposure on mAb DP quality. The immediate effect of ambient light exposure on protein drug product quality was determined to be dependent on the amount of light exposure rather than light intensity (up to 5000 lux). The impact on quality of mAbs is product specific due to their differences in light sensitivity, in which mAb II shows larger increases in IEC basic variants and larger decreases in SEC monomer when compared to mAb I after 0.24 million lux hours of light exposure. The acceptable ambient light exposure for mAb II drug product manufacturing was determined to be 0.13 million lux hours, in which no impact on product quality was observed after the short-term light exposure. Additionally, real-time storage (5°C) of the DP after the prescribed ambient light exposure showed no impact to various product quality attributes. The light model used in this study is capable of determining the acceptable amount of ambient light exposure for mAbs, especially during DP manufacturing processes. Copyright © 2018, Parenteral Drug Association.

  12. Role of protein kinase C isoforms in cerebral microvascular reactivity to carbon dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagerle, L.C.; Sang Joo Kim

    1991-03-11

    Protein kinase C (PKC) system is a family of proteins with several discrete subspecies having distinct roles in processing an ultimate expression of cellular functions, including smooth muscle cell contraction. Previous inhibitor studies from this lab implicated PKC as a potential determinant of cerebral microvascular tone and reactivity. The authors studied the role of three PKC subspecies in cerebral microvascular reactivity to CO{sub 2} challenge using monoclonal antibody (MAb) specific to PKC subspecies {alpha}, {beta}, and g. Pial arterioles in anesthetized, mechanically ventilated newborn piglets were monitored via a cranial window preparation and intravital microscopy. {alpha}PKC-, {beta}PKC-, or gPKC-MAb wasmore » applied to the cortical surface for 15 minutes, washed out, and the pial arteriolar response to CO{sub 2} challenge was evaluated (N = 18). In {beta}PKC-MAb and gPKC-MAb pretreated preparations, the subsequent CO{sub 2} challenge increased pial arteriolar diameter by 18 {plus minus} 2% and 26 {plus minus} 7% which correspond to a 50% and 27% attenuation of CO{sub 2} reactivity,k respectively, as opposed to that in MAb-naive preparations. However, {alpha}PKC-MAb pretreatment did not alter CO{sub 2} reactivity. MAbs alone changed minimally pial arteriolar diameter. The authors conclude that {beta}PKC and gPKC are involved in the expression of microvascular reactivity to CO{sub 2}, providing a putative intracellular biochemical basis for CO{sub 2}/H{sup +}-induced regulation of cerebral microvascular tone.« less

  13. Different signaling pathways induced by alpha-CD3 monoclonal antibody versus alloantigen on the basis of differential ornithine sensitivity.

    PubMed

    Mehrotra nee Tandon, P; Lind, D S; Bear, H D; Susskind, B M

    1992-08-01

    Previously we reported that 10 mM ornithine (Orn) selectively inhibits the development of CD8+ CTL in MLC. Herein we show that induction by alpha-CD3 mAb of CD8+ killer cells which manifest antibody-redirected cytotoxicity (ARC) of FcR+ targets is not Orn sensitive. Orn resistance was independent of activation kinetics or alpha-CD3 mAb concentration. alpha-CD3 mAb added to the cytotoxicity assay did not reveal a cytolytic potential in CTL from an Orn-treated MLC when the target cells bore both the inducing alloantigen and FcR. Addition of alpha-CD3 mAb to MLC failed to overcome Orn inhibition of CTL and yet induced ARC activity in the same culture. Expression of mRNA for pore-forming proteins (PFP) and granzyme B was inhibited by Orn in CTL but not in ARC killer cells. Our results demonstrate differences in the T cell activation process stimulated by alloantigen or alpha-CD3 mAb.

  14. Molecular simulations of the pairwise interaction of monoclonal antibodies.

    PubMed

    Lapelosa, Mauro; Patapoff, Thomas W; Zarraga, Isidro E

    2014-11-20

    Molecular simulations are employed to compute the free energy of pairwise monoclonal antibodies (mAbs) association using a conformational sampling algorithm with a scoring function. The work reported here is aimed at investigating the mAb-mAb association driven by weak interactions with a computational method capable of predicting experimental observations of low binding affinity. The simulations are able to explore the free energy landscape. A steric interaction component, electrostatic interactions, and a nonpolar component of the free energy form the energy scoring function. Electrostatic interactions are calculated by solving the Poisson-Boltzmann equation. The nonpolar component is derived from the van der Waals interactions upon close contact of the protein surfaces. Two mAbs with similar IgG1 framework but with small sequence differences, mAb1 and mAb2, are considered for their different viscosity and propensity to form a weak interacting dimer. mAb1 presents favorable free energy of association at pH 6 with 15 mM of ion concentration reproducing experimental trends of high viscosity and dimer formation at high concentration. Free energy landscape and minimum free energy configurations of the dimer, as well as the second virial coefficient (B22) values are calculated. The energy distributions for mAb1 are obtained, and the most probable configurations are seen to be consistent with experimental measurements. In contrast, mAb2 shows an unfavorable average free energy at the same buffer conditions due to poor electrostatic complementarity, and reversible dimer configurations with favorable free energy are found to be unlikely. Finally, the simulations of the mAb association dynamics provide insights on the self-association responsible for bulk solution behavior and aggregation, which are important to the processing and the quality of biopharmaceuticals.

  15. Function-blocking antithrombospondin-1 monoclonal antibodies

    PubMed Central

    ANNIS, D. S.; MURPHY-ULLRICH, J. E.; MOSHER, D. F.

    2006-01-01

    Summary Background Thrombospondin-1 (TSP-1) has been implicated in many different processes based in part on inhibitory activities of anti-TSP-1 monoclonal antibodies (mAbs). Objective To map epitopes of 13 anti-TSP-1 mAbs to individual modules or groups of modules spanning TSP-1 and the closely related TSP-2 homolog. Results The mapping has led to assignment or reassignment of the epitopes of four mAbs, refinement of the epitopes of six mAbs, and confirmation of the epitopes of the remaining three mAbs. ESTs10, P12, and MA-II map to the N-terminal domain; 5G11, TSP127.6, and ESTs12 to the third properdin module; C6.7, HB8432, and P10 to epidermal growth factor (EGF)-like modules 1 and/or 2; and A6.1, mAb133, MA-I, and D4.6 to the calcium-binding wire module. A6.1, which recognizes a region of the wire that is identical in mouse and human TSP-1, reacts with TSP-1 from both species, and also reacts weakly with human TSP-2. Two other mouse antihuman TSP-1 mAbs, A4.1 and D4.6, also react with mouse TSP-1. Conclusions Consideration of previous literature and mapping of epitopes of inhibitory mAbs suggest that biological activities are present throughout TSP-1, including the EGF-like modules that have not been implicated in the past. Because the epitopes for 10 of the antibodies likely are within 18 nm of one another in calcium-replete TSP-1, some of the inhibitory effects may result from steric hindrance. Such seems to be the case for mAb133, which binds the calcium-binding wire but is still able to interfere with the activation of latent TGF-β by the properdin modules. PMID:16420580

  16. Evaluation of Heavy-Chain C-Terminal Deletion on Product Quality and Pharmacokinetics of Monoclonal Antibodies.

    PubMed

    Jiang, Guoying; Yu, Christopher; Yadav, Daniela B; Hu, Zhilan; Amurao, Annamarie; Duenas, Eileen; Wong, Marc; Iverson, Mark; Zheng, Kai; Lam, Xanthe; Chen, Jia; Vega, Roxanne; Ulufatu, Sheila; Leddy, Cecilia; Davis, Helen; Shen, Amy; Wong, Pin Y; Harris, Reed; Wang, Y John; Li, Dongwei

    2016-07-01

    Due to their potential influence on stability, pharmacokinetics, and product consistency, antibody charge variants have attracted considerable attention in the biotechnology industry. Subtle to significant differences in the level of charge variants and new charge variants under various cell culture conditions are often observed during routine manufacturing or process changes and pose a challenge when demonstrating product comparability. To explore potential solutions to control charge heterogeneity, monoclonal antibodies (mAbs) with native, wild-type C-termini, and mutants with C-terminal deletions of either lysine or lysine and glycine were constructed, expressed, purified, and characterized in vitro and in vivo. Analytical and physiological characterization demonstrated that the mAb mutants had greatly reduced levels of basic variants without decreasing antibody biologic activity, structural stability, pharmacokinetics, or subcutaneous bioavailability in rats. This study provides a possible solution to mitigate mAb heterogeneity in C-terminal processing, improve batch-to-batch consistency, and facilitate the comparability study during process changes. Published by Elsevier Inc.

  17. The Structural Properties and Stability of Monoclonal Antibodies at Freezing Conditions

    NASA Astrophysics Data System (ADS)

    Perevozchikova, Tatiana; Zarraga, Isidro; Scherer, Thomas; Wagner, Norman; Liu, Yun

    2013-03-01

    Monoclonal Antibodies (MAb) have become a crucial therapeutic agent in a number of anti-cancer treatments. Due to the inherent unstable nature of proteins in an aqueous formulation, a freeze-drying method has been developed to maintain long-term stability of biotherapeutics. The microstructural changes in Mabs during freezing, however, remain not fully described, and it was proposed that the formed morphology of freeze drying samples could affect the final product quality after reconstitution. Furthermore, it is well known that proteins tend to aggregate during the freezing process if a careful processing procedure is not formulated. Small Angle Neutron Scattering (SANS) is a powerful tool to investigate the structural properties and interactions of Mabs during various stages of lyophilization in situ. Here we present the SANS results of freeze-thaw studies on two MAbs at several different freezing temperatures. While the chosen proteins share a significant sequence homology, their freezing properties are found to be strikingly distinctive. We also show the effect of excipients, concentration and quenching speed on the final morphology of the frozen samples. These findings provide critical information for more effective lyophilization schemes for therapeutic proteins, as well as increase our understanding on structural properties of proteins under cryogenic conditions.

  18. Development of Antibody Therapeutics against Flaviviruses

    PubMed Central

    Sun, Haiyan; Chen, Qiang; Lai, Huafang

    2017-01-01

    Recent outbreaks of Zika virus (ZIKV) highlight the urgent need to develop efficacious interventions against flaviviruses, many of which cause devastating epidemics around the world. Monoclonal antibodies (mAb) have been at the forefront of treatment for cancer and a wide array of other diseases due to their specificity and potency. While mammalian cell-produced mAbs have shown promise as therapeutic candidates against several flaviviruses, their eventual approval for human application still faces several challenges including their potential risk of predisposing treated patients to more severe secondary infection by a heterologous flavivirus through antibody-dependent enhancement (ADE). The high cost associated with mAb production in mammalian cell cultures also poses a challenge for the feasible application of these drugs to the developing world where the majority of flavivirus infection occurs. Here, we review the current therapeutic mAb candidates against various flaviviruses including West Nile (WNV), Dengue virus (DENV), and ZIKV. The progress of using plants for developing safer and more economical mAb therapeutics against flaviviruses is discussed within the context of their expression, characterization, downstream processing, neutralization, and in vivo efficacy. The progress of using plant glycoengineering to address ADE, the major impediment of flavivirus therapeutic development, is highlighted. These advancements suggest that plant-based systems are excellent alternatives for addressing the remaining challenges of mAb therapeutic development against flavivirus and may facilitate the eventual commercialization of these drug candidates. PMID:29295568

  19. Antibody recognition of the glycoprotein g of viral haemorrhagic septicemia virus (VHSV) purified in large amounts from insect larvae

    PubMed Central

    2011-01-01

    Background There are currently no purification methods capable of producing the large amounts of fish rhabdoviral glycoprotein G (gpG) required for diagnosis and immunisation purposes or for studying structure and molecular mechanisms of action of this molecule (ie. pH-dependent membrane fusion). As a result of the unavailability of large amounts of the gpG from viral haemorrhagic septicaemia rhabdovirus (VHSV), one of the most dangerous viruses affecting cultured salmonid species, research interests in this field are severely hampered. Previous purification methods to obtain recombinant gpG from VHSV in E. coli, yeast and baculovirus grown in insect cells have not produced soluble conformations or acceptable yields. The development of large-scale purification methods for gpGs will also further research into other fish rhabdoviruses, such as infectious haematopoietic necrosis virus (IHNV), spring carp viremia virus (SVCV), hirame rhabdovirus (HIRRV) and snakehead rhabdovirus (SHRV). Findings Here we designed a method to produce milligram amounts of soluble VHSV gpG. Only the transmembrane and carboxy terminal-deleted (amino acid 21 to 465) gpG was efficiently expressed in insect larvae. Recognition of G21-465 by ß-mercaptoethanol-dependent neutralizing monoclonal antibodies (N-MAbs) and pH-dependent recognition by sera from VHSV-hyperimmunized or VHSV-infected rainbow trout (Oncorhynchus mykiss) was demonstrated. Conclusions Given that the purified G21-465 conserved some of its most important properties, this method might be suitable for the large-scale production of fish rhabdoviral gpGs for use in diagnosis, fusion and antigenicity studies. PMID:21693048

  20. Antibody recognition of the glycoprotein g of viral haemorrhagic septicemia virus (VHSV) purified in large amounts from insect larvae.

    PubMed

    Encinas, Paloma; Gomez-Sebastian, Silvia; Nunez, Maria Carmen; Gomez-Casado, Eduardo; Escribano, Jose M; Estepa, Amparo; Coll, Julio

    2011-06-21

    There are currently no purification methods capable of producing the large amounts of fish rhabdoviral glycoprotein G (gpG) required for diagnosis and immunisation purposes or for studying structure and molecular mechanisms of action of this molecule (ie. pH-dependent membrane fusion). As a result of the unavailability of large amounts of the gpG from viral haemorrhagic septicaemia rhabdovirus (VHSV), one of the most dangerous viruses affecting cultured salmonid species, research interests in this field are severely hampered. Previous purification methods to obtain recombinant gpG from VHSV in E. coli, yeast and baculovirus grown in insect cells have not produced soluble conformations or acceptable yields. The development of large-scale purification methods for gpGs will also further research into other fish rhabdoviruses, such as infectious haematopoietic necrosis virus (IHNV), spring carp viremia virus (SVCV), hirame rhabdovirus (HIRRV) and snakehead rhabdovirus (SHRV). Here we designed a method to produce milligram amounts of soluble VHSV gpG. Only the transmembrane and carboxy terminal-deleted (amino acid 21 to 465) gpG was efficiently expressed in insect larvae. Recognition of G21-465 by ß-mercaptoethanol-dependent neutralizing monoclonal antibodies (N-MAbs) and pH-dependent recognition by sera from VHSV-hyperimmunized or VHSV-infected rainbow trout (Oncorhynchus mykiss) was demonstrated. Given that the purified G21-465 conserved some of its most important properties, this method might be suitable for the large-scale production of fish rhabdoviral gpGs for use in diagnosis, fusion and antigenicity studies.

  1. Effects of replacing fishmeal with animal by-products meal supplementation in diets on the growth and nutrient utilization of mangrove red snapper

    NASA Astrophysics Data System (ADS)

    Jamil, Khalid; Abbas, Ghulam; Akhtar, Rukhsana; Lin, Hong; Li, Zhenxing

    2007-07-01

    A feeding trial was conducted for 75 d to evaluate the nutritive value of a mixture of animal by-products (MAB) as a possible protein source in diets for juvenile mangrove red snapper, Lutjanus argentimaculatus (mean initial body weight, 30 g). Fish were fed one of five isonitrogenous diets (40% crude protein) replacing 0, 25% (MAB25), 50% (MAB50), 75% (MAB75) and 100% (MAB100) of fish meal protein with similar percentages of MAB. The MAB consisted of 25% cow liver meal, 20% leather meal, 20% meat and bone meal, 15% blood meal, 10% APC (poultry feather meal), 8% poultry manure dried, 1.5% choline and 0.5% chromic oxide. After 75 d of feeding, fish fed with diets MAB50, MAB75 and MAB100 exhibited significantly lower growth performance than that of fish fed with control and MAB25 diets. The optimum level of MAB was estimated to be 23%. Replacement of fish meal by MAB23% showed the following performance: maximum weight gain, 510%; SGR, 2.39% and FCE, 2.83%. The MAB substitution up to 75% of fish meal protein in diets did not show differences in apparent protein digestibility (83.6% for MAB25, 79.2% for MAB50, 78.7% for MAB75) compared with control (83.4%), whereas in MAB100 group digestibility (65.3%) was significantly lower than in other groups. The apparent phosphorus absorption of test diet groups was significantly higher (37.1% for MAB25, 28.5% for MAB50, 55.6% for MAB75 and 54.5% for MAB100) than that of control (11.2%). The levels of protein and ash in the whole body, carcass and viscera increased as MAB substitution in diets increased, whereas lipids and moisture remained consistent among all treatment groups. These results showed that approximately 23% of fish meal protein could be replaced by a mixture of animal by-products for juvenile snapper growing from 30 g to 167 g in 75 d without compromising growth performance and feed efficiency.

  2. Overcoming Barriers to the Market Access of Biosimilars in the European Union: The Case of Biosimilar Monoclonal Antibodies.

    PubMed

    Moorkens, Evelien; Jonker-Exler, Clara; Huys, Isabelle; Declerck, Paul; Simoens, Steven; Vulto, Arnold G

    2016-01-01

    In 2014, six of the top ten blockbuster medicines were monoclonal antibodies. This multibillion-dollar market with expiring patents is the main driver for the development of biosimilar mAbs. With the ever-increasing cost of healthcare and the economic pressure to reduce or sustain healthcare expenses, biosimilars could be instrumental in reducing costs for medication and increasing patient access to treatment. The aim of this study is to identify and describe the barriers to market access of biosimilar mAbs in the European Union and to analyze how these barriers could be overcome. A narrative literature review was carried out using the databases PubMed, Embase, and EconLit. Studies were published in English or Dutch. Additionally, the reference list of the articles was checked for relevant studies. Articles and conference papers known to the authors were included as well. Articles were also identified by searching on the website of the Generics and Biosimilars Initiative (GaBI) journal. Six barriers were identified based on available literature: The manufacturing process, the regulatory process, intellectual property rights, lack of incentive, the impossibility of substitution, and the innovator's reach. These six barriers are presented as a possible framework to study the market access of biosimilar mAbs. Based on the literature search, recommendations can be made to overcome these barriers: (i) invest initially in advanced production processes with the help of single-use technology, experience or outsourcing (ii) gain experience with the regulatory process and establish alignment between stakeholders (iii) limit patent litigation, eliminate evergreening benefits, build out further the unitary patent and unified patent litigation system within the EU (iv) create demand-side policies, disseminate objective information (v) change attitude toward biosimilar switching/substitution, starting with physician, and patient education (vi) differentiate the biosimilar by service offerings, use an appropriate comparator in cost-effectiveness analyses. Barriers to the market access of biosimilar mAbs could be reduced when more transparency and communication/education is used in all steps toward market access in order to increase the trust in biosimilar mAbs by all stakeholders. Only then biosimilar mAbs will be able to fully capture their cost saving potential.

  3. Overcoming Barriers to the Market Access of Biosimilars in the European Union: The Case of Biosimilar Monoclonal Antibodies

    PubMed Central

    Moorkens, Evelien; Jonker-Exler, Clara; Huys, Isabelle; Declerck, Paul; Simoens, Steven; Vulto, Arnold G.

    2016-01-01

    Background: In 2014, six of the top ten blockbuster medicines were monoclonal antibodies. This multibillion-dollar market with expiring patents is the main driver for the development of biosimilar mAbs. With the ever-increasing cost of healthcare and the economic pressure to reduce or sustain healthcare expenses, biosimilars could be instrumental in reducing costs for medication and increasing patient access to treatment. Objectives: The aim of this study is to identify and describe the barriers to market access of biosimilar mAbs in the European Union and to analyze how these barriers could be overcome. Methods: A narrative literature review was carried out using the databases PubMed, Embase, and EconLit. Studies were published in English or Dutch. Additionally, the reference list of the articles was checked for relevant studies. Articles and conference papers known to the authors were included as well. Articles were also identified by searching on the website of the Generics and Biosimilars Initiative (GaBI) journal. Results: Six barriers were identified based on available literature: The manufacturing process, the regulatory process, intellectual property rights, lack of incentive, the impossibility of substitution, and the innovator's reach. These six barriers are presented as a possible framework to study the market access of biosimilar mAbs. Based on the literature search, recommendations can be made to overcome these barriers: (i) invest initially in advanced production processes with the help of single-use technology, experience or outsourcing (ii) gain experience with the regulatory process and establish alignment between stakeholders (iii) limit patent litigation, eliminate evergreening benefits, build out further the unitary patent and unified patent litigation system within the EU (iv) create demand-side policies, disseminate objective information (v) change attitude toward biosimilar switching/substitution, starting with physician, and patient education (vi) differentiate the biosimilar by service offerings, use an appropriate comparator in cost-effectiveness analyses. Conclusions: Barriers to the market access of biosimilar mAbs could be reduced when more transparency and communication/education is used in all steps toward market access in order to increase the trust in biosimilar mAbs by all stakeholders. Only then biosimilar mAbs will be able to fully capture their cost saving potential. PMID:27445826

  4. Novel Monoclonal Antibody LpMab-17 Developed by CasMab Technology Distinguishes Human Podoplanin from Monkey Podoplanin.

    PubMed

    Kato, Yukinari; Ogasawara, Satoshi; Oki, Hiroharu; Honma, Ryusuke; Takagi, Michiaki; Fujii, Yuki; Nakamura, Takuro; Saidoh, Noriko; Kanno, Hazuki; Umetsu, Mitsuo; Kamata, Satoshi; Kubo, Hiroshi; Yamada, Mitsuhiro; Sawa, Yoshihiko; Morita, Kei-Ichi; Harada, Hiroyuki; Suzuki, Hiroyoshi; Kaneko, Mika Kato

    2016-04-01

    Podoplanin (PDPN) is a type-I transmembrane sialoglycoprotein, which possesses a platelet aggregation-stimulating (PLAG) domain in its N-terminus. Among the three PLAG domains, O-glycan on Thr52 of PLAG3 is critical for the binding with C-type lectin-like receptor-2 (CLEC-2) and is essential for platelet-aggregating activity of PDPN. Although many anti-PDPN monoclonal antibodies (mAbs) have been established, almost all mAbs bind to PLAG domains. We recently established CasMab technology to produce mAbs against membranous proteins. Using CasMab technology, we produced a novel anti-PDPN mAb, LpMab-17, which binds to non-PLAG domains. LpMab-17 clearly detected endogenous PDPN of cancer cells and normal cells in Western-blot, flow cytometry, and immunohistochemistry. LpMab-17 recognized glycan-deficient PDPN in flow cytometry, indicating that the interaction between LpMab-17 and PDPN is independent of its glycosylation. The minimum epitope of LpMab-17 was identified as Gly77-Asp82 of PDPN using enzyme-linked immunosorbent assay. Of interest, LpMab-17 did not bind to monkey PDPN, whereas the homology is 94% between human PDPN and monkey PDPN, indicating that the epitope of LpMab-17 is unique compared with the other anti-PDPN mAbs. The combination of different epitope-possessing mAbs could be advantageous for the PDPN-targeting diagnosis or therapy.

  5. Target recognition of beta2-glycoprotein I (beta2GPI)-dependent anticardiolipin antibodies: evidence for involvement of the fourth domain of beta2GPI in antibody binding.

    PubMed

    George, J; Gilburd, B; Hojnik, M; Levy, Y; Langevitz, P; Matsuura, E; Koike, T; Shoenfeld, Y

    1998-04-15

    Beta2-glycoprotein I (beta2GPI) is an absolute requirement for the binding of autoimmune anticardiolipin Abs (aCL) to cardiolipin (CL). We evaluated the target recognition of human beta2GPI by IgG derived from two patients with primary and two with secondary antiphospholipid syndrome. The total IgG serum fractions and beta2GPI affinity-purified IgGs were assessed by using various domain-deleted mutants (DM) of human beta2GPI (DMs: I-III, I-IV, II-V, III-V, IV-V, and V) and mouse mAbs against individual beta2GPI domains. The four IgGs bound slightly to CL in the absence of beta2GPI and showed increased binding in the beta2GPI presence. Following affinity purification of the IgGs on a beta2GPI column, reactivity toward CL was absent. DMs containing domain V inhibited the binding of biotinylated beta2GPI to CL. The addition to CL-coated plates of DM V, but not the other DMs, reduced the binding of all four IgGs. The anti-beta2GPI IgGs bound only to complete beta2GPI and DM I-IV coated on the plates. The binding to plate-adsorbed beta2GPI could be inhibited by complete beta2GPI and DM I-IV, the latter being a more efficient inhibitor. Further, the human anti-beta2GPI IgGs could compete with the binding to beta2GPI of Cof-21 mouse mAb (directed at domain IV), but not with the two other mouse mAbs. The results suggest that some "autoimmune:" beta2GPI-dependent anticardiolipin Abs recognize a beta2GPI target that is distinct from the CL-binding site in domain V. The target site for some antiphospholipid syndrome IgGs appear to reside in domain IV of beta2GPI.

  6. Internalization of rituximab and the efficiency of B Cell depletion in rheumatoid arthritis and systemic lupus erythematosus.

    PubMed

    Reddy, Venkat; Cambridge, Geraldine; Isenberg, David A; Glennie, Martin J; Cragg, Mark S; Leandro, Maria

    2015-05-01

    Rituximab, a type I anti-CD20 monoclonal antibody (mAb), induces incomplete B cell depletion in some patients with rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE), thus contributing to a poor clinical response. The mechanisms of this resistance remain elusive. The purpose of this study was to determine whether type II mAb are more efficient than type I mAb at depleting B cells from RA and SLE patients, whether internalization influences the efficiency of depletion, and whether Fcγ receptor type IIb (FcγRIIb) and the B cell receptor regulate this internalization process. We used an in vitro whole blood B cell-depletion assay to assess the efficiency of depletion, flow cytometry to study cell surface protein expression, and surface fluorescence-quenching assays to assess rituximab internalization, in samples from patients with RA and patients with SLE. Paired t-test or Mann-Whitney U test was used to compare groups, and Spearman's rank correlation test was used to assess correlation. We found that type II mAb internalized significantly less rituximab than type I mAb and depleted B cells from patients with RA and SLE at least 2-fold more efficiently than type I mAb. Internalization of rituximab was highly variable between patients, was regulated by FcγRIIb, and inversely correlated with cytotoxicity in whole blood B cell-depletion assays. The lowest levels of internalization were seen in IgD- B cells, including postswitched (IgD-CD27+) memory cells. Internalization of type I anti-CD20 mAb was also partially inhibited by anti-IgM stimulation. Variability in internalization of rituximab was observed and was correlated with impaired B cell depletion. Therefore, slower-internalizing type II mAb should be considered as alternative B cell-depleting agents for the treatment of RA and SLE. © 2015 The Authors. Arthritis & Rheumatology is published by Wiley Periodicals, Inc. on behalf of the American College of Rheumatology.

  7. Internalization of Rituximab and the Efficiency of B Cell Depletion in Rheumatoid Arthritis and Systemic Lupus Erythematosus

    PubMed Central

    Cambridge, Geraldine; Isenberg, David A.; Glennie, Martin J.; Cragg, Mark S.; Leandro, Maria

    2015-01-01

    Objective Rituximab, a type I anti‐CD20 monoclonal antibody (mAb), induces incomplete B cell depletion in some patients with rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE), thus contributing to a poor clinical response. The mechanisms of this resistance remain elusive. The purpose of this study was to determine whether type II mAb are more efficient than type I mAb at depleting B cells from RA and SLE patients, whether internalization influences the efficiency of depletion, and whether Fcγ receptor type IIb (FcγRIIb) and the B cell receptor regulate this internalization process. Methods We used an in vitro whole blood B cell–depletion assay to assess the efficiency of depletion, flow cytometry to study cell surface protein expression, and surface fluorescence–quenching assays to assess rituximab internalization, in samples from patients with RA and patients with SLE. Paired t‐test or Mann‐Whitney U test was used to compare groups, and Spearman's rank correlation test was used to assess correlation. Results We found that type II mAb internalized significantly less rituximab than type I mAb and depleted B cells from patients with RA and SLE at least 2‐fold more efficiently than type I mAb. Internalization of rituximab was highly variable between patients, was regulated by FcγRIIb, and inversely correlated with cytotoxicity in whole blood B cell–depletion assays. The lowest levels of internalization were seen in IgD– B cells, including postswitched (IgD–CD27+) memory cells. Internalization of type I anti‐CD20 mAb was also partially inhibited by anti‐IgM stimulation. Conclusion Variability in internalization of rituximab was observed and was correlated with impaired B cell depletion. Therefore, slower‐internalizing type II mAb should be considered as alternative B cell–depleting agents for the treatment of RA and SLE. PMID:25916583

  8. ChLpMab-23: Cancer-Specific Human-Mouse Chimeric Anti-Podoplanin Antibody Exhibits Antitumor Activity via Antibody-Dependent Cellular Cytotoxicity.

    PubMed

    Kaneko, Mika K; Nakamura, Takuro; Kunita, Akiko; Fukayama, Masashi; Abe, Shinji; Nishioka, Yasuhiko; Yamada, Shinji; Yanaka, Miyuki; Saidoh, Noriko; Yoshida, Kanae; Fujii, Yuki; Ogasawara, Satoshi; Kato, Yukinari

    2017-06-01

    Podoplanin is expressed in many cancers, including oral cancers and brain tumors. The interaction between podoplanin and its receptor C-type lectin-like receptor 2 (CLEC-2) has been reported to be involved in cancer metastasis and tumor malignancy. We previously established many monoclonal antibodies (mAbs) against human podoplanin using the cancer-specific mAb (CasMab) technology. LpMab-23 (IgG 1 , kappa), one of the mouse anti-podoplanin mAbs, was shown to be a CasMab. However, we have not shown the usefulness of LpMab-23 for antibody therapy against podoplanin-expressing cancers. In this study, we first determined the minimum epitope of LpMab-23 and revealed that Gly54-Leu64 peptide, especially Gly54, Thr55, Ser56, Glu57, Asp58, Arg59, Tyr60, and Leu64 of podoplanin, is a critical epitope of LpMab-23. We further produced human-mouse chimeric LpMab-23 (chLpMab-23) and investigated whether chLpMab-23 exerts antibody-dependent cellular cytotoxicity (ADCC) and antitumor activity. In flow cytometry, chLpMab-23 showed high sensitivity against a podoplanin-expressing glioblastoma cell line, LN319, and an oral cancer cell line, HSC-2. chLpMab-23 also showed ADCC activity against podoplanin-expressing CHO cells (CHO/podoplanin). In xenograft models with HSC-2 and CHO/podoplanin, chLpMab-23 exerts antitumor activity using human natural killer cells, indicating that chLpMab-23 could be useful for antibody therapy against podoplanin-expressing cancers.

  9. Improved HCP Reduction Using a New, All-Synthetic Depth Filtration Media Within an Antibody Purification Process.

    PubMed

    Nguyen, Hoang C; Langland, Amie L; Amara, John P; Dullen, Michael; Kahn, David S; Costanzo, Joseph A

    2018-04-30

    Biologic manufacturing processes typically employ clarification technologies like depth filtration to remove insoluble and soluble impurities. Conventional depth filtration media used in these processes contain naturally-derived components like diatomaceous earth and cellulose. These components may introduce performance variability and contribute extractable/leachable components like beta-glucans that could interfere with limulus amebocyte lysate endotoxin assays. Recently a novel, all-synthetic depth filtration media is developed (Millistak+ ® HC Pro X0SP) that may improve process consistency, efficiency, and drug substance product quality by reducing soluble process impurities. This new media is evaluated against commercially available benchmark filters containing naturally-derived components (Millistak+ ® HC X0HC and B1HC). Using model proteins, the synthetic media demonstrates increased binding capacity of positively charged proteins (72-126 mg g -1 media) compared to conventional media (0.3-8.6 mg g -1 media); and similar values for negatively charged species (1.3-5.6 mg g -1 media). Several CHO-derived monoclonal antibodies (mAbs) or mAb-like molecules are also evaluated. The X0SP filtration performance behaves similarly to benchmarks, and exhibits improved HCP reduction (at least 50% in 55% of cases tested). X0SP filtrates contained increased silicon extractables relative to benchmarks, but these were readily removed downstream. Finally, the X0SP devices demonstrates suitable lot-to-lot robustness when specific media components are altered intentionally to manufacturing specification limits. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Joint Analysis of Two Ability Tests: Two Theories, One Outcome

    DTIC Science & Technology

    2014-01-01

    after the Wechsler Adult Intelligence Scale – Revised (WAIS-R; Wechsler , 1981). It has 10 subtests that produce three summary scores: verbal IQ (VIQ...of the multidimensional aptitude battery. Journal of Clinical Psychology, 45, 429-433. Wechsler , D. (1980). Wechsler Adult Intelligence Scale ...FSIQ MAB Full- Scale Intelligence Quotient MAB Inf MAB Information subtest MAB Oa MAB Object Assembly subtest MAB Pa MAB Picture Arrangement

  11. Glutathione and thioredoxin systems contribute to recombinant monoclonal antibody interchain disulfide bond reduction during bioprocessing.

    PubMed

    Handlogten, Michael W; Zhu, Min; Ahuja, Sanjeev

    2017-07-01

    Antibody interchain disulfide bond reduction during biopharmaceutical manufacturing has received increased attention since it was first reported in 2010. Antibody reduction leads to loss of product and reduced product stability. It is therefore critical to understand the underlying mechanisms of reduction. To date, the thioredoxin system has been reported as the sole contributor to antibody reduction during bioprocessing. In this work, we show that the glutathione system, in addition to the thioredoxin system, is involved in reducing antibody molecules and the contributions of the two systems can vary depending upon the cell culture process. The roles of the glutathione and thioredoxin systems were evaluated for three molecules with different IgG subclass where reduction was observed during manufacturing: mAb A, mAb B, and mAb C representing an IgG 1 , IgG 2 , and IgG 4, respectively. The expression of enzymes for both the thioredoxin and glutathione systems were confirmed in all three cell lines. Inhibitors were evaluated using purified mammalian reductases to evaluate their specificity. The optimized experimental conditions enabled both the determination of reductase activity contributed from as well as the amount of antibody reduced by each enzymatic system. Our results demonstrate that the underlying enzymatic mechanisms are different depending upon the cell culture process; one of the two systems may be the dominant mechanism, or both enzymatic systems may be involved. Specifically, the glutathione system was found to be the major contributor to mAb A reduction while the thioredoxin system was the major contributor to mAb C reduction. Intriguingly, mAb B experienced significant reduction from both enzymatic systems. In summary, we have demonstrated that in addition to the thioredoxin pathway, the glutathione system is a second major pathway contributing to antibody reduction and this knowledge can be leveraged to develop more specific antibody reduction mitigation strategies targeted at the dominant reduction mechanism. Biotechnol. Bioeng. 2017;114: 1469-1477. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Preclinical and early clinical development of GNbAC1, a humanized IgG4 monoclonal antibody targeting endogenous retroviral MSRV-Env protein

    PubMed Central

    Curtin, François; Perron, Hervé; Kromminga, Arno; Porchet, Hervé; Lang, Alois B

    2015-01-01

    Monoclonal antibodies (mAbs) play an increasing important role in the therapeutic armamentarium against multiple sclerosis (MS), an inflammatory and degenerative disorder of the central nervous system. Most of the mAbs currently developed for MS are immunomodulators blocking the inflammatory immune process. In contrast with mAbs targeting immune function, GNbAC1, a humanized IgG4 mAb, targets the multiple sclerosis associated retrovirus envelope (MSRV-Env) protein, an upstream factor in the pathophysiology of MS. MSRV-Env protein is of endogenous retroviral origin, expressed in MS brain lesions, and it is pro-inflammatory and toxic to the remyelination process, by preventing the differentiation of oligodendrocyte precursor cells. We present the preclinical and early clinical development results of GNbAC1. The specificity of GNbAC1 for its endogenous retroviral target is described. Efficacy of different mAb versions of GNbAC1 were assessed in MSRV-Env induced experimental allergic encephalitis (EAE), an animal model of MS. Because the target MSRV-Env is not expressed in animals, no relevant animal model exists for a proper in vivo toxicological program. An off-target 2-week toxicity study in mice was thus performed, and it showed an absence of safety risk. Additional in vitro analyses showed an absence of complement or antibody-dependent cytotoxicity as well as a low level of cross-reactivity to human tissues. The first-in-man clinical study in 33 healthy subjects and a long-term clinical study in 10 MS patients showed that GNbAC1 is well tolerated in humans without induction of immunogenicity and that it induces a pharmacodynamic response on MSRV biomarkers. These initial results suggest that the mAb GNbAC1 could be a safe long-term treatment for patients with MS with a unique therapeutic mechanism of action. PMID:25427053

  13. Recombinase-mediated cassette exchange (RMCE) for monoclonal antibody expression in the commercially relevant CHOK1SV cell line.

    PubMed

    Zhang, Lin; Inniss, Mara C; Han, Shu; Moffat, Mark; Jones, Heather; Zhang, Baohong; Cox, Wendy L; Rance, James R; Young, Robert J

    2015-01-01

    To meet product quality and cost parameters for therapeutic monoclonal antibody (mAb) production, cell lines are required to have excellent growth, stability, and productivity characteristics. In particular, cell line generation stability is critical to the success of a program, especially where high cell line generation numbers are required for large in-market supply. However, a typical process for developing such cell lines is laborious, lengthy, and costly. In this study, we applied a FLP/FRT recombinase-mediated cassette exchange (RMCE) system to build a site-specific integration (SSI) system for mAb expression in the commercially relevant CHOK1SV cell line. Using a vector with a FRT-flanked mAb expression cassette, we generated a clonal cell line with good productivity, long-term production stability, and low mAb gene-copy number indicating the vector was located in a 'hot-spot.' A SSI host cell line was made by removing the mAb genes from the 'hot-spot' by RMCE, creating a 'landing pad' containing two recombination cassettes that allow targeting of one or two copies of recombinant genes. Cell lines made from this host exhibited excellent growth and productivity profiles, and stability for at least 100 generations in the absence of selection agents. Importantly, while clones containing two copies had higher productivity than single copy clones, both were stable over many generations. Taken together, this study suggests the use of FLP-based RMCE to develop SSI host cells for mAb production in CHOK1SV offers significant savings in both resources and overall cell line development time, leading to a shortened 'time-to-clinic' for therapeutic mAbs. © 2015 American Institute of Chemical Engineers.

  14. Quantitative analysis of glycation and its impact on antigen binding

    PubMed Central

    Mo, Jingjie; Yan, Qingrong; Sokolowska, Izabela; Lewis, Michael J.; Hu, Ping

    2018-01-01

    ABSTRACT Glycation has been observed in antibody therapeutics manufactured by the fed-batch fermentation process. It not only increases the heterogeneity of antibodies, but also potentially affects product safety and efficacy. In this study, non-glycated and glycated fractions enriched from a monoclonal antibody (mAb1) as well as glucose-stressed mAb1 were characterized using a variety of biochemical, biophysical and biological assays to determine the effects of glycation on the structure and function of mAb1. Glycation was detected at multiple lysine residues and reduced the antigen binding activity of mAb1. Heavy chain Lys100, which is located in the complementary-determining region of mAb1, had the highest levels of glycation in both stressed and unstressed samples, and glycation of this residue was likely responsible for the loss of antigen binding based on hydrogen/deuterium exchange mass spectrometry analysis. Peptide mapping and intact liquid chromatography-mass spectrometry (LC-MS) can both be used to monitor the glycation levels. Peptide mapping provides site specific glycation results, while intact LC-MS is a quicker and simpler method to quantitate the total glycation levels and is more useful for routine testing. Capillary isoelectric focusing (cIEF) can also be used to monitor glycation because glycation induces an acidic shift in the cIEF profile. As expected, total glycation measured by intact LC-MS correlated very well with the percentage of total acidic peaks or main peak measured by cIEF. In summary, we demonstrated that glycation can affect the function of a representative IgG1 mAb. The analytical characterization, as described here, should be generally applicable for other therapeutic mAbs. PMID:29436927

  15. Monoclonal Antibodies as Probes for the Detection of Porcine Blood-Derived Food Ingredients.

    PubMed

    Ofori, Jack A; Hsieh, Yun-Hwa P

    2016-05-11

    The lack of effective methods to monitor the use of porcine blood-derived food ingredients (PBFIs) is a concern for the billions of individuals who avoid consuming blood. We therefore sought to develop a panel of porcine blood-specific monoclonal antibodies (mAbs) for use as probes in immunoassays for the detection of PBFIs. Ten selected mAbs were identified that react with either a 60 or 90 kDa protein in the plasma fraction or a 12 kDa protein in the red blood cell fraction of porcine blood. Western blot analysis of commercially produced PBFIs revealed that these antigenic proteins are not affected by various manufacturing processes. The utility of these mAbs was demonstrated in a prototype sandwich ELISA developed for this study using mAbs 19C5-E10 and 16F9-C11. The new assay is porcine blood-specific and capable of detecting ≤0.03% (v/v) of PBFIs in cooked (100 °C for 15 min) ground meats or fish.

  16. Production and characterization of recombinant scFv against digoxin by phage display technology.

    PubMed

    Alirezapour, Behruz; Rajabibazl, Masoumeh; Rasaee, Mohhamad Javad; Omidfar, Kobra

    2013-06-01

    The cardiac glycoside digoxin is widely used for the treatment of congestive heart failure and cardiac arrhythmias. Digoxin is a highly toxic drug and consequently is routinely measured in sera of treated patients. In such cases, antibodies are required against digoxin for detection as well as detoxification purposes. To obtain recombinant single chain antibody against digoxin, RNA was extracted from spleen of BALB/c mice immunized with digoxin-BSA and converted to cDNA. The gene fragment corresponding to the variable regions of the repertoire of antibody genes were amplified by PCR. ScFv construct was generated by randomly joining individual heavy- and light-chain variable domains through gene splicing by overlapping extension PCR. Recombinant phage library expressing scFv polypeptides were produced. Phages with higher affinity toward digoxin were selected in the biopanning process. Sensitivity of produced recombinant MAb (AR85) was determined to be about 100 pg/well, while intact MAb (BBA) produced by hybridoma technology (data not shown) was reported to be around 100 pg/well too. The saturation value for recombinant scFv MAb was found to be 1000 ng/well while that for hybridoma MAb was reported to be 10 ng/well. The affinity constant of recombinant MAb (AR85) towards digoxin was also found to be around ka=3.8×10(7) M(-1) while that for hybridoma MAb (BBA) was reported to be ka=2.6×10(8) M(-1).

  17. Quantitative Correlation between Viscosity of Concentrated MAb Solutions and Particle Size Parameters Obtained from Small-Angle X-ray Scattering.

    PubMed

    Fukuda, Masakazu; Moriyama, Chifumi; Yamazaki, Tadao; Imaeda, Yoshimi; Koga, Akiko

    2015-12-01

    To investigate the relationship between viscosity of concentrated MAb solutions and particle size parameters obtained from small-angle X-ray scattering (SAXS). The viscosity of three MAb solutions (MAb1, MAb2, and MAb3; 40-200 mg/mL) was measured by electromagnetically spinning viscometer. The protein interactions of MAb solutions (at 60 mg/mL) was evaluated by SAXS. The phase behavior of 60 mg/mL MAb solutions in a low-salt buffer was observed after 1 week storage at 25°C. The MAb1 solutions exhibited the highest viscosity among the three MAbs in the buffer containing 50 mM NaCl. Viscosity of MAb1 solutions decreased with increasing temperature, increasing salt concentration, and addition of amino acids. Viscosity of MAb1 solutions was lowest in the buffer containing histidine, arginine, and aspartic acid. Particle size parameters obtained from SAXS measurements correlated very well with the viscosity of MAb solutions at 200 mg/mL. MAb1 exhibited liquid-liquid phase separation at a low salt concentration. Simultaneous addition of basic and acidic amino acids effectively suppressed intermolecular attractive interactions and decreased viscosity of MAb1 solutions. SAXS can be performed using a small volume of samples; therefore, the particle size parameters obtained from SAXS at intermediate protein concentration could be used to screen for low viscosity antibodies in the early development stage.

  18. Rapid high-throughput cloning and stable expression of antibodies in HEK293 cells.

    PubMed

    Spidel, Jared L; Vaessen, Benjamin; Chan, Yin Yin; Grasso, Luigi; Kline, J Bradford

    2016-12-01

    Single-cell based amplification of immunoglobulin variable regions is a rapid and powerful technique for cloning antigen-specific monoclonal antibodies (mAbs) for purposes ranging from general laboratory reagents to therapeutic drugs. From the initial screening process involving small quantities of hundreds or thousands of mAbs through in vitro characterization and subsequent in vivo experiments requiring large quantities of only a few, having a robust system for generating mAbs from cloning through stable cell line generation is essential. A protocol was developed to decrease the time, cost, and effort required by traditional cloning and expression methods by eliminating bottlenecks in these processes. Removing the clonal selection steps from the cloning process using a highly efficient ligation-independent protocol and from the stable cell line process by utilizing bicistronic plasmids to generate stable semi-clonal cell pools facilitated an increased throughput of the entire process from plasmid assembly through transient transfections and selection of stable semi-clonal cell pools. Furthermore, the time required by a single individual to clone, express, and select stable cell pools in a high-throughput format was reduced from 4 to 6months to only 4 to 6weeks. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Podocyte changes after induction of acute albuminuria in mice by anti-aminopeptidase A mAb.

    PubMed

    Dijkman, Henry B P M; Gerlofs-Nijland, Miriam E; van der Laak, Jeroen A W M; Wetzels, Jack F M; Groenen, Patricia J T A; Assmann, Karel J M

    2003-01-01

    Administration of a specific combination of anti-aminopeptidase A (APA) mAb (ASD-37/41) in mice induces an acute albuminuria which is independent of angiotensin II, a well-known substrate of APA. In the present experiments, we examined whether binding of the mAb initiated changes in the podocytic expression of cytoskeleton (-associated), adhesion and slit-diaphragm proteins in relation to the time course of albuminuria. In addition, we measured ultrastructurally the extent of foot process retraction (the number of foot processes per microm GBM) and the width of the slit pore between the podocytes by morphometric methods. An injection of the mAb combination ASD-37/41 induced a massive but transient albuminuria that started at 6 h, and peaked at 8 h, after which it declined. However, even at day 7 after injection of the mAbs some albuminuria was present. Injection of the combination ASD-3/41 or saline did not induce an albuminuria. Notably, we observed changes in the staining of CD2AP and podocin, two slit-pore-associated proteins that coincided with the start of the albuminuria. Nephrin staining was reduced and podocytic actin staining became more granular only at a time albuminuria was declining (24 h). The number of foot processes per microm GBM was already decreased at 4 h with a further reduction thereafter. The width of the slit pore was unchanged at the time of peak albuminuria and gradually decreased thereafter. At day 7, podocytic foot process effacement was even more prominent although albuminuria was only slightly abnormal. Expression of CD2AP was still granular. We observed however a change toward normal in the expression of podocin. Injection of saline or ASD-3/41 had no effect on the expression of podocytic proteins, the number of foot processes or width of the slit pore. Our data show that the onset of albuminuria in the anti-APA model is related to alterations in CD2AP and podocin, proteins that are important for maintaining slit-diaphragm structure and podocytic function. Extended studies at day 7 demonstrated uncoupling of albuminuria, podocytic foot process effacement and CD2AP staining. Changes in podocin more closely paralleled changes in albuminuria. Copyright 2003 S. Karger AG, Basel

  20. Monoclonal Antibody Interactions with Micro- and Nanoparticles: Adsorption, Aggregation and Accelerated Stress Studies

    PubMed Central

    Bee, Jared S.; Chiu, David; Sawicki, Suzanne; Stevenson, Jennifer L.; Chatterjee, Koustuv; Freund, Erwin; Carpenter, John F.; Randolph, Theodore W.

    2009-01-01

    Therapeutic proteins are exposed to various wetted surfaces that could shed sub-visible particles. In this work we measured the adsorption of a monoclonal antibody (mAb) to various microparticles, characterized the adsorbed mAb secondary structure, and determined the reversibility of adsorption. We also developed and used a front-face fluorescence quenching method to determine that the mAb tertiary structure was near-native when adsorbed to glass, cellulose and silica. Initial adsorption to each of the materials tested was rapid. During incubation studies, exposure to the air-water interface was a significant cause of aggregation but acted independently of the effects of microparticles. Incubations with glass, cellulose, stainless steel or Fe2O3 microparticles gave very different results. Cellulose preferentially adsorbed aggregates from solution. Glass and Fe2O3 adsorbed the mAb but did not cause aggregation. Adsorption to stainless steel microparticles was irreversible, and caused appearance of soluble aggregates upon incubation. The secondary structure of mAb adsorbed to glass and cellulose was near-native. We suggest that the protocol described in this work could be a useful preformulation stress screening tool to determine the sensitivity of a therapeutic protein to exposure to common surfaces encountered during processing and storage. PMID:19492408

  1. Transport and Fate of Nutrients Along the U.S. East Coast

    NASA Astrophysics Data System (ADS)

    Hofmann, E. E.; Narvaez, D.; Friedrichs, M. A. M.; Najjar, R.; Tian, H.; Hyde, K.; Mannino, A.; Signorini, S. R.; Wilkin, J.; St-Laurent, P.

    2017-12-01

    As part of a NASA-funded multi-investigator project, a land-estuarine-ocean biogeochemical modeling system was implemented and verified with remote sensing and in situ data to examine processes controlling fluxes on land, their coupling to riverine systems, the delivery of materials to estuaries and the coastal ocean, and marine ecosystem responses to these changing riverine inputs and changing climate forcing. This modeling system is being used to develop nutrient budgets for the U.S. east coast continental shelf and to examine seasonal and interannual variability in nutrient fluxes. An important aspect of these nutrient budgets is the transport and fate of nutrients released along the inner shelf. Results from a five-year simulation (2004 to 2008) that used tracer releases from the main rivers along the Middle Atlantic Bight (MAB) and South Atlantic Bight (SAB) provide insights into transport pathways that connect the inner and outer continental shelf. Tracers released along the inner MAB spread along the shelf with a general southward and offshore transport. Inner shelf inputs from the large estuarine systems are transported to the mid and outer MAB shelf. Tracers that reach the mid to outer shelf can be entrained in the Gulf Stream. Export from the MAB to the SAB occurs during periods of southerly winds. Transport processes along the SAB are similar, but Gulf Stream entrainment is a larger component of tracer transport. Superimposed on the MAB and SAB transport patterns is considerable seasonal and interannual variability. The results from these retrospective simulations improve understanding of the coupling at the land-water interface and shelf-wide transport patterns that advance the ability to predict the effects of localized human impacts and broader-scale climate-related impacts on the U.S. east coast continental shelf system.

  2. Platelet receptors for the Streptococcus sanguis adhesin and aggregation-associated antigens are distinguished by anti-idiotypical monoclonal antibodies.

    PubMed Central

    Gong, K; Wen, D Y; Ouyang, T; Rao, A T; Herzberg, M C

    1995-01-01

    Platelets aggregate in response to an adhesin and the platelet aggregation-associated protein (PAAP) expressed on the cell surfaces of certain strains of Streptococcus sanguis. We sought to identify the corresponding PAAP receptor and accessory adhesin binding sites on platelets. Since the adhesion(s) of S. sanguis for platelets has not been characterized, an anti-idiotype (anti-id) murine monoclonal antibody (MAb2) strategy was developed. First, MAb1s that distinguished the adhesin and PAAP antigens on the surface of S. sanguis I 133-79 were selected. Fab fragments of MAb1.2 (immunoglobulin G2b [IgG2b]; 70 pmol) reacted with 5 x 10(7) cells of S. sanguis to completely inhibit the aggregation of human platelets in plasma. Under similar conditions, MAb1.1 (IgG1) inhibited the adhesion of S. sanguis cells to platelets by a maximum of 34%, with a comparatively small effect on platelet aggregation. Together, these two MAb1s inhibited S. sanguis-platelet adhesion by 63%. In Western immunoblots, both MAb1s reacted with S. sanguis 133-79 87- and 150-kDa surface proteins and MAb1.2 also reacted with purified type I collagen. The hybridomas producing MAb1.1 and MAb1.2 were then injected into BALB/c mice. Enlarged spleens were harvested, and a panel of MAb2 hybridomas was prepared. To identify anti-ids against the specific MAb1s, the MAb2 panel was screened by enzyme-linked immunosorbent assay for reaction with rabbit polyclonal IgG antibodies against the 87- and 150-kDa antigens. The reactions between the specific rabbit antibodies and anti-ids were inhibited by the 87- and 150-kDa antigens. When preincubated with platelets, MAb2.1 (counterpart of MAb1.1) inhibited adhesion to platelets maximally by 46% and MAb2.2 (anti-MAb1.2) inhibited adhesion to platelets maximally by 35%. Together, both MAb2s inhibited the adhesion of S. sanguis to platelets by 81%. MAb2.2 also inhibited induction of platelet aggregation. MAb2.2 immunoprecipitated a biotinylated platelet membrane antigen of 170 kDa (unreduced); MAb2.1 precipitated membrane antigens of 175- and 230-kDa (unreduced). Therefore, platelet binding sites and the receptor for the S. sanguis adhesin and PAAP, respectively, are distinguished by the anti-id MAb2s. PMID:7642300

  3. Chronic treatment of (+)-methamphetamine-induced locomotor effects in rats using one or a combination of two high affinity anti-methamphetamine monoclonal antibodies

    PubMed Central

    Hambuchen, Michael D.; Rüedi-Bettschen, Daniela; Gunnell, Melinda G.; Hendrickson, Howard; Owens, S. Michael

    2016-01-01

    ABSTRACT We hypothesized that treatment of methamphetamine (METH) effects with a mixture of 2 high affinity anti-METH monoclonal antibodies (mAb) with differing molecular recognition for METH-like structures could increase efficacy compared to treatment with a single mAb. The antibodies studied were mAb7F9 (METH and amphetamine [AMP] KD = 7.7 and 270 nM) and mAb4G9 (16 nM and 110 nM, respectively) in a 50:50 mixture. Adult male Sprague Dawley Rats were treated with iv saline or a loading dose of mAb7F9-mAb4G9 (141 mg/kg of each mAb) followed by 2 weekly doses (70.5 mg/kg total) on days 7 and 14. METH challenge doses (0.56 mg/kg) were administered 4 hrs and 3 days after each mAb7F9-mAb4G9 treatment, and 7 days after the final treatment (day 21). Locomotor activity (0–4 hrs) and serum METH and AMP concentrations (at 5 hrs) were measured after each METH challenge. MAb7F9-mAb4G9 treatment significantly reduced the duration of locomotor activity after 6 of the 7 METH doses (P < 0.05) and significantly increased serum METH and AMP concentrations. Administering three-fold higher METH doses (1.68 mg/kg) on days 24 and 28 showed mAb7F9-mAb4G9 treatment had negligible effects on the duration of METH-induced locomotor activity. These data were then compared to previous monotherapy data. While mAb7F9-mAb4G9 therapy inhibited the effects of multiple METH challenge doses, the inhibition was not as profound or as long lasting as the effects of mAb7F9 treatment alone. These data demonstrate the importance of both mAb affinity and specificity in the production of effective, long-lasting anti-METH mAb therapies. PMID:27163775

  4. Kinetic Modeling of Methionine Oxidation in Monoclonal Antibodies from Hydrogen Peroxide Spiking Studies.

    PubMed

    Hui, Ada; Lam, Xanthe M; Kuehl, Christopher; Grauschopf, Ulla; Wang, Y John

    2015-01-01

    When isolator technology is applied to biotechnology drug product fill-finish process, hydrogen peroxide (H2O2) spiking studies for the determination of the sensitivity of protein to residual peroxide in the isolator can be useful for assessing a maximum vapor phase hydrogen peroxide (VPHP) level. When monoclonal antibody (mAb) drug products were spiked with H2O2, an increase in methionine (Met 252 and Met 428) oxidation in the Fc region of the mAbs with a decrease in H2O2 concentration was observed for various levels of spiked-in peroxide. The reaction between Fc-Met and H2O2 was stoichiometric (i.e., 1:1 molar ratio), and the reaction rate was dependent on the concentrations of mAb and H2O2. The consumption of H2O2 by Fc-Met oxidation in the mAb followed pseudo first-order kinetics, and the rate was proportional to mAb concentration. The extent of Met 428 oxidation was half of that of Met 252, supporting that Met 252 is twice as reactive as Met 428. Similar results were observed for free L-methionine when spiked with H2O2. However, mAb formulation excipients may affect the rate of H2O2 consumption. mAb formulations containing trehalose or sucrose had faster H2O2 consumption rates than formulations without the sugars, which could be the result of impurities (e.g., metal ions) present in the excipients that may act as catalysts. Based on the H2O2 spiking study results, we can predict the amount Fc-Met oxidation for a given protein concentration and H2O2 level. Our kinetic modeling of the reaction between Fc-Met oxidation and H2O2 provides an outline to design a H2O2 spiking study to support the use of VPHP isolator for antibody drug product manufacture. Isolator technology is increasing used in drug product manufacturing of biotherapeutics. In order to understand the impact of residual vapor phase hydrogen peroxide (VPHP) levels on protein product quality, hydrogen peroxide (H2O2) spiking studies may be performed to determine the sensitivity of monoclonal antibody (mAb) drug products to residual peroxide in the isolator. In this study, mAbs were spiked with H2O2; an increase in methionine (Met) oxidation of the mAbs with a decrease in H2O2 concentration was observed for various levels of spiked-in peroxide. The reaction between Met and H2O2 was 1:1, and its rate was dependent on mAb and H2O2 concentrations. Consumption of H2O2 by Met followed pseudo first-order kinetics; the rate was proportional to mAb concentration. Formulations containing trehalose or sucrose had faster consumption rates than formulations without the sugars, which could be due to excipient impurities. Based on H2O2 spiking study results, we can predict the amount of Met oxidation for a given mAb concentration and H2O2 level. Our modeling of the reaction between Fc-Met oxidation and H2O2 provides an outline to design a H2O2 spiking study that supports using VPHP isolators during manufacture of mAb products. © PDA, Inc. 2015.

  5. Optimization on Fc for Improvement of Stability and Aggregation Resistance.

    PubMed

    Chen, Xiaobo; Zeng, Fang; Huang, Tao; Cheng, Liang; Liu, Huan; Gong, Rui

    2016-01-01

    Fc-based therapeutics including therapeutic full-size monoclonal antibodies (mAbs) and Fcfusion proteins represent fastest-growing market in biopharmaceutical industrial. However, one major challenge during development of Fc-based therapeutics is how to maintain their efficacy in clinic use. Many factors may lead to failure in final marketing. For example, the stability and aggregation resistance might not be high enough for bearing the disadvantages during fermentation, purification, formulation, storage, shipment and other steps in manufacture and sale. Low stability and high aggregation tendency lead to decreased bioactivity and increased risk of immunogenicity resulting in serious side effect. Because Fc is one of the major parts in monoclonal antibodies and Fc-fusion proteins, engineering of Fc to increase its stability and reduce or eliminate aggregation due to incorrect association are of great importance and could further extend the potential of Fc-based therapeutics. Lots of studies focus on Fc optimization for better physical and chemical characteristics and function by structured-based computer-aid rational design, high-throughput screening expression system selection and other methods. The identification of optimized Fc mutants increases the clinic potential of currently existed therapeutics mAbs and Fc-fusion proteins, and accelerates the development of new Fc-based therapeutics. Here we provide an overview of the related field, and discuss recent advances and future directions in optimization of Fc-based therapeutics with modified stability and aggregation resistance. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. A monoclonal antibody recognizes undifferentiation-specific carbohydrate moieties expressed on cell surface of the human dental pulp cells.

    PubMed

    Kang, Kyung-Jung; Ko, Seon-Yle; Ryu, Chun-Jeih; Jang, Young-Joo

    2017-05-01

    Human dental pulp cells are obtained from dental pulp tissue, and have the ability to form dentin and a pulp-like complex. Although adult stem cells have been identified from the primary culture by using specific cell surface markers, the identity of surface markers for the purification of stem cells within the dental pulp population are still unclear. Previously, we had constructed monoclonal antibodies against the undifferentiated cell-specific surface markers of human dental pulp cells (hDPCs) by performing decoy immunization. Among them, a monoclonal antibody against the cell surface antigen of the undifferentiated hDPCs (named UPSA-1) was purified and its heavy and light chain consensus regions were analyzed. The cell surface binding affinity of UPSA-1 mAb on the undifferentiated hDPCs was stronger than that on the differentiated cells. When tunicamycin was applied to hDPSCs during culture, the cell surface binding affinity of the antibody was dramatically decreased, and dentinogenic differentiation was reduced. The purified UPSA-1 antigen band resulting from immunoprecipitation disappeared or shifted down on the SDS-PAGE by deglycosylation. These data suggested that glycosylation on the cell surface might be a marker of an undifferentiated state, and that UPSA-1 mAb might be useful for identifying the carbohydrate moiety on the cell surface of undifferentiated pulp cells. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  7. [Expression in E.coli and bioactivity assay of Micrococcus luteus resuscitation promoting factor domain and its mutants].

    PubMed

    Yue, Chen-Li; Shi, Jie-Ran; Shi, Chang-Hong; Zhang, Hai; Zhao, Lei; Zhang, Ting-Fen; Zhao, Yong; Xi, Li

    2008-10-01

    To express Micrococcus luteus resuscitation promoting factor (Rpf) domain and its mutants in prokaryotic cells, and to investigate their bioactivity. The gene of Rpf domain and its mutants (E54K, E54A) were amplified by polymerase chain reaction (PCR) from the genome of Micrococcus luteus and cloned into pMD18-T vector. After sequenced, the Rpf domain and its mutant gene were subcloned into expression vector PGEX-4T-1, and transfected into E. coli DH5alpha. The expressed product was purified by affinity chromatography using GST Fusion Protein Purification bead. The aim proteins were identified by SDS-PAGE analysis and by Western blot with monoclonal antibodies against Rpf domain (mAb). The bioactivity of the proteins was analyzed by stimulating the resuscitation of Mycobacterium smegmatis. The sequences of the PCR products were identical to those of the Rpf domain and its mutant gene in GenBank. The relative molecular mass identified by SDS-PAGE analysis was consistent with that had been reported, which was also confirmed by Western blot analysis that there were specific bindings at 32 000 with Rpf domain mAb. The purified GST-Rpf domain could stimulate resuscitation of Mycobacterium smegmatis. Replacements E54A and especially E54K resulted in inhibition of Rpf resuscitation activity. Rpf domain and two kinds of its mutant protein were obtained, and its effects on the resuscitation of dormant Mycobacterium smegmatis were clarified.

  8. Inert gas enhanced laser-assisted purification of platinum electron-beam-induced deposits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanford, Michael G.; Lewis, Brett B.; Noh, Joo Hyon

    Electron-beam-induced deposition patterns, with composition of PtC 5, were purified using a pulsed laser-induced purification reaction to erode the amorphous carbon matrix and form pure platinum deposits. Enhanced mobility of residual H 2O molecules via a localized injection of inert Ar–H 2 (4%) is attributed to be the reactive gas species for purification of the deposits. Surface purification of deposits was realized at laser exposure times as low as 0.1 s. The ex situ purification reaction in the deposit interior was shown to be rate-limited by reactive gas diffusion into the deposit, and deposit contraction associated with the purification processmore » caused some loss of shape retention. To circumvent the intrinsic flaws of the ex situ anneal process, in situ deposition and purification techniques were explored that resemble a direct write atomic layer deposition (ALD) process. First, we explored a laser-assisted electron-beam-induced deposition (LAEBID) process augmented with reactive gas that resulted in a 75% carbon reduction compared to standard EBID. Lastly, a sequential deposition plus purification process was also developed and resulted in deposition of pure platinum deposits with high fidelity and shape retention.« less

  9. Purification of crude glycerol from transesterification reaction of palm oil using direct method and multistep method

    NASA Astrophysics Data System (ADS)

    Nasir, N. F.; Mirus, M. F.; Ismail, M.

    2017-09-01

    Crude glycerol which produced from transesterification reaction has limited usage if it does not undergo purification process. It also contains excess methanol, catalyst and soap. Conventionally, purification method of the crude glycerol involves high cost and complex processes. This study aimed to determine the effects of using different purification methods which are direct method (comprises of ion exchange and methanol removal steps) and multistep method (comprises of neutralization, filtration, ion exchange and methanol removal steps). Two crude glycerol samples were investigated; the self-produced sample through the transesterification process of palm oil and the sample obtained from biodiesel plant. Samples were analysed using Fourier Transform Infrared Spectroscopy, Gas Chromatography and High Performance Liquid Chromatography. The results of this study for both samples after purification have showed that the pure glycerol was successfully produced and fatty acid salts were eliminated. Also, the results indicated the absence of methanol in both samples after purification process. In short, the combination of 4 purification steps has contributed to a higher quality of glycerol. Multistep purification method gave a better result compared to the direct method as neutralization and filtration steps helped in removing most excess salt, fatty acid and catalyst.

  10. Inert gas enhanced laser-assisted purification of platinum electron-beam-induced deposits

    DOE PAGES

    Stanford, Michael G.; Lewis, Brett B.; Noh, Joo Hyon; ...

    2015-06-30

    Electron-beam-induced deposition patterns, with composition of PtC 5, were purified using a pulsed laser-induced purification reaction to erode the amorphous carbon matrix and form pure platinum deposits. Enhanced mobility of residual H 2O molecules via a localized injection of inert Ar–H 2 (4%) is attributed to be the reactive gas species for purification of the deposits. Surface purification of deposits was realized at laser exposure times as low as 0.1 s. The ex situ purification reaction in the deposit interior was shown to be rate-limited by reactive gas diffusion into the deposit, and deposit contraction associated with the purification processmore » caused some loss of shape retention. To circumvent the intrinsic flaws of the ex situ anneal process, in situ deposition and purification techniques were explored that resemble a direct write atomic layer deposition (ALD) process. First, we explored a laser-assisted electron-beam-induced deposition (LAEBID) process augmented with reactive gas that resulted in a 75% carbon reduction compared to standard EBID. Lastly, a sequential deposition plus purification process was also developed and resulted in deposition of pure platinum deposits with high fidelity and shape retention.« less

  11. Analysis of nonhuman N-glycans as the minor constituents in recombinant monoclonal antibody pharmaceuticals.

    PubMed

    Maeda, Eiki; Kita, Soichiro; Kinoshita, Mitsuhiro; Urakami, Koji; Hayakawa, Takao; Kakehi, Kazuaki

    2012-03-06

    Minor N-linked glycans containing N-glycolylneuraminic acid residues and/or α-Gal epitopes (i.e., galactose-α1,3-galactose residues) have been reported to be present in recombinant monoclonal antibody (mAb) therapeutics. These contaminations are due to their production processes using nonhuman mammalian cell lines in culture media containing animal-derived materials. In case of the treatment of tumors, we inevitably use such mAbs by careful risk-benefit considerations to prolong patients' lives. However, expanding their clinical applications such as for rheumatism, asthma, and analgesia demands more careful evaluation of the product characteristics. The present work for detailed evaluations of N-glycans demonstrates the methods using capillary electrophoresis with laser-induced fluorescence detection (CE-LIF) and a combination of high-performance liquid chromatography and electrospray ionization time-of-flight mass spectrometry. The CE-LIF method provides excellent separation of both major and minor N-glycans from six commercial mAb pharmaceuticals within 30 min and clearly indicates that a possible trigger of immunogenicity in humans due to the presence of nonhuman N-glycans is present. We strongly believe that the proposed method will be a powerful tool for the analysis of N-glycans of recombinant mAb products in various development stages, such as clone selection, process control, and routine release testing to ensure safety and efficacy of the products.

  12. Main Quality Attributes of Monoclonal Antibodies and Effect of Cell Culture Components

    PubMed

    Torkashvand, Fatemeh; Vaziri, Behrouz

    2017-05-01

    The culture media optimization is an inevitable part of upstream process development in therapeutic monoclonal antibodies (mAbs) production. The quality by design (QbD) approach defines the assured quality of the final product through the development stage. An important step in QbD is determination of the main quality attributes. During the media optimization, some of the main quality attributes such as glycosylation pattern, charge variants, aggregates, and low-molecular-weight species, could be significantly altered. Here, we provide an overview of how cell culture medium components affects the main quality attributes of the mAbs. Knowing the relationship between the culture media components and the main quality attributes could be successfully utilized for a rational optimization of mammalian cell culture media for industrial mAbs production.

  13. Monoclonal antibodies against loggerhead sea turtle, Caretta caretta, IgY isoforms reveal differential contributions to antibody titers and relatedness among other sea turtles.

    PubMed

    Rodgers, Maria L; Rice, Charles D

    2018-05-19

    Serum from loggerhead sea turtles, Caretta caretta, was collected from the southeast Atlantic Ocean during routine summer monitoring studies in 2017. Serum immunoglobulin IgY was purified and used to develop IgY isoform-specific monoclonal antibodies (mAb). mAb LH12 was developed against the 66 kDa heavy chain of IgY, mAb LH1 was developed against the truncated heavy chain of approximately 37 kDA, and mAb LH9 was developed against the 23 kDa light chains. mAb LH9 reacts with the light chains of all sea turtles, mAb LH12 reacts with the long heavy chain of all sea turtles within the family Cheloniidae, and mAb LH1 reacts with the truncated form of IgY in both olive and Kemp's ridley turtles. Circulating IgY antibodies against three different marine bacterial pathogens were determined in 16 loggerhead samples using these mAbs. mAb LH12 detects higher titers than mAb LH1, and mAb LH9 detects the highest titers. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Removal of pharmaceutical pollutants from synthetic wastewater using chemically modified biomass of green alga Scenedesmus obliquus.

    PubMed

    Ali, Mohamed E M; Abd El-Aty, Azza M; Badawy, Mohamed I; Ali, Rizka K

    2018-04-30

    Pharmaceutical compounds are considered emerging environmental pollutants that have a potential harmful impact on environment and human health. In this study, the biomass of alga (Scenedesmus obliquus) was modified using alkaline solution, and used for the biosorption of tramadol (TRAM) and other pharmaceuticals. The adsorption kinetics and isotherms were investigated. The obtained results reveal high adsorption capacity of tramadol over modified algal biomass (MAB) after 45min with removal percentage of 91%. Pseudo-second order model was well fitted with the experimental data with correlation coefficient (0.999). Biosorption of tramadol on modified algal biomass proceeds with Freundlich isotherm model with correlation coefficient (0.942) that emphasized uptake of TRAM by MAB is driven by chemisorption. FTIR spectra of MAB before and after the adsorption were analyzed; some IR bands were detected with slight shift and low intensity suggesting their involving in adsorption. The tramadol biosorption by MAB is a chemical process as confirmed by Dubinin-Radushkevich. The adsorption of pharmaceutical over MAB is mainly preceded by hydrophilic interactions between amino and carbonyl groups in pharmaceutical molecules and hydroxyl and carbonyl functional groups on surface of biosorbent. It was emphasized by disappearance O-H and C-O from biomass IR spectra after adsorption. In matrix of pharmaceutical, the recorded adsorption capacities for CEFA, PARA, IBU, TRAM and CIP are 68, 58, 42, 42 and 39mg/g over MAB at natural pH and MAB dose of 0.5g/L. Furthermore, oxygen uptake by bacteria was applied for estimate the toxicity of pharmaceutical. The recorded result concluded the efficient reusability of modified algal biomass for biosorption of pharmaceuticals, as well only the adsorption efficiency decreased by 4.5% after three runs. Subsequently, the modified algal biomass is a promising reusable adsorbent for decontamination of wastewater from pharmaceuticals. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Characterisation of monoclonal antibodies specific for hamster leukocyte differentiation molecules.

    PubMed

    Rees, Jennifer; Haig, David; Mack, Victoria; Davis, William C

    2017-01-01

    Flow cytometry was used to identify mAbs that recognize conserved epitopes on hamster leukocyte differentiation molecules (hLDM) and also to characterize mAbs developed against hLDM. Initial screening of mAbs developed against LDMs in other species yielded mAbs specific for the major histocompatibility (MHC) II molecule, CD4 and CD18. Screening of sets of mAbs developed against hLDM yielded 22 new mAbs, including additional mAbs to MHC II molecules and mAbs that recognize LDMs expressed on all leukocytes, granulocytes, all lymphocytes, all T cells, a subset of T cells, or on all B cells. Based on comparison of the pattern of expression of LDMs expressed on all hamster leukocytes with the patterns of expression of known LDMs in other species, as detected by flow cytometry (FC), four mAbs are predicted to recognize CD11a, CD44, and CD45. Cross comparison of mAbs specific for a subset of hamster T cells with a cross reactive mAb known to recognize CD4 in mice and one recognising CD8 revealed they recognize CD4. The characterization of these mAbs expands opportunities to use hamsters as an additional model species to investigate the mechanisms of immunopathogenesis of infectious diseases. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Development of a mouse-feline chimeric antibody against feline tumor necrosis factor-alpha.

    PubMed

    Doki, Tomoyoshi; Takano, Tomomi; Hohdatsu, Tsutomu

    2016-10-01

    Feline infectious peritonitis (FIP) is a fatal inflammatory disease caused by FIP virus infection. Feline tumor necrosis factor (fTNF)-alpha is closely involved in the aggravation of FIP pathology. We previously described the preparation of neutralizing mouse anti-fTNF-alpha monoclonal antibody (mAb 2-4) and clarified its role in the clinical condition of cats with FIP using in vitro systems. However, administration of mouse mAb 2-4 to cat may lead to a production of feline anti-mouse antibodies. In the present study, we prepared a mouse-feline chimeric mAb (chimeric mAb 2-4) by fusing the variable region of mouse mAb 2-4 to the constant region of feline antibody. The chimeric mAb 2-4 was confirmed to have fTNF-alpha neutralization activity. Purified mouse mAb 2-4 and chimeric mAb 2-4 were repeatedly administered to cats, and the changes in the ability to induce feline anti-mouse antibody response were investigated. In the serum of cats treated with mouse mAb 2-4, feline anti-mouse antibody production was induced, and the fTNF-alpha neutralization effect of mouse mAb 2-4 was reduced. In contrast, in cats treated with chimeric mAb 2-4, the feline anti-mouse antibody response was decreased compared to that of mouse mAb 2-4-treated cats.

  17. A novel bicistronic gene design couples stable cell line selection with a fucose switch in a designer CHO host to produce native and afucosylated glycoform antibodies.

