Can Machine Scoring Deal with Broad and Open Writing Tests as Well as Human Readers?
ERIC Educational Resources Information Center
McCurry, Doug
2010-01-01
This article considers the claim that machine scoring of writing test responses agrees with human readers as much as humans agree with other humans. These claims about the reliability of machine scoring of writing are usually based on specific and constrained writing tasks, and there is reason for asking whether machine scoring of writing requires…
A 34-meter VAWT (Vertical Axis Wind Turbine) point design
NASA Astrophysics Data System (ADS)
Ashwill, T. D.; Berg, D. E.; Dodd, H. M.; Rumsey, M. A.; Sutherland, H. J.; Veers, P. S.
The Wind Energy Division at Sandia National Laboratories recently completed a point design based on the 34-m Vertical Axis Wind Turbine (VAWT) Test Bed. The 34-m Test Bed research machine incorporates several innovations that improve Darrieus technology, including increased energy production, over previous machines. The point design differs minimally from the Test Bed; but by removing research-related items, its estimated cost is substantially reduced. The point design is a first step towards a Test-Bed-based commercial machine that would be competitive with conventional sources of power in the mid-1990s.
Experimental research of kinetic and dynamic characteristics of temperature movements of machines
NASA Astrophysics Data System (ADS)
Parfenov, I. V.; Polyakov, A. N.
2018-03-01
Nowadays, the urgency of informational support of machines at different stages of their life cycle is increasing in the form of various experimental characteristics that determine the criteria for working capacity. The effectiveness of forming the base of experimental characteristics of machines is related directly to the duration of their field tests. In this research, the authors consider a new technique that allows reducing the duration of full-scale testing of machines by 30%. To this end, three new indicator coefficients were calculated in real time to determine the moments corresponding to the characteristic points. In the work, new terms for thermal characteristics of machine tools are introduced: kinetic and dynamic characteristics of the temperature movements of the machine. This allow taking into account not only the experimental values for the temperature displacements of the elements of the carrier system of the machine, but also their derivatives up to the third order, inclusively. The work is based on experimental data obtained in the course of full-scale thermal tests of a drilling-milling and boring CNC machine.
Bagheri, Hossein; Hooshmand, Tabassom; Aghajani, Farzaneh
2015-09-01
This study aimed to evaluate the effect of different ceramic surface treatments after machining grinding on the biaxial flexural strength (BFS) of machinable dental ceramics with different crystalline phases. Disk-shape specimens (10mm in diameter and 1.3mm in thickness) of machinable ceramic cores (two silica-based and one zirconia-based ceramics) were prepared. Each type of the ceramic surfaces was then randomly treated (n=15) with different treatments as follows: 1) machined finish as control, 2) machined finish and sandblasting with alumina, and 3) machined finish and hydrofluoric acid etching for the leucite and lithium disilicate-based ceramics, and for the zirconia; 1) machined finish and post-sintered as control, 2) machined finish, post-sintered, and sandblasting, and 3) machined finish, post-sintered, and Nd;YAG laser irradiation. The BFS were measured in a universal testing machine. Data based were analyzed by ANOVA and Tukey's multiple comparisons post-hoc test (α=0.05). The mean BFS of machined finish only surfaces for leucite ceramic was significantly higher than that of sandblasted (P=0.001) and acid etched surfaces (P=0.005). A significantly lower BFS was found after sandblasting for lithium disilicate compared with that of other groups (P<0.05). Sandblasting significantly increased the BFS for the zirconia (P<0.05), but the BFS was significantly decreased after laser irradiation (P<0.05). The BFS of the machinable ceramics was affected by the type of ceramic material and surface treatment method. Sandblasting with alumina was detrimental to the strength of only silica-based ceramics. Nd:YAG laser irradiation may lead to substantial strength degradation of zirconia.
Bagheri, Hossein; Aghajani, Farzaneh
2015-01-01
Objectives: This study aimed to evaluate the effect of different ceramic surface treatments after machining grinding on the biaxial flexural strength (BFS) of machinable dental ceramics with different crystalline phases. Materials and Methods: Disk-shape specimens (10mm in diameter and 1.3mm in thickness) of machinable ceramic cores (two silica-based and one zirconia-based ceramics) were prepared. Each type of the ceramic surfaces was then randomly treated (n=15) with different treatments as follows: 1) machined finish as control, 2) machined finish and sandblasting with alumina, and 3) machined finish and hydrofluoric acid etching for the leucite and lithium disilicate-based ceramics, and for the zirconia; 1) machined finish and post-sintered as control, 2) machined finish, post-sintered, and sandblasting, and 3) machined finish, post-sintered, and Nd;YAG laser irradiation. The BFS were measured in a universal testing machine. Data based were analyzed by ANOVA and Tukey’s multiple comparisons post-hoc test (α=0.05). Results: The mean BFS of machined finish only surfaces for leucite ceramic was significantly higher than that of sandblasted (P=0.001) and acid etched surfaces (P=0.005). A significantly lower BFS was found after sandblasting for lithium disilicate compared with that of other groups (P<0.05). Sandblasting significantly increased the BFS for the zirconia (P<0.05), but the BFS was significantly decreased after laser irradiation (P<0.05). Conclusions: The BFS of the machinable ceramics was affected by the type of ceramic material and surface treatment method. Sandblasting with alumina was detrimental to the strength of only silica-based ceramics. Nd:YAG laser irradiation may lead to substantial strength degradation of zirconia. PMID:27148372
NASA Astrophysics Data System (ADS)
Marulcu, Ismail; Barnett, Michael
2016-01-01
Background: Elementary Science Education is struggling with multiple challenges. National and State test results confirm the need for deeper understanding in elementary science education. Moreover, national policy statements and researchers call for increased exposure to engineering and technology in elementary science education. The basic motivation of this study is to suggest a solution to both improving elementary science education and increasing exposure to engineering and technology in it. Purpose/Hypothesis: This mixed-method study examined the impact of an engineering design-based curriculum compared to an inquiry-based curriculum on fifth graders' content learning of simple machines. We hypothesize that the LEGO-engineering design unit is as successful as the inquiry-based unit in terms of students' science content learning of simple machines. Design/Method: We used a mixed-methods approach to investigate our research questions; we compared the control and the experimental groups' scores from the tests and interviews by using Analysis of Covariance (ANCOVA) and compared each group's pre- and post-scores by using paired t-tests. Results: Our findings from the paired t-tests show that both the experimental and comparison groups significantly improved their scores from the pre-test to post-test on the multiple-choice, open-ended, and interview items. Moreover, ANCOVA results show that students in the experimental group, who learned simple machines with the design-based unit, performed significantly better on the interview questions. Conclusions: Our analyses revealed that the design-based Design a people mover: Simple machines unit was, if not better, as successful as the inquiry-based FOSS Levers and pulleys unit in terms of students' science content learning.
Development of a low energy micro sheet forming machine
NASA Astrophysics Data System (ADS)
Razali, A. R.; Ann, C. T.; Shariff, H. M.; Kasim, N. I.; Musa, M. A.; Ahmad, A. F.
2017-10-01
It is expected that with the miniaturization of materials being processed, energy consumption is also being `miniaturized' proportionally. The focus of this study was to design a low energy micro-sheet-forming machine for thin sheet metal application and fabricate a low direct current powered micro-sheet-forming machine. A prototype of low energy system for a micro-sheet-forming machine which includes mechanical and electronic elements was developed. The machine was tested for its performance in terms of natural frequency, punching forces, punching speed and capability, energy consumption (single punch and frequency-time based). Based on the experiments, the machine can do 600 stroke per minute and the process is unaffected by the machine's natural frequency. It was also found that sub-Joule of power was required for a single stroke of punching/blanking process. Up to 100micron thick carbon steel shim was successfully tested and punched. It concludes that low power forming machine is feasible to be developed and be used to replace high powered machineries to form micro-products/parts.
Requirements-Based Conformance Testing of ARINC 653 Real-Time Operating Systems
NASA Astrophysics Data System (ADS)
Maksimov, Andrey
2010-08-01
Requirements-based testing is emphasized in avionics certification documents because this strategy has been found to be the most effective at revealing errors. This paper describes the unified requirements-based approach to the creation of conformance test suites for mission-critical systems. The approach uses formal machine-readable specifications of requirements and finite state machine model for test sequences generation on-the-fly. The paper also presents the test system for automated test generation for ARINC 653 services built on this approach. Possible application of the presented approach to various areas of avionics embedded systems testing is discussed.
Numerical Simulation of Earth Pressure on Head Chamber of Shield Machine with FEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Shouju; Kang Chengang; Sun, Wei
2010-05-21
Model parameters of conditioned soils in head chamber of shield machine are determined based on tree-axial compression tests in laboratory. The loads acting on tunneling face are estimated according to static earth pressure principle. Based on Duncan-Chang nonlinear elastic constitutive model, the earth pressures on head chamber of shield machine are simulated in different aperture ratio cases for rotating cutterhead of shield machine. Relationship between pressure transportation factor and aperture ratio of shield machine is proposed by using aggression analysis.
Mateen, Bilal Akhter; Bussas, Matthias; Doogan, Catherine; Waller, Denise; Saverino, Alessia; Király, Franz J; Playford, E Diane
2018-05-01
To determine whether tests of cognitive function and patient-reported outcome measures of motor function can be used to create a machine learning-based predictive tool for falls. Prospective cohort study. Tertiary neurological and neurosurgical center. In all, 337 in-patients receiving neurosurgical, neurological, or neurorehabilitation-based care. Binary (Y/N) for falling during the in-patient episode, the Trail Making Test (a measure of attention and executive function) and the Walk-12 (a patient-reported measure of physical function). The principal outcome was a fall during the in-patient stay ( n = 54). The Trail test was identified as the best predictor of falls. Moreover, addition of other variables, did not improve the prediction (Wilcoxon signed-rank P < 0.001). Classical linear statistical modeling methods were then compared with more recent machine learning based strategies, for example, random forests, neural networks, support vector machines. The random forest was the best modeling strategy when utilizing just the Trail Making Test data (Wilcoxon signed-rank P < 0.001) with 68% (± 7.7) sensitivity, and 90% (± 2.3) specificity. This study identifies a simple yet powerful machine learning (Random Forest) based predictive model for an in-patient neurological population, utilizing a single neuropsychological test of cognitive function, the Trail Making test.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruff, T.M.
1992-01-01
A prototype mucking machine designed to operate in narrow vein stopes was developed by Foster-Miller, Inc., Waltham, MA, under contract with the U.S. Bureau of Mines. The machine, called a compact loader/trammer, or minimucker, was designed to replace slusher muckers in narrow-vein underground mines. The minimucker is a six-wheel-drive, skid-steered, load-haul-dump machine that loads muck at the front with a novel slide-bucket system and ejects it out the rear so that the machine does not have to be turned around. To correct deficiencies of the tether remote control system, a computer-based, radio remote control was retrofitted to the minimucker. Initialmore » tests indicated a need to assist the operator in guiding the machine in narrow stopes and an automatic guidance system that used ultrasonic ranging sensors and a wall-following algorithm was installed. Additional tests in a simulated test stope showed that these changes improved the operation of the minimucker. The design and functions of the minimucker and its computer-based, remote control system are reviewed, and an ultrasonic, sensor-based guidance system is described.« less
Pesesky, Mitchell W; Hussain, Tahir; Wallace, Meghan; Patel, Sanket; Andleeb, Saadia; Burnham, Carey-Ann D; Dantas, Gautam
2016-01-01
The time-to-result for culture-based microorganism recovery and phenotypic antimicrobial susceptibility testing necessitates initial use of empiric (frequently broad-spectrum) antimicrobial therapy. If the empiric therapy is not optimal, this can lead to adverse patient outcomes and contribute to increasing antibiotic resistance in pathogens. New, more rapid technologies are emerging to meet this need. Many of these are based on identifying resistance genes, rather than directly assaying resistance phenotypes, and thus require interpretation to translate the genotype into treatment recommendations. These interpretations, like other parts of clinical diagnostic workflows, are likely to be increasingly automated in the future. We set out to evaluate the two major approaches that could be amenable to automation pipelines: rules-based methods and machine learning methods. The rules-based algorithm makes predictions based upon current, curated knowledge of Enterobacteriaceae resistance genes. The machine-learning algorithm predicts resistance and susceptibility based on a model built from a training set of variably resistant isolates. As our test set, we used whole genome sequence data from 78 clinical Enterobacteriaceae isolates, previously identified to represent a variety of phenotypes, from fully-susceptible to pan-resistant strains for the antibiotics tested. We tested three antibiotic resistance determinant databases for their utility in identifying the complete resistome for each isolate. The predictions of the rules-based and machine learning algorithms for these isolates were compared to results of phenotype-based diagnostics. The rules based and machine-learning predictions achieved agreement with standard-of-care phenotypic diagnostics of 89.0 and 90.3%, respectively, across twelve antibiotic agents from six major antibiotic classes. Several sources of disagreement between the algorithms were identified. Novel variants of known resistance factors and incomplete genome assembly confounded the rules-based algorithm, resulting in predictions based on gene family, rather than on knowledge of the specific variant found. Low-frequency resistance caused errors in the machine-learning algorithm because those genes were not seen or seen infrequently in the test set. We also identified an example of variability in the phenotype-based results that led to disagreement with both genotype-based methods. Genotype-based antimicrobial susceptibility testing shows great promise as a diagnostic tool, and we outline specific research goals to further refine this methodology.
On the Stability of Jump-Linear Systems Driven by Finite-State Machines with Markovian Inputs
NASA Technical Reports Server (NTRS)
Patilkulkarni, Sudarshan; Herencia-Zapana, Heber; Gray, W. Steven; Gonzalez, Oscar R.
2004-01-01
This paper presents two mean-square stability tests for a jump-linear system driven by a finite-state machine with a first-order Markovian input process. The first test is based on conventional Markov jump-linear theory and avoids the use of any higher-order statistics. The second test is developed directly using the higher-order statistics of the machine s output process. The two approaches are illustrated with a simple model for a recoverable computer control system.
1986-05-01
was conducted in air, using a SATEC Systems computer-controlled servohydraulic testing machine. This machine uses a minicomputer (Digital PDP 11/34...overall test program) was run. This test was performed using a feature of the SATEC machine called combinatorial feedback, which allowed a user-defined...Rn) l/T + (in Es /A)/n (4.3) Q can be calculated from 0*: b Q=n (4.4) Creep data for DS MAR-M246, containing no Hafnium, from Reference 99 was used to
Effect of the Machining Processes on Low Cycle Fatigue Behavior of a Powder Metallurgy Disk
NASA Technical Reports Server (NTRS)
Telesman, J.; Kantzos, P.; Gabb, T. P.; Ghosn, L. J.
2010-01-01
A study has been performed to investigate the effect of various machining processes on fatigue life of configured low cycle fatigue specimens machined out of a NASA developed LSHR P/M nickel based disk alloy. Two types of configured specimen geometries were employed in the study. To evaluate a broach machining processes a double notch geometry was used with both notches machined using broach tooling. EDM machined notched specimens of the same configuration were tested for comparison purposes. Honing finishing process was evaluated by using a center hole specimen geometry. Comparison testing was again done using EDM machined specimens of the same geometry. The effect of these machining processes on the resulting surface roughness, residual stress distribution and microstructural damage were characterized and used in attempt to explain the low cycle fatigue results.
NASA Astrophysics Data System (ADS)
Pathak, Jaideep; Wikner, Alexander; Fussell, Rebeckah; Chandra, Sarthak; Hunt, Brian R.; Girvan, Michelle; Ott, Edward
2018-04-01
A model-based approach to forecasting chaotic dynamical systems utilizes knowledge of the mechanistic processes governing the dynamics to build an approximate mathematical model of the system. In contrast, machine learning techniques have demonstrated promising results for forecasting chaotic systems purely from past time series measurements of system state variables (training data), without prior knowledge of the system dynamics. The motivation for this paper is the potential of machine learning for filling in the gaps in our underlying mechanistic knowledge that cause widely-used knowledge-based models to be inaccurate. Thus, we here propose a general method that leverages the advantages of these two approaches by combining a knowledge-based model and a machine learning technique to build a hybrid forecasting scheme. Potential applications for such an approach are numerous (e.g., improving weather forecasting). We demonstrate and test the utility of this approach using a particular illustrative version of a machine learning known as reservoir computing, and we apply the resulting hybrid forecaster to a low-dimensional chaotic system, as well as to a high-dimensional spatiotemporal chaotic system. These tests yield extremely promising results in that our hybrid technique is able to accurately predict for a much longer period of time than either its machine-learning component or its model-based component alone.
Interpreting support vector machine models for multivariate group wise analysis in neuroimaging
Gaonkar, Bilwaj; Shinohara, Russell T; Davatzikos, Christos
2015-01-01
Machine learning based classification algorithms like support vector machines (SVMs) have shown great promise for turning a high dimensional neuroimaging data into clinically useful decision criteria. However, tracing imaging based patterns that contribute significantly to classifier decisions remains an open problem. This is an issue of critical importance in imaging studies seeking to determine which anatomical or physiological imaging features contribute to the classifier’s decision, thereby allowing users to critically evaluate the findings of such machine learning methods and to understand disease mechanisms. The majority of published work addresses the question of statistical inference for support vector classification using permutation tests based on SVM weight vectors. Such permutation testing ignores the SVM margin, which is critical in SVM theory. In this work we emphasize the use of a statistic that explicitly accounts for the SVM margin and show that the null distributions associated with this statistic are asymptotically normal. Further, our experiments show that this statistic is a lot less conservative as compared to weight based permutation tests and yet specific enough to tease out multivariate patterns in the data. Thus, we can better understand the multivariate patterns that the SVM uses for neuroimaging based classification. PMID:26210913
Li, Yang; Yang, Jianyi
2017-04-24
The prediction of protein-ligand binding affinity has recently been improved remarkably by machine-learning-based scoring functions. For example, using a set of simple descriptors representing the atomic distance counts, the RF-Score improves the Pearson correlation coefficient to about 0.8 on the core set of the PDBbind 2007 database, which is significantly higher than the performance of any conventional scoring function on the same benchmark. A few studies have been made to discuss the performance of machine-learning-based methods, but the reason for this improvement remains unclear. In this study, by systemically controlling the structural and sequence similarity between the training and test proteins of the PDBbind benchmark, we demonstrate that protein structural and sequence similarity makes a significant impact on machine-learning-based methods. After removal of training proteins that are highly similar to the test proteins identified by structure alignment and sequence alignment, machine-learning-based methods trained on the new training sets do not outperform the conventional scoring functions any more. On the contrary, the performance of conventional functions like X-Score is relatively stable no matter what training data are used to fit the weights of its energy terms.
An Adaptive Genetic Association Test Using Double Kernel Machines.
Zhan, Xiang; Epstein, Michael P; Ghosh, Debashis
2015-10-01
Recently, gene set-based approaches have become very popular in gene expression profiling studies for assessing how genetic variants are related to disease outcomes. Since most genes are not differentially expressed, existing pathway tests considering all genes within a pathway suffer from considerable noise and power loss. Moreover, for a differentially expressed pathway, it is of interest to select important genes that drive the effect of the pathway. In this article, we propose an adaptive association test using double kernel machines (DKM), which can both select important genes within the pathway as well as test for the overall genetic pathway effect. This DKM procedure first uses the garrote kernel machines (GKM) test for the purposes of subset selection and then the least squares kernel machine (LSKM) test for testing the effect of the subset of genes. An appealing feature of the kernel machine framework is that it can provide a flexible and unified method for multi-dimensional modeling of the genetic pathway effect allowing for both parametric and nonparametric components. This DKM approach is illustrated with application to simulated data as well as to data from a neuroimaging genetics study.
NASA Astrophysics Data System (ADS)
Marulcu, Ismail; Barnett, Mike
2013-10-01
This study is part of a 5-year National Science Foundation-funded project, Transforming Elementary Science Learning Through LEGO™ Engineering Design. In this study, we report on the successes and challenges of implementing an engineering design-based and LEGO™-oriented unit in an urban classroom setting and we focus on the impact of the unit on students' content understanding of simple machines. The LEGO™ engineering-based simple machines module, which was developed for fifth graders by our research team, was implemented in an urban school in a large city in the Northeastern region of the USA. Thirty-three fifth grade students participated in the study, and they showed significant growth in content understanding. We measured students' content knowledge by using identical paper tests and semistructured interviews before and after instruction. Our paired t test analysis results showed that students significantly improved their test and interview scores (t = -3.62, p < 0.001 for multiple-choice items and t = -9.06, p < 0.000 for the open-ended items in the test and t = -12.11, p < 0.000 for the items in interviews). We also identified several alternative conceptions that are held by students on simple machines.
Adding Test Generation to the Teaching Machine
ERIC Educational Resources Information Center
Bruce-Lockhart, Michael; Norvell, Theodore; Crescenzi, Pierluigi
2009-01-01
We propose an extension of the Teaching Machine project, called Quiz Generator, that allows instructors to produce assessment quizzes in the field of algorithm and data structures quite easily. This extension makes use of visualization techniques and is based on new features of the Teaching Machine that allow third-party visualizers to be added as…
Methodology for creating dedicated machine and algorithm on sunflower counting
NASA Astrophysics Data System (ADS)
Muracciole, Vincent; Plainchault, Patrick; Mannino, Maria-Rosaria; Bertrand, Dominique; Vigouroux, Bertrand
2007-09-01
In order to sell grain lots in European countries, seed industries need a government certification. This certification requests purity testing, seed counting in order to quantify specified seed species and other impurities in lots, and germination testing. These analyses are carried out within the framework of international trade according to the methods of the International Seed Testing Association. Presently these different analyses are still achieved manually by skilled operators. Previous works have already shown that seeds can be characterized by around 110 visual features (morphology, colour, texture), and thus have presented several identification algorithms. Until now, most of the works in this domain are computer based. The approach presented in this article is based on the design of dedicated electronic vision machine aimed to identify and sort seeds. This machine is composed of a FPGA (Field Programmable Gate Array), a DSP (Digital Signal Processor) and a PC bearing the GUI (Human Machine Interface) of the system. Its operation relies on the stroboscopic image acquisition of a seed falling in front of a camera. A first machine was designed according to this approach, in order to simulate all the vision chain (image acquisition, feature extraction, identification) under the Matlab environment. In order to perform this task into dedicated hardware, all these algorithms were developed without the use of the Matlab toolbox. The objective of this article is to present a design methodology for a special purpose identification algorithm based on distance between groups into dedicated hardware machine for seed counting.
An Adaptive Genetic Association Test Using Double Kernel Machines
Zhan, Xiang; Epstein, Michael P.; Ghosh, Debashis
2014-01-01
Recently, gene set-based approaches have become very popular in gene expression profiling studies for assessing how genetic variants are related to disease outcomes. Since most genes are not differentially expressed, existing pathway tests considering all genes within a pathway suffer from considerable noise and power loss. Moreover, for a differentially expressed pathway, it is of interest to select important genes that drive the effect of the pathway. In this article, we propose an adaptive association test using double kernel machines (DKM), which can both select important genes within the pathway as well as test for the overall genetic pathway effect. This DKM procedure first uses the garrote kernel machines (GKM) test for the purposes of subset selection and then the least squares kernel machine (LSKM) test for testing the effect of the subset of genes. An appealing feature of the kernel machine framework is that it can provide a flexible and unified method for multi-dimensional modeling of the genetic pathway effect allowing for both parametric and nonparametric components. This DKM approach is illustrated with application to simulated data as well as to data from a neuroimaging genetics study. PMID:26640602
NASA Astrophysics Data System (ADS)
Yu, Jianbo
2015-12-01
Prognostics is much efficient to achieve zero-downtime performance, maximum productivity and proactive maintenance of machines. Prognostics intends to assess and predict the time evolution of machine health degradation so that machine failures can be predicted and prevented. A novel prognostics system is developed based on the data-model-fusion scheme using the Bayesian inference-based self-organizing map (SOM) and an integration of logistic regression (LR) and high-order particle filtering (HOPF). In this prognostics system, a baseline SOM is constructed to model the data distribution space of healthy machine under an assumption that predictable fault patterns are not available. Bayesian inference-based probability (BIP) derived from the baseline SOM is developed as a quantification indication of machine health degradation. BIP is capable of offering failure probability for the monitored machine, which has intuitionist explanation related to health degradation state. Based on those historic BIPs, the constructed LR and its modeling noise constitute a high-order Markov process (HOMP) to describe machine health propagation. HOPF is used to solve the HOMP estimation to predict the evolution of the machine health in the form of a probability density function (PDF). An on-line model update scheme is developed to adapt the Markov process changes to machine health dynamics quickly. The experimental results on a bearing test-bed illustrate the potential applications of the proposed system as an effective and simple tool for machine health prognostics.
Testing of Anesthesia Machines and Defibrillators in Healthcare Institutions.
Gurbeta, Lejla; Dzemic, Zijad; Bego, Tamer; Sejdic, Ervin; Badnjevic, Almir
2017-09-01
To improve the quality of patient treatment by improving the functionality of medical devices in healthcare institutions. To present the results of the safety and performance inspection of patient-relevant output parameters of anesthesia machines and defibrillators defined by legal metrology. This study covered 130 anesthesia machines and 161 defibrillators used in public and private healthcare institutions, during a period of two years. Testing procedures were carried out according to international standards and legal metrology legislative procedures in Bosnia and Herzegovina. The results show that in 13.84% of tested anesthesia machine and 14.91% of defibrillators device performance is not in accordance with requirements and should either have its results be verified, or the device removed from use or scheduled for corrective maintenance. Research emphasizes importance of independent safety and performance inspections, and gives recommendations for the frequency of inspection based on measurements. Results offer implications for adequacy of preventive and corrective maintenance performed in healthcare institutions. Based on collected data, the first digital electronical database of anesthesia machines and defibrillators used in healthcare institutions in Bosnia and Herzegovina is created. This database is a useful tool for tracking each device's performance over time.
Test Generation Algorithm for Fault Detection of Analog Circuits Based on Extreme Learning Machine
Zhou, Jingyu; Tian, Shulin; Yang, Chenglin; Ren, Xuelong
2014-01-01
This paper proposes a novel test generation algorithm based on extreme learning machine (ELM), and such algorithm is cost-effective and low-risk for analog device under test (DUT). This method uses test patterns derived from the test generation algorithm to stimulate DUT, and then samples output responses of the DUT for fault classification and detection. The novel ELM-based test generation algorithm proposed in this paper contains mainly three aspects of innovation. Firstly, this algorithm saves time efficiently by classifying response space with ELM. Secondly, this algorithm can avoid reduced test precision efficiently in case of reduction of the number of impulse-response samples. Thirdly, a new process of test signal generator and a test structure in test generation algorithm are presented, and both of them are very simple. Finally, the abovementioned improvement and functioning are confirmed in experiments. PMID:25610458
Impact of machining on the flexural fatigue strength of glass and polycrystalline CAD/CAM ceramics.
Fraga, Sara; Amaral, Marina; Bottino, Marco Antônio; Valandro, Luiz Felipe; Kleverlaan, Cornelis Johannes; May, Liliana Gressler
2017-11-01
To assess the effect of machining on the flexural fatigue strength and on the surface roughness of different computer-aided design, computer-aided manufacturing (CAD/CAM) ceramics by comparing machined and polished after machining specimens. Disc-shaped specimens of yttria-stabilized polycrystalline tetragonal zirconia (Y-TZP), leucite-, and lithium disilicate-based glass ceramics were prepared by CAD/CAM machining, and divided into two groups: machining (M) and machining followed by polishing (MP). The surface roughness was measured and the flexural fatigue strength was evaluated by the step-test method (n=20). The initial load and the load increment for each ceramic material were based on a monotonic test (n=5). A maximum of 10,000 cycles was applied in each load step, at 1.4Hz. Weibull probability statistics was used for the analysis of the flexural fatigue strength, and Mann-Whitney test (α=5%) to compare roughness between the M and MP conditions. Machining resulted in lower values of characteristic flexural fatigue strength than machining followed by polishing. The greatest reduction in flexural fatigue strength from MP to M was observed for Y-TZP (40%; M=536.48MPa; MP=894.50MPa), followed by lithium disilicate (33%; M=187.71MPa; MP=278.93MPa) and leucite (29%; M=72.61MPa; MP=102.55MPa). Significantly higher values of roughness (Ra) were observed for M compared to MP (leucite: M=1.59μm and MP=0.08μm; lithium disilicate: M=1.84μm and MP=0.13μm; Y-TZP: M=1.79μm and MP=0.18μm). Machining negatively affected the flexural fatigue strength of CAD/CAM ceramics, indicating that machining of partially or fully sintered ceramics is deleterious to fatigue strength. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Machine Learning Based Evaluation of Reading and Writing Difficulties.
Iwabuchi, Mamoru; Hirabayashi, Rumi; Nakamura, Kenryu; Dim, Nem Khan
2017-01-01
The possibility of auto evaluation of reading and writing difficulties was investigated using non-parametric machine learning (ML) regression technique for URAWSS (Understanding Reading and Writing Skills of Schoolchildren) [1] test data of 168 children of grade 1 - 9. The result showed that the ML had better prediction than the ordinary rule-based decision.
Effects of Toy Crane Design-Based Learning on Simple Machines
ERIC Educational Resources Information Center
Korur, Fikret; Efe, Gülfem; Erdogan, Fisun; Tunç, Berna
2017-01-01
The aim of this 2-group study was to investigate the following question: Are there significant differences between scaffolded design-based learning controlled using 7 forms and teacher-directed instruction methods for the toy crane project on grade 7 students' posttest scores on the simple machines achievement test, attitude toward simple…
The influence of machining condition and cutting tool wear on surface roughness of AISI 4340 steel
NASA Astrophysics Data System (ADS)
Natasha, A. R.; Ghani, J. A.; Che Haron, C. H.; Syarif, J.
2018-01-01
Sustainable machining by using cryogenic coolant as the cutting fluid has been proven to enhance some machining outputs. The main objective of the current work was to investigate the influence of machining conditions; dry and cryogenic, as well as the cutting tool wear on the machined surface roughness of AISI 4340 steel. The experimental tests were performed using chemical vapor deposition (CVD) coated carbide inserts. The value of machined surface roughness were measured at 3 cutting intervals; beginning, middle, and end of the cutting based on the readings of the tool flank wear. The results revealed that cryogenic turning had the greatest influence on surface roughness when machined at lower cutting speed and higher feed rate. Meanwhile, the cutting tool wear was also found to influence the surface roughness, either improving it or deteriorating it, based on the severity and the mechanism of the flank wear.
Proceedings of the 1986 IEEE international conference on systems, man and cybernetics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-01-01
This book presents the papers given at a conference on man-machine systems. Topics considered at the conference included neural model-based cognitive theory and engineering, user interfaces, adaptive and learning systems, human interaction with robotics, decision making, the testing and evaluation of expert systems, software development, international conflict resolution, intelligent interfaces, automation in man-machine system design aiding, knowledge acquisition in expert systems, advanced architectures for artificial intelligence, pattern recognition, knowledge bases, and machine vision.
Bhagyashree, Sheshadri Iyengar Raghavan; Nagaraj, Kiran; Prince, Martin; Fall, Caroline H D; Krishna, Murali
2018-01-01
There are limited data on the use of artificial intelligence methods for the diagnosis of dementia in epidemiological studies in low- and middle-income country (LMIC) settings. A culture and education fair battery of cognitive tests was developed and validated for population based studies in low- and middle-income countries including India by the 10/66 Dementia Research Group. We explored the machine learning methods based on the 10/66 battery of cognitive tests for the diagnosis of dementia based in a birth cohort study in South India. The data sets for 466 men and women for this study were obtained from the on-going Mysore Studies of Natal effect of Health and Ageing (MYNAH), in south India. The data sets included: demographics, performance on the 10/66 cognitive function tests, the 10/66 diagnosis of mental disorders and population based normative data for the 10/66 battery of cognitive function tests. Diagnosis of dementia from the rule based approach was compared against the 10/66 diagnosis of dementia. We have applied machine learning techniques to identify minimal number of the 10/66 cognitive function tests required for diagnosing dementia and derived an algorithm to improve the accuracy of dementia diagnosis. Of 466 subjects, 27 had 10/66 diagnosis of dementia, 19 of whom were correctly identified as having dementia by Jrip classification with 100% accuracy. This pilot exploratory study indicates that machine learning methods can help identify community dwelling older adults with 10/66 criterion diagnosis of dementia with good accuracy in a LMIC setting such as India. This should reduce the duration of the diagnostic assessment and make the process easier and quicker for clinicians, patients and will be useful for 'case' ascertainment in population based epidemiological studies.
Dictionary Based Machine Translation from Kannada to Telugu
NASA Astrophysics Data System (ADS)
Sindhu, D. V.; Sagar, B. M.
2017-08-01
Machine Translation is a task of translating from one language to another language. For the languages with less linguistic resources like Kannada and Telugu Dictionary based approach is the best approach. This paper mainly focuses on Dictionary based machine translation for Kannada to Telugu. The proposed methodology uses dictionary for translating word by word without much correlation of semantics between them. The dictionary based machine translation process has the following sub process: Morph analyzer, dictionary, transliteration, transfer grammar and the morph generator. As a part of this work bilingual dictionary with 8000 entries is developed and the suffix mapping table at the tag level is built. This system is tested for the children stories. In near future this system can be further improved by defining transfer grammar rules.
Moreno-Tapia, Sandra Veronica; Vera-Salas, Luis Alberto; Osornio-Rios, Roque Alfredo; Dominguez-Gonzalez, Aurelio; Stiharu, Ion; de Jesus Romero-Troncoso, Rene
2010-01-01
Computer numerically controlled (CNC) machines have evolved to adapt to increasing technological and industrial requirements. To cover these needs, new generation machines have to perform monitoring strategies by incorporating multiple sensors. Since in most of applications the online Processing of the variables is essential, the use of smart sensors is necessary. The contribution of this work is the development of a wireless network platform of reconfigurable smart sensors for CNC machine applications complying with the measurement requirements of new generation CNC machines. Four different smart sensors are put under test in the network and their corresponding signal processing techniques are implemented in a Field Programmable Gate Array (FPGA)-based sensor node. PMID:22163602
Moreno-Tapia, Sandra Veronica; Vera-Salas, Luis Alberto; Osornio-Rios, Roque Alfredo; Dominguez-Gonzalez, Aurelio; Stiharu, Ion; Romero-Troncoso, Rene de Jesus
2010-01-01
Computer numerically controlled (CNC) machines have evolved to adapt to increasing technological and industrial requirements. To cover these needs, new generation machines have to perform monitoring strategies by incorporating multiple sensors. Since in most of applications the online Processing of the variables is essential, the use of smart sensors is necessary. The contribution of this work is the development of a wireless network platform of reconfigurable smart sensors for CNC machine applications complying with the measurement requirements of new generation CNC machines. Four different smart sensors are put under test in the network and their corresponding signal processing techniques are implemented in a Field Programmable Gate Array (FPGA)-based sensor node.
Time-Frequency Learning Machines for Nonstationarity Detection Using Surrogates
NASA Astrophysics Data System (ADS)
Borgnat, Pierre; Flandrin, Patrick; Richard, Cédric; Ferrari, André; Amoud, Hassan; Honeine, Paul
2012-03-01
Time-frequency representations provide a powerful tool for nonstationary signal analysis and classification, supporting a wide range of applications [12]. As opposed to conventional Fourier analysis, these techniques reveal the evolution in time of the spectral content of signals. In Ref. [7,38], time-frequency analysis is used to test stationarity of any signal. The proposed method consists of a comparison between global and local time-frequency features. The originality is to make use of a family of stationary surrogate signals for defining the null hypothesis of stationarity and, based upon this information, to derive statistical tests. An open question remains, however, about how to choose relevant time-frequency features. Over the last decade, a number of new pattern recognition methods based on reproducing kernels have been introduced. These learning machines have gained popularity due to their conceptual simplicity and their outstanding performance [30]. Initiated by Vapnik’s support vector machines (SVM) [35], they offer now a wide class of supervised and unsupervised learning algorithms. In Ref. [17-19], the authors have shown how the most effective and innovative learning machines can be tuned to operate in the time-frequency domain. This chapter follows this line of research by taking advantage of learning machines to test and quantify stationarity. Based on one-class SVM, our approach uses the entire time-frequency representation and does not require arbitrary feature extraction. Applied to a set of surrogates, it provides the domain boundary that includes most of these stationarized signals. This allows us to test the stationarity of the signal under investigation. This chapter is organized as follows. In Section 22.2, we introduce the surrogate data method to generate stationarized signals, namely, the null hypothesis of stationarity. The concept of time-frequency learning machines is presented in Section 22.3, and applied to one-class SVM in order to derive a stationarity test in Section 22.4. The relevance of the latter is illustrated by simulation results in Section 22.5.
Peng, Jiangjun; Leung, Yee; Leung, Kwong-Sak; Wong, Man-Hon; Lu, Gang; Ballester, Pedro J.
2018-01-01
It has recently been claimed that the outstanding performance of machine-learning scoring functions (SFs) is exclusively due to the presence of training complexes with highly similar proteins to those in the test set. Here, we revisit this question using 24 similarity-based training sets, a widely used test set, and four SFs. Three of these SFs employ machine learning instead of the classical linear regression approach of the fourth SF (X-Score which has the best test set performance out of 16 classical SFs). We have found that random forest (RF)-based RF-Score-v3 outperforms X-Score even when 68% of the most similar proteins are removed from the training set. In addition, unlike X-Score, RF-Score-v3 is able to keep learning with an increasing training set size, becoming substantially more predictive than X-Score when the full 1105 complexes are used for training. These results show that machine-learning SFs owe a substantial part of their performance to training on complexes with dissimilar proteins to those in the test set, against what has been previously concluded using the same data. Given that a growing amount of structural and interaction data will be available from academic and industrial sources, this performance gap between machine-learning SFs and classical SFs is expected to enlarge in the future. PMID:29538331
Li, Hongjian; Peng, Jiangjun; Leung, Yee; Leung, Kwong-Sak; Wong, Man-Hon; Lu, Gang; Ballester, Pedro J
2018-03-14
It has recently been claimed that the outstanding performance of machine-learning scoring functions (SFs) is exclusively due to the presence of training complexes with highly similar proteins to those in the test set. Here, we revisit this question using 24 similarity-based training sets, a widely used test set, and four SFs. Three of these SFs employ machine learning instead of the classical linear regression approach of the fourth SF (X-Score which has the best test set performance out of 16 classical SFs). We have found that random forest (RF)-based RF-Score-v3 outperforms X-Score even when 68% of the most similar proteins are removed from the training set. In addition, unlike X-Score, RF-Score-v3 is able to keep learning with an increasing training set size, becoming substantially more predictive than X-Score when the full 1105 complexes are used for training. These results show that machine-learning SFs owe a substantial part of their performance to training on complexes with dissimilar proteins to those in the test set, against what has been previously concluded using the same data. Given that a growing amount of structural and interaction data will be available from academic and industrial sources, this performance gap between machine-learning SFs and classical SFs is expected to enlarge in the future.
Certification of highly complex safety-related systems.
Reinert, D; Schaefer, M
1999-01-01
The BIA has now 15 years of experience with the certification of complex electronic systems for safety-related applications in the machinery sector. Using the example of machining centres this presentation will show the systematic procedure for verifying and validating control systems using Application Specific Integrated Circuits (ASICs) and microcomputers for safety functions. One section will describe the control structure of machining centres with control systems using "integrated safety." A diverse redundant architecture combined with crossmonitoring and forced dynamization is explained. In the main section the steps of the systematic certification procedure are explained showing some results of the certification of drilling machines. Specification reviews, design reviews with test case specification, statistical analysis, and walk-throughs are the analytical measures in the testing process. Systematic tests based on the test case specification, Electro Magnetic Interference (EMI), and environmental testing, and site acceptance tests on the machines are the testing measures for validation. A complex software driven system is always undergoing modification. Most of the changes are not safety-relevant but this has to be proven. A systematic procedure for certifying software modifications is presented in the last section of the paper.
Testing and Validating Machine Learning Classifiers by Metamorphic Testing☆
Xie, Xiaoyuan; Ho, Joshua W. K.; Murphy, Christian; Kaiser, Gail; Xu, Baowen; Chen, Tsong Yueh
2011-01-01
Machine Learning algorithms have provided core functionality to many application domains - such as bioinformatics, computational linguistics, etc. However, it is difficult to detect faults in such applications because often there is no “test oracle” to verify the correctness of the computed outputs. To help address the software quality, in this paper we present a technique for testing the implementations of machine learning classification algorithms which support such applications. Our approach is based on the technique “metamorphic testing”, which has been shown to be effective to alleviate the oracle problem. Also presented include a case study on a real-world machine learning application framework, and a discussion of how programmers implementing machine learning algorithms can avoid the common pitfalls discovered in our study. We also conduct mutation analysis and cross-validation, which reveal that our method has high effectiveness in killing mutants, and that observing expected cross-validation result alone is not sufficiently effective to detect faults in a supervised classification program. The effectiveness of metamorphic testing is further confirmed by the detection of real faults in a popular open-source classification program. PMID:21532969
Prediction of turning stability using receptance coupling
NASA Astrophysics Data System (ADS)
Jasiewicz, Marcin; Powałka, Bartosz
2018-01-01
This paper presents an issue of machining stability prediction of dynamic "lathe - workpiece" system evaluated using receptance coupling method. Dynamic properties of the lathe components (the spindle and the tailstock) are assumed to be constant and can be determined experimentally based on the results of the impact test. Hence, the variable of the system "machine tool - holder - workpiece" is the machined part, which can be easily modelled analytically. The method of receptance coupling enables a synthesis of experimental (spindle, tailstock) and analytical (machined part) models, so impact testing of the entire system becomes unnecessary. The paper presents methodology of analytical and experimental models synthesis, evaluation of the stability lobes and experimental validation procedure involving both the determination of the dynamic properties of the system and cutting tests. In the summary the experimental verification results would be presented and discussed.
The Value Simulation-Based Learning Added to Machining Technology in Singapore
ERIC Educational Resources Information Center
Fang, Linda; Tan, Hock Soon; Thwin, Mya Mya; Tan, Kim Cheng; Koh, Caroline
2011-01-01
This study seeks to understand the value simulation-based learning (SBL) added to the learning of Machining Technology in a 15-week core subject course offered to university students. The research questions were: (1) How did SBL enhance classroom learning? (2) How did SBL help participants in their test? (3) How did SBL prepare participants for…
Machine learning modelling for predicting soil liquefaction susceptibility
NASA Astrophysics Data System (ADS)
Samui, P.; Sitharam, T. G.
2011-01-01
This study describes two machine learning techniques applied to predict liquefaction susceptibility of soil based on the standard penetration test (SPT) data from the 1999 Chi-Chi, Taiwan earthquake. The first machine learning technique which uses Artificial Neural Network (ANN) based on multi-layer perceptions (MLP) that are trained with Levenberg-Marquardt backpropagation algorithm. The second machine learning technique uses the Support Vector machine (SVM) that is firmly based on the theory of statistical learning theory, uses classification technique. ANN and SVM have been developed to predict liquefaction susceptibility using corrected SPT [(N1)60] and cyclic stress ratio (CSR). Further, an attempt has been made to simplify the models, requiring only the two parameters [(N1)60 and peck ground acceleration (amax/g)], for the prediction of liquefaction susceptibility. The developed ANN and SVM models have also been applied to different case histories available globally. The paper also highlights the capability of the SVM over the ANN models.
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
The Machine Tool Advanced Skills Technology (MAST) consortium was formed to address the shortage of skilled workers for the machine tools and metals-related industries. Featuring six of the nation's leading advanced technology centers, the MAST consortium developed, tested, and disseminated industry-specific skill standards and model curricula for…
NASA Astrophysics Data System (ADS)
Matras, A.
2017-08-01
The paper discusses the impact of the feed screw heating on the machining accuracy. The test stand was built based on HASS Mini Mill 2 CNC milling machine and a Flir SC620 infrared camera. Measurements of workpiece were performed on Talysurf Intra 50 Taylor Hobson profilometer. The research proved that the intensive work of the milling machine lasted 60 minutes, causing thermal expansion of the feed screw what influence on the dimension error of the workpiece.
Nano Mechanical Machining Using AFM Probe
NASA Astrophysics Data System (ADS)
Mostofa, Md. Golam
Complex miniaturized components with high form accuracy will play key roles in the future development of many products, as they provide portability, disposability, lower material consumption in production, low power consumption during operation, lower sample requirements for testing, and higher heat transfer due to their very high surface-to-volume ratio. Given the high market demand for such micro and nano featured components, different manufacturing methods have been developed for their fabrication. Some of the common technologies in micro/nano fabrication are photolithography, electron beam lithography, X-ray lithography and other semiconductor processing techniques. Although these methods are capable of fabricating micro/nano structures with a resolution of less than a few nanometers, some of the shortcomings associated with these methods, such as high production costs for customized products, limited material choices, necessitate the development of other fabricating techniques. Micro/nano mechanical machining, such an atomic force microscope (AFM) probe based nano fabrication, has, therefore, been used to overcome some the major restrictions of the traditional processes. This technique removes material from the workpiece by engaging micro/nano size cutting tool (i.e. AFM probe) and is applicable on a wider range of materials compared to the photolithographic process. In spite of the unique benefits of nano mechanical machining, there are also some challenges with this technique, since the scale is reduced, such as size effects, burr formations, chip adhesions, fragility of tools and tool wear. Moreover, AFM based machining does not have any rotational movement, which makes fabrication of 3D features more difficult. Thus, vibration-assisted machining is introduced into AFM probe based nano mechanical machining to overcome the limitations associated with the conventional AFM probe based scratching method. Vibration-assisted machining reduced the cutting forces and burr formations through intermittent cutting. Combining the AFM probe based machining with vibration-assisted machining enhanced nano mechanical machining processes by improving the accuracy, productivity and surface finishes. In this study, several scratching tests are performed with a single crystal diamond AFM probe to investigate the cutting characteristics and model the ploughing cutting forces. Calibration of the probe for lateral force measurements, which is essential, is also extended through the force balance method. Furthermore, vibration-assisted machining system is developed and applied to fabricate different materials to overcome some of the limitations of the AFM probe based single point nano mechanical machining. The novelty of this study includes the application of vibration-assisted AFM probe based nano scale machining to fabricate micro/nano scale features, calibration of an AFM by considering different factors, and the investigation of the nano scale material removal process from a different perspective.
Machine compliance in compression tests
NASA Astrophysics Data System (ADS)
Sousa, Pedro; Ivens, Jan; Lomov, Stepan V.
2018-05-01
The compression behavior of a material cannot be accurately determined if the machine compliance is not accounted prior to the measurements. This work discusses the machine compliance during a compressibility test with fiberglass fabrics. The thickness variation was measured during loading and unloading cycles with a relaxation stage of 30 minutes between them. The measurements were performed using an indirect technique based on the comparison between the displacement at a free compression cycle and the displacement with a sample. Relating to the free test, it has been noticed the nonexistence of machine relaxation during relaxation stage. Considering relaxation or not, the characteristic curves for a free compression cycle can be overlapped precisely in the majority of the points. For the compression test with sample, it was noticed a non-physical decrease of about 30 µm during the relaxation stage, what can be explained by the greater fabric relaxation in relation to the machine relaxation. Beyond the technique normally used, another technique was used which allows a constant thickness during relaxation. Within this second method, machine displacement with sample is simply subtracted to the machine displacement without sample being imposed as constant. If imposed as a constant it will remain constant during relaxation stage and it will suddenly decrease after relaxation. If constantly calculated it will decrease gradually during relaxation stage. Independently of the technique used the final result will remain unchanged. The uncertainty introduced by this imprecision is about ±15 µm.
Machine learning-based methods for prediction of linear B-cell epitopes.
Wang, Hsin-Wei; Pai, Tun-Wen
2014-01-01
B-cell epitope prediction facilitates immunologists in designing peptide-based vaccine, diagnostic test, disease prevention, treatment, and antibody production. In comparison with T-cell epitope prediction, the performance of variable length B-cell epitope prediction is still yet to be satisfied. Fortunately, due to increasingly available verified epitope databases, bioinformaticians could adopt machine learning-based algorithms on all curated data to design an improved prediction tool for biomedical researchers. Here, we have reviewed related epitope prediction papers, especially those for linear B-cell epitope prediction. It should be noticed that a combination of selected propensity scales and statistics of epitope residues with machine learning-based tools formulated a general way for constructing linear B-cell epitope prediction systems. It is also observed from most of the comparison results that the kernel method of support vector machine (SVM) classifier outperformed other machine learning-based approaches. Hence, in this chapter, except reviewing recently published papers, we have introduced the fundamentals of B-cell epitope and SVM techniques. In addition, an example of linear B-cell prediction system based on physicochemical features and amino acid combinations is illustrated in details.
Extracting laboratory test information from biomedical text
Kang, Yanna Shen; Kayaalp, Mehmet
2013-01-01
Background: No previous study reported the efficacy of current natural language processing (NLP) methods for extracting laboratory test information from narrative documents. This study investigates the pathology informatics question of how accurately such information can be extracted from text with the current tools and techniques, especially machine learning and symbolic NLP methods. The study data came from a text corpus maintained by the U.S. Food and Drug Administration, containing a rich set of information on laboratory tests and test devices. Methods: The authors developed a symbolic information extraction (SIE) system to extract device and test specific information about four types of laboratory test entities: Specimens, analytes, units of measures and detection limits. They compared the performance of SIE and three prominent machine learning based NLP systems, LingPipe, GATE and BANNER, each implementing a distinct supervised machine learning method, hidden Markov models, support vector machines and conditional random fields, respectively. Results: Machine learning systems recognized laboratory test entities with moderately high recall, but low precision rates. Their recall rates were relatively higher when the number of distinct entity values (e.g., the spectrum of specimens) was very limited or when lexical morphology of the entity was distinctive (as in units of measures), yet SIE outperformed them with statistically significant margins on extracting specimen, analyte and detection limit information in both precision and F-measure. Its high recall performance was statistically significant on analyte information extraction. Conclusions: Despite its shortcomings against machine learning methods, a well-tailored symbolic system may better discern relevancy among a pile of information of the same type and may outperform a machine learning system by tapping into lexically non-local contextual information such as the document structure. PMID:24083058
8. Credit USAF, ca. 1945. Original housed in the Muroc ...
8. Credit USAF, ca. 1945. Original housed in the Muroc Flight Test Base, Unit History, 1 September 1942 - 30 June 1945. Alfred F. Simpson Historical Research Agency. United States Air Force. Maxwell AFB, Alabama. View of concrete base for jet engine rotor balancing machine. Location where photograph was taken not determined, but presumed to be in shops of Building 4505 which had a sizeable machine shop. - Edwards Air Force Base, North Base, Hangar, End of North Base Road, Boron, Kern County, CA
Altering the near-miss effect in slot machine gamblers.
Dixon, Mark R; Nastally, Becky L; Jackson, James E; Habib, Reza
2009-01-01
This study investigated the potential for recreational gamblers to respond as if certain types of losing slot machine outcomes were actually closer to a win than others (termed the near-miss effect). Exposure to conditional discrimination training and testing disrupted this effect for 10 of the 16 participants. These 10 participants demonstrated high percentages of conditional discrimination testing performance, and the remaining 6 participants failed the discrimination tests. The implications for a verbally based behavioral explanation of gambling are presented.
Machinability of cast commercial titanium alloys.
Watanabe, I; Kiyosue, S; Ohkubo, C; Aoki, T; Okabe, T
2002-01-01
This study investigated the machinability of cast orthopedic titanium (metastable beta) alloys for possible application to dentistry and compared the results with those of cast CP Ti, Ti-6Al-4V, and Ti-6Al-7Nb, which are currently used in dentistry. Machinability was determined as the amount of metal removed with the use of an electric handpiece and a SiC abrasive wheel turning at four different rotational wheel speeds. The ratios of the amount of metal removed and the wheel volume loss (machining ratio) were also evaluated. Based on these two criteria, the two alpha + beta alloys tested generally exhibited better results for most of the wheel speeds compared to all the other metals tested. The machinability of the three beta alloys employed was similar or worse, depending on the speed of the wheel, compared to CP Ti. Copyright 2002 Wiley Periodicals, Inc.
Machine learning enhanced optical distance sensor
NASA Astrophysics Data System (ADS)
Amin, M. Junaid; Riza, N. A.
2018-01-01
Presented for the first time is a machine learning enhanced optical distance sensor. The distance sensor is based on our previously demonstrated distance measurement technique that uses an Electronically Controlled Variable Focus Lens (ECVFL) with a laser source to illuminate a target plane with a controlled optical beam spot. This spot with varying spot sizes is viewed by an off-axis camera and the spot size data is processed to compute the distance. In particular, proposed and demonstrated in this paper is the use of a regularized polynomial regression based supervised machine learning algorithm to enhance the accuracy of the operational sensor. The algorithm uses the acquired features and corresponding labels that are the actual target distance values to train a machine learning model. The optimized training model is trained over a 1000 mm (or 1 m) experimental target distance range. Using the machine learning algorithm produces a training set and testing set distance measurement errors of <0.8 mm and <2.2 mm, respectively. The test measurement error is at least a factor of 4 improvement over our prior sensor demonstration without the use of machine learning. Applications for the proposed sensor include industrial scenario distance sensing where target material specific training models can be generated to realize low <1% measurement error distance measurements.
NASA Astrophysics Data System (ADS)
Serrano, Rafael; González, Luis Carlos; Martín, Francisco Jesús
2009-11-01
Under the project SENSOR-IA which has had financial funding from the Order of Incentives to the Regional Technology Centers of the Counsil of Innovation, Science and Enterprise of Andalusia, an architecture for the optimization of a machining process in real time through rule-based expert system has been developed. The architecture consists of an acquisition system and sensor data processing engine (SATD) from an expert system (SE) rule-based which communicates with the SATD. The SE has been designed as an inference engine with an algorithm for effective action, using a modus ponens rule model of goal-oriented rules.The pilot test demonstrated that it is possible to govern in real time the machining process based on rules contained in a SE. The tests have been done with approximated rules. Future work includes an exhaustive collection of data with different tool materials and geometries in a database to extract more precise rules.
Research on electrodischarge drilling of polycrystalline diamond with increased gap voltage
NASA Astrophysics Data System (ADS)
Skoczypiec, Sebastian; Bizoń, Wojciech; Żyra, Agnieszka
2018-05-01
This paper presents an experimental investigation of the machining characteristics of polycrystalline diamond (PCD). Machining of PCD by conventional technologies is not an effective solution. Due to presence of cobalt this material can be machined by application of electrical discharges. On the other side, electrical conductivity of PCD is on the limit of electrodischarge machining (EDM) possibilities. Proposed paper reports experimental investigation on electrodischarge drilling of PCD samples. The test were carried out with application on of high-voltage (up to 550 V) pulse power unit for two kinds of dielectrics: carbon based (Exxsol D80) and de-ionized water. As output parameters machining accuracy (side gap), material removal rate were selected. Also, based on SEM photographs and energy dispersive X-ray spectroscopy (EDS) analysis, a qualitative evaluation of the obtained results was presented.
nu-Anomica: A Fast Support Vector Based Novelty Detection Technique
NASA Technical Reports Server (NTRS)
Das, Santanu; Bhaduri, Kanishka; Oza, Nikunj C.; Srivastava, Ashok N.
2009-01-01
In this paper we propose nu-Anomica, a novel anomaly detection technique that can be trained on huge data sets with much reduced running time compared to the benchmark one-class Support Vector Machines algorithm. In -Anomica, the idea is to train the machine such that it can provide a close approximation to the exact decision plane using fewer training points and without losing much of the generalization performance of the classical approach. We have tested the proposed algorithm on a variety of continuous data sets under different conditions. We show that under all test conditions the developed procedure closely preserves the accuracy of standard one-class Support Vector Machines while reducing both the training time and the test time by 5 - 20 times.
An imperialist competitive algorithm for virtual machine placement in cloud computing
NASA Astrophysics Data System (ADS)
Jamali, Shahram; Malektaji, Sepideh; Analoui, Morteza
2017-05-01
Cloud computing, the recently emerged revolution in IT industry, is empowered by virtualisation technology. In this paradigm, the user's applications run over some virtual machines (VMs). The process of selecting proper physical machines to host these virtual machines is called virtual machine placement. It plays an important role on resource utilisation and power efficiency of cloud computing environment. In this paper, we propose an imperialist competitive-based algorithm for the virtual machine placement problem called ICA-VMPLC. The base optimisation algorithm is chosen to be ICA because of its ease in neighbourhood movement, good convergence rate and suitable terminology. The proposed algorithm investigates search space in a unique manner to efficiently obtain optimal placement solution that simultaneously minimises power consumption and total resource wastage. Its final solution performance is compared with several existing methods such as grouping genetic and ant colony-based algorithms as well as bin packing heuristic. The simulation results show that the proposed method is superior to other tested algorithms in terms of power consumption, resource wastage, CPU usage efficiency and memory usage efficiency.
Nandi, Sutanu; Subramanian, Abhishek; Sarkar, Ram Rup
2017-07-25
Prediction of essential genes helps to identify a minimal set of genes that are absolutely required for the appropriate functioning and survival of a cell. The available machine learning techniques for essential gene prediction have inherent problems, like imbalanced provision of training datasets, biased choice of the best model for a given balanced dataset, choice of a complex machine learning algorithm, and data-based automated selection of biologically relevant features for classification. Here, we propose a simple support vector machine-based learning strategy for the prediction of essential genes in Escherichia coli K-12 MG1655 metabolism that integrates a non-conventional combination of an appropriate sample balanced training set, a unique organism-specific genotype, phenotype attributes that characterize essential genes, and optimal parameters of the learning algorithm to generate the best machine learning model (the model with the highest accuracy among all the models trained for different sample training sets). For the first time, we also introduce flux-coupled metabolic subnetwork-based features for enhancing the classification performance. Our strategy proves to be superior as compared to previous SVM-based strategies in obtaining a biologically relevant classification of genes with high sensitivity and specificity. This methodology was also trained with datasets of other recent supervised classification techniques for essential gene classification and tested using reported test datasets. The testing accuracy was always high as compared to the known techniques, proving that our method outperforms known methods. Observations from our study indicate that essential genes are conserved among homologous bacterial species, demonstrate high codon usage bias, GC content and gene expression, and predominantly possess a tendency to form physiological flux modules in metabolism.
Whole-machine calibration approach for phased array radar with self-test
NASA Astrophysics Data System (ADS)
Shen, Kai; Yao, Zhi-Cheng; Zhang, Jin-Chang; Yang, Jian
2017-06-01
The performance of the missile-borne phased array radar is greatly influenced by the inter-channel amplitude and phase inconsistencies. In order to ensure its performance, the amplitude and the phase characteristics of radar should be calibrated. Commonly used methods mainly focus on antenna calibration, such as FFT, REV, etc. However, the radar channel also contains T / R components, channels, ADC and messenger. In order to achieve on-based phased array radar amplitude information for rapid machine calibration and compensation, we adopt a high-precision plane scanning test platform for phase amplitude test. A calibration approach for the whole channel system based on the radar frequency source test is proposed. Finally, the advantages and the application prospect of this approach are analysed.
Fracture Tests of Etched Components Using a Focused Ion Beam Machine
NASA Technical Reports Server (NTRS)
Kuhn, Jonathan, L.; Fettig, Rainer K.; Moseley, S. Harvey; Kutyrev, Alexander S.; Orloff, Jon; Powers, Edward I. (Technical Monitor)
2000-01-01
Many optical MEMS device designs involve large arrays of thin (0.5 to 1 micron components subjected to high stresses due to cyclic loading. These devices are fabricated from a variety of materials, and the properties strongly depend on size and processing. Our objective is to develop standard and convenient test methods that can be used to measure the properties of large numbers of witness samples, for every device we build. In this work we explore a variety of fracture test configurations for 0.5 micron thick silicon nitride membranes machined using the Reactive Ion Etching (RIE) process. Testing was completed using an FEI 620 dual focused ion beam milling machine. Static loads were applied using a probe. and dynamic loads were applied through a piezo-electric stack mounted at the base of the probe. Results from the tests are presented and compared, and application for predicting fracture probability of large arrays of devices are considered.
Manufacturing Methods for High Speed Machining of Aluminum
1978-02-01
Tests 53 4.4.3 Intergrmnular Corrosion Tests. ........... 53 4.4.4 Cost Analysis . .. ............... . .. .... 60 4.5 Conclusions...Corporat~ion and Others to equuip an existing Uwidstvahd, five-axes, Modal as-i, oidail with a 20,000 rVIL 20 hOW~pse spindle, Based anresults obtained...economic analysis for high-speed machining wan also conducted by Metout, and the results are given in Section 11.0. Xn Section 12.0, conclusions and
Hydraulic Fatigue-Testing Machine
NASA Technical Reports Server (NTRS)
Hodo, James D.; Moore, Dennis R.; Morris, Thomas F.; Tiller, Newton G.
1987-01-01
Fatigue-testing machine applies fluctuating tension to number of specimens at same time. When sample breaks, machine continues to test remaining specimens. Series of tensile tests needed to determine fatigue properties of materials performed more rapidly than in conventional fatigue-testing machine.
[A new machinability test machine and the machinability of composite resins for core built-up].
Iwasaki, N
2001-06-01
A new machinability test machine especially for dental materials was contrived. The purpose of this study was to evaluate the effects of grinding conditions on machinability of core built-up resins using this machine, and to confirm the relationship between machinability and other properties of composite resins. The experimental machinability test machine consisted of a dental air-turbine handpiece, a control weight unit, a driving unit of the stage fixing the test specimen, and so on. The machinability was evaluated as the change in volume after grinding using a diamond point. Five kinds of core built-up resins and human teeth were used in this study. The machinabilities of these composite resins increased with an increasing load during grinding, and decreased with repeated grinding. There was no obvious correlation between the machinability and Vickers' hardness; however, a negative correlation was observed between machinability and scratch width.
Scholes, S C; Unsworth, A
2007-04-01
In an attempt to prolong the lives of rubbing implantable devices, several 'new' materials have been examined to determine their suitability as joint couplings. Tests were performed on a multidirectional pin-on-plate machine to determine the wear of both pitch and PAN (polyacrylonitrile)-based carbon fibre reinforced-polyetheretherketone (CFR-PEEK-OPTIMA) pins articulating against both BioLox Delta and BioLox Forte plates (ceramic materials). Both reciprocation and rotational motion were applied to the samples. The tests were conducted using 24.5 per cent bovine serum as the lubricant (protein concentration 15 g/l). Although all four material combinations gave similar low wear with no statistically significant difference (p > 0.25), the lowest average total wear of these pin-on-plate tests was provided by CFR-PEEK-OPTIMA pitch pins versus BioLox Forte plates. This was much lower than the wear produced by conventional joint materials (metal-on-polyethylene) and metal-on-metal combinations when tested on the pin-on-plate machine. This therefore indicates optimism that these PEEK-OPTIMA-based material combinations may perform well in joint applications.