    PubMed

    Roy, Gargi; Martin, Tom; Barnes, Arnita; Wang, Jihong; Jimenez, Rod Brian; Rice, Megan; Li, Lina; Feng, Hui; Zhang, Shu; Chaerkady, Raghothama; Wu, Herren; Marelli, Marcello; Hatton, Diane; Zhu, Jie; Bowen, Michael A

    2018-04-01

    The conserved glycosylation site Asn 297 of a monoclonal antibody (mAb) can be decorated with a variety of sugars that can alter mAb pharmacokinetics and recruitment of effector proteins. Antibodies lacking the core fucose at Asn 297 (afucosylated mAbs) show enhanced antibody-dependent cell-mediated cytotoxicity (ADCC) and increased efficacy. Here, we describe the development of a robust platform for the manufacture of afucosylated therapeutic mAbs by engineering a Chinese hamster ovary (CHO) host cell line to co-express a mAb with GDP-6-deoxy-D-lyxo-4-hexulose reductase (RMD), a prokaryotic enzyme that deflects an intermediate in the de novo synthesis of fucose to a dead-end product, resulting in the production of afucosylated mAb (GlymaxX™ Technology, ProBioGen). Expression of the mAb and RMD genes was coordinated by co-transfection of separate mAb and RMD vectors or use of an internal ribosome entry site (IRES) element to link the translation of RMD with either the glutamine synthase selection marker or the mAb light chain. The GS-IRES-RMD vector format was more suitable for the rapid generation of high yielding cell lines, secreting afucosylated mAb with titers exceeding 6.0 g/L. These cell lines maintained production of afucosylated mAb over 60 generations, ensuring their suitability for use in large-scale manufacturing. The afucosylated mAbs purified from these RMD-engineered cell lines showed increased binding in a CD16 cellular assay, demonstrating enhancement of ADCC compared to fucosylated control mAb. Furthermore, the afucosylation in these mAbs could be controlled by simple addition of L-fucose in the culture medium, thereby allowing the use of a single cell line for production of the same mAb in fucosylated and afucosylated formats for multiple therapeutic indications.

  18. Fully Disposable Manufacturing Concepts for Clinical and Commercial Manufacturing and Ballroom Concepts.

    PubMed

    Boedeker, Berthold; Goldstein, Adam; Mahajan, Ekta

    2017-11-04

    The availability and use of pre-sterilized disposables has greatly changed the methods used in biopharmaceuticals development and production, particularly from mammalian cell culture. Nowadays, almost all process steps from cell expansion, fermentation, cell removal, and purification to formulation and storage of drug substances can be carried out in disposables, although there are still limitations with single-use technologies, particularly in the areas of pretesting and quality control of disposables, bag and connections standardization and qualification, extractables and leachables (E/L) validation, and dependency on individual vendors. The current status of single-use technologies is summarized for all process unit operations using a standard mAb process as an example. In addition, current pros and cons of using disposables are addressed in a comparative way, including quality control and E/L validation.The continuing progress in developing single-use technologies has an important impact on manufacturing facilities, resulting in much faster, less expensive and simpler plant design, start-up, and operation, because cell culture process steps are no longer performed in hard-piped unit operations. This leads to simpler operations in a lab-like environment. Overall it enriches the current landscape of available facilities from standard hard-piped to hard-piped/disposables hybrid to completely single-use-based production plants using the current segregation and containment concept. At the top, disposables in combination with completely and functionally closed systems facilitate a new, revolutionary design of ballroom facilities without or with much less segregation, which enables us to perform good manufacturing practice manufacturing of different products simultaneously in unclassified but controlled areas.Finally, single-use processing in lab-like shell facilities is a big enabler of transferring and establishing production in emergent countries, and this is described in more detail in 7. Graphical Abstract.

  19. The bubble method of water purification

    NASA Astrophysics Data System (ADS)

    Smirnov, B. M.; Babaeva, N. Yu.; Naidis, G. V.; Panov, V. A.; Saveliev, A. S.; Son, E. E.; Tereshonok, D. V.

    2018-02-01

    The processes of water purification from admixture molecules are analyzed. The purification rate is limited due to a low diffusion coefficient of the admixture molecules in water. At non-small concentrations of the admixture molecules, the water purication can proceed through association of molecules in condensed nanoparticles which fall on the bottom of the water volume. The rate of association may be increased in an external electric field, but in reality this cannot change significantly the rate of the purification process. The bubble method of water purification is considered, where air bubbles formed at the bottom of the water volume, transfer admixture molecules to the interface. This method allows one to clean small water volumes fast. This mechanism of water purification is realized experimentally and exhibits the promises of the bubble purification method.

  20. Therapeutic monoclonal antibodies and the need for targeted pharmacovigilance in India

    PubMed Central

    Kalaivani, M; Singh, Abhishank; Kalaiselvan, V

    2015-01-01

    A growing number of innovative mAb therapeutics are on the global market, and biosimilar versions have now also been approved, including in India. Although efficacy and safety is demonstrated prior to approval, targeted pharmacovigilance is essential for the identification and assessment of risk for any mAb products. We analyzed the ADR data related to mAbs reported to the NCC-PvPI through the spontaneous reporting system Vigiflow during April 2011 to February 2014 to identify mAbs with the highest number of ADR including fatal/serious ADR. Only 0.72% reports were related to mAbs. Although 15 mAbs are approved in the country, only 6 mAbs were reported through Vigiflow. Rituximab was highly reported, and no fatal/serious ADR related to any mAbs were reported during the study period. Our study shows that PvPI is effective and robust system in the detection and assessment of risks associated with the use of mAbs. PMID:25523367

  1. Rapid high-yield expression of full-size IgG antibodies in plants coinfected with noncompeting viral vectors

    PubMed Central

    Giritch, Anatoli; Marillonnet, Sylvestre; Engler, Carola; van Eldik, Gerben; Botterman, Johan; Klimyuk, Victor; Gleba, Yuri

    2006-01-01

    Plant viral vectors allow expression of heterologous proteins at high yields, but so far, they have been unable to express heterooligomeric proteins efficiently. We describe here a rapid and indefinitely scalable process for high-level expression of functional full-size mAbs of the IgG class in plants. The process relies on synchronous coinfection and coreplication of two viral vectors, each expressing a separate antibody chain. The two vectors are derived from two different plant viruses that were found to be noncompeting. Unlike vectors derived from the same virus, noncompeting vectors effectively coexpress the heavy and light chains in the same cell throughout the plant body, resulting in yields of up to 0.5 g of assembled mAbs per kg of fresh-leaf biomass. This technology allows production of gram quantities of mAbs for research purposes in just several days, and the same protocol can be used on an industrial scale in situations requiring rapid response, such as pandemic or terrorism events. PMID:16973752

  2. A Comprehensive Study of Neutralizing Antigenic Sites on the Hepatitis E Virus (HEV) Capsid by Constructing, Clustering, and Characterizing a Tool Box*

    PubMed Central

    Zhao, Min; Li, Xiao-Jing; Tang, Zi-Min; Yang, Fan; Wang, Si-Ling; Cai, Wei; Zhang, Ke; Xia, Ning-Shao; Zheng, Zi-Zheng

    2015-01-01

    The hepatitis E virus (HEV) ORF2 encodes a single structural capsid protein. The E2s domain (amino acids 459–606) of the capsid protein has been identified as the major immune target. All identified neutralizing epitopes are located on this domain; however, a comprehensive characterization of antigenic sites on the domain is lacking due to its high degree of conformation dependence. Here, we used the statistical software SPSS to analyze cELISA (competitive ELISA) data to classify monoclonal antibodies (mAbs), which recognized conformational epitopes on E2s domain. Using this novel analysis method, we identified various conformational mAbs that recognized the E2s domain. These mAbs were distributed into 6 independent groups, suggesting the presence of at least 6 epitopes. Twelve representative mAbs covering the six groups were selected as a tool box to further map functional antigenic sites on the E2s domain. By combining functional and location information of the 12 representative mAbs, this study provided a complete picture of potential neutralizing epitope regions and immune-dominant determinants on E2s domain. One epitope region is located on top of the E2s domain close to the monomer interface; the other is located on the monomer side of the E2s dimer around the groove zone. Besides, two non-neutralizing epitopes were also identified on E2s domain that did not stimulate neutralizing antibodies. Our results help further the understanding of protective mechanisms induced by the HEV vaccine. Furthermore, the tool box with 12 representative mAbs will be useful for studying the HEV infection process. PMID:26085097

  3. Diverse specificity and effector function among human antibodies to HIV-1 envelope glycoprotein epitopes exposed by CD4 binding

    DOE PAGES

    Guan, Yongjun; Pazgier, Marzena; Sajadi, Mohammad M.; ...

    2012-12-13

    The HIV-1 envelope glycoprotein (Env) undergoes conformational transitions consequent to CD4 binding and coreceptor engagement during viral entry. The physical steps in this process are becoming defined, but less is known about their significance as targets of antibodies potentially protective against HIV-1 infection. Here we probe the functional significance of transitional epitope exposure by characterizing 41 human mAbs specific for epitopes exposed on trimeric Env after CD4 engagement. These mAbs recognize three epitope clusters: cluster A, the gp120 face occluded by gp41 in trimeric Env; cluster B, a region proximal to the coreceptor-binding site (CoRBS) and involving the V1/V2 domain;more » and cluster C, the coreceptor-binding site. The mAbs were evaluated functionally by antibody-dependent, cell-mediated cytotoxicity (ADCC) and for neutralization of Tiers 1 and 2 pseudoviruses. All three clusters included mAbs mediating ADCC. However, there was a strong potency bias for cluster A, which harbors at least three potent ADCC epitopes whose cognate mAbs have electropositive paratopes. Cluster A epitopes are functional ADCC targets during viral entry in an assay format using virion-sensitized target cells. In contrast, only cluster C contained epitopes that were recognized by neutralizing mAbs. There was significant diversity in breadth and potency that correlated with epitope fine specificity. In contrast, ADCC potency had no relationship with neutralization potency or breadth for any epitope cluster. In conclusion, Fc-mediated effector function and neutralization coselect with specificity in anti-Env antibody responses, but the nature of selection is distinct for these two antiviral activities.« less

  4. Cost Effectiveness of Monoclonal Antibody Therapy for Rare Diseases: A Systematic Review.

    PubMed

    Park, Taehwan; Griggs, Scott K; Suh, Dong-Churl

    2015-08-01

    Monoclonal antibody (mAb)-based orphan drugs have led to advances in the treatment of diseases by selectively targeting molecule functions. However, their high treatment costs impose a substantial cost burden on patients and society. The study aimed to systematically review cost-effectiveness evidence of mAb orphan drugs. Ovid MEDLINE(®), EMBASE(®), and PsycINFO(®) were searched in June 2014 and articles were selected if they conducted economic evaluations of the mAb orphan drugs that had received marketing approval in the USA. The quality of the selected studies was assessed using the Quality of Health Economic Studies (QHES) instrument. We reviewed 16 articles that included 24 economic evaluations of nine mAb orphan drugs. Six of these nine drugs were included in cost-utility analysis studies, whereas three drugs were included in cost-effectiveness analysis studies. Previous cost-utility analysis studies revealed that four mAb orphan drugs (cetuximab, ipilimumab, rituximab, and trastuzumab) were found to be cost effective; one drug (bevacizumab) was not cost effective; and one drug (infliximab) was not consistent across the studies. Prior cost-effectiveness analysis studies which included three mAb orphan drugs (adalimumab, alemtuzumab, and basiliximab) showed that the incremental cost per effectiveness gained for these drugs ranged from $US4669 to $Can52,536 Canadian dollars. The quality of the included studies was good or fair with the exception of one study. Some mAb orphan drugs were reported as cost effective under the current decision-making processes. Use of these expensive drugs, however, can raise an equity issue which concerns fairness in access to treatment. The issue of equal access to drugs needs to be considered alongside other societal values in making the final health policy decisions.

  5. Pretargeted Molecular Imaging and Radioimmunotherapy

    PubMed Central

    Goldenberg, David M.; Chang, Chien-Hsing; Rossi, Edmund A.; J, William; McBride; Sharkey, Robert M.

    2012-01-01

    Pretargeting is a multi-step process that first has an unlabeled bispecific antibody (bsMAb) localize within a tumor by virtue of its anti-tumor binding site(s) before administering a small, fast-clearing radiolabeled compound that then attaches to the other portion of the bsMAb. The compound's rapid clearance significantly reduces radiation exposure outside of the tumor and its small size permits speedy delivery to the tumor, creating excellent tumor/nontumor ratios in less than 1 hour. Haptens that bind to an anti-hapten antibody, biotin that binds to streptavidin, or an oligonucleotide binding to a complementary oligonucleotide sequence have all been radiolabeled for use by pretargeting. This review will focus on a highly flexible anti-hapten bsMAb platform that has been used to target a variety of radionuclides to image (SPECT and PET) as well as treat tumors. PMID:22737190

  6. Performance of photocatalyst based carbon nanodots from waste frying oil in water purification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aji, Mahardika Prasetya, E-mail: mahardika190@gmail.com; Wiguna, Pradita Ajeng; Susanto,

    Carbon Nanodots (C-Dots) from waste frying oil could be used as a photocatalyst in water purification with solar light irradiation. Performance of C-Dots as a photocatalyst was tested in the process of water purification with a given synthetic sewage methylene blue. The tested was also conducted by comparing the performance C-Dots made from frying oil, waste fryng oil as a photocatalyst and solution of methylene blue without photocatalyst C-Dots. Performance of C-Dots from waste frying oil were estimated by the results of absorbance spectrum. The results of measurement absorbance spectrum from the process of water purification with photocatalyst C-Dots showedmore » that the highest intensity at a wavelength 664 nm of methylene blue decreased. The test results showed that the performance of photocatalyst C-Dots from waste frying oil was better in water purification. This estimated that number of particles C-dots is more in waste frying oil because have experieced repeated the heating process so that the higher particles concentration make the photocatalyst process more effective. The observation of the performance C-Dots from waste frying oil as a photocatalyst in the water purification processes become important invention for solving the problems of waste and water purification.« less

  7. Life‐cycle and cost of goods assessment of fed‐batch and perfusion‐based manufacturing processes for mAbs

    PubMed Central

    Bunnak, Phumthep; Allmendinger, Richard; Ramasamy, Sri V.; Lettieri, Paola

    2016-01-01

    Life‐cycle assessment (LCA) is an environmental assessment tool that quantifies the environmental impact associated with a product or a process (e.g., water consumption, energy requirements, and solid waste generation). While LCA is a standard approach in many commercial industries, its application has not been exploited widely in the bioprocessing sector. To contribute toward the design of more cost‐efficient, robust and environmentally‐friendly manufacturing process for monoclonal antibodies (mAbs), a framework consisting of an LCA and economic analysis combined with a sensitivity analysis of manufacturing process parameters and a production scale‐up study is presented. The efficiency of the framework is demonstrated using a comparative study of the two most commonly used upstream configurations for mAb manufacture, namely fed‐batch (FB) and perfusion‐based processes. Results obtained by the framework are presented using a range of visualization tools, and indicate that a standard perfusion process (with a pooling duration of 4 days) has similar cost of goods than a FB process but a larger environmental footprint because it consumed 35% more water, demanded 17% more energy, and emitted 17% more CO2 than the FB process. Water consumption was the most important impact category, especially when scaling‐up the processes, as energy was required to produce process water and water‐for‐injection, while CO2 was emitted from energy generation. The sensitivity analysis revealed that the perfusion process can be made more environmentally‐friendly than the FB process if the pooling duration is extended to 8 days. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1324–1335, 2016 PMID:27390260

  8. Life-cycle and cost of goods assessment of fed-batch and perfusion-based manufacturing processes for mAbs.

    PubMed

    Bunnak, Phumthep; Allmendinger, Richard; Ramasamy, Sri V; Lettieri, Paola; Titchener-Hooker, Nigel J

    2016-09-01

    Life-cycle assessment (LCA) is an environmental assessment tool that quantifies the environmental impact associated with a product or a process (e.g., water consumption, energy requirements, and solid waste generation). While LCA is a standard approach in many commercial industries, its application has not been exploited widely in the bioprocessing sector. To contribute toward the design of more cost-efficient, robust and environmentally-friendly manufacturing process for monoclonal antibodies (mAbs), a framework consisting of an LCA and economic analysis combined with a sensitivity analysis of manufacturing process parameters and a production scale-up study is presented. The efficiency of the framework is demonstrated using a comparative study of the two most commonly used upstream configurations for mAb manufacture, namely fed-batch (FB) and perfusion-based processes. Results obtained by the framework are presented using a range of visualization tools, and indicate that a standard perfusion process (with a pooling duration of 4 days) has similar cost of goods than a FB process but a larger environmental footprint because it consumed 35% more water, demanded 17% more energy, and emitted 17% more CO 2 than the FB process. Water consumption was the most important impact category, especially when scaling-up the processes, as energy was required to produce process water and water-for-injection, while CO 2 was emitted from energy generation. The sensitivity analysis revealed that the perfusion process can be made more environmentally-friendly than the FB process if the pooling duration is extended to 8 days. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1324-1335, 2016. © 2016 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers.

  9. Ecological Functioning in Two Mid-Atlantic Bight Submarine Canyons: Macrofauna Community Trends and the Role of Canyon Specific Processes

    NASA Astrophysics Data System (ADS)

    Robertson, C.; Bourque, J. R.; Davies, A. J.; Duineveld, G.; Mienis, F.; Brooke, S.; Ross, S. W.; Demopoulos, A. W.

    2016-02-01

    Submarine canyons are complex systems, acting as major conduits of organic matter along continental shelves and promoting gradients in food resources, turbidity flows, habitat heterogeneity, and areas of sediment resuspension and deposition. In the western North Atlantic, a large multidisciplinary program was conducted in two major Mid-Atlantic Bight (MAB) canyons (Baltimore and Norfolk canyons). This Atlantic Deepwater Canyons project was funded by BOEM, NOAA, and USGS. Here we investigate the `canyon effect' on benthic ecosystem ecology and functioning of two canyon systems by defining canyon specific processes influencing MAB shelf benthic community trends. Sediment cores were collected in 2012 and 2013 with a NIOZ box corer along the main axes ( 180-1200m) of Baltimore and Norfolk Canyon and at comparable depths on the adjacent continental slope. Whole community macrofaunal (>300 μm) abundance and biomass data provided insight into community trends across depth and biogeochemical gradients by coupling diversity metrics and biological trait analyses with sediment biogeochemistry and hydrodynamic data. The canyons exhibited clear differences in sediment profiles, hydrodynamic regimes and enrichment depocenters as well as significantly distinct infauna communities. Interestingly, both canyons showed bimodal distributions in abundances and diversity of infauna and a shallowing of species maxima which was not present on adjacent slopes. We hypothesize that physical canyon processes are important regulators in the depth of observed species maxima and community functioning on the MAB shelf, on local and regional scales. Unique sediment dynamics, organic enrichment, and hydrographic conditions were significant factors in structuring benthic community differences in MAB canyons The study provides a complete benthic infaunal appraisal of two canyon systems in the western Atlantic, incorporating biogeochemistry and oceanography to increase our understanding of canyon ecosystem ecology and provide baseline information on canyon functioning.

  10. Recognition of similar epitopes on varicella-zoster virus gpI and gpIV by monoclonal antibodies.

    PubMed Central

    Vafai, A; Wroblewska, Z; Mahalingam, R; Cabirac, G; Wellish, M; Cisco, M; Gilden, D

    1988-01-01

    Two monoclonal antibodies, MAb43.2 and MAb79.0, prepared against varicella-zoster virus (VZV) proteins were selected to analyze VZV gpIV and gpI, respectively. MAb43.2 reacted only with cytoplasmic antigens, whereas MAb79.0 recognized both cytoplasmic and membrane antigens in VZV-infected cells. Immunoprecipitation of in vitro translation products with MAb43.2 revealed only proteins encoded by the gpIV gene, whereas MAb79.0 precipitated proteins encoded by the gpIV and gpI genes. Pulse-chase analysis followed by immunoprecipitation of VZV-infected cells indicated reactivity of MAb43.2 with three phosphorylated precursor species of gpIV and reactivity of MAb79.0 with the precursor and mature forms of gpI and gpIV. These results indicated that (i) MAb43.2 and MAb79.0 recognize different epitopes on VZV gpIV, (ii) glycosylation of gpIV ablates recognition by MAb43.2, and (iii) gpIV is phosphorylated. To map the binding site of MAb79.0 on gpI, the pGEM transcription vector, containing the coding region of the gpI gene, was linearized, and three truncated gpI DNA fragments were generated. RNA was transcribed from each truncated fragment by using SP6 RNA polymerase, translated in vitro in a rabbit reticulocyte lysate, and immunoprecipitated with MAb79.0 and human sera. The results revealed the existence of an antibody-binding site within 14 amino acid residues located between residues 109 to 123 on the predicted amino acid sequences of gpI. From the predicted amino acid sequences, 14 residues on gpI (residues 107 to 121) displayed a degree of similarity (36%) to two regions (residues 55 to 69 and 245 to 259) of gp IV. Such similarities may account for the binding of MAb79.0 to both VZV gpI and gpIV. Images PMID:2455814

  11. Smad1/5/8 are myogenic regulators of murine and human mesoangioblasts

    PubMed Central

    Costamagna, Domiziana; Quattrocelli, Mattia; van Tienen, Florence; Umans, Lieve; de Coo, Irineus F. M.; Zwijsen, An; Huylebroeck, Danny; Sampaolesi, Maurilio

    2016-01-01

    Mesoangioblasts (MABs) are vessel-associated stem cells that express pericyte marker genes and participate in skeletal muscle regeneration. Molecular circuits that regulate the myogenic commitment of MABs are still poorly characterized. The critical role of bone morphogenetic protein (BMP) signalling during proliferation and differentiation of adult myogenic precursors, such as satellite cells, has recently been established. We evaluated whether BMP signalling impacts on the myogenic potential of embryonic and adult MABs both in vitro and in vivo. Addition of BMP inhibited MAB myogenic differentiation, whereas interference with the interactions between BMPs and receptor complexes induced differentiation. Similarly, siRNA-mediated knockdown of Smad8 in Smad1/5-null MABs or inhibition of SMAD1/5/8 phosphorylation with Dorsomorphin (DM) also improved myogenic differentiation, demonstrating a novel role of SMAD8. Moreover, using a transgenic mouse model of Smad8 deletion, we demonstrated that the absence of SMAD8 protein improved MAB myogenic differentiation. Furthermore, once injected into α-Sarcoglycan (Sgca)-null muscles, DM-treated MABs were more efficacious to restore α-sarcoglycan (αSG) protein levels and re-establish functional muscle properties. Similarly, in acute muscle damage, DM-treated MABs displayed a better myogenic potential compared with BMP-treated and untreated cells. Finally, SMADs also control the myogenic commitment of human MABs (hMABs). BMP signalling antagonists are therefore novel candidates to improve the therapeutic effects of hMABs. PMID:26450990

  12. The state-of-play and future of antibody therapeutics.

    PubMed

    Elgundi, Zehra; Reslan, Mouhamad; Cruz, Esteban; Sifniotis, Vicki; Kayser, Veysel

    2017-12-01

    It has been over four decades since the development of monoclonal antibodies (mAbs) using a hybridoma cell line was first reported. Since then more than thirty therapeutic antibodies have been marketed, mostly as oncology, autoimmune and inflammatory therapeutics. While antibodies are very efficient, their cost-effectiveness has always been discussed owing to their high costs, accumulating to more than one billion dollars from preclinical development through to market approval. Because of this, therapeutic antibodies are inaccessible to some patients in both developed and developing countries. The growing interest in biosimilar antibodies as affordable versions of therapeutic antibodies may provide alternative treatment options as well potentially decreasing costs. As certain markets begin to capitalize on this opportunity, regulatory authorities continue to refine the requirements for demonstrating quality, efficacy and safety of biosimilar compared to originator products. In addition to biosimilars, innovations in antibody engineering are providing the opportunity to design biobetter antibodies with improved properties to maximize efficacy. Enhancing effector function, antibody drug conjugates (ADC) or targeting multiple disease pathways via multi-specific antibodies are being explored. The manufacturing process of antibodies is also moving forward with advancements relating to host cell production and purification processes. Studies into the physical and chemical degradation pathways of antibodies are contributing to the design of more stable proteins guided by computational tools. Moreover, the delivery and pharmacokinetics of antibody-based therapeutics are improving as optimized formulations are pursued through the implementation of recent innovations in the field. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Mab's orbital motion explained

    NASA Astrophysics Data System (ADS)

    Kumar, K.; de Pater, I.; Showalter, M. R.

    2015-07-01

    We explored the hypothesis that Mab's anomalous orbital motion, as deduced from Hubble Space Telescope (HST) data (Showalter, M.R., Lissauer, J.J. [2006]. Science (New York, NY) 311, 973-977), is the result of gravitational interactions with a putative suite of large bodies in the μ-ring. We conducted simulations to compute the gravitational effect of Mab (a recently discovered Uranian moon) on a cloud of test particles. Subsequently, by employing the data extracted from the test particle simulations, we executed random walk simulations to compute the back-reaction of nearby perturbers on Mab. By generating simulated observation metrics, we compared our results to the data retrieved from the HST. Our results indicate that the longitude residual change noted in the HST data (Δλr,Mab ≈ 1 deg) is well matched by our simulations. The eccentricity variations (ΔeMab ≈10-3) are however typically two orders of magnitude too small. We present a variety of reasons that could account for this discrepancy. The nominal scenario that we investigated assumes a perturber ring mass (mring) of 1 mMab (Mab's mass) and a perturber ring number density (ρn,ring) of 10 perturbers per 3 RHill,Mab (Mab's Hill radius). This effectively translates to a few tens of perturbers with radii of approximately 2-3 km, depending on the albedo assumed. The results obtained also include an interesting litmus test: variations of Mab's inclination on the order of the eccentricity changes should be observable. Our work provides clues for further investigation into the tantalizing prospect that the Mab/μ-ring system is undergoing re-accretion after a recent catastrophic disruption.

  14. Combination of two anti-CD5 monoclonal antibodies synergistically induces complement-dependent cytotoxicity of chronic lymphocytic leukaemia cells.

    PubMed

    Klitgaard, Josephine L; Koefoed, Klaus; Geisler, Christian; Gadeberg, Ole V; Frank, David A; Petersen, Jørgen; Jurlander, Jesper; Pedersen, Mikkel W

    2013-10-01

    The treatment of chronic lymphocytic leukaemia (CLL) has been improved by introduction of monoclonal antibodies (mAbs) that exert their effect through secondary effector mechanisms. CLL cells are characterized by expression of CD5 and CD23 along with CD19 and CD20, hence anti-CD5 Abs that engage secondary effector functions represent an attractive opportunity for CLL treatment. Here, a repertoire of mAbs against human CD5 was generated and tested for ability to induce complement-dependent cytotoxicity (CDC) and antibody-dependent cell-mediated cytotoxicity (ADCC) both as single mAbs and combinations of two mAbs against non-overlapping epitopes on human CD5. The results demonstrated that combinations of two mAbs significantly increased the level of CDC compared to the single mAbs, while no enhancement of ADCC was seen with anti-CD5 mAb combinations. High levels of CDC and ADCC correlated with low levels of Ab-induced CD5 internalization and degradation. Importantly, an anti-CD5 mAb combination enhanced CDC of CLL cells when combined with the anti-CD20 mAbs rituximab and ofatumumab as well as with the anti-CD52 mAb alemtuzumab. These results suggest that an anti-CD5 mAb combination inducing CDC and ADCC may be effective alone, in combination with mAbs against other targets or combined with chemotherapy for CLL and other CD5-expressing haematological or lymphoid malignancies. © 2013 John Wiley & Sons Ltd.

  15. LpMab-23-recognizing cancer-type podoplanin is a novel predictor for a poor prognosis of early stage tongue cancer.

    PubMed

    Miyazaki, Akihiro; Nakai, Hiromi; Sonoda, Tomoko; Hirohashi, Yoshihiko; Kaneko, Mika K; Kato, Yukinari; Sawa, Yoshihiko; Hiratsuka, Hiroyoshi

    2018-04-20

    We report that the reactivity of a novel monoclonal antibody LpMab-23 for human cancer-type podoplanin (PDPN) is a predictor for a poor prognosis of tongue cancer. The association between LpMab-23-recognizing cancer-type PDPN expression and clinical/pathological features were analyzed on 60 patients with stage I and II tongue cancer treated with transoral resection of the primary tumor. In the mode of invasion, the LpMab-23-dull/negative cases were significantly larger in cases with low-grade malignancies and without late cervical lymph node metastasis, than in cases with high-grade malignancies and the metastasis. In the high-grade malignant cases, LpMab-23-positive cases were significantly larger than LpMab-23-dull/negative cases. The Kaplan-Meier curves of the five-year metastasis-free survival rate (MFS) were significantly lower in the LpMab-23 positive patients than in LpMab-23 dull/negative patients. The LpMab-23-dull/negative cases showed the highest MFS in all of the clinical/pathological features and particularly, the MFS of the LpMab-23 positive cases decreased to less than 60% in the first year. In the Cox proportional hazard regression models a comparison of the numbers of LpMab-23 dull/negative with positive cases showed the highest hazard ratio with statistical significance in all of the clinical/pathological features. LpMab-23 positive cases may be considered to present a useful predictor of poor prognosis for early stage tongue cancer.

  16. [Alcohol-purification technology and its particle sedimentation process in manufactory of Fufang Kushen injection].

    PubMed

    Liu, Xiaoqian; Tong, Yan; Wang, Jinyu; Wang, Ruizhen; Zhang, Yanxia; Wang, Zhimin

    2011-11-01

    Fufang Kushen injection was selected as the model drug, to optimize its alcohol-purification process and understand the characteristics of particle sedimentation process, and to investigate the feasibility of using process analytical technology (PAT) on traditional Chinese medicine (TCM) manufacturing. Total alkaloids (calculated by matrine, oxymatrine, sophoridine and oxysophoridine) and macrozamin were selected as quality evaluation markers to optimize the process of Fufang Kushen injection purification with alcohol. Process parameters of particulate formed in the alcohol-purification, such as the number, density and sedimentation velocity, were also determined to define the sedimentation time and well understand the process. The purification process was optimized as that alcohol is added to the concentrated extract solution (drug material) to certain concentration for 2 times and deposited the alcohol-solution containing drug-material to sediment for some time, i.e. 60% alcohol deposited for 36 hours, filter and then 80% -90% alcohol deposited for 6 hours in turn. The content of total alkaloids was decreased a little during the depositing process. The average settling time of particles with the diameters of 10, 25 microm were 157.7, 25.2 h in the first alcohol-purified process, and 84.2, 13.5 h in the second alcohol-purified process, respectively. The optimized alcohol-purification process remains the marker compositions better and compared with the initial process, it's time saving and much economy. The manufacturing quality of TCM-injection can be controlled by process. PAT pattern must be designed under the well understanding of process of TCM production.

  17. Evaluation of a non-Arrhenius model for therapeutic monoclonal antibody aggregation.

    PubMed

    Kayser, Veysel; Chennamsetty, Naresh; Voynov, Vladimir; Helk, Bernhard; Forrer, Kurt; Trout, Bernhardt L

    2011-07-01

    Understanding antibody aggregation is of great significance for the pharmaceutical industry. We studied the aggregation of five different therapeutic monoclonal antibodies (mAbs) with size-exclusion chromatography-high-performance liquid chromatography (SEC-HPLC), fluorescence spectroscopy, electron microscopy, and light scattering methods at various temperatures with the aim of gaining insight into the aggregation process and developing models of it. In particular, we find that the kinetics can be described by a second-order model and are non-Arrhenius. Thus, we develop a non-Arrhenius model to connect accelerated aggregation experiments at high temperature to long-term storage experiments at low temperature. We evaluate our model by predicting mAb aggregation and comparing it with long-term behavior. Our results suggest that the number of monomers and mAb conformations within aggregates vary with the size and age of the aggregates, and that only certain sizes of aggregates are populated in the solution. We also propose a kinetic model based on conformational changes of proteins and monomer peak loss kinetics from SEC-HPLC. This model could be employed for a detail analysis of mAb aggregation kinetics. Copyright © 2011 Wiley-Liss, Inc. and the American Pharmacists Association

  18. The city model as a tool for participatory urban planning - a case study: The Bilotti open air museum of Cosenza

    NASA Astrophysics Data System (ADS)

    Artese, S.

    2014-05-01

    The paper describes the implementation of the 3D city model of the pedestrian area of Cosenza, which in recent years has become the Bilotti Open Air Museum (MAB). For this purpose were used both the data available (regional technical map, city maps, orthophotos) and acquired through several surveys of buildings and "Corso Mazzini" street (photos, topographic measurements, laser scanner point clouds). In addition to the urban scale model, the survey of the statues of the MAB was carried out. By means of data processing, the models of the same statues have been created, that can be used as objects within the city model. The 3D model of the MAB open air museum has been used to implement a Web-GIS allowing the citizen's participation, understanding and suggestions. The 3D city model is intended as a new tool for urban planning, therefore it has been used both for representing the current situation of the MAB and for design purposes, by acknowledging suggestions regarding a possible different location of the statues and a new way to enjoy the museum.

  19. Reversible cluster formation in concentrated monoclonal antibody solutions

    NASA Astrophysics Data System (ADS)

    Godfrin, P. Douglas; Porcar, Lionel; Falus, Peter; Zarraga, Isidro; Wagner, Norm; Liu, Yun

    2015-03-01

    Protein cluster formation in solution is of fundamental interest for both academic research and industrial applications. Recently, industrial scientists are also exploring the effect of reversible cluster formation on biopharmaceutical processing and delivery. However, despite of its importance, the understanding of protein clusters at concentrated solutions remains scientifically very challenging. Using the neutron spin echo technique to study the short time dynamics of proteins in solutions, we have recently systematically studied cluster formation in a few monoclonal antibody (mAb) solutions and their relation with solution viscosity. We show that the existence of anisotropic attraction can cause the formation of finite sized clusters, which increases the solution viscosity. Interestingly, once clusters form at relatively low concentrations, the average size of clusters in solutions remains almost constant over a wide range of concentrations similar to that of micelle formation. For a different mAb we have also investigated, the attraction is mostly induced by hydrophobic patches. As a result, these mAbs form large clusters with loosely linked proteins. In both cases, the formation of clusters all increases the solution viscosity substantially. However, due to different physics origins of cluster formation, solutions viscosities for these two different types of mAbs need to be controlled by different ways.

  20. Transmembrane protein MIG-13 links the Wnt signaling and Hox genes to the cell polarity in neuronal migration

    PubMed Central

    Wang, Xiangming; Zhou, Fanli; Lv, Sijing; Yi, Peishan; Zhu, Zhiwen; Yang, Yihong; Feng, Guoxin; Li, Wei; Ou, Guangshuo

    2013-01-01

    Directional cell migration is a fundamental process in neural development. In Caenorhabditis elegans, Q neuroblasts on the left (QL) and right (QR) sides of the animal generate cells that migrate in opposite directions along the anteroposterior body axis. The homeobox (Hox) gene lin-39 promotes the anterior migration of QR descendants (QR.x), whereas the canonical Wnt signaling pathway activates another Hox gene, mab-5, to ensure the QL descendants’ (QL.x) posterior migration. However, the regulatory targets of LIN-39 and MAB-5 remain elusive. Here, we showed that MIG-13, an evolutionarily conserved transmembrane protein, cell-autonomously regulates the asymmetric distribution of the actin cytoskeleton in the leading migratory edge. We identified mig-13 as a cellular target of LIN-39 and MAB-5. LIN-39 establishes QR.x anterior polarity by binding to the mig-13 promoter and promoting mig-13 expression, whereas MAB-5 inhibits QL.x anterior polarity by associating with the lin-39 promoter and downregulating lin-39 and mig-13 expression. Thus, MIG-13 links the Wnt signaling and Hox genes that guide migrations, to the actin cytoskeleton, which executes the motility response in neuronal migration. PMID:23784779

  1. Ebola GP-specific monoclonal antibodies protect mice and guinea pigs from lethal Ebola virus infection.

    PubMed

    Qiu, Xiangguo; Fernando, Lisa; Melito, P Leno; Audet, Jonathan; Feldmann, Heinz; Kobinger, Gary; Alimonti, Judie B; Jones, Steven M

    2012-01-01

    Ebola virus (EBOV) causes acute hemorrhagic fever in humans and non-human primates with mortality rates up to 90%. So far there are no effective treatments available. This study evaluates the protective efficacy of 8 monoclonal antibodies (MAbs) against Ebola glycoprotein in mice and guinea pigs. Immunocompetent mice or guinea pigs were given MAbs i.p. in various doses individually or as pools of 3-4 MAbs to test their protection against a lethal challenge with mouse- or guinea pig-adapted EBOV. Each of the 8 MAbs (100 µg) protected mice from a lethal EBOV challenge when administered 1 day before or after challenge. Seven MAbs were effective 2 days post-infection (dpi), with 1 MAb demonstrating partial protection 3 dpi. In the guinea pigs each MAb showed partial protection at 1 dpi, however the mean time to death was significantly prolonged compared to the control group. Moreover, treatment with pools of 3-4 MAbs completely protected the majority of animals, while administration at 2-3 dpi achieved 50-100% protection. This data suggests that the MAbs generated are capable of protecting both animal species against lethal Ebola virus challenge. These results indicate that MAbs particularly when used as an oligoclonal set are a potential therapeutic for post-exposure treatment of EBOV infection.

  2. Enhancing antibody patent protection using epitope mapping information

    PubMed Central

    Deng, Xiaoxiang; Storz, Ulrich; Doranz, Benjamin J.

    2018-01-01

    ABSTRACT As the $100B therapeutic monoclonal antibody (mAb) market continues to grow, developers of therapeutic mAbs increasingly face the need to strengthen patent protection of their products and enforce their patents in courts. In view of changes in the patent law landscape, patent applications are strategically using information on the precise binding sites of their mAbs, i.e., the epitopes, to support patent novelty, non-obviousness, subject matter, and a tightened written description requirement for broad genus antibody claims. Epitope data can also allow freedom-to-operate for second-generation mAbs by differentiation from patented first-generation mAbs. Numerous high profile court cases, including Amgen v. Sanofi over rival mAbs that block PCSK9 activity, have been centered on epitope mapping claims, highlighting the importance of epitopes in determining broad mAb patent rights. Based on these cases, epitope mapping claims must describe a sufficiently large number of mAbs that share an epitope, and each epitope must be described at amino acid resolution. Here, we review current best practices for the use of epitope information to overcome the increasing challenges of patenting mAbs, and how the quality, conformation, and resolution of epitope residue data can influence the breadth and strength of mAb patents. PMID:29120697

  3. Effects of Drying Process on an IgG1 Monoclonal Antibody Using Solid-State Hydrogen Deuterium Exchange with Mass Spectrometric Analysis (ssHDX-MS).

    PubMed

    Moussa, Ehab M; Wilson, Nathan E; Zhou, Qi Tony; Singh, Satish K; Nema, Sandeep; Topp, Elizabeth M

    2018-01-03

    Lyophilization and spray drying are widely used to manufacture solid forms of therapeutic proteins. Lyophilization is used to stabilize proteins vulnerable to degradation in solution, whereas spray drying is mainly used to prepare inhalation powders or as an alternative to freezing for storing bulk drug substance. Both processes impose stresses that may adversely affect protein structure, stability and bioactivity. Here, we compared lyophilization with and without controlled ice nucleation, and spray drying for their effects on the solid-state conformation and matrix interactions of a model IgG1 monoclonal antibody (mAb). Solid-state conformation and matrix interactions of the mAb were probed using solid-state hydrogen-deuterium exchange with mass spectrometric analysis (ssHDX-MS), and solid-state Fourier transform infrared (ssFTIR) and solid-state fluorescence spectroscopies. mAb conformation and/or matrix interactions were most perturbed in mannitol-containing samples and the distribution of states was more heterogeneous in sucrose and trehalose samples that were spray dried. The findings demonstrate the sensitivity of ssHDX-MS to changes weakly indicated by spectroscopic methods, and support the broader use of ssHDX-MS to probe formulation and process effects on proteins in solid samples.

  4. MAb 806 Enhances the Efficacy of Ionizing Radiation in Glioma Xenografts Expressing the de2-7 Epidermal Growth Factor Receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johns, Terrance G.; McKay, Michael J.; Cvrljevic, Anna N.

    2010-10-01

    Purpose: Mutations of the epidermal growth factor receptor (EGFR) are common in glioma. The most frequent mutation, de2-7 EGFR/EGFRvIII, occurs in approximately 40% of high-grade gliomas and confers resistance to ionizing radiation (IR). We have previously shown that mAb 806, a novel EGFR-specific antibody, is able to inhibit the growth of U87MG.{Delta}2-7 glioma xenografts expressing the de2-7 EGFR and may have potential as a therapeutic. Methods and Materials: Nude mice bearing U87MG.{Delta}2-7 xenografts were treated with mAb 806 and/or IR. Comparison of tumor volumes, the effect of treatment on angiogenesis as determined by mean vessel density, and expression changes inmore » prosurvival protein pAkt between treatment groups were undertaken. Results: Treatment of mice bearing U87MG.{Delta}2-7 xenografts with mAb 806 and IR resulted in schedule-dependent radiosensitization. Maximal benefit was obtained when antibody treatment was given before irradiation, with the greatest inhibition of both tumor angiogenesis and tumor growth. Combination treatment mediated radiosensitization by selectively blocking the phosphorylation of the prosurvival protein Akt at serine 473, a process that is independent of DNA-dependent protein kinase catalytic subunit. Conclusions: Our results provide a rationale for the use of mAb 806 in combination with IR for the treatment of glioma and potentially other solid tumors bearing the de2-7 EGFR.« less

  5. Antibody-induced albuminuria and accelerated focal glomerulosclerosis in the Thy-1.1 transgenic mouse.

    PubMed

    Assmann, Karel J M; van Son, Jacco P H F; Dïjkman, Henry B P M; Mentzel, Stef; Wetzels, Jack F M

    2002-07-01

    Podocytes play an important role in the development of proteinuria and focal glomerulosclerosis. Previously we have demonstrated that a combination of two monoclonal antibodies (mAb) against aminopeptidase A (APA), an enzyme present on podocytes, induces a massive acute albuminuria in mice. The present study examined the relationship between the acute antibody-induced albuminuria and the development of focal glomerulosclerosis in the Thy-1.1 transgenic mouse. This mouse expresses a hybrid human-mouse Thy-1.1 antigen on the podocytes, and slowly but spontaneously develops albuminuria and focal glomerulosclerosis. Five-week-old non-albuminuric Thy-1.1 transgenic and non-transgenic control mice were injected with anti-APA and anti-Thy-1.1 mAb or saline. Albuminuria was measured at days 1, 7, 14 and 21. At day 21 kidneys were processed for light microscopy, immunofluorescence, and electron microscopy. Injection of anti-APA and anti-Thy1.1 mAb in Thy-1.1 transgenic mice induced an albuminuria at day 1 that persisted at day 21. The acute albuminuria after injection of anti-APA mAb was more prominent but transient in non-transgenic mice. In non-trangenic mice no albuminuria could be induced with anti-Thy 1.1 mAb. Light microscopy revealed normal glomeruli at day 1 in all transgenic mice, however, at day 21 advanced glomerulosclerotic lesions were seen in mice injected with either anti-APA mAb (37+/-19% of glomeruli affected) or anti-Thy-1.1 mAb (71+/-5%). Non-transgenic mice did not reveal sclerotic lesions at any time investigated. In the transgenic mice the percentage of focal glomerulosclerosis at day 21 did not correlate with albuminuria at day 21. However, we found a highly significant correlation between percentage of focal glomerulosclerosis and the time-averaged albuminuria over the three-week study period (P < 0.001). Injection of a combination of anti-APA or anti-Thy-1.1 mAb into one mo old, non-albuminuric Thy-1.1 transgenic mice induces an acute albuminuria at day 1 that is accompanied by an accelerated focal glomerulosclerosis at day 21. We suggest that the Thy-1.1 transgenic mouse is an excellent model to study specifically the relation between podocytic injury, albuminuria and the development of focal glomerulosclerosis.

  6. Overcoming Antigenic Diversity by Enhancing the Immunogenicity of Conserved Epitopes on the Malaria Vaccine Candidate Apical Membrane Antigen-1

    PubMed Central

    Dutta, Sheetij; Dlugosz, Lisa S.; Drew, Damien R.; Ge, Xiopeng; Ababacar, Diouf; Rovira, Yazmin I.; Moch, J. Kathleen; Shi, Meng; Long, Carole A.; Foley, Michael; Beeson, James G.; Anders, Robin F.; Miura, Kazutoyo; Haynes, J. David; Batchelor, Adrian H.

    2013-01-01

    Malaria vaccine candidate Apical Membrane Antigen-1 (AMA1) induces protection, but only against parasite strains that are closely related to the vaccine. Overcoming the AMA1 diversity problem will require an understanding of the structural basis of cross-strain invasion inhibition. A vaccine containing four diverse allelic proteins 3D7, FVO, HB3 and W2mef (AMA1 Quadvax or QV) elicited polyclonal rabbit antibodies that similarly inhibited the invasion of four vaccine and 22 non-vaccine strains of P. falciparum. Comparing polyclonal anti-QV with antibodies against a strain-specific, monovalent, 3D7 AMA1 vaccine revealed that QV induced higher levels of broadly inhibitory antibodies which were associated with increased conserved face and domain-3 responses and reduced domain-2 response. Inhibitory monoclonal antibodies (mAb) raised against the QV reacted with a novel cross-reactive epitope at the rim of the hydrophobic trough on domain-1; this epitope mapped to the conserved face of AMA1 and it encompassed the 1e-loop. MAbs binding to the 1e-loop region (1B10, 4E8 and 4E11) were ∼10-fold more potent than previously characterized AMA1-inhibitory mAbs and a mode of action of these 1e-loop mAbs was the inhibition of AMA1 binding to its ligand RON2. Unlike the epitope of a previously characterized 3D7-specific mAb, 1F9, the 1e-loop inhibitory epitope was partially conserved across strains. Another novel mAb, 1E10, which bound to domain-3, was broadly inhibitory and it blocked the proteolytic processing of AMA1. By itself mAb 1E10 was weakly inhibitory but it synergized with a previously characterized, strain-transcending mAb, 4G2, which binds close to the hydrophobic trough on the conserved face and inhibits RON2 binding to AMA1. Novel inhibition susceptible regions and epitopes, identified here, can form the basis for improving the antigenic breadth and inhibitory response of AMA1 vaccines. Vaccination with a few diverse antigenic proteins could provide universal coverage by redirecting the immune response towards conserved epitopes. PMID:24385910

  7. Quantification of loosely associated and tightly associated bacteria on broiler carcass skin using swabbing, stomaching, and grinding methods.

    PubMed

    Singh, P; Lee, H C; Chin, K B; Ha, S D; Kang, I

    2015-12-01

    This research was conducted to quantify bacterial populations after swabbing or stomaching, followed by grinding the swabbed or stomached broiler skins. For each of 3 replications, 3 eviscerated broilers were randomly taken from a processing line in a local broiler processing plant. Ten swabs and 10 stomachs per bird were conducted on the left- and the right-side skins (10×7 cm), respectively, which were then finally ground. Results indicated that mesophilic aerobic bacteria (MAB) in the first swabbed sample were significantly lower than those in the first stomached sample (P<0.05), with no difference seen for the remaining sampling times (P>0.05). During 10 swabbings followed by final grinding, 8, 9, and 83% of MAB were detected after the first swabbing, after the second through 10th swabbings, and after final grinding of the skin, respectively. During 10 stomachings followed by the final grinding, 17, 18, and 65% of MAB were detected after the first stomaching, after the second through 10th stomachings, and after final grinding of the skin, respectively. Escherichia coli (E. coli) and coliforms were significantly higher in the first stomaching than those in the first swabbing (P<0.05), with no difference seen between the 2 sampling methods for the rest sampling times (P>0.05). Populations of E. coli and coliforms decreased step-wisely from the highest after grinding to the intermediate after first and second sampling, and to the least after 10th sampling (P<0.05), regardless of swabbing or grinding. In this study, less than 35% of MAB seemed loosely associated in the skin of eviscerated broiler, whereas more than 65% of MAB looked tightly associated, which were not recovered by stomaching or swabbing even 10 times but were recovered by grinding the skin. © 2015 Poultry Science Association Inc.

  8. Expression of the homeotic gene mab-5 during Caenorhabditis elegans embryogenesis.

    PubMed

    Cowing, D W; Kenyon, C

    1992-10-01

    mab-5 is a member of a complex of homeobox-containing genes evolutionarily related to the Antennapedia and bithorax complexes of Drosophila melanogaster. Like the homeotic genes in Drosophila, mab-5 is required in a particular region along the anterior-posterior body axis, and acts during postembryonic development to give cells in this region their characteristic identities. We have used a mab-5-lacZ fusion integrated into the C. elegans genome to study the posterior-specific expression of mab-5 during embryogenesis. The mab-5-lacZ fusion was expressed in the posterior of the embryo by 180 minutes after the first cleavage, indicating that the mechanisms responsible for the position-specific expression of mab-5-lacZ act at a relatively early stage of embryogenesis. In embryos homozygous for mutations in the par genes, which disrupt segregation of factors during early cleavages, expression of mab-5-lacZ was no longer localized to the posterior. This suggests that posterior-specific expression of mab-5 depends on the appropriate segregation of developmental factors during early embryogenesis. After extrusion of any blastomere of the four-cell embryo, descendants of the remaining three cells could still express the mab-5-lacZ fusion. In these partial embryos, however, the fusion was often expressed in cells scattered throughout the embryo, suggesting that cell-cell interactions and/or proper positioning of early blastomeres are required for mab-5 expression to be localized to the posterior.

  9. Renaissance of protein crystallization and precipitation in biopharmaceuticals purification.

    PubMed

    Dos Santos, Raquel; Carvalho, Ana Luísa; Roque, A Cecília A

    The current chromatographic approaches used in protein purification are not keeping pace with the increasing biopharmaceutical market demand. With the upstream improvements, the bottleneck shifted towards the downstream process. New approaches rely in Anything But Chromatography methodologies and revisiting former techniques with a bioprocess perspective. Protein crystallization and precipitation methods are already implemented in the downstream process of diverse therapeutic biological macromolecules, overcoming the current chromatographic bottlenecks. Promising work is being developed in order to implement crystallization and precipitation in the purification pipeline of high value therapeutic molecules. This review focuses in the role of these two methodologies in current industrial purification processes, and highlights their potential implementation in the purification pipeline of high value therapeutic molecules, overcoming chromatographic holdups. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Production and characterization of monoclonal antibodies against conserved epitopes of P-selectin (CD62P).

    PubMed

    Massaguer, A; Engel, P; Pérez-del-Pulgar, S; Bosch, J; Pizcueta, P

    2000-08-01

    P-selectin (CD62P) is an adhesion molecule expressed on the activated endothelium and activated platelets that is involved in the initial attachment of leukocytes to inflamed vascular endothelium. Blocking monoclonal antibodies (mAbs) and P-selectin-deficient mice have shown that P-selectin is a potential target in anti-inflammatory therapy. Most mAbs against P-selectin do not bind to conserved epitopes, including the ligand-binding region, since P-selectin from mammalian species shares high amino acid sequence homology. The aim of this study was to generate a novel panel of anti-P-selectin mAbs against the conserved epitopes present in several animal species. To produce these mAbs, P-selectin-deficient mice were immunized with a pre-B-cell line transfected with human P-selectin cDNA. Twelve mouse mAbs that recognize human P-selectin were obtained. Individual mAbs that bound to human, rat, mouse, rabbit and pig activated platelets were characterized by flow-cytometry, immunohistochemistry, adhesion assays and immunoprecipitation. Four of these mAbs (P-sel.KO.2.3, P-sel.KO.2.4, P-sel.KO.2.7 and P-sel.KO.2.12) cross-reacted with human, rat and mouse P-selectin. Another three mAbs (P-sel.KO.2.2, P-sel.KO.2.11 and P-sel.KO.2.12) blocked the attachment of HL60 cells to P-selectin-transfected COS cells, demonstrating that these mAbs inhibit P-selectin-mediated adhesion. MAb cross-blocking experiments showed that these three mAbs bind to very close and overlapping epitopes. An ELISA assay using mAbs P-sel.KO.2.3 and P-sel.KO.2.12 was designed to measure soluble rat, mouse and human P-selectin. These anti-P-selectin mAbs are unique since they recognize common epitopes conserved during mammalian evolution and they may be useful for studying P-selectin function in inflammatory models in various species.

  11. Characterization of monoclonal antibodies to avian Escherichia coli Iss.

    PubMed

    Lynne, Aaron M; Foley, Steven L; Nolan, Lisa K

    2006-09-01

    Colibacillosis accounts for annual multimillion dollar losses in the poultry industry, and control of this disease is hampered by limited understanding of the virulence mechanisms used by avian pathogenic Escherichia coli (APEC). Previous work in our laboratory has found that the presence of the increased serum survival gene (iss) is strongly associated with APEC but not commensal E. coli, making iss and the protein it encodes (Iss) candidate targets of colibacillosis-control procedures. Previously, we produced monoclonal antibodies (MAbs) against Iss to be used as a reagent in studies of APEC virulence and colibacillosis pathogenesis. Unfortunately, the utility of these MAbs was limited because these MAbs exhibited nonspecific binding. It was thought that the lack of specificity might be related to the fact that these MAbs were of the immunoglobulin M (IgM) isotype. In the present study, new MAbs were produced using a different immunization strategy in an effort to generate MAbs of a different isotype. Also, because Iss bears strong similarity to Bor, a lambda-derived protein that occurs commonly among E. coli, MAbs were assessed for their ability to distinguish Iss and Bor. For these studies, the bor gene from an APEC isolate was cloned into an expression vector. The fusion protein expressed from this construct was used to assess the potential of the anti-Iss MAbs produced in the past and present studies to distinguish Bor and Iss. The MAbs produced in this study were of the IgG1 isotype, which appeared to bind more specifically to Iss than previously generated antibodies in certain immunologic procedures. These results suggested that the MAbs generated in this study might prove superior to the previous MAbs as a reagent for study of APEC. However, both MAbs recognized recombinant Iss and Bor, suggesting that any results obtained using anti-Iss MAbs would need to be interpreted with this cross-reactivity in mind.

  12. Storage and stability of IgG and IgM monoclonal antibodies dried on filter paper and utility in Neisseria meningitidis serotyping by Dot-blot ELISA.

    PubMed

    Ferraz, Aline S; Belo, Elza F T; Coutinho, Ligia M C C; Oliveira, Ana P; Carmo, Andréia M S; Franco, Daniele L; Ferreira, Tatiane; Yto, André Y; Machado, Marta S F; Scola, Monica C G; De Gaspari, Elizabeth

    2008-03-06

    A simple filter paper method was developed for, the transport and storage of monoclonal antibodies (Mabs) at room temperature or -20 degrees C after spotting on filter paper, for subsequent serotyping of outer membrane antigens of N.meningitidis by dot-blot ELISA. Monoclonal antibodies (Mabs) were spotted within a 0.5-1 cm diameter area of Whatman grade 903 paper, which were stored individually at room temperature or at -20 degrees C. These MAbs were stored and analyzed after periods of one week, 4 weeks, 12 months, or 13 years in the case of frozen Mab aliquots, or after 4 weeks at -20 degrees C or at room temperature (RT) in the case of Mabs dried on filter paper strips. Assays were performed in parallel using dot-blot ELISA. In addition to the MAbs specific for serotyping class 1, 2 or 3, we used a larger number of Mabs for polysaccharides, lipooligosaccharides (LOS), class 5 and cross-reactive antigens for native outer membrane of N.meningitidis. The Mabs dried on filter paper were eluted with phosphate-buffered saline (PBS) containing 0.2% gelatin. Mabs of the isotypes IgG and IgM dried on filter papers were not affected by duration of storage. The detection by serotyping Mabs was generally consistent for dried filter paper MAb samples stored frozen for over 1 year at -20 degrees C, and although decreased reactive antibody titers were found after storage, this did not interfere with the specificity of the Mabs used after 13 years as dry spots on filter paper. The use of filter paper is an inexpensive and convenient method for collecting, storing, and transporting Mab samples for serotyping studies. In addition, the samples occupy little space and can be readily transported without freezing. The efficiency of using immunoglobulin G (IgG) or M (IgM) eluted was found to be consistent with measurement of IgG or IgM titers in most corresponding, ascites Mabs stored frozen for over 1 year. The application of meningococcal typing methods and designations depend on the question being asked.

  13. [Conformational Fingerprinting Using Monoclonal Antibodies
    (on the Example of Angiotensin I-Converting Enzyme-ACE)].

    PubMed

    Danilov, S M

    2017-01-01

    During the past 30 years my laboratory has generated 40+ monoclonal antibodies (mAbs) directed to structural and conformational epitopes on human ACE as well as ACE from rats, mice and other species. These mAbs were successfully used for detection and quantification of ACE by ELISA, Western blotting, flow cytometry and immunohistochemistry. In all these applications mainly single mAbs were used. We hypothesized that we can obtain a completely new kind of information about ACE structure and function if we use the whole set of mAbs directed to different epitopes on the ACE molecule. When we finished epitope mapping of all mAbs to ACE (and especially, those recognizing conformational epitopes), we realized that we had obtained a new tool to study ACE. First, we demonstrated that binding of some mAbs is very sensitive to local conformational changes on the ACE surface-due to local denaturation, inactivation, ACE inhibitor or mAbs binding or due to diseases. Second, we were able to detect, localize and characterize several human ACE mutations. And, finally, we established a new concept - conformational fingerprinting of ACE using mAbs that in turn allowed us to obtain evidence for tissue specificity of ACE, which has promising scientific and diagnostic perspectives. The initial goal for the generation of mAbs to ACE 30 years ago was obtaining mAbs to organ-specific endothelial cells, which could be used for organ-specific drug delivery. Our systematic work on characterization of mAbs to numerous epitopes on ACE during these years has lead not only to the generation of the most effective mAbs for specific drug/gene delivery into the lung capillaries, but also to the establishment of the concept of conformational fingerprinting of ACE, which in turn gives a theoretical base for the generation of mAbs, specific for ACE from different organs. We believe that this concept could be applicable for any glycoprotein against which there is a set of mAbs to different epitopes.

  14. Zebrafish mab21l2 is specifically expressed in the presumptive eye and tectum from early somitogenesis onwards.

    PubMed

    Kudoh, T; Dawid, I B

    2001-11-01

    Random screening for tissue specific genes in zebrafish by in situ hybridization led us to isolate a gene which showed highly restricted expression in the developing eyes and midbrain at somitogenesis stages. This gene was very similar to mouse and human mab21l2. The characteristic expression pattern of mab21l2 facilitates a detailed description of the morphogenesis of the eyes and midbrain in the zebrafish. In the eye field, mab21l2 expression illustrates the transformation of the eye field to form two separate eyes in the anterior neural plate. Mab21l2 staining in the cyclopic mutants, cyc and oep, exhibited incomplete splitting of the eye primodium. In the midbrain, mab21l2 is expressed in the tectum, and its expression follows the expansion of the tectal region. In mutants affecting the mid-hindbrain boundary (MHB), mab21l2 expression is affected differentially. In the noi/pax2.1 mutant, mab21l2 is down-regulated and the size of the tectum remains small, whereas in the ace/fgf8 mutant, mab21l2 expression persists although the shape of the tectum is altered.

  15. Small-Angle Neutron Scattering and Neutron Spin Echo Characterization of Monoclonal Antibody Self-Associations at High Concentrations

    NASA Astrophysics Data System (ADS)

    Yearley, Eric; Zarraga, Isidro (Dan); Godfrin, Paul (Doug); Perevozchikova, Tatiana; Wagner, Norman; Liu, Yun

    2013-03-01

    Concentrated therapeutic protein formulations offer numerous delivery and stability challenges. In particular, it has been found that several therapeutic proteins exhibit a large increase in viscosity as a function of concentration that may be dependent on the protein-protein interactions. Small-Angle Neutron Scattering (SANS) and Neutron Spin Echo (NSE) investigations have been performed to probe the protein-protein interactions and diffusive properties of highly concentrated MAbs. The SANS data demonstrate that the inter-particle interactions for a highly viscous MAb at high concentrations (MAb1) are highly attractive, anisotropic and change significantly with concentration while the viscosity and interactions do not differ considerably for MAb2. The NSE results furthermore indicate that MAb1 and MAb2 have strong concentration dependencies of dynamics at high Q that are correlated to the translational motion of the proteins. Finally, it has also been revealed that the individual MAb1 proteins form small clusters at high concentrations in contrast to the MAb2 proteins, which are well-dispersed. It is proposed that the formation of these clusters is the primary cause of the dramatic increase in viscosity of MAb1 in crowded or concentrated environments.

  16. Antipodocalyxin Antibody chPcMab-47 Exerts Antitumor Activity in Mouse Xenograft Models of Colorectal Adenocarcinomas.

    PubMed

    Kaneko, Mika K; Kunita, Akiko; Yamada, Shinji; Nakamura, Takuro; Yanaka, Miyuki; Saidoh, Noriko; Chang, Yao-Wen; Handa, Saori; Ogasawara, Satoshi; Ohishi, Tomokazu; Abe, Shinji; Itai, Shunsuke; Harada, Hiroyuki; Kawada, Manabu; Nishioka, Yasuhiko; Fukayama, Masashi; Kato, Yukinari

    2017-08-01

    Podocalyxin (PODXL) is expressed in several cancers, including brain tumors and colorectal cancers. PODXL overexpression is an independent predictor of progression, metastasis, and poor outcome. We recently immunized mice with recombinant human PODXL, which was produced using LN229 glioblastoma cells, and produced a clone PcMab-47 that could be used for investigating PODXL expression by flow cytometry and immunohistochemical analysis. Herein, we produced a human-mouse chimeric PcMab-47 (chPcMab-47) and investigated its antitumor activity against PODXL-expressing tumors. chPcMab-47 reacted with LN229, LN229/PODXL, and Chinese hamster ovary (CHO)/PODXL cells, but it did not react with CHO-K1 or PODXL-knockout LN229 cell line (PDIS-13). chPcMab-47 exerted antitumor activity against a mouse xenograft model using CHO/PODXL. Furthermore, chPcMab-47 was reactive with colorectal cancer cell lines such as HCT-15, Caco-2, HCT-8, and DLD-1. chPcMab-47 also exhibited antitumor activity against a mouse xenograft model using HCT-15. These results suggest that chPcMab-47 could be useful for antibody therapy against PODXL-expressing cancers.

  17. Engineered domain based assays to identify individual antibodies in oligoclonal combinations targeting the same protein

    PubMed Central

    Meng, Q.; Garcia-Rodriguez, C.; Manzanarez, G.; Silberg, M.A.; Conrad, F.; Bettencourt, J.; Pan, X.; Breece, T.; To, R.; Li, M.; Lee, D.; Thorner, L.; Tomic, M.T.; Marks, J.D.

    2014-01-01

    Quantitation of individual mAbs within a combined antibody drug product is required for preclinical and clinical drug development. We have developed two antitoxins (XOMA 3B and XOMA 3E) each consisting of three monoclonal antibodies (mAbs) that neutralize type B and type E botulinum neurotoxin (BoNT/B and BoNT/E) to treat serotype B and E botulism. To develop mAb-specific binding assays for each antitoxin, we mapped the epitopes of the six mAbs. Each mAb bound an epitope on either the BoNT light chain (LC) or translocation domain (HN). Epitope mapping data was used to design LC-HN domains with orthogonal mutations to make them specific for only one mAb in either XOMA 3B or 3E. Mutant LC-HN domains were cloned, expressed, and purified from E. coli. Each mAb bound only to its specific domain with affinity comparable to the binding to holotoxin. Further engineering of domains allowed construction of ELISAs that could characterize the integrity, binding affinity, and identity of each of the six mAbs in XOMA 3B, and 3E without interference from the three BoNT/A mAbs in XOMA 3AB. Such antigen engineering is a general method allowing quantitation and characterization of individual mAbs in a mAb cocktail that bind the same protein. PMID:22922799

  18. Semiconductor grade, solar silicon purification project

    NASA Technical Reports Server (NTRS)

    Ingle, W. M.; Rosler, R. R.; Thompson, S. W.; Chaney, R. E.

    1979-01-01

    Experimental apparatus and procedures used in the development of a 3-step SiF2(x) polymer transport purification process are described. Both S.S.M.S. and E.S. analysis demonstrated that major purification had occured and some samples were indistinguishable from semiconductor grade silicon (except possibly for phosphorus). Recent electrical analysis via crystal growth reveals that the product contains compensated phosphorus and boron. The low projected product cost and short energy payback time suggest that the economics of this process will result in a cost less than the goal of $10/Kg(1975 dollars). The process appears to be readily scalable to a major silicon purification facility.

  19. Mapping of epitopes and structural analysis of antigenic sites in the nucleoprotein of rabies virus.

    PubMed

    Goto, H; Minamoto, N; Ito, H; Ito, N; Sugiyama, M; Kinjo, T; Kawai, A

    2000-01-01

    Linear epitopes on the rabies virus nucleoprotein (N) recognized by six MAbs raised against antigenic sites I (MAbs 6-4, 12-2 and 13-27) and IV (MAbs 6-9, 7-12 and 8-1) were investigated. Based on our previous studies on sites I and IV, 24 consecutively overlapping octapeptides and N- and C-terminal-deleted mutant N proteins were prepared. Results showed that all three site I epitopes studied and two site IV epitopes (for MAbs 8-1 and 6-9) mapped to aa 358-367, and that the other site IV epitope of MAb 7-12 mapped to aa 375-383. Tests using chimeric and truncated proteins showed that MAb 8-1 also requires the N-terminal sequence of the N protein to recognize its binding region more efficiently. Immunofluorescence studies demonstrated that all three site I-specific MAbs and one site IV-specific MAb (7-12) stained the N antigen that was diffusely distributed in the whole cytoplasm; the other two site IV-specific MAbs (6-9 and 8-1) detected only the N antigen in the cytoplasmic inclusion bodies (CIB). An antigenic site II-specific MAb (6-17) also detected CIB-associated N antigen alone. Furthermore, the level of diffuse N antigens decreased after treatment of infected cells with cycloheximide. These results suggest that epitopes at site I are expressed on the immature form of the N protein, but epitope structures of site IV MAbs 6-9 and 8-1 are created and/or exposed only after maturation of the N protein.

  20. Characterization of Pharmaceutical IgG and Biosimilars Using Miniaturized Platforms and LC-MS/MS

    PubMed Central

    Wooding, Kerry M.; Peng, Wenjing; Mechref, Yehia

    2016-01-01

    Therapeutic monoclonal antibodies (mAbs) have made a tremendous impact in treating patients with various diseases. MAbs are designed to target specifically a cell and illicit a response from the immune system to destroy the cell. As originator mAb drug patents are coming to an end, generic pharmaceutical companies are poised to replicate and produce so-called biosimilar drugs. MAbs are significantly more complicated than small drugs to analyze and produce. The mAb proteoform and glycoform must be as similar to the original drug as possible to be a viable replacement. The mAb proteoform is well characterized but can be altered through various undesirable reactions such as deamidation. The mAb glycoform is harder to replicate as the glycan formation is a complicated template-less one; it is proving difficult for the originator companies to produce a homogenous population of mAbs from batch to batch. Severe side-effects have occurred in patients taking mAbs with immunogenic glycans, highlighting the importance of quality control mechanisms. The complex nature of mAbs requires sensitive and robust tools amenable to the high-throughput analysis required by a manufacturing setting. Miniaturized analytical platforms for complex biosimilar analysis are still in their infancy but have shown great promise for sample preparation. Capillary electrophoresis-laser induced fluorescence remains a powerful and fast technique for routine glycan analysis. Mass spectrometry is the method of choice for the analysis of mAb proteoforms and is emerging as a powerful tool for glycoform analysis. PMID:27033511

  1. Pattern of cytokine receptors expressed by human dendritic cells migrated from dermal explants.

    PubMed Central

    Larregina, A T; Morelli, A E; Kolkowski, E; Sanjuan, N; Barboza, M E; Fainboim, L

    1997-01-01

    Different reasons account for the lack of information about the expression of cytokine receptors on human dendritic cells (DC): (a) DC are a trace population; (b) the proteolytic treatment used to isolate DC may alter enzyme-sensitive epitopes; and (c) low numbers of receptors per cell. In the present work the expression of cytokine receptors was analysed by flow cytometry on the population of dermal DC (DDC) that spontaneously migrate from short-term culture dermal explants. DDC obtained after dermal culture were CD1alow, CD1b+, CD1c+, human leucocyte antigen (HLA)-DR+, CD11chigh, CD11b+ and CD32+. The DC lineage was confirmed by ultrastructural analysis. DDC expressed interleukin (IL)-1R type 1 (monoclonal antibody (mAb) hIL-1R1-M1; and 6B5); IL-1R type 2 (mAb hIL-1R2-M22); IL-2R alpha chain (mAb anti-Tac; and hIL-2R-M1) and IL-2R gamma chain (mAb 3B5; and AG14C). DDC did not stain for IL-2R beta chain using four mAbs recognizing two different epitopes of IL-2R beta (mAb 2R-B; Mik-beta 1; and CF1; Mik-beta 3, respectively). DDC were also positive for the cytokine binding chains (alpha chains) of IL-3R (mAb 9F5); IL-4R (mAb hIL-4R-M57; and S456C9); and IL-7R (mAb hIL-7R-M20; and R3434). DDC showed low levels of IL-6R alpha chain (mAb B-F19; B-R6; and B-E23) and its signal transducer gp130 (mAb A2; and B1). DDC strongly expressed interferon-gamma receptor (IFN-gamma R) (mAb GIR-208) and were negative for IL-8R (mAb B-G20; and B-F25). All DDC were highly positive for granulocyte-macrophage colony-stimulating factor receptor (GM-CSFR) alpha chain (mAb hGM-CSFR-M1; SC06; SC04, and 8G6) and to a lesser extent for the common beta chain of GM-CSFR, IL-3R and IL-5R (mAb 3D7). On the other hand, reactivity was not found for granulocyte colony-stimulating factor receptor (G-CSFR) (mAb hGCSFR-M1) nor macrophage colony-stimulating factor receptor (M-CSFR) (mAb 7-7A3-17) confirming the DC lineage of DDC. As previously reported for lymphoid DC, DDC expressed tumour necrosis factor receptort (TNFR) 75000 MW (mAb utr-1; hTNFR-M1; and MR2-1) but lacked TNFR 55000 MW (mAb htr-9; MR1-1; and MR1-2). In summary, DDC express receptors for a broad panel of cytokines, even receptors for cytokines whose effects on DC are still unknown (i.e. IL-2R alpha gamma; IL-6R alpha/gp 130; IL-7R alpha gamma). Images Figure 1 PMID:9227332

  2. Single-step affinity purification of enzyme biotherapeutics: a platform methodology for accelerated process development.

    PubMed

    Brower, Kevin P; Ryakala, Venkat K; Bird, Ryan; Godawat, Rahul; Riske, Frank J; Konstantinov, Konstantin; Warikoo, Veena; Gamble, Jean

    2014-01-01

    Downstream sample purification for quality attribute analysis is a significant bottleneck in process development for non-antibody biologics. Multi-step chromatography process train purifications are typically required prior to many critical analytical tests. This prerequisite leads to limited throughput, long lead times to obtain purified product, and significant resource requirements. In this work, immunoaffinity purification technology has been leveraged to achieve single-step affinity purification of two different enzyme biotherapeutics (Fabrazyme® [agalsidase beta] and Enzyme 2) with polyclonal and monoclonal antibodies, respectively, as ligands. Target molecules were rapidly isolated from cell culture harvest in sufficient purity to enable analysis of critical quality attributes (CQAs). Most importantly, this is the first study that demonstrates the application of predictive analytics techniques to predict critical quality attributes of a commercial biologic. The data obtained using the affinity columns were used to generate appropriate models to predict quality attributes that would be obtained after traditional multi-step purification trains. These models empower process development decision-making with drug substance-equivalent product quality information without generation of actual drug substance. Optimization was performed to ensure maximum target recovery and minimal target protein degradation. The methodologies developed for Fabrazyme were successfully reapplied for Enzyme 2, indicating platform opportunities. The impact of the technology is significant, including reductions in time and personnel requirements, rapid product purification, and substantially increased throughput. Applications are discussed, including upstream and downstream process development support to achieve the principles of Quality by Design (QbD) as well as integration with bioprocesses as a process analytical technology (PAT). © 2014 American Institute of Chemical Engineers.

  3. The gene MACCHI-BOU 4/ENHANCER OF PINOID encodes a NPH3-like protein and reveals similarities between organogenesis and phototropism at the molecular level.

    PubMed

    Furutani, Masahiko; Kajiwara, Takahito; Kato, Takehide; Treml, Birgit S; Stockum, Christine; Torres-Ruiz, Ramón A; Tasaka, Masao

    2007-11-01

    Intercellular transport of the phytohormone auxin is a significant factor for plant organogenesis. To investigate molecular mechanisms by which auxin controls organogenesis, we analyzed the macchi-bou 4 (mab4) mutant identified as an enhancer of pinoid (pid). Although mab4 and pid single mutants displayed relatively mild cotyledon phenotypes, pid mab4 double mutants completely lacked cotyledons. We found that MAB4 was identical to ENHANCER OF PINOID (ENP), which has been suggested to control PIN1 polarity in cotyledon primordia. MAB4/ENP encodes a novel protein, which belongs to the NON-PHOTOTROPIC HYPOCOTYL 3 (NPH3) family thought to function as a signal transducer in phototropism and control lateral translocation of auxin. MAB4/ENP mRNA was detected in the protodermal cell layer of the embryo and the meristem L1 layer at the site of organ initiation. In the mab4 embryo, the abundance of PIN1:GFP was severely decreased at the plasma membrane in the protodermal cell layer. In addition, subcellular localization analyses indicated that MAB4/ENP resides on a subpopulation of endosomes as well as on unidentified intracellular compartments. These results indicate that MAB4/ENP is involved in polar auxin transport in organogenesis.

  4. Solid lipid nanoparticles carrying chemotherapeutic drug across the blood-brain barrier through insulin receptor-mediated pathway.

    PubMed

    Kuo, Yung-Chih; Shih-Huang, Chun-Yuan

    2013-09-01

    Carmustine (BCNU)-loaded solid lipid nanoparticles (SLNs) were grafted with 83-14 monoclonal antibody (MAb) (83-14 MAb/BCNU-SLNs) and applied to the brain-targeting delivery. Human brain-microvascular endothelial cells (HBMECs) incubated with 83-14 MAb/BCNU-SLNs were stained to demonstrate the interaction between the nanocarriers and expressed insulin receptors (IRs). The results revealed that the particle size of 83-14 MAb/BCNU-SLNs decreased with an increasing weight percentage of Dynasan 114 (DYN). Storage at 4 °C for 6 weeks slightly deformed the colloidal morphology. In addition, poloxamer 407 on 83-14 MAb/BCNU-SLNs induced cytotoxicity to RAW264.7 cells and inhibited phagocytosis by RAW264.7 cells. An increase in the weight percentage of DYN from 0% to 67% slightly reduced the viability of RAW264.7 cells and promoted phagocytosis. Moreover, the transport ability of 83-14 MAb/BCNU-SLNs across the blood-brain barrier (BBB) in vitro enhanced with an increasing weight percentage of Tween 80. 83-14 MAb on MAb/BCNU-SLNs stimulated endocytosis by HBMECs via IRs and enhanced the permeability of BCNU across the BBB. 83-14 MAb/BCNU-SLNs can be a promising antitumor drug delivery system for transporting BCNU to the brain.

  5. Evaluation of immunoreactivity of normal tissues from dogs, using monoclonal antibody B72.3.

    PubMed

    Clemo, F A; DeNicola, D B; Zimmermann, J L

    1994-08-01

    Monoclonal antibody (MAB) B72.3, which recognizes human tumor-associated glycoprotein-72, has immunoreactivity for malignant epithelial neoplasms in human beings and dogs. To further characterize the range of immunoreactivity of MAB B72.3 in canine tissues, MAB B72.3 and 2 other tumor-associated glycoprotein-72 antibodies (MAB CC49 and CC83) were tested against a wide spectrum of normal tissues from dogs. Immunoreactivity was detected, using an avidin-biotin-complex immunoperoxidase method. Monoclonal antibody B72.3 did not stain most types of normal canine tissues, but various types of epithelial cells within the gastrointestinal and respiratory tract mucosae, salivary gland, esophagus, epididymis, uterus, thymus, hair follicle, and apocrine glands of the anal sac had variable staining with MAB B72.3. A similar range of immunoreactivity in comparable types of normal tissues was seen for MAB CC49 and CC83; however, MAB CC49, but not MAB B72.3 and CC83, stained the endothelium of capillaries and small vessels in most normal tissues. Staining of frozen and paraffin-embedded tissues was similar. In conclusion, we found that MAB B72.3, CC49, and CC83 had selected immunoreactivity for specific types of normal canine epithelial cells, especially those involved with mucin production.

  6. Targeting multiple Her-2 epitopes with monoclonal antibodies results in improved antigrowth activity of a human breast cancer cell line in vitro and in vivo.

    PubMed

    Spiridon, Camelia I; Ghetie, Maria-Ana; Uhr, Jonathan; Marches, Radu; Li, Jia-Ling; Shen, Guo-Liang; Vitetta, Ellen S

    2002-06-01

    Her-2 (p185(erbB-2)) is a transmembrane tyrosine kinase receptor, which is encoded by the Her-2/neu proto-oncogene. Her-2 is overexpressed on 30% of highly malignant breast cancers. Monoclonal antibodies (MAbs) against Her-2 inhibit the growth of Her-2-overexpressing tumor cells and this occurs by a variety of mechanisms. One such MAb, Herceptin (Trastuzumab), has been approved for human use. We have generated a panel of murine anti-Her-2 MAbs against nine different epitopes on the extracellular domain of Her-2 and have evaluated the antitumor activity of three of these MAbs alone and in combination, both in vitro and in vivo. We found that MAbs (against different epitopes) make a highly effective mixture, which was more effective than the individual MAbs in treating s.c. tumor nodules of BT474 cells in SCID mice. In vitro, the MAb mixture was also more effective than the single MAbs in inducing antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity, inhibiting cell growth and inducing apoptosis, and inhibiting the secretion of vascular endothelial growth factor. Taken together, these activities might explain the superior performance of the MAb mixture in vivo.

  7. Succinonitrile Purification Facility

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Succinonitrile (SCN) Purification Facility provides succinonitrile and succinonitrile alloys to several NRA selected investigations for flight and ground research at various levels of purity. The purification process employed includes both distillation and zone refining. Once the appropriate purification process is completed, samples are characterized to determine the liquidus and/or solidus temperature, which is then related to sample purity. The lab has various methods for measuring these temperatures with accuracies in the milliKelvin to tenths of milliKelvin range. The ultra-pure SCN produced in our facility is indistinguishable from the standard material provided by NIST to well within the stated +/- 1.5mK of the NIST triple point cells. In addition to delivering material to various investigations, our current activities include process improvement, characterization of impurities and triple point cell design and development. The purification process is being evaluated for each of the four vendors to determine the efficacy of each purification step. We are also collecting samples of the remainder from distillation and zone refining for analysis of the constituent impurities. The large triple point cells developed will contain SCN with a melting point of 58.0642 C +/- 1.5mK for use as a calibration standard for Standard Platinum Resistance Thermometers (SPRTs).

  8. Engineered domain-based assays to identify individual antibodies in oligoclonal combinations targeting the same protein.

    PubMed

    Meng, Q; Garcia-Rodriguez, C; Manzanarez, G; Silberg, M A; Conrad, F; Bettencourt, J; Pan, X; Breece, T; To, R; Li, M; Lee, D; Thorner, L; Tomic, M T; Marks, J D

    2012-11-15

    Quantitation of individual monoclonal antibodies (mAbs) within a combined antibody drug product is required for preclinical and clinical drug development. We have developed two antitoxins, XOMA 3B and XOMA 3E, each consisting of three mAbs that neutralize type B and type E botulinum neurotoxin (BoNT/B and BoNT/E) to treat serotype B and E botulism. To develop mAb-specific binding assays for each antitoxin, we mapped the epitopes of the six mAbs. Each mAb bound an epitope on either the BoNT light chain (LC) or translocation domain (H(N)). Epitope mapping data were used to design LC-H(N) domains with orthogonal mutations to make them specific for only one mAb in either XOMA 3B or XOMA 3E. Mutant LC-H(N) domains were cloned, expressed, and purified from Escherichia coli. Each mAb bound only to its specific domain with affinity comparable to the binding to holotoxin. Further engineering of domains allowed construction of enzyme-linked immunosorbent assays (ELISAs) that could characterize the integrity, binding affinity, and identity of each of the six mAbs in XOMA 3B and 3E without interference from the three BoNT/A mAbs in XOMA 3AB. Such antigen engineering is a general method allowing quantitation and characterization of individual mAbs in a mAb cocktail that bind the same protein. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Cytotoxicity and apoptosis of ovarian and breast cancer cell lines induced by OVS1 monoclonal antibody and paclitaxel.

    PubMed

    Moongkarndi, Primchanien; Kaslungka, Sineenart; Kosem, Nuttavut; Junnu, Sarawut; Jongsomboonkusol, Suna; Theptaranon, Yodsaward; Neungton, Neelobol

    2003-03-01

    OVS1 monoclonal antibody (MAb) produced against ovarian cancer is currently used to identify mucinous cystadenocarcinoma antigen as a tumor marker secreted in serum. The potential of OVS1 MAb in ovarian cancer treatment was studied by evaluating the induction of cytotoxicity and apoptosis of SKOV3 ovarian cancer and BT549 breast cancer cell lines induced by OVS1. Paclitaxel, an antitumor drug, was used as positive control and applied as a combined drug together with OVS1 MAb. OVS1 MAb and paclitaxel were found by MTT assay to induce cytotoxicity against both cell lines. The ED50 of OVS1 MAb were 26.25 and 25.00 microg/ml and of paclitaxel were 21.88 and 9.20 nM against SKOV3 and BT549 cell lines, respectively. The quantitative amount of cells determined by fluorimetric assay was correlated to the results of the MTT assay. The combined application of OVS1 MAb and paclitaxel on these two cell lines resulted in a greater cytotoxicity than observed by either agent alone. OVS1 MAb and paclitaxel applied against both cell lines induced the morphological changes of apoptotic cell death at 24 hours visualized by two color fluorescence dyes, Ho33342 and propidium iodide. Combination of the two substances enhanced the rate of apoptosis compared to either OVS1 MAb or paclitaxel given alone. DNA fragmentation was detected in an agarose gel electrophoresis after treating cells with OVS1 MAb and paclitaxel at 24 hours. These findings on the induction of cytotoxicity and apoptosis by OVS1 MAb on cancer cell lines have implications on the potential application of OVS1 MAb for clinical therapy.

  10. mAb C19 targets a novel surface marker for the isolation of human cardiac progenitor cells from human heart tissue and differentiated hESCs.

    PubMed

    Leung, Hau Wan; Moerkamp, Asja T; Padmanabhan, Jayanthi; Ng, Sze-Wai; Goumans, Marie-José; Choo, Andre

    2015-05-01

    Cardiac progenitor cells (CPCs) have been isolated from adult and developing hearts using an anti-mouse Sca-1 antibody. However, the absence of a human Sca-1 homologue has hampered the clinical application of the CPCs. Therefore, we generated novel monoclonal antibodies (mAbs) specifically raised against surface markers expressed by resident human CPCs. Here, we explored the suitability of one of these mAbs, mAb C19, for the identification, isolation and characterization of CPCs from fetal heart tissue and differentiating cultures of human embryonic stem cells (hESCs). Using whole-cell immunization, mAbs were raised against Sca-1+ CPCs and screened for reactivity to various CPC lines by flow cytometry. mAb C19 was found to be specific for Sca-1+ CPCs, with high cell surface binding capabilities. mAb C19 stained small stem-like cells in cardiac tissue sections. Moreover, during differentiation of hESCs towards cardiomyocytes, a transient population of cells with mAb C19 reactivity was identified and isolated using magnetic-activated cell sorting. Their cell fate was tracked and found to improve cardiomyocyte purity from hESC-derived cultures. mAb C19+ CPCs, from both hESC differentiation and fetal heart tissues, were maintained and expanded in culture, while retaining their CPC-like characteristics and their ability to further differentiate into cardiomyocytes by stimulation with TGFβ1. Finally, gene expression profiling of these mAb C19+ CPCs suggested a highly angiogenic nature, which was further validated by cell-based angiogenesis assays. mAb C19 is a new surface marker for the isolation of multipotent CPCs from both human heart tissues and differentiating hESCs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Localization of key amino acid residues in the dominant conformational epitopes on thyroid peroxidase recognized by mouse monoclonal antibodies.

    PubMed

    Godlewska, Marlena; Czarnocka, Barbara; Gora, Monika

    2012-09-01

    Autoantibodies to thyroid peroxidase (TPO), the major target autoantigen in autoimmune thyroid diseases, recognize conformational epitopes limited to two immunodominant regions (IDRs) termed IDR-A and -B. The apparent restricted heterogeneity of TPO autoantibodies was discovered using TPO-specific mouse monoclonal antibodies (mAbs) and later confirmed by human recombinant Fabs. In earlier studies we identified key amino acids crucial for the interaction of human autoantibodies with TPO. Here we show the critical residues that participate in binding of five mAbs to the conformational epitopes on the TPO surface. Using ELISA we tested the reactivity of single and multiple TPO mutants expressed in CHO cells with a panel of mAbs specifically recognizing IDR-A (mAb 2 and 9) and IDR-B (mAb 15, 18, 64). We show that antibodies recognizing very similar regions on the TPO surface may interact with different sets of residues. We found that residues K713 and E716 contribute to the interaction between mAb 2 and TPO. The epitope for mAb 9 is critically dependent on residues R646 and E716. Moreover, we demonstrate that amino acids E604 and D630 are part of the functional epitope for mAb 15, and amino acids D624 and K627 for mAb 18. Finally, residues E604, D620, D624, K627, and D630 constitute the epitope for mAb 64. This is the first detailed study identifying the key resides for binding of mAbs 2, 9, 15, 18, and 64. Better understanding of those antibodies' specificity will be helpful in elucidating the properties of TPO as an antigen in autoimmune disorders.

  12. Combined roles of human IgG subclass, alternative complement pathway activation, and epitope density in the bactericidal activity of antibodies to meningococcal factor h binding protein.

    PubMed

    Giuntini, Serena; Reason, Donald C; Granoff, Dan M

    2012-01-01

    Meningococcal vaccines containing factor H binding protein (fHbp) are in clinical development. fHbp binds human fH, which enables the meningococcus to resist complement-mediated bacteriolysis. Previously, we found that chimeric human IgG1 mouse anti-fHbp monoclonal antibodies (MAbs) had human complement-mediated bactericidal activity only if the MAb inhibited fH binding. Since IgG subclasses differ in their ability to activate complement, we investigated the role of human IgG subclasses on antibody functional activity. We constructed chimeric MAbs in which three different murine fHbp-specific binding domains were each paired with human IgG1, IgG2, or IgG3. Against a wild-type group B isolate, all three IgG3 MAbs, irrespective of their ability to inhibit fH binding, had bactericidal activity that was >5-fold higher than the respective IgG1 MAbs, while the IgG2 MAbs had the least activity. Against a mutant with increased fHbp expression, the anti-fHbp MAbs elicited greater C4b deposition (classical pathway) and greater bactericidal activity than against the wild-type strain, and the IgG1 MAbs had similar or greater activity than the respective IgG3 MAbs. The bactericidal activity against both wild-type and mutant strains also was dependent, in part, on activation of the alternative complement pathway. Thus, at lower epitope density in the wild-type strain, the IgG3 anti-fHbp MAbs had the greatest bactericidal activity. At a higher epitope density in the mutant, the IgG1 MAbs had similar or greater bactericidal activity than the IgG3 MAbs, and the activity was less dependent on the inhibition of fH binding than at a lower epitope density.

  13. In vitro and in vivo comparison of binding of 99m-Tc-labeled anti-CEA MAb F33-104 with 99m-Tc-labeled anti-CEA MAb BW431/26.

    PubMed

    Watanabe, N; Oriuchi, N; Sugiyama, S; Kuroki, M; Matsuoka, Y; Tanada, S; Murata, H; Inoue, T; Sasaki, Y

    1999-01-01

    The purpose of this study was to assess the potential for radio-immunodetection (RAID) of murine anti-carcinoembryonic antigen (CEA) monoclonal antibody (MAb) F33-104 labeled with technetium-99m (99m-Tc) by a reduction-mediated labeling method. The binding capacity of 99m-Tc-labeled anti-CEA MAb F33-104 with CEA by means of in vitro procedures such as immunoradiometric assay and cell binding assay and the biodistribution of 99m-Tc-labeled anti-CEA MAb F33-104 in normal nude mice and nude mice bearing human colon adenocarcinoma LS180 tumor were investigated and compared with 99m-Tc-labeled anti-CEA MAb BW431/26. The in vitro binding rate of 99m-Tc-labeled anti-CEA MAb F33-104 with CEA in solution and attached to the cell membrane was significantly higher than 99m-Tc-labeled anti-CEA MAb BW431/261 (31.4 +/- 0.95% vs. 11.9 +/- 0.55% at 100 ng/mL of soluble CEA, 83.5 +/- 2.84% vs. 54.0 +/- 2.54% at 10(7) of LS 180 cells). In vivo, accumulation of 99m-Tc-labeled anti-CEA MAb F33-104 was higher at 18 h postinjection than 99m-Tc-labeled anti-CEA MAb BW431/26 (20.1 +/- 3.50% ID/g vs. 14.4 +/- 3.30% ID/g). 99m-Tc-activity in the kidneys of nude mice bearing tumor was higher at 18 h postinjection than at 3 h (12.8 +/- 2.10% ID/g vs. 8.01 +/- 2.40% ID/g of 99m-Tc-labeled anti-CEA MAb F33-104, 10.7 +/- 1.70% ID/g vs. 8.10 +/- 1.75% ID/g of 99m-Tc-labeled anti-CEA MAb BW431/26). 99m-Tc-labeled anti-CEA MAb F33-104 is a potential novel agent for RAID of recurrent colorectal cancer.

  14. Mutations in MAB21L2 result in ocular Coloboma, microcornea and cataracts.

    PubMed

    Deml, Brett; Kariminejad, Ariana; Borujerdi, Razieh H R; Muheisen, Sanaa; Reis, Linda M; Semina, Elena V

    2015-01-01

    Ocular coloboma results from abnormal embryonic development and is often associated with additional ocular and systemic features. Coloboma is a highly heterogeneous disorder with many cases remaining unexplained. Whole exome sequencing from two cousins affected with dominant coloboma with microcornea, cataracts, and skeletal dysplasia identified a novel heterozygous allele in MAB21L2, c.151 C>G, p.(Arg51Gly); the mutation was present in all five family members with the disease and appeared de novo in the first affected generation of the three-generational pedigree. MAB21L2 encodes a protein similar to C. elegans mab-21 cell fate-determining factor; the molecular function of MAB21L2 is largely unknown. To further evaluate the role of MAB21L2, zebrafish mutants carrying a p.(Gln48Serfs*5) frameshift truncation (mab21l2Q48Sfs*5) and a p.(Arg51_Phe52del) in-frame deletion (mab21l2R51_F52del) were developed with TALEN technology. Homozygous zebrafish embryos from both lines developed variable lens and coloboma phenotypes: mab21l2Q48Sfs*5 embryos demonstrated severe lens and retinal defects with complete lethality while mab21l2R51_F52del mutants displayed a milder lens phenotype and severe coloboma with a small number of fish surviving to adulthood. Protein studies showed decreased stability for the human p.(Arg51Gly) and zebrafish p.(Arg51_Phe52del) mutant proteins and predicted a complete loss-of-function for the zebrafish p.(Gln48Serfs*5) frameshift truncation. Additionally, in contrast to wild-type human MAB21L2 transcript, mutant p.(Arg51Gly) mRNA failed to efficiently rescue the ocular phenotype when injected into mab21l2Q48Sfs*5 embryos, suggesting this allele is functionally deficient. Histology, immunohistochemistry, and in situ hybridization experiments identified retinal invagination defects, an increase in cell death, abnormal proliferation patterns, and altered expression of several ocular markers in the mab21l2 mutants. These findings support the identification of MAB21L2 as a novel factor involved in human coloboma and highlight the power of genome editing manipulation in model organisms for analysis of the effects of whole exome variation in humans.

  15. Production and characterization of specific monoclonal antibodies binding the Plasmodium falciparum diagnostic biomarker, histidine-rich protein 2.

    PubMed

    Leow, Chiuan Herng; Jones, Martina; Cheng, Qin; Mahler, Stephen; McCarthy, James

    2014-07-18

    Early and accurate diagnosis of Plasmodium falciparum infection is important for providing appropriate treatment to patients with malaria. However, technical limitations of currently available diagnostic tests limit their use in control programs. One possible explanation for the vulnerability of current antibodies used in RDTs is their propensity to degrade at high ambient temperatures. Isolation of new antibodies with better thermal stability represents an appealing approach to improve the performance of RDTs. In this study, phage display technology was deployed to isolate novel binders by screening a human naïve scFv antibody library against recombinant Plasmodium falciparum histidine rich protein 2 (rPfHRP2). The isolated scFv clones were reformatted to whole IgG and the recombinant mAbs were produced in a mammalian CHO cell expression system. To verify the biological activity of these purified recombinant mAbs, range of functional assays were characterized. Two unique clones (D2 and F9) were isolated after five rounds of biopanning. The reformatted and expressed antibodies demonstrated high binding specificity to malaria recombinant PfHRP2 and native proteins. When 5 μg/mL of mAbs applied, mAb C1-13 had the highest sensitivity, with an OD value of 1, the detection achieved 5 ng/mL of rPfHRP2, followed by mAbs D2 and F9 at 10 ng/mL and 100 ng/mL of rPfHRP2, respectively. Although the sensitivity of mAbs D2 and F9 was lower than the control, these recombinant human mAbs have shown better stability compared to mouse mAb C1-13 at various temperatures in DSC and blot assays. In view of epitope mapping, the predominant motif of rPfHRP2 recognized by mAb D2 was AHHAADAHHA, whereas mAb F9 was one amino acid shorter, resulting in AHHAADAHH. mAb F9 had the strongest binding affinity to rPfHRP2 protein, with a KD value of 4.27 × 10(-11) M, followed by control mAb C1-13 at 1.03 × 10(-10) M and mAb D2 at 3.05 × 10(-10) M. Overall, the performance of these mAbs showed comparability to currently available PfHRP2-specific mouse mAb C1-13. The stability of these novel binders indicate that they merit further work to evaluate their utility in the development of new generation point of care diagnosis of malaria.

  16. Very large scale monoclonal antibody purification: the case for conventional unit operations.

    PubMed

    Kelley, Brian

    2007-01-01

    Technology development initiatives targeted for monoclonal antibody purification may be motivated by manufacturing limitations and are often aimed at solving current and future process bottlenecks. A subject under debate in many biotechnology companies is whether conventional unit operations such as chromatography will eventually become limiting for the production of recombinant protein therapeutics. An evaluation of the potential limitations of process chromatography and filtration using today's commercially available resins and membranes was conducted for a conceptual process scaled to produce 10 tons of monoclonal antibody per year from a single manufacturing plant, a scale representing one of the world's largest single-plant capacities for cGMP protein production. The process employs a simple, efficient purification train using only two chromatographic and two ultrafiltration steps, modeled after a platform antibody purification train that has generated 10 kg batches in clinical production. Based on analyses of cost of goods and the production capacity of this very large scale purification process, it is unlikely that non-conventional downstream unit operations would be needed to replace conventional chromatographic and filtration separation steps, at least for recombinant antibodies.

  17. In vivo imaging of the inflammatory receptor CD40 after cerebral ischemia using a fluorescent antibody.

    PubMed

    Klohs, Jan; Gräfe, Michael; Graf, Kristof; Steinbrink, Jens; Dietrich, Thore; Stibenz, Dietger; Bahmani, Peyman; Kronenberg, Golo; Harms, Christoph; Endres, Matthias; Lindauer, Ute; Greger, Klaus; Stelzer, Ernst H K; Dirnagl, Ulrich; Wunder, Andreas

    2008-10-01

    Brain inflammation is a hallmark of stroke, where it has been implicated in tissue damage as well as in repair. Imaging technologies that specifically visualize these processes are highly desirable. In this study, we explored whether the inflammatory receptor CD40 can be noninvasively and specifically visualized in mice after cerebral ischemia using a fluorescent monoclonal antibody, which we labeled with the near-infrared fluorescence dye Cy5.5 (Cy5.5-CD40MAb). Wild-type and CD40-deficient mice were subjected to transient middle cerebral artery occlusion. Mice were either intravenously injected with Cy5.5-CD40MAb or control Cy5.5-IgGMAb. Noninvasive and ex vivo near-infrared fluorescence imaging was performed after injection of the compounds. Probe distribution and specificity was further assessed with single-plane illumination microscopy, immunohistochemistry, and confocal microscopy. Significantly higher fluorescence intensities over the stroke-affected hemisphere, compared to the contralateral side, were only detected noninvasively in wild-type mice that received Cy5.5-CD40MAb, but not in CD40-deficient mice injected with Cy5.5-CD40MAb or in wild-type mice that were injected with Cy5.5-IgGMAb. Ex vivo near-infrared fluorescence showed an intense fluorescence within the ischemic territory only in wild-type mice injected with Cy5.5-CD40MAb. In the brains of these mice, single-plane illumination microscopy demonstrated vascular and parenchymal distribution, and confocal microscopy revealed a partial colocalization of parenchymal fluorescence from the injected Cy5.5-CD40MAb with activated microglia and blood-derived cells in the ischemic region. The study demonstrates that a CD40-targeted fluorescent antibody enables specific noninvasive detection of the inflammatory receptor CD40 after cerebral ischemia using optical techniques.

  18. Human monoclonal antibodies derived from a patient infected with 2009 pandemic influenza A virus broadly cross-neutralize group 1 influenza viruses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Yang; Sasaki, Tadahiro; JST/JICA, Science and Technology Research Partnership for Sustainable Development

    Highlights: • Influenza infection can elicit heterosubtypic antibodies to group 1 influenza virus. • Three human monoclonal antibodies were generated from an H1N1-infected patient. • The antibodies predominantly recognized α-helical stem of viral hemagglutinin (HA). • The antibodies inhibited HA structural activation during the fusion process. • The antibodies are potential candidates for future antibody therapy to influenza. - Abstract: Influenza viruses are a continuous threat to human public health because of their ability to evolve rapidly through genetic drift and reassortment. Three human monoclonal antibodies (HuMAbs) were generated in this study, 1H11, 2H5 and 5G2, and they cross-neutralize amore » diverse range of group 1 influenza A viruses, including seasonal H1N1, 2009 pandemic H1N1 (H1N1pdm) and avian H5N1 and H9N2. The three HuMAbs were prepared by fusing peripheral blood lymphocytes from an H1N1pdm-infected patient with a newly developed fusion partner cell line, SPYMEG. All the HuMAbs had little hemagglutination inhibition activity but had strong membrane-fusion inhibition activity against influenza viruses. A protease digestion assay showed the HuMAbs targeted commonly a short α-helix region in the stalk of the hemagglutinin. Furthermore, Ile45Phe and Glu47Gly double substitutions in the α-helix region made the HA unrecognizable by the HuMAbs. These two amino acid residues are highly conserved in the HAs of H1N1, H5N1 and H9N2 viruses. The HuMAbs reported here may be potential candidates for the development of therapeutic antibodies against group 1 influenza viruses.« less

  19. Development of monoclonal antibody-based sandwich ELISA for detection of dextran.

    PubMed

    Wang, Sheng-Yu; Li, Zhe; Wang, Xian-Jiang; Lv, Sha; Yang, Yun; Zeng, Lian-Qiang; Luo, Fang-Hong; Yan, Jiang-Hua; Liang, Da-Feng

    2014-10-01

    Dextran as anti-nutritional factor is usually a result of bacteria activity and has associated serial problems during the process stream in the sugar industry and in medical therapy. A sensitive method is expected to detect dextran quantitatively. Here we generated four monoclonal antibodies (MAbs) against dextran using dextran T40 conjugated with bovine serum albumin (BSA) as immunogen in our lab following hybridoma protocol. Through pairwise, an MAb named D24 was determined to be conjugated with horseradish peroxidase (HRP) and was used in the establishment of a sensitive sandwich enzyme-linked immunosorbent assay (ELISA) method for determination of dextran, in which MAb D9 was chosen as a capture antibody. The detection limit and working scope of the developed sandwich ELISA method were 3.9 ng/mL and 7.8-500 ng/mL with a correlation coefficient of 0.9909. In addition, the cross-reaction assay demonstrated that the method possessed high specificity with no significant cross-reaction with dextran-related substances, and the recovery rate ranged from 96.35 to 102.00%, with coefficient of variation ranging from 1.58 to 6.94%. These results indicated that we developed a detection system of MAb-based sandwich ELISA to measure dextran and this system should be a potential tool to determine dextran levels.

  20. Development, upscaling and validation of the purification process for human-cl rhFVIII (Nuwiq®), a new generation recombinant factor VIII produced in a human cell-line.

    PubMed

    Winge, Stefan; Yderland, Louise; Kannicht, Christoph; Hermans, Pim; Adema, Simon; Schmidt, Torben; Gilljam, Gustav; Linhult, Martin; Tiemeyer, Maya; Belyanskaya, Larisa; Walter, Olaf

    2015-11-01

    Human-cl rhFVIII (Nuwiq®), a new generation recombinant factor VIII (rFVIII), is the first rFVIII produced in a human cell-line approved by the European Medicines Agency. To describe the development, upscaling and process validation for industrial-scale human-cl rhFVIII purification. The purification process involves one centrifugation, two filtration, five chromatography columns and two dedicated pathogen clearance steps (solvent/detergent treatment and 20 nm nanofiltration). The key purification step uses an affinity resin (VIIISelect) with high specificity for FVIII, removing essentially all host-cell proteins with >80% product recovery. The production-scale multi-step purification process efficiently removes process- and product-related impurities and results in a high-purity rhFVIII product, with an overall yield of ∼50%. Specific activity of the final product was >9000 IU/mg, and the ratio between active FVIII and total FVIII protein present was >0.9. The entire production process is free of animal-derived products. Leaching of potential harmful compounds from chromatography resins and all pathogens tested were below the limit of quantification in the final product. Human-cl rhFVIII can be produced at 500 L bioreactor scale, maintaining high purity and recoveries. The innovative purification process ensures a high-purity and high-quality human-cl rhFVIII product with a high pathogen safety margin. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  1. An improved method for purification of recombinant truncated heme oxygenase-1 by expanded bed adsorption and gel filtration.

    PubMed

    Hu, Hong-Bo; Wang, Wei; Han, Ling; Zhou, Wen-Pu; Zhang, Xue-Hong

    2007-03-01

    Recombinant truncated human heme oxygenase-1 (hHO-1) expressed in Escherichia coli was efficiently separated and purified from feedstock by DEAE-ion exchange expanded bed adsorption. Protocol optimization of hHO-1 on DEAE adsorbent resulted in adsorption in 0 M NaCl and elution in 150 mM NaCl at a pH of 8.5. The active enzyme fractions separated from the expanded bed column were further purified by a Superdex 75 gel filtration step. The specific hHO-1 activity increased from 0.82 +/- 0.05 to 24.8 +/- 1.8 U/mg during the whole purification steps. The recovery and purification factor of truncated hHO-1 of the whole purification were 72.7 +/- 4.7 and 30.2 +/- 2.3%, respectively. This purification process can decrease the demand on the preparation of feedstock and simplify the purification process.

  2. Differential intra-endothelial delivery of polymer nanocarriers targeted to distinct PECAM-1 epitopes

    PubMed Central

    Garnacho, Carmen; Albelda, Steven M.; Muzykantov, Vladimir R.; Muro, Silvia

    2008-01-01

    Coupling drug carriers to antibodies for targeting endothelial cells (ECs) may improve treatment of vascular and pulmonary diseases. Selecting antibodies that deliver carriers to the cell surface or intracellularly may further optimize specifcity of interventions. We studied antibody-directed targeting of nanocarriers to platelet–endothelial cell adhesion molecule (PECAM)-1, an endothelial glycoprotein containing 6 Ig-like extracellular domains. PECAM-1 antibodies bind to ECs without internalization, but ECs internalize by endocytosis nanocarriers carrying multiple copies of anti-PECAM (anti-PECAM/NCs). To determine whether binding and intracellular transport of anti-PECAM/NCs depend on the epitope engaged, we targeted five PECAM-1 epitopes: mAb35, mAb37 and mAb62 (membrane-distal Ig domain 1), mAbGi34 (Ig domains 2/3), and mAb4G6 (membrane-proximal Ig domain 6). The antibodies bound to ECs regardless of the epitope proximity to the plasmalemma, whereas 130 nm diameter nanocarriers only targeted effectively distal domains (mAb4G6/NCs did not bind to ECs). ECs internalized mAb35, mAb62, and mAbGi34 carriers regardless of their size (0.13 to 5 µm diameter), yet they did not internalize mAb37/NCs. After internalization, mAb62/NCs trafficked to lysosomes within 2–3 h, whereas mAb35/NCs had prolonged residence in pre-lysosomal vesicles. Therefore, endothelial binding, endocytosis, and intracellular transport of anti-PECAM/NCs are epitope-specific. This paradigm will guide the design of endothelial drug delivery systems providing specific cellular localizations. PMID:18606202

  3. Mass Spectrometry Approaches for Identification and Quantitation of Therapeutic Monoclonal Antibodies in the Clinical Laboratory.

    PubMed

    Ladwig, Paula M; Barnidge, David R; Willrich, Maria A V

    2017-05-01

    Therapeutic monoclonal antibodies (MAbs) are an important class of drugs used to treat diseases ranging from autoimmune disorders to B cell lymphomas to other rare conditions thought to be untreatable in the past. Many advances have been made in the characterization of immunoglobulins as a result of pharmaceutical companies investing in technologies that allow them to better understand MAbs during the development phase. Mass spectrometry is one of the new advancements utilized extensively by pharma to analyze MAbs and is now beginning to be applied in the clinical laboratory setting. The rise in the use of therapeutic MAbs has opened up new challenges for the development of assays for monitoring this class of drugs. MAbs are larger and more complex than typical small-molecule therapeutic drugs routinely analyzed by mass spectrometry. In addition, they must be quantified in samples that contain endogenous immunoglobulins with nearly identical structures. In contrast to an enzyme-linked immunosorbent assay (ELISA) for quantifying MAbs, mass spectrometry-based assays do not rely on MAb-specific reagents such as recombinant antigens and/or anti-idiotypic antibodies, and time for development is usually shorter. Furthermore, using molecular mass as a measurement tool provides increased specificity since it is a first-order principle unique to each MAb. This enables rapid quantification of MAbs and multiplexing. This review describes how mass spectrometry can become an important tool for clinical chemists and especially immunologists, who are starting to develop assays for MAbs in the clinical laboratory and are considering mass spectrometry as a versatile platform for the task. Copyright © 2017 Ladwig et al.

  4. Antigenic variation of European haemorrhagic fever with renal syndrome virus strains characterized using bank vole monoclonal antibodies.

    PubMed

    Lundkvist, A; Fatouros, A; Niklasson, B

    1991-09-01

    Monoclonal antibodies (MAbs) against Puumala (PUU) virus, the aetiological agent of nephropathia epidemica, were produced by fusing activated spleen cells from a bank vole (Clethrionomys glareolus) with the mouse myeloma cell line SP2/0. This novel approach, utilizing the natural vector of PUU virus for hybridoma production, proved to be highly efficient, and eight stable PUU virus-specific heterohybridomas were isolated and characterized. The bank vole MAbs were all specific for the nucleocapsid protein (N) of PUU virus, as determined by immunoprecipitation. When evaluated by additivity immunoassays, the MAbs were found to recognize several different, distinct or overlapping, epitopes on N. The MAbs were used in immunofluorescence assays to compare eight PUU-related virus isolates, and the prototype Hantaan, Urban rat and Prospect Hill viruses. The reactivity varied among the different MAbs and could be classified into five groups. One MAb reacted exclusively with PUU-related viruses; two MAbs reacted with all PUU-related virus strains tested, as well as Prospect Hill virus, but did not react with Urban rat virus and Hantaan virus; one MAb reacted with all PUU-related virus strains tested and weakly with Hantaan virus, but not with Urban rat and Prospect Hill viruses; two MAbs reacted with all the virus strains tested. Two virus strains, K-27 and CG-1820, isolated in the western U.S.S.R., were distinguished from the other PUU-related virus strains by two MAbs, suggesting that the large group of independently isolated PUU-related viruses may be more heterogeneous than previously believed.

  5. Chimpanzee-Human Monoclonal Antibodies for Treatment of Chronic Poliovirus Excretors and Emergency Postexposure Prophylaxis▿‡

    PubMed Central

    Chen, Zhaochun; Chumakov, Konstantin; Dragunsky, Eugenia; Kouiavskaia, Diana; Makiya, Michelle; Neverov, Alexander; Rezapkin, Gennady; Sebrell, Andrew; Purcell, Robert

    2011-01-01

    Six poliovirus-neutralizing Fabs were recovered from a combinatorial Fab phage display library constructed from bone marrow-derived lymphocytes of immunized chimpanzees. The chimeric chimpanzee-human full-length IgGs (hereinafter called monoclonal antibodies [MAbs]) were generated by combining a chimpanzee IgG light chain and a variable domain of heavy chain with a human constant Fc region. The six MAbs neutralized vaccine strains and virulent strains of poliovirus. Five MAbs were serotype specific, while one MAb cross-neutralized serotypes 1 and 2. Epitope mapping performed by selecting and sequencing antibody-resistant viral variants indicated that the cross-neutralizing MAb bound between antigenic sites 1 and 2, thereby covering the canyon region containing the receptor-binding site. Another serotype 1-specific MAb recognized a region located between antigenic sites 2 and 3 that included parts of capsid proteins VP1 and VP3. Both serotype 2-specific antibodies recognized antigenic site 1. No escape mutants to serotype 3-specific MAbs could be generated. The administration of a serotype 1-specific MAb to transgenic mice susceptible to poliovirus at a dose of 5 μg/mouse completely protected them from paralysis after challenge with a lethal dose of wild-type poliovirus. Moreover, MAb injection 6 or 12 h after virus infection provided significant protection. The MAbs described here could be tested in clinical trials to determine whether they might be useful for treatment of immunocompromised chronic virus excretors and for emergency protection of contacts of a paralytic poliomyelitis case. PMID:21345966

  6. The effect of arginine glutamate on the stability of monoclonal antibodies in solution.

    PubMed

    Kheddo, Priscilla; Tracka, Malgorzata; Armer, Jonathan; Dearman, Rebecca J; Uddin, Shahid; van der Walle, Christopher F; Golovanov, Alexander P

    2014-10-01

    Finding excipients which mitigate protein self-association and aggregation is an important task during formulation. Here, the effect of an equimolar mixture of l-Arg and l-Glu (Arg·Glu) on colloidal and conformational stability of four monoclonal antibodies (mAb1-mAb4) at different pH is explored, with the temperatures of the on-set of aggregation (Tagg) and unfolding (Tm1) measured by static light scattering and intrinsic fluorescence, respectively. Arg·Glu increased the Tagg of all four mAbs in concentration-dependent manner, especially as pH increased to neutral. Arg·Glu also increased Tm1 of the least thermally stable mAb3, but without similar direct effect on the Tm1 of other mAbs. Raising pH itself from 5 to 7 increased Tm1 for all four mAbs. Selected mAb formulations were assessed under accelerated stability conditions for the monomer fraction remaining in solution after storage. The aggregation of mAb3 was suppressed to a greater extent by Arg·Glu than by Arg·HCl. Furthermore, Arg·Glu suppressed the aggregation of mAb1 at neutral pH such that the fraction monomer was near to that at the more typical formulation pH of 5.5. We conclude that Arg·Glu can suppress mAb aggregation with increasing temperature/pH and, importantly, under accelerated stability conditions at weakly acidic to neutral pH. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Factors affecting the viscosity in high concentration solutions of different monoclonal antibodies.

    PubMed

    Yadav, Sandeep; Shire, Steven J; Kalonia, Devendra S

    2010-12-01

    The viscosity profiles of four different IgG(1) molecules were studied as a function of concentration at pH 6.0. At high concentrations, MAb-H and -A showed significantly higher viscosities as compared to MAb-G and -E. Zeta Potential (ξ) measurements showed that all the IgG(1) molecules carried a net positive charge at this pH. MAb-G showed the highest positive zeta potential followed by MAb-E, -H, and -A. A consistent interpretation of the impact of net charge on viscosity for these MAbs is not possible, suggesting that electroviscous effects cannot explain the differences in viscosity. Values of k(D) (dynamic light scattering) indicated that the intermolecular interactions were repulsive for MAb-E and -G; and attractive for MAb-H and -A. Solution storage modulus (G') in high concentration solutions was consistent with attractive intermolecular interactions for MAb-H and -A, and repulsive interactions for MAb-G and -E. Effect of salt addition on solution G' and k(D) indicated that the interactions were primarily electrostatic in nature. The concentration dependent viscosity data were analyzed using a modified Ross and Minton equation. The analysis explicitly differentiates between the effect of molecular shape, size, self-crowding, and electrostatic intermolecular interactions in governing high concentration viscosity behavior. © 2010 Wiley-Liss, Inc. and the American Pharmacists Association

  8. Analysis of the epitope structure of Plum pox virus coat protein.

    PubMed

    Candresse, Thierry; Saenz, Pilar; García, Juan Antonio; Boscia, Donato; Navratil, Milan; Gorris, Maria Teresa; Cambra, Mariano

    2011-05-01

    Typing of the particular Plum pox virus (PPV) strain responsible in an outbreak has important practical implications and is frequently performed using strain-specific monoclonal antibodies (MAbs). Analysis in Western blots of the reactivity of 24 MAbs to a 112-amino-acid N-terminal fragment of the PPV coat protein (CP) expressed in Escherichia coli showed that 21 of the 24 MAbs recognized linear or denaturation-insensitive epitopes. A series of eight C-truncated CP fragments allowed the mapping of the epitopes recognized by the MAbs. In all, 14 of them reacted to the N-terminal hypervariable region, defining a minimum of six epitopes, while 7 reacted to the beginning of the core region, defining a minimum of three epitopes. Sequence comparisons allowed the more precise positioning of regions recognized by several MAbs, including those recognized by the 5B-IVIA universal MAb (amino acids 94 to 100) and by the 4DG5 and 4DG11 D serogroup-specific MAbs (amino acids 43 to 64). A similar approach coupled with infectious cDNA clone mutagenesis showed that a V74T mutation in the N-terminus of the CP abolished the binding of the M serogroup-specific AL MAb. Taken together, these results provide a detailed positioning of the epitopes recognized by the most widely used PPV detection and typing MAbs.

  9. Large haematoxylin-stainable keratohyaline granules in solar keratoses: immunohistochemical comparison using anti-Ted-H-1 antibody and antiloricrin antibody.

    PubMed

    Takahashi, M; Horiuchi, Y; Tezuka, T

    2005-11-01

    Our previous study showed that large keratohyaline granules (KHG) in molluscum contagiosum that stained with haematoxylin also reacted with anti-Ted-H-1 monoclonal antibody (mAb), but not with antifilaggrin mAb or antiloricrin polyclonal antibody (pAb). This finding indicated that the Ted-H-1 antigenic protein is a haematoxylin-stainable protein in KHG. To clarify the identity of the major component protein of the large KHG in solar keratosis, another disorder in which large KHG are observed. An enzyme immunohistochemical study was performed using antifilaggrin mAb, anti-Ted-H-1 mAb and antiloricrin pAb. Immunofluorescent double staining and immunoelectron microscopic analyses were performed using anti-Ted-H-1 mAb and antiloricrin pAb. Antifilaggrin mAb, anti-Ted-H-1 mAb and antiloricrin pAb reacted with normal KHG in nonlesional skin of solar keratosis, while only anti-Ted-H-1 mAb reacted with the large KHG in the lesions of solar keratosis. Antifilaggrin mAb did not react with large KHG. Antiloricrin pAb reacted with the cell membrane of the stratum granulosum, but not with large KHG. These findings suggest that the haematoxylin-stainable protein in the large KHG would be a Ted-H-1 antigen protein which was neither filaggrin nor loricrin.

  10. Frontiers of monoclonal antibodies: Applications in medical practices.

    PubMed

    Ghagane, Shridhar C; Puranik, Sridevi I; Gan, Siew Hua; Hiremath, Murigendra B; Nerli, R B; Ravishankar, M V

    2017-01-01

    With the flourishing of innovation in drug discovery into a new era of personalized therapy, the use of monoclonal antibodies (mAbs) in the treatment of various ailments lies at the forefront. Major improvements in genetic sequencing and biomedical techniques as well as research into mAbs emphasize on determining new targets for advanced therapy while maximizing efficacy for clinical application. However, a balance has to be achieved concerning developing a target with low toxicity combined with high specificity and versatility, to allow a specific antibody to facilitate several biotic effects, ranging from neutralization of virus mechanisms to modulation of immune response and maintaining low global economic cost. Presently, there are approximately 30 mAbs' permitted for therapeutic use with many more being tested in clinical trials. Nevertheless, the heavy cost of mAbs' production, stowage and management as well as the subsequent hindrances to their development are outweighed by mAbs' clinical advantages. Compared to conventional drugs, since mAbs use as pharmacologic iotas have specific physical features and modes of action, they should be considered as a discrete therapeutic category. In this review, the history of mAb generation and the innovative technological applications of mAbs that has advanced in clinical practices is reviewed.

  11. Observation of small cluster formation in concentrated monoclonal antibody solutions and its implications to solution viscosity.

    PubMed

    Yearley, Eric J; Godfrin, Paul D; Perevozchikova, Tatiana; Zhang, Hailiang; Falus, Peter; Porcar, Lionel; Nagao, Michihiro; Curtis, Joseph E; Gawande, Pradad; Taing, Rosalynn; Zarraga, Isidro E; Wagner, Norman J; Liu, Yun

    2014-04-15

    Monoclonal antibodies (mAbs) are a major class of biopharmaceuticals. It is hypothesized that some concentrated mAb solutions exhibit formation of a solution phase consisting of reversibly self-associated aggregates (or reversible clusters), which is speculated to be responsible for their distinct solution properties. Here, we report direct observation of reversible clusters in concentrated solutions of mAbs using neutron spin echo. Specifically, a stable mAb solution is studied across a transition from dispersed monomers in dilute solution to clustered states at more concentrated conditions, where clusters of a preferred size are observed. Once mAb clusters have formed, their size, in contrast to that observed in typical globular protein solutions, is observed to remain nearly constant over a wide range of concentrations. Our results not only conclusively establish a clear relationship between the undesirable high viscosity of some mAb solutions and the formation of reversible clusters with extended open structures, but also directly observe self-assembled mAb protein clusters of preferred small finite size similar to that in micelle formation that dominate the properties of concentrated mAb solutions. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. Enzyme-linked immunosorbent assay with monoclonal and single-chain variable fragment antibodies selective to coplanar polychlorinated biphenyls.

    PubMed

    Inui, Hideyuki; Takeuchi, Tetsuya; Uesugi, Akari; Doi, Fumito; Takai, Mikio; Nishi, Kosuke; Miyake, Shiro; Ohkawa, Hideo

    2012-02-22

    Coplanar polychlorinated biphenyls (Co-PCBs) consisting of non-ortho and mono-ortho-chlorinated PCBs are dioxin-like compounds and cause wide contamination in the environment. To monitor Co-PCB residues, it was attempted to establish an enzyme-linked immunosorbent assay (ELISA) with monoclonal and recombinant antibodies selective to Co-PCBs. When 3,3',5,5'-tetrachlorobiphenoxybutyric acid (PCBH)-keyhole limpet hemocyanin conjugate was immunized into mice, two monoclonal antibodies, Mab-0217 and Mab-4444, were obtained. 3,3',5,5'-Tetrachlorobiphenyl (PCB80) was determined with an IC(50) value of 2.6 and 0.46 ng mL(-1) in ELISA based on Mab-0217 and Mab-4444, respectively. Mab-4444 cross-reacted with Co-PCB congeners, except for PCB77 and PCB81. Mab-0217 reacted with PCB80 and cross-reacted with PCB111. A single-chain variable fragment (scFv) antibody derived from Mab-4444 was produced in recombinant Escherichia coli cells. The scFv antibody showed nearly the same sensitivity toward PCBH as the parent monoclonal antibody in ELISA. These results clearly suggested that Mab-4444 and its scFv antibodies were suitable for monitoring the representative congeners of Co-PCBs.

  13. Cooperative binding of anti-tetanus toxin monoclonal antibodies: Implications for designing an efficient biclonal preparation to prevent tetanus toxin intoxication.

    PubMed

    Lukic, Ivana; Filipovic, Ana; Inic-Kanada, Aleksandra; Marinkovic, Emilija; Miljkovic, Radmila; Stojanovic, Marijana

    2018-05-15

    Oligoclonal combinations of several monoclonal antibodies (MAbs) are being considered for the treatment of various infectious pathologies. These combinations are less sensitive to antigen structural changes than individual MAbs; at the same time, their characteristics can be more efficiently controlled than those of polyclonal antibodies. The main goal of this study was to evaluate the binding characteristics of six biclonal equimolar preparations (BEP) of tetanus toxin (TeNT)-specific MAbs and to investigate how the MAb combination influences the BEPs' protective capacity. We show that a combination of TeNT-specific MAbs, which not only bind TeNT but also exert positive cooperative effects, results in a BEP with superior binding characteristics and protective capacity, when compared with the individual component MAbs. Furthermore, we show that a MAb with only partial protective capacity but positive effects on the binding of the other BEP component can be used as a valuable constituent of the BEP. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. The growth and potential of human antiviral monoclonal antibody therapeutics.

    PubMed

    Marasco, Wayne A; Sui, Jianhua

    2007-12-01

    Monoclonal antibodies (mAbs) have long provided powerful research tools for virologists to understand the mechanisms of virus entry into host cells and of antiviral immunity. Even so, commercial development of human (or humanized) mAbs for the prophylaxis, preemptive and acute treatment of viral infections has been slow. This is surprising, as new antibody discovery tools have increased the speed and precision with which potent neutralizing human antiviral mAbs can be identified. As longstanding barriers to antiviral mAb development, such as antigenic variability of circulating viral strains and the ability of viruses to undergo neutralization escape, are being overcome, deeper insight into the mechanisms of mAb action and engineering of effector functions are also improving the efficacy of antiviral mAbs. These successes, in both industrial and academic laboratories, coupled with ongoing changes in the biomedical and regulatory environments, herald an era when the commercial development of human antiviral mAb therapies will likely surge.

  15. Determination of critical epitope of PcMab-47 against human podocalyxin.

    PubMed

    Itai, Shunsuke; Yamada, Shinji; Kaneko, Mika K; Kato, Yukinari

    2018-07-01

    Podocalyxin (PODXL) is a type I transmembrane protein, which is highly glycosylated. PODXL is expressed in some types of human cancer tissues including oral, breast, and lung cancer tissues and may promote tumor growth, invasion, and metastasis. We previously produced PcMab-47, a novel anti-PODXL monoclonal antibody (mAb) which reacts with endogenous PODXL-expressing cancer cell lines and normal cells independently of glycosylation in Western blot, flow cytometry, and immunohistochemical analysis. In this study, we used enzyme-linked immunosorbent assay (ELISA), flow cytometry, and immunohistochemical analysis to determine the epitope of PcMab-47. The minimum epitope of PcMab-47 was found to be Asp207, His208, Leu209, and Met210. A blocking peptide containing this minimum epitope completely neutralized PcMab-47 reaction against oral cancer cells by flow cytometry and immunohistochemical analysis. These findings could lead to the production of more functional anti-PODXL mAbs, which are advantageous for antitumor activities.

  16. Therapeutic antibodies against cancer

    PubMed Central

    Adler, Mark J.; Dimitrov, Dimiter S.

    2012-01-01

    Antibody-based therapeutics against cancer are highly successful in clinic and currently enjoy unprecedented recognition of their potential; 13 monoclonal antibodies (mAbs) have been approved for clinical use in the European Union and in the United States (one, mylotarg, was withdrawn from market in 2010). Three of the mAbs (bevacizumab, rituximab, trastuzumab) are in the top six selling protein therapeutics with sales in 2010 of more than $5 bln each. Hundreds of mAbs including bispecific mAbs and multispecific fusion proteins, mAbs conjugated with small molecule drugs and mAbs with optimized pharmacokinetics are in clinical trials. However, challenges remain and it appears that deeper understanding of mechanisms is needed to overcome major problems including resistance to therapy, access to targets, complexity of biological systems and individual variations. PMID:22520975

  17. Evaluation of a time efficient immunization strategy for anti-PAH antibody development

    PubMed Central

    Li, Xin; Kaattari, Stephen L.; Vogelbein, Mary Ann; Unger, Michael A.

    2016-01-01

    The development of monoclonal antibodies (mAb) with affinity to small molecules can be a time-consuming process. To evaluate shortening the time for mAb production, we examined mouse antisera at different time points post-immunization to measure titer and to evaluate the affinity to the immunogen PBA (pyrene butyric acid). Fusions were also conducted temporally to evaluate antibody production success at various time periods. We produced anti-PBA antibodies 7 weeks post-immunization and selected for anti-PAH reactivity during the hybridoma screening process. Moreover, there were no obvious sensitivity differences relative to antibodies screened from a more traditional 18 week schedule. Our results demonstrate a more time efficient immunization strategy for anti-PAH antibody development that may be applied to other small molecules. PMID:27282486

  18. Application of hydrometallurgy techniques in quartz processing and purification: a review

    NASA Astrophysics Data System (ADS)

    Lin, Min; Lei, Shaomin; Pei, Zhenyu; Liu, Yuanyuan; Xia, Zhangjie; Xie, Feixiang

    2018-04-01

    Although there have been numerous studies on separation and purification of metallic minerals by hydrometallurgy techniques, applications of the chemical techniques in separation and purification of non-metallic minerals are rarely reported. This paper reviews disparate areas of study into processing and purification of quartz (typical non-metallic ore) in an attempt to summarize current work, as well as to suggest potential for future consolidation in the field. The review encompasses chemical techniques of the quartz processing including situations, progresses, leaching mechanism, scopes of application, advantages and drawbacks of micro-bioleaching, high temperature leaching, high temperature pressure leaching and catalyzed high temperature pressure leaching. Traditional leaching techniques including micro-bioleaching and high temperature leaching are unequal to demand of modern glass industry for quality of quartz concentrate because the quartz products has to be further processed. High temperature pressure leaching and catalyzed high temperature pressure leaching provide new ways to produce high-grade quartz sand with only one process and lower acid consumption. Furthermore, the catalyzed high temperature pressure leaching realizes effective purification of quartz with extremely low acid consumption (no using HF or any fluoride). It is proposed that, by integrating the different chemical processes of quartz processing and expounding leaching mechanisms and scopes of application, the research field as a monopolized industry would benefit.

  19. Zein purification: the process, the product, market potential

    USDA-ARS?s Scientific Manuscript database

    The objectives of this article intend to give an overview of a zein purification, decolorization and deodorization process, methodologies to assess those properties and applications of the purified product. The process involves column filtration of commercial zein solutions through a combination of ...

  20. Antibody Prophylaxis Against Dengue Virus 2 Infection in Non-Human Primates.

    PubMed

    Simmons, Monika; Putnak, Robert; Sun, Peifang; Burgess, Timothy; Marasco, Wayne A

    2016-11-02

    Passive immunization with anti-dengue virus (DENV) immune serum globulin (ISG) or monoclonal antibodies (Mabs) may serve to supplement or replace vaccination for short-term dengue immune prophylaxis. In the present study, we sought to establish proof-of-concept by evaluating several DENV-neutralizing antibodies for their ability to protect rhesus macaques against viremia following live virus challenge, including human anti-dengue ISG, and a human Mab (Mab11/wt) and its genetically engineered variant (Mab11/mutFc) that is unable to bind to cells with Fc gamma receptors (FcγR) and potentiate antibody-dependent enhancement (ADE). In the first experiment, groups of animals received ISG or Mab11/wt at low doses (3-10 mg/kg) or a saline control followed by challenge with DENV-2 at day 10 or 30. After passive immunization, only low-titered circulating virus-neutralizing antibody titers were measured in both groups, which were undetectable by day 30. After challenge at day 10, a reduction in viremia duration compared with the control was seen only in the ISG group (75%). However, after a day 30 challenge, no reduction in viremia was observed in both immunized groups. In a second experiment to test the effect of higher antibody doses on short-term protection, groups received either ISG, Mab11/wt, Mab11/mutFc (each at 25 mg/kg) or saline followed by challenge with DENV-2 on day 10. Increased virus-neutralizing antibody titers were detected in all groups at day 5 postinjection, with geometric mean titers (GMTs) of 464 (ISG), 313 (Mab11/wt), and 309 (Mab11/mutFc). After challenge, there was complete protection against viremia in the group that received ISG, and a reduction in viremia duration of 89% and 83% in groups that received Mab11/wt and Mab11/mutFc, respectively. An in vitro ADE assay in Fcγ receptor-bearing K562 cells with sera collected immediately before challenge showed increased DENV-2 infection levels in the presence of both ISG and Mab11/wt, which peaked at a serum dilution of 1:90, but not in Mab11/mutFc containing sera. The results suggest that antibody prophylaxis for dengue might be beneficial in eliminating or reducing viral loads thereby minimizing disease progression. Our results also suggest that blocking FcγR interactions through Mab11 Fc engineering may further prevent ADE. © The American Society of Tropical Medicine and Hygiene.

  1. Detection of horse meat contamination in raw and heat-processed meat products.

    PubMed

    Hsieh, Yun-Hwa P; Ofori, Jack A

    2014-12-31

    Europe's recent problems with the adulteration of beef products with horse meat highlight the need for a reliable method for detecting horse meat in food for human consumption. The objective of this study was therefore to develop a reliable monoclonal antibody (mAb) based enzyme-linked immunosorbent assay (ELISA) for horse meat detection. Two mAbs, H3E3 (IgG2b) and H4E7 (IgG2a), were characterized as horse-selective, and competitive ELISAs (cELISAs) employing these mAbs were developed. The cELISAs were found to be capable of detecting levels as low as 1% of horse meat in raw, cooked, and autoclaved ground beef or pork, being useful analytical tools for addressing the health, economic, and ethical concerns associated with adulterating meat products with horse meat. However, due to cross-reaction with raw poultry meat, it is recommended that samples be heated (100 °C for 15 min) prior to analysis to eliminate possible false-positive results.

  2. Biodiversity conservation, sustainable development, and the U.S. Man and the Biosphere Program: Past contributions and future directions

    Treesearch

    P. N. Manley; D. C. Hayes

    2006-01-01

    U.S. Man and the Biosphere (MAB) Program is part of the United Nations Educational, Scientific, and Cultural Organization (UNESCO) MAB program, and is one of six regional MAB programs that span the globe. The MAB Program was created in 1971 with the goal to explore, demonstrate, promote, and encourage harmonious relationships between people and their environments....

  3. Monoclonal antibodies to meningococcal factor H binding protein with overlapping epitopes and discordant functional activity.

    PubMed

    Giuntini, Serena; Beernink, Peter T; Reason, Donald C; Granoff, Dan M

    2012-01-01

    Meningococcal factor H binding protein (fHbp) is a promising vaccine candidate. Anti-fHbp antibodies can bind to meningococci and elicit complement-mediated bactericidal activity directly. The antibodies also can block binding of the human complement down-regulator, factor H (fH). Without bound fH, the organism would be expected to have increased susceptibility to bacteriolysis. Here we describe bactericidal activity of two anti-fHbp mAbs with overlapping epitopes in relation to their different effects on fH binding and bactericidal activity. Both mAbs recognized prevalent fHbp sequence variants in variant group 1. Using yeast display and site-specific mutagenesis, binding of one of the mAbs (JAR 1, IgG3) to fHbp was eliminated by a single amino acid substitution, R204A, and was decreased by K143A but not by R204H or D142A. The JAR 1 epitope overlapped that of previously described mAb (mAb502, IgG2a) whose binding to fHbp was eliminated by R204A or R204H substitutions, and was decreased by D142A but not by K143A. Although JAR 1 and mAb502 appeared to have overlapping epitopes, only JAR 1 inhibited binding of fH to fHbp and had human complement-mediated bactericidal activity. mAb502 enhanced fH binding and lacked human complement-mediated bactericidal activity. To control for confounding effects of different mouse IgG subclasses on complement activation, we created chimeric mAbs in which the mouse mAb502 or JAR 1 paratopes were paired with human IgG1 constant regions. While both chimeric mAbs showed similar binding to fHbp, only JAR 1, which inhibited fH binding, had human complement-mediated bactericidal activity. The lack of human complement-mediated bactericidal activity by anti-fHbp mAb502 appeared to result from an inability to inhibit binding of fH. These results underscore the importance of inhibition of fH binding for anti-fHbp mAb bactericidal activity.

  4. Predominant antitumor effects by fully human anti-TRAIL-receptor2 (DR5) monoclonal antibodies in human glioma cells in vitro and in vivo

    PubMed Central

    Nagane, Motoo; Shimizu, Saki; Mori, Eiji; Kataoka, Shiro; Shiokawa, Yoshiaki

    2010-01-01

    Tumor necrosis factor–related apoptosis-inducing ligand (TRAIL/Apo2 L) preferentially induces apoptosis in human tumor cells through its cognate death receptors DR4 or DR5, thereby being investigated as a potential agent for cancer therapy. Here, we applied fully human anti-human TRAIL receptor monoclonal antibodies (mAbs) to specifically target one of death receptors for TRAIL in human glioma cells, which could also reduce potential TRAIL-induced toxicity in humans. Twelve human glioma cell lines treated with several fully human anti-human TRAIL receptor mAbs were sensitive to only anti-DR5 mAbs, whereas they were totally insensitive to anti-DR4 mAb. Treatment with anti-DR5 mAbs exerted rapid cytotoxicity and lead to apoptosis induction. The cellular sensitivity was closely associated with cell-surface expression of DR5. Expression of c-FLIPL, Akt, and Cyclin D1 significantly correlated with sensitivity to anti-DR5 mAbs. Primary cultures of glioma cells were also relatively resistant to anti-DR5 mAbs, exhibiting both lower DR5 and higher c-FLIPL expression. Downregulation of c-FLIPL expression resulted in the sensitization of human glioma cells to anti-DR5 mAbs, whereas overexpression of c-FLIPL conferred resistance to anti-DR5 mAb. Treatment of tumor-burden nude mice with the direct agonist anti-DR5 mAb KMTR2 significantly suppressed growth of subcutaneous glioma xenografts leading to complete regression. Similarly, treatment of nude mice bearing intracerebral glioma xenografts with KMTR2 significantly elongated lifespan without tumor recurrence. These results suggest that DR5 is the predominant TRAIL receptor mediating apoptotic signals in human glioma cells, and sensitivity to anti-DR5 mAbs was determined at least in part by the expression level of c-FLIPL and Akt. Specific targeting of death receptor pathway through DR5 using fully human mAbs might provide a novel therapeutic strategy for intractable malignant gliomas. PMID:20511188

  5. Single amino acid substitution in LC-CDR1 induces Russell body phenotype that attenuates cellular protein synthesis through eIF2α phosphorylation and thereby downregulates IgG secretion despite operational secretory pathway traffic

    PubMed Central

    Hsu, Ann; Siegler, Karen E.

    2017-01-01

    ABSTRACT Amino acid sequence differences in the variable region of immunoglobulin (Ig) cause wide variations in secretion outputs. To address how a primary sequence difference comes to modulate Ig secretion, we investigated the biosynthetic process of 2 human IgG2κ monoclonal antibodies (mAbs) that differ only by one amino acid in the light chain complementarity-determining region 1 while showing ∼20-fold variance in secretion titer. Although poorly secreted, the lower-secreting mAb of the 2 was by no means defective in terms of its folding stability, antigen binding, and in vitro biologic activity. However, upon overexpression in HEK293 cells, the low-secreting mAb revealed a high propensity to aggregate into enlarged globular structures called Russell bodies (RBs) in the endoplasmic reticulum. While Golgi morphology was affected by the formation of RBs, secretory pathway membrane traffic remained operational in those cells. Importantly, cellular protein synthesis was severely suppressed in RB-positive cells through the phosphorylation of eIF2α. PERK-dependent signaling was implicated in this event, given the upregulation and nuclear accumulation of downstream effectors such as ATF4 and CHOP. These findings illustrated that the underlining process of poor Ig secretion in RB-positive cells was due to downregulation of Ig synthesis instead of a disruption or blockade of secretory pathway trafficking. Therefore, RB formation signifies an end of active Ig production at the protein translation level. Consequently, depending on how soon and how severely an antibody-expressing cell develops the RB phenotype, the productive window of Ig secretion can vary widely among the cells expressing different mAbs. PMID:28379093

  6. Investigation of degradation processes in IgG1 monoclonal antibodies by limited proteolysis coupled with weak cation-exchange HPLC.

    PubMed

    Lau, Hollis; Pace, Danielle; Yan, Boxu; McGrath, Theresa; Smallwood, Scott; Patel, Ketaki; Park, Jihea; Park, Sungae S; Latypov, Ramil F

    2010-04-01

    A new cation-exchange high-performance liquid chromatography (HPLC) method that separates fragment antigen-binding (Fab) and fragment crystallizable (Fc) domains generated by the limited proteolysis of monoclonal antibodies (mAbs) was developed. This assay has proven to be suitable for studying complex degradation processes involving various immunoglobulin G1 (IgG1) molecules. Assignment of covalent degradations to specific regions of mAbs was facilitated by using Lys-C and papain to generate Fab and Fc fragments with unique, protease-dependent elution times. In particular, this method was useful for characterizing protein variants formed in the presence of salt under accelerated storage conditions. Two isoforms that accumulated during storage were readily identified as Fab-related species prior to mass-spectrometric analysis. Both showed reduced biological activity likely resulting from modifications within or in proximity of the complementarity-determining regions (CDRs). Utility of this assay was further illustrated in the work to characterize light-induced degradations in mAb formulations. In this case, a previously unknown Fab-related species which populated upon light exposure was observed. This species was well resolved from unmodified Fab, allowing for direct and high-purity fractionation. Mass-spectrometric analysis subsequently identified a histidine-related degradation product associated with the CDR2 of the heavy chain. In addition, the method was applied to assess the structural organization of a noncovalent IgG1 dimer. A new species corresponding to a Fab-Fab complex was found, implying that interactions between Fab domains were responsible for dimerization. Overall, the data presented demonstrate the suitability of this cation-exchange HPLC method for studying a wide range of covalent and noncovalent degradations in IgG1 mAbs. 2010 Elsevier B.V. All rights reserved.

  7. EGL-20/Wnt and MAB-5/Hox Act Sequentially to Inhibit Anterior Migration of Neuroblasts in C. elegans

    PubMed Central

    Josephson, Matthew P.; Chai, Yongping; Ou, Guangshuo; Lundquist, Erik A.

    2016-01-01

    Directed neuroblast and neuronal migration is important in the proper development of nervous systems. In C. elegans the bilateral Q neuroblasts QR (on the right) and QL (on the left) undergo an identical pattern of cell division and differentiation but migrate in opposite directions (QR and descendants anteriorly and QL and descendants posteriorly). EGL-20/Wnt, via canonical Wnt signaling, drives the expression of MAB-5/Hox in QL but not QR. MAB-5 acts as a determinant of posterior migration, and mab-5 and egl-20 mutants display anterior QL descendant migrations. Here we analyze the behaviors of QR and QL descendants as they begin their anterior and posterior migrations, and the effects of EGL-20 and MAB-5 on these behaviors. The anterior and posterior daughters of QR (QR.a/p) after the first division immediately polarize and begin anterior migration, whereas QL.a/p remain rounded and non-migratory. After ~1 hour, QL.a migrates posteriorly over QL.p. We find that in egl-20/Wnt, bar-1/β-catenin, and mab-5/Hox mutants, QL.a/p polarize and migrate anteriorly, indicating that these molecules normally inhibit anterior migration of QL.a/p. In egl-20/Wnt mutants, QL.a/p immediately polarize and begin migration, whereas in bar-1/β-catenin and mab-5/Hox, the cells transiently retain a rounded, non-migratory morphology before anterior migration. Thus, EGL-20/Wnt mediates an acute inhibition of anterior migration independently of BAR-1/β-catenin and MAB-5/Hox, and a later, possible transcriptional response mediated by BAR-1/β-catenin and MAB-5/Hox. In addition to inhibiting anterior migration, MAB-5/Hox also cell-autonomously promotes posterior migration of QL.a (and QR.a in a mab-5 gain-of-function). PMID:26863303

  8. The binding affinity of anti-Aβ1-42 MAb-decorated nanoliposomes to Aβ1-42 peptides in vitro and to amyloid deposits in post-mortem tissue.

    PubMed

    Canovi, Mara; Markoutsa, Eleni; Lazar, Adina N; Pampalakis, Georgios; Clemente, Carla; Re, Francesca; Sesana, Silvia; Masserini, Massimo; Salmona, Mario; Duyckaerts, Charles; Flores, Orfeu; Gobbi, Marco; Antimisiaris, Sophia G

    2011-08-01

    Amyloid β (Aβ) aggregates are considered as possible targets for therapy and/or diagnosis of Alzheimer disease (AD), and nanoparticles functionalized with Aβ-specific ligands are considered promising vehicles for imaging probes and therapeutic agents. Herein, we characterized the binding properties of nanoliposomes decorated with an anti-Aβ monoclonal antibody (Aβ-MAb). The Aβ-MAb was obtained in mice by immunization with Aβ antigen followed by hybridoma fusion. Surface Plasmon Resonance (SPR) studies confirmed the very high affinity of purified Aβ-MAb for both Aβ monomers and fibrils (K(D) = 0.08 and 0.13 nm, respectively). The affinity of the biotinylated Aβ-MAb, used thereafter for liposome decoration, was lower although still in the low nanomolar range (K(D) = 2.1 and 1.6 nm, respectively). Biotin-streptavidin ligation method was used to decorate nanoliposomes with Aβ-MAb, at different densities. IgG-decorated liposomes were generated by the same methodology, as control. Vesicles were monodisperse with mean diameters 124-134 nm and demonstrated good colloidal stability and integrity when incubated with serum proteins. When studied by SPR, Aβ-MAb-liposomes, but not IgG-liposomes, markedly bound to Aβ monomers and fibrils, immobilized on the chip. K(D) values (calculated on Aβ-MAb content) were about 0.5 and 2 nm with liposomes at high and low Aβ-MAb density, respectively. Aβ-MAb-liposome binding to Aβ fibrils was additionally confirmed by ultracentrifugation technique, in which interactions occur in solution under physiological conditions. Moreover, Aβ-MAb-liposomes bound amyloid deposits in post-mortem AD brain samples, confirming the potential of these nanoparticles for the diagnosis and therapy of AD. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Production of monoclonal antibodies to Listeria monocytogenes and their application to determine the virulence of isolates from channel catfish.

    PubMed

    Erdenlig, S; Ainsworth, A J; Austin, F W

    1999-07-01

    We produced monoclonal antibodies (MAbs) to the extracellular proteins of Listeria monocytogenes EGD grown in Chelex-treated improved minimal medium. Ten of the positive hybridomas generated were chosen for further characterization. Seven of the MAbs reacted with a protein having a molecular mass of 60 kDa. These MAbs inhibited listeriolysin (LLO)-mediated hemolysis, and two of them were specific for LLO and none of the other thiol-activated toxins tested. In an enzyme-linked immunosorbent assay and Western blot analysis, five of the anti-LLO MAbs reacted with ivanolysin from Listeria ivanovii. Three of the 10 MAbs reacted with a 29-kDa protein on Western blots and neutralized the phosphatidylcholine-specific phospholipase C (PC-PLC) activity of L. monocytogenes. These three anti-PC-PLC MAbs did not react with phospholipases from five different gram-positive bacteria. However, the anti-PC-PLC MAbs recognized a 27-kDa extracellular protein from L. ivanovii and neutralized sphingomyelinase activity in a hemolysis test that demonstrates the antigenic relatedness of listerial phospholipases. These data indicate that listerial thiol-activated toxins possess species-specific epitopes and share group-specific epitopes. This is the first description of MAbs that neutralize listerial PC-PLC, and the data suggest that there is antigenic similarity between L. monocytogenes PC-PLC and L. ivanovii sphingomyelinase. The reactions of the MAbs with catfish isolates of L. monocytogenes suggested that some of the isolates examined lack the LLO and/or PC-PLC required for pathogenicity. The MAbs described here differentiated some catfish isolates from previously described type strain-pathogenic isolates and could be useful for detecting and determining the virulence of L. monocytogenes in food and clinical samples and for detecting L. ivanovii in veterinary clinical samples.

  10. Anti-nucleosome antibodies complexed to nucleosomal antigens show anti-DNA reactivity and bind to rat glomerular basement membrane in vivo.

    PubMed Central

    Kramers, C; Hylkema, M N; van Bruggen, M C; van de Lagemaat, R; Dijkman, H B; Assmann, K J; Smeenk, R J; Berden, J H

    1994-01-01

    Histones can mediate the binding of DNA and anti-DNA to the glomerular basement membrane (GBM). In ELISA histone/DNA/anti-DNA complexes are able to bind to heparan sulfate (HS), an intrinsic constituent of the GBM. We questioned whether histone containing immune complexes are able to bind to the GBM, and if so, whether the ligand in the GBM is HS. Monoclonal antibodies (mAbs) complexed to nucleosomal antigens and noncomplexed mAbs were isolated from culture supernatants of four IgG anti-nuclear mAbs. All noncomplexed mAbs showed strong anti-nucleosome reactivity in ELISA. One of them showed in addition anti-DNA reactivity in noncomplexed form. The other three mAbs only showed anti-DNA reactivity when they were complexed to nucleosomal antigens. After renal perfusion a fine granular binding of complexed mAbs to the glomerular capillary wall and activation of complement was observed in immunofluorescence, whereas noncomplexed mAbs did not bind. Immuno-electron microscopy showed binding of complexes to the whole width of the GBM. When HS in the GBM was removed by renal heparinase perfusion the binding of complexed mAb decreased, but did not disappear completely. We conclude that anti-nucleosome mAbs, which do not bind DNA, become DNA reactive once complexed to nucleosomal antigens. These complexed mAbs can bind to the GBM. The binding ligand in the GBM is partly, but not solely, HS. Binding to the GBM of immune complexes containing nucleosomal material might be an important event in the pathogenesis of lupus nephritis. Images PMID:8040312

  11. Three-dimensional quantitative structure-activity relationship modeling of cocaine binding by a novel human monoclonal antibody.

    PubMed

    Paula, Stefan; Tabet, Michael R; Farr, Carol D; Norman, Andrew B; Ball, W James

    2004-01-01

    Human monoclonal antibodies (mAbs) designed for immunotherapy have a high potential for avoiding the complications that may result from human immune system responses to the introduction of nonhuman mAbs into patients. This study presents a characterization of cocaine/antibody interactions that determine the binding properties of the novel human sequence mAb 2E2 using three-dimensional quantitative structure-activity relationship (3D-QSAR) methodology. We have experimentally determined the binding affinities of mAb 2E2 for cocaine and 38 cocaine analogues. The K(d) of mAb 2E2 for cocaine was 4 nM, indicating a high affinity. Also, mAb 2E2 displayed good cocaine specificity, as reflected in its 10-, 1500-, and 25000-fold lower binding affinities for the three physiologically relevant cocaine metabolites benzoylecgonine, ecgonine methyl ester, and ecgonine, respectively. 3D-QSAR models of cocaine binding were developed by comparative molecular similarity index analysis (CoMSIA). A model of high statistical quality was generated showing that cocaine binds to mAb 2E2 in a sterically restricted binding site that leaves the methyl group attached to the ring nitrogen of cocaine solvent-exposed. The methyl ester group of cocaine appears to engage in attractive van der Waals interactions with mAb 2E2, whereas the phenyl group contributes to the binding primarily via hydrophobic interactions. The model further indicated that an increase in partial positive charge near the nitrogen proton and methyl ester carbonyl group enhances binding affinity and that the ester oxygen likely forms an intermolecular hydrogen bond with mAb 2E2. Overall, the cocaine binding properties of mAb 2E2 support its clinical potential for development as a treatment of cocaine overdose and addiction.