Vibration Sensor Monitoring of Nickel-Titanium Alloy Turning for Machinability Evaluation.
Segreto, Tiziana; Caggiano, Alessandra; Karam, Sara; Teti, Roberto
2017-12-12
Nickel-Titanium (Ni-Ti) alloys are very difficult-to-machine materials causing notable manufacturing problems due to their unique mechanical properties, including superelasticity, high ductility, and severe strain-hardening. In this framework, the aim of this paper is to assess the machinability of Ni-Ti alloys with reference to turning processes in order to realize a reliable and robust in-process identification of machinability conditions. An on-line sensor monitoring procedure based on the acquisition of vibration signals was implemented during the experimental turning tests. The detected vibration sensorial data were processed through an advanced signal processing method in time-frequency domain based on wavelet packet transform (WPT). The extracted sensorial features were used to construct WPT pattern feature vectors to send as input to suitably configured neural networks (NNs) for cognitive pattern recognition in order to evaluate the correlation between input sensorial information and output machinability conditions.
Vibration Sensor Monitoring of Nickel-Titanium Alloy Turning for Machinability Evaluation
Segreto, Tiziana; Karam, Sara; Teti, Roberto
2017-01-01
Nickel-Titanium (Ni-Ti) alloys are very difficult-to-machine materials causing notable manufacturing problems due to their unique mechanical properties, including superelasticity, high ductility, and severe strain-hardening. In this framework, the aim of this paper is to assess the machinability of Ni-Ti alloys with reference to turning processes in order to realize a reliable and robust in-process identification of machinability conditions. An on-line sensor monitoring procedure based on the acquisition of vibration signals was implemented during the experimental turning tests. The detected vibration sensorial data were processed through an advanced signal processing method in time-frequency domain based on wavelet packet transform (WPT). The extracted sensorial features were used to construct WPT pattern feature vectors to send as input to suitably configured neural networks (NNs) for cognitive pattern recognition in order to evaluate the correlation between input sensorial information and output machinability conditions. PMID:29231864
Mwangi, Benson; Ebmeier, Klaus P; Matthews, Keith; Steele, J Douglas
2012-05-01
Quantitative abnormalities of brain structure in patients with major depressive disorder have been reported at a group level for decades. However, these structural differences appear subtle in comparison with conventional radiologically defined abnormalities, with considerable inter-subject variability. Consequently, it has not been possible to readily identify scans from patients with major depressive disorder at an individual level. Recently, machine learning techniques such as relevance vector machines and support vector machines have been applied to predictive classification of individual scans with variable success. Here we describe a novel hybrid method, which combines machine learning with feature selection and characterization, with the latter aimed at maximizing the accuracy of machine learning prediction. The method was tested using a multi-centre dataset of T(1)-weighted 'structural' scans. A total of 62 patients with major depressive disorder and matched controls were recruited from referred secondary care clinical populations in Aberdeen and Edinburgh, UK. The generalization ability and predictive accuracy of the classifiers was tested using data left out of the training process. High prediction accuracy was achieved (~90%). While feature selection was important for maximizing high predictive accuracy with machine learning, feature characterization contributed only a modest improvement to relevance vector machine-based prediction (~5%). Notably, while the only information provided for training the classifiers was T(1)-weighted scans plus a categorical label (major depressive disorder versus controls), both relevance vector machine and support vector machine 'weighting factors' (used for making predictions) correlated strongly with subjective ratings of illness severity. These results indicate that machine learning techniques have the potential to inform clinical practice and research, as they can make accurate predictions about brain scan data from individual subjects. Furthermore, machine learning weighting factors may reflect an objective biomarker of major depressive disorder illness severity, based on abnormalities of brain structure.
Kunimatsu, Akira; Kunimatsu, Natsuko; Yasaka, Koichiro; Akai, Hiroyuki; Kamiya, Kouhei; Watadani, Takeyuki; Mori, Harushi; Abe, Osamu
2018-05-16
Although advanced MRI techniques are increasingly available, imaging differentiation between glioblastoma and primary central nervous system lymphoma (PCNSL) is sometimes confusing. We aimed to evaluate the performance of image classification by support vector machine, a method of traditional machine learning, using texture features computed from contrast-enhanced T 1 -weighted images. This retrospective study on preoperative brain tumor MRI included 76 consecutives, initially treated patients with glioblastoma (n = 55) or PCNSL (n = 21) from one institution, consisting of independent training group (n = 60: 44 glioblastomas and 16 PCNSLs) and test group (n = 16: 11 glioblastomas and 5 PCNSLs) sequentially separated by time periods. A total set of 67 texture features was computed on routine contrast-enhanced T 1 -weighted images of the training group, and the top four most discriminating features were selected as input variables to train support vector machine classifiers. These features were then evaluated on the test group with subsequent image classification. The area under the receiver operating characteristic curves on the training data was calculated at 0.99 (95% confidence interval [CI]: 0.96-1.00) for the classifier with a Gaussian kernel and 0.87 (95% CI: 0.77-0.95) for the classifier with a linear kernel. On the test data, both of the classifiers showed prediction accuracy of 75% (12/16) of the test images. Although further improvement is needed, our preliminary results suggest that machine learning-based image classification may provide complementary diagnostic information on routine brain MRI.
NASA Astrophysics Data System (ADS)
Paradis, Daniel; Lefebvre, René; Gloaguen, Erwan; Rivera, Alfonso
2015-01-01
The spatial heterogeneity of hydraulic conductivity (K) exerts a major control on groundwater flow and solute transport. The heterogeneous spatial distribution of K can be imaged using indirect geophysical data as long as reliable relations exist to link geophysical data to K. This paper presents a nonparametric learning machine approach to predict aquifer K from cone penetrometer tests (CPT) coupled with a soil moisture and resistivity probe (SMR) using relevance vector machines (RVMs). The learning machine approach is demonstrated with an application to a heterogeneous unconsolidated littoral aquifer in a 12 km2 subwatershed, where relations between K and multiparameters CPT/SMR soundings appear complex. Our approach involved fuzzy clustering to define hydrofacies (HF) on the basis of CPT/SMR and K data prior to the training of RVMs for HFs recognition and K prediction on the basis of CPT/SMR data alone. The learning machine was built from a colocated training data set representative of the study area that includes K data from slug tests and CPT/SMR data up-scaled at a common vertical resolution of 15 cm with K data. After training, the predictive capabilities of the learning machine were assessed through cross validation with data withheld from the training data set and with K data from flowmeter tests not used during the training process. Results show that HF and K predictions from the learning machine are consistent with hydraulic tests. The combined use of CPT/SMR data and RVM-based learning machine proved to be powerful and efficient for the characterization of high-resolution K heterogeneity for unconsolidated aquifers.
Underground coal mine instrumentation and test
NASA Technical Reports Server (NTRS)
Burchill, R. F.; Waldron, W. D.
1976-01-01
The need to evaluate mechanical performance of mine tools and to obtain test performance data from candidate systems dictate that an engineering data recording system be built. Because of the wide range of test parameters which would be evaluated, a general purpose data gathering system was designed and assembled to permit maximum versatility. A primary objective of this program was to provide a specific operating evaluation of a longwall mining machine vibration response under normal operating conditions. A number of mines were visited and a candidate for test evaluation was selected, based upon management cooperation, machine suitability, and mine conditions. Actual mine testing took place in a West Virginia mine.
Zhang, Bin; He, Xin; Ouyang, Fusheng; Gu, Dongsheng; Dong, Yuhao; Zhang, Lu; Mo, Xiaokai; Huang, Wenhui; Tian, Jie; Zhang, Shuixing
2017-09-10
We aimed to identify optimal machine-learning methods for radiomics-based prediction of local failure and distant failure in advanced nasopharyngeal carcinoma (NPC). We enrolled 110 patients with advanced NPC. A total of 970 radiomic features were extracted from MRI images for each patient. Six feature selection methods and nine classification methods were evaluated in terms of their performance. We applied the 10-fold cross-validation as the criterion for feature selection and classification. We repeated each combination for 50 times to obtain the mean area under the curve (AUC) and test error. We observed that the combination methods Random Forest (RF) + RF (AUC, 0.8464 ± 0.0069; test error, 0.3135 ± 0.0088) had the highest prognostic performance, followed by RF + Adaptive Boosting (AdaBoost) (AUC, 0.8204 ± 0.0095; test error, 0.3384 ± 0.0097), and Sure Independence Screening (SIS) + Linear Support Vector Machines (LSVM) (AUC, 0.7883 ± 0.0096; test error, 0.3985 ± 0.0100). Our radiomics study identified optimal machine-learning methods for the radiomics-based prediction of local failure and distant failure in advanced NPC, which could enhance the applications of radiomics in precision oncology and clinical practice. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Marçais, J.; Gupta, H. V.; De Dreuzy, J. R.; Troch, P. A. A.
2016-12-01
Geomorphological structure and geological heterogeneity of hillslopes are major controls on runoff responses. The diversity of hillslopes (morphological shapes and geological structures) on one hand, and the highly non linear runoff mechanism response on the other hand, make it difficult to transpose what has been learnt at one specific hillslope to another. Therefore, making reliable predictions on runoff appearance or river flow for a given hillslope is a challenge. Applying a classic model calibration (based on inverse problems technique) requires doing it for each specific hillslope and having some data available for calibration. When applied to thousands of cases it cannot always be promoted. Here we propose a novel modeling framework based on coupling process based models with data based approach. First we develop a mechanistic model, based on hillslope storage Boussinesq equations (Troch et al. 2003), able to model non linear runoff responses to rainfall at the hillslope scale. Second we set up a model database, representing thousands of non calibrated simulations. These simulations investigate different hillslope shapes (real ones obtained by analyzing 5m digital elevation model of Brittany and synthetic ones), different hillslope geological structures (i.e. different parametrizations) and different hydrologic forcing terms (i.e. different infiltration chronicles). Then, we use this model library to train a machine learning model on this physically based database. Machine learning model performance is then assessed by a classic validating phase (testing it on new hillslopes and comparing machine learning with mechanistic outputs). Finally we use this machine learning model to learn what are the hillslope properties controlling runoffs. This methodology will be further tested combining synthetic datasets with real ones.
Jiang, Min; Chen, Yukun; Liu, Mei; Rosenbloom, S Trent; Mani, Subramani; Denny, Joshua C; Xu, Hua
2011-01-01
The authors' goal was to develop and evaluate machine-learning-based approaches to extracting clinical entities-including medical problems, tests, and treatments, as well as their asserted status-from hospital discharge summaries written using natural language. This project was part of the 2010 Center of Informatics for Integrating Biology and the Bedside/Veterans Affairs (VA) natural-language-processing challenge. The authors implemented a machine-learning-based named entity recognition system for clinical text and systematically evaluated the contributions of different types of features and ML algorithms, using a training corpus of 349 annotated notes. Based on the results from training data, the authors developed a novel hybrid clinical entity extraction system, which integrated heuristic rule-based modules with the ML-base named entity recognition module. The authors applied the hybrid system to the concept extraction and assertion classification tasks in the challenge and evaluated its performance using a test data set with 477 annotated notes. Standard measures including precision, recall, and F-measure were calculated using the evaluation script provided by the Center of Informatics for Integrating Biology and the Bedside/VA challenge organizers. The overall performance for all three types of clinical entities and all six types of assertions across 477 annotated notes were considered as the primary metric in the challenge. Systematic evaluation on the training set showed that Conditional Random Fields outperformed Support Vector Machines, and semantic information from existing natural-language-processing systems largely improved performance, although contributions from different types of features varied. The authors' hybrid entity extraction system achieved a maximum overall F-score of 0.8391 for concept extraction (ranked second) and 0.9313 for assertion classification (ranked fourth, but not statistically different than the first three systems) on the test data set in the challenge.
A Power Transformers Fault Diagnosis Model Based on Three DGA Ratios and PSO Optimization SVM
NASA Astrophysics Data System (ADS)
Ma, Hongzhe; Zhang, Wei; Wu, Rongrong; Yang, Chunyan
2018-03-01
In order to make up for the shortcomings of existing transformer fault diagnosis methods in dissolved gas-in-oil analysis (DGA) feature selection and parameter optimization, a transformer fault diagnosis model based on the three DGA ratios and particle swarm optimization (PSO) optimize support vector machine (SVM) is proposed. Using transforming support vector machine to the nonlinear and multi-classification SVM, establishing the particle swarm optimization to optimize the SVM multi classification model, and conducting transformer fault diagnosis combined with the cross validation principle. The fault diagnosis results show that the average accuracy of test method is better than the standard support vector machine and genetic algorithm support vector machine, and the proposed method can effectively improve the accuracy of transformer fault diagnosis is proved.
Detection of distorted frames in retinal video-sequences via machine learning
NASA Astrophysics Data System (ADS)
Kolar, Radim; Liberdova, Ivana; Odstrcilik, Jan; Hracho, Michal; Tornow, Ralf P.
2017-07-01
This paper describes detection of distorted frames in retinal sequences based on set of global features extracted from each frame. The feature vector is consequently used in classification step, in which three types of classifiers are tested. The best classification accuracy 96% has been achieved with support vector machine approach.
Performance testing of a high frequency link converter for Space Station power distribution system
NASA Technical Reports Server (NTRS)
Sul, S. K.; Alan, I.; Lipo, T. A.
1989-01-01
The testing of a brassboard version of a 20-kHz high-frequency ac voltage link prototype converter dynamics for Space Station application is presented. The converter is based on a three-phase six-pulse bridge concept. The testing includes details of the operation of the converter when it is driving an induction machine source/load. By adapting a field orientation controller (FOC) to the converter, four-quadrant operation of the induction machine from the converter has been achieved. Circuit modifications carried out to improve the performance of the converter are described. The performance of two 400-Hz induction machines powered by the converter with simple V/f regulation mode is reported. The testing and performance results for the converter utilizing the FOC, which provides the capability for rapid torque changes, speed reversal, and four-quadrant operation, are reported.
NASA Astrophysics Data System (ADS)
Iannitti, Gianluca; Bonora, Nicola; Gentile, Domenico; Ruggiero, Andrew; Testa, Gabriel; Gubbioni, Simone
2017-06-01
In this work, the mechanical behavior of Ti-6Al-4V obtained by additive manufacturing technique was investigated, also considering the build direction. Dog-bone shaped specimens and Taylor cylinders were machined from rods manufactured by means of the EOSSINT M2 80 machine, based on Direct Metal Laser Sintering technique. Tensile tests were performed at strain rate ranging from 5E-4 s-1 to 1000 s-1 using an Instron electromechanical machine for quasistatic tests and a Direct-Tension Split Hopkinson Bar for dynamic tests. The mechanical strength of the material was described by a Johnson-Cook model modified to account for stress saturation occurring at high strain. Taylor cylinder tests and their corresponding numerical simulations were carried out in order to validate the constitutive model under a complex deformation path, high strain rates, and high temperatures.
Osteoporosis risk prediction using machine learning and conventional methods.
Kim, Sung Kean; Yoo, Tae Keun; Oh, Ein; Kim, Deok Won
2013-01-01
A number of clinical decision tools for osteoporosis risk assessment have been developed to select postmenopausal women for the measurement of bone mineral density. We developed and validated machine learning models with the aim of more accurately identifying the risk of osteoporosis in postmenopausal women, and compared with the ability of a conventional clinical decision tool, osteoporosis self-assessment tool (OST). We collected medical records from Korean postmenopausal women based on the Korea National Health and Nutrition Surveys (KNHANES V-1). The training data set was used to construct models based on popular machine learning algorithms such as support vector machines (SVM), random forests (RF), artificial neural networks (ANN), and logistic regression (LR) based on various predictors associated with low bone density. The learning models were compared with OST. SVM had significantly better area under the curve (AUC) of the receiver operating characteristic (ROC) than ANN, LR, and OST. Validation on the test set showed that SVM predicted osteoporosis risk with an AUC of 0.827, accuracy of 76.7%, sensitivity of 77.8%, and specificity of 76.0%. We were the first to perform comparisons of the performance of osteoporosis prediction between the machine learning and conventional methods using population-based epidemiological data. The machine learning methods may be effective tools for identifying postmenopausal women at high risk for osteoporosis.
Damage detection in rotating machinery by means of entropy-based parameters
NASA Astrophysics Data System (ADS)
Tocarciuc, Alexandru; Bereteu, Liviu; ǎgǎnescu, Gheorghe Eugen, Dr
2014-11-01
The paper is proposing two new entropy-based parameters, namely Renyi Entropy Index (REI) and Sharma-Mittal Entropy Index (SMEI), for detecting the presence of failures (or damages) in rotating machinery, namely: belt structural damage, belt wheels misalignment, failure of the fixing bolt of the machine to its baseplate and eccentricities (i.e.: due to detaching a small piece of material or bad mounting of the rotating components of the machine). The algorithms to obtain the proposed entropy-based parameters are described and test data is used in order to assess their sensitivity. A vibration test bench is used for measuring the levels of vibration while artificially inducing damage. The deviation of the two entropy-based parameters is compared in two states of the vibration test bench: not damaged and damaged. At the end of the study, their sensitivity is compared to Shannon Entropic Index.
Improved transistor-controlled and commutated brushless DC motors for electric vehicle propulsion
NASA Technical Reports Server (NTRS)
Demerdash, N. A.; Miller, R. H.; Nehl, T. W.; Nyamusa, T. A.
1983-01-01
The development, design, construction, and testing processes of two electronically (transistor) controlled and commutated permanent magnet brushless dc machine systems, for propulsion of electric vehicles are detailed. One machine system was designed and constructed using samarium cobalt for permanent magnets, which supply the rotor (field) excitation. Meanwhile, the other machine system was designed and constructed with strontium ferrite permanent magnets as the source of rotor (field) excitation. These machine systems were designed for continuous rated power output of 15 hp (11.2 kw), and a peak one minute rated power output of 35 hp (26.1 kw). Both power ratings are for a rated voltage of 115 volts dc, assuming a voltage drop in the source (battery) of about 5 volts. That is, an internal source voltage of 120 volts dc. Machine-power conditioner system computer-aided simulations were used extensively in the design process. These simulations relied heavily on the magnetic field analysis in these machines using the method of finite elements, as well as methods of modeling of the machine power conditioner system dynamic interaction. These simulation processes are detailed. Testing revealed that typical machine system efficiencies at 15 hp (11.2 kw) were about 88% and 84% for the samarium cobalt and strontium ferrite based machine systems, respectively. Both systems met the peak one minute rating of 35 hp.
An analysis of a digital variant of the Trail Making Test using machine learning techniques.
Dahmen, Jessamyn; Cook, Diane; Fellows, Robert; Schmitter-Edgecombe, Maureen
2017-01-01
The goal of this work is to develop a digital version of a standard cognitive assessment, the Trail Making Test (TMT), and assess its utility. This paper introduces a novel digital version of the TMT and introduces a machine learning based approach to assess its capabilities. Using digital Trail Making Test (dTMT) data collected from (N = 54) older adult participants as feature sets, we use machine learning techniques to analyze the utility of the dTMT and evaluate the insights provided by the digital features. Predicted TMT scores correlate well with clinical digital test scores (r = 0.98) and paper time to completion scores (r = 0.65). Predicted TICS exhibited a small correlation with clinically derived TICS scores (r = 0.12 Part A, r = 0.10 Part B). Predicted FAB scores exhibited a small correlation with clinically derived FAB scores (r = 0.13 Part A, r = 0.29 for Part B). Digitally derived features were also used to predict diagnosis (AUC of 0.65). Our findings indicate that the dTMT is capable of measuring the same aspects of cognition as the paper-based TMT. Furthermore, the dTMT's additional data may be able to help monitor other cognitive processes not captured by the paper-based TMT alone.
NASA Astrophysics Data System (ADS)
Yu, Jianbo
2017-01-01
This study proposes an adaptive-learning-based method for machine faulty detection and health degradation monitoring. The kernel of the proposed method is an "evolving" model that uses an unsupervised online learning scheme, in which an adaptive hidden Markov model (AHMM) is used for online learning the dynamic health changes of machines in their full life. A statistical index is developed for recognizing the new health states in the machines. Those new health states are then described online by adding of new hidden states in AHMM. Furthermore, the health degradations in machines are quantified online by an AHMM-based health index (HI) that measures the similarity between two density distributions that describe the historic and current health states, respectively. When necessary, the proposed method characterizes the distinct operating modes of the machine and can learn online both abrupt as well as gradual health changes. Our method overcomes some drawbacks of the HIs (e.g., relatively low comprehensibility and applicability) based on fixed monitoring models constructed in the offline phase. Results from its application in a bearing life test reveal that the proposed method is effective in online detection and adaptive assessment of machine health degradation. This study provides a useful guide for developing a condition-based maintenance (CBM) system that uses an online learning method without considerable human intervention.
High Speed Turbo-Generator: Test Stand Simulator Including Turbine Engine Emulator
2010-07-30
15% Shaft Power 4% 8% Our model of the six-phase synchronous machine was based on work by Schiferl and Ong [1]. The six-phase synchronous machine is...develop and submit to ONR a follow-on proposal to address these open issues. 27 REFERENCES [1] R. F. Schiferl and C. M. Ong, "Six phase...at 32 References [Al] R. F. Schiferl and C. M. Ong, "Six phase synchronous machine with ac and dc stator connections, Part I: Equivalent Circuit
Concrete Condition Assessment Using Impact-Echo Method and Extreme Learning Machines
Zhang, Jing-Kui; Yan, Weizhong; Cui, De-Mi
2016-01-01
The impact-echo (IE) method is a popular non-destructive testing (NDT) technique widely used for measuring the thickness of plate-like structures and for detecting certain defects inside concrete elements or structures. However, the IE method is not effective for full condition assessment (i.e., defect detection, defect diagnosis, defect sizing and location), because the simple frequency spectrum analysis involved in the existing IE method is not sufficient to capture the IE signal patterns associated with different conditions. In this paper, we attempt to enhance the IE technique and enable it for full condition assessment of concrete elements by introducing advanced machine learning techniques for performing comprehensive analysis and pattern recognition of IE signals. Specifically, we use wavelet decomposition for extracting signatures or features out of the raw IE signals and apply extreme learning machine, one of the recently developed machine learning techniques, as classification models for full condition assessment. To validate the capabilities of the proposed method, we build a number of specimens with various types, sizes, and locations of defects and perform IE testing on these specimens in a lab environment. Based on analysis of the collected IE signals using the proposed machine learning based IE method, we demonstrate that the proposed method is effective in performing full condition assessment of concrete elements or structures. PMID:27023563
Stanislawski, Jerzy; Kotulska, Malgorzata; Unold, Olgierd
2013-01-17
Amyloids are proteins capable of forming fibrils. Many of them underlie serious diseases, like Alzheimer disease. The number of amyloid-associated diseases is constantly increasing. Recent studies indicate that amyloidogenic properties can be associated with short segments of aminoacids, which transform the structure when exposed. A few hundreds of such peptides have been experimentally found. Experimental testing of all possible aminoacid combinations is currently not feasible. Instead, they can be predicted by computational methods. 3D profile is a physicochemical-based method that has generated the most numerous dataset - ZipperDB. However, it is computationally very demanding. Here, we show that dataset generation can be accelerated. Two methods to increase the classification efficiency of amyloidogenic candidates are presented and tested: simplified 3D profile generation and machine learning methods. We generated a new dataset of hexapeptides, using more economical 3D profile algorithm, which showed very good classification overlap with ZipperDB (93.5%). The new part of our dataset contains 1779 segments, with 204 classified as amyloidogenic. The dataset of 6-residue sequences with their binary classification, based on the energy of the segment, was applied for training machine learning methods. A separate set of sequences from ZipperDB was used as a test set. The most effective methods were Alternating Decision Tree and Multilayer Perceptron. Both methods obtained area under ROC curve of 0.96, accuracy 91%, true positive rate ca. 78%, and true negative rate 95%. A few other machine learning methods also achieved a good performance. The computational time was reduced from 18-20 CPU-hours (full 3D profile) to 0.5 CPU-hours (simplified 3D profile) to seconds (machine learning). We showed that the simplified profile generation method does not introduce an error with regard to the original method, while increasing the computational efficiency. Our new dataset proved representative enough to use simple statistical methods for testing the amylogenicity based only on six letter sequences. Statistical machine learning methods such as Alternating Decision Tree and Multilayer Perceptron can replace the energy based classifier, with advantage of very significantly reduced computational time and simplicity to perform the analysis. Additionally, a decision tree provides a set of very easily interpretable rules.
Quinn, Mark Kenneth; Spinosa, Emanuele; Roberts, David A
2017-07-25
Measurements of pressure-sensitive paint (PSP) have been performed using new or non-scientific imaging technology based on machine vision tools. Machine vision camera systems are typically used for automated inspection or process monitoring. Such devices offer the benefits of lower cost and reduced size compared with typically scientific-grade cameras; however, their optical qualities and suitability have yet to be determined. This research intends to show relevant imaging characteristics and also show the applicability of such imaging technology for PSP. Details of camera performance are benchmarked and compared to standard scientific imaging equipment and subsequent PSP tests are conducted using a static calibration chamber. The findings demonstrate that machine vision technology can be used for PSP measurements, opening up the possibility of performing measurements on-board small-scale model such as those used for wind tunnel testing or measurements in confined spaces with limited optical access.
Spinosa, Emanuele; Roberts, David A.
2017-01-01
Measurements of pressure-sensitive paint (PSP) have been performed using new or non-scientific imaging technology based on machine vision tools. Machine vision camera systems are typically used for automated inspection or process monitoring. Such devices offer the benefits of lower cost and reduced size compared with typically scientific-grade cameras; however, their optical qualities and suitability have yet to be determined. This research intends to show relevant imaging characteristics and also show the applicability of such imaging technology for PSP. Details of camera performance are benchmarked and compared to standard scientific imaging equipment and subsequent PSP tests are conducted using a static calibration chamber. The findings demonstrate that machine vision technology can be used for PSP measurements, opening up the possibility of performing measurements on-board small-scale model such as those used for wind tunnel testing or measurements in confined spaces with limited optical access. PMID:28757553
Pre-use anesthesia machine check; certified anesthesia technician based quality improvement audit.
Al Suhaibani, Mazen; Al Malki, Assaf; Al Dosary, Saad; Al Barmawi, Hanan; Pogoku, Mahdhav
2014-01-01
Quality assurance of providing a work ready machine in multiple theatre operating rooms in a tertiary modern medical center in Riyadh. The aim of the following study is to keep high quality environment for workers and patients in surgical operating rooms. Technicians based audit by using key performance indicators to assure inspection, passing test of machine worthiness for use daily and in between cases and in case of unexpected failure to provide quick replacement by ready to use another anesthetic machine. The anesthetic machines in all operating rooms are daily and continuously inspected and passed as ready by technicians and verified by anesthesiologist consultant or assistant consultant. The daily records of each machines were collected then inspected for data analysis by quality improvement committee department for descriptive analysis and report the degree of staff compliance to daily inspection as "met" items. Replaced machine during use and overall compliance. Distractive statistic using Microsoft Excel 2003 tables and graphs of sums and percentages of item studied in this audit. Audit obtained highest compliance percentage and low rate of replacement of machine which indicate unexpected machine state of use and quick machine switch. The authors are able to conclude that following regular inspection and running self-check recommended by the manufacturers can contribute to abort any possibility of hazard of anesthesia machine failure during operation. Furthermore in case of unexpected reason to replace the anesthesia machine in quick maneuver contributes to high assured operative utilization of man machine inter-phase in modern surgical operating rooms.
Ikushima, Koujiro; Arimura, Hidetaka; Jin, Ze; Yabu-Uchi, Hidetake; Kuwazuru, Jumpei; Shioyama, Yoshiyuki; Sasaki, Tomonari; Honda, Hiroshi; Sasaki, Masayuki
2017-01-01
We have proposed a computer-assisted framework for machine-learning-based delineation of gross tumor volumes (GTVs) following an optimum contour selection (OCS) method. The key idea of the proposed framework was to feed image features around GTV contours (determined based on the knowledge of radiation oncologists) into a machine-learning classifier during the training step, after which the classifier produces the 'degree of GTV' for each voxel in the testing step. Initial GTV regions were extracted using a support vector machine (SVM) that learned the image features inside and outside each tumor region (determined by radiation oncologists). The leave-one-out-by-patient test was employed for training and testing the steps of the proposed framework. The final GTV regions were determined using the OCS method that can be used to select a global optimum object contour based on multiple active delineations with a LSM around the GTV. The efficacy of the proposed framework was evaluated in 14 lung cancer cases [solid: 6, ground-glass opacity (GGO): 4, mixed GGO: 4] using the 3D Dice similarity coefficient (DSC), which denotes the degree of region similarity between the GTVs contoured by radiation oncologists and those determined using the proposed framework. The proposed framework achieved an average DSC of 0.777 for 14 cases, whereas the OCS-based framework produced an average DSC of 0.507. The average DSCs for GGO and mixed GGO were 0.763 and 0.701, respectively, obtained by the proposed framework. The proposed framework can be employed as a tool to assist radiation oncologists in delineating various GTV regions. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
NASA Astrophysics Data System (ADS)
Kozhina, T. D.; Kurochkin, A. V.
2016-04-01
The paper highlights results of the investigative tests of GTE compressor Ti-alloy blades obtained by the method of electrochemical machining with oscillating tool-electrodes, carried out in order to define the optimal parameters of the ECM process providing attainment of specified blade quality parameters given in the design documentation, while providing maximal performance. The new technological methods suggested based on the results of the tests; in particular application of vibrating tool-electrodes and employment of locating elements made of high-strength materials, significantly extend the capabilities of this method.
Multi-parameter monitoring of electrical machines using integrated fibre Bragg gratings
NASA Astrophysics Data System (ADS)
Fabian, Matthias; Hind, David; Gerada, Chris; Sun, Tong; Grattan, Kenneth T. V.
2017-04-01
In this paper a sensor system for multi-parameter electrical machine condition monitoring is reported. The proposed FBG-based system allows for the simultaneous monitoring of machine vibration, rotor speed and position, torque, spinning direction, temperature distribution along the stator windings and on the rotor surface as well as the stator wave frequency. This all-optical sensing solution reduces the component count of conventional sensor systems, i.e., all 48 sensing elements are contained within the machine operated by a single sensing interrogation unit. In this work, the sensing system has been successfully integrated into and tested on a permanent magnet motor prototype.
Ship localization in Santa Barbara Channel using machine learning classifiers.
Niu, Haiqiang; Ozanich, Emma; Gerstoft, Peter
2017-11-01
Machine learning classifiers are shown to outperform conventional matched field processing for a deep water (600 m depth) ocean acoustic-based ship range estimation problem in the Santa Barbara Channel Experiment when limited environmental information is known. Recordings of three different ships of opportunity on a vertical array were used as training and test data for the feed-forward neural network and support vector machine classifiers, demonstrating the feasibility of machine learning methods to locate unseen sources. The classifiers perform well up to 10 km range whereas the conventional matched field processing fails at about 4 km range without accurate environmental information.
Impact resistance of guards on grinding machines.
Mewes, Detlef; Mewes, Olaf; Herbst, Peter
2011-01-01
Guards on machine tools are meant to protect persons from injuries caused by parts ejected with high kinetic energy from the machine's working zone. With respect to stationary grinding machines, Standard No. EN 13218:2002, therefore, specifies minimum wall thicknesses for guards. These values are mainly based on estimations and experience instead of systematic experimental investigations. This paper shows to what extent simple impact tests with standardizable projectiles can be used as basis for the evaluation of the impact resistance of guards, provided that not only the kinetic energy of the projectiles used but also, among others, their geometry corresponds to the abrasive product fragments to be expected.
A Sensor-Based Method for Diagnostics of Machine Tool Linear Axes.
Vogl, Gregory W; Weiss, Brian A; Donmez, M Alkan
2015-01-01
A linear axis is a vital subsystem of machine tools, which are vital systems within many manufacturing operations. When installed and operating within a manufacturing facility, a machine tool needs to stay in good condition for parts production. All machine tools degrade during operations, yet knowledge of that degradation is illusive; specifically, accurately detecting degradation of linear axes is a manual and time-consuming process. Thus, manufacturers need automated and efficient methods to diagnose the condition of their machine tool linear axes without disruptions to production. The Prognostics and Health Management for Smart Manufacturing Systems (PHM4SMS) project at the National Institute of Standards and Technology (NIST) developed a sensor-based method to quickly estimate the performance degradation of linear axes. The multi-sensor-based method uses data collected from a 'sensor box' to identify changes in linear and angular errors due to axis degradation; the sensor box contains inclinometers, accelerometers, and rate gyroscopes to capture this data. The sensors are expected to be cost effective with respect to savings in production losses and scrapped parts for a machine tool. Numerical simulations, based on sensor bandwidth and noise specifications, show that changes in straightness and angular errors could be known with acceptable test uncertainty ratios. If a sensor box resides on a machine tool and data is collected periodically, then the degradation of the linear axes can be determined and used for diagnostics and prognostics to help optimize maintenance, production schedules, and ultimately part quality.
A Sensor-Based Method for Diagnostics of Machine Tool Linear Axes
Vogl, Gregory W.; Weiss, Brian A.; Donmez, M. Alkan
2017-01-01
A linear axis is a vital subsystem of machine tools, which are vital systems within many manufacturing operations. When installed and operating within a manufacturing facility, a machine tool needs to stay in good condition for parts production. All machine tools degrade during operations, yet knowledge of that degradation is illusive; specifically, accurately detecting degradation of linear axes is a manual and time-consuming process. Thus, manufacturers need automated and efficient methods to diagnose the condition of their machine tool linear axes without disruptions to production. The Prognostics and Health Management for Smart Manufacturing Systems (PHM4SMS) project at the National Institute of Standards and Technology (NIST) developed a sensor-based method to quickly estimate the performance degradation of linear axes. The multi-sensor-based method uses data collected from a ‘sensor box’ to identify changes in linear and angular errors due to axis degradation; the sensor box contains inclinometers, accelerometers, and rate gyroscopes to capture this data. The sensors are expected to be cost effective with respect to savings in production losses and scrapped parts for a machine tool. Numerical simulations, based on sensor bandwidth and noise specifications, show that changes in straightness and angular errors could be known with acceptable test uncertainty ratios. If a sensor box resides on a machine tool and data is collected periodically, then the degradation of the linear axes can be determined and used for diagnostics and prognostics to help optimize maintenance, production schedules, and ultimately part quality. PMID:28691039
Detection of Splice Sites Using Support Vector Machine
NASA Astrophysics Data System (ADS)
Varadwaj, Pritish; Purohit, Neetesh; Arora, Bhumika
Automatic identification and annotation of exon and intron region of gene, from DNA sequences has been an important research area in field of computational biology. Several approaches viz. Hidden Markov Model (HMM), Artificial Intelligence (AI) based machine learning and Digital Signal Processing (DSP) techniques have extensively and independently been used by various researchers to cater this challenging task. In this work, we propose a Support Vector Machine based kernel learning approach for detection of splice sites (the exon-intron boundary) in a gene. Electron-Ion Interaction Potential (EIIP) values of nucleotides have been used for mapping character sequences to corresponding numeric sequences. Radial Basis Function (RBF) SVM kernel is trained using EIIP numeric sequences. Furthermore this was tested on test gene dataset for detection of splice site by window (of 12 residues) shifting. Optimum values of window size, various important parameters of SVM kernel have been optimized for a better accuracy. Receiver Operating Characteristic (ROC) curves have been utilized for displaying the sensitivity rate of the classifier and results showed 94.82% accuracy for splice site detection on test dataset.
The optional selection of micro-motion feature based on Support Vector Machine
NASA Astrophysics Data System (ADS)
Li, Bo; Ren, Hongmei; Xiao, Zhi-he; Sheng, Jing
2017-11-01
Micro-motion form of target is multiple, different micro-motion forms are apt to be modulated, which makes it difficult for feature extraction and recognition. Aiming at feature extraction of cone-shaped objects with different micro-motion forms, this paper proposes the best selection method of micro-motion feature based on support vector machine. After the time-frequency distribution of radar echoes, comparing the time-frequency spectrum of objects with different micro-motion forms, features are extracted based on the differences between the instantaneous frequency variations of different micro-motions. According to the methods based on SVM (Support Vector Machine) features are extracted, then the best features are acquired. Finally, the result shows the method proposed in this paper is feasible under the test condition of certain signal-to-noise ratio(SNR).
Testing Machine for Biaxial Loading
NASA Technical Reports Server (NTRS)
Demonet, R. J.; Reeves, R. D.
1985-01-01
Standard tensile-testing machine applies bending and tension simultaneously. Biaxial-loading test machine created by adding two test fixtures to commercial tensile-testing machine. Bending moment applied by substrate-deformation fixture comprising yoke and anvil block. Pneumatic tension-load fixture pulls up on bracket attached to top surface of specimen. Tension and deflection measured with transducers. Modified test apparatus originally developed to load-test Space Shuttle surface-insulation tiles and particuarly important for composite structures.
Automation of energy demand forecasting
NASA Astrophysics Data System (ADS)
Siddique, Sanzad
Automation of energy demand forecasting saves time and effort by searching automatically for an appropriate model in a candidate model space without manual intervention. This thesis introduces a search-based approach that improves the performance of the model searching process for econometrics models. Further improvements in the accuracy of the energy demand forecasting are achieved by integrating nonlinear transformations within the models. This thesis introduces machine learning techniques that are capable of modeling such nonlinearity. Algorithms for learning domain knowledge from time series data using the machine learning methods are also presented. The novel search based approach and the machine learning models are tested with synthetic data as well as with natural gas and electricity demand signals. Experimental results show that the model searching technique is capable of finding an appropriate forecasting model. Further experimental results demonstrate an improved forecasting accuracy achieved by using the novel machine learning techniques introduced in this thesis. This thesis presents an analysis of how the machine learning techniques learn domain knowledge. The learned domain knowledge is used to improve the forecast accuracy.
Reducing Sweeping Frequencies in Microwave NDT Employing Machine Learning Feature Selection
Moomen, Abdelniser; Ali, Abdulbaset; Ramahi, Omar M.
2016-01-01
Nondestructive Testing (NDT) assessment of materials’ health condition is useful for classifying healthy from unhealthy structures or detecting flaws in metallic or dielectric structures. Performing structural health testing for coated/uncoated metallic or dielectric materials with the same testing equipment requires a testing method that can work on metallics and dielectrics such as microwave testing. Reducing complexity and expenses associated with current diagnostic practices of microwave NDT of structural health requires an effective and intelligent approach based on feature selection and classification techniques of machine learning. Current microwave NDT methods in general based on measuring variation in the S-matrix over the entire operating frequency ranges of the sensors. For instance, assessing the health of metallic structures using a microwave sensor depends on the reflection or/and transmission coefficient measurements as a function of the sweeping frequencies of the operating band. The aim of this work is reducing sweeping frequencies using machine learning feature selection techniques. By treating sweeping frequencies as features, the number of top important features can be identified, then only the most influential features (frequencies) are considered when building the microwave NDT equipment. The proposed method of reducing sweeping frequencies was validated experimentally using a waveguide sensor and a metallic plate with different cracks. Among the investigated feature selection techniques are information gain, gain ratio, relief, chi-squared. The effectiveness of the selected features were validated through performance evaluations of various classification models; namely, Nearest Neighbor, Neural Networks, Random Forest, and Support Vector Machine. Results showed good crack classification accuracy rates after employing feature selection algorithms. PMID:27104533
Autonomous Scanning Probe Microscopy in Situ Tip Conditioning through Machine Learning.
Rashidi, Mohammad; Wolkow, Robert A
2018-05-23
Atomic-scale characterization and manipulation with scanning probe microscopy rely upon the use of an atomically sharp probe. Here we present automated methods based on machine learning to automatically detect and recondition the quality of the probe of a scanning tunneling microscope. As a model system, we employ these techniques on the technologically relevant hydrogen-terminated silicon surface, training the network to recognize abnormalities in the appearance of surface dangling bonds. Of the machine learning methods tested, a convolutional neural network yielded the greatest accuracy, achieving a positive identification of degraded tips in 97% of the test cases. By using multiple points of comparison and majority voting, the accuracy of the method is improved beyond 99%.
Application of Metamorphic Testing to Supervised Classifiers
Xie, Xiaoyuan; Ho, Joshua; Kaiser, Gail; Xu, Baowen; Chen, Tsong Yueh
2010-01-01
Many applications in the field of scientific computing - such as computational biology, computational linguistics, and others - depend on Machine Learning algorithms to provide important core functionality to support solutions in the particular problem domains. However, it is difficult to test such applications because often there is no “test oracle” to indicate what the correct output should be for arbitrary input. To help address the quality of such software, in this paper we present a technique for testing the implementations of supervised machine learning classification algorithms on which such scientific computing software depends. Our technique is based on an approach called “metamorphic testing”, which has been shown to be effective in such cases. More importantly, we demonstrate that our technique not only serves the purpose of verification, but also can be applied in validation. In addition to presenting our technique, we describe a case study we performed on a real-world machine learning application framework, and discuss how programmers implementing machine learning algorithms can avoid the common pitfalls discovered in our study. We also discuss how our findings can be of use to other areas outside scientific computing, as well. PMID:21243103
Applying machine learning to identify autistic adults using imitation: An exploratory study.
Li, Baihua; Sharma, Arjun; Meng, James; Purushwalkam, Senthil; Gowen, Emma
2017-01-01
Autism spectrum condition (ASC) is primarily diagnosed by behavioural symptoms including social, sensory and motor aspects. Although stereotyped, repetitive motor movements are considered during diagnosis, quantitative measures that identify kinematic characteristics in the movement patterns of autistic individuals are poorly studied, preventing advances in understanding the aetiology of motor impairment, or whether a wider range of motor characteristics could be used for diagnosis. The aim of this study was to investigate whether data-driven machine learning based methods could be used to address some fundamental problems with regard to identifying discriminative test conditions and kinematic parameters to classify between ASC and neurotypical controls. Data was based on a previous task where 16 ASC participants and 14 age, IQ matched controls observed then imitated a series of hand movements. 40 kinematic parameters extracted from eight imitation conditions were analysed using machine learning based methods. Two optimal imitation conditions and nine most significant kinematic parameters were identified and compared with some standard attribute evaluators. To our knowledge, this is the first attempt to apply machine learning to kinematic movement parameters measured during imitation of hand movements to investigate the identification of ASC. Although based on a small sample, the work demonstrates the feasibility of applying machine learning methods to analyse high-dimensional data and suggest the potential of machine learning for identifying kinematic biomarkers that could contribute to the diagnostic classification of autism.
A Novel Approach for Lie Detection Based on F-Score and Extreme Learning Machine
Gao, Junfeng; Wang, Zhao; Yang, Yong; Zhang, Wenjia; Tao, Chunyi; Guan, Jinan; Rao, Nini
2013-01-01
A new machine learning method referred to as F-score_ELM was proposed to classify the lying and truth-telling using the electroencephalogram (EEG) signals from 28 guilty and innocent subjects. Thirty-one features were extracted from the probe responses from these subjects. Then, a recently-developed classifier called extreme learning machine (ELM) was combined with F-score, a simple but effective feature selection method, to jointly optimize the number of the hidden nodes of ELM and the feature subset by a grid-searching training procedure. The method was compared to two classification models combining principal component analysis with back-propagation network and support vector machine classifiers. We thoroughly assessed the performance of these classification models including the training and testing time, sensitivity and specificity from the training and testing sets, as well as network size. The experimental results showed that the number of the hidden nodes can be effectively optimized by the proposed method. Also, F-score_ELM obtained the best classification accuracy and required the shortest training and testing time. PMID:23755136
Dynamic analysis and vibration testing of CFRP drive-line system used in heavy-duty machine tool
NASA Astrophysics Data System (ADS)
Yang, Mo; Gui, Lin; Hu, Yefa; Ding, Guoping; Song, Chunsheng
2018-03-01
Low critical rotary speed and large vibration in the metal drive-line system of heavy-duty machine tool affect the machining precision seriously. Replacing metal drive-line with the CFRP drive-line can effectively solve this problem. Based on the composite laminated theory and the transfer matrix method (TMM), this paper puts forward a modified TMM to analyze dynamic characteristics of CFRP drive-line system. With this modified TMM, the CFRP drive-line of a heavy vertical miller is analyzed. And the finite element modal analysis model of the shafting is established. The results of the modified TMM and finite element analysis (FEA) show that the modified TMM can effectively predict the critical rotary speed of CFRP drive-line. And the critical rotary speed of CFRP drive-line is 20% higher than that of the original metal drive-line. Then, the vibration of the CFRP and the metal drive-line were tested. The test results show that application of the CFRP drive shaft in the drive-line can effectively reduce the vibration of the heavy-duty machine tool.
A Wireless 32-Channel Implantable Bidirectional Brain Machine Interface
Su, Yi; Routhu, Sudhamayee; Moon, Kee S.; Lee, Sung Q.; Youm, WooSub; Ozturk, Yusuf
2016-01-01
All neural information systems (NIS) rely on sensing neural activity to supply commands and control signals for computers, machines and a variety of prosthetic devices. Invasive systems achieve a high signal-to-noise ratio (SNR) by eliminating the volume conduction problems caused by tissue and bone. An implantable brain machine interface (BMI) using intracortical electrodes provides excellent detection of a broad range of frequency oscillatory activities through the placement of a sensor in direct contact with cortex. This paper introduces a compact-sized implantable wireless 32-channel bidirectional brain machine interface (BBMI) to be used with freely-moving primates. The system is designed to monitor brain sensorimotor rhythms and present current stimuli with a configurable duration, frequency and amplitude in real time to the brain based on the brain activity report. The battery is charged via a novel ultrasonic wireless power delivery module developed for efficient delivery of power into a deeply-implanted system. The system was successfully tested through bench tests and in vivo tests on a behaving primate to record the local field potential (LFP) oscillation and stimulate the target area at the same time. PMID:27669264
Detection of Cutting Tool Wear using Statistical Analysis and Regression Model
NASA Astrophysics Data System (ADS)
Ghani, Jaharah A.; Rizal, Muhammad; Nuawi, Mohd Zaki; Haron, Che Hassan Che; Ramli, Rizauddin
2010-10-01
This study presents a new method for detecting the cutting tool wear based on the measured cutting force signals. A statistical-based method called Integrated Kurtosis-based Algorithm for Z-Filter technique, called I-kaz was used for developing a regression model and 3D graphic presentation of I-kaz 3D coefficient during machining process. The machining tests were carried out using a CNC turning machine Colchester Master Tornado T4 in dry cutting condition. A Kistler 9255B dynamometer was used to measure the cutting force signals, which were transmitted, analyzed, and displayed in the DasyLab software. Various force signals from machining operation were analyzed, and each has its own I-kaz 3D coefficient. This coefficient was examined and its relationship with flank wear lands (VB) was determined. A regression model was developed due to this relationship, and results of the regression model shows that the I-kaz 3D coefficient value decreases as tool wear increases. The result then is used for real time tool wear monitoring.
Ammunition Loading and Firing Test Pretest Physical Conditioning of Female Soldier Participants
1978-10-01
appear to be a significant improvement considering that Cooper’s values are based upon women running it, shorts and tennis shoes as opposed to the Ss who...machine. of the other, facing machine between handles. 2. Grasp lift handles. 2. Squat down, bending at knees and hips, and 3. "Pin" elbows to your side
7. ROCKET SLED ON DECK OF TEST STAND 15. Photo ...
7. ROCKET SLED ON DECK OF TEST STAND 1-5. Photo no. "6085, G-EAFB-16 SEP 52." Looking south to machine shop. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
Constitutive Model Calibration via Autonomous Multiaxial Experimentation (Postprint)
2016-09-17
test machine. Experimental data is reduced and finite element simulations are conducted in parallel with the test based on experimental strain...data is reduced and finite element simulations are conducted in parallel with the test based on experimental strain conditions. Optimization methods...be used directly in finite element simulations of more complex geometries. Keywords Axial/torsional experimentation • Plasticity • Constitutive model
Hotz, Christine S; Templeton, Steven J; Christopher, Mary M
2005-03-01
A rule-based expert system using CLIPS programming language was created to classify body cavity effusions as transudates, modified transudates, exudates, chylous, and hemorrhagic effusions. The diagnostic accuracy of the rule-based system was compared with that produced by 2 machine-learning methods: Rosetta, a rough sets algorithm and RIPPER, a rule-induction method. Results of 508 body cavity fluid analyses (canine, feline, equine) obtained from the University of California-Davis Veterinary Medical Teaching Hospital computerized patient database were used to test CLIPS and to test and train RIPPER and Rosetta. The CLIPS system, using 17 rules, achieved an accuracy of 93.5% compared with pathologist consensus diagnoses. Rosetta accurately classified 91% of effusions by using 5,479 rules. RIPPER achieved the greatest accuracy (95.5%) using only 10 rules. When the original rules of the CLIPS application were replaced with those of RIPPER, the accuracy rates were identical. These results suggest that both rule-based expert systems and machine-learning methods hold promise for the preliminary classification of body fluids in the clinical laboratory.
Ngo, T-D; Tran, T-D; Le, M-T; Thai, K-M
2016-09-01
The efflux pumps P-glycoprotein (P-gp) in humans and NorA in Staphylococcus aureus are of great interest for medicinal chemists because of their important roles in multidrug resistance (MDR). The high polyspecificity as well as the unavailability of high-resolution X-ray crystal structures of these transmembrane proteins lead us to combining ligand-based approaches, which in the case of this study were machine learning, perceptual mapping and pharmacophore modelling. For P-gp inhibitory activity, individual models were developed using different machine learning algorithms and subsequently combined into an ensemble model which showed a good discrimination between inhibitors and noninhibitors (acctrain-diverse = 84%; accinternal-test = 92% and accexternal-test = 100%). For ligand promiscuity between P-gp and NorA, perceptual maps and pharmacophore models were generated for the detection of rules and features. Based on these in silico tools, hit compounds for reversing MDR were discovered from the in-house and DrugBank databases through virtual screening in an attempt to restore drug sensitivity in cancer cells and bacteria.
Patterson, Olga V; Forbush, Tyler B; Saini, Sameer D; Moser, Stephanie E; DuVall, Scott L
2015-01-01
In order to measure the level of utilization of colonoscopy procedures, identifying the primary indication for the procedure is required. Colonoscopies may be utilized not only for screening, but also for diagnostic or therapeutic purposes. To determine whether a colonoscopy was performed for screening, we created a natural language processing system to identify colonoscopy reports in the electronic medical record system and extract indications for the procedure. A rule-based model and three machine-learning models were created using 2,000 manually annotated clinical notes of patients cared for in the Department of Veterans Affairs. Performance of the models was measured and compared. Analysis of the models on a test set of 1,000 documents indicates that the rule-based system performance stays fairly constant as evaluated on training and testing sets. However, the machine learning model without feature selection showed significant decrease in performance. Therefore, rule-based classification system appears to be more robust than a machine-learning system in cases when no feature selection is performed.
Effects of Selected Task Performance Criteria at Initiating Adaptive Task Real locations
NASA Technical Reports Server (NTRS)
Montgomery, Demaris A.
2001-01-01
In the current report various performance assessment methods used to initiate mode transfers between manual control and automation for adaptive task reallocation were tested. Participants monitored two secondary tasks for critical events while actively controlling a process in a fictional system. One of the secondary monitoring tasks could be automated whenever operators' performance was below acceptable levels. Automation of the secondary task and transfer of the secondary task back to manual control were either human- or machine-initiated. Human-initiated transfers were based on the operator's assessment of the current task demands while machine-initiated transfers were based on the operators' performance. Different performance assessment methods were tested in two separate experiments.
An Analysis of a Digital Variant of the Trail Making Test Using Machine Learning Techniques
Dahmen, Jessamyn; Cook, Diane; Fellows, Robert; Schmitter-Edgecombe, Maureen
2017-01-01
BACKGROUND The goal of this work is to develop a digital version of a standard cognitive assessment, the Trail Making Test (TMT), and assess its utility. OBJECTIVE This paper introduces a novel digital version of the TMT and introduces a machine learning based approach to assess its capabilities. METHODS Using digital Trail Making Test (dTMT) data collected from (N=54) older adult participants as feature sets, we use machine learning techniques to analyze the utility of the dTMT and evaluate the insights provided by the digital features. RESULTS Predicted TMT scores correlate well with clinical digital test scores (r=0.98) and paper time to completion scores (r=0.65). Predicted TICS exhibited a small correlation with clinically-derived TICS scores (r=0.12 Part A, r=0.10 Part B). Predicted FAB scores exhibited a small correlation with clinically-derived FAB scores (r=0.13 Part A, r=0.29 for Part B). Digitally-derived features were also used to predict diagnosis (AUC of 0.65). CONCLUSION Our findings indicate that the dTMT is capable of measuring the same aspects of cognition as the paper-based TMT. Furthermore, the dTMT’s additional data may be able to help monitor other cognitive processes not captured by the paper-based TMT alone. PMID:27886019
Programming and machining of complex parts based on CATIA solid modeling
NASA Astrophysics Data System (ADS)
Zhu, Xiurong
2017-09-01
The complex parts of the use of CATIA solid modeling programming and simulation processing design, elaborated in the field of CNC machining, programming and the importance of processing technology. In parts of the design process, first make a deep analysis on the principle, and then the size of the design, the size of each chain, connected to each other. After the use of backstepping and a variety of methods to calculate the final size of the parts. In the selection of parts materials, careful study, repeated testing, the final choice of 6061 aluminum alloy. According to the actual situation of the processing site, it is necessary to make a comprehensive consideration of various factors in the machining process. The simulation process should be based on the actual processing, not only pay attention to shape. It can be used as reference for machining.
[Study on high strength mica-based machinable glass-ceramic].
Li, Hong; Ran, Junguo; Gou, Li; Wang, Fanghu
2004-02-01
The phase constitution, microstructure and properties of a new type of machinable glass-ceramics containing fluorophlogopite-type (FPT) Ca-mica for used in restorative dentistry were investigated. According to the results of X-ray diffraction (XRD) and energy-dispersive spectrometry(EDS), its main crystalline phases were FPT Ca-mica and t-ZrO2, together with few KxCa(1-x)/2Mg2Si4O10F2, m-ZrO2. The flexible strength was 235 MPa, which was nearly two times larger than that of the present mica-based dental materials, and the highest fracture toughness was 2.17 MPa.m1/2. The microstructure had a great effect on properties, the glass-ceramics contained a large volume, and the fine crystals showed higher strength. The material possessed typical microstructure of machinable glass-ceramics and displayed excellent machinability during drilling test and CAD/CAM.
Machine learning methods in chemoinformatics
Mitchell, John B O
2014-01-01
Machine learning algorithms are generally developed in computer science or adjacent disciplines and find their way into chemical modeling by a process of diffusion. Though particular machine learning methods are popular in chemoinformatics and quantitative structure–activity relationships (QSAR), many others exist in the technical literature. This discussion is methods-based and focused on some algorithms that chemoinformatics researchers frequently use. It makes no claim to be exhaustive. We concentrate on methods for supervised learning, predicting the unknown property values of a test set of instances, usually molecules, based on the known values for a training set. Particularly relevant approaches include Artificial Neural Networks, Random Forest, Support Vector Machine, k-Nearest Neighbors and naïve Bayes classifiers. WIREs Comput Mol Sci 2014, 4:468–481. How to cite this article: WIREs Comput Mol Sci 2014, 4:468–481. doi:10.1002/wcms.1183 PMID:25285160
Lee, Da-Sheng
2010-01-01
Chip-based DNA quantification systems are widespread, and used in many point-of-care applications. However, instruments for such applications may not be maintained or calibrated regularly. Since machine reliability is a key issue for normal operation, this study presents a system model of the real-time Polymerase Chain Reaction (PCR) machine to analyze the instrument design through numerical experiments. Based on model analysis, a systematic approach was developed to lower the variation of DNA quantification and achieve a robust design for a real-time PCR-on-a-chip system. Accelerated lift testing was adopted to evaluate the reliability of the chip prototype. According to the life test plan, this proposed real-time PCR-on-a-chip system was simulated to work continuously for over three years with similar reproducibility in DNA quantification. This not only shows the robustness of the lab-on-a-chip system, but also verifies the effectiveness of our systematic method for achieving a robust design.
Development of a CPM Machine for Injured Fingers.
Fu, Yili; Zhang, Fuxiang; Ma, Xin; Meng, Qinggang
2005-01-01
Human fingers are easy to be injured. A CPM machine is a mechanism based on the rehabilitation theory of continuous passive motion (CPM). To develop a CPM machine for the clinic application in the rehabilitation of injured fingers is a significant task. Therefore, based on the theories of evidence based medicine (EBM) and CPM, we've developed a set of biomimetic mechanism after modeling the motions of fingers and analyzing its kinematics and dynamics analysis. We also design an embedded operating system based on ARM (a kind of 32-bit RISC microprocessor). The equipment can achieve the precise control of moving scope of fingers, finger's force and speed. It can serves as a rational checking method and a way of assessment for functional rehabilitation of human hands. Now, the first prototype has been finished and will start the clinical testing in Harbin Medical University shortly.
Measurement of W + bb and a search for MSSM Higgs bosons with the CMS detector at the LHC
NASA Astrophysics Data System (ADS)
O'Connor, Alexander Pinpin
Tooling used to cure composite laminates in the aerospace and automotive industries must provide a dimensionally stable geometry throughout the thermal cycle applied during the part curing process. This requires that the Coefficient of Thermal Expansion (CTE) of the tooling materials match that of the composite being cured. The traditional tooling material for production applications is a nickel alloy. Poor machinability and high material costs increase the expense of metallic tooling made from nickel alloys such as 'Invar 36' or 'Invar 42'. Currently, metallic tooling is unable to meet the needs of applications requiring rapid affordable tooling solutions. In applications where the tooling is not required to have the durability provided by metals, such as for small area repair, an opportunity exists for non-metallic tooling materials like graphite, carbon foams, composites, or ceramics and machinable glasses. Nevertheless, efficient machining of brittle, non-metallic materials is challenging due to low ductility, porosity, and high hardness. The machining of a layup tool comprises a large portion of the final cost. Achieving maximum process economy requires optimization of the machining process in the given tooling material. Therefore, machinability of the tooling material is a critical aspect of the overall cost of the tool. In this work, three commercially available, brittle/porous, non-metallic candidate tooling materials were selected, namely: (AAC) Autoclaved Aerated Concrete, CB1100 ceramic block and Cfoam carbon foam. Machining tests were conducted in order to evaluate the machinability of these materials using end milling. Chip formation, cutting forces, cutting tool wear, machining induced damage, surface quality and surface integrity were investigated using High Speed Steel (HSS), carbide, diamond abrasive and Polycrystalline Diamond (PCD) cutting tools. Cutting forces were found to be random in magnitude, which was a result of material porosity. The abrasive nature of Cfoam produced rapid tool wear when using HSS and PCD type cutting tools. However, tool wear was not significant in AAC or CB1100 regardless of the type of cutting edge. Machining induced damage was observed in the form of macro-scale chipping and fracture in combination with micro-scale cracking. Transverse rupture test results revealed significant reductions in residual strength and damage tolerance in CB1100. In contrast, AAC and Cfoam showed no correlation between machining induced damage and a reduction in surface integrity. Cutting forces in machining were modeled for all materials. Cutting force regression models were developed based on Design of Experiment and Analysis of Variance. A mechanistic cutting force model was proposed based upon conventional end milling force models and statistical distributions of material porosity. In order to validate the model, predicted cutting forces were compared to experimental results. Predicted cutting forces agreed well with experimental measurements. Furthermore, over the range of cutting conditions tested, the proposed model was shown to have comparable predictive accuracy to empirically produced regression models; greatly reducing the number of cutting tests required to simulate cutting forces. Further, this work demonstrates a key adaptation of metallic cutting force models to brittle porous material; a vital step in the research into the machining of these materials using end milling.
NASA Technical Reports Server (NTRS)
Prater, T.; Tilson, W.; Jones, Z.
2015-01-01
The absence of an economy of scale in spaceflight hardware makes additive manufacturing an immensely attractive option for propulsion components. As additive manufacturing techniques are increasingly adopted by government and industry to produce propulsion hardware in human-rated systems, significant development efforts are needed to establish these methods as reliable alternatives to conventional subtractive manufacturing. One of the critical challenges facing powder bed fusion techniques in this application is variability between machines used to perform builds. Even with implementation of robust process controls, it is possible for two machines operating at identical parameters with equivalent base materials to produce specimens with slightly different material properties. The machine variability study presented here evaluates 60 specimens of identical geometry built using the same parameters. 30 samples were produced on machine 1 (M1) and the other 30 samples were built on machine 2 (M2). Each of the 30-sample sets were further subdivided into three subsets (with 10 specimens in each subset) to assess the effect of progressive heat treatment on machine variability. The three categories for post-processing were: stress relief, stress relief followed by hot isostatic press (HIP), and stress relief followed by HIP followed by heat treatment per AMS 5664. Each specimen (a round, smooth tensile) was mechanically tested per ASTM E8. Two formal statistical techniques, hypothesis testing for equivalency of means and one-way analysis of variance (ANOVA), were applied to characterize the impact of machine variability and heat treatment on six material properties: tensile stress, yield stress, modulus of elasticity, fracture elongation, and reduction of area. This work represents the type of development effort that is critical as NASA, academia, and the industrial base work collaboratively to establish a path to certification for additively manufactured parts. For future flight programs, NASA and its commercial partners will procure parts from vendors who will use a diverse range of machines to produce parts and, as such, it is essential that the AM community develop a sound understanding of the degree to which machine variability impacts material properties.
5. NORTH REAR, EAST PART, SHOWING ESCAPE HATCH. TEST STAND ...
5. NORTH REAR, EAST PART, SHOWING ESCAPE HATCH. TEST STAND 1-3 AND ITS MACHINE SHOP ARE IN MIDDLE DISTANCE. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Instrumentation & Control Building, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
Research on the EDM Technology for Micro-holes at Complex Spatial Locations
NASA Astrophysics Data System (ADS)
Y Liu, J.; Guo, J. M.; Sun, D. J.; Cai, Y. H.; Ding, L. T.; Jiang, H.
2017-12-01
For the demands on machining micro-holes at complex spatial location, several key technical problems are conquered such as micro-Electron Discharge Machining (micro-EDM) power supply system’s development, the host structure’s design and machining process technical. Through developing low-voltage power supply circuit, high-voltage circuit, micro and precision machining circuit and clearance detection system, the narrow pulse and high frequency six-axis EDM machining power supply system is developed to meet the demands on micro-hole discharging machining. With the method of combining the CAD structure design, CAE simulation analysis, modal test, ODS (Operational Deflection Shapes) test and theoretical analysis, the host construction and key axes of the machine tool are optimized to meet the position demands of the micro-holes. Through developing the special deionized water filtration system to make sure that the machining process is stable enough. To verify the machining equipment and processing technical developed in this paper through developing the micro-hole’s processing flow and test on the real machine tool. As shown in the final test results: the efficient micro-EDM machining pulse power supply system, machine tool host system, deionized filtration system and processing method developed in this paper meet the demands on machining micro-holes at complex spatial locations.
Experimental investigation of the tip based micro/nano machining
NASA Astrophysics Data System (ADS)
Guo, Z.; Tian, Y.; Liu, X.; Wang, F.; Zhou, C.; Zhang, D.
2017-12-01
Based on the self-developed three dimensional micro/nano machining system, the effects of machining parameters and sample material on micro/nano machining are investigated. The micro/nano machining system is mainly composed of the probe system and micro/nano positioning stage. The former is applied to control the normal load and the latter is utilized to realize high precision motion in the xy plane. A sample examination method is firstly introduced to estimate whether the sample is placed horizontally. The machining parameters include scratching direction, speed, cycles, normal load and feed. According to the experimental results, the scratching depth is significantly affected by the normal load in all four defined scratching directions but is rarely influenced by the scratching speed. The increase of scratching cycle number can increase the scratching depth as well as smooth the groove wall. In addition, the scratching tests of silicon and copper attest that the harder material is easier to be removed. In the scratching with different feed amount, the machining results indicate that the machined depth increases as the feed reduces. Further, a cubic polynomial is used to fit the experimental results to predict the scratching depth. With the selected machining parameters of scratching direction d3/d4, scratching speed 5 μm/s and feed 0.06 μm, some more micro structures including stair, sinusoidal groove, Chinese character '田', 'TJU' and Chinese panda have been fabricated on the silicon substrate.
USDA-ARS?s Scientific Manuscript database
Strip lateral flow assays, similar to a home pregnancy test, are used widely in food safety applications to provide rapid and accurate tests for the presence of specific foodborne pathogens or other contaminants. Though these tests are very rapid, they are not very sensitive, are not quantitative, a...
A 'Turing' Test for Landscape Evolution Models
NASA Astrophysics Data System (ADS)
Parsons, A. J.; Wise, S. M.; Wainwright, J.; Swift, D. A.
2008-12-01
Resolving the interactions among tectonics, climate and surface processes at long timescales has benefited from the development of computer models of landscape evolution. However, testing these Landscape Evolution Models (LEMs) has been piecemeal and partial. We argue that a more systematic approach is required. What is needed is a test that will establish how 'realistic' an LEM is and thus the extent to which its predictions may be trusted. We propose a test based upon the Turing Test of artificial intelligence as a way forward. In 1950 Alan Turing posed the question of whether a machine could think. Rather than attempt to address the question directly he proposed a test in which an interrogator asked questions of a person and a machine, with no means of telling which was which. If the machine's answer could not be distinguished from those of the human, the machine could be said to demonstrate artificial intelligence. By analogy, if an LEM cannot be distinguished from a real landscape it can be deemed to be realistic. The Turing test of intelligence is a test of the way in which a computer behaves. The analogy in the case of an LEM is that it should show realistic behaviour in terms of form and process, both at a given moment in time (punctual) and in the way both form and process evolve over time (dynamic). For some of these behaviours, tests already exist. For example there are numerous morphometric tests of punctual form and measurements of punctual process. The test discussed in this paper provides new ways of assessing dynamic behaviour of an LEM over realistically long timescales. However challenges remain in developing an appropriate suite of challenging tests, in applying these tests to current LEMs and in developing LEMs that pass them.
Electronic vending machines for dispensing rapid HIV self-testing kits: a case study.
Young, Sean D; Klausner, Jeffrey; Fynn, Risa; Bolan, Robert
2014-02-01
This short report evaluates the feasibility of using electronic vending machines for dispensing oral, fluid, rapid HIV self-testing kits in Los Angeles County. Feasibility criteria that needed to be addressed were defined as: (1) ability to find a manufacturer who would allow dispensing of HIV testing kits and could fit them to the dimensions of a vending machine, (2) ability to identify and address potential initial obstacles, trade-offs in choosing a machine location, and (3) ability to gain community approval for implementing this approach in a community setting. To address these issues, we contracted a vending machine company who could supply a customized, Internet-enabled machine that could dispense HIV kits and partnered with a local health center available to host the machine onsite and provide counseling to participants, if needed. Vending machines appear to be feasible technologies that can be used to distribute HIV testing kits.
Electronic vending machines for dispensing rapid HIV self-testing kits: A case study
Young, Sean D.; Klausner, Jeffrey; Fynn, Risa; Bolan, Robert
2014-01-01
This short report evaluates the feasibility of using electronic vending machines for dispensing oral, fluid, rapid HIV-self testing kits in Los Angeles County. Feasibility criteria that needed to be addressed were defined as: 1) ability to find a manufacturer who would allow dispensing of HIV testing kits and could fit them to the dimensions of a vending machine, 2) ability to identify and address potential initial obstacles, trade-offs in choosing a machine location, and 3) ability to gain community approval for implementing this approach in a community setting. To address these issues, we contracted a vending machine company who could supply a customized, Internet-enabled machine that could dispense HIV kits and partnered with a local health center available to host the machine onsite and provide counseling to participants, if needed. Vending machines appear to be feasible technologies that can be used to distribute HIV testing kits. PMID:23777528
Precise on-machine extraction of the surface normal vector using an eddy current sensor array
NASA Astrophysics Data System (ADS)
Wang, Yongqing; Lian, Meng; Liu, Haibo; Ying, Yangwei; Sheng, Xianjun
2016-11-01
To satisfy the requirements of on-machine measurement of the surface normal during complex surface manufacturing, a highly robust normal vector extraction method using an Eddy current (EC) displacement sensor array is developed, the output of which is almost unaffected by surface brightness, machining coolant and environmental noise. A precise normal vector extraction model based on a triangular-distributed EC sensor array is first established. Calibration of the effects of object surface inclination and coupling interference on measurement results, and the relative position of EC sensors, is involved. A novel apparatus employing three EC sensors and a force transducer was designed, which can be easily integrated into the computer numerical control (CNC) machine tool spindle and/or robot terminal execution. Finally, to test the validity and practicability of the proposed method, typical experiments were conducted with specified testing pieces using the developed approach and system, such as an inclined plane and cylindrical and spherical surfaces.
Belekar, Vilas; Lingineni, Karthik; Garg, Prabha
2015-01-01
The breast cancer resistant protein (BCRP) is an important transporter and its inhibitors play an important role in cancer treatment by improving the oral bioavailability as well as blood brain barrier (BBB) permeability of anticancer drugs. In this work, a computational model was developed to predict the compounds as BCRP inhibitors or non-inhibitors. Various machine learning approaches like, support vector machine (SVM), k-nearest neighbor (k-NN) and artificial neural network (ANN) were used to develop the models. The Matthews correlation coefficients (MCC) of developed models using ANN, k-NN and SVM are 0.67, 0.71 and 0.77, and prediction accuracies are 85.2%, 88.3% and 90.8% respectively. The developed models were tested with a test set of 99 compounds and further validated with external set of 98 compounds. Distribution plot analysis and various machine learning models were also developed based on druglikeness descriptors. Applicability domain is used to check the prediction reliability of the new molecules.
Machine learning algorithms for mode-of-action classification in toxicity assessment.
Zhang, Yile; Wong, Yau Shu; Deng, Jian; Anton, Cristina; Gabos, Stephan; Zhang, Weiping; Huang, Dorothy Yu; Jin, Can
2016-01-01
Real Time Cell Analysis (RTCA) technology is used to monitor cellular changes continuously over the entire exposure period. Combining with different testing concentrations, the profiles have potential in probing the mode of action (MOA) of the testing substances. In this paper, we present machine learning approaches for MOA assessment. Computational tools based on artificial neural network (ANN) and support vector machine (SVM) are developed to analyze the time-concentration response curves (TCRCs) of human cell lines responding to tested chemicals. The techniques are capable of learning data from given TCRCs with known MOA information and then making MOA classification for the unknown toxicity. A novel data processing step based on wavelet transform is introduced to extract important features from the original TCRC data. From the dose response curves, time interval leading to higher classification success rate can be selected as input to enhance the performance of the machine learning algorithm. This is particularly helpful when handling cases with limited and imbalanced data. The validation of the proposed method is demonstrated by the supervised learning algorithm applied to the exposure data of HepG2 cell line to 63 chemicals with 11 concentrations in each test case. Classification success rate in the range of 85 to 95 % are obtained using SVM for MOA classification with two clusters to cases up to four clusters. Wavelet transform is capable of capturing important features of TCRCs for MOA classification. The proposed SVM scheme incorporated with wavelet transform has a great potential for large scale MOA classification and high-through output chemical screening.
Improvement of automatic fish feeder machine design
NASA Astrophysics Data System (ADS)
Chui Wei, How; Salleh, S. M.; Ezree, Abdullah Mohd; Zaman, I.; Hatta, M. H.; Zain, B. A. Md; Mahzan, S.; Rahman, M. N. A.; Mahmud, W. A. W.
2017-10-01
Nation Plan of action for management of fishing is target to achieve an efficient, equitable and transparent management of fishing capacity in marine capture fisheries by 2018. However, several factors influence the fishery production and efficiency of marine system such as automatic fish feeder machine could be taken in consideration. Two latest fish feeder machines have been chosen as the reference for this study. Based on the observation, it has found that the both machine was made with heavy structure, low water and temperature resistance materials. This research’s objective is to develop the automatic feeder machine to increase the efficiency of fish feeding. The experiment has conducted to testing the new design of machine. The new machine with maximum storage of 5 kg and functioning with two DC motors. This machine able to distribute 500 grams of pellets within 90 seconds and longest distance of 4.7 meter. The higher speed could reduce time needed and increase the distance as well. The minimum speed range for both motor is 110 and 120 with same full speed range of 255.
Efficient forced vibration reanalysis method for rotating electric machines
NASA Astrophysics Data System (ADS)
Saito, Akira; Suzuki, Hiromitsu; Kuroishi, Masakatsu; Nakai, Hideo
2015-01-01
Rotating electric machines are subject to forced vibration by magnetic force excitation with wide-band frequency spectrum that are dependent on the operating conditions. Therefore, when designing the electric machines, it is inevitable to compute the vibration response of the machines at various operating conditions efficiently and accurately. This paper presents an efficient frequency-domain vibration analysis method for the electric machines. The method enables the efficient re-analysis of the vibration response of electric machines at various operating conditions without the necessity to re-compute the harmonic response by finite element analyses. Theoretical background of the proposed method is provided, which is based on the modal reduction of the magnetic force excitation by a set of amplitude-modulated standing-waves. The method is applied to the forced response vibration of the interior permanent magnet motor at a fixed operating condition. The results computed by the proposed method agree very well with those computed by the conventional harmonic response analysis by the FEA. The proposed method is then applied to the spin-up test condition to demonstrate its applicability to various operating conditions. It is observed that the proposed method can successfully be applied to the spin-up test conditions, and the measured dominant frequency peaks in the frequency response can be well captured by the proposed approach.
NASA Astrophysics Data System (ADS)
Taha, Zahari; Muazu Musa, Rabiu; Majeed, Anwar P. P. Abdul; Razali Abdullah, Mohamad; Amirul Abdullah, Muhammad; Hasnun Arif Hassan, Mohd; Khalil, Zubair
2018-04-01
The present study employs a machine learning algorithm namely support vector machine (SVM) to classify high and low potential archers from a collection of bio-physiological variables trained on different SVMs. 50 youth archers with the average age and standard deviation of (17.0 ±.056) gathered from various archery programmes completed a one end shooting score test. The bio-physiological variables namely resting heart rate, resting respiratory rate, resting diastolic blood pressure, resting systolic blood pressure, as well as calories intake, were measured prior to their shooting tests. k-means cluster analysis was applied to cluster the archers based on their scores on variables assessed. SVM models i.e. linear, quadratic and cubic kernel functions, were trained on the aforementioned variables. The k-means clustered the archers into high (HPA) and low potential archers (LPA), respectively. It was demonstrated that the linear SVM exhibited good accuracy with a classification accuracy of 94% in comparison the other tested models. The findings of this investigation can be valuable to coaches and sports managers to recognise high potential athletes from the selected bio-physiological variables examined.
9. DETAIL, ROOF VENT HOUSING. NOTE THE TUNNEL TO TEST ...
9. DETAIL, ROOF VENT HOUSING. NOTE THE TUNNEL TO TEST STAND 1-3 AT FAR LEFT, AND ITS MACHINE SHOP AT LEFT CENTER. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Instrumentation & Control Building, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
Korotcov, Alexandru; Tkachenko, Valery; Russo, Daniel P; Ekins, Sean
2017-12-04
Machine learning methods have been applied to many data sets in pharmaceutical research for several decades. The relative ease and availability of fingerprint type molecular descriptors paired with Bayesian methods resulted in the widespread use of this approach for a diverse array of end points relevant to drug discovery. Deep learning is the latest machine learning algorithm attracting attention for many of pharmaceutical applications from docking to virtual screening. Deep learning is based on an artificial neural network with multiple hidden layers and has found considerable traction for many artificial intelligence applications. We have previously suggested the need for a comparison of different machine learning methods with deep learning across an array of varying data sets that is applicable to pharmaceutical research. End points relevant to pharmaceutical research include absorption, distribution, metabolism, excretion, and toxicity (ADME/Tox) properties, as well as activity against pathogens and drug discovery data sets. In this study, we have used data sets for solubility, probe-likeness, hERG, KCNQ1, bubonic plague, Chagas, tuberculosis, and malaria to compare different machine learning methods using FCFP6 fingerprints. These data sets represent whole cell screens, individual proteins, physicochemical properties as well as a data set with a complex end point. Our aim was to assess whether deep learning offered any improvement in testing when assessed using an array of metrics including AUC, F1 score, Cohen's kappa, Matthews correlation coefficient and others. Based on ranked normalized scores for the metrics or data sets Deep Neural Networks (DNN) ranked higher than SVM, which in turn was ranked higher than all the other machine learning methods. Visualizing these properties for training and test sets using radar type plots indicates when models are inferior or perhaps over trained. These results also suggest the need for assessing deep learning further using multiple metrics with much larger scale comparisons, prospective testing as well as assessment of different fingerprints and DNN architectures beyond those used.
Effect of the Machined Surfaces of AISI 4337 Steel to Cutting Conditions on Dry Machining Lathe
NASA Astrophysics Data System (ADS)
Rahim, Robbi; Napid, Suhardi; Hasibuan, Abdurrozzaq; Rahmah Sibuea, Siti; Yusmartato, Y.
2018-04-01
The objective of the research is to obtain a cutting condition which has a good chance of realizing dry machining concept on AISI 4337 steel material by studying surface roughness, microstructure and hardness of machining surface. The data generated from the experiment were then processed and analyzed using the standard Taguchi method L9 (34) orthogonal array. Testing of dry and wet machining used surface test and micro hardness test for each of 27 test specimens. The machining results of the experiments showed that average surface roughness (Raavg) was obtained at optimum cutting conditions when VB 0.1 μm, 0.3 μm and 0.6 μm respectively 1.467 μm, 2.133 μm and 2,800 μm fo r dry machining while which was carried out by wet machining the results obtained were 1,833 μm, 2,667 μm and 3,000 μm. It can be concluded that dry machining provides better surface quality of machinery results than wet machining. Therefore, dry machining is a good choice that may be realized in the manufacturing and automotive industries.
METAPHOR: Probability density estimation for machine learning based photometric redshifts
NASA Astrophysics Data System (ADS)
Amaro, V.; Cavuoti, S.; Brescia, M.; Vellucci, C.; Tortora, C.; Longo, G.
2017-06-01
We present METAPHOR (Machine-learning Estimation Tool for Accurate PHOtometric Redshifts), a method able to provide a reliable PDF for photometric galaxy redshifts estimated through empirical techniques. METAPHOR is a modular workflow, mainly based on the MLPQNA neural network as internal engine to derive photometric galaxy redshifts, but giving the possibility to easily replace MLPQNA with any other method to predict photo-z's and their PDF. We present here the results about a validation test of the workflow on the galaxies from SDSS-DR9, showing also the universality of the method by replacing MLPQNA with KNN and Random Forest models. The validation test include also a comparison with the PDF's derived from a traditional SED template fitting method (Le Phare).
De Bari, B; Vallati, M; Gatta, R; Simeone, C; Girelli, G; Ricardi, U; Meattini, I; Gabriele, P; Bellavita, R; Krengli, M; Cafaro, I; Cagna, E; Bunkheila, F; Borghesi, S; Signor, M; Di Marco, A; Bertoni, F; Stefanacci, M; Pasinetti, N; Buglione, M; Magrini, S M
2015-07-01
We tested and compared performances of Roach formula, Partin tables and of three Machine Learning (ML) based algorithms based on decision trees in identifying N+ prostate cancer (PC). 1,555 cN0 and 50 cN+ PC were analyzed. Results were also verified on an independent population of 204 operated cN0 patients, with a known pN status (187 pN0, 17 pN1 patients). ML performed better, also when tested on the surgical population, with accuracy, specificity, and sensitivity ranging between 48-86%, 35-91%, and 17-79%, respectively. ML potentially allows better prediction of the nodal status of PC, potentially allowing a better tailoring of pelvic irradiation.
Predicting the Performance of Chain Saw Machines Based on Shore Scleroscope Hardness
NASA Astrophysics Data System (ADS)
Tumac, Deniz
2014-03-01
Shore hardness has been used to estimate several physical and mechanical properties of rocks over the last few decades. However, the number of researches correlating Shore hardness with rock cutting performance is quite limited. Also, rather limited researches have been carried out on predicting the performance of chain saw machines. This study differs from the previous investigations in the way that Shore hardness values (SH1, SH2, and deformation coefficient) are used to determine the field performance of chain saw machines. The measured Shore hardness values are correlated with the physical and mechanical properties of natural stone samples, cutting parameters (normal force, cutting force, and specific energy) obtained from linear cutting tests in unrelieved cutting mode, and areal net cutting rate of chain saw machines. Two empirical models developed previously are improved for the prediction of the areal net cutting rate of chain saw machines. The first model is based on a revised chain saw penetration index, which uses SH1, machine weight, and useful arm cutting depth as predictors. The second model is based on the power consumed for only cutting the stone, arm thickness, and specific energy as a function of the deformation coefficient. While cutting force has a strong relationship with Shore hardness values, the normal force has a weak or moderate correlation. Uniaxial compressive strength, Cerchar abrasivity index, and density can also be predicted by Shore hardness values.
Xie, Hong-Bo; Huang, Hu; Wu, Jianhua; Liu, Lei
2015-02-01
We present a multiclass fuzzy relevance vector machine (FRVM) learning mechanism and evaluate its performance to classify multiple hand motions using surface electromyographic (sEMG) signals. The relevance vector machine (RVM) is a sparse Bayesian kernel method which avoids some limitations of the support vector machine (SVM). However, RVM still suffers the difficulty of possible unclassifiable regions in multiclass problems. We propose two fuzzy membership function-based FRVM algorithms to solve such problems, based on experiments conducted on seven healthy subjects and two amputees with six hand motions. Two feature sets, namely, AR model coefficients and room mean square value (AR-RMS), and wavelet transform (WT) features, are extracted from the recorded sEMG signals. Fuzzy support vector machine (FSVM) analysis was also conducted for wide comparison in terms of accuracy, sparsity, training and testing time, as well as the effect of training sample sizes. FRVM yielded comparable classification accuracy with dramatically fewer support vectors in comparison with FSVM. Furthermore, the processing delay of FRVM was much less than that of FSVM, whilst training time of FSVM much faster than FRVM. The results indicate that FRVM classifier trained using sufficient samples can achieve comparable generalization capability as FSVM with significant sparsity in multi-channel sEMG classification, which is more suitable for sEMG-based real-time control applications.
Wire connector classification with machine vision and a novel hybrid SVM
NASA Astrophysics Data System (ADS)
Chauhan, Vedang; Joshi, Keyur D.; Surgenor, Brian W.
2018-04-01
A machine vision-based system has been developed and tested that uses a novel hybrid Support Vector Machine (SVM) in a part inspection application with clear plastic wire connectors. The application required the system to differentiate between 4 different known styles of connectors plus one unknown style, for a total of 5 classes. The requirement to handle an unknown class is what necessitated the hybrid approach. The system was trained with the 4 known classes and tested with 5 classes (the 4 known plus the 1 unknown). The hybrid classification approach used two layers of SVMs: one layer was semi-supervised and the other layer was supervised. The semi-supervised SVM was a special case of unsupervised machine learning that classified test images as one of the 4 known classes (to accept) or as the unknown class (to reject). The supervised SVM classified test images as one of the 4 known classes and consequently would give false positives (FPs). Two methods were tested. The difference between the methods was that the order of the layers was switched. The method with the semi-supervised layer first gave an accuracy of 80% with 20% FPs. The method with the supervised layer first gave an accuracy of 98% with 0% FPs. Further work is being conducted to see if the hybrid approach works with other applications that have an unknown class requirement.
NASA Astrophysics Data System (ADS)
Kislyakov, M. A.; Chernov, V. A.; Maksimkin, V. L.; Bozhin, Yu. M.
2017-12-01
The article deals with modern methods of monitoring the state and predicting the life of electric machines. In 50% of the cases of failure in the performance of electric machines is associated with insulation damage. As promising, nondestructive methods of control, methods based on the investigation of the processes of polarization occurring in insulating materials are proposed. To improve the accuracy of determining the state of insulation, a multiparametric approach is considered, which is a basis for the development of an expert system for estimating the state of health.
2015-12-01
M2 .50 Caliber Machine Gun on the Abrams Tank While wearing a task specific uniform weighing approximately 49 lb, Soldiers lifted the M2 .50...12 Engage Targets with a Caliber .50 M2 Machine Gun X 13 Lay a 120mm Mortar – Emplace Base Plate X 14 Lay a 120mm Mortar...17 Mount M2 .50 Cal Machine Gun Receiver on an Abrams Tank X 18 Stow Ammunition on an Abrams Tank (Load 120mm MPAT Round to the Ready Rack
2015-12-01
43 1.9 Images of Move Under Direct Fire (Task 10) 44 1.10 Engage Targets with a .50 Caliber M2 Machine Gun (Task 12) 45 1.11 Image of Lay a...Caliber M2 Machine Gun While wearing a fighting load (approximately 83 lb) and working as a member of a two-person team, Soldiers lifted and carried the... M2 HB Machine Gun with tripod (153 lb) a distance of 10 m. Army Standard: Successful completion of the task 13. Emplace Base Plate (11C
Research on mechanical and sensoric set-up for high strain rate testing of high performance fibers
NASA Astrophysics Data System (ADS)
Unger, R.; Schegner, P.; Nocke, A.; Cherif, C.
2017-10-01
Within this research project, the tensile behavior of high performance fibers, such as carbon fibers, is investigated under high velocity loads. This contribution (paper) focuses on the clamp set-up of two testing machines. Based on a kinematic model, weight optimized clamps are designed and evaluated. By analyzing the complex dynamic behavior of conventional high velocity testing machines, it has been shown that the impact typically exhibits an elastic characteristic. This leads to barely predictable breaking speeds and will not work at higher speeds when acceleration force exceeds material specifications. Therefore, a plastic impact behavior has to be achieved, even at lower testing speeds. This type of impact behavior at lower speeds can be realized by means of some minor test set-up adaptions.
Tan, W Katherine; Hassanpour, Saeed; Heagerty, Patrick J; Rundell, Sean D; Suri, Pradeep; Huhdanpaa, Hannu T; James, Kathryn; Carrell, David S; Langlotz, Curtis P; Organ, Nancy L; Meier, Eric N; Sherman, Karen J; Kallmes, David F; Luetmer, Patrick H; Griffith, Brent; Nerenz, David R; Jarvik, Jeffrey G
2018-03-28
To evaluate a natural language processing (NLP) system built with open-source tools for identification of lumbar spine imaging findings related to low back pain on magnetic resonance and x-ray radiology reports from four health systems. We used a limited data set (de-identified except for dates) sampled from lumbar spine imaging reports of a prospectively assembled cohort of adults. From N = 178,333 reports, we randomly selected N = 871 to form a reference-standard dataset, consisting of N = 413 x-ray reports and N = 458 MR reports. Using standardized criteria, four spine experts annotated the presence of 26 findings, where 71 reports were annotated by all four experts and 800 were each annotated by two experts. We calculated inter-rater agreement and finding prevalence from annotated data. We randomly split the annotated data into development (80%) and testing (20%) sets. We developed an NLP system from both rule-based and machine-learned models. We validated the system using accuracy metrics such as sensitivity, specificity, and area under the receiver operating characteristic curve (AUC). The multirater annotated dataset achieved inter-rater agreement of Cohen's kappa > 0.60 (substantial agreement) for 25 of 26 findings, with finding prevalence ranging from 3% to 89%. In the testing sample, rule-based and machine-learned predictions both had comparable average specificity (0.97 and 0.95, respectively). The machine-learned approach had a higher average sensitivity (0.94, compared to 0.83 for rules-based), and a higher overall AUC (0.98, compared to 0.90 for rules-based). Our NLP system performed well in identifying the 26 lumbar spine findings, as benchmarked by reference-standard annotation by medical experts. Machine-learned models provided substantial gains in model sensitivity with slight loss of specificity, and overall higher AUC. Copyright © 2018 The Association of University Radiologists. All rights reserved.
Hussain, Lal
2018-06-01
Epilepsy is a neurological disorder produced due to abnormal excitability of neurons in the brain. The research reveals that brain activity is monitored through electroencephalogram (EEG) of patients suffered from seizure to detect the epileptic seizure. The performance of EEG detection based epilepsy require feature extracting strategies. In this research, we have extracted varying features extracting strategies based on time and frequency domain characteristics, nonlinear, wavelet based entropy and few statistical features. A deeper study was undertaken using novel machine learning classifiers by considering multiple factors. The support vector machine kernels are evaluated based on multiclass kernel and box constraint level. Likewise, for K-nearest neighbors (KNN), we computed the different distance metrics, Neighbor weights and Neighbors. Similarly, the decision trees we tuned the paramours based on maximum splits and split criteria and ensemble classifiers are evaluated based on different ensemble methods and learning rate. For training/testing tenfold Cross validation was employed and performance was evaluated in form of TPR, NPR, PPV, accuracy and AUC. In this research, a deeper analysis approach was performed using diverse features extracting strategies using robust machine learning classifiers with more advanced optimal options. Support Vector Machine linear kernel and KNN with City block distance metric give the overall highest accuracy of 99.5% which was higher than using the default parameters for these classifiers. Moreover, highest separation (AUC = 0.9991, 0.9990) were obtained at different kernel scales using SVM. Additionally, the K-nearest neighbors with inverse squared distance weight give higher performance at different Neighbors. Moreover, to distinguish the postictal heart rate oscillations from epileptic ictal subjects, and highest performance of 100% was obtained using different machine learning classifiers.
NASA Astrophysics Data System (ADS)
Marulcu, Ismail
This mixed method study examined the impact of a LEGO-based, engineering-oriented curriculum compared to an inquiry-based curriculum on fifth graders' content learning of simple machines. This study takes a social constructivist theoretical stance that science learning involves learning scientific concepts and their relations to each other. From this perspective, students are active participants, and they construct their conceptual understanding through the guidance of their teacher. With the goal of better understanding the use of engineering education materials in classrooms the National Academy of Engineering and National Research Council in the book "Engineering in K-12 Education" conducted an in-depth review of the potential benefits of including engineering in K--12 schools as (a) improved learning and achievement in science and mathematics, (b) increased awareness of engineering and the work of engineers, (c) understanding of and the ability to engage in engineering design, (d) interest in pursuing engineering as a career, and (e) increased technological literacy (Katehi, Pearson, & Feder, 2009). However, they also noted a lack of reliable data and rigorous research to support these assertions. Data sources included identical written tests and interviews, classroom observations and videos, teacher interviews, and classroom artifacts. To investigate the impact of the design-based simple machines curriculum compared to the scientific inquiry-based simple machines curriculum on student learning outcomes, I compared the control and the experimental groups' scores on the tests and interviews by using ANCOVA. To analyze and characterize the classroom observation videotapes, I used Jordan and Henderson's (1995) method and divide them into episodes. My analyses revealed that the design-based Design a People Mover: Simple Machines unit was, if not better, as successful as the inquiry-based FOSS Levers and Pulleys unit in terms of students' content learning. I also found that students in the engineering group outperformed students in the control group in regards to their ability to answer open-ended questions when interviewed. Implications for students' science content learning and teachers' professional development are discussed.
Real-time detection of transients in OGLE-IV with application of machine learning
NASA Astrophysics Data System (ADS)
Klencki, Jakub; Wyrzykowski, Łukasz
2016-06-01
The current bottleneck of transient detection in most surveys is the problem of rejecting numerous artifacts from detected candidates. We present a triple-stage hierarchical machine learning system for automated artifact filtering in difference imaging, based on self-organizing maps. The classifier, when tested on the OGLE-IV Transient Detection System, accepts 97% of real transients while removing up to 97.5% of artifacts.
Low latency messages on distributed memory multiprocessors
NASA Technical Reports Server (NTRS)
Rosing, Matthew; Saltz, Joel
1993-01-01
Many of the issues in developing an efficient interface for communication on distributed memory machines are described and a portable interface is proposed. Although the hardware component of message latency is less than one microsecond on many distributed memory machines, the software latency associated with sending and receiving typed messages is on the order of 50 microseconds. The reason for this imbalance is that the software interface does not match the hardware. By changing the interface to match the hardware more closely, applications with fine grained communication can be put on these machines. Based on several tests that were run on the iPSC/860, an interface that will better match current distributed memory machines is proposed. The model used in the proposed interface consists of a computation processor and a communication processor on each node. Communication between these processors and other nodes in the system is done through a buffered network. Information that is transmitted is either data or procedures to be executed on the remote processor. The dual processor system is better suited for efficiently handling asynchronous communications compared to a single processor system. The ability to send data or procedure is very flexible for minimizing message latency, based on the type of communication being performed. The test performed and the proposed interface are described.
NASA Astrophysics Data System (ADS)
Rahman, Abdul Ghaffar Abdul; Noroozi, Siamak; Dupac, Mihai; Mahathir Syed Mohd Al-Attas, Syed; Vinney, John E.
2013-03-01
Complex rotating machinery requires regular condition monitoring inspections to assess their running conditions and their structural integrity to prevent catastrophic failures. Machine failures can be divided into two categories. First is the wear and tear during operation, they range from bearing defects, gear damage, misalignment, imbalance or mechanical looseness, for which simple condition-based maintenance techniques can easily detect the root cause and trigger remedial action process. The second factor in machine failure is caused by the inherent design faults that usually happened due to many reasons such as improper installation, poor servicing, bad workmanship and structural dynamics design deficiency. In fact, individual machines components are generally dynamically well designed and rigorously tested. However, when these machines are assembled on sight and linked together, their dynamic characteristics will change causing unexpected behaviour of the system. Since nondestructive evaluation provides an excellent alternative to the classical monitoring and proved attractive due to the possibility of performing reliable assessments of all types of machinery, the novel dynamic design verification procedure - based on the combination of in-service operation deflection shape measurement, experimental modal analysis and iterative inverse finite element analysis - proposed here allows quick identification of structural weakness, and helps to provide and verify the solutions.
A High Performance Torque Sensor for Milling Based on a Piezoresistive MEMS Strain Gauge
Qin, Yafei; Zhao, Yulong; Li, Yingxue; Zhao, You; Wang, Peng
2016-01-01
In high speed and high precision machining applications, it is important to monitor the machining process in order to ensure high product quality. For this purpose, it is essential to develop a dynamometer with high sensitivity and high natural frequency which is suited to these conditions. This paper describes the design, calibration and performance of a milling torque sensor based on piezoresistive MEMS strain. A detailed design study is carried out to optimize the two mutually-contradictory indicators sensitivity and natural frequency. The developed torque sensor principally consists of a thin-walled cylinder, and a piezoresistive MEMS strain gauge bonded on the surface of the sensing element where the shear strain is maximum. The strain gauge includes eight piezoresistances and four are connected in a full Wheatstone circuit bridge, which is used to measure the applied torque force during machining procedures. Experimental static calibration results show that the sensitivity of torque sensor has been improved to 0.13 mv/Nm. A modal impact test indicates that the natural frequency of torque sensor reaches 1216 Hz, which is suitable for high speed machining processes. The dynamic test results indicate that the developed torque sensor is stable and practical for monitoring the milling process. PMID:27070620
Ant-Based Cyber Defense (also known as
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glenn Fink, PNNL
2015-09-29
ABCD is a four-level hierarchy with human supervisors at the top, a top-level agent called a Sergeant controlling each enclave, Sentinel agents located at each monitored host, and mobile Sensor agents that swarm through the enclaves to detect cyber malice and misconfigurations. The code comprises four parts: (1) the core agent framework, (2) the user interface and visualization, (3) test-range software to create a network of virtual machines including a simulated Internet and user and host activity emulation scripts, and (4) a test harness to allow the safe running of adversarial code within the framework of monitored virtual machines.
Feature Extraction and Machine Learning for the Classification of Brazilian Savannah Pollen Grains
Souza, Junior Silva; da Silva, Gercina Gonçalves
2016-01-01
The classification of pollen species and types is an important task in many areas like forensic palynology, archaeological palynology and melissopalynology. This paper presents the first annotated image dataset for the Brazilian Savannah pollen types that can be used to train and test computer vision based automatic pollen classifiers. A first baseline human and computer performance for this dataset has been established using 805 pollen images of 23 pollen types. In order to access the computer performance, a combination of three feature extractors and four machine learning techniques has been implemented, fine tuned and tested. The results of these tests are also presented in this paper. PMID:27276196
Characterization of Subsurface Defects in Ceramic Rods by Laser Scattering and Fractography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, J. M.; Sun, J. G.; Andrews, M. J.
2006-03-06
Silicon nitride ceramics are leading materials being evaluated for valve train components in diesel engine applications. The surface and subsurface defects and damage induced by surface machining can significantly affect component strength and lifetime. In this study, a nondestructive evaluation (NDE) technique based upon laser scattering has been utilized to analyze eight transversely ground silicon nitride cylindrical rods before fracture tests. The fracture origins (machining cracks or material-inherent flaws) identified by fractography after fracture testing were correlated with laser scattering images. The results indicate that laser scattering is able to identify possible fracture origin in the silicon nitride subsurface withoutmore » the need for destructive fracture tests.« less
Machine Shop. Criterion-Referenced Test (CRT) Item Bank.
ERIC Educational Resources Information Center
Davis, Diane, Ed.
This drafting criterion-referenced test item bank is keyed to the machine shop competency profile developed by industry and education professionals in Missouri. The 16 references used for drafting the test items are listed. Test items are arranged under these categories: orientation to machine shop; performing mathematical calculations; performing…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bunshah, R.F.; Shabaik, A.H.
The process of Activated Reactive Evaporation is used to synthesize superhard materials like carbides, oxides, nitrides and ultrafine grain cermets. The deposits are characterized by hardness, microstructure, microprobe analysis for chemistry and lattice parameter measurements. The synthesis and characterization of TiC-Ni cermets and Al/sub 2/O/sub 3/ are given. High speed steel tool coated with TiC, TiC-Ni and TaC are tested for machining performance at different speeds and feeds. The machining evaluation and the selection of coatings is based on the rate of deterioration of the coating tool temperature, and cutting forces. Tool life tests show coated high speed steel toolsmore » having 150 to 300% improvement in tool life compared to uncoated tools. Variability in the quality of the ground edge on high speed steel inserts produce a great scatter in the machining evaluation data.« less
Bond strength and interactions of machined titanium-based alloy with dental cements.
Wadhwani, Chandur; Chung, Kwok-Hung
2015-11-01
The most appropriate luting agent for restoring cement-retained implant restorations has yet to be determined. Leachable chemicals from some types of cement designed for teeth may affect metal surfaces. The purpose of this in vitro study was to evaluate the shear bond strength and interactions of machined titanium-based alloy with dental luting agents. Eight dental luting agents representative of 4 different compositional classes (resin, polycarboxylate, glass ionomer, and zinc oxide-based cements) were used to evaluate their effect on machined titanium-6 aluminum-4 vanadium (Ti-6Al-4V) alloy surfaces. Ninety-six paired disks were cemented together (n=12). After incubation in a 37°C water bath for 7 days, the shear bond strength was measured with a universal testing machine (Instron) and a custom fixture with a crosshead speed of 5 mm/min. Differences were analyzed statistically with 1-way ANOVA and Tukey HSD tests (α=.05). The debonded surfaces of the Ti alloy disks were examined under a light microscope at ×10 magnification to record the failure pattern, and the representative specimens were observed under a scanning electron microscope. The mean ±SD of shear failure loads ranged from 3.4 ±0.5 to 15.2 ±2.6 MPa. The retention provided by both polycarboxylate cements was significantly greater than that of all other groups (P<.05). The scanning electron microscope examination revealed surface pits only on the bonded surface cemented with the polycarboxylate cements. Cementation with polycarboxylate cement obtained higher shear bond strength. Some chemical interactions occurred between the machined Ti-6Al-4V alloy surface and polycarboxylate cements during cementation. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
A Comparison Study of Machine Learning Based Algorithms for Fatigue Crack Growth Calculation.
Wang, Hongxun; Zhang, Weifang; Sun, Fuqiang; Zhang, Wei
2017-05-18
The relationships between the fatigue crack growth rate ( d a / d N ) and stress intensity factor range ( Δ K ) are not always linear even in the Paris region. The stress ratio effects on fatigue crack growth rate are diverse in different materials. However, most existing fatigue crack growth models cannot handle these nonlinearities appropriately. The machine learning method provides a flexible approach to the modeling of fatigue crack growth because of its excellent nonlinear approximation and multivariable learning ability. In this paper, a fatigue crack growth calculation method is proposed based on three different machine learning algorithms (MLAs): extreme learning machine (ELM), radial basis function network (RBFN) and genetic algorithms optimized back propagation network (GABP). The MLA based method is validated using testing data of different materials. The three MLAs are compared with each other as well as the classical two-parameter model ( K * approach). The results show that the predictions of MLAs are superior to those of K * approach in accuracy and effectiveness, and the ELM based algorithms show overall the best agreement with the experimental data out of the three MLAs, for its global optimization and extrapolation ability.
NASA Technical Reports Server (NTRS)
1997-01-01
Vern Wedeven, president of Wedeven Associates, developed the WAM4, a computer-aided "smart" test machine for simulating stress on equipment, based on his bearing lubrication expertise gained while working for Lewis Research Center. During his NASA years from the 1970s into the early 1980s, Wedeven initiated an "Interdisciplinary Collaboration in Tribology," an effort that involved NASA, six universities, and several university professors. The NASA-sponsored work provided foundation for Wedeven in 1983 to form his own company. Several versions of the smart test machine, the WAM1, WAM2, and WAM3, have proceeded the current version, WAM4. This computer-controlled device can provide detailed glimpses at gear and bearing points of contact. WAM4 can yield a three-dimensional view of machinery as an operator adds "what-if" thermal and lubrication conditions, contact stress, and surface motion. Along with NASA, a number of firms, including Pratt & Whitney, Caterpillar Tractor, Exxon, and Chevron have approached Wedeven for help on resolving lubrication problems.
Biocompatibility of hydroxyapatite scaffolds processed by lithography-based additive manufacturing.
Tesavibul, Passakorn; Chantaweroad, Surapol; Laohaprapanon, Apinya; Channasanon, Somruethai; Uppanan, Paweena; Tanodekaew, Siriporn; Chalermkarnnon, Prasert; Sitthiseripratip, Kriskrai
2015-01-01
The fabrication of hydroxyapatite scaffolds for bone tissue engineering applications by using lithography-based additive manufacturing techniques has been introduced due to the abilities to control porous structures with suitable resolutions. In this research, the use of hydroxyapatite cellular structures, which are processed by lithography-based additive manufacturing machine, as a bone tissue engineering scaffold was investigated. The utilization of digital light processing system for additive manufacturing machine in laboratory scale was performed in order to fabricate the hydroxyapatite scaffold, of which biocompatibilities were eventually evaluated by direct contact and cell-culturing tests. In addition, the density and compressive strength of the scaffolds were also characterized. The results show that the hydroxyapatite scaffold at 77% of porosity with 91% of theoretical density and 0.36 MPa of the compressive strength are able to be processed. In comparison with a conventionally sintered hydroxyapatite, the scaffold did not present any cytotoxic signs while the viability of cells at 95.1% was reported. After 14 days of cell-culturing tests, the scaffold was able to be attached by pre-osteoblasts (MC3T3-E1) leading to cell proliferation and differentiation. The hydroxyapatite scaffold for bone tissue engineering was able to be processed by the lithography-based additive manufacturing machine while the biocompatibilities were also confirmed.
Open-source software for collision detection in external beam radiation therapy
NASA Astrophysics Data System (ADS)
Suriyakumar, Vinith M.; Xu, Renee; Pinter, Csaba; Fichtinger, Gabor
2017-03-01
PURPOSE: Collision detection for external beam radiation therapy (RT) is important for eliminating the need for dryruns that aim to ensure patient safety. Commercial treatment planning systems (TPS) offer this feature but they are expensive and proprietary. Cobalt-60 RT machines are a viable solution to RT practice in low-budget scenarios. However, such clinics are hesitant to invest in these machines due to a lack of affordable treatment planning software. We propose the creation of an open-source room's eye view visualization module with automated collision detection as part of the development of an open-source TPS. METHODS: An openly accessible linac 3D geometry model is sliced into the different components of the treatment machine. The model's movements are based on the International Electrotechnical Commission standard. Automated collision detection is implemented between the treatment machine's components. RESULTS: The room's eye view module was built in C++ as part of SlicerRT, an RT research toolkit built on 3D Slicer. The module was tested using head and neck and prostate RT plans. These tests verified that the module accurately modeled the movements of the treatment machine and radiation beam. Automated collision detection was verified using tests where geometric parameters of the machine's components were changed, demonstrating accurate collision detection. CONCLUSION: Room's eye view visualization and automated collision detection are essential in a Cobalt-60 treatment planning system. Development of these features will advance the creation of an open-source TPS that will potentially help increase the feasibility of adopting Cobalt-60 RT.
A deep learning-based multi-model ensemble method for cancer prediction.
Xiao, Yawen; Wu, Jun; Lin, Zongli; Zhao, Xiaodong
2018-01-01
Cancer is a complex worldwide health problem associated with high mortality. With the rapid development of the high-throughput sequencing technology and the application of various machine learning methods that have emerged in recent years, progress in cancer prediction has been increasingly made based on gene expression, providing insight into effective and accurate treatment decision making. Thus, developing machine learning methods, which can successfully distinguish cancer patients from healthy persons, is of great current interest. However, among the classification methods applied to cancer prediction so far, no one method outperforms all the others. In this paper, we demonstrate a new strategy, which applies deep learning to an ensemble approach that incorporates multiple different machine learning models. We supply informative gene data selected by differential gene expression analysis to five different classification models. Then, a deep learning method is employed to ensemble the outputs of the five classifiers. The proposed deep learning-based multi-model ensemble method was tested on three public RNA-seq data sets of three kinds of cancers, Lung Adenocarcinoma, Stomach Adenocarcinoma and Breast Invasive Carcinoma. The test results indicate that it increases the prediction accuracy of cancer for all the tested RNA-seq data sets as compared to using a single classifier or the majority voting algorithm. By taking full advantage of different classifiers, the proposed deep learning-based multi-model ensemble method is shown to be accurate and effective for cancer prediction. Copyright © 2017 Elsevier B.V. All rights reserved.
Predictive Modeling and Optimization of Vibration-assisted AFM Tip-based Nanomachining
NASA Astrophysics Data System (ADS)
Kong, Xiangcheng
The tip-based vibration-assisted nanomachining process offers a low-cost, low-effort technique in fabricating nanometer scale 2D/3D structures in sub-100 nm regime. To understand its mechanism, as well as provide the guidelines for process planning and optimization, we have systematically studied this nanomachining technique in this work. To understand the mechanism of this nanomachining technique, we firstly analyzed the interaction between the AFM tip and the workpiece surface during the machining process. A 3D voxel-based numerical algorithm has been developed to calculate the material removal rate as well as the contact area between the AFM tip and the workpiece surface. As a critical factor to understand the mechanism of this nanomachining process, the cutting force has been analyzed and modeled. A semi-empirical model has been proposed by correlating the cutting force with the material removal rate, which was validated using experimental data from different machining conditions. With the understanding of its mechanism, we have developed guidelines for process planning of this nanomachining technique. To provide the guideline for parameter selection, the effect of machining parameters on the feature dimensions (depth and width) has been analyzed. Based on ANOVA test results, the feature width is only controlled by the XY vibration amplitude, while the feature depth is affected by several machining parameters such as setpoint force and feed rate. A semi-empirical model was first proposed to predict the machined feature depth under given machining condition. Then, to reduce the computation intensity, linear and nonlinear regression models were also proposed and validated using experimental data. Given the desired feature dimensions, feasible machining parameters could be provided using these predictive feature dimension models. As the tip wear is unavoidable during the machining process, the machining precision will gradually decrease. To maintain the machining quality, the guideline for when to change the tip should be provided. In this study, we have developed several metrics to detect tip wear, such as tip radius and the pull-off force. The effect of machining parameters on the tip wear rate has been studied using these metrics, and the machining distance before a tip must be changed has been modeled using these machining parameters. Finally, the optimization functions have been built for unit production time and unit production cost subject to realistic constraints, and the optimal machining parameters can be found by solving these functions.
NASA Astrophysics Data System (ADS)
Osgerby, S.; Loveday, M. S.
1992-06-01
A manual for the NPL Creep Laboratory, a collective name given to two testing laboratories, the Uniaxial Creep Laboratory and the Advanced High Temperature Mechanical Testing Laboratory, is presented. The first laboratory is devoted to uniaxial creep testing and houses approximately 50 high sensitivity creep machines including 10 constant stress cam lever machines. The second laboratory houses a low cycle fatigue testing machine of 100 kN capacity driven by a servo-electric actuator, five machines for uniaxial tensile creep testing of engineering ceramics at temperatures up to 1600C, and an electronic creep machine. Details of the operational procedures for carrying out uniaxial creep testing are given. Calibration procedures to be followed in order to comply with the specifications laid down by British standards, and to provide traceability back to the primary standards are described.
Code of Federal Regulations, 2011 CFR
2011-01-01
... consumption of refrigerated bottled or canned beverage vending machines. 431.294 Section 431.294 Energy... EQUIPMENT Refrigerated Bottled or Canned Beverage Vending Machines Test Procedures § 431.294 Uniform test... machines. (a) Scope. This section provides test procedures for measuring, pursuant to EPCA, the energy...
Support vector machines-based modelling of seismic liquefaction potential
NASA Astrophysics Data System (ADS)
Pal, Mahesh
2006-08-01
This paper investigates the potential of support vector machines (SVM)-based classification approach to assess the liquefaction potential from actual standard penetration test (SPT) and cone penetration test (CPT) field data. SVMs are based on statistical learning theory and found to work well in comparison to neural networks in several other applications. Both CPT and SPT field data sets is used with SVMs for predicting the occurrence and non-occurrence of liquefaction based on different input parameter combination. With SPT and CPT test data sets, highest accuracy of 96 and 97%, respectively, was achieved with SVMs. This suggests that SVMs can effectively be used to model the complex relationship between different soil parameter and the liquefaction potential. Several other combinations of input variable were used to assess the influence of different input parameters on liquefaction potential. Proposed approach suggest that neither normalized cone resistance value with CPT data nor the calculation of standardized SPT value is required with SPT data. Further, SVMs required few user-defined parameters and provide better performance in comparison to neural network approach.
Age group classification and gender detection based on forced expiratory spirometry.
Cosgun, Sema; Ozbek, I Yucel
2015-08-01
This paper investigates the utility of forced expiratory spirometry (FES) test with efficient machine learning algorithms for the purpose of gender detection and age group classification. The proposed method has three main stages: feature extraction, training of the models and detection. In the first stage, some features are extracted from volume-time curve and expiratory flow-volume loop obtained from FES test. In the second stage, the probabilistic models for each gender and age group are constructed by training Gaussian mixture models (GMMs) and Support vector machine (SVM) algorithm. In the final stage, the gender (or age group) of test subject is estimated by using the trained GMM (or SVM) model. Experiments have been evaluated on a large database from 4571 subjects. The experimental results show that average correct classification rate performance of both GMM and SVM methods based on the FES test is more than 99.3 % and 96.8 % for gender and age group classification, respectively.
NASA Astrophysics Data System (ADS)
Adeyeri, Michael Kanisuru; Mpofu, Khumbulani; Kareem, Buliaminu
2016-03-01
This article describes the integration of temperature and vibration models for maintenance monitoring of conventional machinery parts in which their optimal and best functionalities are affected by abnormal changes in temperature and vibration values thereby resulting in machine failures, machines breakdown, poor quality of products, inability to meeting customers' demand, poor inventory control and just to mention a few. The work entails the use of temperature and vibration sensors as monitoring probes programmed in microcontroller using C language. The developed hardware consists of vibration sensor of ADXL345, temperature sensor of AD594/595 of type K thermocouple, microcontroller, graphic liquid crystal display, real time clock, etc. The hardware is divided into two: one is based at the workstation (majorly meant to monitor machines behaviour) and the other at the base station (meant to receive transmission of machines information sent from the workstation), working cooperatively for effective functionalities. The resulting hardware built was calibrated, tested using model verification and validated through principles pivoted on least square and regression analysis approach using data read from the gear boxes of extruding and cutting machines used for polyethylene bag production. The results got therein confirmed related correlation existing between time, vibration and temperature, which are reflections of effective formulation of the developed concept.
Yu, Yang; Niederleithinger, Ernst; Li, Jianchun; Wiggenhauser, Herbert
2017-01-01
This paper presents a novel non-destructive testing and health monitoring system using a network of tactile transducers and accelerometers for the condition assessment and damage classification of foundation piles and utility poles. While in traditional pile integrity testing an impact hammer with broadband frequency excitation is typically used, the proposed testing system utilizes an innovative excitation system based on a network of tactile transducers to induce controlled narrow-band frequency stress waves. Thereby, the simultaneous excitation of multiple stress wave types and modes is avoided (or at least reduced), and targeted wave forms can be generated. The new testing system enables the testing and monitoring of foundation piles and utility poles where the top is inaccessible, making the new testing system suitable, for example, for the condition assessment of pile structures with obstructed heads and of poles with live wires. For system validation, the new system was experimentally tested on nine timber and concrete poles that were inflicted with several types of damage. The tactile transducers were excited with continuous sine wave signals of 1 kHz frequency. Support vector machines were employed together with advanced signal processing algorithms to distinguish recorded stress wave signals from pole structures with different types of damage. The results show that using fast Fourier transform signals, combined with principal component analysis as the input feature vector for support vector machine (SVM) classifiers with different kernel functions, can achieve damage classification with accuracies of 92.5% ± 7.5%. PMID:29258274
Lee, Da-Sheng
2010-01-01
Chip-based DNA quantification systems are widespread, and used in many point-of-care applications. However, instruments for such applications may not be maintained or calibrated regularly. Since machine reliability is a key issue for normal operation, this study presents a system model of the real-time Polymerase Chain Reaction (PCR) machine to analyze the instrument design through numerical experiments. Based on model analysis, a systematic approach was developed to lower the variation of DNA quantification and achieve a robust design for a real-time PCR-on-a-chip system. Accelerated lift testing was adopted to evaluate the reliability of the chip prototype. According to the life test plan, this proposed real-time PCR-on-a-chip system was simulated to work continuously for over three years with similar reproducibility in DNA quantification. This not only shows the robustness of the lab-on-a-chip system, but also verifies the effectiveness of our systematic method for achieving a robust design. PMID:22315563
Alcaide-Leon, P; Dufort, P; Geraldo, A F; Alshafai, L; Maralani, P J; Spears, J; Bharatha, A
2017-06-01
Accurate preoperative differentiation of primary central nervous system lymphoma and enhancing glioma is essential to avoid unnecessary neurosurgical resection in patients with primary central nervous system lymphoma. The purpose of the study was to evaluate the diagnostic performance of a machine-learning algorithm by using texture analysis of contrast-enhanced T1-weighted images for differentiation of primary central nervous system lymphoma and enhancing glioma. Seventy-one adult patients with enhancing gliomas and 35 adult patients with primary central nervous system lymphomas were included. The tumors were manually contoured on contrast-enhanced T1WI, and the resulting volumes of interest were mined for textural features and subjected to a support vector machine-based machine-learning protocol. Three readers classified the tumors independently on contrast-enhanced T1WI. Areas under the receiver operating characteristic curves were estimated for each reader and for the support vector machine classifier. A noninferiority test for diagnostic accuracy based on paired areas under the receiver operating characteristic curve was performed with a noninferiority margin of 0.15. The mean areas under the receiver operating characteristic curve were 0.877 (95% CI, 0.798-0.955) for the support vector machine classifier; 0.878 (95% CI, 0.807-0.949) for reader 1; 0.899 (95% CI, 0.833-0.966) for reader 2; and 0.845 (95% CI, 0.757-0.933) for reader 3. The mean area under the receiver operating characteristic curve of the support vector machine classifier was significantly noninferior to the mean area under the curve of reader 1 ( P = .021), reader 2 ( P = .035), and reader 3 ( P = .007). Support vector machine classification based on textural features of contrast-enhanced T1WI is noninferior to expert human evaluation in the differentiation of primary central nervous system lymphoma and enhancing glioma. © 2017 by American Journal of Neuroradiology.
Hybrid MPI+OpenMP Programming of an Overset CFD Solver and Performance Investigations
NASA Technical Reports Server (NTRS)
Djomehri, M. Jahed; Jin, Haoqiang H.; Biegel, Bryan (Technical Monitor)
2002-01-01
This report describes a two level parallelization of a Computational Fluid Dynamic (CFD) solver with multi-zone overset structured grids. The approach is based on a hybrid MPI+OpenMP programming model suitable for shared memory and clusters of shared memory machines. The performance investigations of the hybrid application on an SGI Origin2000 (O2K) machine is reported using medium and large scale test problems.
Machine learning models for lipophilicity and their domain of applicability.
Schroeter, Timon; Schwaighofer, Anton; Mika, Sebastian; Laak, Antonius Ter; Suelzle, Detlev; Ganzer, Ursula; Heinrich, Nikolaus; Müller, Klaus-Robert
2007-01-01
Unfavorable lipophilicity and water solubility cause many drug failures; therefore these properties have to be taken into account early on in lead discovery. Commercial tools for predicting lipophilicity usually have been trained on small and neutral molecules, and are thus often unable to accurately predict in-house data. Using a modern Bayesian machine learning algorithm--a Gaussian process model--this study constructs a log D7 model based on 14,556 drug discovery compounds of Bayer Schering Pharma. Performance is compared with support vector machines, decision trees, ridge regression, and four commercial tools. In a blind test on 7013 new measurements from the last months (including compounds from new projects) 81% were predicted correctly within 1 log unit, compared to only 44% achieved by commercial software. Additional evaluations using public data are presented. We consider error bars for each method (model based error bars, ensemble based, and distance based approaches), and investigate how well they quantify the domain of applicability of each model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Angers, Crystal Plume; Bottema, Ryan; Buckley, Les
Purpose: Treatment unit uptime statistics are typically used to monitor radiation equipment performance. The Ottawa Hospital Cancer Centre has introduced the use of Quality Control (QC) test success as a quality indicator for equipment performance and overall health of the equipment QC program. Methods: Implemented in 2012, QATrack+ is used to record and monitor over 1100 routine machine QC tests each month for 20 treatment and imaging units ( http://qatrackplus.com/ ). Using an SQL (structured query language) script, automated queries of the QATrack+ database are used to generate program metrics such as the number of QC tests executed and themore » percentage of tests passing, at tolerance or at action. These metrics are compared against machine uptime statistics already reported within the program. Results: Program metrics for 2015 show good correlation between pass rate of QC tests and uptime for a given machine. For the nine conventional linacs, the QC test success rate was consistently greater than 97%. The corresponding uptimes for these units are better than 98%. Machines that consistently show higher failure or tolerance rates in the QC tests have lower uptimes. This points to either poor machine performance requiring corrective action or to problems with the QC program. Conclusions: QATrack+ significantly improves the organization of QC data but can also aid in overall equipment management. Complimenting machine uptime statistics with QC test metrics provides a more complete picture of overall machine performance and can be used to identify areas of improvement in the machine service and QC programs.« less
Do capuchin monkeys (Cebus apella) diagnose causal relations in the absence of a direct reward?
Edwards, Brian J; Rottman, Benjamin M; Shankar, Maya; Betzler, Riana; Chituc, Vladimir; Rodriguez, Ricardo; Silva, Liara; Wibecan, Leah; Widness, Jane; Santos, Laurie R
2014-01-01
We adapted a method from developmental psychology to explore whether capuchin monkeys (Cebus apella) would place objects on a "blicket detector" machine to diagnose causal relations in the absence of a direct reward. Across five experiments, monkeys could place different objects on the machine and obtain evidence about the objects' causal properties based on whether each object "activated" the machine. In Experiments 1-3, monkeys received both audiovisual cues and a food reward whenever the machine activated. In these experiments, monkeys spontaneously placed objects on the machine and succeeded at discriminating various patterns of statistical evidence. In Experiments 4 and 5, we modified the procedure so that in the learning trials, monkeys received the audiovisual cues when the machine activated, but did not receive a food reward. In these experiments, monkeys failed to test novel objects in the absence of an immediate food reward, even when doing so could provide critical information about how to obtain a reward in future test trials in which the food reward delivery device was reattached. The present studies suggest that the gap between human and animal causal cognition may be in part a gap of motivation. Specifically, we propose that monkey causal learning is motivated by the desire to obtain a direct reward, and that unlike humans, monkeys do not engage in learning for learning's sake.
Do Capuchin Monkeys (Cebus apella) Diagnose Causal Relations in the Absence of a Direct Reward?
Edwards, Brian J.; Rottman, Benjamin M.; Shankar, Maya; Betzler, Riana; Chituc, Vladimir; Rodriguez, Ricardo; Silva, Liara; Wibecan, Leah; Widness, Jane; Santos, Laurie R.
2014-01-01
We adapted a method from developmental psychology [1] to explore whether capuchin monkeys (Cebus apella) would place objects on a “blicket detector” machine to diagnose causal relations in the absence of a direct reward. Across five experiments, monkeys could place different objects on the machine and obtain evidence about the objects’ causal properties based on whether each object “activated” the machine. In Experiments 1–3, monkeys received both audiovisual cues and a food reward whenever the machine activated. In these experiments, monkeys spontaneously placed objects on the machine and succeeded at discriminating various patterns of statistical evidence. In Experiments 4 and 5, we modified the procedure so that in the learning trials, monkeys received the audiovisual cues when the machine activated, but did not receive a food reward. In these experiments, monkeys failed to test novel objects in the absence of an immediate food reward, even when doing so could provide critical information about how to obtain a reward in future test trials in which the food reward delivery device was reattached. The present studies suggest that the gap between human and animal causal cognition may be in part a gap of motivation. Specifically, we propose that monkey causal learning is motivated by the desire to obtain a direct reward, and that unlike humans, monkeys do not engage in learning for learning’s sake. PMID:24586347
Stability Analysis of Radial Turning Process for Superalloys
NASA Astrophysics Data System (ADS)
Jiménez, Alberto; Boto, Fernando; Irigoien, Itziar; Sierra, Basilio; Suarez, Alfredo
2017-09-01
Stability detection in machining processes is an essential component for the design of efficient machining processes. Automatic methods are able to determine when instability is happening and prevent possible machine failures. In this work a variety of methods are proposed for detecting stability anomalies based on the measured forces in the radial turning process of superalloys. Two different methods are proposed to determine instabilities. Each one is tested on real data obtained in the machining of Waspalloy, Haynes 282 and Inconel 718. Experimental data, in both Conventional and High Pressure Coolant (HPC) environments, are set in four different states depending on materials grain size and Hardness (LGA, LGS, SGA and SGS). Results reveal that PCA method is useful for visualization of the process and detection of anomalies in online processes.
Code of Federal Regulations, 2011 CFR
2011-07-01
... performance test of one representative magnet wire coating machine for each group of identical or very similar... you complete the performance test of a representative magnet wire coating machine. The requirements in... operations, you may, with approval, conduct a performance test of a single magnet wire coating machine that...
NASA Astrophysics Data System (ADS)
Leena, N.; Saju, K. K.
2018-04-01
Nutritional deficiencies in plants are a major concern for farmers as it affects productivity and thus profit. The work aims to classify nutritional deficiencies in maize plant in a non-destructive mannerusing image processing and machine learning techniques. The colored images of the leaves are analyzed and classified with multi-class support vector machine (SVM) method. Several images of maize leaves with known deficiencies like nitrogen, phosphorous and potassium (NPK) are used to train the SVM classifier prior to the classification of test images. The results show that the method was able to classify and identify nutritional deficiencies.
Laser-machined piezoelectric cantilevers for mechanical energy harvesting.
Kim, HyunUk; Bedekar, Vishwas; Islam, Rashed Adnan; Lee, Woo-Ho; Leo, Don; Priya, Shashank
2008-09-01
In this study, we report results on a piezoelectric- material-based mechanical energy-harvesting device that was fabricated by combining laser machining with microelectronics packaging technology. It was found that the laser-machining process did not have significant effect on the electrical properties of piezoelectric material. The fabricated device was tested in the low-frequency regime of 50 to 1000 Hz at constant force of 8 g (where g = 9.8 m/s(2)). The device was found to generate continuous power of 1.13 microW at 870 Hz across a 288.5 kOmega load with a power density of 301.3 microW/cm(3).
Multivariate Models for Prediction of Human Skin Sensitization ...