  12. Monoclonal antibody, mAb 4C13, an effective detoxicant antibody against ricin poisoning.

    PubMed

    Dong, Na; Luo, Longlong; Wu, Junhua; Jia, Peiyuan; Li, Qian; Wang, Yuxia; Gao, Zhongcai; Peng, Hui; Lv, Ming; Huang, Chunqian; Feng, Jiannan; Li, Hua; Shan, Junjie; Han, Gang; Shen, Beifen

    2015-07-31

    Ricin is a glycoprotein produced in castor seeds and consists of two polypeptide chains named Ricin Toxin A Chain (RTA) and Ricin Toxin B Chain (RTB), linked via a disulfide bridge. Due to its high toxicity, ricin is regarded as a high terrorist risk for the public. However, antibodies can play a pivotal role in neutralizing the toxin. In this research, the anti-toxicant effect of mAb 4C13, a monoclonal antibody (mAb) established using detoxicated ricin as the immunized antigen, was evaluated. Compared with mAb 4F2 and mAb 5G6, the effective mechanism of mAb 4C13 was analyzed by experiments relating to its cytotoxicity, epitope on ricin, binding kinetics with the toxin, its blockage on the protein synthesis inhibition induced by ricin and the intracelluar tracing of its complex with ricin. Our result indicated that mAb 4C13 could recognize and bind to RTA, RTB and exert its high affinity to the holotoxin. Both cytotoxicity and animal toxicity of ricin were well blocked by pre-incubating the toxin with mAb 4C13. By intravenous injection, mAb 4C13 could rescue the mouse intraperitoneally (ip) injected with a lethal dose of ricin (20μg/kg) even at 6h after the intoxication and its efficacy was dependent on its dosage. This research indicated that mAb 4C13 could be an excellent candidate for therapeutic antibodies. Its potent antitoxic efficiency was related to its recognition on the specific epitope with very high affinity and its blockage of protein synthesis inhibition in cytoplasm followed by cellular internalization with ricin. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Highly viscous antibody solutions are a consequence of network formation caused by domain-domain electrostatic complementarities: insights from coarse-grained simulations.

    PubMed

    Buck, Patrick M; Chaudhri, Anuj; Kumar, Sandeep; Singh, Satish K

    2015-01-05

    Therapeutic monoclonal antibody (mAb) candidates that form highly viscous solutions at concentrations above 100 mg/mL can lead to challenges in bioprocessing, formulation development, and subcutaneous drug delivery. Earlier studies of mAbs with concentration-dependent high viscosity have indicated that mAbs with negatively charged Fv regions have a dipole-like quality that increases the likelihood of reversible self-association. This suggests that weak electrostatic intermolecular interactions can form transient antibody networks that participate in resistance to solution deformation under shear stress. Here this hypothesis is explored by parametrizing a coarse-grained (CG) model of an antibody using the domain charges from four different mAbs that have had their concentration-dependent viscosity behaviors previously determined. Multicopy molecular dynamics simulations were performed for these four CG mAbs at several concentrations to understand the effect of surface charge on mass diffusivity, pairwise interactions, and electrostatic network formation. Diffusion coefficients computed from simulations were in qualitative agreement with experimentally determined viscosities for all four mAbs. Contact analysis revealed an overall greater number of pairwise interactions for the two mAbs in this study with high concentration viscosity issues. Further, using equilibrated solution trajectories, the two mAbs with high concentration viscosity issues quantitatively formed more features of an electrostatic network than the other mAbs. The change in the number of these network features as a function of concentration is related to the number of pairwise interactions formed by electrostatic complementarities between antibody domains. Thus, transient antibody network formation caused by domain-domain electrostatic complementarities is the most probable origin of high concentration viscosity for mAbs in this study.

  14. Characterization of anti-CD20 monoclonal antibody produced by transgenic silkworms (Bombyx mori).

    PubMed

    Tada, Minoru; Tatematsu, Ken-ichiro; Ishii-Watabe, Akiko; Harazono, Akira; Takakura, Daisuke; Hashii, Noritaka; Sezutsu, Hideki; Kawasaki, Nana

    2015-01-01

    In response to the successful use of monoclonal antibodies (mAbs) in the treatment of various diseases, systems for expressing recombinant mAbs using transgenic animals or plants have been widely developed. The silkworm (Bombyx mori) is a highly domesticated insect that has recently been used for the production of recombinant proteins. Because of their cost-effective breeding and relatively easy production scale-up, transgenic silkworms show great promise as a novel production system for mAbs. In this study, we established a transgenic silkworm stably expressing a human-mouse chimeric anti-CD20 mAb having the same amino acid sequence as rituximab, and compared its characteristics with rituximab produced by Chinese hamster ovary (CHO) cells (MabThera®). The anti-CD20 mAb produced in the transgenic silkworm showed a similar antigen-binding property, but stronger antibody-dependent cell-mediated cytotoxicity (ADCC) and weaker complement-dependent cytotoxicity (CDC) compared to MabThera. Post-translational modification analysis was performed by peptide mapping using liquid chromatography/mass spectrometry. There was a significant difference in the N-glycosylation profile between the CHO- and the silkworm-derived mAbs, but not in other post-translational modifications including oxidation and deamidation. The mass spectra of the N-glycosylated peptide revealed that the observed biological properties were attributable to the characteristic N-glycan structures of the anti-CD20 mAbs produced in the transgenic silkworms, i.e., the lack of the core-fucose and galactose at the non-reducing terminal. These results suggest that the transgenic silkworm may be a promising expression system for the tumor-targeting mAbs with higher ADCC activity.

  15. Characterization of human monoclonal antibodies that neutralize multiple poliovirus serotypes.

    PubMed

    Puligedda, Rama Devudu; Kouiavskaia, Diana; Al-Saleem, Fetweh H; Kattala, Chandana Devi; Nabi, Usman; Yaqoob, Hamid; Bhagavathula, V Sandeep; Sharma, Rashmi; Chumakov, Konstantin; Dessain, Scott K

    2017-10-04

    Following the eradication of wild poliovirus (PV), achieving and maintaining a polio-free status will require eliminating potentially pathogenic PV strains derived from the oral attenuated vaccine. For this purpose, a combination of non-cross-resistant drugs, such as small molecules and neutralizing monoclonal antibodies (mAbs), may be ideal. We previously isolated chimpanzee and human mAbs capable of neutralizing multiple PV types (cross-neutralization). Here, we describe three additional human mAbs that neutralize types 1 and 2 PV and one mAb that neutralizes all three types. Most bind conformational epitopes and have unusually long heavy chain complementarity determining 3 domains (HC CDR3). We assessed the ability of the mAbs to neutralize A12 escape mutant PV strains, and found that the neutralizing activities of the mAbs were disrupted by different amino acid substitutions. Competitive binding studies further suggested that the specific mAb:PV interactions that enable cross-neutralization differ among mAbs and serotypes. All of the cloned mAbs bind PV in the vicinity of the "canyon", a circular depression around the 5-fold axis of symmetry through which PV recognizes its cellular receptor. We were unable to generate escape mutants to two of the mAbs, suggesting that their epitopes are important for the PV life cycle. These data indicate that PV cross-neutralization involves binding to highly conserved structures within the canyon that binds to the cellular receptor. These may be facilitated by the long HC CDR3 domains, which may adopt alternative binding configurations. We propose that the human and chimpanzee mAbs described here could have potential as anti-PV therapeutics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Marker of cemento-periodontal ligament junction associated with periodontal regeneration.

    PubMed

    Hara, Ryohko; Wato, Masahiro; Tanaka, Akio

    2005-06-01

    The purpose of this study was to identify factors promoting formation of the cemento-periodontal ligament junction. Regeneration of the cemento-periodontal ligament junction is an important factor in recovery of the connective tissue attachment to the cementum and it is important to identify all specific substances that promote its formation. To clarify the substances involved in cemento-periodontal ligament junction formation, we produced a monoclonal antibody (mAb) to human cemento-periodontal ligament junction (designated as the anti-TAP mAb) and examined its immunostaining properties and reactive antigen. Hybridomas producing monoclonal antibody against human cemento-periodontal ligament junction antigens were established by fusing P3U1 mouse myeloma cells with spleen cells from BALB/c mice immunized with homogenized human cemento-periodontal ligament junction. The mAb, the anti-TAP mAb for cemento-periodontal ligament junction, was then isolated. The immunoglobulin class and light chain of the mAb were examined using an isotyping kit. Before immunostaining, antigen determination using an enzymatic method or heating was conducted. Human teeth, hard tissue-forming lesions, and animal tissues were immunostained by the anti-TAP mAb. The anti-TAP mAb was positive in human cemento-periodontal ligament junction and predentin but negative in all other human and animal tissues examined. In the cemento-osseous lesions, the anti-TAP mAb was positive in the peripheral area of the cementum and cementum-like hard tissues and not in the bone and bone-like tissues. The anti-TAP mAb showed IgM (kappa) and recognized phosphoprotein. The anti-TAP mAb is potentially useful for developing new agents promoting cementogenesis and periodontal regeneration.

  17. Neutron Reflection Study of Surface Adsorption of Fc, Fab, and the Whole mAb.

    PubMed

    Li, Zongyi; Li, Ruiheng; Smith, Charles; Pan, Fang; Campana, Mario; Webster, John R P; van der Walle, Christopher F; Uddin, Shahid; Bishop, Steve M; Narwal, Rojaramani; Warwicker, Jim; Lu, Jian Ren

    2017-07-12

    Characterizing the influence of fragment crystallization (Fc) and antigen-binding fragment (Fab) on monoclonal antibody (mAb) adsorption at the air/water interface is an important step to understanding liquid mAb drug product stability during manufacture, shipping, and storage. Here, neutron reflection is used to study the air/water adsorption of a mAb and its Fc and Fab fragments. By varying the isotopic contrast, the adsorbed amount, thickness, orientation, and immersion of the adsorbed layers could be determined unambiguously. While Fc adsorption reached saturation within the hour, its surface adsorbed amount showed little variation with bulk concentration. In contrast, Fab adsorption was slower and the adsorbed amount was concentration dependent. The much higher Fc adsorption, as compared to Fab, was linked to its lower surface charge. Time and concentration dependence of mAb adsorption was dominated by Fab behavior, although both Fab and Fc behaviors contributed to the amount of mAb adsorbed. Changing the pH from 5.5 to 8.8 did not much perturb the adsorbed amount of Fc, Fab, or mAb. However, a small decrease in adsorption was observed for the Fc over pH 8-8.8 and vice versa for the Fab and mAb, consistent with a dominant Fab behavior. As bulk concentration increased from 5 to 50 ppm, the thicknesses of the Fc layers were almost constant at 40 Å, while Fab and mAb layers increased from 45 to 50 Å. These results imply that the adsorbed mAb, Fc, and Fab all retained their globular structures and were oriented with their short axial lengths perpendicular to the interface.

  18. Production of monoclonal antibodies recognising the peptide core of MUC2 intestinal mucin.

    PubMed

    Durrant, L G; Jacobs, E; Price, M R

    1994-01-01

    A peptide based on the tandem repeat sequence of MUC2 mucin was used to produce a series of monoclonal antibodies (MAb). The fine specificity of these antibodies and their implications for MUC2 expression are presented. Three of the MAbs, 996/1, 996/7 and 995/25, were specific to the MUC2p and failed to bind to peptides based on the MUC1,3,4 tandem repeat sequences whereas three others, 994/152, 994/91 and 996/36, cross reacted with the MUC2p and the MUC3 tandem repeat peptide but not the MUC1 and MUC4 peptides. An antigen, affinity purified from a colorectal tumour on one of the MUC2p-specific MAbs, 996/1, was shown to be a high molecular weight polydisperse, mucin-like antigen. Two of the MAbs, 996/1 and 994/152, recognised MUC2 in tissue sections, although the fine specificity varied between the two MAbs, with 994/152 strongly staining gastric, ileum and kidney epithelia, and MAb 996/1 intensely staining colon, liver and prostate tissues. These antibodies also stained a colorectal cell line, and MAb 994/152 also stained a gastric and an ovarian cell line. Six of the MAbs were used to stain colorectal tumour and adjacent 'normal' colonic mucosa sections. All six stained normal mucosa, but only two of the MAbs, 996/1 and 994/91, stained tumour tissue. The staining probably reflects exposure of cryptic epitopes due to varying levels of glycosylation in different tissues. These anti-MUC2p MAbs may help in determining the normal role of MUC2 mucin and how it is subverted in malignancy.

  19. [International classification of various types of monoclonal antibodies].

    PubMed

    Scheen, A J

    2009-01-01

    Significant advances in the development of monoclonal antibodies ("mabs") have been acknowledged during the last two decades. Successive developments led to the marketing of murine antibodies ("o-mab" first, followed by chimeric antibodies ("xi-mab"), humanised antibodies ("zu-mab") and, finally, human monoclonal antibodies ("u-mab"). In order to facilitate the distinction between the various monoclonal antibodies used in clinical practice, an international nomenclature has been proposed with the use of a specific suffix corresponding to the origine/source of "mabs" preceded by an infix referring to the medicine's target. The efforts in developing new types of monoclonal antibodies aimed at improving their pharmacokinetics (longer half-life), pharmacodynamics (better efficacy because of stronger affinity to human receptor), and safety profile (less antigenic and immunogenic reactions). These progresses could be obtained thanks to the remarkable development of molecular biotechnology.

  20. Monoclonal antibodies and toxins--a perspective on function and isotype.

    PubMed

    Chow, Siu-Kei; Casadevall, Arturo

    2012-06-01

    Antibody therapy remains the only effective treatment for toxin-mediated diseases. The development of hybridoma technology has allowed the isolation of monoclonal antibodies (mAbs) with high specificity and defined properties, and numerous mAbs have been purified and characterized for their protective efficacy against different toxins. This review summarizes the mAb studies for 6 toxins--Shiga toxin, pertussis toxin, anthrax toxin, ricin toxin, botulinum toxin, and Staphylococcal enterotoxin B (SEB)--and analyzes the prevalence of mAb functions and their isotypes. Here we show that most toxin-binding mAbs resulted from immunization are non-protective and that mAbs with potential therapeutic use are preferably characterized. Various common practices and caveats of protection studies are discussed, with the goal of providing insights for the design of future research on antibody-toxin interactions.

  1. Monoclonal Antibodies and Toxins—A Perspective on Function and Isotype

    PubMed Central

    Chow, Siu-Kei; Casadevall, Arturo

    2012-01-01

    Antibody therapy remains the only effective treatment for toxin-mediated diseases. The development of hybridoma technology has allowed the isolation of monoclonal antibodies (mAbs) with high specificity and defined properties, and numerous mAbs have been purified and characterized for their protective efficacy against different toxins. This review summarizes the mAb studies for 6 toxins—Shiga toxin, pertussis toxin, anthrax toxin, ricin toxin, botulinum toxin, and Staphylococcal enterotoxin B (SEB)—and analyzes the prevalence of mAb functions and their isotypes. Here we show that most toxin-binding mAbs resulted from immunization are non-protective and that mAbs with potential therapeutic use are preferably characterized. Various common practices and caveats of protection studies are discussed, with the goal of providing insights for the design of future research on antibody-toxin interactions. PMID:22822456

  2. DR5 mAb-conjugated, DTIC-loaded immuno-nanoparticles effectively and specifically kill malignant melanoma cells in vivo.

    PubMed

    Ding, Baoyue; Zhang, Wei; Wu, Xin; Wang, Jeffrey; Xie, Chen; Huang, Xuan; Zhan, Shuyu; Zheng, Yongxia; Huang, Yueyan; Xu, Ningyin; Ding, Xueying; Gao, Shen

    2016-08-30

    We combined chemo- and immunotherapies by constructing dual therapeutic function immuno-nanoparticles (NPs) consisting of death receptor 5 monoclonal antibody (DR5 mAb)-conjugated nanoparticles loaded with dacarbazine (DTIC) (DTIC-NPs-DR5 mAb). We determined the in vivo targeting specificity of DTIC-NPs-DR5 mAb by evaluating distribution in tumor-bearing nude mice using a real-time imaging system. Therapeutic efficacy was assessed in terms of its effect on tumor volume, survival time, histomorphology, microvessel density (MVD), and apoptotic index (AI). Systemic toxicity was evaluated by measuring white blood cells (WBC) counts, alanine aminotransferase (ALT) levels, and creatinine clearance (CR).In vivo and ex vivo imaging indicates that DR5 mAb modification enhanced the accumulation of NPs within the xenograft tumor. DTIC-NPs-DR5 mAb inhibited tumor growth more effectively than DTIC or DR5 mAb alone, indicating that combining DTIC and DR5 mAb through pharmaceutical engineering achieves a better therapeutic effect. Moreover, the toxicity of DTIC-NPs-DR5 mAb was much lower than that of DTIC, implying that DR5 mAb targeting reduces nonspecific uptake of DTIC into normal tissue and thus decreases toxic side effects. These results demonstrate that DTIC-NPs-DR5 mAb is a safe and effective nanoparticle formulation with the potential to improve the efficacy and specificity of melanoma treatment.

  3. DR5 mAb-conjugated, DTIC-loaded immuno-nanoparticles effectively and specifically kill malignant melanoma cells in vivo

    PubMed Central

    Wang, Jeffrey; Xie, Chen; Huang, Xuan; Zhan, Shuyu; Zheng, Yongxia; Huang, Yueyan; Xu, Ningyin; Ding, Xueying; Gao, Shen

    2016-01-01

    We combined chemo- and immunotherapies by constructing dual therapeutic function immuno-nanoparticles (NPs) consisting of death receptor 5 monoclonal antibody (DR5 mAb)-conjugated nanoparticles loaded with dacarbazine (DTIC) (DTIC-NPs-DR5 mAb). We determined the in vivo targeting specificity of DTIC-NPs-DR5 mAb by evaluating distribution in tumor-bearing nude mice using a real-time imaging system. Therapeutic efficacy was assessed in terms of its effect on tumor volume, survival time, histomorphology, microvessel density (MVD), and apoptotic index (AI). Systemic toxicity was evaluated by measuring white blood cells (WBC) counts, alanine aminotransferase (ALT) levels, and creatinine clearance (CR).In vivo and ex vivo imaging indicates that DR5 mAb modification enhanced the accumulation of NPs within the xenograft tumor. DTIC-NPs-DR5 mAb inhibited tumor growth more effectively than DTIC or DR5 mAb alone, indicating that combining DTIC and DR5 mAb through pharmaceutical engineering achieves a better therapeutic effect. Moreover, the toxicity of DTIC-NPs-DR5 mAb was much lower than that of DTIC, implying that DR5 mAb targeting reduces nonspecific uptake of DTIC into normal tissue and thus decreases toxic side effects. These results demonstrate that DTIC-NPs-DR5 mAb is a safe and effective nanoparticle formulation with the potential to improve the efficacy and specificity of melanoma treatment. PMID:27494835

  4. Production and characterization of monoclonal antibodies (mAbs) against human serum albumin (HSA) for the development of an immunoaffinity system with oriented anti-HSA mAbs as immobilized ligand.

    PubMed

    Rajak, Poonam; Vijayalakshmi, M A; Jayaprakash, N S

    2013-05-05

    Proteins present in human serum are of immense importance in the field of biomarker discovery. But, the presence of high-abundant proteins like albumin makes the analysis more challenging because of masking effect on low-abundant proteins. Therefore, removal of albumin using highly specific monoclonal antibodies (mAbs) can potentiate the discovery of low-abundant proteins. In the present study, mAbs against human serum albumin (HSA) were developed and integrated in to an immunoaffinity based system for specific removal of albumin from the serum. Hybridomas were obtained by fusion of Sp2/0 mouse myeloma cells with spleen cells from the mouse immunized with HSA. Five clones (AHSA1-5) producing mAbs specific to HSA were established and characterized by enzyme linked immunosorbent assay (ELISA) and immunoblotting for specificity, sensitivity and affinity in terms of antigen binding. The mAbs were able to bind to both native albumin as well as its glycated isoform. Reactivity of mAbs with different mammalian sera was tested. The affinity constant of the mAbs ranged from 10(8) to 10(9)M(-1). An approach based on oriented immobilization was followed to immobilize purified anti-HSA mAbs on hydrazine activated agarose gel and the dynamic binding capacity of the column was determined. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Mechanisms Mediating Enhanced Neutralization Efficacy of Staphylococcal Enterotoxin B by Combinations of Monoclonal Antibodies*

    PubMed Central

    Dutta, Kaushik; Varshney, Avanish K.; Franklin, Matthew C.; Goger, Michael; Wang, Xiaobo; Fries, Bettina C.

    2015-01-01

    Staphylococcal enterotoxin B (SEB) is a superantigen that cross-links the major histocompatibility complex class II and specific V-β chains of the T-cell receptor, thus forming a ternary complex. Developing neutralizing mAb to disrupt the ternary complex and abrogate the resulting toxicity is a major therapeutic challenge because SEB is effective at very low concentrations. We show that combining two SEB-specific mAbs enhances their efficacy, even though one of the two mAbs by itself has no effect on neutralization. Crystallography was employed for fine-mapping conformational epitopes in binary and ternary complexes between SEB and Fab fragments. NMR spectroscopy was used to validate and identify subtle allosteric changes induced by mAbs binding to SEB. The mapping of epitopes established that a combination of different mAbs can enhance efficacy of mAb-mediated protection from SEB induced lethal shock by two different mechanisms: one mAb mixture promoted clearance of the toxin both in vitro and in vivo by FcR-mediated cross-linking and clearance, whereas the other mAb mixture induced subtle allosteric conformational changes in SEB that perturbed formation of the SEB·T-cell receptor·major histocompatibility complex class II trimer. Finally structural information accurately predicted mAb binding to other superantigens that share conformational epitopes with SEB. Fine mapping of conformational epitopes is a powerful tool to establish the mechanism and optimize the action of synergistic mAb combinations. PMID:25572397

  6. Characterization of chimpanzee/human monoclonal antibodies to vaccinia virus A33 glycoprotein and its variola virus homolog in vitro and in a vaccinia virus mouse protection model.

    PubMed

    Chen, Zhaochun; Earl, Patricia; Americo, Jeffrey; Damon, Inger; Smith, Scott K; Yu, Fujuan; Sebrell, Andrew; Emerson, Suzanne; Cohen, Gary; Eisenberg, Roselyn J; Gorshkova, Inna; Schuck, Peter; Satterfield, William; Moss, Bernard; Purcell, Robert

    2007-09-01

    Three distinct chimpanzee Fabs against the A33 envelope glycoprotein of vaccinia virus were isolated and converted into complete monoclonal antibodies (MAbs) with human gamma 1 heavy-chain constant regions. The three MAbs (6C, 12C, and 12F) displayed high binding affinities to A33 (K(d) of 0.14 nM to 20 nM) and may recognize the same epitope, which was determined to be conformational and located within amino acid residues 99 to 185 at the C terminus of A33. One or more of the MAbs were shown to reduce the spread of vaccinia virus as well as variola virus (the causative agent of smallpox) in vitro and to more effectively protect mice when administered before or 2 days after intranasal challenge with virulent vaccinia virus than a previously isolated mouse anti-A33 MAb (1G10) or vaccinia virus immunoglobulin. The protective efficacy afforded by anti-A33 MAb was comparable to that of a previously isolated chimpanzee/human anti-B5 MAb. The combination of anti-A33 MAb and anti-B5 MAb did not synergize the protective efficacy. These chimpanzee/human anti-A33 MAbs may be useful in the prevention and treatment of vaccinia virus-induced complications of vaccination against smallpox and may also be effective in the immunoprophylaxis and immunotherapy of smallpox and other orthopoxvirus diseases.

  7. Treatment of psoriasis with interleukin-12/23 monoclonal antibody: a systematic review.

    PubMed

    Wu, Yan; Chen, Jing; Li, Yuan-Hong; Ma, Guo-Zhang; Chen, John Z S; Gao, Xing-Hua; Chen, Hong-Duo

    2012-01-01

    To systematically review the efficacy and safety of interleukin-12/23 monoclonal antibody (IL-12/23 mAb) on psoriasis. Relevant randomized controlled trials (RCTs) were identified by systematic literature searches in MEDLINE, OVID, EMBASE, Cochrane Library, and the metaRegister of Controlled Trials. The efficacy outcomes and adverse effects of included RCTs were critically assessed. A total of 3365 participants in 5 multicenter RCTs were included. The RRs of most efficacy outcomes showed significant differences between i) IL-12/23 mAb and placebo at week 12/16; ii) IL-12/23 mAb and etanercept at week 12; iii) IL-12/23 mAb in high dose and IL-12/23 mAb in low dose at week 24/28. Increasing treatment times did not obviously provide additional benefit to efficacy improvement. The adverse events of IL-12/23 mAb were similar to those of controls. Antibodies to IL-12/23 mAb were mostly undetected or shown at low titer. Treatment with IL-12/23 mAb did not influence related biochemical markers. IL-12/23 mAb was effective in the treatment of psoriasis on skin lesions, health-related quality of life and psoriatic arthritis in the short-term. The increase in treatment time points was not associated with additional efficacy and dose-dependence was observed with the ongoing treatment up to week 24/28. The adverse effects were minimal and tolerable.

  8. Mechanisms mediating enhanced neutralization efficacy of Staphylococcal enterotoxin B by combinations of monoclonal antibodies

    DOE PAGES

    Dutta, Kaushik; Varshney, Avanish K.; Franklin, Matthew C.; ...

    2015-01-08

    Staphylococcal enterotoxin B (SEB) is a superantigen that cross-links the major histocompatibility complex class II and specific V-β chains of the T-cell receptor, thus forming a ternary complex. Developing neutralizing mAb to disrupt the ternary complex and abrogate the resulting toxicity is a major therapeutic challenge because SEB is effective at very low concentrations. We show that combining two SEB-specific mAbs enhances their efficacy, even though one of the two mAbs by itself has no effect on neutralization. Crystallography was employed for fine-mapping conformational epitopes in binary and ternary complexes between SEB and Fab fragments. NMR spectroscopy was used tomore » validate and identify subtle allosteric changes induced by mAbs binding to SEB. The mapping of epitopes established that a combination of different mAbs can enhance efficacy of mAb-mediated protection from SEB induced lethal shock by two different mechanisms: one mAb mixture promoted clearance of the toxin both in vitro and in vivo by FcR-mediated cross-linking and clearance, whereas the other mAb mixture induced subtle allosteric conformational changes in SEB that perturbed formation of the SEB·T-cell receptor·major histocompatibility complex class II trimer. Lastly structural information accurately predicted mAb binding to other superantigens that share conformational epitopes with SEB. Fine mapping of conformational epitopes is a powerful tool to establish the mechanism and optimize the action of synergistic mAb combinations.« less

  9. Properties of blocking and non-blocking monoclonal antibodies specific for human macrophage galactose-type C-type lectin (MGL/ClecSF10A/CD301).

    PubMed

    Sano, Yoshihiko; Usami, Katsuaki; Izawa, Ryota; Denda-Nagai, Kaori; Higashi, Nobuaki; Kimura, Toshifumi; Suzuki, Noriko; Irimura, Tatsuro

    2007-01-01

    Monoclonal antibodies (mAbs) specific for the human macrophage galactose-type calcium-type lectin (MGL) were established. The recombinant extracellular domain of MGL was used to immunize a mouse, and 10 hybridoma clones were obtained. Binding of recombinant MGL to asialo-bovine submaxillary mucin was shown to be blocked by mAbs MLD-1, 4 and 6. Immunoprecipitation of MGL from lysates of COS-1 cells transfected with MGL cDNA (form 6A) was achieved with mAbs MLD-1, 4, 7, 8 and 16. Chimeric recombinant proteins between human MGL and mouse MGL1 were used to determine the location of the epitopes for these mAbs. mAbs MLD-8, 13, 15 and 16 interacted with the amino terminal side of the conserved WVDGTD sequence immediately upstream of QPD, whereas mAbs MLD-7, 12 and 17 interacted with the other side. mAbs MLD-1, 4, and 6 apparently required both sides of this boundary. mAbs MLD-15 and 16 were shown to recognize the protein products of alternatively spliced mRNA 6A/8A and 6C/8A, having deletions at the boundary of exons 7 and 8, in addition to full length and other spliced forms of MGL (6A, 6B and 6C), whereas the other mAbs bound only full length and forms 6A, 6B and 6C.

  10. Combined glyco- and protein-Fc engineering simultaneously enhance cytotoxicity and half-life of a therapeutic antibody.

    PubMed

    Monnet, Céline; Jorieux, Sylvie; Souyris, Nathalie; Zaki, Ouafa; Jacquet, Alexandra; Fournier, Nathalie; Crozet, Fabien; de Romeuf, Christophe; Bouayadi, Khalil; Urbain, Rémi; Behrens, Christian K; Mondon, Philippe; Fontayne, Alexandre

    2014-01-01

    While glyco-engineered monoclonal antibodies (mAbs) with improved antibody-dependent cell-mediated cytotoxicity (ADCC) are reaching the market, extensive efforts have also been made to improve their pharmacokinetic properties to generate biologically superior molecules. Most therapeutic mAbs are human or humanized IgG molecules whose half-life is dependent on the neonatal Fc receptor FcRn. FcRn reduces IgG catabolism by binding to the Fc domain of endocytosed IgG in acidic lysosomal compartments, allowing them to be recycled into the blood. Fc-engineered mAbs with increased FcRn affinity resulted in longer in vivo half-life in animal models, but also in healthy humans. These Fc-engineered mAbs were obtained by alanine scanning, directed mutagenesis or in silico approach of the FcRn binding site. In our approach, we applied a random mutagenesis technology (MutaGen™) to generate mutations evenly distributed over the whole Fc sequence of human IgG1. IgG variants with improved FcRn-binding were then isolated from these Fc-libraries using a pH-dependent phage display selection process. Two successive rounds of mutagenesis and selection were performed to identify several mutations that dramatically improve FcRn binding. Notably, many of these mutations were unpredictable by rational design as they were located distantly from the FcRn binding site, validating our random molecular approach. When produced on the EMABling(®) platform allowing effector function increase, our IgG variants retained both higher ADCC and higher FcRn binding. Moreover, these IgG variants exhibited longer half-life in human FcRn transgenic mice. These results clearly demonstrate that glyco-engineering to improve cytotoxicity and protein-engineering to increase half-life can be combined to further optimize therapeutic mAbs.

  11. Microvascular pericytes express platelet-derived growth factor-beta receptors in human healing wounds and colorectal adenocarcinoma.

    PubMed Central

    Sundberg, C.; Ljungström, M.; Lindmark, G.; Gerdin, B.; Rubin, K.

    1993-01-01

    The expression of platelet-derived growth factor- beta (PDGF-beta) receptors in the microvasculature of human healing wounds and colorectal adenocarcinoma was investigated. Frozen sections were subjected to double immunofluorescence staining using monoclonal antibodies (MAbs) specific for pericytes (MAb 225.28 recognizing the high-molecular weight-melanoma-associated antigen, expressed by activated pericytes during angiogenesis), endothelial cells (MAb PAL-E), laminin, as well as PDGF-beta receptors (MAb PDGFR-B2) and its ligand PDGF-B chain (MAb PDGF 007). Stained sections were analyzed by computer-aided imaging processing that allowed for a numerical quantification of the degree of colocalization of the investigated antigens. An apparent background colocalization, varying between 23 and 35%, between markers for cells not expected to co-localize was recorded. This background could be due to limitations of camera resolution, to out-of-focus fluorescence, and to interdigitations of the investigated structures. In all six tumor specimens, co-localization of PDGF-beta receptors and PAL-E was not different from the background co-localization, whereas that of PDGF-beta receptors and high-molecular weight-melanoma-associated antigen was significantly higher with mean values between 57 and 71%. Qualitatively, the same pattern was obtained in the two investigated healing wounds. PDGF-B chain did not co-localize with either PAL-E or high-molecular weight-melanoma-associated antigen, but PDGF-B chain-expressing cells were, however, frequently found juxtaposed to the microvasculature. The expression of PDGF-beta receptors on pericytes in activated microvessels and the presence of PDGF-B chain-expressing cells in close proximity to the microvasculature of healing wounds and colorectal adenocarcinoma is compatible with a role for PDGF in the physiology of the microvasculature in these conditions. Images Figure 1 p1381-a Figure 3 Figure 4 PMID:8238254

  12. Improving the large scale purification of the HIV microbicide, griffithsin.

    PubMed

    Fuqua, Joshua L; Wanga, Valentine; Palmer, Kenneth E

    2015-02-22

    Griffithsin is a broad spectrum antiviral lectin that inhibits viral entry and maturation processes through binding clusters of oligomannose glycans on viral envelope glycoproteins. An efficient, scaleable manufacturing process for griffithsin active pharmaceutical ingredient (API) is essential for particularly cost-sensitive products such as griffithsin -based topical microbicides for HIV-1 prevention in resource poor settings. Our previously published purification method used ceramic filtration followed by two chromatography steps, resulting in a protein recovery of 30%. Our objective was to develop a scalable purification method for griffithsin expressed in Nicotiana benthamiana plants that would increase yield, reduce production costs, and simplify manufacturing techniques. Considering the future need to transfer griffithsin manufacturing technology to resource poor areas, we chose to focus modifying the purification process, paying particular attention to introducing simple, low-cost, and scalable procedures such as use of temperature, pH, ion concentration, and filtration to enhance product recovery. We achieved >99% pure griffithsin API by generating the initial green juice extract in pH 4 buffer, heating the extract to 55°C, incubating overnight with a bentonite MgCl2 mixture, and final purification with Capto™ multimodal chromatography. Griffithsin extracted with this protocol maintains activity comparable to griffithsin purified by the previously published method and we are able to recover a substantially higher yield: 88 ± 5% of griffithsin from the initial extract. The method was scaled to produce gram quantities of griffithsin with high yields, low endotoxin levels, and low purification costs maintained. The methodology developed to purify griffithsin introduces and develops multiple tools for purification of recombinant proteins from plants at an industrial scale. These tools allow for robust cost-effective production and purification of griffithsin. The methodology can be readily scaled to the bench top or industry and process components can be used for purification of additional proteins based on biophysical characteristics.

  13. Role of individual cysteine residues in the processing and antigenicity of the measles virus haemagglutinin protein.

    PubMed

    Hu, A; Norrby, E

    1994-09-01

    The haemagglutinin (H) protein is the dominant envelope glycoprotein of measles virus. The protein contains 13 cysteine residues among its 617 amino acids and all are located in its ectodomain. In previous studies, the capacity of a panel of monoclonal antibodies (MAbs) to react with continuous and discontinuous epitopes was defined. It was shown that the absence of disulphide bonds impaired the capacity of the protein to react with MAbs specific for the discontinuous epitopes. In the present study, our objective was to determine the contribution of individual cysteine residues to the folding of H protein into its native conformation. Site-directed oligonucleotide mutagenesis was used to create 13 mutants, each with a serine replacing a cysteine. The mutated genes were directly expressed in the BHK-21 cells by use of a vaccinia virus-driven T7 polymerase system. Investigations of the antigenic structure and intracellular processing properties of the mutant proteins reveal the following outcome. (i) Replacements of cysteine residues 139, 154, 188, 386, 570 or 606 had no detectable effect on the antigenic structure and intracellular processing of the H protein. However, a mutant with a replaced cysteine residue 154 displayed modified migration properties. (ii) Alterations of cysteine residues 381 or 494 displayed a moderate effect on H protein properties. The two mutants expressed discontinuous epitopes, indicating that they were partially folded, but they did not oligomerize, did not reach the medial Golgi complex and failed to be transported to the cell surface. (iii) Substitutions of cysteine residues 287, 300, 394, 579 or 583 resulted in a complete loss of binding of the MAbs that recognize the discontinuous epitopes, with no effect on the binding of a MAb reacting with a continuous epitope. No dimeric form of the proteins was observed and only high mannose oligosaccharides were demonstrated in these mutants, suggesting that the modified proteins did not oligomerize and were retained in the endoplasmic reticulum. In conclusion, cysteine residues 287, 300, 381, 394, 494, 579 and 583 appear to play a particularly critical role in the antigenic structure and processing of the H molecules and they probably participate in the inter- or intramolecular disulphide bonding.

  14. Generation and Application of Monoclonal Antibody Against Lycopene.

    PubMed

    Tsibezov, Valeriy V; Bashmakov, Yuriy K; Pristenskiy, Dmitry V; Zigangirova, Naylia A; Kostina, Ludmila V; Chalyk, Natalya E; Kozlov, Alexey Y; Morgunova, Elena Y; Chernyshova, Marina P; Lozbiakova, Marina V; Kyle, Nigel H; Petyaev, Ivan M

    2017-04-01

    A monoclonal antibody (Mab) against lycopene was developed from hybridoma clones obtained from BALB/c mice immunized with trans-isomer of lycopene (t-lycopene, t-LC) conjugated with colloidal gold particles. An alternating immunization schedule which included injection of both formulations of immunogen (without and with Freund's adjuvant) was most effective in the elucidation of a measurable immune response to the t-Lycopene conjugate. Selected hybridoma clones were able to produce an Mab positive in competition assay. In particular, preincubation of 6B9 Mabs with t-LC abolished the ability of 6B9 Mabs to bind LC in the competition assay. Mabs produced by other clones (4F10, 4A3, and 3B12) worked similarly. Analysis of antigen specificity showed that 6B9 Mab raised against t-LC did not recognize other carotenoids such as lutein and carotene. Mab 6B9 was shown to recognize lycopene on a glass surface and in the settings of indirect immunofluorescence experiments performed in cultured hepatocytes and alveolar macrophages incubated with and without lycopene, as well as in sebum and corneocyte specimens from the skin of volunteers supplemented with nutraceutical formulation of lycopene. Newly generated Mabs against lycopene may provide a valuable tool for different analytical assays of lycopene content in various biological, agricultural, and food products.

  15. A novel blocking monoclonal antibody recognizing a distinct epitope of human CD40 molecule.

    PubMed

    Zhuang, Y; Huang, J; Zhou, Z; Ge, Y; Fan, Y; Qi, C; Zhen, L; Monchatre, E; Edelman, L; Zhang, X

    2005-01-01

    CD40, a member of the tumor necrosis factor receptor superfamily, is an important costimulatory molecule during the immune response. Here, we report a blocking mouse antihuman CD40 monoclonal antibody, mAb 3G3, of which the specificity was verified by flow cytometry and Western blot. It was shown by competition test that 3G3 bound to a different site (epitope) of CD40 from the reported CD40 mAbs, including clone mAb89, 3B2, and 5C11. It was also found that mAb 3G3 could inhibit homotypic aggregation of Daudi cells induced by the agonistic anti-CD40 mAb 5C11. Furthermore, mAb 3G3 effectively inhibited the proliferation of peripheral blood mononuclear cells in mixed lymphocyte reaction assay. Finally, a sensitive and specific soluble CD40 (sCD40) ELISA kit was established by matching mAb 3G3 with 5C11, and it was found that the levels of sCD40 in sera from patients with immune disorders such as hyperthyroidism, chronic nephritis, and rheumatoid arthritis were obviously higher than those from normal individuals. Thus, this blocking anti-CD40 mAb provides a novel tool for the study of CD40.

  16. Antibody therapeutics for treating prostate cancer: where are we now and what comes next?

    PubMed

    Vlachostergios, Panagiotis J; Galletti, Giuseppe; Palmer, Jessica; Lam, Linda; Karir, Beerinder S; Tagawa, Scott T

    2017-02-01

    Progress in the understanding of molecular events of carcinogenesis and cancer evolution as well as the identification of tumor antigens has led to the development of different targeted therapeutic approaches, including the use of monoclonal antibodies (mAbs). Prostate cancer (PC) is highly amenable to mAb targeting given the existence of prostate-specific targets and the natural history and localization of metastatic disease. Areas covered: Several aspects of the PC phenotype, including growth factors, angiogenesis mediators, bone microenvironment signals, and immune evasion pathways, have become areas of ongoing investigation in terms of mAb targeting. These are reviewed. The greatest success so far has been the development of mAbs against prostate-specific tumor antigen (PSMA), which opened an opportunity to improve diagnostic accuracy and simultaneously target metastatic disease. Expert opinion: As mAb use in PC continues to evolve, more accurate imaging of the extent of disease and more effective mAb therapies (naked or conjugated with drugs, toxins or radioactive molecules) are emerging. In addition, the combination of mAbs with other treatment modalities is expected to further improve responses and overall survival. Identification of validated biomarkers is necessary for better recognition of patient subgroups who will derive the greatest benefit from mAb therapy.

  17. Immunization of A4galt-deficient mice with glycosphingolipids from renal cell cancers resulted in the generation of anti-sulfoglycolipid monoclonal antibodies.

    PubMed

    Ando, Reiko; Tokuda, Noriyo; Yamamoto, Tokunori; Ikeda, Kazutaka; Hashimoto, Noboru; Taguchi, Ryo; Fan, Xiaoen; Furukawa, Keiko; Niimura, Yukio; Suzuki, Akemi; Goto, Momokazu; Furukawa, Koichi

    2016-04-01

    In this study, we immunized Gb3/CD77 synthase gene (A4galt) knockout (KO) mice with glycosphingolipids (GSLs) extracted from 3 renal cell cancer (RCC) cell lines to raise monoclonal antibodies (mAbs) reactive with globo-series GSLs specifically expressed in RCCs. Although a number of mAbs reactive with globo-series GSLs were generated, they reacted with both RCC cell lines and normal kidney cells. When we analyzed recognized antigens by mAbs that were specifically reactive with RCC, but not with normal kidney cells at least on the cell surface, many of them turned out to be reactive with sulfoglycolipids. Eight out of 11 RCC-specific mAbs were reactive with SM2 alone, and the other 3 mAbs were more broadly reactive with sulfated glycolipids, i.e. SM3 and SM4 as well as SM2. In the immunohistochemistry, these anti-sulfoglycolipids mAbs showed RCC-specific reaction, with no or minimal reaction with adjacent normal tissues. Thus, immunization of A4galt KO mice with RCC-derived GSLs resulted in the generation of anti sulfated GSL mAbs, and these mAbs may be applicable for the therapeutics for RCC patients.

  18. Structure and vibrational analysis of methyl 3-amino-2-butenoate.

    PubMed

    Berenji, Ali Reza; Tayyari, Sayyed Faramarz; Rahimizadeh, Mohammad; Eshghi, Hossein; Vakili, Mohammad; Shiri, Ali

    2013-02-01

    The molecular structure and vibrational spectra of methyl 3-(amino)-2-butenoate (MAB) and its deuterated analogous, D(3)MAB, were investigated using density functional theory (DFT) calculations. The geometrical parameters and harmonic vibrational wavenumbers of MAB and D(3)MAB were obtained at the B3LYP/6-311++G(d,p) level. The calculated vibrational wavenumbers were compared with the corresponding experimental results. The assignment of the IR and Raman spectra of MAB and D(3)MAB was facilitated by calculating the anharmonic wavenumbers at the B3LYP/6-311G(d,p) level as well as recording and calculating the MAB spectra in CCl(4) solution. The assigned normal modes were compared with a similar molecule, 4-amino-3-penten-2-one (APO). The theoretical results were in good agreement with the experimental data. All theoretical and experimental results indicate that substitution of a methyl group with a methoxy group considerably weakens the intramolecular hydrogen bond and reduces the π-electron delocalization in the chelated ring system. The IR spectra also indicate that in the solid state, MAB is not only engaged in an intramolecular hydrogen bond, but also forms an intermolecular hydrogen bond. However, the intermolecular hydrogen bond will be removed in dilute CCl(4) solution. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. H2Mab-77 is a Sensitive and Specific Anti-HER2 Monoclonal Antibody Against Breast Cancer.

    PubMed

    Itai, Shunsuke; Fujii, Yuki; Kaneko, Mika K; Yamada, Shinji; Nakamura, Takuro; Yanaka, Miyuki; Saidoh, Noriko; Chang, Yao-Wen; Handa, Saori; Takahashi, Maki; Suzuki, Hiroyoshi; Harada, Hiroyuki; Kato, Yukinari

    2017-08-01

    Human epidermal growth factor receptor 2 (HER2) plays a critical role in the progression of breast cancers, and HER2 overexpression is associated with poor clinical outcomes. Trastuzumab is an anti-HER2 humanized antibody that leads to significant survival benefits in patients with HER2-positive metastatic breast cancers. In this study, we developed novel anti-HER2 monoclonal antibodies (mAbs) and characterized their efficacy in flow cytometry, Western blot, and immunohistochemical analyses. Initially, we expressed the full length or ectodomain of HER2 in LN229 glioblastoma cells and then immunized mice with ectodomain of HER2 or LN229/HER2, and performed the first screening by enzyme-linked immunosorbent assays using ectodomain of HER2. Subsequently, we selected mAbs according to their efficacy in flow cytometry (second screening), Western blot (third screening), and immunohistochemical analyses (fourth screening). Among 100 mAb clones, only three mAbs reacted with HER2 in Western blot, and clone H 2 Mab-77 (IgG 1 , kappa) was selected. Finally, immunohistochemical analyses with H 2 Mab-77 showed sensitive and specific reactions against breast cancer cells, warranting the use of H 2 Mab-77 to detect HER2 in pathological analyses of breast cancers.

  20. Addressing the medicinal chemistry bottleneck: a lean approach to centralized purification.

    PubMed

    Weller, Harold N; Nirschl, David S; Paulson, James L; Hoffman, Steven L; Bullock, William H

    2012-09-10

    The use of standardized lean manufacturing principles to improve drug discovery productivity is often thought to be at odds with fostering innovation. This manuscript describes how selective implementation of a lean optimized process, in this case centralized purification for medicinal chemistry, can improve operational productivity and increase scientist time available for innovation. A description of the centralized purification process is provided along with both operational and impact (productivity) metrics, which indicate lower cost, higher output, and presumably more free time for innovation as a result of the process changes described.

  1. Choices of capture chromatography technology in antibody manufacturing processes.

    PubMed

    DiLeo, Michael; Ley, Arthur; Nixon, Andrew E; Chen, Jie

    2017-11-15

    The capture process employed in monoclonal antibody downstream purification is not only the most critically impacted process by increased antibody titer resulting from optimized mammalian cell culture expression systems, but also the most important purification step in determining overall process throughput, product quality, and economics. Advances in separation technology for capturing antibodies from complex feedstocks have been one focus of downstream purification process innovation for past 10 years. In this study, we evaluated new generation chromatography resins used in the antibody capture process including Protein A, cation exchange, and mixed mode chromatography to address the benefits and unique challenges posed by each chromatography approach. Our results demonstrate the benefit of improved binding capacity of new generation Protein A resins, address the concern of high concentration surge caused aggregation when using new generation cation exchange resins with over 100mg/mL binding capacity, and highlight the potential of multimodal cation exchange resins for capture process design. The new landscape of capture chromatography technologies provides options to achieve overall downstream purification outcome with high product quality and process efficiency. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Antigen analyses of serotypes of streptococcus mutans using a monoclonal antibody elaborated against serotype g polysaccharide antigen.

    PubMed

    Okahashi, N; Nishida, Y; Futakami, K; Hamada, S

    1985-04-01

    A hybridoma (F4B) which produced a monoclonal antibody (mAb) specific for serotype g carbohydrate antigen (RRg) of Streptococcus mutans 6715 was obtained. The F4B mAb cross-reacted with purified carbohydrate antigens of serotype d (RRd) and serotype h (TCAh). In immunodiffusion tests, F4B mAb produced a stable precipitin band with RRg, while the band developed between the mAb and RRd/TCAh in the cold disappeared when incubated at room temperature. The immunoprecipitin reaction between F4B mAb and RRg was strongly inhibited upon addition of lactose.

  3. Addition of chlorine during water purification reduces iodine content of drinking water and contributes to iodine deficiency.

    PubMed

    Samson, L; Czegeny, I; Mezosi, E; Erdei, A; Bodor, M; Cseke, B; Burman, K D; Nagy, E V

    2012-01-01

    Drinking water is the major natural source of iodine in many European countries. In the present study, we examined possible sites of iodine loss during the usual water purification process.Water samples from 6 sites during the technological process were taken and analyzed for iodine content. Under laboratory circumstances, prepared iodine in water solution has been used as a model to test the effect of the presence of chlorine. Samples from the purification sites revealed that in the presence of chlorine there is a progressive loss of iodine from the water. In the chlorine concentrations employed in the purification process, 24-h chlorine exposure eliminated more than 50% of iodine when the initial iodine concentration was 250 μg/l or less. Iodine was completely eliminated if the starting concentration was 16 μg/l.We conclude that chlorine used during water purification may be a major contributor to iodine deficiency in European communities.

  4. Synergistic anti-tumor therapy by a comb-like multifunctional antibody nanoarray with exceptionally potent activity

    NASA Astrophysics Data System (ADS)

    Li, Huafei; Sun, Yun; Chen, Di; Zhao, He; Zhao, Mengxin; Zhu, Xiandi; Ke, Changhong; Zhang, Ge; Jiang, Cheng; Zhang, Li; Zhang, Fulei; Wei, Huafeng; Li, Wei

    2015-10-01

    Simultaneously blocking multiple mediators offers new hope for the treatment of complex diseases. However, the curative potential of current combination therapy by chronological administration of separate monoclonal antibodies (mAbs) or multi-specific mAbs is still moderate due to inconvenient manipulation, low cooperative effectors, poor pharmacokinetics and insufficient tumor accumulation. Here, we describe a facile strategy that arms distinct mAbs with cooperative effectors onto a long chain to form a multicomponent comb-like nano mAb. Unlike dissociative parental mAbs, the multifunctional mAb nanoarray (PL-RB) constructed from type I/II anti-CD20 mAbs shows good pharmacokinetics. This PL-RB simultaneously targets distinct epitopes on a single antigen (Ag) and neighboring Ags on different lymphocytes. This unique intra- and intercellular Ag cross-linking endows the multifunctional mAb nanoarray with potent apoptosis activity. The exceptional apoptosis, complement-dependent cytotoxicity (CDC), antibody-dependent cellular cytotoxicity (ADCC) that are synchronously evoked by the nano PL-RB are further synergistically promoted via enhanced permeability and retention (EPR), which resulted in high intratumor accumulation and excellent anti-lymphoma efficiency.

  5. Impact of oxygen on the coexistence of nitrification, denitrification, and sulfate reduction in oxygen-based membrane aerated biofilm.

    PubMed

    Liu, Hong; Tan, Shuying; Sheng, Zhiya; Yu, Tong; Liu, Yang

    2015-03-01

    Membrane aerated biofilms (MABs) are subject to "counter diffusion" of oxygen and substrates. In a membrane aerated biofilm reactor, gases (e.g., oxygen) diffuse through the membrane into the MAB, and liquid substrates pass from the bulk liquid into the MAB. This behavior can result in a unique biofilm structure in terms of microbial composition, distribution, and community activity in the MAB. Previous studies have shown simultaneous aerobic oxidation, nitrification, and denitrification within a single MAB. Using molecular techniques, we investigated the growth of sulfate-reducing bacteria (SRB) in the oxygen-based MAB attached to a flat sheet membrane. Denaturing gradient gel electrophoresis of the amplified 16S rRNA gene fragments and functional gene fragments specific for ammonia-oxidizing bacteria (amoA), denitrifying bacteria (nirK), and SRB (dsrB) demonstrated the coexistence of nitrifiers, denitrifiers, and SRB communities within a single MAB. The functional diversities of SRB and denitrifiers decreased with an increase in the oxygen concentration in the bulk water of the reactor.

  6. Production of a Chaetomium globosum Enolase Monoclonal Antibody

    PubMed Central

    Nayak, Ajay P.; Lemons, Angela R.; Rittenour, William R.; Hettick, Justin M.; Beezhold, Donald H.

    2014-01-01

    Chaetomium globosum is a hydrophilic fungal species and a contaminant of water-damaged building materials in North America. Methods to detect Chaetomium species include subjective identification of ascospores, viable culture, or molecular-based detection methods. In this study, we describe the production and initial characterization of a monoclonal antibody (MAb) for C. globosum enolase. MAb 1C7, a murine IgG1 isotype MAb, was produced and reacted with recombinant C. globosum enolase (rCgEno) in an enzyme-linked immunosorbent assay and with a putative C. globosum enolase in a Western blot. Epitope mapping showed MAb 1C7 specific reactivity to an enolase decapeptide, LTYEELANLY, that is highly conserved within the fungal class Sordariomycetes. Cross-reactivity studies showed MAb 1C7 reactivity to C. atrobrunneum but not C. indicum. MAb 1C7 did not react with enolase from Aspergillus fumigatus, which is divergent in only two amino acids within this epitope. The results of this study suggest potential utility of MAb 1C7 in Western blot applications for the detection of Chaetomium and other Sordariomycetes species. PMID:25495488

  7. Synergistic anti-tumor therapy by a comb-like multifunctional antibody nanoarray with exceptionally potent activity.

    PubMed

    Li, Huafei; Sun, Yun; Chen, Di; Zhao, He; Zhao, Mengxin; Zhu, Xiandi; Ke, Changhong; Zhang, Ge; Jiang, Cheng; Zhang, Li; Zhang, Fulei; Wei, Huafeng; Li, Wei

    2015-10-28

    Simultaneously blocking multiple mediators offers new hope for the treatment of complex diseases. However, the curative potential of current combination therapy by chronological administration of separate monoclonal antibodies (mAbs) or multi-specific mAbs is still moderate due to inconvenient manipulation, low cooperative effectors, poor pharmacokinetics and insufficient tumor accumulation. Here, we describe a facile strategy that arms distinct mAbs with cooperative effectors onto a long chain to form a multicomponent comb-like nano mAb. Unlike dissociative parental mAbs, the multifunctional mAb nanoarray (PL-RB) constructed from type I/II anti-CD20 mAbs shows good pharmacokinetics. This PL-RB simultaneously targets distinct epitopes on a single antigen (Ag) and neighboring Ags on different lymphocytes. This unique intra- and intercellular Ag cross-linking endows the multifunctional mAb nanoarray with potent apoptosis activity. The exceptional apoptosis, complement-dependent cytotoxicity (CDC), antibody-dependent cellular cytotoxicity (ADCC) that are synchronously evoked by the nano PL-RB are further synergistically promoted via enhanced permeability and retention (EPR), which resulted in high intratumor accumulation and excellent anti-lymphoma efficiency.

  8. Purification process for vertically aligned carbon nanofibers

    NASA Technical Reports Server (NTRS)

    Nguyen, Cattien V.; Delziet, Lance; Matthews, Kristopher; Chen, Bin; Meyyappan, M.

    2003-01-01

    Individual, free-standing, vertically aligned multiwall carbon nanotubes or nanofibers are ideal for sensor and electrode applications. Our plasma-enhanced chemical vapor deposition techniques for producing free-standing and vertically aligned carbon nanofibers use catalyst particles at the tip of the fiber. Here we present a simple purification process for the removal of iron catalyst particles at the tip of vertically aligned carbon nanofibers derived by plasma-enhanced chemical vapor deposition. The first step involves thermal oxidation in air, at temperatures of 200-400 degrees C, resulting in the physical swelling of the iron particles from the formation of iron oxide. Subsequently, the complete removal of the iron oxide particles is achieved with diluted acid (12% HCl). The purification process appears to be very efficient at removing all of the iron catalyst particles. Electron microscopy images and Raman spectroscopy data indicate that the purification process does not damage the graphitic structure of the nanotubes.

  9. Purification of Tronoh Silica Sand via preliminary process of mechanical milling

    NASA Astrophysics Data System (ADS)

    H, Nazratulhuda; M, Othman

    2016-02-01

    The purification of Tronoh silica sand is an important step in expanding technical applications of this silica sand. However no research on purifying of Tronoh silica sand has been reported. This study is focused on ball milling technique as a preliminary technique for Tronoh silica sand purification. The objectives are to study the effect of ball milling to the purification of the silica sand and to analyze its characteristics after the ball milling process. The samples before and after milling process were analyzed by using XRF, XRD, SEM and TEM. Results showed that the purity of SiO2 was increased, the size of the particles has been reduced and the surface area has increased. The crystalline phases for the silica before and after 4 hour milling time were remained constant.

  10. Predicting the clinical efficacy and potential adverse effects of a humanized anticocaine monoclonal antibody

    PubMed Central

    Norman, Andrew B; Ball, William J

    2012-01-01

    The effects of a humanized monoclonal antibody (mAb) having high affinity and specificity for cocaine in animal models are reviewed. The mAb reduced the concentration of cocaine in the brain of mice after intravenous injection of cocaine. In addition, the mAb increased the concentration of cocaine required to reinstate cocaine self-administration. These effects may predict clinical efficacy of a passive immunotherapy for reducing the probability of cocaine-induced relapse. However, in the presence of the mAb, once cocaine self-administration was reinstated, the consumption rate of cocaine was increased. This effect is hypothesized to result from a pharmacokinetic/pharmacodynamic interaction. A humanized mAb should minimize adverse events related to the immunogenicity of the mAb protein, and the specificity for cocaine should avoid adverse events related to interactions with physiologically relevant endogenous proteins. PMID:22401638

  11. Antibody Production in Plants and Green Algae.

    PubMed

    Yusibov, Vidadi; Kushnir, Natasha; Streatfield, Stephen J

    2016-04-29

    Monoclonal antibodies (mAbs) have a wide range of modern applications, including research, diagnostic, therapeutic, and industrial uses. Market demand for mAbs is high and continues to grow. Although mammalian systems, which currently dominate the biomanufacturing industry, produce effective and safe recombinant mAbs, they have a limited manufacturing capacity and high costs. Bacteria, yeast, and insect cell systems are highly scalable and cost effective but vary in their ability to produce appropriate posttranslationally modified mAbs. Plants and green algae are emerging as promising production platforms because of their time and cost efficiencies, scalability, lack of mammalian pathogens, and eukaryotic posttranslational protein modification machinery. So far, plant- and algae-derived mAbs have been produced predominantly as candidate therapeutics for infectious diseases and cancer. These candidates have been extensively evaluated in animal models, and some have shown efficacy in clinical trials. Here, we review ongoing efforts to advance the production of mAbs in plants and algae.

  12. Anti-GD2 mAbs and next-generation mAb-based agents for cancer therapy

    PubMed Central

    Perez Horta, Zulmarie; Goldberg, Jacob L; Sondel, Paul M

    2016-01-01

    Tumor-specific monoclonal antibodies (mAbs) have demonstrated efficacy in the clinic, becoming an important approach for cancer immunotherapy. Due to its limited expression on normal tissue, the GD2 disialogangloside expressed on neuroblastoma cells is an excellent candidate for mAb therapy. In 2015, dinutuximab (an anti-GD2 mAb) was approved by the US FDA and is currently used in a combination immunotherapeutic regimen for the treatment of children with high-risk neuroblastoma. Here, we review the extensive preclinical and clinical development of anti-GD2 mAbs and the different mechanisms by which they mediate tumor cell killing. In addition, we discuss different mAb-based strategies that capitalize on the targeting ability of anti-GD2 mAbs to potentially deliver, as monotherapy, or in combination with other treatments, improved antitumor efficacy. PMID:27485082

  13. Comparison of the pharmacokinetics, biodistribution and dosimetry of monoclonal antibodies OC125, OV-TL 3, and 139H2 as IgG and F(ab')2 fragments in experimental ovarian cancer.

    PubMed

    Molthoff, C F; Pinedo, H M; Schlüper, H M; Nijman, H W; Boven, E

    1992-05-01

    Monoclonal antibody (MAb) 139H2 was previously shown to localise specifically into ovarian cancer xenografts in nude mice. MAb 139H2 was compared with MAbs OC125 and OV-TL 3, all reactive with ovarian carcinomas, for the binding characteristics as IgG and F(ab')2 fragments with the use of the OVCAR-3 cell line grown in vitro and as s.c. xenografts. Immunoperoxidase staining of OVCAR-3 tissue sections with MAbs OC125 and 139H2 was heterogeneous, whereas MAb OV-TL 3 showed homogeneity. No differences in binding were observed between IgG and F(ab')2. The avidity expressed as apparent affinity constants of MAbs OC125, OV-TL 3 and 139H2 for OVAR-3 cells were 1 x 10(9) M-1, 1 x 10(9) M-1, and 1 x 10(8) M-1, while the number of antigenic determinants were 5 x 10(6), 1 x 10(6) and 7 x 10(6), respectively. In OVCAR-3 bearing nude mice the blood half-lives of the MAbs as IgG and F(ab')2 were approximately 50 h and 6 h, respectively. Maximum tumour uptake for the whole MAbs OC125, OV-TL 3, 139H2 and a control MAb 2C7 was 8.5%, 17.7%, 11.1% and 2.5% of the injected dose g-1, reached at 72 h after injection. For the respective F(ab')2 fragments, the maximum values were 5.2%, 10.0%, 5.5% and 1.9% of the injected dose g-1, reached between 6 h and 15 h. Tumour to non-tumour ratios were more favourable for the F(ab')2 fragments as compared to those for MAbs as IgG. Biodistribution in mice bearing a control tumour confirmed the specificity of tumour localisation of MAbs OC125, OV-TL 3 and 139H2. After injection of a tracer dose of 10 microCi of radiolabelled MAbs OC125, OV-TL 3 and 139H2 as IgG, tumours received 38 cGy, and 9 cGy. In our OVCAR-3 model, a ranking in efficiency in tumour localisation would indicate MAb OV-TL 3 as most favourable MAb, but cross-reactivity with subpopulations of human white blood cells might hamper its clinical use. Dosimetric data indicate a 4-fold higher radiation absorbed dose to tumours for IgG compared with F(ab')2 fragments.

  14. EB66 cell line, a duck embryonic stem cell-derived substrate for the industrial production of therapeutic monoclonal antibodies with enhanced ADCC activity.

    PubMed

    Olivier, Stéphane; Jacoby, Marine; Brillon, Cédric; Bouletreau, Sylvana; Mollet, Thomas; Nerriere, Olivier; Angel, Audrey; Danet, Sévérine; Souttou, Boussad; Guehenneux, Fabienne; Gauthier, Laurent; Berthomé, Mathilde; Vié, Henri; Beltraminelli, Nicola; Mehtali, Majid

    2010-01-01

    Monoclonal antibodies (mAbs) represent the fastest growing class of therapeutic proteins. The increasing demand for mAb manufacturing and the associated high production costs call for the pharmaceutical industry to improve its current production processes or develop more efficient alternative production platforms. The experimental control of IgG fucosylation to enhance antibody dependent cell cytotoxicity (ADCC) activity constitutes one of the promising strategies to improve the efficacy of monoclonal antibodies and to potentially reduce the therapeutic cost. We report here that the EB66 cell line derived from duck embryonic stem cells can be efficiently genetically engineered to produce mAbs at yields beyond a 1 g/L, as suspension cells grown in serum-free culture media. EB66 cells display additional attractive grown characteristics such as a very short population doubling time of 12 to 14 hours, a capacity to reach very high cell density (> 30 million cells/mL) and a unique metabolic profile resulting in low ammonium and lactate accumulation and low glutamine consumption, even at high cell densities. Furthermore, mAbs produced on EB66 cells display a naturally reduced fucose content resulting in strongly enhanced ADCC activity. The EB66 cells have therefore the potential to evolve as a novel cellular platform for the production of high potency therapeutic antibodies.

  15. Anti-CXCL4 monoclonal antibody accelerates telogen to anagen transition and attenuates apoptosis of the hair follicle in mice

    PubMed Central

    Guan, Wen; Yu, Xiaolan; Li, Jingjing; Deng, Qing; Zhang, Yang; Gao, Jing; Xia, Peng; Yuan, Yunsheng; Gao, Jin; Zhou, Liang; Han, Wei; Yu, Yan

    2017-01-01

    Although hair loss or alopecia is a common disease, its exact mechanisms are not yet well understood. The present study investigated the hypothesis that the homeostatic regulation of genes during hair regeneration may participate in hair loss, based on the cyclicity of hair growth. A cluster of such genes was identified by an expression gene-array from the dorsal skin in a depilated mouse model, and CXCL4 was identified as a significantly regulated gene during the hair regeneration process. To elucidate the function of CXCL4 in hair growth, CXCL4 activity was blocked by the administration of an anti-CXCL4 monoclonal antibody (mAb). Histomorphometric analysis indicated that anti-CXCL4 mAb induced an earlier anagen phase and delayed hair follicle regression, in contrast with that in the control group. Moreover, CXCL4 mAb upregulated the transcription levels of several hair growth-related genes, including Lef1, Wnt10b, Bmp4 and Bmp2. In addition, CXCL4 mAb increased the levels of the proliferation-related protein PCNA and Bcl-2 during the anagen phase, while it reduced the expression of pro-apoptotic protein Bax and cleaved caspase-3 during the catagen phase. These findings reveal that CXCL4 plays an important role in hair growth, and that blockade of CXCL4 activity promotes hair growth. PMID:28810552

  16. Anti-CXCL4 monoclonal antibody accelerates telogen to anagen transition and attenuates apoptosis of the hair follicle in mice.

    PubMed

    Guan, Wen; Yu, Xiaolan; Li, Jingjing; Deng, Qing; Zhang, Yang; Gao, Jing; Xia, Peng; Yuan, Yunsheng; Gao, Jin; Zhou, Liang; Han, Wei; Yu, Yan

    2017-08-01

    Although hair loss or alopecia is a common disease, its exact mechanisms are not yet well understood. The present study investigated the hypothesis that the homeostatic regulation of genes during hair regeneration may participate in hair loss, based on the cyclicity of hair growth. A cluster of such genes was identified by an expression gene-array from the dorsal skin in a depilated mouse model, and CXCL4 was identified as a significantly regulated gene during the hair regeneration process. To elucidate the function of CXCL4 in hair growth, CXCL4 activity was blocked by the administration of an anti-CXCL4 monoclonal antibody (mAb). Histomorphometric analysis indicated that anti-CXCL4 mAb induced an earlier anagen phase and delayed hair follicle regression, in contrast with that in the control group. Moreover, CXCL4 mAb upregulated the transcription levels of several hair growth-related genes, including Lef1, Wnt10b, Bmp4 and Bmp2. In addition, CXCL4 mAb increased the levels of the proliferation-related protein PCNA and Bcl-2 during the anagen phase, while it reduced the expression of pro-apoptotic protein Bax and cleaved caspase-3 during the catagen phase. These findings reveal that CXCL4 plays an important role in hair growth, and that blockade of CXCL4 activity promotes hair growth.

  17. Fine Specificity and Cross-Reactions of Monoclonal Antibodies to Group B Streptococcal Capsular Polysaccharide Type III

    PubMed Central

    Pincus, Seth H.; Moran, Emily; Maresh, Grace; Jennings, Harold J.; Pritchard, David G.; Egan, Marianne L.; Blixt, Ola

    2012-01-01

    Group B streptococcus (GBS) is a major cause of neonatal sepsis and meningitis. Despite aggressive campaigns using antenatal prophylactic antibiotic therapy, infections continue. Developing an effective maternal vaccine is a public health priority. Antibody (Ab) to the capsular polysaccharide (CPS) is considered the dominant “protective” immune mediator. Here we study the fine specificity and potential host reactivity of a panel of well-characterized murine monoclonal Abs against the type III CPS by examining the binding of the Abs to intact and neuraminidase-digested GBS, purified CPS, synthetic carbohydrate structures, and cells. The results showed marked differences in the fine specificity among these mAbs to a single carbohydrate structure. Cross-reactions with synthetic GD3 and GT3 carbohydrates, representing structures found on surfaces of neural and developing cells, were demonstrated using carbohydrate array technology. The anti-CPSIII mAbs did not react with cells expressing GD3 and GT3, nor did mAbs specific for the host carbohydrates cross-react with GBS, raising questions about the physiological relevance of this cross-reaction. But in the process of these investigations, we serendipitously demonstrated cross-reactions of some anti-CPSIII mAbs with antigens, likely carbohydrates, found on human leukocytes. These studies suggest caution in the development of a maternal vaccine to prevent infection by this important human pathogen. PMID:22634296

  18. Fine specificity and cross-reactions of monoclonal antibodies to group B streptococcal capsular polysaccharide type III.

    PubMed

    Pincus, Seth H; Moran, Emily; Maresh, Grace; Jennings, Harold J; Pritchard, David G; Egan, Marianne L; Blixt, Ola

    2012-07-06

    Group B streptococcus (GBS) is a major cause of neonatal sepsis and meningitis. Despite aggressive campaigns using antenatal prophylactic antibiotic therapy, infections continue. Developing an effective maternal vaccine is a public health priority. Antibody (Ab) to the capsular polysaccharide (CPS) is considered the dominant "protective" immune mediator. Here we study the fine specificity and potential host reactivity of a panel of well-characterized murine monoclonal Abs against the type III CPS by examining the binding of the Abs to intact and neuraminidase-digested GBS, purified CPS, synthetic carbohydrate structures, and cells. The results showed marked differences in the fine specificity among these mAbs to a single carbohydrate structure. Cross-reactions with synthetic GD3 and GT3 carbohydrates, representing structures found on surfaces of neural and developing cells, were demonstrated using carbohydrate array technology. The anti-CPS(III) mAbs did not react with cells expressing GD3 and GT3, nor did mAbs specific for the host carbohydrates cross-react with GBS, raising questions about the physiological relevance of this cross-reaction. But in the process of these investigations, we serendipitously demonstrated cross-reactions of some anti-CPS(III) mAbs with antigens, likely carbohydrates, found on human leukocytes. These studies suggest caution in the development of a maternal vaccine to prevent infection by this important human pathogen. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Purification of silicon for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Delannoy, Yves

    2012-12-01

    Solar grade silicon, as a starting material for crystallization to produce solar cells, is discussed here in terms of impurities whose maximum content is estimated from recent literature and conferences. A review of the production routes for each category of solar-grade silicon (undoped, compensated or heavily compensated) is proposed with emphasis on the metallurgical route. Some recent results are proposed concerning segregation, showing that directional solidification systems can be used for solidification even at high solidification rate (15 cm/h). Results on inductive plasma purification, where boron is evacuated as HBO in a gas phase blown from an inductive plasma torch, are shown to apply as well to arc plasmas and purification by moist gas. Special attention is paid to the history of impurities in the purification processes, showing that impure auxiliary phases (silicon tetrachloride, slag, aluminum, etc.) often need their own purification process to enable their recycling, which has to be considered to evaluate the cost (financial, energetic and environmental) of the purification route.

  20. Epitopes in α8β1 and other RGD-binding integrins delineate classes of integrin-blocking antibodies and major binding loops in α subunits

    PubMed Central

    Nishimichi, Norihisa; Kawashima, Nagako; Yokosaki, Yasuyuki

    2015-01-01

    Identification of epitopes for integrin-blocking monoclonal antibodies (mAbs) has aided our understanding of structure-function relationship of integrins. We mapped epitopes of chicken anti-integrin-α8-subunit-blocking mAbs by mutational analyses, examining regions that harboured all mapped epitopes recognized by mAbs against other α-subunits in the RGD-binding-integrin subfamily. Six mAbs exhibited blocking function, and these mAbs recognized residues on the same W2:41-loop on the top-face of the β-propeller. Loop-tips sufficiently close to W2:41 (<25 Å) contained within a footprint of the mAbs were mutated, and the loop W3:34 on the bottom face was identified as an additional component of the epitope of one antibody, clone YZ5. Binding sequences on the two loops were conserved in virtually all mammals, and that on W3:34 was also conserved in chickens. These indicate 1) YZ5 binds both top and bottom loops, and the binding to W3:34 is by interactions to conserved residues between immunogen and host species, 2) five other blocking mAbs solely bind to W2:41 and 3) the α8 mAbs would cross-react with most mammals. Comparing with the mAbs against the other α-subunits of RGD-integrins, two classes were delineated; those binding to “W3:34 and an top-loop”, and “solely W2:41”, accounting for 82% of published RGD-integrin-mAbs. PMID:26349930

  1. Epitopes in α8β1 and other RGD-binding integrins delineate classes of integrin-blocking antibodies and major binding loops in α subunits.

    PubMed

    Nishimichi, Norihisa; Kawashima, Nagako; Yokosaki, Yasuyuki

    2015-09-09

    Identification of epitopes for integrin-blocking monoclonal antibodies (mAbs) has aided our understanding of structure-function relationship of integrins. We mapped epitopes of chicken anti-integrin-α8-subunit-blocking mAbs by mutational analyses, examining regions that harboured all mapped epitopes recognized by mAbs against other α-subunits in the RGD-binding-integrin subfamily. Six mAbs exhibited blocking function, and these mAbs recognized residues on the same W2:41-loop on the top-face of the β-propeller. Loop-tips sufficiently close to W2:41 (<25 Å) contained within a footprint of the mAbs were mutated, and the loop W3:34 on the bottom face was identified as an additional component of the epitope of one antibody, clone YZ5. Binding sequences on the two loops were conserved in virtually all mammals, and that on W3:34 was also conserved in chickens. These indicate 1) YZ5 binds both top and bottom loops, and the binding to W3:34 is by interactions to conserved residues between immunogen and host species, 2) five other blocking mAbs solely bind to W2:41 and 3) the α8 mAbs would cross-react with most mammals. Comparing with the mAbs against the other α-subunits of RGD-integrins, two classes were delineated; those binding to "W3:34 and an top-loop", and "solely W2:41", accounting for 82% of published RGD-integrin-mAbs.

  2. In Vitro and In Vivo studies of monoclonal antibodies with prominent bactericidal activity against Burkholderia pseudomallei and Burkholderia mallei.

    PubMed

    Zhang, Shimin; Feng, Shaw-Huey; Li, Bingjie; Kim, Hyung-Yong; Rodriguez, Joe; Tsai, Shien; Lo, Shyh-Ching

    2011-05-01

    Our laboratory has developed more than a hundred mouse monoclonal antibodies (MAbs) against Burkholderia pseudomallei and Burkholderia mallei. These antibodies have been categorized into different groups based on their specificities and the biochemical natures of their target antigens. The current study first examined the bactericidal activities of a number of these MAbs by an in vitro opsonic assay. Then, the in vivo protective efficacy of selected MAbs was evaluated using BALB/c mice challenged intranasally with a lethal dose of the bacteria. The opsonic assay using dimethyl sulfoxide-treated human HL-60 cells as phagocytes revealed that 19 out of 47 tested MAbs (40%) have prominent bactericidal activities against B. pseudomallei and/or B. mallei. Interestingly, all MAbs with strong opsonic activities are those with specificity against either the capsular polysaccharides (PS) or the lipopolysaccharides (LPS) of the bacteria. On the other hand, none of the MAbs reacting to bacterial proteins or glycoproteins showed prominent bactericidal activity. Further study revealed that the antigenic epitopes on either the capsular PS or LPS molecules were readily available for binding in intact bacteria, while the epitopes on proteins/glycoproteins were less accessible to the MAbs. Our in vivo study showed that four MAbs reactive to either the capsular PS or LPS were highly effective in protecting mice against lethal bacterial challenge. The result is compatible with that of our in vitro study. The MAbs with the highest protective efficacy are those reactive to either the capsular PS or LPS of the Burkholderia bacteria.