One of the lnteragency Coordinating Committee on the Validation of Alternative Method's (ICCVAM) top priorities is the development and evaluation of non-animal approaches to identify potential skin sensitizers. The complexity of biological events necessary to produce skin sensitization suggests that no single alternative method will replace the currently accepted animal tests. ICCVAM is evaluating an integrated approach to testing and assessment based on the adverse outcome pathway for skin sensitization that uses machine learning approaches to predict human skin sensitization hazard. We combined data from three in chemico or in vitro assays - the direct peptide reactivity assay (DPRA), human cell line activation test (h-CLAT) and KeratinoSens TM assay - six physicochemical properties and an in silico read-across prediction of skin sensitization hazard into 12 variable groups. The variable groups were evaluated using two machine learning approaches , logistic regression and support vector machine, to predict human skin sensitization hazard. Models were trained on 72 substances and tested on an external set of 24 substances. The six models (three logistic regression and three support vector machine) with the highest accuracy (92%) used: (1) DPRA, h-CLAT and read-across; (2) DPRA, h-CLAT, read-across and KeratinoSens; or (3) DPRA, h-CLAT, read-across, KeratinoSens and log P. The models performed better at predicting human skin sensitization hazard than the murine
NASA Astrophysics Data System (ADS)
Liu, Weibo; Jin, Yan; Price, Mark
2016-10-01
A new heuristic based on the Nawaz-Enscore-Ham algorithm is proposed in this article for solving a permutation flow-shop scheduling problem. A new priority rule is proposed by accounting for the average, mean absolute deviation, skewness and kurtosis, in order to fully describe the distribution style of processing times. A new tie-breaking rule is also introduced for achieving effective job insertion with the objective of minimizing both makespan and machine idle time. Statistical tests illustrate better solution quality of the proposed algorithm compared to existing benchmark heuristics.
Improved Extreme Learning Machine based on the Sensitivity Analysis
NASA Astrophysics Data System (ADS)
Cui, Licheng; Zhai, Huawei; Wang, Benchao; Qu, Zengtang
2018-03-01
Extreme learning machine and its improved ones is weak in some points, such as computing complex, learning error and so on. After deeply analyzing, referencing the importance of hidden nodes in SVM, an novel analyzing method of the sensitivity is proposed which meets people’s cognitive habits. Based on these, an improved ELM is proposed, it could remove hidden nodes before meeting the learning error, and it can efficiently manage the number of hidden nodes, so as to improve the its performance. After comparing tests, it is better in learning time, accuracy and so on.
The relationship between reinforcement and gaming machine choice.
Haw, John
2008-03-01
The present study assessed whether prior reinforcement experiences were related to gaming machine choice and the decision to change gaming machines during a session of gambling. Seventy undergraduate students (48 women, 22 men; mean age = 22.05 years) were presented with two visually identical simulated gaming machines in a practice phase. These simulated machines differed only in the rate of reinforcement. After the practice phase, participants were asked to choose a machine to play in the test phase and were allowed to change machines at will. Two measures of reinforcement were employed; frequency of wins and payback rate. Results indicated that neither measure of reinforcement was related to machine choice, but both were predictors of when participants changed machines. A post-hoc analysis of the 33 participants who changed machines during the test phase found a significant relationship between machine choice and prior reinforcement. For these participants, payback rate was significantly related to machine choice, unlike frequency of wins.
Pyo, Sujin; Lee, Jaewook; Cha, Mincheol; Jang, Huisu
2017-01-01
The prediction of the trends of stocks and index prices is one of the important issues to market participants. Investors have set trading or fiscal strategies based on the trends, and considerable research in various academic fields has been studied to forecast financial markets. This study predicts the trends of the Korea Composite Stock Price Index 200 (KOSPI 200) prices using nonparametric machine learning models: artificial neural network, support vector machines with polynomial and radial basis function kernels. In addition, this study states controversial issues and tests hypotheses about the issues. Accordingly, our results are inconsistent with those of the precedent research, which are generally considered to have high prediction performance. Moreover, Google Trends proved that they are not effective factors in predicting the KOSPI 200 index prices in our frameworks. Furthermore, the ensemble methods did not improve the accuracy of the prediction.
NASA Technical Reports Server (NTRS)
Thomas, B.; Gill, J.; Maestrini, A.; Lee, C.; Lin, R.; Sin, S.; Peralta, A.; Mehdi, I.
2011-01-01
We present here the design, development and test of an integrated sub-millimeter front-end featuring a 520-600 GHz sub-harmonic mixer and a 260-300 GHz frequency tripler in a single cavity. Both devices used GaAs MMIC membrane planar Schottky diode technology. The sub-harmonic mixer/tripler circuit has been tested using conventional machined as well as silicon micro-machined blocks. Measurement results on the metal block give best DSB mixer noise temperature of 2360 K and conversion losses of 7.7 dB at 520 GHz. Preliminary results on the silicon micro-machined blocks give a DSB mixer noise temperature of 4860 K and conversion losses of 12.16 dB at 540 GHz. The LO input power required to pump the integrated tripler/sub-harmonic mixer for both packages is between 30 and 50 mW
NASA Technical Reports Server (NTRS)
Thomas, B.; Gill, J.; Maestrini, A.; Lee, C.; Lin, R.; Sin, S.; Peralta, A.; Mehdi, I.
2010-01-01
We present here the design, development and test of an integrated sub-millimeter front-end featuring a 520-600 GHz sub-harmonic mixer and a 260-300 GHz frequency tripler in a single cavity. Both devices used GaAs MMIC membrane planar Schottky diode technology. The sub-harmonic mixer/tripler circuit has been tested using conventional machined as well as silicon micro-machined blocks. Measurement results on the metal block give best DSB mixer noise temperature of 2360 K and conversion losses of 7.7 dB at 520 GHz. Preliminary results on the silicon micro-machined blocks give a DSB mixer noise temperature of 4860 K and conversion losses of 12.16 dB at 540 GHz. The LO input power required to pump the integrated tripler/sub-harmonic mixer for both packages is between 30 and 50 mW.
Pyo, Sujin; Lee, Jaewook; Cha, Mincheol
2017-01-01
The prediction of the trends of stocks and index prices is one of the important issues to market participants. Investors have set trading or fiscal strategies based on the trends, and considerable research in various academic fields has been studied to forecast financial markets. This study predicts the trends of the Korea Composite Stock Price Index 200 (KOSPI 200) prices using nonparametric machine learning models: artificial neural network, support vector machines with polynomial and radial basis function kernels. In addition, this study states controversial issues and tests hypotheses about the issues. Accordingly, our results are inconsistent with those of the precedent research, which are generally considered to have high prediction performance. Moreover, Google Trends proved that they are not effective factors in predicting the KOSPI 200 index prices in our frameworks. Furthermore, the ensemble methods did not improve the accuracy of the prediction. PMID:29136004
Nutrition environment measures survey-vending: development, dissemination, and reliability.
Voss, Carol; Klein, Susan; Glanz, Karen; Clawson, Margaret
2012-07-01
Researchers determined a need to develop an instrument to assess the vending machine environment that was comparably reliable and valid to other Nutrition Environment Measures Survey tools and that would provide consistent and comparable data for businesses, schools, and communities. Tool development, reliability testing, and dissemination of the Nutrition Environment Measures Survey-Vending (NEMS-V) involved a collaboration of students, professionals, and community leaders. Interrater reliability testing showed high levels of agreement among trained raters on the products and evaluations of products. NEMS-V can benefit public health partners implementing policy and environmental change initiatives as a part of their community wellness activities. The vending machine project will support a policy calling for state facilities to provide a minimum of 30% of foods and beverages in vending machines as healthy options, based on NEMS-V criteria, which will be used as a model for other businesses.
A cost-effective, accurate machine for testing the torsional strength of sheep long bones.
Jämsä, T; Jalovaara, P
1996-07-01
A cost-effective torsional testing machine for sheep long bones was constructed. The machine was fabricated on a disused standard turning lathe. The angular speed used was 6.5 degrees/s. A precision amplifier using modern low-noise, low-drift operational amplifiers was developed. The maximum torsional load was 250 Nm, the sensitivity 0.5 Nm and the total machine inaccuracy less than 1.0%. The standard error of torsional testing was 3.0% when seven pairs of intact sheep tibiae were tested.
Development of testing machine for tunnel inspection using multi-rotor UAV
NASA Astrophysics Data System (ADS)
Iwamoto, Tatsuya; Enaka, Tomoya; Tada, Keijirou
2017-05-01
Many concrete structures are deteriorating to dangerous levels throughout Japan. These concrete structures need to be inspected regularly to be sure that they are safe enough to be used. The inspection method for these concrete structures is typically the impact acoustic method. In the impact acoustic method, the worker taps the surface of the concrete with a hammer. Thus, it is necessary to set up scaffolding to access tunnel walls for inspection. Alternatively, aerial work platforms can be used. However, setting up scaffolding and aerial work platforms is not economical with regard to time or money. Therefore, we developed a testing machine using a multirotor UAV for tunnel inspection. This test machine flies by a plurality of rotors, and it is pushed along a concrete wall and moved by using rubber crawlers. The impact acoustic method is used in this testing machine. This testing machine has a hammer to make an impact, and a microphone to acquire the impact sound. The impact sound is converted into an electrical signal and is wirelessly transmitted to the computer. At the same time, the position of the testing machine is measured by image processing using a camera. The weight and dimensions of the testing machine are approximately 1.25 kg and 500 mm by 500 mm by 250 mm, respectively.
Dental cutting behaviour of mica-based and apatite-based machinable glass-ceramics.
Taira, M; Wakasa, K; Yamaki, M; Matsui, A
1990-09-01
Some recently developed industrial ceramics have excellent machinability properties. The objective of this study was to evaluate the dental cutting behaviour of two machinable glass-ceramics, mica-containing Macor-M and apatite- and diopside-containing Bioram-M, and to compare them with the cutting behaviour of a composite resin typodont tooth enamel and bovine enamel. Weight-load cutting tests were conducted, using a diamond point driven by an air-turbine handpiece, While the transverse load applied on the point was varied, the handpiece speed during cutting and the volume of removal upon cutting were measured. In general, an increase in the applied load caused a decrease in cutting speed and an increase in cutting volume. However, the intensity of this trend was found to differ between four workpieces. Cutting Macor-M resulted in the second-most reduced cutting speed and the maximum cutting volume. Cutting Bioram-M gave the least reduced cutting speed and the minimum cutting volume. It was suggested that two machinable glass-ceramics could be employed as typodont teeth. This study may also contribute to the development of new restorative dental ceramic materials, prepared by machining.
Stirling machine operating experience
NASA Technical Reports Server (NTRS)
Ross, Brad; Dudenhoefer, James E.
1991-01-01
Numerous Stirling machines have been built and operated, but the operating experience of these machines is not well known. It is important to examine this operating experience in detail, because it largely substantiates the claim that Stirling machines are capable of reliable and lengthy lives. The amount of data that exists is impressive, considering that many of the machines that have been built are developmental machines intended to show proof of concept, and were not expected to operate for any lengthy period of time. Some Stirling machines (typically free-piston machines) achieve long life through non-contact bearings, while other Stirling machines (typically kinematic) have achieved long operating lives through regular seal and bearing replacements. In addition to engine and system testing, life testing of critical components is also considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bunshah, R.F.; Shabaik, A.H.
The process of Activated Reactive Evaporation is used to synthesize superhard materials like carbides, oxides, nitrides, ultrafine grain cermets. The deposits are characterized by hardness, microstructure and lattice parameter measurements. The synthesis and characterization of TiC-Ni cermets, Al/sub 2/O/sub 3/ and VC-TiC alloy carbides is given. Tools of different coating characteristics are tested for machining performance at different speeds and feeds. The machining evaluation and the selection of coatings is based on the rate of deterioration of the costing, tool temperature, and cutting forces. Tool life tests show coated high speed steel tools show a 300% improvement in tool life.more » (Author) (GRA)« less
Evaluation of machine learning algorithms for improved risk assessment for Down's syndrome.
Koivu, Aki; Korpimäki, Teemu; Kivelä, Petri; Pahikkala, Tapio; Sairanen, Mikko
2018-05-04
Prenatal screening generates a great amount of data that is used for predicting risk of various disorders. Prenatal risk assessment is based on multiple clinical variables and overall performance is defined by how well the risk algorithm is optimized for the population in question. This article evaluates machine learning algorithms to improve performance of first trimester screening of Down syndrome. Machine learning algorithms pose an adaptive alternative to develop better risk assessment models using the existing clinical variables. Two real-world data sets were used to experiment with multiple classification algorithms. Implemented models were tested with a third, real-world, data set and performance was compared to a predicate method, a commercial risk assessment software. Best performing deep neural network model gave an area under the curve of 0.96 and detection rate of 78% with 1% false positive rate with the test data. Support vector machine model gave area under the curve of 0.95 and detection rate of 61% with 1% false positive rate with the same test data. When compared with the predicate method, the best support vector machine model was slightly inferior, but an optimized deep neural network model was able to give higher detection rates with same false positive rate or similar detection rate but with markedly lower false positive rate. This finding could further improve the first trimester screening for Down syndrome, by using existing clinical variables and a large training data derived from a specific population. Copyright © 2018 Elsevier Ltd. All rights reserved.
White, Donald J; Schneiderman, Eva; Colón, Ellen; St John, Samuel
2015-01-01
This paper describes the development and standardization of a profilometry-based method for assessment of dentifrice abrasivity called Radioactive Dentin Abrasivity - Profilometry Equivalent (RDA-PE). Human dentine substrates are mounted in acrylic blocks of precise standardized dimensions, permitting mounting and brushing in V8 brushing machines. Dentin blocks are masked to create an area of "contact brushing." Brushing is carried out in V8 brushing machines and dentifrices are tested as slurries. An abrasive standard is prepared by diluting the ISO 11609 abrasivity reference calcium pyrophosphate abrasive into carboxymethyl cellulose/glycerin, just as in the RDA method. Following brushing, masked areas are removed and profilometric analysis is carried out on treated specimens. Assessments of average abrasion depth (contact or optical profilometry) are made. Inclusion of standard calcium pyrophosphate abrasive permits a direct RDA equivalent assessment of abrasion, which is characterized with profilometry as Depth test/Depth control x 100. Within the test, the maximum abrasivity standard of 250 can be created in situ simply by including a treatment group of standard abrasive with 2.5x number of brushing strokes. RDA-PE is enabled in large part by the availability of easy-to-use and well-standardized modern profilometers, but its use in V8 brushing machines is enabled by the unique specific conditions described herein. RDA-PE permits the evaluation of dentifrice abrasivity to dentin without the requirement of irradiated teeth and infrastructure for handling them. In direct comparisons, the RDA-PE method provides dentifrice abrasivity assessments comparable to the gold industry standard RDA technique.
Alghamdi, Manal; Al-Mallah, Mouaz; Keteyian, Steven; Brawner, Clinton; Ehrman, Jonathan; Sakr, Sherif
2017-01-01
Machine learning is becoming a popular and important approach in the field of medical research. In this study, we investigate the relative performance of various machine learning methods such as Decision Tree, Naïve Bayes, Logistic Regression, Logistic Model Tree and Random Forests for predicting incident diabetes using medical records of cardiorespiratory fitness. In addition, we apply different techniques to uncover potential predictors of diabetes. This FIT project study used data of 32,555 patients who are free of any known coronary artery disease or heart failure who underwent clinician-referred exercise treadmill stress testing at Henry Ford Health Systems between 1991 and 2009 and had a complete 5-year follow-up. At the completion of the fifth year, 5,099 of those patients have developed diabetes. The dataset contained 62 attributes classified into four categories: demographic characteristics, disease history, medication use history, and stress test vital signs. We developed an Ensembling-based predictive model using 13 attributes that were selected based on their clinical importance, Multiple Linear Regression, and Information Gain Ranking methods. The negative effect of the imbalance class of the constructed model was handled by Synthetic Minority Oversampling Technique (SMOTE). The overall performance of the predictive model classifier was improved by the Ensemble machine learning approach using the Vote method with three Decision Trees (Naïve Bayes Tree, Random Forest, and Logistic Model Tree) and achieved high accuracy of prediction (AUC = 0.92). The study shows the potential of ensembling and SMOTE approaches for predicting incident diabetes using cardiorespiratory fitness data.
NASA Technical Reports Server (NTRS)
Choi, Benjamin B.; Hunker, Keith R.; Hartwig, Jason; Brown, Gerald V.
2017-01-01
The NASA Glenn Research Center (GRC) has been developing the high efficiency and high-power density superconducting (SC) electric machines in full support of electrified aircraft propulsion (EAP) systems for a future electric aircraft. A SC coil test rig has been designed and built to perform static and AC measurements on BSCCO, (RE)BCO, and YBCO high temperature superconducting (HTS) wire and coils at liquid nitrogen (LN2) temperature. In this paper, DC measurements on five SC coil configurations of various geometry in zero external magnetic field are measured to develop good measurement technique and to determine the critical current (Ic) and the sharpness (n value) of the super-to-normal transition. Also, standard procedures for coil design, fabrication, coil mounting, micro-volt measurement, cryogenic testing, current control, and data acquisition technique were established. Experimentally measured critical currents are compared with theoretical predicted values based on an electric-field criterion (Ec). Data here are essential to quantify the SC electric machine operation limits where the SC begins to exhibit non-zero resistance. All test data will be utilized to assess the feasibility of using HTS coils for the fully superconducting AC electric machine development for an aircraft electric propulsion system.
2015-07-01
annex. iii Self-defense testing was limited to structural test firing from each machine gun mount and an ammunition resupply drill. Robust self...provided in the classified annex. Self- 8 defense testing was limited to structural test firing from each machine gun mount and a single...Caliber Machine Gun Mount Structural Test Fire November 2014 San Diego, Offshore Ship Weapons Range Operating Independently 9 Section Three
Machine learning-based in-line holographic sensing of unstained malaria-infected red blood cells.
Go, Taesik; Kim, Jun H; Byeon, Hyeokjun; Lee, Sang J
2018-04-19
Accurate and immediate diagnosis of malaria is important for medication of the infectious disease. Conventional methods for diagnosing malaria are time consuming and rely on the skill of experts. Therefore, an automatic and simple diagnostic modality is essential for healthcare in developing countries that lack the expertise of trained microscopists. In the present study, a new automatic sensing method using digital in-line holographic microscopy (DIHM) combined with machine learning algorithms was proposed to sensitively detect unstained malaria-infected red blood cells (iRBCs). To identify the RBC characteristics, 13 descriptors were extracted from segmented holograms of individual RBCs. Among the 13 descriptors, 10 features were highly statistically different between healthy RBCs (hRBCs) and iRBCs. Six machine learning algorithms were applied to effectively combine the dominant features and to greatly improve the diagnostic capacity of the present method. Among the classification models trained by the 6 tested algorithms, the model trained by the support vector machine (SVM) showed the best accuracy in separating hRBCs and iRBCs for training (n = 280, 96.78%) and testing sets (n = 120, 97.50%). This DIHM-based artificial intelligence methodology is simple and does not require blood staining. Thus, it will be beneficial and valuable in the diagnosis of malaria. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Computer-Based Arithmetic Test Generation
ERIC Educational Resources Information Center
Trocchi, Robert F.
1973-01-01
The computer can be a welcome partner in the instructional process, but only if there is man-machine interaction. Man should not compromise system design because of available hardware; the computer must fit the system design for the result to represent an acceptable solution to instructional technology. The Arithmetic Test Generator system fits…
NASA Astrophysics Data System (ADS)
Szablewski, Daniel
The research presented in this work is focused on making a link between casting microstructural, mechanical and machining properties for 319 Al-Si sand cast components. In order to achieve this, a unique Machinability Test Block (MTB) is designed to simulate the Nemak V6 Al-Si engine block solidification behavior. This MTB is then utilized to cast structures with in-situ nano-alumina particle master alloy additions that are Mg based, as well as independent in-situ Mg additions, and Sr additions to the MTB. The Universal Metallurgical Simulator and Analyzer (UMSA) Technology Platform is utilized for characterization of each cast structure at different Secondary Dendrite Arm Spacing (SDAS) levels. The rapid quench method and Jominy testing is used to assess the capability of the nano-alumina master alloy to modify the microstructure at different SDAS levels. Mechanical property assessment of the MTB is done at different SDAS levels on cast structures with master alloy additions described above. Weibull and Quality Index statistical analysis tools are then utilized to assess the mechanical properties. The MTB is also used to study single pass high speed face milling and bi-metallic cutting operations where the Al-Si hypoeutectic structure is combined with hypereutectoid Al-Si liners and cast iron cylinder liners. These studies are utilized to aid the implementation of Al-Si liners into the Nemak V6 engine block and bi-metallic cutting of the head decks. Machining behavior is also quantified for the investigated microstructures, and the Silicon Modification Level (SiML) is utilized for microstructural analysis as it relates to the machining behavior.
Fabrication and Tests of M240 Machine Gun Barrels Lined with Stellite 25
2016-04-01
ARL-TR-7662 ● APR 2016 US Army Research Laboratory Fabrication and Tests of M240 Machine Gun Barrels Lined with Stellite 25...Fabrication and Tests of M240 Machine Gun Barrels Lined with Stellite 25 by William S de Rosset and Sean Fudger Weapons and Materials Research...
Electronically commutated dc motors for electric vehicles
NASA Technical Reports Server (NTRS)
Maslowski, E. A.
1981-01-01
A motor development program to explore the feasibility of electronically commutated dc motors (also known as brushless) for electric cars is described. Two different design concepts and a number of design variations based on these concepts are discussed. One design concept is based on a permanent magnet, medium speed, machine rated at 7000 to 9000 rpm, and powered via a transistor inverter power conditioner. The other concept is based on a permanent magnet, high speed, machine rated at 22,000 to 26,000 rpm, and powered via a thyristor inverter power conditioner. Test results are presented for a medium speed motor and a high speed motor each of which have been fabricated using samarium cobalt permanent magnet material.
Zhou, Wengang; Dickerson, Julie A
2012-01-01
Knowledge of protein subcellular locations can help decipher a protein's biological function. This work proposes new features: sequence-based: Hybrid Amino Acid Pair (HAAP) and two structure-based: Secondary Structural Element Composition (SSEC) and solvent accessibility state frequency. A multi-class Support Vector Machine is developed to predict the locations. Testing on two established data sets yields better prediction accuracies than the best available systems. Comparisons with existing methods show comparable results to ESLPred2. When StruLocPred is applied to the entire Arabidopsis proteome, over 77% of proteins with known locations match the prediction results. An implementation of this system is at http://wgzhou.ece. iastate.edu/StruLocPred/.
Athanasios lliopoulos; John G. Michopoulos; John G. C. Hermanson
2012-01-01
This paper describes a data reduction methodology for eliminating the systematic aberrations introduced by the unwanted behavior of a multiaxial testing machine, into the massive amounts of experimental data collected from testing of composite material coupons. The machine in reference is a custom made 6-DoF system called NRL66.3 and developed at the NAval...
Optical fabrication and testing; Proceedings of the Meeting, Singapore, Oct. 22-27, 1990
NASA Astrophysics Data System (ADS)
Lorenzen, Manfred; Campbell, Duncan R.; Johnson, Craig W.
1991-03-01
Various papers on optical fabrication and testing are presented. Individual topics addressed include: interferometry with laser diodes, new methods for economic production of prisms and lenses, interferometer accuracy and precision, optical testing with wavelength scanning interferometer, digital Talbot interferometer, high-sensitivity interferometric technique for strain measurements, absolute interferometric testing of spherical surfaces, contouring using gratings created on an LCD panel, three-dimensional inspection using laser-based dynamic fringe projection, noncontact optical microtopography, laser scan microscope and infrared laser scan microscope, photon scanning tunneling microscopy. Also discussed are: combination-matching problems in the layout design of minilaser rangefinder, design and testing of a cube-corner array for laser ranging, mode and far-field pattern of diode laser-phased arrays, new glasses for optics and optoelectronics, optical properties of Li-doped ZnO films, application and machining of Zerodur for optical purposes, finish machining of optical components in mass production.
Optical fabrication and testing; Proceedings of the Meeting, Singapore, Oct. 22-27, 1990
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lorenzen, M.; Campbell, D.R.; Johnson, C.W.
1991-01-01
Various papers on optical fabrication and testing are presented. Individual topics addressed include: interferometry with laser diodes, new methods for economic production of prisms and lenses, interferometer accuracy and precision, optical testing with wavelength scanning interferometer, digital Talbot interferometer, high-sensitivity interferometric technique for strain measurements, absolute interferometric testing of spherical surfaces, contouring using gratings created on an LCD panel, three-dimensional inspection using laser-based dynamic fringe projection, noncontact optical microtopography, laser scan microscope and infrared laser scan microscope, photon scanning tunneling microscopy. Also discussed are: combination-matching problems in the layout design of minilaser rangefinder, design and testing of a cube-corner arraymore » for laser ranging, mode and far-field pattern of diode laser-phased arrays, new glasses for optics and optoelectronics, optical properties of Li-doped ZnO films, application and machining of Zerodur for optical purposes, finish machining of optical components in mass production.« less
Improving Student Performance through Computer-Based Assessment: Insights from Recent Research.
ERIC Educational Resources Information Center
Ricketts, C.; Wilks, S. J.
2002-01-01
Compared student performance on computer-based assessment to machine-graded multiple choice tests. Found that performance improved dramatically on the computer-based assessment when students were not required to scroll through the question paper. Concluded that students may be disadvantaged by the introduction of online assessment unless care is…
NASA Technical Reports Server (NTRS)
Kahraman, Ahmet
2002-01-01
In this study, design requirements for a dynamically viable, four-square type gear test machine are investigated. Variations of four-square type gear test machines have been in use for durability and dynamics testing of both parallel- and cross-axis gear set. The basic layout of these machines is illustrated. The test rig is formed by two gear pairs, of the same reduction ratio, a test gear pair and a reaction gear pair, connected to each other through shafts of certain torsional flexibility to form an efficient, closed-loop system. A desired level of constant torque is input to the circuit through mechanical (a split coupling with a torque arm) or hydraulic (a hydraulic actuator) means. The system is then driven at any desired speed by a small DC motor. The main task in hand is the isolation of the test gear pair from the reaction gear pair under dynamic conditions. Any disturbances originated at the reaction gear mesh might potentially travel to the test gearbox, altering the dynamic loading conditions of the test gear mesh, and hence, influencing the outcome of the durability or dynamics test. Therefore, a proper design of connecting structures becomes a major priority. Also, equally important is the issue of how close the operating speed of the machine is to the resonant frequencies of the gear meshes. This study focuses on a detailed analysis of the current NASA Glenn Research Center gear pitting test machine for evaluation of its resonance and vibration isolation characteristics. A number of these machines as the one illustrated has been used over last 30 years to establish an extensive database regarding the influence of the gear materials, processes surface treatments and lubricants on gear durability. This study is intended to guide an optimum design of next generation test machines for the most desirable dynamic characteristics.
NASA Technical Reports Server (NTRS)
Lundquist, Eugene E; Schwartz, Edward B
1942-01-01
The results of a theoretical and experimental investigation to determine the critical compression load for a universal testing machine are presented for specimens loaded through knife edges. The critical load for the testing machine is the load at which one of the loading heads becomes laterally instable in relation to the other. For very short specimens the critical load was found to be less than the rated capacity given by the manufacturer for the machine. A load-length diagram is proposed for defining the safe limits of the test region for the machine. Although this report is particularly concerned with a universal testing machine of a certain type, the basic theory which led to the derivation of the general equation for the critical load, P (sub cr) = alpha L can be applied to any testing machine operated in compression where the specimen is loaded through knife edges. In this equation, L is the length of the specimen between knife edges and alpha is the force necessary to displace the upper end of the specimen unit horizontal distance relative to the lower end of the specimen in a direction normal to the knife edges through which the specimen is loaded.
Development of an automatic subsea blowout preventer stack control system using PLC based SCADA.
Cai, Baoping; Liu, Yonghong; Liu, Zengkai; Wang, Fei; Tian, Xiaojie; Zhang, Yanzhen
2012-01-01
An extremely reliable remote control system for subsea blowout preventer stack is developed based on the off-the-shelf triple modular redundancy system. To meet a high reliability requirement, various redundancy techniques such as controller redundancy, bus redundancy and network redundancy are used to design the system hardware architecture. The control logic, human-machine interface graphical design and redundant databases are developed by using the off-the-shelf software. A series of experiments were performed in laboratory to test the subsea blowout preventer stack control system. The results showed that the tested subsea blowout preventer functions could be executed successfully. For the faults of programmable logic controllers, discrete input groups and analog input groups, the control system could give correct alarms in the human-machine interface. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
A Directed Acyclic Graph-Large Margin Distribution Machine Model for Music Symbol Classification
Wen, Cuihong; Zhang, Jing; Rebelo, Ana; Cheng, Fanyong
2016-01-01
Optical Music Recognition (OMR) has received increasing attention in recent years. In this paper, we propose a classifier based on a new method named Directed Acyclic Graph-Large margin Distribution Machine (DAG-LDM). The DAG-LDM is an improvement of the Large margin Distribution Machine (LDM), which is a binary classifier that optimizes the margin distribution by maximizing the margin mean and minimizing the margin variance simultaneously. We modify the LDM to the DAG-LDM to solve the multi-class music symbol classification problem. Tests are conducted on more than 10000 music symbol images, obtained from handwritten and printed images of music scores. The proposed method provides superior classification capability and achieves much higher classification accuracy than the state-of-the-art algorithms such as Support Vector Machines (SVMs) and Neural Networks (NNs). PMID:26985826
A Directed Acyclic Graph-Large Margin Distribution Machine Model for Music Symbol Classification.
Wen, Cuihong; Zhang, Jing; Rebelo, Ana; Cheng, Fanyong
2016-01-01
Optical Music Recognition (OMR) has received increasing attention in recent years. In this paper, we propose a classifier based on a new method named Directed Acyclic Graph-Large margin Distribution Machine (DAG-LDM). The DAG-LDM is an improvement of the Large margin Distribution Machine (LDM), which is a binary classifier that optimizes the margin distribution by maximizing the margin mean and minimizing the margin variance simultaneously. We modify the LDM to the DAG-LDM to solve the multi-class music symbol classification problem. Tests are conducted on more than 10000 music symbol images, obtained from handwritten and printed images of music scores. The proposed method provides superior classification capability and achieves much higher classification accuracy than the state-of-the-art algorithms such as Support Vector Machines (SVMs) and Neural Networks (NNs).
Time to B. cereus about hot chocolate.
Nelms, P K; Larson, O; Barnes-Josiah, D
1997-01-01
OBJECTIVE: To determine the cause of illnesses experienced by employees of a Minneapolis manufacturing plant after drinking hot chocolate bought from a vending machine and to explore the prevalence of similar vending machine-related illnesses. METHODS: The authors inspected the vending machines at the manufacturing plant where employees reported illnesses and at other locations in the city where hot chocolate beverages were sold in machines. Tests were performed on dry mix, water, and beverage samples and on machine parts. RESULTS: Laboratory analyses confirmed the presence of B. cereus in dispensed beverages at a concentration capable of causing illness (170,000 count/gm). In citywide testing of vending machines dispensing hot chocolate, 7 of the 39 licensed machines were found to be contaminated, with two contaminated machines having B. cereus levels capable of causing illness. CONCLUSIONS: Hot chocolate sold in vending machines may contain organisms capable of producing toxins that under favorable conditions, can induce illness. Such illnesses are likely to be underreported. Even low concentrations of B. cereus may be dangerous for vulnerable populations such as the aged or immunosuppressed. Periodic testing of vending machines is thus warranted. The relationship between cleaning practices and B. cereus contamination is an issue for further study. PMID:9160059
Time to B. cereus about hot chocolate.
Nelms, P K; Larson, O; Barnes-Josiah, D
1997-01-01
To determine the cause of illnesses experienced by employees of a Minneapolis manufacturing plant after drinking hot chocolate bought from a vending machine and to explore the prevalence of similar vending machine-related illnesses. The authors inspected the vending machines at the manufacturing plant where employees reported illnesses and at other locations in the city where hot chocolate beverages were sold in machines. Tests were performed on dry mix, water, and beverage samples and on machine parts. Laboratory analyses confirmed the presence of B. cereus in dispensed beverages at a concentration capable of causing illness (170,000 count/gm). In citywide testing of vending machines dispensing hot chocolate, 7 of the 39 licensed machines were found to be contaminated, with two contaminated machines having B. cereus levels capable of causing illness. Hot chocolate sold in vending machines may contain organisms capable of producing toxins that under favorable conditions, can induce illness. Such illnesses are likely to be underreported. Even low concentrations of B. cereus may be dangerous for vulnerable populations such as the aged or immunosuppressed. Periodic testing of vending machines is thus warranted. The relationship between cleaning practices and B. cereus contamination is an issue for further study.
Design of a hydraulic bending machine
Steven G. Hankel; Marshall Begel
2004-01-01
To keep pace with customer demands while phasing out old and unserviceable test equipment, the staff of the Engineering Mechanics Laboratory (EML) at the USDA Forest Service, Forest Products Laboratory, designed and assembled a hydraulic bending test machine. The EML built this machine to test dimension lumber, nominal 2 in. thick and up to 12 in. deep, at spans up to...
Machine Tests Optical Fibers In Flexure
NASA Technical Reports Server (NTRS)
Darejeh, Hadi; Thomas, Henry; Delcher, Ray
1993-01-01
Machine repeatedly flexes single optical fiber or cable or bundle of optical fibers at low temperature. Liquid nitrogen surrounds specimen as it is bent back and forth by motion of piston. Machine inexpensive to build and operate. Tests under repeatable conditions so candidate fibers, cables, and bundles evaluated for general robustness before subjected to expensive shock and vibration tests.
Seizure Forecasting and the Preictal State in Canine Epilepsy.
Varatharajah, Yogatheesan; Iyer, Ravishankar K; Berry, Brent M; Worrell, Gregory A; Brinkmann, Benjamin H
2017-02-01
The ability to predict seizures may enable patients with epilepsy to better manage their medications and activities, potentially reducing side effects and improving quality of life. Forecasting epileptic seizures remains a challenging problem, but machine learning methods using intracranial electroencephalographic (iEEG) measures have shown promise. A machine-learning-based pipeline was developed to process iEEG recordings and generate seizure warnings. Results support the ability to forecast seizures at rates greater than a Poisson random predictor for all feature sets and machine learning algorithms tested. In addition, subject-specific neurophysiological changes in multiple features are reported preceding lead seizures, providing evidence supporting the existence of a distinct and identifiable preictal state.
SEIZURE FORECASTING AND THE PREICTAL STATE IN CANINE EPILEPSY
Varatharajah, Yogatheesan; Iyer, Ravishankar K.; Berry, Brent M.; Worrell, Gregory A.; Brinkmann, Benjamin H.
2017-01-01
The ability to predict seizures may enable patients with epilepsy to better manage their medications and activities, potentially reducing side effects and improving quality of life. Forecasting epileptic seizures remains a challenging problem, but machine learning methods using intracranial electroencephalographic (iEEG) measures have shown promise. A machine-learning-based pipeline was developed to process iEEG recordings and generate seizure warnings. Results support the ability to forecast seizures at rates greater than a Poisson random predictor for all feature sets and machine learning algorithms tested. In addition, subject-specific neurophysiological changes in multiple features are reported preceding lead seizures, providing evidence supporting the existence of a distinct and identifiable preictal state. PMID:27464854
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plimpton, Steven J.; Agarwal, Sapan; Schiek, Richard
2016-09-02
CrossSim is a simulator for modeling neural-inspired machine learning algorithms on analog hardware, such as resistive memory crossbars. It includes noise models for reading and updating the resistances, which can be based on idealized equations or experimental data. It can also introduce noise and finite precision effects when converting values from digital to analog and vice versa. All of these effects can be turned on or off as an algorithm processes a data set and attempts to learn its salient attributes so that it can be categorized in the machine learning training/classification context. CrossSim thus allows the robustness, accuracy, andmore » energy usage of a machine learning algorithm to be tested on simulated hardware.« less
A new class of high-G and long-duration shock testing machines
NASA Astrophysics Data System (ADS)
Rastegar, Jahangir
2018-03-01
Currently available methods and systems for testing components for survival and performance under shock loading suffer from several shortcomings for use to simulate high-G acceleration events with relatively long duration. Such events include most munitions firing and target impact, vehicular accidents, drops from relatively high heights, air drops, impact between machine components, and other similar events. In this paper, a new class of shock testing machines are presented that can be used to subject components to be tested to high-G acceleration pulses of prescribed amplitudes and relatively long durations. The machines provide for highly repeatable testing of components. The components are mounted on an open platform for ease of instrumentation and video recording of their dynamic behavior during shock loading tests.
High speed turning of compacted graphite iron using controlled modulation
NASA Astrophysics Data System (ADS)
Stalbaum, Tyler Paul
Compacted graphite iron (CGI) is a material which emerged as a candidate material to replace cast iron (CI) in the automotive industry for engine block castings. Its thermal and mechanical properties allow the CGI-based engines to operate at higher cylinder pressures and temperatures than CI-based engines, allowing for lower fuel emissions and increased fuel economy. However, these same properties together with the thermomechanical wear mode in the CGI-CBN system result in poor machinability and inhibit CGI from seeing wide spread use in the automotive industry. In industry, machining of CGI is done only at low speeds, less than V = 200 m/min, to avoid encountering rapid wear of the cutting tools during cutting. Studies have suggested intermittent cutting operations such as milling suffer less severe tool wear than continuous cutting. Furthermore, evidence that a hard sulfide layer which forms over the cutting edge in machining CI at high speeds is absent during machining CGI is a major factor in the difference in machinability of these material systems. The present study addresses both of these issues by modification to the conventional machining process to allow intermittent continuous cutting. The application of controlled modulation superimposed onto the cutting process -- modulation-assisted machining (MAM) -- is shown to be quite effective in reducing the wear of cubic boron nitride (CBN) tools when machining CGI at high machining speeds (> 500 m/min). The tool life is at least 20 times greater than found in conventional machining of CGI. This significant reduction in wear is a consequence of reduction in the severity of the tool-work contact conditions with MAM. The propensity for thermochemical wear of CBN is thus reduced. It is found that higher cutting speed (> 700 m/min) leads to lower tool wear with MAM. The MAM configuration employing feed-direction modulation appears feasible for implementation at high speeds and offers a solution to this challenging class of industrial machining applications. This study's approach is by series of high speed turning tests of CGI with CBN tools, comparing conventional machining to MAM for similar parameters otherwise, by tool wear measurements and machinability observations.
Effect of end-ring stiffness on buckling of pressure-loaded stiffened conical shells
NASA Technical Reports Server (NTRS)
Davis, R. C.; Williams, J. G.
1977-01-01
Buckling studies were conducted on truncated 120 deg conical shells having large end rings and many interior reinforcing rings that are typical of aeroshells used as spacecraft decelerators. Changes in base-end-ring stiffness were accomplished by simply machining away a portion of the base ring between successive buckling tests. Initial imperfection measurements from the test cones were included in the analytical model.
NASA Astrophysics Data System (ADS)
Wang, Weibao; Overall, Gary; Riggs, Travis; Silveston-Keith, Rebecca; Whitney, Julie; Chiu, George; Allebach, Jan P.
2013-01-01
Assessment of macro-uniformity is a capability that is important for the development and manufacture of printer products. Our goal is to develop a metric that will predict macro-uniformity, as judged by human subjects, by scanning and analyzing printed pages. We consider two different machine learning frameworks for the metric: linear regression and the support vector machine. We have implemented the image quality ruler, based on the recommendations of the INCITS W1.1 macro-uniformity team. Using 12 subjects at Purdue University and 20 subjects at Lexmark, evenly balanced with respect to gender, we conducted subjective evaluations with a set of 35 uniform b/w prints from seven different printers with five levels of tint coverage. Our results suggest that the image quality ruler method provides a reliable means to assess macro-uniformity. We then defined and implemented separate features to measure graininess, mottle, large area variation, jitter, and large-scale non-uniformity. The algorithms that we used are largely based on ISO image quality standards. Finally, we used these features computed for a set of test pages and the subjects' image quality ruler assessments of these pages to train the two different predictors - one based on linear regression and the other based on the support vector machine (SVM). Using five-fold cross-validation, we confirmed the efficacy of our predictor.
Deep Learning Accurately Predicts Estrogen Receptor Status in Breast Cancer Metabolomics Data.
Alakwaa, Fadhl M; Chaudhary, Kumardeep; Garmire, Lana X
2018-01-05
Metabolomics holds the promise as a new technology to diagnose highly heterogeneous diseases. Conventionally, metabolomics data analysis for diagnosis is done using various statistical and machine learning based classification methods. However, it remains unknown if deep neural network, a class of increasingly popular machine learning methods, is suitable to classify metabolomics data. Here we use a cohort of 271 breast cancer tissues, 204 positive estrogen receptor (ER+), and 67 negative estrogen receptor (ER-) to test the accuracies of feed-forward networks, a deep learning (DL) framework, as well as six widely used machine learning models, namely random forest (RF), support vector machines (SVM), recursive partitioning and regression trees (RPART), linear discriminant analysis (LDA), prediction analysis for microarrays (PAM), and generalized boosted models (GBM). DL framework has the highest area under the curve (AUC) of 0.93 in classifying ER+/ER- patients, compared to the other six machine learning algorithms. Furthermore, the biological interpretation of the first hidden layer reveals eight commonly enriched significant metabolomics pathways (adjusted P-value <0.05) that cannot be discovered by other machine learning methods. Among them, protein digestion and absorption and ATP-binding cassette (ABC) transporters pathways are also confirmed in integrated analysis between metabolomics and gene expression data in these samples. In summary, deep learning method shows advantages for metabolomics based breast cancer ER status classification, with both the highest prediction accuracy (AUC = 0.93) and better revelation of disease biology. We encourage the adoption of feed-forward networks based deep learning method in the metabolomics research community for classification.
Yoo, Tae Keun; Kim, Sung Kean; Kim, Deok Won; Choi, Joon Yul; Lee, Wan Hyung; Oh, Ein; Park, Eun-Cheol
2013-11-01
A number of clinical decision tools for osteoporosis risk assessment have been developed to select postmenopausal women for the measurement of bone mineral density. We developed and validated machine learning models with the aim of more accurately identifying the risk of osteoporosis in postmenopausal women compared to the ability of conventional clinical decision tools. We collected medical records from Korean postmenopausal women based on the Korea National Health and Nutrition Examination Surveys. The training data set was used to construct models based on popular machine learning algorithms such as support vector machines (SVM), random forests, artificial neural networks (ANN), and logistic regression (LR) based on simple surveys. The machine learning models were compared to four conventional clinical decision tools: osteoporosis self-assessment tool (OST), osteoporosis risk assessment instrument (ORAI), simple calculated osteoporosis risk estimation (SCORE), and osteoporosis index of risk (OSIRIS). SVM had significantly better area under the curve (AUC) of the receiver operating characteristic than ANN, LR, OST, ORAI, SCORE, and OSIRIS for the training set. SVM predicted osteoporosis risk with an AUC of 0.827, accuracy of 76.7%, sensitivity of 77.8%, and specificity of 76.0% at total hip, femoral neck, or lumbar spine for the testing set. The significant factors selected by SVM were age, height, weight, body mass index, duration of menopause, duration of breast feeding, estrogen therapy, hyperlipidemia, hypertension, osteoarthritis, and diabetes mellitus. Considering various predictors associated with low bone density, the machine learning methods may be effective tools for identifying postmenopausal women at high risk for osteoporosis.
Classification of older adults with/without a fall history using machine learning methods.
Lin Zhang; Ou Ma; Fabre, Jennifer M; Wood, Robert H; Garcia, Stephanie U; Ivey, Kayla M; McCann, Evan D
2015-01-01
Falling is a serious problem in an aged society such that assessment of the risk of falls for individuals is imperative for the research and practice of falls prevention. This paper introduces an application of several machine learning methods for training a classifier which is capable of classifying individual older adults into a high risk group and a low risk group (distinguished by whether or not the members of the group have a recent history of falls). Using a 3D motion capture system, significant gait features related to falls risk are extracted. By training these features, classification hypotheses are obtained based on machine learning techniques (K Nearest-neighbour, Naive Bayes, Logistic Regression, Neural Network, and Support Vector Machine). Training and test accuracies with sensitivity and specificity of each of these techniques are assessed. The feature adjustment and tuning of the machine learning algorithms are discussed. The outcome of the study will benefit the prediction and prevention of falls.
NASA Astrophysics Data System (ADS)
Jarabo-Amores, María-Pilar; la Mata-Moya, David de; Gil-Pita, Roberto; Rosa-Zurera, Manuel
2013-12-01
The application of supervised learning machines trained to minimize the Cross-Entropy error to radar detection is explored in this article. The detector is implemented with a learning machine that implements a discriminant function, which output is compared to a threshold selected to fix a desired probability of false alarm. The study is based on the calculation of the function the learning machine approximates to during training, and the application of a sufficient condition for a discriminant function to be used to approximate the optimum Neyman-Pearson (NP) detector. In this article, the function a supervised learning machine approximates to after being trained to minimize the Cross-Entropy error is obtained. This discriminant function can be used to implement the NP detector, which maximizes the probability of detection, maintaining the probability of false alarm below or equal to a predefined value. Some experiments about signal detection using neural networks are also presented to test the validity of the study.
Test-bench system for a borehole azimuthal acoustic reflection imaging logging tool
NASA Astrophysics Data System (ADS)
Liu, Xianping; Ju, Xiaodong; Qiao, Wenxiao; Lu, Junqiang; Men, Baiyong; Liu, Dong
2016-06-01
The borehole azimuthal acoustic reflection imaging logging tool (BAAR) is a new generation of imaging logging tool, which is able to investigate stratums in a relatively larger range of space around the borehole. The BAAR is designed based on the idea of modularization with a very complex structure, so it has become urgent for us to develop a dedicated test-bench system to debug each module of the BAAR. With the help of a test-bench system introduced in this paper, test and calibration of BAAR can be easily achieved. The test-bench system is designed based on the client/server model. The hardware system mainly consists of a host computer, an embedded controlling board, a bus interface board, a data acquisition board and a telemetry communication board. The host computer serves as the human machine interface and processes the uploaded data. The software running on the host computer is designed based on VC++. The embedded controlling board uses Advanced Reduced Instruction Set Machines 7 (ARM7) as the micro controller and communicates with the host computer via Ethernet. The software for the embedded controlling board is developed based on the operating system uClinux. The bus interface board, data acquisition board and telemetry communication board are designed based on a field programmable gate array (FPGA) and provide test interfaces for the logging tool. To examine the feasibility of the test-bench system, it was set up to perform a test on BAAR. By analyzing the test results, an unqualified channel of the electronic receiving cabin was discovered. It is suggested that the test-bench system can be used to quickly determine the working condition of sub modules of BAAR and it is of great significance in improving production efficiency and accelerating industrial production of the logging tool.
NASA Technical Reports Server (NTRS)
Barrett, Eamon B. (Editor); Pearson, James J. (Editor)
1989-01-01
Image understanding concepts and models, image understanding systems and applications, advanced digital processors and software tools, and advanced man-machine interfaces are among the topics discussed. Particular papers are presented on such topics as neural networks for computer vision, object-based segmentation and color recognition in multispectral images, the application of image algebra to image measurement and feature extraction, and the integration of modeling and graphics to create an infrared signal processing test bed.
Mega-Amp Opening Switch with Nested Electrodes/Pulsed Generator of Ion and Ion Cluster Beams
1987-07-30
The use of a plasma focus as a mega-amp opening switch has been demonstrated by two modes of operation: (a) Single shot mode; (b) Repetitive Mode...energy level and under the same voltage and filling-pressure conditions but without field distortion elements. Misfirings of the plasma focus machine...are also virtually eliminated by using FDE at the coaxial electrode breech. The tests (based on about 10000 shots and five plasma focus machines
Comparison of Random Forest and Support Vector Machine classifiers using UAV remote sensing imagery
NASA Astrophysics Data System (ADS)
Piragnolo, Marco; Masiero, Andrea; Pirotti, Francesco
2017-04-01
Since recent years surveying with unmanned aerial vehicles (UAV) is getting a great amount of attention due to decreasing costs, higher precision and flexibility of usage. UAVs have been applied for geomorphological investigations, forestry, precision agriculture, cultural heritage assessment and for archaeological purposes. It can be used for land use and land cover classification (LULC). In literature, there are two main types of approaches for classification of remote sensing imagery: pixel-based and object-based. On one hand, pixel-based approach mostly uses training areas to define classes and respective spectral signatures. On the other hand, object-based classification considers pixels, scale, spatial information and texture information for creating homogeneous objects. Machine learning methods have been applied successfully for classification, and their use is increasing due to the availability of faster computing capabilities. The methods learn and train the model from previous computation. Two machine learning methods which have given good results in previous investigations are Random Forest (RF) and Support Vector Machine (SVM). The goal of this work is to compare RF and SVM methods for classifying LULC using images collected with a fixed wing UAV. The processing chain regarding classification uses packages in R, an open source scripting language for data analysis, which provides all necessary algorithms. The imagery was acquired and processed in November 2015 with cameras providing information over the red, blue, green and near infrared wavelength reflectivity over a testing area in the campus of Agripolis, in Italy. Images were elaborated and ortho-rectified through Agisoft Photoscan. The ortho-rectified image is the full data set, and the test set is derived from partial sub-setting of the full data set. Different tests have been carried out, using a percentage from 2 % to 20 % of the total. Ten training sets and ten validation sets are obtained from each test set. The control dataset consist of an independent visual classification done by an expert over the whole area. The classes are (i) broadleaf, (ii) building, (iii) grass, (iv) headland access path, (v) road, (vi) sowed land, (vii) vegetable. The RF and SVM are applied to the test set. The performances of the methods are evaluated using the three following accuracy metrics: Kappa index, Classification accuracy and Classification Error. All three are calculated in three different ways: with K-fold cross validation, using the validation test set and using the full test set. The analysis indicates that SVM gets better results in terms of good scores using K-fold cross or validation test set. Using the full test set, RF achieves a better result in comparison to SVM. It also seems that SVM performs better with smaller training sets, whereas RF performs better as training sets get larger.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bramer, Lisa M.; Chatterjee, Samrat; Holmes, Aimee E.
Business intelligence problems are particularly challenging due to the use of large volume and high velocity data in attempts to model and explain complex underlying phenomena. Incremental machine learning based approaches for summarizing trends and identifying anomalous behavior are often desirable in such conditions to assist domain experts in characterizing their data. The overall goal of this research is to develop a machine learning algorithm that enables predictive analysis on streaming data, detects changes and anomalies in the data, and can evolve based on the dynamic behavior of the data. Commercial shipping transaction data for the U.S. is used tomore » develop and test a Naïve Bayes model that classifies several companies into lines of businesses and demonstrates an ability to predict when the behavior of these companies changes by venturing into other lines of businesses.« less
Laser Machining of Melt Infiltrated Ceramic Matrix Composite
NASA Technical Reports Server (NTRS)
Jarmon, D. C.; Ojard, G.; Brewer, D.
2012-01-01
As interest grows in considering the use of ceramic matrix composites for critical components, the effects of different machining techniques, and the resulting machined surfaces, on strength need to be understood. This work presents the characterization of a Melt Infiltrated SiC/SiC composite material system machined by different methods. While a range of machining approaches were initially considered, only diamond grinding and laser machining were investigated on a series of tensile coupons. The coupons were tested for residual tensile strength, after a stressed steam exposure cycle. The data clearly differentiated the laser machined coupons as having better capability for the samples tested. These results, along with micro-structural characterization, will be presented.
NASA Astrophysics Data System (ADS)
Vu, Duy-Duc; Monies, Frédéric; Rubio, Walter
2018-05-01
A large number of studies, based on 3-axis end milling of free-form surfaces, seek to optimize tool path planning. Approaches try to optimize the machining time by reducing the total tool path length while respecting the criterion of the maximum scallop height. Theoretically, the tool path trajectories that remove the most material follow the directions in which the machined width is the largest. The free-form surface is often considered as a single machining area. Therefore, the optimization on the entire surface is limited. Indeed, it is difficult to define tool trajectories with optimal feed directions which generate largest machined widths. Another limiting point of previous approaches for effectively reduce machining time is the inadequate choice of the tool. Researchers use generally a spherical tool on the entire surface. However, the gains proposed by these different methods developed with these tools lead to relatively small time savings. Therefore, this study proposes a new method, using toroidal milling tools, for generating toolpaths in different regions on the machining surface. The surface is divided into several regions based on machining intervals. These intervals ensure that the effective radius of the tool, at each cutter-contact points on the surface, is always greater than the radius of the tool in an optimized feed direction. A parallel plane strategy is then used on the sub-surfaces with an optimal specific feed direction for each sub-surface. This method allows one to mill the entire surface with efficiency greater than with the use of a spherical tool. The proposed method is calculated and modeled using Maple software to find optimal regions and feed directions in each region. This new method is tested on a free-form surface. A comparison is made with a spherical cutter to show the significant gains obtained with a toroidal milling cutter. Comparisons with CAM software and experimental validations are also done. The results show the efficiency of the method.
NASA Astrophysics Data System (ADS)
Bialas, James; Oommen, Thomas; Rebbapragada, Umaa; Levin, Eugene
2016-07-01
Object-based approaches in the segmentation and classification of remotely sensed images yield more promising results compared to pixel-based approaches. However, the development of an object-based approach presents challenges in terms of algorithm selection and parameter tuning. Subjective methods are often used, but yield less than optimal results. Objective methods are warranted, especially for rapid deployment in time-sensitive applications, such as earthquake damage assessment. Herein, we used a systematic approach in evaluating object-based image segmentation and machine learning algorithms for the classification of earthquake damage in remotely sensed imagery. We tested a variety of algorithms and parameters on post-event aerial imagery for the 2011 earthquake in Christchurch, New Zealand. Results were compared against manually selected test cases representing different classes. In doing so, we can evaluate the effectiveness of the segmentation and classification of different classes and compare different levels of multistep image segmentations. Our classifier is compared against recent pixel-based and object-based classification studies for postevent imagery of earthquake damage. Our results show an improvement against both pixel-based and object-based methods for classifying earthquake damage in high resolution, post-event imagery.
Knowledge-based machine vision systems for space station automation
NASA Technical Reports Server (NTRS)
Ranganath, Heggere S.; Chipman, Laure J.
1989-01-01
Computer vision techniques which have the potential for use on the space station and related applications are assessed. A knowledge-based vision system (expert vision system) and the development of a demonstration system for it are described. This system implements some of the capabilities that would be necessary in a machine vision system for the robot arm of the laboratory module in the space station. A Perceptics 9200e image processor, on a host VAXstation, was used to develop the demonstration system. In order to use realistic test images, photographs of actual space shuttle simulator panels were used. The system's capabilities of scene identification and scene matching are discussed.
NASA Astrophysics Data System (ADS)
Darker, Iain T.; Kuo, Paul; Yang, Ming Yuan; Blechko, Anastassia; Grecos, Christos; Makris, Dimitrios; Nebel, Jean-Christophe; Gale, Alastair G.
2009-05-01
Findings from the current UK national research programme, MEDUSA (Multi Environment Deployable Universal Software Application), are presented. MEDUSA brings together two approaches to facilitate the design of an automatic, CCTV-based firearm detection system: psychological-to elicit strategies used by CCTV operators; and machine vision-to identify key cues derived from camera imagery. Potentially effective human- and machine-based strategies have been identified; these will form elements of the final system. The efficacies of these algorithms have been tested on staged CCTV footage in discriminating between firearms and matched distractor objects. Early results indicate the potential for this combined approach.
WISESight : a multispectral smart video-track intrusion monitor.
DOT National Transportation Integrated Search
2015-05-01
International Electronic Machines : Corporation (IEM) developed, tested, and : validated a unique smart video-based : intrusion monitoring system for use at : highway-rail grade crossings. The system : used both thermal infrared (IR) and : visible/ne...
A GPS based fawn saving system using relative distance and angle determination
NASA Astrophysics Data System (ADS)
Ascher, A.; Eberhardt, M.; Lehner, M.; Biebl, E.
2016-09-01
Active UHF RFID systems are often used for identifying, tracking and locating objects. In the present publication a GPS- based localization system for saving fawns during pasture mowing was introduced and tested. Fawns were first found by a UAV before mowing began. They were then tagged with small active RFID transponders, and an appropriate reader was installed on a mowing machine. Conventional direction-of-arrival approaches require a large antenna array with multiple elements and a corresponding coherent receiver, which introduces a large degree of complexity on the reader-side. Instead, our transponders were equipped with a small GPS module, allowing a transponder to determine its own position on request from the reader. A UHF link was used to transmit the location to a machine- mounted reader, where a second GPS receiver was installed. Using information from this second position and a machine- mounted magnetometer for determining the relative north direction of a vehicle, relative distance, and angle between GPS receivers can be calculated. The accuracy and reliability of this novel method were tested under realistic operating conditions, considering critical factors such as the height of grass, the lying position of a fawn, humidity and geographical area.
Machine learning-based coreference resolution of concepts in clinical documents
Ware, Henry; Mullett, Charles J; El-Rawas, Oussama
2012-01-01
Objective Coreference resolution of concepts, although a very active area in the natural language processing community, has not yet been widely applied to clinical documents. Accordingly, the 2011 i2b2 competition focusing on this area is a timely and useful challenge. The objective of this research was to collate coreferent chains of concepts from a corpus of clinical documents. These concepts are in the categories of person, problems, treatments, and tests. Design A machine learning approach based on graphical models was employed to cluster coreferent concepts. Features selected were divided into domain independent and domain specific sets. Training was done with the i2b2 provided training set of 489 documents with 6949 chains. Testing was done on 322 documents. Results The learning engine, using the un-weighted average of three different measurement schemes, resulted in an F measure of 0.8423 where no domain specific features were included and 0.8483 where the feature set included both domain independent and domain specific features. Conclusion Our machine learning approach is a promising solution for recognizing coreferent concepts, which in turn is useful for practical applications such as the assembly of problem and medication lists from clinical documents. PMID:22582205
Improvement of a Harvester Based, Multispectral, Seed Cotton Fiber Quality Sensor
USDA-ARS?s Scientific Manuscript database
A multispectral sensor for in-situ seed cotton fiber quality measurement was developed and tested at Texas A&M University. Results of initial testing of the sensor using machine harvested seed cotton have shown promise. Improvements have been made to the system and the measurement method to meet t...
Reducing tool wear by partial cladding of critical zones in hot form tool by laser metal deposition
NASA Astrophysics Data System (ADS)
Vollmer, Robert; Sommitsch, Christof
2017-10-01
This paper points out a production method to reduce tool wear in hot stamping applications. Usually tool wear can be observed at locally strongly stressed areas superimposed with gliding movement between blank and tool surface. The shown solution is based on a partial laser cladding of the tool surface with a wear resistant coating to increase the lifespan of tool inserts. Preliminary studies showed good results applying a material combination of tungsten carbide particles embedded in a metallic matrix. Different Nickel based alloys welded on hot work tool steel (1.2343) were tested mechanically in the interface zone. The material with the best bonding characteristic is chosen and reinforced with spherical tungsten carbide particles in a second laser welding step. Since the machining of tungsten carbides is very elaborate a special manufacturing strategy is developed to reduce the milling effort as much as possible. On special test specimens milling tests are carried out to proof the machinability. As outlook a tool insert of a b-pillar is coated to perform real hot forming tests.
Wade, Matthew; Isom, Ryan; Georgescu, Dan; Olson, Randall J
2007-06-01
To determine the efficacy of the Cruise Control surge-limiting device (Staar Surgical) with phacoemulsification machines known to have high levels of surge. John A. Moran Eye Center Clinical Laboratories. In an in vitro study, postocclusion anterior chamber depth changes were measured in fresh phakic human eye-bank eyes using the Alcon Legacy and Bausch & Lomb Millennium venturi machines in conjunction with the Staar Cruise Control device. Both machines were tested with 19-gauge non-Aspiration Bypass System tips at high-surge settings (500 mm Hg vacuum pressure, 75 cm bottle height, 40 mL/min flow rate for the Legacy) and low-surge settings (400 mm Hg vacuum pressure, 125 cm bottle height, 40 mL/min flow rate for the Legacy). Adjusted parameters of flow, vacuum, and irrigation were used based on previous studies to create identical conditions for each device tested. The effect of the Cruise Control device on aspiration rates was also tested with both machines at the low-surge settings. At the high setting with the addition of Cruise Control, surge decreased significantly with the Legacy but was too large to measure with the Millennium venturi. At the low setting with the addition of Cruise Control, surge decreased significantly with both machines. Surge with the Millennium decreased from more than 1.0 mm to a mean of 0.21 mm +/- 0.02 (SD) (P<.0001). Surge with the Legacy decreased from a mean of 0.09 +/- 0.02 mm to 0.05 +/- 0 mm, a 42.9% decrease (P<.0001). The Millennium had the highest surge and aspiration rate before Cruise Control and the greatest percentage decrease in the surge and aspiration rates as a result of the addition of Cruise Control. In the Legacy machine, the Cruise Control device had a statistically and clinically significant effect. Cruise Control had a large effect on fluidics as well as surge amplitude with the Millennium machine. The greater the flow or greater the initial surge, the greater the impact of the Cruise Control device.
2. TEST AREA 1115, A VIEW TO THE SOUTHEAST FROM ...
2. TEST AREA 1-115, A VIEW TO THE SOUTHEAST FROM THE DECK OF TEST STAND 1-5. AT RIGHT IS BUILDING 8642, MACHINE SHOP FOR TEST STAND 1-5. AT LEFT IS BUILDING 8649, AND PART OF BUILDING 8647, TEST STAND 1-4, IS VISIBLE TO LEFT OF BLDG. 8649. (PANORAMA 1/2). - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Leuhman Ridge near Highways 58 & 395, Boron, Kern County, CA
1986-04-29
COMPILER VALIDATION SUMMARY REPORT: International Business Machines Corporation IBM Development System for the Ada Language for VM/CMS, Version 1.0 IBM 4381...tested using command scripts provided by International Business Machines Corporation. These scripts were reviewed by the validation team. Test.s were run...s): IBM 4381 (System/370) Operating System: VM/CMS, release 3.6 International Business Machines Corporation has made no deliberate extensions to the
Code of Federal Regulations, 2013 CFR
2013-10-01
... machine. An acceptable method for measuring the concentration of carbon dioxide is described in Bureau of Mines Report of Investigations 6865, A Machine-Test Method for Measuring Carbon Dioxide in the Inspired... of 10.5 liters. (3) A sedentary breathing machine cam will be used. (4) The apparatus will be tested...
Code of Federal Regulations, 2012 CFR
2012-10-01
... machine. An acceptable method for measuring the concentration of carbon dioxide is described in Bureau of Mines Report of Investigations 6865, A Machine-Test Method for Measuring Carbon Dioxide in the Inspired... of 10.5 liters. (3) A sedentary breathing machine cam will be used. (4) The apparatus will be tested...