  3. In Vitro and In Vivo Studies of Monoclonal Antibodies with Prominent Bactericidal Activity against Burkholderia pseudomallei and Burkholderia mallei▿

    PubMed Central

    Zhang, Shimin; Feng, Shaw-Huey; Li, Bingjie; Kim, Hyung-Yong; Rodriguez, Joe; Tsai, Shien; Lo, Shyh-Ching

    2011-01-01

    Our laboratory has developed more than a hundred mouse monoclonal antibodies (MAbs) against Burkholderia pseudomallei and Burkholderia mallei. These antibodies have been categorized into different groups based on their specificities and the biochemical natures of their target antigens. The current study first examined the bactericidal activities of a number of these MAbs by an in vitro opsonic assay. Then, the in vivo protective efficacy of selected MAbs was evaluated using BALB/c mice challenged intranasally with a lethal dose of the bacteria. The opsonic assay using dimethyl sulfoxide-treated human HL-60 cells as phagocytes revealed that 19 out of 47 tested MAbs (40%) have prominent bactericidal activities against B. pseudomallei and/or B. mallei. Interestingly, all MAbs with strong opsonic activities are those with specificity against either the capsular polysaccharides (PS) or the lipopolysaccharides (LPS) of the bacteria. On the other hand, none of the MAbs reacting to bacterial proteins or glycoproteins showed prominent bactericidal activity. Further study revealed that the antigenic epitopes on either the capsular PS or LPS molecules were readily available for binding in intact bacteria, while the epitopes on proteins/glycoproteins were less accessible to the MAbs. Our in vivo study showed that four MAbs reactive to either the capsular PS or LPS were highly effective in protecting mice against lethal bacterial challenge. The result is compatible with that of our in vitro study. The MAbs with the highest protective efficacy are those reactive to either the capsular PS or LPS of the Burkholderia bacteria. PMID:21450976

  4. Development and application of triple antibody sandwich enzyme-linked immunosorbent assays for begomovirus detection using monoclonal antibodies against Tomato yellow leaf curl Thailand virus.

    PubMed

    Seepiban, Channarong; Charoenvilaisiri, Saengsoon; Warin, Nuchnard; Bhunchoth, Anjana; Phironrit, Namthip; Phuangrat, Bencharong; Chatchawankanphanich, Orawan; Attathom, Supat; Gajanandana, Oraprapai

    2017-05-30

    Tomato yellow leaf curl Thailand virus, TYLCTHV, is a begomovirus that causes severe losses of tomato crops in Thailand as well as several countries in Southeast and East Asia. The development of monoclonal antibodies (MAbs) and serological methods for detecting TYLCTHV is essential for epidemiological studies and screening for virus-resistant cultivars. The recombinant coat protein (CP) of TYLCTHV was expressed in Escherichia coli and used to generate MAbs against TYLCTHV through hybridoma technology. The MAbs were characterized and optimized to develop triple antibody sandwich enzyme-linked immunosorbent assays (TAS-ELISAs) for begomovirus detection. The efficiency of TAS-ELISAs for begomovirus detection was evaluated with tomato, pepper, eggplant, okra and cucurbit plants collected from several provinces in Thailand. Molecular identification of begomoviruses in these samples was also performed through PCR and DNA sequence analysis of the CP gene. Two MAbs (M1 and D2) were generated and used to develop TAS-ELISAs for begomovirus detection. The results of begomovirus detection in 147 field samples indicated that MAb M1 reacted with 2 begomovirus species, TYLCTHV and Tobacco leaf curl Yunnan virus (TbLCYnV), whereas MAb D2 reacted with 4 begomovirus species, TYLCTHV, TbLCYnV, Tomato leaf curl New Delhi virus (ToLCNDV) and Squash leaf curl China virus (SLCCNV). Phylogenetic analyses of CP amino acid sequences from these begomoviruses revealed that the CP sequences of begomoviruses recognized by the narrow-spectrum MAb M1 were highly conserved, sharing 93% identity with each other but only 72-81% identity with MAb M1-negative begomoviruses. The CP sequences of begomoviruses recognized by the broad-spectrum MAb D2 demonstrated a wider range of amino acid sequence identity, sharing 78-96% identity with each other and 72-91% identity with those that were not detected by MAb D2. TAS-ELISAs using the narrow-specificity MAb M1 proved highly efficient for the detection of TYLCTHV and TbLCYnV, whereas TAS-ELISAs using the broad-specificity MAb D2 were highly efficient for the detection of TYLCTHV, TbLCYnV, ToLCNDV and SLCCNV. Both newly developed assays allow for sensitive, inexpensive, high-throughput detection of begomoviruses in field plant samples, as well as screening for virus-resistant cultivars.

  5. Sensitivity of measurement-based purification processes to inner interactions

    NASA Astrophysics Data System (ADS)

    Militello, Benedetto; Napoli, Anna

    2018-02-01

    The sensitivity of a repeated measurement-based purification scheme to additional undesired couplings is analyzed, focusing on the very simple and archetypical system consisting of two two-level systems interacting with a repeatedly measured one. Several regimes are considered and in the strong coupling limit (i.e., when the coupling constant of the undesired interaction is very large) the occurrence of a quantum Zeno effect is proven to dramatically jeopardize the efficiency of the purification process.

  6. The purification process on scintillator material (SrI{sub 2}: Eu) by zone-refinement technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arumugam, Raja; Daniel, D. Joseph; Ramasamy, P., E-mail: ramasamyp@ssn.edu.in

    The thermal properties of Europium doped strontium iodide was analyzed through Thermogravimetric (TG) and differential thermal analyses (DTA). The melting point of europium doped strontium iodide is around 531°C. The hydrated and oxyhalide impurities were found before melting temperature. In order to remove these impurities we have done purification process by Zone-refinement technique. The effective output of purification of zone refining was also observed through the segregation of impurities.

  7. Small-angle neutron scattering study of a monoclonal antibody using free-energy constraints.

    PubMed

    Clark, Nicholas J; Zhang, Hailiang; Krueger, Susan; Lee, Hyo Jin; Ketchem, Randal R; Kerwin, Bruce; Kanapuram, Sekhar R; Treuheit, Michael J; McAuley, Arnold; Curtis, Joseph E

    2013-11-14

    Monoclonal antibodies (mAbs) contain hinge-like regions that enable structural flexibility of globular domains that have a direct effect on biological function. A subclass of mAbs, IgG2, have several interchain disulfide bonds in the hinge region that could potentially limit structural flexibility of the globular domains and affect the overall configuration space available to the mAb. We have characterized human IgG2 mAb in solution via small-angle neutron scattering (SANS) and interpreted the scattering data using atomistic models. Molecular Monte Carlo combined with molecular dynamics simulations of a model mAb indicate that a wide range of structural configurations are plausible, spanning radius of gyration values from ∼39 to ∼55 Å. Structural ensembles and representative single structure solutions were derived by comparison of theoretical SANS profiles of mAb models to experimental SANS data. Additionally, molecular mechanical and solvation free-energy calculations were carried out on the ensemble of best-fitting mAb structures. The results of this study indicate that low-resolution techniques like small-angle scattering combined with atomistic molecular simulations with free-energy analysis may be helpful to determine the types of intramolecular interactions that influence function and could lead to deleterious changes to mAb structure. This methodology will be useful to analyze small-angle scattering data of many macromolecular systems.

  8. Domain based assays of individual antibody concentrations in an oligoclonal combination targeting a single protein

    PubMed Central

    Meng, Q.; Li, M.; Silberg, M.A.; Conrad, F.; Bettencourt, J.; To, R.; Huang, C.; Ma, J.; Meyer, K.; Shimizu, R.; Cao, L.; Tomic, M.T.; Marks, J.D.

    2014-01-01

    Quantitation of individual mAbs within a combined antibody drug product is required for preclinical and clinical drug development including pharmacokinetics (PK), toxicology, stability and biochemical characterization studies of such drugs. We have developed an antitoxin (XOMA 3AB) consisting of three recombinant monoclonal antibodies (mAbs) that potently neutralizes the known subtypes of type A botulinum neurotoxin (BoNT/A). The three mAbs bind non-overlapping BoNT/A epitopes with high affinity. XOMA3AB is being developed as a treatment for botulism resulting from BoNT/A. To develop antibody-specific assays, we cloned, expressed, and purified BoNT/A domains from E. coli. Each mAb bound only to its specific domain with affinity comparable to the binding to holotoxin. MAb specific domains were used to develop an ELISA for characterization of the integrity and binding activity of the three mAbs in the drug product. An electrochemiluminescence bridging assay was also developed that is robust to interference from components in serum and we demonstrate that it can be used for PK assays. This type of antigen engineering to generate mAb-specific domains is a general method allowing quantitation and characterization of individual mAbs in a mAb cocktail that bind the same protein and is superior to anti-idiotype approaches. PMID:22037290

  9. Characterization of the glycoprotein of infectious hematopoietic necrosis virus using neutralizing monoclonal antibodies

    USGS Publications Warehouse

    Huang, Chienjin; Chien, Maw-Sheng; Landolt, Marsha; Winton, James

    1994-01-01

    To study the antigenic nature of the glycoprotein (G protein) of infectious hematopoietic necrosis virus (IHNV), 31 neutralizing monoclonal antibodies (MAbs) were produced against a reference isolate of the virus. The MAbs were compared using a neutralization assay, an enzyme-linked immunosorbent assay (ELISA), and by immunoblotting of the G protein in the native, reduced, and deglycosylated forms. Hybridoma culture fluids of the various MAbs could be diluted from 1:2 to 1:512 and still completely neutralize 1 X 104 plaque-forming units of IHNV. Similarly, the end point dilutions that produced optical density readings of 0.1 or greater in the ELISA were 1:40 to 1:10240. Western blotting showed that all of the MAbs reacted with the G protein in the unreduced (i.e. native) conformation; however, only 9 nine of the MAbs were able to react with the G protein following reduction by 2-mercaptoethanol. Deglycosylation of the protein did not influence the binding ability of any of the MAbs. These data indicate that all the MAbs recognized amino acid sequences on the protein itself and that the IHNV glycoprotein contains linear as well as conformation-dependent neutralizing epitopes. When rainbow trout Oncorhynchus mykiss fingerlings were passively immunized with MAbs against either a linear or a conformation-dependent epitope, the fish were protected against challenge with wild-type IHNV.

  10. Deletion of a dehydratase important for intracellular growth and cording renders rough Mycobacterium abscessus avirulent

    PubMed Central

    Halloum, Iman; Carrère-Kremer, Séverine; Blaise, Mickael; Viljoen, Albertus; Bernut, Audrey; Le Moigne, Vincent; Vilchèze, Catherine; Guérardel, Yann; Lutfalla, Georges; Herrmann, Jean-Louis; Jacobs, William R.; Kremer, Laurent

    2016-01-01

    Mycobacterium abscessus (Mabs) is a rapidly growing Mycobacterium and an emerging pathogen in humans. Transitioning from a smooth (S) high-glycopeptidolipid (GPL) producer to a rough (R) low-GPL producer is associated with increased virulence in zebrafish, which involves the formation of massive serpentine cords, abscesses, and rapid larval death. Generating a cord-deficient Mabs mutant would allow us to address the contribution of cording in the physiopathological signs of the R variant. Herein, a deletion mutant of MAB_4780, encoding a dehydratase, distinct from the β-hydroxyacyl-ACP dehydratase HadABC complex, was constructed in the R morphotype. This mutant exhibited an alteration of the mycolic acid composition and a pronounced defect in cording. This correlated with an extremely attenuated phenotype not only in wild-type but also in immunocompromised zebrafish embryos lacking either macrophages or neutrophils. The abolition of granuloma formation in embryos infected with the dehydratase mutant was associated with a failure to replicate in macrophages, presumably due to limited inhibition of the phagolysosomal fusion. Overall, these results indicate that MAB_4780 is required for Mabs to successfully establish acute and lethal infections. Therefore, targeting MAB_4780 may represent an attractive antivirulence strategy to control Mabs infections, refractory to most standard chemotherapeutic interventions. The combination of a dehydratase assay with a high-resolution crystal structure of MAB_4780 opens the way to identify such specific inhibitors. PMID:27385830

  11. Functional Characteristics of a Protective Monoclonal Antibody against Serotype A and C Lipooligosaccharides from Moraxella catarrhalis

    PubMed Central

    Hu, Wei-Gang; Chen, Jing; McMichael, John C.; Gu, Xin-Xing

    2001-01-01

    A monoclonal antibody (MAb), designated MAb 8E7 (immunoglobulin G3), specific for Moraxella catarrhalis lipooligosaccharide (LOS) was evaluated for its functional activity in vitro and in a mouse model of colonization. Enzyme-linked immunosorbent assay (ELISA) demonstrated that the MAb 8E7 could be prepared to a high titer against LOS of the homologous strain 035E, and that it had bactericidal activity. MAb 8E7 reacted with M. catarrhalis serotype A and C LOSs but not serotype B LOS, as measured by ELISA and Western blotting. On the basis of published structures of LOSs, this suggests that the epitope recognized by MAb 8E7 is directed to a common sequence of either α-GlcNAc-(1→2)-β-Glc-(1→ at the branch substituting position 4 of the trisubstituted Glc residue or a terminal tetrasaccharide α-Gal-(1→4)-β-Gal-(1→4)-α-Glc-(1→2)-β-Glc-(1→ at the branch substituting position 6 of the trisubstituted Glc residue. In a whole-cell ELISA, MAb 8E7 reacted with 70% of the 30 wild-type strains and clinical isolates tested. Immuno-electron microscopy demonstrated that MAb 8E7 reacted with a cell surface-exposed epitope of LOS on strain O35E. MAb 8E7 inhibited the adherence of strain O35E to Chang conjunctival epithelial cells by 90%. Passive immunization with MAb 8E7 could significantly enhance the clearance of strain O35E from mouse lungs in an aerosol challenge mouse model. This enhanced bacterial clearance was inhibited when MAb 8E7 was absorbed by M. catarrhalis serotype A LOS, indicating that the M. catarrhalis LOS-directed antibody may play a major role in the enhancement of M. catarrhalis clearance from lungs. These data suggest that MAb 8E7, which recognizes surface-exposed LOS of M. catarrhalis, is a protective antibody against M. catarrhalis. PMID:11179299

  12. Addition of an extra immunoglobulin domain to two anti-rodent TNF monoclonal antibodies substantially increased their potency.

    PubMed

    Scallon, Bernard; Cai, Ann; Radewonuk, Jennifer; Naso, Michael

    2004-05-01

    The functional valency of a monoclonal antibody (mAb) has important influences on such things as antigen avidity, Fc-mediated immune effector functions, and clearance of immune complexes. cV1q, a neutralizing rat/mouse chimeric anti-mouse tumor necrosis factor (TNF) monoclonal antibody (mAb), and Rt108, a neutralizing mouse anti-rat TNF (anti-raTNF) mAb, appear to be functionally monovalent for TNF-binding despite containing two antigen binding sites. The functional monovalency of these two independent anti-rodent TNF mAbs is presumably a result of steric hindrance from one TNF molecule binding to one Fab arm that prevents binding of a second TNF molecule to the other Fab arm. To test whether this steric hindrance could be overcome by introducing extra space and flexibility between the Fab arms, these mAbs were engineered to contain an extra CH1 immunoglobulin domain between the CH1 and hinge domains of their heavy chains. In vitro binding data showed that, compared to the original mAbs, the modified mAbs (S-mAbs) had greater capability of binding two TNF molecules simultaneously. In vitro activity assays showed that, compared to the original mAbs, the S-mAbs had significantly greater TNF-neutralization potency, with the S-mAb version of cV1q (S-cV1q) being 200-fold more effective at blocking mouse TNF (muTNF) and the S-mAb version of Rt108 (S-Rt108) being 20-fold more effective at blocking raTNF. Similar results were observed in vivo, where S-cV1q was between 100- and 500-fold more protective than cV1q in mice challenged with endotoxin. These data reveal that introduction of another constant region immunoglobulin domain into two unrelated mAbs dramatically enhanced their neutralization potency. Other mAbs may also show more potent activity using this engineering approach, particularly mAbs that recognize homopolymeric antigens.

  13. Identification of unique B virus (Macacine Herpesvirus 1) epitopes of zoonotic and macaque isolates using monoclonal antibodies

    PubMed Central

    Vasireddi, Mugdha; Patrusheva, Irina; Seoh, Hyuk-Kyu; Filfili, Chadi N.; Wildes, Martin J.; Oh, Jay

    2017-01-01

    Our overall aim is to develop epitope-based assays for accurate differential diagnosis of B virus zoonotic infections in humans. Antibodies to cross-reacting epitopes on human-simplexviruses continue to confound the interpretation of current assays where abundant antibodies exist from previous infections with HSV types 1 and 2. To find B virus-specific epitopes we cloned ten monoclonal antibodies (mAbs) from the hybridomas we produced. Our unique collection of rare human sera from symptomatic and asymptomatic patients infected with B virus was key to the evaluation and identification of the mAbs as reagents in competition ELISAs (mAb-CE). The analysis of the ten mAbs revealed that the target proteins for six mAbs was glycoprotein B of which two are reactive to simian simplexviruses and not to human simplexviruses. Two mAbs reacted specifically with B virus glycoprotein D, and two other mAbs were specific to VP13/14 and gE-gI complex respectively. The mAbs specific to VP13/14 and gE-gI are strain specific reacting with B virus isolates from rhesus and Japanese macaques and not with isolates from cynomolgus and pigtail macaques. The mAb-CE revealed that a high proportion of naturally B virus infected rhesus macaques and two symptomatic humans possess antibodies to epitopes of VP13/14 protein and on the gE-gI complex. The majority of sera from B virus infected macaques and simplexvirus-infected humans competed with the less specific mAbs. These experiments produced a novel panel of mAbs that enabled B virus strain identification and confirmation of B virus infected macaques by the mAb-CE. For human sera the mAb-CE could be used only for selected cases due to the selective B virus strain-specificity of the mAbs against VP13/14 and gE/gI. To fully accomplish our aim to provide reagents for unequivocal differential diagnosis of zoonotic B virus infections, additional mAbs with a broader range of specificities is critical. PMID:28783746

  14. Immunoreactivity of Biochemically Purified Amandin from Thermally Processed Almonds (Prunus dulcis L.).

    PubMed

    Zaffran, Valerie D; Sathe, Shridhar K

    2018-06-15

    Almond seeds were subjected to select thermal processing and amandin was purified from processed and unprocessed (control) seeds using cryoprecipitation. Amandin immunoreactivity was assessed using two murine monoclonal antibodies (mAbs)-4C10 and 4F10 detecting human IgE-relevant conformational and linear epitopes, respectively. Overall amandin immunoreactivity following thermal treatment ranged from 64.9% to 277.8% (4C10) and 81.3% to 270.3% (4F10). Except for autoclaving (121 °C, 15 psi, 30 min) and roasting (160 °C, 30 min), the tested processing conditions resulted in increased immunoreactivity as determined by mAbs 4C10 and 4F10-based enzyme-linked immunosorbent assays (ELISAs). A significant, yet not complete, reduction in immunoreactivity was caused by autoclaving (121 °C, 15 psi, 30 min) and roasting (160 °C, 30 min). Western- and dot-blot immunoassays corroborated the ELISA results, confirming amandin thermal stability. The tested immunoassays indicated amandin to be stable, regardless of the targeted epitope and the processing method that whole almond seeds were subjected to. © 2018 Institute of Food Technologists®.

  15. Case studies on the physical-chemical parameters' variation during three different purification approaches destined to treat wastewaters from food industry.

    PubMed

    Ghimpusan, Marieta; Nechifor, Gheorghe; Nechifor, Aurelia-Cristina; Dima, Stefan-Ovidiu; Passeri, Piero

    2017-12-01

    The paper presents a set of three interconnected case studies on the depuration of food processing wastewaters by using aeration & ozonation and two types of hollow-fiber membrane bioreactor (MBR) approaches. A secondary and more extensive objective derived from the first one is to draw a clearer, broader frame on the variation of physical-chemical parameters during the purification of wastewaters from food industry through different operating modes with the aim of improving the management of water purification process. Chemical oxygen demand (COD), pH, mixed liquor suspended solids (MLSS), total nitrogen, specific nitrogen (NH 4 + , NO 2 - , NO 3 - ) total phosphorous, and total surfactants were the measured parameters, and their influence was discussed in order to establish the best operating mode to achieve the purification performances. The integrated air-ozone aeration process applied in the second operating mode lead to a COD decrease by up to 90%, compared to only 75% obtained in a conventional biological activated sludge process. The combined purification process of MBR and ozonation produced an additional COD decrease of 10-15%, and made the Total Surfactants values to comply to the specific legislation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Mapping of binding epitopes of a human decay-accelerating factor monoclonal antibody capable of enhancing rituximab-mediated complement-dependent cytotoxicity.

    PubMed

    Guo, Bo; Ma, Zheng-wei; Li, Hua; Xu, Gui-lian; Zheng, Ping; Zhu, Bo; Wu, Yu-Zhang; Zou, Qiang

    2008-08-01

    Complement-dependent cytotoxicity (CDC) is thought to be one of the most important mechanisms of action of therapeutic monoclonal antibodies (mAbs). The decay-accelerating factor (DAF) overexpressed in certain tumors limits the CDC effect of the therapeutic anticancer antibodies. The use of DAF blocking antibodies targeted specifically at cancer cells in combination with immunotherapeutic mAbs of cancer may improve the therapeutic effect in cancer patients. In this study, the lysis of Raji cells mediated by CDC was determined after blocking DAF function by anti-DAF polyclonal antibody and 3 mAbs (DG3, DG9, DA11) prepared in our laboratory, respectively, in the presence of the anti-CD20 chimeric mAb rituximab. The binding domains of the three anti-DAF mAbs were identified using yeast surface display technique, and the mimic epitopes of mAb DG3 were screened from a random phage-display nonapeptide library. The results showed that blocking DAF function by anti-DAF polyclonal antibody enhanced complement-mediated killing of Raji cells. Among the 3 mAbs against DAF, only DG3 was found to be able to remarkably enhance the CDC effect of the therapeutic mAb rituximab. DG3 bound to the third short consensus repeat (SCR) of DAF. Binding of DG3 to immobilized DAF was inhibited by mimic epitope peptides screened from the peptide library. Our results suggest that a higher level of DAF expressed by certain tumor cells is significant to abolish the CDC effect of therapeutic anticancer antibodies, and mAbs binding to SCR3 can enhance the complement-mediated killing of Raji cells. It is of significance to identify the DAF epitopes required in inhibiting CDC not only for better understanding of the relationship between the structure and function of DAF, but also for designing and developing anti-DAF mAbs capable of enhancing CDC.

  17. Nonautonomous Roles of MAB-5/Hox and the Secreted Basement Membrane Molecule SPON-1/F-Spondin in Caenorhabditis elegans Neuronal Migration.

    PubMed

    Josephson, Matthew P; Miltner, Adam M; Lundquist, Erik A

    2016-08-01

    Nervous system development and circuit formation requires neurons to migrate from their birthplaces to specific destinations.Migrating neurons detect extracellular cues that provide guidance information. In Caenorhabditis elegans, the Q right (QR) and Q left (QL) neuroblast descendants migrate long distances in opposite directions. The Hox gene lin-39 cell autonomously promotes anterior QR descendant migration, and mab-5/Hox cell autonomously promotes posterior QL descendant migration. Here we describe a nonautonomous role of mab-5 in regulating both QR and QL descendant migrations, a role masked by redundancy with lin-39 A third Hox gene, egl-5/Abdominal-B, also likely nonautonomously regulates Q descendant migrations. In the lin-39 mab-5 egl-5 triple mutant, little if any QR and QL descendant migration occurs. In addition to well-described roles of lin-39 and mab-5 in the Q descendants, our results suggest that lin-39, mab-5, and egl-5 might also pattern the posterior region of the animal for Q descendant migration. Previous studies showed that the spon-1 gene might be a target of MAB-5 in Q descendant migration. spon-1 encodes a secreted basement membrane molecule similar to vertebrate F-spondin. Here we show that spon-1 acts nonautonomously to control Q descendant migration, and might function as a permissive rather than instructive signal for cell migration. We find that increased levels of MAB-5 in body wall muscle (BWM) can drive the spon-1 promoter adjacent to the Q cells, and loss of spon-1 suppresses mab-5 gain of function. Thus, MAB-5 might nonautonomously control Q descendant migrations by patterning the posterior region of the animal to which Q cells respond. spon-1 expression from BWMs might be part of the posterior patterning necessary for directed Q descendant migration. Copyright © 2016 by the Genetics Society of America.

  18. Nonautonomous Roles of MAB-5/Hox and the Secreted Basement Membrane Molecule SPON-1/F-Spondin in Caenorhabditis elegans Neuronal Migration

    PubMed Central

    Josephson, Matthew P.; Miltner, Adam M.; Lundquist, Erik A.

    2016-01-01

    Nervous system development and circuit formation requires neurons to migrate from their birthplaces to specific destinations.Migrating neurons detect extracellular cues that provide guidance information. In Caenorhabditis elegans, the Q right (QR) and Q left (QL) neuroblast descendants migrate long distances in opposite directions. The Hox gene lin-39 cell autonomously promotes anterior QR descendant migration, and mab-5/Hox cell autonomously promotes posterior QL descendant migration. Here we describe a nonautonomous role of mab-5 in regulating both QR and QL descendant migrations, a role masked by redundancy with lin-39. A third Hox gene, egl-5/Abdominal-B, also likely nonautonomously regulates Q descendant migrations. In the lin-39mab-5egl-5 triple mutant, little if any QR and QL descendant migration occurs. In addition to well-described roles of lin-39 and mab-5 in the Q descendants, our results suggest that lin-39, mab-5, and egl-5 might also pattern the posterior region of the animal for Q descendant migration. Previous studies showed that the spon-1 gene might be a target of MAB-5 in Q descendant migration. spon-1 encodes a secreted basement membrane molecule similar to vertebrate F-spondin. Here we show that spon-1 acts nonautonomously to control Q descendant migration, and might function as a permissive rather than instructive signal for cell migration. We find that increased levels of MAB-5 in body wall muscle (BWM) can drive the spon-1 promoter adjacent to the Q cells, and loss of spon-1 suppresses mab-5 gain of function. Thus, MAB-5 might nonautonomously control Q descendant migrations by patterning the posterior region of the animal to which Q cells respond. spon-1 expression from BWMs might be part of the posterior patterning necessary for directed Q descendant migration. PMID:27225683

  19. Adsorption behavior of a human monoclonal antibody at hydrophilic and hydrophobic surfaces

    PubMed Central

    Couston, Ruairidh G.; Skoda, Maximilian W.; Uddin, Shahid; van der Walle, Christopher F.

    2013-01-01

    One aspiration for the formulation of human monoclonal antibodies (mAb) is to reach high solution concentrations without compromising stability. Protein surface activity leading to instability is well known, but our understanding of mAb adsorption to the solid-liquid interface in relevant pH and surfactant conditions is incomplete. To investigate these conditions, we used total internal reflection fluorescence (TIRF) and neutron reflectometry (NR). The mAb tested (“mAb-1”) showed highest surface loading to silica at pH 7.4 (~12 mg/m2), with lower surface loading at pH 5.5 (~5.5 mg/m2, further from its pI of 8.99) and to hydrophobized silica (~2 mg/m2). The extent of desorption of mAb-1 from silica or hydrophobized silica was related to the relative affinity of polysorbate 20 or 80 for the same surface. mAb-1 adsorbed to silica on co-injection with polysorbate (above its critical micelle concentration) and also to silica pre-coated with polysorbate. A bilayer model was developed from NR data for mAb-1 at concentrations of 50–5000 mg/L, pH 5.5, and 50–2000 mg/L, pH 7.4. The inner mAb-1 layer was adsorbed to the SiO2 surface at near saturation with an end-on” orientation, while the outer mAb-1 layer was sparse and molecules had a “side-on” orientation. A non-uniform triple layer was observed at 5000 mg/L, pH 7.4, suggesting mAb-1 adsorbed to the SiO2 surface as oligomers at this concentration and pH. mAb-1 adsorbed as a sparse monolayer to hydrophobized silica, with a layer thickness increasing with bulk concentration - suggesting a near end-on orientation without observable relaxation-unfolding. PMID:23196810

  20. Monoclonal antibodies to molluskan hemocyanin from Concholepas concholepas demonstrate common and specific epitopes among subunits.

    PubMed

    Oliva, Harold; Moltedo, Bruno; De Ioannes, Pablo; Faunes, Fernando; De Ioannes, Alfredo E; Becker, María Inés

    2002-10-01

    We studied the reactivity of mouse monoclonal antibodies (MAbs) against the hemocyanin from the Chilean marine gastropod Concholepas concholepas (CCH). This protein has been successfully used as a carrier to produce antibodies to haptens and peptides. All MAbs (13) belonging to IgG subclass exhibit dissociation constants (K(d)) from 1 x 10(-7) M to 1 x 10(-9) M. MAbs were characterized by enzyme-linked immunosorbant assay (ELISA) using CCH treated with different procedures, including dissociation into CCH-A and CCH-B subunits, Western blot, enzymatic digestion, chemical deglycosylation, and thermal denaturation. MAbs were classified into three categories, according to subunit specificity by ELISA. The epitope distribution shows that CCH subunits display common epitopes (group I, 5 MAbs, 1H5, 2A8, 3A5, 3B3, and 3E3), as well as specific epitopes for CCH-A subunits (group II, 3 MAbs, 1B8, 4D8, and 8E5) and for CCH-B subunits (group III, 5 MAbs, 1A4, 1E4, 2H10, 3B7, and 7B4). The results can be summarized as follows: (1). six antibodies react with thermal denatured CCH, suggesting that they recognize linear epitopes, whereas seven recognize conformational epitopes; (2). oxidation of carbohydrate moieties does not affect the binding of the MAbs; (3). enzymatic digestion of CCH decreases the reactivity of all antibodies irrespective of the protease used (elastase or trypsin); (4). bringing together the above data, in addition to epitopic complementarity analysis, we identified 12 different epitopes on the CCH molecule recognized by these MAbs. The anti-CCH MAbs presented here can be useful tools to understand the subunit organization of the CCH and its complex structure, which can explain its immunogenic and immunostimulating properties in mammals.

  1. Purification of Carbon Nanotubes: Alternative Methods

    NASA Technical Reports Server (NTRS)

    Files, Bradley; Scott, Carl; Gorelik, Olga; Nikolaev, Pasha; Hulse, Lou; Arepalli, Sivaram

    2000-01-01

    Traditional carbon nanotube purification process involves nitric acid refluxing and cross flow filtration using surfactant TritonX. This is believed to result in damage to nanotubes and surfactant residue on nanotube surface. Alternative purification procedures involving solvent extraction, thermal zone refining and nitric acid refiuxing are used in the current study. The effect of duration and type of solvent to dissolve impurities including fullerenes and P ACs (polyaromatic compounds) are monitored by nuclear magnetic reasonance, high performance liquid chromatography, and thermogravimetric analysis. Thermal zone refining yielded sample areas rich in nanotubes as seen by scanning electric microscopy. Refluxing in boiling nitric acid seem to improve the nanotube content. Different procedural steps are needed to purify samples produced by laser process compared to arc process. These alternative methods of nanotube purification will be presented along with results from supporting analytical techniques.

  2. Production of a monoclonal antibody against oxytetracycline and its application for oxytetracycline residue detection in shrimp*

    PubMed Central

    Wongtangprasert, Tossapon; Natakuathung, Wirongrong; Pimpitak, Umaporn; Buakeaw, Anumart; Palaga, Tanapat; Komolpis, Kittinan; Khongchareonporn, Nanthika

    2014-01-01

    A novel monoclonal antibody (MAb) against oxytetracycline (OTC) was generated and characterized. The MAb was used in the development of an enzyme-linked immunosorbant assay (ELISA)-based detection system. An OTC-bovine serum albumin (BSA) conjugate was prepared and used in the immunization of mice. A conventional somatic cell fusion technique was used to generate MAb-secreting hybridomas denoted 2-4F, 7-3G, and 11-11A. An indirect competitive ELISA (icELISA) was applied to measure the sensitivity and specificity of each MAb in terms of its 50% inhibitory concentration (IC50) and percentage of cross-reactivity, respectively. MAb 2-4F exhibited the highest sensitivity, with an IC50 of 7.01 ng/ml. This MAb showed strong cross-reactivity to rolitetracycline, but no cross-reactivity to other unrelated antibiotics. When MAb 2-4F was used to detect OTC from shrimp samples, the recoveries were in the range of 82%–118% for an intra-assay and 96%–113% for an inter-assay. The coefficients of variation of the assays were 3.9%–13.9% and 5.5%–14.9%, respectively. PMID:24510709

  3. Monoclonal Antibody Combinations that Present Synergistic Neutralizing Activity: A Platform for Next-Generation Anti-Toxin Drugs

    PubMed Central

    Diamant, Eran; Torgeman, Amram; Ozeri, Eyal; Zichel, Ran

    2015-01-01

    Monoclonal antibodies (MAbs) are among the fastest-growing therapeutics and are being developed for a broad range of indications, including the neutralization of toxins, bacteria and viruses. Nevertheless, MAbs potency is still relatively low when compared to conventional polyclonal Ab preparations. Moreover, the efficacy of an individual neutralizing MAb may significantly be hampered by the potential absence or modification of its target epitope in a mutant or subtype of the infectious agent. These limitations of individual neutralizing MAbs can be overcome by using oligoclonal combinations of several MAbs with different specificities to the target antigen. Studies conducted in our lab and by others show that such combined MAb preparation may present substantial synergy in its potency over the calculated additive potency of its individual MAb components. Moreover, oligoclonal preparation is expected to be better suited to compensating for reduced efficacy due to epitope variation. In this review, the synergistic neutralization properties of combined oligoclonal Ab preparations are described. The effect of Ab affinity, autologous Fc fraction, and targeting a critical number of epitopes, as well as the unexpected contribution of non-neutralizing clones to the synergistic neutralizing effect are presented and discussed. PMID:26035486

  4. Evaluation of protection by two endotoxin-neutralizing IgM monoclonal antibodies in different peritonitis models.

    PubMed

    Hustinx, W N; Benaissa-Trouw, B J; Harmsen, T; Klein, S; Verhoef, J; Hoepelman, A I; Kraaijeveld, K

    1997-10-01

    Two anti-core glycolipid (CGL) IgM monoclonal antibodies (mAbs 8-2 and 26-20), previously shown to display cross-reactivity with heterologous lipopolysaccharide (LPS) in vitro and to provide cross-protectivity against endotoxin challenge in vivo, were evaluated for their potential to protect mice against death from peritonitis caused by heterologous bacterial challenge. Without concurrent antibiotic treatment neither antibody was protective. Compared with a control mAb, prophylactic treatment with mAb 8-2 significantly increased the survival of gentamicin-treated mice challenged with the rough strain Salmonella minnesota Re595. Both mAb 8-2 and a control mAb, in combination with a suboptimal dose of ceftazidime, increased survival following challenge with the clinical isolate Escherichia coli O7:K1. In a model of mucin-enhanced peritonitis, neither mAb was protective against challenge with inocula of E. coli O7:K1, ranging from 10(2) to 10(4) bacteria. We conclude that protection of mice by anti-CGL mAb 8-2 against heterologous challenge is vitally dependent on concurrent treatment with antibiotics and that protection may not be attributable to the anti-CGL specificity of these antibodies.

  5. DaMab-2: Anti-Human DGKα Monoclonal Antibody for Immunocytochemistry.

    PubMed

    Nakano, Tomoyuki; Ogasawara, Satoshi; Tanaka, Toshiaki; Hozumi, Yasukazu; Mizuno, Satoru; Satoh, Eri; Sakane, Fumio; Okada, Naoki; Taketomi, Akinobu; Honma, Ryusuke; Nakamura, Takuro; Saidoh, Noriko; Yanaka, Miyuki; Itai, Shunsuke; Handa, Saori; Chang, Yao-Wen; Yamada, Shinji; Kaneko, Mika K; Kato, Yukinari; Goto, Kaoru

    2017-08-01

    Diacylglycerol kinase (DGK) is responsible for the enzymatic conversion of diacylglycerol to phosphatidic acid. Since both diacylglycerol and phosphatidic acid serve as signaling molecules, DGK is regarded as a hub between diacylglycerol-mediated and phosphatidic acid-mediated signaling. One of the 10 DGK isozymes, DGKα, is shown to be involved in T cell function. Transfection studies using tagged expression vectors revealed that DGKα localizes to the cytoplasm and nucleus and translocates to the plasma membrane in response to T cell receptor stimulation. However, a limited number of studies reported the localization of native protein of DGKα in tissues and cells. In this study, we immunized mice with recombinant DGKα and developed several anti-DGKα monoclonal antibodies (mAbs). One of the established anti-DGKα mAbs is a clone DaMab-2 (mouse IgG 1 , kappa). In enzyme-linked immunosorbent assay, DaMab-2 recognized only DGKα, and did not react with the other isozymes, such as DGKγ, DGKζ, DGKη, and DGKδ. Importantly, DaMab-2 is very useful in immunocytochemical analysis of human cultured cells, indicating that DaMab-2 is advantageous to analyze the localization and function of DGKα.

  6. Detection of high PD-L1 expression in oral cancers by a novel monoclonal antibody L1Mab-4.

    PubMed

    Yamada, Shinji; Itai, Shunsuke; Kaneko, Mika K; Kato, Yukinari

    2018-03-01

    Programmed cell death-ligand 1 (PD-L1), which is a ligand of programmed cell death-1 (PD-1), is a type I transmembrane glycoprotein that is expressed on antigen-presenting cells and several tumor cells, including melanoma and lung cancer cells. There is a strong correlation between human PD-L1 (hPD-L1) expression on tumor cells and negative prognosis in cancer patients. In this study, we produced a novel anti-hPD-L1 monoclonal antibody (mAb), L 1 Mab-4 (IgG 2b , kappa), using cell-based immunization and screening (CBIS) method and investigated hPD-L1 expression in oral cancers. L 1 Mab-4 reacted with oral cancer cell lines (Ca9-22, HO-1-u-1, SAS, HSC-2, HSC-3, and HSC-4) in flow cytometry and stained oral cancers in a membrane-staining pattern. L 1 Mab-4 stained 106/150 (70.7%) of oral squamous cell carcinomas, indicating the very high sensitivity of L 1 Mab-4. These results indicate that L 1 Mab-4 could be useful for investigating the function of hPD-L1 in oral cancers.

  7. mAbs

    PubMed Central

    2009-01-01

    The twenty two monoclonal antibodies (mAbs) currently marketed in the U.S. have captured almost half of the top-20 U.S. therapeutic biotechnology sales for 2007. Eight of these products have annual sales each of more than $1 B, were developed in the relatively short average period of six years, qualified for FDA programs designed to accelerate drug approval, and their cost has been reimbursed liberally by payers. With growth of the product class driven primarily by advancements in protein engineering and the low probability of generic threats, mAbs are now the largest class of biological therapies under development. The high cost of these drugs and the lack of generic competition conflict with a financially stressed health system, setting reimbursement by payers as the major limiting factor to growth. Advances in mAb engineering are likely to result in more effective mAb drugs and an expansion of the therapeutic indications covered by the class. The parallel development of biomarkers for identifying the patient subpopulations most likely to respond to treatment may lead to a more cost-effective use of these drugs. To achieve the success of the current top-tier mAbs, companies developing new mAb products must adapt to a significantly more challenging commercial environment. PMID:20061824

  8. Continuous Purification of Colloidal Quantum Dots in Large-Scale Using Porous Electrodes in Flow Channel.

    PubMed

    Lim, Hosub; Woo, Ju Young; Lee, Doh C; Lee, Jinkee; Jeong, Sohee; Kim, Duckjong

    2017-02-27

    Colloidal quantum dots (QDs) afford huge potential in numerous applications owing to their excellent optical and electronic properties. After the synthesis of QDs, separating QDs from unreacted impurities in large scale is one of the biggest issues to achieve scalable and high performance optoelectronic applications. Thus far, however, continuous purification method, which is essential for mass production, has rarely been reported. In this study, we developed a new continuous purification process that is suitable to the mass production of high-quality QDs. As-synthesized QDs are driven by electrophoresis in a flow channel and captured by porous electrodes and finally separated from the unreacted impurities. Nuclear magnetic resonance and ultraviolet/visible/near-infrared absorption spectroscopic data clearly showed that the impurities were efficiently removed from QDs with the purification yield, defined as the ratio of the mass of purified QDs to that of QDs in the crude solution, up to 87%. Also, we could successfully predict the purification yield depending on purification conditions with a simple theoretical model. The proposed large-scale purification process could be an important cornerstone for the mass production and industrial use of high-quality QDs.

  9. Continuous Purification of Colloidal Quantum Dots in Large-Scale Using Porous Electrodes in Flow Channel

    NASA Astrophysics Data System (ADS)

    Lim, Hosub; Woo, Ju Young; Lee, Doh Chang; Lee, Jinkee; Jeong, Sohee; Kim, Duckjong

    2017-11-01

    Colloidal Quantum dots (QDs) afford huge potential in numerous applications owing to their excellent optical and electronic properties. After the synthesis of QDs, separating QDs from unreacted impurities in large scale is one of the biggest issues to achieve scalable and high performance optoelectronic applications. Thus far, however, continuous purification method, which is essential for mass production, has rarely been reported. In this study, we developed a new continuous purification process that is suitable to the mass production of high-quality QDs. As-synthesized QDs are driven by electrophoresis in a flow channel and captured by porous electrodes and finally separated from the unreacted impurities. Nuclear magnetic resonance and ultraviolet/visible/near-infrared absorption spectroscopic data clearly showed that the impurities were efficiently removed from QDs with the purification yield, defined as the ratio of the mass of purified QDs to that of QDs in the crude solution, up to 87%. Also, we could successfully predict the purification yield depending on purification conditions with a simple theoretical model. The proposed large-scale purification process could be an important cornerstone for the mass production and industrial use of high-quality QDs.

  10. Process for purification of silicon

    NASA Technical Reports Server (NTRS)

    Rath, H. J.; Sirtl, E.; Pfeiffer, W.

    1981-01-01

    The purification of metallurgically pure silicon having a silicon content of more than 95% by weight is accomplished by leaching with an acidic solution which substantially does not attack silicon. A mechanical treatment leading to continuous particle size reduction of the granulated silicon to be purified is combined with the chemical purification step.

  11. Ethanol precipitation for purification of recombinant antibodies.

    PubMed

    Tscheliessnig, Anne; Satzer, Peter; Hammerschmidt, Nikolaus; Schulz, Henk; Helk, Bernhard; Jungbauer, Alois

    2014-10-20

    Currently, the golden standard for the purification of recombinant humanized antibodies (rhAbs) from CHO cell culture is protein A chromatography. However, due to increasing rhAbs titers alternative methods have come into focus. A new strategy for purification of recombinant human antibodies from CHO cell culture supernatant based on cold ethanol precipitation (CEP) and CaCl2 precipitation has been developed. This method is based on the cold ethanol precipitation, the process used for purification of antibodies and other components from blood plasma. We proof the applicability of the developed process for four different antibodies resulting in similar yield and purity as a protein A chromatography based process. This process can be further improved using an anion-exchange chromatography in flowthrough mode e.g. a monolith as last step so that residual host cell protein is reduced to a minimum. Beside the ethanol based process, our data also suggest that ethanol could be replaced with methanol or isopropanol. The process is suited for continuous operation. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  12. [Find your way in the jungle of mAbs].

    PubMed

    Watier, H

    2017-09-01

    The rapidly increasing number of approved monoclonal antibodies (mAbs) and the huge number of mAbs in clinical development are a matter of concern for who wants to easily identify targets, indications, mechanisms of action and possible adverse effects. The current nomenclature being of limited interest, simple rationales will be presented for helping practitioners in rapidly classify mAbs depending on their structure-pharmacology relationship and in evaluating their potential effects, particularly in transfusion medicine. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. New Contribution to the Method of Van Arkel for the Purification of Metals on Incandescent Filaments; NUEVAS APORTACIONES AL METODO DE VAN ARKEL PARA LA PURIFICACION DE METALES SOBRE FILAMENTOS INCANDESCENTES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, M.L.; Martorell, J.T.

    1962-01-01

    The purification of zirconium in a cyclical static process using ZrI/sub 4/ as the volatile compound and W filaments was studied after a review of previous works on the subject. The equations corresponding to the isothermal process are given, in some detail. The optimum conditions of temperature and velocity for the maximum purification of the metal were determined. (J.S.R.)

  14. Process and economic evaluation of the extraction and purification of recombinant beta-glucuronidase from transgenic corn

    PubMed

    Evangelista; Kusnadi; Howard; Nikolov

    1998-07-01

    A process model for the recovery and purification of recombinant beta-glucuronidase (rGUS) from transgenic corn was developed, and the process economics were estimated. The base-case bioprocessing plant operates 7500 h/year processing 1.74 million (MM) kg of transgenic corn containing 0.015% (db) rGUS. The process consists of milling the corn into flour, extraction of protein by using 50 mM sodium phosphate buffer, and rGUS purification by ion exchange and hydrophobic interaction chromatography. About 137 kg of rGUS of 83% (db) purity can be produced annually. The production cost amounted to $43 000/kg of rGUS. The cost of milling, protein extraction, and rGUS purification accounted for 6, 40, and 48% of annual operating cost, respectively. The cost of transgenic corn was 31% of the raw material costs or 6% of the annual operating cost. About 78% of the cost of buffer and water were incurred in the protein extraction section, while 88% of other consumables were from the purification section. The sensitivity analysis indicated that rGUS can be produced profitably from corn even at the 0.015% (db) expression level, assuming a selling price of $100 000/kg GUS. An increase in rGUS expression levels up to 0.08% significantly improves the process economics.

  15. Development and application of pathovar-specific monoclonal antibodies that recognize the lipopolysaccharide O antigen and the type IV fimbriae of Xanthomonas hyacinthi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doorn, J. van; Ojanen-Reuhs, T.; Hollinger, T.C.

    1999-09-01

    The objective of this study was to develop a specific immunological diagnostic assay for yellow disease in hyacinths, using monoclonal antibodies (MAbs). Mice were immunized with a crude cell wall preparation (shear fraction) from Xanthomonas hyacinthi and with purified type IV fimbriae. Hybridomas were screened for a positive reaction with X. hyacinthi cells or fimbriae and for a negative reaction with X. translucens pv. graminis or Erwinia carotovora subsp. carotovora. Nine MAbs recognized fimbrial epitopes, as shown by immunoblotting, immunofluorescence, enzyme-linked immunosorbent assay (ELISA), and immunoelectron microscopy; however, three of these MAbs had weak cross-reactions with two X. translucens pathovarsmore » in immunoblotting experiments. Seven MAbs reacted with lipopolysaccharides and yielded a low-mobility ladder pattern on immunoblots. Subsequent analysis of MAb 2E5 showed that it specifically recognized an epitope on the O antigen, which was found to consist of rhamnose and fucose in a 2:1 molar ratio. The cross-reaction of MAb 2E5 with all X. hyacinthi strains tested showed that this O antigen is highly conserved within this species. MAb 1B10 also reacted with lipopolysaccharides. MAbs 2E5 and 1B10 were further tested in ELISA and immunoblotting experiments with cells and extracts from other pathogens. No cross-reaction was found with 27 other Xanthomonas pathovars tested or with 14 other bacterial species from other genera, such as Erwinia and Pseudomonas, indicating the high specificity of these antibodies. MAbs 2E5 and 1B10 were shown to be useful in ELISA for the detection of X. hyacinthi in infected hyacinths.« less

  16. Development and Characterization of Monoclonal Antibodies to Yellow Fever Virus and Application in Antigen Detection and IgM Capture Enzyme-Linked Immunosorbent Assay

    PubMed Central

    Adungo, Ferdinard; Kamau, David; Inoue, Shingo; Hayasaka, Daisuke; Posadas-Herrera, Guillermo; Sang, Rosemary; Mwau, Matilu

    2016-01-01

    Yellow fever (YF) is an acute hemorrhagic viral infection transmitted by mosquitoes in Africa and South America. The major challenge in YF disease detection and confirmation of outbreaks in Africa is the limited availability of reference laboratories and the persistent lack of access to diagnostic tests. We used wild-type YF virus sequences to generate recombinant envelope protein in an Escherichia coli expression system. Both the recombinant protein and sucrose gradient-purified YF vaccine virus 17D (YF-17D) were used to immunize BALB/c mice to generate monoclonal antibodies (MAbs). Eight MAbs were established and systematically characterized by indirect enzyme-linked immunosorbent assay (ELISA), Western blot analysis, and immunofluorescence assay (IFA). The established MAbs showed strong reactivity with wild-type YF virus and recombinant protein with no detectable cross-reactivity to dengue virus or Japanese encephalitis virus. Epitope mapping showed strong binding of three MAbs to amino acid positions 1 to 51, while two MAbs mapped to amino acid positions 52 to 135 of the envelope protein. The remaining three MAbs did not show reactivity to envelope fragments. The established MAbs exert no neutralization against wild-type YF and 17D viruses (titer of <10 for both strains). The applicability of MAbs 8H3 and 3F4 was further evaluated using IgM capture ELISA. A total of 49 serum samples were analyzed, among which 12 positive patient and vaccinee samples were correctly identified. Using serum samples that were 2-fold serially diluted, the IgM capture ELISA was able to detect all YF-positive samples. Furthermore, MAb-based antigen detection ELISA enabled the detection of virus in culture supernatants containing titers of about 1,000 focus-forming units. PMID:27307452

  17. Specificity and biologic activities of novel anti-membrane IgM antibodies

    PubMed Central

    Welt, Rachel S.; Welt, Jonathan A.; Kostyal, David; Gangadharan, Yamuna D; Raymond, Virginia; Welt, Sydney

    2016-01-01

    The concept that the B-cell Receptor (BCR) initiates a driver pathway in lymphoma-leukemia has been clinically validated. Previously described unique BCR Ig-class-specific sequences (proximal domains (PDs)), are not expressed in serum Ig (sIg). As a consequence of sequence and structural differences in the membrane IgM (mIgM) μ-Constant Domain 4, additional epitopes distinguish mIgM from sIgM. mAbs generated to linear and conformational epitopes, restricted to mIgM and not reacting with sIgM, were generated despite the relative hydrophobicity of the PDm sequence. Anti-PD mAbs (mAb1, mAb2, and mAb3) internalize mIgM. Anti-mIgM mAb4, which recognizes a distinct non-ligand binding site epitope, mediates mIgM internalization, and in low-density cultures, growth inhibition, anti-clonogenic activity, and apoptosis. We show that mAb-mediated mIgM internalization generally does not interrupt BCR-directed cell growth, however, mAb4 binding to a non-ligand binding site in the mIgM PDm-μC4 domain induces both mIgM internalization and anti-tumor effects. BCR micro-clustering in many B-cell leukemia and lymphoma lines is demonstrated by SEM micrographs using these new mAb reagents. mAb4 is a clinical candidate as a mediator of inhibition of the BCR signaling pathway. As these agents do not bind to non-mIgM B-cells, nor cross-react to non-lymphatic tissues, they may spare B-cell/normal tissue destruction as mAb-drug conjugates. PMID:27732950

  18. Conformational Changes of Blood ACE in Chronic Uremia

    PubMed Central

    Petrov, Maxim N.; Shilo, Valery Y.; Tarasov, Alexandr V.; Schwartz, David E.; Garcia, Joe G. N.; Kost, Olga A.; Danilov, Sergei M.

    2012-01-01

    Background The pattern of binding of monoclonal antibodies (mAbs) to 16 epitopes on human angiotensin I-converting enzyme (ACE) comprise a conformational ACE fingerprint and is a sensitive marker of subtle protein conformational changes. Hypothesis Toxic substances in the blood of patients with uremia due to End Stage Renal Disease (ESRD) can induce local conformational changes in the ACE protein globule and alter the efficacy of ACE inhibitors. Methodology/Principal Findings The recognition of ACE by 16 mAbs to the epitopes on the N and C domains of ACE was estimated using an immune-capture enzymatic plate precipitation assay. The precipitation pattern of blood ACE by a set of mAbs was substantially influenced by the presence of ACE inhibitors with the most dramatic local conformational change noted in the N-domain region recognized by mAb 1G12. The “short” ACE inhibitor enalaprilat (tripeptide analog) and “long” inhibitor teprotide (nonapeptide) produced strikingly different mAb 1G12 binding with enalaprilat strongly increasing mAb 1G12 binding and teprotide decreasing binding. Reduction in S-S bonds via glutathione and dithiothreitol treatment increased 1G12 binding to blood ACE in a manner comparable to enalaprilat. Some patients with uremia due to ESRD exhibited significantly increased mAb 1G12 binding to blood ACE and increased ACE activity towards angiotensin I accompanied by reduced ACE inhibition by inhibitory mAbs and ACE inhibitors. Conclusions/Significance The estimation of relative mAb 1G12 binding to blood ACE detects a subpopulation of ESRD patients with conformationally changed ACE, which activity is less suppressible by ACE inhibitors. This parameter may potentially serve as a biomarker for those patients who may need higher concentrations of ACE inhibitors upon anti-hypertensive therapy. PMID:23166630

  19. Specificity and biologic activities of novel anti-membrane IgM antibodies.

    PubMed

    Welt, Rachel S; Welt, Jonathan A; Kostyal, David; Gangadharan, Yamuna D; Raymond, Virginia; Welt, Sydney

    2016-11-15

    The concept that the B-cell Receptor (BCR) initiates a driver pathway in lymphoma-leukemia has been clinically validated. Previously described unique BCR Ig-class-specific sequences (proximal domains (PDs)), are not expressed in serum Ig (sIg). As a consequence of sequence and structural differences in the membrane IgM (mIgM) µ-Constant Domain 4, additional epitopes distinguish mIgM from sIgM. mAbs generated to linear and conformational epitopes, restricted to mIgM and not reacting with sIgM, were generated despite the relative hydrophobicity of the PDm sequence. Anti-PD mAbs (mAb1, mAb2, and mAb3) internalize mIgM. Anti-mIgM mAb4, which recognizes a distinct non-ligand binding site epitope, mediates mIgM internalization, and in low-density cultures, growth inhibition, anti-clonogenic activity, and apoptosis. We show that mAb-mediated mIgM internalization generally does not interrupt BCR-directed cell growth, however, mAb4 binding to a non-ligand binding site in the mIgM PDm-μC4 domain induces both mIgM internalization and anti-tumor effects. BCR micro-clustering in many B-cell leukemia and lymphoma lines is demonstrated by SEM micrographs using these new mAb reagents. mAb4 is a clinical candidate as a mediator of inhibition of the BCR signaling pathway. As these agents do not bind to non-mIgM B-cells, nor cross-react to non-lymphatic tissues, they may spare B-cell/normal tissue destruction as mAb-drug conjugates.

  20. Phylogenomics of Brazilian epidemic isolates of Mycobacterium abscessus subsp. bolletii reveals relationships of global outbreak strains

    PubMed Central

    Davidson, Rebecca M.; Hasan, Nabeeh A.; de Moura, Vinicius Calado Nogueira; Duarte, Rafael Silva; Jackson, Mary; Strong, Michael

    2013-01-01

    Rapidly growing, non-tuberculous mycobacteria (NTM) in the Mycobacterium abscessus (MAB) species are emerging pathogens that cause various diseases including skin and respiratory infections. The species has undergone recent taxonomic nomenclature refinement, and is currently recognized as two subspecies, M. abscessus subsp. abscessus (MAB-A) and M. abscessus subsp. bolletii (MAB-B). The recently reported outbreaks of MAB-B in surgical patients in Brazil from 2004 to 2009 and in cystic fibrosis patients in the United Kingdom (UK) in 2006 to 2012 underscore the need to investigate the genetic diversity of clinical MAB strains. To this end, we sequenced the genomes of two Brazilian MAB-B epidemic isolates (CRM-0019 and CRM-0020) derived from an outbreak of skin infections in Rio de Janeiro, two unrelated MAB strains from patients with pulmonary infections in the United States (US) (NJH8 and NJH11) and one type MAB-B strain (CCUG 48898) and compared them to 25 publically available genomes of globally diverse MAB strains. Genome-wide analyses of 27,598 core genome single nucleotide polymorphisms (SNPs) revealed that the two Brazilian derived CRM strains are nearly indistinguishable from one another and are more closely related to UK outbreak isolates infecting CF patients than to strains from the US, Malaysia or France. Comparative genomic analyses of six closely related outbreak strains revealed geographic-specific large-scale insertion/deletion variation that corresponds to bacteriophage insertions and recombination hotspots. Our study integrates new genome sequence data with existing genomic information to explore the global diversity of infectious M. abscessus isolates and to compare clinically relevant outbreak strains from different continents. PMID:24055961

  1. Development and Application of Pathovar-Specific Monoclonal Antibodies That Recognize the Lipopolysaccharide O Antigen and the Type IV Fimbriae of Xanthomonas hyacinthi

    PubMed Central

    van Doorn, J.; Ojanen-Reuhs, T.; Hollinger, T. C.; Reuhs, B. L.; Schots, A.; Boonekamp, P. M.; Oudega, B.

    1999-01-01

    The objective of this study was to develop a specific immunological diagnostic assay for yellow disease in hyacinths, using monoclonal antibodies (MAbs). Mice were immunized with a crude cell wall preparation (shear fraction) from Xanthomonas hyacinthi and with purified type IV fimbriae. Hybridomas were screened for a positive reaction with X. hyacinthi cells or fimbriae and for a negative reaction with X. translucens pv. graminis or Erwinia carotovora subsp. carotovora. Nine MAbs recognized fimbrial epitopes, as shown by immunoblotting, immunofluorescence, enzyme-linked immunosorbent assay (ELISA), and immunoelectron microscopy; however, three of these MAbs had weak cross-reactions with two X. translucens pathovars in immunoblotting experiments. Seven MAbs reacted with lipopolysaccharides and yielded a low-mobility ladder pattern on immunoblots. Subsequent analysis of MAb 2E5 showed that it specifically recognized an epitope on the O antigen, which was found to consist of rhamnose and fucose in a 2:1 molar ratio. The cross-reaction of MAb 2E5 with all X. hyacinthi strains tested showed that this O antigen is highly conserved within this species. MAb 1B10 also reacted with lipopolysaccharides. MAbs 2E5 and 1B10 were further tested in ELISA and immunoblotting experiments with cells and extracts from other pathogens. No cross-reaction was found with 27 other Xanthomonas pathovars tested or with 14 other bacterial species from other genera, such as Erwinia and Pseudomonas, indicating the high specificity of these antibodies. MAbs 2E5 and 1B10 were shown to be useful in ELISA for the detection of X. hyacinthi in infected hyacinths. PMID:10473431

  2. Production and characterization of a monoclonal antibody against enrofloxacin.

    PubMed

    Chusri, Manaspong; Wongphanit, Pitikarn; Palaga, Tanapat; Puthong, Songchan; Sooksai, Sarintip; Komolpis, Kittinan

    2013-01-01

    Enrofloxacin is a fluoroquinolone antibiotic approved for the treatment of infections in animals. Because of the side effects to consumers of animal products, the maximum residue limits (MRLs) of enrofloxacin in animal tissues for consumption are regulated. In this study, a monoclonal antibody (mAb) against enrofloxacin was prepared and characterized for the development of a direct competitive enzyme-linked immunosorbent assay (ELISA). The obtained mAb, Enro44, was highly specific for enrofloxacin and had a 50% inhibition concentration (IC(50)) of 1.99 ng/ml in a competitive ELISA, and the limit of detection (LOD) was 0.50 ng/ml. The cross-reactivity of the mAb with other quinolones and fluoroquinolones was lower than 0.01%. The subclass of the mAb Enro44 was identified as IgG1. The antigen (Ag)-captured direct competitive ELISA using the mAb Enro44 was tested on different spiked samples, including chicken muscle, cattle milk, and cattle urine, and the assay demonstrated recoveries of 82-112%, 80-125%, and 78-124%, respectively. Furthermore, the quantitation of enrofloxacin obtained from the ELISA and from high-performance liquid chromatography (HPLC) was in good agreement, with the linear regression coefficient between 0.933 and 1.056. The cDNAs encoding a heavy-chain Fd fragment (VH and CH1) and a light chain of the mAb Enro44 were cloned and sequenced. Taken together, the results obtained reveal a potential use of this mAb in an ELISA for the detection of enrofloxacin in food samples. The information of amino acid sequence of this mAb will be useful for further modification and production of the mAb in a bioreactor.

  3. In vivo selection of populations of Plasmodium chabaudi chabaudi AS resistant to a monoclonal antibody that reacts with the precursor to the major merozoite surface antigen.

    PubMed Central

    Wood, J C; Sales de Aguiar, J C; Jarra, W; Ogun, S A; Snounou, G; Brown, K N

    1989-01-01

    Mice bearing a hybridoma secreting a monoclonal antibody (MAb), MAb-3, which significantly delays the onset of a Plasmodium chabaudi chabaudi AS, but not P. chabaudi chabaudi CB, challenge parasitemia in a passive transfer assay and which is specific for the precursor to the major merozoite surface antigen (PMMSA) of P. chabaudi chabaudi AS, were challenged intravenously with 10(3) P. chabaudi chabaudi AS-parasitized erythrocytes. The resultant parasitemia was very similar to that in normal mice except that initially the parasitemia was sometimes slightly delayed. Parasites derived from cryopreserved stabilates isolated from MAb-3 hybridoma mice with an unmodified parasitemia, or with a delayed parasitemia, were found to have lost their susceptibility to MAb-3 in the passive transfer assay. A number of anti-PMMSA MAb were used to immunoprecipitate lysates of parasite populations isolated directly from hybridoma-bearing mice. In some instances and with certain of the MAb, immunoprecipitation patterns were modified, but other isolates were not detectably different when compared with unselected P. chabaudi chabaudi AS parasites. Using a panel of MAb reacting with the PMMSA of P. chabaudi chabaudi AS, immunoprecipitation patterns of parasites derived from cryopreserved stabilates isolated from hybridoma-bearing mice were determined at 2-h intervals through the appropriate part of the parasite maturation cycle. In these derived populations, resistance to MAb-3 was not associated with a change in the immunoprecipitation reaction with the MAb used. These results are discussed in the context of current knowledge of genotypic and phenotypic antigenic diversity of malaria parasites and other protozoa. Images PMID:2731986

  4. Epitope mapping of PfCP-2.9, an asexual blood-stage vaccine candidate of Plasmodium falciparum.

    PubMed

    Li, Changling; Wang, Rui; Wu, Yuan; Zhang, Dongmei; He, Zhicheng; Pan, Weiqing

    2010-04-12

    Apical membrane antigen 1 (AMA-1) and merozoite surface protein 1 (MSP1) of Plasmodium falciparum are two leading blood-stage malaria vaccine candidates. A P. falciparum chimeric protein 2.9 (PfCP-2.9) has been constructed as a vaccine candidate, by fusing AMA-1 domain III (AMA-1 (III)) with a C-terminal 19 kDa fragment of MSP1 (MSP1-19) via a 28-mer peptide hinge. PfCP-2.9 was highly immunogenic in animal studies, and antibodies elicited by the PfCP-2.9 highly inhibited parasite growth in vitro. This study focused on locating the distribution of epitopes on PfCP-2.9. A panel of anti-PfCP-2.9 monoclonal antibodies (mAbs) were produced and their properties were examined by Western blot as well as in vitro growth inhibition assay (GIA). In addition, a series of PfCP-2.9 mutants containing single amino acid substitution were produced in Pichia pastoris. Interaction of the mAbs with the PfCP-2.9 mutants was measured by both Western blot and enzyme-linked immunosorbent assay (ELISA). Twelve mAbs recognizing PfCP-2.9 chimeric protein were produced. Of them, eight mAbs recognized conformational epitopes and six mAbs showed various levels of inhibitory activities on parasite growth in vitro. In addition, seventeen PfCP-2.9 mutants with single amino acid substitution were produced in Pichia pastoris for interaction with mAbs. Reduced binding of an inhibitory mAb (mAb7G), was observed in three mutants including M62 (Phe491-->Ala), M82 (Glu511-->Gln) and M84 (Arg513-->Lys), suggesting that these amino acid substitutions are critical to the epitope corresponding to mAb7G. The binding of two non-inhibitory mAbs (mAbG11.12 and mAbW9.10) was also reduced in the mutants of either M62 or M82. The substitution of Leu31 to Arg resulted in completely abolishing the binding of mAb1E1 (a blocking antibody) to M176 mutant, suggesting that the Leu residue at this position plays a crucial role in the formation of the epitope. In addition, the Asn15 residue may also play an important role in the global folding of PfCP-2.9, as its substitution by Arg lead to reduced binding of most mAbs and abolishing the binding of mAb6G and mAbP5-W12. This study provided valuable information on epitopes of PfCP-2.9 vaccine candidate through generation of a panel of mAbs and a series of PfCP-2.9 mutants. The information may prove to be useful for designing more effective malaria vaccines against blood-stage parasites.

  5. Pharmacokinetics and concentration-effect relationships of therapeutic monoclonal antibodies and fusion proteins.

    PubMed

    Ternant, David; Paintaud, Gilles

    2005-09-01

    Although monoclonal antibodies (mAbs) constitute a major advance in therapeutics, their pharmacokinetic (PK) and pharmacodynamic (PD) properties are not fully understood. Saturable mechanisms are thought to occur in distribution and elimination of mAbs, which are protected from degradation by the Brambell's receptor (FcRn). The binding of mAbs to their target antigen explains part of their nonlinear PK and PD properties. The interindividual variability in mAb PK can be explained by several factors, including immune response against the biodrug and differences in the number of antigenic sites. The concentration-effect relationships of mAbs are complex and dependent on their mechanism of action. Interindividual differences in mAb PD can be explained by factors such as genetics and clinical status. PK and concentration-effect studies are necessary to design optimal dosing regimens. Because of their above-mentioned characteristics, the interindividual variability in their dose-response relationships must be studied by PK-PD modelling.

  6. Use of a novel monoclonal antibody in diagnosis of Barrett's esophagus.

    PubMed

    Griffel, L H; Amenta, P S; Das, K M

    2000-01-01

    A novel monoclonal antibody (MAbDAS-1), that specifically reacts with colonic but not small intestinal epithelium, recognizes specialized columnar epithelium (SCE) in the esophagus. The frequency of its reactivity in biopsy specimens of patients with endoscopically suspected Barrett's Esophagus (BE) is examined. Fifty-two biopsy specimens of the distal esophagus from 38 patients were tested by immunoperoxidase method using MAbDAS-1. Fifty-four samples of cardia-type mucosa biopsied from the stomach were used as controls. Results were compared with histology and Alcian blue/high iron diamine (AB/HID). Of the 52 specimens, 29 had glandular epithelium and the rest had only squamous epithelium. Ten were diagnosed to have SCE by histology. All 10 samples reacted with MAbDAS-1 and with Alcian blue. Of the remaining 19 specimens, five also reacted with MAbDAS-1. None of the squamous epithelium and cardia specimens reacted with MAbDAS-1. MAbDAS-1 may detect intestinal metaplasia of the esophagus of colonic phenotype in the absence of histological evidence of SCE.

  7. Production of monoclonal antibody against ORF72 of koi herpesvirus isolated in Taiwan.

    PubMed

    Tu, Chien; Lu, Yi-Ping; Hsieh, Chia-Yu; Huang, Su-Ming; Chang, Shao-Kuang; Chen, Meei-Mei

    2014-03-01

    A monoclonal antibody (MAb) was generated against the capsid protein (ORF 72) of koi herpesvirus (KHV) isolated from diseased koi Cyprinus carpio in Taiwan. The clone of MAb-B2 was obtained by immunizing mice with whole virus particles and further identified using indirect enzyme-linked immunosorbent assay and Western blot assay. In addition, it detected KHV in KHV-infected cells but not in those of mock-infected cells as demonstrated by indirect immunofluorescence assay. The neutralization test showed that MAb-B2 neutralized KHV. Furthermore, we uncovered that MAb-B2 recognizes the ORF72 of KHV as revealed by liquid chromatography-tandem mass spectrometry and Western blot assays. Additionally, MAb-B2 has been used as a diagnostic tool for detection of KHV in clinical samples by immunohistochemistry. Collectively, our results indicated that MAb-B2 could be used in the development of a diagnostic kit for diagnosis of KHV infections and ORF72 protein of KHV might be a candidate for future vaccine development.

  8. Most neutralizing human monoclonal antibodies target novel epitopes requiring both Lassa virus glycoprotein subunits

    PubMed Central

    Robinson, James E.; Hastie, Kathryn M.; Cross, Robert W.; Yenni, Rachael E.; Elliott, Deborah H.; Rouelle, Julie A.; Kannadka, Chandrika B.; Smira, Ashley A.; Garry, Courtney E.; Bradley, Benjamin T.; Yu, Haini; Shaffer, Jeffrey G.; Boisen, Matt L.; Hartnett, Jessica N.; Zandonatti, Michelle A.; Rowland, Megan M.; Heinrich, Megan L.; Martínez-Sobrido, Luis; Cheng, Benson; de la Torre, Juan C.; Andersen, Kristian G.; Goba, Augustine; Momoh, Mambu; Fullah, Mohamed; Gbakie, Michael; Kanneh, Lansana; Koroma, Veronica J.; Fonnie, Richard; Jalloh, Simbirie C.; Kargbo, Brima; Vandi, Mohamed A.; Gbetuwa, Momoh; Ikponmwosa, Odia; Asogun, Danny A.; Okokhere, Peter O.; Follarin, Onikepe A.; Schieffelin, John S.; Pitts, Kelly R.; Geisbert, Joan B.; Kulakoski, Peter C.; Wilson, Russell B.; Happi, Christian T.; Sabeti, Pardis C.; Gevao, Sahr M.; Khan, S. Humarr; Grant, Donald S.; Geisbert, Thomas W.; Saphire, Erica Ollmann; Branco, Luis M.; Garry, Robert F.

    2016-01-01

    Lassa fever is a severe multisystem disease that often has haemorrhagic manifestations. The epitopes of the Lassa virus (LASV) surface glycoproteins recognized by naturally infected human hosts have not been identified or characterized. Here we have cloned 113 human monoclonal antibodies (mAbs) specific for LASV glycoproteins from memory B cells of Lassa fever survivors from West Africa. One-half bind the GP2 fusion subunit, one-fourth recognize the GP1 receptor-binding subunit and the remaining fourth are specific for the assembled glycoprotein complex, requiring both GP1 and GP2 subunits for recognition. Notably, of the 16 mAbs that neutralize LASV, 13 require the assembled glycoprotein complex for binding, while the remaining 3 require GP1 only. Compared with non-neutralizing mAbs, neutralizing mAbs have higher binding affinities and greater divergence from germline progenitors. Some mAbs potently neutralize all four LASV lineages. These insights from LASV human mAb characterization will guide strategies for immunotherapeutic development and vaccine design. PMID:27161536

  9. The versatility of heart-cutting and comprehensive two-dimensional liquid chromatography in monoclonal antibody clone selection.

    PubMed

    Sandra, Koen; Steenbeke, Mieke; Vandenheede, Isabel; Vanhoenacker, Gerd; Sandra, Pat

    2017-11-10

    In recent years, two-dimensional liquid chromatography (2D-LC) has seen an enormous evolution and one of the fields where it is being widely adopted is in the analysis of therapeutic monoclonal antibodies (mAbs). We here further add to the many flavours of this powerful technology. Workflows based on heart-cutting (LC-LC) and comprehensive (LC×LC) 2D-LC are described that allow to guide the clone selection process in mAb and biosimilar development. Combining Protein A affinity chromatography in the first dimension with size exclusion (SEC), cation exchange (CEX) or reversed-phase liquid chromatography-mass spectrometry (RPLC-MS) in the second dimension simultaneously allows to assess mAb titer and critical structural aspects such as aggregation, fragmentation, charge heterogeneity, molecular weight (MW), amino acid sequence and glycosylation. Complementing the LC-LC measurements at intact protein level with LC×LC based peptide mapping provides the necessary information to make clear decisions on which clones to take further into development. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Increased ethanol production by deletion of HAP4 in recombinant xylose-assimilating Saccharomyces cerevisiae.

    PubMed

    Matsushika, Akinori; Hoshino, Tamotsu

    2015-12-01

    The Saccharomyces cerevisiae HAP4 gene encodes a transcription activator that plays a key role in controlling the expression of genes involved in mitochondrial respiration and reductive pathways. This work examines the effect of knockout of the HAP4 gene on aerobic ethanol production in a xylose-utilizing S. cerevisiae strain. A hap4-deleted recombinant yeast strain (B42-DHAP4) showed increased maximum concentration, production rate, and yield of ethanol compared with the reference strain MA-B42, irrespective of cultivation medium (glucose, xylose, or glucose/xylose mixtures). Notably, B42-DHAP4 was capable of producing ethanol from xylose as the sole carbon source under aerobic conditions, whereas no ethanol was produced by MA-B42. Moreover, the rate of ethanol production and ethanol yield (0.44 g/g) from the detoxified hydrolysate of wood chips was markedly improved in B42-DHAP4 compared to MA-B42. Thus, the results of this study support the view that deleting HAP4 in xylose-utilizing S. cerevisiae strains represents a useful strategy in ethanol production processes.

  11. Correlating the Effects of Antimicrobial Preservatives on Conformational Stability, Aggregation Propensity, and Backbone Flexibility of an IgG1 mAb.