Code of Federal Regulations, 2014 CFR
2014-10-01
... machine. An acceptable method for measuring the concentration of carbon dioxide is described in Bureau of Mines Report of Investigations 6865, A Machine-Test Method for Measuring Carbon Dioxide in the Inspired... of 10.5 liters. (3) A sedentary breathing machine cam will be used. (4) The apparatus will be tested...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saleh, Z; Tang, X; Song, Y
Purpose: To investigate the long term stability and viability of using EPID-based daily output QA via in-house and vendor driven protocol, to replace conventional QA tools and improve QA efficiency. Methods: Two Varian TrueBeam machines (TB1&TB2) equipped with electronic portal imaging devices (EPID) were employed in this study. Both machines were calibrated per TG-51 and used clinically since Oct 2014. Daily output measurement for 6/15 MV beams were obtained using SunNuclear DailyQA3 device as part of morning QA. In addition, in-house protocol was implemented for EPID output measurement (10×10 cm fields, 100 MU, 100cm SID, output defined over an ROImore » of 2×2 cm around central axis). Moreover, the Varian Machine Performance Check (MPC) was used on both machines to measure machine output. The EPID and DailyQA3 based measurements of the relative machine output were compared and cross-correlated with monthly machine output as measured by an A12 Exradin 0.65cc Ion Chamber (IC) serving as ground truth. The results were correlated using Pearson test. Results: The correlations among DailyQA3, in-house EPID and Varian MPC output measurements, with the IC for 6/15 MV were similar for TB1 (0.83–0.95) and TB2 (0.55–0.67). The machine output for the 6/15MV beams on both machines showed a similar trend, namely an increase over time as indicated by all measurements, requiring a machine recalibration after 6 months. This drift is due to a known issue with pressurized monitor chamber which tends to leak over time. MPC failed occasionally but passed when repeated. Conclusion: The results indicate that the use of EPID for daily output measurements has the potential to become a viable and efficient tool for daily routine LINAC QA, thus eliminating weather (T,P) and human setup variability and increasing efficiency of the QA process.« less
MEASUREMENT OF INDOOR AIR EMISSIONS FROM DRY-PROCESS PHOTOCOPY MACHINES
The article provides background information on indoor air emissions from office equipment, with emphasis on dry-process photocopy machines. The test method is described in detail along with results of a study to evaluate the test method using four dry-process photocopy machines. ...
Eitrich, T; Kless, A; Druska, C; Meyer, W; Grotendorst, J
2007-01-01
In this paper, we study the classifications of unbalanced data sets of drugs. As an example we chose a data set of 2D6 inhibitors of cytochrome P450. The human cytochrome P450 2D6 isoform plays a key role in the metabolism of many drugs in the preclinical drug discovery process. We have collected a data set from annotated public data and calculated physicochemical properties with chemoinformatics methods. On top of this data, we have built classifiers based on machine learning methods. Data sets with different class distributions lead to the effect that conventional machine learning methods are biased toward the larger class. To overcome this problem and to obtain sensitive but also accurate classifiers we combine machine learning and feature selection methods with techniques addressing the problem of unbalanced classification, such as oversampling and threshold moving. We have used our own implementation of a support vector machine algorithm as well as the maximum entropy method. Our feature selection is based on the unsupervised McCabe method. The classification results from our test set are compared structurally with compounds from the training set. We show that the applied algorithms enable the effective high throughput in silico classification of potential drug candidates.
e-Learning Application for Machine Maintenance Process using Iterative Method in XYZ Company
NASA Astrophysics Data System (ADS)
Nurunisa, Suaidah; Kurniawati, Amelia; Pramuditya Soesanto, Rayinda; Yunan Kurnia Septo Hediyanto, Umar
2016-02-01
XYZ Company is a company based on manufacturing part for airplane, one of the machine that is categorized as key facility in the company is Millac 5H6P. As a key facility, the machines should be assured to work well and in peak condition, therefore, maintenance process is needed periodically. From the data gathering, it is known that there are lack of competency from the maintenance staff to maintain different type of machine which is not assigned by the supervisor, this indicate that knowledge which possessed by maintenance staff are uneven. The purpose of this research is to create knowledge-based e-learning application as a realization from externalization process in knowledge transfer process to maintain the machine. The application feature are adjusted for maintenance purpose using e-learning framework for maintenance process, the content of the application support multimedia for learning purpose. QFD is used in this research to understand the needs from user. The application is built using moodle with iterative method for software development cycle and UML Diagram. The result from this research is e-learning application as sharing knowledge media for maintenance staff in the company. From the test, it is known that the application make maintenance staff easy to understand the competencies.
Hybrid Cloud Computing Environment for EarthCube and Geoscience Community
NASA Astrophysics Data System (ADS)
Yang, C. P.; Qin, H.
2016-12-01
The NSF EarthCube Integration and Test Environment (ECITE) has built a hybrid cloud computing environment to provides cloud resources from private cloud environments by using cloud system software - OpenStack and Eucalyptus, and also manages public cloud - Amazon Web Service that allow resource synchronizing and bursting between private and public cloud. On ECITE hybrid cloud platform, EarthCube and geoscience community can deploy and manage the applications by using base virtual machine images or customized virtual machines, analyze big datasets by using virtual clusters, and real-time monitor the virtual resource usage on the cloud. Currently, a number of EarthCube projects have deployed or started migrating their projects to this platform, such as CHORDS, BCube, CINERGI, OntoSoft, and some other EarthCube building blocks. To accomplish the deployment or migration, administrator of ECITE hybrid cloud platform prepares the specific needs (e.g. images, port numbers, usable cloud capacity, etc.) of each project in advance base on the communications between ECITE and participant projects, and then the scientists or IT technicians in those projects launch one or multiple virtual machines, access the virtual machine(s) to set up computing environment if need be, and migrate their codes, documents or data without caring about the heterogeneity in structure and operations among different cloud platforms.
A comparative analysis of dynamic grids vs. virtual grids using the A3pviGrid framework.
Shankaranarayanan, Avinas; Amaldas, Christine
2010-11-01
With the proliferation of Quad/Multi-core micro-processors in mainstream platforms such as desktops and workstations; a large number of unused CPU cycles can be utilized for running virtual machines (VMs) as dynamic nodes in distributed environments. Grid services and its service oriented business broker now termed cloud computing could deploy image based virtualization platforms enabling agent based resource management and dynamic fault management. In this paper we present an efficient way of utilizing heterogeneous virtual machines on idle desktops as an environment for consumption of high performance grid services. Spurious and exponential increases in the size of the datasets are constant concerns in medical and pharmaceutical industries due to the constant discovery and publication of large sequence databases. Traditional algorithms are not modeled at handing large data sizes under sudden and dynamic changes in the execution environment as previously discussed. This research was undertaken to compare our previous results with running the same test dataset with that of a virtual Grid platform using virtual machines (Virtualization). The implemented architecture, A3pviGrid utilizes game theoretic optimization and agent based team formation (Coalition) algorithms to improve upon scalability with respect to team formation. Due to the dynamic nature of distributed systems (as discussed in our previous work) all interactions were made local within a team transparently. This paper is a proof of concept of an experimental mini-Grid test-bed compared to running the platform on local virtual machines on a local test cluster. This was done to give every agent its own execution platform enabling anonymity and better control of the dynamic environmental parameters. We also analyze performance and scalability of Blast in a multiple virtual node setup and present our findings. This paper is an extension of our previous research on improving the BLAST application framework using dynamic Grids on virtualization platforms such as the virtual box.
Prediction of Baseflow Index of Catchments using Machine Learning Algorithms
NASA Astrophysics Data System (ADS)
Yadav, B.; Hatfield, K.
2017-12-01
We present the results of eight machine learning techniques for predicting the baseflow index (BFI) of ungauged basins using a surrogate of catchment scale climate and physiographic data. The tested algorithms include ordinary least squares, ridge regression, least absolute shrinkage and selection operator (lasso), elasticnet, support vector machine, gradient boosted regression trees, random forests, and extremely randomized trees. Our work seeks to identify the dominant controls of BFI that can be readily obtained from ancillary geospatial databases and remote sensing measurements, such that the developed techniques can be extended to ungauged catchments. More than 800 gauged catchments spanning the continental United States were selected to develop the general methodology. The BFI calculation was based on the baseflow separated from daily streamflow hydrograph using HYSEP filter. The surrogate catchment attributes were compiled from multiple sources including digital elevation model, soil, landuse, climate data, other publicly available ancillary and geospatial data. 80% catchments were used to train the ML algorithms, and the remaining 20% of the catchments were used as an independent test set to measure the generalization performance of fitted models. A k-fold cross-validation using exhaustive grid search was used to fit the hyperparameters of each model. Initial model development was based on 19 independent variables, but after variable selection and feature ranking, we generated revised sparse models of BFI prediction that are based on only six catchment attributes. These key predictive variables selected after the careful evaluation of bias-variance tradeoff include average catchment elevation, slope, fraction of sand, permeability, temperature, and precipitation. The most promising algorithms exceeding an accuracy score (r-square) of 0.7 on test data include support vector machine, gradient boosted regression trees, random forests, and extremely randomized trees. Considering both the accuracy and the computational complexity of these algorithms, we identify the extremely randomized trees as the best performing algorithm for BFI prediction in ungauged basins.
Liu, Zhijian; Li, Hao; Tang, Xindong; Zhang, Xinyu; Lin, Fan; Cheng, Kewei
2016-01-01
Heat collection rate and heat loss coefficient are crucial indicators for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, the direct determination requires complex detection devices and a series of standard experiments, wasting too much time and manpower. To address this problem, we previously used artificial neural networks and support vector machine to develop precise knowledge-based models for predicting the heat collection rates and heat loss coefficients of water-in-glass evacuated tube solar water heaters, setting the properties measured by "portable test instruments" as the independent variables. A robust software for determination was also developed. However, in previous results, the prediction accuracy of heat loss coefficients can still be improved compared to those of heat collection rates. Also, in practical applications, even a small reduction in root mean square errors (RMSEs) can sometimes significantly improve the evaluation and business processes. As a further study, in this short report, we show that using a novel and fast machine learning algorithm-extreme learning machine can generate better predicted results for heat loss coefficient, which reduces the average RMSEs to 0.67 in testing.
High productivity mould robotic milling in Al-5083
NASA Astrophysics Data System (ADS)
Urresti, Iker; Arrazola, Pedro Jose; Ørskov, Klaus Bonde; Pelegay, Jose Angel
2018-05-01
Industrial serial robots were usually limited to welding, handling or spray painting operations until very recent years. However, some industries have already realized about their important capabilities in terms of flexibility, working space, adaptability and cost. Hence, currently they are seriously being considered to carry out certain metal machining tasks. Therefore, robot based machining is presented as a cost-saving and flexible manufacturing alternative compared to conventional CNC machines especially for roughing or even pre-roughing of large parts. Nevertheless, there are still some drawbacks usually referred as low rigidity, accuracy and repeatability. Thus, the process productivity is usually sacrificed getting low Material Removal Rates (MRR), and consequently not being competitive. Nevertheless, in this paper different techniques to obtain increased productivity are presented, though an appropriate selection of cutting strategies and parameters that are essential for it. During this research some rough milling tests in Al-5083 are presented where High Feed Milling (HFM) is implemented as productive cutting strategy and the experimental modal analysis named Tap-testing is used for the suitable choice of cutting conditions. Competitive productivity rates are experienced while process stability is checked through the cutting forces measurements in order to prove the effectiveness of the experimental modal analysis for robotic machining.
Using Trained Pixel Classifiers to Select Images of Interest
NASA Technical Reports Server (NTRS)
Mazzoni, D.; Wagstaff, K.; Castano, R.
2004-01-01
We present a machine-learning-based approach to ranking images based on learned priorities. Unlike previous methods for image evaluation, which typically assess the value of each image based on the presence of predetermined specific features, this method involves using two levels of machine-learning classifiers: one level is used to classify each pixel as belonging to one of a group of rather generic classes, and another level is used to rank the images based on these pixel classifications, given some example rankings from a scientist as a guide. Initial results indicate that the technique works well, producing new rankings that match the scientist's rankings significantly better than would be expected by chance. The method is demonstrated for a set of images collected by a Mars field-test rover.
Analysis of 3D printing parameters of gears for hybrid manufacturing
NASA Astrophysics Data System (ADS)
Budzik, Grzegorz; Przeszlowski, Łukasz; Wieczorowski, Michal; Rzucidlo, Arkadiusz; Gapinski, Bartosz; Krolczyk, Grzegorz
2018-05-01
The paper deals with analysis and selection of parameters of rapid prototyping of gears by selective sintering of metal powders. Presented results show wide spectrum of application of RP systems in manufacturing processes of machine elements, basing on analysis of market in term of application of additive manufacturing technology in different sectors of industry. Considerable growth of these methods over the past years can be observed. The characteristic errors of printed model with respect to ideal one for each technique were pointed out. Special attention was paid to the method of preparation of numerical data CAD/STL/RP. Moreover the analysis of manufacturing processes of gear type elements was presented. The tested gears were modeled with different allowances for final machining and made by DMLS. Metallographic analysis and strength tests on prepared specimens were performed. The above mentioned analysis and tests were used to compare the real properties of material with the nominal ones. To improve the quality of surface after sintering the gears were subjected to final machining. The analysis of geometry of gears after hybrid manufacturing method was performed (fig.1). The manufacturing process was defined in a traditional way as well as with the aid of modern manufacturing techniques. Methodology and obtained results can be used for other machine elements than gears and constitutes the general theory of production processes in rapid prototyping methods as well as in designing and implementation of production.
NASA Technical Reports Server (NTRS)
Kaufman, M.
1974-01-01
The effects of an aluminide coating, Codep B-1, and of section thickness were investigated on two cast nickel base superalloys, Rene 80 and Rene 120. Cast section thicknesses ranged from 0.038 cm to 0.15 cm. Simulated engine exposures for 1000 hours at 899C or 982C in a jet fuel burner rig with cyclic air cooling were studied, as were the effects of surface machining before coating and re-machining and re-coating after exposures. The properties evaluated included tensile at room temperature., 871C and 982C, stress rupture at 760C, 871C, 982C and 1093C, high cycle mechanical fatigue at room temperature., and thermal fatigue with a 1093C peak temperature. Thin sections had tensile strengths similar to standard size bars up to 871C and lower strengths at 982C and above, with equivalent elongation, and stress rupture life was lower for thin sections at all test conditions. The aluminide coating lowered tensile and rupture strengths up to 871C, with greater effects on thinner specimens. Elevated temperature exposure lowered tensile and rupture strengths of thinner specimens at the lower test temperatures. Surface machining had little effect on properties, but re-machining after exposure reduced thickness and increased metallurgical changes enough to lower properties at most test conditions.
NASA Astrophysics Data System (ADS)
Devillez, Arnaud; Dudzinski, Daniel
2007-01-01
Today the knowledge of a process is very important for engineers to find optimal combination of control parameters warranting productivity, quality and functioning without defects and failures. In our laboratory, we carry out research in the field of high speed machining with modelling, simulation and experimental approaches. The aim of our investigation is to develop a software allowing the cutting conditions optimisation to limit the number of predictive tests, and the process monitoring to prevent any trouble during machining operations. This software is based on models and experimental data sets which constitute the knowledge of the process. In this paper, we deal with the problem of vibrations occurring during a machining operation. These vibrations may cause some failures and defects to the process, like workpiece surface alteration and rapid tool wear. To measure on line the tool micro-movements, we equipped a lathe with a specific instrumentation using eddy current sensors. Obtained signals were correlated with surface finish and a signal processing algorithm was used to determine if a test is stable or unstable. Then, a fuzzy classification method was proposed to classify the tests in a space defined by the width of cut and the cutting speed. Finally, it was shown that the fuzzy classification takes into account of the measurements incertitude to compute the stability limit or stability lobes of the process.
Varying execution discipline to increase performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, P.L.; Maccabe, A.B.
1993-12-22
This research investigates the relationship between execution discipline and performance. The hypothesis has two parts: 1. Different execution disciplines exhibit different performance for different computations, and 2. These differences can be effectively predicted by heuristics. A machine model is developed that can vary its execution discipline. That is, the model can execute a given program using either the control-driven, data-driven or demand-driven execution discipline. This model is referred to as a ``variable-execution-discipline`` machine. The instruction set for the model is the Program Dependence Web (PDW). The first part of the hypothesis will be tested by simulating the execution of themore » machine model on a suite of computations, based on the Livermore Fortran Kernel (LFK) Test (a.k.a. the Livermore Loops), using all three execution disciplines. Heuristics are developed to predict relative performance. These heuristics predict (a) the execution time under each discipline for one iteration of each loop and (b) the number of iterations taken by that loop; then the heuristics use those predictions to develop a prediction for the execution of the entire loop. Similar calculations are performed for branch statements. The second part of the hypothesis will be tested by comparing the results of the simulated execution with the predictions produced by the heuristics. If the hypothesis is supported, then the door is open for the development of machines that can vary execution discipline to increase performance.« less
Pandey, Gaurav; Pandey, Om P; Rogers, Angela J; Ahsen, Mehmet E; Hoffman, Gabriel E; Raby, Benjamin A; Weiss, Scott T; Schadt, Eric E; Bunyavanich, Supinda
2018-06-11
Asthma is a common, under-diagnosed disease affecting all ages. We sought to identify a nasal brush-based classifier of mild/moderate asthma. 190 subjects with mild/moderate asthma and controls underwent nasal brushing and RNA sequencing of nasal samples. A machine learning-based pipeline identified an asthma classifier consisting of 90 genes interpreted via an L2-regularized logistic regression classification model. This classifier performed with strong predictive value and sensitivity across eight test sets, including (1) a test set of independent asthmatic and control subjects profiled by RNA sequencing (positive and negative predictive values of 1.00 and 0.96, respectively; AUC of 0.994), (2) two independent case-control cohorts of asthma profiled by microarray, and (3) five cohorts with other respiratory conditions (allergic rhinitis, upper respiratory infection, cystic fibrosis, smoking), where the classifier had a low to zero misclassification rate. Following validation in large, prospective cohorts, this classifier could be developed into a nasal biomarker of asthma.
Influence of De-icers on the Corrosion and Fatigue Behavior of 4140 Steel
NASA Astrophysics Data System (ADS)
Dean, William P.; Sanford, Brittain J.; Wright, Matthew R.; Evans, Jeffrey L.
2012-11-01
The purpose of this test was to evaluate the effects of calcium magnesium acetate (CMA) and sodium chloride (NaCl)—two common substances used to de-ice roadways—on the corrosion and fatigue behavior of annealed AISI 4140 steel. When CMA-corroded, NaCl-corroded, and as-machined samples were tested using R = 0.1, and f = 20 Hz, it was found that, within the scope of this study, samples corroded in both 3.5% CMA solution and 3.5% NaCl solution exhibited a lower fatigue strength than samples tested in the as-machined, uncorroded condition. For the short lives tested in this study, the difference in the effects of CMA and NaCl is minimal. However, at longer lives it is suspected, based on the trends, that the CMA solution would be less detrimental to the fatigue life.
In situ surface roughness measurement using a laser scattering method
NASA Astrophysics Data System (ADS)
Tay, C. J.; Wang, S. H.; Quan, C.; Shang, H. M.
2003-03-01
In this paper, the design and development of an optical probe for in situ measurement of surface roughness are discussed. Based on this light scattering principle, the probe which consists of a laser diode, measuring lens and a linear photodiode array, is designed to capture the scattered light from a test surface with a relatively large scattering angle ϕ (=28°). This capability increases the measuring range and enhances repeatability of the results. The coaxial arrangement that incorporates a dual-laser beam and a constant compressed air stream renders the proposed system insensitive to movement or vibration of the test surface as well as surface conditions. Tests were conducted on workpieces which were mounted on a turning machine that operates with different cutting speeds. Test specimens which underwent different machining processes and of different surface finish were also studied. The results obtained demonstrate the feasibility of surface roughness measurement using the proposed method.
Mistaking minds and machines: How speech affects dehumanization and anthropomorphism.
Schroeder, Juliana; Epley, Nicholas
2016-11-01
Treating a human mind like a machine is an essential component of dehumanization, whereas attributing a humanlike mind to a machine is an essential component of anthropomorphism. Here we tested how a cue closely connected to a person's actual mental experience-a humanlike voice-affects the likelihood of mistaking a person for a machine, or a machine for a person. We predicted that paralinguistic cues in speech are particularly likely to convey the presence of a humanlike mind, such that removing voice from communication (leaving only text) would increase the likelihood of mistaking the text's creator for a machine. Conversely, adding voice to a computer-generated script (resulting in speech) would increase the likelihood of mistaking the text's creator for a human. Four experiments confirmed these hypotheses, demonstrating that people are more likely to infer a human (vs. computer) creator when they hear a voice expressing thoughts than when they read the same thoughts in text. Adding human visual cues to text (i.e., seeing a person perform a script in a subtitled video clip), did not increase the likelihood of inferring a human creator compared with only reading text, suggesting that defining features of personhood may be conveyed more clearly in speech (Experiments 1 and 2). Removing the naturalistic paralinguistic cues that convey humanlike capacity for thinking and feeling, such as varied pace and intonation, eliminates the humanizing effect of speech (Experiment 4). We discuss implications for dehumanizing others through text-based media, and for anthropomorphizing machines through speech-based media. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
de Ávila, Maurício Boff; Xavier, Mariana Morrone; Pintro, Val Oliveira; de Azevedo, Walter Filgueira
2017-12-09
Here we report the development of a machine-learning model to predict binding affinity based on the crystallographic structures of protein-ligand complexes. We used an ensemble of crystallographic structures (resolution better than 1.5 Å resolution) for which half-maximal inhibitory concentration (IC 50 ) data is available. Polynomial scoring functions were built using as explanatory variables the energy terms present in the MolDock and PLANTS scoring functions. Prediction performance was tested and the supervised machine learning models showed improvement in the prediction power, when compared with PLANTS and MolDock scoring functions. In addition, the machine-learning model was applied to predict binding affinity of CDK2, which showed a better performance when compared with AutoDock4, AutoDock Vina, MolDock, and PLANTS scores. Copyright © 2017 Elsevier Inc. All rights reserved.
Modeling of solid-state and excimer laser processes for 3D micromachining
NASA Astrophysics Data System (ADS)
Holmes, Andrew S.; Onischenko, Alexander I.; George, David S.; Pedder, James E.
2005-04-01
An efficient simulation method has recently been developed for multi-pulse ablation processes. This is based on pulse-by-pulse propagation of the machined surface according to one of several phenomenological models for the laser-material interaction. The technique allows quantitative predictions to be made about the surface shapes of complex machined parts, given only a minimal set of input data for parameter calibration. In the case of direct-write machining of polymers or glasses with ns-duration pulses, this data set can typically be limited to the surface profiles of a small number of standard test patterns. The use of phenomenological models for the laser-material interaction, calibrated by experimental feedback, allows fast simulation, and can achieve a high degree of accuracy for certain combinations of material, laser and geometry. In this paper, the capabilities and limitations of the approach are discussed, and recent results are presented for structures machined in SU8 photoresist.
Detection of longitudinal visual field progression in glaucoma using machine learning.
Yousefi, Siamak; Kiwaki, Taichi; Zheng, Yuhui; Suigara, Hiroki; Asaoka, Ryo; Murata, Hiroshi; Lemij, Hans; Yamanishi, Kenji
2018-06-16
Global indices of standard automated perimerty are insensitive to localized losses, while point-wise indices are sensitive but highly variable. Region-wise indices sit in between. This study introduces a machine-learning-based index for glaucoma progression detection that outperforms global, region-wise, and point-wise indices. Development and comparison of a prognostic index. Visual fields from 2085 eyes of 1214 subjects were used to identify glaucoma progression patterns using machine learning. Visual fields from 133 eyes of 71 glaucoma patients were collected 10 times over 10 weeks to provide a no-change, test-retest dataset. The parameters of all methods were identified using visual field sequences in the test-retest dataset to meet fixed 95% specificity. An independent dataset of 270 eyes of 136 glaucoma patients and survival analysis were utilized to compare methods. The time to detect progression in 25% of the eyes in the longitudinal dataset using global mean deviation (MD) was 5.2 years (95% confidence interval, 4.1 - 6.5 years); 4.5 years (4.0 - 5.5) using region-wise, 3.9 years (3.5 - 4.6) using point-wise, and 3.5 years (3.1 - 4.0) using machine learning analysis. The time until 25% of eyes showed subsequently confirmed progression after two additional visits were included were 6.6 years (5.6 - 7.4 years), 5.7 years (4.8 - 6.7), 5.6 years (4.7 - 6.5), and 5.1 years (4.5 - 6.0) for global, region-wise, point-wise, and machine learning analyses, respectively. Machine learning analysis detects progressing eyes earlier than other methods consistently, with or without confirmation visits. In particular, machine learning detects more slowly progressing eyes than other methods. Copyright © 2018 Elsevier Inc. All rights reserved.
Lin, Frank P Y; Pokorny, Adrian; Teng, Christina; Dear, Rachel; Epstein, Richard J
2016-12-01
Multidisciplinary team (MDT) meetings are used to optimise expert decision-making about treatment options, but such expertise is not digitally transferable between centres. To help standardise medical decision-making, we developed a machine learning model designed to predict MDT decisions about adjuvant breast cancer treatments. We analysed MDT decisions regarding adjuvant systemic therapy for 1065 breast cancer cases over eight years. Machine learning classifiers with and without bootstrap aggregation were correlated with MDT decisions (recommended, not recommended, or discussable) regarding adjuvant cytotoxic, endocrine and biologic/targeted therapies, then tested for predictability using stratified ten-fold cross-validations. The predictions so derived were duly compared with those based on published (ESMO and NCCN) cancer guidelines. Machine learning more accurately predicted adjuvant chemotherapy MDT decisions than did simple application of guidelines. No differences were found between MDT- vs. ESMO/NCCN- based decisions to prescribe either adjuvant endocrine (97%, p = 0.44/0.74) or biologic/targeted therapies (98%, p = 0.82/0.59). In contrast, significant discrepancies were evident between MDT- and guideline-based decisions to prescribe chemotherapy (87%, p < 0.01, representing 43% and 53% variations from ESMO/NCCN guidelines, respectively). Using ten-fold cross-validation, the best classifiers achieved areas under the receiver operating characteristic curve (AUC) of 0.940 for chemotherapy (95% C.I., 0.922-0.958), 0.899 for the endocrine therapy (95% C.I., 0.880-0.918), and 0.977 for trastuzumab therapy (95% C.I., 0.955-0.999) respectively. Overall, bootstrap aggregated classifiers performed better among all evaluated machine learning models. A machine learning approach based on clinicopathologic characteristics can predict MDT decisions about adjuvant breast cancer drug therapies. The discrepancy between MDT- and guideline-based decisions regarding adjuvant chemotherapy implies that certain non-clincopathologic criteria, such as patient preference and resource availability, are factored into clinical decision-making by local experts but not captured by guidelines.
NASA Astrophysics Data System (ADS)
Sousa, Andre R.; Schneider, Carlos A.
2001-09-01
A touch probe is used on a 3-axis vertical machine center to check against a hole plate, calibrated on a coordinate measuring machine (CMM). By comparing the results obtained from the machine tool and CMM, the main machine tool error components are measured, attesting the machine accuracy. The error values can b used also t update the error compensation table at the CNC, enhancing the machine accuracy. The method is easy to us, has a lower cost than classical test techniques, and preliminary results have shown that its uncertainty is comparable to well established techniques. In this paper the method is compared with the laser interferometric system, regarding reliability, cost and time efficiency.
Motor-response learning at a process control panel by an autonomous robot
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spelt, P.F.; de Saussure, G.; Lyness, E.
1988-01-01
The Center for Engineering Systems Advanced Research (CESAR) was founded at Oak Ridge National Laboratory (ORNL) by the Department of Energy's Office of Energy Research/Division of Engineering and Geoscience (DOE-OER/DEG) to conduct basic research in the area of intelligent machines. Therefore, researchers at the CESAR Laboratory are engaged in a variety of research activities in the field of machine learning. In this paper, we describe our approach to a class of machine learning which involves motor response acquisition using feedback from trial-and-error learning. Our formulation is being experimentally validated using an autonomous robot, learning tasks of control panel monitoring andmore » manipulation for effect process control. The CLIPS Expert System and the associated knowledge base used by the robot in the learning process, which reside in a hypercube computer aboard the robot, are described in detail. Benchmark testing of the learning process on a robot/control panel simulation system consisting of two intercommunicating computers is presented, along with results of sample problems used to train and test the expert system. These data illustrate machine learning and the resulting performance improvement in the robot for problems similar to, but not identical with, those on which the robot was trained. Conclusions are drawn concerning the learning problems, and implications for future work on machine learning for autonomous robots are discussed. 16 refs., 4 figs., 1 tab.« less
Unresolved Galaxy Classifier for ESA/Gaia mission: Support Vector Machines approach
NASA Astrophysics Data System (ADS)
Bellas-Velidis, Ioannis; Kontizas, Mary; Dapergolas, Anastasios; Livanou, Evdokia; Kontizas, Evangelos; Karampelas, Antonios
A software package Unresolved Galaxy Classifier (UGC) is being developed for the ground-based pipeline of ESA's Gaia mission. It aims to provide an automated taxonomic classification and specific parameters estimation analyzing Gaia BP/RP instrument low-dispersion spectra of unresolved galaxies. The UGC algorithm is based on a supervised learning technique, the Support Vector Machines (SVM). The software is implemented in Java as two separate modules. An offline learning module provides functions for SVM-models training. Once trained, the set of models can be repeatedly applied to unknown galaxy spectra by the pipeline's application module. A library of galaxy models synthetic spectra, simulated for the BP/RP instrument, is used to train and test the modules. Science tests show a very good classification performance of UGC and relatively good regression performance, except for some of the parameters. Possible approaches to improve the performance are discussed.
NASA Astrophysics Data System (ADS)
Anon
1994-10-01
Sundstrand Aerospace and GE Aircraft Engines have studied the switched reluctance machine for use as an integral starter/generator for future aircraft engines. They have conducted an initial, low-power testing of the starter/generator, which is based on power inverters using IGBT-technology semiconductors, to verify its feasibility in the externally mounted version of the integral starter/generator. This preliminary testing of the 250-kW starter/generator reveals favorable results.
NASA Astrophysics Data System (ADS)
Wang, R.; Demerdash, N. A.
1992-06-01
The combined magnetic vector potential - magnetic scalar potential method of computation of 3D magnetic fields by finite elements, introduced in a companion paper, is used for global 3D field analysis and machine performance computations under open-circuit and short-circuit conditions for an example 14.3 kVA modified Lundell alternator, whose magnetic field is of intrinsic 3D nature. The computed voltages and currents under these machine test conditions were verified and found to be in very good agreement with corresponding test data. Results of use of this modelling and computation method in the study of a design alteration example, in which the stator stack length of the example alternator is stretched in order to increase voltage and volt-ampere rating, are given here. These results demonstrate the inadequacy of conventional 2D-based design concepts and the imperative of use of this type of 3D magnetic field modelling in the design and investigation of such machines.
A low-cost machine vision system for the recognition and sorting of small parts
NASA Astrophysics Data System (ADS)
Barea, Gustavo; Surgenor, Brian W.; Chauhan, Vedang; Joshi, Keyur D.
2018-04-01
An automated machine vision-based system for the recognition and sorting of small parts was designed, assembled and tested. The system was developed to address a need to expose engineering students to the issues of machine vision and assembly automation technology, with readily available and relatively low-cost hardware and software. This paper outlines the design of the system and presents experimental performance results. Three different styles of plastic gears, together with three different styles of defective gears, were used to test the system. A pattern matching tool was used for part classification. Nine experiments were conducted to demonstrate the effects of changing various hardware and software parameters, including: conveyor speed, gear feed rate, classification, and identification score thresholds. It was found that the system could achieve a maximum system accuracy of 95% at a feed rate of 60 parts/min, for a given set of parameter settings. Future work will be looking at the effect of lighting.
NASA Technical Reports Server (NTRS)
Wang, R.; Demerdash, N. A.
1992-01-01
The combined magnetic vector potential - magnetic scalar potential method of computation of 3D magnetic fields by finite elements, introduced in a companion paper, is used for global 3D field analysis and machine performance computations under open-circuit and short-circuit conditions for an example 14.3 kVA modified Lundell alternator, whose magnetic field is of intrinsic 3D nature. The computed voltages and currents under these machine test conditions were verified and found to be in very good agreement with corresponding test data. Results of use of this modelling and computation method in the study of a design alteration example, in which the stator stack length of the example alternator is stretched in order to increase voltage and volt-ampere rating, are given here. These results demonstrate the inadequacy of conventional 2D-based design concepts and the imperative of use of this type of 3D magnetic field modelling in the design and investigation of such machines.
Functional networks inference from rule-based machine learning models.
Lazzarini, Nicola; Widera, Paweł; Williamson, Stuart; Heer, Rakesh; Krasnogor, Natalio; Bacardit, Jaume
2016-01-01
Functional networks play an important role in the analysis of biological processes and systems. The inference of these networks from high-throughput (-omics) data is an area of intense research. So far, the similarity-based inference paradigm (e.g. gene co-expression) has been the most popular approach. It assumes a functional relationship between genes which are expressed at similar levels across different samples. An alternative to this paradigm is the inference of relationships from the structure of machine learning models. These models are able to capture complex relationships between variables, that often are different/complementary to the similarity-based methods. We propose a protocol to infer functional networks from machine learning models, called FuNeL. It assumes, that genes used together within a rule-based machine learning model to classify the samples, might also be functionally related at a biological level. The protocol is first tested on synthetic datasets and then evaluated on a test suite of 8 real-world datasets related to human cancer. The networks inferred from the real-world data are compared against gene co-expression networks of equal size, generated with 3 different methods. The comparison is performed from two different points of view. We analyse the enriched biological terms in the set of network nodes and the relationships between known disease-associated genes in a context of the network topology. The comparison confirms both the biological relevance and the complementary character of the knowledge captured by the FuNeL networks in relation to similarity-based methods and demonstrates its potential to identify known disease associations as core elements of the network. Finally, using a prostate cancer dataset as a case study, we confirm that the biological knowledge captured by our method is relevant to the disease and consistent with the specialised literature and with an independent dataset not used in the inference process. The implementation of our network inference protocol is available at: http://ico2s.org/software/funel.html.
10 CFR 431.295 - Units to be tested.
Code of Federal Regulations, 2011 CFR
2011-01-01
... EQUIPMENT Refrigerated Bottled or Canned Beverage Vending Machines Test Procedures § 431.295 Units to be tested. For each basic model of refrigerated bottled or canned beverage vending machine selected for...
Mechatronics technology in predictive maintenance method
NASA Astrophysics Data System (ADS)
Majid, Nurul Afiqah A.; Muthalif, Asan G. A.
2017-11-01
This paper presents recent mechatronics technology that can help to implement predictive maintenance by combining intelligent and predictive maintenance instrument. Vibration Fault Simulation System (VFSS) is an example of mechatronics system. The focus of this study is the prediction on the use of critical machines to detect vibration. Vibration measurement is often used as the key indicator of the state of the machine. This paper shows the choice of the appropriate strategy in the vibration of diagnostic process of the mechanical system, especially rotating machines, in recognition of the failure during the working process. In this paper, the vibration signature analysis is implemented to detect faults in rotary machining that includes imbalance, mechanical looseness, bent shaft, misalignment, missing blade bearing fault, balancing mass and critical speed. In order to perform vibration signature analysis for rotating machinery faults, studies have been made on how mechatronics technology is used as predictive maintenance methods. Vibration Faults Simulation Rig (VFSR) is designed to simulate and understand faults signatures. These techniques are based on the processing of vibrational data in frequency-domain. The LabVIEW-based spectrum analyzer software is developed to acquire and extract frequency contents of faults signals. This system is successfully tested based on the unique vibration fault signatures that always occur in a rotating machinery.
Yelshyna, Darya; Bicho, Estela
2016-01-01
The use of wearable devices to study gait and postural control is a growing field on neurodegenerative disorders such as Alzheimer's disease (AD). In this paper, we investigate if machine-learning classifiers offer the discriminative power for the diagnosis of AD based on postural control kinematics. We compared Support Vector Machines (SVMs), Multiple Layer Perceptrons (MLPs), Radial Basis Function Neural Networks (RBNs), and Deep Belief Networks (DBNs) on 72 participants (36 AD patients and 36 healthy subjects) exposed to seven increasingly difficult postural tasks. The decisional space was composed of 18 kinematic variables (adjusted for age, education, height, and weight), with or without neuropsychological evaluation (Montreal cognitive assessment (MoCA) score), top ranked in an error incremental analysis. Classification results were based on threefold cross validation of 50 independent and randomized runs sets: training (50%), test (40%), and validation (10%). Having a decisional space relying solely on postural kinematics, accuracy of AD diagnosis ranged from 71.7 to 86.1%. Adding the MoCA variable, the accuracy ranged between 91 and 96.6%. MLP classifier achieved top performance in both decisional spaces. Having comprehended the interdynamic interaction between postural stability and cognitive performance, our results endorse machine-learning models as a useful tool for computer-aided diagnosis of AD based on postural control kinematics. PMID:28074090
Costa, Luís; Gago, Miguel F; Yelshyna, Darya; Ferreira, Jaime; David Silva, Hélder; Rocha, Luís; Sousa, Nuno; Bicho, Estela
2016-01-01
The use of wearable devices to study gait and postural control is a growing field on neurodegenerative disorders such as Alzheimer's disease (AD). In this paper, we investigate if machine-learning classifiers offer the discriminative power for the diagnosis of AD based on postural control kinematics. We compared Support Vector Machines (SVMs), Multiple Layer Perceptrons (MLPs), Radial Basis Function Neural Networks (RBNs), and Deep Belief Networks (DBNs) on 72 participants (36 AD patients and 36 healthy subjects) exposed to seven increasingly difficult postural tasks. The decisional space was composed of 18 kinematic variables (adjusted for age, education, height, and weight), with or without neuropsychological evaluation (Montreal cognitive assessment (MoCA) score), top ranked in an error incremental analysis. Classification results were based on threefold cross validation of 50 independent and randomized runs sets: training (50%), test (40%), and validation (10%). Having a decisional space relying solely on postural kinematics, accuracy of AD diagnosis ranged from 71.7 to 86.1%. Adding the MoCA variable, the accuracy ranged between 91 and 96.6%. MLP classifier achieved top performance in both decisional spaces. Having comprehended the interdynamic interaction between postural stability and cognitive performance, our results endorse machine-learning models as a useful tool for computer-aided diagnosis of AD based on postural control kinematics.
NASA Astrophysics Data System (ADS)
Altıparmak, Hamit; Al Shahadat, Mohamad; Kiani, Ehsan; Dimililer, Kamil
2018-04-01
Robotic agriculture requires smart and doable techniques to substitute the human intelligence with machine intelligence. Strawberry is one of the important Mediterranean product and its productivity enhancement requires modern and machine-based methods. Whereas a human identifies the disease infected leaves by his eye, the machine should also be capable of vision-based disease identification. The objective of this paper is to practically verify the applicability of a new computer-vision method for discrimination between the healthy and disease infected strawberry leaves which does not require neural network or time consuming trainings. The proposed method was tested under outdoor lighting condition using a regular DLSR camera without any particular lens. Since the type and infection degree of disease is approximated a human brain a fuzzy decision maker classifies the leaves over the images captured on-site having the same properties of human vision. Optimizing the fuzzy parameters for a typical strawberry production area at a summer mid-day in Cyprus produced 96% accuracy for segmented iron deficiency and 93% accuracy for segmented using a typical human instant classification approximation as the benchmark holding higher accuracy than a human eye identifier. The fuzzy-base classifier provides approximate result for decision making on the leaf status as if it is healthy or not.
Yugandhar, K; Gromiha, M Michael
2014-09-01
Protein-protein interactions are intrinsic to virtually every cellular process. Predicting the binding affinity of protein-protein complexes is one of the challenging problems in computational and molecular biology. In this work, we related sequence features of protein-protein complexes with their binding affinities using machine learning approaches. We set up a database of 185 protein-protein complexes for which the interacting pairs are heterodimers and their experimental binding affinities are available. On the other hand, we have developed a set of 610 features from the sequences of protein complexes and utilized Ranker search method, which is the combination of Attribute evaluator and Ranker method for selecting specific features. We have analyzed several machine learning algorithms to discriminate protein-protein complexes into high and low affinity groups based on their Kd values. Our results showed a 10-fold cross-validation accuracy of 76.1% with the combination of nine features using support vector machines. Further, we observed accuracy of 83.3% on an independent test set of 30 complexes. We suggest that our method would serve as an effective tool for identifying the interacting partners in protein-protein interaction networks and human-pathogen interactions based on the strength of interactions. © 2014 Wiley Periodicals, Inc.
Liu, Guang-Hui; Shen, Hong-Bin; Yu, Dong-Jun
2016-04-01
Accurately predicting protein-protein interaction sites (PPIs) is currently a hot topic because it has been demonstrated to be very useful for understanding disease mechanisms and designing drugs. Machine-learning-based computational approaches have been broadly utilized and demonstrated to be useful for PPI prediction. However, directly applying traditional machine learning algorithms, which often assume that samples in different classes are balanced, often leads to poor performance because of the severe class imbalance that exists in the PPI prediction problem. In this study, we propose a novel method for improving PPI prediction performance by relieving the severity of class imbalance using a data-cleaning procedure and reducing predicted false positives with a post-filtering procedure: First, a machine-learning-based data-cleaning procedure is applied to remove those marginal targets, which may potentially have a negative effect on training a model with a clear classification boundary, from the majority samples to relieve the severity of class imbalance in the original training dataset; then, a prediction model is trained on the cleaned dataset; finally, an effective post-filtering procedure is further used to reduce potential false positive predictions. Stringent cross-validation and independent validation tests on benchmark datasets demonstrated the efficacy of the proposed method, which exhibits highly competitive performance compared with existing state-of-the-art sequence-based PPIs predictors and should supplement existing PPI prediction methods.
Can machines think? A report on Turing test experiments at the Royal Society
NASA Astrophysics Data System (ADS)
Warwick, Kevin; Shah, Huma
2016-11-01
In this article we consider transcripts that originated from a practical series of Turing's Imitation Game that was held on 6 and 7 June 2014 at the Royal Society London. In all cases the tests involved a three-participant simultaneous comparison by an interrogator of two hidden entities, one being a human and the other a machine. Each of the transcripts considered here resulted in a human interrogator being fooled such that they could not make the 'right identification', that is, they could not say for certain which was the machine and which was the human. The transcripts presented all involve one machine only, namely 'Eugene Goostman', the result being that the machine became the first to pass the Turing test, as set out by Alan Turing, on unrestricted conversation. This is the first time that results from the Royal Society tests have been disclosed and discussed in a paper.
A Framework for Evidence-Based Licensure of Adaptive Autonomous Systems
2016-03-01
insights gleaned to DoD. The autonomy community has identified significant challenges associated with test, evaluation verification and validation of...licensure as a test, evaluation, verification , and validation (TEVV) framework that can address these challenges. IDA found that traditional...language requirements to testable (preferably machine testable) specifications • Design of architectures that treat development and verification of
1968-01-01
Only simple equipment, simple technology and low initial capital investment are needed in their manufacture. The condoms can be made by people who were previously unskilled or only semi-skilled workers. Plastic condoms differ from those made of latex rubber in that the nature of the plastic film allows unlimited shelf-life. Also, the plastic has a higher degree of lubricity than latex rubber; if there is a demand for extra lubrication in a particular market, this can be provided. Because the plastic is inert, these condoms need not be packaged in hermetically sealed containers. All these attributes make it possible to put these condoms on the distributors' shelves in developing countries competitively with rubber condoms. The shape of the plastic condom is based on that of the lamb caecum, which has long been used as luxury-type condom. The plastic condom is made from plastic film (ethylene ethyl acrilate) of 0.001 inch (0.0254 mm.) thickness. In addition, a rubber ring is provided and sealed into the base of the condom for retention during coitus. The advantage of the plastic condom design and the equipment on which it is made is that production can be carried out either in labour-intensive economy or with varying degrees of mechanization and automation. The uniform, finished condom if made using previously untrained workers. Training of workers can be done in a matter of hours on the two machines which are needed to produce and test the condoms. The plastic film is provided on a double wound roll, and condom blanks are prepared by means of a heat-sealing die on the stamping machine. The rubber rings are united to the condom blanks on an assembly machine, which consists of a mandrel and heat-sealing equipment to seal the rubber ring to the base of the condom. Built into the assembly machine is a simple air-testing apparatus that can detect the smallest pinhole flaw in a condom. The manufacturing process is completed by unravelling the condom from the assembly mandrel. The condom is then ready for packaging, either on automatic equipment or manually into small envelopes of highly polished paper. Although their present design is based on a heat-sealed blank, it may be possible shortly to manufacture plastic condoms on the same principle as rubber ones. A dipping process would be used, but with less sophisticated technology and with higher outputs per increment of capital investment. The present equipment used to make plastic condoms cost about 3,000 for one stamping machine and 22 assembly and testing machines. On a three shift per day, 300-day working year, it is possible, with experienced workers, to make 100,000 gross of plastic condoms for each manufacturing unit annually. As the technology is refined, the output should improve significantly.
Feng, Zhichao; Rong, Pengfei; Cao, Peng; Zhou, Qingyu; Zhu, Wenwei; Yan, Zhimin; Liu, Qianyun; Wang, Wei
2018-04-01
To evaluate the diagnostic performance of machine-learning based quantitative texture analysis of CT images to differentiate small (≤ 4 cm) angiomyolipoma without visible fat (AMLwvf) from renal cell carcinoma (RCC). This single-institutional retrospective study included 58 patients with pathologically proven small renal mass (17 in AMLwvf and 41 in RCC groups). Texture features were extracted from the largest possible tumorous regions of interest (ROIs) by manual segmentation in preoperative three-phase CT images. Interobserver reliability and the Mann-Whitney U test were applied to select features preliminarily. Then support vector machine with recursive feature elimination (SVM-RFE) and synthetic minority oversampling technique (SMOTE) were adopted to establish discriminative classifiers, and the performance of classifiers was assessed. Of the 42 extracted features, 16 candidate features showed significant intergroup differences (P < 0.05) and had good interobserver agreement. An optimal feature subset including 11 features was further selected by the SVM-RFE method. The SVM-RFE+SMOTE classifier achieved the best performance in discriminating between small AMLwvf and RCC, with the highest accuracy, sensitivity, specificity and AUC of 93.9 %, 87.8 %, 100 % and 0.955, respectively. Machine learning analysis of CT texture features can facilitate the accurate differentiation of small AMLwvf from RCC. • Although conventional CT is useful for diagnosis of SRMs, it has limitations. • Machine-learning based CT texture analysis facilitate differentiation of small AMLwvf from RCC. • The highest accuracy of SVM-RFE+SMOTE classifier reached 93.9 %. • Texture analysis combined with machine-learning methods might spare unnecessary surgery for AMLwvf.
Young, Sean D; Daniels, Joseph; Chiu, ChingChe J; Bolan, Robert K; Flynn, Risa P; Kwok, Justin; Klausner, Jeffrey D
2014-01-01
Rates of unrecognized HIV infection are significantly higher among Latino and Black men who have sex with men (MSM). Policy makers have proposed that HIV self-testing kits and new methods for delivering self-testing could improve testing uptake among minority MSM. This study sought to conduct qualitative assessments with MSM of color to determine the acceptability of using electronic vending machines to dispense HIV self-testing kits. African American and Latino MSM were recruited using a participant pool from an existing HIV prevention trial on Facebook. If participants expressed interest in using a vending machine to receive an HIV self-testing kit, they were emailed a 4-digit personal identification number (PIN) code to retrieve the test from the machine. We followed up with those who had tested to assess their willingness to participate in an interview about their experience. Twelve kits were dispensed and 8 interviews were conducted. In general, participants expressed that the vending machine was an acceptable HIV test delivery method due to its novelty and convenience. Acceptability of this delivery model for HIV testing kits was closely associated with three main factors: credibility, confidentiality, and convenience. Future research is needed to address issues, such as user-induced errors and costs, before scaling up the dispensing method.
Zhang, Hong-Guang; Yang, Qin-Min; Lu, Jian-Gang
2014-04-01
In this paper, a novel discriminant methodology based on near infrared spectroscopic analysis technique and least square support vector machine was proposed for rapid and nondestructive discrimination of different types of Polyacrylamide. The diffuse reflectance spectra of samples of Non-ionic Polyacrylamide, Anionic Polyacrylamide and Cationic Polyacrylamide were measured. Then principal component analysis method was applied to reduce the dimension of the spectral data and extract of the principal compnents. The first three principal components were used for cluster analysis of the three different types of Polyacrylamide. Then those principal components were also used as inputs of least square support vector machine model. The optimization of the parameters and the number of principal components used as inputs of least square support vector machine model was performed through cross validation based on grid search. 60 samples of each type of Polyacrylamide were collected. Thus a total of 180 samples were obtained. 135 samples, 45 samples for each type of Polyacrylamide, were randomly split into a training set to build calibration model and the rest 45 samples were used as test set to evaluate the performance of the developed model. In addition, 5 Cationic Polyacrylamide samples and 5 Anionic Polyacrylamide samples adulterated with different proportion of Non-ionic Polyacrylamide were also prepared to show the feasibilty of the proposed method to discriminate the adulterated Polyacrylamide samples. The prediction error threshold for each type of Polyacrylamide was determined by F statistical significance test method based on the prediction error of the training set of corresponding type of Polyacrylamide in cross validation. The discrimination accuracy of the built model was 100% for prediction of the test set. The prediction of the model for the 10 mixing samples was also presented, and all mixing samples were accurately discriminated as adulterated samples. The overall results demonstrate that the discrimination method proposed in the present paper can rapidly and nondestructively discriminate the different types of Polyacrylamide and the adulterated Polyacrylamide samples, and offered a new approach to discriminate the types of Polyacrylamide.
NASA Astrophysics Data System (ADS)
Belqorchi, Abdelghafour
Forty years after Watson and Manchur conducted the Stand-Still Frequency Response (SSFR) test on a large turbogenerator, the applicability of this technic on a powerful salient pole synchronous generator has yet to be confirmed. The scientific literature on the subject is rare and very few have attempted to compare SSFR parameter results with those deduced by classical tests. The validity of SSFR on large salient pole machines has still to be proven. The present work aims in participating to fill this knowledge gap. It can be used to build a database of measurements highly needed to draw the validity of the technic. Also, the author hopes to demonstrate the potential of SSFR model to represent the machine, not only in cases of weak disturbances but also strong ones such as instantaneous three-phase short-circuit faults. The difficulties raised by previous searchers are: The lack of accuracy in very low frequency measurements; The difficulty in rotor positioning, according to d and q axes, in case of salient pole machines; The measurement current level influence on magnetizing inductances, in axes-d and; The rotation impact on damper circuits for some rotors design. Aware of the above difficulties, the author conducted an SSFR test on a large salient pole machine (285 MVA). The generator under test has laminated non isolated rotor and an integral slot number. The damper windings in adjacent poles are connected together, via the polar core and the rotor rim. Finally, the damping circuit is unaffected by rotation. To improve the measurement accuracy, in very low frequencies, the most precise frequency response analyser available on the market was used. Besides, the frequency responses of the signals conditioning modules (i.e., isolation, amplification...) were accounted for to correct the four measured SSFR transfer functions. Immunization against noise and use of instrumentation in their optimum range, were other technics rigorously applied. Magnetizing inductances, being influenced by the measurement current magnitude, the latter was maintained constant in the range 1mHz-20Hz. Other problems such as the rotation impact on damper circuits or the difficulty of rotor positioning are eliminated or attenuated by the intrinsic characteristics of the machine. Regarding the data analysis, the Maximum Likelihood Estimation (MLE) method was used to determine the third and second order equivalent circuit from SSFR measurements. In d-axis, the approaches of adjustment to two and three transfer functions (Ld(s), sG(s) and Lafo(s)) were explored. The second order model, derived from (Ld( s) and G(s)), was used to deduce the machine standard parameters. The latter were compared with the values given by the manufacturer and by conventional on-site tests: Instantaneous three-phase short-circuit, Dalton-Cameron and the d-axis transient time constant at open stator (T'do). The comparison showed the good accuracy of SSFR values. Subsequently, a machine model was built in EMTP-RV based on SSFR standard parameters. The model was able to reproduce stator and rotor currents measured during instantaneous three-phase short-circuit test. Some adjustments, to SSFR parameters, were needed to reproduce stator voltage and rotor current acquired during load rejection d-axis test. It is worthwhile noting that the load rejection d-axis test, recently added to IEEE 115-2009 annex, must be modified to take into account the saturation and excitation impedance impact on deduced parameters. Regarding this issue, some suggestions are proposed by the author. The obtained SSFR results, contribute to raise confidence on SSFR application on large salient pole machines. In addition, it shows the aptitude of the SSFR model to represent the machine in both cases of weak and strong disturbances, at least on machines similar the one studied. Index Terms: Salient pole, frequency response, SSFR, equivalent circuit, operational inductance.
NASA Astrophysics Data System (ADS)
Wu, Huaying; Wang, Li Zhong; Wang, Yantao; Yuan, Xiaolei
2018-05-01
The blade or surface grinding blade of the hypervelocity grinding wheel may be damaged due to too high rotation rate of the spindle of the machine and then fly out. Its speed as a projectile may severely endanger the field persons. Critical thickness model of the protective plate of the high-speed machine is studied in this paper. For easy analysis, the shapes of the possible impact objects flying from the high-speed machine are simplified as sharp-nose model, ball-nose model and flat-nose model. Whose front ending shape to represent point, line and surface contacting. Impact analysis based on J-C model is performed for the low-carbon steel plate with different thicknesses in this paper. One critical thickness computational model for the protective plate of high-speed machine is established according to the damage characteristics of the thin plate to get relation among plate thickness and mass, shape and size and impact speed of impact object. The air cannon is used for impact test. The model accuracy is validated. This model can guide identification of the thickness of single-layer outer protective plate of a high-speed machine.
Machine Learning for Flood Prediction in Google Earth Engine
NASA Astrophysics Data System (ADS)
Kuhn, C.; Tellman, B.; Max, S. A.; Schwarz, B.
2015-12-01
With the increasing availability of high-resolution satellite imagery, dynamic flood mapping in near real time is becoming a reachable goal for decision-makers. This talk describes a newly developed framework for predicting biophysical flood vulnerability using public data, cloud computing and machine learning. Our objective is to define an approach to flood inundation modeling using statistical learning methods deployed in a cloud-based computing platform. Traditionally, static flood extent maps grounded in physically based hydrologic models can require hours of human expertise to construct at significant financial cost. In addition, desktop modeling software and limited local server storage can impose restraints on the size and resolution of input datasets. Data-driven, cloud-based processing holds promise for predictive watershed modeling at a wide range of spatio-temporal scales. However, these benefits come with constraints. In particular, parallel computing limits a modeler's ability to simulate the flow of water across a landscape, rendering traditional routing algorithms unusable in this platform. Our project pushes these limits by testing the performance of two machine learning algorithms, Support Vector Machine (SVM) and Random Forests, at predicting flood extent. Constructed in Google Earth Engine, the model mines a suite of publicly available satellite imagery layers to use as algorithm inputs. Results are cross-validated using MODIS-based flood maps created using the Dartmouth Flood Observatory detection algorithm. Model uncertainty highlights the difficulty of deploying unbalanced training data sets based on rare extreme events.
Machine Learning Control For Highly Reconfigurable High-Order Systems
2015-01-02
develop and flight test a Reinforcement Learning based approach for autonomous tracking of ground targets using a fixed wing Unmanned...Reinforcement Learning - based algorithms are developed for learning agents’ time dependent dynamics while also learning to control them. Three algorithms...to a wide range of engineering- based problems . Implementation of these solutions, however, is often complicated by the hysteretic, non-linear,
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-28
... Determination Concerning Laser-Based Multi-Function Office Machines AGENCY: U.S. Customs and Border Protection... country of origin of laser-based multi-function office machines. Based upon the facts presented, CBP has... essential character of the laser-based multi-function office machine, and it is at their assembly and...
Mieth, Bettina; Kloft, Marius; Rodríguez, Juan Antonio; Sonnenburg, Sören; Vobruba, Robin; Morcillo-Suárez, Carlos; Farré, Xavier; Marigorta, Urko M.; Fehr, Ernst; Dickhaus, Thorsten; Blanchard, Gilles; Schunk, Daniel; Navarro, Arcadi; Müller, Klaus-Robert
2016-01-01
The standard approach to the analysis of genome-wide association studies (GWAS) is based on testing each position in the genome individually for statistical significance of its association with the phenotype under investigation. To improve the analysis of GWAS, we propose a combination of machine learning and statistical testing that takes correlation structures within the set of SNPs under investigation in a mathematically well-controlled manner into account. The novel two-step algorithm, COMBI, first trains a support vector machine to determine a subset of candidate SNPs and then performs hypothesis tests for these SNPs together with an adequate threshold correction. Applying COMBI to data from a WTCCC study (2007) and measuring performance as replication by independent GWAS published within the 2008–2015 period, we show that our method outperforms ordinary raw p-value thresholding as well as other state-of-the-art methods. COMBI presents higher power and precision than the examined alternatives while yielding fewer false (i.e. non-replicated) and more true (i.e. replicated) discoveries when its results are validated on later GWAS studies. More than 80% of the discoveries made by COMBI upon WTCCC data have been validated by independent studies. Implementations of the COMBI method are available as a part of the GWASpi toolbox 2.0. PMID:27892471
Mieth, Bettina; Kloft, Marius; Rodríguez, Juan Antonio; Sonnenburg, Sören; Vobruba, Robin; Morcillo-Suárez, Carlos; Farré, Xavier; Marigorta, Urko M; Fehr, Ernst; Dickhaus, Thorsten; Blanchard, Gilles; Schunk, Daniel; Navarro, Arcadi; Müller, Klaus-Robert
2016-11-28
The standard approach to the analysis of genome-wide association studies (GWAS) is based on testing each position in the genome individually for statistical significance of its association with the phenotype under investigation. To improve the analysis of GWAS, we propose a combination of machine learning and statistical testing that takes correlation structures within the set of SNPs under investigation in a mathematically well-controlled manner into account. The novel two-step algorithm, COMBI, first trains a support vector machine to determine a subset of candidate SNPs and then performs hypothesis tests for these SNPs together with an adequate threshold correction. Applying COMBI to data from a WTCCC study (2007) and measuring performance as replication by independent GWAS published within the 2008-2015 period, we show that our method outperforms ordinary raw p-value thresholding as well as other state-of-the-art methods. COMBI presents higher power and precision than the examined alternatives while yielding fewer false (i.e. non-replicated) and more true (i.e. replicated) discoveries when its results are validated on later GWAS studies. More than 80% of the discoveries made by COMBI upon WTCCC data have been validated by independent studies. Implementations of the COMBI method are available as a part of the GWASpi toolbox 2.0.
NASA Astrophysics Data System (ADS)
Mieth, Bettina; Kloft, Marius; Rodríguez, Juan Antonio; Sonnenburg, Sören; Vobruba, Robin; Morcillo-Suárez, Carlos; Farré, Xavier; Marigorta, Urko M.; Fehr, Ernst; Dickhaus, Thorsten; Blanchard, Gilles; Schunk, Daniel; Navarro, Arcadi; Müller, Klaus-Robert
2016-11-01
The standard approach to the analysis of genome-wide association studies (GWAS) is based on testing each position in the genome individually for statistical significance of its association with the phenotype under investigation. To improve the analysis of GWAS, we propose a combination of machine learning and statistical testing that takes correlation structures within the set of SNPs under investigation in a mathematically well-controlled manner into account. The novel two-step algorithm, COMBI, first trains a support vector machine to determine a subset of candidate SNPs and then performs hypothesis tests for these SNPs together with an adequate threshold correction. Applying COMBI to data from a WTCCC study (2007) and measuring performance as replication by independent GWAS published within the 2008-2015 period, we show that our method outperforms ordinary raw p-value thresholding as well as other state-of-the-art methods. COMBI presents higher power and precision than the examined alternatives while yielding fewer false (i.e. non-replicated) and more true (i.e. replicated) discoveries when its results are validated on later GWAS studies. More than 80% of the discoveries made by COMBI upon WTCCC data have been validated by independent studies. Implementations of the COMBI method are available as a part of the GWASpi toolbox 2.0.
10. Credit USAF, 1945. Original housed in the Muroc Flight ...
10. Credit USAF, 1945. Original housed in the Muroc Flight Test Base, Unit History, 1 September 1942 30 June 1945. Alfred F. Simpson Historical Research Agency. United States Air Force. Maxwell AFB, Alabama. View of jet engine rotor balancing machine with engine rotor in place for balancing operations. Original caption reads "Balancing bucket wheel of jet engine, Muroc Flight Test Base, Oct. 1945"; personnel not identified. Location where photograph was taken not determined, but presumed to be in shops of Building 4505. - Edwards Air Force Base, North Base, Hangar, End of North Base Road, Boron, Kern County, CA
Steering a Tractor by Means of an EMG-Based Human-Machine Interface
Gomez-Gil, Jaime; San-Jose-Gonzalez, Israel; Nicolas-Alonso, Luis Fernando; Alonso-Garcia, Sergio
2011-01-01
An electromiographic (EMG)-based human-machine interface (HMI) is a communication pathway between a human and a machine that operates by means of the acquisition and processing of EMG signals. This article explores the use of EMG-based HMIs in the steering of farm tractors. An EPOC, a low-cost human-computer interface (HCI) from the Emotiv Company, was employed. This device, by means of 14 saline sensors, measures and processes EMG and electroencephalographic (EEG) signals from the scalp of the driver. In our tests, the HMI took into account only the detection of four trained muscular events on the driver’s scalp: eyes looking to the right and jaw opened, eyes looking to the right and jaw closed, eyes looking to the left and jaw opened, and eyes looking to the left and jaw closed. The EMG-based HMI guidance was compared with manual guidance and with autonomous GPS guidance. A driver tested these three guidance systems along three different trajectories: a straight line, a step, and a circumference. The accuracy of the EMG-based HMI guidance was lower than the accuracy obtained by manual guidance, which was lower in turn than the accuracy obtained by the autonomous GPS guidance; the computed standard deviations of error to the desired trajectory in the straight line were 16 cm, 9 cm, and 4 cm, respectively. Since the standard deviation between the manual guidance and the EMG-based HMI guidance differed only 7 cm, and this difference is not relevant in agricultural steering, it can be concluded that it is possible to steer a tractor by an EMG-based HMI with almost the same accuracy as with manual steering. PMID:22164006
Steering a tractor by means of an EMG-based human-machine interface.