    PubMed

    Arora, Jayant; Joshi, Sangeeta B; Middaugh, C Russell; Weis, David D; Volkin, David B

    2017-06-01

    Multidose formulations of biotherapeutics, which offer better dosage management and reduced production costs, require the addition of antimicrobial preservatives (APs). APs have been shown, however, to decrease protein stability in solution and cause protein aggregation. In this report, the effect of 4 APs, m-cresol, phenol, phenoxyethanol, and benzyl alcohol on conformational stability, aggregation propensity, and backbone flexibility of an IgG1 mAb, mAb-4, is investigated. Compared with no preservative control, each of the APs decreased the conformational stability of mAb-4 as measured by differential scanning calorimetry and extrinsic fluorescence spectroscopy. The addition of APs resulted in increased monomer loss and aggregate accumulation at 50°C over 28 days, as monitored by size-exclusion chromatography. The extent of conformational destabilization and protein aggregation of mAb-4 induced by APs followed their calculated octanol-water partition coefficients. Increases in backbone flexibility, as measured by hydrogen exchange, of a region located in the C H 2 domain of the mAb (heavy chain 237-254) in the presence of APs also correlated with hydrophobicity. Based on these results, the destabilizing effect of APs on mAb-4 correlates with the increased hydrophobicity of the APs and their ability to enhance the local backbone flexibility of an aggregation hot spot within the C H 2 domain of the mAb. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  12. Germline-Specific MATH-BTB Substrate Adaptor MAB1 Regulates Spindle Length and Nuclei Identity in Maize[W

    PubMed Central

    Juranić, Martina; Srilunchang, Kanok-orn; Krohn, Nádia Graciele; Leljak-Levanić, Dunja; Sprunck, Stefanie; Dresselhaus, Thomas

    2012-01-01

    Germline and early embryo development constitute ideal model systems to study the establishment of polarity, cell identity, and asymmetric cell divisions (ACDs) in plants. We describe here the function of the MATH-BTB domain protein MAB1 that is exclusively expressed in the germ lineages and the zygote of maize (Zea mays). mab1 (RNA interference [RNAi]) mutant plants display chromosome segregation defects and short spindles during meiosis that cause insufficient separation and migration of nuclei. After the meiosis-to-mitosis transition, two attached nuclei of similar identity are formed in mab1 (RNAi) mutants leading to an arrest of further germline development. Transient expression studies of MAB1 in tobacco (Nicotiana tabacum) Bright Yellow-2 cells revealed a cell cycle–dependent nuclear localization pattern but no direct colocalization with the spindle apparatus. MAB1 is able to form homodimers and interacts with the E3 ubiquitin ligase component Cullin 3a (CUL3a) in the cytoplasm, likely as a substrate-specific adapter protein. The microtubule-severing subunit p60 of katanin was identified as a candidate substrate for MAB1, suggesting that MAB1 resembles the animal key ACD regulator Maternal Effect Lethal 26 (MEL-26). In summary, our findings provide further evidence for the importance of posttranslational regulation for asymmetric divisions and germline progression in plants and identified an unstable key protein that seems to be involved in regulating the stability of a spindle apparatus regulator(s). PMID:23250449

  13. Quantitation of bovine immunoglobulin isotypes and allotypes using monoclonal antibodies.

    PubMed

    Williams, D J; Newson, J; Naessens, J

    1990-03-01

    A panel of 10 monoclonal antibodies specific for bovine immunoglobulins M, A, G1, G2 and light chains were produced and enzyme-linked immunosorbent assays developed to measure Ig levels in body fluids and culture supernatants using this panel of MAbs. An inhibition ELISA was accurate and sensitive for MAbs of high affinity, detecting levels as low as 10 ng ml-1 of IgM using a high-affinity MAb, IL-A50 (dissociation constant = 1.3 X 10(-11) M). For MAbs of lower affinity (KD of less than 0.25 X 10(-9) M) a sandwich ELISA was more sensitive, detecting 0.1-1.0 microgram ml-1 Ig, provided a conjugate of an anti-light chain MAb was used. Using these ELISA techniques, four pairs of MAbs specific for bovine IgM, IgA, IgG1 and IgG2 respectively, were screened on sera from over 100 cattle of different breeds to determine whether any detected a polymorphic epitope. MAbs IL-A30, IL-A60, IL-A66, IL-A71, IL-A72, IL-A73 and IL-A74 were shown to recognise monomorphic determinants on their respective heavy chains. In contrast, the epitope recognised on the mu-heavy chain by MAb IL-A50, which had previously been shown to be polymorphic, was found to be allelic and inherited under the control of a single gene, probably Cu.

  14. Two Novel Tau Antibodies Targeting the 396/404 Region Are Primarily Taken Up by Neurons and Reduce Tau Protein Pathology*

    PubMed Central

    Gu, Jiaping; Congdon, Erin E.; Sigurdsson, Einar M.

    2013-01-01

    Aggregated Tau proteins are hallmarks of Alzheimer disease and other tauopathies. Recent studies from our group and others have demonstrated that both active and passive immunizations reduce Tau pathology and prevent cognitive decline in transgenic mice. To determine the efficacy and safety of targeting the prominent 396/404 region, we developed two novel monoclonal antibodies (mAbs) with distinct binding profiles for phospho and non-phospho epitopes. The two mAbs significantly reduced hyperphosphorylated soluble Tau in long term brain slice cultures without apparent toxicity, suggesting the therapeutic importance of targeting the 396/404 region. In mechanistic studies, we found that neurons were the primary cell type that internalized the mAbs, whereas a small amount of mAbs was taken up by microglia cells. Within neurons, the two mAbs were highly colocalized with distinct pathological Tau markers, indicating their affinity toward different stages or forms of pathological Tau. Moreover, the mAbs were largely co-localized with endosomal/lysosomal markers, and partially co-localized with autophagy pathway markers. Additionally, the Fab fragments of the mAbs were able to enter neurons, but unlike the whole antibodies, the fragments were not specifically localized in pathological neurons. In summary, our Tau mAbs were safe and efficient to clear pathological Tau in a brain slice model. Fc-receptor-mediated endocytosis and the endosome/autophagosome/lysosome system are likely to have a critical role in antibody-mediated clearance of Tau pathology. PMID:24089520

  15. Preparation and Biological Activity of the Monoclonal Antibody against the Second Extracellular Loop of the Angiotensin II Type 1 Receptor

    PubMed Central

    Wei, Mingming; Zhao, Chengrui; Zhang, Suli; Wang, Li; Liu, Huirong; Ma, Xinliang

    2016-01-01

    The current study was to prepare a mouse-derived antibody against the angiotensin II type 1 receptor (AT1-mAb) based on monoclonal antibody technology, to provide a foundation for research on AT1-AA-positive diseases. Balb/C mice were actively immunized with the second extracellular loop of the angiotensin II type 1 receptor (AT1R-ECII). Then, mouse spleen lymphocytes were fused with myeloma cells and monoclonal hybridomas that secreted AT1-mAb were generated and cultured, after which those in logarithmic-phase were injected into the abdominal cavity of mice to retrieve the ascites. Highly purified AT1-mAb was isolated from mouse ascites after injection with 1 × 107 hybridomas. A greater amount of AT1-mAb was purified from mouse ascites compared to the cell supernatant of hybridomas. AT1-mAb purified from mouse ascites constricted the thoracic aorta of mice and increased the beat frequency of neonatal rat myocardial cells via the AT1R, identical to the effects of AT1-AA extracted from patients' sera. Murine blood pressure increased after intravenous injection of AT1-mAb via the tail vein. High purity and good biological activity of AT1-mAb can be obtained from mouse ascites after intraperitoneal injection of monoclonal hybridomas that secrete AT1-mAb. These data provide a simple tool for studying AT1-AA-positive diseases. PMID:27057554

  16. Evaluating the Role of the Air-Solution Interface on the Mechanism of Subvisible Particle Formation Caused by Mechanical Agitation for an IgG1 mAb.

    PubMed

    Ghazvini, Saba; Kalonia, Cavan; Volkin, David B; Dhar, Prajnaparamita

    2016-05-01

    Mechanical agitation of monoclonal antibody (mAb) solutions often leads to protein particle formation. In this study, various formulations of an immunoglobulin G (IgG) 1 mAb were subjected to different controlled interfacial stresses using a Langmuir trough, and protein particles formed at the interface and measured in bulk solution were characterized using atomic force microscopy and flow digital imaging. Results were compared to mAb solutions agitated in glass vials and unstressed controls. At lower pH, mAb solutions exhibited larger hysteresis in their surface pressure versus area isotherms and increased number of particles in bulk solution, when subjected to interfacial stresses. mAb samples subjected to 750-1000 interfacial compression-expansion cycles in 6 h contained high particle numbers in bulk solution, and displayed similar particulation trends when agitated in vials. At compression rates of 50 cycles in 6 h, however, particle levels in mAb solutions were comparable to unstressed controls, despite protein aggregates being present at the air-solution interface. These results suggest that while the air-solution interface serves as a nucleation site for initiating protein aggregation, the number of protein particles measured in bulk mAb solutions depends on the total number of compression cycles that proteins at the air-solution interface are subjected to within a fixed time. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  17. Serological Evaluation of Immunity to the Varicella-Zoster Virus Based on a Novel Competitive Enzyme-Linked Immunosorbent Assay

    PubMed Central

    Liu, Jian; Ye, Xiangzhong; Jia, Jizong; Zhu, Rui; Wang, Lina; Chen, Chunye; Yang, Lianwei; Wang, Yongmei; Wang, Wei; Ye, Jianghui; Li, Yimin; Zhu, Hua; Zhao, Qinjian; Cheng, Tong; Xia, Ningshao

    2016-01-01

    Varicella-zoster virus (VZV) is a highly contagious agent of varicella and herpes zoster. Varicella can be lethal to immunocompromised patients, babies, HIV patients and other adults with impaired immunity. Serological evaluation of immunity to VZV will help determine which individuals are susceptible and evaluate vaccine effectiveness. A collection of 110 monoclonal antibodies (mAbs) were obtained by immunization of mice with membrane proteins or cell-free virus. The mAbs were well characterized, and a competitive sandwich ELISA (capture mAb: 8H6; labelling mAb: 1B11) was established to determine neutralizing antibodies in human serum with reference to the FAMA test. A total of 920 human sera were evaluated. The competitive sandwich ELISA showed a sensitivity of 95.6%, specificity of 99.77% and coincidence of 97.61% compared with the fluorescent-antibody-to-membrane-antigen (FAMA) test. The capture mAb 8H6 was characterized as a specific mAb for VZV ORF9, a membrane-associated tegument protein that interacts with glycoprotein E (gE), glycoprotein B (gB) and glycoprotein C (gC). The labelling mAb 1B11 was characterized as a complement-dependent neutralizing mAb specific for the immune-dominant epitope located on gE, not on other VZV glycoproteins. The established competitive sandwich ELISA could be used as a rapid and high-throughput method for evaluating immunity to VZV. PMID:26853741

  18. Economics of recombinant antibody production processes at various scales: Industry-standard compared to continuous precipitation.

    PubMed

    Hammerschmidt, Nikolaus; Tscheliessnig, Anne; Sommer, Ralf; Helk, Bernhard; Jungbauer, Alois

    2014-06-01

    Standard industry processes for recombinant antibody production employ protein A affinity chromatography in combination with other chromatography steps and ultra-/diafiltration. This study compares a generic antibody production process with a recently developed purification process based on a series of selective precipitation steps. The new process makes two of the usual three chromatographic steps obsolete and can be performed in a continuous fashion. Cost of Goods (CoGs) analyses were done for: (i) a generic chromatography-based antibody standard purification; (ii) the continuous precipitation-based purification process coupled to a continuous perfusion production system; and (iii) a hybrid process, coupling the continuous purification process to an upstream batch process. The results of this economic analysis show that the precipitation-based process offers cost reductions at all stages of the life cycle of a therapeutic antibody, (i.e. clinical phase I, II and III, as well as full commercial production). The savings in clinical phase production are largely attributed to the fact that expensive chromatographic resins are omitted. These economic analyses will help to determine the strategies that are best suited for small-scale production in parallel fashion, which is of importance for antibody production in non-privileged countries and for personalized medicine. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Indirect calculation of monoclonal antibodies in nanoparticles using the radiolabeling process with technetium 99 metastable as primary factor: Alternative methodology for the entrapment efficiency.

    PubMed

    Helal-Neto, Edward; Cabezas, Santiago Sánchez; Sancenón, Félix; Martínez-Máñez, Ramón; Santos-Oliveira, Ralph

    2018-05-10

    The use of monoclonal antibodies (Mab) in the current medicine is increasing. Antibody-drug conjugates (ADCs) represents an increasingly and important modality for treating several types of cancer. In this area, the use of Mab associated with nanoparticles is a valuable strategy. However, the methodology used to calculate the Mab entrapment, efficiency and content is extremely expensive. In this study we developed and tested a novel very simple one-step methodology to calculate monoclonal antibody entrapment in mesoporous silica (with magnetic core) nanoparticles using the radiolabeling process as primary methodology. The magnetic core mesoporous silica were successfully developed and characterised. The PXRD analysis at high angles confirmed the presence of magnetic cores in the structures and transmission electron microscopy allowed to determine structures size (58.9 ± 8.1 nm). From the isotherm curve, a specific surface area of 872 m 2 /g was estimated along with a pore volume of 0.85 cm 3 /g and an average pore diameter of 3.15 nm. The radiolabeling process to proceed the indirect determination were well-done. Trastuzumab were successfully labeled (>97%) with Tc-99m generating a clear suspension. Besides, almost all the Tc-99m used (labeling the trastuzumab) remained trapped in the surface of the mesoporous silica for a period as long as 8 h. The indirect methodology demonstrated a high entrapment in magnetic core mesoporous silica surface of Tc-99m-traztuzumab. The results confirmed the potential use from the indirect entrapment efficiency methodology using the radiolabeling process, as a one-step, easy and cheap methodology. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Monoclonal Antibody Binding to a Surface-Exposed Epitope on Cowdria ruminantium That Is Conserved among Eight Strains

    PubMed Central

    Shompole, Sankale; Rurangirwa, Fred R.; Wambugu, Anderson; Sitienei, John; Mwangi, Duncan M.; Musoke, Anthony J.; Mahan, Suman; Wells, Clive W.; McGuire, Travis C.

    2000-01-01

    Monoclonal antibodies (MAb) binding to Cowdria ruminantium elementary bodies (EB) were identified by enzyme-linked immunosorbent assay, and surface binding of one MAb (446.15) to intact EB was determined by immunofluorescence, immunogold labeling, and transmission electron microscopy. MAb 446.15 bound an antigen of approximately 43 kDa in immunoblots of eight geographically distinct strains. The MAb did not react with Ehrlichia canis antigens or uninfected bovine endothelial cell lysate and may be useful in diagnostic assays and vaccine development. PMID:11063511

  1. [Optimizing the extracting technique of ampelopsin from Ampelopsis cantoniensis Planch by a uniform design method].

    PubMed

    He, Zhi-feng; Zeng, Sa; Hou, Juan-juan; Liu, De-yu

    2006-07-01

    To optimize the preparation of ampelopsin from Ampelopsis Cantoniensis Planch. The extraction and purification process was studied by the uniform design with the extract of ampelopsin content and purity as markers. The facters which influence the extraction and the purification of ampelopsin content were studied by uniform design. The optimum extraction and purification process: the concentration for alcohol was 90%, and refluxing quartic, 1.5 h each time; extraction by petroleum ether quintic, the mount of active carbon was 1 g/100 g of the medicine material, and recrystaling thrice. This extraction process has higher yield of ampelopsin and is available for production.

  2. Structure-activity relationship for hydrophobic salts as viscosity-lowering excipients for concentrated solutions of monoclonal antibodies.

    PubMed

    Guo, Zheng; Chen, Alvin; Nassar, Roger A; Helk, Bernhard; Mueller, Claudia; Tang, Yu; Gupta, Kapil; Klibanov, Alexander M

    2012-11-01

    To discover, elucidate the structure-activity relationship (SAR), and explore the mechanism of action of excipients able to drastically lower the viscosities of concentrated aqueous solutions of humanized monoclonal antibodies (MAbs). Salts prepared from hydrophobic cations and anions were dissolved into humanized MAbs solutions. Viscosities of the resulting solutions were measured as a function of the nature and concentration of the salts and MAbs. Even at moderate concentrations, some of the salts prepared herein were found to reduce over 10-fold the viscosities of concentrated aqueous solutions of several MAbs at room temperature. To be potent viscosity-lowering excipients, the ionic constituents of the salts must be hydrophobic, bulky, and aliphatic. A mechanistic hypothesis explaining the observed salt effects on MAb solutions' viscosities was proposed and verified.

  3. [Localization of hepatocellular carcinoma with monoclonal antibodies].

    PubMed

    Liu, Y

    1991-07-01

    We prepared monoclonal antibodies (MAbs) against hepatocellular carcinoma using cell suspensions isolated from surgical fresh hepatoma specimens as antigen. Totally we got 6 strains of hybridoma cell lines stably secreting MAbs for more than 2 years. Immunocytochemically they stained positively most of the paraffin embedded hepatoma tissues (63.1 to 91.1%) without reaction to the normal liver tissues. Localization of human hepatoma with 125I or 131I labelled MAbs in nude mice was done by IV injection, which showed clear tumor image by ECT radioimmunodetection and autoradiography of tissues. The T/N ratios of different MAbs were 3.1, 3.6, 5.15 and that of HAb 18-F (ab')2 was 14.4. Among 15 patients suspected to have hepatoma and given the labelled MAb, 13 proved pathologically to be hepatocellular carcinoma.

  4. Specific detection and quantitation of bovine IgG in bioreactor derived mouse mAb preparations.

    PubMed

    Gall-Debreceni, Anna; Lazar, Jozsef; Kadas, Janos; Balogh, Attila; Ferenczi, Annamaria; Sos, Endre; Takacs, Laszlo; Kurucz, Istvan

    2016-11-01

    Monoclonal antibody and recombinant protein production benefits greatly from bovine serum as an additive. The caveat is that bovine serum IgG, co-purifies with mAbs and IgG Fc-containing fusion proteins and it presents a contaminant in the end products. In order to analytically validate the products, species specific reagents are needed that react with bovine IgG exclusively. Our attempts to find such commercially available reagents failed. Here, we report the production of species specific mAbs which recognize bovine IgG even in the presence of excess amount of mouse IgG. We present five mAbs: Bsi4028, Bsi4032, Bsi4033, Bsi4034 and Bsi4035 suitable to determine the presence of bovine IgG contamination via ELISA or immunoblotting in bioreactor derived mouse mAb preparations. To quantitate bovine IgG content we developed sensitive sandwich ELISAs capable to detect bovine IgG contaminant in the ng/ml (~10 -11 M/l) range. Finally, we show that bovine IgG is efficiently removed from bioreactor produced mouse mAb preparation via affinity depletion columns prepared with Bsi4028, Bsi4032, Bsi4033, Bsi4034, Bsi4035 mAbs. Copyright © 2016. Published by Elsevier B.V.

  5. Establishment of Anti-Human ATRX Monoclonal Antibody AMab-6

    PubMed Central

    Ogasawara, Satoshi; Fujii, Yuki; Kaneko, Mika K.; Oki, Hiroharu; Sabit, Hemragul; Nakada, Mitsutoshi; Suzuki, Hiroyoshi; Ichimura, Koichi; Komori, Takashi

    2016-01-01

    Gliomas are the most frequently occurring brain tumors with a heterogeneous molecular background. The molecular subgrouping of gliomas more prognostically stratifies patients into distinct groups compared with conventional histological classification. The most important molecules for the subtype diagnosis of diffuse gliomas are mutations of isocitrate dehydrogenase (IDH), TERT promoter, and α-thalassemia/mental-retardation-syndrome-X-linked (ATRX) and the codeletion of 1p/19q. Among them, IDH and ATRX mutations can be diagnosed using specific monoclonal antibodies (mAbs). We have developed many mAbs against IDH mutants, including HMab-1/HMab-2 against IDH1-R132H and multispecific mAbs MsMab-1/MsMab-2 against IDH1/2 mutations. In contrast, highly sensitive mAbs against ATRX remain to be established. In this study, we immunized mice with recombinant human ATRX and developed a novel mAb, AMab-6. The dissociation constant of AMab-6 was determined to be 9.7 × 10−10 M, indicating that the binding affinity of AMab-6 is very high. Furthermore, AMab-6 sensitively detects ATRX in Western blot and immunohistochemical analyses, indicating that AMab-6 could become the standard marker to determine the ATRX mutation status of gliomas in immunohistochemical analyses. PMID:27788029

  6. Establishment of Anti-Human ATRX Monoclonal Antibody AMab-6.

    PubMed

    Ogasawara, Satoshi; Fujii, Yuki; Kaneko, Mika K; Oki, Hiroharu; Sabit, Hemragul; Nakada, Mitsutoshi; Suzuki, Hiroyoshi; Ichimura, Koichi; Komori, Takashi; Kato, Yukinari

    2016-10-01

    Gliomas are the most frequently occurring brain tumors with a heterogeneous molecular background. The molecular subgrouping of gliomas more prognostically stratifies patients into distinct groups compared with conventional histological classification. The most important molecules for the subtype diagnosis of diffuse gliomas are mutations of isocitrate dehydrogenase (IDH), TERT promoter, and α-thalassemia/mental-retardation-syndrome-X-linked (ATRX) and the codeletion of 1p/19q. Among them, IDH and ATRX mutations can be diagnosed using specific monoclonal antibodies (mAbs). We have developed many mAbs against IDH mutants, including HMab-1/HMab-2 against IDH1-R132H and multispecific mAbs MsMab-1/MsMab-2 against IDH1/2 mutations. In contrast, highly sensitive mAbs against ATRX remain to be established. In this study, we immunized mice with recombinant human ATRX and developed a novel mAb, AMab-6. The dissociation constant of AMab-6 was determined to be 9.7 × 10 -10 M, indicating that the binding affinity of AMab-6 is very high. Furthermore, AMab-6 sensitively detects ATRX in Western blot and immunohistochemical analyses, indicating that AMab-6 could become the standard marker to determine the ATRX mutation status of gliomas in immunohistochemical analyses.

  7. The emergence of antibody therapies for Ebola.

    PubMed

    Hiatt, Andrew; Pauly, Michael; Whaley, Kevin; Qiu, Xiangguo; Kobinger, Gary; Zeitlin, Larry

    2015-12-23

    This review describes the history of Ebola monoclonal antibody (mAb) development leading up to the recent severe Ebola outbreak in West Africa. The Ebola virus has presented numerous perplexing challenges in the long effort to develop therapeutic antibody strategies. Since the first report of a neutralizing human anti-Ebola mAb in 1999, the straightforward progression from in vitro neutralization resulting in in vivo protection and therapy has not occurred. A number of mAbs, including the first reported, failed to protect non-human primates (NHPs) in spite of protection in rodents. An appreciation of the role of effector functions to antibody efficacy has contributed significantly to understanding mechanisms of in vivo protection. However a crucial contribution, as measured by post-exposure therapy of NHPs, involved the comprehensive testing of mAb cocktails. This effort was aided by the use of plant production technology where various combinations of mAbs could be rapidly produced and tested. Introduction of appropriate modifications, such as specific glycan profiles, also improved therapeutic efficacy. The resulting cocktail, ZMapp™, consists of three mAbs that were identified from numerous mAb candidates. ZMapp™ \\ is now being evaluated in human clinical trials but has already played a role in bringing awareness to the potential of antibody therapy for Ebola.

  8. mAbs: a business perspective.

    PubMed

    Scolnik, Pablo A

    2009-01-01

    The twenty two monoclonal antibodies (mAbs) currently marketed in the U.S. have captured almost half of the top-20 U.S. therapeutic biotechnology sales for 2007. Eight of these products have annual sales each of more than $1 B, were developed in the relatively short average period of six years, qualified for FDA programs designed to accelerate drug approval, and their cost has been reimbursed liberally by payers. With growth of the product class driven primarily by advancements in protein engineering and the low probability of generic threats, mAbs are now the largest class of biological therapies under development. The high cost of these drugs and the lack of generic competition conflict with a financially stressed health system, setting reimbursement by payers as the major limiting factor to growth. Advances in mAb engineering are likely to result in more effective mAb drugs and an expansion of the therapeutic indications covered by the class. The parallel development of biomarkers for identifying the patient subpopulations most likely to respond to treatment may lead to a more cost-effective use of these drugs. To achieve the success of the current top-tier mAbs, companies developing new mAb products must adapt to a significantly more challenging commercial environment.

  9. Naturally selected hepatitis C virus polymorphisms confer broad neutralizing antibody resistance.

    PubMed

    Bailey, Justin R; Wasilewski, Lisa N; Snider, Anna E; El-Diwany, Ramy; Osburn, William O; Keck, Zhenyong; Foung, Steven K H; Ray, Stuart C

    2015-01-01

    For hepatitis C virus (HCV) and other highly variable viruses, broadly neutralizing mAbs are an important guide for vaccine development. The development of resistance to anti-HCV mAbs is poorly understood, in part due to a lack of neutralization testing against diverse, representative panels of HCV variants. Here, we developed a neutralization panel expressing diverse, naturally occurring HCV envelopes (E1E2s) and used this panel to characterize neutralizing breadth and resistance mechanisms of 18 previously described broadly neutralizing anti-HCV human mAbs. The observed mAb resistance could not be attributed to polymorphisms in E1E2 at known mAb-binding residues. Additionally, hierarchical clustering analysis of neutralization resistance patterns revealed relationships between mAbs that were not predicted by prior epitope mapping, identifying 3 distinct neutralization clusters. Using this clustering analysis and envelope sequence data, we identified polymorphisms in E2 that confer resistance to multiple broadly neutralizing mAbs. These polymorphisms, which are not at mAb contact residues, also conferred resistance to neutralization by plasma from HCV-infected subjects. Together, our method of neutralization clustering with sequence analysis reveals that polymorphisms at noncontact residues may be a major immune evasion mechanism for HCV, facilitating viral persistence and presenting a challenge for HCV vaccine development.

  10. Identification of a serotype-independent linear epitope of foot-and-mouth disease virus.

    PubMed

    Yang, Baolin; Wang, Mingxia; Liu, Wenming; Xu, Zhiqiang; Wang, Haiwei; Yang, Decheng; Ma, Wenge; Zhou, Guohui; Yu, Li

    2017-12-01

    Foot-and-mouth disease (FMD), caused by foot-and-mouth disease virus (FMDV), is a highly contagious infectious disease that affects domestic and wild cloven-hoofed animals worldwide. VP2 is a structural protein of FMDV. In this study, an FMDV serotype-independent monoclonal antibody (MAb), 10B10, against the viral capsid protein VP2 was generated, and a series of GST fusion proteins expressing a truncated peptide of VP2 was subjected to Western blot analysis using MAb 10B10. Their results indicated that the peptide 8 TLLEDRILT 16 of VP2 is the minimal requirement of the epitope recognized by MAb 10B10. Importantly, this linear epitope was highly conserved among all seven serotypes of FMDV in a sequence alignment analysis. Subsequent alanine-scanning mutagenesis analysis revealed that the residues Thr 8 and Asp 12 of the epitope were crucial for MAb-10B10 binding. Furthermore, Western blot analysis also revealed that the MAb 10B10-directed epitope could be recognized by positive sera from FMDV-infected cattle. The discovery that MAb 10B10 recognizes a serotype-independent linear epitope of FMDV suggests potential applications for this MAb in the development of serotype-independent tests for FMDV.

  11. Monoclonal antibodies against 27.8 kDa protein receptor efficiently block lymphocystis disease virus infection in flounder Paralichthys olivaceus gill cells.

    PubMed

    Sheng, Xiu-Zhen; Wang, Mu; Xing, Jing; Zhan, Wen-Bin

    2012-08-13

    In previous research using co-immunoprecipitation, a 27.8 kDa protein in flounder Paralichthys olivaceus gill (FG) cells was found to bind lymphocystis disease virus (LCDV). In this paper, 13 hybridomas secreting monoclonal antibodies (MAbs) against the 27.8 kDa protein were obtained, and 2 MAbs designated as 2G11 and 3D9 were cloned by limiting dilution. Analyzed by indirect enzyme-linked immunosorbent assay (ELISA) and western blotting, the MAbs specifically reacted with the 27.8 kDa protein of FG cells. Confocal fluorescence microscopy and immunogold electron microscopy (IEM) provided evidence that the epitopes recognized by these MAbs were located primarily on the cell membrane and occasionally in the cytoplasm near the cell membrane of FG cells. The MAbs could block LCDV binding after MAbs were pre-incubated with isolated membrane proteins of FG cells in a blocking ELISA, and MAbs also could inhibit LCDV infection of FG cells in culture. Moreover, several target tissues of LCDV in flounder, including gill, stomach, intestine and liver, displayed the presence of the LCDV receptor-27.8 kDa. These results strongly supported the possibility that the 27.8 kDa protein is the putative receptor specific for LCDV infection of FG cells in flounder.

  12. Demonstration of monoclonal anti-carcinoembryonic antigen (CEA) antibody internalization by electron microscopy, western blotting and radioimmunoassay.

    PubMed

    Tsaltas, G; Ford, C H; Gallant, M

    1992-01-01

    One of the important factors affecting the action of monoclonal antibodies (Mabs) or immunoconjugates on tumour sites depends on whether the Mab is internalized by the cancer cells in question. The underexplored subject of internalization is discussed in this paper, and a number of in vitro techniques for investigating internalization are evaluated, using a model which consists of a well characterized anti-carcinoembryonic antigen (anti-CEA) Mab and a number of CEA expressing human cancer cell lines. Employing two alternative radiolabeling assays, evidence for internalization of the anti-CEA Mab by a CEA-positive colorectal cancer cell line (LS174T) was obtained throughout the time intervals examined (5 min to 150 min). Electronmicroscopy employing horseradish-peroxidase labeled anti-CEA Mab and control antibody permitted direct visualization of anti-CEA Mab-related staining in intracellular compartments of a high CEA-expressor human colorectal cell line (SKCO1). Finally Western blots of samples derived from cytosolic and membrane components of solubilized cells from lung and colonic cancer cell lines provided evidence for internalized anti-CEA Mab throughout seven half hour intervals, starting at 5 minutes. Internalized anti-CEA was detected in all CEA expressing cell lines (LS174T, SKCO1, BENN) but not in the case of a very low CEA expressor line (COLO 320).

  13. Development of an Anti-HER2 Monoclonal Antibody H2Mab-139 Against Colon Cancer.

    PubMed

    Kaneko, Mika K; Yamada, Shinji; Itai, Shunsuke; Kato, Yukinari

    2018-02-01

    Human epidermal growth factor receptor 2 (HER2) expression has been reported in several cancers, such as breast, gastric, lung, pancreatic, and colorectal cancers. HER2 is overexpressed in those cancers and is associated with poor clinical outcomes. Trastuzumab, a humanized anti-HER2 antibody, provides significant survival benefits for patients with HER2-overexpressing breast cancers and gastric cancers. In this study, we developed a novel anti-HER2 monoclonal antibody (mAb), H 2 Mab-139 (IgG 1 , kappa) and investigated it against colon cancers using flow cytometry, western blot, and immunohistochemical analyses. Flow cytometry analysis revealed that H 2 Mab-139 reacted with colon cancer cell lines, such as Caco-2, HCT-116, HCT-15, HT-29, LS 174T, COLO 201, COLO 205, HCT-8, SW1116, and DLD-1. Although H 2 Mab-139 strongly reacted with LN229/HER2 cells on the western blot, we did not observe a specific signal for HER2 in colon cancer cell lines. Immunohistochemical analyses revealed sensitive and specific reactions of H 2 Mab-139 against colon cancers, indicating that H 2 Mab-139 is useful in detecting HER2 overexpression in colon cancers using flow cytometry and immunohistochemical analyses.

  14. Establishment of H2Mab-119, an Anti-Human Epidermal Growth Factor Receptor 2 Monoclonal Antibody, Against Pancreatic Cancer.

    PubMed

    Yamada, Shinji; Itai, Shunsuke; Nakamura, Takuro; Chang, Yao-Wen; Harada, Hiroyuki; Suzuki, Hiroyoshi; Kaneko, Mika K; Kato, Yukinari

    2017-12-01

    Human epidermal growth factor receptor 2 (HER2) is overexpressed in breast cancer and is associated with poor clinical outcomes. In addition, HER2 expression has been reported in other cancers, such as gastric, colorectal, lung, and pancreatic cancers. An anti-HER2 humanized antibody, trastuzumab, leads to significant survival benefits in patients with HER2-overexpressing breast cancers and gastric cancers. Herein, we established a novel anti-HER2 monoclonal antibody (mAb), H 2 Mab-119 (IgG 1 , kappa), and characterized its efficacy against pancreatic cancers using flow cytometry, Western blot, and immunohistochemical analyses. H 2 Mab-119 reacted with pancreatic cancer cell lines, such as KLM-1, Capan-2, and MIA PaCa-2, but did not react with PANC-1 in flow cytometry analysis. Western blot analysis also revealed a moderate signal for KLM-1 and a weak signal for MIA PaCa-2, although H 2 Mab-119 reacted strongly with LN229/HER2 cells. Finally, immunohistochemical analyses with H 2 Mab-119 revealed sensitive and specific reactions against breast and colon cancers but did not react with pancreatic cancers, indicating that H 2 Mab-119 is useful for detecting HER2 overexpression in pancreatic cancers using flow cytometry and Western blot analyses.

  15. Seizing the strategic opportunities of emerging technologies by building up innovation system: monoclonal antibody development in China.

    PubMed

    Zhang, Mao-Yu; Li, Jian; Hu, Hao; Wang, Yi-Tao

    2015-11-04

    Monoclonal antibodies (mAbs), as an emerging technology, have become increasingly important in the development of human therapeutic agents. How developing countries such as China could seize this emerging technological opportunity remains a poorly studied issue in prior literature. Thus, this paper aims to investigate the research and development of mAbs in China based on an innovation system functions approach and probes into the question of how China has been taking advantage of emerging technologies to overcome its challenges of building up a complete innovation system in developing mAbs. Mixed research methods were applied by combining archival data and field interviews. Archival data from the China Food and Drug Administration, Web of Science, the United States Patent and Trademark Office, the Chinese Clinical Trial Registry, and the National Science and Technology Report Service were used to examine the status quo of the technology and research and development (R&D) activities in China, while the opinions of researchers and managers in this field were synthesized from the interviews. From the perspective of innovation system functions, technological development of mAb in China is being driven by incentives such as the subsidies from the State and corporate R&D funding. Knowledge diffusion has been well served over the last 10 years through exchanging information on networks and technology transfer with developed countries. The State has provided clear guidance on search of emerging mAb technologies. Legitimacy of mAb in China has gained momentum owing to the implementation of government policies stipulated in the "The Eleventh Five-year Plan" in 2007, as well as national projects such as the "973 Program" and "863 Program", among others. The potential of market formation stays high because of the rising local demand and government support. Entrepreneurial activities for mAb continue to prosper. In addition, the situation of resource supply has been improved with the support of the State. This study finds that a complete innovation system for mAb has begun to take shape in China. MAb innovators in China are capitalizing on this emerging technological opportunity to participate in the global drive of developing the value chain for the innovative drug. In the long run, the build-up of the research system for mAb in China could bring about more driving forces to the mAb innovation system.

  16. Low density lipoproteins develop resistance to oxidative modification due to inhibition of cholesteryl ester transfer protein by a monoclonal antibody.

    PubMed

    Sugano, M; Sawada, S; Tsuchida, K; Makino, N; Kamada, M

    2000-01-01

    Although numerous studies have investigated the relationship between cholesteryl ester transfer protein (CETP) and high density lipoprotein (HDL) remodeling, the relationship between CETP and low density lipoproteins (LDL) is still not fully understood. In the present study, we examined the effect of the inhibition of CETP on both LDL oxidation and the uptake of the oxidized LDL, which were made from LDL under condition of CETP inhibition, by macrophages using a monoclonal antibody (mAb) to CETP in incubated plasma. The 6-h incubation of plasma derived from healthy, fasting human subjects led to the transfer of cholesteryl ester (CE) from HDL to VLDL and LDL, and of triglycerides (TG) from VLDL to HDL and LDL. These net mass transfers of neutral lipids among the lipoproteins were eliminated by the mAb. The incubation of plasma either with or without the mAb did not affect the phospholipid compositions in any lipoproteins. As a result, the LDL fractionated from the plasma incubated with the mAb contained significantly less CE and TG in comparison to the LDL fractionated from the plasma incubated without the mAb. The percentage of fatty acid composition of LDL did not differ among the unincubated plasma, the plasma incubated with the mAb, and that incubated without the mAb. When LDL were oxidized with CuSO4, the LDL fractionated from the plasma incubated with the mAb were significantly resistant to the oxidative modification determined by measuring the amount of TBARS and by continuously monitoring the formation of the conjugated dienes, in comparison to the LDL fractionated from the plasma incubated without the mAb. The accumulation of cholesteryl ester of oxidized LDL, which had been oxidized for 2 h with CuSO4, in J774.1 cells also decreased significantly in the LDL fractionated from the plasma incubated with mAb in comparison to the LDL fractionated from the plasma incubated without the mAb. These results indicate that CETP inhibition reduces the composition of CE and TG in LDL and makes the LDL resistant to oxidation. In addition, the uptake of the oxidized LDL, which was made from the LDL under condition of CETP inhibition, by macrophages also decreased.

  17. Fluorescence correlation spectroscopy as a sensitive and useful tool for revealing potential overlaps between the epitopes of monoclonal antibodies on viral particles.

    PubMed

    Richert, Ludovic; Humbert, Nicolas; Larquet, Eric; Girerd-Chambaz, Yves; Manin, Catherine; Ronzon, Frédéric; Mély, Yves

    2016-10-01

    Although the enzyme-linked immunosorbent assay (ELISA) is well established for quantitating epitopes on inactivated virions used as vaccines, it is less suited for detecting potential overlaps between the epitopes recognized by different antibodies raised against the virions. We used fluorescent correlation spectroscopy (FCS) to detect the potential overlaps between 3 monoclonal antibodies (mAbs 4B7-1H8-2E10, 1E3-3G4, 4H8-3A12-2D3) selected for their ability to specifically recognize poliovirus type 3. Competition of the Alexa488-labeled mAbs with non-labeled mAbs revealed that mAbs 4B7-1H8-2E10 and 4H8-3A12-2D3 compete strongly for their binding sites on the virions, suggesting an important overlap of their epitopes. This was confirmed by the cryo-electron microscopy (cryo EM) structure of the poliovirus type 3 complexed with the corresponding antigen-binding fragments (Fabs) of the mAbs, which revealed that Fabs 4B7-1H8-2E10 and 4H8-3A12-2D3 epitopes share common amino acids. In contrast, a less efficient competition between mAb 1E3-3G4 and mAb 4H8-3A12-2D3 was observed by FCS, and there was no competition between mAbs 1E3-3G4 and 4B7-1H8-2E10. The Fab 1E3-3G4 epitope was found by cryoEM to be close to but distinct from the epitopes of both Fabs 4H8-3A12-2D3 and 4B7-1H8-2E10. Therefore, the FCS data additionally suggest that mAbs 4H8-3A12-2D3 and 4B7-1H8-2E10 bind in a different orientation to their epitopes, so that only the former sterically clashes with the mAb 1E3-3G4 bound to its epitope. Our results demonstrate that FCS can be a highly sensitive and useful tool for assessing the potential overlap of mAbs on viral particles.

  18. Evaluation of strategies to control Fab light chain dimer during mammalian expression and purification: A universal one-step process for purification of correctly assembled Fab.

    PubMed

    Spooner, Jennifer; Keen, Jenny; Nayyar, Kalpana; Birkett, Neil; Bond, Nicholas; Bannister, David; Tigue, Natalie; Higazi, Daniel; Kemp, Benjamin; Vaughan, Tristan; Kippen, Alistair; Buchanan, Andrew

    2015-07-01

    Fabs are an important class of antibody fragment as both research reagents and therapeutic agents. There are a plethora of methods described for their recombinant expression and purification. However, these do not address the issue of excessive light chain production that forms light chain dimers nor do they describe a universal purification strategy. Light chain dimer impurities and the absence of a universal Fab purification strategy present persistent challenges for biotechnology applications using Fabs, particularly around the need for bespoke purification strategies. This study describes methods to address light chain dimer formation during Fab expression and identifies a novel CH 1 affinity resin as a simple and efficient one-step purification for correctly assembled Fab. © 2015 Wiley Periodicals, Inc.

  19. Customizing Monoclonal Antibodies for the Treatment of Methamphetamine Abuse: Current and Future Applications

    PubMed Central

    Peterson, Eric C.; Gentry, W. Brooks

    2015-01-01

    Monoclonal antibody-based medications designed to bind (+)-methamphetamine (METH) with high affinity are among the newest approaches to the treatment of METH abuse, and the associated medical complications. The potential clinical indications for these medications include treatment of overdose, reduction of drug dependence, and protection of vulnerable populations from METH-related complications. Research designed to discover and conduct preclinical and clinical testing of these antibodies suggest a scientific vision for how intact mAb (singular and plural) or small antigen binding fragments of mAb could be engineered to optimize the proteins for specific therapeutic applications. In this review we discuss keys to success in this development process including choosing predictors of specificity, efficacy, duration of action, and safety of the medications in disease models of acute and chronic drug abuse. We consider important aspects of METH-like hapten design and how hapten structural features influence specificity and affinity, with an example of a high-resolution x-ray crystal structure of a high affinity antibody to demonstrate this structural relationship. Additionally, several prototype anti-METH mAb forms such as antigen binding fragments (Fab) and single chain variable fragments (scFv) are under development. Unique, customizable aspects of these fragments are presented with specific possible clinical indications. Finally, we discuss clinical trial progress of the first in kind anti-METH mAb, for which the METH is the disease target instead of vulnerable central nervous system networks of receptors, binding sites and neuronal connections. PMID:24484976

  20. Customizing monoclonal antibodies for the treatment of methamphetamine abuse: current and future applications.

    PubMed

    Peterson, Eric C; Gentry, W Brooks; Owens, S Michael

    2014-01-01

    Monoclonal antibody-based medications designed to bind (+)-methamphetamine (METH) with high affinity are among the newest approaches to the treatment of METH abuse and the associated medical complications. The potential clinical indications for these medications include treatment of overdose, reduction of drug dependence, and protection of vulnerable populations from METH-related complications. Research designed to discover and conduct preclinical and clinical testing of these antibodies suggests a scientific vision for how intact monoclonal antibody (mAb) (singular and plural) or small antigen-binding fragments of mAb could be engineered to optimize the proteins for specific therapeutic applications. In this review, we discuss keys to success in this development process including choosing predictors of specificity, efficacy, duration of action, and safety of the medications in disease models of acute and chronic drug abuse. We consider important aspects of METH-like hapten design and how hapten structural features influence specificity and affinity, with an example of a high-resolution X-ray crystal structure of a high-affinity antibody to demonstrate this structural relationship. Additionally, several prototype anti-METH mAb forms such as antigen-binding fragments and single-chain variable fragments are under development. Unique, customizable aspects of these fragments are presented with specific possible clinical indications. Finally, we discuss clinical trial progress of the first in kind anti-METH mAb, for which METH is the disease target instead of vulnerable central nervous system networks of receptors, binding sites, and neuronal connections. © 2014 Elsevier Inc. All rights reserved.

  1. Characterization of monoclonal antibodies that strongly inhibit Electrophorus electricus acetylcholinesterase.

    PubMed

    Remy, M H; Frobert, Y; Grassi, J

    1995-08-01

    In this study, we describe three different monoclonal antibodies (mAbs Elec-403, Elec-408, and Elec-410) directed against Electrophorus electricus acetylcholinesterase (AChE) which were selected as inhibitors for this enzyme. Two of these antibodies (Elec-403 and Elec-410), recognized overlapping but different epitopes, competed with snake venom toxin fasciculin for binding to the enzyme, and thus apparently recognized the peripheral site of AChE. In addition, the binding of Elec-403 was antagonized by 1,5-bis(4-allyldimethylammoniumphenyl)pentan-3-one dibromide (BW284C51) and propidium, indicating that the corresponding epitope encompassed the anionic site involved in the binding of these low-molecular-mass inhibitors. The third mAb (Elec-408), was clearly bound to another site on the AChE molecule, and its inhibitory effect was cumulative with those of Elec-403, Elec-410, and fasciculin. All mAbs bound AChE with high affinity and were as strong inhibitors with an apparent Ki values less than 0.1 nM. Elec-403 was particularly efficient with an inhibitory activity similar to that of fasciculin. Inhibition was observed with both charged (acetylthiocholine) and neutral substrates (o-nitrophenyl acetate) and had the characteristics of a non-competitive process. Elec-403 and Elec-410 probably exert their effect by triggering allosteric transitions from the peripheral site to the active site. The epitope recognized by mAb Elec-408 has not been localized, but it may correspond to a new regulatory site on AChE.

  2. PD-L1 mAb Treats Ischemic Stroke by Controlling CNS Inflammation

    PubMed Central

    Bodhankar, Sheetal; Chen, Yingxin; Lapato, Andrew; Dotson, Abby L.; Wang, Jianming; Vandenbark, Arthur A.; Saugstad, Julie A.; Offner, Halina

    2015-01-01

    Background and Purpose Both pathogenic and regulatory immune processes are involved in the middle cerebral artery occlusion (MCAO) model of experimental stroke, including interactions involving the Programmed Death 1 (PD-1) receptor and its two ligands, PD-L1 and PD-L2. Although PD-1 reduced stroke severity, PD-L1 and PD-L2 appeared to play pathogenic roles, suggesting use of anti-PD-L monoclonal Ab (mAb) therapy for MCAO. Methods Male C57BL/6 mice were treated with a single dose of anti-PD-L1 mAb 4 h after MCAO and evaluated for clinical, histological and immunological changes after 96 h reperfusion. Results Blockade of the PD-L1 checkpoint using a single injection of 200μg anti-PD-L1 mAb given i.v. 4 h after occlusion significantly reduced MCAO infarct volumes and improved neurological outcomes after 96 h reperfusion. Treatment partially reversed splenic atrophy and decreased CNS infiltrating immune cells concomitant with enhanced appearance of CD8+ regulatory T cells in the lesioned CNS hemisphere. Conclusions This study demonstrates for the first time the beneficial therapeutic effects of PD-L1 checkpoint blockade on MCAO, thus validating proposed mechanisms obtained in our previous studies using PD-1 and PD-L deficient mice. These results provide strong support for use of available humanized anti-PD-L1 antibodies for treatment of human stroke subjects. PMID:26306753

  3. Antibody degradation in tobacco plants: a predominantly apoplastic process

    PubMed Central

    2011-01-01

    Background Interest in using plants for production of recombinant proteins such as monoclonal antibodies is growing, but proteolytic degradation, leading to a loss of functionality and complications in downstream purification, is still a serious problem. Results In this study, we investigated the dynamics of the assembly and breakdown of a human IgG1κ antibody expressed in plants. Initial studies in a human IgG transgenic plant line suggested that IgG fragments were present prior to extraction. Indeed, when the proteolytic activity of non-transgenic Nicotiana tabacum leaf extracts was tested against a human IgG1 substrate, little activity was detectable in extraction buffers with pH > 5. Significant degradation was only observed when the plant extract was buffered below pH 5, but this proteolysis could be abrogated by addition of protease inhibitors. Pulse-chase analysis of IgG MAb transgenic plants also demonstrated that IgG assembly intermediates are present intracellularly and are not secreted, and indicates that the majority of proteolytic degradation occurs following secretion into the apoplastic space. Conclusions The results provide evidence that proteolytic fragments derived from antibodies of the IgG subtype expressed in tobacco plants do not accumulate within the cell, and are instead likely to occur in the apoplastic space. Furthermore, any proteolytic activity due to the release of proteases from subcellular compartments during tissue disruption and extraction is not a major consideration under most commonly used extraction conditions. PMID:22208820

  4. Processing Impact on Monoclonal Antibody Drug Products: Protein Subvisible Particulate Formation Induced by Grinding Stress.

    PubMed

    Gikanga, Benson; Eisner, Devon Roshan; Ovadia, Robert; Day, Eric S; Stauch, Oliver B; Maa, Yuh-Fun

    2017-01-01

    Subvisible particle formation in monoclonal antibody drug product resulting from mixing and filling operations represents a significant processing risk that can lead to filter fouling and thereby lead to process delays or failures. Several previous studies from our lab and others demonstrated the formation of subvisible particulates in mAb formulations resulting from mixing operations using some bottom-mounted mixers or stirrer bars. It was hypothesized that the stress (e.g., shear/cavitation) derived from tight clearance and/or close contact between the impeller and shaft was responsible for protein subvisible particulate generation. These studies, however, could not distinguish between the two surfaces without contact (tight clearance) or between two contacting surfaces (close contact). In the present study we expand on those findings and utilize small-scale mixing models that are able to, for the first time, distinguish between tight clearances and tight contact. In this study we evaluated different mixer types including a top-mounted mixer, several impeller-based bottom-mounted mixers, and a rotary piston pump. The impact of tight clearance/close contact on subvisible particle formation in at-scale mixing platforms was demonstrated in the gap between the impeller and drive unit as well as between the piston and the housing of the pump. Furthermore, small-scale mixing models based on different designs of magnetic stir bars that mimic the tight clearance/close contact of the manufacturing-scale mixers also induced subvisible particles in mAb formulations. Additional small-scale models that feature tight clearance but no close contact (grinding) suggested that it is the repeated grinding/contacting of the moving parts and not the presence of tight clearance in the processing equipment that is the root cause of protein subvisible particulate formation. When multiple mAbs, Fabs (fragment antigen binding), or non-antibody related proteins were mixed in the small-scale mixing model, for molecules investigated, it was observed that mAbs and Fabs appear to be more susceptible to particle formation than non-antibody-related proteins. In the grinding zone, mAb/Fab molecules aggregated into insoluble particles with neither detectable soluble aggregates nor fragmented species. This investigation represents a step closer to the understanding of the underlying stress mechanism leading to mAb subvisible particulate formation as the result of drug product processing. LAY ABSTRACT: Mixing and fill finish are important unit operations in drug product manufacturing for compounding (dilution, pooling, homogenization, etc.) and filling into primary packaging containers (vials, pre-filled syringes, etc.), respectively. The current trend in adopting bottom-mounted mixers as well as low fill-volume filling systems has raised concerns about their impact on drug product quality and process performance. However, investigations into the effects of their use for biopharmaceutical products, particularly monoclonal antibody formulations, are rarely published. The purpose of this study is three-fold: (1) to revisit the impact of bottom-mounted mixer design on monoclonal antibody subvisible particle formation; (2) to identify the root cause for subvisible particle formation; and (3) to fully utilize available particle analysis tools to demonstrate the correlation between particle count in the solution and filter fouling during sterile filtration. The outcomes of this study will benefit scientists and engineers who develop biologic product manufacturing processes by providing a better understanding of drug product process challenges. © PDA, Inc. 2017.

  5. A Family of LIC Vectors for High-Throughput Cloning and Purification of Proteins1

    PubMed Central

    Eschenfeldt, William H.; Stols, Lucy; Millard, Cynthia Sanville; Joachimiak, Andrzej; Donnelly, Mark I.

    2009-01-01

    Summary Fifteen related ligation-independent cloning vectors were constructed for high-throughput cloning and purification of proteins. The vectors encode a TEV protease site for removal of tags that facilitate protein purification (his-tag) or improve solubility (MBP, GST). Specialized vectors allow coexpression and copurification of interacting proteins, or in vivo removal of MBP by TVMV protease to improve screening and purification. All target genes and vectors are processed by the same protocols, which we describe here. PMID:18988021

  6. Physico-chemical Stability of MabThera Drug-product Solution for Subcutaneous Injection under in-use Conditions with Different Administration Materials.

    PubMed

    Mueller, Claudia; Dietel, Elke; Heynen, Severin R; Nalenz, Heiko; Goldbach, Pierre; Mahler, Hanns-Christian; Schmidt, Johannes; Grauschopf, Ulla; Schoenhamnmer, Karin

    2015-01-01

    MabThera is an essential component of the standard-of-care regimens in the treatment of non-Hodgkin lymphoma and Chronic Lymphatic Leukemia. MabThera for subcutaneous injection is a novel line extension that has been approved by the European Medicines Agency for the treatment of patients with follicular lymphoma and diffuse large B-cell lymphoma. This study aimed to evaluate in-use stability data of MabThera subcutaneous drug-product solution in single-use syringes for subcutaneous administration according to the European Medicines Agency guideline. The drug-product solution was exposed to material contact surfaces of five different administration setups commonly used in subcutaneous drug delivery. MabThera subcutaneous was transferred under aseptic conditions into polypropylene and polycarbonate syringes and stored for 1, 2, and 4 weeks at 2°C to 8°C followed by 24 hours at 30°C. After storage, subcutaneous administration was simulated and MabThera subcutaneous drug-product solution quality attributes were evaluated by using compendial physico-chemical tests, as well as suitable and validated molecule- and formulation-specific analytical methods. MabThera subcutaneous vials were treated and analyzed in parallel. The physico-chemical results of MabThera subcutaneous in the different setups were comparable to the control for all timepoints. No change in drug-product quality after storage and simulated administration was found compared to the control. However, since single-dose products do not contain preservatives, microbial contamination and growth needs to be avoided and product sterility needs to be ensured. The results showed that MabThera subcutaneous remains compatible and stable, from a physico-chemical perspective, for up to 4 weeks at 2°C to 8°C followed by 24 hours at 30°C with the contact materials tested in this study. In order to avoid and minimize microbial growth, MabThera subcutaneous should be used immediately after removal from the original packaging container and strict aseptic handling conditions need to be followed.

  7. In vivo antibody-mediated modulation of aminopeptidase A in mouse proximal tubular epithelial cells.

    PubMed

    Mentzel, S; Dijkman, H B; van Son, J P; Wetzels, J F; Assmann, K J

    1999-07-01

    Aminopeptidase A (APA) is one of the many renal hydrolases. In mouse kidney, APA is predominantly expressed on the brush borders and sparsely on the basolateral membranes of proximal tubular epithelial cells. However, when large amounts of monoclonal antibodies (MAbs) against APA were injected into mice, we observed strong binding of the MAbs to the basolateral membranes, whereas the MAbs bound only transiently to the brush borders of the proximal tubular epithelial cells. In parallel, APA itself disappeared from the brush borders by both endocytosis and shedding, whereas it was increasingly expressed on the basolateral sides. Using ultrastructural immunohistology, we found no evidence for transcellular transport of endocytosed APA to the basolateral side of the proximal tubular epithelial cells. The absence of transcellular transport was confirmed by experiments in which we used a low dose of the MAbs. Such a low dose did not result in binding of the MAbs to the brush borders and had no effect on the presence of APA in the brush borders of the proximal tubular epithelial cells. In these experiments we still could observe binding of the MAbs to the basolateral membranes in parallel with the local appearance of APA. In addition, treatment of mice with chlorpromazine, a calmodulin antagonist that interferes with cytoskeletal function, largely inhibited the MAb-induced modulation of APA. Our studies suggest that injection of MAbs to APA specifically interrupts the normal intracellular traffic of this enzyme in proximal tubular epithelial cells. This intracellular transport is dependent on the action of cytoskeletal proteins.

  8. Generation of Near-Inertial Currents on the Mid-Atlantic Bight by Hurricane Arthur (2014)

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Li, Ming; Miles, Travis

    2018-04-01

    Near-inertial currents (NICs) were observed on the Mid-Atlantic Bight (MAB) during the passage of Hurricane Arthur (2014). High-frequency radars showed that the surface currents were weak near the coast but increased in the offshore direction. The NICs were damped out in 3-4 days in the southern MAB but persisted for up to 10 days in the northern MAB. A Slocum glider deployed on the shelf recorded two-layer baroclinic currents oscillating at the inertial frequency. A numerical model was developed to interpret the observed spatial and temporal variabilities of the NICs and their vertical modal structure. Energy budget analysis showed that most of the differences in the NICs between the shelf and the deep ocean were determined by the spatial variations in wind energy input. In the southern MAB, energy dissipation quickly balanced the wind energy input, causing a rapid damping of the NICs. In the northern MAB, however, the dissipation lagged the wind energy input such that the NICs persisted. The model further showed that mode-1 waves dominated throughout the MAB shelf and accounted for over 70% of the current variability in the NICs. Rotary spectrum analyses revealed that the NICs were the largest component of the total kinetic energy except in the southern MAB and the inner shelf regions with strong tides. The NICs were also a major contributor to the shear spectrum over an extensive area of the MAB shelf and thus may play an important role in producing turbulent mixing and cooling of the surface mixed layer.

  9. The Anti-(+)-Methamphetamine Monoclonal Antibody mAb7F9 Attenuates Acute (+)-Methamphetamine Effects on Intracranial Self-Stimulation in Rats

    PubMed Central

    Harris, Andrew C.; LeSage, Mark G.; Shelley, David; Perry, Jennifer L.; Pentel, Paul R.; Owens, S. Michael

    2015-01-01

    Passive immunization with monoclonal antibodies (mAbs) against (+)-methamphetamine (METH) is being evaluated for the treatment of METH addiction. A human/mouse chimeric form of the murine anti-METH mAb7F9 has entered clinical trials. This study examined the effects of murine mAb7F9 on certain addiction-related behavioral effects of METH in rats as measured using intracranial self-stimulation (ICSS). Initial studies indicated that acute METH (0.1-0.56 mg/kg, s.c.) lowered the minimal (threshold) stimulation intensity that maintained ICSS. METH (0.3 mg/kg, s.c.) also blocked elevations in ICSS thresholds (anhedonia-like behavior) during spontaneous withdrawal from a chronic METH infusion (10 mg/kg/day x 7 days). In studies examining effects of i.v. pretreatment with mAb7F9 (at 30, 100, or 200 mg/kg), 200 mg/kg blocked the ability of an initial injection of METH (0.3 mg/kg, s.c.) to reduce baseline ICSS thresholds, but was less capable of attenuating the effect of subsequent daily injections of METH. MAb7F9 (200 mg/kg) also produced a small but significant reduction in the ability of METH (0.3 mg/kg, s.c.) to reverse METH withdrawal-induced elevations in ICSS thresholds. These studies demonstrate that mAb7F9 can partially attenuate some addiction-related effects of acute METH in an ICSS model, and provide some support for the therapeutic potential of mAb7F9 for the treatment of METH addiction. PMID:25742165

  10. 3β-Hydroxysterol Δ24-Reductase on the Surface of Hepatitis C Virus-Related Hepatocellular Carcinoma Cells Can Be a Target for Molecular Targeting Therapy

    PubMed Central

    Saito, Makoto; Takano, Takashi; Nishimura, Tomohiro; Kohara, Michinori; Tsukiyama-Kohara, Kyoko

    2015-01-01

    In our previous study, we demonstrated that 3β-hydroxysterol Δ24-reductase (DHCR24) was overexpressed in hepatitis C virus (HCV)-related hepatocellular carcinoma (HCC), and that its expression was induced by HCV. Using a monoclonal antibody against DHCR24 (2-152a MAb), we found that DHCR24 was specifically expressed on the surface of HCC cell lines. Based on these findings, we aimed to establish a novel targeting strategy using 2-152a MAb to treat HCV-related HCC. In the present study, we examined the antitumor activity of 2-152a MAb. In the presence of complement, HCC-derived HuH-7 cells were killed by treatment with 2-152a MAb, which was mediated by complement-dependent cytotoxicity (CDC). In addition, the antigen recognition domain of 2-152a MAb was responsible for the unique anti-HCV activity. These findings demonstrate the feasibility of using 2-152a MAb for antibody therapy against HCV-related HCC. In addition, surface DHCR24 on HCC cells exhibited a functional property, agonist-induced internalization. We showed that 2-152a MAb-mediated binding of a cytotoxic agent (a saponin-conjugated secondary antibody) to surface DHCR24 led to significant cytotoxicity. This suggests that surface DHCR24 on HCC cells can function as a carrier for internalization. Therefore, surface DHCR24 could be a valuable target for HCV-related HCC therapy, and 2-152a MAb appears to be useful for this targeted therapy. PMID:25875901

  11. Monoclonal antibodies against the native urease of Helicobacter pylori: synergistic inhibition of urease activity by monoclonal antibody combinations.

    PubMed Central

    Nagata, K; Mizuta, T; Tonokatu, Y; Fukuda, Y; Okamura, H; Hayashi, T; Shimoyama, T; Tamura, T

    1992-01-01

    Monoclonal antibodies (MAbs) against the native urease of Helicobacter pylori NCTC 11637 were found to clearly inhibit the urease activity. Interestingly, synergistic inhibition by two MAbs recognizing different subunits was also observed. Ten MAbs were produced and classified as two isotypes of the immunoglobulin G (IgG) subclass, IgG1, and IgG2a. Western blot (immunoblot) analysis using sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that five MAbs recognized the large subunit and the other five recognized the small subunit of the urease. Among the MAbs, L2 and S2, which recognized the large and the small subunits, respectively, were also able to inhibit the urease activity of clinical isolates from H. pylori-infected patients. The combination of L2 and S2 led to augmented synergistic inhibition. L2, but not S2, could also inhibit the urease activity from Helicobacter mustelae; enzyme-linked immunosorbent assay and Western blot analysis showed that L2 cross-reacted with this urease. These results suggested that the epitope recognized by L2 had a structure common to both Helicobacter species and may be involved in the active site of the urease. In contrast to the MAbs, a polyclonal antibody in sera from mice immunized with H. pylori urease did not have the ability to inhibit H. pylori urease activity. However, the polyclonal antibody retained the ability to abolish the inhibitory action of these MAbs. Moreover, other MAbs which could not inhibit H. pylori urease activity also abolished the inhibitory action. Images PMID:1383158

  12. [Study on extraction and purification process of total ginsenosides from Radix Ginseng].

    PubMed

    Xie, Li-Ling; Ren, Li; Lai, Xian-Sheng; Cao, Jun-Hui; Mo, Quan-Yi; Chen, Wei-Wen

    2009-10-01

    To optimize the technological parameters of the extraction and purification process of total ginsenosides from Radix Ginseng. With the contents of ginsenoside Rg1, ginsenoside Re and ginsenoside Rb1, the orthogonal design was adopted to optimize the extraction process. The purification process was studied by optimizing the elutive ratio of total ginsenosides as the marker. HPLC and spectrophotometer were employed for the study. The optimum conditions were as follows:Using 8 times volume of 75% ethanol extracting for 120 minutes and 2 times, the extraction temperature was 85 degrees C. AB-8 macroporous resin was selected, and the eluant was 4 BV 70% ethanol. The optimal conditions of extracting and purifying the total ginsenosides from Radix Ginseng is feasible.

  13. Item Purification Does Not Always Improve DIF Detection: A Counterexample with Angoff's Delta Plot

    ERIC Educational Resources Information Center

    Magis, David; Facon, Bruno

    2013-01-01

    Item purification is an iterative process that is often advocated as improving the identification of items affected by differential item functioning (DIF). With test-score-based DIF detection methods, item purification iteratively removes the items currently flagged as DIF from the test scores to get purified sets of items, unaffected by DIF. The…

  14. Duty Calls.

    ERIC Educational Resources Information Center

    Boyer, Ernest L.

    1996-01-01

    Examines the importance of elementary and secondary student participation in community service activities for effective civic education and citizen development. Suggests that if commitment to service were an integral part of educational processes students would continue participating in community service programs as adults. (MAB)

  15. Reviving the Town Meeting.

    ERIC Educational Resources Information Center

    Grove, Tim

    1996-01-01

    Discusses the use of the National Issues Forum's (NIF's) town meetings in efforts to increase citizen participation in democratic processes. Describes the Catholic adaptation of the NIF approach, providing examples of its use at the high school, college, and community level. (MAB)

  16. Production and characterization of monoclonal antibodies against the antibiotic tilmicosin.

    PubMed

    Beier, Ross C; Creemer, Lawrence C; Ziprin, Richard L; Nisbet, David J

    2005-12-14

    Monoclonal antibodies (Mabs) were developed that specifically bind tilmicosin. Keyhole limpet hemocyanin (KLH) and bovine serum albumin (BSA) conjugates were used for the immunogen and plate coating antigen, respectively. The conjugates were synthesized by different methods, resulting in different linkages. Six hybridoma cell lines were isolated that produced Mabs that competed with tilmicosin, and have IgG1 isotype. The Til-1 and Til-5 Mabs had IC50 values for tilmicosin of 9.6 and 6.4 ng/well (48 and 32 ng/mL), respectively, and limits of detection at IC20 of 1.84 and 0.89 ng/well (9.2 and 4.45 ng/mL), respectively. The Mabs demonstrated high cross-reactivity to the macrolides containing 3,5-dimethylpiperidine at C20 and the amino sugar at C5. No cross-reactivity was observed for tylosin and other macrolides that did not contain 3,5-dimethylpiperidine. A competitive enzyme-linked immunosorbent assay (ELISA) was developed for the antibiotic tilmicosin by use of the developed Mabs. These Mabs may be excellent candidates for the determination and immunolocalization of tilmicosin.

  17. Protective mAbs and Cross-Reactive mAbs Raised by Immunization with Engineered Marburg Virus GPs.

    PubMed

    Fusco, Marnie L; Hashiguchi, Takao; Cassan, Robyn; Biggins, Julia E; Murin, Charles D; Warfield, Kelly L; Li, Sheng; Holtsberg, Frederick W; Shulenin, Sergey; Vu, Hong; Olinger, Gene G; Kim, Do H; Whaley, Kevin J; Zeitlin, Larry; Ward, Andrew B; Nykiforuk, Cory; Aman, M Javad; Berry, Jody D; Berry, Jody; Saphire, Erica Ollmann

    2015-06-01

    The filoviruses, which include the marburg- and ebolaviruses, have caused multiple outbreaks among humans this decade. Antibodies against the filovirus surface glycoprotein (GP) have been shown to provide life-saving therapy in nonhuman primates, but such antibodies are generally virus-specific. Many monoclonal antibodies (mAbs) have been described against Ebola virus. In contrast, relatively few have been described against Marburg virus. Here we present ten mAbs elicited by immunization of mice using recombinant mucin-deleted GPs from different Marburg virus (MARV) strains. Surprisingly, two of the mAbs raised against MARV GP also cross-react with the mucin-deleted GP cores of all tested ebolaviruses (Ebola, Sudan, Bundibugyo, Reston), but these epitopes are masked differently by the mucin-like domains themselves. The most efficacious mAbs in this panel were found to recognize a novel "wing" feature on the GP2 subunit that is unique to Marburg and does not exist in Ebola. Two of these anti-wing antibodies confer 90 and 100% protection, respectively, one hour post-exposure in mice challenged with MARV.

  18. Immunohistochemical Analysis Using Antipodocalyxin Monoclonal Antibody PcMab-47 Demonstrates Podocalyxin Expression in Oral Squamous Cell Carcinomas.

    PubMed

    Itai, Shunsuke; Yamada, Shinji; Kaneko, Mika K; Harada, Hiroyuki; Kato, Yukinari

    2017-10-01

    Podocalyxin is a CD34-related type I transmembrane protein that is highly glycosylated with N-glycan, O-glycan, and keratan sulfate. Podocalyxin was originally found in the podocytes of rat kidney and is reportedly expressed in many types of tumors, including brain tumors, colorectal cancers, and breast cancers. Overexpression of podocalyxin is an independent predictor of progression, metastasis, and poor outcome. We recently immunized mice with recombinant human podocalyxin, which was produced using LN229 glioblastoma cells, and produced a novel antipodocalyxin monoclonal antibody (mAb), PcMab-47, which reacts with endogenous podocalyxin-expressing cancer cell lines and normal cell lines independent of glycosylation in Western blot, flow cytometry, and immunohistochemical analyses. In this study, we performed immunohistochemical analysis against oral cancers using PcMab-47. PcMab-47-stained oral squamous cell carcinoma cells in a cytoplasmic pattern and detected 26/38 (68.4%) of oral squamous cell carcinoma cells on tissue microarrays. These results indicate that PcMab-47 is useful in detecting podocalyxin of oral cancers for immunohistochemical analysis.

  19. Toward Effective HIV Vaccination INDUCTION OF BINARY EPITOPE REACTIVE ANTIBODIES WITH BROAD HIV NEUTRALIZING ACTIVITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishiyama, Yasuhiro; Planque, Stephanie; Mitsuda, Yukie

    2009-11-23

    We describe murine monoclonal antibodies (mAbs) raised by immunization with an electrophilic gp120 analog (E-gp120) expressing the rare ability to neutralize genetically heterologous human immunodeficiency virus (HIV) strains. Unlike gp120, E-gp120 formed covalent oligomers. The reactivity of gp120 and E-gp120 with mAbs to reference neutralizing epitopes was markedly different, indicating their divergent structures. Epitope mapping with synthetic peptides and electrophilic peptide analogs indicated binary recognition of two distinct gp120 regions by anti-E-gp120 mAbs, the 421-433 and 288-306 peptide regions. Univalent Fab and single chain Fv fragments expressed the ability to recognize both peptides. X-ray crystallography of an anti-E-gp120 Fab fragmentmore » revealed two neighboring cavities, the typical antigen-binding cavity formed by the complementarity determining regions (CDRs) and another cavity dominated by antibody heavy chain variable (VH) domain framework (FR) residues. Substitution of the FR cavity VH Lys-19 residue by an Ala residue resulted in attenuated binding of the 421-433 region peptide probe. The CDRs and VH FR replacement/silent mutation ratios exceeded the ratio for a random mutation process, suggesting adaptive development of both putative binding sites. All mAbs studied were derived from VH1 family genes, suggesting biased recruitment of the V gene germ line repertoire by E-gp120. The conserved 421-433 region of gp120 is essential for HIV binding to host CD4 receptors. This region is recognized weakly by the FR of antibodies produced without exposure to HIV, but it usually fails to induce adaptive synthesis of neutralizing antibodies. We present models accounting for improved CD4-binding site recognition and broad HIV neutralizing activity of the mAbs, long sought goals in HIV vaccine development.« less

  20. Monoclonal antibodies specific to sailfish serum albumin: development of an assay for the identification of fish species in the field.

    PubMed

    Rossi, E A; Shepard, S R; Poyer, J C; Hartmann, J X

    1992-06-01

    Balb/c mice were immunized with albumin purified from sailfish (Istiophorus albicans) serum. Hybridomas were produced and screened by ELISA for reactivity with the purified albumins of sailfish, blue marlin (Makaira nigricans) and white marlin (Tetrapturus albidus). Monoclonal antibodies (MAbs) from 16 different clones exhibited activity against sailfish albumin. Thirteen of the MAbs showed cross-reactivity with the marlin species. Three MAbs exhibited distinct specificity for sailfish albumin. One of these species specific MAbs (M2D1) was conjugated to horseradish peroxidase (HRP) in order to construct an ELISA for identification of sailfish from serum. The ELISA for sailfish correctly identified eight sailfish from 26 billfish serum samples. The MAb-peroxidase conjugate was highly specific toward sailfish in that no reaction against heterologous species was detected.

  1. Ligand-induced Epitope Masking

    PubMed Central

    Mould, A. Paul; Askari, Janet A.; Byron, Adam; Takada, Yoshikazu; Jowitt, Thomas A.; Humphries, Martin J.

    2016-01-01

    We previously demonstrated that Arg-Gly-Asp (RGD)-containing ligand-mimetic inhibitors of integrins are unable to dissociate pre-formed integrin-fibronectin complexes (IFCs). These observations suggested that amino acid residues involved in integrin-fibronectin binding become obscured in the ligand-occupied state. Because the epitopes of some function-blocking anti-integrin monoclonal antibodies (mAbs) lie near the ligand-binding pocket, it follows that the epitopes of these mAbs may become shielded in the ligand-occupied state. Here, we tested whether function-blocking mAbs directed against α5β1 can interact with the integrin after it forms a complex with an RGD-containing fragment of fibronectin. We showed that the anti-α5 subunit mAbs JBS5, SNAKA52, 16, and P1D6 failed to disrupt IFCs and hence appeared unable to bind to the ligand-occupied state. In contrast, the allosteric anti-β1 subunit mAbs 13, 4B4, and AIIB2 could dissociate IFCs and therefore were able to interact with the ligand-bound state. However, another class of function-blocking anti-β1 mAbs, exemplified by Lia1/2, could not disrupt IFCs. This second class of mAbs was also distinguished from 13, 4B4, and AIIB2 by their ability to induce homotypic cell aggregation. Although the epitope of Lia1/2 was closely overlapping with those of 13, 4B4, and AIIB2, it appeared to lie closer to the ligand-binding pocket. A new model of the α5β1-fibronectin complex supports our hypothesis that the epitopes of mAbs that fail to bind to the ligand-occupied state lie within, or very close to, the integrin-fibronectin interface. Importantly, our findings imply that the efficacy of some therapeutic anti-integrin mAbs could be limited by epitope masking. PMID:27484800

  2. Antibody glycosylation and its impact on the pharmacokinetics and pharmacodynamics of monoclonal antibodies and Fc-fusion proteins.

    PubMed

    Liu, Liming

    2015-06-01

    Understanding the impact of glycosylation and keeping a close control on glycosylation of product candidates are required for both novel and biosimilar monoclonal antibodies (mAbs) and Fc-fusion protein development to ensure proper safety and efficacy profiles. Most therapeutic mAbs are of IgG class and contain a glycosylation site in the Fc region at amino acid position 297 and, in some cases, in the Fab region. For Fc-fusion proteins, glycosylation also frequently occurs in the fusion partners. Depending on the expression host, glycosylation patterns in mAb or Fc-fusions can be significantly different, thus significantly impacting the pharmacokinetics (PK) and pharmacodynamics (PD) of mAbs. Glycans that have a major impact on PK and PD of mAb or Fc-fusion proteins include mannose, sialic acids, fucose (Fuc), and galactose (Gal). Mannosylated glycans can impact the PK of the molecule, leading to reduced exposure and potentially lower efficacy. The level of sialic acid, N-acetylneuraminic acid (NANA), can also have a significant impact on the PK of Fc-fusion molecules. Core Fuc in the glycan structure reduces IgG antibody binding to IgG Fc receptor IIIa relative to IgG lacking Fuc, resulting in decreased antibody-dependent cell-mediated cytotoxicity (ADCC) activities. Glycoengineered Chinese hamster ovary (CHO) expression systems can produce afucosylated mAbs that have increased ADCC activities. Terminal Gal in a mAb is important in the complement-dependent cytotoxicity (CDC) in that lower levels of Gal reduce CDC activity. Glycans can also have impacts on the safety of mAb. mAbs produced in murine myeloma cells such as NS0 and SP2/0 contain glycans such as Galα1-3Galβ1-4N-acetylglucosamine-R and N-glycolylneuraminic acid (NGNA) that are not naturally present in humans and can be immunogenic when used as therapeutics. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  3. Antibodies Specifically Targeting a Locally Misfolded Region of Tumor Associated EGFR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrett, T.; Burgess, A; Gan, H

    2009-01-01

    Epidermal Growth Factor Receptor (EGFR) is involved in stimulating the growth of many human tumors, but the success of therapeutic agents has been limited in part by interference from the EGFR on normal tissues. Previously, we reported an antibody (mab806) against a truncated form of EGFR found commonly in gliomas. Remarkably, it also recognizes full-length EGFR on tumor cells but not on normal cells. However, the mechanism for this activity was unclear. Crystallographic structures for Fab:EGFR{sub 287-302} complexes of mAb806 (and a second, related antibody, mAb175) show that this peptide epitope adopts conformations similar to those found in the wtEGFR.more » However, in both conformations observed for wtEGFR, tethered and untethered, antibody binding would be prohibited by significant steric clashes with the CR1 domain. Thus, these antibodies must recognize a cryptic epitope in EGFR. Structurally, it appeared that breaking the disulfide bond preceding the epitope might allow the CR1 domain to open up sufficiently for antibody binding. The EGFR{sub C271A/C283A} mutant not only binds mAb806, but binds with 1:1 stoichiometry, which is significantly greater than wtEGFR binding. Although mAb806 and mAb175 decrease tumor growth in xenografts displaying mutant, overexpressed, or autocrine stimulated EGFR, neither antibody inhibits the in vitro growth of cells expressing wtEGFR. In contrast, mAb806 completely inhibits the ligand-associated stimulation of cells expressing EGFR{sub C271A/C283A}. Clearly, the binding of mAb806 and mAb175 to the wtEGFR requires the epitope to be exposed either during receptor activation, mutation, or overexpression. This mechanism suggests the possibility of generating antibodies to target other wild-type receptors on tumor cells.« less

  4. Immunological Characterization and Neutralizing Ability of Monoclonal Antibodies Directed Against Botulinum Neurotoxin Type H

    PubMed Central

    Fan, Yongfeng; Barash, Jason R.; Lou, Jianlong; Conrad, Fraser; Marks, James D.; Arnon, Stephen S.

    2016-01-01

    Background. Only Clostridium botulinum strain IBCA10-7060 produces the recently described novel botulinum neurotoxin type H (BoNT/H). BoNT/H (N-terminal two-thirds most homologous to BoNT/F and C-terminal one-third most homologous to BoNT/A) requires antitoxin to toxin ratios ≥1190:1 for neutralization by existing antitoxins. Hence, more potent and safer antitoxins against BoNT/H are needed. Methods. We therefore evaluated our existing monoclonal antibodies (mAbs) to BoNT/A and BoNT/F for BoNT/H binding, created yeast-displayed mutants to select for higher-affinity-binding mAbs by using flow cytometry, and evaluated the mAbs' ability to neutralize BoNT/H in the standard mouse bioassay. Results. Anti-BoNT/A HCC-binding mAbs RAZ1 and CR2 bound BoNT/H with high affinity. However, only 1 of 6 BoNT/F mAbs (4E17.2A) bound BoNT/H but with an affinity >800-fold lower (equilibrium dissociation binding constant [KD] = 7.56 × 10−8 M) than its BoNT/F affinity (KD = 9.1 × 10−11 M), indicating that the N-terminal two-thirds of BoNT/H is immunologically unique. The affinity of 4E17.2A for BoNT/H was increased >500-fold to KD = 1.48 × 10−10 M (mAb 4E17.2D). A combination of mAbs RAZ1, CR2, and 4E17.2D completely protected mice challenged with 280 mouse median lethal doses of BoNT/H at a mAb dose as low as 5 µg of total antibody. Conclusions. This 3-mAb combination potently neutralized BoNT/H and represents a potential human antitoxin that could be developed for the prevention and treatment of type H botulism. PMID:26936913

  5. Therapeutic Effects of Monoclonal Antibody against Dengue Virus NS1 in a STAT1 Knockout Mouse Model of Dengue Infection.

    PubMed

    Wan, Shu-Wen; Chen, Pei-Wei; Chen, Chin-Yu; Lai, Yen-Chung; Chu, Ya-Ting; Hung, Chia-Yi; Lee, Han; Wu, Hsuan Franziska; Chuang, Yung-Chun; Lin, Jessica; Chang, Chih-Peng; Wang, Shuying; Liu, Ching-Chuan; Ho, Tzong-Shiann; Lin, Chiou-Feng; Lee, Chien-Kuo; Wu-Hsieh, Betty A; Anderson, Robert; Yeh, Trai-Ming; Lin, Yee-Shin

    2017-10-15

    Dengue virus (DENV) is the causative agent of dengue fever, dengue hemorrhagic fever, and dengue shock syndrome and is endemic to tropical and subtropical regions of the world. Our previous studies showed the existence of epitopes in the C-terminal region of DENV nonstructural protein 1 (NS1) which are cross-reactive with host Ags and trigger anti-DENV NS1 Ab-mediated endothelial cell damage and platelet dysfunction. To circumvent these potentially harmful events, we replaced the C-terminal region of DENV NS1 with the corresponding region from Japanese encephalitis virus NS1 to create chimeric DJ NS1 protein. Passive immunization of DENV-infected mice with polyclonal anti-DJ NS1 Abs reduced viral Ag expression at skin inoculation sites and shortened DENV-induced prolonged bleeding time. We also investigated the therapeutic effects of anti-NS1 mAb. One mAb designated 2E8 does not recognize the C-terminal region of DENV NS1 in which host-cross-reactive epitopes reside. Moreover, mAb 2E8 recognizes NS1 of all four DENV serotypes. We also found that mAb 2E8 caused complement-mediated lysis in DENV-infected cells. In mouse model studies, treatment with mAb 2E8 shortened DENV-induced prolonged bleeding time and reduced viral Ag expression in the skin. Importantly, mAb 2E8 provided therapeutic effects against all four serotypes of DENV. We further found that mAb administration to mice as late as 1 d prior to severe bleeding still reduced prolonged bleeding time and hemorrhage. Therefore, administration with a single dose of mAb 2E8 can protect mice against DENV infection and pathological effects, suggesting that NS1-specific mAb may be a therapeutic option against dengue disease. Copyright © 2017 by The American Association of Immunologists, Inc.

  6. Development of a Mouse Monoclonal Antibody Cocktail for Post-exposure Rabies Prophylaxis in Humans

    PubMed Central

    Müller, Thomas; Dietzschold, Bernhard; Ertl, Hildegund; Fooks, Anthony R.; Freuling, Conrad; Fehlner-Gardiner, Christine; Kliemt, Jeannette; Meslin, Francois X.; Rupprecht, Charles E.; Tordo, Noël; Wanderler, Alexander I.; Kieny, Marie Paule

    2009-01-01

    As the demand for rabies post-exposure prophylaxis (PEP) treatments has increased exponentially in recent years, the limited supply of human and equine rabies immunoglobulin (HRIG and ERIG) has failed to provide the required passive immune component in PEP in countries where canine rabies is endemic. Replacement of HRIG and ERIG with a potentially cheaper and efficacious alternative biological for treatment of rabies in humans, therefore, remains a high priority. In this study, we set out to assess a mouse monoclonal antibody (MoMAb) cocktail with the ultimate goal to develop a product at the lowest possible cost that can be used in developing countries as a replacement for RIG in PEP. Five MoMAbs, E559.9.14, 1112-1, 62-71-3, M727-5-1, and M777-16-3, were selected from available panels based on stringent criteria, such as biological activity, neutralizing potency, binding specificity, spectrum of neutralization of lyssaviruses, and history of each hybridoma. Four of these MoMAbs recognize epitopes in antigenic site II and one recognizes an epitope in antigenic site III on the rabies virus (RABV) glycoprotein, as determined by nucleotide sequence analysis of the glycoprotein gene of unique MoMAb neutralization-escape mutants. The MoMAbs were produced under Good Laboratory Practice (GLP) conditions. Unique combinations (cocktails) were prepared, using different concentrations of the MoMAbs that were capable of targeting non-overlapping epitopes of antigenic sites II and III. Blind in vitro efficacy studies showed the MoMab cocktails neutralized a broad spectrum of lyssaviruses except for lyssaviruses belonging to phylogroups II and III. In vivo, MoMAb cocktails resulted in protection as a component of PEP that was comparable to HRIG. In conclusion, all three novel combinations of MoMAbs were shown to have equal efficacy to HRIG and therefore could be considered a potentially less expensive alternative biological agent for use in PEP and prevention of rabies in humans. PMID:19888334

  7. [Inhibitory effect of ¹³¹I-CD133mAb combined with cisplatin on liver cancer cells in vitro and in a tumor-bearing mouse model].

    PubMed

    Chen, Xingyue; Hou, Yanli; Duan, Liqun; Tang, Min; Kang, Qiangqiang; Shu, Jin; Peng, Zhiping; Li, Shaolin

    2014-06-01

    To study the inhibitory effect of CD133 monoclonal antibody labeled with ¹³¹I (¹³¹I-CD133mAb) on Huh-7 human liver cancer cell line overexpressing CD133 antigen in vitro and in mouse models bearing the tumor cell xenograft. ¹³¹I-CD133mAb was prepared by chloramines-T method and evaluated for its stability. Flow cytometry and immunohistochemistry were used to detect the expression of CD133 in Huh-7 cells and in Huh-7 cell-derived tumors, respectively. Huh-7 cells treated with ¹³¹I-CD133mAb plus cisplatin (DDP), ¹³¹I -CD133mAb, DDP, or no treatment (blank control) were examined for cell proliferation suppression by MTT assay with the IC₅₀ calculated. BALB/c mice bearing subcutaneous Huh-7 cell xenograft in the right forelegs were treated with ¹³¹I -CD133mAb, DDP, or both every two days for two weeks. The tumor size and volume were measured twice a week, and pathological examination of the tumor was carried out after the treatments. The tumor inhibition rate was calculated and tumor cell apoptosis observed with HE staining. The labeling ratio of ¹³¹I-CD133mAb was 90.25% and the radiochemical purity was 97.78%. Huh-7 cells showed obviously higher CD133 expression than HepG2 cells. ¹³¹I-CD133mAb combined with DDP group resulted in a significantly higher tumor inhibition rate than other treatments in the tumor-bearing mice. ¹³¹I-CD133mAb can inhibit the growth of liver cancer cells with a high CD133 expression both in vivo and in vitro.

  8. Entanglement of purification: from spin chains to holography

    NASA Astrophysics Data System (ADS)

    Nguyen, Phuc; Devakul, Trithep; Halbasch, Matthew G.; Zaletel, Michael P.; Swingle, Brian

    2018-01-01

    Purification is a powerful technique in quantum physics whereby a mixed quantum state is extended to a pure state on a larger system. This process is not unique, and in systems composed of many degrees of freedom, one natural purification is the one with minimal entanglement. Here we study the entropy of the minimally entangled purification, called the entanglement of purification, in three model systems: an Ising spin chain, conformal field theories holographically dual to Einstein gravity, and random stabilizer tensor networks. We conjecture values for the entanglement of purification in all these models, and we support our conjectures with a variety of numerical and analytical results. We find that such minimally entangled purifications have a number of applications, from enhancing entanglement-based tensor network methods for describing mixed states to elucidating novel aspects of the emergence of geometry from entanglement in the AdS/CFT correspondence.

  9. Podocyte changes upon induction of albuminuria in Thy-1.1 transgenic mice.

    PubMed

    Smeets, Bart; Dijkman, Henry B P M; te Loeke, Nathalie A J M; van Son, Jacco P H F; Steenbergen, Eric J; Assmann, Karel J M; Wetzels, Jack F M; Groenen, Patricia J T A

    2003-12-01

    Thy-1.1 transgenic mice, characterized by ectopic expression of the Thy-1.1 protein on podocytes, spontaneously develop proteinuria and focal glomerulosclerosis (FGS). Injection of a monoclonal antibody (mAb) directed against the Thy-1.1 protein in young transgenic mice induces a massive albuminuria that is followed by an accelerated FGS within 3 weeks. This albuminuria is complement and leukocyte independent. The time course of proteinuria, the pathogenesis of the acute proteinuria and the dose dependency of FGS are unknown. Albuminuria was measured in Thy-1.1 transgenic mice after injection of different doses of anti-Thy-1.1 mAb and at different time points within the first 24 h after injection. Podocytic foot processes and slit pore diameter were quantitated by electron microscopy. Changes in expression of slit pore constituents (podocin, CD2AP, nephrin and ZO-1), cytoskeleton-associated proteins (actin, alpha-actinin, ezrin and synaptopodin), the GDH-podocyte adhesion molecules alpha(3)-integrin, and heparan sulfate were studied by immunofluorescence. FGS was scored by light microscopy at 3 weeks after induction of albuminuria. Albuminuria in Thy-1.1 transgenic mice was observed within 10 min after anti-Thy-1.1 mAb injection. This rapid development of albuminuria was accompanied by a reduction in number of podocytic foot processes from 20.0 +/- 0.7/10 microm glomerular basement membrane (GBM) in saline-treated transgenic mice to 8.0 +/- 0.5 and 2.2 +/- 0.2 in anti-Thy-1.1-treated mice, at 10 min and 8 h after treatment, respectively. In addition, we observed a significant decrease in width of remaining slit pores, from 32.7 +/- 1.1 to 26.8 +/- 1.4 nm at 10 min after mAb injection. By immunofluorescence, we did not observe major changes in the expression pattern of any of the proteins studied. There was no correlation between the injected dose of the anti-Thy-1.1 mAb and the acute albuminuria. In contrast, the percentage of FGS at 3 weeks correlated with the dose, and a significant correlation between the percentage of FGS and the time-averaged albuminuria over the 3 week study period (P < 0.001) was found. Injection of mAb directed against the Thy-1.1 protein, in young non-albuminuric Thy-1.1 transgenic mice, induced an acute albuminuria within 10 min, which was accompanied by foot process effacement. Notably, we observed a decrease in slit pore width although the expression of slit pore proteins was unchanged. Also, the acute albuminuria could not be related to alterations in cytoskeleton-associated proteins, the GBM adhesion molecule alpha(3)-integrin or heparan sulfate in the GBM. The dose-dependent development of FGS and the correlation between the percentage FGS and time-averaged albuminuria suggest that, in our model, FGS is a consequence of podocyte injury. However, the data leave open the possibility that albuminuria itself contributes to FGS development. The Thy-1.1 transgenic mouse model is an excellent model to study further the relationship between podocytic injury, albuminuria and the development of FGS.

  10. [Pilot-scale purification of lipopeptide from marine-derived Bacillus marinus].

    PubMed

    Gu, Kangbo; Guan, Cheng; Xu, Jiahui; Li, Shulan; Luo, Yuanchan; Shen, Guomin; Zhang, Daojing; Li, Yuanguang

    2016-11-25

    This research was aimed at establishing the pilot-scale purification technology of lipopeptide from marine-derived Bacillus marinus. We studied lipopeptide surfactivity interferences on scale-up unit technologies including acid precipitation, methanol extraction, solvent precipitation, salting out, extraction, silica gel column chromatography and HZ806 macroporous absorption resin column chromatography. Then, the unit technologies were combined in a certain order, to remove the impurities gradually, and to gain purified lipopeptide finally, with high recovery rate throughout the whole process. The novel pilot-scale purification technology could effectively isolate and purify lipopeptide with 87.51% to 100% purity in hectograms from 1 ton of Bacillus marinus B-9987 fermentation broth with more than 81.73% recovery rate. The first practical hectogram production of highly purified lipopeptide derived from Bacillus marinus was achieved. With this new purification method, using complex media became possible in fermentation process to reduce the fermentation cost and scale-up the purification for lipopeptide production. For practicability and economy, foaming problem resulting from massive water evaporation was avoided in this technology.

  11. Hemostatic effect of a monoclonal antibody mAb 2021 blocking the interaction between FXa and TFPI in a rabbit hemophilia model.

    PubMed

    Hilden, Ida; Lauritzen, Brian; Sørensen, Brit Binow; Clausen, Jes Thorn; Jespersgaard, Christina; Krogh, Berit Olsen; Bowler, Andrew Neil; Breinholt, Jens; Gruhler, Albrecht; Svensson, L Anders; Petersen, Helle Heibroch; Petersen, Lars Christian; Balling, Kristoffer W; Hansen, Lene; Hermit, Mette Brunsgaard; Egebjerg, Thomas; Friederichsen, Birgitte; Ezban, Mirella; Bjørn, Søren Erik

    2012-06-14

    Hemophilia is treated by IV replacement therapy with Factor VIII (FVIII) or Factor IX (FIX), either on demand to resolve bleeding, or as prophylaxis. Improved treatment may be provided by drugs designed for subcutaneous and less frequent administration with a reduced risk of inhibitor formation. Tissue factor pathway inhibitor (TFPI) down-regulates the initiation of coagulation by inhibition of Factor VIIa (FVIIa)/tissue factor/Factor Xa (FVIIa/TF/FXa). Blockage of TFPI inhibition may facilitate thrombin generation in a hemophilic setting. A high-affinity (K(D) = 25pM) mAb, mAb 2021, against TFPI was investigated. Binding of mAb 2021 to TFPI effectively prevented inhibition of FVIIa/TF/FXa and improved clot formation in hemophilia blood and plasma. The binding epitope on the Kunitz-type protease inhibitor domain 2 of TFPI was mapped by crystallography, and showed an extensive overlap with the FXa contact region highlighting a structural basis for its mechanism of action. In a rabbit hemophilia model, an intravenous or subcutaneous dose significantly reduced cuticle bleeding. mAb 2021 showed an effect comparable with that of rFVIIa. Cuticle bleeding in the model was reduced for at least 7 days by a single intravenous dose of mAb 2021. This study suggests that neutralization of TFPI by mAb 2021 may constitute a novel treatment option in hemophilia.

  12. Antihuman factor VIII C2 domain antibodies in hemophilia A mice recognize a functionally complex continuous spectrum of epitopes dominated by inhibitors of factor VIII activation

    PubMed Central

    Meeks, Shannon L.; Healey, John F.; Parker, Ernest T.; Barrow, Rachel T.

    2007-01-01

    The diversity of factor VIII (fVIII) C2 domain antibody epitopes was investigated by competition enzyme-linked immunosorbent assay (ELISA) using a panel of 56 antibodies. The overlap patterns produced 5 groups of monoclonal antibodies (MAbs), designated A, AB, B, BC, and C, and yielded a set of 18 distinct epitopes. Group-specific loss of antigenicity was associated with mutations at the Met2199/Phe2200 phospholipid binding β-hairpin (group AB MAbs) and at Lys2227 (group BC MAbs), which allowed orientation of the epitope structure as a continuum that covers one face of the C2 β-sandwich. MAbs from groups A, AB, and B inhibit the binding of fVIIIa to phospholipid membranes. Group BC was the most common group and displayed the highest specific fVIII inhibitor activities. MAbs in this group are type II inhibitors that inhibit the activation of fVIII by either thrombin or factor Xa and poorly inhibit the binding of fVIII to phospholipid membranes or von Willebrand factor (VWF). Group BC MAbs are epitopically and mechanistically distinct from the extensively studied group C MAb, ESH8. These results reveal the structural and functional complexity of the anti-C2 domain antibody response and indicate that interference with fVIII activation is a major attribute of the inhibitor landscape. PMID:17848617

  13. Domain-based assays of individual antibody concentrations in an oligoclonal combination targeting a single protein.

    PubMed

    Meng, Q; Li, M; Silberg, M A; Conrad, F; Bettencourt, J; To, R; Huang, C; Ma, J; Meyer, K; Shimizu, R; Cao, L; Tomic, M T; Marks, J D

    2012-02-15

    Quantitation of individual monoclonal antibodies (mAbs) within a combined antibody drug product is required for preclinical and clinical drug development, including pharmacokinetic (PK), toxicology, stability, and biochemical characterization studies of such drugs. We have developed an antitoxin, XOMA 3AB, consisting of three recombinant mAbs that potently neutralize the known subtypes of type A botulinum neurotoxin (BoNT/A). The three mAbs bind nonoverlapping BoNT/A epitopes with high affinity. XOMA 3AB is being developed as a treatment for botulism resulting from BoNT/A. To develop antibody-specific assays, we cloned, expressed, and purified BoNT/A domains from Escherichia coli. Each mAb bound only to its specific domain with affinity comparable to the binding to holotoxin. mAb-specific domains were used to develop an enzyme-linked immunosorbent assay (ELISA) for characterization of the integrity and binding activity of the three mAbs in the drug product. An electrochemiluminescence bridging assay that is robust to interference from components in serum was also developed, and we demonstrate that it can be used for PK assays. This type of antigen engineering to generate mAb-specific domains is a general method allowing quantitation and characterization of individual mAbs in a mAb cocktail that binds the same protein and is superior to anti-idiotype approaches. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. A Novel PET Imaging Using 64Cu-Labeled Monoclonal Antibody against Mesothelin Commonly Expressed on Cancer Cells

    PubMed Central

    Kobayashi, Kazuko; Sasaki, Takanori; Takenaka, Fumiaki; Yakushiji, Hiromasa; Fujii, Yoshihiro; Kishi, Yoshiro; Kita, Shoichi; Shen, Lianhua; Kumon, Hiromi; Matsuura, Eiji

    2015-01-01

    Mesothelin (MSLN) is a 40-kDa cell differentiation-associated glycoprotein appearing with carcinogenesis and is highly expressed in many human cancers, including the majority of pancreatic adenocarcinomas, ovarian cancers, and mesotheliomas, while its expression in normal tissue is limited to mesothelial cells lining the pleura, pericardium, and peritoneum. Clone 11-25 is a murine hybridoma secreting monoclonal antibody (mAb) against human MSLN. In this study, we applied the 11-25 mAb to in vivo imaging to detect MSLN-expressing tumors. In in vitro and ex vivo immunochemical studies, we demonstrated specificity of 11-25 mAb to membranous MSLN expressed on several pancreatic cancer cells. We showed the accumulation of Alexa Fluor 750-labeled 11-25 mAb in MSLN-expressing tumor xenografts in athymic nude mice. Then, 11-25 mAb was labeled with 64Cu via a chelating agent DOTA and was used in both in vitro cell binding assay and in vivo positron emission tomography (PET) imaging in the tumor-bearing mice. We confirmed that 64Cu-labeled 11-25 mAb highly accumulated in MSLN-expressing tumors as compared to MSLN-negative ones. The 64Cu-labeled 11-25 mAb is potentially useful as a PET probe capable of being used for wide range of tumors, rather than 18F-FDG that occasionally provides nonspecific accumulation into the inflammatory lesions. PMID:25883990

  15. A novel rabbit anti-hepatocyte growth factor monoclonal neutralizing antibody inhibits tumor growth in prostate cancer cells and mouse xenografts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Yanlan; Chen, Yicheng; Ding, Guoqing

    The hepatocyte growth factor and its receptor c-Met are correlated with castration-resistance in prostate cancer. Although HGF has been considered as an attractive target for therapeutic antibodies, the lack of cross-reactivity of monoclonal antibodies with human/mouse HGFs is a major obstacle in preclinical developments. We generated a panel of anti-HGF RabMAbs either blocking HGF/c-Met interaction or inhibiting c-Met phosphorylation. We selected one RabMAb with mouse cross-reactivity and demonstrated that it blocked HGF-stimulated downstream activation in PC-3 and DU145 cells. Anti-HGF RabMAb inhibited not only the growth of PC-3 cells but also HGF-dependent proliferation in HUVECs. We further demonstrated the efficacymore » and potency of the anti-HGF RabMAb in tumor xenograft mice models. Through these in vitro and in vivo experiments, we explored a novel therapeutic antibody for advanced prostate cancer. - Highlights: • HGF is an attractive target for castration-refractory prostate cancer. • We generated and characterized a panel of anti-HGF rabbit monoclonal antibodies. • More than half of these anti-HGF RabMAbs was cross-reactive with mouse HGF. • Anti-HGF RabMAb blocks HGF-stimulated phosphorylation and cell growth in vitro. • Anti-HGF RabMAb inhibits tumor growth and angiogenesis in xenograft mice.« less

  16. Combination of SDS-PAGE and intact mass analysis for rapid determination of heterogeneities in monoclonal antibody therapeutics.

    PubMed

    Yamada, Hideaki; Matsumura, Chiemi; Yamada, Keita; Teshima, Koichiro; Hiroshima, Takashi; Kinoshita, Mitsuhiro; Suzuki, Shigeo; Kakehi, Kazuaki

    2017-05-01

    mAbs are currently mainstream in biopharmaceuticals, and their market has been growing due to their high target specificity. Characterization of heterogeneities in mAbs is performed to secure their quality and safety by physicochemical analyses. However, they require time-consuming task, which often strain the resources of drug development in pharmaceuticals. Rapid and direct method to determine the heterogeneities should be a powerful tool for pharmaceutical analysis. Considering the advantages of electrophoresis and MS, this study addresses the combination of SDS-PAGE and intact mass analysis, which provides direct, rapid, and orthogonal determination of heterogeneities in mAb therapeutics. mAb therapeutics that migrated in SDS-PAGE were recovered from gel by treatment with SDC-containing buffer. Usage of SDC-containing buffer as extraction solvent and ethanol-based staining solution enhanced the recovery of intact IgG from SDS-PAGE gels. Recovery of mAbs reached more than 86% with 0.2% SD. The heterogeneities, especially N-glycan variants in the recovered mAb therapeutics, were clearly determined by intact mass analysis. We believe that the study is important in pharmaceuticals‧ perspective since orthogonal combination of gel electrophoresis and intact mass analysis should be pivotal role for rapid and precise characterization of mAbs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Fluorescence of dissolved organic matter: A comparison of north Pacific and north Atlantic Oceans during April 1991

    NASA Technical Reports Server (NTRS)

    Hoge, Frank E.; Swift, Robert N.; Yungel, James K.; Vodacek, Anthony

    1993-01-01

    Profiles of airborne-laser-induced fluorescence emission from dissolved organic matter in the upper ocean have been produced and compared for the Southern California Bight (SCB) and the Mid-Atlantic Bight (MAB). Findings were as follows. (1) The fluorescent components of dissolved organic matter (FDOM) are present in easily measurable quantities from near shore to well over 300 km offshore in the SCB and are likewise easily measurable in the coastal, shelf, slope, and Gulf Stream waters of the MAB. (2) The reange of FDOM in the MAB is considerably greater than that in the SCB. (3) The lowest FDOM levels observed in the SCB were higher than those found in the Gulf Stream. (4) The onshore-to-offshore spatial gradient of the FDOM was found to be considerably lower in the SCB than in the MAB, with the highest levels of FDOM being found immediately adjacent to the coast in the MAB. This suggests that the water adjacent to the SCB shoreline is not as strongly influenced by terrestrial and estuarine sources of FDOM as the MAB is. (5) The spatial distribution of the FDOM within both the SCB and the MAB is frequently coherent with the spatial distribution of chlorophyll determined form the concurrent airborne- laser- induced phytoplankton pigment fluorescence measurements. However, distinct noncoherency is sometimes observed, especially at water mass boundaries.

  18. Characterization of the Physical Stability of a Lyophilized IgG1 mAb After Accelerated Shipping-like Stress

    PubMed Central

    Telikepalli, Srivalli; Kumru, Ozan S.; Kim, Jae Hyun; Joshi, Sangeeta B.; O'Berry, Kristin B.; Blake-Haskins, Angela W.; Perkins, Melissa D.; Middaugh, C. Russell; Volkin, David B.

    2014-01-01

    Upon exposure to shaking stress, an IgG1 mAb formulation in both liquid and lyophilized state formed subvisible particles. Since freeze-drying is expected to minimize protein physical instability under these conditions, the extent and nature of aggregate formation in the lyophilized preparation was examined using a variety of particle characterization techniques. The effect of formulation variables such as residual moisture content, reconstitution rate, and reconstitution medium were examined. Upon reconstitution of shake-stressed lyophilized mAb, differences in protein particle size and number were observed by Microflow Digital Imaging (MFI), with the reconstitution medium having the largest impact. Shake-stress had minor effects on the structure of protein within the particles as shown by SDS-PAGE and FTIR analysis. The lyophilized mAb was shake-stressed to different extents and stored for 3 months at different temperatures. Both extent of cake collapse and storage temperature affected the physical stability of the shake-stressed lyophilized mAb upon subsequent storage. These findings demonstrate that physical degradation upon shaking of a lyophilized IgG1 mAb formulation includes not only cake breakage, but also results in an increase in subvisible particles and turbidity upon reconstitution. The shaking-induced cake breakage of the lyophilized IgG1 mAb formulation also resulted in decreased physical stability upon storage. PMID:25522000

  19. Collagen Sponge Functionalized with Chimeric Anti-BMP-2 Monoclonal Antibody Mediates Repair of Critical-Size Mandibular Continuity Defects in a Nonhuman Primate Model

    PubMed Central

    Xie, Yilin; Su, Yingying; Tang, Jianxia; Goh, Bee Tin; Saigo, Leonardo; Zhang, Chunmei; Wang, Jinsong; Khojasteh, Arash; Wang, Songlin

    2017-01-01

    Antibody-mediated osseous regeneration (AMOR) has been introduced by our research group as a tissue engineering approach to capture of endogenous growth factors through the application of specific monoclonal antibodies (mAbs) immobilized on a scaffold. Specifically, anti-Bone Morphogenetic Protein- (BMP-) 2 mAbs have been demonstrated to be efficacious in mediating bone repair in a number of bone defects. The present study sought to investigate the application of AMOR for repair of mandibular continuity defect in nonhuman primates. Critical-sized mandibular continuity defects were created in Macaca fascicularis locally implanted with absorbable collagen sponges (ACS) functionalized with chimeric anti-BMP-2 mAb or isotype control mAb. 2D and 3D analysis of cone beam computed tomography (CBCT) imaging demonstrated increased bone density and volume observed within mandibular continuity defects implanted with collagen scaffolds functionalized with anti-BMP-2 mAb, compared with isotype-matched control mAb. Both CBCT imaging and histologic examination demonstrated de novo bone formation that was in direct apposition to the margins of the resected bone. It is hypothesized that bone injury may be necessary for AMOR. This is evidenced by de novo bone formation adjacent to resected bone margins, which may be the source of endogenous BMPs captured by anti-BMP-2 mAb, in turn mediating bone repair. PMID:28401163

  20. Monoclonal Antibody L1Mab-13 Detected Human PD-L1 in Lung Cancers.

    PubMed

    Yamada, Shinji; Itai, Shunsuke; Nakamura, Takuro; Yanaka, Miyuki; Chang, Yao-Wen; Suzuki, Hiroyoshi; Kaneko, Mika K; Kato, Yukinari

    2018-04-01

    Programmed cell death ligand-1 (PD-L1) is a type I transmembrane glycoprotein expressed on antigen-presenting cells. It is also expressed in several tumor cells such as melanoma and lung cancer cells. A strong correlation has been reported between human PD-L1 (hPD-L1) expression in tumor cells and negative prognosis in cancer patients. Here, a novel anti-hPD-L1 monoclonal antibody (mAb) L 1 Mab-13 (IgG 1 , kappa) was produced using a cell-based immunization and screening (CBIS) method. We investigated hPD-L1 expression in lung cancer using flow cytometry, Western blot, and immunohistochemical analyses. L 1 Mab-13 specifically reacted hPD-L1 of hPD-L1-overexpressed Chinese hamster ovary (CHO)-K1 cells and endogenous hPD-L1 of KMST-6 (human fibroblast) in flow cytometry and Western blot. Furthermore, L 1 Mab-13 reacted with lung cancer cell lines (EBC-1, Lu65, and Lu99) in flow cytometry and stained lung cancer tissues in a membrane-staining pattern in immunohistochemical analysis. These results indicate that a novel anti-hPD-L1 mAb, L 1 Mab-13, is very useful for detecting hPD-L1 of lung cancers in flow cytometry, Western blot, and immunohistochemical analyses.

  1. Extraction and purification methods in downstream processing of plant-based recombinant proteins.

    PubMed

    Łojewska, Ewelina; Kowalczyk, Tomasz; Olejniczak, Szymon; Sakowicz, Tomasz

    2016-04-01

    During the last two decades, the production of recombinant proteins in plant systems has been receiving increased attention. Currently, proteins are considered as the most important biopharmaceuticals. However, high costs and problems with scaling up the purification and isolation processes make the production of plant-based recombinant proteins a challenging task. This paper presents a summary of the information regarding the downstream processing in plant systems and provides a comprehensible overview of its key steps, such as extraction and purification. To highlight the recent progress, mainly new developments in the downstream technology have been chosen. Furthermore, besides most popular techniques, alternative methods have been described. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Importance of Neutralizing Monoclonal Antibodies Targeting Multiple Antigenic Sites on the Middle East Respiratory Syndrome Coronavirus Spike Glycoprotein To Avoid Neutralization Escape

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lingshu; Shi, Wei; Chappell, James D.

    ABSTRACT Middle East respiratory syndrome coronavirus (MERS-CoV) causes a highly lethal pulmonary infection with ~35% mortality. The potential for a future pandemic originating from animal reservoirs or health care-associated events is a major public health concern. There are no vaccines or therapeutic agents currently available for MERS-CoV. Using a probe-based single B cell cloning strategy, we have identified and characterized multiple neutralizing monoclonal antibodies (MAbs) specifically binding to the receptor-binding domain (RBD) or S1 (non-RBD) regions from a convalescent MERS-CoV-infected patient and from immunized rhesus macaques. RBD-specific MAbs tended to have greater neutralizing potency than non-RBD S1-specific MAbs. Six RBD-specificmore » and five S1-specific MAbs could be sorted into four RBD and three non-RBD distinct binding patterns, based on competition assays, mapping neutralization escape variants, and structural analysis. We determined cocrystal structures for two MAbs targeting the RBD from different angles and show they can bind the RBD only in the “out” position. We then showed that selected RBD-specific, non-RBD S1-specific, and S2-specific MAbs given prophylactically prevented MERS-CoV replication in lungs and protected mice from lethal challenge. Importantly, combining RBD- and non-RBD MAbs delayed the emergence of escape mutations in a cell-based virus escape assay. These studies identify MAbs targeting different antigenic sites on S that will be useful for defining mechanisms of MERS-CoV neutralization and for developing more effective interventions to prevent or treat MERS-CoV infections. IMPORTANCEMERS-CoV causes a highly lethal respiratory infection for which no vaccines or antiviral therapeutic options are currently available. Based on continuing exposure from established reservoirs in dromedary camels and bats, transmission of MERS-CoV into humans and future outbreaks are expected. Using structurally defined probes for the MERS-CoV spike glycoprotein (S), the target for neutralizing antibodies, single B cells were sorted from a convalescent human and immunized nonhuman primates (NHPs). MAbs produced from paired immunoglobulin gene sequences were mapped to multiple epitopes within and outside the receptor-binding domain (RBD) and protected against lethal MERS infection in a murine model following passive immunization. Importantly, combining MAbs targeting distinct epitopes prevented viral neutralization escape from RBD-directed MAbs. These data suggest that antibody responses to multiple domains on CoV spike protein may improve immunity and will guide future vaccine and therapeutic development efforts.« less

  3. Chimeric Filoviruses for Identification and Characterization of Monoclonal Antibodies.

    PubMed

    Ilinykh, Philipp A; Shen, Xiaoli; Flyak, Andrew I; Kuzmina, Natalia; Ksiazek, Thomas G; Crowe, James E; Bukreyev, Alexander

    2016-04-01

    Recent experiments suggest that some glycoprotein (GP)-specific monoclonal antibodies (MAbs) can protect experimental animals against the filovirus Ebola virus (EBOV). There is a need for isolation of MAbs capable of neutralizing multiple filoviruses. Antibody neutralization assays for filoviruses frequently use surrogate systems such as the rhabdovirus vesicular stomatitis Indiana virus (VSV), lentiviruses or gammaretroviruses with their envelope proteins replaced with EBOV GP or pseudotyped with EBOV GP. It is optimal for both screening and in-depth characterization of newly identified neutralizing MAbs to generate recombinant filoviruses that express a reporter fluorescent protein in order to more easily monitor and quantify the infection. Our study showed that unlike neutralization-sensitive chimeric VSV, authentic filoviruses are highly resistant to neutralization by MAbs. We used reverse genetics techniques to replace EBOV GP with its counterpart from the heterologous filoviruses Bundibugyo virus (BDBV), Sudan virus, and even Marburg virus and Lloviu virus, which belong to the heterologous genera in the filovirus family. This work resulted in generation of multiple chimeric filoviruses, demonstrating the ability of filoviruses to tolerate swapping of the envelope protein. The sensitivity of chimeric filoviruses to neutralizing MAbs was similar to that of authentic biologically derived filoviruses with the same GP. Moreover, disabling the expression of the secreted GP (sGP) resulted in an increased susceptibility of an engineered virus to the BDBV52 MAb isolated from a BDBV survivor, suggesting a role for sGP in evasion of antibody neutralization in the context of a human filovirus infection. The study demonstrated that chimeric rhabdoviruses in which G protein is replaced with filovirus GP, widely used as surrogate targets for characterization of filovirus neutralizing antibodies, do not accurately predict the ability of antibodies to neutralize authentic filoviruses, which appeared to be resistant to neutralization. However, a recombinant EBOV expressing a fluorescent protein tolerated swapping of GP with counterparts from heterologous filoviruses, allowing high-throughput screening of B cell lines to isolate MAbs of any filovirus specificity. Human MAb BDBV52, which was isolated from a survivor of BDBV infection, was capable of partially neutralizing a chimeric EBOV carrying BDBV GP in which expression of sGP was disabled. In contrast, the parental virus expressing sGP was resistant to the MAb. Thus, the ability of filoviruses to tolerate swapping of GP can be used for identification of neutralizing MAbs specific to any filovirus and for the characterization of MAb specificity and mechanism of action. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  4. Chimeric Filoviruses for Identification and Characterization of Monoclonal Antibodies

    PubMed Central

    Ilinykh, Philipp A.; Shen, Xiaoli; Flyak, Andrew I.; Kuzmina, Natalia; Ksiazek, Thomas G.; Crowe, James E.

    2016-01-01

    ABSTRACT Recent experiments suggest that some glycoprotein (GP)-specific monoclonal antibodies (MAbs) can protect experimental animals against the filovirus Ebola virus (EBOV). There is a need for isolation of MAbs capable of neutralizing multiple filoviruses. Antibody neutralization assays for filoviruses frequently use surrogate systems such as the rhabdovirus vesicular stomatitis Indiana virus (VSV), lentiviruses or gammaretroviruses with their envelope proteins replaced with EBOV GP or pseudotyped with EBOV GP. It is optimal for both screening and in-depth characterization of newly identified neutralizing MAbs to generate recombinant filoviruses that express a reporter fluorescent protein in order to more easily monitor and quantify the infection. Our study showed that unlike neutralization-sensitive chimeric VSV, authentic filoviruses are highly resistant to neutralization by MAbs. We used reverse genetics techniques to replace EBOV GP with its counterpart from the heterologous filoviruses Bundibugyo virus (BDBV), Sudan virus, and even Marburg virus and Lloviu virus, which belong to the heterologous genera in the filovirus family. This work resulted in generation of multiple chimeric filoviruses, demonstrating the ability of filoviruses to tolerate swapping of the envelope protein. The sensitivity of chimeric filoviruses to neutralizing MAbs was similar to that of authentic biologically derived filoviruses with the same GP. Moreover, disabling the expression of the secreted GP (sGP) resulted in an increased susceptibility of an engineered virus to the BDBV52 MAb isolated from a BDBV survivor, suggesting a role for sGP in evasion of antibody neutralization in the context of a human filovirus infection. IMPORTANCE The study demonstrated that chimeric rhabdoviruses in which G protein is replaced with filovirus GP, widely used as surrogate targets for characterization of filovirus neutralizing antibodies, do not accurately predict the ability of antibodies to neutralize authentic filoviruses, which appeared to be resistant to neutralization. However, a recombinant EBOV expressing a fluorescent protein tolerated swapping of GP with counterparts from heterologous filoviruses, allowing high-throughput screening of B cell lines to isolate MAbs of any filovirus specificity. Human MAb BDBV52, which was isolated from a survivor of BDBV infection, was capable of partially neutralizing a chimeric EBOV carrying BDBV GP in which expression of sGP was disabled. In contrast, the parental virus expressing sGP was resistant to the MAb. Thus, the ability of filoviruses to tolerate swapping of GP can be used for identification of neutralizing MAbs specific to any filovirus and for the characterization of MAb specificity and mechanism of action. PMID:26819310

  5. Antigenic Properties of the HIV Envelope on Virions in Solution

    PubMed Central

    Mengistu, Meron; Lewis, George K.; Lakowicz, Joseph R.

    2014-01-01

    The structural flexibility found in human immunodeficiency virus (HIV) envelope glycoproteins creates a complex relationship between antigenicity and sensitivity to antiviral antibodies. The study of this issue in the context of viral particles is particularly problematic as conventional virus capture approaches can perturb antigenicity profiles. Here, we employed a unique analytical system based on fluorescence correlation spectroscopy (FCS), which measures antibody-virion binding with all reactants continuously in solution. Panels of nine anti-envelope monoclonal antibodies (MAbs) and five virus types were used to connect antibody binding profiles with neutralizing activities. Anti-gp120 MAbs against the 2G12 or b12 epitope, which marks functional envelope structures, neutralized viruses expressing CCR5-tropic envelopes and exhibited efficient virion binding in solution. MAbs against CD4-induced (CD4i) epitopes considered hidden on functional envelope structures poorly bound these viruses and were not neutralizing. Anti-gp41 MAb 2F5 was neutralizing despite limited virion binding. Similar antigenicity patterns occurred on CXCR4-tropic viruses, except that anti-CD4i MAbs 17b and 19e were neutralizing despite little or no virion binding. Notably, anti-gp120 MAb PG9 and anti-gp41 MAb F240 bound to both CCR5-tropic and CXCR4-tropic viruses without exerting neutralizing activity. Differences in the virus production system altered the binding efficiencies of some antibodies but did not enhance antigenicity of aberrant gp120 structures. Of all viruses tested, only JRFL pseudoviruses showed a direct relationship between MAb binding efficiency and neutralizing potency. Collectively, these data indicate that the antigenic profiles of free HIV particles generally favor the exposure of functional over aberrant gp120 structures. However, the efficiency of virion-antibody interactions in solution inconsistently predicts neutralizing activity in vitro. PMID:24284318

  6. Maternal antibody, vaccination and reproductive failure in dogs with parvovirus infection.

    PubMed

    Gooding, G E; Robinson, W F

    1982-12-01

    The maternal antibody (MAb) titre to canine parvovirus (CPV) was determined on consecutive serums from 39 puppies in 7 litters. Vaccination with inactivated CPV was performed at a variety of ages and the response of the puppies determined. Transfer of MAb was demonstrated in 71% (5/7) of the litters and persisted for up to 10 weeks in some litters. MAb titres of greater than 20 precluded a vaccination response by puppies. Sixty- one per cent (8/13) of puppies responded to vaccination when the MAb titre was less than 20. However, no anamestic response occurred and in some cases a decrease in antibody titre was observed following a second vaccination. During an outbreak of canine parvovirus enteritis (CPE) in the kennel, 33 puppies developed clinical signs of enteritis. Of these puppies 85% (28) had MAb titres of less than 80 at the onset of clinical signs. Fifty per cent (4/8) of the puppies which responded to vaccination developed CPE, whereas 100% (5/5) of those that did not respond to vaccination developed CPE. The results indicate that MAb may persist for up to 10 weeks and puppies with MAb in the titre range greater than 20 to less than 80 do not respond to vaccination but are still susceptible to infection. It is also apparent that a significant minority of puppies with MAb less than 20 do not respond to vaccination. An examination of the breeding records of the kennel for the 7 year period 1973-1981 demonstrated a sudden decrease in reproductive efficiency during and subsequent to 1978. This coincided with the recognition of cases of CPV infection in the kennel. It is suggested that further investigation is required into the possible role of CPV in reproductive failure.

  7. Characterization of an antigenic site that contains a dominant, type-specific neutralization determinant on the envelope protein domain III (ED3) of dengue 2 virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gromowski, Gregory D.; Barrett, Alan D.T.

    2007-09-30

    The surface of the mature dengue virus (DENV) particle consists of 90 envelope (E) protein dimers that mediate both receptor binding and fusion. The E protein ectodomain can be divided into three structural domains designated ED1, ED2, and ED3, of which ED3 contains the critical and dominant virus-specific neutralization sites. In this study the ED3 epitopes recognized by seven, murine, IgG1 DENV-2 type-specific, monoclonal antibodies (MAbs) were determined using site-directed mutagenesis of a recombinant DENV-2 ED3 (rED3) protein. A total of 41 single amino acid substitutions were introduced into the rED3 at 30 different surface accessible residues. The affinity ofmore » each MAb with the mutant rED3s was assessed by indirect ELISA and the results indicate that all seven MAbs recognize overlapping epitopes with residues K305 and P384 critical for binding. These residues are conserved among DENV-2 strains and cluster together on the upper lateral face of ED3. A linear relationship was observed between relative occupancy of ED3 on the virion by MAb and neutralization of the majority of virus infectivity ({approx} 90%) for all seven MAbs. Depending on the MAb, it is predicted that between 10% and 50% relative occupancy of ED3 on the virion is necessary for virus neutralization and for all seven MAbs occupancy levels approaching saturation were required for 100% neutralization of virus infectivity. Overall, the conserved antigenic site recognized by all seven MAbs is likely to be a dominant DENV-2 type-specific, neutralization determinant.« less

  8. Inhibition of glycosylation on a camelid antibody uniquely affects its FcγRI binding activity.

    PubMed

    Krahn, Natalie; Spearman, Maureen; Meier, Markus; Dorion-Thibaudeau, July; McDougall, Matthew; Patel, Trushar R; De Crescenzo, Gregory; Durocher, Yves; Stetefeld, Jörg; Butler, Michael

    2017-01-01

    Glycoengineering of mAbs has become common practice in attempts to generate the ideal mAb candidate for a wide range of therapeutic applications. The effects of these glycan modifications on the binding affinity of IgG mAbs for FcγRIIIa and their cytotoxicity are well known. However, little is understood about the effect that these modifications have on binding to the high affinity FcγRI receptor. This study analyzed the effect of variable N-glycosylation on a human-llama hybrid mAb (EG2-hFc, 80kDa) binding to FcγRI including a comparison to a full-sized IgG1 (DP-12, 150kDa). This was achieved by the addition of three glycosylation inhibitors (swainsonine, castanospermine, and kifunensine) independently to Chinese hamster ovary (CHO) cell cultures to generate hybrid and high mannose glycan structures. Biophysical analysis by circular dichroism, dynamic light scattering and analytical ultra-centrifugation confirmed that the solution-behaviour of the mAbs remained constant over multiple concentrations and glycan treatments. However, changes were observed when studying the interaction of FcγRI with variously glycosylated mAbs. Both mAbs were observed to have a decreased binding affinity upon treatment with swainsonine which produced hybrid glycans. Following de-glycosylation the binding affinity for EG2-hFc was only marginally reduced (6-fold) compared to a drastic (118-fold) decrease for DP-12. In summary, our data suggest that the relatively low molecular weight of chimeric EG2-hFc may contribute to its enhanced stability against glycan changes making it a highly suitable mAb candidate for therapeutic applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Possible orientational constraints determine secretory signals induced by aggregation of IgE receptors on mast cells.

    PubMed Central

    Ortega, E; Schweitzer-Stenner, R; Pecht, I

    1988-01-01

    Three biologically active monoclonal antibodies (mAbs) specific for the monovalent, high-affinity membrane receptor for IgE (Fc epsilon R) were employed in analysing the secretory response of mast cells of the RBL-2H3 line to crosslinking of their Fc epsilon R. All three mAbs (designated F4, H10 and J17) compete with each other and with IgE for binding to the Fc epsilon R. Their stoichiometry of binding is 1 Fab:1 Fc epsilon R, hence, the intact mAbs can aggregate the Fc epsilon Rs to dimers only. Since all three mAbs induce secretion, we conclude that Fc epsilon R dimers constitute a sufficient 'signal element' for secretion of mediators for RBL-2H3 cells. The secretory dose-response of the cells to these three mAbs are, however, markedly different: F4 caused rather high secretion, reaching almost 80% of the cells' content, while J17 and H10 induced release of only 30-40% mediators content. Both the intrinsic affinities and equilibrium constants for the receptor dimerization were derived from analysis of binding data of the Fab fragments and intact mAbs. These parameters were used to compute the extent of Fc epsilon R dimerization caused by each of the antibodies. However, the different secretory responses to the three mAbs could not be rationalized simply in terms of the extent of Fc epsilon R dimerization which they produce. This suggests that it is not only the number of crosslinked Fc epsilon Rs which determines the magnitude of secretion-causing signal, but rather other constraints imposed by each individual mAb are also important.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2977332

  10. A New MRI Masking Technique Based on Multi-Atlas Brain Segmentation in Controls and Schizophrenia: A Rapid and Viable Alternative to Manual Masking.

    PubMed

    Del Re, Elisabetta C; Gao, Yi; Eckbo, Ryan; Petryshen, Tracey L; Blokland, Gabriëlla A M; Seidman, Larry J; Konishi, Jun; Goldstein, Jill M; McCarley, Robert W; Shenton, Martha E; Bouix, Sylvain

    2016-01-01

    Brain masking of MRI images separates brain from surrounding tissue and its accuracy is important for further imaging analyses. We implemented a new brain masking technique based on multi-atlas brain segmentation (MABS) and compared MABS to masks generated using FreeSurfer (FS; version 5.3), Brain Extraction Tool (BET), and Brainwash, using manually defined masks (MM) as the gold standard. We further determined the effect of different masking techniques on cortical and subcortical volumes generated by FreeSurfer. Images were acquired on a 3-Tesla MR Echospeed system General Electric scanner on five control and five schizophrenia subjects matched on age, sex, and IQ. Automated masks were generated from MABS, FS, BET, and Brainwash, and compared to MM using these metrics: a) volume difference from MM; b) Dice coefficients; and c) intraclass correlation coefficients. Mean volume difference between MM and MABS masks was significantly less than the difference between MM and FS or BET masks. Dice coefficient between MM and MABS was significantly higher than Dice coefficients between MM and FS, BET, or Brainwash. For subcortical and left cortical regions, MABS volumes were closer to MM volumes than were BET or FS volumes. For right cortical regions, MABS volumes were closer to MM volumes than were BET volumes. Brain masks generated using FreeSurfer, BET, and Brainwash are rapidly obtained, but are less accurate than manually defined masks. Masks generated using MABS, in contrast, resemble more closely the gold standard of manual masking, thereby offering a rapid and viable alternative. Copyright © 2015 by the American Society of Neuroimaging.

  11. Simple and ultra-fast recognition and quantitation of compounded monoclonal antibodies: Application to flow injection analysis combined to UV spectroscopy and matching method.

    PubMed

    Jaccoulet, E; Schweitzer-Chaput, A; Toussaint, B; Prognon, P; Caudron, E

    2018-09-01

    Compounding of monoclonal antibody (mAbs) constantly increases in hospital. Quality control (QC) of the compounded mAbs based on quantification and identification is required to prevent potential errors and fast method is needed to manage outpatient chemotherapy administration. A simple and ultra-fast (less than 30 s) method using flow injection analysis associated to least square matching method issued from the analyzer software was performed and evaluated for the routine hospital QC of three compounded mAbs: bevacizumab, infliximab and rituximab. The method was evaluated through qualitative and quantitative parameters. Preliminary analysis of the UV absorption and second derivative spectra of the mAbs allowed us to adapt analytical conditions according to the therapeutic range of the mAbs. In terms of quantitative QC, linearity, accuracy and precision were assessed as specified in ICH guidelines. Very satisfactory recovery was achieved and the RSD (%) of the intermediate precision were less than 1.1%. Qualitative analytical parameters were also evaluated in terms of specificity, sensitivity and global precision through a matrix of confusion. Results showed to be concentration and mAbs dependant and excellent (100%) specificity and sensitivity were reached within specific concentration range. Finally, routine application on "real life" samples (n = 209) from different batch of the three mAbs complied with the specifications of the quality control i.e. excellent identification (100%) and ± 15% of targeting concentration belonging to the calibration range. The successful use of the combination of second derivative spectroscopy and partial least square matching method demonstrated the interest of FIA for the ultra-fast QC of mAbs after compounding using matching method. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Safety testing of monoclonal antibodies in non-human primates: Case studies highlighting their impact on human risk assessment.

    PubMed

    Brennan, Frank R; Cavagnaro, Joy; McKeever, Kathleen; Ryan, Patricia C; Schutten, Melissa M; Vahle, John; Weinbauer, Gerhard F; Marrer-Berger, Estelle; Black, Lauren E

    2018-01-01

    Monoclonal antibodies (mAbs) are improving the quality of life for patients suffering from serious diseases due to their high specificity for their target and low potential for off-target toxicity. The toxicity of mAbs is primarily driven by their pharmacological activity, and therefore safety testing of these drugs prior to clinical testing is performed in species in which the mAb binds and engages the target to a similar extent to that anticipated in humans. For highly human-specific mAbs, this testing often requires the use of non-human primates (NHPs) as relevant species. It has been argued that the value of these NHP studies is limited because most of the adverse events can be predicted from the knowledge of the target, data from transgenic rodents or target-deficient humans, and other sources. However, many of the mAbs currently in development target novel pathways and may comprise novel scaffolds with multi-functional domains; hence, the pharmacological effects and potential safety risks are less predictable. Here, we present a total of 18 case studies, including some of these novel mAbs, with the aim of interrogating the value of NHP safety studies in human risk assessment. These studies have identified mAb candidate molecules and pharmacological pathways with severe safety risks, leading to candidate or target program termination, as well as highlighting that some pathways with theoretical safety concerns are amenable to safe modulation by mAbs. NHP studies have also informed the rational design of safer drug candidates suitable for human testing and informed human clinical trial design (route, dose and regimen, patient inclusion and exclusion criteria and safety monitoring), further protecting the safety of clinical trial participants.

  13. Fungicidal Monoclonal Antibody C7 Interferes with Iron Acquisition in Candida albicans ▿ †

    PubMed Central

    Brena, Sonia; Cabezas-Olcoz, Jonathan; Moragues, María D.; Fernández de Larrinoa, Iñigo; Domínguez, Angel; Quindós, Guillermo; Pontón, José

    2011-01-01

    We have developed a monoclonal antibody (MAb), C7, that reacts with the Als3p and enolase present in the Candida albicans cell wall and exerts three anti-Candida activities: candidacidal activity and inhibition of both adhesion and filamentation. To investigate the mode of action of MAb C7 on fungal viability, we examined changes in the genome-wide gene expression profile of C. albicans grown in the presence of a subinhibitory concentration of MAb C7 (12.5 μg/ml) by using microarrays. A total of 49 genes were found to be differentially expressed upon treatment with MAb C7. Of these, 28 were found to be upregulated and 21 were found to be downregulated. The categories of upregulated genes with the largest number of variations were those involved in iron uptake or related to iron homeostasis (42.86%), while the energy-related group accounted for 38.10% of the downregulated genes (8/21). Results were validated by real-time PCR. Since these effects resembled those found under iron-limited conditions, the activity of MAb C7 on C. albicans mutants with deletions in key genes implicated in the three iron acquisition systems described in this yeast was also assessed. Only mutants lacking the TPK1 gene and, to a lesser extent, the TPK2 gene were less sensitive to the candidacidal effect of MAb C7. FeCl3 or hemin at concentrations of ≥7.8 μM reversed the candidacidal effect of MAb C7 on C. albicans in a concentration-dependent manner. The results presented in this study provide evidence that the candidacidal effect of MAb C7 is related to the blockage of the reductive iron uptake pathway of C. albicans. PMID:21518848

  14. Therapy of rat tracheal carcinoma IC-12 in SCID mice: vascular targeting with [213Bi]-MAb TES-23.

    PubMed

    Kennel, S J; Lankford, T; Davern, S; Foote, L; Taniguchi, K; Ohizumi, I; Tsutsumi, Y; Nakagawa, S; Mayumi, T; Mirzadeh, S

    2002-06-01

    In previous work, we have demonstrated that vascular targeting of [213Bi], an alpha-emitter, to lung blood vessels could efficiently destroy tumour colonies growing in the lung. In order to expand this approach to treatment of tumours growing in other sites, we employed the monoclonal antibody (MAb) TES-23, which reacts with CD44H, preferentially expressed on new blood vessels in tumours. Biodistribution studies of N-succinimidyl [125I] 3-iodobenzoate (SIB)-radiolabelled MAb TES-23 in ICR-severe combined immunodeficient (SCID) mice bearing subcutaneous (s.c.) and intramuscular (i.m.) IC-12 tumours, demonstrated efficient tumour uptake. At 24 h, accumulation in small tumours was 45%ID/g for s.c. tumours, and 58%ID/g for i.m. tumours and in large tumours it was 25%ID/g for s.c. tumours and 17%ID/g for i.m. tumours. Micro-autoradiography data confirmed that radiolabel accumulated in or near tumour blood vessels. Normal tissues had very low levels of radioactivity. Treatment of mice bearing small IC-12 tumours with [213Bi] MAb TES-23 retarded tumour growth relative to animals treated with cold MAb TES-23. Biodistribution and therapy experiments were also performed in BALB/c mice bearing both s.c. and i.m. syngeneic, lung carcinoma (line 498) tumours. [I(125)] SIB MAb TES-23 accumulated efficiently in both s.c. and i.m. tumours (14%ID/g and 15%ID/g, respectively, at 4 h); however, no therapeutic effect of [213Bi] MAb TES-23 treatment could be demonstrated in this model system. The data demonstrate that the timing of vascularisation of the tumours and the delivery kinetics of MAb relative to the half-life of the therapeutic radionuclide are critical for effective therapy.

  15. Development of a Combined Human Transferrin-Hemoglobin Lateral Immunochromatographic Assay for Accurate and Rapid Fecal Occult Blood Test.

    PubMed

    Ye, Yuanyuan; Deng, Yin; Mao, Jinju; Yan, Qin; Huang, Yidan; Zhang, Jun; Zheng, Jian; Li, Yue; Chen, Weixian

    2018-05-01

    Fecal occult bloodtest (FOBT) plays an important role in the diagnosis of gastrointestinal diseases. The sensitivities of current FOBT methods are still not satisfactory. The aim of this study is to develop a combined human transferrin (HTf)-hemoglobin (HHb) lateral flow assay (LFA) for accurate and rapid FOBT. Monoclonal antibodies (MAbs) targeting HTf were developed by conventional methods and paired using LFA strips. The best HTf MAb pair was chosen according to the overall performance on testing limit and specificity. Meanwhile, HHb LFA strips were prepared using previously developed HHb MAbs. The testing limit and specificity were characterized. Based on the selected HTf MAb pair and the verified HHb MAb pair, combined HTf-HHb strips were developed. The combined HTf-HHb strips were used for FOBT of 400 human fecal samples, including 200 gastrointestinal bleeding specimens and 200 healthy subjects. For comparison, the homemade individual HTf and HHb strips, as well as three kinds of commercial FOBT strips, were also used for the FOBT. Two MAb pairs targeting HTf were developed for LFA. Two types of HTf strips were prepared accordingly. The type I was chosen due to its lower detection limit. Using the type I HTf MAb pair and the verified HHb- MAb pair, the combined HTf-HHb strips could detect the HTf at concentrations between 1 ng/mL and 1 x 106 ng/mL and the HHb between 10 ng/mL and 2.5 x 106 ng/mL. Compared to individual HTf and HHb strips and three kinds of commercial strips, the combined strips showed the highest diagnostic sensitivity in FOBT (96.0%). The specificity was a satisfactory 99%. Our combined HTf-HHb test strips are a very promising product for accurate and rapid FOBT.

  16. Anti-Ebola therapies based on monoclonal antibodies: Current state and challenges ahead

    PubMed Central

    González-González, E; Alvarez, MM; Márquez-Ipiña, AR; Santiago, G Trujillo-de; Rodríguez-Martínez, LM; Annabi, N; Khademhosseini, A

    2017-01-01

    The 2014 Ebola outbreak, the largest recorded, took us largely unprepared, with no available vaccine or specific treatment. In this context, the World Health Organization (WHO) declared that the humanitarian use of experimental therapies against Ebola Virus (EBOV) is ethical. In particular, an experimental treatment consisting of a cocktail of three monoclonal antibodies (mAbs) produced in tobacco plants and specifically directed to the Ebola virus glycoprotein (GP) was tested in humans, apparently with good results. Several mAbs with high affinity to the GP have been described. This review discusses our current knowledge on this topic. Particular emphasis is devoted to those mAbs that have been assayed in animal models or humans as possible therapies against Ebola. Engineering aspects and challenges for the production of anti-Ebola mAbs are also briefly discussed; current platforms for the design and production of full-length mAbs are cumbersome and costly. PMID:26611830

  17. Preclinical development of monoclonal antibodies: considerations for the use of non-human primates.

    PubMed

    Chapman, Kathryn; Pullen, Nick; Coney, Lee; Dempster, Maggie; Andrews, Laura; Bajramovic, Jeffrey; Baldrick, Paul; Buckley, Lorrene; Jacobs, Abby; Hale, Geoff; Green, Colin; Ragan, Ian; Robinson, Vicky

    2009-01-01

    The development of mAbs remains high on the therapeutic agenda for the majority of pharmaceutical and biotechnology companies. Often, the only relevant species for preclinical safety assessment of mAbs are non-human primates (NHPs), and this raises important scientific, ethical and economic issues. To investigate evidence-based opportunities to minimize the use of NHPs, an expert working group with representatives from leading pharmaceutical and biotechnology companies, contract research organizations and institutes from Europe and the USA, has shared and analyzed data on mAbs for a range of therapeutic areas. This information has been applied to hypothetical examples to recommend scientifically appropriate development pathways and study designs for a variety of potential mAbs. The addendum of ICHS6 provides a timely opportunity for the scientific and regulatory community to embrace strategies which minimize primate use and increase efficiency of mAb development.

  18. Anti-Ebola therapies based on monoclonal antibodies: current state and challenges ahead.

    PubMed

    González-González, Everardo; Alvarez, Mario Moisés; Márquez-Ipiña, Alan Roberto; Trujillo-de Santiago, Grissel; Rodríguez-Martínez, Luis Mario; Annabi, Nasim; Khademhosseini, Ali

    2017-02-01

    The 2014 Ebola outbreak, the largest recorded, took us largely unprepared, with no available vaccine or specific treatment. In this context, the World Health Organization declared that the humanitarian use of experimental therapies against Ebola Virus (EBOV) is ethical. In particular, an experimental treatment consisting of a cocktail of three monoclonal antibodies (mAbs) produced in tobacco plants and specifically directed to the EBOV glycoprotein (GP) was tested in humans, apparently with good results. Several mAbs with high affinity to the GP have been described. This review discusses our current knowledge on this topic. Particular emphasis is devoted to those mAbs that have been assayed in animal models or humans as possible therapies against Ebola. Engineering aspects and challenges for the production of anti-Ebola mAbs are also briefly discussed; current platforms for the design and production of full-length mAbs are cumbersome and costly.

  19. Diagnostic methods for African horsesickness virus using monoclonal antibodies to structural and non-structural proteins.

    PubMed

    Ranz, A I; Miguet, J G; Anaya, C; Venteo, A; Cortés, E; Vela, C; Sanz, A

    1992-11-01

    A panel of 32 hybridoma cell lines secreting monoclonal antibodies (MAbs) reactive with African horsesickness virus serotype 4 (AHSV-4) has been developed. Four of the MAbs recognized the major core antigen VP7, twenty recognized the outer capsid protein VP2 and eight reacted with the non-structural protein NS1. With the VP7-specific MAbs a rapid and sensitive double antibody sandwich immunoassay has been developed to detect viral antigen in infected Vero cells and in spleen tissue from AHSV-infected horses. The sensitivity of the assay is 10 ng viral antigen per 100 microliters. The NS1-specific MAbs allowed visualization by immunofluorescence of tubule-like structures in the cytoplasm of infected Vero cells. This can be very useful as a confirmatory diagnostic procedure. The antigenic map of the outer capsid VP2 protein with MAbs is also reported.

  20. Matrix interference from Fc-Fc interactions in immunoassays for detecting human IgG4 therapeutics.

    PubMed

    Partridge, Michael A; Karayusuf, Elif Kabuloglu; Dhulipala, Gangadhar; Dreyer, Robert; Daly, Thomas; Sumner, Giane; Pyles, Erica; Torri, Albert

    2015-01-01

    An assay measuring an IgG4 biotherapeutic in human serum used a drug-specific monoclonal antibody (mAb) capture reagent and an antihuman IgG4 mAb as detection reagent. However, serum IgG4 binding to the capture mAb via Fc-interactions was detected by the anti-IgG4 mAb, causing high background. Two approaches were developed to minimize background; incorporating a mild acid sample preparation step or using the Fab of the capture antibody. Either strategy improved signal:noise dramatically, increasing assay sensitivity >20-fold. Biophysical analyses of antibody domains indicated that noncovalent Fc oligomers could inhibit the background. Matrix interference from human IgG4 binding to the capture mAb was reduced with a Fab fragment of the drug-specific capture antibody or by incorporating a mild acid sample treatment into the assay.

  1. A toolbox of immunoprecipitation-grade monoclonal antibodies to human transcription factors.

    PubMed

    Venkataraman, Anand; Yang, Kun; Irizarry, Jose; Mackiewicz, Mark; Mita, Paolo; Kuang, Zheng; Xue, Lin; Ghosh, Devlina; Liu, Shuang; Ramos, Pedro; Hu, Shaohui; Bayron Kain, Diane; Keegan, Sarah; Saul, Richard; Colantonio, Simona; Zhang, Hongyan; Behn, Florencia Pauli; Song, Guang; Albino, Edisa; Asencio, Lillyann; Ramos, Leonardo; Lugo, Luvir; Morell, Gloriner; Rivera, Javier; Ruiz, Kimberly; Almodovar, Ruth; Nazario, Luis; Murphy, Keven; Vargas, Ivan; Rivera-Pacheco, Zully Ann; Rosa, Christian; Vargas, Moises; McDade, Jessica; Clark, Brian S; Yoo, Sooyeon; Khambadkone, Seva G; de Melo, Jimmy; Stevanovic, Milanka; Jiang, Lizhi; Li, Yana; Yap, Wendy Y; Jones, Brittany; Tandon, Atul; Campbell, Elliot; Montelione, Gaetano T; Anderson, Stephen; Myers, Richard M; Boeke, Jef D; Fenyö, David; Whiteley, Gordon; Bader, Joel S; Pino, Ignacio; Eichinger, Daniel J; Zhu, Heng; Blackshaw, Seth

    2018-03-19

    A key component of efforts to address the reproducibility crisis in biomedical research is the development of rigorously validated and renewable protein-affinity reagents. As part of the US National Institutes of Health (NIH) Protein Capture Reagents Program (PCRP), we have generated a collection of 1,406 highly validated immunoprecipitation- and/or immunoblotting-grade mouse monoclonal antibodies (mAbs) to 737 human transcription factors, using an integrated production and validation pipeline. We used HuProt human protein microarrays as a primary validation tool to identify mAbs with high specificity for their cognate targets. We further validated PCRP mAbs by means of multiple experimental applications, including immunoprecipitation, immunoblotting, chromatin immunoprecipitation followed by sequencing (ChIP-seq), and immunohistochemistry. We also conducted a meta-analysis that identified critical variables that contribute to the generation of high-quality mAbs. All validation data, protocols, and links to PCRP mAb suppliers are available at http://proteincapture.org.

  2. Immunology proves a great success for treating systemic autoimmune diseases - a perspective on immunopharmacology: IUPHAR Review 23.

    PubMed

    Ishii, Masaru

    2017-07-01

    Recent advances in the bioengineering of monoclonal antibodies (mAbs) have revolutionized the treatment of several immunological and rheumatic diseases. mAbs exhibit high specificity and affinity, and are very effective targeting agents, associated with minimal off-target adverse effects. Of several relevant immunological diseases, rheumatoid arthritis was the condition initially treated with mAbs, with great success. Currently, many immunological disorders are targeted and successfully treated using such novel approaches; these include inflammatory bowel diseases, multiple sclerosis, lupus and psoriasis. Today, the efforts of researchers in basic immunology (with a long history) have borne fruit; bioengineered mAbs are employed in clinical practice. In this brief review, I will describe the current and emerging therapeutic mAbs and molecular targeted agents, and discuss the future of the field, especially from the viewpoint of pharmacology. © 2017 The British Pharmacological Society.

  3. Production of monoclonal antibody inhibiting dipeptidylaminopeptidase IV activity of Porphyromonas gingivalis.

    PubMed

    Teshirogi, K; Hayakawa, M; Ikemi, T; Abiko, Y

    2003-06-01

    Porphyromonas gingivalis is a Gram-negative anaerobic bacterial species implicated as an important pathogen in the development of adult periodontitis. We previously cloned a gene encoding dipeptydilaminopeptidase IV (DAPIV) from P. gingivalis. In the present study, for immunological diagnosis and development of passive immunization, we produced a mouse monoclonal antibody (MAb) capable of inhibiting the DAPIV activity of P. gingivalis using highly purified recombinant DAPIV as an immunogen. The constructed MAb, designated as MAb-Pg-DAP-1, significantly inhibited DAPIV activity in P. gingivalis, as well as slightly inhibited that in other gram-negative bacteria such as Porphyromonas endodontalis and Prevotella loesheii, whereas no inhibition was seen in the gram-positive bacteria Streptococcus mutans and Actinomyces viscosus. Furthermore, the MAb did not inhibit DAPIV enzyme activity in human serum. This novel MAb may be useful for the development of immunological diagnosis capability and in passive immunization.

  4. A "Trojan horse" bispecific-antibody strategy for broad protection against ebolaviruses.

    PubMed

    Wec, Anna Z; Nyakatura, Elisabeth K; Herbert, Andrew S; Howell, Katie A; Holtsberg, Frederick W; Bakken, Russell R; Mittler, Eva; Christin, John R; Shulenin, Sergey; Jangra, Rohit K; Bharrhan, Sushma; Kuehne, Ana I; Bornholdt, Zachary A; Flyak, Andrew I; Saphire, Erica Ollmann; Crowe, James E; Aman, M Javad; Dye, John M; Lai, Jonathan R; Chandran, Kartik

    2016-10-21

    There is an urgent need for monoclonal antibody (mAb) therapies that broadly protect against Ebola virus and other filoviruses. The conserved, essential interaction between the filovirus glycoprotein, GP, and its entry receptor Niemann-Pick C1 (NPC1) provides an attractive target for such mAbs but is shielded by multiple mechanisms, including physical sequestration in late endosomes. Here, we describe a bispecific-antibody strategy to target this interaction, in which mAbs specific for NPC1 or the GP receptor-binding site are coupled to a mAb against a conserved, surface-exposed GP epitope. Bispecific antibodies, but not parent mAbs, neutralized all known ebolaviruses by coopting viral particles themselves for endosomal delivery and conferred postexposure protection against multiple ebolaviruses in mice. Such "Trojan horse" bispecific antibodies have potential as broad antifilovirus immunotherapeutics. Copyright © 2016, American Association for the Advancement of Science.

  5. Electron-stimulated purification of platinum nanostructures grown via focused electron beam induced deposition.

    PubMed

    Lewis, Brett B; Stanford, Michael G; Fowlkes, Jason D; Lester, Kevin; Plank, Harald; Rack, Philip D

    2015-01-01

    Platinum-carbon nanostructures deposited via electron beam induced deposition from MeCpPt(IV)Me3 are purified during a post-deposition electron exposure treatment in a localized oxygen ambient at room temperature. Time-dependent studies demonstrate that the process occurs from the top-down. Electron beam energy and current studies demonstrate that the process is controlled by a confluence of the electron energy loss and oxygen concentration. Furthermore, the experimental results are modeled as a 2nd order reaction which is dependent on both the electron energy loss density and the oxygen concentration. In addition to purification, the post-deposition electron stimulated oxygen purification process enhances the resolution of the EBID process due to the isotropic carbon removal from the as-deposited materials which produces high-fidelity shape retention.

  6. [Progress in isolation and purification of porcine islets].

    PubMed

    Zhu, Haitao; Yu, Liang; Wang, Bo

    2012-08-01

    To review the common methods of isolation and purification of porcine islets and research progress. Domestic and abroad literature concerning the isolation and purification of porcine islets was reviewed and analyzed thoroughly. The efficacy of the isolation and purification depends on the selection of donor, the procurement and cryopreservation of high-quality donor pancreas, and the selection and improvement of the operation. The shortage of transplanted islets could be resolved by the establishment of standardized and optimal process, which may also promote the development of porcine islet xenograft.

  7. Method for the purification of noble gases, nitrogen and hydrogen

    DOEpatents

    Baker, J.D.; Meikrantz, D.H.; Tuggle, D.G.

    1997-09-23

    A method and apparatus are disclosed for the purification and collection of hydrogen isotopes in a flowing inert gaseous mixture containing impurities, wherein metal alloy getters having the capability of sorbing non-hydrogen impurities such as oxygen, carbon dioxide, carbon monoxide, methane, ammonia, nitrogen and water vapor are utilized to purify the gaseous mixture of impurities. After purification hydrogen isotopes may be more efficiently collected. A plurality of parallel process lines utilizing metal getter alloys can be used to provide for the continuous purification and collection of the hydrogen isotopes. 15 figs.

  8. Method for the purification of noble gases, nitrogen and hydrogen

    DOEpatents

    Baker, John D.; Meikrantz, David H.; Tuggle, Dale G.

    1997-01-01

    A method and apparatus for the purification and collection of hydrogen isotopes in a flowing inert gaseous mixture containing impurities, wherein metal alloy getters having the capability of sorbing non-hydrogen impurities such as oxygen, carbon dioxide, carbon monoxide, methane, ammonia, nitrogen and water vapor are utilized to purify the gaseous mixture of impurities. After purification hydrogen isotopes may be more efficiently collected. A plurality of parallel process lines utilizing metal getter alloys can be used to provide for the continuous purification and collection of the hydrogen isotopes.

  9. Purification processes of xenogeneic bone substitutes and their impact on tissue reactions and regeneration.

    PubMed

    Perić Kačarević, Zeljka; Kavehei, Faraz; Houshmand, Alireza; Franke, Jörg; Smeets, Ralf; Rimashevskiy, Denis; Wenisch, Sabine; Schnettler, Reinhard; Jung, Ole; Barbeck, Mike

    2018-04-01

    Xenogeneic bone substitute materials are widely used in oral implantology. Prior to their clinical use, purification of the former bone tissue has to be conducted to ensure the removal of immunogenic components and pathogens. Different physicochemical methods are applied for purification of the donor tissue, and temperature treatment is one of these methods. Differences in these methods and especially the application of different temperatures for purification may lead to different material characteristics, which may influence the tissue reactions to these materials and the related (bone) healing process. However, little is known about the different material characteristics and their influences on the healing process. Thus, the aim of this mini-review is to summarize the preparation processes and the related material characteristics, safety aspects, tissue reactions, resorbability and preclinical and clinical data of two widely used xenogeneic bone substitutes that mainly differ in the temperature treatment: sintered (cerabone ® ) and non-sintered (Bio-Oss ® ) bovine-bone materials. Based on the summarized data from the literature, a connection between the material-induced tissue reactions and the consequences for the healing processes are presented with the aim of translation into their clinical application.