Gomez-Gil, Jaime; San-Jose-Gonzalez, Israel; Nicolas-Alonso, Luis Fernando; Alonso-Garcia, Sergio
2011-01-01
An electromiographic (EMG)-based human-machine interface (HMI) is a communication pathway between a human and a machine that operates by means of the acquisition and processing of EMG signals. This article explores the use of EMG-based HMIs in the steering of farm tractors. An EPOC, a low-cost human-computer interface (HCI) from the Emotiv Company, was employed. This device, by means of 14 saline sensors, measures and processes EMG and electroencephalographic (EEG) signals from the scalp of the driver. In our tests, the HMI took into account only the detection of four trained muscular events on the driver's scalp: eyes looking to the right and jaw opened, eyes looking to the right and jaw closed, eyes looking to the left and jaw opened, and eyes looking to the left and jaw closed. The EMG-based HMI guidance was compared with manual guidance and with autonomous GPS guidance. A driver tested these three guidance systems along three different trajectories: a straight line, a step, and a circumference. The accuracy of the EMG-based HMI guidance was lower than the accuracy obtained by manual guidance, which was lower in turn than the accuracy obtained by the autonomous GPS guidance; the computed standard deviations of error to the desired trajectory in the straight line were 16 cm, 9 cm, and 4 cm, respectively. Since the standard deviation between the manual guidance and the EMG-based HMI guidance differed only 7 cm, and this difference is not relevant in agricultural steering, it can be concluded that it is possible to steer a tractor by an EMG-based HMI with almost the same accuracy as with manual steering.
Assessment of microwave-based clinical waste decontamination unit.
Hoffman, P N; Hanley, M J
1994-12-01
A clinical waste decontamination unit that used microwave-generated heat was assessed for operator safety and efficacy. Tests with loads artificially contaminated with aerosol-forming particles showed that no particles were detected outside the machine provided the seals and covers were correctly seated. Thermometric measurement of a self-generated steam decontamination cycle was used to determine the parameters needed to ensure heat disinfection of the waste reception hopper, prior to entry for maintenance or repair. Bacterial and thermometric test pieces were passed through the machine within a full load of clinical waste. These test pieces, designed to represent a worst case situation, were enclosed in aluminium foil to shield them from direct microwave energy. None of the 100 bacterial test pieces yielded growth on culture and all 100 thermal test pieces achieved temperatures in excess of 99 degrees C during their passage through the decontamination unit. It was concluded that this method may be used to render safe the bulk of of ward-generated clinical waste.
Thermal Error Test and Intelligent Modeling Research on the Spindle of High Speed CNC Machine Tools
NASA Astrophysics Data System (ADS)
Luo, Zhonghui; Peng, Bin; Xiao, Qijun; Bai, Lu
2018-03-01
Thermal error is the main factor affecting the accuracy of precision machining. Through experiments, this paper studies the thermal error test and intelligent modeling for the spindle of vertical high speed CNC machine tools in respect of current research focuses on thermal error of machine tool. Several testing devices for thermal error are designed, of which 7 temperature sensors are used to measure the temperature of machine tool spindle system and 2 displacement sensors are used to detect the thermal error displacement. A thermal error compensation model, which has a good ability in inversion prediction, is established by applying the principal component analysis technology, optimizing the temperature measuring points, extracting the characteristic values closely associated with the thermal error displacement, and using the artificial neural network technology.
Real time automatic detection of bearing fault in induction machine using kurtogram analysis.
Tafinine, Farid; Mokrani, Karim
2012-11-01
A proposed signal processing technique for incipient real time bearing fault detection based on kurtogram analysis is presented in this paper. The kurtogram is a fourth-order spectral analysis tool introduced for detecting and characterizing non-stationarities in a signal. This technique starts from investigating the resonance signatures over selected frequency bands to extract the representative features. The traditional spectral analysis is not appropriate for non-stationary vibration signal and for real time diagnosis. The performance of the proposed technique is examined by a series of experimental tests corresponding to different bearing conditions. Test results show that this signal processing technique is an effective bearing fault automatic detection method and gives a good basis for an integrated induction machine condition monitor.
2011-01-01
Background Cardiotocography (CTG) is the most widely used tool for fetal surveillance. The visual analysis of fetal heart rate (FHR) traces largely depends on the expertise and experience of the clinician involved. Several approaches have been proposed for the effective interpretation of FHR. In this paper, a new approach for FHR feature extraction based on empirical mode decomposition (EMD) is proposed, which was used along with support vector machine (SVM) for the classification of FHR recordings as 'normal' or 'at risk'. Methods The FHR were recorded from 15 subjects at a sampling rate of 4 Hz and a dataset consisting of 90 randomly selected records of 20 minutes duration was formed from these. All records were labelled as 'normal' or 'at risk' by two experienced obstetricians. A training set was formed by 60 records, the remaining 30 left as the testing set. The standard deviations of the EMD components are input as features to a support vector machine (SVM) to classify FHR samples. Results For the training set, a five-fold cross validation test resulted in an accuracy of 86% whereas the overall geometric mean of sensitivity and specificity was 94.8%. The Kappa value for the training set was .923. Application of the proposed method to the testing set (30 records) resulted in a geometric mean of 81.5%. The Kappa value for the testing set was .684. Conclusions Based on the overall performance of the system it can be stated that the proposed methodology is a promising new approach for the feature extraction and classification of FHR signals. PMID:21244712
Barzegar, Rahim; Moghaddam, Asghar Asghari; Deo, Ravinesh; Fijani, Elham; Tziritis, Evangelos
2018-04-15
Constructing accurate and reliable groundwater risk maps provide scientifically prudent and strategic measures for the protection and management of groundwater. The objectives of this paper are to design and validate machine learning based-risk maps using ensemble-based modelling with an integrative approach. We employ the extreme learning machines (ELM), multivariate regression splines (MARS), M5 Tree and support vector regression (SVR) applied in multiple aquifer systems (e.g. unconfined, semi-confined and confined) in the Marand plain, North West Iran, to encapsulate the merits of individual learning algorithms in a final committee-based ANN model. The DRASTIC Vulnerability Index (VI) ranged from 56.7 to 128.1, categorized with no risk, low and moderate vulnerability thresholds. The correlation coefficient (r) and Willmott's Index (d) between NO 3 concentrations and VI were 0.64 and 0.314, respectively. To introduce improvements in the original DRASTIC method, the vulnerability indices were adjusted by NO 3 concentrations, termed as the groundwater contamination risk (GCR). Seven DRASTIC parameters utilized as the model inputs and GCR values utilized as the outputs of individual machine learning models were served in the fully optimized committee-based ANN-predictive model. The correlation indicators demonstrated that the ELM and SVR models outperformed the MARS and M5 Tree models, by virtue of a larger d and r value. Subsequently, the r and d metrics for the ANN-committee based multi-model in the testing phase were 0.8889 and 0.7913, respectively; revealing the superiority of the integrated (or ensemble) machine learning models when compared with the original DRASTIC approach. The newly designed multi-model ensemble-based approach can be considered as a pragmatic step for mapping groundwater contamination risks of multiple aquifer systems with multi-model techniques, yielding the high accuracy of the ANN committee-based model. Copyright © 2017 Elsevier B.V. All rights reserved.
Reducing forces during drilling brittle hard materials by using ultrasonic and variation of coolant
NASA Astrophysics Data System (ADS)
Schopf, C.; Rascher, R.
2016-11-01
The process of ultrasonic machining is especially used for brittle hard materials as the additional ultrasonic vibration of the tool at high frequencies and low amplitudes acts like a hammer on the surface. With this technology it is possible to drill holes with lower forces, therefor the machining can be done faster and the worktime is much less than conventionally. A three-axis dynamometer was used to measure the forces, which act between the tool and the sample part. A focus is set on the sharpness of the tool. The results of a test series are based on the Sauer Ultrasonic Grinding Centre. On the same machine it is possible to drill holes in the conventional way. Additional to the ultasonic Input the type an concentration of coolant is important for the Drilling-force. In the test there were three different coolant and three different concentrations tested. The combination of ultrasonic vibration and the right coolant and concentration is the best way to reduce the Forces. Another positive effect is, that lower drilling-forces produce smaller chipping on the edge of the hole. The way to reduce the forces and chipping is the main issue of this paper.
A tensile machine with a novel optical load cell for soft biological tissues application.
Faturechi, Rahim; Hashemi, Ata; Abolfathi, Nabiollah
2014-11-01
The uniaxial tensile testing machine is the most common device used to measure the mechanical properties of industrial and biological materials. The need for a low-cost uniaxial tension testing device for small research centers has always been the subject of research. To address this need, a novel uniaxial tensile testing machine was designed and fabricated to measure the mechanical properties of soft biological tissues. The device is equipped with a new low-cost load cell which works based on the linear displacement/force relationship of beams. The deflection of the beam load cell is measured optically by a digital microscope with an accuracy of 1 µm. The stiffness of the designed load cell was experimentally and theoretically determined at 100 N mm(-1). The stiffness of the load cell can be easily adjusted according to the tissue's strength. The force-time behaviour of soft tissue specimens was obtained by an in-house image processing program. To demonstrate the efficiency of the fabricated device, the mechanical properties of amnion tissue was measured and compared with available data. The obtained results indicate a strong agreement with that of previous studies.
Entity recognition in the biomedical domain using a hybrid approach.
Basaldella, Marco; Furrer, Lenz; Tasso, Carlo; Rinaldi, Fabio
2017-11-09
This article describes a high-recall, high-precision approach for the extraction of biomedical entities from scientific articles. The approach uses a two-stage pipeline, combining a dictionary-based entity recognizer with a machine-learning classifier. First, the OGER entity recognizer, which has a bias towards high recall, annotates the terms that appear in selected domain ontologies. Subsequently, the Distiller framework uses this information as a feature for a machine learning algorithm to select the relevant entities only. For this step, we compare two different supervised machine-learning algorithms: Conditional Random Fields and Neural Networks. In an in-domain evaluation using the CRAFT corpus, we test the performance of the combined systems when recognizing chemicals, cell types, cellular components, biological processes, molecular functions, organisms, proteins, and biological sequences. Our best system combines dictionary-based candidate generation with Neural-Network-based filtering. It achieves an overall precision of 86% at a recall of 60% on the named entity recognition task, and a precision of 51% at a recall of 49% on the concept recognition task. These results are to our knowledge the best reported so far in this particular task.
Machine learning of molecular properties: Locality and active learning
NASA Astrophysics Data System (ADS)
Gubaev, Konstantin; Podryabinkin, Evgeny V.; Shapeev, Alexander V.
2018-06-01
In recent years, the machine learning techniques have shown great potent1ial in various problems from a multitude of disciplines, including materials design and drug discovery. The high computational speed on the one hand and the accuracy comparable to that of density functional theory on another hand make machine learning algorithms efficient for high-throughput screening through chemical and configurational space. However, the machine learning algorithms available in the literature require large training datasets to reach the chemical accuracy and also show large errors for the so-called outliers—the out-of-sample molecules, not well-represented in the training set. In the present paper, we propose a new machine learning algorithm for predicting molecular properties that addresses these two issues: it is based on a local model of interatomic interactions providing high accuracy when trained on relatively small training sets and an active learning algorithm of optimally choosing the training set that significantly reduces the errors for the outliers. We compare our model to the other state-of-the-art algorithms from the literature on the widely used benchmark tests.
Shan, Juan; Alam, S Kaisar; Garra, Brian; Zhang, Yingtao; Ahmed, Tahira
2016-04-01
This work identifies effective computable features from the Breast Imaging Reporting and Data System (BI-RADS), to develop a computer-aided diagnosis (CAD) system for breast ultrasound. Computerized features corresponding to ultrasound BI-RADs categories were designed and tested using a database of 283 pathology-proven benign and malignant lesions. Features were selected based on classification performance using a "bottom-up" approach for different machine learning methods, including decision tree, artificial neural network, random forest and support vector machine. Using 10-fold cross-validation on the database of 283 cases, the highest area under the receiver operating characteristic (ROC) curve (AUC) was 0.84 from a support vector machine with 77.7% overall accuracy; the highest overall accuracy, 78.5%, was from a random forest with the AUC 0.83. Lesion margin and orientation were optimum features common to all of the different machine learning methods. These features can be used in CAD systems to help distinguish benign from worrisome lesions. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. All rights reserved.
Technologies for developing an advanced intelligent ATM with self-defence capabilities
NASA Astrophysics Data System (ADS)
Sako, Hiroshi
2010-01-01
We have developed several technologies for protecting automated teller machines. These technologies are based mainly on pattern recognition and are used to implement various self-defence functions. They include (i) banknote recognition and information retrieval for preventing machines from accepting counterfeit and damaged banknotes and for retrieving information about detected counterfeits from a relational database, (ii) form processing and character recognition for preventing machines from accepting remittance forms without due dates and/or insufficient payment, (iii) person identification to prevent machines from transacting with non-customers, and (iv) object recognition to guard machines against foreign objects such as spy cams that might be surreptitiously attached to them and to protect users against someone attempting to peek at their user information such as their personal identification number. The person identification technology has been implemented in most ATMs in Japan, and field tests have demonstrated that the banknote recognition technology can recognise more then 200 types of banknote from 30 different countries. We are developing an "advanced intelligent ATM" that incorporates all of these technologies.
Spofford, Christina M; Bayman, Emine O; Szeluga, Debra J; From, Robert P
2012-01-01
Novel methods for teaching are needed to enhance the efficiency of academic anesthesia departments as well as provide approaches to learning that are aligned with current trends and advances in technology. A video was produced that taught the key elements of anesthesia machine checkout and room set up. Novice learners were randomly assigned to receive either the new video format or traditional lecture-based format for this topic during their regularly scheduled lecture series. Primary outcome was the difference in written examination score before and after teaching between the two groups. Secondary outcome was the satisfaction score of the trainees in the two groups. Forty-two students assigned to the video group and 36 students assigned to the lecture group completed the study. Students in each group similar interest in anesthesia, pre-test scores, post-test scores, and final exam scores. The median posttest to pretest difference was greater in the video groups (3.5 (3.0-5.0) vs 2.5 (2.0-3.0), for video and lecture groups respectively, p 0.002). Despite improved test scores, students reported higher satisfaction the traditional, lecture-based format (22.0 (18.0-24.0) vs 24.0 (20.0-28.0), for video and lecture groups respectively, p <0.004). Higher pre-test to post-test improvements were observed among students in the video-based teaching group, however students rated traditional, live lectures higher than newer video-based teaching.
[The testing system for OCP of the digital X-ray machine].
Wang, Yan; Mo, Guoming; Wang, Juru; Zhou, Tao; Yu, Jianguo
2011-09-01
In this paper, we designed a testing system for operator control panel of a high-voltage and high-frequency X-ray machine, and an online testing software for functional components, in order to help the testing engineers to improve their work efficiency.
Sample Holder for Cryogenic Adhesive Shear Test
NASA Technical Reports Server (NTRS)
Ledbetter, F. E.; Clemons, J. M.; White, W. T.; Penn, B.; Semmel, M. L.
1983-01-01
Five samples tested in one cooldown. Holder mounted in testing machine. Submerged in cryogenic liquid held in cryostat. Movable crosshead of testing machine moves gradually downward. Samples placed under tension, one after another, starting with top one; each sample fails in turn before next is stressed.
Combining Relevance Vector Machines and exponential regression for bearing residual life estimation
NASA Astrophysics Data System (ADS)
Di Maio, Francesco; Tsui, Kwok Leung; Zio, Enrico
2012-08-01
In this paper we present a new procedure for estimating the bearing Residual Useful Life (RUL) by combining data-driven and model-based techniques. Respectively, we resort to (i) Relevance Vector Machines (RVMs) for selecting a low number of significant basis functions, called Relevant Vectors (RVs), and (ii) exponential regression to compute and continuously update residual life estimations. The combination of these techniques is developed with reference to partially degraded thrust ball bearings and tested on real world vibration-based degradation data. On the case study considered, the proposed procedure outperforms other model-based methods, with the added value of an adequate representation of the uncertainty associated to the estimates of the quantification of the credibility of the results by the Prognostic Horizon (PH) metric.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kangas, Lars J.; Metz, Thomas O.; Isaac, Georgis
2012-05-15
Liquid chromatography-mass spectrometry-based metabolomics has gained importance in the life sciences, yet it is not supported by software tools for high throughput identification of metabolites based on their fragmentation spectra. An algorithm (ISIS: in silico identification software) and its implementation are presented and show great promise in generating in silico spectra of lipids for the purpose of structural identification. Instead of using chemical reaction rate equations or rules-based fragmentation libraries, the algorithm uses machine learning to find accurate bond cleavage rates in a mass spectrometer employing collision-induced dissocia-tion tandem mass spectrometry. A preliminary test of the algorithm with 45 lipidsmore » from a subset of lipid classes shows both high sensitivity and specificity.« less
Gradient Evolution-based Support Vector Machine Algorithm for Classification
NASA Astrophysics Data System (ADS)
Zulvia, Ferani E.; Kuo, R. J.
2018-03-01
This paper proposes a classification algorithm based on a support vector machine (SVM) and gradient evolution (GE) algorithms. SVM algorithm has been widely used in classification. However, its result is significantly influenced by the parameters. Therefore, this paper aims to propose an improvement of SVM algorithm which can find the best SVMs’ parameters automatically. The proposed algorithm employs a GE algorithm to automatically determine the SVMs’ parameters. The GE algorithm takes a role as a global optimizer in finding the best parameter which will be used by SVM algorithm. The proposed GE-SVM algorithm is verified using some benchmark datasets and compared with other metaheuristic-based SVM algorithms. The experimental results show that the proposed GE-SVM algorithm obtains better results than other algorithms tested in this paper.
Method and system for fault accommodation of machines
NASA Technical Reports Server (NTRS)
Goebel, Kai Frank (Inventor); Subbu, Rajesh Venkat (Inventor); Rausch, Randal Thomas (Inventor); Frederick, Dean Kimball (Inventor)
2011-01-01
A method for multi-objective fault accommodation using predictive modeling is disclosed. The method includes using a simulated machine that simulates a faulted actual machine, and using a simulated controller that simulates an actual controller. A multi-objective optimization process is performed, based on specified control settings for the simulated controller and specified operational scenarios for the simulated machine controlled by the simulated controller, to generate a Pareto frontier-based solution space relating performance of the simulated machine to settings of the simulated controller, including adjustment to the operational scenarios to represent a fault condition of the simulated machine. Control settings of the actual controller are adjusted, represented by the simulated controller, for controlling the actual machine, represented by the simulated machine, in response to a fault condition of the actual machine, based on the Pareto frontier-based solution space, to maximize desirable operational conditions and minimize undesirable operational conditions while operating the actual machine in a region of the solution space defined by the Pareto frontier.
State Machine Modeling of the Space Launch System Solid Rocket Boosters
NASA Technical Reports Server (NTRS)
Harris, Joshua A.; Patterson-Hine, Ann
2013-01-01
The Space Launch System is a Shuttle-derived heavy-lift vehicle currently in development to serve as NASA's premiere launch vehicle for space exploration. The Space Launch System is a multistage rocket with two Solid Rocket Boosters and multiple payloads, including the Multi-Purpose Crew Vehicle. Planned Space Launch System destinations include near-Earth asteroids, the Moon, Mars, and Lagrange points. The Space Launch System is a complex system with many subsystems, requiring considerable systems engineering and integration. To this end, state machine analysis offers a method to support engineering and operational e orts, identify and avert undesirable or potentially hazardous system states, and evaluate system requirements. Finite State Machines model a system as a finite number of states, with transitions between states controlled by state-based and event-based logic. State machines are a useful tool for understanding complex system behaviors and evaluating "what-if" scenarios. This work contributes to a state machine model of the Space Launch System developed at NASA Ames Research Center. The Space Launch System Solid Rocket Booster avionics and ignition subsystems are modeled using MATLAB/Stateflow software. This model is integrated into a larger model of Space Launch System avionics used for verification and validation of Space Launch System operating procedures and design requirements. This includes testing both nominal and o -nominal system states and command sequences.
NASA Technical Reports Server (NTRS)
Benz, F. J.; Dixon, D. S.; Shaw, R. C.
1986-01-01
Testing machine evaluates wear and ignition characteristics of materials in rubbing contact. Offers advantages over other laboratory methods of measuring wear because it simulates operating conditions under which material will actually be used. Machine used to determine wear characteristics, rank and select materials for service with such active oxidizers as oxygen, halogens, and oxides of nitrogen, measure wear characteristics, and determine coefficients of friction.
Feng, Jingwen; Feng, Tong; Yang, Chengwen; Wang, Wei; Sa, Yu; Feng, Yuanming
2018-06-01
This study was to explore the feasibility of prediction and classification of cells in different stages of apoptosis with a stain-free method based on diffraction images and supervised machine learning. Apoptosis was induced in human chronic myelogenous leukemia K562 cells by cis-platinum (DDP). A newly developed technique of polarization diffraction imaging flow cytometry (p-DIFC) was performed to acquire diffraction images of the cells in three different statuses (viable, early apoptotic and late apoptotic/necrotic) after cell separation through fluorescence activated cell sorting with Annexin V-PE and SYTOX® Green double staining. The texture features of the diffraction images were extracted with in-house software based on the Gray-level co-occurrence matrix algorithm to generate datasets for cell classification with supervised machine learning method. Therefore, this new method has been verified in hydrogen peroxide induced apoptosis model of HL-60. Results show that accuracy of higher than 90% was achieved respectively in independent test datasets from each cell type based on logistic regression with ridge estimators, which indicated that p-DIFC system has a great potential in predicting and classifying cells in different stages of apoptosis.
NASA Astrophysics Data System (ADS)
Zhou, Peng; Peng, Zhike; Chen, Shiqian; Yang, Yang; Zhang, Wenming
2018-06-01
With the development of large rotary machines for faster and more integrated performance, the condition monitoring and fault diagnosis for them are becoming more challenging. Since the time-frequency (TF) pattern of the vibration signal from the rotary machine often contains condition information and fault feature, the methods based on TF analysis have been widely-used to solve these two problems in the industrial community. This article introduces an effective non-stationary signal analysis method based on the general parameterized time-frequency transform (GPTFT). The GPTFT is achieved by inserting a rotation operator and a shift operator in the short-time Fourier transform. This method can produce a high-concentrated TF pattern with a general kernel. A multi-component instantaneous frequency (IF) extraction method is proposed based on it. The estimation for the IF of every component is accomplished by defining a spectrum concentration index (SCI). Moreover, such an IF estimation process is iteratively operated until all the components are extracted. The tests on three simulation examples and a real vibration signal demonstrate the effectiveness and superiority of our method.
Machine Learning Based Malware Detection
2015-05-18
A TRIDENT SCHOLAR PROJECT REPORT NO. 440 Machine Learning Based Malware Detection by Midshipman 1/C Zane A. Markel, USN...COVERED (From - To) 4. TITLE AND SUBTITLE Machine Learning Based Malware Detection 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...suitably be projected into realistic performance. This work explores several aspects of machine learning based malware detection . First, we
Davatzikos, Christos
2016-10-01
The past 20 years have seen a mushrooming growth of the field of computational neuroanatomy. Much of this work has been enabled by the development and refinement of powerful, high-dimensional image warping methods, which have enabled detailed brain parcellation, voxel-based morphometric analyses, and multivariate pattern analyses using machine learning approaches. The evolution of these 3 types of analyses over the years has overcome many challenges. We present the evolution of our work in these 3 directions, which largely follows the evolution of this field. We discuss the progression from single-atlas, single-registration brain parcellation work to current ensemble-based parcellation; from relatively basic mass-univariate t-tests to optimized regional pattern analyses combining deformations and residuals; and from basic application of support vector machines to generative-discriminative formulations of multivariate pattern analyses, and to methods dealing with heterogeneity of neuroanatomical patterns. We conclude with discussion of some of the future directions and challenges. Copyright © 2016. Published by Elsevier B.V.
Davatzikos, Christos
2017-01-01
The past 20 years have seen a mushrooming growth of the field of computational neuroanatomy. Much of this work has been enabled by the development and refinement of powerful, high-dimensional image warping methods, which have enabled detailed brain parcellation, voxel-based morphometric analyses, and multivariate pattern analyses using machine learning approaches. The evolution of these 3 types of analyses over the years has overcome many challenges. We present the evolution of our work in these 3 directions, which largely follows the evolution of this field. We discuss the progression from single-atlas, single-registration brain parcellation work to current ensemble-based parcellation; from relatively basic mass-univariate t-tests to optimized regional pattern analyses combining deformations and residuals; and from basic application of support vector machines to generative-discriminative formulations of multivariate pattern analyses, and to methods dealing with heterogeneity of neuroanatomical patterns. We conclude with discussion of some of the future directions and challenges. PMID:27514582
Young, Sean D.; Daniels, Joseph; Chiu, ChingChe J.; Bolan, Robert K.; Flynn, Risa P.; Kwok, Justin; Klausner, Jeffrey D.
2014-01-01
Introduction Rates of unrecognized HIV infection are significantly higher among Latino and Black men who have sex with men (MSM). Policy makers have proposed that HIV self-testing kits and new methods for delivering self-testing could improve testing uptake among minority MSM. This study sought to conduct qualitative assessments with MSM of color to determine the acceptability of using electronic vending machines to dispense HIV self-testing kits. Materials and Methods African American and Latino MSM were recruited using a participant pool from an existing HIV prevention trial on Facebook. If participants expressed interest in using a vending machine to receive an HIV self-testing kit, they were emailed a 4-digit personal identification number (PIN) code to retrieve the test from the machine. We followed up with those who had tested to assess their willingness to participate in an interview about their experience. Results Twelve kits were dispensed and 8 interviews were conducted. In general, participants expressed that the vending machine was an acceptable HIV test delivery method due to its novelty and convenience. Discussion Acceptability of this delivery model for HIV testing kits was closely associated with three main factors: credibility, confidentiality, and convenience. Future research is needed to address issues, such as user-induced errors and costs, before scaling up the dispensing method. PMID:25076208
Open Architecture Data System for NASA Langley Combined Loads Test System
NASA Technical Reports Server (NTRS)
Lightfoot, Michael C.; Ambur, Damodar R.
1998-01-01
The Combined Loads Test System (COLTS) is a new structures test complex that is being developed at NASA Langley Research Center (LaRC) to test large curved panels and cylindrical shell structures. These structural components are representative of aircraft fuselage sections of subsonic and supersonic transport aircraft and cryogenic tank structures of reusable launch vehicles. Test structures are subjected to combined loading conditions that simulate realistic flight load conditions. The facility consists of two pressure-box test machines and one combined loads test machine. Each test machine possesses a unique set of requirements or research data acquisition and real-time data display. Given the complex nature of the mechanical and thermal loads to be applied to the various research test articles, each data system has been designed with connectivity attributes that support both data acquisition and data management functions. This paper addresses the research driven data acquisition requirements for each test machine and demonstrates how an open architecture data system design not only meets those needs but provides robust data sharing between data systems including the various control systems which apply spectra of mechanical and thermal loading profiles.
Machining and characterization of self-reinforced polymers
NASA Astrophysics Data System (ADS)
Deepa, A.; Padmanabhan, K.; Kuppan, P.
2017-11-01
This Paper focuses on obtaining the mechanical properties and the effect of the different machining techniques on self-reinforced composites sample and to derive the best machining method with remarkable properties. Each sample was tested by the Tensile and Flexural tests, fabricated using hot compaction test and those loads were calculated. These composites are machined using conventional methods because of lack of advanced machinery in most of the industries. The advanced non-conventional methods like Abrasive water jet machining were used. These machining techniques are used to get the better output for the composite materials with good mechanical properties compared to conventional methods. But the use of non-conventional methods causes the changes in the work piece, tool properties and more economical compared to the conventional methods. Finding out the best method ideal for the designing of these Self Reinforced Composites with and without defects and the use of Scanning Electron Microscope (SEM) analysis for the comparing the microstructure of the PP and PE samples concludes our process.
Classification of Strawberry Fruit Shape by Machine Learning
NASA Astrophysics Data System (ADS)
Ishikawa, T.; Hayashi, A.; Nagamatsu, S.; Kyutoku, Y.; Dan, I.; Wada, T.; Oku, K.; Saeki, Y.; Uto, T.; Tanabata, T.; Isobe, S.; Kochi, N.
2018-05-01
Shape is one of the most important traits of agricultural products due to its relationships with the quality, quantity, and value of the products. For strawberries, the nine types of fruit shape were defined and classified by humans based on the sampler patterns of the nine types. In this study, we tested the classification of strawberry shapes by machine learning in order to increase the accuracy of the classification, and we introduce the concept of computerization into this field. Four types of descriptors were extracted from the digital images of strawberries: (1) the Measured Values (MVs) including the length of the contour line, the area, the fruit length and width, and the fruit width/length ratio; (2) the Ellipse Similarity Index (ESI); (3) Elliptic Fourier Descriptors (EFDs), and (4) Chain Code Subtraction (CCS). We used these descriptors for the classification test along with the random forest approach, and eight of the nine shape types were classified with combinations of MVs + CCS + EFDs. CCS is a descriptor that adds human knowledge to the chain codes, and it showed higher robustness in classification than the other descriptors. Our results suggest machine learning's high ability to classify fruit shapes accurately. We will attempt to increase the classification accuracy and apply the machine learning methods to other plant species.
ERIC Educational Resources Information Center
Marulcu, Ismail; Barnett, Michael
2016-01-01
Background: Elementary Science Education is struggling with multiple challenges. National and State test results confirm the need for deeper understanding in elementary science education. Moreover, national policy statements and researchers call for increased exposure to engineering and technology in elementary science education. The basic…
MachineProse: an Ontological Framework for Scientific Assertions
Dinakarpandian, Deendayal; Lee, Yugyung; Vishwanath, Kartik; Lingambhotla, Rohini
2006-01-01
Objective: The idea of testing a hypothesis is central to the practice of biomedical research. However, the results of testing a hypothesis are published mainly in the form of prose articles. Encoding the results as scientific assertions that are both human and machine readable would greatly enhance the synergistic growth and dissemination of knowledge. Design: We have developed MachineProse (MP), an ontological framework for the concise specification of scientific assertions. MP is based on the idea of an assertion constituting a fundamental unit of knowledge. This is in contrast to current approaches that use discrete concept terms from domain ontologies for annotation and assertions are only inferred heuristically. Measurements: We use illustrative examples to highlight the advantages of MP over the use of the Medical Subject Headings (MeSH) system and keywords in indexing scientific articles. Results: We show how MP makes it possible to carry out semantic annotation of publications that is machine readable and allows for precise search capabilities. In addition, when used by itself, MP serves as a knowledge repository for emerging discoveries. A prototype for proof of concept has been developed that demonstrates the feasibility and novel benefits of MP. As part of the MP framework, we have created an ontology of relationship types with about 100 terms optimized for the representation of scientific assertions. Conclusion: MachineProse is a novel semantic framework that we believe may be used to summarize research findings, annotate biomedical publications, and support sophisticated searches. PMID:16357355
Huang, Jen-Ching; Weng, Yung-Jin
2014-01-01
This study focused on the nanomachining property and cutting model of single-crystal sapphire during nanomachining. The coated diamond probe is used to as a tool, and the atomic force microscopy (AFM) is as an experimental platform for nanomachining. To understand the effect of normal force on single-crystal sapphire machining, this study tested nano-line machining and nano-rectangular pattern machining at different normal force. In nano-line machining test, the experimental results showed that the normal force increased, the groove depth from nano-line machining also increased. And the trend is logarithmic type. In nano-rectangular pattern machining test, it is found when the normal force increases, the groove depth also increased, but rather the accumulation of small chips. This paper combined the blew by air blower, the cleaning by ultrasonic cleaning machine and using contact mode probe to scan the surface topology after nanomaching, and proposed the "criterion of nanomachining cutting model," in order to determine the cutting model of single-crystal sapphire in the nanomachining is ductile regime cutting model or brittle regime cutting model. After analysis, the single-crystal sapphire substrate is processed in small normal force during nano-linear machining; its cutting modes are ductile regime cutting model. In the nano-rectangular pattern machining, due to the impact of machined zones overlap, the cutting mode is converted into a brittle regime cutting model. © 2014 Wiley Periodicals, Inc.
Fiorini, Francesca; Schreuder, Niek; Van den Heuvel, Frank
2018-02-01
Cyclotron-based pencil beam scanning (PBS) proton machines represent nowadays the majority and most affordable choice for proton therapy facilities, however, their representation in Monte Carlo (MC) codes is more complex than passively scattered proton system- or synchrotron-based PBS machines. This is because degraders are used to decrease the energy from the cyclotron maximum energy to the desired energy, resulting in a unique spot size, divergence, and energy spread depending on the amount of degradation. This manuscript outlines a generalized methodology to characterize a cyclotron-based PBS machine in a general-purpose MC code. The code can then be used to generate clinically relevant plans starting from commercial TPS plans. The described beam is produced at the Provision Proton Therapy Center (Knoxville, TN, USA) using a cyclotron-based IBA Proteus Plus equipment. We characterized the Provision beam in the MC FLUKA using the experimental commissioning data. The code was then validated using experimental data in water phantoms for single pencil beams and larger irregular fields. Comparisons with RayStation TPS plans are also presented. Comparisons of experimental, simulated, and planned dose depositions in water plans show that same doses are calculated by both programs inside the target areas, while penumbrae differences are found at the field edges. These differences are lower for the MC, with a γ(3%-3 mm) index never below 95%. Extensive explanations on how MC codes can be adapted to simulate cyclotron-based scanning proton machines are given with the aim of using the MC as a TPS verification tool to check and improve clinical plans. For all the tested cases, we showed that dose differences with experimental data are lower for the MC than TPS, implying that the created FLUKA beam model is better able to describe the experimental beam. © 2017 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Simulated Single Tooth Bending of High Temperature Alloys
NASA Technical Reports Server (NTRS)
Handschuh, Robert, F.; Burke, Christopher
2012-01-01
Future unmanned space missions will require mechanisms to operate at extreme conditions in order to be successful. In some of these mechanisms, very high gear reductions will be needed to permit very small motors to drive other components at low rotational speed with high output torque. Therefore gearing components are required that can meet the mission requirements. In mechanisms such as this, bending fatigue strength capacity of the gears is very important. The bending fatigue capacity of a high temperature, nickel-based alloy, typically used for turbine disks in gas turbine engines and two tool steel materials with high vanadium content, were compared to that of a typical aerospace alloy-AISI 9310. Test specimens were fabricated by electro-discharge machining without post machining processing. Tests were run at 24 and at 490 C. As test temperature increased from 24 to 490 C the bending fatigue strength was reduced by a factor of five.
Strain Rate and Stress Triaxiality Effects on Ductile Damage of Additive Manufactured TI-6AL-4V
NASA Astrophysics Data System (ADS)
Iannitti, Gianluca; Bonora, Nicola; Gentile, Domenico; Ruggiero, Andrew; Testa, Gabriel; Gubbioni, Simone
2017-06-01
In this work, the effects of strain rate and stress triaxiality on ductile damage of additive manufactured Ti-6Al-4V, also considering the build direction, were investigated. Raw material was manufactured by means of EOSSINT M2 80 machine, based on Direct Metal Laser Sintering technology, and machined to obtain round notched bar and Rod-on-Rod (RoR) specimens. Tensile tests on round notched bar specimens were performed in a wide range of strain rates. The failure strains at different stress triaxiality were used to calibrate the Bonora Damage Model. In order to design the RoR tests, numerical simulations were performed for assessing velocities at which incipient and fully developed damage occur. Tests at selected velocities were carried out and soft-recovered specimens were sectioning and polishing to observe the developed damage. Nucleated voids maps were compared with numerical simulations results.
NASA Technical Reports Server (NTRS)
Hill, Charles S.; Oliveras, Ovidio M.
2011-01-01
Evolution of the 3D strain field during ASTM-D-7078 v-notch rail shear tests on 8-ply quasi-isotropic carbon fiber/epoxy laminates was determined by optical photogrammetry using an ARAMIS system. Specimens having non-optimal geometry and minor discrepancies in dimensional tolerances were shown to display non-symmetry and/or stress concentration in the vicinity of the notch relative to a specimen meeting the requirements of the standard, but resulting shear strength and modulus values remained within acceptable bounds of standard deviation. Based on these results, and reported difficulty machining specimens to the required tolerances using available methods, it is suggested that a parametric study combining analytical methods and experiment may provide rationale to increase the tolerances on some specimen dimensions, reducing machining costs, increasing the proportion of acceptable results, and enabling a wider adoption of the test method.
Integrated verification and testing system (IVTS) for HAL/S programs
NASA Technical Reports Server (NTRS)
Senn, E. H.; Ames, K. R.; Smith, K. A.
1983-01-01
The IVTS is a large software system designed to support user-controlled verification analysis and testing activities for programs written in the HAL/S language. The system is composed of a user interface and user command language, analysis tools and an organized data base of host system files. The analysis tools are of four major types: (1) static analysis, (2) symbolic execution, (3) dynamic analysis (testing), and (4) documentation enhancement. The IVTS requires a split HAL/S compiler, divided at the natural separation point between the parser/lexical analyzer phase and the target machine code generator phase. The IVTS uses the internal program form (HALMAT) between these two phases as primary input for the analysis tools. The dynamic analysis component requires some way to 'execute' the object HAL/S program. The execution medium may be an interpretive simulation or an actual host or target machine.
Machinability of IPS Empress 2 framework ceramic.
Schmidt, C; Weigl, P
2000-01-01
Using ceramic materials for an automatic production of ceramic dentures by CAD/CAM is a challenge, because many technological, medical, and optical demands must be considered. The IPS Empress 2 framework ceramic meets most of them. This study shows the possibilities for machining this ceramic with economical parameters. The long life-time requirement for ceramic dentures requires a ductile machined surface to avoid the well-known subsurface damages of brittle materials caused by machining. Slow and rapid damage propagation begins at break outs and cracks, and limits life-time significantly. Therefore, ductile machined surfaces are an important demand for machine dental ceramics. The machining tests were performed with various parameters such as tool grain size and feed speed. Denture ceramics were machined by jig grinding on a 5-axis CNC milling machine (Maho HGF 500) with a high-speed spindle up to 120,000 rpm. The results of the wear test indicate low tool wear. With one tool, you can machine eight occlusal surfaces including roughing and finishing. One occlusal surface takes about 60 min machining time. Recommended parameters for roughing are middle diamond grain size (D107), cutting speed v(c) = 4.7 m/s, feed speed v(ft) = 1000 mm/min, depth of cut a(e) = 0.06 mm, width of contact a(p) = 0.8 mm, and for finishing ultra fine diamond grain size (D46), cutting speed v(c) = 4.7 m/s, feed speed v(ft) = 100 mm/min, depth of cut a(e) = 0.02 mm, width of contact a(p) = 0.8 mm. The results of the machining tests give a reference for using IPS Empress(R) 2 framework ceramic in CAD/CAM systems. Copyright 2000 John Wiley & Sons, Inc.
Xing, Jing; Lu, Wenchao; Liu, Rongfeng; Wang, Yulan; Xie, Yiqian; Zhang, Hao; Shi, Zhe; Jiang, Hao; Liu, Yu-Chih; Chen, Kaixian; Jiang, Hualiang; Luo, Cheng; Zheng, Mingyue
2017-07-24
Bromodomain-containing protein 4 (BRD4) is implicated in the pathogenesis of a number of different cancers, inflammatory diseases and heart failure. Much effort has been dedicated toward discovering novel scaffold BRD4 inhibitors (BRD4is) with different selectivity profiles and potential antiresistance properties. Structure-based drug design (SBDD) and virtual screening (VS) are the most frequently used approaches. Here, we demonstrate a novel, structure-based VS approach that uses machine-learning algorithms trained on the priori structure and activity knowledge to predict the likelihood that a compound is a BRD4i based on its binding pattern with BRD4. In addition to positive experimental data, such as X-ray structures of BRD4-ligand complexes and BRD4 inhibitory potencies, negative data such as false positives (FPs) identified from our earlier ligand screening results were incorporated into our knowledge base. We used the resulting data to train a machine-learning model named BRD4LGR to predict the BRD4i-likeness of a compound. BRD4LGR achieved a 20-30% higher AUC-ROC than that of Glide using the same test set. When conducting in vitro experiments against a library of previously untested, commercially available organic compounds, the second round of VS using BRD4LGR generated 15 new BRD4is. Moreover, inverting the machine-learning model provided easy access to structure-activity relationship (SAR) interpretation for hit-to-lead optimization.
Design for multipurpose use: an application of DfE concept in a developing economy
NASA Astrophysics Data System (ADS)
Dunmade, Israel
2004-12-01
Design for Environment (DfE) has been defined as the systematic integration of environmental considerations into product and process design. And it has been discovered that material and space can be saved when several functions are integrated into a single product by taking advantage of common components. In this design and development project, a multipurpose thresher was designed based on an integrated concept of design for modularity, disassembly, demanufacturing and remanufacturing. The machine can be used to thresh various types of farm produce such as rice, sorghum, cowpea and rye by changing the concave and the cylinder (threshing drum). The configuration of the machine enables access to most of the component parts without changing the tools needed for disassembly because the same type of fasteners was used. Furthermore, the functional units (the shelling unit, the separation unit and the grading unit) were assembled into modules such that only the faulty part needs to be replaced if necessary. The design was so simplified that the operator can make the changes for different uses without any difficulty. The machine has been successfully tested with a number of these products and it is scheduled for tests with other produce like corn and peanuts. The modularity of the functional unit will facilitate multi-lifecycle use of machine and/or its component parts. The uniformity of the liaisons and simplification of the configuration will reduce both the disassembly times and maintenance cost. By this integration, the material requirements for four different machines are conserved, environmental emissions that would be associated with the manufacture, transportation and disposal of four machines are eliminated while the capital requirements by farmers for machinery are reduced to about a quarter. Consequently the total lifecycle cost is kept minimum while the eco-efficiency is maximized.
Kwon, Seung Yong; Pham, Tuyen Danh; Park, Kang Ryoung; Jeong, Dae Sik; Yoon, Sungsoo
2016-06-11
Fitness classification is a technique to assess the quality of banknotes in order to determine whether they are usable. Banknote classification techniques are useful in preventing problems that arise from the circulation of substandard banknotes (such as recognition failures, or bill jams in automated teller machines (ATMs) or bank counting machines). By and large, fitness classification continues to be carried out by humans, and this can cause the problem of varying fitness classifications for the same bill by different evaluators, and requires a lot of time. To address these problems, this study proposes a fuzzy system-based method that can reduce the processing time needed for fitness classification, and can determine the fitness of banknotes through an objective, systematic method rather than subjective judgment. Our algorithm was an implementation to actual banknote counting machine. Based on the results of tests on 3856 banknotes in United States currency (USD), 3956 in Korean currency (KRW), and 2300 banknotes in Indian currency (INR) using visible light reflection (VR) and near-infrared light transmission (NIRT) imaging, the proposed method was found to yield higher accuracy than prevalent banknote fitness classification methods. Moreover, it was confirmed that the proposed algorithm can operate in real time, not only in a normal PC environment, but also in an embedded system environment of a banknote counting machine.
Kwon, Seung Yong; Pham, Tuyen Danh; Park, Kang Ryoung; Jeong, Dae Sik; Yoon, Sungsoo
2016-01-01
Fitness classification is a technique to assess the quality of banknotes in order to determine whether they are usable. Banknote classification techniques are useful in preventing problems that arise from the circulation of substandard banknotes (such as recognition failures, or bill jams in automated teller machines (ATMs) or bank counting machines). By and large, fitness classification continues to be carried out by humans, and this can cause the problem of varying fitness classifications for the same bill by different evaluators, and requires a lot of time. To address these problems, this study proposes a fuzzy system-based method that can reduce the processing time needed for fitness classification, and can determine the fitness of banknotes through an objective, systematic method rather than subjective judgment. Our algorithm was an implementation to actual banknote counting machine. Based on the results of tests on 3856 banknotes in United States currency (USD), 3956 in Korean currency (KRW), and 2300 banknotes in Indian currency (INR) using visible light reflection (VR) and near-infrared light transmission (NIRT) imaging, the proposed method was found to yield higher accuracy than prevalent banknote fitness classification methods. Moreover, it was confirmed that the proposed algorithm can operate in real time, not only in a normal PC environment, but also in an embedded system environment of a banknote counting machine. PMID:27294940
Kernel Machine SNP-set Testing under Multiple Candidate Kernels
Wu, Michael C.; Maity, Arnab; Lee, Seunggeun; Simmons, Elizabeth M.; Harmon, Quaker E.; Lin, Xinyi; Engel, Stephanie M.; Molldrem, Jeffrey J.; Armistead, Paul M.
2013-01-01
Joint testing for the cumulative effect of multiple single nucleotide polymorphisms grouped on the basis of prior biological knowledge has become a popular and powerful strategy for the analysis of large scale genetic association studies. The kernel machine (KM) testing framework is a useful approach that has been proposed for testing associations between multiple genetic variants and many different types of complex traits by comparing pairwise similarity in phenotype between subjects to pairwise similarity in genotype, with similarity in genotype defined via a kernel function. An advantage of the KM framework is its flexibility: choosing different kernel functions allows for different assumptions concerning the underlying model and can allow for improved power. In practice, it is difficult to know which kernel to use a priori since this depends on the unknown underlying trait architecture and selecting the kernel which gives the lowest p-value can lead to inflated type I error. Therefore, we propose practical strategies for KM testing when multiple candidate kernels are present based on constructing composite kernels and based on efficient perturbation procedures. We demonstrate through simulations and real data applications that the procedures protect the type I error rate and can lead to substantially improved power over poor choices of kernels and only modest differences in power versus using the best candidate kernel. PMID:23471868
Concerns of Hydrothermal Degradation in CAD/CAM Zirconia
Kim, J.-W.; Covel, N.S.; Guess, P.C.; Rekow, E.D.; Zhang, Y.
2010-01-01
Zirconia-based restorations are widely used in prosthetic dentistry; however, their susceptibility to hydrothermal degradation remains elusive. We hypothesized that CAD/CAM machining and subsequent surface treatments, i.e., grinding and/or grit-blasting, have marked effects on the hydrothermal degradation behavior of Y-TZP. CAD/CAM-machined Y-TZP plates (0.5 mm thick), both with and without subsequent grinding with various grit sizes or grit-blasting with airborne alumina particles, were subjected to accelerated aging tests in a steam autoclave. Results showed that the CAD/CAM-machined surfaces initially exhibited superior hydrothermal degradation resistance, but deteriorated at a faster rate upon prolonged autoclave treatment compared with ground and grit-blasted surfaces. The accelerated hydrothermal degradation of CAD/CAM surfaces is attributed to the CAD/CAM machining damage and the absence of surface compressive stresses in the fully sintered material. Clinical relevance for surface treatments of zirconia frameworks in terms of hydrothermal and structural stabilities is addressed. PMID:19966039
Periodical capacity setting methods for make-to-order multi-machine production systems
Altendorfer, Klaus; Hübl, Alexander; Jodlbauer, Herbert
2014-01-01
The paper presents different periodical capacity setting methods for make-to-order, multi-machine production systems with stochastic customer required lead times and stochastic processing times to improve service level and tardiness. These methods are developed as decision support when capacity flexibility exists, such as, a certain range of possible working hours a week for example. The methods differ in the amount of information used whereby all are based on the cumulated capacity demand at each machine. In a simulation study the methods’ impact on service level and tardiness is compared to a constant provided capacity for a single and a multi-machine setting. It is shown that the tested capacity setting methods can lead to an increase in service level and a decrease in average tardiness in comparison to a constant provided capacity. The methods using information on processing time and customer required lead time distribution perform best. The results found in this paper can help practitioners to make efficient use of their flexible capacity. PMID:27226649
NASA Astrophysics Data System (ADS)
Ma, Lei; Sanada, Masayuki; Morimoto, Shigeo; Takeda, Yoji; Kaido, Chikara; Wakisaka, Takeaki
Loss evaluation is an important issue in the design of electrical machines. Due to the complicate structure and flux distribution, it is difficult to predict the iron loss in the machines exactly. This paper studies the iron loss in interior permanent magnet synchronous motors based on the finite element method. The iron loss test data of core material are used in the fitting of the hysteresis and eddy current loss constants. For motors in practical operation, additional iron losses due to the appearance of rotation of flux density vector and harmonic flux density distribution makes the calculation data deviates from the measured ones. Revision is made to account for these excess iron losses which exist in the practical operating condition. Calculation results show good consistence with the experimental ones. The proposed method provides a possible way to predict the iron loss of the electrical machine with good precision, and may be helpful in the selection of the core material which is best suitable for a certain machine.
NASA Astrophysics Data System (ADS)
Moran, Niklas; Nieland, Simon; Tintrup gen. Suntrup, Gregor; Kleinschmit, Birgit
2017-02-01
Manual field surveys for nature conservation management are expensive and time-consuming and could be supplemented and streamlined by using Remote Sensing (RS). RS is critical to meet requirements of existing laws such as the EU Habitats Directive (HabDir) and more importantly to meet future challenges. The full potential of RS has yet to be harnessed as different nomenclatures and procedures hinder interoperability, comparison and provenance. Therefore, automated tools are needed to use RS data to produce comparable, empirical data outputs that lend themselves to data discovery and provenance. These issues are addressed by a novel, semi-automatic ontology-based classification method that uses machine learning algorithms and Web Ontology Language (OWL) ontologies that yields traceable, interoperable and observation-based classification outputs. The method was tested on European Union Nature Information System (EUNIS) grasslands in Rheinland-Palatinate, Germany. The developed methodology is a first step in developing observation-based ontologies in the field of nature conservation. The tests show promising results for the determination of the grassland indicators wetness and alkalinity with an overall accuracy of 85% for alkalinity and 76% for wetness.
High frequency testing of rubber mounts.
Vahdati, Nader; Saunders, L Ken Lauderbaugh
2002-04-01
Rubber and fluid-filled rubber engine mounts are commonly used in automotive and aerospace applications to provide reduced cabin noise and vibration, and/or motion accommodations. In certain applications, the rubber mount may operate at frequencies as high as 5000 Hz. Therefore, dynamic stiffness of the mount needs to be known in this frequency range. Commercial high frequency test machines are practically nonexistent, and the best high frequency test machine on the market is only capable of frequencies as high as 1000 Hz. In this paper, a high frequency test machine is described that allows test engineers to study the high frequency performance of rubber mounts at frequencies up to 5000 Hz.
Metal release from coffee machines and electric kettles.
Müller, Frederic D; Hackethal, Christin; Schmidt, Roman; Kappenstein, Oliver; Pfaff, Karla; Luch, Andreas
2015-01-01
The release of elemental ions from 8 coffee machines and 11 electric kettles into food simulants was investigated. Three different types of coffee machines were tested: portafilter espresso machines, pod machines and capsule machines. All machines were tested subsequently on 3 days before and on 3 days after decalcification. Decalcification of the machines was performed with agents according to procedures as specified in the respective manufacturer's manuals. The electric kettles showed only a low release of the elements analysed. For the coffee machines decreasing concentrations of elements were found from the first to the last sample taken in the course of 1 day. Metal release on consecutive days showed a decreasing trend as well. After decalcification a large increase in the amounts of elements released was encountered. In addition, the different machine types investigated clearly differed in their extent of element release. By far the highest leaching, both quantitatively and qualitatively, was found for the portafilter machines. With these products releases of Pb, Ni, Mn, Cr and Zn were in the range and beyond the release limits as proposed by the Council of Europe. Therefore, a careful rinsing routine, especially after decalcification, is recommended for these machines. The comparably lower extent of release of one particular portafilter machine demonstrates that metal release at levels above the threshold that triggers health concerns are technically avoidable.
An optical motion measuring system for laterally oscillated fatigue tests
NASA Technical Reports Server (NTRS)
Tripp, John S.; Tcheng, Ping; Murri, Gretchen B.; Sharpe, Scott
1993-01-01
This paper describes an optical system developed for materials testing laboratories at NASA Langley Research Center (LaRC) for high resolution monitoring of the transverse displacement and angular rotation of a test specimen installed in an axial-tension bending machine (ATB) during fatigue tests. It consists of a small laser, optics, a motorized mirror, three photodiodes, electronic detection and counting circuits, a data acquisition system, and a personal computer. A 3-inch by 5-inch rectangular plate attached to the upper grip of the test machine serves as a target base for the optical system. The personal computer automates the fatigue test procedure, controls data acquisition, performs data reduction, and provides user displays. The data acquisition system also monitors signals from up to 16 strain gages mounted on the test specimen. The motion measuring system is designed to continuously monitor and correlate the amplitude of the oscillatory motion with the strain gage signals in order to detect the onset of failure of the composite test specimen. A prototype system has been developed and tested which exceeds the design specifications of +/- 0.01 inch displacement accuracy, and +/- 0.25 deg angular accuracy at a sampling rate of 100 samples per second.
1989-04-20
International Business Machines Corporation, IBM Development System. for the Ada Language AIX/RT Ada Compiler, Version 1.1.1, Wright-Patterson APB...Certificate Number: 890420V1.10066 International Business Machines Corporation IBM Development System for the Ada Language AIX/RT Ada Compiler, Version 1.1.1...TEST INFORMATION The compiler was tested using command scripts provided by International Business Machines Corporation and reviewed by the validation
Automatic welding detection by an intelligent tool pipe inspection
NASA Astrophysics Data System (ADS)
Arizmendi, C. J.; Garcia, W. L.; Quintero, M. A.
2015-07-01
This work provide a model based on machine learning techniques in welds recognition, based on signals obtained through in-line inspection tool called “smart pig” in Oil and Gas pipelines. The model uses a signal noise reduction phase by means of pre-processing algorithms and attribute-selection techniques. The noise reduction techniques were selected after a literature review and testing with survey data. Subsequently, the model was trained using recognition and classification algorithms, specifically artificial neural networks and support vector machines. Finally, the trained model was validated with different data sets and the performance was measured with cross validation and ROC analysis. The results show that is possible to identify welding automatically with an efficiency between 90 and 98 percent.
Influence of the Cutting Conditions in the Surface Finishing of Turned Pieces of Titanium Alloys
NASA Astrophysics Data System (ADS)
Huerta, M.; Arroyo, P.; Sánchez Carrilero, M.; Álvarez, M.; Salguero, J.; Marcos, M.
2009-11-01
Titanium is a material that, despite its high cost, is increasingly being introduced in the aerospace industry due to both, its weight, its mechanical properties and its corrosion potential, very close to that of carbon fiber based composite material. This fact allows using Ti to form Fiber Metal Laminates Machining operations are usually used in the manufacturing processes of Ti based aerospace structural elements. These elements must be machined under high surface finish requirements. Previous works have shown the relationship between the surface roughness and the tool changes in the first instants of turning processes. From these results, new tests have been performed in an aeronautical factory, in order to analyse roughness in final pieces.
Multivariate models for prediction of human skin sensitization hazard.
Strickland, Judy; Zang, Qingda; Paris, Michael; Lehmann, David M; Allen, David; Choksi, Neepa; Matheson, Joanna; Jacobs, Abigail; Casey, Warren; Kleinstreuer, Nicole
2017-03-01
One of the Interagency Coordinating Committee on the Validation of Alternative Method's (ICCVAM) top priorities is the development and evaluation of non-animal approaches to identify potential skin sensitizers. The complexity of biological events necessary to produce skin sensitization suggests that no single alternative method will replace the currently accepted animal tests. ICCVAM is evaluating an integrated approach to testing and assessment based on the adverse outcome pathway for skin sensitization that uses machine learning approaches to predict human skin sensitization hazard. We combined data from three in chemico or in vitro assays - the direct peptide reactivity assay (DPRA), human cell line activation test (h-CLAT) and KeratinoSens™ assay - six physicochemical properties and an in silico read-across prediction of skin sensitization hazard into 12 variable groups. The variable groups were evaluated using two machine learning approaches, logistic regression and support vector machine, to predict human skin sensitization hazard. Models were trained on 72 substances and tested on an external set of 24 substances. The six models (three logistic regression and three support vector machine) with the highest accuracy (92%) used: (1) DPRA, h-CLAT and read-across; (2) DPRA, h-CLAT, read-across and KeratinoSens; or (3) DPRA, h-CLAT, read-across, KeratinoSens and log P. The models performed better at predicting human skin sensitization hazard than the murine local lymph node assay (accuracy 88%), any of the alternative methods alone (accuracy 63-79%) or test batteries combining data from the individual methods (accuracy 75%). These results suggest that computational methods are promising tools to identify effectively the potential human skin sensitizers without animal testing. Published 2016. This article has been contributed to by US Government employees and their work is in the public domain in the USA. Published 2016. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
Three-Dimensional Cellular Structures Enhanced By Shape Memory Alloys
NASA Technical Reports Server (NTRS)
Nathal, Michael V.; Krause, David L.; Wilmoth, Nathan G.; Bednarcyk, Brett A.; Baker, Eric H.
2014-01-01
This research effort explored lightweight structural concepts married with advanced smart materials to achieve a wide variety of benefits in airframe and engine components. Lattice block structures were cast from an aerospace structural titanium alloy Ti-6Al-4V and a NiTi shape memory alloy (SMA), and preliminary properties have been measured. A finite element-based modeling approach that can rapidly and accurately capture the deformation response of lattice architectures was developed. The Ti-6-4 and SMA material behavior was calibrated via experimental tests of ligaments machined from the lattice. Benchmark testing of complete lattice structures verified the main aspects of the model as well as demonstrated the advantages of the lattice structure. Shape memory behavior of a sample machined from a lattice block was also demonstrated.
Control system health test system and method
Hoff, Brian D.; Johnson, Kris W.; Akasam, Sivaprasad; Baker, Thomas M.
2006-08-15
A method is provided for testing multiple elements of a work machine, including a control system, a component, a sub-component that is influenced by operations of the component, and a sensor that monitors a characteristic of the sub-component. In one embodiment, the method is performed by the control system and includes sending a command to the component to adjust a first parameter associated with an operation of the component. Also, the method includes detecting a sensor signal from the sensor reflecting a second parameter associated with a characteristic of the sub-component and determining whether the second parameter is acceptable based on the command. The control system may diagnose at least one of the elements of the work machine when the second parameter of the sub-component is not acceptable.
Machining of Aircraft Titanium with Abrasive-Waterjets for Fatigue Critical Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, H. T.; Hovanski, Yuri; Dahl, Michael E.
2010-10-04
Laboratory tests were conducted to determine the fatigue performance of AWJ-machined aircraft titanium. Dog-bone specimens machined with AWJs were prepared and tested with and without sanding and dry-grit blasting with Al2O3 as secondary processes. The secondary processes were applied to remove the visual appearance of AWJ-generated striations and to clean up the garnet embedment. The fatigue performance of AWJ-machined specimens was compared with baseline specimens machined with CNC milling. Fatigue test results not only confirmed the findings of the aluminum dog-bone specimens but also further enhance the fatigue performance. In addition, titanium is known to be notoriously difficult to cutmore » with contact tools while AWJs cut it 34% faster than stainless steel. AWJ cutting and dry-grit blasting are shown to be a preferred combination for processing aircraft titanium that is fatigue critical.« less
Spindle Thermal Error Optimization Modeling of a Five-axis Machine Tool
NASA Astrophysics Data System (ADS)
Guo, Qianjian; Fan, Shuo; Xu, Rufeng; Cheng, Xiang; Zhao, Guoyong; Yang, Jianguo
2017-05-01
Aiming at the problem of low machining accuracy and uncontrollable thermal errors of NC machine tools, spindle thermal error measurement, modeling and compensation of a two turntable five-axis machine tool are researched. Measurement experiment of heat sources and thermal errors are carried out, and GRA(grey relational analysis) method is introduced into the selection of temperature variables used for thermal error modeling. In order to analyze the influence of different heat sources on spindle thermal errors, an ANN (artificial neural network) model is presented, and ABC(artificial bee colony) algorithm is introduced to train the link weights of ANN, a new ABC-NN(Artificial bee colony-based neural network) modeling method is proposed and used in the prediction of spindle thermal errors. In order to test the prediction performance of ABC-NN model, an experiment system is developed, the prediction results of LSR (least squares regression), ANN and ABC-NN are compared with the measurement results of spindle thermal errors. Experiment results show that the prediction accuracy of ABC-NN model is higher than LSR and ANN, and the residual error is smaller than 3 μm, the new modeling method is feasible. The proposed research provides instruction to compensate thermal errors and improve machining accuracy of NC machine tools.
Parametric effects of turning Ti-6Al-4V alloys with aluminum oxide nanolubricants with SDBS
NASA Astrophysics Data System (ADS)
Ali, M. A. M.; Azmi, A. I.; Khalil, A. N. M.
2017-09-01
Applications of nanolubricants have been claimed to improve machinability of aerospace metals due to reduction of friction as a results of the rolling action of billions of nanoparticles at the tool-chip interface. In addition, the need to pursue for an eco-friendly machining has pushed researchers toward implementing alternative lubrication methods through minimal quantity lubrication (MQL). However, the gap in the current literature regarding the performance of nanolubricants via MQL has restricted the widespread use of this lubricant and technique in industries. The present work aims to understand the parametric effects of nanoparticles concentration, cutting speed, feed rate and nozzle angle during machining of titanium alloy, Ti-6AL-4V. Multiple performance of machinability outputs such as surface roughness, tool wear and power consumption were simultaneously determined via Taguchi orthogonal array and grey relational analyses. Prior to machining tests, the nanolubricants stabilities were investigated through the addition of surfactant; sodium dodecyl benzene sulfonate (SDBS). The results clearly indicated that inclusion of SDBS surfactant managed to reduce agglomeration in the base lubricant. Meanwhile, grey relational analyses revealed that the combination of 0.6 % nanoparticles concentration, cutting speed of 85 m/min, feed rate of 0.1 mm/rev and nozzle angle of 60o as desired setting for all the three machining outputs.
Low cycle fatigue properties of MAR-M-246 Hf in hydrogen. [a cast nickel-base alloy
NASA Technical Reports Server (NTRS)
Warren, J. R.
1979-01-01
The transverse, low cycle fatigue properties were determined for directionally solidified and single crystal samples of a cast nickel-base alloy proposed for use in space propulsion systems in pure or partial high pressure hydrogen environments at elevated temperatures. The test temperature was 760 C (1400F) and the pressure of the gaseous hydrogen was 34.5 MPa (5000 psig). Low cycle fatique life was established by strain controlled testing using smooth specimens and a servohydraulic closed-loop test machine modified with a high pressure environmental chamber. Results and conclusions are discussed.
Improved Tensile Test for Ceramics
NASA Technical Reports Server (NTRS)
Osiecki, R. A.
1982-01-01
For almost-nondestructive tensile testing of ceramics, steel rod is bonded to sample of ceramic. Assembly is then pulled apart in conventional tensile-test machine. Test destroys only shallow surface layer which can be machined away making specimen ready for other uses. Method should be useful as manufacturing inspection procedure for low-strength brittle materials.
Usage of CT data in biomechanical research
NASA Astrophysics Data System (ADS)
Safonov, Roman A.; Golyadkina, Anastasiya A.; Kirillova, Irina V.; Kossovich, Leonid Y.
2017-02-01
Object of study: The investigation is focused on development of personalized medicine. The determination of mechanical properties of bone tissues based on in vivo data was considered. Methods: CT, MRI, natural experiments on versatile test machine Instron 5944, numerical experiments using Python programs. Results: The medical diagnostics methods, which allows determination of mechanical properties of bone tissues based on in vivo data. The series of experiments to define the values of mechanical parameters of bone tissues. For one and the same sample, computed tomography (CT), magnetic resonance imaging (MRI), ultrasonic investigations and mechanical experiments on single-column test machine Instron 5944 were carried out. The computer program for comparison of CT and MRI images was created. The grayscale values in the same points of the samples were determined on both CT and MRI images. The Haunsfield grayscale values were used to determine rigidity (Young module) and tensile strength of the samples. The obtained data was compared to natural experiments results for verification.
7. Credit USAF, 1945. Original housed in the Muroc Flight ...
7. Credit USAF, 1945. Original housed in the Muroc Flight Test Base, Unit History, 1 September 1942 30 June 1945. Alfred F. Simpson Historical Research Agency. United States Air Force. Maxwell AFB, Alabama. Interior view in shop wing on south side of hangar. Original caption reads "7 Sept. 1945, BH-10, Hangar No. 4 4505 Machine Shop." - Edwards Air Force Base, North Base, Hangar, End of North Base Road, Boron, Kern County, CA
Machine learning methods for credibility assessment of interviewees based on posturographic data.
Saripalle, Sashi K; Vemulapalli, Spandana; King, Gregory W; Burgoon, Judee K; Derakhshani, Reza
2015-01-01
This paper discusses the advantages of using posturographic signals from force plates for non-invasive credibility assessment. The contributions of our work are two fold: first, the proposed method is highly efficient and non invasive. Second, feasibility for creating an autonomous credibility assessment system using machine-learning algorithms is studied. This study employs an interview paradigm that includes subjects responding with truthful and deceptive intent while their center of pressure (COP) signal is being recorded. Classification models utilizing sets of COP features for deceptive responses are derived and best accuracy of 93.5% for test interval is reported.
NASA Astrophysics Data System (ADS)
Adhi Pradana, Wisnu; Adiwijaya; Novia Wisesty, Untari
2018-03-01
Support Vector Machine or commonly called SVM is one method that can be used to process the classification of a data. SVM classifies data from 2 different classes with hyperplane. In this study, the system was built using SVM to develop Arabic Speech Recognition. In the development of the system, there are 2 kinds of speakers that have been tested that is dependent speakers and independent speakers. The results from this system is an accuracy of 85.32% for speaker dependent and 61.16% for independent speakers.
ERIC Educational Resources Information Center
Mississippi Research and Curriculum Unit for Vocational and Technical Education, State College.
This document, which reflects Mississippi's statutory requirement that instructional programs be based on core curricula and performance-based assessment, contains outlines of the instructional units required in local instructional management plans and daily lesson plans for machine tool operation/machine shop I and II. Presented first are a…
Garcia-Chimeno, Yolanda; Garcia-Zapirain, Begonya; Gomez-Beldarrain, Marian; Fernandez-Ruanova, Begonya; Garcia-Monco, Juan Carlos
2017-04-13
Feature selection methods are commonly used to identify subsets of relevant features to facilitate the construction of models for classification, yet little is known about how feature selection methods perform in diffusion tensor images (DTIs). In this study, feature selection and machine learning classification methods were tested for the purpose of automating diagnosis of migraines using both DTIs and questionnaire answers related to emotion and cognition - factors that influence of pain perceptions. We select 52 adult subjects for the study divided into three groups: control group (15), subjects with sporadic migraine (19) and subjects with chronic migraine and medication overuse (18). These subjects underwent magnetic resonance with diffusion tensor to see white matter pathway integrity of the regions of interest involved in pain and emotion. The tests also gather data about pathology. The DTI images and test results were then introduced into feature selection algorithms (Gradient Tree Boosting, L1-based, Random Forest and Univariate) to reduce features of the first dataset and classification algorithms (SVM (Support Vector Machine), Boosting (Adaboost) and Naive Bayes) to perform a classification of migraine group. Moreover we implement a committee method to improve the classification accuracy based on feature selection algorithms. When classifying the migraine group, the greatest improvements in accuracy were made using the proposed committee-based feature selection method. Using this approach, the accuracy of classification into three types improved from 67 to 93% when using the Naive Bayes classifier, from 90 to 95% with the support vector machine classifier, 93 to 94% in boosting. The features that were determined to be most useful for classification included are related with the pain, analgesics and left uncinate brain (connected with the pain and emotions). The proposed feature selection committee method improved the performance of migraine diagnosis classifiers compared to individual feature selection methods, producing a robust system that achieved over 90% accuracy in all classifiers. The results suggest that the proposed methods can be used to support specialists in the classification of migraines in patients undergoing magnetic resonance imaging.
Retinal hemorrhage detection by rule-based and machine learning approach.
Di Xiao; Shuang Yu; Vignarajan, Janardhan; Dong An; Mei-Ling Tay-Kearney; Kanagasingam, Yogi
2017-07-01
Robust detection of hemorrhages (HMs) in color fundus image is important in an automatic diabetic retinopathy grading system. Detection of the hemorrhages that are close to or connected with retinal blood vessels was found to be challenge. However, most methods didn't put research on it, even some of them mentioned this issue. In this paper, we proposed a novel hemorrhage detection method based on rule-based and machine learning methods. We focused on the improvement of detection of the hemorrhages that are close to or connected with retinal blood vessels, besides detecting the independent hemorrhage regions. A preliminary test for detecting HM presence was conducted on the images from two databases. We achieved sensitivity and specificity of 93.3% and 88% as well as 91.9% and 85.6% on the two datasets.
NASA Astrophysics Data System (ADS)
Kryuchkov, B. I.; Usov, V. M.; Chertopolokhov, V. A.; Ronzhin, A. L.; Karpov, A. A.
2017-05-01
Extravehicular activity (EVA) on the lunar surface, necessary for the future exploration of the Moon, involves extensive use of robots. One of the factors of safe EVA is a proper interaction between cosmonauts and robots in extreme environments. This requires a simple and natural man-machine interface, e.g. multimodal contactless interface based on recognition of gestures and cosmonaut's poses. When travelling in the "Follow Me" mode (master/slave), a robot uses onboard tools for tracking cosmonaut's position and movements, and on the basis of these data builds its itinerary. The interaction in the system "cosmonaut-robot" on the lunar surface is significantly different from that on the Earth surface. For example, a man, dressed in a space suit, has limited fine motor skills. In addition, EVA is quite tiring for the cosmonauts, and a tired human being less accurately performs movements and often makes mistakes. All this leads to new requirements for the convenient use of the man-machine interface designed for EVA. To improve the reliability and stability of human-robot communication it is necessary to provide options for duplicating commands at the task stages and gesture recognition. New tools and techniques for space missions must be examined at the first stage of works in laboratory conditions, and then in field tests (proof tests at the site of application). The article analyzes the methods of detection and tracking of movements and gesture recognition of the cosmonaut during EVA, which can be used for the design of human-machine interface. A scenario for testing these methods by constructing a virtual environment simulating EVA on the lunar surface is proposed. Simulation involves environment visualization and modeling of the use of the "vision" of the robot to track a moving cosmonaut dressed in a spacesuit.
ERIC Educational Resources Information Center
Lubans, John, Jr.; And Others
Computer-based circulation systems, it is widely believed, can be utilized to provide data for library use studies. The study described in this report involves using such a data base to analyze aspects of library use and non-use and types of users. Another major objective of this research was the testing of machine-readable circulation data…
NASA Astrophysics Data System (ADS)
Squiers, John J.; Li, Weizhi; King, Darlene R.; Mo, Weirong; Zhang, Xu; Lu, Yang; Sellke, Eric W.; Fan, Wensheng; DiMaio, J. Michael; Thatcher, Jeffrey E.
2016-03-01
The clinical judgment of expert burn surgeons is currently the standard on which diagnostic and therapeutic decisionmaking regarding burn injuries is based. Multispectral imaging (MSI) has the potential to increase the accuracy of burn depth assessment and the intraoperative identification of viable wound bed during surgical debridement of burn injuries. A highly accurate classification model must be developed using machine-learning techniques in order to translate MSI data into clinically-relevant information. An animal burn model was developed to build an MSI training database and to study the burn tissue classification ability of several models trained via common machine-learning algorithms. The algorithms tested, from least to most complex, were: K-nearest neighbors (KNN), decision tree (DT), linear discriminant analysis (LDA), weighted linear discriminant analysis (W-LDA), quadratic discriminant analysis (QDA), ensemble linear discriminant analysis (EN-LDA), ensemble K-nearest neighbors (EN-KNN), and ensemble decision tree (EN-DT). After the ground-truth database of six tissue types (healthy skin, wound bed, blood, hyperemia, partial injury, full injury) was generated by histopathological analysis, we used 10-fold cross validation to compare the algorithms' performances based on their accuracies in classifying data against the ground truth, and each algorithm was tested 100 times. The mean test accuracy of the algorithms were KNN 68.3%, DT 61.5%, LDA 70.5%, W-LDA 68.1%, QDA 68.9%, EN-LDA 56.8%, EN-KNN 49.7%, and EN-DT 36.5%. LDA had the highest test accuracy, reflecting the bias-variance tradeoff over the range of complexities inherent to the algorithms tested. Several algorithms were able to match the current standard in burn tissue classification, the clinical judgment of expert burn surgeons. These results will guide further development of an MSI burn tissue classification system. Given that there are few surgeons and facilities specializing in burn care, this technology may improve the standard of burn care for patients without access to specialized facilities.
The research on construction and application of machining process knowledge base
NASA Astrophysics Data System (ADS)
Zhao, Tan; Qiao, Lihong; Qie, Yifan; Guo, Kai
2018-03-01
In order to realize the application of knowledge in machining process design, from the perspective of knowledge in the application of computer aided process planning(CAPP), a hierarchical structure of knowledge classification is established according to the characteristics of mechanical engineering field. The expression of machining process knowledge is structured by means of production rules and the object-oriented methods. Three kinds of knowledge base models are constructed according to the representation of machining process knowledge. In this paper, the definition and classification of machining process knowledge, knowledge model, and the application flow of the process design based on the knowledge base are given, and the main steps of the design decision of the machine tool are carried out as an application by using the knowledge base.
Investigation of approximate models of experimental temperature characteristics of machines
NASA Astrophysics Data System (ADS)
Parfenov, I. V.; Polyakov, A. N.
2018-05-01
This work is devoted to the investigation of various approaches to the approximation of experimental data and the creation of simulation mathematical models of thermal processes in machines with the aim of finding ways to reduce the time of their field tests and reducing the temperature error of the treatments. The main methods of research which the authors used in this work are: the full-scale thermal testing of machines; realization of various approaches at approximation of experimental temperature characteristics of machine tools by polynomial models; analysis and evaluation of modelling results (model quality) of the temperature characteristics of machines and their derivatives up to the third order in time. As a result of the performed researches, rational methods, type, parameters and complexity of simulation mathematical models of thermal processes in machine tools are proposed.
DOT National Transportation Integrated Search
1997-11-01
Various agencies have used the Corps of Engineers gyratory testing machine (GTM) to design and test asphalt mixes. Materials properties such as shear strength and strain are measured during the compaction process. However, a compaction process duplic...
1990-09-12
electronics reading to the next. To test this hypothesis and the suitability of EBL to acquiring schemas, I have implemented an automated reader/learner as...used. For example, testing the utility of a kidnapping schema using several readings about kidnapping can only go so far toward establishing the...the cost of carrying the new rules while processing unrelated material will be underestimated. The present research tests the utility of new schemas in
Test pattern generation for ILA sequential circuits
NASA Technical Reports Server (NTRS)
Feng, YU; Frenzel, James F.; Maki, Gary K.
1993-01-01
An efficient method of generating test patterns for sequential machines implemented using one-dimensional, unilateral, iterative logic arrays (ILA's) of BTS pass transistor networks is presented. Based on a transistor level fault model, the method affords a unique opportunity for real-time fault detection with improved fault coverage. The resulting test sets are shown to be equivalent to those obtained using conventional gate level models, thus eliminating the need for additional test patterns. The proposed method advances the simplicity and ease of the test pattern generation for a special class of sequential circuitry.
Evaluation of an Integrated Multi-Task Machine Learning System with Humans in the Loop
2007-01-01
machine learning components natural language processing, and optimization...was examined with a test explicitly developed to measure the impact of integrated machine learning when used by a human user in a real world setting...study revealed that integrated machine learning does produce a positive impact on overall performance. This paper also discusses how specific machine learning components contributed to human-system
NASA Astrophysics Data System (ADS)
Bakhmutov, S. V.; Ivanov, V. G.; Karpukhin, K. E.; Umnitsyn, A. A.
2018-02-01
The paper considers the Anti-lock Braking System (ABS) operation algorithm, which enables the implementation of hybrid braking, i.e. the braking process combining friction brake mechanisms and e-machine (electric machine), which operates in the energy recovery mode. The provided materials focus only on the rectilinear motion of the vehicle. That the ABS task consists in the maintenance of the target wheel slip ratio, which depends on the tyre-road adhesion coefficient. The tyre-road adhesion coefficient was defined based on the vehicle deceleration. In the course of calculated studies, the following operation algorithm of hybrid braking was determined. At adhesion coefficient ≤0.1, driving axle braking occurs only due to the e-machine operating in the energy recovery mode. In other cases, depending on adhesion coefficient, the e-machine provides the brake torque, which changes from 35 to 100% of the maximum available brake torque. Virtual tests showed that values of the wheel slip ratio are close to the required ones. Thus, this algorithm makes it possible to implement hybrid braking by means of the two sources creating the brake torque.
Proposed algorithm to improve job shop production scheduling using ant colony optimization method
NASA Astrophysics Data System (ADS)
Pakpahan, Eka KA; Kristina, Sonna; Setiawan, Ari
2017-12-01
This paper deals with the determination of job shop production schedule on an automatic environment. On this particular environment, machines and material handling system are integrated and controlled by a computer center where schedule were created and then used to dictate the movement of parts and the operations at each machine. This setting is usually designed to have an unmanned production process for a specified interval time. We consider here parts with various operations requirement. Each operation requires specific cutting tools. These parts are to be scheduled on machines each having identical capability, meaning that each machine is equipped with a similar set of cutting tools therefore is capable of processing any operation. The availability of a particular machine to process a particular operation is determined by the remaining life time of its cutting tools. We proposed an algorithm based on the ant colony optimization method and embedded them on matlab software to generate production schedule which minimize the total processing time of the parts (makespan). We test the algorithm on data provided by real industry and the process shows a very short computation time. This contributes a lot to the flexibility and timelines targeted on an automatic environment.
NASA Astrophysics Data System (ADS)
Guo, Long; Zhang, Xingzhong
2018-03-01
Mechanical and creep properties of Q345c continuous casting slab subjected to uniaxial tensile tests at high temperature were considered in this paper. The minimum creep strain rate and creep rupture life equations whose parameters are calculated by inverse-estimation using the regression analysis were derived based on experimental data. The minimum creep strain rate under constant stress increases with the increase of the temperature from 1000 °C to 1200 °C. A new casting machine curve with the aim of fully using high-temperature creep behaviour is proposed in this paper. The basic arc segment is cancelled in the new curve so that length of the straightening area can be extended and time of creep behaviour can be increased significantly. For the new casting machine curve, the maximum straightening strain rate at the slab surface is less than the minimum creep strain rate. So slab straightening deformation based on the steel creep behaviour at high temperature can be carried out in the process of Q345c steel continuous casting. The effect of creep property at high temperature on slab straightening deformation is positive. It is helpful for the design of new casting machine and improvement of old casting machine.
Electrical test prediction using hybrid metrology and machine learning
NASA Astrophysics Data System (ADS)
Breton, Mary; Chao, Robin; Muthinti, Gangadhara Raja; de la Peña, Abraham A.; Simon, Jacques; Cepler, Aron J.; Sendelbach, Matthew; Gaudiello, John; Emans, Susan; Shifrin, Michael; Etzioni, Yoav; Urenski, Ronen; Lee, Wei Ti
2017-03-01
Electrical test measurement in the back-end of line (BEOL) is crucial for wafer and die sorting as well as comparing intended process splits. Any in-line, nondestructive technique in the process flow to accurately predict these measurements can significantly improve mean-time-to-detect (MTTD) of defects and improve cycle times for yield and process learning. Measuring after BEOL metallization is commonly done for process control and learning, particularly with scatterometry (also called OCD (Optical Critical Dimension)), which can solve for multiple profile parameters such as metal line height or sidewall angle and does so within patterned regions. This gives scatterometry an advantage over inline microscopy-based techniques, which provide top-down information, since such techniques can be insensitive to sidewall variations hidden under the metal fill of the trench. But when faced with correlation to electrical test measurements that are specific to the BEOL processing, both techniques face the additional challenge of sampling. Microscopy-based techniques are sampling-limited by their small probe size, while scatterometry is traditionally limited (for microprocessors) to scribe targets that mimic device ground rules but are not necessarily designed to be electrically testable. A solution to this sampling challenge lies in a fast reference-based machine learning capability that allows for OCD measurement directly of the electrically-testable structures, even when they are not OCD-compatible. By incorporating such direct OCD measurements, correlation to, and therefore prediction of, resistance of BEOL electrical test structures is significantly improved. Improvements in prediction capability for multiple types of in-die electrically-testable device structures is demonstrated. To further improve the quality of the prediction of the electrical resistance measurements, hybrid metrology using the OCD measurements as well as X-ray metrology (XRF) is used. Hybrid metrology is the practice of combining information from multiple sources in order to enable or improve the measurement of one or more critical parameters. Here, the XRF measurements are used to detect subtle changes in barrier layer composition and thickness that can have second-order effects on the electrical resistance of the test structures. By accounting for such effects with the aid of the X-ray-based measurements, further improvement in the OCD correlation to electrical test measurements is achieved. Using both types of solution incorporation of fast reference-based machine learning on nonOCD-compatible test structures, and hybrid metrology combining OCD with XRF technology improvement in BEOL cycle time learning could be accomplished through improved prediction capability.
Gradient boosting machine for modeling the energy consumption of commercial buildings
Touzani, Samir; Granderson, Jessica; Fernandes, Samuel
2017-11-26
Accurate savings estimations are important to promote energy efficiency projects and demonstrate their cost-effectiveness. The increasing presence of advanced metering infrastructure (AMI) in commercial buildings has resulted in a rising availability of high frequency interval data. These data can be used for a variety of energy efficiency applications such as demand response, fault detection and diagnosis, and heating, ventilation, and air conditioning (HVAC) optimization. This large amount of data has also opened the door to the use of advanced statistical learning models, which hold promise for providing accurate building baseline energy consumption predictions, and thus accurate saving estimations. The gradientmore » boosting machine is a powerful machine learning algorithm that is gaining considerable traction in a wide range of data driven applications, such as ecology, computer vision, and biology. In the present work an energy consumption baseline modeling method based on a gradient boosting machine was proposed. To assess the performance of this method, a recently published testing procedure was used on a large dataset of 410 commercial buildings. The model training periods were varied and several prediction accuracy metrics were used to evaluate the model's performance. The results show that using the gradient boosting machine model improved the R-squared prediction accuracy and the CV(RMSE) in more than 80 percent of the cases, when compared to an industry best practice model that is based on piecewise linear regression, and to a random forest algorithm.« less
Gradient boosting machine for modeling the energy consumption of commercial buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Touzani, Samir; Granderson, Jessica; Fernandes, Samuel
Accurate savings estimations are important to promote energy efficiency projects and demonstrate their cost-effectiveness. The increasing presence of advanced metering infrastructure (AMI) in commercial buildings has resulted in a rising availability of high frequency interval data. These data can be used for a variety of energy efficiency applications such as demand response, fault detection and diagnosis, and heating, ventilation, and air conditioning (HVAC) optimization. This large amount of data has also opened the door to the use of advanced statistical learning models, which hold promise for providing accurate building baseline energy consumption predictions, and thus accurate saving estimations. The gradientmore » boosting machine is a powerful machine learning algorithm that is gaining considerable traction in a wide range of data driven applications, such as ecology, computer vision, and biology. In the present work an energy consumption baseline modeling method based on a gradient boosting machine was proposed. To assess the performance of this method, a recently published testing procedure was used on a large dataset of 410 commercial buildings. The model training periods were varied and several prediction accuracy metrics were used to evaluate the model's performance. The results show that using the gradient boosting machine model improved the R-squared prediction accuracy and the CV(RMSE) in more than 80 percent of the cases, when compared to an industry best practice model that is based on piecewise linear regression, and to a random forest algorithm.« less
Learning Machine Learning: A Case Study
ERIC Educational Resources Information Center
Lavesson, N.
2010-01-01
This correspondence reports on a case study conducted in the Master's-level Machine Learning (ML) course at Blekinge Institute of Technology, Sweden. The students participated in a self-assessment test and a diagnostic test of prerequisite subjects, and their results on these tests are correlated with their achievement of the course's learning…
29 CFR 1919.15 - Periodic tests, examinations and inspections.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Periodic tests, examinations and inspections. After being taken into use, every hoisting machine, all fixed... 29 Labor 7 2013-07-01 2013-07-01 false Periodic tests, examinations and inspections. 1919.15... the attachments, as a unit; and cranes and other hoisting machines with their accessory gear, as a...
29 CFR 1919.15 - Periodic tests, examinations and inspections.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Periodic tests, examinations and inspections. After being taken into use, every hoisting machine, all fixed... 29 Labor 7 2010-07-01 2010-07-01 false Periodic tests, examinations and inspections. 1919.15... the attachments, as a unit; and cranes and other hoisting machines with their accessory gear, as a...
29 CFR 1919.15 - Periodic tests, examinations and inspections.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Periodic tests, examinations and inspections. After being taken into use, every hoisting machine, all fixed... 29 Labor 7 2011-07-01 2011-07-01 false Periodic tests, examinations and inspections. 1919.15... the attachments, as a unit; and cranes and other hoisting machines with their accessory gear, as a...
29 CFR 1919.15 - Periodic tests, examinations and inspections.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Periodic tests, examinations and inspections. After being taken into use, every hoisting machine, all fixed... 29 Labor 7 2014-07-01 2014-07-01 false Periodic tests, examinations and inspections. 1919.15... the attachments, as a unit; and cranes and other hoisting machines with their accessory gear, as a...
29 CFR 1919.15 - Periodic tests, examinations and inspections.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Periodic tests, examinations and inspections. After being taken into use, every hoisting machine, all fixed... 29 Labor 7 2012-07-01 2012-07-01 false Periodic tests, examinations and inspections. 1919.15... the attachments, as a unit; and cranes and other hoisting machines with their accessory gear, as a...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vevera, Bradley J; Hyres, James W; McClintock, David A
2014-01-01
Irradiated AISI 316L stainless steel disks were removed from the Spallation Neutron Source (SNS) for post-irradiation examination (PIE) to assess mechanical property changes due to radiation damage and erosion of the target vessel. Topics reviewed include high-resolution photography of the disk specimens, cleaning to remove mercury (Hg) residue and surface oxides, profile mapping of cavitation pits using high frequency ultrasonic testing (UT), high-resolution surface replication, and machining of test specimens using wire electrical discharge machining (EDM), tensile testing, Rockwell Superficial hardness testing, Vickers microhardness testing, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). The effectiveness of the cleaning proceduremore » was evident in the pre- and post-cleaning photography and permitted accurate placement of the test specimens on the disks. Due to the limited amount of material available and the unique geometry of the disks, machine fixturing and test specimen design were critical aspects of this work. Multiple designs were considered and refined during mock-up test runs on unirradiated disks. The techniques used to successfully machine and test the various specimens will be presented along with a summary of important findings from the laboratory examinations.« less
[Machine Learning-based Prediction of Seizure-inducing Action as an Adverse Drug Effect].
Gao, Mengxuan; Sato, Motoshige; Ikegaya, Yuji
2018-01-01
During the preclinical research period of drug development, animal testing is widely used to help screen out a drug's dangerous side effects. However, it remains difficult to predict side effects within the central nervous system. Here, we introduce a machine learning-based in vitro system designed to detect seizure-inducing side effects before clinical trial. We recorded local field potentials from the CA1 alveus in acute mouse neocortico-hippocampal slices that were bath-perfused with each of 14 different drugs, and at 5 different concentrations of each drug. For each of these experimental conditions, we collected seizure-like neuronal activity and merged their waveforms as one graphic image, which was further converted into a feature vector using Caffe, an open framework for deep learning. In the space of the first two principal components, the support vector machine completely separated the vectors (i.e., doses of individual drugs) that induced seizure-like events, and identified diphenhydramine, enoxacin, strychnine and theophylline as "seizure-inducing" drugs, which have indeed been reported to induce seizures in clinical situations. Thus, this artificial intelligence-based classification may provide a new platform to pre-clinically detect seizure-inducing side effects of drugs.
A Cooperative Approach to Virtual Machine Based Fault Injection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naughton III, Thomas J; Engelmann, Christian; Vallee, Geoffroy R
Resilience investigations often employ fault injection (FI) tools to study the effects of simulated errors on a target system. It is important to keep the target system under test (SUT) isolated from the controlling environment in order to maintain control of the experiement. Virtual machines (VMs) have been used to aid these investigations due to the strong isolation properties of system-level virtualization. A key challenge in fault injection tools is to gain proper insight and context about the SUT. In VM-based FI tools, this challenge of target con- text is increased due to the separation between host and guest (VM).more » We discuss an approach to VM-based FI that leverages virtual machine introspection (VMI) methods to gain insight into the target s context running within the VM. The key to this environment is the ability to provide basic information to the FI system that can be used to create a map of the target environment. We describe a proof- of-concept implementation and a demonstration of its use to introduce simulated soft errors into an iterative solver benchmark running in user-space of a guest VM.« less
de Beer, D A H; Nesbitt, F D; Bell, G T; Rapuleng, A
2017-04-01
The Universal Anaesthesia Machine has been developed as a complete anaesthesia workstation for use in low- and middle-income countries, where the provision of safe general anaesthesia is often compromised by unreliable supply of electricity and anaesthetic gases. We performed a functional and clinical assessment of this anaesthetic machine, with particular reference to novel features and functioning in the intended environment. The Universal Anaesthesia Machine was found to be reliable, safe and consistent across a range of tests during targeted functional testing. © 2016 The Association of Anaesthetists of Great Britain and Ireland.
Bozkurt, Selen; Bostanci, Asli; Turhan, Murat
2017-08-11
The goal of this study is to evaluate the results of machine learning methods for the classification of OSA severity of patients with suspected sleep disorder breathing as normal, mild, moderate and severe based on non-polysomnographic variables: 1) clinical data, 2) symptoms and 3) physical examination. In order to produce classification models for OSA severity, five different machine learning methods (Bayesian network, Decision Tree, Random Forest, Neural Networks and Logistic Regression) were trained while relevant variables and their relationships were derived empirically from observed data. Each model was trained and evaluated using 10-fold cross-validation and to evaluate classification performances of all methods, true positive rate (TPR), false positive rate (FPR), Positive Predictive Value (PPV), F measure and Area Under Receiver Operating Characteristics curve (ROC-AUC) were used. Results of 10-fold cross validated tests with different variable settings promisingly indicated that the OSA severity of suspected OSA patients can be classified, using non-polysomnographic features, with 0.71 true positive rate as the highest and, 0.15 false positive rate as the lowest, respectively. Moreover, the test results of different variables settings revealed that the accuracy of the classification models was significantly improved when physical examination variables were added to the model. Study results showed that machine learning methods can be used to estimate the probabilities of no, mild, moderate, and severe obstructive sleep apnea and such approaches may improve accurate initial OSA screening and help referring only the suspected moderate or severe OSA patients to sleep laboratories for the expensive tests.
SU-E-T-473: A Patient-Specific QC Paradigm Based On Trajectory Log Files and DICOM Plan Files
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeMarco, J; McCloskey, S; Low, D
Purpose: To evaluate a remote QC tool for monitoring treatment machine parameters and treatment workflow. Methods: The Varian TrueBeamTM linear accelerator is a digital machine that records machine axis parameters and MLC leaf positions as a function of delivered monitor unit or control point. This information is saved to a binary trajectory log file for every treatment or imaging field in the patient treatment session. A MATLAB analysis routine was developed to parse the trajectory log files for a given patient, compare the expected versus actual machine and MLC positions as well as perform a cross-comparison with the DICOM-RT planmore » file exported from the treatment planning system. The parsing routine sorts the trajectory log files based on the time and date stamp and generates a sequential report file listing treatment parameters and provides a match relative to the DICOM-RT plan file. Results: The trajectory log parsing-routine was compared against a standard record and verify listing for patients undergoing initial IMRT dosimetry verification and weekly and final chart QC. The complete treatment course was independently verified for 10 patients of varying treatment site and a total of 1267 treatment fields were evaluated including pre-treatment imaging fields where applicable. In the context of IMRT plan verification, eight prostate SBRT plans with 4-arcs per plan were evaluated based on expected versus actual machine axis parameters. The average value for the maximum RMS MLC error was 0.067±0.001mm and 0.066±0.002mm for leaf bank A and B respectively. Conclusion: A real-time QC analysis program was tested using trajectory log files and DICOM-RT plan files. The parsing routine is efficient and able to evaluate all relevant machine axis parameters during a patient treatment course including MLC leaf positions and table positions at time of image acquisition and during treatment.« less
Talaminos-Barroso, Alejandro; Estudillo-Valderrama, Miguel A; Roa, Laura M; Reina-Tosina, Javier; Ortega-Ruiz, Francisco
2016-06-01
M2M (Machine-to-Machine) communications represent one of the main pillars of the new paradigm of the Internet of Things (IoT), and is making possible new opportunities for the eHealth business. Nevertheless, the large number of M2M protocols currently available hinders the election of a suitable solution that satisfies the requirements that can demand eHealth applications. In the first place, to develop a tool that provides a benchmarking analysis in order to objectively select among the most relevant M2M protocols for eHealth solutions. In the second place, to validate the tool with a particular use case: the respiratory rehabilitation. A software tool, called Distributed Computing Framework (DFC), has been designed and developed to execute the benchmarking tests and facilitate the deployment in environments with a large number of machines, with independence of the protocol and performance metrics selected. DDS, MQTT, CoAP, JMS, AMQP and XMPP protocols were evaluated considering different specific performance metrics, including CPU usage, memory usage, bandwidth consumption, latency and jitter. The results obtained allowed to validate a case of use: respiratory rehabilitation of chronic obstructive pulmonary disease (COPD) patients in two scenarios with different types of requirement: Home-Based and Ambulatory. The results of the benchmark comparison can guide eHealth developers in the choice of M2M technologies. In this regard, the framework presented is a simple and powerful tool for the deployment of benchmark tests under specific environments and conditions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Design and Development of E3 Antenna Container,
1985-09-03
reinforced with square tubing. The walls and ceiling shall be insulated with expanded polystyrene . TEST LOCATION - This test will be performed at the...ceiling shall be insulated with expanded polystyrene . TEST LOCATION - This test will be performed at the Edgewater Machine & Fabricator’s facility...insulated with expanded polystyrene . TEST LOCATION - This test will be performed at the Edgewater Machine & Fabricator’s facility located at 200 N
Toward FRP-Based Brain-Machine Interfaces—Single-Trial Classification of Fixation-Related Potentials
Finke, Andrea; Essig, Kai; Marchioro, Giuseppe; Ritter, Helge
2016-01-01
The co-registration of eye tracking and electroencephalography provides a holistic measure of ongoing cognitive processes. Recently, fixation-related potentials have been introduced to quantify the neural activity in such bi-modal recordings. Fixation-related potentials are time-locked to fixation onsets, just like event-related potentials are locked to stimulus onsets. Compared to existing electroencephalography-based brain-machine interfaces that depend on visual stimuli, fixation-related potentials have the advantages that they can be used in free, unconstrained viewing conditions and can also be classified on a single-trial level. Thus, fixation-related potentials have the potential to allow for conceptually different brain-machine interfaces that directly interpret cortical activity related to the visual processing of specific objects. However, existing research has investigated fixation-related potentials only with very restricted and highly unnatural stimuli in simple search tasks while participant’s body movements were restricted. We present a study where we relieved many of these restrictions while retaining some control by using a gaze-contingent visual search task. In our study, participants had to find a target object out of 12 complex and everyday objects presented on a screen while the electrical activity of the brain and eye movements were recorded simultaneously. Our results show that our proposed method for the classification of fixation-related potentials can clearly discriminate between fixations on relevant, non-relevant and background areas. Furthermore, we show that our classification approach generalizes not only to different test sets from the same participant, but also across participants. These results promise to open novel avenues for exploiting fixation-related potentials in electroencephalography-based brain-machine interfaces and thus providing a novel means for intuitive human-machine interaction. PMID:26812487
Multivariate Models for Prediction of Human Skin Sensitization Hazard
Strickland, Judy; Zang, Qingda; Paris, Michael; Lehmann, David M.; Allen, David; Choksi, Neepa; Matheson, Joanna; Jacobs, Abigail; Casey, Warren; Kleinstreuer, Nicole
2016-01-01
One of ICCVAM’s top priorities is the development and evaluation of non-animal approaches to identify potential skin sensitizers. The complexity of biological events necessary to produce skin sensitization suggests that no single alternative method will replace the currently accepted animal tests. ICCVAM is evaluating an integrated approach to testing and assessment based on the adverse outcome pathway for skin sensitization that uses machine learning approaches to predict human skin sensitization hazard. We combined data from three in chemico or in vitro assays—the direct peptide reactivity assay (DPRA), human cell line activation test (h-CLAT), and KeratinoSens™ assay—six physicochemical properties, and an in silico read-across prediction of skin sensitization hazard into 12 variable groups. The variable groups were evaluated using two machine learning approaches, logistic regression (LR) and support vector machine (SVM), to predict human skin sensitization hazard. Models were trained on 72 substances and tested on an external set of 24 substances. The six models (three LR and three SVM) with the highest accuracy (92%) used: (1) DPRA, h-CLAT, and read-across; (2) DPRA, h-CLAT, read-across, and KeratinoSens; or (3) DPRA, h-CLAT, read-across, KeratinoSens, and log P. The models performed better at predicting human skin sensitization hazard than the murine local lymph node assay (accuracy = 88%), any of the alternative methods alone (accuracy = 63–79%), or test batteries combining data from the individual methods (accuracy = 75%). These results suggest that computational methods are promising tools to effectively identify potential human skin sensitizers without animal testing. PMID:27480324
2016-01-15
state-of-the-art equipment and to continue to produce excellent graduates in our field. Technical Approach In order to address our current testing ...New Additions • New material testing machine with environmental chamber • New dual-fuel test bed for Haeberle Laboratory • Upgrade existing...Southwark Emery universal test machine • 3D printer with ultra-high surface definition • CFD Workstations Since the inception of this grant, Webb
Detection of cavitation in hydraulic turbines
NASA Astrophysics Data System (ADS)
Escaler, Xavier; Egusquiza, Eduard; Farhat, Mohamed; Avellan, François; Coussirat, Miguel
2006-05-01
An experimental investigation has been carried out in order to evaluate the detection of cavitation in actual hydraulic turbines. The methodology is based on the analysis of structural vibrations, acoustic emissions and hydrodynamic pressures measured in the machine. The proposed techniques have been checked in real prototypes suffering from different types of cavitation. In particular, one Kaplan, two Francis and one Pump-Turbine have been investigated in the field. Additionally, one Francis located in a laboratory has also been tested. First, a brief description of the general features of cavitation phenomenon is given as well as of the main types of cavitation occurring in hydraulic turbines. The work presented here is focused on the most important ones which are the leading edge cavitation due to its erosive power, the bubble cavitation because it affects the machine performance and the draft tube swirl that limits the operation stability. Cavitation detection is based on the previous understanding of the cavity dynamics and its location inside the machine. This knowledge has been gained from flow visualisations and measurements in laboratory devices such as a high-speed cavitation tunnel and a reduced scale turbine test rig. The main techniques are the study of the high frequency spectral content of the signals and of their amplitude demodulation for a given frequency band. Moreover, low frequency spectral content can also be used in certain cases. The results obtained for the various types of cavitation found in the selected machines are presented and discussed in detail in the paper. Conclusions are drawn about the best sensor, measuring location, signal processing and analysis for each type of cavitation, which serve to validate and to improve the detection techniques.
Impact of the HEALTHY Study on Vending Machine Offerings in Middle Schools.
Hartstein, Jill; Cullen, Karen W; Virus, Amy; El Ghormli, Laure; Volpe, Stella L; Staten, Myrlene A; Bridgman, Jessica C; Stadler, Diane D; Gillis, Bonnie; McCormick, Sarah B; Mobley, Connie C
2011-01-01
The purpose of this study is to report the impact of the three-year middle school-based HEALTHY study on intervention school vending machine offerings. There were two goals for the vending machines: serve only dessert/snack foods with 200 kilocalories or less per single serving package, and eliminate 100% fruit juice and beverages with added sugar. Six schools in each of seven cities (Houston, TX, San Antonio, TX, Irvine, CA, Portland, OR, Pittsburg, PA, Philadelphia, PA, and Chapel Hill, NC) were randomized into intervention (n=21 schools) or control (n=21 schools) groups, with three intervention and three control schools per city. All items in vending machine slots were tallied twice in the fall of 2006 for baseline data and twice at the end of the study, in 2009. The percentage of total slots for each food/beverage category was calculated and compared between intervention and control schools at the end of study, using the Pearson chi-square test statistic. At baseline, 15 intervention and 15 control schools had beverage and/or snack vending machines, compared with 11 intervention and 11 control schools at the end of the study. At the end of study, all of the intervention schools with beverage vending machines, but only one out of the nine control schools, met the beverage goal. The snack goal was met by all of the intervention schools and only one of the four control schools with snack vending machines. The HEALTHY study's vending machine beverage and snack goals were successfully achieved in intervention schools, reducing access to less healthy food items outside the school meals program. Although the effect of these changes on student diet, energy balance and growth is unknown, these results suggest that healthier options for snacks can successfully be offered in school vending machines.
Nakai, Yasushi; Takiguchi, Tetsuya; Matsui, Gakuyo; Yamaoka, Noriko; Takada, Satoshi
2017-10-01
Abnormal prosody is often evident in the voice intonations of individuals with autism spectrum disorders. We compared a machine-learning-based voice analysis with human hearing judgments made by 10 speech therapists for classifying children with autism spectrum disorders ( n = 30) and typical development ( n = 51). Using stimuli limited to single-word utterances, machine-learning-based voice analysis was superior to speech therapist judgments. There was a significantly higher true-positive than false-negative rate for machine-learning-based voice analysis but not for speech therapists. Results are discussed in terms of some artificiality of clinician judgments based on single-word utterances, and the objectivity machine-learning-based voice analysis adds to judging abnormal prosody.
Improving diagnostic recognition of primary hyperparathyroidism with machine learning.
Somnay, Yash R; Craven, Mark; McCoy, Kelly L; Carty, Sally E; Wang, Tracy S; Greenberg, Caprice C; Schneider, David F
2017-04-01
Parathyroidectomy offers the only cure for primary hyperparathyroidism, but today only 50% of primary hyperparathyroidism patients are referred for operation, in large part, because the condition is widely under-recognized. The diagnosis of primary hyperparathyroidism can be especially challenging with mild biochemical indices. Machine learning is a collection of methods in which computers build predictive algorithms based on labeled examples. With the aim of facilitating diagnosis, we tested the ability of machine learning to distinguish primary hyperparathyroidism from normal physiology using clinical and laboratory data. This retrospective cohort study used a labeled training set and 10-fold cross-validation to evaluate accuracy of the algorithm. Measures of accuracy included area under the receiver operating characteristic curve, precision (sensitivity), and positive and negative predictive value. Several different algorithms and ensembles of algorithms were tested using the Weka platform. Among 11,830 patients managed operatively at 3 high-volume endocrine surgery programs from March 2001 to August 2013, 6,777 underwent parathyroidectomy for confirmed primary hyperparathyroidism, and 5,053 control patients without primary hyperparathyroidism underwent thyroidectomy. Test-set accuracies for machine learning models were determined using 10-fold cross-validation. Age, sex, and serum levels of preoperative calcium, phosphate, parathyroid hormone, vitamin D, and creatinine were defined as potential predictors of primary hyperparathyroidism. Mild primary hyperparathyroidism was defined as primary hyperparathyroidism with normal preoperative calcium or parathyroid hormone levels. After testing a variety of machine learning algorithms, Bayesian network models proved most accurate, classifying correctly 95.2% of all primary hyperparathyroidism patients (area under receiver operating characteristic = 0.989). Omitting parathyroid hormone from the model did not decrease the accuracy significantly (area under receiver operating characteristic = 0.985). In mild disease cases, however, the Bayesian network model classified correctly 71.1% of patients with normal calcium and 92.1% with normal parathyroid hormone levels preoperatively. Bayesian networking and AdaBoost improved the accuracy of all parathyroid hormone patients to 97.2% cases (area under receiver operating characteristic = 0.994), and 91.9% of primary hyperparathyroidism patients with mild disease. This was significantly improved relative to Bayesian networking alone (P < .0001). Machine learning can diagnose accurately primary hyperparathyroidism without human input even in mild disease. Incorporation of this tool into electronic medical record systems may aid in recognition of this under-diagnosed disorder. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ma, Zhichao; Hu, Leilei; Zhao, Hongwei; Wu, Boda; Peng, Zhenxing; Zhou, Xiaoqin; Zhang, Hongguo; Zhu, Shuai; Xing, Lifeng; Hu, Huang
2010-08-01
The theories and techniques for improving machining accuracy via position control of diamond tool's tip and raising resolution of cutting depth on precise CNC lathes have been extremely focused on. A new piezo-driven ultra-precision machine tool servo system is designed and tested to improve manufacturing accuracy of workpiece. The mathematical model of machine tool servo system is established and the finite element analysis is carried out on parallel plate flexure hinges. The output position of diamond tool's tip driven by the machine tool servo system is tested via a contact capacitive displacement sensor. Proportional, integral, derivative (PID) feedback is also implemented to accommodate and compensate dynamical change owing cutting forces as well as the inherent non-linearity factors of the piezoelectric stack during cutting process. By closed loop feedback controlling strategy, the tracking error is limited to 0.8 μm. Experimental results have shown the proposed machine tool servo system could provide a tool positioning resolution of 12 nm, which is much accurate than the inherent CNC resolution magnitude. The stepped shaft of aluminum specimen with a step increment of cutting depth of 1 μm is tested, and the obtained contour illustrates the displacement command output from controller is accurately and real-time reflected on the machined part.
9. Credit USAF, ca. 1945. Original housed in the Muroc ...
9. Credit USAF, ca. 1945. Original housed in the Muroc Flight Test Base, Unit History, 1 September 1942 - 30 June 1945. Alfred F. Simpson Historical Research Agency. United States Air Force. Maxwell AFB, Alabama. View of concrete base and brackets of jet engine rotor balancing machine. Location where photograph was taken not determined, but presumed to be in shops of Building 4505. - Edwards Air Force Base, North Base, Hangar, End of North Base Road, Boron, Kern County, CA
Computed Tomography Inspection and Analysis for Additive Manufacturing Components
NASA Technical Reports Server (NTRS)
Beshears, Ronald D.
2017-01-01
Computed tomography (CT) inspection was performed on test articles additively manufactured from metallic materials. Metallic AM and machined wrought alloy test articles with programmed flaws and geometric features were inspected using a 2-megavolt linear accelerator based CT system. Performance of CT inspection on identically configured wrought and AM components and programmed flaws was assessed to determine the impact of additive manufacturing on inspectability of objects with complex geometries.
Determination of the technical constants of laminates in oblique directions
NASA Technical Reports Server (NTRS)
Vidouse, F.
1979-01-01
An off-axis tensile test theory based on Hooke's Law is applied to glass fiber reinforced laminates. A corrective parameter dependent on the characteristics of the strain gauge used is introduced by testing machines set up for isotropic materials. Theoretical results for a variety of strain gauges are compared with those obtained by a finite element method and with experimental results obtained on laminates reinforced with glass.
Code of Federal Regulations, 2010 CFR
2010-01-01
... machines. (b) Testing and Calculations. (1) [Reserved] (2) The R value shall be the 1/K factor multiplied by the thickness of the panel. (3) The K factor shall be based on ASTM C518 (incorporated by reference; see § 431.303). (4) For calculating the R value for freezers, the K factor of the foam at 20...
Code of Federal Regulations, 2011 CFR
2011-01-01
... machines. (b) Testing and Calculations. (1) [Reserved] (2) The R value shall be the 1/K factor multiplied by the thickness of the panel. (3) The K factor shall be based on ASTM C518 (incorporated by reference; see § 431.303). (4) For calculating the R value for freezers, the K factor of the foam at 20...
NASA Astrophysics Data System (ADS)
Vandegriff, J. D.; Smith, G. L.; Edenbaum, H.; Peachey, J. M.; Mitchell, D. G.
2017-12-01
We analyzed data from Cassini's Magnetospheric Imaging Instrument (MIMI) and Magnetometer (MAG) and attempted to identify the region of Saturn's magnetosphere that Cassini was in at a given time using machine learning. MIMI data are from the Charge-Energy-Mass Spectrometer (CHEMS) instrument and the Low-Energy Magnetospheric Measurement System (LEMMS). We trained on data where the region is known based on a previous analysis of Cassini Plasma Spectrometer (CAPS) plasma data. Three magnetospheric regions are considered: Magnetosphere, Magnetosheath, and Solar Wind. MIMI particle intensities, magnetic field values, and spacecraft position are used as input attributes, and the output is the CAPS-based region, which is available from 2004 to 2012. We then use the trained classifier to identify Cassini's magnetospheric regions for times after 2012, when CAPS data is no longer available. Training accuracy is evaluated by testing the classifier performance on a time range of known regions that the classifier has never seen. Preliminary results indicate a 68% accuracy on such test data. Other techniques are being tested that may increase this performance. We present the data and algorithms used, and will describe the latest results, including the magnetospheric regions post-2012 identified by the algorithm.
Grasps Recognition and Evaluation of Stroke Patients for Supporting Rehabilitation Therapy
Sale, Patrizio; Nijenhuis, Sharon; Prange, Gerdienke; Amirabdollahian, Farshid
2014-01-01
Stroke survivors often suffer impairments on their wrist and hand. Robot-mediated rehabilitation techniques have been proposed as a way to enhance conventional therapy, based on intensive repeated movements. Amongst the set of activities of daily living, grasping is one of the most recurrent. Our aim is to incorporate the detection of grasps in the machine-mediated rehabilitation framework so that they can be incorporated into interactive therapeutic games. In this study, we developed and tested a method based on support vector machines for recognizing various grasp postures wearing a passive exoskeleton for hand and wrist rehabilitation after stroke. The experiment was conducted with ten healthy subjects and eight stroke patients performing the grasping gestures. The method was tested in terms of accuracy and robustness with respect to intersubjects' variability and differences between different grasps. Our results show reliable recognition while also indicating that the recognition accuracy can be used to assess the patients' ability to consistently repeat the gestures. Additionally, a grasp quality measure was proposed to measure the capabilities of the stroke patients to perform grasp postures in a similar way than healthy people. These two measures can be potentially used as complementary measures to other upper limb motion tests. PMID:25258709
Modelling rollover behaviour of exacavator-based forest machines
M.W. Veal; S.E. Taylor; Robert B. Rummer
2003-01-01
This poster presentation provides results from analytical and computer simulation models of rollover behaviour of hydraulic excavators. These results are being used as input to the operator protective structure standards development process. Results from rigid body mechanics and computer simulation methods agree well with field rollover test data. These results show...
Advanced technologies for Mission Control Centers
NASA Technical Reports Server (NTRS)
Dalton, John T.; Hughes, Peter M.
1991-01-01
Advance technologies for Mission Control Centers are presented in the form of the viewgraphs. The following subject areas are covered: technology needs; current technology efforts at GSFC (human-machine interface development, object oriented software development, expert systems, knowledge-based software engineering environments, and high performance VLSI telemetry systems); and test beds.
Sorting of fungal-damaged white sorghum
USDA-ARS?s Scientific Manuscript database
A high-speed, color image-based sorting machine was modified to separate white sorghum with symptoms of fungal damage. Most of the sorghum tested was typically white, but over 27% of the bulk contained grains with fungal damage of various degrees, from severe to very slight. Grains with slight fun...
Smart Sensors Gather Information for Machine Diagnostics
NASA Technical Reports Server (NTRS)
2014-01-01
Stennis Space Center was interested in using smart sensors to monitor components on test stands and avert equipment failures. Partnering with St. Paul, Minnesota-based Lion Precision through a Cooperative Agreement, the team developed a smart sensor and the associated communication protocols. The same sensor is now commercially available for manufacturing.
Learning Machine, Vietnamese Based Human-Computer Interface.
ERIC Educational Resources Information Center
Northwest Regional Educational Lab., Portland, OR.
The sixth session of IT@EDU98 consisted of seven papers on the topic of the learning machine--Vietnamese based human-computer interface, and was chaired by Phan Viet Hoang (Informatics College, Singapore). "Knowledge Based Approach for English Vietnamese Machine Translation" (Hoang Kiem, Dinh Dien) presents the knowledge base approach,…
Liu, Zhijian; Li, Hao; Cao, Guoqing
2017-07-30
Indoor airborne culturable bacteria are sometimes harmful to human health. Therefore, a quick estimation of their concentration is particularly necessary. However, measuring the indoor microorganism concentration (e.g., bacteria) usually requires a large amount of time, economic cost, and manpower. In this paper, we aim to provide a quick solution: using knowledge-based machine learning to provide quick estimation of the concentration of indoor airborne culturable bacteria only with the inputs of several measurable indoor environmental indicators, including: indoor particulate matter (PM 2.5 and PM 10 ), temperature, relative humidity, and CO₂ concentration. Our results show that a general regression neural network (GRNN) model can sufficiently provide a quick and decent estimation based on the model training and testing using an experimental database with 249 data groups.
A Scatter-Based Prototype Framework and Multi-Class Extension of Support Vector Machines
Jenssen, Robert; Kloft, Marius; Zien, Alexander; Sonnenburg, Sören; Müller, Klaus-Robert
2012-01-01
We provide a novel interpretation of the dual of support vector machines (SVMs) in terms of scatter with respect to class prototypes and their mean. As a key contribution, we extend this framework to multiple classes, providing a new joint Scatter SVM algorithm, at the level of its binary counterpart in the number of optimization variables. This enables us to implement computationally efficient solvers based on sequential minimal and chunking optimization. As a further contribution, the primal problem formulation is developed in terms of regularized risk minimization and the hinge loss, revealing the score function to be used in the actual classification of test patterns. We investigate Scatter SVM properties related to generalization ability, computational efficiency, sparsity and sensitivity maps, and report promising results. PMID:23118845
Topical Report Tantalum – 2.5% Tungsten Machinability Testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
L. J. Lazarus
2009-09-02
Protection Association (NFPA). NFPA 484, Standard for Combustible Metals, Chapter 9 Tantalum and Annex E, supplemental Information on Tantalum require cutting oil be used when machining tantalum because it burns at such a high temperature that it breaks down the water in a water-based metalworking fluid (MWF). The NFPA guide devotes approximately 20 pages to this material. The Kansas City Plant (KCP) uses Fuchs Lubricants Ecocut Base 44 LVC as a MWF. This is a highly chlorinated oil with a high flash point (above 200° F). The chlorine is very helpful in preventing BUE (Built Up Edge) that occurs frequentlymore » with this very gummy material. The Ecocut is really a MWF additive that Fuchs uses to add chlorinated fats to other non-chlorinated MWF.« less
Analyzing Activity Behavior and Movement in a Naturalistic Environment using Smart Home Techniques
Cook, Diane J.; Schmitter-Edgecombe, Maureen; Dawadi, Prafulla
2015-01-01
One of the many services that intelligent systems can provide is the ability to analyze the impact of different medical conditions on daily behavior. In this study we use smart home and wearable sensors to collect data while (n=84) older adults perform complex activities of daily living. We analyze the data using machine learning techniques and reveal that differences between healthy older adults and adults with Parkinson disease not only exist in their activity patterns, but that these differences can be automatically recognized. Our machine learning classifiers reach an accuracy of 0.97 with an AUC value of 0.97 in distinguishing these groups. Our permutation-based testing confirms that the sensor-based differences between these groups are statistically significant. PMID:26259225
NASA Astrophysics Data System (ADS)
Singla, Neeru; Srivastava, Vishal; Singh Mehta, Dalip
2018-02-01
We report the first fully automated detection of human skin burn injuries in vivo, with the goal of automatic surgical margin assessment based on optical coherence tomography (OCT) images. Our proposed automated procedure entails building a machine-learning-based classifier by extracting quantitative features from normal and burn tissue images recorded by OCT. In this study, 56 samples (28 normal, 28 burned) were imaged by OCT and eight features were extracted. A linear model classifier was trained using 34 samples and 22 samples were used to test the model. Sensitivity of 91.6% and specificity of 90% were obtained. Our results demonstrate the capability of a computer-aided technique for accurately and automatically identifying burn tissue resection margins during surgical treatment.
Analyzing Activity Behavior and Movement in a Naturalistic Environment Using Smart Home Techniques.
Cook, Diane J; Schmitter-Edgecombe, Maureen; Dawadi, Prafulla
2015-11-01
One of the many services that intelligent systems can provide is the ability to analyze the impact of different medical conditions on daily behavior. In this study, we use smart home and wearable sensors to collect data, while ( n = 84) older adults perform complex activities of daily living. We analyze the data using machine learning techniques and reveal that differences between healthy older adults and adults with Parkinson disease not only exist in their activity patterns, but that these differences can be automatically recognized. Our machine learning classifiers reach an accuracy of 0.97 with an area under the ROC curve value of 0.97 in distinguishing these groups. Our permutation-based testing confirms that the sensor-based differences between these groups are statistically significant.
VIEW EASTLEFTBUILDING 2 PHYSICAL TESTING HOUSE (1928) RIGHTBUILDING 7 MACHINE ...
VIEW EAST-LEFT-BUILDING 2 PHYSICAL TESTING HOUSE (1928) RIGHT-BUILDING 7 MACHINE SHOP (1901 SECTION) - John A. Roebling's Sons Company & American Steel & Wire Company, South Broad, Clark, Elmer, Mott & Hudson Streets, Trenton, Mercer County, NJ
Research and implementation of SATA protocol link layer based on FPGA
NASA Astrophysics Data System (ADS)
Liu, Wen-long; Liu, Xue-bin; Qiang, Si-miao; Yan, Peng; Wen, Zhi-gang; Kong, Liang; Liu, Yong-zheng
2018-02-01
In order to solve the problem high-performance real-time, high-speed the image data storage generated by the detector. In this thesis, it choose an suitable portable image storage hard disk of SATA interface, it is relative to the existing storage media. It has a large capacity, high transfer rate, inexpensive, power-down data which is not lost, and many other advantages. This paper focuses on the link layer of the protocol, analysis the implementation process of SATA2.0 protocol, and build state machines. Then analyzes the characteristics resources of Kintex-7 FPGA family, builds state machines according to the agreement, write Verilog implement link layer modules, and run the simulation test. Finally, the test is on the Kintex-7 development board platform. It meets the requirements SATA2.0 protocol basically.
van den Akker, Jeroen; Mishne, Gilad; Zimmer, Anjali D; Zhou, Alicia Y
2018-04-17
Next generation sequencing (NGS) has become a common technology for clinical genetic tests. The quality of NGS calls varies widely and is influenced by features like reference sequence characteristics, read depth, and mapping accuracy. With recent advances in NGS technology and software tools, the majority of variants called using NGS alone are in fact accurate and reliable. However, a small subset of difficult-to-call variants that still do require orthogonal confirmation exist. For this reason, many clinical laboratories confirm NGS results using orthogonal technologies such as Sanger sequencing. Here, we report the development of a deterministic machine-learning-based model to differentiate between these two types of variant calls: those that do not require confirmation using an orthogonal technology (high confidence), and those that require additional quality testing (low confidence). This approach allows reliable NGS-based calling in a clinical setting by identifying the few important variant calls that require orthogonal confirmation. We developed and tested the model using a set of 7179 variants identified by a targeted NGS panel and re-tested by Sanger sequencing. The model incorporated several signals of sequence characteristics and call quality to determine if a variant was identified at high or low confidence. The model was tuned to eliminate false positives, defined as variants that were called by NGS but not confirmed by Sanger sequencing. The model achieved very high accuracy: 99.4% (95% confidence interval: +/- 0.03%). It categorized 92.2% (6622/7179) of the variants as high confidence, and 100% of these were confirmed to be present by Sanger sequencing. Among the variants that were categorized as low confidence, defined as NGS calls of low quality that are likely to be artifacts, 92.1% (513/557) were found to be not present by Sanger sequencing. This work shows that NGS data contains sufficient characteristics for a machine-learning-based model to differentiate low from high confidence variants. Additionally, it reveals the importance of incorporating site-specific features as well as variant call features in such a model.
2000-04-01
two week test was a part of an The Boeing Company is studying a concept that on- going Boeing internal research and development involves teaming a...study and effectiveness of attack/reconnaissance teams. A assessment of employment modes and their major concern is the level of crew interaction...Based on the UAV control mode, these controls will Test subjects received training concerning the operate either the TADS sensors (control mode mne
Ruiz-Gonzalez, Ruben; Gomez-Gil, Jaime; Gomez-Gil, Francisco Javier; Martínez-Martínez, Víctor
2014-01-01
The goal of this article is to assess the feasibility of estimating the state of various rotating components in agro-industrial machinery by employing just one vibration signal acquired from a single point on the machine chassis. To do so, a Support Vector Machine (SVM)-based system is employed. Experimental tests evaluated this system by acquiring vibration data from a single point of an agricultural harvester, while varying several of its working conditions. The whole process included two major steps. Initially, the vibration data were preprocessed through twelve feature extraction algorithms, after which the Exhaustive Search method selected the most suitable features. Secondly, the SVM-based system accuracy was evaluated by using Leave-One-Out cross-validation, with the selected features as the input data. The results of this study provide evidence that (i) accurate estimation of the status of various rotating components in agro-industrial machinery is possible by processing the vibration signal acquired from a single point on the machine structure; (ii) the vibration signal can be acquired with a uniaxial accelerometer, the orientation of which does not significantly affect the classification accuracy; and, (iii) when using an SVM classifier, an 85% mean cross-validation accuracy can be reached, which only requires a maximum of seven features as its input, and no significant improvements are noted between the use of either nonlinear or linear kernels. PMID:25372618
Ruiz-Gonzalez, Ruben; Gomez-Gil, Jaime; Gomez-Gil, Francisco Javier; Martínez-Martínez, Víctor
2014-11-03
The goal of this article is to assess the feasibility of estimating the state of various rotating components in agro-industrial machinery by employing just one vibration signal acquired from a single point on the machine chassis. To do so, a Support Vector Machine (SVM)-based system is employed. Experimental tests evaluated this system by acquiring vibration data from a single point of an agricultural harvester, while varying several of its working conditions. The whole process included two major steps. Initially, the vibration data were preprocessed through twelve feature extraction algorithms, after which the Exhaustive Search method selected the most suitable features. Secondly, the SVM-based system accuracy was evaluated by using Leave-One-Out cross-validation, with the selected features as the input data. The results of this study provide evidence that (i) accurate estimation of the status of various rotating components in agro-industrial machinery is possible by processing the vibration signal acquired from a single point on the machine structure; (ii) the vibration signal can be acquired with a uniaxial accelerometer, the orientation of which does not significantly affect the classification accuracy; and, (iii) when using an SVM classifier, an 85% mean cross-validation accuracy can be reached, which only requires a maximum of seven features as its input, and no significant improvements are noted between the use of either nonlinear or linear kernels.
Statistical complexity measure of pseudorandom bit generators
NASA Astrophysics Data System (ADS)
González, C. M.; Larrondo, H. A.; Rosso, O. A.
2005-08-01
Pseudorandom number generators (PRNG) are extensively used in Monte Carlo simulations, gambling machines and cryptography as substitutes of ideal random number generators (RNG). Each application imposes different statistical requirements to PRNGs. As L’Ecuyer clearly states “the main goal for Monte Carlo methods is to reproduce the statistical properties on which these methods are based whereas for gambling machines and cryptology, observing the sequence of output values for some time should provide no practical advantage for predicting the forthcoming numbers better than by just guessing at random”. In accordance with different applications several statistical test suites have been developed to analyze the sequences generated by PRNGs. In a recent paper a new statistical complexity measure [Phys. Lett. A 311 (2003) 126] has been defined. Here we propose this measure, as a randomness quantifier of a PRNGs. The test is applied to three very well known and widely tested PRNGs available in the literature. All of them are based on mathematical algorithms. Another PRNGs based on Lorenz 3D chaotic dynamical system is also analyzed. PRNGs based on chaos may be considered as a model for physical noise sources and important new results are recently reported. All the design steps of this PRNG are described, and each stage increase the PRNG randomness using different strategies. It is shown that the MPR statistical complexity measure is capable to quantify this randomness improvement. The PRNG based on the chaotic 3D Lorenz dynamical system is also evaluated using traditional digital signal processing tools for comparison.