  10. Optimising the design and operation of semi-continuous affinity chromatography for clinical and commercial manufacture.

    PubMed

    Pollock, James; Bolton, Glen; Coffman, Jon; Ho, Sa V; Bracewell, Daniel G; Farid, Suzanne S

    2013-04-05

    This paper presents an integrated experimental and modelling approach to evaluate the potential of semi-continuous chromatography for the capture of monoclonal antibodies (mAb) in clinical and commercial manufacture. Small-scale single-column experimental breakthrough studies were used to derive design equations for the semi-continuous affinity chromatography system. Verification runs with the semi-continuous 3-column and 4-column periodic counter current (PCC) chromatography system indicated the robustness of the design approach. The product quality profiles and step yields (after wash step optimisation) achieved were comparable to the standard batch process. The experimentally-derived design equations were incorporated into a decisional tool comprising dynamic simulation, process economics and sizing optimisation. The decisional tool was used to evaluate the economic and operational feasibility of whole mAb bioprocesses employing PCC affinity capture chromatography versus standard batch chromatography across a product's lifecycle from clinical to commercial manufacture. The tool predicted that PCC capture chromatography would offer more significant savings in direct costs for early-stage clinical manufacture (proof-of-concept) (∼30%) than for late-stage clinical (∼10-15%) or commercial (∼5%) manufacture. The evaluation also highlighted the potential facility fit issues that could arise with a capture resin (MabSelect) that experiences losses in binding capacity when operated in continuous mode over lengthy commercial campaigns. Consequently, the analysis explored the scenario of adopting the PCC system for clinical manufacture and switching to the standard batch process following product launch. The tool determined the PCC system design required to operate at commercial scale without facility fit issues and with similar costs to the standard batch process whilst pursuing a process change application. A retrofitting analysis established that the direct cost savings obtained by 8 proof-of-concept batches would be sufficient to pay back the investment cost of the pilot-scale semi-continuous chromatography system. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Recovery and purification of ethylene

    DOEpatents

    Reyneke, Rian [Katy, TX; Foral, Michael J [Aurora, IL; Lee, Guang-Chung [Houston, TX; Eng, Wayne W. Y. [League City, TX; Sinclair, Iain [Warrington, GB; Lodgson, Jeffery S [Naperville, IL

    2008-10-21

    A process for the recovery and purification of ethylene and optionally propylene from a stream containing lighter and heavier components that employs an ethylene distributor column and a partially thermally coupled distributed distillation system.

  12. Phase Variation Analysis of Coxiella burnetii during Serial Passage in Cell Culture by Use of Monoclonal Antibodies

    PubMed Central

    Hotta, Akitoyo; Kawamura, Midori; To, Ho; Andoh, Masako; Yamaguchi, Tsuyoshi; Fukushi, Hideto; Hirai, Katsuya

    2002-01-01

    Antigenic changes in Coxiella burnetii Nine Mile strain phase I during serial passages in cell culture were analyzed with three groups of monoclonal antibodies (MAbs) against lipopolysaccharide. The MAbs of group 1 did not react with organisms that were passaged over five times, and the MAbs of group 2 did not react with organisms that were passaged over eight times. The MAbs of group 3 reacted with organisms passaged up to 15 times but did not react with phase II cells. These results suggest that C. burnetii could be differentiated into four phase states during phase variation. PMID:12117996

  13. Therapeutic Antibodies for Myeloid Neoplasms—Current Developments and Future Directions

    PubMed Central

    Schürch, Christian M.

    2018-01-01

    Therapeutic monoclonal antibodies (mAbs) such as antibody–drug conjugates, ligand–receptor antagonists, immune checkpoint inhibitors and bispecific T cell engagers have shown impressive efficacy in the treatment of multiple human cancers. Numerous therapeutic mAbs that have been developed for myeloid neoplasms, including acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS), are currently investigated in clinical trials. Because AML and MDS originate from malignantly transformed hematopoietic stem/progenitor cells—the so-called leukemic stem cells (LSCs) that are highly resistant to most standard drugs—these malignancies frequently relapse and have a high disease-specific mortality. Therefore, combining standard chemotherapy with antileukemic mAbs that specifically target malignant blasts and particularly LSCs or utilizing mAbs that reinforce antileukemic host immunity holds great promise for improving patient outcomes. This review provides an overview of therapeutic mAbs for AML and MDS. Antibody targets, the molecular mechanisms of action, the efficacy in preclinical leukemia models, and the results of clinical trials are discussed. New developments and future studies of therapeutic mAbs in myeloid neoplasms will advance our understanding of the immunobiology of these diseases and enhance current therapeutic strategies. PMID:29868474

  14. Development, characterization, and lethal effect of monoclonal antibodies against hemocytes in an adult female tick, Ornithodoros moubata (Acari: Argasidae).

    PubMed

    Matsuo, T; Tsukamoto, D; Inoue, N; Fujisaki, K

    2003-12-01

    In the present study, 19 monoclonal antibodies (mAbs) against adult Ornithodoros moubata hemocytes were established, and the reactivity of the hemocytes to these mAbs was examined by an indirect fluorescent antibody test (IFAT), Western blot and immunoprecipitation analyses. It was shown that the reactivities of the hemocytes to the mAbs varied among morphologically similar hemocyte types, and most mAbs produced in the present study showed the multiple band reactivity. However, the presence of shared epitopes among peptide subunits of the same protein or entirely different proteins are not common, so their reactivity could not be explained in detail. These results suggest that there are morphologically similar but functionally differentiated hemocytes. Therefore, in addition to morphological classification, the molecular-based classification of the hemocytes is also required. In order to assess the lethal effect of blood meal containing each mAb, artificial feeding was performed. The OmHC 31 showed the strongest lethal effect on adult female O. moubata. In conclusion, anti-hemocyte mAbs produced in this study are useful not only for the immunological classification of hemocytes but also for the immunological control of the tick.

  15. Effect of the anti-receptor ligand-blocking 225 monoclonal antibody on EGF receptor endocytosis and sorting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaramillo, Maria L.; Leon, Zully; Grothe, Suzanne

    The anti-receptor antibody, 225 mAb, is known to block binding of ligand to the epidermal growth factor receptor (EGFR). However, the effect of this neutralizing antibody on EGFR endocytosis, trafficking and degradation remains unclear. Here, we demonstrate that endocytosis of {sup 125}I-225 mAb occurs, albeit with a slower rate than that of EGF. Using pulse chase assays, we show that internalized {sup 125}I-225 mAb is recycled to the surface much more efficiently than internalized {sup 125}I-EGF. Also, we found that internalization of {sup 125}I-225 mAb, in contrast to that of EGF, is independent of receptor tyrosine kinase activity, as evidencedmore » by its insensitivity to AG1478, a specific EGFR tyrosine kinase inhibitor. Analysis of the levels of cell surface and total EGFR showed that treatment with 225 mAb results in a 30-40% decrease in surface EGFR and a relatively slow downregulation of total EGFR. Taken together, these data indicate that 225 mAb induces internalization and downregulation of EGFR via a mechanism distinct from that underlying EGF-induced EGFR internalization and downregulation.« less

  16. Effect of operating conditions in production of diagnostic Salmonella Enteritidis O-antigen-specific monoclonal antibody in different bioreactor systems.

    PubMed

    Ayyildiz-Tamis, Duygu; Nalbantsoy, Ayse; Elibol, Murat; Deliloglu-Gurhan, Saime Ismet

    2014-01-01

    In this study, different cultivation systems such as roller bottles (RB), 5-L stirred-tank bioreactor (STR), and disposable bioreactors were used to cultivate hybridoma for lab-scale production of Salmonella Enteritidis O-antigen-specific monoclonal antibody (MAb). Hybridoma cell line was cultivated in either serum-containing or serum-free medium (SFM) culture conditions. In STR, MAb production scaled up to 4 L, and production capabilities of the cells were also evaluated in different featured production systems. Moreover, the growth parameters of the cells in all production systems such as glucose consumption, lactate and ammonia production, and also MAb productivities were determined. Collected supernatants from the reactors were concentrated by a cross-flow filtration system. In conclusion, cells were not adapted to SFM in RB and STR. Therefore, less MAb titer in both STR and RB systems with SFM was observed compared to the cultures containing fetal bovine serum-supplemented medium. A higher MAb titer was gained in the membrane-aerated system compared to those in STR and RB. Although the highest MAb titer was obtained in the static membrane bioreactor system, the highest productivity was obtained in STR operated in semicontinuous mode with overlay aeration.

  17. Multiple HOM-C gene interactions specify cell fates in the nematode central nervous system.

    PubMed

    Salser, S J; Loer, C M; Kenyon, C

    1993-09-01

    Intricate patterns of overlapping HOM-C gene expression along the A/P axis have been observed in many organisms; however, the significance of these patterns in establishing the ultimate fates of individual cells is not well understood. We have examined the expression of the Caenorhabditis elegans Antennapedia homolog mab-5 and its role in specifying cell fates in the posterior of the ventral nerve cord. We find that the pattern of fates specified by mab-5 not only depends on mab-5 expression but also on post-translational interactions with the neighboring HOM-C gene lin-39 and a second, inferred gene activity. Where mab-5 expression overlaps with lin-39 activity, they can interact in two different ways depending on the cell type: They can either effectively neutralize one another where they are both expressed or lin-39 can predominate over mab-5. As observed for Antennapedia in Drosophila, expression of mab-5 itself is repressed by the next most posterior HOM-C gene, egl-5. Thus, a surprising diversity in HOM-C regulatory mechanisms exists within a small set of cells even in a simple organism.

  18. Monoclonal Antibodies for the Diagnosis of Borrelia crocidurae.

    PubMed

    Fotso Fotso, Aurélien; Mediannikov, Oleg; Nappez, Claude; Azza, Saïd; Raoult, Didier; Drancourt, Michel

    2016-01-01

    Relapsing fever borreliae, produced by ectoparasite-borne Borrelia species, cause mild to deadly bacteremia and miscarriage. In the perspective of developing inexpensive assays for the rapid detection of relapsing fever borreliae, we produced 12 monoclonal antibodies (MAbs) against Borrelia crocidurae and characterized the two exhibiting the highest titers. P3A10 MAb reacts with the 35.6-kDa flagellin B (flaB) of B. crocidurae while P6D9 MAb recognizes a 35.1-kDa variable-like protein (Vlp) in B. crocidurae and a 35.2-kDa Vlp in Borrelia duttonii. Indirect immunofluorescence assay incorporating relapsing fever and Lyme group borreliae and 11 blood-borne organisms responsible for fever in West Africa confirmed the reactivity of these two MAbs. Combining these two MAbs in indirect immunofluorescence assays detected relapsing fever borreliae including B. crocidurae in ticks and the blood of febrile Senegalese patients. Both antibodies could be incorporated into inexpensive and stable formats suited for the rapid point-of-care diagnosis of relapsing fever. These first-ever MAbs directed against African relapsing fever borreliae are available for the scientific community to promote research in this neglected field. © The American Society of Tropical Medicine and Hygiene.

  19. CD20-based Immunotherapy of B-cell Derived Hematologic Malignancies.

    PubMed

    Shanehbandi, Dariush; Majidi, Jafar; Kazemi, Tohid; Baradaran, Behzad; Aghebati-Maleki, Leili

    2017-01-01

    CD20 is a surface antigen, which is expressed at certain stages of B-cell differentiation. Targeting the CD20-positive B-cells with therapeutic monoclonal antibodies (MAbs) has been an effectual strategy in the treatment of hematologic malignancies such as non-Hodgkin's lymphoma (NHL) and chronic lymphocytic leukemia (CLL). Initial success with Rituximab (RTX) has encouraged the creation and development of more effective CD20 based therapeutics. However, treatment with conventional MAbs has not been adequate to overcome the problems such as refractory/ relapsed disease. In this regard, new generations of MAbs with enhanced affinity or improved anti-tumor properties have been developed. CD20 directed therapeutics have heterogeneous features and mechanisms of action. Hence, having sufficient knowledge on the immunological and molecular aspects of CD20 based cancer therapy is necessary for predicting the clinical outcomes and taking the necessary measures. An extensive search was performed in PubMed and similar databases for peer-reviewed articles concerning the biology, function and characteristics of CD20 molecule as well as the mechanisms of action and evolutionary process of CD20 targeting agents. This review provides information about the current situation of CD20 targeting immunotherapeutics including MAbs, bispecific antibodies (which exert multiple functions or involve Tcells in tumor elimination) and CAR T-cells (engineered T-cells armed with chimeric antigen receptors). Moreover, limitations, challenges and available solutions regarding the application of CD20 targeting treatments are addressed. Utilization of CD20-targeted therapeutics, due to their diverse properties, requires special considerations. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. The disulfide isomerase ERp57 is required for fibrin deposition in vivo.

    PubMed

    Zhou, J; Wu, Y; Wang, L; Rauova, L; Hayes, V M; Poncz, M; Essex, D W

    2014-11-01

    ERp57 is required for platelet function; however, whether ERp57 contributes to fibrin generation is unknown. Using an inhibitory anti-ERp57 antibody (mAb1), Pf4-Cre/ERp57(fl/fl) mice, Tie2-Cre/ERp57(fl/fl) mice, and mutants of ERp57, we analyzed the function of ERp57 in laser-induced thrombosis. Fibrin deposition was decreased in Pf4-Cre/ERp57(fl/fl) mice, consistent with a role for platelet ERp57 in fibrin generation. Fibrin deposition was further decreased with infusion of mAb1 and in Tie2-Cre/ERp57(fl/fl) mice, consistent with endothelial cells also contributing to fibrin deposition. Infusion of eptibifatide inhibited platelet and fibrin deposition, confirming a role for platelets in fibrin deposition. Infusion of recombinant ERp57 corrected the defect in fibrin deposition but not platelet accumulation, suggesting a direct effect of ERp57 on coagulation. mAb1 inhibited thrombin generation in vitro, consistent with a requirement for ERp57 in coagulation. Platelet accumulation was decreased to similar extents in Pf4-Cre/ERp57(fl/fl) mice, Tie2-Cre/ERp57(fl/fl) mice and normal mice infused with mAb1. Infusion of completely inactivated ERp57 or ERp57 with a non-functional second active site inhibited fibrin deposition and platelet accumulation, indicating that the isomerase activity of the second active site is required for these processes. ERp57 regulates thrombosis via multiple targets. © 2014 International Society on Thrombosis and Haemostasis.

  1. Albumin is synthesized in epididymis and aggregates in a high molecular mass glycoprotein complex involved in sperm-egg fertilization.

    PubMed

    Arroteia, Kélen Fabíola; Barbieri, Mainara Ferreira; Souza, Gustavo Henrique Martins Ferreira; Tanaka, Hiromitsu; Eberlin, Marcos Nogueira; Hyslop, Stephen; Alvares, Lúcia Elvira; Pereira, Luís Antonio Violin Dias

    2014-01-01

    The epididymis has an important role in the maturation of sperm for fertilization, but little is known about the epididymal molecules involved in sperm modifications during this process. We have previously described the expression pattern for an antigen in epididymal epithelial cells that reacts with the monoclonal antibody (mAb) TRA 54. Immunohistochemical and immunoblotting analyses suggest that the epitope of the epididymal antigen probably involves a sugar moiety that is released into the epididymal lumen in an androgen-dependent manner and subsequently binds to luminal sperm. Using column chromatography, SDS-PAGE with in situ digestion and mass spectrometry, we have identified the protein recognized by mAb TRA 54 in mouse epididymal epithelial cells. The ∼65 kDa protein is part of a high molecular mass complex (∼260 kDa) that is also present in the sperm acrosomal vesicle and is completely released after the acrosomal reaction. The amino acid sequence of the protein corresponded to that of albumin. Immunoprecipitates with anti-albumin antibody contained the antigen recognized by mAb TRA 54, indicating that the epididymal molecule recognized by mAb TRA 54 is albumin. RT-PCR detected albumin mRNA in the epididymis and fertilization assays in vitro showed that the glycoprotein complex containing albumin was involved in the ability of sperm to recognize and penetrate the egg zona pellucida. Together, these results indicate that epididymal-derived albumin participates in the formation of a high molecular mass glycoprotein complex that has an important role in egg fertilization.

  2. Demonstration of Functional Similarity of Proposed Biosimilar ABP 501 to Adalimumab.

    PubMed

    Velayudhan, Jyoti; Chen, Yuh-Feng; Rohrbach, Amanda; Pastula, Christina; Maher, Gwen; Thomas, Heather; Brown, Ryan; Born, Teresa L

    2016-08-01

    Due to the complex molecular structure and proprietary manufacturing processes of monoclonal antibodies (mAbs), differences in structure and function may be expected during development of biosimilar mAbs. Important regulatory requirements for approval of biosimilar products involve comprehensive assessments of any potential differences between proposed biosimilars and reference mAbs, including differences in all known mechanisms of action, using sensitive and relevant methods. Any identified structural differences should not result in differences in biofunctional or clinical activity. A comprehensive assessment comparing the Amgen biosimilar candidate ABP 501 with FDA-licensed adalimumab (adalimumab [US]) and EU-authorized adalimumab (adalimumab [EU]) was conducted to demonstrate similarity in biofunctional activity. The functional similarity assessment included testing of binding kinetics to soluble tumor necrosis factor α (TNFα) and relative binding to transmembrane TNFα. The neutralization of TNFα-induced caspase activation, TNFα- and lymphotoxin-α (LTα)-induced chemokine production, and cytotoxicity was also tested. Binding to Fc-gamma receptors FcγRIa, FcγRIIa (131H), FcγRIIIa (158V and 158F), and neonatal Fc receptor (FcRn) was compared with the reference mAbs, as was antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity. The data demonstrate that ABP 501 is similar to both adalimumab (US) and adalimumab (EU) with respect to evaluated biofunctional activities. Similarity in biofunctional activity is a critical component of the totality of evidence required for demonstration of biosimilarity. The functional similarity demonstrated for ABP 501 comprehensively assesses the known mechanisms of action of adalimumab, supporting the conclusion that ABP 501, adalimumab (US), and adalimumab (EU) are likely to be clinically similar.

  3. Impact of Buffer, Protein Concentration and Sucrose Addition on the Aggregation and Particle Formation during Freezing and Thawing.

    PubMed

    Hauptmann, Astrid; Podgoršek, Katja; Kuzman, Drago; Srčič, Stanko; Hoelzl, Georg; Loerting, Thomas

    2018-03-19

    This study addresses the effect of freezing and thawing on a therapeutic monoclonal antibody (mAb) solution and the corresponding buffer formulation. Particle formation, crystallization behaviour, morphology changes and cryo-concentration effects were studied after varying the freezing and thawing rates, buffer formulation and protein concentration. The impact of undergoing multiple freeze/thaw (FT)-cycles at controlled and uncontrolled temperature rates on mAb solutions was investigated in terms of particle formation. Physicochemical characteristics were analysed by Differential Scanning Calorimetry whereas morphology changes are visualized by cryomicroscopy measurements. Micro Flow Imaging, Archimedes and Dynamic Light Scattering were used to investigate particle formation. Data retrieved in the present study emphasizes the damage caused by multiple FT-cyles and the need for sucrose as a cryoprotectant preventing cold-crystallization specifically at high protein concentrations. Low protein concentrations cause an increase of micron particle formation. Low freezing rates lead to a decreased particle number with increased particle diameter. The overall goal of this research is to gain a better understanding of the freezing and thawing behaviour of mAb solutions with the ultimate aim to optimize this process step by reducing the unwanted particle formation, which also includes protein aggregates.

  4. A new method for the labelling of proteins with radioactive arsenic isotopes

    NASA Astrophysics Data System (ADS)

    Jennewein, M.; Hermanne, A.; Mason, R. P.; Thorpe, P. E.; Rösch, F.

    2006-12-01

    Radioarsenic labelled radiopharmaceuticals could be a valuable asset to positron emission tomography. In particular, the long half-lives of 72As ( T=26 h) and 74As ( T=17.8 d) allow to investigate slow physiological or metabolical processes, like the enrichment and distribution of monoclonal antibodies (mab) in tumour tissue. In this work, a new method for the labelling of proteins with various radioactive arsenic isotopes was developed. For this purpose, two proteins, namely a chimeric IgG 3 monoclonal antibody, ch3G4, directed against anionic phospholipids, and Rituxan (Rituximab), were labelled as a proof of principle with no-carrier-added radioarsenic isotopes ( 74As and 77As). The developed labelling chemistry gives high yields (>99.9%), is reliable and could easily be transferred to automated labelling systems in a clinical environment. At least for the mab used in this work, this route of radioarsenic labelling does not affect the immunoreactivity of the product. The arsenic label stays stable for up to 72 h at the molecular mass of the monoclonal antibody, which is in particular relevant to follow the pharmacology and pharmacokinetics of the labelled mab for several days.

  5. Quality-Focused Management.

    ERIC Educational Resources Information Center

    Needham, Robbie Lee

    1993-01-01

    Presents the quality-focused management (QFM) system and explains the departure QFM makes from established community college management practices. Describes the system's self-directed teams engaged in a continuous improvement process driven by customer demand and long-term commitment to quality and cost control. (13 references.) (MAB)

  6. Purification and concentration of mycobacteriophage D29 using monolithic chromatographic columns.

    PubMed

    Liu, Keyang; Wen, Zhanbo; Li, Na; Yang, Wenhui; Hu, Lingfei; Wang, Jie; Yin, Zhe; Dong, Xiaokai; Li, Jinsong

    2012-12-01

    Bacteriophages are used widely in many fields, and phages with high purity and infectivity are required. Convective interaction media (CIM) methacrylate monoliths were used for the purification of mycobacteriophage D29. The lytic phages D29 from bacterial lysate were purified primarily by polyethylene glycol 8000 or ammonium sulphate, and then the resulting phages were passed through the CIM monolithic columns for further purification. After the whole purification process, more than 99% of the total proteins were removed irrespective which primary purification method was used. The total recovery rates of viable phages were around 10-30%. Comparable results were obtained when the purification method was scaled-up from a 0.34 mL CIM DEAE (diethylamine) monolithic disk to an 8 mL CIM DEAE monolithic column. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Purification of polymorphic components of complex genomes

    DOEpatents

    Stodolsky, Marvin

    1991-01-01

    A method is disclosed for processing related subject and reference macromolecule populations composed of complementary strands into their respective subject and reference populations of representative fragments and effectuating purification of unique polymorphic subject fragments.

  8. Purification of polymorphic components of complex genomes

    DOEpatents

    Stodolsky, M.

    1988-01-21

    A method for processing related subject and reference macromolecule composed of complementary strand into their respective subject and reference populations of representative fragments and effectuating purification of unique polymorphic subject fragments. 1 fig.

  9. Therapeutic monoclonal antibodies for multiple myeloma: an update and future perspectives

    PubMed Central

    Yang, Jing; Yi, Qing

    2011-01-01

    Multiple myeloma (MM) still remains incurable in most of the patients. Despite of treatments with high-dose chemotherapy, stem cell transplantation and other novel therapies, most patients will become refractory to the therapies and relapse. Thus, it is urgent to develop new approaches for MM treatment. Currently, antibody-targeted therapy has been extensively utilized in hematological malignancies, including MM. Several novel monoclonal antibodies (mAbs) against MM have been generated and developed over the past several years. These mAbs aim to target not only tumor cells alone but also tumor microenvironment, including interaction of tumor-bone marrow stromal cells and the components of bone marrow milieu, such as cytokines or chemokines that support myeloma cell growth and survival. These include mAbs specific for CD38, CS1, CD40, CD74, CD70, HM1.24, interleukin-6 and β2-microglobulin (β2M). We have shown that anti-β2M mAbs may be a potential antitumor agent for MM therapy due to their remarkable efficacy to induce myeloma cell apoptosis in tumor cell lines and primary myeloma cells from patients in vitro and in established myeloma mouse models. In this article, we will review advances in the development and mechanisms of MM-targeted mAbs and especially, anti-β2M mAbs. We will also discuss the potential application of the mAbs as therapeutic agents to treat MM. PMID:22065141

  10. Gastric intestinal metaplasia as detected by a monoclonal antibody is highly associated with gastric adenocarcinoma

    PubMed Central

    Mirza, Z K; Das, K K; Slate, J; Mapitigama, R N; Amenta, P S; Griffel, L H; Ramsundar, L; Watari, J; Yokota, K; Tanabe, H; Sato, T; Kohgo, Y; Das, K M

    2003-01-01

    Background: Some forms of gastric intestinal metaplasia (GIM) may be precancerous but the cellular phenotype that predisposes to gastric carcinogenesis is not well characterised. Mucin staining, as a means of differentiating GIM, is difficult. A monoclonal antibody, mAb Das-1 (initially called 7E12H12), whose staining is phenotypically specific to colon epithelium, was used to investigate this issue. Methods: Using mAb Das-1, by a sensitive immunoperoxidase assay, we examined histologically confirmed GIM specimens from two countries, the USA and Japan. A total of 150 patients comprised three groups: group A, GIM (fields away from the cancer area) from patients with gastric carcinoma (n=60); group B, GIM with chronic gastritis (without gastric carcinoma) (n=72); and group C, chronic gastritis without GIM (n=18). Results: Fifty six of 60 (93%) patients with GIM (both goblet and non-goblet metaplastic cells) from group A reacted intensely with mAb Das-1. Cancer areas from the same 56 patients also reacted. In contrast, 25/72 (35%) samples of GIM from patients in group B reacted with mAb Das-1 (group A v B, p<0.0001). None of the samples from group C reacted with the mAb. Conclusions: Reactivity of mAb Das-1 is clinically useful to simplify and differentiate the phenotypes of GIM. The colonic phenotype of GIM, as identified by mAb Das-1, is strongly associated with gastric carcinoma. PMID:12740335

  11. Gastric intestinal metaplasia as detected by a monoclonal antibody is highly associated with gastric adenocarcinoma.

    PubMed

    Mirza, Z K; Das, K K; Slate, J; Mapitigama, R N; Amenta, P S; Griffel, L H; Ramsundar, L; Watari, J; Yokota, K; Tanabe, H; Sato, T; Kohgo, Y; Das, K M

    2003-06-01

    Some forms of gastric intestinal metaplasia (GIM) may be precancerous but the cellular phenotype that predisposes to gastric carcinogenesis is not well characterised. Mucin staining, as a means of differentiating GIM, is difficult. A monoclonal antibody, mAb Das-1 (initially called 7E(12)H(12)), whose staining is phenotypically specific to colon epithelium, was used to investigate this issue. Using mAb Das-1, by a sensitive immunoperoxidase assay, we examined histologically confirmed GIM specimens from two countries, the USA and Japan. A total of 150 patients comprised three groups: group A, GIM (fields away from the cancer area) from patients with gastric carcinoma (n=60); group B, GIM with chronic gastritis (without gastric carcinoma) (n=72); and group C, chronic gastritis without GIM (n=18). Fifty six of 60 (93%) patients with GIM (both goblet and non-goblet metaplastic cells) from group A reacted intensely with mAb Das-1. Cancer areas from the same 56 patients also reacted. In contrast, 25/72 (35%) samples of GIM from patients in group B reacted with mAb Das-1 (group A v B, p<0.0001). None of the samples from group C reacted with the mAb. Reactivity of mAb Das-1 is clinically useful to simplify and differentiate the phenotypes of GIM. The colonic phenotype of GIM, as identified by mAb Das-1, is strongly associated with gastric carcinoma.

  12. Therapeutic potential of an anti-high mobility group box-1 monoclonal antibody in epilepsy.

    PubMed

    Zhao, Junli; Wang, Yi; Xu, Cenglin; Liu, Keyue; Wang, Ying; Chen, Liying; Wu, Xiaohua; Gao, Feng; Guo, Yi; Zhu, Junming; Wang, Shuang; Nishibori, Masahiro; Chen, Zhong

    2017-08-01

    Brain inflammation is a major factor in epilepsy, and the high mobility group box-1 (HMGB1) protein is known to contribute significantly to the generation of seizures. Here, we investigated the therapeutic potential of an anti-HMGB1 monoclonal antibody (mAb) in epilepsy. anti-HMGB1 mAb attenuated both acute seizure models (maximal electroshock seizure, pentylenetetrazole-induced and kindling-induced), and chronic epilepsy model (kainic acid-induced) in a dose-dependent manner. Meanwhile, the anti-HMGB1 mAb also attenuated seizure activities of human brain slices obtained from surgical resection from drug-resistant epilepsy patients. The mAb showed an anti-seizure effect with a long-term manner and appeared to be minimal side effects at even very high dose (no disrupted physical EEG rhythm and no impaired basic physical functions, such as body growth rate and thermoregulation). This anti-seizure effect of mAb results from its inhibition of translocated HMGB1 from nuclei following seizures, and the anti-seizure effect was absent in toll-like receptor 4 knockout (TLR4 -/- ) mice. Interestingly, the anti-HMGB1 mAb also showed a disease-modifying anti-epileptogenetic effect on epileptogenesis after status epileptics, which is indicated by reducing seizure frequency and improving the impaired cognitive function. These results indicate that the anti-HMGB1 mAb should be viewed as a very promising approach for the development of novel therapies to treat refractory epilepsy. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Generation of Monoclonal Antibodies against Dengue Virus Type 4 and Identification of Enhancing Epitopes on Envelope Protein.

    PubMed

    Tang, Chung-Tao; Liao, Mei-Ying; Chiu, Chien-Yu; Shen, Wen-Fan; Chiu, Chiung-Yi; Cheng, Ping-Chang; Chang, Gwong-Jen J; Wu, Han-Chung

    2015-01-01

    The four serotypes of dengue virus (DENV1-4) pose a serious threat to global health. Cross-reactive and non-neutralizing antibodies enhance viral infection, thereby exacerbating the disease via antibody-dependent enhancement (ADE). Studying the epitopes targeted by these enhancing antibodies would improve the immune responses against DENV infection. In order to investigate the roles of antibodies in the pathogenesis of dengue, we generated a panel of 16 new monoclonal antibodies (mAbs) against DENV4. Using plaque reduction neutralization test (PRNT), we examined the neutralizing activity of these mAbs. Furthermore, we used the in vitro and in vivo ADE assay to evaluate the enhancement of DENV infection by mAbs. The results indicate that the cross-reactive and poorly neutralizing mAbs, DD11-4 and DD18-5, strongly enhance DENV1-4 infection of K562 cells and increase mortality in AG129 mice. The epitope residues of these enhancing mAbs were identified using virus-like particle (VLP) mutants. W212 and E26 are the epitope residues of DD11-4 and DD18-5, respectively. In conclusion, we generated and characterized 16 new mAbs against DENV4. DD11-4 and D18-5 possessed non-neutralizing activities and enhanced viral infection. Moreover, we identified the epitope residues of enhancing mAbs on envelope protein. These results may provide useful information for development of safe dengue vaccine.

  14. Broad-Spectrum Inhibition of HIV-1 by a Monoclonal Antibody Directed against a gp120-Induced Epitope of CD4

    PubMed Central

    Burastero, Samuele E.; Frigerio, Barbara; Lopalco, Lucia; Sironi, Francesca; Breda, Daniela; Longhi, Renato; Scarlatti, Gabriella; Canevari, Silvana; Figini, Mariangela; Lusso, Paolo

    2011-01-01

    To penetrate susceptible cells, HIV-1 sequentially interacts with two highly conserved cellular receptors, CD4 and a chemokine receptor like CCR5 or CXCR4. Monoclonal antibodies (MAbs) directed against such receptors are currently under clinical investigation as potential preventive or therapeutic agents. We immunized Balb/c mice with molecular complexes of the native, trimeric HIV-1 envelope (Env) bound to a soluble form of the human CD4 receptor. Sera from immunized mice were found to contain gp120-CD4 complex-enhanced antibodies and showed broad-spectrum HIV-1-inhibitory activity. A proportion of MAbs derived from these mice preferentially recognized complex-enhanced epitopes. In particular, a CD4-specific MAb designated DB81 (IgG1Κ) was found to preferentially bind to a complex-enhanced epitope on the D2 domain of human CD4. MAb DB81 also recognized chimpanzee CD4, but not baboon or macaque CD4, which exhibit sequence divergence in the D2 domain. Functionally, MAb DB81 displayed broad HIV-1-inhibitory activity, but it did not exert suppressive effects on T-cell activation in vitro. The variable regions of the heavy and light chains of MAb DB81 were sequenced. Due to its broad-spectrum anti-HIV-1 activity and lack of immunosuppressive effects, a humanized derivative of MAb DB81 could provide a useful complement to current preventive or therapeutic strategies against HIV-1. PMID:21818294

  15. Broad-spectrum inhibition of HIV-1 by a monoclonal antibody directed against a gp120-induced epitope of CD4.

    PubMed

    Burastero, Samuele E; Frigerio, Barbara; Lopalco, Lucia; Sironi, Francesca; Breda, Daniela; Longhi, Renato; Scarlatti, Gabriella; Canevari, Silvana; Figini, Mariangela; Lusso, Paolo

    2011-01-01

    To penetrate susceptible cells, HIV-1 sequentially interacts with two highly conserved cellular receptors, CD4 and a chemokine receptor like CCR5 or CXCR4. Monoclonal antibodies (MAbs) directed against such receptors are currently under clinical investigation as potential preventive or therapeutic agents. We immunized Balb/c mice with molecular complexes of the native, trimeric HIV-1 envelope (Env) bound to a soluble form of the human CD4 receptor. Sera from immunized mice were found to contain gp120-CD4 complex-enhanced antibodies and showed broad-spectrum HIV-1-inhibitory activity. A proportion of MAbs derived from these mice preferentially recognized complex-enhanced epitopes. In particular, a CD4-specific MAb designated DB81 (IgG1Κ) was found to preferentially bind to a complex-enhanced epitope on the D2 domain of human CD4. MAb DB81 also recognized chimpanzee CD4, but not baboon or macaque CD4, which exhibit sequence divergence in the D2 domain. Functionally, MAb DB81 displayed broad HIV-1-inhibitory activity, but it did not exert suppressive effects on T-cell activation in vitro. The variable regions of the heavy and light chains of MAb DB81 were sequenced. Due to its broad-spectrum anti-HIV-1 activity and lack of immunosuppressive effects, a humanized derivative of MAb DB81 could provide a useful complement to current preventive or therapeutic strategies against HIV-1.

  16. Identification and grafting of a unique peptide-binding site in the Fab framework of monoclonal antibodies

    DOE PAGES

    Donaldson, Joshua M.; Zer, Cindy; Avery, Kendra N.; ...

    2013-10-07

    Capitalizing on their extraordinary specificity, monoclonal antibodies (mAbs) have become one of the most reengineered classes of biological molecules. A major goal in many of these engineering efforts is to add new functionality to the parental mAb, including the addition of cytotoxins and imaging agents for medical applications. Herein, we present a unique peptide-binding site within the central cavity of the fragment antigen binding framework region of the chimeric, anti-epidermal growth factor receptor mAb cetuximab. We demonstrate through diffraction methods, biophysical studies, and sequence analysis that this peptide, a meditope, has moderate affinity for the Fab, is specific to cetuximabmore » (i.e., does not bind to human IgGs), and has no significant effect on antigen binding. We further demonstrate by diffraction studies and biophysical methods that the meditope binding site can be grafted onto the anti-human epidermal growth factor receptor 2 mAb trastuzumab, and that the antigen binding affinity of the grafted trastuzumab is indistinguishable from the parental mAb. Lastly, we demonstrate a bivalent meditope variant binds specifically and stably to antigen-bearing cells only in the presence of the meditope-enabled mAbs. Collectively, this finding and the subsequent characterization and engineering efforts indicate that this unique interface could serve as a noncovalent “linker” for any meditope-enabled mAb with applications in multiple mAb-based technologies including diagnostics, imaging, and therapeutic delivery.« less

  17. Anti-leukemic activity and tolerability of anti-human CD47 monoclonal antibodies

    PubMed Central

    Pietsch, E C; Dong, J; Cardoso, R; Zhang, X; Chin, D; Hawkins, R; Dinh, T; Zhou, M; Strake, B; Feng, P-H; Rocca, M; Santos, C Dos; Shan, X; Danet-Desnoyers, G; Shi, F; Kaiser, E; Millar, H J; Fenton, S; Swanson, R; Nemeth, J A; Attar, R M

    2017-01-01

    CD47, a broadly expressed cell surface protein, inhibits cell phagocytosis via interaction with phagocyte-expressed SIRPα. A variety of hematological malignancies demonstrate elevated CD47 expression, suggesting that CD47 may mediate immune escape. We discovered three unique CD47-SIRPα blocking anti-CD47 monoclonal antibodies (mAbs) with low nano-molar affinity to human and cynomolgus monkey CD47, and no hemagglutination and platelet aggregation activity. To characterize the anti-cancer activity elicited by blocking CD47, the mAbs were cloned into effector function silent and competent Fc backbones. Effector function competent mAbs demonstrated potent activity in vitro and in vivo, while effector function silent mAbs demonstrated minimal activity, indicating that blocking CD47 only leads to a therapeutic effect in the presence of Fc effector function. A non-human primate study revealed that the effector function competent mAb IgG1 C47B222-(CHO) decreased red blood cells (RBC), hematocrit and hemoglobin by >40% at 1 mg/kg, whereas the effector function silent mAb IgG2σ C47B222-(CHO) had minimal impact on RBC indices at 1 and 10 mg/kg. Taken together, our findings suggest that targeting CD47 is an attractive therapeutic anti-cancer approach. However, the anti-cancer activity observed with anti-CD47 mAbs is Fc effector dependent as are the side effects observed on RBC indices. PMID:28234345

  18. A targeted complement-dependent strategy to improve the outcome of mAb therapy, and characterization in a murine model of metastatic cancer

    PubMed Central

    Elvington, Michelle; Huang, Yuxiang; Morgan, B. Paul; Qiao, Fei; van Rooijen, Nico; Atkinson, Carl

    2012-01-01

    Complement inhibitors expressed on tumor cells provide an evasion mechanism against mAb therapy and may modulate the development of an acquired antitumor immune response. Here we investigate a strategy to amplify mAb-targeted complement activation on a tumor cell, independent of a requirement to target and block complement inhibitor expression or function, which is difficult to achieve in vivo. We constructed a murine fusion protein, CR2Fc, and demonstrated that the protein targets to C3 activation products deposited on a tumor cell by a specific mAb, and amplifies mAb-dependent complement activation and tumor cell lysis in vitro. In syngeneic models of metastatic lymphoma (EL4) and melanoma (B16), CR2Fc significantly enhanced the outcome of mAb therapy. Subsequent studies using the EL4 model with various genetically modified mice and macrophage-depleted mice revealed that CR2Fc enhanced the therapeutic effect of mAb therapy via both macrophage-dependent FcγR-mediated antibody-dependent cellular cytotoxicity, and by direct complement-mediated lysis. Complement activation products can also modulate adaptive immunity, but we found no evidence that either mAb or CR2Fc treatment had any effect on an antitumor humoral or cellular immune response. CR2Fc represents a potential adjuvant treatment to increase the effectiveness of mAb therapy of cancer. PMID:22442351

  19. Adhesion inhibition of Mycoplasma iowae to chicken lymphoma DT40 cells by monoclonal antibodies reacting with a 65-kD polypeptide.

    PubMed

    Fiorentin, L; Panangala, V S; Zhang, Y; Toivio-Kinnucan, M

    1998-01-01

    Tissue- and cell-specific attachment of mycoplasmas is a key aspect of the host-parasite relationship. In this study, monoclonal antibodies (MAbs) recognizing surface membrane polypeptides with molecular masses of 46 kD (p46) and 65 kD (p65), respectively, were examined in a microtiter cell attachment (agglutination) inhibition assay. MAbs MI3, MI6, and MI12 reacting with p65 polypeptide of Mycoplasma iowae inhibited attachment of the organisms to chicken lymphoma (DT 40) cells. One MAb (MI2) that reacted with p65 in immunoblots did not inhibit cell attachment, possibly because of the intrinsic native conformation of the epitope(s) in intact mycoplasmas as opposed to the linear state (sodium dodecyl sulfate denatured) in immunoblots. More pronounced M. iowae adherence inhibition was demonstrated by polyclonal turkey and mouse anti-M. iowae antisera compared with MAbs. Immunogold labelling followed by electron microscopy allowed us to localize the MAb-recognized epitopes on the membrane surface of M. iowae. On the basis of the cell attachment inhibition of M. iowae by specific MAbs (MI3, MI6, and MI12), we propose that the p65 polypeptide plays a role in cytadherence. The ability of polyclonal antisera to inhibit attachment of M. iowae more efficiently than the MAbs suggests that additional epitopes within p65 and/or other proteins are involved in cell attachment.

  20. Isolation of HIV-1-Neutralizing Mucosal Monoclonal Antibodies from Human Colostrum

    PubMed Central

    Friedman, James; Alam, S. Munir; Shen, Xiaoying; Xia, Shi-Mao; Stewart, Shelley; Anasti, Kara; Pollara, Justin; Fouda, Genevieve G.; Yang, Guang; Kelsoe, Garnett; Ferrari, Guido; Tomaras, Georgia D.; Haynes, Barton F.; Liao, Hua-Xin

    2012-01-01

    Background Generation of potent anti-HIV antibody responses in mucosal compartments is a potential requirement of a transmission-blocking HIV vaccine. HIV-specific, functional antibody responses are present in breast milk, and these mucosal antibody responses may play a role in protection of the majority of HIV-exposed, breastfeeding infants. Therefore, characterization of HIV-specific antibodies produced by B cells in milk could guide the development of vaccines that elicit protective mucosal antibody responses. Methods We isolated B cells from colostrum of an HIV-infected lactating woman with a detectable neutralization response in milk and recombinantly produced and characterized the resulting HIV-1 Envelope (Env)-specific monoclonal antibodies (mAbs). Results The identified HIV-1 Env-specific colostrum mAbs, CH07 and CH08, represent two of the first mucosally-derived anti-HIV antibodies yet to be reported. Colostrum mAb CH07 is a highly-autoreactive, weakly-neutralizing gp140-specific mAb that binds to linear epitopes in the gp120 C5 region and gp41 fusion domain. In contrast, colostrum mAb CH08 is a nonpolyreactive CD4-inducible (CD4i) gp120-specific mAb with moderate breadth of neutralization. Conclusions These novel HIV-neutralizing mAbs isolated from a mucosal compartment provide insight into the ability of mucosal B cell populations to produce functional anti-HIV antibodies that may contribute to protection against virus acquisition at mucosal surfaces. PMID:22624058

  1. Chimeric Antigen Receptor (CAR)-Specific Monoclonal Antibody to Detect CD19-Specific T Cells in Clinical Trials

    PubMed Central

    Jena, Bipulendu; Maiti, Sourindra; Huls, Helen; Singh, Harjeet; Lee, Dean A.; Champlin, Richard E.; Cooper, Laurence J. N.

    2013-01-01

    Clinical trials targeting CD19 on B-cell malignancies are underway with encouraging anti-tumor responses. Most infuse T cells genetically modified to express a chimeric antigen receptor (CAR) with specificity derived from the scFv region of a CD19-specific mouse monoclonal antibody (mAb, clone FMC63). We describe a novel anti-idiotype monoclonal antibody (mAb) to detect CD19-specific CAR+ T cells before and after their adoptive transfer. This mouse mAb was generated by immunizing with a cellular vaccine expressing the antigen-recognition domain of FMC63. The specificity of the mAb (clone no. 136.20.1) was confined to the scFv region of the CAR as validated by inhibiting CAR-dependent lysis of CD19+ tumor targets. This clone can be used to detect CD19-specific CAR+ T cells in peripheral blood mononuclear cells at a sensitivity of 1∶1,000. In clinical settings the mAb is used to inform on the immunophenotype and persistence of administered CD19-specific T cells. Thus, our CD19-specific CAR mAb (clone no. 136.20.1) will be useful to investigators implementing CD19-specific CAR+ T cells to treat B-lineage malignancies. The methodology described to develop a CAR-specific anti-idiotypic mAb could be extended to other gene therapy trials targeting different tumor associated antigens in the context of CAR-based adoptive T-cell therapy. PMID:23469246

  2. Small-scale screening method for low-viscosity antibody solutions using small-angle X-ray scattering.

    PubMed

    Fukuda, Masakazu; Watanabe, Atsushi; Hayasaka, Akira; Muraoka, Masaru; Hori, Yuji; Yamazaki, Tadao; Imaeda, Yoshimi; Koga, Akiko

    2017-03-01

    In this study, we investigated the concentration range in which self-association starts to form in humanized IgG monoclonal antibody (mAb) solutions. Furthermore, on the basis of the results, we developed a practical method of screening for low-viscosity antibody solutions by using small-angle X-ray scattering (SAXS) measurements utilizing small quantities of samples. With lower-viscosity mAb3, self-association was not detected in the range of 1-80mg/mL. With higher-viscosity mAb1, on the other hand, self-association was detected in the range of 10-20mg/mL and was clearly enhanced by a decrease in temperature. The viscosities of mAb solutions at 160, 180, and 200mg/mL at 25°C quantitatively correlated very well with the particle size parameters obtained by SAXS measurements of mAb solutions at 15mg/mL at 5°C. The quantity of mAb sample required for the SAXS measurements was only 0.15mg, which is about one-hundredth of that required for actual viscosity measurements at a high concentration, and such quantities could be available even at an early stage of development. In conclusion, the SAXS analysis method proposed in this study is a valuable tool for the development of concentrated mAb therapeutics with high manufacturability and high usability for subcutaneous injection. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Monoclonal antibodies to snakehead, Channa striata immunoglobulins: detection and quantification of immunoglobulin-positive cells in blood and lymphoid organs.

    PubMed

    Sood, Neeraj; Chaudhary, Dharmendra K; Rathore, Gaurav; Singh, Akhilesh; Lakra, W S

    2011-02-01

    Snakehead Channa striata is an important freshwater food fish in many Southeast Asian countries. Three monoclonal antibodies (C9, C10 and D10) were developed against purified serum immunoglobulins of Channa striata (Cs-Ig) and characterized. C9 and D10 MAbs were specific to heavy chain, while C10 MAb detected only unreduced Cs-Ig in western blotting. In competitive ELISA, C9 and C10 MAbs were specific to C. striata Ig and showed no cross reactivity with serum Ig of other fish species i.e. Channa punctatus, Channa marulius, Clarias batrachus and Labeo rohita. D10 MAb showed reactivity to serum Ig of C. striata and C. marulius. In FACS analysis of gated lymphocytes, the percentage of Ig+ cells detected by C9 MAb was 18.2%, 27.7% and 10.3% in blood, spleen and kidney, respectively (n=3, body weight 500-600 g). However, only a few cells (0.5%) were found to be Ig+ in thymus (n=5). C9 MAb was also successfully employed to demonstrate Ig+ cells in blood smears and formalin fixed sections of spleen and kidney. These findings suggest that the spleen plays an important role in humoral immunity as compared to head kidney. Further, these MAbs can be useful immunological tool in monitoring health status of cultured C. striata. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Identification of Optimal Epitopes for Plasmodium falciparum Rapid Diagnostic Tests That Target Histidine-Rich Proteins 2 and 3

    PubMed Central

    Lee, Nelson; Gatton, Michelle L.; Pelecanos, Anita; Bubb, Martin; Gonzalez, Iveth; Bell, David; Cheng, Qin

    2012-01-01

    Rapid diagnostic tests (RDTs) represent important tools to diagnose malaria infection. To improve understanding of the variable performance of RDTs that detect the major target in Plasmodium falciparum, namely, histidine-rich protein 2 (HRP2), and to inform the design of better tests, we undertook detailed mapping of the epitopes recognized by eight HRP-specific monoclonal antibodies (MAbs). To investigate the geographic skewing of this polymorphic protein, we analyzed the distribution of these epitopes in parasites from geographically diverse areas. To identify an ideal amino acid motif for a MAb to target in HRP2 and in the related protein HRP3, we used a purpose-designed script to perform bioinformatic analysis of 448 distinct gene sequences from pfhrp2 and from 99 sequences from the closely related gene pfhrp3. The frequency and distribution of these motifs were also compared to the MAb epitopes. Heat stability testing of MAbs immobilized on nitrocellulose membranes was also performed. Results of these experiments enabled the identification of MAbs with the most desirable characteristics for inclusion in RDTs, including copy number and coverage of target epitopes, geographic skewing, heat stability, and match with the most abundant amino acid motifs identified. This study therefore informs the selection of MAbs to include in malaria RDTs as well as in the generation of improved MAbs that should improve the performance of HRP-detecting malaria RDTs. PMID:22259210

  5. Design and scaleup of downstream processing of monoclonal antibodies for cancer therapy: from research to clinical proof of principle.

    PubMed

    Horenstein, Alberto L; Crivellin, Federico; Funaro, Ada; Said, Marcela; Malavasi, Fabio

    2003-04-01

    Murine monoclonal antibodies (mAb) from cell culture supernatants have been purified in order to acquire clinical grade for in vivo cancer treatment. The starting material was purified by high performance liquid chromatography (HPLC) systems ranging from the analytical scale process to a scaleup to 1 g per batch. Three columns (Protein A affinity chromatography with single-step elution, hydroxyapatite (HA) chromatography followed by linear gradient elution and endotoxin removing-gel chromatography), exploiting different properties of the mAb were applied. The final batches of antibody were subjected to a large panel of tests for the purpose of evaluating the efficacy of the downstream processing. The resulting data have allowed us to determine the maximum number of times the column can be used and to precisely and thoroughly characterize antibody integrity, specificity, and potency according to in-house reference standards. The optimized bioprocessing is rapid, efficient, and reproducible. Not less importantly, all the techniques applied are characterized by costs which are affordable to medium-sized laboratories. They represent the basis for implementing immunotherapeutic protocols transferable to clinical medicine.

  6. Exposure of Epitope Residues on the Outer Face of the Chikungunya Virus Envelope Trimer Determines Antibody Neutralizing Efficacy

    PubMed Central

    Fong, Rachel H.; Banik, Soma S. R.; Mattia, Kimberly; Barnes, Trevor; Tucker, David; Liss, Nathan; Lu, Kai; Selvarajah, Suganya; Srinivasan, Surabhi; Mabila, Manu; Miller, Adam; Muench, Marcus O.; Michault, Alain; Rucker, Joseph B.; Paes, Cheryl; Simmons, Graham; Kahle, Kristen M.

    2014-01-01

    ABSTRACT Chikungunya virus (CHIKV) is a reemerging alphavirus that causes a debilitating arthritic disease and infects millions of people and for which no specific treatment is available. Like many alphaviruses, the structural targets on CHIKV that elicit a protective humoral immune response in humans are poorly defined. Here we used phage display against virus-like particles (VLPs) to isolate seven human monoclonal antibodies (MAbs) against the CHIKV envelope glycoproteins E2 and E1. One MAb, IM-CKV063, was highly neutralizing (50% inhibitory concentration, 7.4 ng/ml), demonstrated high-affinity binding (320 pM), and was capable of therapeutic and prophylactic protection in multiple animal models up to 24 h postexposure. Epitope mapping using a comprehensive shotgun mutagenesis library of 910 mutants with E2/E1 alanine mutations demonstrated that IM-CKV063 binds to an intersubunit conformational epitope on domain A, a functionally important region of E2. MAbs against the highly conserved fusion loop have not previously been reported but were also isolated in our studies. Fusion loop MAbs were broadly cross-reactive against diverse alphaviruses but were nonneutralizing. Fusion loop MAb reactivity was affected by temperature and reactivity conditions, suggesting that the fusion loop is hidden in infectious virions. Visualization of the binding sites of 15 different MAbs on the structure of E2/E1 revealed that all epitopes are located at the membrane-distal region of the E2/E1 spike. Interestingly, epitopes on the exposed topmost and outer surfaces of the E2/E1 trimer structure were neutralizing, whereas epitopes facing the interior of the trimer were not, providing a rationale for vaccine design and therapeutic MAb development using the intact CHIKV E2/E1 trimer. IMPORTANCE CHIKV is the most important alphavirus affecting humans, resulting in a chronic arthritic condition that can persist for months or years. In recent years, millions of people have been infected globally, and the spread of CHIKV to the Americas is now beginning, with over 100,000 cases occurring in the Caribbean within 6 months of its arrival. Our study reports on seven human MAbs against the CHIKV envelope, including a highly protective MAb and rarely isolated fusion loop MAbs. Epitope mapping of these MAbs demonstrates how some E2/E1 epitopes are exposed or hidden from the human immune system and suggests a structural mechanism by which these MAbs protect (or fail to protect) against CHIKV infection. Our results suggest that the membrane-distal end of CHIKV E2/E1 is the primary target for the humoral immune response to CHIKV, and antibodies targeting the exposed topmost and outer surfaces of the E2/E1 trimer determine the neutralizing efficacy of this response. PMID:25275138

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, R.; Tao, L.; Scarlata, C.

    This report describes one potential conversion process to hydrocarbon products by way of catalytic conversion of lignocellulosic-derived hydrolysate. This model leverages expertise established over time in biomass deconstruction and process integration research at NREL, while adding in new technology areas for sugar purification and catalysis. The overarching process design converts biomass to die die diesel- and naphtha-range fuels using dilute-acid pretreatment, enzymatic saccharification, purifications, and catalytic conversion focused on deoxygenating and oligomerizing biomass hydrolysates.

  8. Heparin-binding peptide as a novel affinity tag for purification of recombinant proteins.

    PubMed

    Morris, Jacqueline; Jayanthi, Srinivas; Langston, Rebekah; Daily, Anna; Kight, Alicia; McNabb, David S; Henry, Ralph; Kumar, Thallapuranam Krishnaswamy Suresh

    2016-10-01

    Purification of recombinant proteins constitutes a significant part of the downstream processing in biopharmaceutical industries. Major costs involved in the production of bio-therapeutics mainly depend on the number of purification steps used during the downstream process. Affinity chromatography is a widely used method for the purification of recombinant proteins expressed in different expression host platforms. Recombinant protein purification is achieved by fusing appropriate affinity tags to either N- or C- terminus of the target recombinant proteins. Currently available protein/peptide affinity tags have proved quite useful in the purification of recombinant proteins. However, these affinity tags suffer from specific limitations in their use under different conditions of purification. In this study, we have designed a novel 34-amino acid heparin-binding affinity tag (HB-tag) for the purification of recombinant proteins expressed in Escherichia coli (E. coli) cells. HB-tag fused recombinant proteins were overexpressed in E. coli in high yields. A one-step heparin-Sepharose-based affinity chromatography protocol was developed to purify HB-fused recombinant proteins to homogeneity using a simple sodium chloride step gradient elution. The HB-tag has also been shown to facilitate the purification of target recombinant proteins from their 8 M urea denatured state(s). The HB-tag has been demonstrated to be successfully released from the fusion protein by an appropriate protease treatment to obtain the recombinant target protein(s) in high yields. Results of the two-dimensional NMR spectroscopy experiments indicate that the purified recombinant target protein(s) exist in the native conformation. Polyclonal antibodies raised against the HB-peptide sequence, exhibited high binding specificity and sensitivity to the HB-fused recombinant proteins (∼10 ng) in different crude cell extracts obtained from diverse expression hosts. In our opinion, the HB-tag provides a cost-effective, rapid, and reliable avenue for the purification of recombinant proteins in heterologous hosts. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Optimization of Primary Drying in Lyophilization during Early Phase Drug Development using a Definitive Screening Design with Formulation and Process Factors.

    PubMed

    Goldman, Johnathan M; More, Haresh T; Yee, Olga; Borgeson, Elizabeth; Remy, Brenda; Rowe, Jasmine; Sadineni, Vikram

    2018-06-08

    Development of optimal drug product lyophilization cycles is typically accomplished via multiple engineering runs to determine appropriate process parameters. These runs require significant time and product investments, which are especially costly during early phase development when the drug product formulation and lyophilization process are often defined simultaneously. Even small changes in the formulation may require a new set of engineering runs to define lyophilization process parameters. In order to overcome these development difficulties, an eight factor definitive screening design (DSD), including both formulation and process parameters, was executed on a fully human monoclonal antibody (mAb) drug product. The DSD enables evaluation of several interdependent factors to define critical parameters that affect primary drying time and product temperature. From these parameters, a lyophilization development model is defined where near optimal process parameters can be derived for many different drug product formulations. This concept is demonstrated on a mAb drug product where statistically predicted cycle responses agree well with those measured experimentally. This design of experiments (DoE) approach for early phase lyophilization cycle development offers a workflow that significantly decreases the development time of clinically and potentially commercially viable lyophilization cycles for a platform formulation that still has variable range of compositions. Copyright © 2018. Published by Elsevier Inc.

  10. Affinity chromatography: A versatile technique for antibody purification.

    PubMed

    Arora, Sushrut; Saxena, Vikas; Ayyar, B Vijayalakshmi

    2017-03-01

    Antibodies continue to be extremely utilized entities in myriad applications including basic research, imaging, targeted delivery, chromatography, diagnostics, and therapeutics. At production stage, antibodies are generally present in complex matrices and most of their intended applications necessitate purification. Antibody purification has always been a major bottleneck in downstream processing of antibodies, due to the need of high quality products and associated high costs. Over the years, extensive research has focused on finding better purification methodologies to overcome this holdup. Among a plethora of different techniques, affinity chromatography is one of the most selective, rapid and easy method for antibody purification. This review aims to provide a detailed overview on affinity chromatography and the components involved in purification. An array of support matrices along with various classes of affinity ligands detailing their underlying working principles, together with the advantages and limitations of each system in purifying different types of antibodies, accompanying recent developments and important practical methodological considerations to optimize purification procedure are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Ligand-induced Epitope Masking: DISSOCIATION OF INTEGRIN α5β1-FIBRONECTIN COMPLEXES ONLY BY MONOCLONAL ANTIBODIES WITH AN ALLOSTERIC MODE OF ACTION.

    PubMed

    Mould, A Paul; Askari, Janet A; Byron, Adam; Takada, Yoshikazu; Jowitt, Thomas A; Humphries, Martin J

    2016-09-30

    We previously demonstrated that Arg-Gly-Asp (RGD)-containing ligand-mimetic inhibitors of integrins are unable to dissociate pre-formed integrin-fibronectin complexes (IFCs). These observations suggested that amino acid residues involved in integrin-fibronectin binding become obscured in the ligand-occupied state. Because the epitopes of some function-blocking anti-integrin monoclonal antibodies (mAbs) lie near the ligand-binding pocket, it follows that the epitopes of these mAbs may become shielded in the ligand-occupied state. Here, we tested whether function-blocking mAbs directed against α5β1 can interact with the integrin after it forms a complex with an RGD-containing fragment of fibronectin. We showed that the anti-α5 subunit mAbs JBS5, SNAKA52, 16, and P1D6 failed to disrupt IFCs and hence appeared unable to bind to the ligand-occupied state. In contrast, the allosteric anti-β1 subunit mAbs 13, 4B4, and AIIB2 could dissociate IFCs and therefore were able to interact with the ligand-bound state. However, another class of function-blocking anti-β1 mAbs, exemplified by Lia1/2, could not disrupt IFCs. This second class of mAbs was also distinguished from 13, 4B4, and AIIB2 by their ability to induce homotypic cell aggregation. Although the epitope of Lia1/2 was closely overlapping with those of 13, 4B4, and AIIB2, it appeared to lie closer to the ligand-binding pocket. A new model of the α5β1-fibronectin complex supports our hypothesis that the epitopes of mAbs that fail to bind to the ligand-occupied state lie within, or very close to, the integrin-fibronectin interface. Importantly, our findings imply that the efficacy of some therapeutic anti-integrin mAbs could be limited by epitope masking. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Development of a highly-sensitive multi-plex assay using monoclonal antibodies for the simultaneous measurement of kappa and lambda immunoglobulin free light chains in serum and urine.

    PubMed

    Campbell, John P; Cobbold, Mark; Wang, Yanyun; Goodall, Margaret; Bonney, Sarah L; Chamba, Anita; Birtwistle, Jane; Plant, Timothy; Afzal, Zaheer; Jefferis, Roy; Drayson, Mark T

    2013-05-31

    Monoclonal κ and λ immunoglobulin free light chain (FLC) paraproteins in serum and urine are important markers in the diagnosis and monitoring of B cell dyscrasias. Current nephelometric and turbidimetric methods that use sheep polyclonal antisera to quantify serum FLC have a number of well-observed limitations. In this report, we describe an improved method using specific mouse anti-human FLC monoclonal antibodies (mAbs). Anti-κ and anti-λ FLC mAbs were, separately, covalently coupled to polystyrene Xmap® beads and assayed, simultaneously, in a multi-plex format by Luminex® (mAb assay). The mAbs displayed no cross-reactivity to bound LC, the alternate LC type, or other human proteins and had improved sensitivity and specificity over immunofixation electrophoresis (IFE) and Freelite™. The assay gives good linearity and sensitivity (<1 mg/L), and the competitive inhibition format gave a broad calibration curve up to 437.5 mg/L and prevented anomalous results for samples in antigen excess i.e. high FLC levels. The mAbs displayed good concordance with Freelite™ for the quantitation of normal polyclonal FLC in plasma from healthy donors (n=249). The mAb assay identified all monoclonal FLC in serum from consecutive patient samples (n=1000; 50.1% with monoclonal paraprotein by serum IFE), and all FLC in a large cohort of urine samples tested for Bence Jones proteins (n=13090; 22.8% with monoclonal κ, 9.0% with monoclonal λ, and 0.8% with poly LC detected by urine IFE). Importantly this shows that the mAbs are at least close to the ideal of detecting FLC from all patients and neoplastic plasma cell clones. Given the overall effectiveness of the anti-FLC mAbs, further clinical validation is now warranted on serial samples from a range of patients with B cell disorders. Use of these mAbs on other assay platforms should also be investigated. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. A humanized antibody for imaging immune checkpoint ligand PD-L1 expression in tumors

    PubMed Central

    Gabrielson, Matthew; Lisok, Ala; Wharram, Bryan; Sysa-Shah, Polina; Azad, Babak Behnam; Pomper, Martin G.; Nimmagadda, Sridhar

    2016-01-01

    Antibodies targeting the PD-1/PD-L1 immune checkpoint lead to tumor regression and improved survival in several cancers. PD-L1 expression in tumors may be predictive of response to checkpoint blockade therapy. Because tissue samples might not always be available to guide therapy, we developed and evaluated a humanized antibody for non-invasive imaging of PD-L1 expression in tumors. Radiolabeled [111In]PD-L1-mAb and near-infrared dye conjugated NIR-PD-L1-mAb imaging agents were developed using the mouse and human cross-reactive PD-L1 antibody MPDL3280A. We tested specificity of [111In]PD-L1-mAb and NIR-PD-L1-mAb in cell lines and in tumors with varying levels of PD-L1 expression. We performed SPECT/CT imaging, biodistribution and blocking studies in NSG mice bearing tumors with constitutive PD-L1 expression (CHO-PDL1) and in controls (CHO). Results were confirmed in triple negative breast cancer (TNBC) (MDAMB231 and SUM149) and non-small cell lung cancer (NSCLC) (H2444 and H1155) xenografts with varying levels of PD-L1 expression. There was specific binding of [111In]PD-L1-mAb and NIR-PD-L1-mAb to tumor cells in vitro, correlating with PD-L1 expression levels. In mice bearing subcutaneous and orthotopic tumors, there was specific and persistent high accumulation of signal intensity in PD-L1 positive tumors (CHO-PDL1, MDAMB231, H2444) but not in controls. These results demonstrate that [111In]PD-L1-mAb and NIR-PD-L1-mAb can detect graded levels of PD-L1 expression in human tumor xenografts in vivo. As a humanized antibody, these findings suggest clinical translation of radiolabeled versions of MPDL3280A for imaging. Specificity of NIR-PD-L1-mAb indicates the potential for optical imaging of PD-L1 expression in tumors in relevant pre-clinical as well as clinical settings. PMID:26848870

  14. Purification of polymorphic components of complex genomes

    DOEpatents

    Stodolsky, M.

    1991-07-16

    A method is disclosed for processing related subject and reference macromolecule populations composed of complementary strands into their respective subject and reference populations of representative fragments and effectuating purification of unique polymorphic subject fragments. 1 figure.

  15. Distinct Mechanisms Regulate Exposure of Neutralizing Epitopes in the V2 and V3 Loops of HIV-1 Envelope

    PubMed Central

    Upadhyay, Chitra; Mayr, Luzia M.; Zhang, Jing; Kumar, Rajnish; Gorny, Miroslaw K.; Nádas, Arthur; Zolla-Pazner, Susan

    2014-01-01

    ABSTRACT Broadly neutralizing antibodies targeting the HIV-1 envelope (Env) are key components for protection against HIV-1. However, many cross-reactive epitopes are often occluded. This study investigates the mechanisms contributing to the masking of V2i (variable loop V2 integrin) epitopes compared to the accessibility of V3 epitopes. V2i are conformation-dependent epitopes encompassing the integrin α4β7-binding motif on the V1V2 loop of HIV-1 Env gp120. The V2i monoclonal antibodies (MAbs) display extensive cross-reactivity with gp120 monomers from many subtypes but neutralize only few viruses, indicating V2i's cryptic nature. First, we asked whether CD4-induced Env conformational changes affect V2i epitopes similarly to V3. CD4 treatment of BaL and JRFL pseudoviruses increased their neutralization sensitivity to V3 MAbs but not to the V2i MAbs. Second, the contribution of N-glycans in masking V2i versus V3 epitopes was evaluated by testing the neutralization of pseudoviruses produced in the presence of a glycosidase inhibitor, kifunensine. Viruses grown in kifunensine were more sensitive to neutralization by V3 but not V2i MAbs. Finally, we evaluated the time-dependent dynamics of the V2i and V3 epitopes. Extending the time of virus-MAb interaction to 18 h before adding target cells increased virus neutralization by some V2i MAbs and all V3 MAbs tested. Consistent with this, V2i MAb binding to Env on the surface of transfected cells also increased in a time-dependent manner. Hence, V2i and V3 epitopes are highly dynamic, but distinct factors modulate the antibody accessibility of these epitopes. The study reveals the importance of the structural dynamics of V2i and V3 epitopes in determining HIV-1 neutralization by antibodies targeting these sites. IMPORTANCE Conserved neutralizing epitopes are present in the V1V2 and V3 regions of HIV-1 Env, but these epitopes are often occluded from Abs. This study reveals that distinct mechanisms contribute to the masking of V3 epitopes and V2i epitopes in the V1V2 domain. Importantly, V3 MAbs and some V2i MAbs display greater neutralization against relatively resistant HIV-1 isolates when the MAbs interact with the virus for a prolonged period of time. Given their highly immunogenic nature, V3 and V2i epitopes are valuable targets that would augment the efficacy of HIV vaccines. PMID:25165106

  16. Advanced purification of petroleum refinery wastewater by catalytic vacuum distillation.

    PubMed

    Yan, Long; Ma, Hongzhu; Wang, Bo; Mao, Wei; Chen, Yashao

    2010-06-15

    In our work, a new process, catalytic vacuum distillation (CVD) was utilized for purification of petroleum refinery wastewater that was characteristic of high chemical oxygen demand (COD) and salinity. Moreover, various common promoters, like FeCl(3), kaolin, H(2)SO(4) and NaOH were investigated to improve the purification efficiency of CVD. Here, the purification efficiency was estimated by COD testing, electrolytic conductivity, UV-vis spectrum, gas chromatography-mass spectrometry (GC-MS) and pH value. The results showed that NaOH promoted CVD displayed higher efficiency in purification of refinery wastewater than other systems, where the pellucid effluents with low salinity and high COD removal efficiency (99%) were obtained after treatment, and the corresponding pH values of effluents varied from 7 to 9. Furthermore, environment estimation was also tested and the results showed that the effluent had no influence on plant growth. Thus, based on satisfied removal efficiency of COD and salinity achieved simultaneously, NaOH promoted CVD process is an effective approach to purify petroleum refinery wastewater. Copyright 2010 Elsevier B.V. All rights reserved.

  17. Expression of deleted, atoxic atypical recombinant beta2 toxin in a baculovirus system and production of polyclonal and monoclonal antibodies.

    PubMed

    Serroni, Anna; Magistrali, Chiara Francesca; Pezzotti, Giovanni; Bano, Luca; Pellegrini, Martina; Severi, Giulio; Di Pancrazio, Chiara; Luciani, Mirella; Tittarelli, Manuela; Tofani, Silvia; De Giuseppe, Antonio

    2017-05-25

    Clostridium perfringens is an important animal and human pathogen that can produce more than 16 different major and minor toxins. The beta-2 minor toxin (CPB2), comprising atypical and consensus variants, appears to be involved in both human and animal enterotoxaemia syndrome. The exact role of CPB2 in pathogenesis is poorly investigated, and its mechanism of action at the molecular level is still unknown because of the lack of specific reagents such as monoclonal antibodies against the CPB2 protein and/or the availability of a highly purified antigen. Previous studies have reported that purified wild-type or recombinant CPB2 toxin, expressed in a heterologous system, presented cytotoxic effects on human intestinal cell lines. Undoubtedly, for this reason, to date, these purified proteins have not yet been used for the production of monoclonal antibodies (MAbs). Recently, monoclonal antibodies against CPB2 were generated using peptides designed on predicted antigenic epitopes of this toxin. In this paper we report, for the first time, the expression in a baculovirus system of a deleted recombinant C-terminal 6xHis-tagged atypical CPB2 toxin (rCPB2 Δ1-25 -His 6 ) lacking the 25 amino acids (aa) of the N-terminal putative signal sequence. A high level of purified recombinant rCPB2 Δ1-25 -His 6 was obtained after purification by Ni 2+ affinity chromatography. The purified product showed no in vitro and in vivo toxicity. Polyclonal antibodies and twenty hybridoma-secreting Mabs were generated using purified rCPB2 Δ1-25 -His 6 . Finally, the reactivity and specificity of the new antibodies were tested against both recombinant and wild-type CPB2 toxins. The high-throughput of purified atoxic recombinant CPB2 produced in insect cells, allowed to obtain monoclonal and polyclonal antibodies. The availability of these molecules could contribute to develop immunoenzymatic methods and/or to perform studies about the biological activity of CPB2 toxin.

  18. Magnetic purification of curcumin from Curcuma longa rhizome by novel naked maghemite nanoparticles.

    PubMed

    Magro, Massimiliano; Campos, Rene; Baratella, Davide; Ferreira, Maria Izabela; Bonaiuto, Emanuela; Corraducci, Vittorino; Uliana, Maíra Rodrigues; Lima, Giuseppina Pace Pereira; Santagata, Silvia; Sambo, Paolo; Vianello, Fabio

    2015-01-28

    Naked maghemite nanoparticles, namely, surface active maghemite nanoparticles (SAMNs), characterized by a diameter of about 10 nm, possessing peculiar colloidal stability, surface chemistry, and superparamagnetism, present fundamental requisites for the development of effective magnetic purification processes for biomolecules in complex matrices. Polyphenolic molecules presenting functionalities with different proclivities toward iron chelation were studied as probes for testing SAMN suitability for magnetic purification. Thus, the binding efficiency and reversibility on SAMNs of phenolic compounds of interest in the pharmaceutical and food industries, namely, catechin, tyrosine, hydroxytyrosine, ferulic acid, coumaric acid, rosmarinic acid, naringenin, curcumin, and cyanidin-3-glucoside, were evaluated. Curcumin emerged as an elective compound, suitable for magnetic purification by SAMNs from complex matrices. A combination of curcumin, demethoxycurcumin, and bis-demethoxycurcumin was recovered by a single magnetic purification step from extracts of Curcuma longa rhizomes, with a purity >98% and a purification yield of 45%, curcumin being >80% of the total purified curcuminoids.

  19. Agonist Met antibodies define the signalling threshold required for a full mitogenic and invasive program of Kaposi's Sarcoma cells.

    PubMed

    Bardelli, Claudio; Sala, Marilena; Cavallazzi, Umberto; Prat, Maria

    2005-09-09

    We previously showed that the Kaposi Sarcoma line KS-IMM express a functional Met tyrosine kinase receptor, which, upon HGF stimulation, activates motogenic, proliferative, and invasive responses. In this study, we investigated the signalling pathways activated by HGF, as well as by Met monoclonal antibodies (Mabs), acting as full or partial agonists. The full agonist Mab mimics HGF in all biological and biochemical aspects. It elicits the whole spectrum of responses, while the partial agonist Mab induces only wound healing. These differences correlated with a more prolonged and sustained tyrosine phosphorylation of the receptor and MAPK evoked by HGF and by the full agonist Mab, relative to the partial agonist Mab. Since Gab1, JNK and PI 3-kinase are activated with same intensity and kinetics by HGF and by the two agonist antibodies, it is concluded that level and duration of MAPK activation by Met receptor are crucial for the induction of a full HGF-dependent mitogenic and invasive program in KS cells.

  20. Mining Naïve Rabbit Antibody Repertoires by Phage Display for Monoclonal Antibodies of Therapeutic Utility.

    PubMed

    Peng, Haiyong; Nerreter, Thomas; Chang, Jing; Qi, Junpeng; Li, Xiuling; Karunadharma, Pabalu; Martinez, Gustavo J; Fallahi, Mohammad; Soden, Jo; Freeth, Jim; Beerli, Roger R; Grawunder, Ulf; Hudecek, Michael; Rader, Christoph

    2017-09-15

    Owing to their high affinities and specificities, rabbit monoclonal antibodies (mAbs) have demonstrated value and potential primarily as basic research and diagnostic reagents, but, in some cases, also as therapeutics. To accelerate access to rabbit mAbs bypassing immunization, we generated a large naïve rabbit antibody repertoire represented by a phage display library encompassing >10 billion independent antibodies in chimeric rabbit/human Fab format and validated it by next-generation sequencing. Panels of rabbit mAbs selected from this library against two emerging cancer targets, ROR1 and ROR2, revealed high diversity, affinity, and specificity. Moreover, ROR1- and ROR2-targeting rabbit mAbs demonstrated therapeutic utility as components of chimeric antigen receptor-engineered T cells, further corroborating the value of the naïve rabbit antibody library as a rich and virtually unlimited source of rabbit mAbs. Copyright © 2017 Elsevier Ltd. All rights reserved.

Top