Bastani, Meysam; Vos, Larissa; Asgarian, Nasimeh; Deschenes, Jean; Graham, Kathryn; Mackey, John; Greiner, Russell
2013-01-01
Background Selecting the appropriate treatment for breast cancer requires accurately determining the estrogen receptor (ER) status of the tumor. However, the standard for determining this status, immunohistochemical analysis of formalin-fixed paraffin embedded samples, suffers from numerous technical and reproducibility issues. Assessment of ER-status based on RNA expression can provide more objective, quantitative and reproducible test results. Methods To learn a parsimonious RNA-based classifier of hormone receptor status, we applied a machine learning tool to a training dataset of gene expression microarray data obtained from 176 frozen breast tumors, whose ER-status was determined by applying ASCO-CAP guidelines to standardized immunohistochemical testing of formalin fixed tumor. Results This produced a three-gene classifier that can predict the ER-status of a novel tumor, with a cross-validation accuracy of 93.17±2.44%. When applied to an independent validation set and to four other public databases, some on different platforms, this classifier obtained over 90% accuracy in each. In addition, we found that this prediction rule separated the patients' recurrence-free survival curves with a hazard ratio lower than the one based on the IHC analysis of ER-status. Conclusions Our efficient and parsimonious classifier lends itself to high throughput, highly accurate and low-cost RNA-based assessments of ER-status, suitable for routine high-throughput clinical use. This analytic method provides a proof-of-principle that may be applicable to developing effective RNA-based tests for other biomarkers and conditions. PMID:24312637
Applying data fusion techniques for benthic habitat mapping and monitoring in a coral reef ecosystem
NASA Astrophysics Data System (ADS)
Zhang, Caiyun
2015-06-01
Accurate mapping and effective monitoring of benthic habitat in the Florida Keys are critical in developing management strategies for this valuable coral reef ecosystem. For this study, a framework was designed for automated benthic habitat mapping by combining multiple data sources (hyperspectral, aerial photography, and bathymetry data) and four contemporary imagery processing techniques (data fusion, Object-based Image Analysis (OBIA), machine learning, and ensemble analysis). In the framework, 1-m digital aerial photograph was first merged with 17-m hyperspectral imagery and 10-m bathymetry data using a pixel/feature-level fusion strategy. The fused dataset was then preclassified by three machine learning algorithms (Random Forest, Support Vector Machines, and k-Nearest Neighbor). Final object-based habitat maps were produced through ensemble analysis of outcomes from three classifiers. The framework was tested for classifying a group-level (3-class) and code-level (9-class) habitats in a portion of the Florida Keys. Informative and accurate habitat maps were achieved with an overall accuracy of 88.5% and 83.5% for the group-level and code-level classifications, respectively.
Exploring Genome-Wide Expression Profiles Using Machine Learning Techniques.
Kebschull, Moritz; Papapanou, Panos N
2017-01-01
Although contemporary high-throughput -omics methods produce high-dimensional data, the resulting wealth of information is difficult to assess using traditional statistical procedures. Machine learning methods facilitate the detection of additional patterns, beyond the mere identification of lists of features that differ between groups.Here, we demonstrate the utility of (1) supervised classification algorithms in class validation, and (2) unsupervised clustering in class discovery. We use data from our previous work that described the transcriptional profiles of gingival tissue samples obtained from subjects suffering from chronic or aggressive periodontitis (1) to test whether the two diagnostic entities were also characterized by differences on the molecular level, and (2) to search for a novel, alternative classification of periodontitis based on the tissue transcriptomes.Using machine learning technology, we provide evidence for diagnostic imprecision in the currently accepted classification of periodontitis, and demonstrate that a novel, alternative classification based on differences in gingival tissue transcriptomes is feasible. The outlined procedures allow for the unbiased interrogation of high-dimensional datasets for characteristic underlying classes, and are applicable to a broad range of -omics data.
Machining of Aircraft Titanium with Abrasive-Waterjets for Fatigue Critical Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, H. T.; Hovanski, Yuri; Dahl, Michael E.
2012-02-01
Laboratory tests were conducted to determine the fatigue performance of abrasive-waterjet- (AWJ-) machined aircraft titanium. Dog-bone specimens machined with AWJs were prepared and tested with and without sanding and dry-grit blasting with Al2O3 as secondary processes. The secondary processes were applied to remove the visual appearance of AWJ-generated striations and to clean up the garnet embedment. The fatigue performance of AWJ-machined specimens was compared with baseline specimens machined with CNC milling. Fatigue test results of the titanium specimens not only confirmed our previous findings in aluminum dog-bone specimens but in comparison also further enhanced the fatigue performance of the titanium.more » In addition, titanium is known to be difficult to cut, particularly for thick parts, however AWJs cut the material 34% faster han stainless steel. AWJ cutting and dry-grit blasting are shown to be a preferred ombination for processing aircraft titanium that is fatigue critical.« less
Systematics for checking geometric errors in CNC lathes
NASA Astrophysics Data System (ADS)
Araújo, R. P.; Rolim, T. L.
2015-10-01
Non-idealities presented in machine tools compromise directly both the geometry and the dimensions of machined parts, generating distortions in the project. Given the competitive scenario among different companies, it is necessary to have knowledge of the geometric behavior of these machines in order to be able to establish their processing capability, avoiding waste of time and materials as well as satisfying customer requirements. But despite the fact that geometric tests are important and necessary to clarify the use of the machine correctly, therefore preventing future damage, most users do not apply such tests on their machines for lack of knowledge or lack of proper motivation, basically due to two factors: long period of time and high costs of testing. This work proposes a systematics for checking straightness and perpendicularity errors in CNC lathes demanding little time and cost with high metrological reliability, to be used on factory floors of small and medium-size businesses to ensure the quality of its products and make them competitive.
NASA Astrophysics Data System (ADS)
Heidari, Morteza; Zargari Khuzani, Abolfazl; Danala, Gopichandh; Mirniaharikandehei, Seyedehnafiseh; Qian, Wei; Zheng, Bin
2018-03-01
Both conventional and deep machine learning has been used to develop decision-support tools applied in medical imaging informatics. In order to take advantages of both conventional and deep learning approach, this study aims to investigate feasibility of applying a locally preserving projection (LPP) based feature regeneration algorithm to build a new machine learning classifier model to predict short-term breast cancer risk. First, a computer-aided image processing scheme was used to segment and quantify breast fibro-glandular tissue volume. Next, initially computed 44 image features related to the bilateral mammographic tissue density asymmetry were extracted. Then, an LLP-based feature combination method was applied to regenerate a new operational feature vector using a maximal variance approach. Last, a k-nearest neighborhood (KNN) algorithm based machine learning classifier using the LPP-generated new feature vectors was developed to predict breast cancer risk. A testing dataset involving negative mammograms acquired from 500 women was used. Among them, 250 were positive and 250 remained negative in the next subsequent mammography screening. Applying to this dataset, LLP-generated feature vector reduced the number of features from 44 to 4. Using a leave-onecase-out validation method, area under ROC curve produced by the KNN classifier significantly increased from 0.62 to 0.68 (p < 0.05) and odds ratio was 4.60 with a 95% confidence interval of [3.16, 6.70]. Study demonstrated that this new LPP-based feature regeneration approach enabled to produce an optimal feature vector and yield improved performance in assisting to predict risk of women having breast cancer detected in the next subsequent mammography screening.
Machine characterization based on an abstract high-level language machine
NASA Technical Reports Server (NTRS)
Saavedra-Barrera, Rafael H.; Smith, Alan Jay; Miya, Eugene
1989-01-01
Measurements are presented for a large number of machines ranging from small workstations to supercomputers. The authors combine these measurements into groups of parameters which relate to specific aspects of the machine implementation, and use these groups to provide overall machine characterizations. The authors also define the concept of pershapes, which represent the level of performance of a machine for different types of computation. A metric based on pershapes is introduced that provides a quantitative way of measuring how similar two machines are in terms of their performance distributions. The metric is related to the extent to which pairs of machines have varying relative performance levels depending on which benchmark is used.
Machine vision application in animal trajectory tracking.
Koniar, Dušan; Hargaš, Libor; Loncová, Zuzana; Duchoň, František; Beňo, Peter
2016-04-01
This article was motivated by the doctors' demand to make a technical support in pathologies of gastrointestinal tract research [10], which would be based on machine vision tools. Proposed solution should be less expensive alternative to already existing RF (radio frequency) methods. The objective of whole experiment was to evaluate the amount of animal motion dependent on degree of pathology (gastric ulcer). In the theoretical part of the article, several methods of animal trajectory tracking are presented: two differential methods based on background subtraction, the thresholding methods based on global and local threshold and the last method used for animal tracking was the color matching with a chosen template containing a searched spectrum of colors. The methods were tested offline on five video samples. Each sample contained situation with moving guinea pig locked in a cage under various lighting conditions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
77 FR 3726 - Tire Fuel Efficiency Consumer Information Program
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-25
... test machine(s) for the TFECIP. This would allow tire manufacturers to know the identity of the machine... will I have to speak at the public workshop? Once NHTSA learns how many people have registered to speak...
Explosively Joining Dissimilar Metal Tubes.
1979-11-01
specimens were tested in axial tension-tension fatigue in a Satec high cycle fatigue test machine at 30 Hz. The applied max stress for each test was...BACK CHIP A3 ROTARY FILE ,S AR .STO P9 WIRE BRUSH y es IDENTIFY {STEEL STAMP) N INSPECT ICA) YES GRIND WEtD [LEID k R IJ CA/S. BASE METAL PPEPARATION...Type: Dog bone Test Equipment: Satec SF-1U-1099 Specimen Max. Static Dynamic F a i1 u r e Width Thickness i(No.) Stress Stress Stress(KS0 (KSI) (KSI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demas, Nicholaos G.; Erck, Robert A.; Lorenzo-Martin, Cinta
The effect of two nanoparticle oxides on friction and wear was studied under laboratory test conditions using a reciprocating test machine and two test configurations. The addition of these nanoparticles in base stock oil under certain conditions reduced the coefficient of friction and improved wear, but that depended on the test configuration. Examination of the rubbed surfaces showed the pronounced formation of a tribofilm in some cases, while polishing on the surface was also observed in other cases. Contact configuration is important when oxide nanoparticles are being evaluated and the conclusions about their efficacy can be vastly different.
The Efficacy of Machine Learning Programs for Navy Manpower Analysis
1993-03-01
This thesis investigated the efficacy of two machine learning programs for Navy manpower analysis. Two machine learning programs, AIM and IXL, were...to generate models from the two commercial machine learning programs. Using a held out sub-set of the data the capabilities of the three models were...partial effects. The author recommended further investigation of AIM’s capabilities, and testing in an operational environment.... Machine learning , AIM, IXL.
Yu, Wei; Clyne, Melinda; Dolan, Siobhan M; Yesupriya, Ajay; Wulf, Anja; Liu, Tiebin; Khoury, Muin J; Gwinn, Marta
2008-04-22
Synthesis of data from published human genetic association studies is a critical step in the translation of human genome discoveries into health applications. Although genetic association studies account for a substantial proportion of the abstracts in PubMed, identifying them with standard queries is not always accurate or efficient. Further automating the literature-screening process can reduce the burden of a labor-intensive and time-consuming traditional literature search. The Support Vector Machine (SVM), a well-established machine learning technique, has been successful in classifying text, including biomedical literature. The GAPscreener, a free SVM-based software tool, can be used to assist in screening PubMed abstracts for human genetic association studies. The data source for this research was the HuGE Navigator, formerly known as the HuGE Pub Lit database. Weighted SVM feature selection based on a keyword list obtained by the two-way z score method demonstrated the best screening performance, achieving 97.5% recall, 98.3% specificity and 31.9% precision in performance testing. Compared with the traditional screening process based on a complex PubMed query, the SVM tool reduced by about 90% the number of abstracts requiring individual review by the database curator. The tool also ascertained 47 articles that were missed by the traditional literature screening process during the 4-week test period. We examined the literature on genetic associations with preterm birth as an example. Compared with the traditional, manual process, the GAPscreener both reduced effort and improved accuracy. GAPscreener is the first free SVM-based application available for screening the human genetic association literature in PubMed with high recall and specificity. The user-friendly graphical user interface makes this a practical, stand-alone application. The software can be downloaded at no charge.
Test build from Robotic Fiber Placement Machine
2015-10-01
MAJID BABAI, LEFT, CHIEF OF THE NONMETALLIC MANUFACTURING BRANCH AT MARSHALL, AND STEPHEN RICHARDSON, LEAD FOR THE STRUCTURAL DEVELOPMENT TEAM, TAKE A CLOSER LOOK AT ONE OF THE FIRST TEST BUILDS MADE BY THE NEW ROBOTIC FIBER PLACEMENT MACHINE BEHIND THEM.
Taking the fifth amendment in Turing's imitation game
NASA Astrophysics Data System (ADS)
Warwick, Kevin; Shah, Huma
2017-03-01
In this paper, we look at a specific issue with practical Turing tests, namely the right of the machine to remain silent during interrogation. In particular, we consider the possibility of a machine passing the Turing test simply by not saying anything. We include a number of transcripts from practical Turing tests in which silence has actually occurred on the part of a hidden entity. Each of the transcripts considered here resulted in a judge being unable to make the 'right identification', i.e., they could not say for certain which hidden entity was the machine.
Nelwan, Erni J; Indrasanti, Evi; Sinto, Robert; Nurchaida, Farida; Sosrosumihardjo, Rustadi
2016-01-01
to evaluate the performance of Vitek2 compact machine (Biomerieux Inc. ver 04.02, France) in reference to manual methods for susceptibility test for Candida resistance among HIV/AIDS patients. a comparison study to evaluate Vitek2 compact machine (Biomerieux Inc. ver 04.02, France) in reference to manual methods for susceptibility test for Candida resistance among HIV/AIDS patient was done. Categorical agreement between manual disc diffusion and Vitek2 machine was calculated using predefined criteria. Time to susceptibility result for automated and manual methods were measured. there were 137 Candida isolates comprising eight Candida species with C.albicans and C. glabrata as the first (56.2%) and second (15.3%) most common species, respectively. For fluconazole drug, among the C. albicans, 2.6% was found resistant on manual disc diffusion methods and no resistant was determined by Vitek2 machine; whereas 100% C. krusei was identified as resistant on both methods. Resistant patterns for C. glabrata to fluconazole, voriconazole and amphotericin B were 52.4%, 23.8%, 23.8% vs. 9.5%, 9.5%, 4.8% respectively between manual diffusion disc methods and Vitek2 machine. Time to susceptibility result for automated methods compared to Vitex2 machine was shorter for all Candida species. there is a good categorical agreement between manual disc diffusion and Vitek2 machine, except for C. glabrata for measuring the antifungal resistant. Time to susceptibility result for automated methods is shorter for all Candida species.
Machine Learning Based Single-Frame Super-Resolution Processing for Lensless Blood Cell Counting
Huang, Xiwei; Jiang, Yu; Liu, Xu; Xu, Hang; Han, Zhi; Rong, Hailong; Yang, Haiping; Yan, Mei; Yu, Hao
2016-01-01
A lensless blood cell counting system integrating microfluidic channel and a complementary metal oxide semiconductor (CMOS) image sensor is a promising technique to miniaturize the conventional optical lens based imaging system for point-of-care testing (POCT). However, such a system has limited resolution, making it imperative to improve resolution from the system-level using super-resolution (SR) processing. Yet, how to improve resolution towards better cell detection and recognition with low cost of processing resources and without degrading system throughput is still a challenge. In this article, two machine learning based single-frame SR processing types are proposed and compared for lensless blood cell counting, namely the Extreme Learning Machine based SR (ELMSR) and Convolutional Neural Network based SR (CNNSR). Moreover, lensless blood cell counting prototypes using commercial CMOS image sensors and custom designed backside-illuminated CMOS image sensors are demonstrated with ELMSR and CNNSR. When one captured low-resolution lensless cell image is input, an improved high-resolution cell image will be output. The experimental results show that the cell resolution is improved by 4×, and CNNSR has 9.5% improvement over the ELMSR on resolution enhancing performance. The cell counting results also match well with a commercial flow cytometer. Such ELMSR and CNNSR therefore have the potential for efficient resolution improvement in lensless blood cell counting systems towards POCT applications. PMID:27827837
Support vector machine learning-based fMRI data group analysis.
Wang, Ze; Childress, Anna R; Wang, Jiongjiong; Detre, John A
2007-07-15
To explore the multivariate nature of fMRI data and to consider the inter-subject brain response discrepancies, a multivariate and brain response model-free method is fundamentally required. Two such methods are presented in this paper by integrating a machine learning algorithm, the support vector machine (SVM), and the random effect model. Without any brain response modeling, SVM was used to extract a whole brain spatial discriminance map (SDM), representing the brain response difference between the contrasted experimental conditions. Population inference was then obtained through the random effect analysis (RFX) or permutation testing (PMU) on the individual subjects' SDMs. Applied to arterial spin labeling (ASL) perfusion fMRI data, SDM RFX yielded lower false-positive rates in the null hypothesis test and higher detection sensitivity for synthetic activations with varying cluster size and activation strengths, compared to the univariate general linear model (GLM)-based RFX. For a sensory-motor ASL fMRI study, both SDM RFX and SDM PMU yielded similar activation patterns to GLM RFX and GLM PMU, respectively, but with higher t values and cluster extensions at the same significance level. Capitalizing on the absence of temporal noise correlation in ASL data, this study also incorporated PMU in the individual-level GLM and SVM analyses accompanied by group-level analysis through RFX or group-level PMU. Providing inferences on the probability of being activated or deactivated at each voxel, these individual-level PMU-based group analysis methods can be used to threshold the analysis results of GLM RFX, SDM RFX or SDM PMU.
1989-11-29
nvmbe’j International Business Machines Corporation Wright-Patterson AFB, The IBM Development System for the Ada Language AIX/RT follow-on, Version 1.1...Certificate Number: 891129W1.10198 International Business Machines Corporation The IBM Development System for the Ada Language AIX/RT Follow-on, Version 1.1 IBM...scripts provided by International Business Machines Corporation and reviewed by the validation team. The compiler was tested using all the following
NASA Astrophysics Data System (ADS)
Piretzidis, Dimitrios; Sra, Gurveer; Karantaidis, George; Sideris, Michael G.
2017-04-01
A new method for identifying correlated errors in Gravity Recovery and Climate Experiment (GRACE) monthly harmonic coefficients has been developed and tested. Correlated errors are present in the differences between monthly GRACE solutions, and can be suppressed using a de-correlation filter. In principle, the de-correlation filter should be implemented only on coefficient series with correlated errors to avoid losing useful geophysical information. In previous studies, two main methods of implementing the de-correlation filter have been utilized. In the first one, the de-correlation filter is implemented starting from a specific minimum order until the maximum order of the monthly solution examined. In the second one, the de-correlation filter is implemented only on specific coefficient series, the selection of which is based on statistical testing. The method proposed in the present study exploits the capabilities of supervised machine learning algorithms such as neural networks and support vector machines (SVMs). The pattern of correlated errors can be described by several numerical and geometric features of the harmonic coefficient series. The features of extreme cases of both correlated and uncorrelated coefficients are extracted and used for the training of the machine learning algorithms. The trained machine learning algorithms are later used to identify correlated errors and provide the probability of a coefficient series to be correlated. Regarding SVMs algorithms, an extensive study is performed with various kernel functions in order to find the optimal training model for prediction. The selection of the optimal training model is based on the classification accuracy of the trained SVM algorithm on the same samples used for training. Results show excellent performance of all algorithms with a classification accuracy of 97% - 100% on a pre-selected set of training samples, both in the validation stage of the training procedure and in the subsequent use of the trained algorithms to classify independent coefficients. This accuracy is also confirmed by the external validation of the trained algorithms using the hydrology model GLDAS NOAH. The proposed method meet the requirement of identifying and de-correlating only coefficients with correlated errors. Also, there is no need of applying statistical testing or other techniques that require prior de-correlation of the harmonic coefficients.
Telescoping magnetic ball bar test gage
Bryan, J.B.
1982-03-15
A telescoping magnetic ball bar test gage for determining the accuracy of machine tools, including robots, and those measuring machines having non-disengagable servo drives which cannot be clutched out. Two gage balls are held and separated from one another by a telescoping fixture which allows them relative radial motional freedom but not relative lateral motional freedom. The telescoping fixture comprises a parallel reed flexure unit and a rigid member. One gage ball is secured by a magnetic socket knuckle assembly which fixes its center with respect to the machine being tested. The other gage ball is secured by another magnetic socket knuckle assembly which is engaged or held by the machine in such manner that the center of that ball is directed to execute a prescribed trajectory, all points of which are equidistant from the center of the fixed gage ball. As the moving ball executes its trajectory, changes in the radial distance between the centers of the two balls caused by inaccuracies in the machine are determined or measured by a linear variable differential transformer (LVDT) assembly actuated by the parallel reed flexure unit. Measurements can be quickly and easily taken for multiple trajectories about several different fixed ball locations, thereby determining the accuracy of the machine.
Phacoemulsification tip vacuum pressure: Comparison of 4 devices.
Payne, Marielle; Georgescu, Dan; Waite, Aaron N; Olson, Randall J
2006-08-01
To determine the vacuum pressure generated by 4 phacoemulsification devices measured at the phacoemulsification tip. University ophthalmology department. The effective vacuum pressures generated by the Sovereign (AMO), Millennium (Bausch & Lomb), Legacy AdvanTec (Alcon Laboratories), and Infiniti (Alcon Laboratories) phacoemulsification machines were measured with a device that isolated the phacoemulsification tip in a chamber connected to a pressure gauge. The 4 machines were tested at multiple vacuum limit settings, and the values were recorded after the foot pedal was fully depressed and the pressure had stabilized. The AdvanTec and Infiniti machines were tested with and without occlusion of the Aspiration Bypass System (ABS) side port (Alcon Laboratories). The Millennium machine was tested using venturi and peristaltic pumps. The machines generated pressures close to the expected at maximum vacuum settings between 100 mm Hg and 500 mm Hg with few intermachine variations. There was no significant difference between pressures generated using 19- or 20-gauge tips (Millennium and Sovereign). The addition of an ABS side port decreased vacuum by a mean of 12.1% (P < .0001). Although there were some variations in vacuum pressures among phacoemulsification machines, particularly when an aspiration bypass tip was used, these discrepancies are probably not clinically significant.
Continuing Development for Free-Piston Stirling Space Power Systems
NASA Astrophysics Data System (ADS)
Peterson, Allen A.; Qiu, Songgang; Redinger, Darin L.; Augenblick, John E.; Petersen, Stephen L.
2004-02-01
Long-life radioisotope power generators based on free-piston Stirling engines are an energy-conversion solution for future space applications. The high efficiency of Stirling machines makes them more attractive than the thermoelectric generators currently used in space. Stirling Technology Company (STC) has been developing free-piston Stirling machines for over 30 years, and its family of Stirling generators is ideally suited for reliable, maintenance-free operation. This paper describes recent progress and status of the STC RemoteGen™ 55 W-class Stirling generator (RG-55), presents an overview of recent testing, and discusses how the technology demonstration design has evolved toward space-qualified hardware.
Thermal measurement of brake pad lining surfaces during the braking process
NASA Astrophysics Data System (ADS)
Piątkowski, Tadeusz; Polakowski, Henryk; Kastek, Mariusz; Baranowski, Pawel; Damaziak, Krzysztof; Małachowski, Jerzy; Mazurkiewicz, Łukasz
2012-06-01
This paper presents the test campaign concept and definition and the analysis of the recorded measurements. One of the most important systems in cars and trucks are brakes. The braking temperature on a lining surface can rise above 500°C. This shows how linings requirements are so strict and, what is more, continuously rising. Besides experimental tests, very supportive method for investigating processes which occur on the brake pad linings are numerical analyses. Experimental tests were conducted on the test machine called IL-68. The main component of IL-68 is so called frictional unit, which consists of: rotational head, which convey a shaft torque and where counter samples are placed and translational head, where samples of coatings are placed and pressed against counter samples. Due to the high rotational speeds and thus the rapid changes in temperature field, the infrared camera was used for testing. The paper presents results of analysis registered thermograms during the tests with different conditions. Furthermore, based on this testing machine, the numerical model was developed. In order to avoid resource demanding analyses only the frictional unit (described above) was taken into consideration. Firstly the geometrical model was performed thanks to CAD techniques, which in the next stage was a base for developing the finite element model. Material properties and boundary conditions exactly correspond to experimental tests. Computations were performed using a dynamic LS-Dyna code where heat generation was estimated assuming full (100%) conversion of mechanical work done by friction forces. Paper presents the results of dynamic thermomechanical analysis too and these results were compared with laboratory tests.
Comparison of two freeze-thaw apparatus.
DOT National Transportation Integrated Search
1982-01-01
The purpose of this study was to compare the results of rapid freezing and thawing tests conducted on machine A with results from machine B, which is intended to replace the aging machine A. Concrete samples were prepared to attain levels of resistan...
NASA Astrophysics Data System (ADS)
Zhai, Haozhou; Jian, Jianming; Hou, Shulin; San, Yunlong; Guo, Wensong; Sun, Yue; Gao, Mingqing
2018-03-01
The twine of residual film is an essential issue in the process of remnant residue recovery of the residual film recovery machine. It is difficult to clean up the residual film in the residual film recovery operation and to influence the subsequent film efficiency. Therefore, in response to this problem a composite tooth pocket residual film recovery device was designed. In this paper, the structure of the film recovery device design, theoretical analysis, simulation experiments, get the most appropriate film recovery device parameters. In addition, the residual film rate of the membrane is dramatically low, reaching about 1.3% only, and the operation of the whole machine is smoother, and the stability of the work is promoted. The operation of the film recovery device is very obvious. Lifting, in addition to the film rate has also been significantly improved to 93.88%
Implementing finite state machines in a computer-based teaching system
NASA Astrophysics Data System (ADS)
Hacker, Charles H.; Sitte, Renate
1999-09-01
Finite State Machines (FSM) are models for functions commonly implemented in digital circuits such as timers, remote controls, and vending machines. Teaching FSM is core in the curriculum of many university digital electronic or discrete mathematics subjects. Students often have difficulties grasping the theoretical concepts in the design and analysis of FSM. This has prompted the author to develop an MS-WindowsTM compatible software, WinState, that provides a tutorial style teaching aid for understanding the mechanisms of FSM. The animated computer screen is ideal for visually conveying the required design and analysis procedures. WinState complements other software for combinatorial logic previously developed by the author, and enhances the existing teaching package by adding sequential logic circuits. WinState enables the construction of a students own FSM, which can be simulated, to test the design for functionality and possible errors.
Zhang, Li; Liao, Bo; Li, Dachao; Zhu, Wen
2009-07-21
Apoptosis, or programmed cell death, plays an important role in development of an organism. Obtaining information on subcellular location of apoptosis proteins is very helpful to understand the apoptosis mechanism. In this paper, based on the concept that the position distribution information of amino acids is closely related with the structure and function of proteins, we introduce the concept of distance frequency [Matsuda, S., Vert, J.P., Ueda, N., Toh, H., Akutsu, T., 2005. A novel representation of protein sequences for prediction of subcellular location using support vector machines. Protein Sci. 14, 2804-2813] and propose a novel way to calculate distance frequencies. In order to calculate the local features, each protein sequence is separated into p parts with the same length in our paper. Then we use the novel representation of protein sequences and adopt support vector machine to predict subcellular location. The overall prediction accuracy is significantly improved by jackknife test.
Kosała, Krzysztof; Stępień, Bartłomiej
2016-01-01
This paper presents the verification of two partial indices proposed for the evaluation of continuous and impulse noise pollution in quarries. These indices, together with the sound power of machines index and the noise hazard index at the workstation, are components of the global index of assessment of noise hazard in the working environment of a quarry. This paper shows the results of acoustic tests carried out in an andesite quarry. Noise generated by machines and from performed blasting works was investigated. On the basis of acoustic measurements carried out in real conditions, the sound power levels of machines and the phenomenon of explosion were determined and, based on the results, three-dimensional models of acoustic noise propagation in the quarry were developed. To assess the degree of noise pollution in the area of the quarry, the continuous and impulse noise indices were used.
What makes an automated teller machine usable by blind users?
Manzke, J M; Egan, D H; Felix, D; Krueger, H
1998-07-01
Fifteen blind and sighted subjects, who featured as a control group for acceptance, were asked for their requirements for automated teller machines (ATMs). Both groups also tested the usability of a partially operational ATM mock-up. This machine was based on an existing cash dispenser, providing natural speech output, different function menus and different key arrangements. Performance and subjective evaluation data of blind and sighted subjects were collected. All blind subjects were able to operate the ATM successfully. The implemented speech output was the main usability factor for them. The different interface designs did not significantly affect performance and subjective evaluation. Nevertheless, design recommendations can be derived from the requirement assessment. The sighted subjects were rather open for design modifications, especially the implementation of speech output. However, there was also a mismatch of the requirements of the two subject groups, mainly concerning the key arrangement.
List of Research Publications 1940-1980
1981-10-01
comparison of the amount of tolerance for misplaced answers found in the GPO and the IBM machine-scored answer sheets. January 1942. (X6304) 1-18 A& .1...machine scoring of answer sheets. March 1942. The effect of the use of No. I pencils on the accuracy of scoring IBM answer sheets by machine. July 1942...X6427) 482 Hobbies - IBM code. 483 Relationship of Classification Test, R-I and WAC Classi- 4023 fication Test-2 for a recruiting station population
Parameter identification and optimization of slide guide joint of CNC machine tools
NASA Astrophysics Data System (ADS)
Zhou, S.; Sun, B. B.
2017-11-01
The joint surface has an important influence on the performance of CNC machine tools. In order to identify the dynamic parameters of slide guide joint, the parametric finite element model of the joint is established and optimum design method is used based on the finite element simulation and modal test. Then the mode that has the most influence on the dynamics of slip joint is found through harmonic response analysis. Take the frequency of this mode as objective, the sensitivity analysis of the stiffness of each joint surface is carried out using Latin Hypercube Sampling and Monte Carlo Simulation. The result shows that the vertical stiffness of slip joint surface constituted by the bed and the slide plate has the most obvious influence on the structure. Therefore, this stiffness is taken as the optimization variable and the optimal value is obtained through studying the relationship between structural dynamic performance and stiffness. Take the stiffness values before and after optimization into the FEM of machine tool, and it is found that the dynamic performance of the machine tool is improved.
NASA Astrophysics Data System (ADS)
Majumder, Himadri; Maity, Kalipada
2018-03-01
Shape memory alloy has a unique capability to return to its original shape after physical deformation by applying heat or thermo-mechanical or magnetic load. In this experimental investigation, desirability function analysis (DFA), a multi-attribute decision making was utilized to find out the optimum input parameter setting during wire electrical discharge machining (WEDM) of Ni-Ti shape memory alloy. Four critical machining parameters, namely pulse on time (TON), pulse off time (TOFF), wire feed (WF) and wire tension (WT) were taken as machining inputs for the experiments to optimize three interconnected responses like cutting speed, kerf width, and surface roughness. Input parameter combination TON = 120 μs., TOFF = 55 μs., WF = 3 m/min. and WT = 8 kg-F were found to produce the optimum results. The optimum process parameters for each desired response were also attained using Taguchi’s signal-to-noise ratio. Confirmation test has been done to validate the optimum machining parameter combination which affirmed DFA was a competent approach to select optimum input parameters for the ideal response quality for WEDM of Ni-Ti shape memory alloy.
Mesoplasticity approach to studies of the cutting mechanism in ultra-precision machining
NASA Astrophysics Data System (ADS)
Lee, Rongbin W. B.; Wang, Hao; To, Suet; Cheung, Chi Fai; Chan, Chang Yuen
2014-03-01
There have been various theoretical attempts by researchers worldwide to link up different scales of plasticity studies from the nano-, micro- and macro-scale of observation, based on molecular dynamics, crystal plasticity and continuum mechanics. Very few attempts, however, have been reported in ultra-precision machining studies. A mesoplasticity approach advocated by Lee and Yang is adopted by the authors and is successfully applied to studies of the micro-cutting mechanisms in ultra-precision machining. Traditionally, the shear angle in metal cutting, as well as the cutting force variation, can only be determined from cutting tests. In the pioneering work of the authors, the use of mesoplasticity theory enables prediction of the fluctuation of the shear angle and micro-cutting force, shear band formation, chip morphology in diamond turning and size effect in nano-indentation. These findings are verified by experiments. The mesoplasticity formulation opens up a new direction of studies to enable how the plastic behaviour of materials and their constitutive representations in deformation processing, such as machining can be predicted, assessed and deduced from the basic properties of the materials measurable at the microscale.
Real-Time Performance of Mechatronic PZT Module Using Active Vibration Feedback Control.
Aggogeri, Francesco; Borboni, Alberto; Merlo, Angelo; Pellegrini, Nicola; Ricatto, Raffaele
2016-09-25
This paper proposes an innovative mechatronic piezo-actuated module to control vibrations in modern machine tools. Vibrations represent one of the main issues that seriously compromise the quality of the workpiece. The active vibration control (AVC) device is composed of a host part integrated with sensors and actuators synchronized by a regulator; it is able to make a self-assessment and adjust to alterations in the environment. In particular, an innovative smart actuator has been designed and developed to satisfy machining requirements during active vibration control. This study presents the mechatronic model based on the kinematic and dynamic analysis of the AVC device. To ensure a real time performance, a H2-LQG controller has been developed and validated by simulations involving a machine tool, PZT actuator and controller models. The Hardware in the Loop (HIL) architecture is adopted to control and attenuate the vibrations. A set of experimental tests has been performed to validate the AVC module on a commercial machine tool. The feasibility of the real time vibration damping is demonstrated and the simulation accuracy is evaluated.
Preventing chatter vibrations in heavy-duty turning operations in large horizontal lathes
NASA Astrophysics Data System (ADS)
Urbikain, G.; Campa, F.-J.; Zulaika, J.-J.; López de Lacalle, L.-N.; Alonso, M.-A.; Collado, V.
2015-03-01
Productivity and surface finish are typical user manufacturer requirements that are restrained by chatter vibrations sooner or later in every machining operation. Thus, manufacturers are interested in knowing, before building the machine, the dynamic behaviour of each machine structure with respect to another. Stability lobe graphs are the most reliable approach to analyse the dynamic performance. During heavy rough turning operations a model containing (a) several modes, or (b) modes with non-conventional (Cartesian) orientations is necessary. This work proposes two methods which are combined with multimode analysis to predict chatter in big horizontal lathes. First, a traditional single frequency model (SFM) is used. Secondly, the modern collocation method based on the Chebyshev polynomials (CCM) is alternatively studied. The models can be used to identify the machine design features limiting lathe productivity, as well as the threshold values for choosing good cutting parameters. The results have been compared with experimental tests in a horizontal turning centre. Besides the model and approach, this work offers real worthy values for big lathes, difficult to be got from literature.
Real-Time Performance of Mechatronic PZT Module Using Active Vibration Feedback Control
Aggogeri, Francesco; Borboni, Alberto; Merlo, Angelo; Pellegrini, Nicola; Ricatto, Raffaele
2016-01-01
This paper proposes an innovative mechatronic piezo-actuated module to control vibrations in modern machine tools. Vibrations represent one of the main issues that seriously compromise the quality of the workpiece. The active vibration control (AVC) device is composed of a host part integrated with sensors and actuators synchronized by a regulator; it is able to make a self-assessment and adjust to alterations in the environment. In particular, an innovative smart actuator has been designed and developed to satisfy machining requirements during active vibration control. This study presents the mechatronic model based on the kinematic and dynamic analysis of the AVC device. To ensure a real time performance, a H2-LQG controller has been developed and validated by simulations involving a machine tool, PZT actuator and controller models. The Hardware in the Loop (HIL) architecture is adopted to control and attenuate the vibrations. A set of experimental tests has been performed to validate the AVC module on a commercial machine tool. The feasibility of the real time vibration damping is demonstrated and the simulation accuracy is evaluated. PMID:27681732
Zhang, Y N
2017-01-01
Parkinson's disease (PD) is primarily diagnosed by clinical examinations, such as walking test, handwriting test, and MRI diagnostic. In this paper, we propose a machine learning based PD telediagnosis method for smartphone. Classification of PD using speech records is a challenging task owing to the fact that the classification accuracy is still lower than doctor-level. Here we demonstrate automatic classification of PD using time frequency features, stacked autoencoders (SAE), and K nearest neighbor (KNN) classifier. KNN classifier can produce promising classification results from useful representations which were learned by SAE. Empirical results show that the proposed method achieves better performance with all tested cases across classification tasks, demonstrating machine learning capable of classifying PD with a level of competence comparable to doctor. It concludes that a smartphone can therefore potentially provide low-cost PD diagnostic care. This paper also gives an implementation on browser/server system and reports the running time cost. Both advantages and disadvantages of the proposed telediagnosis system are discussed.
2017-01-01
Parkinson's disease (PD) is primarily diagnosed by clinical examinations, such as walking test, handwriting test, and MRI diagnostic. In this paper, we propose a machine learning based PD telediagnosis method for smartphone. Classification of PD using speech records is a challenging task owing to the fact that the classification accuracy is still lower than doctor-level. Here we demonstrate automatic classification of PD using time frequency features, stacked autoencoders (SAE), and K nearest neighbor (KNN) classifier. KNN classifier can produce promising classification results from useful representations which were learned by SAE. Empirical results show that the proposed method achieves better performance with all tested cases across classification tasks, demonstrating machine learning capable of classifying PD with a level of competence comparable to doctor. It concludes that a smartphone can therefore potentially provide low-cost PD diagnostic care. This paper also gives an implementation on browser/server system and reports the running time cost. Both advantages and disadvantages of the proposed telediagnosis system are discussed. PMID:29075547
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ikushima, K; Arimura, H; Jin, Z
Purpose: In radiation treatment planning, delineation of gross tumor volume (GTV) is very important, because the GTVs affect the accuracies of radiation therapy procedure. To assist radiation oncologists in the delineation of GTV regions while treatment planning for lung cancer, we have proposed a machine-learning-based delineation framework of GTV regions of solid and ground glass opacity (GGO) lung tumors following by optimum contour selection (OCS) method. Methods: Our basic idea was to feed voxel-based image features around GTV contours determined by radiation oncologists into a machine learning classifier in the training step, after which the classifier produced the degree ofmore » GTV for each voxel in the testing step. Ten data sets of planning CT and PET/CT images were selected for this study. The support vector machine (SVM), which learned voxel-based features which include voxel value and magnitudes of image gradient vector that obtained from each voxel in the planning CT and PET/CT images, extracted initial GTV regions. The final GTV regions were determined using the OCS method that was able to select a global optimum object contour based on multiple active delineations with a level set method around the GTV. To evaluate the results of proposed framework for ten cases (solid:6, GGO:4), we used the three-dimensional Dice similarity coefficient (DSC), which denoted the degree of region similarity between the GTVs delineated by radiation oncologists and the proposed framework. Results: The proposed method achieved an average three-dimensional DSC of 0.81 for ten lung cancer patients, while a standardized uptake value-based method segmented GTV regions with the DSC of 0.43. The average DSCs for solid and GGO were 0.84 and 0.76, respectively, obtained by the proposed framework. Conclusion: The proposed framework with the support vector machine may be useful for assisting radiation oncologists in delineating solid and GGO lung tumors.« less
NASA Astrophysics Data System (ADS)
Jia, Xiaodong; Jin, Chao; Buzza, Matt; Di, Yuan; Siegel, David; Lee, Jay
2018-01-01
Successful applications of Diffusion Map (DM) in machine failure detection and diagnosis have been reported in several recent studies. DM provides an efficient way to visualize the high-dimensional, complex and nonlinear machine data, and thus suggests more knowledge about the machine under monitoring. In this paper, a DM based methodology named as DM-EVD is proposed for machine degradation assessment, abnormality detection and diagnosis in an online fashion. Several limitations and challenges of using DM for machine health monitoring have been analyzed and addressed. Based on the proposed DM-EVD, a deviation based methodology is then proposed to include more dimension reduction methods. In this work, the incorporation of Laplacian Eigen-map and Principal Component Analysis (PCA) are explored, and the latter algorithm is named as PCA-Dev and is validated in the case study. To show the successful application of the proposed methodology, case studies from diverse fields are presented and investigated in this work. Improved results are reported by benchmarking with other machine learning algorithms.
NASA Astrophysics Data System (ADS)
Hong, Haibo; Yin, Yuehong; Chen, Xing
2016-11-01
Despite the rapid development of computer science and information technology, an efficient human-machine integrated enterprise information system for designing complex mechatronic products is still not fully accomplished, partly because of the inharmonious communication among collaborators. Therefore, one challenge in human-machine integration is how to establish an appropriate knowledge management (KM) model to support integration and sharing of heterogeneous product knowledge. Aiming at the diversity of design knowledge, this article proposes an ontology-based model to reach an unambiguous and normative representation of knowledge. First, an ontology-based human-machine integrated design framework is described, then corresponding ontologies and sub-ontologies are established according to different purposes and scopes. Second, a similarity calculation-based ontology integration method composed of ontology mapping and ontology merging is introduced. The ontology searching-based knowledge sharing method is then developed. Finally, a case of human-machine integrated design of a large ultra-precision grinding machine is used to demonstrate the effectiveness of the method.
DOE-RCT-0003641 Final Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, Edward; Lesster, Ted
2014-07-30
This program studied novel concepts for an Axial Flux Reluctance Machine to capture energy from marine hydrokinetic sources and compared their attributes to a Radial Flux Reluctance Machine which was designed under a prior Department of Energy program for the same application. Detailed electromagnetic and mechanical analyses were performed to determine the validity of the concept and to provide a direct comparison with the existing conventional Radial Flux Switched Reluctance Machine designed during the Advanced Wave Energy Conversion Project, DE-EE0003641. The alternate design changed the machine topology so that the flux that is switched flows axially rather than radially andmore » the poles themselves are long radially, as opposed to the radial flux machine that has pole pieces that are long axially. It appeared possible to build an axial flux machine that should be considerably more compact than the radial machine. In an “apples to apples” comparison, the same rules with regard to generating magnetic force and the fundamental limitations of flux density hold, so that at the heart of the machine the same torque equations hold. The differences are in the mechanical configuration that limits or enhances the change of permeance with rotor position, in the amount of permeable iron required to channel the flux via the pole pieces to the air-gaps, and in the sizing and complexity of the electrical winding. Accordingly it was anticipated that the magnetic component weight would be similar but that better use of space would result in a shorter machine with accompanying reduction in housing and support structure. For the comparison the pole count was kept the same at 28 though it was also expected that the radial tapering of the slots between pole pieces would permit a higher pole count machine, enabling the generation of greater power at a given speed in some future design. The baseline Radial Flux Machine design was established during the previous DOE program. Its characteristics were tabulated for use in comparing to the Axial Flux Machine. Three basic conceptual designs for the Axial Flux Machine were considered: (1) a machine with a single coil at the inner diameter of the machine, (2) a machine with a single coil at the outside diameter of the machine, and (3) a machine with a coil around each tooth. Slight variations of these basic configurations were considered during the study. Analysis was performed on these configurations to determine the best candidate design to advance to preliminary design, based on size, weight, performance, cost and manufacturability. The configuration selected as the most promising was the multi-pole machine with a coil around each tooth. This configuration provided the least complexity with respect to the mechanical configuration and manufacturing, which would yield the highest reliability and lowest cost machine of the three options. A preliminary design was performed on this selected configuration. For this first ever axial design of the multi rotor configuration the 'apples to apples' comparison was based on using the same length of rotor pole as the axial length of rotor pole in the radial machine and making the mean radius of the rotor in the axial machine the same as the air gap radius in the radial machine. The tooth to slot ratio at the mean radius of the axial machine was the same as the tooth to slot ratio of the radial machine. The comparison between the original radial flux machine and the new axial flux machine indicates that for the same torque, the axial flux machine diameter will be 27% greater, but it will have 30% of the length, and 76% of the weight. Based on these results, it is concluded that an axial flux reluctance machine presents a viable option for large generators to be used for the capture of wave energy. In the analysis of Task 4, below, it is pointed out that our selection of dimensional similarity for the 'apples to apples' comparison did not produce an optimum axial flux design. There is torque capability to spare, implying we could reduce the magnetic structure, but the winding area, constrained by the pole separation at the inner pole radius has a higher resistance than desirable, implying we need more room for copper. The recommendation is to proceed via one cycle of optimization and review to correct this unbalance and then proceed to a detailed design phase to produce manufacturing drawings, followed by the construction of a prototype to test the performance of the machine against predicted results.« less
NASA Technical Reports Server (NTRS)
Stoms, R. M.
1984-01-01
Numerically-controlled 5-axis machine tool uses transformer and meter to determine and indicate whether tool is in home position, but lacks built-in test mode to check them. Tester makes possible test, and repair of components at machine rather then replace them when operation seems suspect.
Evaluation of I-FIT results and machine variability using MnRoad test track mixtures.
DOT National Transportation Integrated Search
2017-06-01
The Illinois Flexibility Index Test (I-FIT) was developed to distinguish between different mixtures in terms of potential cracking. Several : machines were manufactured and are currently available to perform the I-FIT. This report presents the result...
Automated Low-Cost Smartphone-Based Lateral Flow Saliva Test Reader for Drugs-of-Abuse Detection.
Carrio, Adrian; Sampedro, Carlos; Sanchez-Lopez, Jose Luis; Pimienta, Miguel; Campoy, Pascual
2015-11-24
Lateral flow assay tests are nowadays becoming powerful, low-cost diagnostic tools. Obtaining a result is usually subject to visual interpretation of colored areas on the test by a human operator, introducing subjectivity and the possibility of errors in the extraction of the results. While automated test readers providing a result-consistent solution are widely available, they usually lack portability. In this paper, we present a smartphone-based automated reader for drug-of-abuse lateral flow assay tests, consisting of an inexpensive light box and a smartphone device. Test images captured with the smartphone camera are processed in the device using computer vision and machine learning techniques to perform automatic extraction of the results. A deep validation of the system has been carried out showing the high accuracy of the system. The proposed approach, applicable to any line-based or color-based lateral flow test in the market, effectively reduces the manufacturing costs of the reader and makes it portable and massively available while providing accurate, reliable results.
A Senior Project-Based Multiphase Motor Drive System Development
ERIC Educational Resources Information Center
Abdel-Khalik, Ayman S.; Massoud, Ahmed M.; Ahmed, Shehab
2016-01-01
Adjustable-speed drives based on multiphase motors are of significant interest for safety-critical applications that necessitate wide fault-tolerant capabilities and high system reliability. Although multiphase machines are based on the same conceptual theory as three-phase machines, most undergraduate electrical machines and electric drives…
A hybrid prognostic model for multistep ahead prediction of machine condition
NASA Astrophysics Data System (ADS)
Roulias, D.; Loutas, T. H.; Kostopoulos, V.
2012-05-01
Prognostics are the future trend in condition based maintenance. In the current framework a data driven prognostic model is developed. The typical procedure of developing such a model comprises a) the selection of features which correlate well with the gradual degradation of the machine and b) the training of a mathematical tool. In this work the data are taken from a laboratory scale single stage gearbox under multi-sensor monitoring. Tests monitoring the condition of the gear pair from healthy state until total brake down following several days of continuous operation were conducted. After basic pre-processing of the derived data, an indicator that correlated well with the gearbox condition was obtained. Consecutively the time series is split in few distinguishable time regions via an intelligent data clustering scheme. Each operating region is modelled with a feed-forward artificial neural network (FFANN) scheme. The performance of the proposed model is tested by applying the system to predict the machine degradation level on unseen data. The results show the plausibility and effectiveness of the model in following the trend of the timeseries even in the case that a sudden change occurs. Moreover the model shows ability to generalise for application in similar mechanical assets.
Computed Tomography Inspection and Analysis for Additive Manufacturing Components
NASA Technical Reports Server (NTRS)
Beshears, Ronald D.
2016-01-01
Computed tomography (CT) inspection was performed on test articles additively manufactured from metallic materials. Metallic AM and machined wrought alloy test articles with programmed flaws were inspected using a 2MeV linear accelerator based CT system. Performance of CT inspection on identically configured wrought and AM components and programmed flaws was assessed using standard image analysis techniques to determine the impact of additive manufacturing on inspectability of objects with complex geometries.
The Effect of Compressive Loading on the Fatigue Lifetime of Graphite/ Epoxy Laminates
1979-10-01
Un-notched 11 3 Specimen Configuration, Notched 12 4 Location of Thickness and Width Measurements 14 5 Overall View of Composite Compression Test...Grips in Universal Testing Machine 24 8 Specimen Positioning Device 26 9 "Full-Fixity" Apparatus, Showing Auxiliary Platens 26 10 Specimen and Restraint...the accumu- lation of a statistically significant data base. * IA previous research study [11 showed that graphite/epoxy composites under constant
Research on tool wearing on milling of TC21 titanium alloy
NASA Astrophysics Data System (ADS)
Guilin, Liu
2017-06-01
Titanium alloys are used in aircraft widely, but the efficiency is a problem for machining titanium alloy. In this paper, the cutting experiment of TC21 titanium alloy was studied. Cutting parameters and test methods for TC21 titanium alloy were designed. The wear behavior of TC21 titanium alloy was studied based on analysis of orthogonal test results. It provides a group of cutting parameters for TC21 titanium alloy processing.
2007-09-01
include a machine shop, a welding shop, carpenter and wood shop, metal heat treatment shop, bead blast shop, paint shop, non-destructive inspection...annually. In 2005, 227 motors were fired. Sled operation can involve activities such as carrying explosives, testing ejection seats, shooting lasers ...Cinetheodolite-type metric cameras and/or laser tracking equipment are used for aircraft flight trajectories exceeding 500 feet above ground level
Comparison of Feature Selection Techniques in Machine Learning for Anatomical Brain MRI in Dementia.
Tohka, Jussi; Moradi, Elaheh; Huttunen, Heikki
2016-07-01
We present a comparative split-half resampling analysis of various data driven feature selection and classification methods for the whole brain voxel-based classification analysis of anatomical magnetic resonance images. We compared support vector machines (SVMs), with or without filter based feature selection, several embedded feature selection methods and stability selection. While comparisons of the accuracy of various classification methods have been reported previously, the variability of the out-of-training sample classification accuracy and the set of selected features due to independent training and test sets have not been previously addressed in a brain imaging context. We studied two classification problems: 1) Alzheimer's disease (AD) vs. normal control (NC) and 2) mild cognitive impairment (MCI) vs. NC classification. In AD vs. NC classification, the variability in the test accuracy due to the subject sample did not vary between different methods and exceeded the variability due to different classifiers. In MCI vs. NC classification, particularly with a large training set, embedded feature selection methods outperformed SVM-based ones with the difference in the test accuracy exceeding the test accuracy variability due to the subject sample. The filter and embedded methods produced divergent feature patterns for MCI vs. NC classification that suggests the utility of the embedded feature selection for this problem when linked with the good generalization performance. The stability of the feature sets was strongly correlated with the number of features selected, weakly correlated with the stability of classification accuracy, and uncorrelated with the average classification accuracy.
A comparison of muscle activation between a Smith machine and free weight bench press.
Schick, Evan E; Coburn, Jared W; Brown, Lee E; Judelson, Daniel A; Khamoui, Andy V; Tran, Tai T; Uribe, Brandon P
2010-03-01
The bench press exercise exists in multiple forms including the machine and free weight bench press. It is not clear though how each mode differs in its effect on muscle activation. The purpose of this study was to compare muscle activation of the anterior deltoid, medial deltoid, and pectoralis major during a Smith machine and free weight bench press at lower (70% 1 repetition maximum [1RM]) and higher (90% 1RM) intensities. Normalized electromyography amplitude values were used during the concentric phase of the bench press to compare muscle activity between a free weight and Smith machine bench press. Participants were classified as either experienced or inexperienced bench pressers. Two testing sessions were used, each of which entailed either all free weight or all Smith machine testing. In each testing session, each participant's 1RM was established followed by 2 repetitions at 70% of 1RM and 2 repetitions at 90% of 1RM. Results indicated greater activation of the medial deltoid on the free weight bench press than on the Smith machine bench press. Also, there was greater muscle activation at the 90% 1RM load than at the 70% 1RM load. The results of this study suggest that strength coaches should consider choosing the free weight bench press over the Smith machine bench press because of its potential for greater upper-body muscular development.
Measured impacts of high efficiency domestic clothes washers in a community
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomlinson, J.; Rizy, T.
1998-07-01
The US market for domestic clothes washers is currently dominated by conventional vertical-axis washers that typically require approximately 40 gallons of water for each wash load. Although the current market for high efficiency clothes washers that use much less water and energy is quite small, it is growing slowly as manufacturers make machines based on tumble action, horizontal-axis designs available and as information about the performance and benefits of such machines is developed and made available to consumers. To help build awareness of these benefits and to accelerate markets for high efficiency washers, the Department of Energy (DOE), under itsmore » ENERGY STAR{reg_sign} Program and in cooperation with a major manufacturers of high efficiency washers, conducted a field evaluation of high efficiency washers using Bern, Kansas as a test bed. Baseline washing machine performance data as well as consumer washing behavior were obtained from data collected on the existing machines of more than 100 participants in this instrumented study. Following a 2-month initial study period, all conventional machines were replaced by high efficiency, tumble-action washers, and the study continued for 3 months. Based on measured data from over 20,000 loads of laundry, the impact of the washer replacement on (1) individual customers` energy and water consumption, (2) customers` laundry habits and perceptions, and (3) the community`s water supply and waste water systems were determined. The study, its findings, and how information from the experiment was used to improve national awareness of high efficiency clothes washer benefits are described in this paper.« less
A formal protocol test procedure for the Survivable Adaptable Fiber Optic Embedded Network (SAFENET)
NASA Astrophysics Data System (ADS)
High, Wayne
1993-03-01
This thesis focuses upon a new method for verifying the correct operation of a complex, high speed fiber optic communication network. These networks are of growing importance to the military because of their increased connectivity, survivability, and reconfigurability. With the introduction and increased dependence on sophisticated software and protocols, it is essential that their operation be correct. Because of the speed and complexity of fiber optic networks being designed today, they are becoming increasingly difficult to test. Previously, testing was accomplished by application of conformance test methods which had little connection with an implementation's specification. The major goal of conformance testing is to ensure that the implementation of a profile is consistent with its specification. Formal specification is needed to ensure that the implementation performs its intended operations while exhibiting desirable behaviors. The new conformance test method presented is based upon the System of Communicating Machine model which uses a formal protocol specification to generate a test sequence. The major contribution of this thesis is the application of the System of Communicating Machine model to formal profile specifications of the Survivable Adaptable Fiber Optic Embedded Network (SAFENET) standard which results in the derivation of test sequences for a SAFENET profile. The results applying this new method to SAFENET's OSI and Lightweight profiles are presented.
Information extraction from dynamic PS-InSAR time series using machine learning
NASA Astrophysics Data System (ADS)
van de Kerkhof, B.; Pankratius, V.; Chang, L.; van Swol, R.; Hanssen, R. F.
2017-12-01
Due to the increasing number of SAR satellites, with shorter repeat intervals and higher resolutions, SAR data volumes are exploding. Time series analyses of SAR data, i.e. Persistent Scatterer (PS) InSAR, enable the deformation monitoring of the built environment at an unprecedented scale, with hundreds of scatterers per km2, updated weekly. Potential hazards, e.g. due to failure of aging infrastructure, can be detected at an early stage. Yet, this requires the operational data processing of billions of measurement points, over hundreds of epochs, updating this data set dynamically as new data come in, and testing whether points (start to) behave in an anomalous way. Moreover, the quality of PS-InSAR measurements is ambiguous and heterogeneous, which will yield false positives and false negatives. Such analyses are numerically challenging. Here we extract relevant information from PS-InSAR time series using machine learning algorithms. We cluster (group together) time series with similar behaviour, even though they may not be spatially close, such that the results can be used for further analysis. First we reduce the dimensionality of the dataset in order to be able to cluster the data, since applying clustering techniques on high dimensional datasets often result in unsatisfying results. Our approach is to apply t-distributed Stochastic Neighbor Embedding (t-SNE), a machine learning algorithm for dimensionality reduction of high-dimensional data to a 2D or 3D map, and cluster this result using Density-Based Spatial Clustering of Applications with Noise (DBSCAN). The results show that we are able to detect and cluster time series with similar behaviour, which is the starting point for more extensive analysis into the underlying driving mechanisms. The results of the methods are compared to conventional hypothesis testing as well as a Self-Organising Map (SOM) approach. Hypothesis testing is robust and takes the stochastic nature of the observations into account, but is time consuming. Therefore, we successively apply our machine learning approach with the hypothesis testing approach in order to benefit from both the reduced computation time of the machine learning approach as from the robust quality metrics of hypothesis testing. We acknowledge support from NASA AISTNNX15AG84G (PI V. Pankratius)
Fuzzy support vector machine: an efficient rule-based classification technique for microarrays.
Hajiloo, Mohsen; Rabiee, Hamid R; Anooshahpour, Mahdi
2013-01-01
The abundance of gene expression microarray data has led to the development of machine learning algorithms applicable for tackling disease diagnosis, disease prognosis, and treatment selection problems. However, these algorithms often produce classifiers with weaknesses in terms of accuracy, robustness, and interpretability. This paper introduces fuzzy support vector machine which is a learning algorithm based on combination of fuzzy classifiers and kernel machines for microarray classification. Experimental results on public leukemia, prostate, and colon cancer datasets show that fuzzy support vector machine applied in combination with filter or wrapper feature selection methods develops a robust model with higher accuracy than the conventional microarray classification models such as support vector machine, artificial neural network, decision trees, k nearest neighbors, and diagonal linear discriminant analysis. Furthermore, the interpretable rule-base inferred from fuzzy support vector machine helps extracting biological knowledge from microarray data. Fuzzy support vector machine as a new classification model with high generalization power, robustness, and good interpretability seems to be a promising tool for gene expression microarray classification.
Sun, Baozhou; Lam, Dao; Yang, Deshan; Grantham, Kevin; Zhang, Tiezhi; Mutic, Sasa; Zhao, Tianyu
2018-05-01
Clinical treatment planning systems for proton therapy currently do not calculate monitor units (MUs) in passive scatter proton therapy due to the complexity of the beam delivery systems. Physical phantom measurements are commonly employed to determine the field-specific output factors (OFs) but are often subject to limited machine time, measurement uncertainties and intensive labor. In this study, a machine learning-based approach was developed to predict output (cGy/MU) and derive MUs, incorporating the dependencies on gantry angle and field size for a single-room proton therapy system. The goal of this study was to develop a secondary check tool for OF measurements and eventually eliminate patient-specific OF measurements. The OFs of 1754 fields previously measured in a water phantom with calibrated ionization chambers and electrometers for patient-specific fields with various range and modulation width combinations for 23 options were included in this study. The training data sets for machine learning models in three different methods (Random Forest, XGBoost and Cubist) included 1431 (~81%) OFs. Ten-fold cross-validation was used to prevent "overfitting" and to validate each model. The remaining 323 (~19%) OFs were used to test the trained models. The difference between the measured and predicted values from machine learning models was analyzed. Model prediction accuracy was also compared with that of the semi-empirical model developed by Kooy (Phys. Med. Biol. 50, 2005). Additionally, gantry angle dependence of OFs was measured for three groups of options categorized on the selection of the second scatters. Field size dependence of OFs was investigated for the measurements with and without patient-specific apertures. All three machine learning methods showed higher accuracy than the semi-empirical model which shows considerably large discrepancy of up to 7.7% for the treatment fields with full range and full modulation width. The Cubist-based solution outperformed all other models (P < 0.001) with the mean absolute discrepancy of 0.62% and maximum discrepancy of 3.17% between the measured and predicted OFs. The OFs showed a small dependence on gantry angle for small and deep options while they were constant for large options. The OF decreased by 3%-4% as the field radius was reduced to 2.5 cm. Machine learning methods can be used to predict OF for double-scatter proton machines with greater prediction accuracy than the most popular semi-empirical prediction model. By incorporating the gantry angle dependence and field size dependence, the machine learning-based methods can be used for a sanity check of OF measurements and bears the potential to eliminate the time-consuming patient-specific OF measurements. © 2018 American Association of Physicists in Medicine.
Passing the Turing Test Does Not Mean the End of Humanity.
Warwick, Kevin; Shah, Huma
In this paper we look at the phenomenon that is the Turing test. We consider how Turing originally introduced his imitation game and discuss what this means in a practical scenario. Due to its popular appeal we also look into different representations of the test as indicated by numerous reviewers. The main emphasis here, however, is to consider what it actually means for a machine to pass the Turing test and what importance this has, if any. In particular does it mean that, as Turing put it, a machine can "think". Specifically we consider claims that passing the Turing test means that machines will have achieved human-like intelligence and as a consequence the singularity will be upon us in the blink of an eye.
Generative Models for Similarity-based Classification
2007-01-01
NC), local nearest centroid (local NC), k-nearest neighbors ( kNN ), and condensed nearest neighbors (CNN) are all similarity-based classifiers which...vector machine to the k nearest neighbors of the test sample [80]. The SVM- KNN method was developed to address the robustness and dimensionality...concerns that afflict nearest neighbors and SVMs. Similarly to the nearest-means classifier, the SVM- KNN is a hybrid local and global classifier developed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, D. G.
2002-01-01
A round-robin study was conducted with the participation of three laboratory facilities: Los Alamos National Laboratory (LANL), BWXT Pantex Plant (PX), and Lawrence Livermore National Laboratory (LLNL). The study involved the machining and quasi-static tension testing of two plastic-bonded high explosive (PBX) composites, PBX 9501 and PBX 9502. Nine tensile specimens for each type of PBX were to be machined at each of the three facilities; 3 of these specimens were to be sent to each of the participating materials testing facilities for tensile testing. The resultant data was analyzed to look for trends associated with specimen machining location and/ormore » trends associated with materials testing location. The analysis provides interesting insights into the variability and statistical nature of mechanical properties testing on PBX composites. Caution is warranted when results are compared/exchanged between testing facilities.« less
Forsyth, Alexander W; Barzilay, Regina; Hughes, Kevin S; Lui, Dickson; Lorenz, Karl A; Enzinger, Andrea; Tulsky, James A; Lindvall, Charlotta
2018-06-01
Clinicians document cancer patients' symptoms in free-text format within electronic health record visit notes. Although symptoms are critically important to quality of life and often herald clinical status changes, computational methods to assess the trajectory of symptoms over time are woefully underdeveloped. To create machine learning algorithms capable of extracting patient-reported symptoms from free-text electronic health record notes. The data set included 103,564 sentences obtained from the electronic clinical notes of 2695 breast cancer patients receiving paclitaxel-containing chemotherapy at two academic cancer centers between May 1996 and May 2015. We manually annotated 10,000 sentences and trained a conditional random field model to predict words indicating an active symptom (positive label), absence of a symptom (negative label), or no symptom at all (neutral label). Sentences labeled by human coder were divided into training, validation, and test data sets. Final model performance was determined on 20% test data unused in model development or tuning. The final model achieved precision of 0.82, 0.86, and 0.99 and recall of 0.56, 0.69, and 1.00 for positive, negative, and neutral symptom labels, respectively. The most common positive symptoms were pain, fatigue, and nausea. Machine-based labeling of 103,564 sentences took two minutes. We demonstrate the potential of machine learning to gather, track, and analyze symptoms experienced by cancer patients during chemotherapy. Although our initial model requires further optimization to improve the performance, further model building may yield machine learning methods suitable to be deployed in routine clinical care, quality improvement, and research applications. Copyright © 2018 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.